
AIX Version 4.3

Novell Network Transport Services 4.1 for AIX

SC23-4135-00

First Edition (October 1997)

This edition of Netware Transports applies to the AIX Version 4.3 Licensed
Program, and to all subsequent releases of this product until otherwise indicated
in new releases or technical newsletters.

The following paragraph does not apply to the United Kingdom or any
country where such provisions are inconsistent with local law: THIS
MANUAL IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties
in certain transactions; therefore, this statement may not apply to you.

It is not warranted that the contents of this publication or the accompanying source
code examples, whether individually or as one or more groups, will meet your
requirements or that the publication or the accompanying source code examples
are error-free.

This publication could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication.

It is possible that this publication may contain references to, or information about,
products (machines and programs), programming, or services that are not
announced in your country. Such references or information must not be construed
to mean that such products, programming, or services will be offered in your
country. Any reference to a licensed program in this publication is not intended
to state or imply that you can use only that licensed program. You can use any
functionally equivalent program instead.

The information provided regarding publications by other vendors does not
constitute an expressed or implied recommendation or endorsement of any
particular product, service, company or technology, but is intended simply as an
information guide that will give a better understanding of the options available to
you. The fact that a publication or company does not appear in this book does
not imply that it is inferior to those listed. The providers of this book take no
responsibility whatsoever with regard to the selection, performance, or use of the
publications listed herein.

NO WARRANTIES OF ANY KIND ARE MADE WITH RESPECT TO THE
CONTENTS, COMPLETENESS, OR ACCURACY OF THE PUBLICATIONS
LISTED HEREIN. ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE SPECIFICALLY

DISCLAIMED. This disclaimer does not apply to the United Kingdom or
elsewhere if inconsistent with local law.

Novell, Inc. makes no representations or warranties with respect to the contents
or use of this manual, and specifically disclaims any express or implied warranties
of merchantability or fitness for any particular purpose. Further, Novell, Inc.
reserves the right to revise this publication and to make changes to its content,
at any time, without obligation to notify any person or entity of such revisions or
changes.

Further, Novell, Inc. makes no representations or warranties with respect to any
NetWare software, and specifically disclaims any express or implied warranties
of merchantability or fitness for any particular purpose. Further, Novell, Inc.
reserves the right to make changes to any and all parts of NetWare software, at
any time, without any obligation to notify any person or entity of such changes.

©Copyright 1996 Novell, Inc. All rights reserved. No part of this publication may
be reproduced, photocopied, stored on a retrieval system, or transmitted without
the express written consent of the publisher.

©Copyright International Business Machines Corporation 1997. All rights
reserved.

Notice to U.S. Government Users — Documentation Related to Restricted Rights
— Use, duplication or disclosure is subject to restrictions set forth in GSA ADP
Schedule Contract.

Trademarks and Acknowledgements

The following trademarks and acknowledgements apply to this information:

AIX is a registered trademark of International Business Machines Corporation.

IBM is a registered trademark of International Business Machines Corporation.

Novell, NetWare, the N-Design, and the NetWare Logotype are registered
trademarks of Novell, Inc.

IPX (Internetwork Packet Exchange) is a trademark of Novell, Inc.

SPX and Sequenced Packet Exchange are a trademarks of Novell, Inc.

NetWare Directory Services is a trademark of Novell, Inc.

Novell Virtual Terminal is a trademark of Novell, Inc.

UNIX System V is a trademark of Novell, Inc.

386 is a trademark of Intel Corporation.

ARCnet is a registered trademark of Datapoint Corporation.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through X/Open Co. Ltd.

XNS is a trademark of Xerox Corporation.

StarGROUP is a registered trademark of American Telephone and Telegraph.

About This Guide
Novell Network Services 4.1 for AIX (NNS) provides NetWare 4
services on AIX. Any reference in the document to NetWare services
refers to NNS.

This guide provides programming information about the
communication protocols in the NetWare Protocol Stack. The complete
stack consists of daemons, various drivers, and protocol-specific
modules and can be run on the host system independent of the NetWare
service modules.

Chapter 1 discusses the Internetwork Packet Exchange (IPX),
NetWare’s datagram protocol, its packet structure and header fields,
addressing scheme, and its implementation as a transport module in a
UNIX environment.

Chapter 2 discusses the Routing Information Protocol (RIP), which
maintains routing information and provides routing services to IPX, its
packet flow, packet types, packet structure, and header fields. RIP has
no programming interface.

Chapter 3 discusses the Sequenced Packet Exchange (SPX) protocol,
NetWare’s connection-oriented, reliable, sequenced transport protocol
that provides a packet-level service. It provides information on SPX
data delivery and acknowledgment, flow control, packet types, packet
structure, and header fields.

This chapter is included primarily as a point of comparison with the
enhanced protocol, SPXII.

Chapter 4 discusses the enhanced Sequenced Packet Exchange (SPXII)
protocol, which is backward compatible with SPX but which offers true
windowing, packet size negotiation, and use of larger packets. This
chapter provides information on SPXII data delivery and positive and
negative acknowledgment, packet types, packet structure, and header
fields.
About This Guide i

Chapter 5 discusses the Service Advertising Protocol (SAP) which
allows service providing entities to be registered in a Server
Information Table and advertised on an internetwork via SAP agents.
This chapter also provides information on SAP packet structure and
header fields, packet flow, and periodic broadcasting.

Chapter 6 provides the protocol-specific information needed to
program IPX under TLI/XTI and contains a reference to both functions
and structures.

Chapter 7 provides the protocol-specific information needed to
program SPX and SPXII under TLI/XTI and contains a reference to the
functions and structures used in both server and client applications.

Chapter 8 provides the information needed to program the SAP
protocol using SAP Library functions.

Chapter 9 provides the information needed to program IPX directly
using ioctls. (It does not include information on STREAMS interface
getmsg/putmsg .)

Chapter 10 provides the information needed to access SPX/SPXII data
structures using ioctls.

Application developers should be familiar with TLI/XTI programming
(including ioctls) as well as with NetWare.

Chapter 11 discusses NCP Extensions, which provide a mechanism by
which an application, rather than the NetWare server, can respond to
NCP Extensions coming in to the server. This allows NetWare clients
that are already authenticated to a Directory tree to access applications
running on the AIX application server.

This chapter also provides the information needed to program NCP
Extensions and contains a reference to the functions used in server-side
NCPX applications.
ii NetWare Transports

Contents
About This Guide

1 Internetwork Packet Exchange (IPX) Protocol

What Is IPX? . 1
How IPX Works . 1
IPX Addressing . 2

Network Address . 3
Node Address . 3
Socket Address . 4

IPX Packet Structure . 4
IPX Header Fields. . 7

Checksum . 8
Packet Length . 8
Transport Control . 8
Packet Type . 8
Destination Address Fields . 9

Network . 9
Node . 10
Socket . 10

Source Address Fields . 11
Network . 11
Node . 11
Socket . 11

IPX Driver in UNIX Environment . 12
Single LAN configuration . 13
Multiple LAN Configuration . 14
Router Only Configuration. . 16

IPX Programming Interface . 16

2 Routing Information Protocol (RIP)

What Is RIP? . 17
How Routing Works . 18

Routing Information Tables . 18
Contents iii

Obtaining a Route . 19
When Routing Is Not Needed . 20
When Routing Is Needed . 20

RIP Packet Structure . 22
RIP Packet Fields . 24

Operation . 24
Network Information Structure . 25

RIP Packet Types . 25
General Request

(Operation = 1) . 25
Specific Request

(Operation = 1) . 26
Periodic Broadcast

(Operation = 2) . 26
Response

(Operation = 2) . 26
Specific Informational Response

(Operation = 2) . 26

3 Sequenced Packet Exchange (SPX) Protocol

What Is SPX? . 27
How SPX Works . 28
SPX Packet Structure . 29
SPX Header Fields . 31

Checksum . 32
Length . 32
Transport Control . 32
Packet Type . 32
Destination Address . 32
Source Address . 33
Connection Control . 33
Datastream Type . 33
Source Connection ID . 34
Destination Connection ID . 34
Sequence Number . 34
Acknowledge Number . 34
Allocation Number . 35

SPX Data Flow and Sequence. . 36
Uni-directional Communication. . 36
Bi-directional Communication . 37

SPX Flow Control . 38
Flow Control on Incoming Data . 38
iv NetWare Transports

Flow Control on Outgoing Data . 38
SPX Connection Management . 39

SPX Watchdog . 39
SPX Timeout . 40

4 Enhanced Sequenced Packet Exchange (SPXII) Protocol

What Is SPXII? . 41
How SPXII Works . 42

Backward Compatibility with SPX . 42
Compatibility on the Wire . 43
Programming Interface Compatibility 43

Large Packets . 44
Large Packet Negotiation . 44
Windowing Protocol . 45

SPXII Packet Structure . 46
SPXII Header Fields. . 48

Checksum . 49
Length . 49
Transport Control . 49
Packet Type . 49
Destination Address . 49
Source Address . 50
Connection Control . 51
Datastream Type . 51
Source Connection ID . 52
Destination Connection ID. . 52
Sequence Number . 52
Acknowledge Number . 53
Allocation Number . 53
Negotiation Size . 53

SPXII Data Flow. . 54
Data Packet Format . 54
SPXII ACKs . 57
SPXII NAKs . 59
Sequence of Data Packets without a NAK 61
Sequence of Data Packets with a NAK 63

SPXII Connection Management. . 65
Connection Establishment Packets . 66

Connection Request Packet . 66
Connection ACK Packet . 68
Session Negotiate Packet . 69
Session Negotiate ACK . 72
Session Setup Packet . 73
Contents v

Session Setup ACK Packet. . 76
Packet Sequence for SPXII to SPXII Connection Establishment. . . . 77
Packet Sequences for Mixed SPX and SPXII Connection Endpoints . 81

Session Termination Packets . 82
Informed Disconnect Packets . 83
Orderly Release Request Packets 87

Watchdog. . 92
Watchdog Packet Format. . 93
Watchdog ACK . 94
SPXII Watchdog Algorithm . 95
Session Watchdog during Connection Establishment 95

Renegotiation. . 96
Renegotiate Request Packet . 96
Renegotiate ACK . 98
Packet Sequence for Renegotiation 100

Negotiating Other Values between Endpoints 103
Value . 104
Type . 104
Extended Value Combinations . 107
Currently Defined Types . 108

Disparate Versions of SPXII . 108
SPXII Windowing Algorithm . 109

Positive and Negative Acknowledgments 109
Variable Window Size . 109

Default Window Size . 110
Closing and Reopening a Window 110

Error Recovery . 111
Data Packet Timeout . 111

SPXII Programming Interface . 112

5 Service Advertising Protocol (SAP)

What Is SAP? . 113
How SAP Works . 114
Obtaining Service Names and Addresses . 116

Querying a SAP Agent . 116
Querying the Bindery or Directory Services 117

SAP Packet Structure . 117
IPX Header . 118
SAP Operation . 118
Server Information Structure . 119

Server Type. . 119
Server Name . 120
vi NetWare Transports

Server Address . 121
Hops to Server. . 121

SAP Information Aging . 121
SAP Information Flow . 122

SAP Broadcasts . 122
Nearest Server Query . 125

SAP Packet Types . 126
SAP Header . 128
SAP Data . 128
SAP Query Packets . 128

SAP Query Operation . 129
Server Type . 129

SAP Response Packets . 130
SAP Response Operation . 130
Server Information Structure. . 131

Periodic Broadcasts . 131
SAP Programming Interface . 131

6 TLI/XTI for IPX

Overview . 133
IPX-Specific Information for TLI Functions . 133
TLI Data Structures . 134
Sequence of TLI Functions . 134
IPX Considerations . 135
TLI Reference for IPX . 135
t_bind . 137
t_open . 143
t_optmgmt . 146
t_rcvudata . 149
t_sndudata . 154

7 TLI/XTI for SPX/SPXII

Overview . 159
TLI Differences between SPX and SPXII . 160

Orderly Release Differences . 160
Differences in the t_optmgmt Structure 161

SPX t_optmgmt Structure . 161
SPXII t_optmgmt Structure . 162

Compatibility Procedures . 166
Allocation Procedures for TLI Structures 166
Datastream Type Differences . 166
Device Selection Procedures . 167
Contents vii

SPX/SPXII Specific Information for TLI Functions 167
TLI Data Structures . 168
Sequence of TLI Functions. . 168

Server Applications. . 169
Client Applications . 170

SPX Considerations . 171
TLI Reference for SPX . 171
t_accept . 173
t_bind. . 177
t_connect . 186
t_listen . 195
t_open . 201
t_optmgmt . 205
t_rcv . 211
t_rcvdis . 214
t_rcvrel . 219
t_snd . 222
t_snddis . 226
t_sndrel. . 230

8 SAP Library

Overview . 233
Reference for SAP Functions . 234
SAPMapMemory . 236
SAPUnmapMemory . 238
SAPStatistics . 239
SAPGetAllServers . 244
SAPGetNearestServer . 247
SAPGetChangedServers. . 249
SAPNotifyOfChange . 252
SAPGetServerByAddr . 254
SAPGetServerByName . 257
SAPAdvertiseMyServer . 260
SAPListPermanentServers. . 264
SAPGetLanData . 266
SAPPerror . 269
AdvertiseService . 270
ShutdownSAP . 274
QueryServices . 275

9 IPX Direct Interface

Overview . 279
viii NetWare Transports

IPX Driver in the UNIX Environment . 280
IPX Socket Multiplexer . 280

IPX LAN Router. . 280

Reference to IPX ioctls . 281
IPX_SET_SOCKET 281
IPX_BIND_SOCKET 281
IPX_UNBIND_SOCKET 281
IPX_GET_NET 282
IPX_GET_NODE_ADDR 282
IPX_GET_LAN_INFO 282
IPX_GET_CONFIGURED_LANS 283
IPX_STATS 283

10 SPX/SPXII ioctls

Overview . 285

Reference to SPX ioctls . 286
SPX_GS_MAX_PACKET_SIZE 286
SPX_GS_DATASTREAM_TYPE 287
SPX_T_SYNCDATA_IOCTL 287
SPX_CHECK_QUEUE 287
SPX_GET_STATS 288
SPX_SPX2_OPTIONS 288
SPX_GET_CON_STATS 288

11 NCP Extensions

What Are NCP Extensions?. . 289
Potential Uses . 291

Client-Server Applications . 291
IPX/SPX Alternative . 292

Advantages . 292
How NCP Extensions Work . 292

Components of an NCPX Program . 293
Query Data Buffer . 293
NCP Callback . 294
Reply Buffer Manager Callback . 294
Connection Event Callback . 294
Callback Combinations . 295

Identifying NCP Extensions . 296
NCP Extension Names . 296
Contents ix

NCP Extension IDs . 296
Registering an NCP Extension . 297
Calling the NCP Extension . 298
Client’s View of an NCP Extension. . 300
Service Provider’s View of an NCP Extension 300

NCPX in a AIX Execution Environment . 301
Process Model . 301
Handler Parents and Children . 302
EventLoop . 303
Signals . 304
Privileges . 305
Shared Memory . 306
NEMUX File Descriptor. . 307
Miscellaneous Requirements. . 308
Limitations . 308

Single Threading . 308
Cannot Loop Back . 308
Size of NCPX Pool . 309

Writing an NCPX Program . 309
Code Example . 311
Compiling an NCPX Handler . 313
Running an NCPX Handler . 314
Programming Issues . 314

Reply Buffer Manager . 315
Connection Event Callback . 317
Deregistering Before Unloading . 317
Registering Multiple NCP Extensions 317

NCPX Handler Library Reference . 319
Overview of Library routines . 319

Initialization . 320
Registration . 320
EventLoop . 320
Client Identification . 321
Connection Status . 321
Child Detachment. . 321

Index to NCPX Functions . 322
NCPX_EventLoop . 323
NWRegisterNCPExtension. . 326
NWRegisterNCPExtensionByID . 333
NWDeRegisterNCPExtension . 337
NCPX_GetObjectName . 339
ConnectionIsLoggedIn . 341
ConnectionIsAuthenticatedTemporary . 343
NCPX_DetachForkedChildFromServer . 345
x NetWare Transports

c h a p t e r 1 Internetwork Packet Exchange (IPX)
Protocol
What Is IPX?

IPX is a connectionless, datagram service protocol that does not require
an acknowledgment for each packet sent.

No connection between the stations is established when a client uses
this transport protocol to communicate with other clients or servers.
Because IPX is a datagram service, each packet is routed individually to
its destination on a network or internetwork.

IPX is an implementation of Xerox Network Standard (XNS). Other
NetWare protocols that provide services, such as guaranteed service
and packet sequencing (SPX/SPXII), service advertising (SAP), routing
(RIP), and NCP (NetWare Core Protocol) are built on top of IPX.

How IPX Works

IPX performs the Open Systems Interconnection (OSI) network layer
tasks of addressing, routing, and switching packets. IPX makes a “best
effort” attempt to deliver packets to their destination; there is no
guarantee or verification of successful delivery. Packet
acknowledgment or connection control must be provided by protocols
above IPX.

Guaranteed services, such as SPXII, can be built over IPX. However, IPX
is used whenever guaranteed service is not required (for example, in
service advertising) and for applications where an occasional lost
packet is not critical. The low overhead of IPX means speed and
performance.

IPX provides full internetwork addressing within a large address space.
It defines network and socket numbers, while using the node
Internetwork Packet Exchange (IPX) Protocol 1

addressing scheme of the network interface hardware for clients. This
saves memory, bandwidth, and complexity.

The IPX driver provides routing (RIP) services as well as IPX transport
and addressing services. As LAN drivers for the network boards
deliver packets to IPX, the IPX driver uses RIP to determine the route
for packets outbound to other networks. Packets addressed to a local
node are routed by IPX to the applications by using the socket numbers.

The discussion in this chapter covers the following topics:

• IPX addressing

• IPX packet structure

• IPX header

• IPX driver in a UNIX environment

• IPX programming interface

IPX Addressing

 IPX addressing defines the internetwork, a collection of LANs
connected by routers, bridges, and so forth.

 IPX packet headers require both source and destination addresses.
These designate the sender and the receiver of the packet respectively.

The IPX internetwork addressing scheme uses three address
components shown in Table 1-1 (and which are described in more detail
following).

Table 1-1

IPX Internetwork Address Components

Address Byte Length Description

Network 4 bytes Identifies a specific network or LAN on an IPX
internetwork.

Node 6 bytes Identifies individual nodes, or computers, on a
network or LAN.
2 NetWare Transports

Network Address

The network number (not the node address) is used by routers to
forward packets to their destination. Each LAN is a configured network
in IPX and assigned a unique network number or address.

Each LAN (logical network) must be associated with a physical
network and is limited to a single network frame type. When multiple
frame types are used on the same networking segment, each frame type
is considered a LAN and must have a unique network number. This
means that all network devices which are cabled to a network segment
and which use a common frame type must also use the same network
address.

Where multiple LANs are configured on the same platform, an internal
network number (logical address) serves as a common point of
connection.

Node Address

The node address identifies a station, node, or individual computer on
a network. For clients, the node is defined by networking hardware and
is usually factory set. For NetWare servers 3.x and above, NetWare
configures a logical node address.

