
X11 Input Extension Library Specification

X Consortium Standard

X Version 11, Release 6.1

Mark Patrick Ardent Computer

George Sachs Hewlett-Packard

Copyright 1989, 1990, 1991 byHewlett-Packard Company, Ardent Computer.

Permission to use, copy, modify, and distribute this documentation for any purpose and without fee
is hereby granted, provided that the above copyright notice and this permission notice appear in all
copies. Ardent, and Hewlett-Packard make no representations about the suitability for any purpose
of the information in this document. It is provided ``as is’’ without express or implied warranty.

Copyright (c) 1989, 1990, 1991, 1992 X Consortium

Permission is hereby granted, free of charge, to any person obtaining acopy of this software and
associated documentation files (the ‘‘Software’’), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED ‘‘AS IS’’, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGE-
MENT. IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT
OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE
OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be used in advertising
or otherwise to promote the sale, use or other dealings in this Software without prior written
authorization from the X Consortium.

X Window Systemis a trademark of X Consortium, Inc.

1. Input Extension Overview
This document describes an extension to the X11 server. The purpose of this extension is to sup-
port the use of additionalinput devicesbeyond the pointer and keyboarddevices defined by the
core X protocol. This first section gives an overview of theinput extension. The followingsec-
tions correspond to chapters 7 and 8, "Window Manager functions" and "Events and Event-
Handling Functions" of the "Xlib - C Language Interface" manual and describe how to use the
input extension.

1.1. Design Approach
The design approach of the extension is to define functions and events analogous to the core func-
tions and events. This allows extensioninput devices and events to be individually distinguishable
from each other and from the coreinput devices and events . These functions and events make use
of a device identifier and support the reporting of n-dimensional motion data as well as other data
that is not currently reportable via the coreinputevents.

1.2. Core Input Devices
The X server core protocol supports twoinput devices: a pointer and a keyboard. The pointerdev-
ice has two major functions. First, it may be used to generate motion information that client pro-
grams can detect. Second, it may also be used to indicate the current location and focus of the X
keyboard. To accomplish this, the server echoes a cursor at the current position of the X pointer.
Unless the X keyboard has been explicitly focused, this cursor also shows the current location and
focus of the X keyboard.

The X keyboard is used to generateinput that client programs can detect.

The X keyboard and X pointer are referred to in this document as thecore devices, and the input
events they generate (KeyPress, KeyRelease, ButtonPress, ButtonRelease, andMotionNotify)
are known as thecoreinput events. All other input devices are referred to asextension inputdev-
icesand the inputevents they generate are referred to asextension inputevents. This input exten-
sion does not change the behavior or functionality of the coreinput devices, core events, or core
protocol requests, with the exception of the core grab requests. These requests may affect the syn-
chronization of events from extension devices. See the explanation in the section titled "Event
Synchronization and Core Grabs".

Selection of the physical devices to be initially used by the server as the core devices is left
implementation-dependent. Functions are defined that allow client programs to change whichphy-
sical devices are used as the core devices.

1.3. Extension Input Devices
The input extension controlsaccess toinput devices other than the X keyboard and X pointer. It
allows client programs to selectinput from these devices independently from each other and
independently from the core devices.Input events from these devices are of extension types (Dev-
iceKeyPress, DeviceKeyRelease, DeviceButtonPress, DeviceButtonRelease, DeviceMotionNo-
tify , etc.) and contain a device identifier so that events of the same type coming from different
inputdevices can be distinguished.

Extension inputevents are not limited in size by the size of the server 32-byte wire events. Exten-
sioninput events may be constructed by the server sending as many wire sized events as necessary
to return the information required for that event. The library event reformatting routines are
responsible for combining these into one or more client XEvents.

Any input device that generates key,button or motiondata may be used as an extensioninput dev-
ice. Extensioninput devices may have 0 or more keys, 0 or more buttons, and may report 0 or
more axes of motion. Motion may be reported as relative movements from a previous position or
as an absolute position. All valuators reporting motion information for a given extension input
device must report the samekind of motion information (absolute or relative).

1

X Input Extension Library Specification X11, Release 6.1

This extension is designed to accommodate new types ofinput devices that may be added in the
future. The protocol requests that refer to specific characteristics ofinput devices organize that
information byinput device classes. Server implementors may add new classes ofinput devices
without changing the protocol requests.

All extension inputdevices are treated like the core X keyboard in determining their location and
focus. The server does not track the location of these devices on an individual basis, and therefore
does not echo a cursor to indicate their current location. Instead, their location is determined by
the location of the core X pointer. Like the core X keyboard, some may be explicitly focused. If
they are not explicitly focused, their focus is determined by the location of the core X pointer.

1.3.1. Input Device Classes
Some of theinput extension requests divide inputdevices into classes based on their functionality.
This is intended to allow new classes ofinput devices to be defined at a later time without chang-
ing the semantics of these functions. The followinginputdevice classes are currently defined:

KEY The device reports key events.

BUTTON
The device reportsbuttonevents.

VALUATOR
The device reports valuator data in motion events.

PROXIMITY
The device reports proximity events.

FOCUS
The device can be focused.

FEEDBACK
The device supports feedbacks.

Additional classes may be added in the future. Functions that support multipleinput classes, such
as theXListInputDevices function that lists all availableinput devices, organize the data they
return by inputclass. Client programs that use these functionsshould notaccess data unless it
matches a class defined at the time those clients were compiled. In this way, new classes can be
added without forcing existing clients that use these functions to be recompiled.

1.4. Using Extension Input Devices
A client that wishes to access aninput device does sothrough the library functions defined in the
following sections. A typical sequence of requests that a clientwouldmake is as follows:

g XListInputDevices - list all of the availableinput devices. From the information returned by
this request, determine whether the desiredinput device is attached to the server. For a
description of theXListInputDevices request, see the section entitled "Listing Available Dev-
ices".

g XOpenDevice - request that the serveropen thedevice for access by this client. This request
returns anXDevicestructure that is used by most otherinput extension requests to identify the
specified device. For a description of theXOpenDevicerequest, see the section entitled "Ena-
bling and Disabling ExtensionDevices".

g Determine the event types and event clases needed to select the desiredinput extensionevents,
and identify them when they are received. This isdone viamacros whose name corresponds to
the desired event, i.e.DeviceKeyPress. For a description of these macros, see the section enti-
tled "Selecting Extension Device Events".

g XSelectExtensionEvent - select the desired events from the server. For a description of the
XSelextExtensionEventrequest, see the section entitled "Selecting Extension Device Events".

g XNextEvent - receive the next available event. This is the coreXNextEvent function provided
by the standard X libarary.

2

X Input Extension Library Specification X11, Release 6.1

Other requests are defined to grab and focus extension devices, to change their key, button, or
modifier mappings, to control the propagation of input extensionevents, to get motion history from
an extension device, and to sendinput extensionevents to another client. These functions are
described in the following sections.

2. Library Extension Requests
Extension inputdevices are accessed by client programsthrough the use of new protocol requests.
The following requests are provided as extensions to Xlib. Constants and structures referenced by
these functions may befound in thefiles XI.h andXInput.h , which are attached to this document
as appendix A.

The library will returnNoSuchExtensionif an extension request is made to a server that does not
support the input extension.

Input extension requests cannot beused to access the X keyboard and X pointer devices.

2.1. Window Manager Functions

2.1.1. Changing The Core Devices
These functions are provided to change which physical device is used as the X pointer or X key-
board. Using these functions may change the characteristics of the core devices. The new pointer
device may have a different number of buttons than the old one did, or the new keyboard device
may have a different number of keys or report a different range of keycodes. Client programs may
be runningthat depend on those characteristics. For example, a client program could allocate an
array based on the number of buttons on the pointer device, and then use thebutton numbers
received inbuttonevents as indicies into that array. Changing the core devices could cause such
client programs to behave improperly or abnormally terminate, if they ignore the ChangeDevi-
ceNotify event generated by these requests.

These functions change the X keyboard or X pointer device and generate anXChangeDeviceNo-
tify event and aMappingNotify event. The specified device becomes the new X keyboard or X
pointer device. The location of the core device does not change as a result of this request.

These requests fail and returnAlreadyGrabbed if either the specified device or the core device it
would replace are grabbed by some other client. They fail and returnGrabFrozen if either device
is frozen by the active grab of another client.

These requests fail with aBadDeviceerror if the specified device is invalid, has not previously
been opened viaXOpenDevice, or is not supported as a core device by the server implementation.

Once the device has successfully replaced one of the core devices, it is treated as a core device
until it is in turn replaced by anotherChangeDevicerequest, or until the server terminates. The
termination of the client that changed the device will not cause it to change back. Attempts to use
theXCloseDevicerequest to close the new core device will fail with aBadDeviceerror.

To change which physical device is used as the X keyboard, use theXChangeKeyboardDevice
function.

The specified device must supportinput classKeys (as reported in theListInputDevices request)
or the request will fail with aBadMatch error.

int
XChangeKeyboardDevice (display, device)

Display *display;
XDevice *device;

3

X Input Extension Library Specification X11, Release 6.1

display Specifies the connection to the X server.

device Specifies the desired device.

If no error occurs, this function returnsSuccess. A ChangeDeviceNotifyevent with the request
field set toNewKeyboard is sent to all clients selecting that event. AMappingNotify event with
the request field set toMappingKeyboard is sent to all clients. The requested device becomes the
X keyboard, and the old keyboard becomes available as an extensioninput device. The focus state
of the new keyboard is the same as the focus state of the old X keyboard.

Errors returned by this function:BadDevice, BadMatch, AlreadyGrabbed, andGrabFrozen.

To change which physical device is used as the X pointer, use theXChangePointerDevicefunc-
tion. The specified device must supportinput classValuators (as reported in theXListInputDev-
ices request) and report at least two axes of motion, or the request will fail with aBadMatch
error. If the specified device reports more than two axes, the two specified in the xaxis and yaxis
arguments will be used. Data from other valuators on the device will be ignored.

If the specified device reports absolute positional information, and the server implementation does
not allow such a device to be used as the X pointer, the request will fail with aBadDeviceerror.

int
XChangePointerDevice (display, device, xaxis, yaxis)

Display *display;
XDevice *device;
int xaxis;
int yaxis;

display Specifies the connection to the X server.

device Specifies the desired device.

xaxis Specifies the zero-based index of the axis to be used as the x-axis of the
pointer device.

yaxis Specifies the zero-based index of the axis to be used as the y-axis of the
pointer device.

If no error occurs, this function returnsSuccess. A ChangeDeviceNotifyevent with the request
field set toNewPointer is sent to all clients selecting that event. AMappingNotify event with the
request field set toMappingPointer is sent to all clients. The requested device becomes the X
pointer, and the old pointer becomes available as an extensioninputdevice.

Errors returned by this function:BadDevice, BadMatch, AlreadyGrabbed, andGrabFrozen.

2.1.2. Event Synchronization And Core Grabs
Implementation of the input extension requires an extension of the meaning ofevent synchroniza-
tion for the core grab requests. This is necessary in order to allow window managers to freeze all
inputdevices with a single request.

The core grab requests require apointer_modeandkeyboard_modeargument. The meaning of
these modes is changed by theinput extension. For theXGrabPointer and XGrabButton
requests,pointer_modecontrols synchronization of the pointer device, andkeyboard_modecon-
trols the synchronization of all otherinput devices. For theXGrabKeyboard and XGrabKey
requests,pointer_mode controls the synchronization of all inputdevices except the X keyboard,
while keyboard_modecontrols the synchronization of the keyboard. When using one of thecore
grab requests, the synchronization of extension devices is controlled by the mode specified for the
device not being grabbed.

4

X Input Extension Library Specification X11, Release 6.1

2.1.3. Extension Active Grabs
Active grabs of extension devices are supported via theXGrabDevice function in the same way
that core devices are grabbed using the coreXGrabKeyboard function, except that aDeviceis
passed as a function parameter. TheXUngrabDevice function allows a previous active grab for an
extension device to be released.

Passive grabs of buttons and keys on extension devices are supported via theXGrabDeviceButton
andXGrabDeviceKey functions. These passive grabs are released via theXUngrabDeviceKey
andXUngrabDeviceButton functions.

To grab an extension device, use theXGrabDevice function. The device must have previously
been opened using theXOpenDevicefunction.

int
XGrabDevice (display, device, grab_window, owner_events,

event_count, event_list, this_device_mode,
other_device_mode, time)

Display *display;
XDevice *device;
Window grab_window;
Bool owner_events;
int event_count;
XEventClass *event_list;
int this_device_mode;
int other_device_mode;
Time time;

display Specifies the connection to the X server.

device Specifies the desired device.

grab_windowSpecifies the ID of a window associated with the device specified
above.

owner_eventsSpecifies a boolean value of eitherTrue or False.
event_countSpecifies the number of elements in the event_list array.

event_list Specifies a pointer to a list of event classes that indicate which events
the client wishes to receive. These event classes must have been
obtained using the device being grabbed.

this_device_mode
Controls further processing of events from this device. You can pass
one of these constants:GrabModeSyncor GrabModeAsync.

other_device_mode
Controls further processing of events from all other devices. You can
pass one of these constants:GrabModeSyncor GrabModeAsync.

time Specifies the time. This may be either a timestamp expressed in mil-
liseconds, orCurrentTime .

TheXGrabDevice function actively grabs an extensioninput device, and generatesDeviceFocu-
sIn andDeviceFocusOutevents. Furtherinput events from this device are reportedonly to the
grabbing client. This function overrides any previous active grab by this client for this device.

The event-list parameter is a pointer to a list of event classes. This list indicates which events the
client wishes to receive while the grab is active. If owner_events isFalse, input events from this
device are reported with respect to grab_window and areonly reported ifspecified in event_list. If

5

X Input Extension Library Specification X11, Release 6.1

owner_events isTrue, then if a generated eventwould normally be reported tothis client, it is
reported normally. Otherwise the event is reported with respect to the grab_window, and isonly
reported if specified in event_list.

The this_device_mode argument controls the further processing of events from this device, and the
other_device_mode argument controls the further processing of inputevents from all other devices.

g If the this_device_mode argument isGrabModeAsync, device event processing continues
normally; if the device is currently frozen by this client, then processing of device events is
resumed. If the this_device_mode argument isGrabModeSync, the state of the grabbed dev-
ice (as seen by client applications) appears to freeze, and no further device events are gen-
erated by the server until the grabbing client issues a releasingXAllowDeviceEventscall or
until the device grab is released. Actual deviceinput events are not lost while the device is
frozen; they are simply queued for later processing.

g If the other_device_mode isGrabModeAsync, event processing from otherinput devices is
unaffected by activation of the grab. If other_device_mode isGrabModeSync, the state of all
devices except the grabbed device (as seen by client applications) appears to freeze, and no
further events are generated by the server until the grabbing client issues a releasingXAl-
lowEventsor XAllowDeviceEventscall or until the device grab is released. Actual events are
not lost while the other devices are frozen; they are simply queued for later processing.

