AIX 5L Version 5.1

System Management Guide:
Communications and Networks

<|ll

AIX 5L Version 5.1

System Management Guide:
Communications and Networks

<|ll

Fifth Edition (April 2001)
Before using the information in this book, read the general information in EAppendix Notices” on page 451,

This edition applies to AIX 5L Version 5.1 and to all subsequent releases of this product until otherwise indicated in
new editions.

A reader’s comment form is provided at the back of this publication. If the form has been removed, address
comments to Publications Department, Internal Zip 9561, 11400 Burnet Road, Austin, Texas 78758-3493. To send
comments electronically, use this commercial Internet address: aix6kpub @austin.ibm.com. Any information that you
supply may be used without incurring any obligation to you.

(c) Copyright AT&T, 1984, 1985, 1986, 1987, 1988, 1989. All rights reserved.

This software and documentation is based in part on the Fourth Berkeley Software Distribution under license from
The Regents of the University of California. We acknowledge the following institutions for their role in its
development: the Electrical Engineering and Computer Sciences Department at the Berkeley Campus.

The Rand MH Message Handling System was developed by the Rand Corporation and the University of California.
Portions of the code and documentation described in this book were derived from code and documentation
developed under the auspices of the Regents of the University of California and have been acquired and modified
under the provisions that the following copyright notice and permission notice appear:

Copyright Regents of the University of California, 1986, 1987, 1988, 1989. All rights reserved.

Redistribution and use in source and binary forms are permitted provided that this notice is preserved and that due
credit is given to the University of California at Berkeley. The name of the University may not be used to endorse or
promote products derived from this software without specific prior written permission. This software is provided "as
is" without express or implied warranty.

© Copyright International Business Machines Corporation 1997, 2001. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About This Book . . .
Who Should Use This Book
Highlighting

ISO 9000

Related Publications
Trademarks

Chapter 1. Communications and Networks Overview
Communications Functions Introduction.
Network Introduction . .
Physical Networks Introduction .
System Communications Support .

Protocols .

Addresses

Domains .

Gateways and Bndges

Routing

Local and Remote Nodes

Client and Server . .
Communicating with Other Operatlng Systems .

Chapter 2. Mail
Mail Management Tasks

Configuring the /etc/rc.tcpip F|Ie to Start the sendmall Daemon .

Managing Mail Aliases .

/etc/mail/aliases File .

Creating Local System Aliases for Ma|I

Building the Alias Database .
Managing the Mail Queue Files and Dlrectones

Printing the Mail Queue .

Mail Queue Files.

Specifying Time Values in sendmall

Forcing the Mail Queue .

Setting the Queue Processing Interval

Moving the Mail Queue

Starting the sendmail Daemon.

Stopping the sendmail Daemon
Managing Mail Logging

Managing the Log .

Logging Traffic

Logging Mailer Statlstlcs

Displaying Mailer Information .
Debugging sendmail

Internet Message Access Protocol (IMAP) and Post Offlce Protocol (POP)

Configuring IMAP and POP Servers
syslog Facility . G
Mail Reference
List of Mail Commands .
List of Mail Files and Directories .

List of Internet Message Access Protocol and Post Offlce Protocol Commands

Chapter 3. Transmission Control Protocol/Internet Protocol
Planning Your TCP/IP Network

© Copyright IBM Corp. 1997, 2001

. Xiii
. Xiii
. Xiii
. Xiii
. Xiii
. Xiii

O UTARNRDDNWW= 2 =

© © 0 0o~

Installation and Configuration for TCP/IP .
Configuring TCP/IP . .
TCP/IP System Manager Commands .o
Configuring a TCP/IP Network Checklist .
TCP/IP Protocols . .
Internet Protocol (IP) VerS|on 6 Overwew.
Packet Tracing .
Network Interface Packet Headers .
Internet Network-Level Protocols .
Internet Transport-Level Protocols
Internet Application-Level Protocols .
Assigned Numbers . . .
TCP/IP Local Area Network Adapter Cards .
Installing a Network Adapter .
Configuring and Managing Adapters
Configuring and Using Virtual Local Area Networks (VLANs)
Using ATM Adapters Ce e e e
TCP/IP Network Interfaces .
Automatic Configuration of Network Interfaces
Implications of Multiple Network Interfaces on the Same Network
Managing Network Interfaces .
Interface-Specific Network Options .
TCP/IP Addressing .
Internet Addresses .
Subnet Addresses .
Broadcast Addresses .
Local Loopback Addresses .

TCP/IP Address and Parameter ASS|gnment - Dynam|c Host Conf|gurat|on Protocol (DHCP) .

The DHCP Server .
Planning DHCP .
Configuring DHCP . .
DHCP and the Dynamic Domam Name System (DDNS) .
DHCP Compatibility with Older Versions . .
DHCP Server File Known Options
Preboot Execution Environment (PXE) Vendor Contalner Suboptlon
DHCP Server File Syntax for General Server Operation
DHCP Server File Syntax for db_file Database.
DHCP and Network Installation Management (NIM) Suggestrons
Preboot Execution Environment Proxy DHCP Daemon (pxed).
The PXE Proxy DHCP Server
Configuring the PXED Server.
PXE Vendor Container Suboptions. .
PXED Server File Syntax for General Server Operatlon .
PXED Server File Syntax for db_file Database
Boot Image Negotiation Layer Daemon (BINLD).
The BINLD Server. Ce e
Configuring BINLD . .
BINLD Server File Syntax for General Server Operatlon.
BINLD Server File Syntax for db_file Database .
Configuring TCP/IP e
Prerequisites.
Updating the Hosts Llst
TCP/IP Daemons .
Subsystems and Subservers
System Resource Control (SRC)
Configuring the inetd Daemon

iV Communications and Networks

. 24
. 24
. 25
. 25
. 26
. 29
. 35
. 35
. 37
. 42
. 46
. 50
. 50
. 51
. 51
. 52
. 54
. 63
. 64
. 67
. 67
. 68
. 70
. 70
. 73
. 76
. 76
.77
. 78
. 80
. 81
. 86
. 88
. 88
.9
.92
. . 9
. 110
11
11
.12
. 115
. 116
. 118
. 127
. 127
. 127
. 131
. 133
. 140
. 140
141
141
.14
. 142
. 143

Client Network Services
Server Network Services .

TCP/IP Name Resolution .
Naming. .
Performing LocaI Name Resolutlon (/etc/hosts) .
Planning for DOMAIN Name Resolution.
Configuring Name Servers. .
Configuring a Forwarder
Configuring a Forward Only Name Server
Configuring a Host to Use a Name Server .

Configuring Dynamic Zones on the DNS Name Server .
Planning and Configuration for LDAP Name Resolution .

TCP/IP Routing.
Static and Dynamic Routmg
Gateways . .
Planning for Gateways .
Configuring a Gateway .
Restricting Route Use
Dead Gateway Detection .
Manually Removing Dynamic Routes
Configuring the routed Daemon .
Configuring the gated Daemon .
Getting an Autonomous System Number
Path MTU D|scovery
SLIP.
Configuring SLIP over a Modem
Configuring SLIP over a Null Modem Cable
Deactivating a SLIP Connection. .
Removinga TTY .
Asynchronous Point-to-Point Protocol (PPP) Subsystem
User-Level Processes
Configuring the Asynchronous Pomt to Pomt Protocol
PPP and SNMP . . .
TCP/IP Quality of Service (QoS)
QoS Models . .o
Supported Standards and Draft Standards
QoS Installation Ce
QoS Configuration. .
QoS Problem Determination .
Policy Specification
Guidelines for DiffServ Enwronments
Sample policyd Configuration File .

Loading Policies into IBM SecureWay Dlrectory Server .

System Configuration
Standards Compliance .
IPv6 Support. .
Controlling the Policy Daemon .
QoS Reference.
TCP/IP Security
Operating System- SpeC|f|c Securlty
TCP/IP-Specific Security
TCP/IP Command Security
Trusted Processes .
Network Trusted Computmg Base (NTCB) .
Data Security and Information Protection
TCP/IP Problem Determination .

. 144
. 145
. 146
. 146
. 152
. 153
. 154
. 163
. 164
. 166
. 168
. 169
171
.17
. 172
. 174
. 175
. 176
. 176
177
177
. 178
. 180
. 180
. 181
. 181
. 183
. 185
. 185
. 185
. 185
. 186
. 188
. 189
. 190
. 190
. 191
. 191
. 193
. 194
. 195
. 195
. 197
. 198
. 198
. 199
. 199
. 199
. 199
. 200
. 201
. 201
. 204
. 204
. 206
. 206

Contents

\'

Communication Problems .

Name Resolution Problems

Routing Problems .

Problems with SRC Support

telnet or rlogin Problems

Configuration Problems .

Common Problems with Network Interfaces

Problems with Packet Delivery . .

Problems with Dynamic Host Conflguratlon Protocol (DHCP)
TCP/IP Reference. . . Ce e e e

List of TCP/IP Commands

List of TCP/IP Daemons

List of Methods . .

List of TCP/IP Files

List of RFCs .

Chapter 4. Internet Protocol (IP) Security .
IP Security Overview.
Benefits of a Virtual Prlvate Network (VPN)
IP Security and the Operating System
IP Security Features . .
Security Associations
Tunnels and Key Management
Native Filtering Capability .
Digital Certificate Support .
IP Security Installation .
Loading IP Security . .
Planning IP Security Configuration.
Tunnels versus Filters
Tunnels and Security Assomatlons
Choosing a Tunnel Type .
Using IKE with DHCP or Dynamlcally ASS|gned Addresses.
Configuring IKE Tunnels . e
Basic Configuration Wizard .
Advanced IKE Tunnel Configuration .
Examples of IKE Tunnel Configurations .
Digital Certificate Configuration .
Using the IBM Key Manager Tool .
Creating a Key Database . .
Adding a CA Root Digital Certlflcate .
Establishing Trust Settings.
Deleting a CA Root Digital Certn‘lcate
Requesting a Digital Certificate . .
Adding (Receiving) a New Digital Certlflcate .
Deleting a Digital Certificate . .o
Changing a Database Password :
Creating IKE Tunnels using Digital Cert|f|cates .
Configuring Manual Tunnels .
Setting Up Tunnels and Filters .
Creating a Manual Tunnel on Host A .
Creating a Manual Tunnel on Host B .
Setting Up Filters .
Static Filter Rules and Examples .
Autogenerated Filter Rules and User Specmed F|Iter Rules
Predefined Filter Rules .
Subnet Masks .

Vi Communications and Networks

. 207
. 207
. 208
. 209
. 210
. 212
. 212
. 215
. 215
. 216
. 216
. 216
. 217
. 217
. 217

. 219
. 219
. 219
. 220
. 220
. 221
. 222
. 223
. 224
. 224
. 224
. 224
. 225
. 226
. 226
. 227
. 227
. 227
. 228
. 234
. 234
. 237
. 238
. 239
. 239
. 240
. 240
. 241
. 241
. 242
. 242
. 244
. 244
. 244
. 246
. 246
. 247
. 249
. 250
. 250

Host-Firewall-Host.
Logging Facilities .
Labels in Field Entries . .
IP Security Problem Determination.
Troubleshooting Manual Tunnel Errors .
Troubleshooting IKE Tunnel Errors.
Tracing Facilities .
ipsecstat .
IP Security Reference
List of Commands.
List of Methods .

Chapter 5. TTY Devices and Serial Communications .
TTY Overview . .
TERM Values for leferent Dlsplays and Termlnals
Setting TTY Characteristics .
Setting Attributes on the Attached TTY Dewce
Managing TTY Devices . e
Dynamic Screen Utility .
dscreen Terminal Configuration Informatron F|Ie
Key Action Assignments
Dynamic Screen Assignment .
dsinfo File.
Modems .
Modem Overvrew .
Generic Modem Setup . . .
Adding a TTY for the Modem.
Configuring the Modem .
Hayes and Hayes-Compatible Modems
Troubleshooting Modem Problems.
Software Services Modem Questionnaire .
AT Command Summary
ATE Overview . . .
Setting Up ATE Overvrew .
Customizing ATE .
Setting Up ATE .
Prerequisites.
Procedure.
TTY Troubleshooting .
Respawning Too Rapidly Errors
Error Log Information and TTY Log Ident|f|ers

Chapter 6. Micro Channel, ISA, and PCI Adapters .

Micro Channel Wide Area Network (WAN) Adapters
Supported Multiport/2 Adapters .
Supported Portmaster Adapters .
Device Driver Support . .
Configuring Multiport/2 and Portmaster Adapters

ISA/PCI Wide Area Network (WAN) Adapters .
Multiport Model 2 Overview .
Configuring the Multiport Model 2 Adapter .
Multiport Model 2 Adapter Object Information and Attrlbutes
Multiport Model 2 Power Management .
2-Port Multiprotocol HDLC Network Device Dr|ver Overwew
Configuring the 2-Port Multiprotocol Adapter .
ARTIC960HX PCI Adapter Overview .

Contents

. 251
. 251
. 254
. 255
. 255
. 256
. 262
. 262
. 263
. 263
. 264

. 265
. 265
. 265
. 266
. 266
. 266
. 268
. 268
. 268
. 269
. 270
. 273
. 273
. 275
. 276
. 276
. 278
. 279
. 279
. 280
. 283
. 283
. 283
. 285
. 285
. 285
. 286
. 286
. 287

. 291
. 291
. 291
. 291
. 291
. 291
. 292
. 292
. 294
. 295
. 296
. 297
. 297
. 297

Vii

Configuring the MPQP COMIO Emulation Driver over the ARTIC960HX PCI Adapter 298

Chapter 7. Data Link Control . . . e e e e 299
Generic Data Link Control Environment Overwew e s 299
Meeting the GDLC Criteria .30
Implementing the GDLC Interface .. .30
Installing GDLC Data Link Controls .302
GDLC Interface ioctl Entry Point Operations .302
Service Access Point. .Q308
Link Station .. .Q308
Local-Busy Mode .Q803
Short-Hold Mode304
Testing and Tracinga Link.34
Statistics . . . PG 10 2
GDLC Special Kernel Serwces PG 10 2
Managing DLC Device Drivers .0305
Chapter 8. Basic Networking Utilities. .307
BNU Overview go7
How BNU Works . . . R [0 <
BNU File and Directory Structure T 01
BNU Security L . L . L. L0310
BNU Daemons L .o 312
ConfiguringBNU 314
Prerequisites. . . . G 2 £
Information to Collect before Conflgurlng BNU P § I
Procedure. . . . R & £
Setting Up Automatlc Momtormg of BNU N 1 V4
Setting Up BNU Polling of Remote Systems .318
Using the /etc/uucp/Systems File A
Editing Devices Files for Hardwired Connectlons A e
Editing Devices File for Autodialer Connection .319
Editing Devices File for TCP/IIP .30
Maintaining BNU . . . G 1240
Working with BNU Log F|Ies G 1240
BNU Maintenance Commands .. .32
Monitoring a BNU Remote Connection .328
Monitoring a BNU File Transfer. .34
Debugging BNU Problems. . . . C e e e s 324
Debugging BNU Login Failures Usmg the uucico Daemon T 20 4
Contacting Connected UNIX Systems Using the tip Command 328
BNU Configuration Files . . . R e 0]
BNU Configuration for a TCP/IP Connectlon Example 1
BNU Configuration for a Telephone Connection Example 333
BNU Configuration for a Direct Connection Example 334
BNU Files, Commands, and Directories Reference. 336
BNU Directories33
BNUFiles.03
BNU Commands3837
BNU Daemons33
Chapter 9. Network Management .33
SNMP for Network Management .33
SNMP Access Policies33
SNMP Daemon. . . P 7 10
Configuring the SNMP Daemon N 7 10

Viili Communications and Networks

SNMP Daemon Processing
Message Processing and Authentlcatlon
Request Processing .

Response Processing
Trap Processing . .

SNMP Daemon Support for the EGP Fam|ly of MIB Vanables
Examples . . .o

SNMP Daemon RFC Conformance .

SNMP Daemon Implementation Restrictions .

SNMP Daemon Logging Facility .
Logging Directed from the snmpd Command L|ne .
Logging Directed from the Configuration File .

Logging by the syslogd Daemon .

Problem Determination for the SNMP Daemon .
Daemon Termination Problem
Daemon Failure Problem .

MIB Variable Access Problem

MIB Variable Access in Community Entry Problem
No Response from Agent Problem.

noSuchName Problem .

Chapter 10. Network File System
Network File System Overview .
NFS Services . . .
NFS Access Control Llsts (ACL) Support
Cache File System (CacheFS) Support .
NFS Mapped File Support. .
Three Types of Mounts .
NFS Mounting Process .
/etc/exports File
/etc/xtab File. .
Implementation of NFS .
Controlling NFS
NFS Installation and Conflguratlon
Checklist for Configuring NFS
Configuring an NFS Server
Configuring an NFS Client.
Exporting an NFS File System .
Unexporting an NFS File System .
Changing an Exported File System
Enabling Root User Access to an Exported F|Ie System
Mounting an NFS File System Explicitly . . .
Using AutoFS to Automatically Mount a File System .
Establishing Predefined NFS Mounts .

Unmounting an Explicitly or Automatically Mounted F|Ie System .

Removing Predefined NFS Mounts
PC-NFS
PC-NFS Authent|cat|on Serwce
PC-NFS Print-Spooling Service .
Configuring the rpc.pcnfsd Daemon
Starting the rpc.pcnfsd Daemon. .
Verifying the rpc. pcnfsd Daemon Is Acces3|ble .
WebNFS .
Network Lock Manager .
Network Lock Manager Archltecture .
Network File Locking Process

. 341
. 341
. 341
. 342
. 343
. 345
. 355
. 357
. 358
. 358
. 359
. 359
. 360
. 361
. 361
. 361
. 362
. 362
. 363
. 363

. 365
. 365
. 365
. 366
. 367
. 368
. 368
. 369
. 369
. 370
. 370
. 371
. 373
. 373
. 374
. 374
. 374
. 375
. 375
. 376
. 376
. 377
. 378
. 381
. 381
. 381
. 382
. 382
. 382
. 382
. 383
. 383
. 384
. 384
. 384

Contents

ix

Crash Recovery Process . .
Starting the Network Lock Manager . .
Troubleshooting the Network Lock Manager .
Secure NFS .
Secrecy
Secrecy in NFS .
Naming Network Entities for DES Authentlcatlon
/etc/publickey File . .
Booting Considerations of PubI|c Key Systems .
Performance Considerations .
Administering Secure NFS Checkllst
Configuring Secure NFS
Exporting a File System Using Secure NFS
Mounting a File System Using Secure NFS
NFS Problem Determination .

Identifying Hard-Mounted and Soft- Mounted F|Ie Problems.

Identifying NFS Problems Checklist

Asynchronous Write Errors

NFS Error Messages.

Identifying the Cause of Slow Access Tlmes for NFS
NFS Reference. . .

List of Network File System (NFS) F|Ies

List of NFS Commands . .o

List of NFS Daemons

NFS Subroutines .

Chapter 11. AIX Fast Connect .

AIX Fast Connect Overview .
Features .

Requirements
Packaging and InstaIIat|on
Limitations . .

Windows Networking Concepts (NetBIOS SMB WINS)

AIX Fast Connect Configuration and Administration
Overview . :

Configurable Parameters .

Configuration of File and Print Shares (Exports)
User Administration .

Basic Server Administration .

NetBIOS Name Service (NBNS)

Configuring Client PCs for use with AIX Fast Connect
TCP/IP Configuration. Coe e
NetBIOS Name Resolution
Workgroups, Domains, and User Accounts
Enabling Windows Clients for Plain Text Passwords
Browsing the Network
Mapping Drives. .

Using AIX Fast Connect Pnnters
Support for Windows 2000 Clients.
Support for Windows Terminal Server

Advanced AIX Fast Connect Features
AlX-based User Authentication (Plain Text Passwords)
CIFS Password Encryption Protocols.

NT Passthrough Authentication .
Network Logon to AIX Fast Connect .
DCE/DFS Support.

X Communications and Networks

. 384
. 385
. 385
. 387
. 387
. 389
. 391
. 391
. 391
. 392
. 392
. 393
. 393
. 394
. 395
. 395
. 395
. 396
. 396
. 398
. 402
. 402
. 402
. 402
. 403

. 405
. 406
. 406
. 406
. 407
. 409
. 410
. 413
. 413
. 414
. 414
. 415
. 417
. 419
. 419
. 419
. 421
. 422
. 423
. 424
. 425
. 425
. 426
. 426
. 426
. 427
. 427
. 428
. 429
. 429

Guest Logon. .
Share-Level Security .
User Name Mappings .
AlX Fast Connect User Management and F|Ie Access
Mapping Long AIX File Names to 8.3 DOS File Names .
Support for DOS File Attributes . . .o
Specifying NetBIOS Aliases for HACMP support
Performance Considerations . . .
AIX Fast Connect Problem Determination .
Traces .
Logs.
Troubleshootlng Connectlon Problems .
Configuring Network Logon for AIX Fast Connect .
Configuration Options
Enabling the Network Logon Feature
Setting Up Startup Scripts . .
Setting Up Home Directories (Profile D|rector|es)
Windows Configuration Policy Files .
Configuring Win 95/98 Clients for Network Logon .

Configuring Network Logon for NT clients from Remote Subnets.

Configuring LanServer (0S/2) Clients for Network Logon
AlIX Fast Connect NetLogon Limitations .

AIX Fast Connect Configurable Parameters for the net Command .

Migrating to AIX Fast Connect from AlIX Connections . . .
Saving ACONN Configuration Data Before ACONN Unlnstall

Appendix. Notices .

Index

. 430
. 430
. 431
. 432
. 434
. 435
. 435
. 436
. 437
. 437
. 438
. 438
. 440
. 441
. 441
. 441
. 442
. 442
. 442
. 442
. 443
. 443
. 443
. 448
. 448

. 451

. 453

Contents

Xi

Xii Communications and Networks

About This Book

This book is for system administrators who maintain the operating system’s network connections.
Familiarity with the Base Operating System and the material covered in AIX 5L Version 5.1 System
Management Guide: Operating System and Devices and AIX 5L Version 5.1 System User’s Guide:
Communications and Networks is necessary.

Who Should Use This Book

This book is intended for system administrators who perform system management tasks that involve
communication within a network.

Highlighting

The following highlighting conventions are used in this book:

Bold Identifies commands, keywords, files, directories, and other items whose names are predefined by
the system.

Italics Identifies parameters whose actual names or values are to be supplied by the user.

Monospace Identifies examples of specific data values, examples of text similar to what you might see

displayed, examples of portions of program code similar to what you might write as a programmer,
messages from the system, or information you should actually type.

ISO 9000

ISO 9000 registered quality systems were used in the development and manufacturing of this product.

Related Publications

The following book contains information about or related to communications:

Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States,
other countries, or both:

» AlXwindows

* IBM

* Portmaster

» SecureWay

Microsoft, MS-DOS, Windows, and Windows NT are trademarks of Microsoft Corporation in the United
States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

© Copyright IBM Corp. 1997, 2001 xiii

../../aixbman/baseadmn/baseadmn.htm
../../aixuser/usrcomm/usrcomm.htm
../../aixprggd/genprogc/genprogc.htm
../../aixbman/nisplus/nisplus.htm
../../cmds/aixcmds1/aixcmds1.htm
../../aixins/aixinsgd/aixinsgd.htm

Other company, product, or service names may be the trademarks or service marks of others.

XiV Communications and Networks

Chapter 1. Communications and Networks Overview

This chapter presents the conceptual foundation for understanding computer networking in general.
System administrators unfamiliar with general networking principles need to read this chapter. Those
familiar with UNIX networking can safely skip this chapter.

A network is the combination of two or more computers and their connecting links. A physical network is
the hardware (equipment such as adapter cards, cables, concentrators, and telephone lines) that makes
up the network. The software and the conceptual model make up the logical network.

This overview provides the following information on networks:
- — E - I |

* Network Introduction

. PhusicalN I od

. B . — S |

Communications Functions Introduction

Networks allow for several user and application communication functions. They enable a user to:
* Send electronic mail (e-mail)

* Emulate another terminal or log in to another computer

» Transfer data

* Run programs that reside on a remote node.

One of the most popular applications for computer networks is e-mail which allows a user to send a
message to another user. The two users may be on the same system (in which case a communications
network is not needed), different systems in different buildings, or even in different countries.

Through a communications network, one computer can mimic another and access information as if it were
a different type of computer or terminal. Remote login capabilities allow users to log in to a remote system
and access the same programs and files as if they were using the machine locally.

Networks also allow for the transfer of data from one system to another. Files, directories, and entire file
systems can be migrated from one machine to another across a network, enabling remote backup of data,
as well as assuring redundancy in case of machine failure.

Several different protocols have been devised to allow users and applications on one system to invoke
procedures and applications on other systems, which is useful when distributing the burden for
computer-intensive routines.

Network Introduction

The complexity of modern computer networks has given rise to several conceptual models for explaining
how networks work. One of the most common of these models is the International Standards
Organization’s Open Systems Interconnection (OSI) Reference Model, also referred to as the OSI
seven-layer model. The seven layers of the OSI model are numbered beginning at the lowest layer
(Physical).

7 Application
6 Presentation

© Copyright IBM Corp. 1997, 2001 1

Application
Session
Transport
Network
Data Link
Physical

- N W hH o~

Levels 1 through 3 are network specific, and differ depending on what physical network you are using.
Levels 4 through 7 comprise network-independent, higher-level functions. Each layer describes a particular
function (instead of a specific protocol) that occurs in data communications. The seven layers function
from lowest level (machine level) to highest level (the level at which most human interaction takes place),
as follows:

Physical Describes the physical media of the network. For example, the fiber optic cable required for a
Fiber Distributed Data Interface (FDDI) network is part of the physical layer.

Data Link Provides reliable delivery of data across the physical layer (which is usually inherently
unreliable).

Network Manages the connections to other machines on the network.

Transport Assures error-free data transmission.

Session Manages the connections between applications.

Presentation Ensures that data is presented to the applications in a consistent fashion.

Application Comprises the applications that use the network.

Note that while the OSI Reference Model is useful for discussing networking concepts, many networking
protocols do not closely follow the OSI model. For example, when discussing Transmission Control
Protocol/Internet Protocol (TCP/IP), the Application and Presentation Layer functions are combined, as are
the Session and Transport Layers and the Data Link and Physical Layers.

Each layer in the OSI model communicates with the corresponding layer on the remote machine as shown
in the OSI Reference Model figure.

Application

Presentation | Header| Data |
Session [Header] Data |
Transport | Header| Data |

Network [Header | Data |

Data Link | Header]| Data | Footer |
Physical | Header| Data |

= N W b OO N

Figure 1. OSI Reference Model. This illustration shows the various communication levels of the OSI Model as
described in the above text.

The layers pass data only to the layers immediately above and below. Each layer adds its own header
information (and footer information, in the case of the Data Link), effectively encapsulating the information
received from the higher layers.

Individual users as well as organizations use networks for many reasons, including:
» Data entry

» Data queries

* Remote batch entry

2 Communications and Networks

* Resource sharing
* Data sharing
» Electronic mail.

Data entry consists of entering data directly into either local or remote data files. Increased accuracy and
efficiency are natural by-products of a one-step data transfer. Data queries entail searching data files for
specified information. Data updating involves altering, adding, or deleting data stored in local or remote
files. Remote batch entry consists of entering batches of data from a remote location, an activity often
performed at night or during periods of low system usage. Because of such diverse capabilities,
communications and networks are not only desirable but necessary.

Sharing resources is another function of networks. Users can share data as well as programs, file-storage
space, and peripheral devices like printers, modems, terminals, and fixed disks. Sharing of system
resources is cost effective because it eliminates the problems of keeping multiple copies of programs and
it keeps data consistent (in the case of program and file sharing).

Physical Networks Introduction

The physical network consists of the cables (coaxial cable, twisted pair, fiber optic, and telephone lines)
that connect the different hardware residing on the network, the adapter cards used on the attached hosts,
and any concentrators, repeaters, routers or bridges used in the network. (A host is a computer attached
to the network.)

Physical networks vary both in size and in the type of hardware used. The two common kinds of networks
are local area networks (LANs) and wide area networks (WANs). A LAN is a network where
communications are limited to a moderately sized geographic area of 1 to 10 km (1 to 6 miles), such as a
single office building, warehouse, or campus. A WAN is a network providing data communications
capability throughout geographic areas larger than those serviced by LANs; for example, across a country
or across continents. An intermediate class of networks exists also, called metropolitan area networks
(MANSs). This guide does not generally distinguish MANs; they are grouped with WANS.

LANs commonly use Standard Ethernet, IEEE 802.3 Ethernet, or token-ring hardware for the physical
network, while WANs and asynchronous networks use communications networks provided by common
carrier companies. Operation of the physical network in both cases is usually controlled by networking
standards from organizations such as the Electronics Industry Association (EIA) or the International
Telecommunication Union (ITU).

System Communications Support

All network communications involve the use of hardware and software. Hardware consists of the physical
equipment connected to the physical network. Software consists of the programs, and device drivers
pertaining to the operation of a particular system.

The system hardware consists of adapter cards or other devices that provide a path or interface between
the system software and the physical network. An adapter card requires an input/output (I/0) card slot in
the system. Other devices, such as modems, can be attached to one of the standard ports on the
computer.

Adapter cards support the standards required by the physical network (for example, EIA 232D,
Smartmodem, V.25 bis, EIA 422A, X.21, or V.35) and may, at the same time, support software protocols,
for example, synchronous data link control (SDLC), high-level data link control (HDLC), and bisynchronous
protocols. If the adapter does not contain software support, then this support must be provided by the
adapter device driver.

Chapter 1. Communications and Networks Overview 3

Protocols

All communications software use protocols, sets of semantical and syntactical rules that determine the
behavior of functional units in achieving communication. Protocols define how information is delivered, how
it is enclosed to reach its destination safely, and what path it follows. Protocols also coordinate the flow of
messages and their acknowledgments.

Protocols exist at different levels within the kernel and cannot be manipulated directly. However, they are
manipulated indirectly by what the user chooses to do at the application programming interface (API) level.
The choices a user makes when invoking file transfer, remote login, or terminal emulation programs define
the protocols used in the execution of those programs.

Addresses

Addresses are associated with both software and hardware. The address is the means by which the
sending or control station selects the station to which it sends data. Addresses identify receiving or storage
locations. A physical address is a unique code assigned to each device or workstation connected to a
network.

For example, on a token-ring network, the netstat -iv command displays the token-ring card address. This
is the physical network address. The netstat -iv command also displays class-level and user-level address
information. Addresses are often defined by software but can be created by the user as well.

Domains

An aspect of addresses common to many communications networks is the concept of domains. For
example, the structure of the Internet illustrates how domains define the Internet Protocol (IP) address.
The Internet is an extensive network made up of many different smaller networks. To facilitate routing and
addressing, Internet addresses are hierarchically structured in domains, with very broad categories at the
top such as com for commercial users, edu for educational users, and gov for government users.

Within the com domain are many smaller domains corresponding to individual businesses; for example,
ibm. Within the ibm.com domain are even smaller domains corresponding to the Internet addresses for
various locations, such as austin.ibm.com or raleigh.ibm.com. At this level, we start seeing names of
hosts. A host, in this context, is any computer connected to the network. Within austin.ibm.com, there may
be hosts with the names hamlet and lear, which are addressed hamlet.austin.ibm.com and
lear.austin.ibm.com.

Gateways and Bridges

A wide variety of networks reside on the Internet, often using different hardware and running different
software. Gateways and bridges enable these different networks to communicate with each other. A bridge
is a functional unit that connects two LANs that possibly use the same logical link control (LLC) procedure,
such as Ethernet, but different medium access control (MAC) procedures. A gateway has a broader range
than a bridge. It operates above the link layer and, when required, translates the interface and protocol
used by one network into those used by another distinct network. Gateways allow data transfers across
the various networks that constitute the Internet.

Routing

Using domain names for addressing and gateways for translation greatly facilitates the routing of the data
being transferred. Routing is the assignment of a path by which a message reaches its destination. The

domain name effectively defines the message destination. In a large network like the Internet, information
is routed from one communications network to the next until that information reaches its destination. Each

4 Communications and Networks

communications network checks the domain name and, based on the domains with which that network is
familiar, routes the information on to the next logical stop. In this way, each communications network that
receives the data contributes to the routing process.

Local and Remote Nodes

A physical network is used by the hosts that reside on that network. Each host is a node on the network. A
node is an addressable location in a communications network that provides host-processing services. The
intercommunication of these various nodes are defined as local or remote. Local pertains to a device, file,
or system accessed directly from your system, without the use of a communications line. Remote pertains
to a device, file, or system accessed by your system over a communications line. Local files reside on
your system, while remote files reside on a file server or at another node with which you communicate
using a physical network, for example, Ethernet, token-ring, or phone lines.

Client and Server

Related to the concepts of local and remote are those of client and server. A server is a computer that
contains data or provides facilities to be accessed by other computers on the network. Common server
types are file servers, which store files; name servers, which store names and addresses; and application
servers, which store programs and applications; print servers, which schedule and direct print jobs to their
destination.

A client is a computer requesting services or data from a server. A client, for example, could request
updated program code or the use of applications from a code server. To obtain a name or address, a client
contacts a name server. A client could also request files and data for data entry, inquiry, or record updating
from a file server.

Communicating with Other Operating Systems

Different types of computers can be connected on a network. The computers can be from different
manufacturers or be different models from the same manufacturer. Communication programs bridge the
differences in operating systems of two or more types of computers.

Sometimes these programs require that another program has previously been installed on the network.
Other programs may require that such communications connectivity protocols as TCP/IP or Systems
Network Architecture (SNA) exist on the network.

For example, with AIX 4.3.2 and later, AIX Fast Connect lets PC clients access operating system files and
printers using native PC networking client software. PC users can use remote operating system file
systems directly from their machines as if they were locally stored. They can print jobs on printers using
the operating system spooler, view available printers, and map a printer as a network printer.

Chapter 1. Communications and Networks Overview 5

6 Communications and Networks

Chapter 2. Mail

The mail facility provides a method for exchanging electronic mail (e-mail) with users on the same system
or on multiple systems connected by a network. This section documents the mail system, the standard
mail user interface, the Internet Message Access Protocol (IMAP), and the Post Office Protocol (POP).

The mail system is an internetwork mail delivery facility that consists of a user interface, a message
routing program, and a message delivery program (or mailer). The mail system relays messages from one
user to another on the same host, between hosts, and across network boundaries. It also performs a
limited amount of message-header editing to put the message into a format that is appropriate for the
receiving host.

A mail user interface enables users to create and send messages to, and receive messages from, other
users. The mail system provides two user interfaces, mail and mhmail. The mail command is the
standard mail user interface available on all UNIX systems. The mhmail command is the Message
Handler (MH) user interface, an enhanced mail user interface designed for experienced users.

A message routing program routes messages to their destinations. The mail system message routing
program is the sendmail program, which is part of the Base Operating System (BOS) and is installed with
BOS. The sendmail program is a daemon that uses information in the /etc/mail/sendmail.cf file, the
letc/mail/aliases file to perform the necessary routing.

Note: In versions earlier than AIX 5.1, the sendmail.cf and aliases files are located in
letc/sendmail.cf and /etc/aliases, respectively.

Depending on the type of route to the destination, the sendmail command uses different mailers to deliver
messages.

Mail MH
sendlmail
I I I
bellinail BNU SI\(ITP
local UucCpP TCP/IP
mailbox link lin
remote remote
mailbox mailbox

As the figure illustrates:

» To deliver local mail, the sendmail program routes messages to the bellmail program. The bellmail
program delivers all local mail by appending messages to the user’s system mailbox, which is in the
Ivar/spool/mail directory.

* To deliver mail over a UNIX-to-UNIX Copy Program (UUCP) link, the sendmail program routes
messages using Basic Network Utilities (BNU).

» To deliver mail routed through Transmission Control Protocol/Internet Protocol (TCP/IP), the sendmail
command establishes a TCP/IP connection to the remote system then uses Simple Mail Transfer
Protocol (SMTP) to transfer the message to the remote system.

Mail Management Tasks

The following is a list of the tasks for which you, the mail manager, are responsible.

© Copyright IBM Corp. 1997, 2001 7

1. Configure the /etc/re.tepip file so that the sendmail daemon will be started at system boot time. See
the instructions immediately following this list.

2. Customize the configuration file /etc/mail/sendmail.cf. The default /etc/mail/sendmail.cf file is
configured so that both local mail and TCP/IP mail can be delivered. In order to deliver mail through
BNU, you must customize the /etc/mail/sendmail.cf file. See the kendmail cf Fild in AIX 5L Version
5.1 Files Reference for more information.

3. Define system-wide and domain-wide mail aliases in the /etc/mail/aliases file. See W
for more information.

4. Manage the Mail Queue. See Managing the Mail Queue Files and Directaried for more information.
5. Manage the Mail Log. See Managing Mail Logging for more information.

Configuring the /etc/rc.tcpip File to Start the sendmail Daemon
To configure the /etc/rc.tepip file so that the sendmail daemon will be started at system boot time:
1. Edit the /etc/re.tepip file with your favorite text editor.

2. Find the line that begins with start /usr/lib/sendmail. By default, this line should be uncommented,
that is, there is no # (pound sign) at the beginning of the line. However, if it is commented, delete the
pound sign.

3. Save the file.

With this change, the system will start the sendmail daemon at boot time.

Managing Mail Aliases

Aliases map names to address lists using personal, system-wide, and domain-wide alias files. You can
define three types of aliases:

personal Defined by individual users in the user's $HOME/.mailrc file.
local system Defined by the mail system administrator in the letcimail/aliased file. These aliases apply to
mail handled by the EMI program on the local system. Local system aliases rarely need

to be changed.
domainwide By default, sendmail reads /etc/alias to resolve aliases. To override the default and use NIS,
edit or create /etc/netsve.conf and add the line:

aliases=nis

/letc/mail/aliases File
Note: In versions earlier than AIX 5.1, the aliases file is located in /etc/aliases.

The /etc/mail/aliases file consists of a series of entries in the following format:
Alias: Namel, NameZ2, ... NameX

where Alias can be any alphanumeric string that you choose (not including special characters, such as @
or). Name1 through NameX is a series of one or more recipient names. The list of names can span one
or more lines. Each continued line begins with a space or a tab. Blank lines and lines beginning with a #
(pound sign) are comment lines.

The /etc/mail/aliases file must contain the following three aliases:

MAILER-DAEMON The ID of the user who is to receive messages addressed to the mailer daemon. This
name is initially assigned to the root user:

MATILER-DAEMON: root

8 Communications and Networks

../../files/aixfiles/sendmail.cf.htm
../../files/aixfiles/aliases.htm
../../cmds/aixcmds5/sendmail.htm

postmaster The ID of the user responsible for the operation of the local mail system. The postmaster
alias defines a single mailbox address that is valid at each system in a network. This
address enables users to send inquiries to the postmaster alias at any system, without
knowing the correct address of any user at that system. This name is initially assigned to
the root user:

postmaster: root
nobody The ID that is to receive messages directed to programs such as news and msgs. This
name is initially assigned to /dev/null:

nobody: /dev/null

To receive these messages, define this alias to be a valid user.

Whenever you change this file, you must recompile it into a database format that the sendmail command

can use. See Building the Alias Databasd.
Creating Local System Aliases for Mail

To create or modify local system aliases:
1. Edit the /etc/mail/aliases file using your favorite editor.

2. On a blank line, add an alias, followed by a colon (:), followed by a list of comma-separated recipients.
For example, the following entry defines the writers alias to be the names of people in that group:

writers: geo, mark@zeus, ctw@athena, brian

This definition could also be contained on several lines, as long as each added line begins with a
space or a tab, for example:
writers: geo,

mark@zeus,

ctw@athena,

brian

3. Create an owner for any distribution list aliases. If the sendmail command has trouble sending mail to

the distribution list, it sends an error message to the owner of that list. For example, the following set
of entries in the /etc/mail/aliases file defines a distribution list named editors, whose owner is
glenda@hera:

editors: glenda@hera, davidm@kronos, perryw@athena
owner-editors: glenda@hera

4. Recompile the /etc/mail/aliases file by following the instructions in the section, [Building the Aliag

Building the Alias Database

The sendmail command does not use directly the alias definitions in the local system /etc/mail/aliases
file. Instead, the sendmail command reads a processed database manager (dbm) version of the
letc/mail/aliases file. You can compile the alias database using one of the following methods:

* Run the /usr/sbin/sendmail command using the -bi flag.