The lower-level Media Access Control (MAC) protocols (such as the
token ring, Ethernet, and ARCnet standards) define node addressing
for each LAN, which is implemented within the hardware or firmware
of each network interface board and is usually factory set.

In addition to the server’s node address for the attached LAN, the
server’s logical node address is associated with the internal network
address.

Socket 2 bytes Identifies a process or function operating within a
node. A socket is identified by a unique number.

Table 1-1 continued

IPX Internetwork Address Components

Address Byte Length Description
Internetwork Packet Exchange (IPX) Protocol 3

Socket Address

The socket address identifies the process in the destination node and is
the ultimate destination for a packet. Socket numbers provide a sort of
mail slot that distinguishes each process for IPX.

Sockets are the mechanism that allows multiple applications on the
same station to send and receive data, without interfering with each
other. Sockets have the same function as ports in other network
protocols.

A socket number is assigned to a specific process. A process can use a
well-known (static) socket number or can obtain a dynamic
(ephemeral) number when the process requests a socket from IPX.
Because socket numbers are internal to each node, each node can have
its own domain of sockets independent of other nodes.

IPX Packet Structure

The structure of an IPX packet is identical to that of an XNS packet. The
packet header consists of 30-bytes. The minimum packet size is 30 bytes
(header only), while the maximum size is Maximum Transmission Unit
minus the 30-byte header (MTU-30).

In some cases, data packets smaller than MTU-30 must be sent. In general, use
the smallest of the maximum packet sizes accepted by the routers on your
internetwork.

Some of the fields in the header are byte-order sensitive, and the data
must be sent in hi-lo order (network), as illustrated in Figure 1-1 below.

Figure 1-1

Byte Order High byte Low byte

High byte Low byte

Address n n + 1

n + 1 n + 2 n + 3n
4 NetWare Transports

Figure 1-2 illustrates the IPX packet structure.

Figure 1-2

IPX Packet
Structure

MAC header

IPX header

 Data

1 byte (8 bits)

Transport Control

Checksum

Packet Length

Packet Type

Destination
Network

Destination
Node

Destination
Socket

Source
Network

Source
Node

Source
Socket

(0 to bytes) n
Internetwork Packet Exchange (IPX) Protocol 5

Although the IPX packet header has the format as shown in Figure 1-2
on page 5, there are frame-specific differences in the placement of the
IPX header. The frame type is the format of the MAC (Media Access
Control) header. The MAC header is specific to each transport and
frame type. For example, IPX recognizes the following Ethernet frame
types:

802.3 Raw
IEEE 802.2
Ethernet II
Ethernet SNAP

• If your environment is running with the 802.3 “raw” frame, the IPX
header follows immediately after the Length field in the MAC
header.

• If your environment is running with the standard 802.3 frame, the
IPX header follows immediately after the IEEE 802.2 header (DSAP,
SSAP, and Control).

• If your environment is using Ethernet II, then the Type field in the
MAC header has a value of 8137, and the IPX header follows
immediately after the Type field.

• If your environment is running with the 802.2 SNAP frame, the IPX
header follows immediately after the 5-byte protocol identifier
field.

Additionally, IPX recognizes the following token ring frame types:

Token ring
Token ring SNAP

The maximum length of the data section of an IPX packet (MTU-30)
varies depending on the lower layer MAC protocol (Ethernet or token
ring) that is being used.

For example, Ethernet supports 1500-byte packets, where 30 bytes is the
IPX header and 1470 bytes is the actual data. In some cases, the
maximum data size is limited by routers connecting LANs. Some older
Ethernet routers limit the maximum IPX packet size to 576 bytes.

The content and structure of the data portion are entirely the
responsibility of the application using IPX and can take any format.
6 NetWare Transports

IPX Header Fields

An IPX header has 10 fields and spans 30 bytes. (The data type uint8
is one unsigned byte.)

When an application sends an IPX packet via the direct interface (see
Chapter 9, “IPX Direct Interface”), the application must set the fields
marked in Table 1-2 with an asterisk (*). The application can also set the
fields marked (**). IPX sets the remaining fields.

Applications programmed via the Transport Layer Interface (TLI/XTI)
are handled in a way specific to TLI.

The fields are shown in Table 1-2 and are described below:

* Fields the application must set.

**Fields that are optional for the application to set.

Table 1-2

IPX Header Fields

Offset Field Type and Size Byte Order

 0 Checksum ** uint8[2] hi-lo

 2 Length * uint8[2] hi-lo

 4 Transport Control uint8

 5 Packet Type* uint8

 6 Destination Network* uint8[4] hi-lo

10 Destination Node* uint8[6] hi-lo

16 Destination Socket* uint8[2] hi-lo

18 Source Network uint8[4] hi-lo

 22 Source Node uint8[6] hi-lo

 28 Source Socket** uint8[2] hi-lo
Internetwork Packet Exchange (IPX) Protocol 7

Checksum

The Checksum field is normally set to 0xFFFF, which indicates that no
checksum is performed. This field, however, is configurable.

The value IPX_CHKSUM_TRIGGER (defined in the “ipx_app.h” file)
directs IPX to generate a checksum of the IPX header (minus the
Transport Control field) and the data. Any value which is not
IPX_CHKSUM_TRIGGER is treated as 0xFFFF.

Packet Length

The Packet Length field contains the length of the complete IPX packet
(header plus the data) and data presented to IPX by the application. The
Packet Length field on packets received by the application from IPX
indicates the amount of data received.

Transport Control

The Transport Control field is used to monitor the number of routers
that a packet has crossed. IPX sets this field to zero before sending the
packet. Each router increments the field before sending the packet on. If
the packet passes through 16 routers, it is considered undeliverable and
the sixteenth router discards it.

Packet Type

The Packet Type field identifies the type of service offered or required
by the packet. Some defined values are listed in Table 1-3, but
applications typically set this field to zero(0).

Table 1-3

Packet Type Values

Type Definition

 0 Unknown packet type (SAP or RIP)

 1 Routing information packet (RIP)

 5 Sequenced packet (SPX/SPXII)

 17 (11h) NetWare Core Protocol (NCP)

 20 (14h) NetBIOS broadcast
8 NetWare Transports

Destination Address Fields

The three destination fields (Network, Node, and Socket) contain the
12-byte IPX address of the destination.

On incoming packets, the IPX driver first ensures that the packet is
intended for its node. Then it looks for socket numbers so it can send
packets to their respective processes. If a packet has an unrecognized
(unbound) socket number, the packet is discarded.

NetBIOS packets are routed by packet type. NetBIOS uses IPX Packet Type 20
(0x0014) for internet name-to-address resolution packets. In this case, the
destination node field is set to 0xFF FF FF FF FF FF FF to indicate that routers
should allow the broadcast packet to be propagated throughout an internet. If a
process is bound to socket number 0x0455, the packet is also delivered to the
process bound to that socket.

Network

This field must be set with the network number to which the
destination server is connected. The system administrator assigns a
unique network number to each network within an internetwork.

Many NetWare servers are configured with a logical network number,
called the internal network. This internal network number provides the
server with a single network address even when it is connected to
several physical networks.

If zero (0) is used for the network address, the packet is sent to the
network to which the source host is connected.

If the source host has an internal network (just as a server), any packets
sent with a network address of zero (0) are sent only to the internal
network, whereas in the case of a host configured with no internal
network (just as a client would be), a packet with a zero (0) network
address is sent to the physical network.

Packets with a network address of zero (0) are typically used to query
SAP for the address and name of the nearest server.
Internetwork Packet Exchange (IPX) Protocol 9

Node

The destination node address identifies the client on the network. It is
typically determined by a factory set address on the network board.

In the case of a server, a configured internal network typically has a
node address of 0x00 00 00 00 00 01. Addresses shorter than 6 bytes are
left justified and zero filled. A node address of 0xFF FF FF FF FF FF
designates a broadcast to all hosts on the network identified by the
destination network address.

Socket

The destination socket number directs the packet to a specific process
on the destination node. A socket number is assigned to a specific
process. On UNIX a process can use multiple sockets, but a socket
cannot be shared among multiple processes.

Services written to run over IPX generally have static or well-known
socket numbers associated with them. By having static socket numbers,
IPX users ensure that their server and client application types match.

The following socket numbers are reserved by the IPX protocol:

In addition, Novell has defined and reserved sockets for specific
purposes. Some are listed below.

 0x02 Echo protocol socket

 0x03 Error handler packet

 0x247 Novell VirtualTerminal (NVT) server

 0x0451 NetWare Core Protocol

 0x0452 NetWare Service Advertising Protocol (SAP)

 0x0453 NetWare Routing Protocol (RIP)

 0x0456 NetWare Diagnostics Protocol

 0x8063 NVT2 Server

 0x811E Print Server
10 NetWare Transports

Novell administers a list of sockets that are well-known in all IPX
environments. Software developers who are writing IPX or SPX/SPXII
based value-added packages that require well-known addresses should
contact Novell to obtain socket assignments.

Dynamic sockets are available for use by any application. There are no
well-known dynamic socket numbers. Dynamic sockets within the IPX
suite begin at 0x4000 and end at 0x7FFF. Well-known sockets assigned
by Novell begin at 0x8000. Servers that use dynamic sockets or well-
known sockets can make their sockets and services known through
SAP.

Source Address Fields

The three source address fields (network, node, and socket) contain the
12-byte IPX address of the sender.

Network

The source network address is filled in by IPX when the packet is sent
by the source machine.

Node

The source node address is filled in by IPX when the packet is sent by
the source machine.

Socket

The source socket address is filled in by IPX when the packet is sent by
the source, except when a process has multiple sockets assigned. In this
case, the correct socket number must be filled in by the application.
Internetwork Packet Exchange (IPX) Protocol 11

IPX Driver in UNIX Environment

In general, the software for the IPX protocol in the UNIX environment
is structured as shown in Figure 1-3:

Figure 1-3

Relationship between IPX, TLI/XTI Library,
and Other NetWare Protocols

Applications can access IPX via the TLI/XTI library (Chapter 6). They
can access SAP information (Chapter 8). Applications that require
connection services can be built on SPXII using TLI/XTI (Chapter 7). A
direct interface using STREAMS ioctl commands is also supported
(Chapter 9).

kernel kernel
user user

Application

Application

Application

Application

Application

SAP
TLI/XTI Library

SPX2 Driver

IPX Driver

DLPI LAN DriverDLPI LAN Driver
12 NetWare Transports

Single LAN configuration

The computer shown in Figure 1-4 below is configured with a single
LAN. That means that only one frame type is recognized. This is the
typical configuration for NetWare UNIX client software.

Figure 1-4

Single LAN
Configuration

The socket multiplexer is the entity in the IPX software that delivers an
IPX packet to the appropriate application (socket).

The LAN router is the entity in the IPX software that not only sends and
receives data on one or more LANs configured in IPX and but also
routes between LANs.

DLPI LAN Driver

IPX Driver

Socket Multiplexer

LAN Router
Internetwork Packet Exchange (IPX) Protocol 13

Multiple LAN Configuration

In the case illustrated in Figure 1-5 below, the computer is configured
with multiple LANs. The LANs can be connected to one or more
physical networks. The LANs can have the same or different frame
types.

This configuration requires an internal network to be configured. The
network number for the internal network must be unique in the
internetwork and uniquely identifies the platform. This configuration
also supports routing of IPX packets.

Figure 1-5

Multiple LAN
Configuration

A LAN (Local Area Network) is a configured network in IPX. Each
LAN (logical network) must be associated with a physical network and
is limited to a single network frame type.

IPX Driver

LAN Router

Socket Multiplexer

Internal LAN

DLPI LAN Driver DLPI LAN Driver

DLPI LAN Driver
14 NetWare Transports

A physical network consists of the network boards (installed in each
node) that are cabled together. The network boards, cable plant, and
hubs must comply with the appropriate MAC standards, such as
Ethernet or token ring.

Where the implementations of these standards have resulted in
multiple frame types, the LAN driver allows more than one logical
network to be configured on the physical network.

Multiple Ethernet frame types can run on the same Ethernet network
board if the frame types are different. This means that multiple LANs
(logical networks) can be configured on a single physical network, as
long as each is a unique frame type on the physical network.

Both token ring frame types can also run on the same token ring
network board, which creates two logical networks.

The frame type on different physical networks can be either the same or
different.

Each LAN is identified by a network number. All devices connected to
the same physical LAN which use the same frame type must use the
same network number.

The internal network is a logical network that serves as the common
point of connection (network address) for a platform when multiple
LANs are configured on the platform. The internal network is always
required when multiple LANs are configured on a platform.
Internetwork Packet Exchange (IPX) Protocol 15

Router Only Configuration

This configuration shown in Figure 1-6 below supports LAN routing
but not a socket multiplexer. No IPX-based applications exist on the
platform. This configuration typically is a network backbone that
supports only routing functions (clients and servers require the socket
multiplexer for applications).

Figure 1-6

Router Only
Configuration

IPX Programming Interface

The IPX driver is accessed via the IPX device node /dev/ipx, which
applications open to access IPX. It is readable and writable by everyone.

This device node is accessed with either the UNIX TLI/XTI
specification or the user STREAMS I/O interface.

For UNIX TLI/XTI programming information for IPX, see Chapter 6,
“TLI/XTI for IPX.”

For direct interface programming information for IPX, see Chapter 9,
“IPX Direct Interface.”

IPX Driver

LAN Router

DLPI LAN Driver DLPI LAN Driver

DLPI LAN Driver

Internal LAN
16 NetWare Transports

c h a p t e r 2 Routing Information Protocol (RIP)
What Is RIP?

RIP is a distance vector protocol that is responsible for maintaining a list
of distances to each destination network on an internetwork.

RIP was adapted from the Xerox Network Standard (XNS) routing
protocol. However, an extra field for time delay (Number of Ticks) was
added to the packet structure to improve the decision criteria for
selecting the fastest route to a destination. This change prohibits the
straight integration of NetWare’s RIP with unmodified XNS
implementations.

RIP has no application programming interface. In the UNIX environment, routing
is implemented as a LAN router within the IPX driver for servers and dedicated
routers. The client configuration of the IPX driver does not support routing

All routers keep an internal database of internetwork routing
information, called a Routing Information Table (or Router Table). Such
tables keep current information on the internetwork’s configuration,
which they update from RIP broadcast packets over IPX.

RIP allows the following exchanges of information:

◆ Clients locate the fastest route to a network.

◆ Routers request routing information from other routers for the
purpose of updating their own internal tables.

◆ Routers respond to route requests from clients and other routers.

◆ Routers broadcast periodically to ensure that all other routers are
aware of the internetwork configuration.

◆ Routers broadcast whenever they detect a change in the
internetwork configuration.
Routing Information Protocol (RIP) 17

For more information about RIP, refer to IPX Router Specification (Part
#107-000029-001), which is also available via anonymous ftp at
novell.com::/netwire/novlib/11/ipxrtr.zip.

The discussion in this chapter covers the following topics:

◆ How routing works

◆ RIP packet structure

◆ RIP packet fields

◆ RIP packet types

How Routing Works

To understand RIP packet structure, it is helpful first to understand
what is meant by a router and how a route is obtained.

Routers are needed only when the destination and source node reside
on different networks.

When that is the case—and where there is redundant cabling—there
can also be multiple intermediary routers (hops) to go through in order
to reach a router on the destination network.

Routers supply IPX with the router address of the next hop along the
fastest route to the destination network. Each intermediary router along
the route repeats the process of supplying IPX with the most efficient
route until the packet reaches a router on the destination network.

A client needs to obtain a first hop target only the first time the client
sends a packet to a node on another network. After that, the first hop
address is stored and used until either the connection is terminated or
the route becomes dysfunctional (for example, a router along the way
shuts down).

Routing Information Tables

A Routing Information Table is a dynamic map of the internetwork’s
routers. When a router first comes up, it uses the RIP protocol over IPX
to broadcast information about itself to the other routers on its network.
18 NetWare Transports

The information is passed to other routers until all routers on the
internetwork know about the new router.

All routers listen for RIP packets and use the information contained in
these packets to build and maintain their Routing Information Tables
(which are stored in temporary memory and are never written to disk).
These tables store the following information about other routers:

◆ Number of hops away (the number of routers or intermediate
networks a packet crosses to reach the destination node). The
number of hops is the distance vector.

◆ Number of ticks away (a tick equals 1/18.21 of a second or
(60 x 60)/0xFFF). To allow a range of time delay, a minimum of one
tick per hop is required, but a hop can measure several ticks as a
value.

◆ Internetwork address

From the information provided in a Routing Table, a router could
provide more than one route to a destination node. Hops and Ticks
provide alternate ways of calculating the cost of each route—distance
and time delay—so that the client can use the most economical route.

For more information on the entries in the Routing Information Tables
and the method used to determine the most efficient route, including
the split horizon algorithm that is used to reduce RIP traffic, see the
previously mentioned IPX Router Specification (Part #107-000029-001),
which is also available via anonymous ftp at novell.com::/netwire/
novlib/11/ipxrtr.zip.

Obtaining a Route

IPX is responsible for routing packets to their destinations. A client
obtains an IPX address to a destination node—from the Service
Advertising Protocol (SAP) or from the NetWare server’s object
database—and then sends a packet. IPX compares the network number
of the destination node to that of the sending node.
Routing Information Protocol (RIP) 19

When Routing Is Not Needed

If the network numbers of the destination node and the client are the
same, IPX sends the packet directly to the destination node. In this case,
no router is required.

This situation is illustrated in Figure 2-1, where the sending node and
the receiving node are on the same network.

Figure 2-1

Transmitting a Packet between
Two Nodes on the Same Network

When Routing Is Needed

On the other hand, if the network numbers of the destination node and
the client are different, routing is required.

In this case, the client’s IPX module broadcasts a RIP request to obtain
the most efficient route to a router on the destination network. All of the
routers on the client’s network segment will receive the broadcast and
consult their Routing Information Tables for the route with the fewest
number of ticks. Only routers that can provide the shortest path to the
destination network respond to the request.

Sending node Receiving node
Network=AA
Node=02

Packet

Network=AA
 Node=01

MAC
header

IPX
header

Data

Destination: 02
Source: 01

 Network Node Socket
Destination: AA 02
Source: AA 01
20 NetWare Transports

If a router has multiple routes equal to the fewest number of ticks, it selects the
route with the lowest hop count. It then sends a response to the client that
contains, among other things, its node address and the hop and tick information.

More than one router might respond if several have a route equal to the fewest
number of ticks and hops compared to other routers on the network. In this
case, IPX accepts only the first router’s response and discards any others.

Figure 2-2 illustrates what takes place after the route has been obtained.

Figure 2-2

Transmitting a
Packet across
Networks

In our example above, the sending node resides on Network AA and
the receiving node resides on Network BB. A NetWare server is the
router on Network AA with the shortest route to Network BB.

Receiving node

Routing node

MAC
header

IPX
header

Data

MAC
header

IPX
header

Data

Node=02 Node=03

Sending node
Network=AA
Node=01

Network
AA

Network=BB
Node=09

Network=AA
Node=02

Network=BB
Node=03

Network
BB

Destination: 02
Source: 01

Destination: 09
Source: 03

 Network Node Socket
Destination: BB 09
Source: AA 01

 Network Node Socket
Destination: BB 09
Source: AA 01
Routing Information Protocol (RIP) 21

The client software on the sending node places the node address of the
NetWare server doing the routing—which it just obtained as a result of
a RIP request—in the Media Access Control (MAC) header of its packet
and addresses the IPX header with the receiving node’s internetwork
address.

