
X11 NONRECTANGULAR WINDOW SHAPE EXTENSION

Version 1.0
X Consortium Standard

X Version 11, Release 6.1

Keith Packard

MIT X Consortium

Copyright © 1989 X Consortium

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documenta-
tion files (the ‘‘Software’’), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Soft-
ware.

THE SOFTWARE IS PROVIDED ‘‘AS IS’’, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTIC-
ULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTH-
ERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be used in advertising or otherwise to pro-
mote the sale, use or other dealings in this Software without prior written authorization from the X Consortium.

1. Overview

This extension provides arbitrary window and border shapes within the X11 protocol.

The restriction of rectangular windows within the X protocol is a significant limitation in the implementa-
tion of many styles of user interface. For example, many transient windows would like to display a ‘‘drop
shadow’’ to giv e the illusion of 3 dimensions. As another example, some user interface style guides call for
buttons with rounded corners; the full simulation of a nonrectangular shape, particularly with respect to
ev ent distribution and cursor shape, is not possible within the core X protocol. As a final example, round
clocks and nonrectangular icons are desirable visual addition to the desktop.

This extension provides mechanisms for changing the visible shape of a window to an arbitrary, possibly
disjoint, nonrectangular form. The intent of the extension is to supplement the existing semantics, not
replace them. In particular, it is desirable for clients which are unaware of the extension to still be able to
cope reasonably with shaped windows. For example, window managers should still be able to negotiate
screen real-estate in rectangular pieces. To ward this end, any shape specified for a window is clipped by
the bounding rectangle for the window as specified by the window’s geometry in the core protocol. An
expected convention would be that client programs expand their shape to fill the area offered by the window
manager.

2. Description

Each window (ev en with no shapes specified) is defined by two regions: thebounding regionand theclip
region. The bounding region is the area of the parent window which the window will occupy (including
border). The clip region is the subset of the bounding region which is available for sub-windows and graph-
ics. The area between the bounding region and the clip region is defined to be the border of the window.

A non-shaped window will have a bounding region which is a rectangle spanning the window including its
border; the clip region will be a rectangle filling the inside dimensions (not including the border). In this
document, these areas are referred to as thedefault bounding regionand thedefault clip region. For a
window with inside size ofwidthby heightand border widthbwidth, the default bounding and clip regions
are the rectangles (relative to the window origin):

bounding.x = -bwidth
bounding.y = -bwidth
bounding.width =width+ 2 * bwidth
bounding.height =height+ 2 * bwidth

clip.x = 0
clip.y = 0
clip.width =width
clip.height =height

This extension allows a client to modify either or both of the bounding or clip regions by specifying new
regions which combine with the default regions. These new regions are called theclient bounding region
and theclient clip region. They are specified relative to the origin of the window, and are always defined
by offsets relative to the window origin (that is, region adjustments are not required when the window is
moved). Three mechanisms for specifying regions are provided: a list of rectangles, a bitmap, and an
existing bounding or clip region from a window. This is modeled on the specification of regions in graphics
contexts in the core protocol, and allows a variety of different uses of the extension.

When using an existing window shape as an operand in specifying a new shape, the client region is used,
unless none has been set in which case the default region is used instead.

Theeffective bounding regionof a window is defined to be the intersection of the client bounding region
with the default bounding region. Any portion of the client bounding region which is not included in the
default bounding region will not be included in the effective bounding region on the screen. This means
that window managers (or other geometry managers) used to dealing with rectangular client windows will
be able to constrain the client to a rectangular area of the screen.

1

X11 Nonrectangular Window Shape Extension

Construction of the effective bounding region is dynamic; the client bounding region is not mutated to
obtain the effective bounding region. If a client bounding region is specified which extends beyond the cur-
rent default bounding region, and the window is later enlarged, the effective bounding region will be
enlarged to include more of the client bounding region.

Theeffective clip regionof a window is defined to be the intersection of the client clip region with both the
default clip region and the client bounding region. Any portion of the client clip region which is not
included in both the default clip region and the client bounding region will not be included in the effective
clip region on the screen.

Construction of the effective clip region is dynamic; the client clip region is not mutated to obtain the effec-
tive clip region. If a client clip region is specified which extends beyond the current default clip region, and
the window or its bounding region is later enlarged, the effective clip region will be enlarged to include
more of the client clip region if it is included in the effective bounding region.