* Run the newaliases command. This command causes the sendmail command to read the local system
letc/mail/aliases file and create a new file containing the alias database information. This file is in the
more efficient Berkeley format:

letc/mail/aliases.db
(Versions earlier than AIX 5.1 created two database files, /etc/aliases.dir and /etc/aliases.pag.)

* Run the sendmail command using the Rebuild Aliases flag. This rebuilds the alias database
automatically when it is out-of-date. Auto-rebuild can be dangerous on heavily loaded machines with
large alias files. If it might take more than the rebuild time-out (normally five minutes) to rebuild the
database, there is a chance that several processes will start the rebuild process simultaneously.

Chapter 2. Mail 9

Notes:

1. If these files do not exist, the sendmail command cannot process mail and will generate an error
message.

2. If you have multiple alias databases specified, the -bi flag rebuilds all the database types it
understands (for example, it can rebuild Network Database Management (NDBM) databases but
not NIS databases).

The /etc/netsve.conf file contains the ordering of system services. To specify the service ordering of
aliases, add the following line:

aliases=service, service

where service can be either files or nis. For example:
aliases=files, nis

tells the sendmail command to try the local alias file first; and if that fails, try nis. If nis is defined as a
service, it should be running.

For further information on the /etc/hetsuc coni file, see AIX 5L Version 5.1 Files Reference.

Managing the Mail Queue Files and Directories

The mail queue is a directory that stores data and controls files for mail messages that the sendmail
command delivers. By default, the mail queue is /var/spool/mqueue.

Mail messages might be queued for many reasons.

For example:

1. The sendmail command can be configured to process the queue at certain intervals, rather than
immediately. If this is so, mail messages must be stored temporarily.

2. If a remote host does not answer a request for a mail connection, the mail system queues the
message and tries again later.

Printing the Mail Queue

The contents of the queue can be printed using the mailq command (or by specifying the -bp flag with the
sendmail command).

These commands produce a listing of the queue IDs, the sizes of the messages, the dates the messages
entered the queue, and the senders and recipients.

Mail Queue Files
Each message in the queue has a number of files associated with it. The files are named according to the
following conventions:

TypefID

where ID is a unique message queue ID, and Type is one of the following letters indicating the type of file:

d The data file containing the message body without the heading information.

q The queue-control file. This file contains the information necessary to process the job.

t A temporary file. This file is an image of the q file when it is being rebuilt. It is quickly renamed to the q file.

X A transcript file that exists during the life of a session and shows everything that happens during that session.

10 Communications and Networks

../../files/aixfiles/netsvc.conf.htm

For example, if a message has a queue ID of AA00269, the following files are created and deleted in the
mail queue directory while the sendmail command tries to deliver the message:

dfAA00269 Data file
qfAA00269 Control file
tfAA00269 Temporary file
xfAA00269 Transcript file

q Control File

The q control file contains a series of lines, each beginning with a code letter:

B Specifies the body type. The remainder of the line is a text string defining the body type. If this entire field is
missing, the body type is 7-bit by default, and no special processing is attempted. Legal values are 7BIT and
8BITMIME.

C Contains the controlling user. For recipient addresses that are a file or a program, sendmail performs delivery

as the owner of the file or program. The controlling user is set to the owner of the file or program. Recipient
addresses that are read from a .forward or :include: file will also have the controlling user set to the owner of
the file. When sendmail delivers mail to these recipients, it delivers as the controlling user, then converts back
to root.

F Contains envelope flags. The flags are any combination of w, which sets the EF_WARNING flag; r, which sets
the EF_RESPONSE flag; 8, which sets the EF_HASB8BIT flag; and b, which sets the EF_DELETE_BCC flag.
Other letters are silently ignored.

H Contains a heading definition. There can be any number of these lines. The order in which the H lines appear
determines their order in the final message. These lines use the same syntax as heading definitions in the
letc/mail/sendmail.cf configuration file. (For versions earlier than AIX 5.1, this file is /etc/sendmail.cf.)

| Specifies the inode and device information for the df file; this can be used to recover your mail queue after a

disk crash.
K Specifies the time (as seconds) of the last delivery attempt.
M When a message is put into the queue because an error occurred during a delivery attempt, the nature of the

error is stored in the M line.

Specifies the total number of delivery attempts.

Specifies the original message transfer system (MTS) value from the ESMTP. It is used for Delivery Status
Notifications only.

P Contains the priority of the current message. The priority is used to order the queue. Higher numbers mean
lower priorities. The priority increases as the message sits in the queue. The initial priority depends on the
message class and the size of the message.

Contains the original recipient as specified by the ORCPT= field in an ESMTP transaction. Used exclusively for
Delivery Status Notifications. It applies only to the immediately following R line.

Contains a recipient address. There is one line for each recipient.

Contains the sender address. There is only one of these lines.

Contains the message creation time used to compute when to time out the message.

Specifies the version number of the queue file format used to allow new sendmail binaries to read queue files
created by older versions. Defaults to version zero. Must be the first line of the file, if present.

Specifies the original envelope ID (from the ESMTP transaction). Used for Delivery Status Notifications only.
Contains a macro definition. The values of certain macros ($r and $s) are passed through to the queue run
phase.

<-—Hwox o o=z

4 N

The q file for a message sent to amy@zeus would look similar to:

P217031
7566755281
MDeferred: Connection timed out during user open with zeus
Sgeo
Ramy@zeus
H?P?return-path: <geo>
Hreceived: by george (0.13 (NL support)/0.01)
id AA00269; Thu, 17 Dec 87 10:01:21 CST
H?D?date: Thu, 17 Dec 87 10:01:21 CST

Chapter 2. Mail 11

H?F?From: geo
Hmessage-id: <8712171601.AA00269@george>
HTo: amy@zeus
Hsubject: test

Where:

P217031 Priority of the message

7566755281 Submission time in seconds
MDeferred: Connection timed out during user open Status message

with zeus

Sgeo ID of the sender

Ramy@zeus ID of the receiver

H lines Header information for the message

Specifying Time Values in sendmail

To set the message time-out and queue processing interval, you must use a specific format for the time
value. The format of a time value is:

-gNumberUnit

where Number is an integer value and Unit is the unit letter. Unit can have one of the following values:

s Seconds
m Minutes
h Hours

d Days

w Weeks

If Unitis not specified, the sendmail daemon uses minutes (m) as the default. Here are three examples
illustrating time-value specification:

/usr/sbin/sendmail -ql5d

This command tells the sendmail daemon to process the queue every 15 days.
/usr/sbin/sendmail -ql5h

This command tells the sendmail daemon to process the queue every 15 hours.
/usr/sbin/sendmail -ql5

This command tells the sendmail daemon to process the queue every 15 minutes.

Forcing the Mail Queue

In some cases, you might find that the queue is clogged for some reason. You can force a queue to run
using the -q flag (with no value). You can also use the -v flag (verbose) to watch what happens:

/usr/sbin/sendmail -q -v

You can also limit the jobs to those with a particular queue identifier, sender, or recipient using one of the
queue modifiers. For example, -qRsally restricts the queue run to jobs that have the string sally in one of
the recipient addresses. Similarly, -qSstring limits the run to particular senders, and -qlstring limits it to
particular queue identifiers.

12 Communications and Networks

Setting the Queue Processing Interval

The value of the -q flag when the daemon starts determines the interval at which the sendmail daemon
processes the mail queue.

The sendmail daemon is usually started by the /etc/rc.tepip file, at system startup. The /etc/re.tcpip file
contains a variable called the queue processing interval (QPI), which it uses to specify the value of the -q
flag when it starts the sendmail daemon. By default, the value of qpi is 30 minutes. To specify a different
queue processing interval:

1. Edit the /etc/re.tepip file with your favorite editor.
2. Find the line that assigns a value to the qpi variable, such as:
qpi=30m
3. Change the value assigned to the gpi variable to the time value you prefer.

These changes will take effect at the next system restart. If you want the changes to take effect
immediately, stop and restart the sendmail daemon, specifying the new -q flag value. See

sendmail Daemon and Siamﬂg_the_sendma.lLDae.md for more information.

Moving the Mail Queue

When a host goes down for an extended period, many messages routed to (or through) that host might be
stored in your mail queue. As a result, the sendmail command spends a long time sorting the queue,
severely degrading your system performance. If you move the queue to a temporary place and create a
new queue, the old queue can be run later when the host returns to service. To move the queue to a
temporary place and create a new queue:

1. Stop the sendmail daemon by following the instructions in [Stopping the sendmail Daemon.
2. Move the entire queue directory by entering:

cd /var/spool
mv mgueue omqueue

3. Restart the sendmail daemon by following the instructions in Starting the sendmail Daeman.
4. Process the old mail queue by entering:
/usr/sbin/sendmail -o0Q/var/spool/omqueue -q

The -0Q flag specifies an alternate queue directory. The -q flag specifies to run every job in the queue.
To get a report about the progress of the operation, use the -v flag.

Note: This operation can take a long time.
5. Remove the log files and the temporary directory when the queue is empty by entering:

rm /var/spool/omqueue/*
rmdir /var/spool/omqueue

Starting the sendmail Daemon

To start the sendmail daemon, enter either of the following commands:
startsrc -s sendmail -a "-bd -ql15"

/usr/1ib/sendmail -bd -ql5

If the sendmail daemon is already active when you enter one of these commands, you see the following
message on the screen:

The sendmail subsystem is already active. Multiple instances are not supported.

If the sendmail daemon is not already active, then you see a message indicating that the sendmail
daemon has been started.

Chapter 2. Mail 13

Stopping the sendmail Daemon
To stop the sendmail daemon, run the stopsrc -s sendmail command.

If the sendmail daemon was not started with the startsrc command:
* Find the sendmail process ID.
» Enter the kill sendmail_pid command (where sendmail_pid is the process ID of the sendmail process).

Managing Mail Logging

The sendmail command logs mail system activity through the w daemon. The syslogd daemon
must be configured and running for logging to occur. Specifically, the /etc/syslog.conf file should contain
the uncommented line:

mail.debug /var/spool/mqueue/1og

If it does not, use your favorite editor to make this change; be certain that the path name is correct. If you
change the /etc/syslog.conf file while the syslogd daemon is running, refresh the syslogd daemon by
typing the following command at a command line:

refresh -s syslogd

If the /var/spool/mqueue/log file does not exist, you must create it by typing the following command:
touch /var/spool/mqueue/log

Messages in the log file appear in the following format:

Each line in the system log consists of a time stamp, the name of the machine that generated it (for
logging from several machines over the local area network), the word sendmail:, and a message. Most
messages are a sequence of name=value pairs.

The two most common lines logged when a message is processed are the receipt line and the delivery
attempt line. The receipt line logs the receipt of a message; there will be one of these per message.
Some fields may be omitted. These message fields are:

from Specifies the envelope sender address.

size Specifies the size of the message in bytes.

class Indicates the class (numeric precedence) of the message.

pri Specifies the initial message priority (used for queue sorting).

nrcpts Indicates the number of envelope recipients for this message (after aliasing and forwarding).

proto Specifies the protocol used to receive the message, for example ESMTP or UNIX-to-UNIX Copy Program
(UUCP).

relay Specifies the machine from which it was received.

The delivery attempt line is logged each time there is delivery attempt (so there can be several per
message if delivery is deferred or there are multiple recipients). These fields are:

to Contains a comma-separated list of the recipients to this mailer.

ctladdr Specifies the controlling user, that is, the name of the user whose credentials are used for delivery.
delay Specifies the total delay between the time this message was received and the time it was delivered.
xdelay Specifies the amount of time needed in this delivery attempt.

mailer Specifies the name of the mailer used to deliver to this recipient.

relay Specifies the name of the host that actually accepted (or rejected) this recipient.

stat Specifies the delivery status.

14 Communications and Networks

../../cmds/aixcmds5/syslogd.htm

Because such a large amount of information can be logged, the log file is arranged as a succession of
levels. Beginning at level 1, the lowest level, only very unusual situations are logged. At the highest level,
even the insignificant events are logged. As a convention, log levels ten and under the most useful
information. Log levels above 64 are reserved for debugging purposes. Levels from 11-64 are reserved for
verbose information.

The types of activities that the sendmail command puts into the log file are specified by the L option in
the /etc/mail/sendmail.cf file. (For versions earlier than AlX 5.1, this file is /etc/sendmail.cf.)

Managing the Log

Because information is continually appended to the end of the log, the file can become very large. Also,
error conditions can cause unexpected entries to the mail queue. To keep the mail queue and the log file
from growing too large, run the /usr/lib/smdemon.cleanu shell script. This script forces the sendmail
command to process the queue and maintains four progressively older copies of log files, named log.0,
log.1, log.2, and log.3. Each time the script runs it moves:

* log.2 to log.3
* log.1 to log.2
* log.0 to log.1
* log to log.0

Running this script allows logging to start over with a new file. Run this script either manually or at a
specified interval with the cron daemon.

Logging Traffic

Many Simple Mail Transfer Protocols (SMTPs) implementations do not fully implement the protocol. For
example, some personal computer-based SMTPs do not understand continuation lines in reply codes.
These can be very hard to trace. If you suspect such a problem, you can set traffic logging by using the -X
flag. For example:

/usr/sbin/sendmail -X /tmp/traffic -bd

This command logs all traffic in the /timpl/traffic file.

Because this command logs a lot of data very quickly, it should never be used during normal operations.
After running the command, force the errant implementation to send a message to your host. All message

traffic in and out of sendmail, including the incoming SMTP traffic, will be logged in this file.

Using sendmail, you can log a dump of the open files and the connection cache by sending it a SIGUSR1
signal. The results are logged at LOG_DEBUG priority.

Logging Mailer Statistics

The sendmail command tracks the volume of mail being handled by each of the mailer programs that
interface with it. Those mailers are defined in the letc/mail/sendmail.cf file. (For versions earlier than AIX
5.1, this file is /etc/sendmail.cf.)

Chapter 2. Mail 15

Mail MH

sendlmail
I I I
bellinail BNU SITITP
local UucCpP TCPI/IP
mailbox link lin
remote remote
mailbox mailbox

Figure 2. Mailers Used by the Sendmail Command. This illustration is a type of top-down organizational chart with Mail
and MH at the top. Branching from them are bellmail, BNU and SMTP. Underneath the previous level are local
mailbox, UUCP link, and TCP/IP link respectively. Beneath UUCP link is remote mailbox and under TCP/IP link is
remote mailbox.

To start the accumulation of mailer statistics, create the /etc/mail/statistics file by typing the following:
touch /etc/mail/statistics

If the sendmail command encounters errors when trying to record statistics information, the command
writes a message through the syslog subroutine. These errors do not affect other operations of the
sendmail command.

The sendmail command updates the information in the file each time it processes mail. The size of the file
does not grow, but the numbers in the file do. They represent the mail volume since the time you created
or reset the /etc/mail/statistics file.

Note: In versions earlier than AIX 5.1, statistics were kept in the /var/tmp/sendmail.st file.
Displaying Mailer Information

The statistics kept in the /etc/mail/statistics file are in a database format that cannot be read as a text
file. To display the mailer statistics, type the following at a command prompt:

/usr/sbin/mailstats

This reads the information in the /etc/mail/statistics file, formats it, and writes it to standard output. For
information on the output of the fusr/shin/mailstats command, read its description in the AIX 5L Version
5.1 Commands Reference.

Debugging sendmail

There are a large number of debug flags built into the sendmail command. Each debug flag has a number
and level, where higher levels print more information. The convention is levels greater than nine print out
so much information that they are used only for debugging a particular piece of code. Debug flags are set
using the -d flag as shown in the following example:

debug-flag: -d debug-Tist

debug-Tist: debug-flag[.debug-flag]*
debug-flag: debug-range[.debug-level]
debug-range: integer|integer-integer
debug-Tevel: integer

-d12 Set flag 12 to Tevel 1

-d12.3 Set flag 12 to Tevel 3

-d3-17 Set flags 3 through 17 to Tevel 1
-d3-17.4 Set flags 3 through 17 to level 4

16 Communications and Networks

../../cmds/aixcmds3/mailstats.htm

The available debug flags are:

-do General debugging.

-d1 Show send information.

-d2 End with finis().

-d3 Print the load average.

-d4 Enough disk space.

-d5 Show events.

-dé Show failed mail.

-d7 The queue file name.

-d8 DNS name resolution.

-d9 Trace RFC1413 queries.

-d9.1 Make host name canonical.
-d10 Show recipient delivery.

-di1 Trace delivery.

-d12 Show mapping of relative host.
-d13 Show delivery.

-d14 Show header field commas.
-d15 Show network get request activity.
-d16 Outgoing connections.

-d17 List MX hosts.

Note: There are now almost 200 defined debug flags in sendmail.

Internet Message Access Protocol (IMAP) and Post Office Protocol
(POP)

AIX provides two Internet-based mail protocol server implementations for accessing mail remotely:
» Post Office Protocol (POP)
* Internet Message Access Protocol (IMAP)

Both the POP and IMAP servers store and provide access to electronic messages. Using these mail
access protocols on a server eliminates the requirement that, to receive mail, a computer must always be
up and running.

The POP server provides an off-line mail system, whereby a client, using POP client software, can
remotely access a mail server to retrieve mail messages. The client can either download the mail
messages and immediately delete the messages from the server, or download the messages and leave
the messages resident on the POP server. After the mail is downloaded to the client machine, all mail
processing is local to the client machine. The POP server allows access to a user mailbox one client at a
time.

The IMAP server provides a superset of POP functionality but has a different interface. The IMAP server
provides an off-line service, as well as an on-line service and a disconnected service. The IMAP protocol
is designed to permit manipulation of remote mailboxes as if they were local. For example, clients can
perform searches and mark messages with status flags such as "deleted” or "answered.” In addition,
messages can remain in the server’s database until explicitly removed. The IMAP server also allows
simultaneous interactive access to user mailboxes by multiple clients.

Both the IMAP and POP servers are used for mail access only. These servers rely on the Simple Mail
Transfer Protocol (SMTP) for sending mail.

Chapter 2. Mail 17

Both IMAP and POP are open protocols, based on standards described in RFCs. The IMAP server is
based on RFC 1730, and the POP server is based on RFC 1725. Both are connection-oriented using TCP
sockets. The IMAP server listens on port 143, and the POP server listens on port 110. Both servers are
handled by the inetd daemon.

Configuring IMAP and POP Servers

Prerequisites
You must have root authority.

Procedure

1. Uncomment the imapd and pop3d entries in the /etc/inetd.conf file.

2. Refresh the inetd daemon by running the following command:
refresh -s inetd

Running Configuration Tests
Run a few tests to verify your imapd and pop3d servers are ready for operation.

First, verify the servers are listening on their ports. To do this, type the following commands at a command
prompt, pressing the Enterkey after each command:

netstat -a | grep imap
netstat -a | grep pop

The following is the output from the netstat commands:

tcp 0 0 *,imap2 * % LISTEN
tcp 0 0 *.pop3 * % LISTEN

If you do not receive this output, recheck the entries in the /etc/inetd.conf file and rerun the refresh -s
inetd command.

To test the configuration of the imapd server, telnet into the imap2, port 143. When you connect via telnet,
you will get the imapd prompt. You can then enter the IMAP Version 4 commands as defined in RFC 1730.
To run one of the commands, type a period (.), followed by a space, and then the command name. For
example:

. CommandName
Note that passwords are echoed when you telnet into the imapd server.

In the following telnet example, you must provide your own password where id_password is indicated in
the login command.

telnet e-xbelize 143

Trying...

Connected to e-xbelize.austin.ibm.com.

Escape character is ']'.

* OK e-xbelize.austin.ibm.com IMAP4 server ready

. login id id _password

. 0K

examine /usr/spool/mail/root

FLAGS (\Answered \Flagged \Draft \Deleted \Seen)
OK [PERMANENTFLAGS (\Answered \Flagged \Draft \Deleted \Seen *)]
0 EXISTS

0 RECENT

OK [UIDVALIDITY 823888143]

. OK [READ-ONLY] Examine completed

. logout

* BYE Server terminating connection

. 0K Logout completed

Connection closed.

* % X X 3k e

18 Communications and Networks

To test the configuration of the pop3d server, telnet into the Post Office Protocol Version 3 (POP3) port,
110. When you telnet in, you should get the pop3d prompt. You can enter the POP commands that are
defined in RFC 1725. To run one of the commands, type a period (.), followed by a space, and then the
command name. For example:

. CommandName
Note that passwords are echoed when you telnet into the pop3d server.

In the following telnet example, you must provide your own password where id_password is indicated in
the pass command.

telnet e-xbelize 110

Trying...

Connected to e-xbelize.austin.ibm.com.

Escape character is ']'.

+0K e-xbelize.austin.ibm.com POP3 server ready
user id

+0K Name is a valid mailbox

pass id_password

+0K Maildrop locked and ready

list

+0K scan Tisting follows

stat

+0K 0 0

quit

+0K

Connection closed.

syslog Facility

The IMAP and POP server software sends log messages to the syslog facility.

To configure your system for IMAP and POP logging through the syslog facility, you must be the root user.
Edit the /etc/syslog.conf file, and add an entry for *.debug as follows:

*.debug /usr/adm/imapd.log

The usr/adm/imapd.1og file must exist before the syslogd daemon re-reads the /etc/syslog.conf
configuration file. To create this file, type the following at a command line prompt and press Enter:

touch /usr/adm/imapd.log

Refresh the syslogd daemon to re-read its configuration file. Type the following at a command line prompt
and press Enter:

refresh -s syslogd

Mail Reference

This section provides a quick reference to the various Mail commands, files, and directories.
List of Mail Commands

The following is a list of mail management commands.

bugfiled Stores bug reports in specific mail directories.

tomsal Notifies users of incoming mail (daemon).

w Prints the contents of the mail queue.

mailstatd Displays statistics about mail traffic.

hewaliased Builds a new copy of the alias database from the /etc/mail/aliases file.

Chapter 2. Mail 19

../../cmds/aixcmds1/bugfiler.htm
../../cmds/aixcmds1/comsat.htm
../../cmds/aixcmds3/mailq.htm
../../cmds/aixcmds3/mailstats.htm
../../cmds/aixcmds4/newaliases.htm

Email Handles remote mail received through the uucp command of the Basic Networking

Utilities (BNU).

Mails a system bug report to a specific address.

Routes mail for local or network delivery.

Cleans up the sendmail queue for periodic housekeeping.

List of Mail Files and Directories

This list of files and directories is arranged by function.

Note: In versions earlier than AIX 5.1, the sendmail.cf and aliases files are located in
letc/sendmail.cf and /etc/aliases, respectively.

Using the Mail Program

/usr/share/lib/Mail.rc

$HOME/.mailrc
$HOME/mbox
/usr/bin/Mail, /usr/bin/mail,
or /usr/bin/mailx
Ivar/spool/mail
/usr/bin/bellmail

lusr/bin/rmail
Ivar/spool/mqueue

Using the sendmail Command

/usr/sbin/sendmail
lusr/ucb/mailq

/usr/ucb/newaliases
/etc/netsve.conf
lusr/sbin/mailstats
/etc/mail/aliases

/etc/aliasesDB

/etc/mail/sendmail.cf
lusr/lib/smdemon.cleanu

letc/mail/statistics

Ivar/spool/mqueue

20 Communications and Networks

Sets local system defaults for all users of the mail program.
A text file you can modify to set the default characteristics of
the mail command.

Enables the user to change the local system defaults for the
malil facility.

Stores processed mail for the individual user.

Specifies three names linked to the same program. The mail
program is one of the user interfaces to the mail system.
Specifies the default mail drop directory. By default, all mail
is delivered to the /var/spool/mail/UserName file.

Performs local mail delivery.

Performs remote mail interface for BNU.

Contains the log file and temporary files associated with the
messages in the mail queue.

The sendmail command.

Links to the /usr/sbin/sendmail. Using mailq is equivalent to using
the /usr/sbin/sendmail -bp command.

Links to the /usr/sbin/sendmail file. Using newaliases is equivalent
to using the /usr/sbin/sendmail -bi command.

Specifies the ordering of certain name resolution services.

Formats and prints the sendmail statistics as found in the
letc/sendmail.st file if it exists. The /etc/sendmail.st file is the
default, but you can specify an alternative file.

Describes a text version of the aliases file for the sendmail
command. You can edit this file to create, modify, or delete aliases for
your system.

Describes a directory containing the aliases database files, DB.dir
and DB.pag, that are created from the /etc/mail/aliases file when you
run the sendmail -bi command.

Contains the sendmail configuration information in text form. Edit the
file to change this information.

Specifies a shell file that runs the mail queue and maintains the
sendmail log files in the /var/spool/mqueue directory.

Collects statistics about mail traffic. This file does not grow. Use the
lusr/sbin/mailstats command to display the contents of this file.
Delete this file if you do not want to collect this information.
Describes a directory containing the temporary files associated with
each message in the queue. The directory can contain the log file.

../../cmds/aixcmds4/rmail.htm
../../cmds/aixcmds5/sendbug.htm
../../cmds/aixcmds5/sendmail.htm
../../cmds/aixcmds5/smdemon.cleanu.htm

Ivar/spool/cron/crontabs Describes a directory containing files that the cron daemon reads to
determine which jobs to start. The root file contains a line to start the
smdemon.cleanu shell script.

List of Internet Message Access Protocol and Post Office Protocol
Commands

lusr/sbin/imapd The Internet Message Access Protocol (IMAP) server process.
lusr/sbin/pop3d The Post Office Protocol Version 3 (POP3) server process.

Chapter 2. Mail 21

../../cmds/aixcmds3/imapd.htm
../../cmds/aixcmds4/pop3d.htm

22 Communications and Networks

Chapter 3. Transmission Control Protocol/Internet Protocol

This chapter describes the Transmission Control Protocol/Internet Protocol (TCP/IP) suite of networking
software. TCP/IP is a powerful and flexible industry-standard way of connecting multiple computers to
other machines.

The topics discussed in this chapter are:

Note: Most of the tasks discussed in this chapter require root authority.

Planning Your TCP/IP Network

Because TCP/IP is such a flexible networking tool, you can customize it to fit the specific needs of your
organization. The following are the major issues you need to consider when planning your network. The
details of these issues are discussed at length later. This list is intended only to introduce you to the
issues.

1. Decide which type of network hardware you want to use: token-ring, Ethernet Version 2, IEEE 802.3,
Fiber Distributed Data Interface (FDDI), Serial Optical Channel (SOC), or Serial Line Interface Protocol
(SLIP).

2. Plan the physical layout of the network.

Consider which functions each host machine will serve. For example, you must decide which machine
or machines will serve as gateways before you cable the network.

3. Decide whether a flat network or a hierarchical network organization best fits your needs.

If your network is fairly small, at a single site, and consists of one physical network, then a flat network
probably suits your needs. If your network is very large or complex with multiple sites or multiple
physical networks, a hierarchical network might be a more efficient network organization for you.

4. If your network is to be connected to other networks, you must plan how your gateways should be set
up and configured. Things to consider are:

© Copyright IBM Corp. 1997, 2001 23

a. Decide which machine or machines will serve as gateways.

b. Decide whether you need to use static or dynamic routing, or a combination of the two. If you
choose dynamic routing, decide which routing daemons each gateway will use in light of the types
of communications protocols you need to support.

5. Decide on an addressing scheme.

If your network will not be part of a larger internetwork, choose the addressing scheme that best fits

your needs. If you want your network to be connected to a larger internetwork such as the Internet,

you will have to obtain an official set of addresses from your internet service provider (ISP).

6. Decide whether your system needs to be divided into subnets. If so, decide how you will assign subnet
masks.

7. Decide on a naming scheme. Each machine on the network needs its own unique host name.

8. Decide whether your network needs a name server for name resolution or if using the letc/mastd file
will be sufficient.

If you choose to use name servers, consider the type of name servers you need and how many you
need to serve your network efficiently.

9. Decide the types of services you want your network to provide to remote users; for example, malil
services, print services, file sharing, remote login, remote command execution, and others.

Installation and Configuration for TCP/IP

For information on installing Transmission Control Protocol/Internet Protocol (TCP/IP), see the AIX 5L
Version 5.1 Installation Guide.

Configuring TCP/IP

After the TCP/IP software is installed on your system, you are ready to begin configuring your system.

Many TCP/IP configuration tasks can be performed in more than one way, either by:

» Using the Web-based System Manager Network application (fast path wsm network)
* Using the System Management Interface Tool (SMIT)

» Editing a file format

* Issuing a command at the shell prompt.

For example, the kcnet shell script performs required minimum host configuration for TCP/IP during the
system startup process (the rc.net script is run by the configuration manager program during the second
boot phase). By using Web-based System Manager or SMIT to perform the host configuration, the rc.net
file is configured automatically.

Alternatively, you can configure the /etc/rc.bsdnet file using a standard text editor. With this method, you
can specify the traditional UNIX TCP/IP configuration commands such as ifconfig, hostname, and route.
See List of TCP/AP Commandd for further information. If using the file edit method, you must enter smit
configtcp fast path and then select BSD Style rc Configuration.

A few tasks, such as configuring a name server, cannot be done using Web-based System Manager or
SMIT.

Configuring Hosts
Each host machine on your network must be configured to function according to the needs of the end

users and the network as a whole. For each host on the network, you must configure the network
interface, set the Internet address, and set the host name. You also must set up static routes to gateways

24 Communications and Networks

../../files/aixfiles/hosts.htm
../../files/aixfiles/rc.net.htm

or other hosts, specify daemons to be started by default, and set up the [etc/hastd file for name resolution
(or set up the host to use a name server for name resolution).

Configuring Hosts as Servers

If the host machine will have a specific function like serve as a gateway, file server, or name server, you
must perform the necessary configuration tasks after the basic configuration is complete.

For example, if your network is organized hierarchically and you want to use the Domain Name protocol
to resolve names into Internet addresses, you will need to configure at least one name server to provide
this function for your network.

Remember, a server host does not have to be a dedicated machine, it can be used for other things as
well. If the name server function for your network is fairly small, the machine might also be used as a
workstation or as a file server for your network.

Note: If your system has either NIS or NIS+ installed, these services can also provide name
resolution. For more information, see AIX 5L Version 5.1 Network Information Services (NIS and
NIS+) Guide.

Configuring Gateways

If your network is going to communicate with other networks, you will need to configure at least one

gateway host. You must consider which communications protocols you want to support, and then use
whichever routing daemon (the routed or gated daemon) that supports those protocols.

TCP/IP System Manager Commands

The following list contains the commands used to configure and manage a TCP/IP network:

E Displays or changes the Internet address to hardware address translation tables used by the
Address Resolution protocol.

m Returns information about users on a specified host.

hasi Shows the Internet address of a specified host or the host name of a specified Internet address.

hostnamd Shows or sets the Internet name and address of the local host.

m Configures network interfaces and their characteristics.

hetstal Shows local and foreign addresses, routing tables, hardware statistics, and a summary of packets
transferred.

hd Sets or shows current network kernel options.

m Determines whether a host is reachable.

koutd Permits you to manipulate the routing tables manually.

m Shows status information on hosts that are connected to local physical networks and are running
the rwhod server.

bwhd Shows status information for users on hosts that are connected to local physical networks and
running the rwhod server.

EetclocK Reads the network time service and sets the time and date of the local host accordingly.

timedd Returns information about the timed daemon.

m Reports protocol tracing on TCP sockets.

lvhoid Provides the Internet name directory service.

Configuring a TCP/IP Network Checklist

Use the following procedure as a guide for configuring your network. Ensure that you have read and
understood the appropriate material.

Chapter 3. Transmission Control Protocol/Internet Protocol 25

../../files/aixfiles/hosts.htm
../../cmds/aixcmds1/arp.htm
../../cmds/aixcmds2/finger.htm
../../cmds/aixcmds2/host.htm
../../cmds/aixcmds2/hostname.htm
../../cmds/aixcmds3/ifconfig.htm
../../cmds/aixcmds4/netstat.htm
../../cmds/aixcmds4/no.htm
../../cmds/aixcmds4/ping.htm
../../cmds/aixcmds4/route.htm
../../cmds/aixcmds4/ruptime.htm
../../cmds/aixcmds4/rwho.htm
../../cmds/aixcmds5/setclock.htm
../../cmds/aixcmds5/timedc.htm
../../cmds/aixcmds5/trpt.htm
../../cmds/aixcmds6/whois.htm

After you bring your network up and it is running properly, you might find it useful to refer to this checklist
for the purpose of debugging.

Prerequisites

1.
2.

Network hardware is installed and cabled. See TCP/P Network Adapter Cards
TCP/IP software is installed. See the AIX 5L Version 5.1 Installation Guide.

Procedure

1.

Read [CCP/P Protacald for the basic organization of TCP/IP. You should understand:
» the layered nature of TCP/IP (that is, different protocols reside at different layers)
* how data flows through the layers

Minimally configure each host machine on the network. This means adding a network adapter,
assigning an IP address, and assigning a hosthame to each host, as well as defining a default route to

our network. Read IIIZCLELLP_Ne.hALoLk_Lnle.Lf.ace.d tECELLEAddLe.ssmd and Chaasing Names for Hosts od
m banitguung_'LC.ELLH

Follow the instructions in

Note: Each machine on the network needs this basic configuration whether it will be an end-user
host, a file server, a gateway, or a name server.
Configure and start the inetd daemon on each host machine on the network. Read [CCP/IP Daemans
and then follow the instructions in Configuring the inetd Daemand.
Configure each host machine to perform either local name resolution or to use a name server. If you
are setting up a hierarchical Domain Name network, configure at least one host to function as a name
server. Read and follow the instructions in CCP/AP Name Resolution.
If your network will communicate with any remote networks, configure at least one host to function as a
gateway. The gateway can use static routes or a routing daemon to perform internetwork routing. Read
and follow the instructions in
Decide which services each host machine on the network will use. By default, all services are
available. Follow the instructions in Client Network Serviced if you wish to make a particular service
unavailable.
Decide which hosts on the network will be servers, and which services a particular server will provide.
Follow the instructions in Server Network Serviced to start the server daemons you wish to run.

Configure any remote print servers you will need. See Printer Querviewl in AIX 5L Version 5.1 Guide to
Printers and Printing for more information.

If desired, configure a host to use or to serve as the master time server for the network. See the limed
daemon in the AIX 5L Version 5.1 Commands Reference for more information.

TCP/IP Protocols

The topics discussed in this section are:

Protocols are sets of rules for message formats and procedures that allow machines and application
programs to exchange information. These rules must be followed by each machine involved in the
communication in order for the receiving host to be able to understand the message.

26 Communications and Networks

../../aixbman/printrgd/printers_sysadmin.htm#HDRA350P9203
../../cmds/aixcmds5/timed.htm

The TCP/IP suite of protocols can be understood in terms of layers (or levels).

LAYER PROTOCOL
Application Layer APPLICATION
Transport Layer UDP TCP
Network Layer INTERNET PROTOCOL
Network Interface Layer NETWORK INTERFACE
Hardware PHYSICAL NETWORK

Figure 3. TCP/IP Suite of Protocols. This illustration depicts the layers of the TCP/IP protocol. From the top they are,
Application Layer, Transport Layer, Network Layer, Network Interface Layer, and Hardware.

TCP/IP carefully defines how information moves from sender to receiver. First, application programs send
messages or streams of data to one of the Internet Transport Layer Protocols, either the User Datagram
Protocol (UDP) or the Transmission Control Protocol (TCP). These protocols receive the data from the
application, divide it into smaller pieces called packets, add a destination address, and then pass the
packets along to the next protocol layer, the Internet Network layer.

The Internet Network layer encloses the packet in an Internet Protocol (IP) datagram, puts in the
datagram header and trailer, decides where to send the datagram (either directly to a destination or else to
a gateway), and passes the datagram on to the Network Interface layer.

The Network Interface layer accepts IP datagrams and transmits them as frames over a specific network
hardware, such as Ethernet or Token-Ring networks.

APPLICATION LAYER

l ————————————— Message or stream of data
TRANSPORT LAYER
TCP Header | DATA

l ————————————— Transport Protocol Packet
NETWORK LAYER
IP Header | TCP Header | DATA

l ————————————— Network Layer Datagram
NETWORK INTERFACE LAYER
Ethernet Header | IP Header | TCP Header | DATA

l ————————————— Ethernet Frame
PHYSICAL NETWORK

Figure 4. Movement of Information from Sender Application to Receiver Host. This illustration shows the flow of
information down the TCP/IP protocol layers from the Sender to the Host.

Chapter 3. Transmission Control Protocol/Internet Protocol 27

Frames received by a host go through the protocol layers in reverse. Each layer strips off the
corresponding header information, until the data is back at the application layer.

APPLICATION LAYER

DATA
T ————————————— Message or stream of data
TRANSPORT LAYER
TCP Header | DATA
T ————————————— Transport Protocol Packet
NETWORK LAYER

IP Header | TCP Header DATA

T ————————————— Network Layer Datagram
NETWORK INTERFACE LAYER
Ethernet Header | IP Header | TCP Header | DATA

T ————————————— Ethernet Frame
PHYSICAL NETWORK

Figure 5. Movement of Information from Host to Application. This illustration shows the flow of information up the
TCP/IP protocol layers from the Host to the Sender.

Frames are received by the Network Interface layer (in this case, an Ethernet adapter). The Network
Interface layer strips off the Ethernet header, and sends the datagram up to the Network layer. In the
Network layer, the Internet Protocol strips off the IP header and sends the packet up to the Transport
layer. In the Transport layer, the TCP (in this case) strips off the TCP header and sends the data up to the
Application layer.

Hosts on a network send and receive information simultaneously. The "Host Data Transmission and
Reception” figure below more accurately represents a host as it communicates.

28 Communications and Networks

APPLICATION LAYER

I ————————————— Message or Stream of Data
TRANSPORT LAYER
TCP Header | DATA

I ————————————— Transport Protocol Packet
NETWORK LAYER
IP Header | TCP Header | DATA

I ————————————— Network Layer Datagram
NETWORK INTERFACE

Ethernet Header | IP Header | TCP Header | DATA

I ————————————— Ethernet Frame
PHYSICAL NETWORK

Note: Headers are added and stripped in each protocol layer as data
is transmitted and received by a host.

Figure 6. Host Data Transmissions and Receptions. This illustration shows data flowing both ways through the TCP/IP
layers.

Internet Protocol (IP) Version 6 Overview

Internet Protocol (IP) Version 6 (IPv6 or IPng) is the next generation of IP and has been designed to be
an evolutionary step from IP Version 4 (IPv4). While IPv4 has allowed the development of a global
Internet, it is not capable of carrying much farther into the future because of two fundamental factors:
limited address space and routing complexity. The IPv4 32-bit addresses do not provide enough flexibility
for global Internet routing. The deployment of Classless InterDomain Routing (CIDR) has extended the
lifetime of IPv4 routing by a number of years, but the effort to better manage the routing will continue.
Even if IPv4 routing could be scaled up, the Internet will eventually run out of network numbers.

The Internet Engineering Task Force (IETF) recognized that IPv4 would not be able to support the
phenomenal growth of the Internet, so the IETF IPng working group was formed. Of the proposals that
were made, Simple Internet Protocol Plus (SIPP) was chosen as an evolutionary step in the
development of IP. This was renamed to IPng, and RFC1883 was finalized in December of 1995.

IPv6 extends the maximum number of Internet addresses to handle the ever increasing Internet user
population. As an evolutionary change from IPv4, IPv6 has the advantage of allowing the new and the old
to coexist on the same network. This coexistence enables an orderly migration from IPv4 (32 bit
addressing) to IPv6 (128 bit addressing) on an operational network.

This overview is intended to give the reader a general understanding of the IPng protocol. For detailed
information, please see RFCs 1883, 1884, 1885, 1886, 1970, 1971, and 2133.