With the packet addressed in this fashion, the NetWare server doing the
routing receives the packet, checks the IPX destination address,
consults its Routing Information Table for the shortest route to network
BB, and constructs a new MAC header addressed to the receiving node.

The only fields that change as the packet moves from one router to the
next are the MAC address fields and the Transport Control field in the
IPX header. All other fields are left intact. (The Transport Control field
tracks the number of routers a packet passes through to reach the
destination network.)

RIP Packet Structure

As with most of the higher-level protocols discussed in this manual, the
RIP packet structure is encapsulated within the data area of IPX.

Earlier versions of NetWare did not always set the Packet Type to 1 for RIP
packets in the IPX header. Routers should check the Destination Socket fields
to determine whether a packet is a RIP packet rather than depend on the Packet
Type.

RIP requests may also have the Destination Socket set to 0x0453 but not
the Source Socket. In responding to a RIP request whose Source Socket
is not 0x0453, the router should set the Destination Socket to the value
of the sending node’s Source Socket and set the Source Socket to 0x0453.

The RIP packet header has a 2-byte Operation field that indicates the
RIP packet type. The Operation field is followed by one or more 8-byte
network entries, or Network Information Structures, that contain three
fields (Network Number, Number of Hops, and Number of Ticks).
22 NetWare Transports

Figure 2-3 illustrates the RIP packet structure.

Figure 2-3

RIP Packet
Structure

IPX header

RIP header

1 byte (8 bits)

Network
Information
Structure

RIP data

MAC header

Network
Address

Operation

Number of Hops

Number of Hops

Number of Ticks

Number of Ticks

Network
Address
Routing Information Protocol (RIP) 23

For a minimum size packet (570), up to 50 network entries are placed in
the packet. Larger packets can contain more than 50 entries. Thus, the
number of network entries contained in the RIP packet can vary
anywhere from a minimum size of 40 bytes (IPX header plus one RIP
network entry) to a maximum size of MTU-32 bytes/8 (MTU - (IPX
header + operator)/8).

The fields in the RIP packet are byte-order sensitive, and the data must
be sent in hi-lo order (network), as shown in Figure 2-4.

Figure 2-4

Byte Order

The fields in the RIP header are described in the following section.

RIP Packet Fields

RIP packet fields are listed in Table 2-1 and are described below.

Operation

This field indicates whether the packet is a request (query) or a response
packet. Request packets have a value of 0x0001, and response packets
have a value of 0x0002.

Table 2-1

RIP Packet Fields

Field Size Byte Order

Operation (RIP Header) uint8 [2]* hi-lo

Network Information Structure uint8 [8] hi-lo

High byte Low byte

High byte Low byte

Address n n + 1

n + 1 n + 2 n + 3n
24 NetWare Transports

Network Information Structure

This data structure for network entries consists of the three fields shown
in Table 2-2:

RIP Packet Types

RIP packets use the two Operations types (request and response) to
serve the following five routing functions.

General Request
(Operation = 1)

Broadcast by nodes or routers to obtain information about all networks
that exist on an internetwork. A server or router broadcasts this type of
packet when it has just come onto the internet. A request (Operation set
to 1) is a general request when the network number field in a network
information structure is set to 0xFF FF FF FF.

Table 2-2

Fields in the NetWork Information Structure

Field Description

Network Number A 4-byte number that identifies a particular LAN
(network) on an internetwork. (See “IPX
Addressing” on page 2.)

Number of Hops Contains the number of routers, or intermediate
networks, that must be passed through to reach
the LAN specified in the network number field.

Number of Ticks Contains an estimate of the number of ticks to
reach the LAN specified in the network number
field. Each tick represents one-eighteenth of a
second (1/18.21 of a second or (60 x 60)/0xFFF,
the granularity of the original PC’s system time
clock.) NetWare routing assumes Ethernet, for
which the minimum tick value = 1.
Routing Information Protocol (RIP) 25

Specific Request
(Operation = 1)

Used to obtain information about a specific network. Clients issue this
type of packet to obtain a route to a destination network. In this case,
one or more network information structures are filled in with the
unique network numbers of those networks being requested.

Periodic Broadcast
(Operation = 2)

Used to ensure that all routers are kept abreast of the current
internetwork configuration and also to provide routers with a means of
aging networks. When a network suddenly becomes inaccessible due to
a router going down abnormally, the missing periodic broadcast
indicates that the router’s services are no longer available and that its
information should be removed from the Routing Information Table.

If a router detects new information in a periodic broadcast packet, it
updates its Routing Information Table. All routers typically broadcast
informational RIP packets of this type every 60 seconds. Each packet
can broadcast information about one or more networks.

Response
(Operation = 2)

Sent in response to a general or specific request from a router or
workstation for a route. (If a RIP response entails providing information
for more than the number of networks that will fit in a packet, multiple
RIP response packets are required.)

Specific Informational Response
(Operation = 2)

Used to advertise a new service on the network and to remove a service
that is going down. These packets broadcast a change in the
internetwork configuration so that routers can updates their Routing
Information Tables.

Specific informational Response packets and Periodic Broadcast packets look
identical on the network. They differ only in the context in which they are sent.
26 NetWare Transports

c h a p t e r 3 Sequenced Packet Exchange (SPX)
Protocol
What Is SPX?

SPX is a connection-oriented, reliable, sequenced transport protocol.
SPX provides a packet-level service, while enhanced SPXII provides a
message-level service.

SPX guarantees packet delivery to the destination endpoint and notifies
the user if any errors occur during data transmission. Upon
encountering a data transmission error, SPX retries a given number of
times before closing the connection and notifying the connection user.
SPX also notifies the user if a disconnection indication is received from
the remote connection endpoint.

SPX also provides flow control. This regulates the speed with which
packets are sent and received by both the sending and receiving
processes.

The SPX information in this chapter provides a baseline from which to
understand SPXII, the enhanced protocol. The NetWare protocol stack does not
include an SPX driver. However, the SPXII driver provides backward
compatibility with SPX, both on the wire and in the programming interface.

The discussion in this chapter covers the following topics:

◆ How SPX works

◆ SPX packet structure

◆ SPX packet header fields

◆ SPX data flow and sequence

◆ SPX flow control

◆ SPX connection management
Sequenced Packet Exchange (SPX) Protocol 27

How SPX Works

SPX guarantees the communication between two nodes by using
sequenced (numbered) packets and by requiring that the connection
endpoints verify that each packet has been received.

The SPX packet numbering system is set up when an SPX connection
is established; both sequence and acknowledge numbers are set at
zero (0).

As the two nodes continue transmitting packets between them, each
node increments the corresponding SPX sequence and acknowledge
numbers for each packet. This means that once a connection is
established, each subsequent SPX packet is marked with the current
sequence and acknowledge numbers.

Using sequence and acknowledge numbers in this way keeps the
communication between two endpoints synchronized and allows each
endpoint to maintain its unique understanding of the current state of
the communication.

Successful transmission is verified because the acknowledge number
(ACK) is set to the next number in the packet sequence and hence
“requests” the data packet with the corresponding number.

Packet sequencing also makes it possible for SPX to detect lost or
dropped packets as follows:

◆ If an SPX data packet is sent by the source node and no
acknowledgment is received, the packet is retransmitted.

◆ If an acknowledge packet is sent by the destination node and the
subsequent data packet has an unexpected sequence number, then
the acknowledge packet is retransmitted.
28 NetWare Transports

SPX Packet Structure

An SPX packet consists of a 42-byte SPX header followed by zero to 534
bytes of data. The minimum SPX packet size is 42 bytes (the header
only) and the maximum size is 576 bytes (header plus 534 bytes of data).

The maximum packet size reflects an Ethernet default. In some cases, larger
data packets can be sent. For more information, consult the documentation for
the Media Access Control protocol and refer to Chapter 1, “Internetwork Packet
Exchange (IPX) Protocol.”

The content and structure of the packet’s data portion are entirely the
responsibility of the application using SPX and can take any format.

Some of the fields in the header are byte-order sensitive, and the data
must be sent in hi-lo order (network), as illustrated in Figure 3-1.

Figure 3-1

Byte Order High byte Low byte

High byte Low byte

Address n n + 1

n + 1 n + 2 n + 3n
Sequenced Packet Exchange (SPX) Protocol 29

Figure 3-2 illustrates the SPX packet structure.

Figure 3-2

SPX Packet
Structure

The header fields are described in the section following.

MAC header

IPX header

SPX header

Connection Control

1 byte (8 bits)

SPX data (0 to 534 bytes)

Datastream Type

Source
Connection ID

Sequence
Number

Acknowledge
Number

Allocation
Number

 Destination
Connection ID
30 NetWare Transports

SPX Header Fields

Table 3-1 shows the field definition for the SPX header, including the
IPX encapsulation.

* A uint16 is two unsigned bytes; a uint8 is one unsigned byte.

Table 3-1

Packet Header Fields for IPX/SPX

Field Field
Type

Byte
Order

Size Value

Checksum IPX hi-lo uint16 * 0xFFFF

Length IPX hi-lo uint16 42 - 576 bytes

Transport control IPX uint8 * 0 - 16 hops

Packet type IPX uint8 0 - 6

Destination address.network IPX hi-lo uint8[4] 0 - 0xFFFFFFFF

Destination address.node IPX hi-lo uint8[6] 0 - 0xFFFFFFFFFFFF

Destination address.socket IPX hi-lo uint8[2] 0 - 0xFFFF

Source address.network IPX hi-lo uint8[4] 0 - 0xFFFFFFFF

Source address.node IPX hi-lo uint8[6] 0 - 0xFFFFFFFFFFFF

Source address.socket IPX hi-lo uint8[2] 0 - 0xFFFF

Connection control SPX uint8 (See description below)

Datastream type SPX uint8 (See description below)

Source connection ID SPX hi-lo uint16 (See description below)

Destination connection ID SPX hi-lo uint16 (See description below)

Sequence number SPX hi-lo uint16 (See description below)

Acknowledge number SPX hi-lo uint16 (See description below)

Allocation number SPX hi-lo uint16 (See description below)
Sequenced Packet Exchange (SPX) Protocol 31

The fields in the IPX/SPX packet header are defined as follows:

Checksum

This field is set to 0xFFFF.

Length

This field is set to the length of the complete IPX/SPX packet (42 to 576
bytes).

Transport Control

This field is set to zero before sending the packet. Each router
increments the field before sending the packet on. If the packet passes
through 16 routers, the sixteenth router discards the packet.

Packet Type

This field is filled in automatically.

Destination Address

When establishing an SPX connection, a packet must have the
destination address, which is a 12-byte IPX structure (network, node,
and socket). SPX fills in the destination address with the address of the
other endpoint (destination). For more information, see “IPX
Addressing” on page 2.

Table 3-2 contains a list of the fields.

Table 3-2

Destination Address

Field Size Byte Order

Network Address uint8[4] hi-lo

Node Address uint8[6] hi-lo

Socket Number uint8[2] hi-lo
32 NetWare Transports

IPX uses the network address to route the packet to the destination
network. The node address identifies the client or node that receives the
packet. IPX then uses the packet type to deliver the packet to SPX. SPX
uses the socket number and the destination connection ID to identify
the appropriate process for an incoming packet.

Source Address

SPX fills in the source address of the sender. The source address, like the
destination address, is a 12-byte IPX address with the network, node,
and socket fields (see “IPX Addressing” on page 2).

Connection Control

This field is in the SPX packet header itself. SPX uses this field to
indicate whether the packet is a system or application data packet.
System packets are used to acknowledge data packets; data packets are
used to send data.

Table 3-3 lists the flags that are valid for SPX.

Datastream Type

SPX uses this field to indicate either an End-of-Connection (0xFE) or an
End-of-Connection Acknowledgment (0xFF). SPX ignores any other
values in this field.

Table 3-3

Flags for SPX Connection Control

Value Symbol Description

0x10 EOM Set by SPX to indicate end of message. This bit reflects
the state of T_MORE from a TLI application.

0x40 ACK Set to request that the receiving endpoint acknowledge
the receipt of this packet.

0x80 SYS Set to identify a system packet. System packets are
internal SPX packets, are not delivered to an SPX
application, and do not consume sequence numbers.
Sequenced Packet Exchange (SPX) Protocol 33

Source Connection ID

SPX generates the identification number for the Source Connection
Identification field during connection establishment. The source
endpoint of the packet assigns the value.

Destination Connection ID

SPX generates the identification number for the Destination Connection
Identification field during connection establishment. The destination
endpoint of the packet assigns the value.

SPX uses Source and Destination Connection ID numbers to
demultiplex packets from multiple connections that arrive on the same
socket.

All concurrently active connections on a given node are guaranteed to
have unique connection ID numbers.

Sequence Number

SPX uses this field as a counter that tracks the number of data packets
sent by the connection and that have been acknowledged. Because each
side of the connection keeps its own sequence count, this field keeps a
count of packets transmitted in one direction only on a connection. The
number wraps to zero after reaching 0xFFFF.

SPX manages this field; applications need not be concerned with it.

Acknowledge Number

SPX uses this field to indicate the sequence number of the next packet
expected from the other endpoint. This number remains constant until
the next data packet is received. The receiver increments this field to
indicate that the data packet was received.

SPX drops any data packet with a sequence number less than the
specified acknowledge number because it is a duplicate. When SPX
receives a duplicate packet, SPX resends its acknowledgment of the
duplicate packet.
34 NetWare Transports

Any packet with a sequence number less than the specified
acknowledge number has been correctly received by SPX and need not
be retransmitted.

SPX manages this field; applications need not be concerned with it.

Allocation Number

SPX uses this field to implement flow control between communicating
applications.

The receiving endpoint maintains this number, which is checked by the
sending endpoint. SPX sends packets only until the local sequence
number equals the allocation number of the remote partner.

SPX has a window of 1. The allocation number minus the acknowledge
number plus one ((Alloc# - ACK#) + 1) indicates the number of listen
buffers outstanding in one direction on the connection. The sender
checks its available buffers and then uses the formula to set its
allocation number. The allocation number increments from 0x0000 to
0xFFFF and wraps to 0x0000.

SPX manages this field; applications need not be concerned with it.
Sequenced Packet Exchange (SPX) Protocol 35

SPX Data Flow and Sequence

SPX allows both uni-directional and bi-directional communication.

Uni-directional Communication

A source node sends SPX packets containing data. The SPX header has
the acknowledge (ACK) bit set. Destination nodes respond with
acknowledgment (ACK) packets indicating that the data packet was
received and that the next packet in the sequence can be sent. The ACK
packet header has the SYS bit set.

The SPX client transmits data packets to an SPX server and receives an
acknowledge packet for each data packet sent. SYS packets do not
consume sequence numbers.

Figure 3-3 illustrates uni-directional SPX communication.

Figure 3-3

SPX Uni-Directional
Data Sequence

SPX Server

SPX ACK

SPX Client

Data Packet

SPX ACK

Data Packet

Seq #: 10

Ack #: 7
Alloc #: 7
SYS bit set

Seq #: 10

Ack #: 06
Alloc #: 06
SYS bit set

Seq #: 6

Ack #: 10
Alloc #: 10
ACK bit set

Seq #: 5

Ack #: 10
Alloc #: 10
ACK bit set
36 NetWare Transports

Bi-directional Communication

Data packets are sent by both nodes. ACK packets are sent by the
receiving endpoint. An acknowledgment from the receiving end can be
sent with a data packet as well as with a SYS packet. Each data packet
must be acknowledged before the next packet of data is sent.

Figure 3-4 illustrates bi-directional SPX transmission between an SPX
client and an SPX server.

Figure 3-4

SPX Bi-directional
Data Sequence

SPX Server

SPX ACK

SPX ACK

SPX ACK

Data Packet

Data Packet

SPX Client

Data Packet

Seq #: 6

Ack #: 10
Alloc #: 10
ACK bit set

Seq #: 5

Ack #: 10
Alloc #: 10
ACK bit set

Seq #: 7

Ack #: 11
Alloc #: 11
SYS bit set

Seq #: 10

Ack #: 6
Alloc #: 6
SYS bit set

Seq #: 10

Ack #: 7
Alloc #: 7
SYS bit set

Seq #: 10

Ack #: 7
Alloc #: 7
ACK bit set
Sequenced Packet Exchange (SPX) Protocol 37

SPX Flow Control

Flow control regulates the speed with which packets are sent and
received by the sending and receiving processes.

SPX implements flow control between communicating applications by
assigning an Allocation number (in the header) which is maintained by
the receiving endpoint. The sending endpoint checks the Allocation
number. SPX sends packets only until the local Sequence number
equals the Allocation number of the remote partner.

Flow Control on Incoming Data

If an application cannot receive data as fast as the sender is sending it,
SPX (on the receiving side) acknowledges the last received packet. SPX
on the sending side queues up a read-side retry procedure that tries
again.

If SPX cannot deliver packets on the second try, it increases the time
interval for subsequent retries. After SPX retries the maximum number
of times, it generates a disconnect.

Flow Control on Outgoing Data

If SPX is sending data faster than a remote transport endpoint can
receive it, the receiving endpoint acknowledges the last data but does
not increment the allocation number, which closes the SPX receive
window.

The sender then monitors the connection for one of the following
conditions:

◆ If the remote transport endpoint opens the window again, SPX
begins transmitting data again.

◆ If the remote transport endpoint becomes inactive (the SPX
watchdog detects this), SPX drops all pending data and generates a
disconnect indication to the stream head.
38 NetWare Transports

◆ If the remote transport endpoint remains active but unable to
receive data, the SPX watchdog continues to monitor the
connection and either keeps it open indefinitely or until the
endpoint becomes inactive.

SPX Connection Management

Since SPX is a connection-based service, SPX maintains a connection
table that maps client SPX connections to the appropriate SPX
application.

The SPX link to IPX is created and held together by the NetWare
Protocol Stack daemon (NPSD). If NPSD dies, the architecture that links
IPX and SPX is destroyed. When the link is destroyed, SPX drops all
outbound data. Disconnect indications are then generated to all local
endpoints.

To clear broken or inactive connections, SPX uses watchdog and
timeout procedures.

SPX Watchdog

The SPX watchdog monitors for inactive connections. A connection is
labelled inactive when a connection does not receive any packets for a
set interval. The watchdog sends watchdog packets to the inactive
connections and goes back to sleep.

When the watchdog awakens, it checks the inactive connections as
follows:

◆ If the connection acknowledged the watchdog packet, the
connection remains active.

◆ If the connection failed to acknowledge the watchdog packet while
the watchdog process was asleep, the watchdog clears the
connection.
Sequenced Packet Exchange (SPX) Protocol 39

SPX Timeout

SPX also clears active connections that fail to acknowledge a data
packet. When a connection fails to acknowledge a packet within a
specified amount of time, SPX resends the packet.

SPX resends the packet a specified number of times. After each retry, the
wait interval is incremented until the interval reaches a maximum
interval. If the connection fails to acknowledge the packet after the
specified number of retries, SPX assumes the connection has failed and
clears the connection.
40 NetWare Transports

c h a p t e r 4 Enhanced Sequenced Packet
Exchange (SPXII) Protocol
What Is SPXII?