The border of a window is defined to be the difference between the effective bounding region and the effec-
tive clip region. If this region is empty, no border is displayed. If this region is non-empty, the border is
filled using the border-tile or border-pixel of the window as specified in the core protocol. Note that a win-
dow with a nonzero border width will never be able to draw beyond the default clip region of the window.
Also note that a zero border width does not prevent a window from having a border, since the clip shape
can still be made smaller than the bounding shape.

All output to the window, and visible regions of any subwindows, will be clipped to the effective clip
region. The server must not retain window contents beyond the effective bounding region with backing
store. The window’s origin (for graphics operations, background tiling, and subwindow placement) is not
affected by the existence of a bounding region or clip region.

Areas which are inside the default bounding region but outside the effective bounding region are not part of
the window; these areas of the screen will be occupied by other windows. Input ev ents which occur within
the default bounding region but outside the effective bounding region will be delivered as if the window
was not occluding the event position. Events which occur in a nonrectangular border of a window will be
delivered to that window, just as for events which occur in a normal rectangular border.

An InputOnly window can have its bounding region set, but it is aMatch error to attempt to set a clip
region on an InputOnly window, or to specify its clip region as a source to a request in this extension.

The server must accept changes to the clip region of a root window, but the server is permitted to ignore
requested changes to the bounding region of a root window. If the server accepts bounding region changes,
the contents of the screen outside the bounding region are implementation dependent.

3. Types

The following types are used in the request and event definitions in subsequent sections.

SHAPE_KIND: {Bounding, Clip }

SHAPE_OP: {Set, Union, Intersect, Subtract, Invert }

Set means that the region specified as an explicit source in the request is stored unaltered as the new desti-
nation client region.Union means that the source and destination regions are unioned together to produce
the new destination client region.Intersect means that the source and destination regions are intersected
together to produce the new destination client region.Subtract means that the source region is subtracted
from the destination region to produce the new destination region.Invert means that the destination region
is subtracted from the source region to produce the new destination region.

4. Requests

ShapeQueryVersion

=>

majorVersion: CARD16
minorVersion: CARD16

2

X11 Nonrectangular Window Shape Extension

This request can be used to ensure that the server version of the SHAPE extension is usable by the
client. This document defines major version one (1), minor version zero (0).

ShapeRectangles

dest: WINDOW
destKind: SHAPE_KIND
op: SHAPE_OP
xOff, yOff: INT16
rectangles: LISTofRECTANGLES
ordering: {UnSorted, YSorted, YXSorted, YXBanded}

Errors:Window , Length, Match , Value

This request specifies an array of rectangles, relative to the origin of the window plus the specified
offset (xOffandyOff) which together define a region. This region is combined (as specified by the
operatorop) with the existing client region (specified bydestKind) of the destination window, and the
result is stored as the specified client region of the destination window. Note that the list of rectan-
gles can be empty, specifying an empty region; this is not the same as passingNone to ShapeMask.

If known by the client, ordering relations on the rectangles can be specified with the ordering argu-
ment. This may provide faster operation by the server. The meanings of the ordering values are the
same as in the core protocolSetClipRectanglesrequest. If an incorrect ordering is specified, the
server may generate aMatch error, but it is not required to do so. If no error is generated, the graph-
ics results are undefined. Except forUnSorted, the rectangles should be nonintersecting, or the
resulting region will be undefined.UnSorted means that the rectangles are in arbitrary order.
YSorted means that the rectangles are nondecreasing in their Y origin.YXSorted additionally con-
strainsYSorted order in that all rectangles with an equal Y origin are nondecreasing in their X ori-
gin. YXBanded additionally constrainsYXSorted by requiring that, for every possible Y scanline,
all rectangles that include that scanline have identical Y origins and Y extents.

ShapeMask

dest: WINDOW
destKind: SHAPE_KIND
op: SHAPE_OP
xOff, yOff: INT16
source: PIXMAP or None

Errors:Window , Pixmap, Match , Value

The source in this request is a 1-bit deep pixmap, orNone. If sourceis None, the specified client
region is removed from the window causing the effective region to revert to the default region. The
ShapeNotify event generated by this request and subsequent ShapeQueryExtents will report that a
client shape has not been specified. If a valid pixmap is specified, it is converted to a region, with
bits set to one included in the region and bits set to zero excluded, and an offset from the window ori-
gin as specified byxOffandyOff. The resulting region is then combined (as specified by the operator
op) with the existing client region (indicated bydestKind) of the destination window, and the result is
stored as the specified client region of the destination window. The source pixmap and destination
window must have been created on the same screen or else aMatch error results.