XGrabDevice fails and returns:

g AlreadyGrabbed If the device is actively grabbed by some other client.

g GrabNotViewable If grab_window is not viewable.

g GrabInvalidTime If the specified time is earlier than the last-grab-time for the specified dev-
ice or later than the current X server time. Otherwise, the last-grab-time for the specified dev-
ice is set to the specified time andCurrentTime is replaced by the current X server time.

g GrabFrozen If the device is frozen by an active grab of another client.

If a grabbed device is closed by a client while an active grab by that client is in effect, that active
grab will be released. Any passive grabs established by that client will be released. If the device
is frozenonly by anactive grab of the requesting client, it is thawed.

Errors returned by this function:BadDevice, BadWindow, BadValue, BadClass.

To release a grab of an extension device, useXUngrabDevice.

int
XUngrabDevice (display, device, time)

Display *display;
XDevice *device;
Time time;

display Specifies the connection to the X server.

device Specifies the desired device.

time Specifies the time. This may be either a timestamp expressed in mil-
liseconds, orCurrentTime .

This function allows a client to release an extensioninput device and any queued events if this
client has it grabbed from eitherXGrabDevice or XGrabDeviceKey. If any other devices are
frozen by the grab,XUngrabDevice thaws them. The function does not release the device and any
queued events if the specified time is earlier than the last-device-grab time or is later than the
current X server time. It also generatesDeviceFocusInand DeviceFocusOutevents. The X
server automatically performs anXUngrabDevice if the event window for an active device grab

6

X Input Extension Library Specification X11, Release 6.1

becomes not viewable, or if the client terminates without releasing the grab.

Errors returned by this function:BadDevice.

2.1.4. Passively Grabbing A Key
To passively grab a single key on an extension device, useXGrabDeviceKey. That device must
have previously been opened using theXOpenDevicefunction, or the request will fail with aBad-
Deviceerror. If the specified device does not supportinput classKeys, the request will fail with a
BadMatch error.

int
XGrabDeviceKey (display, device, keycode, modifiers, modifier_device

grab_window, owner_events, event_count, event_list,
this_device_mode, other_device_mode)

Display *display;
XDevice *device;
int keycode;
unsigned int modifiers;
XDevice *modifier_device;
Window grab_window;
Bool owner_events;
int event_count;
XEventClass *event_list;
int this_device_mode;
int other_device_mode;

display Specifies the connection to the X server.

device Specifies the desired device.

keycode Specifies the keycode of the key that is to be grabbed. You can pass
either the keycode orAnyKey.

modifiers Specifies the set of keymasks. This mask is the bitwise inclusive OR of
these keymask bits: ShiftMask, LockMask, ControlMask ,
Mod1Mask, Mod2Mask, Mod3Mask, Mod4Mask, Mod5Mask.

You can also passAnyModifier , which is equivalent to issuing the grab
key request for all possible modifier combinations (including the com-
bination of no modifiers).

modifier_device
Specifies the device whose modifiers are to be used. IfNULL is
specified, the core X keyboard is used as the modifier_device.

grab_windowSpecifies the ID of a window associated with the device specified
above.

owner_eventsSpecifies a boolean value of eitherTrue or False.
event_countSpecifies the number of elements in the event_list array.

event_list Specifies a pointer to a list of event classes that indicate which events
the client wishes to receive.

this_device_mode
Controls further processing of events from this device. You can pass
one of these constants:GrabModeSyncor GrabModeAsync.

7

X Input Extension Library Specification X11, Release 6.1

other_device_mode
Controls further processing of events from all other devices. You can
pass one of these constants:GrabModeSyncor GrabModeAsync.

This function is analogous to the coreXGrabKey function. It creates an explicit passive grab for
a key on an extension device.

The XGrabDeviceKey function establishes a passive grab on a device. Consequently, in the
future,

g IF the device is not grabbed and the specified key, which itself can be a modifier key, is logi-
cally pressed when the specified modifier keys logically aredown on thespecified modifier
device (and no other keys are down),

g AND no other modifier keys logically are down,

g AND EITHER the grab window is an ancestor of (or is) the focus window OR the grab win-
dow is a descendent of the focus window and contains the pointer,

g AND a passive grab on the same device and key combination does not exist on any ancestor of
the grab window,

g THEN the device is actively grabbed, as forXGrabDevice, the last-device-grab time is set to
the time at which the key was pressed (as transmitted in theDeviceKeyPressevent), and the
DeviceKeyPressevent is reported.

The interpretation of the remaining arguments is as forXGrabDevice. The active grab is ter-
minated automatically when the logical state of the device has the specified key released (indepen-
dent of the logical state of the modifier keys).

Note that the logical state of a device (as seen by means of the X protocol) may lag the physical
state if device event processing is frozen.

A modifier of AnyModifier is equivalent to issuing the request for all possible modifier combina-
tions (including the combination of no modifiers). It is not required that all modifiers specified
have currently assigned keycodes. A key ofAnyKey is equivalent to issuing the request for all
possible keycodes. Otherwise, the key must be in the range specified by min_keycode and
max_keycode in the information returned by theXListInputDevices function. If it is not within
that range,XGrabDeviceKeygenerates aBadValueerror.

A BadAccesserror is generated if some other client has issued aXGrabDeviceKey with the same
device and key combination on the same window.When usingAnyModifier or AnyKey, the
request fails completely and the X server generates aBadAccesserror and no grabs are established
if there is a conflicting grab for any combination.

XGrabDeviceKey can generateBadDevice, BadAccess, BadMatch, BadWindow, BadClass,
andBadValueerrors.

XGrabDeviceKey returnsSuccessupon successful completion of the request.

To release a passive grab of a single key on an extension device, useXUngrabDeviceKey.

8

X Input Extension Library Specification X11, Release 6.1

int
XUngrabDeviceKey (display, device, keycode, modifiers,

modifier_device, ungrab_window)
Display *display;
XDevice *device;
int keycode;
unsigned int modifiers;
XDevice *modifier_device;
Window ungrab_window;

display Specifies the connection to the X server.

device Specifies the desired device.

keycode Specifies the keycode of the key that is to be ungrabbed. You can pass
either the keycode orAnyKey.

modifiers Specifies the set of keymasks. This mask is the bitwise inclusive OR of
these keymask bits: ShiftMask, LockMask, ControlMask ,
Mod1Mask, Mod2Mask, Mod3Mask, Mod4Mask, Mod5Mask.

You can also passAnyModifier , which is equivalent to issuing the
ungrab key request for all possible modifier combinations (including the
combination of no modifiers).

modifier_device
Specifies the device whose modifiers are to be used. IfNULL is
specified, the core X keyboard is used as the modifier_device.

ungrab_window
Specifies the ID of a window associated with the device specified above.

This function is analogous to the coreXUngrabKey function. It releases an explicit passive grab
for a key on an extension inputdevice.

Errors returned by this function:BadDevice, BadWindow, BadValue, BadAlloc, and Bad-
Match.

2.1.5. Passively Grabbing A Button
To establish a passive grab for a singlebutton on an extensiondevice, useXGrabDeviceButton.
The specified device must have previously been opened using theXOpenDevicefunction, or the
request will fail with aBadDeviceerror. If the specified device does not supportinput classBut-
tons, the request will fail with aBadMatch error.

9

X Input Extension Library Specification X11, Release 6.1

int
XGrabDeviceButton (display, device, button, modifiers,

modifier_device, grab_window, owner_events, event_count,
event_list, this_device_mode, other_device_mode)

Display *display;
XDevice *device;
unsigned int button;
unsigned int modifiers;
XDevice *modifier_device;
Window grab_window;
Bool owner_events;
int event_count;
XEventClass *event_list;
int this_device_mode;
int other_device_mode;

display Specifies the connection to the X server.

device Specifies the desired device.

button Specifies the code of thebutton that is to be grabbed. You can pass
either thebutton orAnyButton .

modifiers Specifies the set of keymasks. This mask is the bitwise inclusive OR of
these keymask bits: ShiftMask, LockMask, ControlMask ,
Mod1Mask, Mod2Mask, Mod3Mask, Mod4Mask, Mod5Mask.

You can also passAnyModifier , which is equivalent to issuing the grab
request for all possible modifier combinations (including the combina-
tion of no modifiers).

modifier_device
Specifies the device whose modifiers are to be used. IfNULL is
specified, the core X keyboard is used as the modifier_device.

grab_windowSpecifies the ID of a window associated with the device specified
above.

owner_eventsSpecifies a boolean value of eitherTrue or False.
event_countSpecifies the number of elements in the event_list array.

event_list Specifies a list of event classes that indicates which device events are to
be reported to the client.

this_device_mode
Controls further processing of events from this device. You can pass
one of these constants:GrabModeSyncor GrabModeAsync.

other_device_mode
Controls further processing of events from all other devices. You can
pass one of these constants:GrabModeSyncor GrabModeAsync.

This function is analogous to the coreXGrabButton function . It creates an explicit passive grab
for a button on an extension inputdevice. Since the server does not track extension devices, no
cursor is specified with this request. For the same reason, there is no confine_to parameter. The
device must have previously been opened using theXOpenDevicefunction.

The XGrabDeviceButton function establishes a passive grab on a device. Consequently, in the
future,

10

X Input Extension Library Specification X11, Release 6.1

g IF the device is not grabbed and the specifiedbutton is logicallypressed when the specified
modifier keys logically aredown(and no other buttons or modifier keys are down),

g AND EITHER the grab window is an ancestor of (or is) the focus window OR the grab win-
dow is a descendent of the focus window and contains the pointer,

g AND a passive grab on the same device and button/ key combination does not exist on any
ancestor of the grab window,

g THEN the device is actively grabbed, as forXGrabDevice, the last-grab time is set to the time
at which the button waspressed (as transmitted in theDeviceButtonPressevent), and theDev-
iceButtonPressevent is reported.

The interpretation of the remaining arguments is as forXGrabDevice. The active grab is ter-
minated automatically when logical state of the device has all buttons released (independent of the
logical state of the modifier keys).

Note that the logical state of a device (as seen by means of the X protocol) may lag the physical
state if device event processing is frozen.

A modifier of AnyModifier is equivalent to issuing the request for all possible modifier combina-
tions (including the combination of no modifiers). It is not required that all modifiers specified
have currently assigned keycodes. Abutton ofAnyButton is equivalent to issuing the request for
all possible buttons. Otherwise, it is not required that the specifiedbutton be assigned to a physical
button.

A BadAccesserror is generated if some other client has issued aXGrabDeviceButton with the
same device andbutton combination on thesame window.When usingAnyModifier or AnyBut-
ton, the request fails completely and the X server generates aBadAccesserror and no grabs are
established if there is a conflicting grab for any combination.

XGrabDeviceButton can generateBadDevice, BadMatch, BadAccess, BadWindow, BadClass,
andBadValueerrors.

To release a passive grab of abutton on an extensiondevice, useXUngrabDeviceButton.

int
XUngrabDeviceButton (display, device, button, modifiers,

modifier_device, ungrab_window)
Display *display;
XDevice *device;
unsigned int button;
unsigned int modifiers;
XDevice *modifier_device;
Window ungrab_window;

display Specifies the connection to the X server.

device Specifies the desired device.

button Specifies the code of thebuttonthat is to be ungrabbed. You can pass
either abutton orAnyButton .

modifiers Specifies the set of keymasks. This mask is the bitwise inclusive OR of
these keymask bits: ShiftMask, LockMask, ControlMask ,
Mod1Mask, Mod2Mask, Mod3Mask, Mod4Mask, Mod5Mask.

You can also passAnyModifier , which is equivalent to issuing the
ungrab key request for all possible modifier combinations (including the
combination of no modifiers).

11

X Input Extension Library Specification X11, Release 6.1

modifier_device
Specifies the device whose modifiers are to be used. IfNULL is
specified, the core X keyboard is used as the modifier_device.

ungrab_window
Specifies the ID of a window associated with the device specified above.

This function is analogous to the coreXUngrabButton function. It releases an explicit passive
grab for abutton on an extensiondevice. That device must have previously been opened using the
XOpenDevicefunction, or aBadDeviceerror will result.

A modifier of AnyModifier is equivalent to issuing the request for all possible modifier combina-
tions (including the combination of no modifiers).

XUngrabDeviceButton can generateBadDevice, BadMatch, BadWindow, BadValue, and
BadAlloc errors.

2.1.6. Thawing A Device
To allow further events to be processed when a device has been frozen, useXAllowDeviceEvents.

int
XAllowDeviceEvents (display, device, event_mode, time)

Display *display;
XDevice *device;
int event_mode;
Time time;

display Specifies the connection to the X server.

device Specifies the desired device.

event_modeSpecifies the event mode. You can pass one of these constants:
AsyncThisDevice, SyncThisDevice, AsyncOtherDevices, ReplayTh-
isDevice, AsyncAll, or SyncAll.

time Specifies the time. This may be either a timestamp expressed in mil-
liseconds, orCurrentTime .

TheXAllowDeviceEventsfunction releases some queued events if the client has caused a device
to freeze. The function has no effect if the specified time is earlier than the last-grab time of the
most recent active grab for the client and device, or if the specified time is later than the current X
server time. The following describes the processing that occurs depending on what constant you
pass to the event_mode argument:

g If the specified device is frozen by the client, event processing for that continues as usual. If
the device is frozen multiple times by the client on behalf of multiple separate grabs,
AsyncThisDevice thaws for all. AsyncThisDevice has no effect if the specified device is not
frozen by the client, but the device need not be grabbed by the client.

g If the specified device is frozen and actively grabbed by the client, event processing for that
device continues normally until the next key orbuttonevent is reported to the client. At this
time, the specified device again appears to freeze. However, if the reported event causes the
grab to be released, the specified device does not freeze. SyncThisDevice has no effect if the
specified device is not frozen by the client or is not grabbed by the client.

g If the specified device is actively grabbed by the client and is frozen as the result of an event
having been sent to the client (either from the activation of a GrabDeviceButton or from a pre-
vious AllowDeviceEvents with mode SyncThisDevice, but not from a Grab), the grab is
released and that event is completely reprocessed. This time, however, the request ignores any
passive grabs at or above (towards the root) the grab-window of the grab just released. The
request has no effect if the specified device is not grabbed by the client or if it is not frozen as

12

X Input Extension Library Specification X11, Release 6.1

the result of an event.

g If the remaining devices are frozen by the client, event processing for them continues as usual.
If the other devices are frozen multiple times by the client on behalf of multiple separate
grabs, AsyncOtherDevices ‘‘thaws’’ for all. AsyncOtherDevices has no effect if the devices
are not frozen by the client, but those devices need not be grabbed by the client.

g If all devices are frozen by the client, event processing (for all devices) continues normally
until the nextbutton or keyevent is reported to the client for a grabbed device at which time
the devices again appear to freeze. However, if the reported event causes the grab to be
released, then the devices do not freeze (but if any device is still grabbed, then a subsequent
event for it will still cause all devices to freeze). SyncAll has no effect unless all devices are
frozen by the client. If any device is frozen twice by the client on behalf of two separate grabs,
SyncAll "thaws" forboth (but a subsequent freeze for SyncAll willonly freeze each device
once).

g If all devices are frozen by the client, event processing (for all devices) continues normally. If
any device is frozen multiple times by the client on behalf of multiple separate grabs, AsyncAll
"thaws" for all. If any device is frozen twice by the client on behalf of two separate grabs,
AsyncAll "thaws" for both. AsyncAll has no effect unless all devices are frozen by the client.