SPXII is the designator of Novell’s enhanced version of the SPX
protocol. (Because of naming constraints on some platforms, SPXII can
also be designated as SPX2.)

SPX (discussed in Chapter 3) is a guaranteed delivery, connection-
oriented transport protocol, and, like IPX, it is an implementation of the
Xerox Network Standard (XNS) protocol specification. SPX has been
supported by Novell since NetWare 2.0a.

In developing an enhanced successor to SPX (and at the same time
removing its recognized limitations), the following requirements were
specified:

◆ Backward compatibility with SPX

◆ Negotiation and use of larger packets

◆ True windowing

◆ Better support for the Transport Layer Interface (TLI/XTI).

Before discussing SPXII, the terminology that applies to network
connections needs to be briefly clarified:

Server refers to the network node that is waiting or has received a
connection request. Host, passive endpoint, and listener can be
considered synonymous terms.

Client refers to the network node that is making or has made the
connection request. It can also be referred to as the active endpoint or
the requester.
Enhanced Sequenced Packet Exchange (SPXII) Protocol 41

Connection partner refers to the opposite endpoint and connection
endpoint refers to either endpoint participating in the connection,
without respect to its active or passive status.

Packet size includes both the header and the data.

The discussion in this chapter covers the following topics:

◆ SPXII features and enhancements

◆ SPXII packet structure

◆ SPXII packet header fields

◆ SPXII data flow

◆ SPXII connection management

◆ SPXII windowing

◆ SPXII programming interface

How SPXII Works

The SPXII features and enhancements are discussed following.

Backward Compatibility with SPX

Because SPXII has been designed to be compatible with SPX

◆ Applications written to SPXII can run in a mixed SPX/SPXII
environment.

◆ Applications written to SPX can run with the SPXII driver.
42 NetWare Transports

Compatibility on the Wire

SPXII is compatible with SPX on the wire. SPXII achieves compatibility
on the wire through bimodal operation. An SPXII server or client can
communicate with an SPX server or client by detecting the type of
connecting partner.

When an SPXII client requests a connection with a server, the client does
not know whether the server is SPXII- or SPX-based. A bit in the
Connection Control field of the SPXII header (called the SPX2 bit) on the
connection request indicates whether the requester wants SPXII
services. The client side uses this newly defined SPX2 bit then to
indicate that it prefers an SPXII connection (no other modification is
made to the connection request).

◆ An SPXII-based server recognizes the SPX2 bit and acknowledges
the connection with the SPX2 bit set. The SPX2 bit remains set on all
packets until the connection is terminated.

◆ A server that is not based on SPXII cannot recognize the SPX2 bit,
and so it responds with a normal SPX acknowledgment. The client
then responds with a normal SPX connection and does not set the
SPX2 bit on subsequent packets.

Similarly, an SPXII server waiting for a connection request does not
know whether the connecting clients will be SPXII-based or not.
Therefore, the SPXII server examines the SPX2 bit for all connection
requests and responds appropriately.

◆ For connection requests with the SPX2 bit set, the SPXII server sets
the SPX2 bit on the connection acknowledgment.

◆ In all other cases, the server does not set the SPX2 bit and treats the
connection as an SPX connection.

Programming Interface Compatibility

SPXII is compatible with SPX with regard to its TLI/XTI programming
interface. SPXII supports all system calls that were supported by SPX,
and applications written for SPX function properly with SPXII. The
values returned in a few SPXII calls do vary, however, to reflect SPXII’s
larger message sizes and new functionality.
Enhanced Sequenced Packet Exchange (SPXII) Protocol 43

Large Packets

SPXII reduces the amount of traffic on the wire by allowing larger
packets and by cutting down on the number of acknowledgments.

Packet size refers to the entire packet, including the IPX header as well as the
SPXII data.

SPXII provides a message-level service rather than a packet-level
service (as SPX provides). An application can hand SPXII large, non-
packet sized messages which SPXII can then partition into
appropriately sized packets, the size having been determined by
negotiation.

The only size limitation is that which is imposed by the system (the
Maximum Stream Message Size).

The original XNS specification (of which both IPX and SPX are
implementations) defined the length of a network packet as 576 bytes—
allowing 512 bytes of data and 64 bytes for the header. IPX faithfully
incorporated this limitation, and in some early implementations,
enforced it.

On the other hand, applications that used SPX were responsible for
determining whether a larger packet could be used.

IPX no longer sets a maximum size on the packet. Today the LAN driver
determines the maximum size of a packet and the SPXII driver handles
packet size negotiation for the application. This means that applications
using SPXII—which is now a message level service—no longer need to
determine packet size.

Large Packet Negotiation

SPXII includes a mechanism for determining the largest packet size
supported between endpoints. The maximum packet size is determined
during connection establishment. Routers and bridges along a packet’s
route to its destination might not support the same packet size as the
packet’s LAN driver.
44 NetWare Transports

This size negotiation is accomplished by sending a packet of maximum
driver size to the other endpoint. If the endpoint does not respond
within an aggressive amount of time, SPXII sends a packet of smaller
size. This continues until the receiving endpoint acknowledges the size
negotiation packet. For example, on Ethernet the packet size sequence
for negotiation is 1500, 1492, 1474, 1024, and 576 bytes.

SPXII also deals with the possibility of different send and receive packet
sizes. When parallel routes exist, the path taken by a packet from point
A to point B is not necessarily the route that will be taken from point B
to point A. In such cases, packet size must be negotiated in both
directions and then renegotiated whenever a route changes.

Windowing Protocol

Window size refers to the number of packets that can be sent before an
acknowledgment is required. SPX has an effective send window size of
one: after an endpoint (server) sends a packet, it waits for an
acknowledgment.

SPXII, however, is a true windowing protocol. It uses the same header
fields to fully support windowing and even to support different
window management algorithms.

The SPXII windowing protocol allows the transmitter to send multiple
packets before requesting an ACK. The receiver determines and
maintains the window size for its half of the session. The receiving
endpoint is “passive,” that is, it sends acknowledgments only when the
transmitting endpoint sets the ACK bit in the header.

When the receiving endpoint receives packets, and if a packet or
packets are missing, SPXII allows the receiving endpoint to request the
sender to resend the missing packets.

Additionally, SPX has only the positive acknowledgment, whereas
SPXII has both a negative acknowledgment (NAK) and a positive
acknowledgment (ACK). The information derived from a negative
acknowledgment allows a receiver to request that the transmitter
resend a specific packet, or a range of packets, without retransmitting
the full window.
Enhanced Sequenced Packet Exchange (SPXII) Protocol 45

SPXII Packet Structure

The SPXII packet is a superset of the SPX packet. The header contains
the same fields in the same positions, but the SPXII packet also includes
a 2-byte Negotiation Size field. Additional flags are defined in the
Connection Control field, especially the SPX2 bit that distinguishes
SPXII from SPX packets.

SPXII uses an extended header that contains a 2-byte Negotiation Size
field. The SPXII packet, therefore, consists of a 44-byte header followed
by data. The minimum packet size is 44 bytes (the header only) and, if
negotiation is not done during connection establishment, the maximum
size is 576 bytes (header plus 532 bytes of data).

All the numeric fields in the header are byte-order sensitive, and the
data must be sent in hi-lo or network order, as illustrated in Figure 4-1.

Figure 4-1

Byte Order

The content and structure of the packet’s data portion are entirely the
responsibility of the application using SPXII and can take any format.

High byte Low byte

High byte Low byte

Address n n + 1

n + 1 n + 2 n + 3n
46 NetWare Transports

Figure 4-2 illustrates the SPXII packet structure and shows how it
differs from the SPX packet structure.

Figure 4-2

SPX and SPXII
Packet Structure

The fields of the SPXII header are described in the following pages.

MAC header

IPX header

SPXII header

Connection Control

1 byte (8 bits)

SPXII data

Datastream Type

Source
Connection ID

Destination
Connection ID

Sequence
Number

Acknowledge
Number

Allocation
Number

Negotiation
Siize

SPXII

(max size negotiable)

MAC header

IPX header

SPX header

Connection Control

1 byte (8 bits)

SPX data (max size 534 bytes)

Datastream Type

Source
Connection ID

 Destination
Connection ID

Sequence
Number

Acknowledge
Number

Allocation
Number

SPX
Enhanced Sequenced Packet Exchange (SPXII) Protocol 47

SPXII Header Fields

Table 4-1 shows the field definition for SPXII, including the IPX
encapsulation (descriptions of each field follow the table).

*Uint8, uint16 refer to unsigned integers. The length designator is given in the
number of bits.

Table 4-1

Packet Header Fields for IPX/SPXII

Field Field
Type

Byte
Order

Type and
Size

Value

Checksum IPX hi-lo uint16 * usually 0xFFFF

Length IPX hi-lo uint16 42 - 65,535 bytes

Transport control IPX uint8 0 - 16 hops

Packet type IPX uint8 0 - 0xFF

Destination address.network IPX hi-lo uint8[4] 0 - 0xFFFFFFFF

Destination address.node IPX hi-lo uint8[6] 0 - 0xFFFFFFFFFFFF

Destination address.socket IPX hi-lo uint8[2] 0 - 0xFFFF

Source address.network IPX hi-lo uint8[4] 0 - 0xFFFFFFFF

Source address.node IPX hi-lo uint8[6] 0 - 0xFFFFFFFFFFFF

Source address.socket IPX hi-lo uint8[2] 0 - 0xFFFF

Connection control SPX uint8 (See description below)

Datastream type SPX uint8 (See description below)

Source connection ID SPX hi-lo uint16 (See description below)

Destination connection ID SPX hi-lo uint16 (See description below)

Sequence number SPX hi-lo uint16 (See description below)

Acknowledge number SPX hi-lo uint16 (See description below)

Allocation number SPX hi-lo uint16 (See description below)

Negotiation size SPXII hi-lo uint16 (See description below)
48 NetWare Transports

Checksum

Checksum is configurable. When turned on, it holds a checksum of the
entire packet (including the IPX header, but not the Transport Control
field). The checksum is on a per-connection basis because SPX/SPXII is
a connection-oriented protocol. This can be set via the t_optmgmt
structure in the t_optmgmt or t_connect call. The SPXII driver sets the
IPX Checksum field to 0xFFFF.

Length

The SPXII driver sets the IPX Length field to the length of the entire
packet (including the IPX header).

Transport Control

This field is used by the IPX router. The SPXII driver always sets this
field to zero before sending the packet. Each router increments the field
before sending the packet on. If the packet passes through 16 routers,
the sixteenth router discards the packet.

Packet Type

The SPXII driver automatically fills in this field. For SPX/SPXII, it is
always set to 5.

Destination Address

When establishing an SPXII connection, the application must pass the
destination address to SPXII. When the connection has been
established, the SPXII driver fills in the destination address with the
12-byte IPX address of the other endpoint (Network, Node, and Socket)
for all subsequent outgoing packets on this connection.

Table 4-2 contains a list of the IPX address fields:

Table 4-2

IPX Address Fields

Field Size Byte Order

Network Address uint8[4] hi-lo
Enhanced Sequenced Packet Exchange (SPXII) Protocol 49

Network Address is set to zero (0) when the destination node and the
source node reside on the same network. When this is the case, the
packet is not processed by an IPX router.

Node Address, for clients, contains the physical address of the
destination node. If a physical network needs less than 6 bytes to
specify a node address, the address should occupy the least significant
portion of the field and the most significant bytes should be set to zero
(0). Both SPX and SPXII explicitly disallow a broadcast node address
(0xFF FF FF FF FF FF).

Socket Address is the intranode destination address. Sockets route
packets to different processes within a single node.

For an explanation of IPX addressing, see “IPX Addressing” on page 2.

Source Address

The SPXII driver fills in the source address of the sender. The source
address, like the destination address discussed above, is a 12-byte IPX
address with Network, Node, and Socket fields.

Again, the Network Address field is set to zero (0) when the destination
node and the source node reside on the same network.

In a client-server dialogue, the server node usually listens on a specific
socket for connection requests. In such a case, the source socket is not
necessarily the same or even significant. All that matters is that the
server sends its replies to the source socket contained in the connection
request packet. For example, all remote application servers have the
same socket address, but requests to them can originate from any socket
number.

Node Address uint8[6] hi-lo

Socket Number uint8[2] hi-lo

Table 4-2

IPX Address Fields

Field Size Byte Order
50 NetWare Transports

Otherwise, the source address follows the same conventions as those
for the destination address. For an explanation of IPX addressing, see
“IPX Addressing” on page 2.

Connection Control

This field is in the SPX/SPXII packet header itself and contains single-
bit flags used by SPXII to control the bidirectional flow of data across a
connection. (SPX uses this field to indicate whether the packet is a
system or application packet or the end of the message.)

Table 4-3 lists flag values.

Datastream Type

SPXII uses this field to indicate the type of data found in the packet; it
can use any of the values in Table 4-4. In this it differs from SPX, which
ignores any values in this field other than 0xFE and 0xFF.

Table 4-3

Flags for SPXII Connection Control

Value Symbol Description

0x01 XHD Reserved for extender header

0x02 RES1 Reserved; do not use

0x04 NEG Negotiate size request/response

0x08 SPX2 SPXII packet type

0x10 EOM Set by SPX/SPXII to indicate end of message. This bit
reflects the state of T_MORE from a TLI application.

0x20 ATN Reserved for attention indication. (Not currently
supported by SPXII.)

0x40 ACK Set to request that the receiving partner acknowledge
the receipt of this packet.

0x80 SYS Set to identify a system packet. System packets are
internal SPX packets. They are not delivered to an SPX
application, and do not consume sequence numbers.
Enhanced Sequenced Packet Exchange (SPXII) Protocol 51

Although SPXII allows an application to define a value for the Datastream Type
field, we strongly recommend that you do not use this field. We suggest instead
that you add a control field to your application data packets.

Table 4-4 lists flag values.

Source Connection ID

SPXII generates the identification number for the Source Connection ID
field during connection establishment. The source endpoint of the
packet assigns the value.

Destination Connection ID

SPXII generates the identification number for the Destination
Connection ID field during connection establishment. The destination
endpoint of the packet assigns the value.

SPXII uses Source and Destination Connection ID numbers to
demultiplex packets from multiple connections that arrive on the same
socket. All concurrently active connections on a given node are
guaranteed to have unique connection ID numbers.

Sequence Number

Each side of the connection keeps its own sequence count.This field
keeps a count of packets transmitted in one direction on a connection.
The number wraps to zero after reaching 0xFFFF.

Table 4-4

Flags for Datastream Type

Value SPXII SPX

0x00 - 0x7F Defined by client Defined by client

0x80 - 0xFB Reserved Defined by client

0xFD Orderly release request Defined by client

0xFE Informed disconnect
notification

End-of-Connection
packet

0xFF Informed disconnect
acknowledgment

End-of-Connection
acknowledgment
52 NetWare Transports

This field is set to 0x0 for SPXII packets that negotiate size, except
during lost-packet error recovery.

SPXII manages this field; applications need not be concerned with it.

Acknowledge Number

SPXII uses this field to indicate the sequence number of the next packet
expected to be sent from the other endpoint. Any packet with a
sequence number less than the specified acknowledge number has been
correctly received by SPXII and need not be retransmitted.

SPXII manages this field; applications need not be concerned with it.

Allocation Number

SPXII uses this field to

◆ Identify to the connection partner the largest sequence number that
can be sent.

◆ Control the number of unacknowledged packets outstanding in
one direction in the connection.

The receiving endpoint maintains this number, which is checked by the
sending endpoint. SPXII sends packets only until the sequence number
equals the allocation number.

SPXII manages this field; applications need not be concerned with it.

Negotiation Size

This field exists as part of the SPXII header on all packets, except on the
connection request packet. It contains a length value, and the
significance of the value depends on the type of packet. (If negotiation
is not done during connection establishment, the value of this field
should be 576, the default packet size.)

The Negotiation Size field is neither part of the SPX header nor part of the
packet header for an SPXII connection request.
Enhanced Sequenced Packet Exchange (SPXII) Protocol 53

SPXII Data Flow

As a guaranteed delivery service, SPXII requires that the connection
endpoints verify that each packet has been received. As a windowing
protocol, SPXII also allows an endpoint to send multiple packets before
requesting that the receiving endpoint acknowledge the received
packets.

When the receiving endpoint receives packets, and a packet or packets
are missing, SPXII allows the receiving endpoint to request that the
sender retransmit the missing packets.

This section describes SPXII packet format and sequence:

◆ Data packet format

◆ SPXII ACK packet format

◆ SPXII NAK packet format

◆ Packet sequence without a NAK

◆ Packet sequence with a NAK

For information on connection management packets and sequences, see
“SPXII Connection Management” on page 65.

Data Packet Format

Figure 4-3 on page 56 shows the fields and values of an SPXII data
packet.

The value in the Length field reflects the actual size of the data packet.
A data packet can vary from an SPXII header alone to an SPXII header
plus the maximum negotiated data size (for a range of total packet size
of 576 to 65,535 bytes).
54 NetWare Transports

The ACK bit in the Connection Control field is optional. For NetWare in
a UNIX environment, the SPXII driver sets the ACK bit when any of the
following conditions occur:

◆ The packet has the EOM bit set in Connection Control field.

◆ No more data is currently on the Streams write queue.

◆ This packet fills the receiver’s last available buffer (according to the
window size in the receiver’s last ACK).

The Sequence Number field tracks the number of data packets the
sender has transmitted. The first data packet has a sequence of zero.
Once the driver has placed that packet on the sending queue, the driver
increments the count so that the next data packet will have a sequence
number of 1.
Enhanced Sequenced Packet Exchange (SPXII) Protocol 55

Figure 4-3

SPXII Data Packet

The Acknowledge Number field tracks the number of data packets the
sender has received from the other endpoint. It is incremented on the
reception of a packet and contains the value of the sequence number
expected in the next data packet.

Checksum

Length

Transport Control
Packet Type

Destination
Address

Source
Address

Connection Control
Datastream Type

Source
Connection ID

Destination
Connection ID

Sequence
Number

Acknowledge
Number

Allocation
Number

0xFFFF

Variable

0

5

See SPXII header
description

See SPXII header
description

0x48 (ACK and SPX2)

0

>0 and !=0xFFFF

>0 and !=0xFFFF

Current number

ACK is optional.

Current number

Negotiation
Size

Size of largest packet
receivable by the
sending endpoint

SPXII
header

Data Data

1

1

Current number
56 NetWare Transports

For example, the Acknowledge Number field would have the following
values under the described conditions:

The Allocation Number indicates the current receive window size of
the sender. Actual window size is calculated by subtracting the
acknowledge number from the allocation number and adding one:
(Alloc# - ACK#) + 1.

SPXII ACKs

Figure 4-4 on page 58 shows the fields and values of an SPXII
acknowledgment (ACK) packet.

SPXII ACKs are used to acknowledge SPXII data packets.

To determine whether any data packet received contains an implicit
acknowledgment (“piggy-back” ACK), check whether the ACK or the Alloc
numbers have been updated.

0 No data packets have been sent by the other endpoint.

4 Four data packets have been sent by the other endpoint
(0,1,2,3) and the next data packet to arrive will have a
Sequence Number of 4.
Enhanced Sequenced Packet Exchange (SPXII) Protocol 57

The SPXII ACK has the fields and values set as shown in Figure 4-4.