ShapeCombine

dest: WINDOW
destKind: SHAPE_KIND
op: SHAPE_OP
xOff, yOff: INT16
source: WINDOW
sourceKind: SHAPE_KIND

Errors:Window , Match , Value

The client region, indicated bysourceKind, of the source window is offset from the window origin by
xOffandyOffand combined with the client region, indicated bydestKind, of the destination window.

3

X11 Nonrectangular Window Shape Extension

The result is stored as the specified client region of the destination window. The source and destina-
tion windows must be on the same screen or else aMatch error results.

ShapeOffset

dest: WINDOW
destKind: SHAPE_KIND
xOff, yOff: INT16

Errors:Window , Match , Value

The client region, indicated bydestKind, is moved relative to its current position by the amountsxOff
andyOff.

ShapeQueryExtents

dest: WINDOW

=>

boundingShaped: BOOL
clipShaped: BOOL
xBoundingShape: INT16
yBoundingShape: INT16
widthBoundingShape: CARD16
heightBoundingShape: CARD16
xClipShape: INT16
yClipShape: INT16
widthClipShape: CARD16
heightClipShape: CARD16

Errors:Window

TheboundingShapedandclipShapedresults areTrue if the corresponding client regions have been
specified, else they areFalse. The x, y, width, and height values define the extents of the client
regions, when a client region has not been specified, the extents of the corresponding default region
are reported.

ShapeSelectInput

window: WINDOW
enable: BOOL

Errors:Window , Value

SpecifyingenableasTrue causes the server to send the requesting client aShapeNotify ev ent
whenever the bounding or clip region of the specified window is altered by any client. Specifying
enableasFalsecauses the server to stop sending such events.

ShapeInputSelected

window: WINDOW

=>

enable: BOOL

Errors:Window

If enableis True thenShapeNotify ev ents for the window are generated for this client.

ShapeGetRectangles

window: WINDOW
kind: SHAPE_KIND

=>

rectangles: LISTofRECTANGLE
ordering: {UnSorted, YSorted, YXSorted, YXBanded}

4

X11 Nonrectangular Window Shape Extension

Errors:Window, Match

A list of rectangles describing the region indicated bykind, and the ordering of those rectangles, is
returned. The meaning of theorderingvalues is the same as in theShapeRectanglesrequest.

5. Events

ShapeNotify

window: WINDOW
kind: SHAPE_KIND
shaped: BOOL
x, y: INT16
width, height: CARD16
time: TIMESTAMP

Whenever the client bounding or clip shape of a window is modified, aShapeNotify ev ent is sent to
each client which has usedShapeSelectInputto request it.

kind indicates which client region (bounding or clip) has been modified.shapedis True when the
window has a client shape of typekind, and isFalsewhen the window no longer has a client shape
of this type.x, y, widthandheightindicate the extents of the current shape. Whenshapedis False
these will indicate the extents of the default region. The timestamp indicates the server time when
the shape was changed.

6. Encoding

Please refer to the X11 Protocol Encoding document as this document uses conventions established there.

The name of this extension is ‘‘SHAPE’’.

New types

SHAPE_KIND
0 Bounding
1 Clip

SHAPE_OP
0 Set
1 Union
2 Intersect
3 Subtract
4 Inv ert

Requests

ShapeQueryVersion
1 CARD8 opcode
1 0 shape opcode
2 1 request length

=>
1 1 Reply
1 unused
2 CARD16 sequence number
4 0 length
2 CARD16 major version
2 CARD16 minor version
20 unused

5

X11 Nonrectangular Window Shape Extension

ShapeRectangles
1 CARD8 opcode
1 1 shape opcode
2 4+2n request length
1 SHAPE_OP operation
1 SHAPE_KIND destination kind
1 ordering

0 UnSorted
1 YSorted
2 YXSorted
3 YXBanded

1 unused
4 WINDOW destination window
2 INT16 x offset
2 INT16 y offset
8n LISTofRECTANGLE rectangles

ShapeMask
1 CARD8 opcode
1 2 shape opcode
2 5 request length
1 SHAPE_OP operation
1 SHAPE_KIND destination kind
2 unused
4 WINDOW destination window
2 INT16 x offset
2 INT16 y offset
4 PIXMAP source bitmap