AsyncThisDevice, SyncThisDevice, and ReplayThisDevice have no effect on the processing of
events from the remaining devices. AsyncOtherDevices has no effect on the processing of events
from the specified device.When the event_mode is SyncAll or AsyncAll, thedevice parameter is
ignored.

It is possible for several grabs of different devices (by the same or different clients) to be active
simultaneously. If a device is frozen on behalf of any grab, no event processing is performed for
the device. It is possible for a single device to be frozen because of several grabs. In this case, the
freeze must be released on behalf of each grab before events can again be processed.

Errors returned by this function:BadDevice, BadValue.

2.1.7. Controlling Device Focus
The current focus window for an extensioninput device can be determined using theXGetDevi-
ceFocusfunction. Extension devices are focused using theXSetDeviceFocusfunction in the same
way that the keyboard is focused using the coreXSetInputFocus function, except that a device id
is passed as a function parameter. One additional focus state,FollowKeyboard, is provided for
extension devices.

To get the current focus state, revert state, and focus time of an extension device, useXGetDevi-
ceFocus.

int
XGetDeviceFocus (display, device, focus_return, revert_to_return,

focus_time_return)
Display *display;
XDevice *device;
Window *focus_return;
int *revert_to_return;
Time *focus_time_return;

display Specifies the connection to the X server.

device Specifies the desired device.

focus_returnSpecifies the address of a variable into which the server can return the
ID of the window that contains the device focus, or one of the constants
None, PointerRoot, or FollowKeyboard.

13

X Input Extension Library Specification X11, Release 6.1

revert_to_return
Specifies the address of a variable into which the server can return the
current revert_to status for the device.

focus_time_return
Specifies the address of a variable into which the server can return the
focus time last set for the device.

This function returns the focus state, the revert-to state, and the last-focus-time for an extension
inputdevice.

Errors returned by this function:BadDevice, BadMatch.

To set the focus of an extension device, useXSetDeviceFocus.

int
XSetDeviceFocus (display, device, focus, revert_to, time)

Display *display;
XDevice *device;
Window focus;
int revert_to;
Time time;

display Specifies the connection to the X server.

device Specifies the desired device.

focus Specifies the id of the window to which the device’s focusshould beset.
This may be a window id, orPointerRoot, FollowKeyboard, or None.

revert_to Specifies to which window the focus of the deviceshouldrevert if the
focus window becomes not viewable. One of the following constants
may be passed:RevertToParent, RevertToPointerRoot, RevertTo-
None, or RevertToFollowKeyboard.

time Specifies the time. You can pass either a timestamp, expressed in mil-
liseconds, orCurrentTime .

This function changes the focus for an extensioninput device and the last-focus-change-time. The
function has no effect if the specified time is earlier than the last-focus-change-time or is later than
the current X server time. Otherwise, the last-focus-change-time is set to the specified time. This
function causes the X server to generateDeviceFocusInandDeviceFocusOutevents.

The action taken by the server when this function is requested depends on the value of the focus
argument:

g If the focus argument isNone, all input events from this device will be discarded until a new
focus window is set. In this case, the revert_to argument is ignored.

g If a window ID is assigned to the focus argument, it becomes the focus window of the device.
If an input event from the devicewould normally be reported tothis window or to one of its
inferiors, the event is reported normally. Otherwise, the event is reported relative to the focus
window.

g If you assignPointerRoot to the focus argument, the focus window is dynamically taken to be
the root window of whatever screen the pointer is on at eachinput event. In this case, the
revert_to argument is ignored.

g If you assignFollowKeyboard to the focus argument, the focus window is dynamically taken
to be the same as the focus of the X keyboard at eachinputevent.

14

X Input Extension Library Specification X11, Release 6.1

The specified focus window must be viewable at the timeXSetDeviceFocusis called. Otherwise,
it generates aBadMatch error . If the focus window later becomes not viewable, the X server
evaluates the revert_to argument to determine the new focus window.

g If you assignRevertToParent to the revert_to argument, the focus reverts to the parent (or the
closest viewable ancestor), and the new revert_to value is taken to beRevertToNone.

g If you assignRevertToPointerRoot, RevertToFollowKeyboard, or RevertToNone to the
revert_to argument, the focus reverts to that value.

When thefocus reverts, the X server generatesDeviceFocusInandDeviceFocusOutevents, but
the last-focus-change time is not affected.

Errors returned by this function:BadDevice, BadMatch, BadValue, andBadWindow.

2.1.8. Controlling Device Feedback
To determine the current feedback settings of an extension inputdevice, useXGetFeedbackCon-
trol .

XFeedbackState
*XGetFeedbackControl (display, device, num_feedbacks_return)

Display *display;
XDevice *device;
int *num_feedbacks_return;

display Specifies the connection to the X server.

device Specifies the desired device.

num_feedbacks_return
Returns the number of feedbacks supported by the device.

g This function returns a list ofFeedbackStatestructures that describe the feedbacks supported
by the specified device. There is anXFeedbackStatestructure for each clase of feedback.
These are of variable length, but the first three fields are common to all. The common fields
are as follows:

typedef struct {
XID class;
int length;
XID id;

} XFeedbackState;

whereclassidentifies the class of feedback. Theclassmay be compared to constants defined in
the file XI.h . Currently defined feedback constants includeKbdFeedbackClass, PtrFeed-
backClass, StringFeedbackClass, IntegerFeedbackClass, LedFeedbackClass, and BellFeed-
backClass.
The length specifies the length of theFeedbackStatestructure and can be used by clients to
traverse the list.

The id uniquely identifies a feedback for a given device and class. This allows a device to support
more than one feedback of the same class. Other feedbacks of other classes or devices may have
the same id.

g Those feedbacks equivalent to those supported by the core keyboard are reported in class
KbdFeedback using theXKbdFeedbackStatestructure. The members of that structure are
as follows:

15

X Input Extension Library Specification X11, Release 6.1

typedef struct {
XID class;
int length;
XID id;
int click;
int percent;
int pitch;
int duration;
int led_mask;
int global_auto_repeat;
char auto_repeats[32];

} XKbdFeedbackState;

The fields of theXKbdFeedbackStatestructure report the current state of the feedback:

g click specifies the key-click volume, and has a value in the range 0 (off) to 100 (loud).

g percentspecifies the bell volume, and has a value in the range 0 (off) to 100 (loud).

g pitch specifies the bell pitch in Hz. The range of the value is implementation-dependent.

g duration specifies the duration in milliseconds of the bell.

g led_maskis a bit mask that describes the current state of up to 32 LEDs. A value of 1 in a bit
indicates that the corresponding LED is on.

g global_auto_repeathas a value ofAutoRepeatModeOnor AutoRepeatModeOff.
g The auto_repeatsmember is a bit vector. Each bit set to 1 indicates that auto-repeat is

enabled for the corresponding key. The vector is represented as 32 bytes. Byte N (from 0)
contains the bits for keys 8N to 8N + 7, with the least significant bit int the byte representing
key 8N.

Those feedbacks equivalent to those supported by the core pointer are reported in classPtrFeed-
back using heXPtrFeedbackStatestructure. The members of that structure are as follows:

typedef struct {
XID class;
int length;
XID id;
int accelNum;
int accelDenom;
int threshold;

} XPtrFeedbackState;

The fields of theXPtrFeedbackStatestructure report the current state of the feedback:

g accelNumreturns the numerator for the acceleration multiplier.

g accelDenomreturns the denominator for the acceleration multiplier.

g accelDenomreturns the threshold for the acceleration.

Integer feedbacks are those capable of displaying integer numbers. The minimum and maximum
values that they can display are reported.

16

X Input Extension Library Specification X11, Release 6.1

typedef struct {
XID class;
int length;
XID id;
int resolution;
int minVal;
int maxVal;

} XIntegerFeedbackState;

The fields of theXIntegerFeedbackStatestructure report the capabilities of the feedback:

g resolution specifies the number of digits that the feedback can display.

g minVal specifies the minimum value that the feedback can display.

g maxVal specifies the maximum value that the feedback can display.

String feedbacks are those that can display character information. Clients set these feedbacks by
passing a list ofKeySymsto be displayed. TheXGetFeedbackControlfunction returns the set of
key symbols that the feedback can display, as well as the maximum number of symbols that can be
displayed.

typedef struct {
XID class;
int length;
XID id;
int max_symbols;
int num_syms_supported;
KeySym *syms_supported;

} XStringFeedbackState;

The fields of theXStringFeedbackStatestructure report the capabilities of the feedback:

g max_symbolsspecifies the maximum number of symbols that can be displayed.

g syms_supportedis a pointer to the list of supported symbols.

g num_syms_supportedspecifies the length of the list of supported symbols.

Bell feedbacks are those that can generate a sound. Some implementations may support a bell as
part of aKbdFeedback feedback. ClassBellFeedback is provided for implementations that do
not choose to do so, and for devices that support multiple feedbacks that can produce sound. The
meaning of the fields is the same as that of the corresponding fields in theXKbdFeedbackState
structure.

typedef struct {
XID class;
int length;
XID id;
int percent;
int pitch;
int duration;

} XBellFeedbackState;

17

X Input Extension Library Specification X11, Release 6.1

Led feedbacks are those that can generate a light. Up to 32 lights per feedback are supported.
Each bit in led_mask corresponds to one supported light, and the corresponding bit in led_values
indicates whether that light is currently on (1) or off (0). Some implementations may support leds
as part of aKbdFeedbackfeedback. ClassLedFeedbackis provided for implementations that do
not choose to do so, and for devices that support multiple led feedbacks.

typedef struct {
XID class;
int length;
XID id;
Mask led_values;
Mask led_mask;

} XLedFeedbackState;

Errors returned by this function:BadDevice, BadMatch.

To free the information returned by theXGetFeedbackControl function, useXFreeFeedback-
List .

void
XFreeFeedbackList (list)

XFeedbackState *list;

list Specifies the pointer to theXFeedbackStatestructure returned by a
previous call toXGetFeedbackControl.

This function frees the list of feedback control information.

To change the settings of a feedback on an extension device, useXChangeFeedbackControl.
This function modifies the current control values of the specified feedback using information
passed in the appropriateXFeedbackControl structure for the feedback. Which values are
modified depends on the valuemask passed.

int
XChangeFeedbackControl (display, device, valuemask, value)

Display *display;
XDevice *device;
unsigned long valuemask;
XFeedbackControl *value;

display Specifies the connection to the X server.

device Specifies the desired device.

valuemask Specifies one value for each bit in the mask (least to most significant
bit). The values are associated with the feedbacks for the specified dev-
ice.

value Specifies a pointer to theXFeedbackControlstructure.

This function controls the device characteristics described by theXFeedbackControl structure.
There is anXFeedbackControl structure for each clase of feedback. These are of variable length,
but the first two fields are common to all. The common fields are as follows:

18

X Input Extension Library Specification X11, Release 6.1

typedef struct {
XID class;
int length;
XID id;

} XFeedbackControl;

Feedback classKbdFeedback controls feedbacks equivalent to those provided by the core key-
board using theKbdFeedbackControl structure. The members of that structure are:

typedef struct {
XID class;
int length;
XID id;
int click;
int percent;
int pitch;
int duration;
int led_mask;
int led_value;
int key;
int auto_repeat_mode;

} XKbdFeedbackControl;

This class controls the device characteristics described by theXKbdFeedbackControl structure.
These include the key_click_percent, global_auto_repeat and individual key auto-repeat. Valid
modes areAutoRepeatModeOn, AutoRepeatModeOff, AutoRepeatModeDefault.
Valid masks are as follows:

#define DvKeyClickPercent (1L << 0)
#define DvPercent (1L << 1)
#define DvPitch (1L << 2)
#define DvDuration (1L << 3)
#define DvLed (1L << 4)
#define DvLedMode (1L << 5)
#define DvKey (1L << 6)
#define DvAutoRepeatMode (1L << 7)

Errors returned by this function:BadDevice, BadMatch, BadValue.

Feedback classPtrFeedbackcontrols feedbacks equivalent to those provided by the core pointer
using thePtrFeedbackControl structure. The members of that structure are:

19

X Input Extension Library Specification X11, Release 6.1

typedef struct {
XID class;
int length;
XID id;
int accelNum;
int accelDenom;
int threshold;

} XPtrFeedbackControl;

Which values are modified depends on the valuemask passed.

Valid masks are as follows:

#define DvAccelnum (1L << 0)
#define DvAccelDenom (1L << 1)
#define DvThreshold (1L << 2)

The acceleration, expressed as a fraction, is a multiplier for movement. For example, specifying
3/1 means the device moves three times as fast as normal. The fraction may be rounded arbitrarily
by the X server. Accelerationonly takes effect if the device moves more than threshold pixels at
once andonly applies to the amount beyond thevalue in the threshold argument. Setting a value to
-1 restores the default. The values of the accelNumerator and threshold fields must be nonzero for
the pointer values to be set. Otherwise, the parameters will be unchanged. Negative values gen-
erate aBadValueerror, as does a zero value for the accelDenominator field.

This request fails with aBadMatch error if the specified device is not currently reporting relative
motion. If a device that is capable of reportingboth relative and absolute motion has its mode
changed fromRelative to Absolute by anXSetDeviceModerequest, valuator control values will
be ignored by the server while the device is in that mode.

Feedback classIntegerFeedbackcontrols integer feedbacks displayed on inputdevices, using the
IntegerFeedbackControlstructure. The members of that structure are:

typedef struct {
XID class;
int length;
XID id;
int int_to_display;

} XIntegerFeedbackControl;

Valid masks are as follows:

#define DvInteger (1L << 0)

Feedback classStringFeedback controls string feedbacks displayed on inputdevices, using the
StringFeedbackControlstructure. The members of that structure are:

20

X Input Extension Library Specification X11, Release 6.1

typedef struct {
XID class;
int length;
XID id;
int num_keysyms;
KeySym *syms_to_display;

} XStringFeedbackControl;

Valid masks are as follows:

#define DvString (1L << 0)

Feedback classBellFeedbackcontrols a bell on aninput device, using theBellFeedbackControl
structure. The members of that structure are:

typedef struct {
XID class;
int length;
XID id;
int percent;
int pitch;
int duration;

} XBellFeedbackControl;

Valid masks are as follows:

#define DvPercent (1L << 1)
#define DvPitch (1L << 2)
#define DvDuration (1L << 3)

To ring a bell on an extensioninputdevice, use theXDeviceBellprotocol request.