Figure 4-4

Fields and Values of
an SPXII Data ACK

The Connection Control field has the SYS and SPX2 bit set.

The Sequence Number field is set to zero (0).

The Acknowledge Number field is set to acknowledge the data
packet(s) received (this means that all data packets up to but not
including the acknowledgment number have been received).

The Allocation Number field is set to the greatest Sequence Number
that can be received.

Checksum

Length

Transport Control
Packet Type

Destination
Address

Source
Address

Connection Control
Datastream Type

Source
Connection ID

Destination
Connection ID

Sequence
Number

Acknowledge
Number

Allocation
Number

0xFFFF

44

0

5

See SPXII header
description

See SPXII header
description

0x88 (SYS and SPX2)

0

>0 and !=0xFFFF

>0 and !=0xFFFF

0

Sequence number of the
next expected packet

Current number

Negotiation
Size

Size of largest packet
receivable by the
sending endpoint

SPXII
header
58 NetWare Transports

SPXII NAKs

Figure 4-5 on page 60 shows the fields and values of an SPXII negative
acknowledgment (NAK) packet.

For SPXII ACKs, the Sequence Number field is set to zero (0). For an
SPXII NAK, however, the Sequence Number field is set to a non-zero
value.

In the SPXII implementation for UNIX, the receiver sends a NAK if the
sender requests an ACK but the packets in the sequence have not
arrived. The receiver of the NAK (sender of data) uses the NAK to
determine which packets have been lost.

The Sequence Number field contains the number of packets that need
to be resent. For the example used in the previous paragraph, the SPXII
driver would set the sequence number to 2 (packets 5 and 6 need to be
retransmitted).

The Acknowledge Number field contains the sequence number of the
first packet that failed to arrive. For example, if the receiver has received
packets with sequence numbers of 1, 2, 3, 4, 7 and 8, the driver sets the
acknowledgment number to 5.
Enhanced Sequenced Packet Exchange (SPXII) Protocol 59

The SPXII NAK packet consists only of an SPXII header (no data) with
the fields and values set as shown in Figure 4-5.

Figure 4-5

Fields and Values
of an SPXII NAK
Packet

Checksum

Length

Transport Control
Packet Type

Destination
Address

Source
Address

Connection Control
Datastream Type

Source
Connection ID

Destination
Connection ID

Sequence
Number

Acknowledge
Number

Allocation
Number

0xFFFF

44

0

5

See SPXII header
description

See SPXII header
description

0x88 (SYS and SPX2)

0

>0 and !=0xFFFF

>0 and !=0xFFFF

>0(number of packets
 to resend)

Sequence number of the
next expected packet

Current number

Negotiation
Size

Size of largest packet
receivable by the
sending endpoint

SPXII
header
60 NetWare Transports

Sequence of Data Packets without a NAK

Figure 4-6 on page 62 illustrates the normal sequence of data packets
between a client and a server (in other words, with an ACK and without
a NAK).

In the case illustrated in Figure 4-6, the fields in the client’s first data
packet have the following values:

◆ The sequence number is set to 5. The client has already sent 5 data
packets (0, 1, 2, 3, and 4) and they have been received up through
number 4. The next packet expected is number 5.

◆ The allocation number is 12. Because window size is calculated
with the formula (Alloc# - Ack#) +1, the client’s window size is 3.

For the server, this means

◆ The server has sent 10 data packets because the client’s first data
packet shows that the acknowledge number is 10.

◆ The server has a window size of 5 because the server’s first SPXII
ACK shows that the allocation number is set to 10.

Notice that both the acknowledgment number and the allocation
number increase with each received data packet. The server’s second
SPXII ACK packet shows this. Both numbers increase by 5.

The packet sequences in Figure 4-6 assume that the client and server are
able to process each packet immediately and free the buffer. If the server
is unable to process some of the packets before sending the
SPXII ACK, the allocation number would be increased only by the
number of free buffers.

For example, if only data packets 6, 7, and 8 were processed and their
buffers freed, the allocation number would be 13 (rather than 15, which
is shown in Figure 4-6).

A data packet can also acknowledge received packets. This type of
packet is a “piggy-back” ACK. (We know it is not a NAK because it
contains data.)
Enhanced Sequenced Packet Exchange (SPXII) Protocol 61

Figure 4-6

Normal Data
Sequence

Server

SPXII ACK

SPXII ACK

SPXII ACK

Data Packet

Data Packet

Client

Data Packet

Data Packet

Data Packet

Data Packet

Data Packet

Seq #: 5

Ack #: 10
Alloc #: 12
ACK bit set

Seq #: 0

Ack #: 6
Alloc #: 10

Seq #: 6

Ack #: 10
Alloc #: 12

Seq #: 7

Ack #: 10
Alloc #: 12

Seq #: 8

Ack #: 10
Alloc #: 12

Seq #: 9

Ack #: 10
Alloc #: 12

Seq #: 10

Ack #: 10
Alloc #: 12
ACK bit set

Seq #: 0

Ack #: 11
Alloc #: 13

Seq #: 0

Ack #: 11
Alloc #: 15

Seq #: 10

Ack #: 11
Alloc #: 15
ACK bit set
62 NetWare Transports

In the example in Figure 4-6, the server could have used the data packet
to acknowledge the received packets. If the packets had been combined
in a data packet with a “piggy-back” ACK, the fields would have the
following values:

Notice that these are the same values as the ACK packet. The client
would use the value in the Acknowledge Number field as the ACK for
packets 6 through 10.

Sequence of Data Packets with a NAK

Figure 4-7 on page 64 illustrates the packet sequence when a packet
doesn’t arrive and an endpoint must answer with a negative
acknowledgment.

It uses the same situation as Figure 4-6 on page 62. The client has a
window size of 3, and the server has a window size of 5.

The scenario in Figure 4-7 begins when the server acknowledges
packets numbered up through 4. The client has already acknowledged
packets from the server up through number 9.

The server then ACKs data packet number 5, and the client sends five
more data packets. However, in Figure 4-7, data packet number 9 never
arrives and is lost.

When the client requests an ACK in data packet 10, the server sends a
NAK, letting the client know that data packet 9 hasn’t arrived. The
sequence number in the NAK indicates how many packets need to be
resent. Since packet number 10 arrived, the server needs only one
packet resent—packet number 9.

The ACK bit is automatically set on all retransmitted packets; therefore
the ACK bit is set when the client resends packet number 9.

Seq: 10

Ack: 11

Alloc: 15

ACK bit: set
Enhanced Sequenced Packet Exchange (SPXII) Protocol 63

Figure 4-7

Data Sequence
with a NAK

Server

SPXII ACK

Data Packet

SPXII NAK

SPXII ACK

Data Packet

Client

Data Packet

Data Packet

Data Packet

Data Packet

Data Packet

Seq #: 5

Ack #: 10
Alloc #: 12
ACK bit set

Seq #: 0

Ack #: 6
Alloc #: 10

Seq #: 6

Ack #: 10
Alloc #: 12

Seq #: 7

Ack #: 10
Alloc #: 12

Seq #: 8

Ack #: 10
Alloc #: 12

Seq #: 9

Ack #: 10
Alloc #: 12

Seq #: 10

Ack #: 10
Alloc #: 12
ACK bit set

Seq #: 0

Ack #: 11
Alloc #: 15

Seq #: 1

Ack #: 9
Alloc #: 13

Seq #: 9

Ack #: 10
Alloc #: 12
ACK bit set

Lost
64 NetWare Transports

When the server ACKs the retransmitted data packet, notice that the
ACK contains an ACK for both data packets 9 and 10. The server signals
the client that packet 10 has also arrived by setting the acknowledge
number to 11.

The allocation numbers in Figure 4-7 assume that the client and the
server are able to process packets as soon as they arrive and that their
buffers are free when sending an ACK or NAK.

The server’s SPXII NAK indicates that data packets 6, 7, and 8 have
been processed and their buffers freed. The buffer for data packet 10 is
not free because an out-of-sequence packet can’t be processed.

There is no way to send a negative acknowledgment with a data packet (no
“piggy-back” NAK).

SPXII Connection Management

In order to establish, maintain, and release a connection between two
endpoints, SPXII requires the following types of connection
management packets:

◆ Connection establishment packets (see next section)

◆ Session termination packets (see page 82)

◆ Watchdog packets (see page 92)

◆ Renegotiation packets (see page 96)

Once a connection has been established, the endpoints are in a data
transfer state. For information on the format and sequencing of data
packets, ACKs and NAKs, see “SPXII Data Flow” on page 54.

Connection establishment for SPXII includes negotiation of packet size.
Because routers are non-deterministic with respect to the route used, it
is possible to have parallel routes. Thus an SPXII connection can have
different send and receive packet sizes. SPXII packet-size negotiation
takes this into account and separately determines the client’s and the
server’s send packet size.
Enhanced Sequenced Packet Exchange (SPXII) Protocol 65

Connection Establishment Packets

In order to establish a connection between two endpoints, SPXII
requires the following types of connection establishment packets:

◆ Connection Request and ACK

◆ Session Negotiate and ACK

◆ Session Setup and ACK

This section not only describes the format of each packet, but the
following packet sequences as well:

◆ SPXII to SPXII connection establishment sequences (with and
without negotiation)

◆ Mixed SPX and SPXII connection establishment sequences

Connection Request Packet

A Connection Request packet is the first packet in the connection
establishment sequence. The packet is sent by the endpoint requesting
the connection (the client), and the client uses the packet to

◆ Request a connection

◆ Optionally request negotiation

Figure 4-8 on page 67 shows how the values in the IPX and SPXII
headers are set for the Connection Request packet.

The SPXII Connection Request packet is the same size as an SPX
connection request. Notice that the Length field in the IPX header is the
same size as an SPX connection request and that the Negotiation Size
field is not used.

The SPXII Connection Request packet is the only SPXII packet that does not
use the Negotiation Size field.

The Connection Control field can be set to request negotiation. If the
client does not want to negotiate (because the connection is temporary
or only small amounts of data will be transferred), the client sets this
field to 0xC8 (SYS, ACK, and SPX2).
66 NetWare Transports

When appropriate, developers should have their client applications
avoid the overhead of packet-size negotiation. If an application knows
that all messages will be small (fewer than 534 bytes) or that the
connection will be short-lived, the application can specify no
negotiation for packet size. The TLI function t_optmgmt, negotiate
protocol options, allows this. (This function is discussed on page 205.)

The TLI call can tell SPXII not to set the NEG bit of the Connection
Control field in the Connection Request packet. With the NEG bit unset,
the client and the server assume a packet size of 576 bytes and do not
send any negotiation packets.

Figure 4-8

Fields and Values of
the Connection
Request Packet

Checksum

Length

Transport Control
Packet Type

Destination
Address

Source
Address

Connection Control
Datastream Type

Source
Connection ID

Destination
Connection ID

Sequence
Number

Acknowledge
Number

Allocation
Number

0xFFFF

42

0

5

See SPXII header
description

See SPXII header
description

0xCC (SYS, ACK, NEG, SPX2)1

0

>0 and !=0xFFFF

0xFFFF

0

0

m (Initial window size)

SPXII
header

1 NEG is optional.
Enhanced Sequenced Packet Exchange (SPXII) Protocol 67

Connection ACK Packet

The server sends a Connection ACK packet as an immediate
acknowledgment to a connection request. Figure 4-9 shows the fields
and values of the packet’s header.

Figure 4-9

Fields and Values
of the Connection
ACK Packet

Notice that the Length field has a value of 44. This packet uses the
Negotiation Size field.

Checksum

Length

Transport Control
Packet Type

Destination
Address

Source
Address

Connection Control
Datastream Type

Source
Connection ID

Destination
Connection ID

Sequence
Number

Acknowledge
Number

Allocation
Number

0xFFFF

44

0

5

See SPXII header
description

See SPXII header
description

0x8C (SYS, NEG, SPX2)1

0

>0 and !=0xFFFF

>0 and !=0xFFFF

0

0

Current number

Negotiation
Size

Server driver packet
size (576-65535)

SPXII
header

1 NEG is optional.
68 NetWare Transports

The server can either set the Connection Control field to 0x8C (SYS,
NEG, and SPX2) to agree to negotiation or to 0x88 (SYS and SPX2) to
skip negotiation.

◆ If the NEG flag is not set, the server is either agreeing with the client
not to negotiate or informing the client that the server won’t
negotiate. When negotiation is declined, the next packet is a Session
Setup packet sent by the server.

◆ If the NEG bit is set both in this packet and the Connection Request
packet, both the client and server have agreed to negotiation, and
the client can send a Session Negotiate packet.

The value of the Negotiation Size field depends upon whether
negotiation is requested:

◆ If requested, the field is set to the maximum packet size of the
server driver.

◆ If not requested, the field is set to 576.

Session Negotiate Packet

The Session Negotiate Packet allows the two endpoints to negotiate
packet size as well as other information such as IPX checksum control
and timeout values.

A client sends a Session Negotiate packet only if the following
conditions are met:

◆ The connection is still in the establishment phase.

◆ The NEG flag was set in the Connection Control field in both the
Connection Request and Connection Acknowledgment packets.

If any of these conditions are not met, the client cannot send a Session
Negotiate packet and must wait for the server to send a Session Setup
packet.
Enhanced Sequenced Packet Exchange (SPXII) Protocol 69

Figure 4-10 shows the header fields and values for the Session
Negotiate packet.

Figure 4-10

Fields and Values of
the Session
Negotiate Packet

Checksum

Length

Transport Control
Packet Type

Destination
Address

Source
Address

Connection Control
Datastream Type

Source
Connection ID

Destination
Connection ID

Sequence
Number

Acknowledge
Number

Allocation
Number

0xFFFF

576 - 65535

0

5

See SPXII header
description

See SPXII header
description

0xCC (SYS, ACK, NEG, SPX2)

0

>0 and !=0xFFFF

>0 and !=0xFFFF

0

0

Current number

Negotiation
Size

Client driver packet
size (576-65535)

SPXII
header

Data
Negotiation values and
padding to desired size
70 NetWare Transports

The header is followed by n data bytes. The client SPXII driver pads the
Data field so that the packet size equals the maximum packet size that
both the server driver and client driver can support.

For example, if the client driver supports a packet size of 1024 and the
server driver, 1474, the client SPXII driver pads the Data field so that the
packet size is 1024 (the client can’t send a larger packet).

If the server does not acknowledge the Session Negotiate packet within
an aggressive timeout period, the client reduces the size of the packet to
the next logical driver size and then resends the packet.

Only the first 532 bytes of data can contain optional information to be
negotiated between the endpoints. (See “Negotiating Other Values
between Endpoints” on page 103.) The padding value is not significant
and can be uninitialized data.
Enhanced Sequenced Packet Exchange (SPXII) Protocol 71

Session Negotiate ACK

When the server receives a Session Negotiate packet, it sends an ACK
packet. Figure 4-11 shows the packet’s fields and values.

Figure 4-11

Fields and Values
of the Session
Negotiate ACK
Packet

The server uses the Length field in the IPX header to determine the size
of the Session Negotiate packet. It then uses this value to set the value
of the Negotiation Size field in the Session Negotiate ACK packet. If the
server receives multiple Session Negotiate packets (because of delayed
packets or lost ACKs), the server always sets the Negotiation Size field
to the value of the largest received Session Negotiate packet.

Checksum

Length

Transport Control
Packet Type

Destination
Address

Source
Address

Connection Control
Datastream Type

Source
Connection ID

Destination
Connection ID

Sequence
Number

Acknowledge
Number

Allocation
Number

0xFFFF

44

0

5

See SPXII header
description

See SPXII header
description

0x8C (SYS, NEG, SPX2)

0

>0 and !=0xFFFF

>0 and !=0xFFFF

0

0

Current number

Negotiation
Size

Size of largest received
Session Negotiate packet

IPX
header

SPXII
header
72 NetWare Transports

Session Setup Packet

The Session Setup packet signals the successful establishment of the
connection.

The server sends this packet when one of the following conditions is
met:

◆ The server has sent a Session Negotiate ACK.

◆ The server has sent a Connection ACK and negotiation was not
requested.

When the client receives this packet, the client informs the application
that a connection has been established.

◆ For the client, the session is established and enters a data transfer
state as soon as the client sends the Session Setup ACK.

◆ For the server, the session is established and enters a data transfer
state as soon as the server receives Session Setup ACK.

The header is followed by n data bytes. The server SPXII driver pads the
Data field so that the packet size equals the maximum packet size that
both the server driver and client driver can support.

For example, if the client driver supports a packet size of 1024 and the
server driver, 1474, the server SPXII driver pads the Data field so that
the packet size is 1024 (the client can’t accept a larger packet).

If the client does not acknowledge the Session Setup packet within an
aggressive timeout period, the server reduces the size of the packet to
the next logical driver size and then resends the packet.
Enhanced Sequenced Packet Exchange (SPXII) Protocol 73

Figure 4-12 on page 74 shows the fields and values for the Session Setup
packet.

Figure 4-12

Fields and Values
of the Session
Setup Packet

Checksum

Length

Transport Control
Packet Type

Destination
Address

Source
Address

Connection Control
Datastream Type

Source
Connection ID

Destination
Connection ID

Sequence
Number

Acknowledge
Number

Allocation
Number

0xFFFF

576 - 65535

0

5

See SPXII header
description

See SPXII header
description

0xCC (SYS, NEG, ACK, SPX2)1

0

>0 and !=0xFFFF

>0 and !=0xFFFF

0

0

Current number

Negotiation
Size

Size of largest received
Session Negotiate packet

SPXII
header

Data
Negotiation values
(optional) and padding
to desired size

1 NEG is optional.
74 NetWare Transports

If the NEG flag is set in the Connection Control field, the first 532 bytes
of data can contain optional information to be negotiated between the
endpoints. (See “Negotiating Other Values between Endpoints” on
page 103.) The padding value is not significant and can be uninitialized
data.

The server can use the Session Setup packet to indicate that the server’s
socket address has changed. (Applications often use one socket address
for connection establishment and then assign a different socket number
for each established session.)

The server’s socket address change is indicated in the Source Address
field of the SPX header. The client must detect the socket change and
send all future packets, including the Session Setup ACK, to this new
socket address. When the socket address changes, the Connection IDs
remain unchanged.

The server sets the Connection Control field to reflect the state of the
connection and uses one of the following values:

◆ 0xCC (SYS, ACK, NEG, and SPX2) when the connection is still in a
negotiation state

◆ 0xC8 (SYS, ACK, and SPX2) when the connection is not in a
negotiation state

The Sequence number must be set to zero. The client uses the Sequence
number to differentiate between a Session Setup retry and a
Renegotiate Request packet which happens to occur on the first data
packet. (The first data packet has a sequence number of 0; if the first
packet after session establishment is a Renegotiation Request packet,
that packet would have a Sequence number of 1).
Enhanced Sequenced Packet Exchange (SPXII) Protocol 75

Session Setup ACK Packet

The client sends a Session Setup ACK as an acknowledgment to a
Session Setup packet. Figure 4-13 illustrates the packet’s header fields
and values.