0 None

ShapeCombine
1 CARD8 opcode
1 3 shape opcode
2 5 request length
1 SHAPE_OP operation
1 SHAPE_KIND destination kind
1 SHAPE_KIND source kind
1 unused
4 WINDOW destination window
2 INT16 x offset
2 INT16 y offset
4 WINDOW source window

ShapeOffset
1 CARD8 opcode
1 4 shape opcode
2 4 request length
1 SHAPE_KIND destination kind
3 unused
4 WINDOW destination window
2 INT16 x offset
2 INT16 y offset

6

X11 Nonrectangular Window Shape Extension

ShapeQueryExtents
1 CARD8 opcode
1 5 shape opcode
2 2 request length
4 WINDOW destination window

=>
1 1 Reply
1 unused
2 CARD16 sequence number
4 0 reply length
1 BOOL bounding shaped
1 BOOL clip shaped
2 unused
2 INT16 bounding shape extents x
2 INT16 bounding shape extents y
2 CARD16 bounding shape extents width
2 CARD16 bounding shape extents height
2 INT16 clip shape extents x
2 INT16 clip shape extents y
2 CARD16 clip shape extents width
2 CARD16 clip shape extents height
4 unused

ShapeSelectInput
1 CARD8 opcode
1 6 shape opcode
2 3 request length
4 WINDOW destination window
1 BOOL enable
3 unused

ShapeInputSelected
1 CARD8 opcode
1 6 shape opcode
2 2 request length
4 WINDOW destination window

=>
1 1 Reply
1 BOOL enabled
2 CARD16 sequence number
4 0 reply length
24 unused

ShapeGetRectangles
1 CARD8 opcode
1 7 shape opcode
2 3 request length
4 WINDOW window
1 SHAPE_KIND source kind
3 unused

=>

7

X11 Nonrectangular Window Shape Extension

1 1 Reply
1 ordering

0 UnSorted
1 YSorted
2 YXSorted
3 YXBanded

2 CARD16 sequence number
4 2n reply length
4 CARD32 nrects
20 unused
8n LISTofRECTANGLE rectangles

Events

ShapeNotify
1 CARD8 type (0 + extension event base)
1 SHAPE_KIND shape kind
2 CARD16 sequence number
4 WINDOW affected window
2 INT16 x value of extents
2 INT16 y value of extents
2 CARD16 width of extents
2 CARD16 height of extents
4 TIMESTAMP server time
1 BOOL shaped
11 unused

7. C Language Binding

The C routines provide direct access to the protocol and add no additional semantics.

The include file for this extension is <X11/extensions/shape.h>. The defined shape kinds areShape-
Bounding andShapeClip. The defined region operations areShapeSet, ShapeUnion, ShapeIntersect,
ShapeSubtract, andShapeInvert.

Bool
XShapeQueryExtension (display, event_base, error_base)

Display *display;
int *event_base; /* RETURN */
int *error_base; /* RETURN */

ReturnsTrue if the specified display supports the SHAPE extension elseFalse. If the extension is
supported, *event_base is set to the event number forShapeNotify ev ents and *error_base would be
set to the error number for the first error for this extension. As no errors are defined for this version
of the extension, the value returned here is not defined (nor useful).

Status
XShapeQueryVersion (display, major_version, minor_version)

Display *display;
int *major_version, *minor_version; /* RETURN */

If the extension is supported, the major and minor version numbers of the extension supported by the
display are set and a non-zero value is returned. Otherwise the arguments are not set and 0 is
returned.

XShapeCombineRegion (display, dest, dest_kind, x_off, y_off, region, op)
Display *display;
Window dest;

8

X11 Nonrectangular Window Shape Extension

int dest_kind, op, x_off, y_off;
REGION *region;

Converts the specified region into a list of rectangles and callsXShapeCombineRectangles.

XShapeCombineRectangles (display, dest, dest_kind, x_off, y_off, rectangles, n_rects, op, ordering)
Display *display;
Window dest;
int dest_kind, n_rects, op, x_off, y_off, ordering;
XRectangle *rectangles;

If the extension is supported, performs a ShapeRectangles operation; otherwise, the request is
ignored.

XShapeCombineMask (display, dest, dest_kind, x_off, y_off, src, op)
Display *display;
Window dest;
int dest_kind, op, x_off, y_off;
Pixmap src;

If the extension is supported, performs a ShapeMask operation; otherwise, the request is ignored.