Feedback classLedFeedbackcontrols lights on an inputdevice, using theLedFeedbackControl
structure. The members of that structure are:

typedef struct {
XID class;
int length;
XID id;
int led_mask;
int led_values;

} XLedFeedbackControl;

Valid masks are as follows:

#define DvLed (1L << 4)
#define DvLedMode (1L << 5)

Errors returned by this function:BadDevice, BadMatch, BadFeedBack.

21

X Input Extension Library Specification X11, Release 6.1

2.1.9. Ringing a Bell on an Input Device
To ring a bell on a extensioninputdevice, useXDeviceBell.

int
XDeviceBell (display, device, feedbackclass, feedbackid, percent)

Display *display;
XDevice *device;
XID feedbackclass, feedbackid;
int percent;

display Specifies the connection to the X server.

device Specifies the desired device.

feedbackclassSpecifies the feedbackclass. Valid values are KbdFeedbackClass and
BellFeedbackClass.

feedbackid Specifies the id of the feedback that has the bell.

percent Specifies the volume in the range-100 (quiet) to 100percent (loud).

This function is analogous to the coreXBell function. It rings the specified bell on the specified
input device feedback, using the specified volume. The specified volume is relative to the base
volume for the feedback. If the value for the percent argument is not in the range-100 to 100
inclusive, aBadValue error results. The volume at which the bell rings when the percent argu-
ment is nonnegative is:

base - [(base * percent) /100] +percent

The volume at which the bell rings when the percent argument is negative is:

base + [(base * percent) /100]

To change the base volume of the bell, useXChangeFeedbackControl.
Errors returned by this function:BadDevice, BadValue.

2.1.10. Controlling Device Encoding
To get the key mapping of an extension device that supportsinput classKeys, useXGetDevi-
ceKeyMapping.

KeySym
*XGetDeviceKeyMapping (display, device, first_keycode_wanted,

keycode_count, keysyms_per_keycode_return)
Display *display;
XDevice *device;
KeyCode first_keycode_wanted;
int keycode_count;
int *keysyms_per_keycode_return;

display Specifies the connection to the X server.

device Specifies the desired device.

first_keycode_wanted
Specifies the first keycode that is to be returned.

22

X Input Extension Library Specification X11, Release 6.1

keycode_count
Specifies the number of keycodes that are to be returned.

keysyms_per_keycode_return
Returns the number of keysyms per keycode.

This function is analogous to the coreXGetKeyboardMapping function. It returns the symbols
for the specified number of keycodes for the specified extension device.

XGetDeviceKeyMapping returns the symbols for the specified number of keycodes for the
specified extension device, starting with the specified keycode. The first_keycode_wanted must be
greater than or equal to min-keycode as returned by theXListInputDevices request (else aBad-
Value error), and

first_keycode_wanted + keycode_count− 1

must be less than or equal to max-keycode as returned by theXListInputDevices request (else a
BadValueerror).

The number of elements in the keysyms list is

keycode_count * keysyms_per_keycode_return

and KEYSYM number N (counting from zero) for keycode K has an index (counting from zero) of

(K − first_keycode_wanted) * keysyms_per_keycode_return + N

in keysyms. The keysyms_per_keycode_return value is chosen arbitrarily by the server to be large
enough to report all requested symbols. Aspecial KEYSYM value ofNoSymbol is used to fill in
unused elements for individual keycodes.

You should useXFree to free the data returned by this function.

If the specified device has not first been opened by this client viaXOpenDevice, this request will
fail with a BadDeviceerror. If that device does not supportinput class Keys, this request will fail
with aBadMatch error.

Errors returned by this function:BadDevice, BadMatch, BadValue.

To change the keyboard mapping of an extension device that supportsinput classKeys, use
XChangeDeviceKeyMapping.

int
XChangeDeviceKeyMapping (display, device, first_keycode,

keysyms_per_keycode, keysyms, num_codes)
Display *display;
XDevice *device;
int first_keycode;
int keysyms_per_keycode;
KeySym *keysyms;
int num_codes;

display Specifies the connection to the X server.

device Specifies the desired device.

first_keycodeSpecifies the first keycode that is to be changed.

keysyms_per_keycode
Specifies the keysyms that are to be used.

23

X Input Extension Library Specification X11, Release 6.1

keysyms Specifies a pointer to an array of keysyms.

num_codesSpecifies the number of keycodes that are to be changed.

This function is analogous to the coreXChangeKeyboardMapping function. It defines the sym-
bols for the specified number of keycodes for the specified extension keyboard device.

If the specified device has not first been opened by this client viaXOpenDevice, this request will
fail with a BadDeviceerror. If the specified device does not supportinput class Keys, this request
will fail with a BadMatch error.

The number of elements in the keysyms list must be a multiple of keysyms_per_keycode. Other-
wise, XChangeDeviceKeyMappinggenerates aBadLength error. The specified first_keycode
must be greater than or equal to the min_keycode value returned by theListInputDevices request,
or this request will fail with aBadValue error. In addition, if the following expression is not less
than the max_keycode value returned by the ListInputDevices request, the request will fail with a
BadValue error:

first_keycode + (num_codes / keysyms_per_keycode) - 1

Errors returned by this function:BadDevice, BadMatch, BadValue, BadAlloc.

To obtain the keycodes that are used as modifiers on an extension device that supportsinput class
Keys, useXGetDeviceModifierMapping.

XModifierKeymap
*XGetDeviceModifierMapping (display, device)

Display *display;
XDevice *device;

display Specifies the connection to the X server.

device Specifies the desired device.

This function is analogous to the coreXGetModifierMapping function. The
XGetDeviceModifierMapping function returns a newly createdXModifierKeymap structure that
contains the keys being used as modifiers for the specified device. The structureshould befreed
after use withXFreeModifierMapping . If only zero values appear in the set for any modifier,
that modifier is disabled.

Errors returned by this function:BadDevice, BadMatch.

To set which keycodes that are to be used as modifiers for an extension device, use
XSetDeviceModifierMapping.

int
XSetDeviceModifierMapping (display, device, modmap)

Display *display;
XDevice *device;
XModifierKeymap *modmap;

display Specifies the connection to the X server.

device Specifies the desired device.

24

X Input Extension Library Specification X11, Release 6.1

modmap Specifies a pointer to theXModifierKeymap structure.

This function is analogous to the core XSetModifierMapping function. The
XSetDeviceModifierMapping function specifies the keycodes of the keys, if any, that are to be
used as modifiers. A zero value means that no keyshould beused. No two arguments can have
the same nonzero keycode value. Otherwise,XSetDeviceModifierMapping generates aBad-
Value error. There are eight modifiers, and the modifiermap member of theXModifierKeymap
structure contains eight sets of max_keypermod keycodes, one for each modifier in the order Shift,
Lock, Control, Mod1, Mod2, Mod3, Mod4, and Mod5. Only nonzero keycodes have meaning in
each set, and zero keycodes are ignored. In addition, all of the nonzero keycodes must be in the
range specified by min_keycode and max_keycode reported by theXListInputDevices function.
Otherwise,XSetModifierMapping generates aBadValue error. No keycode may appear twice in
the entire map. Otherwise, it generates aBadValueerror.

A X server can impose restrictions on how modifiers can be changed, for example, if certain keys
do not generate up transitions in hardware or if multiple modifier keys are not supported. If some
such restriction is violated, the status reply isMappingFailed, and none of the modifiers are
changed. If the new keycodes specified for a modifier differ from those currently defined and any
(current or new) keys for that modifier are in the logicallydownstate, the status reply isMapping-
Busy, and none of the modifiers are changed.XSetModifierMapping generates aDeviceMap-
pingNotify event on aMappingSuccessstatus.

XSetDeviceModifierMapping can generateBadDevice, BadMatch, BadAlloc, and BadValue
errors.

2.1.11. Controlling Button Mapping
To set the mapping of the buttons on an extension device, useXSetDeviceButtonMapping.

int
XSetDeviceButtonMapping (display, device, map, nmap)

Display *display;
XDevice *device;
unsigned char map[];
int nmap;

display Specifies the connection to the X server.

device Specifies the desired device.

map Specifies the mapping list.

nmap Specifies the number of items in the mapping list.

TheXSetDeviceButtonMappingfunction sets the mapping of the buttons on an extension device.
If it succeeds, the X server generates aDeviceMappingNotify event, andXSetDeviceButton-
Mapping returnsMappingSuccess. Elements of the list are indexed starting from one. The
length of the list must be the same asXGetDeviceButtonMapping would return, or aBadValue
error results. The index is abutton number, and theelement of the list defines the effective
number. A zero element disables a button, and elements are not restricted in value by the number
of physical buttons. However, no two elements can have the same nonzero value, or aBadValue
error results. If any of the buttons to be altered are logically in thedown state,XSetDeviceBut-
tonMapping returnsMappingBusy, and the mapping is not changed.

XSetDeviceButtonMappingcan generateBadDevice, BadMatch, andBadValueerrors.

To get the button mapping, useXGetDeviceButtonMapping.

25

X Input Extension Library Specification X11, Release 6.1

int
XGetDeviceButtonMapping (display, device, map_return, nmap)

Display *display;
XDevice *device;
unsigned char map_return[];
int nmap;

display Specifies the connection to the X server.

device Specifies the desired device.

map_returnSpecifies the mapping list.

nmap Specifies the number of items in the mapping list.

TheXGetDeviceButtonMapping function returns the current mapping of the specified extension
device. Elements of the list are indexed starting from one.XGetDeviceButtonMapping returns
the number of physical buttons actually on the pointer. The nominal mapping for the buttons is the
identity mapping: map[i]=i. The nmap argument specifies the length of the array where thebutton
mapping is returned, and only thefirst nmap elements are returned in map_return.

Errors returned by this function:BadDevice, BadMatch.

2.1.12. Obtaining The State Of A Device
To obtain information that describes the state of the keys, buttons and valuators of an extension
device, useXQueryDeviceState.

XDeviceState
*XQueryDeviceState (display, device)

Display *display;
XDevice *device;

display Specifies the connection to the X server.

device Specifies the desired device.

TheXQueryDeviceStatefunction returns a pointer to anXDeviceStatestructure. This structure
points to a list of structures that describe the state of the keys, buttons, and valuators on the device.

typedef struct {
XID device_id;
int num_classes;
XInputClass *data;

} XDeviceState;

g The structures are of variable length, but the first two fields are common to all. The common
fields are as follows:

26

X Input Extension Library Specification X11, Release 6.1

typedef struct
{
unsigned char class;
unsigned char length;
} XInputClass;

Theclassfield contains a class identifier. This identifier can be compared with constants defined
in the fileXI.h . Currently defined constants are:KeyClass, ButtonClass, andValuatorClass.
Thelength field contains the length of the structure and can be used by clients to traverse the list.

g TheXValuatorState structure describes the current state of the valuators on the device. The
num_valuators field contains the number of valuators on the device. Themode field is a
mask whose bits report the data mode and other state information for the device. The follow-
ing bits are currently defined:

DeviceMode 1 << 0 Relative = 0, Absolute = 1
ProximityState 1 << 1 InProximity = 0, OutOfProximity = 1

Thevaluators field contains a pointer to an array of integers that describe the current value of
the valuators. If the mode isRelative, these values are undefined.

typedef struct {
unsigned char class;
unsigned char length;
unsigned char num_valuators;
unsigned char mode;
int *valuators;

} XValuatorState;

g TheXKeyState structure describes the current state of the keys on the device. Byte N (from
0) contains the bits for key 8N to8N+7 with the least significant bit in the byte representing
key 8N.

typedef struct {
unsigned char class;
unsigned char length;
short num_keys;
char keys[32];

} XKeyState;

g The XButtonState structure describes the current state of the buttons on the device. Byte N
(from 0) contains the bits forbutton 8N to 8N+7with the least significant bit in the byte
representing button 8N.

27

X Input Extension Library Specification X11, Release 6.1

typedef struct {
unsigned char class;
unsigned char length;
short num_buttons;
char buttons[32];

} XButtonState;

You should useXFreeDeviceStateto free the data returned by this function.

Errors returned by this function:BadDevice.

void
XFreeDeviceState (state)

XDeviceState *state;

state Specifies the pointer to theXDeviceStatedata returned by a previous
call toXQueryDeviceState.

This function frees the device state data.

2.2. Events and Event-Handling Functions
The input extensioncreatesinput events analogous to the coreinput events. These extensioninput
events are generated by manipulating one of the extensioninput devices. The following sections
describe these events and explain how a client program can receive them.

2.2.1. Event Types
Event types are integer numbers that a client can use to determine whatkind of event it has
received. The client compares the type field of the event structure withknownevent types to make
this determination.

The coreinput event types are constants and are defined in the header file<X11/X.h>. Extension
event types are not constants. Instead, they are dynamically allocated by the extension’s request to
the X server when the extension is initialized. Because of this, extension event types must be
obtained by the client from the server.

The client program determines the event type for an extension event by using the information
returned by theXOpenDevicerequest. This type can then be used for comparison with the type
field of events received by the client.

Extension events propagate up the window hierarchy in the same manner as core events. If a win-
dow is not interested in an extension event, it usually propagates to the closest ancestor that is
interested, unless the dont_propagate list prohibits it. Grabs of extension devices may alter the set
of windows that receive a particular extension event.

The following table lists the event category and its associated event type or types.

box center; c| c l | l. Event Category Event Type = Device key eventsDeviceKeyPress,
DeviceKeyRelease_ Device motion events DeviceButtonPress, DeviceButton-

Release, DeviceMotionNotify_ Deviceinput focus events DeviceFocusIn, Devi-
ceFocusOut _ Device state notification eventsDeviceStateNotify _ Device proximity
eventsProximityIn, ProximityOut_ Device mapping eventsDeviceMappingNotify_ Dev-
ice change events ChangeDeviceNotify

28

X Input Extension Library Specification X11, Release 6.1

2.2.2. Event Classes
Event classes are integer numbers that are used in the same way as the core event masks. They are
used by a client program to indicate to the server which events that client program wishes to
receive.

The coreinput event masks are constants and are defined in the header file<X11/X.h>. Extension
event classes are not constants. Instead, they are dynamically allocated by the extension’s request
to the X server when the extension is initialized. Because of this, extension event classes must be
obtained by the client from the server.