Figure 4-13

Fields and Values
of the Session
Setup ACK Packet

Checksum

Length

Transport Control
Packet Type

Destination
Address

Source
Address

Connection Control
Datastream Type

Source
Connection ID

Destination
Connection ID

Sequence
Number

Acknowledge
Number

Allocation
Number

0xFFFF

44

0

5

See SPXII header
description

See SPXII header
description

0x8C (SYS, NEG, SPX2)1

0

>0 and !=0xFFFF

>0 and !=0xFFFF

0

0

Current number

Negotiation
Size

Size of largest received
Session Setup packet

SPXII
header

1 NEG is optional.
76 NetWare Transports

The client sets the Connection Control field to indicate the state of the
connection.

◆ 0x8C (SYS, NEG, and SPX2) to reflect a negotiation state

◆ 0x88 (SYS and SPX2) to reflect a non-negotiation state

The client uses the Length field in the IPX header to determine the size
of the Session Setup packet and to set the Negotiation Size field in the
ACK. If the client receives multiple Session Setup packets (because of
delayed packets or lost ACKs), the client always sets the Negotiation
Size field to the value of the largest received Session Setup packet.

Packet Sequence for SPXII to SPXII Connection Establishment

This section describes the normal sequence of packets in establishing a
connection between endpoints that are both using SPXII. The following
types of packet sequencing are shown:

◆ A negotiation sequence

◆ A non-negotiation sequence

Negotiation Sequence. Figure 4-14 on page 78 illustrates the packet
sequence between endpoints that want to negotiate packet size.

The client sends the first packet, a Connection Request packet with the
SYS, ACK, SPX2, and NEG bits in the Connection Control field set. The
server responds with a Connection ACK packet with the SYS, SPX2,
and NEG bits set.

The client responds with a Session Negotiate packet with the SYS, ACK,
NEG, and SPX2 bits set in the Connection Control field. The client sends
the largest possible Session Negotiate packet.
Enhanced Sequenced Packet Exchange (SPXII) Protocol 77

Figure 4-14

SPXII Client to SPXII
Server Connection
Packets with
Negotiation

The packet sequence in Figure 4-14 assumes that the server receives the
first and largest Session Negotiate packet sent by the client.

If the client does not receive a Session Negotiate ACK from the server
within an aggressive timeout period, the client sends a second Session
Negotiate packet, reduced in size to the next logical driver size. The
client continues to reduce the packet to the next logical driver size until
an ACK is received or the minimum packet size is reached.

Connection Request

Connection ACK

Session Setup ACK

Session Negotiate ACK

Session Setup

Session Negotiate

SYS
ACK
NEG
SPX2

SPXII Client SPXII Server

0xCC

SYS
ACK
NEG
SPX2

0xCC

SYS
NEG
SPX2

0x8C

SYS
NEG
SPX2

0x8C

SYS
ACK
NEG
SPX2

0xCC

SYS
NEG
SPX2

0x8C
78 NetWare Transports

The client may optionally share information about other values (such as
default timeout values and default retry counts) in the data field of the
Session Negotiate packet. (See “Negotiating Other Values between
Endpoints” on page 103.)

Once the server has sent the Session Negotiate ACK, the server sends
the largest possible Session Setup packet.

The packet sequence in Figure 4-14 assumes that the client receives the
first and largest Session Setup packet sent by the server.

If the server does not receive a Session Setup ACK from the client in an
aggressive timeout period, the server sends a second Session Setup
packet, reduced in size to the next logical driver size. The server
continues to reduce the packet to the next logical driver size until an
ACK is received or the minimum packet size is reached.

If the client does not receive a Session Setup packet within a specific
time period, a session setup timeout occurs. This timeout will abort the
connection establishment and notify the application of the failure. The
time period begins with the reception of the Connection ACK. The
driver uses the watchdog timer, which has a default of 60 seconds.

The server may optionally share information about other values (such
as default timeout values and default retry counts) in the data field of
the Session Setup packet. (See “Negotiating Other Values between
Endpoints” on page 103.)

As soon as the server receives the Session Setup ACK, the session is
established and is in data transfer state.

Without Negotiation. Either endpoint can select not to negotiate
packet size in the following situations.

◆ If the client application wants to avoid the overhead of negotiation
because the packets will be small (less than 576) or the connection
will be short lived, the application requests that the NEG bit in the
Connection Control field not be set in the Connection Request
packet.

◆ If the server wants to avoid negotiation, the server does not set the
NEG bit in the Connection ACK.
Enhanced Sequenced Packet Exchange (SPXII) Protocol 79

Figure 4-15 illustrates the packet sequence when the client does not
request negotiation. The client sends the Connection Request packet
without the NEG bit set in the Connection Control field. The server
responds with the NEG bit not set in the Connection ACK.

Once the server has sent the Connection ACK, the server sends a
Session Setup packet with the NEG bit not set. The client responds with
a Session Setup ACK with the NEG bit not set.

Figure 4-15

SPXII Client to SPXII
Server Connection
Packets without
Negotiation

If the client does not receive a Session Setup packet within a specific
time period, a session setup timeout occurs. This timeout will abort the
connection establishment and notify the application of the failure. The
time period begins with the reception of the Connection ACK. The
SPXII driver uses the watchdog timer, which has a default of 60
seconds.

As soon as the server receives the Session Setup ACK, the session is
established and is in data transfer state.

SPXII Client

Connection Request

Session Setup ACK

Connection ACK

Session Setup

SPXII Server

SYS
ACK
SPX2

0xC8

SYS
ACK
SPX2

0XC8

SYS
SPX2

0x88

SYS
SPX2

0x88
80 NetWare Transports

Packet Sequences for Mixed SPX and SPXII Connection Endpoints

SPXII is compatible with SPX because SPXII endpoints can connect to
SPX endpoints and SPX endpoints can connect to SPXII endpoints.

SPXII Client to SPX Server. Figure 4-16 illustrates the packet
sequence between an SPXII client and an SPX server.

Figure 4-16

Packet Sequence
for an SPXII Client to
an SPX Server

The client issues an SPXII Connection Request with the SPX2 bit set.

The SPX server ignores the SPX2 bit and returns a standard SPX
Connection ACK.

When the client examines the ACK and notices that the SPX2 bit is not
set, it reverts to standard SPX connection protocol.

SPXII Client

SPX Connection ACK

SPX Server

SPXII Connection Request

SYS
ACK
NEG
SPX2 0xCC

SYS

0x80
Enhanced Sequenced Packet Exchange (SPXII) Protocol 81

SPX Client to an SPXII Server. Figure 4-17 illustrates the packet
sequence between an SPX client and an SPXII server.

Figure 4-17

Packet Sequence
for an SPX Client to
an SPXII Server

The client issues an SPX Connection Request (which does not have the
SPX2 bit set).

The server recognizes that the SPX2 bit is not set and returns a standard
SPX Connection ACK and uses standard SPX connection protocol.

Session Termination Packets

SPXII supports the following types of session termination:

◆ Unilateral abort

◆ Informed disconnect

◆ Orderly release

Unilateral abort is used when one endpoint has detected a connection
failure through retry failure or watchdog failure. No packets are
exchanged; the detecting endpoint clears the connection and the
resources it was using.

SPX Client

SPX Connection ACK

SPXII Server

SPX Connection Request

SYS
ACK

0xC0

SYS

0x80
82 NetWare Transports

Informed disconnect differs from the unilateral abort by requiring the
endpoints to exchange disconnect packets and is used when either of
the following occurs:

◆ The application sends a send disconnect request (with a TLI
t_snddis call).

◆ The SPXII driver detects a system failure on its side of the
connection.

In SPX and in the AIX version of SPXII, an endpoint could potentially
lose data under two conditions:

◆ When a disconnection indication arrives before all data is sent
upstream to the application or before it is read by the application.

◆ When the application closes the local endpoint before all data is
sent and acknowledged.

The new SPX Linger feature in the SPXII driver addresses both of these
conditions. If a disconnect indication arrives from the remote endpoint,
SPXII now attempts to send all data upstream to the application before
taking action on the disconnection indication. If an application issues a
close, SPXII delays the closing of the local endpoint until all data has
been sent and acknowledged. In both cases, SPXII attempts to deliver
all data, but when it is not possible to do so within the timeout period
(default 120 seconds), SPXII completes the requested action.

Orderly release is used when the application calls the TLI t_sndrel
function. It terminates the session only after both endpoints agree to the
termination.

Informed Disconnect Packets

This section describes the following:

◆ Format of the Informed Disconnect packet

◆ Format of the Informed Disconnect ACK

◆ Packet sequence of an informed disconnect
Enhanced Sequenced Packet Exchange (SPXII) Protocol 83

Format of the Informed Disconnect Packet. The Informed
Disconnect packet requires the exchange of disconnect packets between
endpoints before the disconnect is performed. The informed disconnect
can be generated by either endpoint.

Figure 4-18 shows the following fields and values of the packet:

Figure 4-18

Fields and Values of
the Informed
Disconnect Packet

Checksum

Length

Transport Control
Packet Type

Destination
Address

Source
Address

Connection Control
Datastream Type

Source
Connection ID

Destination
Connection ID

Sequence
Number

Acknowledge
Number

Allocation
Number

0xFFFF

44

0

5

See SPXII header
description

See SPXII header
description

0x48 (ACK and SPX2)

0xFE

>0 and !=0xFFFF

>0 and !=0xFFFF

Current number

Current number

Current number

Negotiation
Size

Size of largest packet
receivable by the
sending endpoint

SPXII
header
84 NetWare Transports

Format of the Informed Disconnect ACK. The Informed Disconnect
ACK is sent in response to an Informed Disconnect Request. Once an
Informed Disconnect Request is received, the endpoint can respond
only with an Informed Disconnect ACK packet.

Figure 4-19 illustrates the following fields and values for this
acknowledgment packet.

Figure 4-19

Fields and Values of
the Informed
Disconnect ACK

Checksum

Length

Transport Control
Packet Type

Destination
Address

Source
Address

Connection Control
Datastream Type

Source
Connection ID

Destination
Connection ID

Sequence
Number

Acknowledge
Number

Allocation
Number

0xFFFF

44

0

5

See SPXII header
description

See SPXII header
description

0x08 (SPX2)
0xFF

>0 and !=0xFFFF

>0 and !=0xFFFF

0

Current number
(Informed Disconnect
Sequence Number + 1)

Current number

Negotiation
Size

Size of largest packet
receivable by the
sending endpoint

SPXII
header
Enhanced Sequenced Packet Exchange (SPXII) Protocol 85

Packet Sequence for an Informed Disconnect. An informed
disconnect terminates the session after the exchange of disconnect
packets between the endpoints. The SPX Linger feature gives the
connection partner an opportunity to complete any transmissions
before the session is terminated.

Figure 4-20 below illustrates the packet sequence between the
endpoints and assumes that Endpoint 2 receives the Informed
Disconnect packet and responds with an ACK which Endpoint 1
receives.

If Endpoint 1 does not receive an ACK within the wait time for a data
ACK, Endpoint 1 should retry sending the packet the same number of
times it retries data packets. However, no route rediscovery or
renegotiation are required. When all retries are exhausted, the endpoint
performs a unilateral abort.

Figure 4-20

Informed
Disconnect
Sequence

Endpoint 1

Informed Disconnect ACK

Endpoint 2

Informed Disconnect

ACK
SPX2

0x48

SPX2

0x08
86 NetWare Transports

Orderly Release Request Packets

The Orderly Release Request terminates the session after both
endpoints agree to the termination. An orderly release permits the
following:

◆ The endpoint receiving the release request has the opportunity to
complete any data transmissions before the release is finalized.

◆ The endpoint sending the release request agrees to receive and
process any data sent by the endpoint receiving the release request.

SPXII supports the orderly release facility through TLI. The t_info
structure that is returned on the t_open and t_getinfo calls indicates
that SPXII supports connection-mode service with the optional orderly
release (T_COTS_ORD) in the type field.

TLI applications can take advantage of orderly release by using the
t_sndrel (initiate orderly release) and t_rcvrel (acknowledge receipt of
an orderly release indication) when terminating connections.

SPXII applications can connect to either SPX or SPXII endpoints. At
connection time, an SPXII application can use the SPX2_OPTIONS
structure to discover whether the connected endpoint is an SPX or
SPXII endpoint:

◆ Servers should save this information from t_listen.

◆ Clients should save this information from t_connect.

SPX does not support orderly release. If an SPXII application sends an
Orderly Release Request to an SPX endpoint, the SPXII driver generates
an “EPROTO” error, which causes all subsequent system calls to fail.

This section describes the following:

◆ Format of the Orderly Release Request packet

◆ Format of the Orderly Release ACK

◆ Packet sequence of an orderly release
Enhanced Sequenced Packet Exchange (SPXII) Protocol 87

Format of the Orderly Release Request Packet. Figure 4-21
illustrates the packet’s fields and values.

Figure 4-21

Fields and Values of
the Orderly Release
Request Packet

Checksum

Length

Transport Control
Packet Type

Destination
Address

Source
Address

Connection Control
Datastream Type

Source
Connection ID

Destination
Connection ID

Sequence
Number

Acknowledge
Number

Allocation
Number

0xFFFF

44

0

5

See SPXII header
description

See SPXII header
description

0x58 (ACK, EOM, SPX2)

0xFD

>0 and !=0xFFFF

>0 and !=0xFFFF

Current number

Current number

Current number

Negotiation
Size

Size of largest packet
receivable by the
sending endpoint

SPXII
header
88 NetWare Transports

Orderly Release ACK. The Orderly Release ACK packet is the same
as a normal data ACK packet. Figure 4-22 illustrates the packet’s fields
and values.

Figure 4-22

Fields and Values
of the Orderly
Release ACK

Checksum

Length

Transport Control
Packet Type

Destination
Address

Source
Address

Connection Control
Datastream Type

Source
Connection ID

Destination
Connection ID

Sequence
Number

Acknowledge
Number

Allocation
Number

0xFFFF

44

0

5

See SPXII header
description

See SPXII header
description

0x88 (SYS and SPX2)

0

>0 and !=0xFFFF

>0 and !=0xFFFF

0

Current number

Current number

Negotiation
Size

Size of largest packet
receivable by the
sending endpoint

SPXII
header
Enhanced Sequenced Packet Exchange (SPXII) Protocol 89

Packet Sequence for Orderly Release. An orderly release begins with
one endpoint sending an Orderly Release Request packet.

Once the endpoint receiving the release request completes its data
transmissions, it sends an Orderly Release Request back to the other
endpoint.

Following the second orderly release exchange, the session is
terminated by both endpoints.

Figure 4-23 on page 91 illustrates the packet sequence between
Endpoint 1 and Endpoint 2. This figure shows Endpoint 1 initiating the
orderly release.

Endpoint 2 has more data to send before it wants to disconnect, so
Endpoint 2 sends an Orderly Release ACK and a data packet, and then
waits for the ACK.

Figure 4-23 shows only one data packet and ACK, but Endpoint 2 can
send as many data packets as needed.
90 NetWare Transports

Figure 4-23

Orderly Release
Sequence

As soon as Endpoint 2 receives the SPXII ACK for the data, it sends an
Orderly Release Request.

Endpoint 2

SPXII ACK

Orderly Release ACK

Orderly Release ACK

Orderly Release Request

Data Packet

SYS
SPX2

0x88

ACK
EOM
SPX2

0x58

SYS
SPX2

0x88

Orderly Release Request

ACK
EOM
SPX2

0x58

SYS
SPX2

0x88

ACK
SPX2

0x48

Endpoint 1

(Additional Data
packets as needed)

(Additional SPXII
ACKs as requested)
Enhanced Sequenced Packet Exchange (SPXII) Protocol 91

When Endpoint 1 receives this packet, it knows that Endpoint 2 is ready
to disconnect. Endpoint 1 sends an Orderly Release ACK and
disconnects.

Endpoint 2 disconnects as soon as it receives the Orderly Release ACK
from Endpoint 1.

If an Orderly Release ACK is not received, the Orderly Release Request
should be retried with the same sequence as a normal data packet, with
route rediscovery and renegotiation (if applicable). When all retries are
exhausted, an endpoint can perform a unilateral abort.

An Orderly Release Request is not subject to window closure and must
be sent even if the window is closed. An Orderly Release ACK is not
subject to window closure.

Watchdog

SPX implemented the watchdog as an optional component on each
connection. Under SPXII, connection watchdog management is
required.

Also, SPXII has changed the watchdog algorithm to allow a more
efficient exchange between endpoints. SPXII supports only the “Are
you there?” request, rather than both the “Are you there?” and the
elective “I am here” type packets that SPX sends.

This section describes the following:

◆ Watchdog packet format

◆ Watchdog ACK

◆ Watchdog algorithm

◆ Watchdog during connection establishment
92 NetWare Transports

Watchdog Packet Format

A Watchdog packet consists of an SPXII header with the SPX2, SYS, and
ACK bits set in the Connection Control field. Figure 4-24 illustrates the
packet.

Figure 4-24

Fields and Values
of the Watchdog
Packet

A data ACK can be “piggy-backed” on a watchdog packet by increasing
the Acknowledge number to reflect all packets received (all packets up
to but not including the acknowledge number have been received).

Checksum

Length

Transport Control
Packet Type

Destination
Address

Source
Address

Connection Control
Datastream Type

Source
Connection ID

Destination
Connection ID

Sequence
Number

Acknowledge
Number

Allocation
Number

0xFFFF

44

0

5

See SPXII header
description

See SPXII header
description

0xC8 (SYS, ACK, SPX2)

0

>0 and !=0xFFFF

>0 and !=0xFFFF

Current number

Current number

Current number

Negotiation
Size

Size of largest packet
receivable by the
sending endpoint

SPXII
header
Enhanced Sequenced Packet Exchange (SPXII) Protocol 93

Watchdog ACK

The receiver of a Watchdog packet responds with a Watchdog ACK
which consists of an SPXII header with the SPX2 and SYS bits set in the
Connection Control field and the Sequence Number set to 0. Figure 4-25
illustrates the fields in this packet.

Figure 4-25

Fields and Values of
the Watchdog ACK

Checksum

Length

Transport Control
Packet Type

Destination
Address

Source
Address

Connection Control
Datastream Type

Source
Connection ID

Destination
Connection ID

Sequence
Number

Acknowledge
Number

Allocation
Number

0xFFFF

44

0

5

See SPXII header
description

See SPXII header
description

0x88 (SPX and SPX2)

0

>0 and !=0xFFFF

>0 and !=0xFFFF

0

Current number

Current number

Negotiation
Size

Size of largest packet
receivable by the
sending endpoint

SPXII
header
94 NetWare Transports

SPXII Watchdog Algorithm

The watchdog routine is a passive element in SPXII, just as it is in SPX.
Watchdog packets are sent only if there is an extended period with no
traffic on the session.

The default watchdog timeout (the minimum time between the last
packet traffic on the session and the first watchdog packet) is 60
seconds. Any packet that arrives for a session resets the watchdog timer
for that session. This includes system packets as well as user data
packets. (Thus an acknowledgment of transmitted data would reset the
timer.)

Before the watchdog algorithm terminates a connection, it must
perform the standard number of retries with the appropriate timeouts
between attempts, just as SPXII would do for a data packet. Then, if the
connection partner has not responded, the watchdog algorithm must
attempt to locate a new route, just as it would for a normal data packet.

If the watchdog algorithm has completed all these steps and still has not
received a response from the connection partner, the algorithm assumes
that the partner is unreachable and unilaterally terminates the
connection.

