[ Previous |
Next |
Contents |
Glossary |
Home |
Search ]
The graPHIGS Programming Interface: ISO PHIGS Subroutine Reference
COMPOSE TRANSFORMATION MATRIX (PHOP,*,*,*)
Purpose
Use
Compose Transformation Matrix
to compute a two-dimensional
transformation matrix which
is the composition of the specified matrix with the matrix defined
by the fixed point, shift, rotate and scale parameters. The order
of transformation is: scale, rotate
(both relative to
the specified fixed point),
and shift.
If the graPHIGS API can compute the transformation matrix, then
the graPHIGS API sets the error indicator to zero and returns the
composed transformation matrix.
If the graPHIGS API cannot compute the transformation matrix, then
the values of the composed transformation matrix are
unpredictable and the graPHIGS API sets the error indicator to
the following error:
- 2
- Function Requires State (PHOP,*,*,*)
Language Bindings
C
pcompose_tran_matrix
(tran, point, shift_vec, angle,
scale_vec, err_ind, result_tran) |
Pmatrix tranTransformation matrix.
(See
Chapter 15. "ISO PHIGS Transformations" for a description
of the storage of the transformation matrix).
const Ppoint *pointFixed point.
const Pvec *shift_vecShift vector.
Pfloat angleRotation angle in radians
(positive if counterclockwise).
const Pvec *scale_vecScale vector.
Pint *err_indError indicator.
Pmatrix result_tranComposed transformation matrix.
(See
Chapter 15. "ISO PHIGS Transformations" for a description
of the storage of the transformation matrix).
FORTRAN
PCOTM
(xfrmti, x0,
y0, dx, dy,
phi, fx, fy,
errind, xfrmto) |
real xfrmti(3,3)Transformation matrix.
(See
Chapter 15. "ISO PHIGS Transformations" for a description
of the storage of the transformation matrix).
real x0x coordinate of the fixed point.
real y0y coordinate of the fixed point.
real phiRotation angle in radians
(positive if counterclockwise).
real fxx-axis scale factor.
real fyy-axis scale factor.
integer errindError indicator.
real xfrmto(3,3)Composed transformation matrix.
(See
Chapter 15. "ISO PHIGS Transformations" for a description
of the storage of the transformation matrix).
Errors
None
Related Subroutines
None
[ Previous |
Next |
Contents |
Glossary |
Home |
Search ]