The event class for an extension event and device is obtained from information returned by the
XOpenDevicefunction. This class can then be used in anXSelectExtensionEventrequest to ask
that events of that type from that device be sent to the client program.

For DeviceButtonPressevents, the client may specify whether or not an implicit passive grab
should be donewhen thebutton ispressed. If the client wants to guarantee that it will receive a
DeviceButtonReleaseevent for eachDeviceButtonPressevent it receives, itshould specify the
DeviceButtonPressGrabclass in addition to theDeviceButtonPressclass. This restricts the
client in thatonly oneclient at a time may requestDeviceButtonPressevents from the same dev-
ice and window if any client specifies this class.

If any client has specified theDeviceButtonPressGrabclass, any requests by any other client that
specify the same device and window and specify eitherDeviceButtonPressor DeviceBut-
tonPressGrabwill cause anAccesserror to be generated.

If only theDeviceButtonPressclass is specified, no implicit passive grab will bedonewhen a but-
ton is pressed on the device. Multiple clients may use this class to specify the same device and
window combination.

The client may also selectDeviceMotioneventsonly when abutton is down. Itdoes this by speci-
fying the event classesDeviceButton1Motion throughDeviceButton5Motion. An input device
will only support asmanybutton motionclasses as it has buttons.

2.2.3. Event Structures
Each extension event type has a corresponding structure declared in<X11/extensions/XInput.h>.
All event structures have the following members:

type Set to the event type number that uniquely identifies it. For example,
when the X server reports aDeviceKeyPressevent to a client applica-
tion, it sends anXDeviceKeyPressEventstructure.

display Set to a pointer to a structure that defines the display the event was read
on.

send_eventSet toTrue if the event came from anXSendEventrequest.

serial Set from the serial number reported in the protocol but expanded from
the 16-bit least-significant bits to a full 32-bit value.

Extension event structures report the current position of the X pointer. In addition, if the device
reports motion data and is reporting absolute data, the current value of any valuators the device
contains is also reported.

2.2.3.1. Device Key Events
Key events from extension devices contain all the information that is contained in a key event from
the X keyboard. In addition, they contain a device id and report the current value of any valuators
on the device, if that device is reporting absolute data. If data for more than six valuators is being
reported, more than one key event will be sent. The axes_count field contains the number of axes
that are being reported. The server sends as many of these events as are needed to report the dev-
ice data. Each event contains the total number of axes reported in the axes_count field, and the
first axis reported in the current event in the first_axis field. If the device supportsinput class

29

X Input Extension Library Specification X11, Release 6.1

Valuators, but is not reporting absolute mode data, the axes_count field contains 0.

The location reported in the x,y and x_root,y_root fields is the location of the core X pointer.

The XDeviceKeyEvent structure is defined as follows:

typedef struct

{

int type; /* of event */

unsigned long serial; /* # of last request processed */

Bool send_event; /* true if from SendEvent request */

Display *display; /* Display the event was read from */

Window window; /* "event" window reported relative to */

XID deviceid;

Window root; /* root window event occurred on */

Window subwindow; /* child window */

Time time; /* milliseconds */

int x, y; /* x, y coordinates in event window */

int x_root; /* coordinates relative to root */

int y_root; /* coordinates relative to root */

unsigned int state; /* key or button mask */

unsigned int keycode; /* detail */

Bool same_screen; /* same screen flag */

unsigned char axes_count;

unsigned char first_axis;

unsigned int device_state; /* device key or button mask */

int axis_data[6];

} XDeviceKeyEvent;

typedef XDeviceKeyEvent XDeviceKeyPressedEvent;

typedef XDeviceKeyEvent XDeviceKeyReleasedEvent;

2.2.3.2. Device Button Events
Button events from extension devices contain all the information that is contained in abuttonevent
from the X pointer. In addition, they contain a device id and report the current value of any valua-
tors on the device, if that device is reporting absolute data. If data for more than six valuators is
being reported, more than onebuttonevent may be sent. The axes_count field contains the number
of axes that are being reported. The server sends as many of these events as are needed to report
the device data. Each event contains the total number of axes reported in the axes_count field, and
the first axis reported in the current event in the first_axis field. If the device supportsinput class
Valuators, but is not reporting absolute mode data, the axes_count field contains 0.

The location reported in the x,y and x_root,y_root fields is the location of the core X pointer.

30

X Input Extension Library Specification X11, Release 6.1

typedef struct {

int type; /* of event */

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if from a SendEvent request */

Display *display; /* Display the event was read from */

Window window; /* "event" window reported relative to */

XID deviceid;

Window root; /* root window that the event occurred on */

Window subwindow; /* child window */

Time time; /* milliseconds */

int x, y; /* x, y coordinates in event window */

int x_root; /* coordinates relative to root */

int y_root; /* coordinates relative to root */

unsigned int state; /* key or button mask */

unsigned int button; /* detail */

Bool same_screen; /* same screen flag */

unsigned char axes_count;

unsigned char first_axis;

unsigned int device_state; /* device key or button mask */

int axis_data[6];

} XDeviceButtonEvent;

typedef XDeviceButtonEvent XDeviceButtonPressedEvent;

typedef XDeviceButtonEvent XDeviceButtonReleasedEvent;

2.2.3.3. Device Motion Events
Motion events from extension devices contain all the information that is contained in a motion
event from the X pointer. In addition, they contain a device id and report the current value of any
valuators on the device.

The location reported in the x,y and x_root,y_root fields is the location of the core X pointer, and
so is 2-dimensional.

Extension motion devices may report motion data for a variable number of axes. The axes_count
field contains the number of axes that are being reported. The server sends as many of these
events as are needed to report the device data. Each event contains the total number of axes
reported in the axes_count field, and the first axis reported in the current event in the first_axis
field.

31

X Input Extension Library Specification X11, Release 6.1

typedef struct

{

int type; /* of event */

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if from a SendEvent request */

Display *display; /* Display the event was read from */

Window window; /* "event" window reported relative to */

XID deviceid;

Window root; /* root window that the event occurred on */

Window subwindow; /* child window */

Time time; /* milliseconds */

int x, y; /* x, y coordinates in event window */

int x_root; /* coordinates relative to root */

int y_root; /* coordinates relative to root */

unsigned int state; /* key or button mask */

char is_hint; /* detail */

Bool same_screen; /* same screen flag */

unsigned int device_state; /* device key or button mask */

unsigned char axes_count;

unsigned char first_axis;

int axis_data[6];

} XDeviceMotionEvent;

2.2.3.4. Device Focus Events
These events are equivalent to the core focus events. They contain the same information, with the
addition of a device id to identify which device has had a focus change, and a timestamp.

DeviceFocusInandDeviceFocusOutevents are generated for focus changes of extension devices
in the same manner as core focus events are generated.

32

X Input Extension Library Specification X11, Release 6.1

typedef struct

{

int type; /* of event */

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if this came from a SendEvent request */

Display *display; /* Display the event was read from */

Window window; /* "event" window it is reported relative to */

XID deviceid;

int mode; /* NotifyNormal, NotifyGrab, NotifyUngrab */

int detail;

/*

* NotifyAncestor, NotifyVirtual, NotifyInferior,

* NotifyNonLinear,NotifyNonLinearVirtual, NotifyPointer,

* NotifyPointerRoot, NotifyDetailNone

*/

Time time;

} XDeviceFocusChangeEvent;

typedef XDeviceFocusChangeEvent XDeviceFocusInEvent;

typedef XDeviceFocusChangeEvent XDeviceFocusOutEvent;

2.2.3.5. Device StateNotify Event
This event is analogous to the core keymap event, but reports the current state of the device for
eachinput class that it supports. It is generated after everyDeviceFocusInevent andEnterNotify
event and is delivered to clients who have selectedXDeviceStateNotifyevents.

If the device supportsinput class Valuators, the mode field in theXValuatorStatus structure is a
bitmask that reports the device mode, proximity state and other state information. The following
bits are currently defined:

0x01 Relative = 0, Absolute = 1
0x02 InProximity = 0, OutOfProximity = 1

If the device supports more valuators than can be reported in a singleXEvent, multipleXDeviceS-
tateNotify events will be generated.

33

X Input Extension Library Specification X11, Release 6.1

typedef struct

{

unsigned char class;

unsigned char length;

} XInputClass;

typedef struct {

int type;

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if this came from a SendEvent request */

Display *display; /* Display the event was read from */

Window window;

XID deviceid;

Time time;

int num_classes;

char data[64];

} XDeviceStateNotifyEvent;

typedef struct {

unsigned char class;

unsigned char length;

unsigned char num_valuators;

unsigned char mode;

int valuators[6];

} XValuatorStatus;

typedef struct {

unsigned char class;

unsigned char length;

short num_keys;

char keys[32];

} XKeyStatus;

typedef struct {

unsigned char class;

unsigned char length;

short num_buttons;

char buttons[32];

} XButtonStatus;

2.2.3.6. Device Mapping Event
This event is equivalent to the core MappingNotify event. It notifies client programs when the
mapping of keys, modifiers, or buttons on an extension device has changed.

34

X Input Extension Library Specification X11, Release 6.1

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window window;
XID deviceid;
Time time;
int request;
int first_keycode;
int count;

} XDeviceMappingEvent;

2.2.3.7. ChangeDeviceNotify Event
This event has no equivalent in the core protocol. It notifies client programs when one of the core
devices has been changed.

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window window;
XID deviceid;
Time time;
int request;

} XChangeDeviceNotifyEvent;

2.2.3.8. Proximity Events
These events have no equivalent in the core protocol. Someinput devices such as graphics tablets
or touchscreens may send these events to indicate that a stylus has moved into or out of contact
with a positional sensing surface.

The event contains the current value of any valuators on the device, if that device is reporting abso-
lute data. If data for more than six valuators is being reported, more than one proximity event may
be sent. The axes_count field contains the number of axes that are being reported. The server
sends as many of these events as are needed to report the device data. Each event contains the
total number of axes reported in the axes_count field, and the first axis reported in the current event
in the first_axis field. If the device supportsinput classValuators, but is not reporting absolute
mode data, the axes_count field contains 0.

35

X Input Extension Library Specification X11, Release 6.1

typedef struct

{

int type; /* ProximityIn or ProximityOut */

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if this came from a SendEvent request */

Display *display; /* Display the event was read from */

Window window;

XID deviceid;

Window root;

Window subwindow;

Time time;

int x, y;

int x_root, y_root;

unsigned int state;

Bool same_screen;

unsigned char axes_count;

unsigned char first_axis;

unsigned int device_state; /* device key or button mask */

int axis_data[6];

} XProximityNotifyEvent;

typedef XProximityNotifyEvent XProximityInEvent;

typedef XProximityNotifyEvent XProximityOutEvent;

2.2.4. Determining The Extension Version

XExtensionVersion
*XGetExtensionVersion (display, name)

Display *display;
char *name;

display Specifies the connection to the X server.

name Specifies the name of the desired extension.

This function allows a client to determine if a server supports the desired version of theinput
extension.

The XExtensionVersion structure returns information about the version of the extension sup-
ported by the server. The structure is defined as follows:

typedef struct
{
Bool present;
short major_version;
short minor_version;
} XExtensionVersion;

The major and minor versions can be compared with constants defined in the header fileXI.h .
Each version is a superset of the previous versions.

36

X Input Extension Library Specification X11, Release 6.1

You should useXFree to free the data returned by this function.

2.2.5. Listing Available Devices
A client program that wishes to access a specific device must first determine whether that device is
connected to the X server. This isdone through theXListInputDevices function, which will
return a list of all devices that can be opened by the X server. The client program can use one of
the names defined in theXI.h header file in an XInternAtom request, to determine the device type
of the desired device. This type can then be compared with the device types returned by theXLis-
tInputDevices request.

XDeviceInfo
*XListInputDevices (display, ndevices)

Display *display;
int *ndevices; /* RETURN */

display Specifies the connection to the X server.

ndevices Specifies the address of a variable into which the server can return the
number of inputdevices available to the X server.

This function allows a client to determine which devices are available for Xinput and information
about those devices. An array ofXDeviceInfo structures is returned, with one element in the array
for each device. The number of devices is returned in thendevicesargument.

The X pointer device and X keyboard device are reported, as well as all available extensioninput
devices. The use field of theXDeviceInfo structure specifies the current use of the device. If the
value of this field isIsXPointer, the device is the X pointer device. If the value isIsXKeyboard,
the device is the X keyboard device. If the value isIsXExtensionDevice, the device is available
for use as an extension inputdevice.

EachXDeviceInfo entry contains a pointer to a list of structures that describe the characteristics of
each class ofinput supported bythat device. The num_classes field contains the number of entries
in that list.

If the device supportsinput classValuators, one of the structures pointed to by theXDeviceInfo
structure will be anXValuatorInfo structure. The axes field of that structure contains the address
of an array ofXAxisInfo structures. There is one element in this array for each axis of motion
reported by the device. The number of elements in this array is contained in the num_axes element
of the XValuatorInfo structure. The size of the motion buffer for the device is reported in the
motion_buffer field of theXValuatorInfo structure.

TheXDeviceInfo structure contains the following information:

typedef struct _XDeviceInfo
{
XID id;
Atom type;
char *name;
int num_classes;
int use;
XAnyClassPtr inputclassinfo;
} XDeviceInfo;

The structures pointed to by theXDeviceInfo structure contain the following information:

37

X Input Extension Library Specification X11, Release 6.1

typedef struct _XKeyInfo
{
XID class;
int length;
unsigned short min_keycode;
unsigned short max_keycode;
unsigned short num_keys;
} XKeyInfo;

typedef struct _XButtonInfo {
XID class;
int length;
short num_buttons;
} XButtonInfo;

typedef struct _XValuatorInfo
{
XID class;
int length;
unsigned char num_axes;
unsigned char mode;
unsigned long motion_buffer;
XAxisInfoPtr axes;
} XValuatorInfo;

TheXAxisInfo structure pointed to by theXValuatorInfo structure contains the following infor-
mation.

typedef struct _XAxisInfo {
int resolution;
int min_value;
int max_value;
} XAxisInfo;

The following atom names are defined in the fileXI.h :

38

X Input Extension Library Specification X11, Release 6.1

MOUSE
TABLET
KEYBOARD
TOUCHSCREEN
TOUCHPAD
BUTTONBOX
BARCODE
KNOB_BOX
TRACKBALL
QUADRATURE
SPACEBALL
DATAGLOVE
EYETRACKER
CURSORKEYS
FOOTMOUSE
ID_MODULE
ONE_KNOB
NINE_KNOB

These names can be used in anXInternAtom request to return an atom that can be used for com-
parison with the type field of theXDeviceInfo structure.