XShapeCombineShape (display, dest, dest_kind, x_off, y_off, src, src_kind, op)
Display *display;
Window dest, src;
int dest_kind, src_kind, op, x_off, y_off;

If the extension is supported, performs a ShapeCombine operation; otherwise, the request is ignored.

XShapeOffsetShape (display, dest, dest_kind, x_off, y_off)
Display *display;
Window dest;
int dest_kind, x_off, y_off;

If the extension is supported, performs an ShapeOffset operation; otherwise, the request is ignored.

Status XShapeQueryExtents (display, window, bounding_shaped, x_bounding, y_bounding, w_bounding,
h_bounding, clip_shaped, x_clip, y_clip, w_clip, h_clip)

Display *display;
Window window;
Bool *bounding_shaped, *clip_shaped; /* RETURN */
int *x_bounding, *y_bounding, *x_clip, *y_clip; /* RETURN */
unsigned int *w_bounding, *h_bounding, *w_clip, *h_clip; /* RETURN */

If the extension is supported, x_bounding, y_bounding, w_bounding, h_bounding are set to the
extents of the bounding shape, and x_clip, y_clip, w_clip, h_clip are set to the extents of the clip
shape. For unspecified client regions, the extents of the corresponding default region are used.

If the extension is supported a non-zero value is returned; otherwise, 0 is returned.

XShapeSelectInput (display, window, mask)
Display *display;
Window window;
unsigned long mask;

To make this extension more compatible with other interfaces, although only one event type can be
selected via the extension, this C interface provides a general mechanism similar to the standard Xlib
binding for window events. A mask value has been defined,ShapeNotifyMask, which is the only
valid bit inmaskwhich may be specified. The structure for this event is defined as follows:

typedef struct {
int type; /* of event */
unsigned long serial; /* # of last request processed by server */
Bool send_event; /* true if this came frome a SendEvent request */
Display *display; /* Display the event was read from */

9

X11 Nonrectangular Window Shape Extension

Window window; /* window of event */
int kind; /* ShapeBounding or ShapeClip */
int x, y; /* extents of new region */
unsigned width, height;
Time time; /* server timestamp when region changed */
Bool shaped; /* true if the region exists */

} XShapeEvent;

unsigned long
XShapeInputSelected (display, window)

Display *display
Window window;

This returns the current input mask for extension events on the specified window; the value returned
if ShapeNotify is selected for isShapeNotifyMask, otherwise it returns zero.

If the extension is not supported, 0 is returned.

XRectangle *
XShapeGetRectangles (display, window, kind, count, ordering)

Display *display;
Window window;
int kind;
int *count; /* RETURN */
int *ordering; /* RETURN */

If the extension is not supported, NULL is returned. Otherwise, a list of rectangles describing the
region specified bykind is returned.

8. Glossary

bounding region
The area of the parent window which this window will occupy. This area is divided into two parts:
the border and the interior.

clip region
The interior of the window, as a subset of thebounding region. This region describes the area which
will be painted with the window background when the window is cleared, will contain all graphics
output to the window, and will clip any subwindows.

default bounding region
The rectangular area, as described by the core protocol window size, which covers the interior of the
window and its border.

default clip region
The rectangular area as described by the core protocol window size which covers the interior of the
window and excludes the border.

client bounding region
The region associated with a window which is directly modified via this extension when specified by
ShapeBounding. This region is used in conjunction with thedefault bounding regionto produce the
effective bounding region.

client clip region
The region associated with a window which is directly modified via this extension when specified by
ShapeClip. This region is used in conjunction with thedefault clip region and theclient bounding
region to produce theeffective clip region.

effective bounding region
The actual shape of the window on the screen, including border and interior (but excluding the effects
of overlapping windows). When a window has a client bounding region, the effective bounding
region is the intersection of the default bounding region and the client bounding region. Otherwise,

10

X11 Nonrectangular Window Shape Extension

the effective bounding region is the same as the default bounding region.

effective clip region
The actual shape of the interior of the window on the screen (excluding the effects of overlapping
windows). When a window has a client clip region or a client bounding region, the effective clip
region is the intersection of the default clip region, the client clip region (if any) and the client bound-
ing region (if any). Otherwise, the effective clip region is the same as the default clip region.

11