Expanded Routing and Addressing

IPv6 increases the IP address size from 32 bits to 128 bits, thereby supporting more levels of addressing
hierarchy, a much greater number of addressable nodes, and simpler autoconfiguration of addresses.

Chapter 3. Transmission Control Protocol/Internet Protocol 29

IPv6 has three types of addresses:

unicast A packet sent to a unicast address is delivered to the interface identified by that
address. A unicast address has a particular scope: link-local, site-local, global. There
are also two special unicast addresses:
» /128 (unspecified address)

» ::1/128 (loopback address)

multicast A packet sent to a multicast address is delivered to all interfaces identified by that
address. A multicast address is identified by the prefix ff::/8. As with unicast
addresses, multicast addresses have a similar scope: node-local, link-local, site-local,
and organization-local.

anycast An anycast address is an address that has a single sender, multiple listeners, and
only one responder (normally the "nearest” one, according to the routing protocols’
measure of distance). For example, several web servers listening on an anycast
address. When a request is sent to the anycast address, only one responds.

An anycast address is indistinguishable from a unicast address. A unicast address
becomes an anycast address when more than one interface is configured with that
address.

Note: There are no broadcast addresses in IPv6. Their function has been superseded by the
multicast address.

Autoconfiguration: The primary mechanisms available that enable a node to start up and communicate
with other nodes over an IPv4 network are hard-coding, BOOTP, and DHCP.

IPv6 introduces the concept of scope to IP addresses, one of which is link-local. This allows a host to
construct a valid address from the predefined link-local prefix and its local identifier. This local identifyer is
typically the medium access control (MAC) address of the interface to be configured. Using this address,
the node can multicast to a server, rather than broadcast and, for a fully-isolated subnet, might not need
any other address configuration.

Meaningful Addresses: With IPv4, the only generally recognizable meaning in addresses are broadcast
(typically all 1s or all Os), and classes (for example, a class D is multicast). With IPv6, the prefix can be
quickly examined to determine scope (for example, link-local), multicast versus unicast, and a mechanism
of assignment (provider-based or geography-based).

Routing information might be explicitly loaded into the upper bits of addresses as well, but this has not yet
been finalized by the IETF (for provider-based addresses, routing information is implicitly present in the
address).

Duplicate Address Detection: \When an interface is initialized or reinitialized, it uses autoconfiguration to
tentatively associate a link-local address with that interface (the address is not yet assigned to that
interface in the traditional sense). At this point, the interface joins the all-nodes and solicited-nodes
multicast groups, and sends a neighbor discovery message to these groups. By using the multicast
address, the node can determine whether that particular link-local address has been previously assigned,
and choose an alternate address. This eliminates accidentally assigning the same address to two different
interfaces on the same link. (It is still possible to create duplicate global-scope addresses for nodes that
are not on the same link.)

Neighbor Discovery/Stateless Address Autoconfiguration: Neighbor Discovery Protocol (NDP) for
IPv6 is used by nodes (hosts and routers) to determine the link-layer addresses for neighbors known to
reside on attached links, and maintain per-destination routing tables for active connections. Hosts also use
ND to find neighboring routers that are willing to forward packets on their behalf and detect changed
link-layer addresses. NDP uses the Internet Control Message Protocol (ICMP) Version 6 with its own
unique message types. In general terms, the IPv6 Neighbor Discovery protocol corresponds to a

30 Communications and Networks

combination of the IPv4 Address Resolution Protocol (ARP), ICMP Router Discovery (RDISC), and
ICMP Redirect (ICMPv4), but with many improvements over these IPv4 protocols.

IPv6 defines both a stateful and a stateless address autoconfiguration mechanism. Stateless
autoconfiguration requires no manual configuration of hosts; minimal, if any, configuration of routers; and
no additional servers. The stateless mechanism allows a host to generate its own addresses using a
combination of locally available information and information advertised by routers. Routers advertise
prefixes that identify the subnets associated with a link, while hosts generate an interface token that
uniquely identifies an interface on a subnet. An address is formed by combining the two. In the absence of
routers, a host can only generate link-local addresses. However, link-local addresses are sufficient for
allowing communication among nodes attached to the same link.

Routing Simplification
To simplify routing issues, IPv6 addresses are considered in two parts: a prefix and an ID. This might
seem the same as the IPv4 net-host address breakdown, but it has two advantages:

no class No fixed number of bits for prefix or ID, which allows for a reduction in loss due to
over-allocation
nesting An arbitrary number of divisions can be employed by considering different numbers

of bits as the prefix.

Case 1
128 bits
node address
Case 2
n bits 128-n bits
Subnet prefix Interface ID
Case 3:
n bits 80-n bits 48 bits
Subscriber prefix Subnet ID Interface ID
Case 4:
s bits n bits m bits 128-s-n-m bits
Subscribe prefix Area ID Subnet ID Interface ID

Generally, IPv4 cannot go beyond Case 3, even with Variable Length Subnet Mask (VLSM is a means of
allocating IP addressing resources to subnets according to their individual need rather than some general
network-wide rule). This is as much an artifact of the shorter address length as the definition of variable
length prefixes, but is worth noting nonetheless.

Header Format Simplification

IPv6 simplifies the IP header, by removing entirely or by moving to an extension header, some of the fields
found in the IPv4 header. It defines a more flexible format for optional information (the extension headers).
Specifically, note the absence of:

* header length (length is constant)
* identification

Chapter 3. Transmission Control Protocol/Internet Protocol 31

« flags
» fragment offset (moved into fragmentation extension headers)
* header checksum (upper-layer protocol or security extension header handles data integrity).

IPv4 Header:
Table 1.
Version IHL | Type of Service Total Length
Identification Flags Fragment Offset
Time to Live | Protocol Header Checksum
Source Address
Destination Address
Options Padding
IPv6 Header:
Table 2.
Version Prio Flow Label
Payload Length Next Header Hop Limit

Source Address

Destination Address

IPng includes an improved options mechanism over IPv4. IPv6 options are placed in separate extension
headers that are located between the IPv6 header and the transport-layer header in a packet. Most
extension headers are not examined or processed by any router along a packet delivery path until it
arrives at its final destination. This mechanism facilitates a major improvement in router performance for
packets containing options. In IPv4 the presence of any options requires the router to examine all options.

Another improvement is that, unlike IPv4 options, IPv6 extension headers can be of arbitrary length and
the total amount of options carried in a packet is not limited to 40 bytes. This feature, plus the manner in
which it is processed, permits IPv6 options to be used for functions that were not practical in IPv4, such as
the IPv6 Authentication and Security Encapsulation options.

To improve the performance when handling subsequent option headers and the transport protocol that
follows, IPv6 options are always an integer multiple of eight octets long to retain this alignment for
subsequent headers.

By using extension headers instead of a protocol specifier and options fields, newly defined extensions
can be integrated more easily.

Current specifications define extension headers in the following ways:
* Hop-by-hop options that apply to each hop (router) along the path
* Routing header for loose/strict source routing (used infrequently)

» A fragment defines the packet as a fragment and contains information about the fragment (IPv6 routers
do not fragment)

* Authentication m
* Encryption m

» Destination options for the destination node (ignored by routers).

32 Communications and Networks

Improved Quality-of-Service/Traffic Control
While quality of service can be controlled by use of a control protocol such as RSVP, IPv6 provides for

explicit priority definition for packets by using the priority field in the IP header. A node can set this value to
indicate the relative priority of a particular packet or set of packets, which can then be used by the node,
one or more routers, or the destination to make choices concerning the packet (that is, dropping it or not).

IPv6 specifies two types of priorities, those for congestion-controlled traffic, and those for
non-congestion-controlled traffic. No relative ordering is implied between the two types.

Congestion-controlled traffic is defined as traffic that responds to congestion through some sort of
"back-off” or other limiting algorithm. Priorities for congestion-controlled traffic are:

uncharacterized traffic

"filler” traffic (for example, netnews)
unattended data transfer (for example, mail)
(reserved)

attended bulk transfer (for example, FTP)
(reserved)

interactive traffic (for example, Telnet)
control traffic (for example, routing protocols)

NOo o~ wWwNNM—=O

Non-congestion-controlled traffic is defined as traffic that responds to congestion by dropping (or simply
not resending) packets, such as video, audio, or other real-time traffic. Explicit levels are not defined with
examples, but the ordering is similar to that for congestion-controlled traffic:

* The lowest value that the source is most willing to have discarded should be used for traffic.
» The highest value that the source is least willing to have discarded should be used for traffic.

This priority control is only applicable to traffic from a particular source address. Control traffic from one
address is not an explicitly higher priority than attended bulk transfer from another address.

Flow Labeling: Outside of basic prioritization of traffic, IPv6 defines a mechanism for specifying a
particular flow of packets. In IPv6 terms, a flow is defined as a sequence of packets sent from a particular
source to a particular (unicast or multicast) destination for which the source desires special handling by the
intervening routers.

This flow identification can be used for priority control, but might also be used for any number of other
controls.

The flow label is chosen randomly, and does not identify any characteristic of the traffic other than the flow
to which it belongs. This means that a router cannot determine that a packet is a particular type by
examining the flow label. It can, however, determine that it is part of the same sequence of packets as the
last packet containing that label.

Note: Until IPv6 is in general use, the flow label is mostly experimental. Uses and controls involving
flow labels have not yet been defined nor standardized.

Jumbograms: An IPv4 packet size is limited to 64K. Using the jumbo payload extension header, an IPv6
packet can be up to 232 octets (slightly over 4 gigabytes).

Tunneling
The key to a successful IPv6 transition is compatibility with the existing installed base of IPv4 hosts and

routers. Maintaining compatibility with IPv4 while deploying IPv6 streamlines the task of transitioning the
Internet to IPv6.

Chapter 3. Transmission Control Protocol/Internet Protocol ~ 33

While the IPv6 infrastructure is being deployed, the existing IPv4 routing infrastructure can remain
functional, and can be used to carry IPv6 traffic. Tunneling provides a way to use an existing IPv4 routing
infrastructure to carry IPv6 traffic.

IPv6 or IPv4 hosts and routers can tunnel IPv6 datagrams over regions of IPv4 routing topology by
encapsulating them within IPv4 packets. Tunneling can be used in a variety of ways:

Router-to-Router IPv6 or IPv4 routers interconnected by an IPv4 infrastructure can tunnel IPv6 packets
between themselves. In this case, the tunnel spans one segment of the end-to-end
path that the IPv6 packet takes.

Host-to-Router IPv6 or IPv4 hosts can tunnel IPv6 packets to an intermediary IPv6 or IPv4 router
that is reachable through an IPv4 infrastructure. This type of tunnel spans the first
segment of the packet’'s end-to-end path.

Host-to-Host IPv6 or IPv4 hosts that are interconnected by an IPv4 infrastructure can tunnel IPv6
packets between themselves. In this case, the tunnel spans the entire end-to-end
path that the packet takes.

Router-to-Host IPv6/IPv4 routers can tunnel IPv6 packets to their final destination IPv6 or IPv4 host.
This tunnel spans only the last segment of the end-to-end path.

Tunneling techniques are usually classified according to the mechanism by which the encapsulating node
determines the address of the node at the end of the tunnel. In router-to-router or host-to-router methods,
the IPv6 packet is being tunneled to a router. In host-to-host or router-to-host methods, the IPv6 packet is
tunneled all the way to its final destination.

The entry node of the tunnel (the encapsulating node) creates an encapsulating IPv4 header and transmits
the encapsulated packet. The exit node of the tunnel (the decapsulating node) receives the encapsulated
packet, removes the IPv4 header, updates the IPv6 header, and processes the received IPv6 packet.
However, the encapsulating node needs to maintain soft state information for each tunnel, such as the
maximum transmission unit (MTU) of the tunnel, to process IPv6 packets forwarded into the tunnel.

IPv6 Security
For details about IP Security, versions 4 and 6, see Internet Protacal (IP) Securit).

IPv6 Multihomed Link-Local and Site-Local Support
A host can have more than one interface defined. A host with two or more active interfaces is called

multihomed. Each interface has a link-local address associated with it. Link-local addresses are sufficient
for allowing communication among nodes attached to the same link.

A multihomed host has two or more associated link-local addresses. The AIX IPv6 implementation has 4
options to handle how link-layer address resolution is resolved on multihomed hosts. Option 1 is the
default.

Option 0 No multihomed actions are taken. Transmissions will go out on the first link-local
interface. When the Neighbor Discovery Protocol (NDP) must perform address
resolution, it multicasts a Neighbor Solicitation message out on each interface with a
link local address defined. NDP queues the data packet until the first Neighbor
Advertisement message is received. The data packet is then sent out on this link.

Option 1 When the NDP must perform address resolution, that is, when sending a data packet
to a destination and the the link-layer information for the next hop is not in the
Neighbor Cache, it multicasts a Neighbor Solicitation message out on each interface
with a link-local address defined. NDP then queues the data packet until it gets the
link-layer information. NDP then waits until a response is received for each interface.
This guarantees that the data packets are sent on the appropriate outgoing
interfaces. If NDP did not wait, but responded to the first Neighbor Advertisement
received, it would be possible for a data packet to be sent out on a link not
associated with the packet source address. Because NDP must wait, a delay in the
first packet being sent occurs. However, the delay occurrs anyway in waiting for the
first response.

34 Communications and Networks

Option 2 Multihomed operation is allowed, but dispatching of a data packet is limited to the
interface specified by main_if6. When the NDP must perform address resolution, it
multicasts a Neighbor Solicitation message out on each interface with a link-local
address defined. It then waits for a Neighbor Advertisement message from the
interface specified by main_if6 (see the hd command). Upon receiving a response
from this interface, the data packet is sent out on this link.

Option 3 Multihomed operation is allowed, but dispatching of a data packet is limited to the
interface specified by main_if6é and site-local addresses are only routed for the
interface specified by main_site6 (see the command). The NDP operates just as it
does for Option 2. For applications that route data packets using site-local addresses
on a multihomed host, only the site-local address specified by main_site6 are used.

Packet Tracing

Packet tracing is the process by which you can verify the path of a packet through the layers to its
destination. The mpa command performs network interface level packet tracing. The m command
issues output on the packet trace in both hexadecimal and ASCII format. The ﬁ command performs
transport protocol level packet tracking for the TCP. The trpt command output is more detailed, including
information on time, TCP state, and packet sequencing.

Network Interface Packet Headers

At the Network Interface layer, packet headers are attached to outgoing data.

Network Layer

:

Network Interface Layer

!

Device Driver

SOFTWARE

Network Adapter HARDWARE
Card/Connection

Figure 7. Packet Flow through Network Interface Structure. This illustration shows bi-directional data flow through the
layers of the Network Interface Structure. From the top (software) they are the Network Layer, Network Interface
Layer, Device Driver, and the (hardware) Network Adapter Card or Connection.

Packets are then sent through the network adapter to the appropriate network. Packets can pass through
many gateways before reaching their destinations. At the destination network, the headers are stripped
from the packets and the data is sent to the appropriate host.

The following section contains packet header information for several of the more common network
interfaces.

Ethernet Adapter Frame Headers

An Internet Protocol (IP) or Address Resolution Protocol (ARP) frame header for the Ethernet adapter
is composed of three fields as shown in the following table..

Chapter 3. Transmission Control Protocol/Internet Protocol 35

../../cmds/aixcmds4/no.htm
../../cmds/aixcmds4/no.htm
../../cmds/aixcmds3/iptrace.htm
../../cmds/aixcmds3/ipreport.htm
../../cmds/aixcmds5/trpt.htm

Ethernet Adapter Frame Header

Field Length Definition

DA 6 bytes Destination address.

SA 6 bytes Source address. If bit 0 of this field is
set to 1, it indicates that routing
information (RI) is present.

Type 2 bytes Specifies whether the packet is IP or
ARP. The type number values are
listed below.

Type field numbers:

IP 0800
ARP 0806

Token-Ring Frame Headers

The medium access control (MAC) header for the token-ring adapter is composed of five fields, as shown

in the following table.

Token-Ring MAC Header

Field Length Definition

AC 1 byte Access control. The value in this field
x'00’ gives the header priority 0.

FC 1 byte Field control. The value in this field
x'40’ specifies the Logical Link
Control frame.

DA 6 bytes Destination address.

SA 6 bytes Source address. If bit 0 of this field is
set to 1, it indicates that routing
information (Rl) is present.

RI 18 bytes Routing information. The valid fields
are discussed below.

The MAC header consists of two routing information fields of two bytes each: routing control (RC) and
segment numbers. A maximum of eight segment numbers can be used to specify recipients of a limited
broadcast. RC information is contained in bytes 0 and 1 of the Rl field. The settings of the first two bits of
the RC field have the following meanings:

bit (0) =0 Use the nonbroadcast route specified in the Rl field.
bit (0) = 1 Create the Rl field and broadcast to all rings.

bit (1)=0 Broadcast through all bridges.

bit (1) =1 Broadcast through limited bridges.

The logical link control (LLC) header is composed of five fields, as shown in the following LLC header

table.

802.3 LLC Header

Field

| Length

Definition

36 Communications and Networks

DSAP 1 byte Destination service access point. The
value in this field is x’aa’.

SSAP 1 byte Source service access point. The
value in this field is x'aa’.

CONTROL 1 byte Determines the LLC commands and
responses. The three possible values
for this field are discussed below.

PROT_ID 3 bytes Protocol ID. This field is reserved. It
has a value of x'0’.

TYPE 2 bytes Specifies whether the packet is IP or

ARP.

Control Field Values:

x'03’

x'AF’

xX'E3’

Unnumbered Information (Ul) frame. This is the normal, or unsequenced, way in which
token-ring adapter data is transmitted through the network. TCP/IP sequences the data.
Exchange identification (XID) frame. This frame conveys the characteristics of the sending

host.

Test frame. This frame supports testing of the transmission path, echoing back the data that

is received.

802.3 Frame Headers

The MAC header for the 802.3 adapter is composed

table.

of two fields, as shown in the following MAC header

802.3 MAC Header

Field Length Definition

DA 6 bytes Destination address.

SA 6 bytes Source address. If bit 0 of this field is set to 1, it indicates
that routing information (RlI) is present.

The LLC header for 802.3 is the same as for Token-Ring MAC header.

Internet Network-Level Protocols

The Internet network-level protocols handle machine-to-machine communication. In other words, this layer
implements TCP/IP routing. These protocols accept requests to send packets (along with the network

address of the destination machine) from the Transport layer, convert the packets to datagram format, and
send them down to the Network Interface layer for further processing.

Chapter 3. Transmission Control Protocol/Internet Protocol 37

LAYER PROTOCOL

Application Layer APPLICATION

Transport Layer UDP TCP

Network Layer INTERNET PROTOCOL
Network Interface Layer NETWORK (HARDWARE INTERFACE)
Hardware PHYSICAL NETWORK

Figure 8. Network Layer of the TCP/IP Suite of Protocols. This illustration shows the various layers of the TCP/IP Suite
of Protocols. From the top, the application layer consists of the application. The transport layer contains UDP and TCP.
The network layer contains the network (hardware) interface. And finally, the hardware layer contains the physical
network.

TCP/IP provides the protocols that are required to comply with RFC 1100, Official Internet Protocols, as
well as other protocols commonly used by hosts in the Internet community.

Note: The use of Internet network, version, socket, service, and protocol numbers in TCP/IP also
complies with RFC 1010, Assigned Numbers.

Address Resolution Protocol

The first network-level protocol is the Address Resolution Protocol (ARP). ARP dynamically translates
Internet addresses into the unique hardware addresses on local area networks.

To illustrate how ARP works, consider two nodes, X and Y. If node X wishes to communicate with Y, and X
and Y are on different local area networks (LANs), X and Y communicate through bridges, routers, or
gateways, using IP addresses. Within a LAN, nodes communicate using low-level hardware addresses.

Nodes on the same segment of the same LAN use ARP to determine the hardware address of other
nodes. First, node X broadcasts an ARP request for node Y’s hardware address. The ARP request
contains X’s IP and hardware addresses, and Y’s IP address. When Y receives the ARP request, it places
an entry for X in its ARP cache (which is used to map quickly from IP address to hardware address), then
responds directly to X with an ARP response containing Y’s IP and hardware addresses. When node X
receives Y’'s ARP response, it places an entry for Y in its ARP cache.

Once an ARP cache entry exists at X for Y, node X is able to send packets directly to Y without resorting
again to ARP (unless the ARP cache entry for Y is deleted, in which case ARP is reused to contact Y).

Unlike most protocols, ARP packets do not have fixed-format headers. Instead, the message is designed
to be useful with a variety of network technologies, such as:

« Ethernet LAN adapter (supports both Ethernet and 802.3 protocols)
» Token-ring network adapter
* Fiber Distributed Data Interface (FDDI) network adapter

However, ARP does not translate addresses for Serial Line Interface Protocol (SLIP) or Serial Optical
Channel Converter (SOC), since these are point-to-point connections.

The kernel maintains the translation tables, and the ARP is not directly available to users or applications.
When an application sends an Internet packet to one of the interface drivers, the driver requests the
appropriate address mapping. If the mapping is not in the table, an ARP broadcast packet is sent through
the requesting interface driver to the hosts on the local area network.

38 Communications and Networks

Entries in the ARP mapping table are deleted after 20 minutes; incomplete entries are deleted after 3
minutes. To make a permanent entry in the ARP mapping tables, use the arp command with the pub
parameter:

arp -s 802.3 host2 0:dd:0:a:8s:0 pub

When any host that supports ARP receives an ARP request packet, the host notes the IP and hardware
addresses of the requesting system and updates its mapping table, if necessary. If the receiving host IP
address does not match the requested address, the host discards the request packet. If the IP address
does match, the receiving host sends a response packet to the requesting system. The requesting system
stores the new mapping and uses it to transmit any similar pending Internet packets.

Internet Control Message Protocol

The second network-level protocol is the Internet Control Message Protocol (ICMP). ICMP is a required
part of every IP implementation. ICMP handles error and control messages for IP. This protocol allows
gateways and hosts to send problem reports to the machine sending a packet. ICMP does the following:

» Tests whether a destination is alive and reachable

* Reports parameter problems with a datagram header

» Performs clock synchronization and transit time estimations
* Obtains Internet addresses and subnet masks

Note: ICMP uses the basic support of IP as if it were a higher-level protocol. However, ICMP is
actually an integral part of IP and must be implemented by every IP module.

ICMP provides feedback about problems in the communications environment, but does not make IP
reliable. That is, ICMP does not guarantee that an IP packet is delivered reliably or that an ICMP message
is returned to the source host when an IP packet is not delivered or is incorrectly delivered.

ICMP messages might be sent in any of the following situations:

* When a packet cannot reach its destination

* When a gateway host does not have the buffering capacity to forward a packet
* When a gateway can direct a host to send traffic on a shorter route

TCP/IP sends and receives several ICMP message typed. ICMP is embedded in the kernel, and no
application programming interface (API) is provided to this protocol.

Internet Control Message Protocol Message Types

ICMP sends and receives the following message types:

echo request Sent by hosts and gateways to test whether a destination is alive and
reachable.
information request Sent by hosts and gateways to obtain an Internet address for a network

to which they are attached. This message type is sent with the network
portion of IP destination address set to a value of 0.

timestamp request Sent to request that the destination machine return its current value for
time of day.

address mask request Sent by host to learn its subnet mask. The host can either send to a
gateway, if it knows the gateway address, or send a broadcast
message.

destination unreachable Sent when a gateway cannot deliver an IP datagram.

source quench Sent by discarding machine when datagrams arrive too quickly for a

gateway or host to process, in order to request that the original source
slow down its rate of sending datagrams.

Chapter 3. Transmission Control Protocol/Internet Protocol 39

redirect message Sent when a gateway detects that some host is using a nonoptimum

route.

echo reply Sent by any machine that receives an echo request in reply to the
machine which sent the request.

information reply Sent by gateways in response to requests for network addresses, with
both the source and destination fields of the IP datagram specified.

timestamp reply Sent with current value of time of day.

address mask reply Sent to machines requesting subnet masks.

parameter problem Sent when a host or gateway finds a problem with a datagram header.

time exceeded Sent when the following are true:

» Each IP datagram contains a time-to-live counter (hop count), which
is decremented by each gateway.
* A gateway discards a datagram because its hop count has reached a
value of 0.
Internet Timestamp Used to record the time stamps through the route.

Internet Protocol

The third network-level protocol is the Internet Protocol (IP), which provides unreliable, connectionless
packet delivery for the Internet. IP is connectionless because it treats each packet of information
independently. It is unreliable because it does not guarantee delivery, meaning, it does not require
acknowledgments from the sending host, the receiving host, or intermediate hosts.

IP provides the interface to the network interface level protocols. The physical connections of a network
transfer information in a frame with a header and data. The header contains the source address and the
destination address. IP uses an Internet datagram that contains information similar to the physical frame.
The datagram also has a header containing Internet addresses of both source and destination of the data.

IP defines the format of all the data sent over the Internet.

Bits
0 4 8 16 19 31
Version | Length Type of Service Total Length
Identification Flags Fragment Offset
Time to Live Protocol Header Checksum
Source Address

Destination Address

Options

Data

Figure 9. Internet Protocol Packet Header. This illustration shows the first 32 bits of a typical IP packet header. Table
below lists the various entities.

IP Header Field Definitions

Version Specifies the version of the IP used. The current version of the IP protocol is 4.
Length Specifies the datagram header length, measured in 32-bit words.

40 Communications and Networks

Type of Service

Total Length

Identification
Flags

Fragment Offset
Time to Live
Protocol

Header Checksum

Source Address
Destination Address

Contains five subfields that specify the type of precedence, delay, throughput,
and reliability desired for that packet. (The Internet does not guarantee this
request.) The default settings for these five subfields are routine precedence,
normal delay, normal throughput, and normal reliability. This field is not
generally used by the Internet at this time. This implementation of IP complies
with the requirements of the IP specification, RFC 791, Internet Protocol.
Specifies the length of the datagram including both the header and the data
measured in octets. Packet fragmentation at gateways, with reassembly at
destinations, is provided. The total length of the IP packet can be configured on
an interface-by-interface basis with the Web-based System Manager, wsm, the
ifconfig command, or the System Management Interface Tool (SMIT) fast path,
smit chinet. Use Web-based System Manager or SMIT to set the values
permanently in the configuration database; use the ifconfig command to set or
change the values in the running system.

Contains a unique integer that identifies the datagram.

Controls datagram fragmentation, along with the Identification field. The
Fragment Flags specify whether the datagram can be fragmented and whether
the current fragment is the last one.

Specifies the offset of this fragment in the original datagram measured in units
of 8 octets.

Specifies how long the datagram can remain on the Internet. This keeps
misrouted datagrams from remaining on the Internet indefinitely. The default
time to live is 255 seconds.

Specifies the high-level protocol type.

Indicates a number computed to ensure the integrity of header values.
Specifies the Internet address of the sending host.

Specifies the Internet address of the receiving host.

Chapter 3. Transmission Control Protocol/Internet Protocol 41

Options

Provides network testing and debugging. This field is not required for every
datagram.

End of Option List
Indicates the end of the option list. It is used at the end of the final
option, not at the end of each option individually. This option should be
used only if the end of the options would not otherwise coincide with
the end of the IP header. End of Option List is used if options exceed
the length of the datagram.

No Operation
Provides alignment between other options; for example, to align the
beginning of a subsequent option on a 32-bit boundary.

Loose Source and Record Route
Provides a means for the source of an Internet datagram to supply
routing information used by the gateways in forwarding the datagram
to a destination and in recording the route information. This is a loose
source route: the gateway or host IP is allowed to use any route of any
number of other intermediate gateways in order to reach the next
address in the route.

Strict Source and Record Route
Provides a means for the source of an Internet datagram to supply
routing information used by the gateways in forwarding the datagram
to a destination and in recording the route information. This is a strict
source route: In order to reach the next gateway or host specified in
the route, the gateway or host IP must send the datagram directly to
the next address in the source route and only to the directly connected
network that is indicated in the next address.

Record Route
Provides a means to record the route of an Internet datagram.

Stream ldentifier
Provides a way for a stream identifier to be carried through networks
that do not support the stream concept.

Internet Timestamp
Provides a record of the time stamps through the route.

Outgoing packets automatically have an IP header prefixed to them. Incoming packets have their IP
header removed before being sent to the higher-level protocols. The IP protocol provides for the universal
addressing of hosts in the Internet network.

Internet Transport-Level Protocols

The TCP/IP transport-level protocols allow application programs to communicate with other application

programs.

42 Communications and Networks

LAYER PROTOCOL

Application Layer APPLICATION
Transport Layer UDP TCP
Network Layer INTERNET PROTOCOL
Network Interface Layer NETWORK INTERFACE
Hardware PHYSICAL NETWORK

Figure 10. Transport Layer of the TCP/IP Suite of Protocols. This illustration shows the various layers of the TCP/IP
Suite of Protocols. From the top, the application layer consists of the application. The transport layer contains UDP
and TCP. The network layer contains the network (hardware) interface. And finally, the hardware layer contains the
physical network.

User Datagram Protocol (UDP) and the TCP are the basic transport-level protocols for making
connections between Internet hosts. Both TCP and UDP allow programs to send messages to and receive
messages from applications on other hosts. When an application sends a request to the Transport layer to
send a message, UDP and TCP break the information into packets, add a packet header including the
destination address, and send the information to the Network layer for further processing. Both TCP and
UDP use protocol ports on the host to identify the specific destination of the message.

Higher-level protocols and applications use UDP to make datagram connections and TCP to make stream
connections. The operating system sockets interface implements these protocols.

User Datagram Protocol

Sometimes an application on a network needs to send messages to a specific application or process on
another network. The UDP provides a datagram means of communication between applications on Internet
hosts. Because senders do not know which processes are active at any given moment, UDP uses
destination protocol ports (or abstract destination points within a machine), identified by positive integers,
to send messages to one of multiple destinations on a host. The protocol ports receive and hold messages
in queues until applications on the receiving network can retrieve them.

Since UDP relies on the underlying IP to send its datagrams, UDP provides the same connectionless
message delivery as IP. It offers no assurance of datagram delivery or duplication protection. However,
UDP does allow the sender to specify source and destination port numbers for the message and
calculates a checksum of both the data and header. These two features allow the sending and receiving
applications to ensure the correct delivery of a message.

Bits
0 16 31
SOURCE PORT NUMBER DESTINATION PORT NUMBER

LENGTH CHECKSUM

Figure 11. User Datagram Protocol (UDP) Packet Header. This illustration shows the first 32 bits of the UDP packet
header. The first 16 bits contain the source port number and the length. The second 16 bits contain the destination
port number and the checksum.

Applications that require reliable delivery of datagrams must implement their own reliability checks when
using UDP. Applications that require reliable delivery of streams of data should use TCP.

UDP Header Field Definitions

Source Port Number Address of the protocol port sending the information.

Chapter 3. Transmission Control Protocol/Internet Protocol ~ 43

Destination Port Number Address of the protocol port receiving the information.

Length Length in octets of the UDP datagram.
Checksum Provides a check on the UDP datagram using the same algorithm as
the IP.

The applications programming interface (API) to UDP is a set of library subroutines provided by the
sockets interface.

Transmission Control Protocol

TCP provides reliable stream delivery of data between Internet hosts. Like UPD, TCP uses Internet
Protocol, the underlying protocol, to transport datagrams, and supports the block transmission of a
continuous stream of datagrams between process ports. Unlike UDP, TCP provides reliable message
delivery. TCP ensures that data is not damaged, lost, duplicated, or delivered out of order to a receiving
process. This assurance of transport reliability keeps applications programmers from having to build
communications safeguards into their software.

The following are operational characteristics of TCP:

Basic Data Transfer TCP can transfer a continuous stream of 8-bit octets in each direction
between its users by packaging some number of bytes into segments
for transmission through the Internet system. TCP implementation
allows a segment size of at least 1024 bytes. In general, TCP decides
when to block and forward packets at its own convenience.

Reliability TCP must recover data that is damaged, lost, duplicated, or delivered
out of order by the Internet. TCP achieves this reliability by assigning a
sequence number to each octet it transmits and requiring a positive
acknowledgment (ACK) from the receiving TCP. If the ACK is not
received within the time-out interval, the data is retransmitted. The TCP
retransmission time-out value is dynamically determined for each
connection, based on round-trip time. At the receiver, the sequence
numbers are used to correctly order segments that may be received out
of order and to eliminate duplicates. Damage is handled by adding a
checksum to each segment transmitted, checking it at the receiver, and
discarding damaged segments.

Flow Control TCP governs the amount of data sent by returning a window with every
ACK to indicate a range of acceptable sequence numbers beyond the
last segment successfully received. The window indicates an allowed
number of octets that the sender may transmit before receiving further
permission.

Multiplexing TCP allows many processes within a single host to use TCP
communications facilities simultaneously. TCP receives a set of
addresses of ports within each host. TCP combines the port number
with the network address and the host address to uniquely identify each
socket. A pair of sockets uniquely identifies each connection.

Connections TCP must initialize and maintain certain status information for each data
stream. The combination of this information, including sockets,
sequence numbers, and window sizes, is called a connection. Each
connection is uniquely specified by a pair of sockets identifying its two
sides.

Precedence and Security Users of TCP may indicate the security and precedence of their
communications. Default values are used when these features are not
needed.

The TCP Packet Header figure illustrates these characteristics.

44 Communications and Networks

Bits

0 8 16 31
Source Port Destination Port
Sequence Number
Acknowledgment Number
Data Offset Reserved Code Window
Checksum Urgent Pointer
Options Padding
Data

Figure 12. Transmission Control Protocol (TCP) Packet Header. This illustration shows what is contained in the TCP
packet header. The individual entities are listed in the text below.

TCP Header Field Definitions

Source Port

Destination Port
Sequence Number
Acknowledgment Number

Data Offset
Reserved
Code

Window
Checksum
Urgent Pointer

Options

Identifies the port number of a source application program.

Identifies the port number of a destination application program.
Specifies the sequence number of the first byte of data in this segment.
Identifies the position of the highest byte received.

Specifies the offset of data portion of the segment.

Reserved for future use.

Control bits to identify the purpose of the segment:

URG Urgent pointer field is valid.

ACK Acknowledgement field is valid.

PSH Segment requests a PUSH.

RTS Resets the connection.

SYN Synchronizes the sequence numbers.

FIN Sender has reached the end of its byte stream.
Specifies the amount of data the destination is willing to accept.
Verifies the integrity of the segment header and data.

Indicates data that is to be delivered as quickly as possible. This pointer
specifies the position where urgent data ends.

End of Option List

Indicates the end of the option list. It is used at the final option, not
at the end of each option individually. This option needs to be used

only if the end of the options would not otherwise coincide with the
end of the TCP header.

No Operation

Indicates boundaries between options. Can be used between other

options; for example, to align the beginning of a subsequent option
on a word boundary. There is no guarantee that senders will use
this option, so receivers must be prepared to process options even
if they do not begin on a word boundary.

Maximum Segment Size

Indicates the maximum segment size TCP can receive. This is only

sent in the initial connection request.

Chapter 3. Transmission Control Protocol/Internet Protocol ~ 45

The applications programming interface to TCP consists of a set of library subroutines provided by the
sockets interface.

Internet Application-Level Protocols

TCP/IP implements higher-level Internet protocols at the application program level.

LAYER PROTOCOL
Application Layer APPLICATION
Transport Layer UDP TCP
Network Layer INTERNET PROTOCOL
Network Interface Layer NETWORK INTERFACE
Hardware PHYSICAL NETWORK

Figure 13. Applicaton Layer of the TCP/IP Suite of Protocols. This illustration shows the various layers of the TCP/IP
Suite of Protocols. From the top, the application layer consists of the application. The transport layer contains UDP
and TCP. The network layer contains the network (hardware) interface. And finally, the hardware layer contains the
physical network.

When an application needs to send data to another application on another host, the applications send the
information down to the transport level protocols to prepare the information for transmission.

The official Internet application-level protocols include:
+ Domain Name Protocol (DOMAIN)

« Exterior Gateway Protocol (EGE)

* File Transfer Protocol (ﬁ)

* Name/Finger Protocol (@)

* Telnet Protocol (M)

 Trivial File Transfer Protocol (ﬁ)

TCP/IP implements other higher-level protocols that are not official Internet protocols but are commonly
used in the Internet community at the application program level. These protocols include:

- Distributed Computer Network (DCN) Local-Network Protocol (HELLQ)
* Remote Command Execution Protocol (@)

* Remote Login Protocol (@)

* Remote Shell Protocol (@)

* Routing Information Protocol ()

+ Time Server Protocol (M).

TCP/IP does not provide APIs to any of these application-level protocols.
Domain Name Protocol

The Domain Name Protocol (DOMAIN) allows a host in a domain to act as a name server for other hosts
within the domain. DOMAIN uses UDP or TCP as its underlying protocol and allows a local network to
assign host names within its domain independently from other domains. Normally, the DOMAIN protocol
uses UDP. However, if the UDP response is truncated, TCP can be used. The DOMAIN protocol in
TCP/IP supports both.

46 Communications and Networks

In the DOMAIN hierarchical naming system, local resolver routines can resolve Internet names and
addresses using a local name resolution database maintained by the named daemon. If the name
requested by the host is not in the local database, the resolver routine queries a remote DOMAIN name
server. In either case, if the name resolution information is unavailable, the resolver routines attempt to
use the /etc/hosts file for name resolution.

Note: TCP/IP configures local resolver routines for the DOMAIN protocol if the local file
letc/resolv.conf exists. If this file does not exist, the TCP/IP configures the local resolver routines to
use the /etc/hosts database.

TCP/IP implements the DOMAIN protocol in the named daemon and in the resolver routines and does not
provide an API to this protocol.

Exterior Gateway Protocol

Exterior Gateway Protocol (EGP) is the mechanism that allows the exterior gateway of an aufonomous
system to share routing information with exterior gateways on other autonomous systems.

Autonomous Systems

An autonomous system is a group of networks and gateways for which one administrative authority has
responsibility. Gateways are interior neighbors if they reside on the same autonomous system and exterior
neighbors if they reside on different autonomous systems. Gateways that exchange routing information
using EGP are said to be EGP peers or neighbors. Autonomous system gateways use EGP to provide
access information to their EGP neighbors.

EGP allows an exterior gateway to ask another exterior gateway to agree to exchange access information,
continually checks to ensure that its EGP neighbors are responding, and helps EGP neighbors to
exchange access information by passing routing update messages.

EGP restricts exterior gateways by allowing them to advertise only those destination networks reachable
entirely within that gateway’s autonomous system. Thus, an exterior gateway using EGP passes along
information to its EGP neighbors but does not advertise access information about its EGP neighbors
outside its autonomous system.

EGP does not interpret any of the distance metrics that appear in routing update messages from other
protocols. EGP uses the distance field to specify whether a path exists (a value of 255 means that the
network is unreachable). The value cannot be used to compute the shorter of two routes unless those
routes are both contained within a single autonomous system. Therefore, EGP cannot be used as a
routing algorithm. As a result, there will be only one path from the exterior gateway to any network.

In contrast to the Routing Information Protocol (RIP), which can be used within an autonomous system
of Internet networks that dynamically reconfigure routes, EGP routes are predetermined in the
letc/gated.conf file. EGP assumes that IP is the underlying protocol.

EGP Message Types

Neighbor Acquisition Request Used by exterior gateways to request to become neighbors of
each other.

Neighbor Acquisition Reply Used by exterior gateways to accept the request to become
neighbors.

Neighbor Acquisition Refusal Used by exterior gateways to deny the request to become

neighbors. The refusal message includes reasons for refusal,
such as out of table space.

Neighbor Cease Used by exterior gateways to cease the neighbor relationship.
The cease message includes reasons for ceasing, such as
going down.

Chapter 3. Transmission Control Protocol/Internet Protocol 47

Neighbor Cease Acknowledgment Used by exterior gateways to acknowledge the request to
cease the neighbor relationship.

Neighbor Hello Used by exterior gateways to determine connectivity. A
gateway issues a Hello message and another gateway issues
an I Heard You message.

| Heard You Used by exterior gateways to reply to a Hel1o message. The I
Heard You message includes the access of the answering
gateway and, if the gateway is unreachable, a reason for lack
of access, such as You are unreachable because of problems
with my network interface.