This function returns NULL if there are noinput devices to list. Youshould useXFreeDeviceList
to free the data returned byXListInputDevices.

void
XFreeDeviceList (list)

XDeviceInfo *list;

list Specifies the pointer to theXDeviceInfo array returned by a previous call to
XListInputDevices.

This function frees the list ofinputdevice information.

2.2.6. Enabling And Disabling Extension Devices
Each client program that wishes to access an extension device must request that the serveropen
that device. This isdone via theXOpenDevicerequest. That request is defined as follows:

XDevice
*XOpenDevice(display, device_id)

Display *display;
XID device_id;

display Specifies the connection to the X server.

device_id Specifies the ID that uniquely identifies the device to be opened. This
ID is obtained from theXListInputDevices request.

This function opens the device for the requesting client and returns anXDevicestructure on suc-
cess. That structure is defined as follows:

39

X Input Extension Library Specification X11, Release 6.1

typedef struct {
XID device_id;
int num_classes;
XInputClassInfo *classes;

} XDevice;

The XDevice structure contains a pointer to an array ofXInputClassInfo structures. Each ele-
ment in that array contains information about events of a particularinput class supported by the
inputdevice.

The XInputClassInfo structure is defined as follows:

typedef struct {
unsigned char input_class;
unsigned char event_type_base;

} XInputClassInfo;

A client program can determine the event type and event class for a given event by using macros
defined by the input extension. Thename of the macro corresponds to the desired event, and the
macro is passed the structure that describes the device from whichinput is desired,i.e.

DeviceKeyPress (XDevice *device, event_type, event_class)

The macro will fill in the values of the event class to be used in anXSelectExtensionEvent
request to select the event, and the event type to be used in comparing with the event types of
events received viaXNextEvent.
Errors returned by this function:BadDevice.

Before terminating, the client programshould requestthat the server close the device. This isdone
via theXCloseDevicerequest.

A client mayopen thesame extension device more than once. Requests after the first successful
one return an additional XDevice structure with the same information as the first, but otherwise
have no effect. A singleXCloseDevicerequest will terminate that client’s access to the device.

Closing a device releases any active or passive grabs the requesting client has established. If the
device is frozenonly by anactive grab of the requesting client, any queued events are released.

If a client program terminates without closing a device, the server will automatically close that
device on behalf of the client. This does not affect any other clients that may be accessing that
device.

int
XCloseDevice(display, device)

Display *display;
XDevice *device;

display Specifies the connection to the X server.

40

X Input Extension Library Specification X11, Release 6.1

device Specifies the device to be closed.

This function closes the device for the requesting client, and frees theXDevicestructure.

Errors returned by this function:BadDevice.

2.2.7. Changing The Mode Of A Device
Some devices are capable of reporting either relative or absolute motion data. To change the mode
of a device from relative to absolute, use theXSetDeviceModefunction. The valid values are
Absoluteor Relative.

int
XSetDeviceMode (display, device, mode)

Display *display;
XDevice *device;
int mode;

display Specifies the connection to the X server.

device Specifies the device whose modeshould be changed.

mode Specifies the mode. You can specify one of these constants:Absolute
or Relative.

This function allows a client to request the server to change the mode of a device that is capable of
reporting either absolute positional data or relative motion data. If the device is invalid, or the
client has not previously requested that the serveropen thedevice via anXOpenDevicerequest,
this request will fail with aBadDeviceerror. If the device does not supportinput classValuators,
or if it is not capable of reporting the specified mode, the request will fail with aBadMatch error.

This request will fail and returnDeviceBusyif another client has already opened the device and
requested a different mode.

Errors returned by this function:BadDevice, BadMatch, BadMode, DeviceBusy.

2.2.8. Initializing Valuators on an Input Device
Some devices that report absolute positional data can be initialized to a starting value. Devices
that are capable of reporting relative motion or absolute positional data may require that their
valuators be initialized to a starting value after the mode of the device is changed toAbsolute. To
initialize the valuators on such a device, use theXSetDeviceValuatorsfunction.

Status
XSetDeviceValuators (display, device, valuators, first_valuator,

num_valuators)
Display *display;
XDevice *device;
int *valuators, first_valuator, num_valuators;

display Specifies the connection to the X server.

device Specifies the device whose valuatorsshould be initialized.

valuators Specifies the values to which each valuatorshould beset.

first_valuatorSpecifies the first valuator to be set.

num_valuators
Specifies the number of valuators to be set.

41

X Input Extension Library Specification X11, Release 6.1

This function initializes the specified valuators on the specified extensioninput device. Valuators
are numbered beginning with zero. Only the valuators in the range specified by first_valuator and
num_valuators are set. If the number of valuators supported by the device is less than the expres-
sion

first_valuator + num_valuators,

aBadValueerror will result.

If the request succeeds, Successis returned. If the specifed device is grabbed by some other
client, the request will fail and a status of AlreadyGrabbed will be returned.
This request can fail withBadLength, BadDevice, BadMatch, andBadValueerrors.

2.2.9. Getting Input Device Controls
Someinput devices support various configuration controls that can be queried or changed by
clients. The set of supported controls will vary from oneinput device to another. Requests to
manipulate these controls will fail if either the target X server or the targetinput device does not
support the requested device control.

Each device control has a unique identifier. Information passed with each device control varies in
length and is mapped by data structures unique to that device control.

To query a device control use XGetDeviceControl.

XDeviceControl
*XGetDeviceControl (display, device, control)

Display *display;
XDevice *device;
int control;

display Specifies the connection to the X server.

device Specifies the device whose configuration control status is to be
returned.

control Identifies the specific device control to be queried.

This request returns the current state of the specified device control. If the target X server does not
support that device control, a BadValue error will be returned. If the specified device does not
support that device control, a BadMatch error will be returned.

If the request is successful, a pointer to a generic XDeviceState structure is returned. The informa-
tion returned varies according to the specified control and is mapped by a structure appropriate for
that control. The first two fields are common to all device controls:

typedef struct {
XID control;
int length;

} XDeviceState;

The control may be compared to constants defined in the file XI.h. Currently defined device con-
trols include DEVICE_RESOLUTION.

The information returned for the DEVICE_RESOLUTION control is defined in the following
structure: include:

42

X Input Extension Library Specification X11, Release 6.1

typedef struct {
XID control;
int length;
int num_valuators;
int *resolutions;
int *min_resolutions;
int *max_resolutions;

} XDeviceResolutionState;

This device control returns a list of valuators and the range of valid resolutions allowed for each.
Valuators are numbered beginning with 0. Resolutions for all valuators on the device are returned.
For each valuator i on the device, resolutions[i] returns the current setting of the resolution,
min_resolutions[i] returns the minimum valid setting, and max_resolutions[i] returns the maximum
valid setting.

Whenthis control is specified, XGetDeviceControl will fail with a BadMatch error if the specified
device has no valuators.

Other errors returned by this request: BadValue.

2.2.10. Changing Input Device Controls
Someinput devices support various configuration controls that can be changed by clients. Typi-
cally, thiswould be done to initialize thedevice to aknownstate or configuration. The set of sup-
ported controls will vary from oneinput device to another. Requests to manipulate these controls
will fail if either the target X server or the targetinputdevice does not support the requested device
control. Setting the device control will also fail if the targetinput device is grabbed by another
client, or isopen by anotherclient and has been set to a conflicting state.

Each device control has a unique identifier. Information passed with each device control varies in
length and is mapped by data structures unique to that device control.

To change a device control use XChangeDeviceControl.

Status
XChangeDeviceControl (display, device, control, value)

Display *display;
XDevice *device;
int control;
XDeviceControl *value;

display Specifies the connection to the X server.

device Specifies the device whose configuration control status is to be
modified.

control Identifies the specific device control to be changed.

value Specifies a pointer to an XDeviceControl structure that describes which
control is to be changed, and how it is to be changed.

This request changes the current state of the specified device control. If the target X server does
not support that device control, a BadValue error will be returned. If the specified device does not
support that device control, a BadMatch error will be returned. If another client has the target dev-
ice grabbed, a status of AlreadyGrabbed will be returned. If another client has the deviceopen and
has set it to a conflicting state, a status of DeviceBusy will be returned.

43

X Input Extension Library Specification X11, Release 6.1

If the request fails for any reason, the device control will not be changed.

If the request is successful, the device control will be changed and a status of Success will be
returned. The information passed varies according to the specified control and is mapped by a
structure appropriate for that control. The first two fields are common to all device controls:

typedef struct {
XID control;
int length;

} XDeviceControl;

The control may be set using constants defined in the file XI.h. Currently defined device controls
include DEVICE_RESOLUTION.

The information that can be changed by the DEVICE_RESOLUTION control is defined in the fol-
lowing structure:

typedef struct {
XID control;
int length;
int first_valuator;
int num_valuators;
int *resolutions;

} XDeviceResolutionControl;

This device control changes the resolution of the specified valuators on the specified extension
input device. Valuators are numbered beginning with zero. Only the valuators in the range
specified by first_valuator and num_valuators are set. A value of -1 in the resolutions list indicates
that the resolution for this valuator is not to be changed. num_valuators specifies the number of
valuators in the resolutions list.

When this control is specified, XChangeDeviceControl will fail with a BadMatch error if the
specified device has no valuators. If a resolution is specified that is not within the range of valid
values (as returned by XGetDeviceControl) the request will fail with a BadValue error. If the
number of valuators supported by the device is less than the expression

first_valuator + num_valuators,

a BadValue error will result.

2.2.11. Selecting Extension Device Events
Device input events are selected using theXSelectExtensionEventfunction. The parameters
passed are a pointer to a list of classes that define the desired event types and devices, a count of
the number of elements in the list, and the id of the window from which events are desired.

44

X Input Extension Library Specification X11, Release 6.1

int
XSelectExtensionEvent (display, window, event_list, event_count)

Display *display;
Window window;
XEventClass *event_list;
int event_count;

display Specifies the connection to the X server.

window Specifies the ID of the window from which the client wishes to receive
events.

event_list Specifies a pointer to a list of XEventClasses that specify which events
are desired.

event_countSpecifies the number of elements in the event_list.

This function requests the server to send events that match the events and devices described by the
event list and that come from the requested window. The elements of the XEventClass array are
the event_class values returned obtained byinvoking amacro with the pointer to a Device struc-
ture returned by theXOpenDevicerequest. For example, the DeviceKeyPress macro, invoked in
the form:

DeviceKeyPress (XDevice *device, event_type, event_class)

returns the XEventClass for DeviceKeyPress events from the specified device.

Macros are defined for the following event classes:DeviceKeyPress, DeviceKeyRelease, Devi-
ceButtonPress, DeviceButtonRelease, DeviceMotionNotify, DeviceFocusIn, DeviceFocusOut,
ProximityIn, ProximityOut, DeviceStateNotify, DeviceMappingNotify, ChangeDeviceNotify,
DevicePointerMotionHint, DeviceButton1Motion, DeviceButton2Motion,
DeviceButton3Motion, DeviceButton4Motion, DeviceButton5Motion, DeviceButtonMotion,
DeviceOwnerGrabButton, andDeviceButtonPressGrab. To get the next available event from
within a client program, use the coreXNextEvent function. This returns the next event whether it
came from a core device or an extension device.

Succeeding XSelectExtensionEvent requests using XEventClasses for the same device as was
specified on a previous request will replace the previous set of selected events from that device
with the new set.

Errors returned by this function:BadWindow, BadAccess, BadClass, BadLength.

2.2.12. Determining Selected Device Events
To determine which extension events are currently selected from a given window, useXGetSelec-
tedExtensionEvents.

45

X Input Extension Library Specification X11, Release 6.1

int
XGetSelectedExtensionEvents (display, window, this_client_count,

this_client, all_clients_count, all_clients)
Display *display;
Window window;
int *this_client_count; /* RETURN */
XEventClass **this_client; /* RETURN */
int *all_clients_count; /* RETURN */
XEventClass **all_clients; /* RETURN */

display Specifies the connection to the X server.

window Specifies the ID of the window from which the client wishes to receive
events.

this_client_count
Specifies the number of elements in the this_client list.

this_client Specifies a pointer to a list of XEventClasses that specify which events
are selected by this client.

all_clients_count
Specifies the number of elements in the all_clients list.

all_clients Specifies a pointer to a list of XEventClasses that specify which events
are selected by all clients.

This function returns pointers to two event class arrays. One lists the extension events selected by
this client from the specified window. The other lists the extension events selected by all clients
from the specified window. This information is analogous to that returned in the fields
your_event_mask and all_event_masks of theXWindowAttributes structure when anXGetWin-
dowAttributes request is made.

You should useXFree to free the two arrays returned by this function.

Errors returned by this function:BadWindow.

2.2.13. Controlling Event Propagation
Extension events propagate up the window hierarchy in the same manner as core events. If a win-
dow is not interested in an extension event, it usually propagates to the closest ancestor that is
interested, unless the dont_propagate list prohibits it. Grabs of extension devices may alter the set
of windows that receive a particular extension event.

Client programs may control event propagationthrough the use of the following two functions.

XChangeDeviceDontPropagateList adds an event to or deletes an event from the
do_not_propagate list of extension events for the specified window. There is one list per window,
and the list remains for the life of the window. The list is not altered if a client that changed the
list terminates.

Suppression of event propagation is not allowed for all events. If a specified XEventClass is
invalid because suppression of that event is not allowed, aBadClasserror will result.

46

X Input Extension Library Specification X11, Release 6.1

int
XChangeDeviceDontPropagateList (display, window, event_count,

events, mode)
Display *display;
Window window;
int event_count;
XEventClass *events;
int mode;

display Specifies the connection to the X server.

window Specifies the desired window.

event_countSpecifies the number of elements in the events list.

events Specifies a pointer to the list of XEventClasses.

mode Specifies the mode. You may use the constantsAddToList or
DeleteFromList.

This function can returnBadWindow, BadClass, andBadModeerrors.

XGetDeviceDontPropagateListallows a client to determine the do_not_propagate list of exten-
sion events for the specified window.

XEventClass
*XGetDeviceDontPropagateList (display, window, event_count)

Display *display;
Window window;
int *event_count;/*RETURN */

display Specifies the connection to the X server.

window Specifies the desired window.

event_countSpecifies the number of elements in the array returned by this function.

An array ofXEventClassesis returned by this function. Each XEventClass represents a device/
event type pair.

This function can return aBadWindow error.

You should useXFree to free the data returned by this function.

2.2.14. Sending An Event
XSendExtensionEventallows a client to send an extension event to another client.

47

X Input Extension Library Specification X11, Release 6.1

int
XSendExtensionEvent (display, device, window, propagate,

event_count, event_list, event)
Display *display;
XDevice *device;
Window window;
Bool propagate;
int event_count;
XEventClass *event_list;
XEvent *event;

display Specifies the connection to the X server.

device Specifies the device whose ID is recorded in the event.

window Specifies the destination window ID. You can pass a window ID,Poin-
terWindow or InputFocus.

propagate Specifies a boolean value that is either True or False.

event_countSpecifies the number of elements in the event_list array.

event_list Specifies a pointer to an array of XEventClasses.

event Specifies a pointer to the event that is to be sent.