Session Watchdog during Connection Establishment

SPXII considers a connection to exist once an endpoint has both session
IDs. This condition happens after either the receipt of a connect request
at the server or the receipt of a connection ACK at the client.

If a connection exists, it should be monitored by the watchdog system.
This is necessary because a connection can fail after the initial packet
exchange, but before any other packet exchange (such as size
negotiation or session acknowledgment) has taken place.

The watchdog system is also aware that the socket address of the
destination endpoint may change after the Session Setup packet
exchange. For more information, see “Session Setup Packet” on
page 73.
Enhanced Sequenced Packet Exchange (SPXII) Protocol 95

Renegotiation

Renegotiate Request packets are used after connection establishment to
renegotiate the packet size if the route has changed. Optional
information can only be negotiated during connection establishment.
For information on negotiating optional information, see “Negotiating
Other Values between Endpoints” on page 103.

Renegotiate Request Packet

The Renegotiate Request packet can be sent only when both of the
following conditions are met:

◆ The connection is established and is in a data transfer state.

◆ The NEG bit was set in the Connection Control field of the
Connection Request and Connection ACK packets.

Either endpoint can send the packet any time the endpoint detects a
route change. This usually occurs after retry failure and when the
endpoint successfully locates a new route.
96 NetWare Transports

Figure 4-26 illustrates the fields and values of the Renegotiate Request
packet.

Figure 4-26

Fields and Values of
the Renegotiate
Request Packet

Checksum

Length

Transport Control
Packet Type

Destination
Address

Source
Address

Connection Control
Datastream Type

Source
Connection ID

Destination
Connection ID

Sequence
Number

Acknowledge
Number

Allocation
Number

0xFFFF

576 - 65535

0

5

See SPXII header
description

See SPXII header
description

0xCC (SYS,NEG,ACK,SPX2)

0

>0 and !=0xFFFF

>0 and !=0xFFFF

Current number

Current number

Current number

Negotiation
Size

Driver packet size

SPXII
header

Data
uint16 = 0;
then padding
to desired size
Enhanced Sequenced Packet Exchange (SPXII) Protocol 97

The header is followed by n bytes of data so that the packet size equals
the driver packet size or smaller as required by negotiation retries. The
first uint16 of the data must be zero (0) to indicate no optional
information.

The padding value is not significant and can be uninitialized data. The
Sequence Number field contains the next sequence number not already
used by a data packet.

Renegotiate ACK

When an endpoint receives a Renegotiate Request packet, the endpoint
determines the size of the packet by accessing the Length field in the
IPX header. It then uses this to set the value in the Negotiation Size field
of the ACK.

If an endpoint receives multiple Renegotiate Request packets, the
endpoint always sets the Negotiation Size field to the value of the
largest received Renegotiate Request packet.
98 NetWare Transports

Figure 4-27 illustrates the fields and values of the Renegotiate ACK.

Figure 4-27

Fields and Values
of the Renegotiate
ACK

Checksum

Length

Transport Control
Packet Type

Destination
Address

Source
Address

Connection Control
Datastream Type

Source
Connection ID

Destination
Connection ID

Sequence
Number

Acknowledge
Number

Allocation
Number

0xFFFF

44

0

5

See SPXII header
description

See SPXII header
description

0x8C (SYS, NEG, SPX2)

0

>0 and !=0xFFFF

>0 and !=0xFFFF

Current number

Current number

Current number

Negotiation
Size

Size of largest
received Renegotiate
Request packet

SPXII
header
Enhanced Sequenced Packet Exchange (SPXII) Protocol 99

The Acknowledge Number contains the appropriate number for the
last data packet received. All data packets buffered by the receiver,
because of out-of-order packet processing, must be discarded.

The Allocation Number contains the appropriate number relative to the
Sequence Number of the Renegotiate Request.

The Sequence Number of the first valid data packet after successful
renegotiation is the same sequence number contained in that endpoint’s
Renegotiate Request packet.

Packet Sequence for Renegotiation

Either endpoint can initiate a renegotiation whenever the endpoint
detects a route change. The endpoint usually detects the route change
after a retry failure and initiates the renegotiation when route relocation
has been successful.

Figure 4-28 on page 101 illustrates the flow of packets between
Endpoint 1 (the initiater of the renegotiation) and Endpoint 2.
100 NetWare Transports

Figure 4-28

Renegotiation
Sequence

Endpoint 1 Endpoint 2

Data Packet 8

Watchdog ACK

Renegotiate ACK

Data Packet 7

Data Packet 6

SPX2
0x08

Data Packet 5

SPX2
0x08

Retry Data Packet 7

Watchdog

(Max retries)

Renegotiate Request

Data Packet 4

SPX2
0x08

Flush out-of-order
packets
(data packet 6)

SPXII ACK

SPXII ACK

Lost

Lost

Lost

ACK
SYS
SPX2 0xC8

SYS
SPX2 0x88

Ack #: 9
Alloc #: 12

SYS
NEG
SPX2
Ack #: 5
Alloc #: 11

0x8C

Ack #: 5
Alloc #: 8

SYS
SPX2 0x88

SYS
SPX2
Ack #: 4
Alloc #: 7

0x88

ACK
SPX2 0x58

ACK
SPX2 0x58

0xCC

SYS
NEG
ACK
SPX2

Seq #: 8

SPX2
ACK

Seq #: 8

0x08
Enhanced Sequenced Packet Exchange (SPXII) Protocol 101

The scenario in Figure 4-28 starts with Endpoint 2 acknowledging Data
Packet 3 (with a window size of four).

Endpoint 1 then starts sending the next group of data packets. Two
packets, data packets 5 and 7, never arrive at Endpoint 2. Packets are
lost or destroyed when transmission errors corrupt the data, networks
become overloaded, or changing routes cause the packets to be
undeliverable because they are too large.

Endpoint 1 tries to resend Data Packet 7 the maximum number of
retries. When Endpoint 2 does not respond, Endpoint 1 queries IPX for
a valid route. When IPX returns with a valid route (either the old route
or a new route), Endpoint 1 sends a Watchdog packet to Endpoint 2.

Endpoint 2 immediately responds with a Watchdog ACK. This
Watchdog ACK also acknowledges that Endpoint 2 received Data
Packet 4 (Acknowledge number minus 1 equals the last received data
packet).

Endpoint 1 now assumes that a route change has occurred (because the
Watchdog packet was delivered) and sends a Renegotiate Request
packet.

When Endpoint 2 receives this packet, it flushes the out-of-sequence
data packet (Data Packet 6) and sends a Renegotiate ACK with the
acknowledge number set to the last in sequence data packet (Data
Packet 4) plus 1. Endpoint 2 also adjusts the allocation number in the
ACK so that the Allocation number minus the Sequence number of the
Renegotiate Request packet equals a valid window size (in this
example, four).

The normal window size formula of (Alloc#-ACK#) +1 is not valid on
Renegotiate ACK packets.

When Endpoint 1 receives the Renegotiate ACK, it starts resending the
data. It starts with the data from Data Packet 5, but the sequence
number is now 8 because 8 was the sequence number of the Renegotiate
Request packet. Because of potential packet size differences before and
after the renegotiation, the packet boundaries of the retransmitted data
may not be the same as when the data was sent the first time.

Endpoint 2 updates its Acknowledge number when it receives the first
data packet from Endpoint 1. This update number is shown in the SPXII
ACK for Data Packet 8.
102 NetWare Transports

If the Renegotiate Request packet is not acknowledged within an
aggressive timeout period (which should be a function of the driver
speed and the number of routers between the endpoints), the endpoint
reduces the size of the packet to the next smaller logical driver size and
resends the packet.

If multiple Renegotiate Request packets are received by an endpoint
because of delayed packets or lost ACKs, the Negotiation Size field in
the Renegotiate ACK contains the size of the largest Renegotiate
Request packet received.

Only one renegotiation is permitted for a given sequence number. Otherwise it
is impossible to differentiate between a delayed Renegotiate Request and a
subsequent Renegotiate Request.

Negotiating Other Values between Endpoints

Since all sessions that negotiate packet size during connection
establishment send negotiation packets from the client to the server and
from the server to the client, the SPXII drivers can share other
information in these packets. (For information on how an application
communicates information to the SPXII driver, see “TLI Differences
between SPX and SPXII” on page 160.)

Values (other than size) can be negotiated only at connection setup time
(that is, at the start of the session). All subsequent negotiation packets
must contain a zero (0) in the first uint16 of the data portion of the
packet.

SPXII drivers can share the following types of information:

◆ Time to net

◆ IPX checksum control

◆ Default retry counts

◆ Route information

The first uint16 (hi-lo format) in the data portion of the Negotiate Size
packet or the Session Setup packet is a count of the number of Negotiate
Value fields contained in the packet. Each Negotiate Value field is
composed of two fields: a Type field and a Value field.
Enhanced Sequenced Packet Exchange (SPXII) Protocol 103

Figure 4-29 illustrates the simplest format—one byte for the Type field
and one byte for the Value field.

Figure 4-29

Negotiate Value
Format

The fields are described in detail below, with the Value field discussed
first.

Value

The Value field contains the value of the option that is being negotiated.
The Value is of variable length, ranging from one byte to 255 bytes.

The Size subfield of the Type field specifies its length.

Type

The Type field specifies the option that is being negotiated. It consists
of a single byte with two subfields: ID and Size.

◆ The ID subfield consists of the upper six bits of the Type field and
specifies the identification number (ID number).

◆ The Size subfield consists of the lower two bits of the Type field and
specifies the length of the Value field.

Figure 4-30 illustrates the format of the Type field.

Figure 4-30

Type Field Format

Type field

Value field

ID field Size field
104 NetWare Transports

ID subfield. This subfield alone has no meaning. The ID number has
meaning only in combination with the Size subfield. For example, there
could be Type field with an ID of 1 and the size of uint8 for a value of
0x04. This would not conflict with a Type field with an ID of 1 and size
of uint16 . Since this one would have a value of 0x05, these would not
conflict.

Table 4-5 illustrates how ID numbers can be used with different size
values to produce unique types.

Both the ID field and the Size field are extensible. However, since most
options will be communicated in only 2 bytes, combining the ID and
size into one byte reduces the amount of space needed for the majority
of the options.

Size subfield. This subfield can contain one of four possible values.
Table 4-6 lists these values and their corresponding meanings.

Table 4-5

ID Numbers and Size Values

Range of ID Values (Decimal) Size Subfield Values (Binary)

0-62 00

0-62 01

0-62 10

0-62 11

Table 4-6

Size Subfield Values

Binary Description

00 uint8

01 hi-lo uint16

10 hi-lo uint32

11 extended size (length to follow)
Enhanced Sequenced Packet Exchange (SPXII) Protocol 105

When the Size subfield contains a binary 11 (meaning extended size),
the uint8 immediately preceding the Value field will contain the size
of Value field in bytes. For example, if the Size field is set to 11 binary
and the byte immediately preceding the Value field is 5, then the Value
field is 5 bytes long.

Figure 4-31 illustrates this format.

Figure 4-31

Extended Size
Format

This ID subfield can contain one of 64 possible values. A value of 63
(111111 binary) indicates an Extended ID. When used, the extended ID
immediately follows the Type field.

Figure 4-32 illustrates this format.

Figure 4-32

Extended ID Format

This extended ID field contains a number between zero and 255 and is
unique for each size. For example, there could be a Value of size uint8
with an extended ID of 1 and another Value of size uint16 with an
extended ID of 1, and these two would not conflict.

ID: 0 Type fieldsSize: 11

Value field

ID: 1 Extended
Size byte

Size: 5

ID: 111111 Type fieldsSize: 11
 (uint16)

Value field

Extended ID
byte

ID: 1
106 NetWare Transports

By using the upper six bits of the Type field, SPXII drivers can check for
extended types without having to mask and shift. They can compare
the type to binary 11 11 11 00; if it is equal to this value, the type is an
extended ID.

Extended Value Combinations

There will be times when negotiation packets will contain an extended
size and an extended ID. The maximum size of a Negotiate Value field
would be the Type field followed by an Extended ID field followed by
an Extended Size field followed by a Value field.

Figure 4-33 illustrates this format.

Figure 4-33

Extended Value
Format

Table 4-7 lists the possible fields in a Negotiate Value and their
maximum length in bytes.

Table 4-7

Negotiate Value Format

Field Length
(in bytes)

Description

Type 1 ID number/size combination

Extended ID 1 Optional

Extended size 1 Optional

Value 1 - 255 Number of bytes is determined by
the Type and Extended size fields

ID: 111111 Type fieldsSize: 11
 (uint16)

Value field

Extended
ID byte

ID: 1

Size: 5 Extended
Size byte
Enhanced Sequenced Packet Exchange (SPXII) Protocol 107

Currently Defined Types

Table 4-8 lists the currently defined values for the Type field expressed
in hexadecimal. (The ID and Size entries are given for clarity. These are
derived from the eight bits that make up the Type field.)

Developers should reserve with Novell any Type Numbers that they want to add
to ensure that their Type has a unique ID and size combination.

Disparate Versions of SPXII

Disparate versions of SPXII can communicate variables that the other is
unaware of by using the following algorithm:

◆ If an endpoint receives a Type that it does not recognize, it can skip
the Value field by looking at the Size subfield to find the number of
bytes to skip. (An endpoint indicates that it does not recognize a
particular Type by not returning data for that Type in the reply
packet.)

◆ If an endpoint does not receive a Type/Value pair for a newly
defined variable, the endpoint could do one of the following:

◆ Use a default value.

◆ Reject the connection if the information was critical. Although
this destroys backward compatibility, it could be done in
extreme circumstances.

Table 4-8

Type Numbers

Type ID Size Description

0x02 0000
00

10
(uint32)

Time to Net.
The time value returned by the Get Local Target or Get Route call
expressed in microseconds. This value is communicated from
the client to the server to eliminate the need for the server to call
Get Local Target simply to get the time-to-net for initial timeouts.
It is not necessary for the server to return this information to the
client as it was provided unilaterally for the server’s use.

0x04 0000
01

00 (uint8) IPX Checksum.
This is a boolean field. TRUE (non-zero) indicates that the
endpoint wants IPX checksum verification.
108 NetWare Transports

SPXII Windowing Algorithm

One of the means by which SPXII increases transmission speed is its
windowing protocol. SPXII implements the windowing protocol with
the following features:

◆ Positive and negative acknowledgments

◆ Variable window size

◆ Improved error recovery

Positive and Negative Acknowledgments

Previous versions of SPX have had a positive acknowledgment only;
negative acknowledgments were handled via a timeout on the sending
side. SPXII introduces a negative acknowledgment packet to allow the
receiver to inform the sender that one or more packets have been
missed.

In SPXII the receiver is “passive” with respect to acknowledgments
(ACK and NAK) and generates acknowledgments only when the ACK
bit is set.

For more information on packet formats and packet sequences, see
“SPXII Data Flow” on page 54.

Variable Window Size

SPX is usually used with a window size of one.

In SPXII, however, the window size is variable, and the receiver is
responsible for calculating and maintaining the window size for its half
of the session. (That is, the receiver at each endpoint maintains the
window size for packets received by that endpoint.) The receiver then
communicates this number to the other endpoint transmitter via the
allocation number field in the SPXII header by adding the calculated
window size to the current sequence number.

The transmitter is allowed to send packets while the sequence number
is less than or equal to the allocation number.
Enhanced Sequenced Packet Exchange (SPXII) Protocol 109

The receiver is free to change the window size during the session with
the stipulation that the receiver can never reduce an already granted
window. The only way for the receiver to reduce the window size is to
allow the acknowledge number to grow without increasing the
allocation number.

For example, the receiver could not send a packet indicating an
allocation number of 10 and then send a subsequent packet indicating
an allocation number of 8. However, the receiver could send a
subsequent packet indicating an allocation number of 10 even though
the acknowledge number may have increased by 2. Such a packet
would reduce the window size by 2.

Default Window Size

The SPXII driver in a UNIX environment has a default window size
of 8. Applications can change the default during connection
establishment by passing a t_optmgmt function.

Closing and Reopening a Window

Because of resource limitations or other reasons, the receiving side may
need to close the data receive window completely. Only the data receive
window may be closed. The driver always retains enough system
resources to receive system and informed disconnect packets.

The receiver closes the data window by sending a packet indicating that
the next sequence number expected is greater than the next allocation
number. When this happens, the receiver is responsible for the
following:

◆ Reopening the window when the flow condition has cleared

◆ Handling the possibility that the reopen packet may be lost

Once a receiver has closed the window, the receiver reopens a window
by sending either a normal data packet or a system packet. The
allocation number in the packets must be a number greater than or
equal to the sequence number.
110 NetWare Transports

A packet which reopens a window may be lost. The SPXII driver
handles such lost packets in one of the following ways:

◆ If the reopen packet is a data packet, the normal data packet retry
mechanism will ensure delivery.

◆ If the reopen packet is a system packet, the packet is not
retransmitted by the data packet retry mechanism.

The watchdog will eventually send a series of system packets.
These packets are sent at an increased frequency (about 3 seconds
between queries). The watchdog packet will have the allocation
number set to reopen the window. The watchdog system remains
in this increased frequency state until a data packet arrives.

Error Recovery

Previous versions of SPX relied solely on a timeout mechanism for error
recovery. Every SPX data packet had the ACK bit set. If the data packet
was not acknowledged within a generous time period, SPX would
retransmit the packet.

If, after several retries, the packet still had not been acknowledged, SPX
would terminate the session. SPX would also terminate the session
whenever it detected an error it didn’t know how to handle.

SPXII, however, specifies how various error conditions will be handled.

Data Packet Timeout

With the SPXII windowing protocol, the only packets which have a
timeout period associated with them are those packets that request an
acknowledgment.

If a connection partner fails to acknowledge a packet, the sender retries
the packet RETRY_COUNT/2 (default is 10/2 or 5) times, each time
increasing the round trip time value by 50 percent, up to the
MAX_RETRY_DELAY (default is 5 seconds).

If the packet still has not been acknowledged after the retries, the sender
attempts to locate a new route to the connection partner.
Enhanced Sequenced Packet Exchange (SPXII) Protocol 111

If no route is available, the connection is terminated. If a new route is
located or the old route exists, the sender immediately launches a
watchdog packet requesting an acknowledgment.

◆ If the watchdog packet is acknowledged, the sender begins packet
size negotiation, followed by retransmission of the
unacknowledged data.

◆ If the watchdog packet or subsequent retries are not acknowledged,
the connection is aborted with a Unilateral Abort.

A data packet timeout has the following sequence:

1. Retry the data packet RETRY_COUNT/2 times, increasing the
timeout value before each retry.

2. Attempt to locate a new route. (If no route is available, terminate
the session.)

3. If a route is available, send a watchdog packet (and retries as
needed).

SPXII Programming Interface

The SPXII driver can open either “/dev/nspx2” or “/dev/nspx”. It is
readable and writable by everyone.

This device node is accessed with either the UNIX TLI/XTI
specification or ioctls.

For SPXII programming information, see the following:

◆ Chapter 7, “TLI/XTI for SPX/SPXII,” on page 159.

◆ Chapter 10, “SPX/SPXII ioctls,” on page 285.
112 NetWare Transports

c h a p t e r 5 Service Advertising Protocol (SAP)
What Is SAP?