NR Poll Used by exterior gateways to query neighbor gateways about
their ability to reach other gateways.
Network Reachability Used by exterior gateways to answer the NR Pol1 message.

For each gateway in the message, the Network Reachability
message contains information on the addresses that gateway
can reach through its neighbors.

EGP Error Used by exterior gateways to respond to EGP messages that
contain bad checksums or have fields containing incorrect
values.

TCP/IP implements the EGP protocol in the gated server command and does not provide an API to this
protocol.

File Transfer Protocol

File Transfer Protocol (FTP) allows hosts to transfer data among dissimilar hosts, as well as files
between two foreign hosts indirectly. FTP provides for such tasks as listing remote directories, changing
the current remote directory, creating and removing remote directories, and transferring multiple files in a
single request. FTP keeps the transport secure by passing user and account passwords to the foreign
host. Although FTP is designed primarily to be used by applications, it also allows interactive user-oriented
sessions.

FTP uses reliable stream delivery (TCP/IP) to send the files and uses a Telnet connection to transfer
commands and replies. FTP also understands several basic file formats including NETASCII, IMAGE, and
Local 8.

TCP/IP implements FTP in the ftp user command and the ftpd server command and does not provide an
applications programming interface (API) to this protocol.

When creating anonymous ftp users and directories please be sure that the home directory for users ftp
and anonymous (for example, /u/ftp) is owned by root and does not allow write permissions (for example,
dr-xr-xr-x). The script /Jusr/samples/tcpip/anon.ftp can be used to create these accounts, files and
directories.

Telnet Protocol

The Telnet Protocol (TELNET) provides a standard method for terminal devices and terminal-oriented
processes to interface. TELNET is commonly used by terminal emulation programs that allow you to log
into a remote host. However, TELNET can also be used for terminal-to-terminal communication and
interprocess communication. TELNET is also used by other protocols (for example, FTP) for establishing a
protocol control channel.

TCP/IP implements TELNET in the tn, telnet, or tn3270 user commands. The telnetd daemon does not
provide an API to TELNET.

48 Communications and Networks

TCP/IP supports the following TELNET options which are negotiated between the client and server:

BINARY TRANSMISSION Transmits characters as binary data.

(Used in tn3270 sessions)

SUPPRESS GO_AHEAD Indicates that when in effect on a connection between a sender of data and the

(The operating system suppresses receiver of the data, the sender need not transmit a GO_AHEAD option. If the

GO-AHEAD options.) GO_AHEAD option is not desired, the parties in the connection will probably
suppress it in both directions. This action must take place in both directions
independently.

TIMING MARK Makes sure that previously transmitted data has been completely processed.

(Recognized, but has a negative

response)

EXTENDED OPTIONS LIST Extends the TELNET option list for another 256 options. Without this option, the
TELNET option allows only 256 options.

ECHO Transmits echo data characters already received back to the original sender.

(User-changeable command)

TERM TYPE Enables the server to determine the type of terminal connected to a user
TELNET program.

SAK Establishes the environment necessary for secure communication between you

(Secure Attention Key) and the system.

NAWS Enables client and server to negotiate dynamically for the window size. This is

(Negotiate About Window Size) used by applications that support changing the window size.

Note: TELNET must allow transmission of eight bit characters when not in binary mode in order to
implement ISO 8859 Latin code page. This is necessary for internationalization of the TCP/IP
commands.

Trivial File Transfer Protocol

The Trivial File Transfer Protocol (TFTP) can read and write files to and from a foreign host. Because
TFTP uses the unreliable User Datagram Protocol to transport files, it is generally quicker than FTP. Like
FTP, TFTP can transfer files as either NETASCII characters or as 8-bit binary data. Unlike FTP, TFTP
cannot be used to list or change directories at a foreign host and it has no provisions for security like
password protection. Also, data can be written or retrieved only in public directories.

The TCP/IP implements TFTP in the tftp and utftp user commands and in the tftpd server command. The
utftp command is a form of the tftp command for use in a pipe. TCP/IP does not provide an API to this
protocol.

Name/Finger Protocol

The Name/Finger Protocol (FINGER) is an application-level Internet protocol that provides an interface
between the finger command and the fingerd daemon. The fingerd daemon returns information about the
users currently logged in to a specified remote host. If you execute the finger command specifying a user
at a particular host, you will obtain specific information about that user. The FINGER Protocol must be
present at the remote host and at the requesting host. FINGER uses Transmission Control Protocol
(ﬁ) as its underlying protocol.

Note: TCP/IP does not provide an API to this protocol.
Distributed Computer Network Local-Network Protocol

Local-Network Protocol (HELLO) is an interior gateway protocol designed for use within autonomous
systems. (For more information, see [Autonomous Systemd.) HELLO maintains connectivity, routing, and
time-keeping information. It allows each machine in the network to determine the shortest path to a
destination based on time delay and then dynamically updates the routing information to that destination.

Chapter 3. Transmission Control Protocol/Internet Protocol ~ 49

The gated daemon provides the Distributed Computer Network (DCN) local network protocol.
Remote Command Execution Protocol

The rexec user command and the rexecd daemon provide the remote command execution protocol,
allowing users to run commands on a compatible remote host.

Remote Login Protocol

The rlogin user command and the rlogind daemon provide the remote login protocol, allowing users to
log in to a remote host and use their terminals as if they were directly connected to the remote host.

Remote Shell Protocol

The rsh user command and the rshd daemon provide the remote command shell protocol, allowing
users to open a shell on a compatible foreign host for running commands.

Routing Information Protocol

Routing Information Protocol (RIP) and the routed and gated daemons that implement it keep track of
routing information based on gateway hops and maintain kernel-routing table entries.

Time Server Protocol

The timed daemon is used to synchronize one host with the time of other hosts. It is based on the
client/server concept.

Assigned Numbers

For compatibility with the general network environment, well-known numbers are assigned for the Internet
versions, networks, ports, protocols, and protocol options. Additionally, well-known names are also
assigned to machines, networks, operating systems, protocols, services, and terminals. TCP/IP complies
with the assigned numbers and names defined in RFC 1010, Assigned Numbers.

The Internet Protocol (IP)defines a 4-bit field in the IP header that identifies the version of the general
Internetwork protocol in use. For IP, this version number in decimal is 4. For details on the assigned
numbers and names used by TCP/IP, see /etc/protocols and /etc/services files included with TCP/IP.
For further details on the assigned numbers and names, refer to RFC 1010 and the /etc/services file.

TCP/IP Local Area Network Adapter Cards

The topics discussed in this section are:

The network adapter card is the hardware that is physically attached to the network cabling. It is
responsible for receiving and transmitting data at the physical level. The network adapter card is controlled
by the network adapter device driver.

A machine must have one network adapter card (or connection) for each network (not network type) to

which it connects. For instance, if a host attaches to two token-ring networks, it must have two network
adapter cards.

50 Communications and Networks

TCP/IP uses the following network adapter cards and connections:

» Standard Ethernet Version 2

+ |EEE 802.3

* Token-ring

» Asynchronous adapters and native serial ports (described in A/X 5L Version 5.1 Asynchronous
Communications Guide)

» Fiber Distributed Data Interface (FDDI)

» Serial Optical Channel Converter (described in AIX 5L Version 5.1 Kernel Extensions and Device
Support Programming Concepts)

» Asynchronous Transfer Mode (ATM).
The Ethernet and 802.3 network technologies use the same type of adapter.

Each machine provides a limited number of expansion slots, some or all of which you might wish to use
for communications adapters. Additionally, each machine supports a limited number of communications
adapters of a given type. Each machine supports up to eight Ethernet/802.3 adapters, up to eight
token-ring adapters, and one asynchronous adapter card with up to 64 connections. Within these limits
(software limitations), you can install any combination of these adapters up to the total number of
expansion slots available in your machine (hardware limitations).

Only one Transmission Control Protocol/Internet Protocol (TCP/IP) interface is configurable regardless of
the number of Serial Optical Channel Converters supported by the system. The Serial Optical device driver
makes use of both channel converters even though only one logical TCP/IP interface is configured.

Installing a Network Adapter

To install a network adapter:

1. Shut down the computer. See the Ehutdown command for information on how to shut down a system.
2. Turn off the computer power.

3. Remove the computer cover.
4

Find a free slot on the Micro Channel bus and insert the network adapter. Be careful to seat the
adapter properly in the slot.

Replace the computer cover.
6. Restart the computer.

o

Configuring and Managing Adapters

To configure and manage token-ring or Ethernet adapters, use the tasks in the following table.

Configuring and Managing Adapters Tasks

Task SMIT Fast Path Command or File Web-based System
Manager Management
Environment®

Chapter 3. Transmission Control Protocol/Internet Protocol 51

../../cmds/aixcmds5/shutdown.htm

Configuring and Managing Adapters Tasks

Configure an Adapter smit chgtok (token ring)
smit chgenet (Ethernet)

—_

Determine adapter name:’
1sdev -C -c adapter -t
tokenring -H

or

1sdev -C -c adapter -t
ethernet -H

2. Reset ring speed (token ring) or
connector type (Ethernet), if
necessary. For example:
chdev -1 tokO -a ring_speed=16
-P
or
chdev -1 ent0 -a
bnc_select=dix -P

Determining a Network | smit chgtok (token ring) | 1scfg -1 tok0 -v (token ring)?

Adapter Hardware smit chgenet (Ethernet) | 1scfg -1 ent0 -v (Ethernet)?

Address

Setting an Alternate smit chgtok (token ring) | 1 Define the alternate hardware

Hardware Address smit chgenet (Ethernet) address. For example, for token
ring:%3

chdev -1 tok0 -a
alt_addr=0X10005A4F1B7F

For Ethernet:>2
chdev -1 ent0 -a
alt_addr=0X10005A4F1B7F -p

2. Begin using alternate address, for
token ring:*
chdev -1 tok0 -a
use_alt_addr=yes
For Ethernet:*

chdev -1 ent0 -a
use_alt_addr=yes

Notes:

1. The name of a network adapter can change if you move it from one slot to another or remove it
from the system. If you ever move the adapter, issue the Hiad -a command to update the
configuration database.

2. Substitute your adapter name for tok0 and ent0.
3. Substitute your hardware address for 0X10005A4F1B7F.

4. After performing this procedure, you might experience a disruption of communication with other
hosts until they flush their Address Resolution Protocol (ARP) cache and obtain the new
hardware address of this host.

5. These tasks are not available in Web-based System Manager Management Environment.

Configuring and Using Virtual Local Area Networks (VLANSs)

VLANSs (Virtual Local Area Networks) can be thought of as logical broadcast domains. A VLAN splits up
groups of network users on a real physical network onto segments of logical networks. This
implementation supports the IEEE 802.1Q VLAN tagging standard with the capability to support multiple
VLAN IDs running on Ethernet adapters. Each VLAN ID is associated with a separate Ethernet interface to
the upper layers (IP, etc.) and creates unique logical Ethernet adapter instances per VLAN, for example
entl, ent2 and so on.

52 Communications and Networks

../../cmds/aixcmds2/diag.htm

The IEEE 802.1Q VLAN support can be configured over any supported Ethernet adapters. The adapters
must be connected to a switch that supports IEEE 802.1Q VLAN.

You can configure multiple VLAN logical devices on a single system. Each VLAN logical devices
constitutes an additional Ethernet adapter instance. These logical devices can be used to configure the
same Ethernet IP interfaces as are used with physical Ethernet adapters. As such, the no option, ifsize
(default 8), needs to be increased to include not onEIﬁthe Ethernet interfaces for each adapter, but also any
VLAN logical devices that are configured. See the command documentation.

Each VLAN can have a different maximum transmission unit (MTU) value even if sharing a single physical
Ethernet adapter.

VLAN support is managed through SMIT. Type the smit vlan fast path from the command line and make
your selection from the main VLAN menu. Online help is available.

After you configure VLAN, configure the IP interface, for example, enl for standard Ethernet or etl for
IEEE 802.3, using Web-based System Manager, SMIT, or commands.

Notes:

 If you try to configure a VLAN ID value that is already in use for the specified adapter, the
configuration fails with the following error:
Method error (/usr/lib/methods/chgvlan):
0514-018 The values specified for the following attributes
are not valid:
vlan_tag_id VLAN Tag ID
+ If a user (for example, IP interface) is currently using the VLAN logical device, any attempt to
remove the VLAN logical device fails. A message similar to the following displays:
Method error (/usr/lib/methods/ucfgcommo):

0514-062 Cannot perform the requested function because the
specified device is busy.

To remove the logical VLAN device, first detach the user. For example, if the user is IP interface
enl, then you can use the following command:

ifconfig enl detach

Then remove the network interface using the SMIT TCP/IP menus.

» If a user (for example, IP interface) is currently using the VLAN logical device, any attempt to
change the VLAN characteristic (VLAN tag ID or base adapter) fails. A message similar to the
following displays:

Method error (/usr/lib/methods/chgvlan):

0514-062 Cannot perform the requested function because the
specified device is busy.

To change the logical VLAN device, first detach the user. For example, if the user is the IP
interface enl, you could use the following command:

ifconfig enl detach

Then change the VLAN and add the network interface again using the SMIT TCP/IP menus.

Troubleshooting
tcpdump and trace can be used to troubleshoot the VLAN. The trace hook ID for each type of transmit
packet follows:

transmit packets 3FD
receive packets 3FE
other events 3FF

Chapter 3. Transmission Control Protocol/Internet Protocol 53

../../cmds/aixcmds4/no.htm

The entstat command gives the aggregate statistics of the physical adapter for which the VLAN is
configured. It does not provide the individual statistics for that particular VLAN logical device.

Restrictions
Remote dump is not supported over a VLAN. Also, VLAN logical devices cannot be used to create a Cisco
Systems’ Etherchannel.

Using ATM Adapters

Asynchronous Transfer Mode (ATM) is an international standard that defines a high-speed networking
method to transport any mixture of voice, video, and traditional computer data across local, municipal, and
wide-area networks (LANs, MANs, and WANSs). ATM adapters provide full-duplex connectivity for RS/6000
servers or clients using permanent virtual circuits (PVCs) and switched virtual circuits (SVCs). The PVC
and SVC implementations are designed to be compliant with the ATM Forum specifications. The maximum
number of virtual circuits supported depends on the adapter. Most adapters support at least 1024 virtual
circuits.

ATM Technology
Asynchronous Transfer Mode (ATM) is a cell-switching, connection-oriented technology. In ATM networks,

end stations attach to the network using dedicated full duplex connections. The ATM networks are
constructed using switches, and switches are interconnected using dedicated physical connections. Before
any data transfers can begin, end-to-end connections must be established. Multiple connections can and
do exist on a single physical interface. Sending stations transmit data by segmenting Protocol Data Units
(PDUs) into 53-byte cells. Payload stays in the form of cells during network transport. Receiving stations
reassemble cells into PDUs. The connections are identified using a virtual path identifier (VPI) and a virtual
channel identifier (VCI). The VPI field occupies one byte in the ATM cell five-byte header; whereas, the
VCI field occupies two bytes in the ATM cell five-byte header. Basically, a VPI:VCI pair identifies the
source of the ATM cell. The function of the ATM switch is to recognize the source of the cell, determine the
next hop, and output the cell to a port. The VPI:VCI changes on a hop-by-hop basis. Thus, VPI:VCI values
are not universal. Each virtual circuit is described as a concatenation of VPI:VCI values across the
network.

ATM Connections
ATM architecture has two kinds of virtual circuits: permanent (PVCs) and switched (SVCs).

Permanent Virtual Circuits PVCs are statically and manually configured. The switches
forming the ATM network must first be set up to recognize the
VPI:VCI combination of each endpoint and to route the endpoint
ATM cells to the destination endpoint through the ATM network.
Once a link connection through the network has been established
from one endpoint to another, ATM cells can be transmitted
through the ATM network and ATM switches. The network
switches translate the VPI:VCI values in the appropriate way so
as to route the cell to its destination.

54 Communications and Networks

Switched Virtual Circuits SVCs are dynamically set up on an as needed basis. The ATM
end stations are assigned 20-byte addresses. SVCs use a control
plane and a data plane.

The control plane uses a signaling channel VPI:VCI 0:5.

SVCs involve on demand call setup, whereby an ATM station
sends information elements specifying the destination ATM
address (and optionally, the source ATM address). In general,
calling station, network, and called station participate in a
negotiation. Finally, a call is either accepted or rejected. If a call is
accepted, network assigns VPI:VCI values for the data plane to
the calling station and called station. In the control plane, the ATM
network routes (or switches) signaling packets on the basis of the
ATM addresses. While these packets are being routed, the
switches set up data plane cell routing tables. In the data plane,
ATM networks switch cells on the basis of VPI:VCI much like in
the case of PVCs. When data transfer is over, connection is
terminated.

The ATM address is constructed by registering with the ATM network and by acquiring the most significant
13 bytes. The next six bytes contain the adapter’s factory-assigned, unigue MAC address. The least
significant byte is the selector. Use of this byte is left to the discretion of the end station. ATM networks do
not interpret this byte.

TCP/IP over ATM
The Internet Engineering Task Force RFC1577: Classical IP and ARP over ATM standard specifies the

mechanism for implementing Internet Protocol (IP) over ATM. Since ATM is connection-oriented technology
and IP is a datagram-oriented technology, mapping the IP over ATM is not trivial.

In general, the ATM network is divided into logical IP subnetworks (LISs). Each LIS is comprised of some
number of ATM stations. LISs are analogous to traditional LAN segments. LISs are interconnected using
routers. A particular adapter (on an ATM station) can be part of multiple LISs. This feature can be very
useful for implementing routers.

RFC1577 specifies RFC1483, which specifies logical link control/Sub-Network Access Protocol
(LLC/SNAP) encapsulation as the default. In PVC networks for each IP station, all PVCs must be manually
defined by configuring VPI:VCI values. If LLC/SNAP encapsulation is not being used, the destination IP
address associated with each VPI:VCI must be defined. If LLC/SNAP encapsulation is being used, the IP
station can learn the remote IP address by an InARP mechanism.

For SVC networks, RFC1577 specifies an ARP server per LIS. The purpose of the ARP server is to
resolve IP addresses into ATM addresses without using broadcasts. Each IP station is configured with the
ATM address of the ARP server. IP stations set up SVCs with the ARP server, which in turn, sends InARP
requests to the IP stations. Based on InNARP reply, an ARP server sets up IP to ATM address maps. IP
stations send ARP packets to the ARP server to resolve addresses, which returns ATM addresses. IP
stations then set up a SVC to the destination station and data transfer begins. The ARP entries in IP
stations and the ARP server age based on a well defined mechanism. For both the PVC and SVC
environments, each IP station has at least one virtual circuit per destination address.

The Internet Engineering Task Force RFC2225 adds the support of ATM ARP Request Address list to
RFC1577. The ATM ARP Request Address list is a list containing one or more ATM addresses of individual
ATM ARP servers located within the LIS. The RFC2225 client eliminates the single point of failure
associated with the 1577 clients’ ATM ARP services. The 2225 clients have the ability to switch to backup
ARP servers when the current ATM ARP server fails.

RS/6000 sets the first entry in the ATM ARP Request Address list as the Primary ATM ARP server and the
rest of the entries as Secondary ATM ARP servers.

Chapter 3. Transmission Control Protocol/Internet Protocol 55

The client will always try to use the Primary ATM ARP server. If the effort to connect to the Primary ATM
ARP server fails, the client tries to connect to the first Secondary server (the position in the ATM ARP
Request Address list determines the order of the Secondary ATM ARP server). If the connection to the first
Secondary ATM ARP server fails, the client tries to contact the next Secondary ATM ARP server in the list.
This process continues until the connection is successful.

If the connection to the Primary ATM ARP server fails, regardless of which Secondary ATM ARP server it
is connected to or attempting to connect to, the client continues to retry the Primary ATM ARP server
every 15 minutes. If it finally connects to the Primary ATM ARP server, then the connection to the current
Secondary ATM ARP server is dropped.

The ATM ARP Request Address list is entered manually either through SMIT or by using the m
command. The ATM ARP Request Address list cannot be configured with the Management Information
Base (MIB).

PVC Network: Use the "Representative ATM Network” figure as an example to configure your network.
Within the "Representative ATM Network” figure, one logical IP subnet is represented by dashed lines

from each host to the switch. The other IP subnet is represented by solid lines from each host to the
switch.

56 Communications and Networks

../../cmds/aixcmds3/ifconfig.htm

To other ATM switches

IP 128.10.1.3

ATM
Switch

IP 128.10.1.5
ato

Figure 14. Representative ATM Network. This illustration depicts an ATM network laid out in a typical star topography.
In the center of the star is the ATM switch. Numbered IP hosts are branched off of the switch as are links to other

Two IP addresses
sharing same physical
fiber cable

1P 128.10.2.4

1P 128.10.2.3

IP 128.10.2.5
at1

ATM Gateway box with one
TURBOWAYS 155 ATM Adapter

ATM switches and one ATM gateway box and adapter.

The following Representative Host Configuration table indicates how hosts H3 and H4 are configured to

communicate with a gateway and with each host on its own logical IP subnet.

Representative Host Configuration

Network Interface Driver VPI:VCI Comment

Host H3

ato 0:40 Connection to 128.10.1.5 (gateway)
ato 0:42 Connection to 128.10.1.2

ato 0:43 Connection to 128.10.1.3

Host H4

at0 0:50 Connection to 128.10.2.5 (gateway)
ato 0:52 Connection to 128.10.2.2

ato 0:53 Connection to 128.10.2.3

ato 0:54 Connection to 128.10.2.4

Chapter 3. Transmission Control Protocol/Internet Protocol

To reach hosts on another logical IP subnet, only a VPI:VCI connection to the gateway needs to be
created. (The VPI:VCls are for illustration purposes only.)

The ATM gateway box has one ATM with two IP addresses sharing the same physical cable.

SVC Network: Using the "Representative ATM Network” figure as an example, imagine that host H3
wants to call H4. H1 is the ARP server for subnet 1 and H6 is the ARP server for subnet 2. Assuming a
subnet mask of 255.255.255.0, stations with addresses of 128.10.1.X are members of one subnet,
whereas stations with addresses of 128.10.2.X are members of a second subnet. See the following list of
representative host configurations using SVCs.

To other ATM switches IP128.10.2.4

1P 128.10.2.3

IP 128.10.1.3

ATM
Switch

Two IP addresses
sharing same physical
fiber cable

IP 128.10.2.5
at1

IP128.10.1.5
at0

ATM Gateway box with one
TURBOWAYS 155 ATM Adapter

Figure 15. Representative ATM Network. This illustration depicts an ATM network laid out in a typical star topography.
In the center of the star is the ATM switch. Numbered IP hosts are branched off of the switch as are links to other
ATM switches and one ATM gateway box and adapter.

List of Representative Host Configurations

Network Interface Driver IP Address | ARP Server | ARP Server Gateway
Address Address

Host H1

ato 128.10.1.3 Yes 128.10.1.5

Host H3

58 Communications and Networks

ato 128.10.1.1 No ATM address of H1 | 128.10.1.5
Gateway

ato 128.10.1.5 No ATM address of H1

at1 128.10.2.5 No ATM address of H6

Host H4

ato 1281021 [No | ATM address of H6 | 128.10.2.5
Host H6

ato 1281023 |Yes | 1281025

Note: Each subnet requires one and only one ARP server.

Because H3 recognizes that address 128.10.2.1 is not on its subnet, H3 consults H1 to resolve the default
gateway IP address to an ATM address. H3 then places a call to the gateway. The gateway recognizes
that the data is bound for the second subnet and consults H6 to successfully resolve the H4 IP address to
an ATM address. Connections are then established between H3 and the gateway and between the
gateway and H4.

Configuring an ATM Adapter

To configure your ATM adapter, use the Web-based System Manager, wsm, or the SMIT fast path smit
chg_atm. Select an adapter name, then use the online help and multiple-choice lists to decide which
changes to make for your configuration.

ATM Adapter Statistics

The atmstat command can be used for getting ATM adapter statistics. Using the atmstat command with
the -r flag resets the statistics. The format of the command is atmstat DeviceName. This command
returns the following sets of statistics:

Transmit Statistics:

Packets:
This field contains the number of packets (or PDUs) transmitted.

Bytes: This field contains the count of bytes transmitted. These are the user bytes. The ATM overhead,
for example, ATM cell header, and AAL 5 PDU trailer, are excluded.

Interrupts:
This field is not used.

Transmit Errors:
This field contains the number of transmit errors for this device.

Packets Dropped:
This field contains the number of Transmit Packets that were dropped, for instance, because of an
out of buffers condition.

Max Packets on S/W Transmit Queue:
This field does not apply to ATM.

S/W Transmit Queue Overflow:
This field does not apply to ATM.

Current S/W + H/W Transmit Queue Length:
This field contains the current transmit queue length.

Cells Transmitted:
This field contains the number of cells transmitted by this device.

Chapter 3. Transmission Control Protocol/Internet Protocol 59

Out of Xmit Buffers:
This field contains the number of packets dropped because of out of xmit buffers condition.

Current HW Transmit Queue Length:
This field contains the current number of transmit packets on the hardware queue.

Current SW Transmit Queue Length:
This field does not apply to ATM.

Receive Statistics:

Packets:
This field contains the number of packets (or PDUs) received.

Bytes: This field contains the count of bytes received. These are the user bytes. The ATM overhead, for
example, ATM cell header and AAL 5 PDU trailer are excluded.

Interrupts:
This field contains the number of Interrupts taken by the system for the adapter-to-system
indications. Some of the events that cause these interrupts are packet received, transmit done
indication, and so on.

Receive Errors:
This field contains the number of receive errors for this device.

Packets Dropped:
This field contains the number of received packets dropped, for instance, due to out of buffers
condition.

Bad Packets:
This field does not apply to ATM.

Cells Received:
This field contains the number of cells received by this device.

Out of Rcv Buffers:
This field contains the number of packets dropped because of out of receive buffers condition.

CRC Errors:
This field contains the number of received packets that encountered CRC errors.

Packets Too Long:
This field contains the number of received packets that exceeded the maximum PDU size.

Incomplete Packets:
This field contains the number of incomplete received packets.

Cells Dropped:
This field contains the number of dropped cells. Cells could be dropped for a number of reasons,
such as bad header error control (HEC), out of buffer condition, and so on.

General Statistics:

No mbuf Errors:
This field contains the number of mbuf requests that were denied.

Adapter Loss of Signals:
This field contains the number of times the adapter encountered loss of signal.

Adapter Reset Count:
This field contains the number of times the adapter has been reset.

Driver Flags: Up Running Simplex
This field contains the neighborhood discovery daemon (NDD) flags.

60 Communications and Networks

Virtual Connections in use:
This field contains the number of virtual connections that are currently allocated or in use.

Max Virtual Connections in use:
This field contains the maximum number of virtual connections allocated since the last reset of the
statistics.

Virtual Connections Overflow:
This field contains the number of allocate virtual connections requests that have been denied.

SVC UNI Version:
This field contains the current UNI version of the signaling protocol in use.

Additional Microchannel ATM Statistics
Using the atmstat command with the -d flag provides detailed statistics.

Packets Dropped - No small direct memory access (DMA) buffer:
This field contains the number of received packets dropped because the adapter did not have
small system buffers for DMA.

Packets Dropped - No medium DMA buffer:
This field contains the number of received packets dropped because the adapter did not have
medium system buffers for DMA.

Packets Dropped - No large DMA buffer:
This field contains the number of received packets dropped because the adapter did not have
large system buffers for DMA.

Receive Aborted - No Adapter Receive buffer:
This field contains the number of received packets aborted because the adapter did not have
on-card receive buffers.

Transmit Aborted - No small DMA buffer:
This field contains the number of transmit packets dropped because of the lack of small system
buffers for DMA.

Transmit Aborted - No medium DMA buffer:
This field contains the number of transmit packets dropped because of the lack of medium system
buffers for DMA.

Transmit Aborted - No large DMA buffer:
This field contains the number of transmit packets dropped because of the lack of large system
buffers for DMA.

Transmit Aborted - No MTB DMA buffer:
This field contains the number of transmit packets dropped because of the lack of large system
buffers for DMA.

Transmit Aborted - No Adapter Transmit buffer:
This field contains the number of transmit packets dropped because of the lack of adapter on-card
transmit buffers.

Max Hardware Transmit Queue Length:
This field contains the maximum number of transmit packets queued in the hardware queue.

Small Mbufs in Use:
This field contains the number of small mbufs currently in use. The adapter device driver allocates
these buffers according to the configuration information provided by system administrators. This
information can be used to tune the configuration information.

Medium Mbufs in Use:
This field contains the number of medium mbufs currently in use. The adapter device driver
allocates these buffers according to the configuration information provided by system
administrators. This information can be used to tune the configuration information.

Chapter 3. Transmission Control Protocol/Internet Protocol 61

Large Mbufs in Use:
This field contains the number of large mbufs currently in use. The adapter device driver allocates
these buffers according to the configuration information provided by system administrators. This
information can be used to tune the configuration information.

Huge Mbufs in Use:
This field contains the number of huge mbufs currently in use. The adapter device driver allocates
these buffers according to the configuration information provided by the system administrators.
This information can be used to tune the configuration information.

MTB Mbufs in Use:
This field contains the number of MTB mbufs currently in use. The adapter device driver allocates
these buffers according to the configuration information provided by the system administrators.
This information can be used to tune the configuration information.

Max Small Mbufs in Use:
This field contains the maximum number of small mbufs that have been used. The adapter device
driver allocates these buffers according to the configuration information provided by the system
administrators. This information can be used to tune the configuration information.

Max Medium Mbufs in Use:
This field contains the maximum number of medium mbufs that have been used. The adapter
device driver allocates these buffers according to the configuration information provided by system
administrators. This information can be used to tune the configuration information.

Max Large Mbufs in Use:
This field contains the maximum number of large mbufs that have been used. The adapter device
driver allocates these buffers according to the configuration information provided by system
administrators. This information can be used to tune the configuration information.

Max Huge Mbufs in Use:
This field contains the maximum number of huge mbufs that have been used. The adapter device
driver allocates these buffers according to the configuration information provided by system
administrators. This information can be used to tune the configuration information.

MTB Mbufs in Use:
This field contains the maximum number of MTB mbufs that have been used. The adapter device
driver allocates these buffers according to the configuration information provided by system
administrators. This information can be used to tune the configuration information.

Small Mbufs overflow:
This field contains the number of times that a small mbuf could not be allocated. This information
can be used to tune the configuration information.

Medium Mbufs overflow:
This field contains the number of times that a medium mbuf could not be allocated. This
information can be used to tune the configuration information.

Large Mbufs overflow:
This field contains the number of times that a large mbuf could not be allocated. This information
can be used to tune the configuration information.

Huge Mbufs overflow:
This field contains the number of times that a huge mbuf could not be allocated. This information
can be used to tune the configuration information.

MTB Mbufs overflow:
This field contains the number of times that an MTB mbuf could not be allocated. This information
can be used to tune the configuration information.

62 Communications and Networks

PCI ATM Adapter Specific Statistics

Total 4K byte Receive Buffers: 768 Using: 512
This message contains the number of receive buffers allocated as well as the number that are
currently in use.

Max 4K byte Receive Buffers limit: 1228 max_used: 514
This message contains the maximum number of receive buffers that can be allocated as well as
the number that have been used since the adapter was last configured or opened.

TCP/IP Network Interfaces

The TCP/IP Network Interface layer formats IP datagrams at the Network layer into packets that specific
network technologies can understand and transmit. A network interface is the network-specific software
that communicates with the network-specific device driver and the IP layer in order to provide the IP layer
with a consistent interface to all network adapters that might be present.

The IP layer selects the appropriate network interface based on the destination address of the packet to
be transmitted. Each network interface has a network address. The Network Interface layer is responsible
for adding or removing any link layer protocol header required to deliver a message to its destination. The
network adapter device driver controls the network adapter card.

Although not required, a network interface is usually associated with a network adapter. For instance, the
loopback interface has no network adapter associated with it. A machine must have one network adapter
card for each network (not network type) to which it connects. However, a machine requires only one copy
of the network interface software for each network adapter it uses. For instance, if a host attaches to two
token-ring networks, it must have two network adapter cards. However, only one copy of the token-ring
network interface software and one copy of the token-ring device driver is required.

TCP/IP supports types of network interfaces:
» Standard Ethernet Version 2 (en)

+ |EEE 802.3 (et)

» Token-ring (tr)

» Serial Line Internet Protocol (SLIP)
* Loopback (lo)

+ FDDI

» Serial Optical (so)

* ATM (at)

* Point-to-Point Protocol (PPP)

* Virtual IP Address (vi)

The Ethernet, 802.3, and token-ring interfaces are for use with local area networks (LANs). The SLIP
interface is for use with serial connections. The loopback interface is used by a host to send messages
back to itself. The Serial Optical interface is for use with optical point-to-point networks using the dﬂ

i i i . The ATM interface is for use with 100 Mbits/sec and 155 Mbits/sec ATM
connections. Point to Point protocol is most often used when connecting to another computer or network
via a modem. The Virtual IP Address interface (also called virtual interface) is not associated with any
particular network adapter. Multiple instances of a virtual interface can be configured on a host. When
virtual interfaces are configured, the address of the first virtual interface becomes the source address
unless an application has chosen a different interface. Processes that use a virtual IP address as their
source address can send packets through any network interface that provides the best route for that
destination. Incoming packets destined for a virtual IP address are delivered to the process regardless of
the interface through which they arrive.

Chapter 3. Transmission Control Protocol/Internet Protocol 63

../../aixprggd/kernextc/serial_optical_linkdev_hdler_over.htm#HDRHZT11DONNA
../../aixprggd/kernextc/serial_optical_linkdev_hdler_over.htm#HDRHZT11DONNA

Automatic Configuration of Network Interfaces

When a new network adapter is physically installed in the system, the operating system automatically adds
the appropriate network interface for that adapter. For example, if you install a token-ring adapter in your
system, the operating system assigns it the name tok0 and add a token-ring network interface named tro.
If you install an Ethernet adapter in your system, the operating system assigns it the name ent0 and add
both an Ethernet Version 2 and an IEEE 802.3 interface, named en0 and et0 respectively.

In most cases, there is a one-to-one correspondence between adapter names and network interface
names. For example, token-ring adapter tok0 corresponds to interface tr0, adapter tok1 corresponds to
interface trl, and so on. Similarly, Ethernet adapter ent0 corresponds to interface en0 (for Ethernet
Version 2) and et0 (for IEEE 802.3), and adapter entl corresponds to interface enl (for Ethernet Version
2) and etl (for IEEE 802.3).

In the case of ATM, according to RFC1577, it is possible for an ATM station to be part of multiple Logical
IP Subnetworks. In this case, multiple interfaces are associated with a device. This requires that an
interface be specifically added and a device name be assigned to it.

Note: Under normal circumstances, you do not need to delete or add a network interface manually.
However, some problem determination procedures might require you to do so. In this case, use the
Web-based System Manager wsm, or the SMIT fast path, smit inet, to delete and re-add the
appropriate interface.

At each system startup, the operating system automatically configures the network interface software
based upon the information in the ODM database. Initially, the network interface is configured with default
values. In order to communicate through a given network interface, the Internet address must be set. This
is the only attribute that you need to set. All other necessary attributes can use the default values. The
default values for each network interface follow.

Ethernet Default Configuration Values

The following is a list of valid Ethernet network adapter attributes along with their default values, which can
be changed using the Web-based System Manager, wsm or the Network Interface Selection menu in
SMIT.

Attribute Default Value Possible Values
netaddr

state down up, down, detach
arp yes yes, no

netmask

broadcast

The following valid Ethernet network device driver attribute is shown along with its default values, which
can be changed using the Web-based System Manager, wsm, or the Network Interface Drivers menu in
SMIT.

Attribute Default Value Possible Values
mtu 1500 60 through 1500

802.3 Default Configuration Values

The following is a list of valid 802.3 network adapter attributes along with their default values, which can
be changed using the Web-based System Manager, wsm, or the Network Interface Selection menu in

64 Communications and Networks

SMIT.

Attribute Default Value Possible Values
netaddr

state down up, down, detach
arp yes yes, no

netmask

broadcast

The following valid 802.3 network device driver attribute is shown along with its default values, which can
be changed using the Web-based System Manager, wsm, or the Network Interface Drivers menu in SMIT.

Attribute

Default Value

Possible Values

mtu

1492

60 through 1492

Token-Ring Default Configuration Values

The following is a list of valid token-ring network adapter attributes along with their default values, which
can be changed using the Web-based System Manager, wsm, or the Network Interface Selection menu in

SMIT.

Attribute Default Value Possible Values
netaddr

netmask

state down up, down, detach
arp yes yes, no

hwloop no yes, no

netmask

broadcast

allcast no yes, no

The following valid token-ring network device driver attributes are shown along with its default values,
which may be changed using the Web-based System Manager, wsm, or the Network Interface Drivers

menu in SMIT.

Attribute Default Value Possible Values
mtu (4Mbps) 1500 60 through 4056
mtu (16Mbps) 1500

60 through 17960

Note: When operating through a bridge, the default value of 1500 for the maximum transmission unit
(MTU) should be changed to a value that is 8 less than the maximum information field (maximum
I-frame) advertised by the bridge in the routing control field. For example, if the maximum I-frame
value is 1500 in the routing control field, the MTU size should be set to 1492. This is for token-ring

network interfaces only. For more information, see Prohlems with a Token-Ring/Token-Ring Bridgd.

When using the IBM 16/4 POWER-based token-ring adapter (ISA), the MTU is restricted to 2000.

Chapter 3. Transmission Control Protocol/Internet Protocol 65

SLIP Default Configuration Values

The following is a list of valid SLIP network adapter attributes along with their default values as shown
under the Web-based System Manager, wsm, or the Network Interface Selection menu in SMIT.

Attribute Default Value Possible Values
netaddr

dest

state up up, down, detach
netmask

The following valid SLIP network device driver attribute is shown along with its default values as displayed
under the Web-based System Manager, wsm, or the Network Interface Drivers menu in SMIT.

Attribute Default Value Possible Values

mtu 1006 60 through 4096

Serial Optical Default Configuration Values

The following is a list of valid Serial Optical network channel converter attributes along with their default

values as shown under the Web-based System Manager, wsm, or the Network Interface Selection menu
in SMIT.

Attribute Default Value Possible Values
netaddr
state down up, down, detach
netmask

The following valid serial optical network device handler attribute is shown along with its default values as
displayed under the Web-based System Manager, wsm, or the Network Interface Drivers menu in SMIT.

Attribute Default Value Possible Values

mtu 61428 1 through 61428

ATM Default Configuration Values

The following is a list of valid ATM network adapter attributes along with their default values as shown
under the Web-based System Manager, wsm, or the Network Interface Selection menu in SMIT.

Attribute Default Value Possible Values
netaddr

netmask

state up up, down, detach
Connection Type SvVC_S SVC_C, SVC_S, pvC
ATM Server Address

Alternate Device

idle timer 60 1 through 60

Best Effort Bit Rate (UBR) in kbits/sec 0 1 through 155,000

66 Communications and Networks

The following valid ATM network device driver attribute is shown along with its default values as displayed
under the Web-based System Manager, wsm, or the Network Interface Drivers menu in SMIT.

Attribute Default Value Possible Values
mtu 9180 1 through 64K

Note: Network Administrators need to exercise caution while changing MTU size from default to
some other value. The MTU size needs to be coordinated with other stations on the network.

If PVCs are to be used on an interface, the VPI:VCls needs to be defined. This is performed through the
Network Interface Selection Menu. The PVCs for IP over ATM Network option on this menu is used to list,
add, change, or remove PVCs.

Implications of Multiple Network Interfaces on the Same Network

While it is possible to have more than one interface on the same network, in general this is not
recommended for two reasons:
1. Having two interfaces on the same network is a violation of TCP/IP architecture.
In TCP/IP architecture, a host machine with two network adapters is defined as an IP router. Different
network adapters must be attached to different physical networks. In the case of token-ring, TCP/IP
addresses multiple rings bridged together as a single logical ring (as if it were a single physical ring).
2. Having two interfaces on the same network can cause broadcast storms.
Whenever an IP host sees traffic for a network whose IP address is different from its own network, it
generates an Internet Control Message Protocol (ICMP) packet announcing this conflict. Since every
host on the network sees the traffic that is misaddressed, every host generates ICMP packets. If the
amount of misaddressed traffic is significant, the ICMP traffic can grow to the point that network
performance degrades.