The XSendExtensionEvent function identifies the destination window, determines which clients
shouldreceive the specified event, and ignores any active grabs. This function requires a list of
XEventClasses to be specified. These are obtained by opening aninput device with the XOpen-
Device request.

This function uses thewindow argument to identify the destination window as follows:

g If you passPointerWindow, the destination window is the window that contains the pointer.

g If you passInputFocus, and if the focus window contains the pointer, the destination window
is the window that contains the pointer. If the focus window does not contain the pointer, the
destination window is the focus window.

To determine which clientsshouldreceive the specified events,XSendExtensionEventuses the
propagate argument as follows:

g If propagate isFalse, the event is sent to every client selecting from the destination window
any of the events specified in the event_list array.

g If propagate isTrue, and no clients have selected from the destination window any of the
events specified in the event_list array, the destination is replaced with the closest ancestor of
destination for which some client has selected one of the specified events, and for which no
intervening window has that event in its do_not_propagate mask. If no such window exists, or
if the window is an ancestor of the focus window, andInputFocus was originally specified as
the destination, the event is not sent to any clients. Otherwise, the event is reported to every
client selecting on the final destination any of the events specified in event_list.

The event in theXEvent structure must be one of the events defined by theinput extension, sothat
the X server can correctly byte swap the contents as necessary. The contents of the event are oth-
erwise unaltered and unchecked by the X server except to force send_event toTrue in the for-
warded event and to set the sequence number in the event correctly.

XSendExtensionEvent returns zero if the conversion-to-wire protocol failed, otherwise it returns
nonzero.

This function can generateBadDevice, BadValue, BadWindow, or BadClasserrors.

48

X Input Extension Library Specification X11, Release 6.1

2.2.15. Getting Motion History

XDeviceTimeCoord
*XGetDeviceMotionEvents (display, device, start, stop,

nevents_return, mode_return, axis_count_return);
Display *display;
XDevice *device;
Time start, stop;
int *nevents_return;
int *mode_return;
int *axis_count_return;

display Specifies the connection to the X server.

device Specifies the desired device.

start Specifies the start time.

stop Specifies the stop time.

nevents_return
Specifies the address of a variable into which the server will return the
number of positions in the motion buffer returned for this request.

mode_returnSpecifies the address of a variable into which the server will return the
mode of the nevents information. The mode will be one of the follow-
ing: Absoluteor Relative.

axis_count_return
Specifies the address of a variable into which the server will return the
number of axes reported in each of the positions returned.

This function returns all positions in the device’s motion history buffer that fall between the
specified start and stop times inclusive. If the start time is in the future, or is later than the stop
time, no positions are returned.

The return type for this function is a structure defined as follows:

typedef struct {
Time time;
unsigned int *data;

} XDeviceTimeCoord;

The data field of theXDeviceTimeCoord structure is a pointer to an array of data items. Each
item is of type int, and there is one data item per axis of motion reported by the device. The
number of axes reported by the device is returned in the axis_count variable.

The value of the data items depends on the mode of the device. The mode is returned in the mode
variable. If the mode isAbsolute, the data items are the raw values generated by the device.
These may be scaled by the client program using the maximum values that the device can generate
for each axis of motion that it reports. The maximum value for each axis is reported in the
max_val field of theXAxisInfo structure. This structure is part of the information returned by the
XListInputDevices request.

If the mode isRelative, the data items are the relative values generated by the device. The client
program must choose an initial position for the device and maintain a current position by accumu-
lating these relative values.

49

X Input Extension Library Specification X11, Release 6.1

Consecutive calls to this function may return data of different modes, if some client program has
changed the mode of the device via anXSetDeviceModerequest.

You should useXFreeDeviceMotionEventsto free the data returned by this function.

Errors returned by this function:BadDevice, BadMatch.

void
XFreeDeviceMotionEvents (events)

XDeviceTimeCoord *events;

eventsSpecifies the pointer to theXDeviceTimeCoord array returned by a previous
call toXGetDeviceMotionEvents.

This function frees the array of motion information.

50

X Input Extension Library Specification X11, Release 6.1

The following information is contained in the <X11/extensions/XInput.h> and
<X11/extensions/XI.h>header files:

51

X Input Extension Library Specification X11, Release 6.1

/* Definitions used by the library and client */

#ifndef _XINPUT_H_

#define _XINPUT_H_

#ifndef _XLIB_H_

#include <X11/Xlib.h>

#endif

#ifndef _XI_H_

#include "XI.h"

#endif

#define _deviceKeyPress 0

#define _deviceKeyRelease 1

#define _deviceButtonPress 0

#define _deviceButtonRelease 1

#define _deviceMotionNotify 0

#define _deviceFocusIn 0

#define _deviceFocusOut 1

#define _proximityIn 0

#define _proximityOut 1

#define _deviceStateNotify 0

#define _deviceMappingNotify 1

#define _changeDeviceNotify 2

#define FindTypeAndClass(d, type, class, classid, offset) { int i; XInputClassInfo *ip; type = 0; class =

#define DeviceKeyPress(d, type, class) FindTypeAndClass(d, type, class, KeyClass, _deviceKeyPress)

#define DeviceKeyRelease(d, type, class) FindTypeAndClass(d, type, class, KeyClass, _deviceKeyRelease)

#define DeviceButtonPress(d, type, class) FindTypeAndClass(d, type, class, ButtonClass, _deviceButtonPress)

#define DeviceButtonRelease(d, type, class) FindTypeAndClass(d, type, class, ButtonClass, _deviceButtonReleas e

#define DeviceMotionNotify(d, type, class) FindTypeAndClass(d, type, class, ValuatorClass, _deviceMotionNotif y

#define DeviceFocusIn(d, type, class) FindTypeAndClass(d, type, class, FocusClass, _deviceFocusIn)

#define DeviceFocusOut(d, type, class) FindTypeAndClass(d, type, class, FocusClass, _deviceFocusOut)

#define ProximityIn(d, type, class) FindTypeAndClass(d, type, class, ProximityClass, _proximityIn)

#define ProximityOut(d, type, class) FindTypeAndClass(d, type, class, ProximityClass, _proximityOut)

#define DeviceStateNotify(d, type, class) FindTypeAndClass(d, type, class, OtherClass, _deviceStateNotify)

52

X Input Extension Library Specification X11, Release 6.1

#define DeviceMappingNotify(d, type, class) FindTypeAndClass(d, type, class, OtherClass, _deviceMappingNotify)

#define ChangeDeviceNotify(d, type, class) FindTypeAndClass(d, type, class, OtherClass, _changeDeviceNotify)

#define DevicePointerMotionHint(d, type, class) { class = ((XDevice *) d)->device_id << 8 | _devicePointerMo t

#define DeviceButton1Motion(d, type, class) { class = ((XDevice *) d)->device_id << 8 | _deviceButton1Motion;

#define DeviceButton2Motion(d, type, class) { class = ((XDevice *) d)->device_id << 8 | _deviceButton2Motion;

#define DeviceButton3Motion(d, type, class) { class = ((XDevice *) d)->device_id << 8 | _deviceButton3Motion;

#define DeviceButton4Motion(d, type, class) { class = ((XDevice *) d)->device_id << 8 | _deviceButton4Motion;

#define DeviceButton5Motion(d, type, class) { class = ((XDevice *) d)->device_id << 8 | _deviceButton5Motion;

#define DeviceButtonMotion(d, type, class) { class = ((XDevice *) d)->device_id << 8 | _deviceButtonMotion;}

#define DeviceOwnerGrabButton(d, type, class) { class = ((XDevice *) d)->device_id << 8 | _deviceOwnerGrabBu t

#define DeviceButtonPressGrab(d, type, class) { class = ((XDevice *) d)->device_id << 8 | _deviceButtonGrab; }

#define NoExtensionEvent(d, type, class) { class = ((XDevice *) d)->device_id << 8 | _noExtensionEvent;}

#define BadDevice(dpy, error) _xibaddevice(dpy, &error)

#define BadClass(dpy, error) _xibadclass(dpy, &error)

#define BadEvent(dpy, error) _xibadevent(dpy, &error)

#define BadMode(dpy, error) _xibadmode(dpy, &error)

#define DeviceBusy(dpy, error) _xidevicebusy(dpy, &error)

/***

*

* DeviceKey events. These events are sent by input devices that

* support input class Keys.

* The location of the X pointer is reported in the coordinate

* fields of the x,y and x_root,y_root fields.

*

*/

typedef struct

{

int type; /* of event */

unsigned long serial; /* # of last request processed */

Bool send_event; /* true if from SendEvent request */

Display *display; /* Display the event was read from */

Window window; /* "event" window reported relative to */

XID deviceid;

Window root; /* root window event occured on */

Window subwindow; /* child window */

Time time; /* milliseconds */

53

X Input Extension Library Specification X11, Release 6.1

int x, y; /* x, y coordinates in event window */

int x_root; /* coordinates relative to root */

int y_root; /* coordinates relative to root */

unsigned int state; /* key or button mask */

unsigned int keycode; /* detail */

Bool same_screen; /* same screen flag */

unsigned int device_state; /* device key or button mask */

unsigned char axes_count;

unsigned char first_axis;

int axis_data[6];

} XDeviceKeyEvent;

typedef XDeviceKeyEvent XDeviceKeyPressedEvent;

typedef XDeviceKeyEvent XDeviceKeyReleasedEvent;

/***

*

* DeviceButton events. These events are sent by extension devices

* that support input class Buttons.

*

*/

typedef struct {

int type; /* of event */

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if from a SendEvent request */

Display *display; /* Display the event was read from */

Window window; /* "event" window reported relative to */

XID deviceid;

Window root; /* root window that the event occured on */

Window subwindow; /* child window */

Time time; /* milliseconds */

int x, y; /* x, y coordinates in event window */

int x_root; /* coordinates relative to root */

int y_root; /* coordinates relative to root */

unsigned int state; /* key or button mask */

unsigned int button; /* detail */

Bool same_screen; /* same screen flag */

unsigned int device_state; /* device key or button mask */

unsigned char axes_count;

unsigned char first_axis;

int axis_data[6];

} XDeviceButtonEvent;

typedef XDeviceButtonEvent XDeviceButtonPressedEvent;

typedef XDeviceButtonEvent XDeviceButtonReleasedEvent;

/***

*

* DeviceMotionNotify event. These events are sent by extension devices

* that support input class Valuators.

*

*/

54

X Input Extension Library Specification X11, Release 6.1

typedef struct

{

int type; /* of event */

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if from a SendEvent request */

Display *display; /* Display the event was read from */

Window window; /* "event" window reported relative to */

XID deviceid;

Window root; /* root window that the event occured on */

Window subwindow; /* child window */

Time time; /* milliseconds */

int x, y; /* x, y coordinates in event window */

int x_root; /* coordinates relative to root */

int y_root; /* coordinates relative to root */

unsigned int state; /* key or button mask */

char is_hint; /* detail */

Bool same_screen; /* same screen flag */

unsigned int device_state; /* device key or button mask */

unsigned char axes_count;

unsigned char first_axis;

int axis_data[6];

} XDeviceMotionEvent;

/***

*

* DeviceFocusChange events. These events are sent when the focus

* of an extension device that can be focused is changed.

*

*/

typedef struct

{

int type; /* of event */

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if from a SendEvent request */

Display *display; /* Display the event was read from */

Window window; /* "event" window reported relative to */

XID deviceid;

int mode; /* NotifyNormal, NotifyGrab, NotifyUngrab */

int detail;

/*

* NotifyAncestor, NotifyVirtual, NotifyInferior,

* NotifyNonLinear,NotifyNonLinearVirtual, NotifyPointer,

* NotifyPointerRoot, NotifyDetailNone

*/

Time time;

} XDeviceFocusChangeEvent;

typedef XDeviceFocusChangeEvent XDeviceFocusInEvent;

typedef XDeviceFocusChangeEvent XDeviceFocusOutEvent;

/***

*

* ProximityNotify events. These events are sent by those absolute

55

X Input Extension Library Specification X11, Release 6.1

* positioning devices that are capable of generating proximity information.

*

*/

typedef struct

{

int type; /* ProximityIn or ProximityOut */

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if this came from a SendEvent request */

Display *display; /* Display the event was read from */

Window window;

XID deviceid;

Window root;

Window subwindow;

Time time;

int x, y;

int x_root, y_root;

unsigned int state;

Bool same_screen;

unsigned int device_state; /* device key or button mask */

unsigned char axes_count;

unsigned char first_axis;

int axis_data[6];

} XProximityNotifyEvent;

typedef XProximityNotifyEvent XProximityInEvent;

typedef XProximityNotifyEvent XProximityOutEvent;

/***

*

* DeviceStateNotify events are generated on EnterWindow and FocusIn

* for those clients who have selected DeviceState.

*

*/

typedef struct

{

unsigned char class;

unsigned char length;

} XInputClass;

typedef struct {

int type;

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if this came from a SendEvent request */

Display *display; /* Display the event was read from */

Window window;

XID deviceid;

Time time;

int num_classes;

char data[64];

} XDeviceStateNotifyEvent;

typedef struct {

unsigned char class;

56

X Input Extension Library Specification X11, Release 6.1

unsigned char length;

unsigned char num_valuators;

unsigned char mode;

int valuators[6];

} XValuatorStatus;

typedef struct {

unsigned char class;

unsigned char length;

short num_keys;

char keys[32];

} XKeyStatus;

typedef struct {

unsigned char class;

unsigned char length;

short num_buttons;

char buttons[32];

} XButtonStatus;

/***

*

* DeviceMappingNotify event. This event is sent when the key mapping,

* modifier mapping, or button mapping of an extension device is changed.

*

*/

typedef struct {

int type;

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if this came from a SendEvent request */

Display *display; /* Display the event was read from */

Window window; /* unused */

XID deviceid;

Time time;

int request; /* one of MappingModifier, MappingKeyboard,

MappingPointer */

int first_keycode;/* first keycode */

int count; /* defines range of change w. first_keycode*/

} XDeviceMappingEvent;

/***

*

* ChangeDeviceNotify event. This event is sent when an

* XChangeKeyboard or XChangePointer request is made.

*

*/

typedef struct {

int type;

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if this came from a SendEvent request */

Display *display; /* Display the event was read from */

Window window; /* unused */

57

X Input Extension Library Specification X11, Release 6.1

XID deviceid;

Time time;

int request; /* NewPointer or NewKeyboard */

} XChangeDeviceNotifyEvent;

/***

*

* Control structures for input devices that support input class

* Feedback. These are used by the XGetFeedbackControl and

* XChangeFeedbackControl functions.