It is possible to avoid the broadcast storms created when multiple interfaces are connected to the same
network by giving each interface a different IP addresses.

Managing Network Interfaces

To manage network interfaces, use the web-based system manager, WSM Network, FastPath (application)
or the tasks in the following table.

Managing Network Interfaces Tasks

Task SMIT Fast Path Command or File Web-based System
Manager Management
Environment

List all network devices smit Isinet Isdev -C -c if Software —> Devices —>
All Devices.

Configure a network device |smit chinet See the m command | Software —> Network —>
and the kcnel file TCPIP (IPv4 and IPv6) —>
Protocol Configuration
—> Set up basic TCP/IP
configuration.

Chapter 3. Transmission Control Protocol/Internet Protocol 67

../../cmds/aixcmds3/ifconfig.htm
../../files/aixfiles/rc.net.htm

Managing Network Interfaces Tasks

Changing network interface | smit chdev'? Software —> Network —>
info with remotely mounted TCPIP (IPv4 and IPv6) —>
lusr Network Interfaces —>.
Right-click and select
Properties —> Aliases.

chgif'2

Software —> Network —>
TCPIP (IPv4 and IPv6) —>
Network Interfaces —>
Network Statistics.

Obtaining statistics for a netstat -v

network interface

Notes:

1. Changes from a remotely mounted /usr affect only the Information Database (ODM) until the
network is restarted or until the ifconfig command is used to make the changes take effect right
away.

2. When using a remotely mounted /usr, be careful not to modify the interface being used, because
that is the location of the libraries, commands, and kernel.

Interface-Specific Network Options

TCP/IP interfaces must be specially tuned to achieve good, high-speed network performance (100 Mb or
more). This effort is complicated by the fact that multiple network interfaces and a combination of
traditional and high-speed TCP/IP interfaces can be used on a single system. Before AlX 4.3.3 (4330-08)
and AIX 5.1, AIX provided a single set of system-wide values for the key IP interface network tuning
parameters making it impossible to tune a system that has widely differing network adapter interfaces.
Beginning with AIX 4.3.3 (4330-08) and AIX 5.1, Interface Specific Network Options (ISNO) allows system
administrators to tune each TCP/IP interface individually for best performance.

There are five ISNO parameters for each supported interface: rfc1323, tcp_nodelay, tcp_sendspace,
tcp_recvspace, and tcp_mssdfit. When set, the values for these parameters override the system-wide
parameters of the same names that had been set with the no command. When ISNO options are not set
for a particular interface, system-wide options are used. When options have been set by an application for
a particular socket using the setsockopt subroutine, such options override the ISNOs.

The network option use_isno, set with the no command, must have a value of 1 for the ISNOs to take
effect. The default value for use_isno is 1.

Some high-speed adapters have ISNO parameters set by default in the ODM database.

Gigabit Ethernet interfaces, when configured to use an MTU of 9000, use the following ISNO values by
default:

Name AIX 4.3.3 Value AIX 4.3.3 (4330-08) Value |AIX 5.1 (and later) Value
tcp_sendspace 131072 262144 262144

tcp_recvspace 92160 131072 131072

rfc1323 1 1 1

Gigabit Ethernet interfaces, when configured to use an MTU of 1500, use the following ISNO values by

default:
Name AIX 4.3.3 Value AIX 4.3.3 (4330-08) Value |AIX 5.1 (and later) Value
tcp_sendspace 65536 131072 131072

68 Communications and Networks

Name AIX 4.3.3 Value AIX 4.3.3 (4330-08) Value |AIX 5.1 (and later) Value
tcp_recvspace 16384 65536 65536
rfc1323 0 not set not set

ATM interfaces, when configured to use an MTU of 1500, use the following ISNO values by default:

Name AIX 4.3.3 Value AIX 4.3.3 (4330-08) Value |AIX 5.1 (and later) Value
tcp_sendspace 16384 not set not set
tcp_recvspace 16384 not set not set
rfc1323 0 not set not set
tcp_nodelay 0 not set not set
tcp_mssdflt 512 not set not set

ATM interfaces, when configured to use an MTU of 65527, use the following ISNO values by default:

Name AIX 4.3.3 Value AIX 4.3.3 (4330-08) Value |AIX 5.1 (and later) Value
tcp_sendspace 655360 655360 655360

tcp_recvspace 655360 655360 655360

rfc1323 0 1 1

tcp_nodelay 0 not set not set

tcp_mssdflt 512 not set not set

ATM interfaces, when configured to use an MTU of 9180, use the following ISNO values by default:

Name AIX 4.3.3 Value AIX 4.3.3 (4330-08) Value |AIX 5.1 (and later) Value
tcp_sendspace 65536 65536 65536
tcp_recvspace 65536 65536 65536
rfc1323 0 not set not set
tcp_nodelay 0 not set not set
tcp_mssdflt 512 not set not set

FDDI interfaces, when configured to use an MTU of 4352, use the following ISNO values by default:

Name Value
tcp_sendspace 45046
tcp_recvspace 45046

The ISNO parameters cannot be displayed or changed using SMIT. They can be set using the chdev

command or the ifconfig command. The ifconfig command changes the values only until the next reboot.

The chdev command changes the values in the ODM database so they are used on subsequent reboots.
The Isattr or ifconfig commands can be used to display the current values.

Example

The following commands can be used first to verify system and interface support and then to set and

verify the new values.

1. Verify general system and interface support using the no and Isattr commands.

Chapter 3. Transmission Control Protocol/Internet Protocol

* Ensure the use_isno option is enabled using a command similar to the the following:
$ no -a | grep isno
use_isno=1
» Ensure the interface supports the five new ISNOs using the Isattr -EI command, as shown in the
following:

$ 1sattr -E -1 en0 -H
attribute value description

rfcl323 N/A
tcp_nodelay N/A
tcp_sendspace N/A
tcp_recvspace N/A
tep_mssdflt N/A

2. Set the interface specific values, using either the ifconfig or chdev command. The ifconfig command
sets values temporarily, which is recommended for testing. The chdev command alters the ODM, so
customized values remain valid after reboot.

» Set the tep_recvspace and tcp_sendspace to 64K and enable tcp_nodelay by using one of the
following:
$ ifconfig en® tcp_recvspace 65536 tcp_sendspace 65536 tcp_nodelay 1
$ chdev -1 en0 -a tcp_recvspace=65536 -a tcp_sendspace=65536 -a tcp_nodelay=1

* Alternatively, assuming the no command reports an rfc1323=1 global value, the root user can turn
rfc1323 off for all connections over en0 with the following commands:

$ ifconfig en0 rfcl323 0
$ chdev -1 en0 -a rfcl323=0

3. Verify the settings using the ifconfig or Isattr command, as shown in the following example:

$ ifconfig en0 <UP,BROADCAST,NOTRAILERS,RUNNING,SIMPLEX,MULTICAST,GROUPRT,64BIT>
en0: flags=e080863
inet 9.19.161.100 netmask Oxffffff00 broadcast 9.19.161.255
tcp_sendspace 65536 tcp_recvspace 65536 tcp_nodelay 1 rfcl323 0
§ 1sattr -E1 en0

rfcl323 0 N/A True

tcp_nodelay 1 N/A True

tcp_sendspace 65536 N/A True

tcp_recvspace 65536 N/A True

tcp_mssdflt N/A True
TCP/IP Addressing

TCP/IP includes an Internet addressing scheme that allows users and applications to identify a specific
network or host with which to communicate. An Internet address works like a postal address, allowing data
to be routed to the chosen destination. TCP/IP provides standards for assigning addresses to networks,
subnetworks, hosts, and sockets, and for using special addresses for broadcasts and local loopback.

Internet addresses are made up of a network address and a host (or local) address. This two-part address
allows a sender to specify the network as well as a specific host on the network. A unique, official network
address is assigned to each network when it connects to other Internet networks. However, if a local
network is not going to connect to other Internet networks, it can be assigned any network address that is
convenient for local use.

The Internet addressing scheme consists of Internet Protocol (IP) addresses and two special cases of IP
addresses: broadcast addresses and loopback addresses.

Internet Addresses

The Internet Protocol (IP) uses a 32-bit, two-part address field. The 32 bits are divided into four octets as
in the following:

01111101 00001101 01001001 00001111

70 Communications and Networks

These binary numbers translate into:
1251373 15

The two parts of an Internet address are the network address portion and the host address portion. This
allows a remote host to specify both the remote network and the host on the remote network when
sending information. By convention, a host number of 0 is used to refer to the network itself.

TCP/IP supports three classes of Internet addresses: Class A, Class B, and Class C. The different classes
of Internet addresses are designated by how the 32 bits of the address are allocated. The particular
address class a network is assigned depends on the size of the network.

Class A Addresses

A Class A address consists of an 8-bit network address and a 24-bit local or host address. The first bit in
the network address is dedicated to indicating the network class, leaving 7 bits for the actual network
address. Because the highest number that 7 bits can represent in binary is 128, there are 128 possible
Class A network addresses. Of the 128 possible network addresses, two are reserved for special cases:
the network address 127 is reserved for local loopback addresses, and a network address of all ones
indicates a broadcast address.

There are 126 possible Class A network addresses and 16,777,216 possible local host addresses. In a
Class A address, the highest order bit is set to 0.

Network Address Local Host Address
(8 bits) (24 bits)
01111101 00001101 01001001 00001111

T

Note: The high-order bit (or first bit) will always be 0 in a Class A address.

Figure 16. Class A Address. This illustration shows a typical class A address structure. The first 8 bits contain the
network address (always beginning with a zero). The remaining 24 bits contain the local host address.

The first octet of a Class A address is in the range 1 to 126.
Class B Addresses

A Class B address consists of a 16-bit network address and a 16-bit local or host address. The first two
bits in the network address are dedicated to indicating the network class, leaving 14 bits for the actual
network address. There are 16,384 possible network addresses and 65,536 local host addresses. In a
Class B address, the highest order bits are set to 1 and 0.

Chapter 3. Transmission Control Protocol/Internet Protocol 71

Network Address Local Host Address
(16 bits) (16 bits)

10011101 00001101 01001001 00001111

T

Note: The two highest order bits (or first two bits) will always be 1 and 0 in a
Class B address.

Figure 17. Class B Address. This illustration shows a typical class B address structure. The first 16 bits contain the
network address. The two highest order bits will always be a one and a zero. The remaining 16 bits contain the local
host address.

The first octet of a Class B address is in the range 128 to 191.
Class C Addresses

A Class C address consists of a 24-bit network address and an 8-bit local host address. The first two bits
in the network address are dedicated to indicating the network class, leaving 22 bits for the actual network
address. Therefore, there are 2,097,152 possible network addresses and 256 possible local host
addresses. In a Class C address, the highest order bits are set to 1 and 1.

Network Address Local Host Address
(24 bits) (8 bits)
11011101 00001101 01001001 00001111

T

Note: The two highest order bits (or first two bits) will always be 1 and 1in a
Class C address.

Figure 18. Class C Address. This illustration shows a typical class C address structure. The first 24 bits contain the
network address (the two highest order bits will always be a one and a one). The remaining 8 bits contain the local
host address.

In other words, the first octet of a Class C address is in the range 192 to 223.

When deciding which network address class to use, you must consider how many local hosts there will be
on the network and how many subnetworks will be in the organization. If the organization is small and the
network will have fewer than 256 hosts, a Class C address is probably sufficient. If the organization is
large, then a Class B or Class A address might be more appropriate.

Note: Class D (1-1-1-0 in the highest order bits) addresses provide for multicast addresses and are
supported by UDP/IP under this operating system.

Machines read addresses in binary code. The conventional notation for Internet host addresses is the
dotted decimal, which divides the 32-bit address into four 8-bit fields. The following binary value:

0001010 00000010 00000000 00110100
can be expressed as:
010.002.000.052 or 10.2.0.52

where the value of each field is specified as a decimal number and the fields are separated by periods.

72 Communications and Networks

Note: The hostent command does recognize the following addresses: .08, .008, .09, and .009.
Addresses with leading zeros are interpreted as octal, and numerals in octal cannot contain 8s or 9s.

TCP/IP requires a unique Internet address for each network interface (adapter) on a network. These
addresses are determined by entries in the configuration database, which must agree with entries in the
letc/hosts file or the named database if the network is using a name server.

Internet Addresses Using Zeros

When a C class Internet address contains a 0 as the host address portion, (for example, 192.9.200.0),
TCP/IP sends a wildcard address on the network. All machines with a Class C address of 192.9.200.X
(where X represents a value between 0 and 254) should respond to the request. This results in a network
flooded with requests to nonexistent machines.

Similarly, problems occur for Class B addresses such as 129.5.0.0. All machines with a Class B address of
129.5.X.X. (where X represents a value between 0 and 254) are obliged to respond to the request. In this
case, because Class B addresses account for bigger networks than Class C addresses, the network is
flooded with significantly more requests to nonexistent machines than for a Class C network.

Subnet Addresses

Subnet addressing allows an autonomous system made up of multiple networks to share the same
Internet address. The subnetwork capability of TCP/IP also makes it possible to divide a single network
into multiple logical networks (subnets). For example, an organization can have a single Internet network
address that is known to users outside the organization, yet it can configure its network internally into
departmental subnets. In either case, fewer Internet network addresses are required while local routing
capabilities are enhanced.

A standard Internet Protocol address field has two parts: a network address and a local address. To make
subnets possible, the local address part of an Internet address is divided into a subnet number and a host
number. The subnet is identified so that the local autonomous system can route messages reliably.

In the basic Class A Internet address, which consists of an 8-bit network address and 24-bit local address,
the local address identifies the specific host machine on the network.

Network Address Local Host Address
(8 bits) (24 bits)
01111101 00001101 01001001 00001111

Figure 19. Class A Address. This illustration shows a typical class A address structure. The first 8 bits contain the
network address (always beginning with a zero). The remaining 24 bits contain the local host address.

To create a subnet address for this Class A Internet address, the local address can be divided into a
number identifying the physical network (or subnet) and a number identifying the host on the subnet.
Senders route messages to the advertised network address, and the local system takes responsibility for
routing messages to its subnets and their hosts. When deciding how to partition the local address into
subnet address and host address, you should consider the number of subnets and the number of hosts on
those subnets.

In the following figure, the local address is partitioned into a 12-bit subnet address and a 12-bit host
address.

Chapter 3. Transmission Control Protocol/Internet Protocol 73

Figure 20. Class A Address with Corresponding Subnet Address. This illustration shows a typical class A address
structure. The first 8 bits contain the network address (always beginning with a zero). The remaining 24 bits contain
the local host address with the subnet address occupying the first 8 bits and the host address occupying the last 8
bits.

Network Address Local Host Address
(8 bits) (24 bits)
Network Address Subnet Address Host Address
01111101 00001101 0100|1001 00001111

Note: The high-order bit (or first bit) will always be 0 in a Class A address.

You have flexibility when assigning subnet addresses and host addresses. The bits of the local address
can be divided according to the needs and potential growth of the organization and its network structure.
The only restrictions are:

* network_address is the Internet address for the network.
» subnet_address is a field of a constant width for a given network.
* host_address is a field that is at least 1-bit wide.

If the width of the subnet_address field is 0, the network is not organized into subnets, and addressing to
the network is performed using the Internet network address.

The bits that identify the subnet are specified by a bit mask and, therefore, are not required to be adjacent
in the address. However, it is generally desirable for the subnet bits to be contiguous and located as the
most significant bits of the local address.

Subnet Masks

When a host sends a message to a destination, the system must determine whether the destination is on
the same network as the source or if the destination can be reached directly through one of the local
interfaces. The system compares the destination address to the host address using the subnet mask. If
the destination is not local, the system sends the message on to a gateway. The gateway performs the
same comparison to see if the destination address is on a network it can reach locally.

The subnet mask tells the system what the subnet partitioning scheme is. This bit mask consists of the
network address portion and subnet address portion of the Internet address.

74 Communications and Networks

Network Address Local Host Address
(8 bits) (24 bits)
Network Address Subnet Address Host Address
01111101 00001101 0100/1001 00001111

Class A Address with Corresponding Subnet Address

Network Address Local Host Address
(8 bits) (24 bits)
Network Address Subnet Address Host Address
Subnet Mask Host Address
01111101 00001101 0100 (1001 00001111

Class A Address with Corresponding Subnet Mask

Figure 21. Class A Address with Corresponding Subnet Address. This illustration shows a typical class A address
structure. The first 8 bits contain the network address (always beginning with a zero). The remaining 24 bits contain
the local host address with the subnet address occupying the first 8 bits and the host address occupying the last 8
bits.

For example, the subnet mask of the Class A address with the partitioning scheme defined above is shown
in this figure.

The subnet mask is a set of 4 bytes, just like the Internetwork address. The subnet mask consists of high
bits (1’s) corresponding to the bit positions of the network and subnetwork address, and low bits (0’s)
corresponding to the bit positions of the host address. A subnet mask for the previous address looks like
the following figure.

Network Address Local Host Address
(8 bits) (24 bits)
Network Address Subnet Address Host Address
11111111 11111111 1111 | 0000 00000000

Figure 22. Example Subnet Mask. This illustration shows a an example of a subnet mask structure. The first 8 bits
contain the network address. The remaining 24 bits contain the local host address with the subnet address occupying
the first 8 bits and the host address occupying the last 8 bits.

Address Comparison

The destination address and the local network address are compared by performing the logical AND and
exclusive OR on the subnet mask of the source host.

The comparison process is outlined below:

1. Perform a logical AND of the destination address and the mask of the local subnet address.

2. Perform an exclusive OR on the result of the previous operation and the local net address of the local
interface.
If the result is all 0’s, the destination is assumed to be reachable directly through one of the local
interfaces.

Chapter 3. Transmission Control Protocol/Internet Protocol 79

3. If an autonomous system has more than one interface (therefore more than one Internet address), the
comparison process is repeated for each local interface.

For example, assume that there are two local interfaces defined for a host network, T125. Their Internet
addresses and the binary representations of those addresses are shown in the following example:

Local Network Interface Addresses:
CLASS A 73.1.5.2 01001001 00000001 00000101 00OOO0O10

CLASS B 145.21.6.3 = 10010001 00010101 00000110 00000011
The corresponding subnet masks for the local network interfaces are shown in the following example:

Local Network Interface Addresses:
CLASS A 73.1.5.2 = 11111111 11111111 11100000 00000000

CLASS B 145.21.6.3 = 11111111 11111111 11111111 11000000

If the source network, T125, is requested to send a message to a destination network with the host
address 114.16.23.8 (represented in binary as: 01110010 00010000 00010111 00001000), the system
checks whether the destination can be reached through a local interface.

Note: The subnetmask keyword must be set in the configuration database of each host that is to
support subnets. Before the subnetwork capability can be used, all hosts on the network must
support it. Set the subnet mask permanently in the configuration database using the Web-based
System Manager Network application or the Network Interface Selection menu in SMIT. The subnet
mask can also be set in the running system using the ifconfig command. Using the ifconfig
command to set the subnet mask is not a permanent change.

Broadcast Addresses

The TCP/IP can send data to all hosts on a local network or to all hosts on all directly connected
networks. Such transmissions are called broadcast messages. For example, the routed routing daemon
uses broadcast messages to query and respond to routing queries.

For data to be broadcast to all hosts on all directly connected networks, User Datagram Protocol (UDP)
and Internet Protocol (IP) are used to send the data, and the host destination address in the IP header
has all bits set to 1. For data to be broadcast to all hosts on a specific network, all the bits in the local
address part of the IP address are set to 0. There are no user commands that use the broadcast
capability, although such commands, or programs, can be developed.

The broadcast address can be changed temporarily by changing the broadcast parameter in the ifconfig
command. Change the broadcast address permanently by using the Web-based System Manager, wsm,
or the SMIT fast path smit chinet. Changing the broadcast address may be useful if you need to be
compatible with older versions of software that use a different broadcast address; for example, the host
IDs are all set to 0.

Local Loopback Addresses

The Internet Protocol defines the special network address, 127.0.0.1, as a local loopback address. Hosts
use local loopback addresses to send messages to themselves. The local loopback address is set by the
configuration manager during the system startup process. Local loopback is implemented in the kernel and
can also be set with the ifconfig command. Loopback is invoked when the system is started.

76 Communications and Networks

TCP/IP Address and Parameter Assignment - Dynamic Host
Configuration Protocol (DHCP)

Transmission Control Protocol/Internet Protocol (TCP/IP) enables communication between machines with
configured addresses. Part of the burden a network administrator must face is address assignment and
parameter distribution for all machines on the network. Commonly, this is a process in which the
administrator dictates the configuration to each user, allowing the user to configure his own machine.
However, misconfigurations and misunderstandings can generate service calls that the administrator must
deal with individually. The Dynamic Host Configuration Protocol (DHCP) gives the network administrator a
method to remove the end user from this configuration problem and maintain the network configuration in
a centralized location.

DHCP is an application-layer protocol that allows a client machine on the network, to get an IP address
and other configuration parameters from the server. It gets information by exchanging packets between a
daemon on the client and another on the server. Most operating systems now provide a DHCP client in
their base package.

To obtain an address, the DHCP client daemon (dhcped) broadcasts a DHCP discover message, which is
received by the server and processed. (Multiple servers can be configured on the network for redundancy.)
If a free address is available for that client, a DHCP offer message is created, This message contains an
IP address and other options that are appropriate for that client. The client receives the server DHCP offer
and stores it while waiting for other offers. When the client chooses the best offer, it broadcasts a DHCP
request that specifies which server offer it wants.

All configured DHCP servers receive the request. Each checks to see if it is the requested server. If not,
the server frees the address assigned to that client. The requested server marks the address as assigned
and returns a DHCP acknowledgement, at which time, the transaction is complete. The client has an
address for the period of time (lease) designated by the server.

When half of the lease time is used, the client sends the server a renew packet to extend the lease time. If
the server is willing to renew, it sends a DHCP acknowledgement. If the client does not get a response
from the server that owns its current address, it broadcasts a DHCP rebind packet to reach the server if,
for example, the server has been moved from one network to another. If the client has not renewed its
address after the full lease time, the interface is brought down and the process starts over. This cycle
prevents multiple clients on a network from being assigned the same address.

The DHCP server assigns addresses based on keys. Four common keys are network, class, vendor, and
client ID. The server uses these keys to get an address and a set of configuration options to return to the
client.

network
Identifies which network segment the packet came from. The network key allows the server to
check its address database and assign an address by network segment.

class Is completely client configurable. It can specify an address and options. This key can be used to
denote machine function in the network or to describe how machines are grouped for
administrative purposes. For example, the network administrator might want to create a netbios
class that contains options for NetBIOS clients or an accounting class that represents Accounting
department machines that need access to a specific printer.

vendor
Helps identify the client by its hardware/software platform (for example, a Windows 95 client or an
0OS/2 Warp client).

client ID
Identifies the client either through the machine host name or its medium access control (MAC)

Chapter 3. Transmission Control Protocol/Internet Protocol 77

layer address. The client ID is specified in the configuration file of the dheped daemon. Also, the
client ID can be used by the server to pass options to a specific client or prohibit a particular client
from receiving any parameters.

These keys can be used by the configuration either singularly or in combinations. If multiple keys are
provided by the client and multiple addresses can be assigned, only one is chosen, and the option set is
derived from the chosen key first. For more detailed information about the selection of keys and

addresses, see Configuring DHCH

A relay agent is needed so initial broadcasts from the client can leave the local network. This agent is
called the BOOTP relay agent. The relay agents act as forwarding agents for DHCP and BOOTP packets.

The DHCP Server

Beginning with AlX 4.3.1, the DHCP server has been segmented into three main pieces, a database, a
protocol engine, and a set of service threads, each with its own configuration information.

The DHCP Database

The db_file.dhcpo database is used to track clients and addresses and for access control (for example,
allowing certain clients on some networks but not others, or disabling BOOTP clients on a particular
network). Options are also stored in the database for retrieval and delivery to clients. The database is
implemented as a dynamically loadable object, which allows for easy server upgrade and maintenance.

Using the information in the configuration file, the database is primed and verified for consistency. A set of
checkpoint files handles updates to the database and reduces the overhead of writes to the main storage
file. The database also contains the address and option pools, but these are static and are discussed in

Canfiguring DHCH

The main storage file and its back up are flat ASCII files that can be edited. The format for the database
main storage files are:

DFO1

"CLIENT ID" "0.0.0.0" State LeaseTimeStart LeaseTimeDuration LeaseTimeEnd
"Server IP Address" "Class ID" "Vendor ID" "Hostname" "Domain Name"

"CLIENT ID" "0.0.0.0" State LeaseTimeStart LeaseTimeDuration LeaseTimeEnd
"Server IP Address" "Class ID" "Vendor ID" "Host Name" "Domain Name"

The first line is a version identifier for the file: DFO1c. The lines that follow are client record definition lines.
The server reads from the second line to the end of the file. (The parameters in quotes must be enclosed
in quotes.)

"CLIENT ID"
The ID the client uses to represent itself to the server.

"0.0.0.0"
is the IP address currently assigned to the DHCP server. If no address has been assigned, it
is”0.0.0.0".

State The current state of the client. The DHCP protocol engine contains the allowable set, and the
states are maintained in the DHCP database. The number next to State represents its value. The
states can be:

(0) UNKNOWN
Represents clients that have no address assigned. This state never applies to addresses.
dadmin reports "Unknown” and Issrc reports "Corrupt” for this state.

(1) FREE
Represents addresses that are available for use. In general, clients do not have this state
unless they have no address assigned. dadmin and the output from Issrc report this state
as "Free”.

78 Communications and Networks

(2) RESERVED
Indicates client and address are tied, but loosely. The client has issued a DHCP discover
message and the DHCP server has responded, but the client has not yet responded with
a DHCP request for that address. dadmin and the output from Issrc report this state as
"Reserved”.

(3) BOUND
Indicates client and address are tied and that the client has been assigned this address for
some amount of time. dadmin and the output from Issrc report this state as "Leased”.

(4) RELEASED
Indicates the client and address are tied for informational purposes only. The DHCP
protocol suggests that DHCP servers maintain information about the clients it has served
for future reference (mainly to try giving the same address to that client that has been
assigned that address in the past). This state indicates that the client has released the
address. The address is available for use by other clients, if no other addresses are
available. dadmin and the output from Issrc report this as "Released”.

(5) EXPIRED
Indicates the client and address are tied together, but only for informational purposes, in a
similar manner to released addresses. The expired state, however, represents clients that
let their leases expire. An expired address is available for use and is reassigned after all
free addresses are unavailable and before released addresses are reassigned. dadmin
and the output from Issre report this state as "Expired”.

(6) BAD
Represents an address that is in use in the network but has not been handed out by the
DHCP server. This state also represents addresses that clients have rejected. This state
does not apply to clients.. dadmin and the output from Issrc report this state as "Used”
and "Bad”, respectively.

LeaseTimeStart
Is the start of the current lease time (in the number of seconds since January 1, 1970).

LeaseTimeDuration
Represents the duration of the lease (in seconds).

LeaseTimeEnd
Uses the same format as LeaseTimeStart, but it represents the end of the lease. Some
configuration options use different values for the start and end of a lease and these values can be

overridden by configuration file options. See DHCP._Server File Syntax for dh_file Database.

"Server IP Address”
Is the IP address of the DHCP server that owns this record.

"Class ID"

"Vendor ID"

"Host Name"

"Domain Name"
Values that the server uses to determine which options are sent to the server (stored as quoted
strings). These parameters increase performance because option lists can be pregenerated for
these clients when the DHCP server starts up.

Checkpoint Files: The syntax for the checkpoint files is not specified. If the server crashes or you have

to shut down and cannot do a normal closing of the database, the server can process the checkpoint and

backup files to reconstruct a valid database. The client that is being written to the checkpoint file when the
server crashes is lost. The default files are:

letc/db_file.cr
normal database operation

Chapter 3. Transmission Control Protocol/Internet Protocol 79

letc/db_file.crbk
backups for the database

letc/db_file.chkpt and /etc/db_file.chkpt2
rotating checkpoint files

The DHCP server for AIX 4.3.1 and later is threaded. To maintain high throughput, database operations
(including save operations) are thread-efficient. When a save is requested, the existing checkpoint file is
rotated to the next checkpoint file, the existing database file is copied to the backup file, and the new save
file is created. Each client record is then logged and a bit is toggled to indicate that the client should use
the new checkpoint file for logging. When all client records are recorded, the save is closed, and the
backup and old checkpoint files are deleted. Clients can still be processed and, depending on whether the
client record has been saved, database changes go into a new save file or to a new checkpoint file.

The DHCP Protocol Engine

For AIX 4.3.1 and later, the DHCP protocol engine has been updated to RFC 2131, but is still compatible
with RFC 1541. (The server can also process options as defined in RFC 2132.) The protocol engine uses
the database to determine what information is returned to the client.

The configuration of the address pools have some configuration options that affect the state of each
machine. For example, the DHCP server pings addresses before it hands them out. The amount of time
the server waits for a response is now configurable for each address pool.

DHCP Threaded Operations

The last piece of the DHCP server is actually a set of operations that are used to keep things running.
Since the DHCP server is threaded, these operations are actually set up as threads that occasionally do
things to make sure everything is together.

The first thread, the main thread, handles the SRC requests (such as startsrc, stopsrc, Issrc, traceson,
and refresh). This thread also coordinates all operations that affect all threads and handles signals. For
example,

* A SIGHUP (-1) causes a refresh of all databases in the configuration file.
* A SIGTERM (-15) will cause the server to gracefully stop.

The next thread, the dadmin thread, interfaces with dadmin client program and the DHCP server. The
dadmin tool can be used to get status as well as modify the database to avoid editing the database files
manually. Previous versions of the DHCP server prevented any clients from getting addresses if a status
request was running. With the addition of the dadmin and src threads, the server can handle service
requests and still handle client requests.

The next thread is the garbage thread, which runs timers that periodically clean the database, save the
database, purge clients that do not have addresses, and remove reserved addresses that have been in
reserve state for too long. All these timers are configurable (see Configuring DHCH). The other threads are
packet processors. The number of these is configurable; the default is 10. Each of these can handle a
request from a DHCP client. The number of packet processors required is somewhat load- and
machine-dependent. If the machine is used for other services than DHCP, it is not wise to start up 500
threads.

Planning DHCP

To use this protocol, the network administrator needs to set up a DHCP server and configure BOOTP relay
agents on links that do not have a DHCP server. Advance planning can reduce DHCP load on the
network. For example, one server can be configured to handle all your clients, but all packets must be
passed through it. If you have a single router between two large networks, it is wiser to place two servers
in your network, one on each link.

80 Communications and Networks

Another aspect to consider is that DHCP implies a pattern of traffic. For example, if you set your default
lease time to fewer than two days and your machines are powered off for the weekend, Monday morning
becomes a period of high DHCP traffic. Although DHCP traffic does not cause huge overhead for the
network, it needs to be considered when deciding where to place DHCP servers on a network and how
many to use.

After enabling DHCP to get the client on the network, a client has no requirement to enter anything. The
DHCP client, dhcpcd, reads the dheped.ini file, which contains information on logging and other
parameters needed to start running. After installation, decide which method to use for TCP/IP
configuration: minimum configuration or DHCP. If DHCP is selected, choose an interface and specify some
optional parameters. To choose the interface, select the keyword any, which tells dhcpcd to find the first
interface that works and use it. This method minimizes the amount of input on the client side.

Configuring DHCP

By default, the DHCP server is configured by reading the /etc/dhcpsd.cnf file, which specifies the initial
database of options and addresses. The server is started in the /etc/re.tepip file. It can also be started
from Web-based System Manager, from SMIT, or through SRC commands. The DHCP client can be
configured by running Web-based System Manager, the System Management Interface Tool (SMIT), or
editing a flat ASCII file.

Configuring the DHCP server is usually the hardest part of using DHCP in your network. First, decide what
networks you want to have DHCP clients on. Each subnet in your network represents a pool of addresses
that the DHCP server must add to its database. For example:

database db_file
{

subnet 9.3.149.0 255.255.255.0
{ option 3 9.3.149.1 # The default gateway clients on this network should use
option 6 9.3.149.2 # The nameserver clients on this network should use

}

. options or other containers added later

}

The example above shows a subnet, 9.3.149.0, with a subnet mask 255.255.255.0. All addresses in this

subnet, 9.3.149.1 through 9.3.149.254, are in the pool. Optionally, a range can be specified on the end of

the line or a range or exclude statement can be included in the subnet container. See DHCP Server Fild
for common configuration methods and definitions.

The database clause with db_fiTe indicates which database method to use for processing this part of the
configuration file. Comments begin with a # (pound sign). Text from the initial #, to the end of the line, is
ignored by the DHCP server. Each option line is used by the server to tell the client what to do. BECH
Server File Known Optiond describes the currently supported and known options. See DHCP Server Fild

Syntax for General Server Qperation for ways to specify options that the server does not know about.

If the server does not understand how to parse an option, it uses default methods to send the option to the
client. This also allows the DHCP server to send site-specific options that are not RFC defined, but may
be used be certain clients or client configurations.

The Configuration File
The configuration file has an address section and an option definition section. These sections use

containers to hold options, modifiers, and, potentially, other containers.

A container (basically, a method to group options) uses an identifier to classify clients into groups. The
container types are subnet, class, vendor, and client. Currently, there is not a generic user-definable
container. The identifier uniquely defines the client so that the client can be tracked if, for example, it
moves between subnets. More than one container type can be used to define client access.

Chapter 3. Transmission Control Protocol/Internet Protocol ~ 81

Options are identifiers that are returned to the client, such as default gateway and DNS address.
Modifiers are single statements that modify some aspect of a container, such as lease time default.

Containers: When the DHCP server receives a request, the packet is parsed and identifying keys
determine which containers, options, and addresses are extracted.

The hrevious exampld shows a subnet container. Its identifying key is the position of the client in the
network. If the client is from that network, then it falls into that container.

Each type of container uses a different option to identify a client:

* The subnet container uses the giaddr field or the interface address of the receiving interface to
determine from which subnet the client came.

* The class container uses the value in option 77 (User Site Class Identifier).
* The vendor uses the value in option 60 (Vendor Class Identifier).

* The client container uses the option 61 (Client Identifier) for DHCP clients and the chaddr field in the
BOOTP packet for BOOTP clients.

Except for subnets, each container allows the specification of the value that matchs it, including regular
expression matching.

There is also an implicit container, the global container. Options and modifiers are placed in the global
container unless overridden or denied. Most containers can be placed inside other containers implying a
scope of visibility. Containers may or may not have address ranges associated with them. Subnets, by
their nature, have ranges associated with them.

The basic rules for containers and subcontainers are:
» All containers are valid at the global level.
» Subnets can not be placed inside other containers.

* Restricted containers cannot have regular containers of the same type within them. (For example, a
container with an option that only allows a class of Accounting cannot include a container with an option
that allows all classes that start with the letter "a”. This is illegal.)

* Restricted client containers cannot have subcontainers.

Given the above rules, you can generate a hierarchy of containers that segment your options into groups
for specific clients or sets of clients.

If a client matches multiple containers, how are options and addresses handed out? The DHCP server
receives messages, it passes the request to the database (db_file in this case), and a container list is
generated. The list is presented in order of depth and priority. Priority is defined as an implicit hierarchy in
the containers. Strict containers are higher priority than regular containers. Clients, classes, vendors, and
finally subnets are sorted, in that order, and within container type by depth. This generates a list ordered
by most specific to least specific. For example:

Subnet 1

--Class 1

--Client 1

Subnet 2

--Class 1

----Vendor 1

----Client 1
--Client 1

The example shows two subnets, Subnet 1 and Subnet 2. There is one class name, Class 1, one vendor

name, Vendor 1, and one client name, Client 1. Class 1 and Client 1 are defined in multiple places.
Because they are in different containers, their names can be the same but values inside them can be

82 Communications and Networks

different. If Client 1 sends a message to the DHCP server from Subnet 1 with Class 1 specified in its
option list, the DHCP server would generate the following container path:

Subnet 1, Class 1, Client 1

The most specific container is listed last. To get an address, the list is examined in reverse hierarchy to
find the first available address. Then, the list is examined in forward hierarchy to get the options. Options
override previous values unless an option deny is present in the container. Also, because Class 1 and
Client 1 are in Subnet 1, they are ordered according to the container priority. If the same client is in
Subnet 2 and sends the same message, the container list generated is:

Subnet 2, Class 1, Client 1 (at the Subnet 2 level), Client 1 (at the Class 1 level)

Subnet 2 is listed first, then Class 1, then the Client 1 at the Subnet 2 level (because this client statement
is only one level down in the hierarchy). The hierarchy implies that a client matching the first client
statement is less specific than the client matching Client 1 of Class 1 within Subnet 2.

Priority selected by depth within the hierarchy is not superseded by the priority of the containers
themselves. For example, if the same client issues the same message and specifies a vendor identifier,
the container list is:

Subnet 2, Class 1, Vendor 1, Client 1 (at Subnet 2 level), Client 1 (at Class 1 level)

Container priority improves search performance because it follows a general concept that client containers
are the most specific way to define one or more clients. The class container holds less specific addresses
than a client container; vendor is even less specific; and subnet is the least specific.

Addresses and Address Ranges: Any container type can have associated addresses ranges; subnets
must have associated address ranges. Each range within a container must be a subset of the range and
must not overlap with ranges of other containers. For example, if a class is defined within a subnet and
the class has a range, the range must be a subset of the subnet range. Also, the range within that class
container cannot overlap with any other ranges at its level.

Ranges can be expressed on the container line and modified by range and exclude statements to allow for
disjoint address sets associated with a container. If you have the top ten addresses and the second ten

addresses of a subnet available, the subnet can specify these addresses by range in the subnet clause to
reduce both memory use and the chance of address collision with other clients not in the specified ranges.

Once an address has been selected, any subsequent container in the list that contains address ranges is
removed from the list along with its children. Network-specific options in removed containers are not valid
if an address is not used from within that container.

Options: After the list has been culled to determine addresses, a set of options is generated for the
client. In this selection process, options overwrite previously selected options unless a deny is
encountered, in which case, the denied option is removed from the list being sent to the client. This
method allows inheritance from parent containers to reduce the amount of data that must be specified.

Modifiers: Modifiers are items that change some aspect of a particular container, such as access or
lease time. Define the address and option pools before modifying the container. The most common
modifyers are leasetimedefault, supportBootp, and supportUnlistedclients.

leasetimedefault
Defines the amount of time an address is to be leased to a client.

supportBootp
Defines whether or not the server responds to BOOTP clients.

supportUnlistedclients
Indicates whether clients are to be explicitly defined by a client statement to receive addresses.

Chapter 3. Transmission Control Protocol/Internet Protocol 83

The value for supportUnlistedClients can be none, dhcp, bootp, or both. This allows for you to
restrict access to bootp client and allow all DHCP clients to get addresses.

Other modifiers are listed in DHCP Server File Syntax for db_file Databasd.

Logging: After selecting modifiers, the next item to set up is logging. Logging parameters are specified in
a container like the database, but the container keyword is logging_info. When learning to configure
DHCP, it is advisable to turn logging to its highest level. Also, it is best to specify the logging configuration
before any other configuration file data to ensure that configuration errors are logged after the logging
subsystem is initialized. Use the logitem keyword to turn on a logging level or remove the logitem
keyword to disable a logging level. Other keywords for logging allow the specification of the log filename,
file size, and the number of rotating log files.

Server-specific Options: The last set of parameters to specify are server-specific options that allow the
user to control the number of packet processors, how often the garbage collection threads are run, and so
on..

For example, two server-specific options are:

reservedTime
Indicates how long an address stays in the reserved state after sending an OFFER to the DHCP
client

reservedTimelnterval
Indicates how often the DHCP server scans through the addresses to see if there are any that
have been in the reserved state longer than reservedTime.

These options are useful if you have several clients that broadcast DISCOVER messages and, either they
do not broadcast their REQUEST message, or their REQUEST message gets lost in the network. Using
these parameters keeps addresses from being reserved indefinitely for a noncompliant client.

Another particularly useful option is Savelnterval, which indicates how often saves occur. All

server-specific options are listed in DHCP Server File Syntax for General Server Qperation with the
logging keywords.

Performance Considerations: |t is important to understand that certain configuration keywords and the
structure of the configuration file have an effect on the memory use and performance of the DHCP server.

First, excessive memory use can be avoided by understanding the inheritance model of options from
parent to child containers. In an environment that supports no unlisted clients, the administrator must
explicitly list each client in the file. When options are listed for any specific client, the server uses more
memory storing that configuration tree than when options are inherited from a parent container (for
example, the subnet, network, or global containers). Therefore, the administrator should verify whether any
options are repeated at the client level within the configuration file and determine whether these options
can be specified in the parent container and shared by the set of clients as a whole.

Also, when using the logltem entries INFO and TRACE, numerous messages are logged during the
processing of every DHCP client message. Appending a line to the log file can be an expensive operation;
therefore, limiting the amount of logging improves the performance of the DHCP server. When an error
with the DHCP server is suspected, logging can be dynamically re-enabled using either the SRC

or Badmid commands.

Finally, selecting a numprocessors value depends on the size of the DHCP-supported network, the
pingTime db_file configuration parameter, and the typical propagation delay on the network. Because
each packet processor thread issues an ICMP Echo Request to verify the status of a server-owned
address before offering it to a client, the amount of time that any Echo Response is waited for directly
affects the amount of processing time for a DISCOVER message. Essentially, the packet processor thread

84 Communications and Networks

../../cmds/aixcmds5/traceson.htm
../../cmds/aixcmds2/dadmin.htm

is able to do nothing more than wait for any response or for the pingTime timeout. Lowering the
numprocessors value improves the response time of the server by lowering the number of client
retransmissions, yet still maintaining the ping benefit of the server design.

For best performance, select a pingTime based on the propagation delay of any remote networks
supported by the DHCP server. Also, select the numprocessors value based on this pingTime value and
the size of the network. Selecting a value that is too small can cause all packet processing threads to be
stopped. The server is then caused to wait for any Echo Responses while incoming DHCP client
messages are queueing on the server port. This causes the server to handle client messages in batches
rather than in a constant stream.

A selected value that is too small can cause all packet processing threads to be stopped waiting for any
Echo Responses , which would result in the .

To prevent this situation, set the value for numprocessors to a number higher than the estimated number
of DISCOVER messages that can be received within one pingTime interval during a period of high DHCP
client activity. However, do not set the numprocessors value so high that it could burden the kernel with
thread management.

For example, the values numprocessors 5 and pingTime 300 cause poor performance in an environment
with a potential 10 DISCOVER messages per second because at peak demand, only 5 messages are
handled every 3 seconds. Configure this environment with values similar to numprocessors 20 and
pingTime 80.

Customizing a Configuration File

Many networks include multiple client types; for example, a single network may include computers running
a variety of operating systems, such as Windows, OS/2, Java OS, and UNIX. Each of these require unique
vendor identifiers (the field used to identify the type of machine to the DHCP server). Java OS clients and

IBM Thin Client machines can require unique parameters such as bootfiles, and configuration options that

need to be tailored specifically for them. Windows 95 computers do not handle Java-specific options well.

Machine-specific options can be encapsulated within vendor containers if the rimary use for certain
machines is based on the type of user for those machines. For instance, the development staff might use
this operating system’s clients for programming, the marketing staff might use the OS/2 clients, sales
might use Java OS clients and IBM Thin Client machines, and accounting might use Windows 95
machines. Each of these user families might need different configuration options (different printers,
nameservers, or default web servers, and so forth). In this case, such options could be included in the
vendor container, since each group uses a different machine type.

If the same machine type is used by multiple groups, placing the options within a subordinate class
identifier instead, would allow your marketing managers, for example, to use a specific set of printers that
other employees could not access.

Note: The following fictional example represents part of a configuration file. Comments are preceded
by a pound sign (#) and describe how each line defines the installation.

vendor "AIX_CLIENT"
{

No specific options, handles things based on class

}

vendor "0S/2 Client"
{

No specific options, handles things based on class

}

vendor "Windows 95"
{ option 44 9.3.150.3 # Default NetBIOS Nameserver
1

Chapter 3. Transmission Control Protocol/Internet Protocol ~ 85

vendor "Java 0S"

{ bootstrapserver 9.3.150.4 # Default TFTP server for the Java 0S boxes
option 67 "javaos.bin" # The bootfile of the Java 0S box

}

vendor "IBM Thin Client"

{ bootstrapserver 9.3.150.5 # Default TFTP server for Thin Client boxes
option 67 "thinos.bin" # Default bootfile for the Thin Client boxes

}

subnet 9.3.149.0 255.255.255.0
{ option 3 9.3.149.1 # The default gateway for the subnet
option 6 9.3.150.2 # This is the nameserver for the subnet
class accounting 9.3.149.5-9.3.149.20
{ # The accounting class is limited to address range 9.3.149.5-9.3.149.20
The printer for this group is also in this range, so it is excluded.
exclude 9.3.149.15
option 9 9.3.149.15 # The LPR server (print server)
vendor "Windows 95"

{

option 9 deny # This installation of Windows 95 does not support
this printer, so the option is denied.

}

.
DHCP and the Dynamic Domain Name System (DDNS)

The DHCP server provides options that enable operation in a DDNS environment. To use DHCP in a
DDNS environment, you must set and use a Dynamic Zone on a DNS server.

After the DDNS server is configured, decide if the DHCP server is going to do A-record updates,
PTR-record updates, updates for both record types, or none at all. This decision depends on whether a
client machine can do part or all of this work.

« If the client can share update responsibility, configure the server to do the PTR-record updates and
configure the client to do the A-record updates.

 If the client can do both updates, configure the server to do none.
 If the client cannot do updates, configure the server to do both.

The DHCP server has a set of configuration keywords that allow you to specify a command to run when
an update is required. These are:

updatedns
(Deprecated.) Represents the command to issue to do any type of update. It iscalled for both the
PTR-record and the A-record update.

updatednsA
Specifies the command to update the A-record.

updatednsP
Specifies the command to update the PTR-record.

These keywords specify executable strings that the DHCP server runs when an update is required. The
keyword strings must contain four %s (percent symbol, letter s). The first %s is the hostname; the second is
the domain name; the third is the IP address; and the fourth is the lease time. These are used as the first
four parameters for the dhepaction command. The remaining two parameters for the dhcpaction
command indicate the record to update (A, PTR, NONE, or BOTH) and whether NIM should be updated

(NIM or NONIM). See DHQ&an@IebwﬂnslaﬂaimnAAanagemenLﬂﬂ@Jnleracﬂm&and_Suggestmnd for

more information about NIM and DHCP interaction. For example:

86 Communications and Networks

updatednsA "/usr/sbin/dhcpaction '%s' '%s' '%s' '%s' A NONIM"

This does the dhcpaction command only on the A record
updatednsP "/usr/sbin/dhcpaction '%s' '%s' '%s' '%s' PTR NONIM"

This does the command only on the PTR record
updatedns "/usr/sbin/dhcpaction '%s' '%s' '%s' '%s' BOTH NIM"

This does the command on both records and updates NIM

The DHCP server also has a set of keywords to remove the DNS entries when a lease is released or
expires. The keywords are:

releasednsA
Removes the A-record.

releasednsP
Removes the PTR-record.

removedns
Removes both record types.

These keywords specify executable strings that the DHCP server runs when an address is released or
expired. The dhepremove command works similarly to dhepaction, but only takes three parameters:

1. The IP address, specified as a %s in the command string
2. Which record to remove (A, PTR, NONE, or BOTH).
3. Whether NIM should be updated (NIM or NONIM).

For example:

releasednsA "/usr/shin/dhcpremove '%s' A NONIM"

This does the dhcpremove command only the A record
releasednsP "/usr/sbhin/dhcpremove '%s' PTR NONIM"

This does the command only on the PTR record
removedns "/usr/sbin/dhcpremove '%s' BOTH NIM"

This does the command on both records and updates NIM

The dhcpaction and dhcpremove scripts do some parameter checking, then set up a call to nsupdate,
which has been updated to work with this operating system’s servers and with OS/2 DDNS servers. See
the hsupdatd command description for more information.

If NIM interaction is NOT required by the name update, the DHCP server can be configured to use a
socket transfer between the DHCP daemon and the nsupdate command to improve performance and
enable DNS updates to be retried upon failure. To configure this option, the updateDNSA, updateDNSP,
releaseDNSA, or the releaseDNSP keyword must specify "nsupdate_daemon” as the first quoted word.
The parameters and flags for this update are identical to those that are accepted by the nsupdate
command. Additionally, the following variable names can be used for substitution:

$hostname Replaced by the host name of the client on DNS update or the host name previously
associated with the client for DNS removal.

$domain Replaced by the DNS domain for the update or the previously used domain of the
client host name for a DNS removal.

Sipadress Replaced by the IP address to be associated or disassociated from the DHCP client
name.

$leasetime Replaced by the lease time (in seconds).

$clientid Replaced by the string representation of the DHCP client identifier or the combination

hardware type and hardware address for BOOTP clients.

For example:

updateDNSA "nsupdate_daemon -p 9.3.149.2 -h $hostname -d $domain
-s"d;a;*;aza;$ipaddress;s;$leasetime;3110400""

Chapter 3. Transmission Control Protocol/Internet Protocol 87

../../cmds/aixcmds4/nsupdate.htm

updateDNSP "nsupdate_daemon -p 9.3.149.2 -r $ipaddress
-s"d;ptr;*;a;ptr;$hostname.$domain.;s;$leasetime;3110400""

releaseDNSA "nsupdate_daemon -p 9.3.149.2 -h $hostname -d $domain -s"d;a;*;s;1;3110400""

releaseDNSP "nsupdate_daemon -p 9.3.149.2 -r $ipaddress -s"d;ptr;*;s;1;3110400""
See the m command description for more information.

Also, administrator-defined policies have been added for hostname exchanges between the server and the
clients. By default, the hostname that is returned to the client and used for a DDNS update is option 12
(defined in the server configuration file). Alternatively, the default hostname can be the client-suggested
hostname, either through option 81 (the DHCPDDNS option) or through option 12 (the HOSTNAME
option). However, the administrator can override the default hostname by using the hostnamepolicy,
proxyarec, and appenddomaln conflguratlon keywords. These options and their parameters are defined
in

DHCP Compatibility with Older Versions

The DHCP server for AIX 4.3.1 and later recognizes the previous versions configuration and database
files, dheps.ar and dheps.cr. It parses the old configuration files and generates new database files in the
old locations. The old databases are converted automatically to the new file. The configuration file itself is
not converted.

The DHCP server database module, db_file, can read the old format. The DHCP server can recognize
when a database container is not in the configuration file and treats the whole file as configuring the server
parameters, logging parameters, and the db_file database parameters.

Notes: Some old configuration file syntax is deprecated, but is still supported. Other deprecations
are:

* The network container is completely deprecated. To specify correctly, either convert the network
clause with a range into a valid subnet container with a subnet address, subnet netmask, and the
range. If the network container has subnet containers, remove the network container keyword and
its braces and then place the subnet mask in the appropriate place on the line. To start using the
database container, group everything that pertains to networks and client access into one
database container of type db_file.

* The updatedns and removedns keywords are deprecated and replaced in favor of specifying the
action for A and PTR records separately.

» The clientrecorddb and addressrecorddb keywords have been deprecated to clientrecorddb
and backupfile, respectively.

* The option sa and option ga keywords have been replaced by bootstrapserver and giaddrfield

keywords, respectively. See DHCP Server File Syntax for General Server Operatiod and DHCH
[Server File Syntax for db_file Database

for more information.

DHCP Server File Known Options

Note: The options that are shown in the following table as not allowed to be specified (No in the Can
Specify? column) can be specified in the configuration file, but are overwritten by the correct value.
For a better definition of each option, see RFC 2132.

Option Default Data Type Can Specify? Description/Use

Number

0 None No The server pads the option field, if necessary.
1 Dotted quad No The net mask of the subnet from which the

address was drawn.

88 Communications and Networks

../../cmds/aixcmds4/nsupdate.htm

Option
Number
2

0N O~ W

10

12
13
14
15
16
17
18
19

20

21

22

23
24

25

26

27

28

29

30

31

32

33

34

35
36

37
38

Default Data Type

32-bit integer

One or more dotted quads
One or more dotted quads
One or more dotted quads
One or more dotted quads
One or more dotted quads
One or more dotted quads
One or more dotted quads
One or more dotted quads
One or more dotted quads
An ASCII string

16-bit unsigned integer

An ASCII string

An ASCII string

An IP address

An ASCII string

An ASCII string

Yes, No, True, False, 1, 0

Yes, No, True, False, 1, 0
One or more pairs of dotted
quads, in the form
DottedQuad: DottedQuad

16-bit unsigned integer

8-bit unsigned integer
32-bit unsigned integer

List of one or more 16-bit
unsigned integers

16-bit unsigned integer

Yes, No, True, False, 1, 0
An IP address (dotted quad)
Yes, No, True, False, 1, 0
Yes, No, True, False, 1, 0

Yes, No, True, False, 1, 0

IP address (dotted quad)

One or more IP address pairs, in

the form
DottedQuad: DottedQuad
Yes/No, True/False, 1/0

32-bit unsigned integer
Yes/No, True/False, 1/0

8-bit unsigned integer
32-bit unsigned integer

Can Specify?

Yes

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

Yes

Yes

Yes

Yes
Yes

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

Yes

Yes
Yes

Yes
Yes

Description/Use

Specifies the offset of the client subnet, in
seconds from Coordinated Universal Time
(UTC).

A list of the default gateways’ IP addresses.

A list of time server IP addresses.

A list of name server IP addresses.

A list of DNS IP addresses.

A list of log server IP addresses.

A list of cookie server IP addresses.

A list of LPR server IP addresses.

A list of Impress server IP addresses.

A list of Resource Location server |IP addresses.
A hostname for the client to use.

The size of the booffile.

The path for Merit Dump file.

The default DNS domain name.

The address of the Swap server.

The default root path.

The path to extensions for the client.

Specify whether IP Forwarding should be turned
on.

Specify whether non-local source routing should
be used.

The filter policies for IP addresses.

The maximum size to allow for datagram
fragments.

The IP time-to-live (TTL).

The number of seconds to use in the Path MTU
aging timeout.

The path MTU Plateau table. Specifies a set of
values that represent the MTU sizes to use
when using Path MTU discovery.

Specifies MTU size for the receiving interface.
Specifis whether all subnets are local.

Specifies broadcast address for the interface.
Specifies whether ICMP netmask discovery
should be used.

Specifies whether client should become an ICMP
netmask supplier.

Specifies whether ICMP Router Discovery
messages should be used.

Specifies address to use for router solicitation.
Each address pair represents a static route.

Specifies whether trailer encapsulation should be
used.

ARP cache timeout value.

Spcifies whether Ethernet encapsulation should
be used.

The TCP time-to-live (TTL).

The TCP keep alive interval.

Chapter 3. Transmission Control Protocol/Internet Protocol ~ 89

Option
Number
39

40

41

42
43

44
45

46
47

48
49
50

51

52

53

54

55

56

57

58
59

60

61

64
65
66

Default Data Type
Yes/No, True/False, 1/0

An ASCII string
One or more dotted quads
One or more dotted quads

hex string of digits, in the form of

hex "digits”, hex "digits", or
Oxdigits

One or more dotted quads
One or more dotted quads

8-bit unsigned integer

hex string of digits, in form of

hex "digits", hex "digits", or
Oxdigits

One or more dotted quads
One or more dotted quads
None

32-bit unsigned integer

None

None

None

None

An ASCII string

No

32-bit unsigned integer
32-bit unsigned integer

None

None

An ASCII string
One or more dotted quads
An ASCII string

90 Communications and Networks

Can Specify?
Yes

Yes

Yes

Yes

Yes, but really
only specified
with vendor
container

Yes

Yes

Yes

Yes

Yes
Yes
No

Yes

No

No

No

No

Yes

No

Yes
Yes

No

No

Yes
Yes
Yes

Description/Use

Specifies whether TCP keep alive should be
used.

The NIS default domain.

Specifies the IP addresses of the NIS servers.
Specifies the IP addresses of the NTP servers.
Encapsulated option container for the vendor
container.

Specifies NetBIOS name server IP addresses.
Specifies NetBIOS datagram distribution server
IP addresses.

Specifies NetBIOS Node Type.

NetBIOS Scope.

Specifies X Windows font server IP addresses.
Specifies X Windows Display Manager.
Requested IP Address, used by client to indicate
the address it wants.

Lease time for the returned address. By default,
the DHCP server uses the leasetimedefault
keyword, but direct specification of option 51
overrides it.

Option overload. Client uses this to indicate the
sname and file fields of the BOOTP packet may
have options.

DHCP server or client uses this option to
indicate the type of DHCP message.

DHCP server or client uses this option to
indicate the server’s address or the server to
which the message is directed.

DHCP client uses this to indicate desired
options.

A string the DHCP server sends to the client. In
general, this can be used by the DHCP server
and client to indicate problems.

DHCP client uses this option to tell the DHCP
server the maximum DHCP packet size the
client can receive.

Specifies the number of seconds until the client
should send a renew packet.

Specifies the number of seconds until the client
should send a rebind packet.

DHCP client uses this option to indicate its
vendor type. The DHCP server uses this field to
match vendor containers.

DHCP client uses this to uniquely identify itself.
The DHCP server uses this field to match client
containers.

Specifies the NIS+ domain.

IP Addresses of NIS+ servers.

Specifies the TFTP server name. This is a
hostname and is used instead of the siaddr field
if the client understands this option.

Option Default Data Type Can Specify? Description/Use

Number

67 An ASCII string Yes Specifies the bootfile name. This can be used
instead of the bootfile keyword, which places
the file in the filename field of the packet.

68 One or more dotted quads, or Yes Specifies addresses of home agents.

NONE

69 One or more dotted quads Yes Specifies default SMTP servers to use.

70 One or more dotted quads Yes Specifies default POP3 servers to use.

71 One or more dotted quads Yes Specifies default NNTP servers to use.

72 One or more dotted quads Yes Specifies default WWW servers to use.

73 One or more dotted quads Yes Specifies default Finger servers to use.

74 One or more dotted quads Yes Specifies default IRC servers to use.

75 One or more dotted quads Yes Specifies default Street Talk servers to use.

76 One or more dotted quads Yes Specifies default Street Talk directory assistance
servers to use.

77 An ASCII string Yes The user site class identifier. The DHCP server
uses this field to match class containers.

81 An ASCII string plus other items No The DHCP client uses this option to define the
policy the DHCP server should use with respect
to DDNS.

93 None No The DHCP client uses this option to define the
client system architecture.

94 None No The DHCP client uses this option to define the
client network interface identifier.

255 None No DHCP server and client use this option to

indicate the end of an option list.

Preboot Execution Environment (PXE) Vendor Container Suboption

When supporting a preboot execution environment (PXE) client, the DHCP server passes the following
option to the BINLD server, which is used by BINLD to configure itself:

Opt Num Default Data Type Can Specify? Description

7 one dotted quad Yes Multicast IP address. Boot
server discovery multicast
IP address.

The following example shows how this option can be used:
pxeservertype proxy_on_dhcp_server

Vendor pxeserver

{
}

option 7 9.3.4.68

In the above example, the DHCP server informs the client that the proxy server is running on the same
machine but is listening on port 4011 for client requests. The vendor container is required here because
the BINLD server broadcasts an INFORM/REQUEST message on port 67 with option 60 set to
"PXEServer.” In response, the DHCP server sends the Multicast IP address on which the BINLD has to
listen for PXECIlient’s request.

Configuration File Examples Supporting PXE Clients

In the following example, the dhcpsd server either gives the bootfile name to the PXECIient or it directs
the PXECIient to the BINLD server by sending suboptions. The pxeboofile keyword is used to create a list
of boot files for a given client architecture and major and minor versions of the client system.

Chapter 3. Transmission Control Protocol/Internet Protocol 91

pxeservertype dhcp_pxe_binld

subnet default
{

vendor pxe

{
Disable Multicast
0.10.10.1 12.1.1.15 12.5.5.5 12.6.6.6\
0.1.1.10 9.3.4.5 1 1 10.5.5.9\
.3.149.15\

option 6 2
option 8 5 41
21
19
0

option 9 5 "WorkSpace On Demand" 2 "Intel"\

"Microsoft WindowsNT" 4 "NEC ESMPRO"
option 10 2 "Press F8 to View Menu"

2
1
a
5
1

}

vendor pxeserver

{
}

option 7 239.0.0.239

}

subnet 9.3.149.0 255.255.255.0
{
option 3 9.3.149.1
option 6 9.3.149.15

vendor pxe
{
option 6 4 # bootfile is present in the offer packet
pxebootfile 1 2 1 os2.one
pxebootfile 2 2 1 aix.one
}
}

Each option line in pxe container is used by the server to tell the client what to do. PXE Vendor Contained
m describes the currently supported and known PXE sub-options.

DHCP Server File Syntax for General Server Operation

Note: Time Units (time_units) shown in the following table are optional and represent a modifier to
the actual time. The default time unit is minutes. Valid values are seconds (1), minutes (60), hours
(3600), days (86400), weeks (604800), months (2392000), and years (31536000). The number
shown in parentheses is a multiplier applied to the specified value n to express the value in seconds.

Keyword Form Subcontainers? Default Value | Meaning

database database db_type Yes None The primary container
that holds the
definitions for the
address pools, options,
and client access
statements. db_type is
the name of a module
that is loaded to
process this part of the
file. The only value
currently available is
db_file.

logging_info logging_info Yes None The primary logging
container that defines
the logging
parameters.

92 Communications and Networks

Keyword Form Subcontainers? Default Value | Meaning
logitem logitem NONE No All default to | Enables the logging
logitem SYSERR not enabled. level. Multiple lines are
9 allowed.
logitem OBJERR
logitem PROTOCOL
logitem PROTERR
logitem WARN
logitem WARNING
logitem CONFIG
logitem EVENT
logitem PARSEERR
logitem ACTION
logitem ACNTING
logitem STAT
logitem TRACE
logitem RTRACE
logitem START
numLogFiles numLogFiles n No 0 Specifies the number
of log files to create.
The log rotates when
the first one fills. nis
the number of files to
create.
logFileSize logFileSize n No 0 Specifies the size of
each log file in
1024-byte units.
logFileName logFileName path No None Specifies the path to

the first log file. The
original log file is
named filename or
filename.extension.
The filename must be
eight or fewer
characters. When a file
is rotated, it is
renamed beginning
with the base filename,
then either appending
a number or replacing
the extension with a
number. For example,
if the original file name
is file, the rotated file
name becomes file01l.
If the original file name
is file.log, it
becomes file.01.

Chapter 3. Transmission Control Protocol/Internet Protocol 93

Keyword

Form

Subcontainers?

Default Value

Meaning

CharFlag

charflag yes

charflag true

charflag false

charflag no

No

true

Not applicable to this
operating system’s
DHCP server, but the
OS/2 DHCP server
uses it to produce
debug windows.

StatisticSnapShot

StatisticSnapShot n

No

-1, never

Specifies how often
statistics are written to
the log file in seconds.

UsedIpAddressExpirelnterval

UsedIpAddressExpirelnterval
n time_units

No

-1, never

Specifies how often
addresses placed in
the BAD state are
recouped and retested
for validity.

leaseExpirelnterval

leaseExpirelnterval n
time_units

No

900 seconds

Specifies how often
addresses in the
BOUND state are
checked to see if they
have expired. If the
address has expired,
the state is moved to
EXPIRED.

reservedTime

reservedTime n time_units

No

-1, never

Specifies how long
addresses should sit in
RESERVED state
before being recouped
into the FREE state.

reservedTimelnterval

reservedTimelnterval n
time_units

No

900 seconds

Specifies how often
addresses in the
RESERVE state are
checked to see if they
should be recouped
into the FREE state.

savelnterval

savelnterval n time_units

No

3600 seconds

Specifies how often the
DHCP server should
force a save of the
open databases. For
heavily loaded servers,
this should be 60 or
120 seconds.

clientpruneintv

clientpruneintv n time_units

No

3600 seconds

Specifies how often the
DHCP server has the
databases remove
clients are not
associated with any
address (in the
UNKNOWN state).
This reduces the
memory use of the
DHCP server.

numMprocessors

numprocessors n

No

10

Specifies the number
of packet processors to
create. Minimum of
one.

94 Communications and Networks

Keyword

Form

Subcontainers?

Default Value

Meaning

userObject

userObject obj_name

Yes

None

Indicates that the
server should load a
user-defined shared
object and call routines
within this object
through each
interaction with DHCP
clients. The object to
be loaded is located in
the /usr/sbin directory
by the name

obj_name .dhcpo. See
the DHCP Server
User-Defined
Extension API for more
information.

pxeservertype

pxeservertype server_type

No

dhcp_only

Indicates the type of
dhcpd server that it is.
server_type can be
one of the following:

dhcp_pxe_binld
DHCP
performs
dhcpsd,
pxed, and
bindl
functions.

proxy_on_dhcp_serve
DHCP refers
the PXE client
to the proxy
server port on
the same
machine.

The default is
dhcp_only, meaning
the dhepsd does not
support PXE clients in
default mode.

-

DHCP Server File Syntax for db_file Database

Notes: Time Units (time_units) shown in the following table are optional and represent a modifier to
the actual time. The default time unit is minutes. Valid values are seconds (1), minutes (60), hours
(3600), days (86400), weeks (604800), months (2392000), and years (31536000). The number
shown in parentheses is a multiplier applied to the specified value n to express the value in seconds.

Also, items that are specified in one container can be overridden inside a subcontainer. For example,
you could globally define BOOTP clients, but within a certain subnet allow BOOTP clients by
specifying the supportBootp keyword in both containers.

The client, class, and vendor containers allow for regular expression support. For class and vendor, a

quoted string with the first character after the quote being an exclamation point (!) indicates that the

Chapter 3. Transmission Control Protocol/Internet Protocol

95

rest of the string should be treated as a regular expression. The client container allows for regular
expressions on both the hwtype and the hwaddr fields. A single string is used to represent both fields
with the following format:

decimal_number-data

If decimal_number is zero, then data is an ASCII string. If any other number, data is hex digits.

Keyword

Form

Subcontainers?

Default Value

Meaning

subnet

subnet default

Yes

None

Specifies a subnet
without an associated
range. This subnet is
used by the server only
when responding to a
client
INFORM/REQUEST
packet from the client
and the client’s address
does not have another
matching subnet
container.

subnet

subnet subnet id netmask

subnet subnet id netmask
range

subnet subnet id netmask
label.priority

subnet subnet id netmask
range label:priority

Yes

None

Specifies a subnet and a
pool of addresses. All
addresses are assumed
to be in the pool unless
a range is specified on
the line or addresses are
modified later in the
container by a range or
exclude statement. The
optional range is a pair
of IP addresses in dotted
quad format separated
by a dash. An optional
label and priority can be
specified. These are
used by virtual subnets
to identify and order the
subnets in the virtual
subnet. The label and
priority are separated by
a colon. These
containers are only
allowed at the global or
database container level.

subnet

subnet subnet id range

Yes

None

Specifies a subnet that
goes within a network
container. It defines a
range of addresses that
is the whole subnet
unless the optional range
part is specified. The
netmask associated with
the subnet is taken from
the surrounding network
container.

Note: This method is
deprecated in favor of
the other subnet forms.

96 Communications and Networks

Keyword

Form

Subcontainers?

Default Value

Meaning

option

option number data ...

option numberdeny

option * deny

No

None

Specifies an option to
send to a client or, in the
case of deny, an option
to prevent from being
sent to the client. The
option * deny clause
means all options not
specified in the current
container are not to be
returned to the client.
The option numberdeny
only denies the specified
option. number is an
unsigned 8-bit integer.
data is specific to the
option (see above) or
can be specified as a
quoted string (indicating
ASCII text) or
Oxhexdigits or
hex"hexdigits” or hex
"hexdigits". If the option
is in a vendor container,
the option will be
encapsulated with other
options in an option 43.

exclude

exclude an IP address

exclude
dotted_quad-dotted_quad

No

None

Modifies the range on
the container in which
the exclude statement is
in. The exclude
statement is not valid in
the global or database
container levels. The
exclude statement
removes the specified
address or range from
the current range on the
container. The exclude
statement allows you to
create non-contiguous
ranges for subnets or
other containers.

Chapter 3. Transmission Control Protocol/Internet Protocol ~ 97

Keyword

Form

Subcontainers?

Default Value

Meaning

range

range IP_address

range dotted_quad-
dotted_quad

No

None

Modifies the range on
the container in which
the range statement is
in. The range statement
is not valid in the global
or database container
levels. If the range is the
first in the container that
does not specify a range
on the container
definition line, then the
range for the container
becomes the range
specified by the range
statement. Any range
statement after the first
range or all range
statements for a
containers that specifies
ranges in its definition
are added to the current
range. With the range
statement, a single
address or set of
addresses can be added
to the range. The range
must fit inside the subnet
container definition.

client

client hwtype hwaddr
NONE

client hwtype hwaddr ANY

client hwtype hwaddr
dotted_quad

client hwtype hwaddr range

Yes

None

Specifies a client
container that denies the
client specified by the
hwaddr and hwtype from
getting an address. If
hwtype is 0, then hwaddr
is an ASCII string.
Otherwise, hwtype is the
hardware type for the
client and hwadar is the
hardware address of the
client. If the hwaddr is a
string, then quotes are
accepted around the
string. If the hwaddr is a
hexstring, then the
address may be
specified by Oxhexdigits
or hex digits. range
allows the client
specified by the hwaddr
and hwtype to get an
address in the range.
Must be regular
expressions to match
multiple clients.

98 Communications and Networks

Keyword

Form

Subcontainers?

Default Value

Meaning

class

class string

class string range

Yes

None

Specifies a class
container with name
string. String can be
quoted or not. If quoted,
the quotes are removed
before comparison.
Quotes are required for
strings with spaces or
tabs. This container is
valid at any level. A
range can be supplied to
indicate a set of
addresses to hand out to
a client with this class.
The range is either a
single dotted quad IP
address or two dotted
quad IP addresses
separated by a dash.

network

network network id
netmask

network network id

network network id range

Yes

None

Specifies a network 1D
using class information
(for example, 9.3.149.0
with a netmask of
255.255.255.0 would be
network 9.0.0.0
255.255.255.0). This
version of the network
container is used to hold
subnets with the same
network ID and netmask.
When a range is
provided, all the
addresses in the range
are in the pool. The
range must be in the
network ID’s network.
This uses class full
addressing. This is only
valid in the global or
database container level.

Note: The network
keyword is deprecated in
favor of the subnet
container.

Chapter 3. Transmission Control Protocol/Internet Protocol 99

Keyword Form Subcontainers? | Default Value Meaning
vendor vendor vendor_id Yes None Specifies a vendor
container. Vendor
containers are used to
vendor vendor_id hex"" return option 43 to the

vendor

vendor_id hex ""

vendor

vendor_id Oxdata

vendor

vendor_id ""

vendor

vendor_id range

vendor
heXH n

vendor_id range

vendor
hex nn

vendor_id range

vendor
Oxdata

vendor_id range

vendor

vendor_id range ""

client. The vendor id may
be specified in a quoted
string or a binary string
in the form Oxhexdigits or
hex"digits”. An optional
range may be placed
after the vendor id. The
range is specified as two
dotted quads separated
by a dash. After the
optional range, an
optional hexstring or
ASCII string can be
specified as the first part
of the option 43. If
options are in the
container, they are
appended to the option
43 data. After all options
are processed an End Of
Option List Option is
appended to the data. To
return options outside of
an option 43, use a
regular expression client
that matches all clients
to specify normal options
to return based on the
vendor ID.

100 Communications and Networks

Keyword

Form

Subcontainers?

Default Value

Meaning

inoption

inoption number
option_data

inoption number
option_data range

Yes

None

Specifies a container to
be matched against any
arbitrary incoming option
specified by the client.
number specifies the
option number.
option_data specifies the
key to match for this
container to be selected
during address and
option selection for the
client. option_data is
specified in expected
form — quoted string, IP
address, integer value —
for well known options,
or it can be optionally
specified as a
hexadecimal string of
bytes if preceded by the
characters 0x. For
options that are not well
known to the server, a
hexadecimal string of
bytes can be specified in
the same fashion.
Additionally, the
option_data can indicate
a regular expression to
be compared against the
string representation of
the client’s option data.
Regular expressions are
specified in a quoted
string beginning "!
(double quote followed
by an exclamation mark).
The string form of
options not well known to
the server will be a
hexadecimal string of
bytes NOT preceded
with the characters 0x.

Chapter 3. Transmission Control Protocol/Internet Protocol 101

Keyword

Form

Subcontainers?

Default Value

Meaning

virtual

virtual fill id id ...

virtual sfill id id ...

virtual rotate id id ...

virtual srotate id id ...

No

None

Specifies a virtual subnet
with a policy. fill
means use all addresses
in the container before
going to the next
container. rotate means
select an address from
the next pool in the list
on each request. sfill
and srotate are the
same as fill and
rotate, but a search is
done to see if the client
matches containers,
vendors, or classes in
the subnet. If a match is
found that can supply an
address, the address is
taken from that container
instead of following the
policy. There can be as
many IDs as needed. id
is either the subnet ID
from the subnet definition
or the label from the
subnet definition. The
label is required if there
are multiple subnets with
the same subnet id.

inorder:

inorder: id id ...

No

None

Specifies a virtual subnet
with a policy of fill, which
means use all addresses
in the container before
going to the next
container. There can be
as many IDs as needed.
id is either the subnet ID
from the subnet definition
or the label from the
subnet definition. The
label is required if there
are multiple subnets with
the same subnet ID.

balance:

balance: id id ...

No

None

Specifies a virtual subnet
with a policy of rotate,
which means use the
next address in the next
container. There can be
as many IDs as needed.
id is either the subnet ID
from the subnet definition
or the label from the
subnet definition. The
label is required if there
are multiple subnets with
the same subnet ID.

102 Communications and Networks

Keyword

Form

Subcontainers?

Default Value

Meaning

supportBootp supportBootp true No Yes Specifies whether the
current container and all
supportBootp 1 below it (until overridden)
supportBootp yes should support BOOTP
supportBootp false clients.
supportBootp 0
supportBootp no
supportUnlistedclients | supportUnlistedclients No Both Specifies whether the
BOTH current container and all
below it (until overridden)
supportUnlistedclients should support unlisted
DHCP clients. The value
indicates whether all
supportUnlistedclients clients should be allowed
BOOTP access without specific
client statements, DHCP
supportUnlistedclients c:!en:s on:y, BOOTP
NONE clients only, or no one.
supportUnlistedclients true Note: The true and
false values are
- - supported for
supportUnlistedclients yes compatibility with
previous versions
supportUnlistedclients 1 and are
deprecated. The
supportUnlistedclients false true value
corresponds to
supportUnlistedclients no BOTH and the
false value
supportUnlistedclients 0 corresponds to
NONE.
addressrecorddb addressrecrddb path No None If specified, it works like
the backupfile keyword.
Only valid in the global
or database container
level.
Note: This method is
deprecated.
backupfile backupfile path No /etc/db_file.crbk Specifies the file to use
for database backups.
Only valid in the global
or database container
level.
checkpointfile checkpointfile path No /etc/db_file.chkpt Specifies the database

checkpoint files. The first
checkpoint file is the
path. The second
checkpoint file is path
with the last character
replaced with a 2. So,
the checkpoint file should
not end in 2. Only valid
in the global or database
container level.

Chapter 3. Transmission Control Protocol/Internet Protocol

103

Keyword

Form

Subcontainers?

Default Value

Meaning

clientrecorddb

clientrecorddb path

No

/etc/db_file.cr

Specifies the database
save file. The file
contains all the client
records the DHCP server
has serviced. Only valid
in the global or database
container level.

bootstrapserver

bootstrapserver IP address

No

None

Specifies the server
clients should use from
which to TFTP files after
receiving BOOTP or
DHCP packets. This
value fills in the siaddr
field in the packet. This
is valid at any container
level.

giaddrfield

giaddrfield /P address

No

None

Specifies the giaddrfield
for response packets.

Note: This specification
is illegal in the BOOTP
and DHCP protocols, but
some clients require the
giaddr field to be the
default gateway for the
network. Because of this
potential conflict,
giaddrfield should only
be used within a client
container, although it can
work at any level.

pingTime

pingTime n time_unit

No

3 seconds

Specifies the amount of
time to wait for a ping
response before handing
out an address. The
default time unit is
hundredths of a second.
The time unit value is
defined in the note
preceding this table. This
is valid at any container
level. The time_unit
parameter is optional.

bootptime

bootptime n time_unit

No

-1, infinite

Specifies the amount of
time to lease an address
to a BOOTP client. The
default is -1, which
means infinite. The
normal time unit values
are available. The time
unit parameter is
optional. This is valid at
any container level.

104 Communications and Networks

Keyword

Form

Subcontainers?| Default Value

Meaning

AllIRoutesBroadcast

allroutesbroadcast no

allroutesbroadcast false

allroutesbroadcast 0

allroutesbroadcast yes

allroutesbroadcast true

allroutesbroadcast 1

No

0

Specifies whether
responses should be
broadcast to all routes, if
a broadcast response is
required. This is valid at
any container level. This
is ignored by the
operating system’s
DHCP servers, because
the actual MAC address
of the client, including
RIFs, are stored for the
return packet. This is
valid at any container
level.

addressassigned

addressassigned "string”

No

None

Specifies a quoted string
to execute when an
address is assigned to a
client. The string should
have two %s. The first
%s is the client id in the
form type-string. The
second %s is an IP
address in dotted quad
format. This is valid at
any container level.

addressreleased

addressreleased "string”

No

None

Specifies a quoted string
to execute when an
address is released by a
client. The string should
have one %s. The %s is
the IP address being
released in dotted quad
format. This is valid at
any container level.

appenddomain

appenddomain 0

appenddomain no

appenddomain false

appenddomain 1

appenddomain yes

appenddomain true

No

No

Specifies whether to
append the defined
option 15 domain name
to the client-suggested
hostname in the event
that the client does not
suggest a domain name
as well. This is valid at
any container level.

canonical

canonical 0

canonical no

canonical false

canonical 1

canonical yes

canonical true

No

Specifies that the client
id is in canonical format.
This is valid only in the
client container.

Chapter 3. Transmission Control Protocol/Internet Protocol 105

Keyword

Form

Subcontainers?

Default Value

Meaning

leaseTimeDefault

leaseTimeDefault n
time_unit

No

86400 seconds

Specifies the default
lease time for clients.
This is valid at any
container level. The
time_unit parameter is
optional.

proxyarec

proxyarec never

proxyarec usedhcpddns

proxyarec
usedhcpddnsplus

proxyarec always

proxyarec
usedhcpddnsprotected

proxyarec
usedhcpddnsplusprotected

proxyarec alwaysprotected

proxyarec standard

proxyarec protected

No

usedhcpddnsplus

Specifies what options
and methods should be
used for A record
updates in the DNS.
never means never
update the A record.
usedhcpddns means use
option 81 if the client
specifies it.
usedhcpddnsplus means
use option 81 or option
12 and 15, if specified.
always means do the A
record update for all
clients. XXXXprotected
modifies the nsupdate
command to make sure
the client is allowed.
standard is a synonym
for always. protected is
a synonym for
alwaysprotected. This is
valid at any container
level.

releasednsA

releasednsA "string”

No

None

Specifies the execution
string to use when an
address is released. The
string is used to remove
the A record associated
with the address
released. This is valid at
any container level.

releasednsP

releasednsP "string”

No

None

Specifies the execution
string to use when an
address is released. The
string is used to remove
the PTR record
associated with the
address released. This is
valid at any container
level.