*

*/

typedef struct {

XID class;

int length;

XID id;

} XFeedbackState;

typedef struct {

XID class;

int length;

XID id;

int click;

int percent;

int pitch;

int duration;

int led_mask;

int global_auto_repeat;

char auto_repeats[32];

} XKbdFeedbackState;

typedef struct {

XID class;

int length;

XID id;

int accelNum;

int accelDenom;

int threshold;

} XPtrFeedbackState;

typedef struct {

XID class;

int length;

XID id;

int resolution;

int minVal;

int maxVal;

} XIntegerFeedbackState;

typedef struct {

XID class;

int length;

XID id;

58

X Input Extension Library Specification X11, Release 6.1

int max_symbols;

int num_syms_supported;

KeySym *syms_supported;

} XStringFeedbackState;

typedef struct {

XID class;

int length;

XID id;

int percent;

int pitch;

int duration;

} XBellFeedbackState;

typedef struct {

XID class;

int length;

XID id;

int led_values;

int led_mask;

} XLedFeedbackState;

typedef struct {

XID class;

int length;

XID id;

} XFeedbackControl;

typedef struct {

XID class;

int length;

XID id;

int accelNum;

int accelDenom;

int threshold;

} XPtrFeedbackControl;

typedef struct {

XID class;

int length;

XID id;

int click;

int percent;

int pitch;

int duration;

int led_mask;

int led_value;

int key;

int auto_repeat_mode;

} XKbdFeedbackControl;

typedef struct {

XID class;

int length;

59

X Input Extension Library Specification X11, Release 6.1

XID id;

int num_keysyms;

KeySym *syms_to_display;

} XStringFeedbackControl;

typedef struct {

XID class;

int length;

XID id;

int int_to_display;

} XIntegerFeedbackControl;

typedef struct {

XID class;

int length;

XID id;

int percent;

int pitch;

int duration;

} XBellFeedbackControl;

typedef struct {

XID class;

int length;

XID id;

int led_mask;

int led_values;

} XLedFeedbackControl;

/***

*

* An array of XDeviceList structures is returned by the

* XListInputDevices function. Each entry contains information

* about one input device. Among that information is an array of

* pointers to structures that describe the characteristics of

* the input device.

*

*/

typedef struct _XAnyClassinfo *XAnyClassPtr;

typedef struct _XAnyClassinfo {

XID class;

int length;

} XAnyClassInfo;

typedef struct _XDeviceInfo *XDeviceInfoPtr;

typedef struct _XDeviceInfo

{

XID id;

Atom type;

char *name;

int num_classes;

60

X Input Extension Library Specification X11, Release 6.1

int use;

XAnyClassPtr inputclassinfo;

} XDeviceInfo;

typedef struct _XKeyInfo *XKeyInfoPtr;

typedef struct _XKeyInfo

{

XID class;

int length;

unsigned short min_keycode;

unsigned short max_keycode;

unsigned short num_keys;

} XKeyInfo;

typedef struct _XButtonInfo *XButtonInfoPtr;

typedef struct _XButtonInfo {

XID class;

int length;

short num_buttons;

} XButtonInfo;

typedef struct _XAxisInfo *XAxisInfoPtr;

typedef struct _XAxisInfo {

int resolution;

int min_value;

int max_value;

} XAxisInfo;

typedef struct _XValuatorInfo *XValuatorInfoPtr;

typedef struct _XValuatorInfo

{

XID class;

int length;

unsigned char num_axes;

unsigned char mode;

unsigned long motion_buffer;

XAxisInfoPtr axes;

} XValuatorInfo;

/***

*

* An XDevice structure is returned by the XOpenDevice function.

* It contains an array of pointers to XInputClassInfo structures.

* Each contains information about a class of input supported by the

* device, including a pointer to an array of data for each type of event

* the device reports.

*

*/

61

X Input Extension Library Specification X11, Release 6.1

typedef struct {

unsigned char input_class;

unsigned char event_type_base;

} XInputClassInfo;

typedef struct {

XID device_id;

int num_classes;

XInputClassInfo *classes;

} XDevice;

/***

*

* The following structure is used to return information for the

* XGetSelectedExtensionEvents function.

*

*/

typedef struct {

XEventClass event_type;

XID device;

} XEventList;

/***

*

* The following structure is used to return motion history data from

* an input device that supports the input class Valuators.

* This information is returned by the XGetDeviceMotionEvents function.

*

*/

typedef struct {

Time time;

int *data;

} XDeviceTimeCoord;

/***

*

* Device state structure.

*

*/

typedef struct {

XID device_id;

int num_classes;

XInputClass *data;

} XDeviceState;

typedef struct {

unsigned char class;

unsigned char length;

unsigned char num_valuators;

62

X Input Extension Library Specification X11, Release 6.1

unsigned char mode;

int *valuators;

} XValuatorState;

typedef struct {

unsigned char class;

unsigned char length;

short num_keys;

char keys[32];

} XKeyState;

typedef struct {

unsigned char class;

unsigned char length;

short num_buttons;

char buttons[32];

} XButtonState;

/***

*

* Function definitions.

*

*/

XDevice *XOpenDevice();

XDeviceInfo *XListInputDevices();

XDeviceTimeCoord *XGetDeviceMotionEvents();

KeySym *XGetDeviceKeyMapping();

XModifierKeymap *XGetDeviceModifierMapping();

XFeedbackState *XGetFeedbackControl();

XExtensionVersion *XGetExtensionVersion();

XDeviceState *XQueryDeviceState();

XEventClass *XGetDeviceDontPropagateList();

#endif /* _XINPUT_H_ */

/* Definitions used by the server, library and client */

#ifndef _XI_H_

#define _XI_H_

#define sz_xGetExtensionVersionReq 8

#define sz_xGetExtensionVersionReply 32

#define sz_xListInputDevicesReq 4

#define sz_xListInputDevicesReply 32

#define sz_xOpenDeviceReq 8

#define sz_xOpenDeviceReply 32

#define sz_xCloseDeviceReq 8

#define sz_xSetDeviceModeReq 8

#define sz_xSetDeviceModeReply 32

#define sz_xSelectExtensionEventReq 12

#define sz_xGetSelectedExtensionEventsReq 8

#define sz_xGetSelectedExtensionEventsReply 32

#define sz_xChangeDeviceDontPropagateListReq 12

63

X Input Extension Library Specification X11, Release 6.1

#define sz_xGetDeviceDontPropagateListReq 8

#define sz_xGetDeviceDontPropagateListReply 32

#define sz_xGetDeviceMotionEventsReq 16

#define sz_xGetDeviceMotionEventsReply 32

#define sz_xChangeKeyboardDeviceReq 8

#define sz_xChangeKeyboardDeviceReply 32

#define sz_xChangePointerDeviceReq 8

#define sz_xChangePointerDeviceReply 32

#define sz_xGrabDeviceReq 20

#define sz_xGrabDeviceReply 32

#define sz_xUngrabDeviceReq 12

#define sz_xGrabDeviceKeyReq 20

#define sz_xGrabDeviceKeyReply 32

#define sz_xUngrabDeviceKeyReq 16

#define sz_xGrabDeviceButtonReq 20

#define sz_xGrabDeviceButtonReply 32

#define sz_xUngrabDeviceButtonReq 16

#define sz_xAllowDeviceEventsReq 12

#define sz_xGetDeviceFocusReq 8

#define sz_xGetDeviceFocusReply 32

#define sz_xSetDeviceFocusReq 16

#define sz_xGetFeedbackControlReq 8

#define sz_xGetFeedbackControlReply 32

#define sz_xChangeFeedbackControlReq 12

#define sz_xGetDeviceKeyMappingReq 8

#define sz_xGetDeviceKeyMappingReply 32

#define sz_xChangeDeviceKeyMappingReq 8

#define sz_xGetDeviceModifierMappingReq 8

#define sz_xSetDeviceModifierMappingReq 8

#define sz_xSetDeviceModifierMappingReply 32

#define sz_xGetDeviceButtonMappingReq 8

#define sz_xGetDeviceButtonMappingReply 32

#define sz_xSetDeviceButtonMappingReq 8

#define sz_xSetDeviceButtonMappingReply 32

#define sz_xQueryDeviceStateReq 8

#define sz_xQueryDeviceStateReply 32

#define sz_xSendExtensionEventReq 16

#define sz_xDeviceBellReq 8

#define sz_xSetDeviceValuatorsReq 8

#define sz_xSetDeviceValuatorsReply 32

#define INAME "XInputExtension"

#define XI_KEYBOARD "KEYBOARD"

#define XI_MOUSE "MOUSE"

#define XI_TABLET "TABLET"

#define XI_TOUCHSCREEN "TOUCHSCREEN"

#define XI_TOUCHPAD "TOUCHPAD"

#define XI_BARCODE "BARCODE"

#define XI_BUTTONBOX "BUTTONBOX"

#define XI_KNOB_BOX "KNOB_BOX"

#define XI_ONE_KNOB "ONE_KNOB"

#define XI_NINE_KNOB "NINE_KNOB"

#define XI_TRACKBALL "TRACKBALL"

64

X Input Extension Library Specification X11, Release 6.1

#define XI_QUADRATURE "QUADRATURE"

#define XI_ID_MODULE "ID_MODULE"

#define XI_SPACEBALL "SPACEBALL"

#define XI_DATAGLOVE "DATAGLOVE"

#define XI_EYETRACKER "EYETRACKER"

#define XI_CURSORKEYS "CURSORKEYS"

#define XI_FOOTMOUSE "FOOTMOUSE"

#define Dont_Check 0

#define XInput_Initial_Release 1

#define XInput_Add_XDeviceBell 2

#define XInput_Add_XSetDeviceValuators 3

#define XI_Absent 0

#define XI_Present 1

#define XI_Initial_Release_Major 1

#define XI_Initial_Release_Minor 0

#define XI_Add_XDeviceBell_Major 1

#define XI_Add_XDeviceBell_Minor 1

#define XI_Add_XSetDeviceValuators_Major 1

#define XI_Add_XSetDeviceValuators_Minor 2

#define NoSuchExtension 1

#define COUNT 0

#define CREATE 1

#define NewPointer 0

#define NewKeyboard 1

#define XPOINTER 0

#define XKEYBOARD 1

#define UseXKeyboard 0

#define IsXPointer 0

#define IsXKeyboard 1

#define IsXExtensionDevice 2

#define AsyncThisDevice 0

#define SyncThisDevice 1

#define ReplayThisDevice 2

#define AsyncOtherDevices 3

#define AsyncAll 4

#define SyncAll 5

#define FollowKeyboard 3

#define RevertToFollowKeyboard 3

#define DvAccelNum (1L << 0)

#define DvAccelDenom (1L << 1)

65

X Input Extension Library Specification X11, Release 6.1

#define DvThreshold (1L << 2)

#define DvKeyClickPercent (1L<<0)

#define DvPercent (1L<<1)

#define DvPitch (1L<<2)

#define DvDuration (1L<<3)

#define DvLed (1L<<4)

#define DvLedMode (1L<<5)

#define DvKey (1L<<6)

#define DvAutoRepeatMode (1L<<7)

#define DvString (1L << 0)

#define DvInteger (1L << 0)

#define Relative 0

#define Absolute 1

#define AddToList 0

#define DeleteFromList 1

#define KeyClass 0

#define ButtonClass 1

#define ValuatorClass 2

#define FeedbackClass 3

#define ProximityClass 4

#define FocusClass 5

#define OtherClass 6

#define KbdFeedbackClass 0

#define PtrFeedbackClass 1

#define StringFeedbackClass 2

#define IntegerFeedbackClass 3

#define LedFeedbackClass 4

#define BellFeedbackClass 5

#define _devicePointerMotionHint 0

#define _deviceButton1Motion 1

#define _deviceButton2Motion 2

#define _deviceButton3Motion 3

#define _deviceButton4Motion 4

#define _deviceButton5Motion 5

#define _deviceButtonMotion 6

#define _deviceButtonGrab 7

#define _deviceOwnerGrabButton 8

#define _noExtensionEvent 9

#define XI_BadDevice 0

#define XI_BadEvent 1

#define XI_BadMode 2

#define XI_DeviceBusy 3

#define XI_BadClass 4

typedef unsigned long XEventClass;

66

X Input Extension Library Specification X11, Release 6.1

/***

*

* Extension version structure.

*

*/

typedef struct {

int present;

short major_version;

short minor_version;

} XExtensionVersion;

#endif /* _XI_H_ */

67

X Input Extension Library Specification X11, Release 6.1

68

Table of Contents

1. Input Extension Overview.. 1

1.1. Design Approach ... 1

1.2. CoreInputDevices .. 1

1.3. ExtensionInputDevices .. 1

1.3.1.InputDevice Classes .. 2

1.4. Using ExtensionInputDevices .. 2

2. Library Extension Requests .. 3

2.1.Window Manager Functions .. 3

2.1.1. Changing The Core Devices ... 3

2.1.2. Event Synchronization And Core Grabs ... 4

2.1.3. Extension Active Grabs .. 5

2.1.4. Passively Grabbing A Key ... 7

2.1.5. Passively Grabbing A Button ... 9

2.1.6. Thawing A Device .. 12

2.1.7. Controlling Device Focus ... 13

2.1.8. Controlling Device Feedback ... 15

2.1.9.Ringing aBell on anInputDevice .. 22

2.1.10. Controlling Device Encoding ... 22

2.1.11. Controlling Button Mapping ... 25

2.1.12. Obtaining The State Of A Device ... 26

2.2. Events and Event-Handling Functions ... 28

2.2.1. Event Types .. 28

2.2.2. Event Classes .. 29

2.2.3. Event Structures .. 29

2.2.3.1. Device Key Events .. 29

2.2.3.2. Device Button Events .. 30

2.2.3.3. Device Motion Events ... 31

2.2.3.4. Device Focus Events ... 32

2.2.3.5. Device StateNotify Event .. 33

2.2.3.6. Device Mapping Event .. 34

2.2.3.7. ChangeDeviceNotify Event ... 35

2.2.3.8. Proximity Events ... 35

2.2.4. Determining The Extension Version .. 36

2.2.5. Listing Available Devices .. 37

2.2.6. Enabling And Disabling Extension Devices ... 39

2.2.7. Changing The Mode Of A Device .. 41

2.2.8. Initializing Valuators on anInputDevice ... 41

i

X Input Extension Library Specification X11, Release 6.1

2.2.9. GettingInputDevice Controls .. 42

2.2.10. Changing InputDevice Controls .. 43

2.2.11. Selecting Extension Device Events .. 44

2.2.12. Determining Selected Device Events ... 45

2.2.13. Controlling Event Propagation ... 46

2.2.14. Sending An Event ... 47

2.2.15. Getting Motion History ... 49

ii