106 Communications and Networks

Keyword

Form

Subcontainers?

Default Value

Meaning

removedns

removedns "string"

No

None

Specifies the execution
string to use when an
address is released. The
string is used to remove
the PTR and A record
associated with the
address released. This is
valid at any container
level.

Note: This is deprecated
in favor of the
releasednsA and
releasednsP keywords.

updatedns

updatedns "string"

No

None

Specifies the execution
string to use when an
address is bound. The
string is used to update
both the A and the PTR
record associated with
the address. This is valid
at any container level.

Note: This is deprecated
in favor of the
updatednsA and
updatednsP keywords.

updatednsA

updatednsA "string”

No

None

Specifies the execution
string to use when an
address is bound. The
string is used to update
the A record associated
with the address. This is
valid at any container
level.

updatednsP

updatednsP "string”

No

None

Specifies the execution
string to use when an
address is bound. The
string is used to update
the PTR record
associated with the
address. This is valid at
any container level.

Chapter 3. Transmission Control Protocol/Internet Protocol 107

Keyword

Form

Subcontainers?

Default Value

Meaning

hostnamepolicy

hostnamepolicy suggested

hostnamepolicy resolved

hostnamepolicy
always_resolved

hostnamepolicy defined

hostnamepolicy
always_defined

hostnamepolicy default

No

default

Specifies which
hostname to return to the
client. Default policy is to
prefer the defined
hostname and domain
name over suggested
names. Other policies
imply strict adherence
(for example: defined
will return the defined
name or none if no name
is defined in the
configuration). Also,
policies using the always
modifier will dictate the
server to return the
hostname option
regardless of whether
the client requested it
through the parameter
list option. Note that
suggesting a hostname
also implies requesting it,
and hostnames can be
suggested through option
81 or through options 12
and 15. This keyword is
valid at any container
level.

bootfilepolicy

bootfilepolicy suggested

bootfilepolicy merge

bootfilepolicy defined

bootfilepolicy always

No

suggested

Specifies a preference
for returning the bootfile
name to a client.
suggested prefers the
client-suggested bootfile
name to any
server-configured name.
merge appends the client
suggested name to the
server-configured home
directory. defined prefers
the defined name over
any suggested bootffile
name. always returns the
defined name regardless
of whether the client
requests the bootfile
option through the
parameter list option.

108 Communications and Networks

Keyword

Form

Subcontainers?

Default Value

Meaning

stealfromchildren

stealfromchildren true

stealfromchildren 1

stealfromchildren yes

stealfromchildren false

stealfromchildren 0

stealfromchildren no

No

No

Specifies whether the
parent container should
"steal” from children
containers when the
parent container runs out
of addresses. This
means that if you have a
subnet with class defined
with a range of
addresses, those
addresses are reserved
for those clients that
specify that class. If
stealfromchildren is
true, then addresses will
be pulled from a child to
try and satisfy the
request. The default is to
not steal an address.

homedirectory

homedirectory path

No

None

Specifies the home
directory to use in the file
section of the response
packet. This can be
specified at any
container level. The
bootfile policy defines
how items specified in
the file section of the
incoming packet interact
with the bootffile and the
home directory
statements.

bootfile

bootfile path

No

None

Specifies the bootfile to
use in the file section of
the response packet.
This can be specified at
any container level. The
bootfile policy defines
how items specified in
the file section of the
incoming packet interact
with the bootfile and the
home directory
statements.

Chapter 3. Transmission Control Protocol/Internet Protocol 109

Keyword Form Subcontainers? | Default Value Meaning

pxebootfile pxebootfile No None Specifies the bootffile to
system_architecture be given for a client. This
major_version is used only when
minor_version boofilename dhcpsd supports PXE

clients (pxeservertype is
dhcp_pxe_binld). The
configuration file parser
generates an error if the
number of parameters
after pxebootfile is less
than four, and it ignores
any additional
parameters. pxebootfile
can only be used within
a container.

DHCP and Network Installation Management (NIM) Suggestions

The concept of dynamically assigning Internet Protocol (IP) addresses is fairly new. The following
suggestions are provided to help with DHCP and NIM interaction.

1.

When configuring objects in the NIM environment, use host names whenever possible. This allows you
to use a dynamic name server that updates the IP addresses when the host name is converted to an
IP address in the NIM environment.

Place the NIM master and the DHCP server on the same system. The DHCP server has an option in
the update DNS string that, when set to NIM, attempts to keep the NIM objects out of those states that
need static IP addresses when those addresses change.

For NIM clients, set the default lease time to twice the time it takes to install a client. This allows a
leased IP address to be valid during the installation. After the installation, restart the clien. DHCP will
be started or will need to be configured, depending on the type of installation.

The dhcpsd server should be responsible for both the PTR and the A DNS records. When NIM
reinstalls the machine, the file containing the RSA is deleted, and the client cannot update its records.
The server updates the system records. To do this, change the updatedns line in /etc/dhcpcd.ini to:

updatedns "/usr/sbin/dhcpaction '%s' '%s' '%s' '%s' NONE NONIM"

In the /etc/dhcpsd.cnf file, change the updatedns line to:
updatedns "/usr/sbin/dhcpaction '%s' '%s' '%s' '%s' BOTH NIM"

Note: When a NIM object is placed into the BOS installation-pending state, the dhcpsd server
might pass arguments that are different from those originally intended. Minimize the time the
client is in this pending state to avoid this situation.

These suggestions allow the NIM environment to work with dynamic clients.

For more information on Network Installation Management, see AIX 5L Version 5.1 Network Installation
Management Guide and Reference.

110 Communications and Networks

Preboot Execution Environment Proxy DHCP Daemon (pxed)

The PXE Proxy DHCP server behaves much like a DHCP server by listening for ordinary DHCP client
traffic and responding to certain client requests. However, unlike the DHCP server, the PXE Proxy DHCP
server does not administer network addresses, and it only responds to clients that identify themselves as
PXE clients. The responses given by the PXE Proxy DHCP server contain the mechanism by which the
client locate sthe boot servers or the network addresses and descriptions of the supported, compatible
boot servers.

Using a PXE Proxy DHCP server in addition to a DHCP server provides three key features. First, you can
separate the administration of network addresses from the administration of boot images. Using two
different processes on the same system, you can configure the boot information managed by the PXE
Proxy DHCP server without disturbing or requiring access to the DHCP server configuration. Second, you
can define multiple boot servers and let the PXE client select a particular server during boot time. Each
boot server can, for example, offer a different type of operating system or system configuration. Finally,
using the proxy server offers the ability to configure the PXE client to use multicast IP addressing to
discover the location of the compatible boot servers.

The PXE Proxy DHCP server can be configured to run on the same system that is running the DHCP
server or on a different system. Also, it can be configured to run on the same system that is also running
the boot server daemon or on a different system.

The PXE Proxy DHCP Server

The PXED server is segmented into three main pieces, a database, a protocol engine, and a set of service
threads, each with its own configuration information.

The PXED Database

The db_file.dhcpo database is used to generate the options to be sent to the client when the client send
an REQUEST packet. The options returned by the database depend on the type of server chosen. This is
set using the keyword pxeservertype in the pxed.cnf file.

Using the information in the configuration file, the database is primed and verified for consistency.

The PXED Protocol Engine

For AIX 4.3.1 and later, the PXED protocol engine is based on Intel’'s Preboot Execution Environment
(PXE) Specification Version 2.1, but is still compatible with Intel's PXE Specification Version 1.1. The
protocol engine uses the database to determine what information should be returned to the client.

PXED Threaded Operations

The last piece of the PXED server is actually a set of operations that are used to keep things running.
Since the PXED server is threaded, these operations are actually set up as threads that occasionally do
things to make sure everything is together.

The first thread, the main thread, handles the SRC requests (such as startsrc, stopsrc, Issrc, traceson,
and refresh). This thread also coordinates all operations that affect all threads and handles signals. For
example,

* A SIGHUP (-1) causes a refresh of all databases in the configuration file.
* A SIGTERM (-15) causes the server to gracefully stop.

The other thread processes packets. Depending on the server type, there can one or two threads. One

thread listens on port 67 and the second one listens to port 4011. Each of these can handle a request
from a client.

Chapter 3. Transmission Control Protocol/Internet Protocol 111

Configuring the PXED Server

By default, the PXED server is configured by reading the /etc/pxed.cnf file, which specifies the server’s
initial database of options and addresses. The server is started from the Web-based System Manager,
from SMIT, or through SRC commands.

Configuring the PXED server is usually the hardest part of using PXED in your network. First, figure out
what networks you need to have PXE clients on. The following example configures the pxed daemon to
run on the same machine as the DHCP server:

pxeservertype proxy_on_dhcp_server

subnet default
{

vendor pxe
{
option 6 2 # Disable Multicast boot server discovery
option 8 1 2 9.3.4.5 9.3.4.6 2 1 9.3.149.29
The above option gives the 1ist of bootservers
option 9 "PXE bootstrap server" \

0

1 "Microsoft Windows NT Boot Server" \
2 "DOS/UNDI Boot Server"
0

option 10 2 "seconds Teft before the first item in the boot menu is auto-selected"

}

The suboptions in the vendor container are sent to PXE clients only if the client’s IP address is in the
subnet’s IP address range (for example, 9.3.149.0 through 9.3.149.255).

The following example configures the pxed daemon to run on a different machine than the DHCP server:

subnet default
{

vendor pxe
{
option 6 10 # The bootfile name is present in the client's initial pxed
offer packet.
option 8 1 2 9.3.4.5 9.3.4.6 2 1 9.3.149.29
The above option gives the 1ist of bootservers
option 9 "PXE bootstrap server" \

0
1 "Microsoft Windows NT Boot Server" \
2 "DOS/UNDI Boot Server"
option 10 20 "seconds left before the first item in the boot menu is auto-selected"
bootstrapserver 9.3.148.65
pxebootfile 1 2 1 window.one
pxebootfile 2 2 1 Tlinux.one
pxebootfile 1 2 1 hello.one
client 6 10005a8adl4d any
{
pxebootfile 1 2 1 aix.one
pxebootfile 2 2 1 window.one
}
}

Vendor pxeserver

{
}

option 7 224.234.202.202

The pxeservertype keyword is not set in the configuration file so the default value is taken, which is
pdhcp_only, meaning the PXED server is running on a different machine than the DHCP server. Given
this configuration, the PXED server listens on two ports (67 and 4011) for clients’ BINLD
REQUEST/INFORM packets. The option 7 is sent to the BINLD server when the PXED server receives a
REQUEST/INFORM packet on port 67 from BINLD and option 60 is set to PXED server.

112 Communications and Networks

The db_file database clause indicates which database method to use for processing this part of the
configuration file. Comments begin with a pound sign (#). From the # to the end of the line are ignored by
the PXED server. Each option line is used by the server to tell the client what to do. m
Container Suboptiond describes the currently supported and known options. See PXED Server File Syntax
tor General Server Qperatiod for ways to specify options that the server does not know about.

The Configuration File
The configuration file has an address section and an option definition section, which are based on the

concept of containers that hold options, modifiers, and, potentially, other containers.

A container (basically, a method to group options) uses an identifier to classify clients into groups. The
container types are subnet, class, vendor, and client. Currently, there is not a generic user-definable
container. The identifier uniquely defines the client so that the client can be tracked if, for example, it
moves between subnets. More than one container type can be used to define client access.

Options are identifiers that are returned to the client, such as default gateway and DNS address.

Containers: When the DHCP server receives a request, the packet is parsed and identifying keys
determine which containers, options, and addresses are extracted

The hrevious exampld shows a subnet container. Its identifying key is the client’s position in the network. If
the client is from that network, then it falls into that container.

Each type of container uses a different option to identify a client:

» The subnet container uses the giaddr field or the interface address of the receiving interface to
determine which subnet the client came from.

* The class container uses the value in option 77 (User Site Class Identifier).
* The vendor uses the value in option 60 (Vendor Class Identifier).

* The client container uses the option 61 (Client Identifier) for PXE clients and the chaddr field in the
BOOTP packet for BOOTP clients.

Except for subnets, each container allows the specification of the value that it will match including regular
expression matching.

There is also an implicit container, the global container. Options and modifiers in the global container apply
to all containers unless overridden or denied. Most containers can be placed inside other containers
implying a scope of visibility. Containers might or might not have address ranges associated with them.
Subnets, by their nature, have ranges associated with them.

The basic rules for containers and subcontainers are as follows:
» All containers are valid at the global level.
» Subnets can never be placed inside other containers.

* Restricted containers cannot have regular containers of the same type within them. (For example, a
container with an option that only allows a class of Accounting cannot include a container with an option
that allows all classes that start with the letter "a.” This is illegal.)

* Restricted client containers cannot have subcontainers.

Given the above rules, you can generate a hierarchy of containers that segment your options into groups
for specific clients or sets of clients.

If a client matches multiple containers, how are options and addresses handed out? The DHCP server
receives messages, it passes the request to the database (db_file in this case), and a container list is

Chapter 3. Transmission Control Protocol/Internet Protocol 113

generated. The list is presented in order of depth and priority. Priority is defined as an implicit hierarchy in
the containers. Strict containers are higher priority than regular containers. Clients, classes, vendors, and
finally subnets are sorted, in that order, and within container type by depth. This generates a list ordered
by most specific to least specific. For example:

Subnet 1

--Class 1

--Client 1

Subnet 2

--Class 1

----Vendor 1

----CTient 1

--Client 1

The above example shows two subnets, Subnet 1 and Subnet 2. There is one class name, Class 1, one
vendor name, Vendor 1, and one client name, Client 1. Class 1 and Client 1 are defined in multiple
places. Because they are in different containers, their names can be the same but values inside them can
be different. If Client 1 sends a message to the DHCP server from Subnet 1 with Class 1 specified in its
option list, the DHCP server would generate the following container path:

Subnet 1, Class 1, Client 1

The most specific container is listed last. To get an address, the list is examined in reverse hierarchy to
find the first available address. Then, the list is examined in forward hierarchy to get the options. Options
override previous values unless an option deny is present in the container. Also, since Class 1 and Client
1 are in Subnet 1, they are ordered according to the container priority. If the same client is in Subnet 2 and
sends the same message, the container list generated is:

Subnet 2, Class 1, Client 1 (at the Subnet 2 level), Client 1 (at the Class 1 level)

Subnet 2 is listed first, then Class 1, then the Client 1 at the Subnet 2 level (because this client statement
is only one level down in the hierarchy). The hierarchy implies that a client matching the first client
statement is less specific than the client matching Client 1 of Class 1 within Subnet 2.

Priority selected by depth within the hierarchy is not superseded by the priority of the containers
themselves. For example, if the same client issues the same message and specifies a vendor identifier,
the container list is:

Subnet 2, Class 1, Vendor 1, Client 1 (at Subnet 2 level), Client 1 (at Class 1 level)

Container priority improves search performance because it follows a general concept that client containers
are the most specific way to define one or more clients. The class container holds less specific addresses
than a client container; vendor is even less specific; and subnet is the least specific.

Addresses and Address Ranges: Any container type can have associated addresses ranges; subnets
must have. Each range within a container must be a subset of the parent container’'s range and must not
overlap with other containers’ ranges. For example, if a class is defined within a subnet and the class has
a range, the range must be a subset of the subnet’s range. Also, the range within that class container
cannot overlap with any other ranges at its level.

Ranges can be expressed on the container line and modified by range and exclude statements to allow for
disjoint address sets associated with a container. So, if you have the top ten addresses and the second
ten addresses of a subnet available, the subnet could specify these addresses by range in the subnet
clause to reduce both memory use and the chance of address collision with other clients not in the
specified ranges.

Once an address has been selected, any subsequent container in the list that contains address ranges is
removed from the list along with its children. The reason for this is that network-specific options in
removed containers are not valid if an address is not used from within that container.

114 Communications and Networks

Options: After the list has been culled to determine addresses, a set of options is generated for the
client. In this selection process, options overwrite previously selected options unless a deny is
encountered, in which case, the denied option is removed from the list being sent to the client. This
method allows inheritance from parent containers to reduce the amount of data that must be specified.

Logging: Logging parameters are specified in a container like the database, but the container keyword is
logging_info. When learning to configure PXED, it is advisable to turn logging to its highest level. Also, it
is best to specify the logging configuration prior to any other configuration file data to ensure that
configuration errors are logged after the logging subsystem is initialized. Use the logitem keyword to turn
on a logging level or remove the logitem keyword to disable a logging level. Other keywords for logging
allow the specification of the log filename, file size, and the number of rotating log files.

Performance Considerations: It is important to understand that certain configuration keywords and the
structure of the configuration file have an effect on the memory use and performance of the PXED server.

First, excessive memory use can be avoided by understanding the inheritance model of options from
parent to child containers. In an environment that supports no unlisted clients, the administrator must
explicitly list each client in the file. When options are listed for any specific client, the server uses more
memory storing that configuration tree than when options are inherited from a parent container (for
example, the subnet, network, or global containers). Therefore, the administrator should verify whether any
options are repeated at the client level within the configuration file and, if so, determine whether these
options can be specified in the parent container and shared by the set of clients as a whole.

Also, when using the logltem entries INFO and TRACE, numerous messages are logged during the
processing of every PXE client’s message. Appending a line to the log file can be an expensive operation;
therefore, limiting the amount of logging improves the performance of the PXED server. When an error
with the PXED server is suspected, logging can be dynamically re-enabled using the SRC

command.

PXE Vendor Container Suboptions

When supporting a PXE client, the DHCP server passes the following option to the BINLD server that
BINLD uses to configure itself:

Opt Num Default Data Type Can Specify? Description

6 Decimal number Yes PXE_DISCOVERY_CONTROL. Limit 0-16. This
is a bit field. Bit 0 is the least significant bit.

bit 0 If set, disables broadcast discovery.
bit 1 If set, disables multicast discovery.

bit 2 If set, only uses/accepts servers in
PXE_BOOT_ SERVERS.

bit 3 If set, and a bootfile name is present in
the intial PXED offer packet, downloads
the bootfile (does not
prompt/menu/discover boot server).

bit 4-7 Must be 0. If this option is not supplied
then client assumes all bits to be equal
to 0.

7 One dotted quad Yes Multicast IP address. Boot server discovery
multicast IP address. Boot servers capable of
multicast discovery must listen on this multicast
address. This option is required if the multicast
discovery disable bit (bit 1) in the
PXE_DISCOVERY_ CONTROL option is not set.

Chapter 3. Transmission Control Protocol/Internet Protocol 115

../../cmds/aixcmds5/traceson.htm

Opt Num

Default Data Type

Can Specify?

Description

Boot server type(0-65535)

Yes

PXE_BOOT_SERVERS /P address count (0-256)

Type 0 Miscrosoft Windows IP address...IP
address NT Boot Server Boot server
type IP address

Type 1 Intel LCM Boot Server count IP address

Type 3 DOS/UNDI Boot Server IP address
Type 4 NEC ESMPRO Boot Server

Type 5 IBM WSoD Boot Server

Type 6 IBM LCCM Boot Server

Type 7 CA Unicenter TNG Boot Server.
Type 8 HP OpenView Boot Server.

Type 9 through 32767
Reserved

Type 32768 through 65534
Vendor use

Type 65535
PXE API Test Server.

If IP address count is zero for a server type then
the client may accept offers from any boot server
of that type. Boot Servers do not respond to
discovery requests of types they do not support.

Boot server type (0-65535)

Yes

PXE_BOOT_MENU "description” Boot server
boot "order” is implicit in the type.
"description”...menu order.

10

Timeout in seconds (0-255)

Yes

PXE_MENU_PROMPT "prompt" The timeout is
the number of seconds to wait before auto-
selecting the first boot menu item. On the client
system, the prompt is displayed followed by the
number of seconds remaining before the first
item in the boot menu is auto-selected. If the F8
key is pressed on the client system, then a menu
is displayed. If this option is provided to the
client, then the menu is displayed without prompt
and timeout. If the timeout is 0, then the first item
in the menu is auto-selected. If the timeout is
255, the menu and prompt is displayed without
auto-selecting or timeout.

PXED Server File Syntax for General Server Operation

Note: Time Units (time_units) shown in the following table are optional and represent a modifier to
the actual time. The default time unit is minutes. Valid values are seconds (1), minutes (60), hours
(3600), days (86400), weeks (604800), months (2392000), and years (31536000). The number
shown in parentheses is a multiplier applied to the specified value n to express the value in seconds.

116 Communications and Networks

Keyword

Form

Subcontainers?

Default Value

Meaning

database database db type Yes None The primary container that
holds the definitions for the
address pools, options, and
client access statements.
db type is the name of a
module that is loaded to
process this part of the file.
The only value currently
available is db_file.
logging_info logging_info Yes None The primary logging
container that defines the
logging parameters.
logitem logitem NONE No All default to not Enables the logging level.
logitem SYSERR enabled. Multiple lines are allowed.
logitem OBJERR
logitem PROTOCOL
logitem PROTERR
logitem WARN
logitem WARNING
logitem CONFIG
logitem EVENT
logitem PARSEERR
logitem ACTION
logitem ACNTING
logitem STAT
logitem TRACE
logitem RTRACE
logitem START
numLogFiles numLogFiles n No 0 Specifies the number of log
files to create. The log
rotates when the first one
fills. nis the number of files
to create.
logFileSize logFileSize n No 0 Specifies the size of each

log file in 1024-byte units.

Chapter 3. Transmission Control Protocol/Internet Protocol 117

Keyword

Form

Subcontainers?

Default Value

Meaning

logFileName

logFileName path

No

None

Specifies the path to the
first log file. The original log
file is named filename or
filename.extension. The
filename must be eight or
fewer characters. When a
file is rotated, it is renamed
beginning with the base
filename, then either
appending a number or
replacing the extension with
a number. For example, if
the original file name is
file, the rotated file name
becomes file0l. If the
original file name is
file.log, it becomes
file.0l.

pxeservertype

pxeservertype
servertype

No

dhcp_only

Indicates the type of
dhcpsd server it is.
servertype can be
proxy_on_dhcp_server,
which means that PXED is
running on the same
machine as the DHCP
server and it is listening for
PXE client requests on port
4011 only, or the default
value of pdhcp_only,
which means the PXED is
running on a separate
machine and it has to listen
for client packets on port
67 and 4011.

PXED Server File Syntax for db_file Database

Notes:

» Time Units (time_units) shown in the following table are optional and represent a modifier to the
actual time. The default time unit is minutes. Valid values are seconds (1), minutes (60), hours
(8600), days (86400), weeks (604800), months (2392000), and years (31536000). The number
shown in parentheses is a multiplier applied to the specified value n to express the value in

seconds.

* ltems that are specified in one container can be overridden inside a subcontainer. For example,
you could globally define BOOTP clients, but within a certain subnet allow BOOTP clients by
specifying the supportBootp keywork in both containers.

* The client, class, and vendor containers allow for regular expression support. For class and
vendor, a quoted string with the first character after the quote being an exclamation point (!)
indicates that the rest of the string should be treated as a regular expression. The client container
allows for regular expressions on both the hwtype and the hwaddr fields. A single string is used to
represent both fields with the following format:

decimal_number-data

If decimal_number is zero, then data is an ASCII string. If any other number, data is hex digits.

118 Communications and Networks

Keyword

Form

Subcontainers?

Default Value

Meaning

subnet

subnet default

Yes

None

Specifies a subnet that
does not have any range.
The subnet is used by the
server only when it is
responding to INFORM
packet from the client.

subnet

subnet subnet id
netmask

subnet subnet id
netmask range

subnet subnet id
netmask label.priority

subnet subnet id
netmask range
label.priority

Yes

None

Specifies a subnet and a
pool of addresses. All
addresses are assumed to
be in the pool unless a
range is specified on the
line or addresses are
modified later in the
container by a range or
exclude statement. The
optional range is a pair of
IP addresses in dotted
quad format separated by a
dash. An optional label and
priority can be specified.
These are used by virtual
subnets to identify and
order the subnets in the
virtual subnet. The label
and priority are separated
by a colon. These
containers are only allowed
at the global or database
container level.

subnet

subnet subnet id
range

Yes

None

Specifies a subnet that
goes within a network
container. It defines a
range of addresses that is
the whole subnet unless
the optional range part is
specified. The netmask
associated with the subnet
is taken from the
surrounding network
container.

Note: This method is
deprecated in favor of
the other subnet
forms.

Chapter 3. Transmission Control Protocol/Internet Protocol 119

Keyword

Form

Subcontainers?

Default Value

Meaning

option

option number data ...

option numberdeny

option * deny

No

None

Specifies an option to send
to a client or, in the case of
deny, an option to prevent
from being sent to the
client. The optional * deny
clause means all options
not specified in the current
container are not to be
returned to the client.
option numberdeny only
denies the specified option.
number is an unsigned
8-bit integer. data is
specific to the option (see
above) or can be specified
as a quoted string
(indicating ASCII text) or
Oxhexdigits or
hex"hexdigits” or hex
"hexdigits”. If the option is
in a vendor container, the
option will be encapsulated
with other options in an
option 43.

exclude

exclude an IP
address

exclude
dotted_quad-
dotted_quad

No

None

Modifies the range on the
container in which the
exclude statement is in.
The exclude statement is
not valid in the global or
database container levels.
The exclude statement
removes the specified
address or range from the
current range on the
container. The exclude
statement allows you to
create non-contiguous
ranges for subnets or other
containers.

120 Communications and Networks

Keyword

Form

Subcontainers?

Default Value

Meaning

range

range /P_address

range
dotted_quad-
dotted_quad

No

None

Modifies the range on the
container in which the
range statement is in. The
range statement is not valid
in the global or database
container levels. If the
range is the first in the
container that does not
specify a range on the
container definition line,
then the range for the
container becomes the
range specified by the
range statement. Any range
statement after the first
range or all range
statements for a containers
that specifies ranges in its
definition are added to the
current range. With the
range statement, a single
address or set of
addresses can be added to
the range. The range must
fit inside the subnet
container definition.

client

client hwtype hwaddr
NONE

client hwtype hwadadr
ANY

client hwtype hwadadr
dotted_quad

client hwtype hwadadr
range

Yes

None

Specifies a client container
that denies the client
specified by the hwadadr
and hwtype from getting an
address. If hwtype is 0,
then hwaddr is an ASCII
string. Otherwise, hwtype is
the hardware type for the
client and hwadadr is the
hardware address of the
client. If the hwaddr is a
string, then quotes are
accepted around the string.
If the hwaddr is a hexstring,
then the address may be
specified by Oxhexdigits or
hex digits. range allows the
client specified by the
hwaddr and hwitype to get
an address in the range.
Must be regular
expressions to match
multiple clients.

Chapter 3. Transmission Control Protocol/Internet Protocol 121

Keyword

Form

Subcontainers?

Default Value

Meaning

class

class string

class string range

Yes

None

Specifies a class container
with name string. String
can be quoted or not. If
quoted, the quotes are
removed before
comparison. Quotes are
required for strings with
spaces or tabs. This
container is valid at any
level. A range can be
supplied to indicate a set of
addresses to hand out to a
client with this class. The
range is either a single
dotted quad IP address or
two dotted quad IP
addresses separated by a
dash.

network

network network id
netmask

network network id

network network id
range

Yes

None

Specifies a network ID
using class information (for
example, 9.3.149.0 with a
netmask of 255.255.255.0
would be network 9.0.0.0
255.255.255.0). This
version of the network
container is used to hold
subnets with the same
network ID and netmask.
When a range is provided,
all the addresses in the
range are in the pool. The
range must be in the
network ID’s network. This
uses class full addressing.
This is only valid in the
global or database
container level.

Note: The network
keyword is
deprecated in favor of
the subnet container.

122 Communications and Networks

Keyword

Form

Subcontainers?

Default Value

Meaning

vendor

vendor vendor_id

vendor vendor_id
heXH "

vendor vendor_id hex

"

vendor vendor_id
Oxdata

vendor vendor_id ""

vendor vendor_id
range

vendor vendor_id
range hex""

vendor vendor_id
range hex ""

vendor vendor_id
range Oxdata

vendor vendor_id
range ""

Yes

None

Specifies a vendor
container. Vendor
containers are used to
return option 43 to the
client. The vendor id may
be specified in a quoted
string or a binary string in
the form Oxhexdigits or
hex"digits". An optional
range may be placed after
the vendor id. The range is
specified as two dotted
quads separated by a
dash. After the optional
range, an optional hexstring
or ASCII string can be
specified as the first part of
the option 43. If options are
in the container, they are
appended to the option 43
data. After all options are
processed an End Of
Option List Option is
appended to the data. To
return options outside of an
option 43, use a regular
expression client that
matches all clients to
specify normal options to
return based on the vendor
ID.

Chapter 3. Transmission Control Protocol/Internet Protocol 123

Keyword

Form

Subcontainers?

Default Value

Meaning

inoption

inoption number
option_data

inoption number
option_data range

Yes

None

Specifies a container to be
matched against any
arbitrary incoming option
specified by the client.
number specifies the option
number. option_data
specifies the key to match
for this container to be
selected during address
and option selectoin for the
client. option_data is
specified in expected form
— quoted string, IP
address, integer value —
for well known options, or it
can be optionally speicifed
as a hexadecimal string of
bytes if preceded by the
characters 0x. For options
that are not well known to
the server, a hexadecimal
string of bytes can be
specified in the same
fashion. Additionally, the
option_data can indicate a
regular expression to be
compared against the string
representation of the
client’s option data. Regular
expressions are specified in
a quoted string beginning
"1 (double quote followed
by an exclamation mark).
The string form of options
not well known to the
server will be a
hexadecimal string of bytes
NOT preceded with the
characters 0x.

124 Communications and Networks

Keyword

Form

Subcontainers?

Default Value

Meaning

virtual

virtual fill id id ...

virtual sfill id id ...

virtual rotate id id ...

virtual srotate id id ...

No

None

Specifies a virtual subnet
with a policy. fi1l means
use all addresses in the
container before going to
the next container. rotate
means select an address
from the next pool in the
list on each request. sfill
and srotate are the same
as fill and rotate, but a
search is done to see if the
client matches containers,
vendors, or classes in the
subnet. If a match is found
that can supply an address,
the address is taken from
that container instead of
following the policy. There
can be as many IDs as
needed. id is either the
subnet ID from the subnet
definition or the label from
the subnet definition. The
label is required if there are
multiple subnets with the
same subnet id.

inorder:

inorder: id id ...

No

None

Specifies a virtual subnet
with a policy of fill, which
means use all addresses in
the container before going
to the next container. There
can be as many IDs as
needed. id is either the
subnet ID from the subnet
definition or the label from
the subnet definition. The
label is required if there are
multiple subnets with the
same subnet ID.

balance:

balance: id id ...

No

None

Specifies a virtual subnet
with a policy of rotate,
which means use the next
address in the next
container. There can be as
many IDs as needed. id is
either the subnet ID from
the subnet definition or the
label from the subnet
definition. The label is
required if there are
multiple subnets with the
same subnet ID.

Chapter 3. Transmission Control Protocol/Internet Protocol 125

Keyword

Form

Subcontainers?

Default Value

Meaning

bootstrapserver

bootstrapserver IP
address

No

None

Specifies the server clients
should use from which to
TFTP files after receiving
BOOTP or DHCP packets.
This value fills in the
siaddr field in the packet.
This is valid at any
container level.

giaddrfield

giaddrfield /P address

No

None

Specifies the giaddrfield for
response packets.

Note: This
specification is illegal
in the BOOTP and
DHCP protocols, but
some clients require
the giaddr field to be
the default gateway
for the network.
Because of this
potential conflict,
giaddrfield should
only be used within a
client container,
although it can work
at any level.

bootfile

bootfile path

No

None

Specifies the bootfile to use
in the file section of the
response packet. This can
be specified at any
container level. The bootfile
policy defines how items
specified in the file section
of the incoming packet
interact with the bootfile
and the home directory
statements.

pxebootfile

pxebootfile System
Arch MajorVer
MinorVer
Bootfilename

No

None

Specifies the bootfile to be
given to a client. The config
file parser generates an
error if the number of
parameters after the
keyword is less than 4 and
ignore if more than 4. This
keyword can be used only
in a container.

For details about other options, see DHCP Server File Known Qptiond.

126 Communications and Networks

Boot Image Negotiation Layer Daemon (BINLD)

The Boot Image Image Negotiation Layer daemon (BINLD) server is the third stage of contact for preboot
execution environment (PXE) clients. After communicating with the DHCP server to obtain an IP address,
and after communication with the PXE Proxy DHCP server to obtain the location of the boot server, the
boot server is contacted to get the filename and location from which to download the boot image. The PXE
client can return to communicate with the boot server multiple times in the course of booting if the client
requires multiple files in its boot process.

The final stage in the PXE network boot is to download the boot image given by the boot server. The
location of the TFTP server and the filename that is to be downloaded is given by the boot server to the
PXE client.

The BINLD Server

Beginning with AIX 4.3.3 update, the BINLD server is segmented into three main pieces: a database, a
protocol engine, and a set of service threads, each with its own configuration information.

The BINLD Database

The db_file.dhcpo database is used to generate the options that respond to a client's REQUEST packet.
The options returned by the database depend on the type of server chosen. Options are set using the
keyword pxeservertype in the binld.cnf file.

Using the information in the configuration file, the database is primed and verified for consistency.

The BINLD Protocol Engine

The PXED protocol engine is based on the Intel's Preboot Execution Environment (PXE) Specification
Version 2.1, but is still compatible with Intel's PXE Specification Version 1.1. The protocol engine uses the
database to determine what information should be returned to the client.

BINLD Threaded Operations

The last piece of the BINLD server is actually a set of operations that are used to keep things running.
Since the BINLD server is threaded, these operations are actually set up as threads that occasionally do
things to make sure everything is together.

The first thread, the main thread, handles the SRC requests (such as startsrc, stopsrc, Issrc, traceson,
and refresh). This thread also coordinates all operations that affect all threads and handles signals. For
example,

* A SIGHUP (-1) causes a refresh of all databases in the configuration file.
* A SIGTERM (-15) causes the server to gracefully stop.

The other thread processes packets. Depending on the server type, there can one or two threads. One
thread listens on port 67 and the second to port 4011. Each can handle a request from a client.

Configuring BINLD

By default, the BINLD server is configured by reading the /etc/binld.cnf file, which specifies the server’s
initial database of options and addresses. The server is started from the Web-based System Manager,
from SMIT, or through SRC commands.

Configuring the BINLD server is usually the hardest part of using BINLD in your network. First, figure out
what networks you need to have PXE clients on. The following example configures a BINLD server to run
on the same machine as the DHCP server:

pxeservertype binld_on_dhcp_server

subnet default
{

Chapter 3. Transmission Control Protocol/Internet Protocol 127

vendor pxe

{
bootstrapserver 9.3.149.6 #TFTP server IP address

pxebootfile 1 2 1 window.one 1 0
pxebootfile 2 2 1 Tlinux.one 2 3
pxebootfile 1 2 1 hello.one 3 4
client 6 10005a8adl4d any

{
pxebootfile 1 2 1 aix.one 5 6

pxebootfile 2 2 1 window.one 6 7

}

Given the above configuration, the BINLD server listens for client’s unicast packets on port 4011 and
Multicast packets on port 4011 if BINLD gets the Multicast Address from the dhcpsd/pxed. The BINLD
server responds to client REQUEST/INFORM packets with the bootfile name and TFTP server’s IP
address. If BINLD does not find the bootfile with a matching Layer specified by the client, then it tries to
find a bootfile for the next layer. The BINLD does not respond when there is no boot file that matches the
client requirements (Type, SystemArch, MajorVers, MinorVers, and Layer).

The following example configures BINLD to run on a separate machine (that is, DHCP / PXED is not
running on the same machine).

subnet 9.3.149.0 255.255.255.0
{

vendor pxe

{

bootstrapserver 9.3.149.6 # TFTP server ip address.
pxebootfile 1 2 1 window.one 1 0

pxebootfile 2 2 1 Tlinux.one 2 3

pxebootfile 1 2 1 hello.one 3 4

client 6 10005a8ad1l4d any

pxebootfile 1 2 1 aix.one 5 6
pxebootfile 2 2 1 window.one 6 7
}
}
}

In the above example, the pxeservertype is not set, so the default servertype is binld_only. The BINLD
server listens for client’s unicast packets on port 4011, broadcast & unicast packets on port 67, and
Multicast packets on port 4011 if BINLD gets the Multicast Address from the dhcpsd/pxed. The bootfile
name and TFTP server IP address is sent to a PXE client only if the client’s IP address is in the subnet’s
IP address range (9.3.149.0 through 9.3.149.255).

The following example configures BINLD to run on the same machine as the PXED server:

pxeservertype binld_on_proxy_server
subnet default
{

vendor

{

bootstrapserver 9.3.149.6 # TFTP server ip address.
pxebootfile 1 2 1 window.one 1 0

pxebootfile 2 2 1 Tlinux.one 2 3

pxebootfile 1 2 1 hello.one 3 4
client 6 10005a8ad1l4d any

pxebootfile 1 2 1 aix.one 5 6

128 Communications and Networks

pxebootfile 2 2 1 window.one 6 7

}
}
}

In this configuraton, the BINLD server only listens on port 4011 for Multicast packets only if BINLD gets
Multicast address from the dhcpsd/pxed. If it does not receive any multicast address, then BINLD exits and
an error message is logged to the log file.

The database db_file clause indicates which database method to use for processing this part of the
configuration file. Comments begin with a pound sign (#). From the # to the end of the line are ignored by
the PXED server. Each option line is used by the server to tell the client what to do.

Container Subaptiond describes the currently supported and known suboptions. See BINLD Server Fild
Byntax for General Server Qperatior

for ways to specify options that the server does not know about.

The Configuration File
The configuration file has an address section and an option definition section, which are based on the

concept of containers that hold options, modifiers, and, potentially, other containers.

A container (basically, a method to group options) uses an identifier to classify clients into groups. The
container types are subnet, class, vendor, and client. Currently, there is not a generic user-definable
container. The identifier uniquely defines the client so that the client can be tracked if, for example, it
moves between subnets. More than one container type can be used to define client access.

Options are identifiers that are returned to the client, such as default gateway and DNS address.

Containers: When the DHCP server receives a request, the packet is parsed and identifying keys
determine which containers, options, and addresses are extracted.

The previous example shows a subnet container. Its identifying key is the client’s position in the network. If
the client is from that network, then it falls into that container.

Each type of container uses a different option to identify a client:

* The subnet container uses the giaddr field or the interface address of the receiving interface to
determine which subnet the client came from.

* The class container uses the value in option 77 (User Site Class Identifier).
» The vendor uses the value in option 60 (Vendor Class Identifier).

* The client container uses the option 61 (Client Identifier) for PXED clients and the chaddr field in the
BOOTP packet for BOOTP clients.

Except for subnets, each container allows the specification of the value that it matches, including regular
expression matching.

There is also an implicit container, the global container. Options and modifiers placed in the global
container apply to all containers unless overridden or denied. Most containers can be placed inside other
containers implying a scope of visibility. Containers may or may not have address ranges associated with
them. Subnets, by their nature, have ranges associated with them.

The basic rules for containers and subcontainers are as follows:
» All containers are valid at the global level.
» Subnets can never be placed inside other containers.

* Restricted containers cannot have regular containers of the same type within them. (For example, a
container with an option that only allows a class of Accounting cannot include a container with an option
that allows all classes that start with the letter "a”. This is illegal.)

* Restricted client containers cannot have subcontainers.

Chapter 3. Transmission Control Protocol/Internet Protocol 129

Given the above rules, you can generate a hierarchy of containers that segment your options into groups
for specific clients or sets of clients.

If a client matches multiple containers, how are options and addresses handed out? The DHCP server
receives messages, it passes the request to the database (db_file in this case), and a container list is
generated. The list is presented in order of depth and priority. Priority is defined as an implicit hierarchy in
the containers. Strict containers are higher priority than regular containers. Clients, classes, vendors, and
finally subnets are sorted, in that order, and within container type by depth. This generates a list ordered
by most specific to least specific. For example:

Subnet 1

--Class 1

--Client 1

Subnet 2

--Class 1

----Vendor 1

----Client 1

--Client 1

The example shows two subnets, Subnet 1 and Subnet 2. There is one class name, Class 1, one vendor
name, Vendor 1, and one client name, Client 1. Class 1 and Client 1 are defined in multiple places.
Because they are in different containers, their names can be the same but values inside them may be
different. If Client 1 sends a message to the DHCP server from Subnet 1 with Class 1 specified in its
option list, the DHCP server would generate the following container path:

Subnet 1, Class 1, Client 1

The most specific container is listed last. To get an address, the list is examined in reverse hierarchy to
find the first available address. Then, the list is examined in forward hierarchy to get the options. Options
override previous values unless an option deny is present in the container. Also, since Class 1 and Client
1 are in Subnet 1, they are ordered according to the container priority. If the same client is in Subnet 2 and
sends the same message, the container list generated is:

Subnet 2, Class 1, Client 1 (at the Subnet 2 level), Client 1 (at the Class 1 level)

Subnet 2 is listed first, then Class 1, then the Client 1 at the Subnet 2 level (because this client statement
is only one level down in the hierarchy). The hierarchy implies that a client matching the first client
statement is less specific than the client matching Client 1 of Class 1 within Subnet 2.

Priority selected by depth within the hierarchy is not superseded by the priority of the containers
themselves. For example, if the same client issues the same message and specifies a vendor identifier,
the container list is:

Subnet 2, Class 1, Vendor 1, Client 1 (at Subnet 2 level), Client 1 (at Class 1 level)

Container priority improves search performance because it follows a general concept that client containers
are the most specific way to define one or more clients. The class container holds less specific addresses
than a client container; vendor is even less specific; and subnet is the least specific.

Addresses and Address Ranges: Any container type may have associated addresses ranges; subnets
must have. Each range within a container must be a subset of the parent container’'s range and must not
overlap with other containers’ ranges. For example, if a class is defined within a subnet and the class has
a range, the range must be a subset of the subnet’s range. Also, the range within that class container
cannot overlap with any other ranges at its level.

Ranges can be expressed on the container line and modified by range and exclude statements to allow for
disjoint address sets associated with a container. So, if you have the top ten addresses and the second

130 Communications and Networks

ten addresses of a subnet available, the subnet could specify these addresses by range in the subnet
clause to reduce both memory use and the chance of address collision with other clients not in the
specified ranges.

Once an address has been selected, any subsequent container in the list that contains address ranges is
removed from the list along with its children. The reason for this is that network-specific options in
removed containers are not valid if an address is not used from within that container.

Options: After the list has been culled to determine addresses, a set of options is generated for the
client. In this selection process, options overwrite previously selected options unless a deny is
encountered, in which case, the denied option is removed from the list being sent to the client. This
method allows inheritance from parent containers to reduce the amount of data that must be specified.

Logging: Logging parameters are specified in a container like the database, but the container keyword is
logging_info. When learning to configure PXED, it is advisable to turn logging to its highest level. Also, it
is best to specify the logging configuration prior to any other configuration file data to ensure that
configuration errors are logged after the logging subsystem is initialized. Use the logitem keyword to turn
on a logging level or remove the logitem keyword to disable a logging level. Other keywords for logging
allow the specification of the log filename, file size, and the number of rotating log files.

Performance Considerations: It is important to understand that certain configuration keywords and the
structure of the configuration file have an effect on the memory use and performance of the PXED server.

First, excessive memory use can be avoided by understanding the inheritance model of options from
parent to child containers. In an environment that supports no unlisted clients, the administrator must
explicitly list each client in the file. When options are listed for any specific client, the server uses more
memory storing that configuration tree than when options are inherited from a parent container (for
example, the subnet, network, or global containers). Therefore, the administrator should verify whether any
options are repeated at the client level within the configuration file and, if so, determine whether these
options can be specified in the parent container and shared by the set of clients as a whole.

Also, when using the logltem entries INFO and TRACE, numerous messages are logged during the

processing of every PXE client’s message. Appending a line to the log file can be an expensive operation;
therefore, limiting the amount of logging improves the performance of the PXED server.When an error with
the PXED server is suspected, logging can be dynamically re-enabled using the SRC kracesod command.

BINLD Server File Syntax for General Server Operation

Note: Time Units (time_units) shown in the following table are optional and represent a modifier to
the actual time. The default time unit is minutes. Valid values are seconds (1), minutes (60), hours
(3600), days (86400), weeks (604800), months (2392000), and years (31536000). The number
shown in parentheses is a multiplier applied to the specified value n to express the value in seconds.

Keyword Form Subcontainers? |Default Value Meaning

database database db type Yes None The primary container that
holds the definitions for the
address pools, options, and
client access statements. db
type is the name of a module
that is loaded to process this
part of the file. The only value
currently available is db_file.

logging_info logging_info Yes None The primary logging container
that defines the logging
parameters.

Chapter 3. Transmission Control Protocol/Internet Protocol 131

../../cmds/aixcmds5/traceson.htm

Keyword

Form

Subcontainers?

Default Value

Meaning

logitem

logitem NONE

logitem SYSERR

logitem OBJERR

logitem PROTOCOL

logitem PROTERR

logitem WARN

logitem WARNING

logitem CONFIG

logitem EVENT

logitem PARSEERR

logitem ACTION

logitem ACNTING

logitem STAT

logitem TRACE

logitem RTRACE

logitem START

No

All default to not
enabled.

Enables the logging level.
Multiple lines are allowed.

numLogFiles

numLogFiles n

No

Specifies the number of log
files to create. The log rotates
when the first one fills. nis the
number of files to create.

logFileSize

logFileSize n

No

Specifies the size of each log
file in 1024-byte units.

logFileName

logFileName path

No

None

Specifies the path to the first
log file. The original log file is
named filename or
filename.extension. The
filename must be eight or
fewer characters. When a file
is rotated, it is renamed
beginning with the base
filename, then either
appending a number or
replacing the extension with a
number. For example, if the
original file name is file, the
rotated file name becomes
file0l. If the original file name
is file.log, it becomes
file.0l.

132 Communications and Networks

Keyword

Form

Subcontainers? | Default Value

Meaning

pxeservertype

pxeservertype
servertype

No dhcp_only

Indicate the type of dhcpsd
server it is. servertype can be
one of the following
binld_on_dhcp_server This
means that BINLD is running
on the same machine as
DHCP server and it is listening
for PXE Client request on port
4011 and Multicast address if
received from the DHCP /
PXED.
binld_on_proxy_server This
means that BINLD is running
on the same machine as
PXED server and it is listening
for PXE Client’s request on
Multicast address if received
from the DHCP / PXED. The
default value is binld_only ie
the BINLD is running on a
separate machine and it has to
listen for client’s packets on
port 67 , 4011 and Multicast
address if received from the
DHCP / PXED.

dhcp_or_proxy
_address

dhcp_or_proxy_address
IP address

No None

This gives the IP address of
dhcp or pxed server to which
the BINLD server can send an
Unicast packet of type
REQUEST/INFORM to receive
the Multicast Address. This
keyword is defined only when
the dhcp or pxed are on a
different subnet than BINLD.

BINLD Server File Syntax for db_file Database

Notes:

» Time Units (time_units) shown in the following table are optional and represent a modifier to the
actual time. The default time unit is minutes. Valid values are seconds (1), minutes (60), hours
(8600), days (86400), weeks (604800), months (2392000), and years (31536000). The number
shown in parentheses is a multiplier applied to the specified value n to express the value in

seconds.

* ltems that are specified in one container can be overridden inside a subcontainer. For example,
you could globally define BOOTP clients, but within a certain subnet allow BOOTP clients by
specifying the supportBootp keyword in both containers.

* The client, class, and vendor containers allow for regular expression support. For class and
vendor, a quoted string with the first character after the quote being an exclamation point (!)
indicates that the rest of the string should be treated as a regular expression. The client container
allows for regular expressions on both the hwtype and the hwaddr fields. A single string is used to
represent both fields with the following format:

decimal_number-data

If decimal_number is zero, then data is an ASCII string. If any other number, data is hex digits.

Chapter 3. Transmission Control Protocol/Internet Protocol 133

Keyword

Form

Subcontainers?

Default Value

Meaning

subnet

subnet default

Yes

None

Specifies a subnet that does
not have any range. The
subnet is used by a server
only when it is responding to
INFORM packet from the client
and the client’'s address does
not have another matching
subnet container.

subnet

subnet subnet id
netmask

subnet subnet id
netmask range

subnet subnet id
netmask label:priority

subnet subnet id
netmask range
labelpriority

Yes

None

Specifies a subnet and a pool
of addresses. All addresses
are assumed to be in the pool
unless a range is specified on
the line or addresses are
modified later in the container
by a range or exclude
statement. The optional range
is a pair of IP addresses in
dotted quad format separated
by a dash. An optional label
and priority can be specified.
These are used by virtual
subnets to identify and order
the subnets in the virtual
subnet. The label and priority
are separated by a colon.
These containers are only
allowed at the global or
database container level.

subnet

subnet subnet id range

Yes

None

Specifies a subnet that goes
within a network container. It
defines a range of addresses
that is the whole subnet unless
the optional range part is
specified. The netmask
associated with the subnet is
taken from the surrounding
network container.

Note: This method is
deprecated in favor of
the other subnet forms.

134 Communications and Networks

Keyword

Form

Subcontainers?

Default Value

Meaning

option

option number data ...

option numberdeny

option * deny

No

None

Specifies an option to send to
a client or, in the case of deny,
an option to prevent from
being sent to the client. The
option * deny clause means all
options not specified in the
current container are not to be
returned to the client. option
numberdeny only denies the
specified option. number is an
unsigned 8-bit integer. data is
specific to the option (see
above) or can be specified as
a quoted string (indicating
ASCII text) or Oxhexdigits or
hex” hexdigits” or hex
"hexdigits". If the option is in a
vendor container, the option
will be encapsulated with other
options in an option 43.

exclude

exclude an IP address

exclude
dotted_quad-
dotted_quad

No

None

Modifies the range on the
container in which the exclude
statement is in. The exclude
statement is not valid in the
global or database container
levels. The exclude statement
removes the specified address
or range from the current
range on the container. The
exclude statement allows you
to create non-contiguous
ranges for subnets or other
containers.

range

range IP_address

range
dotted_quad-
dotted_quad

No

None

Modifies the range on the
container in which the range
statement is in. The range
statement is not valid in the
global or database container
levels. If the range is the first
in the container that does not
specify a range on the
container definition line, then
the range for the container
becomes the range specified
by the range statement. Any
range statement after the first
range or all range statements
for a containers that specifies
ranges in its definition are
added to the current range.
With the range statement, a
single address or set of
addresses can be added to the
range. The range must fit
inside the subnet container
definition.

Chapter 3. Transmission Control Protocol/Internet Protocol 135

Keyword

Form

Subcontainers?

Default Value

Meaning

client

client hwtype hwaddr
NONE

client hwtype hwaddr
ANY

client hwtype hwaddr
dotted_quad

client hwtype hwaddr
range

Yes

None

Specifies a client container
that denies the client specified
by the hwaddr and hwtype
from getting an address. If
hwtype is 0, then hwaddr is an
ASCII string. Otherwise,
hwtype is the hardware type
for the client and hwaddr is the
hardware address of the client.
If the hwaddr is a string, then
quotes are accepted around
the string. If the hwaddr is a
hexstring, then the address
may be specified by
Oxhexdigits or hex digits. range
allows the client specified by
the hwaddr and hwtype to get
an address in the range. Must
be regular expressions to
match multiple clients.

class

class string

class string range

Yes

None

Specifies a class container
with name string. String can be
quoted or not. If quoted, the
quotes are removed before
comparison. Quotes are
required for strings with
spaces or tabs. This container
is valid at any level. A range
can be supplied to indicate a
set of addresses to hand out
to a client with this class. The
range is either a single dotted
quad IP address or two dotted
quad IP addresses separated
by a dash.

network

network network id
netmask

network network id

network network id
range

Yes

None

Specifies a network 1D using
class information (for example,
9.3.149.0 with a netmask of
255.255.255.0 would be
network 9.0.0.0
255.255.255.0). This version of
the network container is used
to hold subnets with the same
network ID and netmask.
When a range is provided, all
the addresses in the range are
in the pool. The range must be
in the network ID’s network.
This uses class full
addressing. This is only valid
in the global or database
container level.

Note: The network
keyword is deprecated in
favor of the subnet
container.

136 Communications and Networks

Keyword Form Subcontainers? |Default Value Meaning
vendor vendor vendor_id Yes None Specifies a vendor container.
Vendor containers are used to
vendor vendor id hex"” return option 43 to the client.
The vendor id may be
; specified in a quoted string or
vendor vandor_id hex a binary string in the formg
Oxhexdigits or hex"digits”. An
vendor vendor_id optional range may be placed
Oxdata after the vendor id. The range
is specified as two dotted
vendor vendor_id "" quads separated by a dash.
After the optional range, an
vendor vendor id range opFionaI hexstring or ASCII
string can be specified as the
- first part of the option 43. If
vendor vendor_id range options are in the container,
hex"" they are appended to the
option 43 data. After all options
vendor vendor_id range are processed an End Of
hex "" Option List Option is appended
to the data. To return options
vendor vendor_id range outside of an option 43, use a
Oxdata regular expression client that
matches all clients to specify
- normal options to return based
)/’t,endor vendor_id range on the vendor ID.
pxe after the keyword vendor
will create a vendor container
vendor pxe for PXEClient.

vendor pxeserver

pxeserver after the keyword
vendor will create a vendor
container for PXEServer.

Chapter 3. Transmission Control Protocol/Internet Protocol 137

Keyword

Form

Subcontainers?

Default Value

Meaning

inoption

inoption number
option_data

inoption number
option_data range

Yes

None

Specifies a container to be
matched against any arbitrary
incoming option specified by
the client. number specifies the
option number. option_data
specifies the key to match for
this container to be selected
during address and option
selection for the client.
option_data is specified in
expected form — quoted
string, IP address, integer
value — for well known
options, or it can be optionally
specified as a hexadecimal
string of bytes if preceded by
the characters 0x. For options
that are not well known to the
server, a hexadecimal string of
bytes can be specified in the
same fashion. Additionally, the
option_data can indicate a
regular expression to be
compared against the string
representation of the client’s
option data. Regular
expressions are specified in a
quoted string beginning "!
(double quote followed by an
exclamation mark). The string
form of options not well known
to the server will be a
hexadecimal string of bytes
NOT preceded with the
characters 0x.

138 Communications and Networks

Keyword

Form

Subcontainers?

Default Value

Meaning

virtual

virtual fill id id ...

virtual sfill id id ...

virtual rotate id id ...

virtual srotate id id ...

No

None

Specifies a virtual subnet with
a policy. fi11 means use all
addresses in the container
before going to the next
container. rotate means select
an address from the next pool
in the list on each request.
sfill and srotate are the
same as fill and rotate, but
a search is done to see if the
client matches containers,
vendors, or classes in the
subnet. If a match is found that
can supply an address, the
address is taken from that
container instead of following
the policy. There can be as
many IDs as needed. id is
either the subnet ID from the
subnet definition or the label
from the subnet definition. The
label is required if there are
multiple subnets with the same
subnet id.

inorder:

inorder: id id ...

No

None

Specifies a virtual subnet with
a policy of fill, which means
use all addresses in the
container before going to the
next container. There can be
as many IDs as needed. id is
either the subnet ID from the
subnet definition or the label
from the subnet definition. The
label is required if there are
multiple subnets with the same
subnet ID.

balance:

balance: id id ...

No

None

Specifies a virtual subnet with
a policy of rotate, which means
use the next address in the
next container. There can be
as many IDs as needed. idis
either the subnet ID from the
subnet definition or the label
from the subnet definition. The
label is required if there are
multiple subnets with the same
subnet ID.

bootstrapserver

bootstrapserver IP
address

No

None

Specifies the server clients
should use from which to
TFTP files after receiving
BOOTP or DHCP packets.
This value fills in the siaddr
field in the packet. This is valid
at any container level.

Chapter 3. Transmission Control Protocol/Internet Protocol 139

Keyword

Form

Subcontainers?

Default Value

Meaning

giaddrfield

giaddrfield /P address

No

None

Specifies the giaddrfield for
response packets.

Note: This specification
is illegal in the BOOTP
and DHCP protocols, but
some clients require the
giaddr field to be the
default gateway for the
network. Because of this
potential conflict,
giaddrfield should only
be used within a client
container, although it can
work at any level.

bootfile

bootfile path

No

None

Specifies the bootfile to use in
the file section of the response
packet. This can be specified
at any container level. The
bootfile policy defines how
items specified in the file
section of the incoming packet
interact with the bootfile and
the home directory statements.

pxebootfile

pxebootfile SystemArch
MajorVer MinorVer
Bootfilename Type
Layer

No

None

Specifies the bootfile to be
given to a PXECIient. The
config file parser generates an
error if the number of
parameters after the keyword
is less than 4 , ignore if more
than 7 and if 4 are there then
it assume the value for Type =
0 and Layer = 0. This keyword
can be used only in a
container.

For details about other options, see DHCP Server File Known Optiond and PXE Vendor Container
Buboptiond.

Configuring TCP/IP

If you installed the Transmission Control Protocol/Internet Protocol (TCP/IP) and Network File System
(NFS) software, you can configure your system to communicate over a network.

After you install TCP/IP and NFS software, use the Web-based System Manager, wsm, or the System
Management Interface Tool (SMIT) fast path, smit tepip, to configure your system. The online help guides
you through the process.

Prerequisites

The TCP/IP software must be installed. If you install TCP/IP software, you will have to install the TCP/IP
Optional Support software product.

You must have root authority to configure TCP/IP.

140 Communications and Networks

Updating the Hosts List

A name server is a machine on your network that stores the names and addresses of all the network

machines. The names are stored in a Hosts List. When one machine wants to communicate with another,

it sends that machine name to the name server. The name server refers to the Hosts List and responds

with the address of the machine name requested. Having a name server is an advantage because the

Hosts List is stored and updated at one location, but is accessible to all machines on the network. This

saves time and storage space.

* If you are using a name server for network communications, you do not need to perform this procedure.
You have finished configuring TCP/IP.

» If you are not using a nameserver for network communications, you must update the hosts list to

include the names of the systems on the network. With root authority, use the Web-based System
Manager, wsm, or the System Management Interface Tool (SMIT) fast path, smit hostent.

TCP/IP Daemons

Daemons (also known as servers) are processes that run continuously in the background and perform
functions required by other processes. Transmission Control Protocol/Internet Protocol (TCP/IP) provides
daemons for implementing certain functions in the operating system. These daemons are background
processes that run without interrupting other processes (unless that is part of the daemon function).

Daemons are invoked by commands at the system management level, by other daemons, or by shell
scripts. You can also control daemons with the inetd daemon, the re.tepip shell script, and the System
Resource Controller (SRC).

Subsystems and Subservers

A subsystem is a daemon, or server, that is controlled by the SRC. A subserver is a daemon that is
controlled by a subsystem. (Daemon commands and daemon names are usually denoted by a d at the
end of the name.) The categories of subsystem and subserver are mutually exclusive. That is, daemons
are not listed as both a subsystem and as a subserver. The only TCP/IP subsystem that controls other
daemons is the inetd daemon. All TCP/IP subservers are also inetd subservers.

The following are TCP/IP daemons controlled by the SRC:

Subsystems

E Provides gateway routing functions and supports the Routing Information Protocol (RIP), the
Routing Information Protocol Next Generation (RIPng), Exterior Gateway Protocol (EGP), the
Border Gateway Protocol (BGP) and BGP4+, the Defense Communications Network
Local-Network Protocol (HELLO), Open Shortest Path First (OSPF), Intermediate System to
Intermediate System (IS-IS), and Internet Control Message Protocol (ICMP and
ICMPv6)/Router Discovery routing protocols. In addition, the gated daemon supports the
Simple Network Management Protocol (SNMP). The gated daemon is one of two routing
daemons available for routing to network addresses and is the preferred routing daemon. The
gated daemon is preferred over the routed daemon because the gated daemon supports
more gateway protocols.

inetd Invokes and schedules other daemons when requests for the daemon services are received.
This daemon can also start other daemons. The inetd daemon is also known as the super
daemon.

m Provides interface-level packet-tracing function for Internet protocols.

hamed Provides the naming function for the Domain Name Server protocol (DOMAIN).

touted Manages the network routing tables and supports the Routing Information Protocol (RIP).
The gated daemon is preferred over the routed daemon because the gated daemon
supports more gateway protocols.

Chapter 3. Transmission Control Protocol/Internet Protocol 141

../../cmds/aixcmds2/gated.htm
../../cmds/aixcmds3/inetd.htm
../../cmds/aixcmds3/iptrace.htm
../../cmds/aixcmds4/named.htm
../../cmds/aixcmds4/routed.htm

Sends broadcasts to all other hosts every three minutes and stores information about
logged-in users and network status. Use the rwhod daemon with extreme care, because it
can use significant amounts of machine resources.

timed Provides the time server function.

Note: Both the routed and gated daemons are listed as TCP/IP subsystems. Do not run the
startsrc -g tcpip command, which initiates both of these routing daemons, along with all the other
TCP/IP subsystems. Running both daemons simultaneously on one machine can produce
unpredictable results.

TCP/IP daemons controlled by the inetd subsystem are the following:

inetd Subservers

Eomsal Notifies users of incoming mail.

@ Provides a status report on all logged-in users and network status at the specified remote
host. This daemon uses the Finger protocol.

@ Provides the file transfer function for a client process using the File Transfer Protocol
(FTP).

texecd Provides the foreign host server function for the rexec command.

m Provides the remote login facility function for the rlogin command.

kshd Provides the remote command execution server function for the recp and rsh commands.

talkd Provides the conversation function for the talk command.

w Reads and logs system messages. This daemon is in the Remote Access Service (RAS)
group of subsystems.

telnetd Provides the server function for the TELNET protocol.

m Provides the server function for the Trivial File Transfer Protocol (TFTP).

bwcpd Handles communications between the Basic Network Utilities (BNU) and TCP/IP.

System Resource Control (SRC)

Among other functions, SRC allows you to start daemons, stop them, and trace their activity. In addition,
SRC provides the ability to group daemons into subsystems and subservers.

System Resource Control is a tool designed to aid the person who manages your system in controlling
daemons. SRC allows control beyond the flags and parameters available with each daemon command.

See the System Resource Controller Overviewl in AIX 5L Version 5.1 System Management Concepts:

Operating System and Devices for more information concerning the System Resource Controller.

SRC Commands

SRC commands can affect one daemon, a group of daemons, or a daemon and those daemons it controls
(subsystem with subservers). In addition, some TCP/IP daemons do not respond to all SRC commands.
The following is a list of SRC commands that can be used to control TCP/IP daemons and their
exceptions.

Etartsrd Starts all TCP/IP subsystems and inetd subservers. The startsrc command works for all
TCP/IP subsystems and inetd subservers.
Etopsrd Stops all TCP/IP subsystems and inetd subservers. This command is also called the stop

normal command. The stop normal command allows subsystems to process all outstanding
work and terminate gracefully. For inetd subservers, all pending connections are allowed to
start and all existing connections are allowed to complete. The stop normal command works
for all TCP/IP subsystems and inetd subservers.

142 Communications and Networks

../../cmds/aixcmds4/rwhod.htm
../../cmds/aixcmds5/timed.htm
../../cmds/aixcmds1/comsat.htm
../../cmds/aixcmds2/fingerd.htm
../../cmds/aixcmds2/ftpd.htm
../../cmds/aixcmds4/rexecd.htm
../../cmds/aixcmds4/rlogind.htm
../../cmds/aixcmds4/rshd.htm
../../cmds/aixcmds5/talkd.htm
../../cmds/aixcmds5/syslogd.htm
../../cmds/aixcmds5/telnetd.htm
../../cmds/aixcmds5/tftpd.htm
../../cmds/aixcmds5/uucpd.htm
../../aixbman/admnconc/sys_res_overview.htm
../../cmds/aixcmds5/startsrc.htm
../../cmds/aixcmds5/stopsrc.htm

Stops all TCP/IP subsystems and inetd subservers. This command is also called the stop
force. The stop force command immediately terminates all subsystems. For inetd
subservers, all pending connections and existing connections are terminated immediately.
Refreshes the following subsystems and subservers: the inetd, syslogd, named, dhcpsd,
and gated subsystems.

Provides short status for subsystems, which is the state of the specified subsystem (active or
inoperative). Also provides short status for inetd subservers. The short status for inetd
subservers includes: subserver name, state, subserver description, command name, and the
arguments with which it was invoked.

Provides the short status plus additional information (long status) for the following
subsystems:

gated State of debug or trace, routing protocols activated, routing tables, signals accepted
and their function.

inetd State of debug, list of active subservers and their short status; signals accepted and
their function.

named State of debug, named.conf file information.

dhcpsd
State of debug, all controlled IP addresses and their current state.

routed State of debug and trace, state of supplying routing information, routing tables.

syslogd
syslogd configuration information.

The Issrc -1 command also provides long status for inetd subservers. The long status
includes short status information and active connection information. Some subservers will
provide additional information. The additional information by subserver includes:

ftpd State of debug and logging
telnetd Type of terminal emulating
rlogind State of debug

fingerd State of debug and logging

The rwhod and timed subservers do not provide long status.
Turns on socket-level debugging. Use the trpt command to format the output. The timed and
iptraced subsystems do not support the traceson command.
Turns off socket-level debugging. Use the trpt command to format the output. The timed and
iptraced subsystems do not support the tracesoff command.

For examples of how to use these commands, see the articles on the individual commands. For more

information on the System Resource Controller, see System Resource Controller Querview in AIX 5L

Version 5.1 System Management Concepts: Operating System and Devices.

Configuring the inetd Daemon

To configure the inetd daemon:
1. Specify which subservers it will be invokde by adding an inetd daemon.
2. Specify the restart characteristics by changing the restart characteristics of the inetd daemon.

Configuring the inetd Daemon Tasks

Task

SMIT Fast Path Command or File Web-based System
Manager Management
Environment

Chapter 3. Transmission Control Protocol/Internet Protocol 143

../../cmds/aixcmds5/stopsrc.htm
../../cmds/aixcmds4/refresh.htm
../../cmds/aixcmds3/lssrc.htm
../../cmds/aixcmds3/lssrc.htm
../../cmds/aixcmds5/traceson.htm
../../cmds/aixcmds5/tracesoff.htm
../../aixbman/admnconc/sys_res_overview.htm

Configuring the inetd Daemon Tasks

Starting the inetd Daemon

smit mkinetd

startsrc -s inetd

Software —> Network —>

TCPIP (IPv4 and IPv6) —>
Subsystems. Right-click on
an inactive subsystem, and
select Activate.

Changing Restart
Characteristics of the inetd
Daemon

smit chinetd or
smit Isinetd

Software —> Network —>
TCPIP (IPv4 and IPv6) —>
Subsystems —> Selected
—> Properties.

Stopping the inetd Daemon

smit rminetd

stopsrc -s inetd

Software —> Network —>
TCPIP (IPv4 and IPv6) —>
Subsystems. Right-click on
an active subsystem, and
select —> Deactivate.

Listing All inetd Subservers

smit inetdconf

Software —> Network —>
TCPIP (IPv4 and IPv6) —>
Subsystems.

Adding an inetd Subserver’

smit mkinetdconf

edit /etc/inetd.conf then
run refresh -s inetd
or kill -1 inetdPID?

Software —> Network —>
TCPIP (IPv4 and IPv6) —>
Subsystems —>
Subsystems (drop-down
menu) —> New inetd
Subserver.

Change/Show
Characteristics of an inetd
Subserver

smit inetdconf

edit /etc/inetd.conf then
run refresh -s inetd
or kill -1 inetdPID?

Software —> Network —>
TCPIP (IPv4 and IPv6) —>
Subsystems —> Selected
—> Properties.

Removing an inetd

smit rminetd

edit /etc/inetd.conf then

Software —> Network —>

Subserver run refresh -s inetd TCPIP (IPv4 and IPv6) —>
or kill -1 inetdPID? Subsystems —> Selected
—> Deactivate.
Notes:

1. Adding an inetd subserver configures the inetd daemon so that it invokes the subserver when it

is needed.

2. Both the kefresH and the kill commands inform the inetd daemon of changes to its configuration

file.

Client Network Services

Client Network Services (accessible using the Web-based System Manager wsm, or the SMIT fast path,
smit clientnet) refers to the TCP/IP protocols available for use by this operating system. Each protocol (or
service) is known by the port number that it uses on the network, hence the term well-known port. As a
convenience to programmers, the port numbers can be referred to by names as well as numbers. For
example, the TCP/IP mail protocol uses port 25 and is known by the name smtp. If a protocol is listed
(uncommented) in the /etc/services file, then a host can use that protocol.

By default, all the TCP/IP protocols are defined in the /etc/services file. You do not have to configure this
file. If you write your own client/server programs, you might want to add your service to the /etc/services

file, and reserve a specific port number and name for your service. If you do decide to add your service to
letc/services, note that port numbers 0 through 1024 are reserved for system use.

144 Communications and Networks

../../cmds/aixcmds4/refresh.htm
../../cmds/aixcmds3/kill.htm

Client Network Services Tasks

Task

SMIT Fast Path

Command or File

Web-based System
Manager Management
Environment

Listing All Services

smit Isservices

view /etc/services

Software —> Network —>
TCPIP (IPv4 and IPv6) —>
Services.

Adding a Service

smit mkservices

edit /etc/services

Software —> Network —>
TCPIP (IPv4 and IPv6) —>
Services —> New Service.

Change/Show
Characteristics of a Service

smit chservices

edit /etc/services

Software —> Network —>
TCPIP (IPv4 and IPv6) —>
Services. Select a service,
then click Selected —>
Properties.

Removing a Service

smit rmservices

edit /etc/services

Software —> Network —>
TCPIP (IPv4 and IPv6) —>
Services. Select a service,
then click Selected —>
Delete.

Server Network Services

Server Network Services include controlling remote access, starting or stopping TCP/IP, and managing the
pty device driver, as shown in the following table.

The pty device driver is installed automatically with the system. By default, it is configured to support 16
BSD-style symbolic links, and it is available for use by the system at boot time.

Server Network Services Tasks

Task

SMIT Fast Path

Command or File

Web-based System
Manager Management
Environment

Controlling Remote Access

See I'Bemote Command Execution Access| and

Software —> Network —>
TCPIP (IPv4 and IPv6) —>
Access Control. Right-click
on Remote Access and
select Properties.

Start, Restart, or Stop
TCP/IP Subsystems

smit otherserv

Software —> Network —>
TCPIP (IPv4 and IPv6) —>
Subsystems. Right-click on
a subsystem, and select
Properties.

Change/Show
Characteristics of the pty
Device Driver

smit chgpty

chdev -l pty0 -P -a num=X
where X ranges from 0 to
64

Make the pty Device Driver
Unavailable for Use

smit pty then select
Remove the PTY; Keep
Definition

Make the pty Device Driver
Available for Use

smit pty then select
Configure the Defined
PTY

Generate an Error Report

smit errpt

Chapter 3. Transmission Control Protocol/Internet Protocol

145

Server Network Services Tasks

Trace the pty |smit trace

TCP/IP Name Resolution

Although 32-bit Internet addresses provide machines an efficient means of identifying the source and
destination of datagrams sent across an internetwork, users prefer meaningful, easily remembered names.
Transmission Control Protocol/Internet Protocol (TCP/IP) provides a naming system that supports both flat
and hierarchical network organizations.

The topics discussed in this section are:

Naming

Naming in flat networks is very simple. Host names consist of a single set of characters and generally are
administered locally. In flat TCP/IP networks, each machine on the network has a file (/etc/hosts)
containing the name-to-Internet-address mapping information for every host on the network. The
administrative burden of keeping each machine naming file current grows as the TCP/IP network grows.
When TCP/IP networks become very large, as on the Internet, naming is divided hierarchically. Typically,
the divisions follow the network organization. In TCP/IP, hierarchical naming is known as the domain name
system (DNS) and uses the DOMAIN protocol. The DOMAIN protocol is implemented by the nhamed
daemon in TCP/IP.

As in naming for flat networks, the domain name hierarchy provides for the assignment of symbolic names
to networks and hosts that are meaningful and easy for users to remember. However, instead of each
machine on the network keeping a file containing the name-to-address mapping for all other hosts on the
network, one or more hosts are selected to function as name servers. Name servers translate (resolve)
symbolic names assigned to networks and hosts into the efficient Internet addresses used by machines. A
name server has complete information about some part of the domain, referred to as a zone, and it has
authority for its zone.

Naming Authority

In a flat network, all hosts in the network are administered by one central authority. This form of network
requires that all hosts in the network have unique host names. In a large network, this requirement creates
a large administrative burden on the central authority.

In a domain network, groups of hosts are administered separately within a tree-structured hierarchy of
domains and subdomains. In this case, host names need to be unique only within the local domain, and
only the root domain is administered by a central authority. This structure allows subdomains to be
administered locally and reduces the burden on the central authority. For example, the root domain of the
Internet consists of such domains as com (commercial organizations), edu (educational organizations), gov

146 Communications and Networks

(governmental organizations), and mi1 (military groups). New top-level domains can only be added by the
central authority. Naming at the second level is delegated to designated agents within the respective
domains. For example, in the following figure, com has naming authority for all commercial organization
subdomains beneath it. Likewise, naming at the third level (and so on) is delegated to agents within that
level. For example, in the Domain Structure of the Internet figure, Century has naming authority for its
subdomains Austin, Hopkins, and Charlotte.

ROOT
MIL COM EDU
Century
Charlotte Austin Hopkins
Dev Graphics

Figure 23. Domain Structure of the Internet. This figure illustrates the hierarchical structure of the internet. It begins at
the top with the root and branches to the next level containing the mil, com, and edu domains. Below the com domain
is another level containing Charlotte, Austin, and Hopkins. Below Austin is Dev and Graphics.

Century’s Austin subdomain might also be divided into zones, for example, Dev and Graphics. In this case,
the zone austin.century.com has all the data contained in the domain austin.century.com, except that
which was delegated to Dev and Graphics. The zone dev.century.com would contain only the data
delegated to Dev; it would know nothing about Graphics, for example. The zone austin.century.com (as
opposed to the domain of the same name) would contain only that data not delegated to other zones.

Naming Conventions

In the hierarchical domain name system, names consist of a sequence of case-insensitive subnames
separated by periods with no embedded blanks. The DOMAIN protocol specifies that a local domain name
must be fewer than 64 characters and that a host name must be fewer than 32 characters in length. The
host name is given first, followed by a period (.), a series of local domain names separated by periods,
and finally the root domain. A fully specified domain name for a host, including periods, must be fewer than
255 characters in length and in the following form:

host.subdomainl.[subdomain2 . . . subdomain].rootdomain
Since host names must be unique within a domain, you can use an abbreviated name when sending
messages to a host within the same domain. For example, instead of sending a message to

smith.eng.1su.edu, a host in the eng domain could send a message to smith. Additionally, each host can
have several aliases that other hosts can use when sending messages.

Chapter 3. Transmission Control Protocol/Internet Protocol 147

Choosing Names for the Hosts on Your Network

The purpose of using names for hosts is to provide a quick, easy, and unambiguous way to refer to the
computers in your network. Internet system administrators have discovered that there are good, as well as
poor, choices for host names. These suggestions are intended to help you avoid common pitfalls in
choosing host names.

The following are some suggestions for choosing unambiguous, easy to remember host names:

» Terms that are rarely used, for example, sphinx or eclipse.

* Theme names, such as colors, elements (for example, helium, argon, or zinc), flowers, fish, and others.
* Real words (as opposed to random strings of characters).

The following are some examples of poor choices. In general, these are poor choices because they are
difficult to remember or are confusing (either to humans or computers):

» Terms that are already in common use, for example, up, down, or crash.
* Names containing only numbers.

* Names that contain punctuation marks.

* Names that rely on case distinction, for example, Orange and orange.

* The name or initials of the primary user of the system.

* Names having more than 8 characters.

» Unusual or purposefully incorrect spellings, for example, czek, which could be confused with "check” or
"czech.”

* Names that are, or resemble, domain names, for example, yale.edu.
Name Servers

In a flat name space, all names must be kept in the /etc/hosts file on each host on the network. If the
network is very large, this can become a burden on the resources of each machine.

In a hierarchical network, certain hosts designated as name servers resolve names into Internet addresses
for other hosts. This has two advantages over the flat name space. It keeps the resources of each host on
the network from being tied up in resolving names, and it keeps the person who manages the system from
having to maintain name resolution files on each machine on the network. The set of names managed by
a single name server is known as its zone of authority.

Note: Although the host machine that performs the name resolution function for a zone of authority is
commonly referred to as a name server host, the process controlling the function, the named
daemon, is the actual name server process.

To further reduce unnecessary network activity, all name servers cache (store for a period of time)
name-to-address mappings. When a client asks a server to resolve a name, the server checks its cache
first to see if the name has been resolved recently. Because domain and host names do change, each
item remains in the cache for a limited length of time specified by the TTL of the record. In this way,
authorities can specify how long they expect the name resolution to be accurate.

Within any autonomous system there can be multiple name servers. Typically, name servers are organized
hierarchically and correspond to the network organization. Referring to the "Domain Structure of the
Internet” figure, each domain might have a name server responsible for all subdomains within the domain.
Each subdomain name server communicates with the name server of the domain above it (called the
parent name server), as well as with the name servers of other subdomains.

148 Communications and Networks

ROOT

MIL COM EDU
Century
Charlotte Austin Hopkins
Dev Graphics

Figure 24. Domain Structure of the Internet. This figure illustrates the hierarchical structure of the internet. It begins at
the top with the root and branches to the next level containing the mil, com, and edu domains. Below the com domain
is another level containing Charlotte, Austin, and Hopkins. Below Austin is Dev and Graphics.

For example, in the "Domain Structure of the Internet” figure, Austin, Hopkins, and Charlotte are all
subdomains of the domain Century. If the tree hierarchy is followed in the network design, the Austin name
server communicates with the name servers of Charlotte and Hopkins as well as with the parent Century
name server. The Austin name server also communicates with the name servers responsible for its
subdomains.

There are several types of name servers:

Master Name Server Loads its data from a file or disk and can delegate authority to
other servers in its domain.
Slave Name Server Receives its information at system startup time for the given zone

of authority from a master name server, and then periodically asks
the master server to update its information. On expiration of the
refresh value in the start of authority (SOA) Resource Record on
a slave name server, or on receipt of a Notify message from the
master name server, the slave reloads the database from the
master if the serial number of the database on the master is
greater than the serial number in the current database on the
slave. If it becomes necessary to force a new zone transfer from
the master, simply remove the existing slave databases and
refresh the named daemon on the slave name server.

Stub Name Server Although its method of database replication is similar to that of the
slave name server, the stub name server only replicates the name
server records of the master database rather than the whole
database.

Hint Server Indicates a name server that relies only on the hints that it has
built from previous queries to other name servers. The hint name
server responds to queries by asking other servers that have the
authority to provide the information needed if a hint name server
does not have a name-to-address mapping in its cache.

Chapter 3. Transmission Control Protocol/Internet Protocol 149

Forwarder or Client Server Forwards queries it cannot satisfy locally to a fixed list of
forwarding servers. Forwarding-only servers (a forwarder that
obtains information and passes it on to other clients, but that is
not actually a server) does not interact with the master name
servers for the root domain and other domains. The queries to the
forwarding servers are recursive. There can be one or more
forwarding servers, which are tried in turn until the list is
exhausted. A client and forwarder configuration is typically used
when you do not want all the servers at a given site to interact
with the rest of the Internet servers, or when you want to build a
large cache on a select number of name servers.

Remote Server Runs all the network programs that use the name server without
the name server process running on the local host. All queries are
serviced by a name server that is running on another machine on
the network.

One name server host can perform in different capacities for different zones of authority. For example, a
single name server host can be a master name server for one zone and a slave name server for another
zone.

Name Resolution

The process of obtaining an Internet address from a host name is known as name resolution and is done
by the gethostbyname subroutine. The process of translating an Internet address into a host name is
known as reverse name resolution and is done by the gethostbyaddr subroutine. Thes