SAP provides a way for service nodes, such as file servers, print servers,
and gateway servers, to register their services and addresses in a Server
Information Table and have these services advertised across an
internetwork.

SAP is a distance vector protocol where the destinations are text strings.
End nodes can listen for SAP or make queries to get a specific service or
all services.

SAP provides dynamic registration of services. Periodic broadcast
packets provide the service information and addresses for the Server
Information Table. When a server goes down or fails to send a periodic
broadcast packet, that service is removed from the table.

SAP services are accessed via a SAP agent (all NetWare servers and
routers have a SAP agent). In a UNIX environment, the SAP daemon
(SAPD) is the SAP agent. A SAP agent echoes the server information to
all networks on the internetwork. Other SAP agents use the information
to update and maintain their own Server Information Tables.

The discussion in this section covers the following topics:

◆ How SAP works

◆ SAP packet structure

◆ SAP information aging

◆ SAP information flow

◆ SAP packet types
Service Advertising Protocol (SAP) 113

◆ Periodic information broadcasts

◆ SAP programming information

How SAP Works

SAP is responsible for maintaining a list of servers and services on an
internetwork which it then advertises. The easiest way to understand
Service Advertising is to liken the Server Information Table to a
telephone directory. NetWare clients must first have the number
(address) of a service before they can initiate a session with that service.

When a NetWare server first comes up, it sends out a broadcast packet
with its server information stored in the Server Information Structure.
This packet informs the SAP agent that the server is now available. The
SAP agent uses the information in the packet to add the server to its
Server Information Table and then echoes the information to other SAP
agents on the internetwork.

SAP also provides a way to terminate Service Advertising. When a
server goes down, it sends a packet indicating the service is no longer
available.

After the server’s initial broadcast packet, the server is then responsible
for sending out a periodic broadcast (every 60 seconds) to let the SAP
agents know that its services are still available.

Any server or service that does not send a periodic broadcast packet
within three minutes is presumed “downed.” That server’s information
is then removed from the SAP agent’s table, and the SAP agent sends
out a broadcast indicating that the server is down.

In this way, SAP agents use the arrival or non-arrival of these broadcast
packets to keep their Server Information Tables up-to-date.

Figure 5-1 on page 115 illustrates how a SAP agent uses broadcast
packets to keep the Server Information Table up-to-date and how it
provides query and response service.
114 NetWare Transports

Figure 5-1

Dynamic
Registering of
Services

When a SAP agent is initialized, it binds to IPX socket 0x0452 and sends
a request (in the form of a SAP packet) for all SAP agents to send their
server information. The SAP agent then builds a Server Information
Table from the reply packets.

Every 60 seconds, SAP agents send local broadcasts of the server
information for which they are the best or only source for a network. If
a new server sends out a SAP packet saying that it is available, the SAP

SAP
Agent

SAP Broadcast Packet
 "Add a Service"

 "Add Another Service"
 "Remove a Service"

 SAP Query Packet
 "What's Available?"

 SAP Response Packet
"Here's What's Available"

Server Information Table
AETNA 00D0C200:000000000001:0451
AMADEUS 01EEE100:000000000001:0451
BANK 0FADE100:0001BC983016:0451
CORP 00D0C200:000000000001:811E
PSERVER 00D0C200:000000000001:8060
RAMBO 0DEAD100:000000000001:0451
Service Advertising Protocol (SAP) 115

agent verifies that this server is not in its Server Information Table. The
SAP agent then adds this server to its Server Information Table and
echoes this new server information to all connected networks.

Servers loaded on a UNIX machine can make the SAP daemon
responsible for their advertising duties. The SAPAdvertiseMyServer
function (documented on page 260) adds the information for such
servers to the SAP daemon’s tables. Their broadcasts are sent out with
the SAP daemon’s broadcasts until one of the following occurs:

◆ The server process notifies the SAP daemon that it is going down.

◆ The SAP daemon determines that the server process is no longer
running because the process that requested advertising is no longer
alive.

◆ The UNIX machine is rebooted.

For example, a NetWare server, an NVT2 (Novell Virtual Terminal)
server, and an NDS (NetWare Directory Services) server all notify the
SAP daemon when they come up. The SAP daemon then performs the
advertising. The Print Server (shown in the Server Information Table in
Figure 5-1) also uses the SAP daemon for advertising.

A server can also notify SAP that it is a Permanent Service server, in
which case it is automatically re-advertised after the system boots.

Obtaining Service Names and Addresses

Querying a SAP agent is not the only way to obtain service addresses.
It is up to you as an application developer to decide which is better for
the application under development: to obtain network addresses from
SAP or from the NetWare server’s object database (explained below).

Querying a SAP Agent

Using a SAP agent is conceptually similar to using the yellow pages of
the telephone directory. All services are grouped according to types of
services. The SAP agent provides faster access to information about
types of servers than does the object database.
116 NetWare Transports

Depending upon the type of query, the SAP agent returns one of the
following:

◆ The names and addresses of all available services

◆ The names and addresses of servers of a specific type

◆ The name and address of the nearest server of a particular type

Querying the Bindery or Directory Services

Clients can also query a NetWare server’s object database which
contains definitions for entities such as file servers, print servers, or any
other entity that has been given a name.

For NetWare 4.x servers, that database is the Directory. For NetWare 3.x
servers, it is the Bindery. Directory Services maintains backward
compatibility via bindery emulation mode.

Using the NetWare Bindery or Directory can be likened to using the
white pages in the telephone directory. This provides faster access to
information about a particular server than the SAP agent.

Depending upon the type of query, one of the following is returned:

◆ The name and address of a particular server

◆ The names and addresses of all servers of a particular type

Actually, it is the interaction between SAP agents and the NetWare
server’s object database that keeps the latter up to date. When a
NetWare server is initialized, it queries the memory copy of the Server
Information Table to keep the object database updated.

SAP Packet Structure

SAP is implemented using the IPX datagram protocol. The SAP
information for querying or advertising servers becomes the data
portion of the IPX packet. The SAP header is defined in
“include/sys/sap_app.h”.
Service Advertising Protocol (SAP) 117

Figure 5-2 illustrates the layout of the SAP packet.

Figure 5-2

SAP Packet
Structure

IPX Header

The IPX header is 30 bytes and contains fields for checksum, length,
transport control, packet type, destination address (network, node,
socket), and source address (network, node, socket). For more
information about the IPX header, see “IPX Header Fields” on page 7.

SAP Operation

The SAP Operation field is two bytes long and determines the format of
the rest of the packet. The SAP Operation field identifies four types of
packets.

Previous versions of SAP defined the periodic broadcast as a fifth packet type.
Because the periodic broadcast packet uses the same format as a General
Service Response packet, it is no longer described as a separate packet type.
The difference was only that of context. However, the #define has been left in
“include/sys/sap_app.h” to provide backward compatibility.

Operation Type Constant Hex Value

General Service Query SAP_GSQ 0x0001

General Service Response SAP_GSR 0x0002

Nearest Service Query SAP_NSQ 0x0003

Nearest Server Response SAP_NSR 0x0004

IPX header

SAP

SAP Operation
(2 bytes)

SAP Data

1 byte (8 bits)

(30 bytes)
118 NetWare Transports

Server Information Structure

Each structure contains information for a particular advertising
server.This SAPS (Server Information) structure is defined in the
“sap_app.h” file in the “include/sys” directory. It has the following
format:

#define SAP_MAX_SERVER_NAME_LENGTH 48

typedef struct saps_s {

uint16 serverType;

uint8 serverName[SAP_MAX_SERVER_NAME_LENGTH];

ipxAddr_t serverAddress;

uint16 serverHops;

} SAPS, *SAPSP;

The number of Server Information structures that are passed can be
determined by subtracting the length of the IPX header and Operation
field from the length of the packet and then dividing the remainder by
the size of the Server Information structure. The number of structures
depends on the maximum packet size used on a network. Seven
structures fit in a 576-byte packet.

The fields of the Server Information structure (described below) store
the information obtained from SAP response packets.

Server Type

This field is in hi-lo order and contains the object type of the advertising
server.

NetWare 3.x servers maintain an object database called the Bindery. Although
NetWare 4.x servers maintain a distributed object database called the Directory,
they operate in bindery emulation mode by default to maintain backward
compatibility.

Novell administers object types. If you are developing an advertising
application server, contact Novell to be assigned a unique object type
for your server.
Service Advertising Protocol (SAP) 119

Table 5-1 lists some of Novell’s common object types.

Server Name

This field contains the unique name (per server type within the
internetwork) of a server that provides a service (file, printing, database
management, archiving, and so on). The name of the advertising server
must be at least 2 characters long and (because the name is a NULL-
terminated string) cannot be more than 47 characters.

Table 5-1

Common Server Object Types

Bindery Object Type (hex)

File Server 0x0004

Job Server 0x0005

Gateway 0x0006

Print Server 0x0007

Archive Server 0x0009

Remote Bridge Server 0x0024

Target Service Agent 0x002E

Advertising Print Server 0x0047

NetWare Access Server 0x0098

Communications Server 0x0130

Named Pipes/SQL Server 0x0200

NVT2 Server 0x0247

Time Synchronization Server 0x026B

Directory Services Server 0x0278

Wildcard (only for General Service Queries) 0xFFFF (All
types respond)
120 NetWare Transports

Server Address

This field contains the server’s complete IPX address: Network, Node,
and Socket. For more information, see “IPX Addressing” on page 2.

Hops to Server

This field contains the distance vector. In other words, the number of
hops is the distance to the server, defined in terms of the number of
intermediate networks (the number of routers that exist between the
client and the server). For NWS, since the SAP daemon is the SAP agent,
this is in the number of routers between the server and SAPD.

Initially the field is set to 1; each time the packet passes through an
intermediate network, the field is incremented by one.

SAP Information Aging

For each entry in their Server Information Table, SAP agents maintain a
timer field (Time Since Change) in an internal structure. This field
implements aging for the Server Information Table. It tracks the
number of periodic intervals that have elapsed since information was
received regarding a particular entry in the table.

When information is received concerning a server, the field is reset.
When the time interval in which no data is received exceeds three
minutes, it times out. The SAP agent assumes that the server is down,
removes the server from the table, and then broadcasts a SAP packet to
indicate that the server is down.

In cases where a server goes down unexpectedly (for example,
hardware failure, power glitch, power outage) without sending a
“going down” broadcast, the server is removed from the Server
Information Table via this process.

The layout of the network cabling affects how servers are aged and
removed from the table:

◆ If the SAP agent is connected to a LAN that is cabled so that it loops
back on itself and where there is more than one source or route to
the server, the SAP agent maintains information about all routes.
Service Advertising Protocol (SAP) 121

Each route is aged separately. For example when the fastest or
primary route goes down, that route is removed from the table and
the next fastest route (one with fewest hops and ticks) is marked as
the primary route.

A server is kept in the table as long as an active route exists.

◆ If the SAP agent is connected to a Wide Area Network (WAN), an
asynchronous or X.25 link, the SAP agent can be configured to
expect to receive only changed information from that link.

Server routes that have been added to its tables from the WAN’s
SAP agent are not aged and remain in the table until that agent
sends changed information indicating that either the route or server
is down.

SAP Information Flow

On an internetwork, SAP agents perform the following two major
functions:

◆ Keep other SAP agents up-to-date on the available servers

◆ Answer queries about available servers

This section describes the flow of this information. It first describes the
flow of broadcast information as SAP agents keep each other informed.
It then describes the flow of information in a query/response sequence.

SAP Broadcasts

SAPD broadcasts a request onto each of its directly connected LANs for
information about other servers that exist on the internetwork.

Figure 5-3 illustrates the initial flow of information to SAPD as the
NetWare protocol stack is initialized and the SAP daemon comes up.
122 NetWare Transports

Figure 5-3

Initial Flow of Information

Figure 5-3 also illustrates the SAP daemon requesting the SAP agents
on LANs BB and CC to send their server information. This is in the form
of a General Service query packet for servers of all types. NS1 responds
by sending information about the servers on its half of the network and
NS2 sends information about its half of the network. NSI and NS2 send
as many General Service response packets as are needed to send
information about all known servers.

Figure 5-4 illustrates what happens when the server running the
NetWare protocol stack is initialized and how information about local
services flows from SAPD.

Print Server
(PS1)

NetWare Server
(NS1)

NetWare Protocols on UNIX
(NW/U1) NetWare Server

(NS2)

AA BB CC DD

Request for all
server information

Request for all
server information

File View Special
MS-DOS Executive

286 p Mode Windows v3.0 Debug Release 1.43286 p Mode Windows v3.0 Debug Release 1.43

asutils
batch
dos
paint
tools
standard.kyb
weird.kyb
wsctrl.exe

A C

File Session View GlobalConfig

A HOST 1 Inactive 3270 Emulator
 Name Status Type

B HOST 2 Inactive 3270 Emulator
C HOST X Active 3270 Emulator

NetWare Communications Session Control

Print Server
(PS1)

NetWare Server
(NS1)

NetWare Protocols on UNIX
(NW/U1) NetWare Server

(NS2)

AA BB CC

NS1 (1 Hop)
PS1 (2 Hops)

NS2 (1 Hop)
NS3 (2 Hops)

Step 1: Initial Query

Step 2: Response from SAP Agents

DD

NetWare Server
(NS3)

NetWare Server
(NS3)

File View Special
MS-DOS Executive

286 p Mode Windows v3.0 Debug Release 1.43286 p Mode Windows v3.0 Debug Release 1.43

asutils
batch
dos
paint
tools
standard.kyb
weird.kyb
wsctrl.exe

A C

File Session View GlobalConfig

A HOST 1 Inactive 3270 Emulator
 Name Status Type

B HOST 2 Inactive 3270 Emulator
C HOST X Active 3270 Emulator

NetWare Communications Session Control
Service Advertising Protocol (SAP) 123

Figure 5-4

Flow of SAP Information from SAPD

SAP agents use a split horizon algorithm to determine which SAP
information to send to connected LANs. This algorithm ensures that the
SAP agent does not broadcast information back to the same SAP agent
from which the information was obtained.

For example, in Figure 5-4 on page 124, NW/U1 would never broadcast
SAP information about NS2 or NS3 to NS2 since NW/U1 first received
that information from NS2. NW/U1 will send both NS1 and NS2
information about itself because it didn’t obtain that information from
either.

File View Special
MS-DOS Executive

286 p Mode Windows v3.0 Debug Release 1.43286 p Mode Windows v3.0 Debug Release 1.43

asutils
batch
dos
paint
tools
standard.kyb
weird.kyb
wsctrl.exe

A C

File Session View GlobalConfig

A HOST 1 Inactive 3270 Emulator
 Name Status Type

B HOST 2 Inactive 3270 Emulator
C HOST X Active 3270 Emulator

NetWare Communications Session Control

Print Server
(PS1)

NetWare Server
(NS1)

NetWare Protocols on UNIX
(NW/U1) NetWare Server

(NS2)

AA BB CC DD

NW/U1 (1 Hop) NW/U1 (1 Hop)

File View Special
MS-DOS Executive

286 p Mode Windows v3.0 Debug Release 1.43286 p Mode Windows v3.0 Debug Release 1.43

asutils
batch
dos
paint
tools
standard.kyb
weird.kyb
wsctrl.exe

A C

File Session View GlobalConfig

A HOST 1 Inactive 3270 Emulator
 Name Status Type

B HOST 2 Inactive 3270 Emulator
C HOST X Active 3270 Emulator

NetWare Communications Session Control

Print Server
(PS1)

NetWare Server
(NS1)

NetWare Protocols on UNIX
(NW/U1) NetWare Server

(NS2)

AA BB CC

NW/U1 (1Hop)
NS2 (2 Hops)
NS3 (3 Hops)

NW/U1 (1 Hop)
NS1 (2 Hops)
PS1 (3 Hops)

Step 3: Server Initialization with NetWare Protocols on UNIX

Step 4: Periodic Broadcasts from SAPD

DD

NetWare Server
(NS3)

NetWare Server
(NS3)
124 NetWare Transports

Nearest Server Query

Clients using IPX must have the address of a server before they can
establish a connection. One of the first packets a client sends out
requests the Nearest Server.

To get the nearest NetWare server, the client would send out a SAP
packet with the fields set as follows:

◆ Operation field set to 0x0003 (SAP_NSQ)

◆ Server type field set to 0x0004 (FILE_SERVER_TYPE)

When SAPD receives one of these packets, it searches its entire Server
Information table for a server of the specified type with the fewest ticks
(obtained from RIP) and the fewest hops. The only exception to a total
search is when SAPD finds a local server of the specified type. In such
a case, SAPD knows immediately that this is the nearest server and
sends a response.

If SAPD does not have a local server of the specified type, it sends a
response only if it determines that it is the best source for the nearest
server selected.

For example in Figure 5-4 on page 124, NW/U1 would not respond to
a Get Nearest Print Server query from a client on network BB. SAPD
knows that it got the information from NS1 and that NS1 is the best
source of the information. However, NW/U1 would answer such a
query from a client on network CC.

The response packet would have its fields set as follows:

◆ Operation is set to 0x0004 (SAP_GSR)

◆ One Server Information Structure with settings that were obtained
from the Server Information Table.
Service Advertising Protocol (SAP) 125

SAP Packet Types

As previously mentioned, the value in the SAP Operation field
indicates whether the rest of the packet will have a query or a response
format and then what the scope of the query or response is.

There are four types of SAP packets:

The length and content of the SAP Data depends on whether the packet
is a SAP query or a SAP response. Query packets have 2 bytes of SAP
data, whereas a response packet can have up to 448 bytes of SAP data,
typically up to seven Server Information Structures for a 576-byte
packet (the default IPX packet size). If a larger packet size has been
negotiated, SAP can fill the packet with as many entries as it can hold.

Operation Type Constant Hex Value

General Service Query SAP_GSQ 0x0001

General Service Response SAP_GSR 0x0002

Nearest Service Query SAP_NSQ 0x0003

Nearest Server Response SAP_NSR 0x0004
126 NetWare Transports

Figure 5-5 illustrates both SAP packet structures, query and response.

Figure 5-5

Structure of SAP
Packet Types

MAC header

SAP header

SAP data

1 byte (8 bits)

Operation Type

Server Type

Server Name
 (48 bytes)

 Service
 IPX Address
 (12 bytes)

Hops to Server

Server Type

Server Name
 (48 bytes)

 Service
IPX Address
 (12 bytes)

Hops to Server

SAP Response

MAC header

IPX header

1 byte (8 bits)

SAP Query

Operation Type

Server Type

Server
Information
Structure

Server
Information
Structure

IPX header

SAP header

SAP data
Service Advertising Protocol (SAP) 127

The SAP header fields and packet types are described in the sections
following.

SAP Header

This Operation Type field indicates the SAP Type (query or response)
and the scope (nearest or all). This field is also byte-order sensitive, and
the data must be sent in hi-lo order, as shown in Figure 1-1 on page 4.

SAP Data

Both query and response packets have a Server Type field.

For the query packet, the server type is the object type of the server. See
Table 5-1 on page 120 for possible values for this field.

However, although the Server Type field in the response packet is also
the object type of the server, the field itself is the first field in a Server
Information structure.(server type, server name, service IPX address,
and the number of hops to the server). The Server Information structure
is described on page 119.

A response packet can contain as many Server Information Structures
as will fit in the packet.

SAP Query Packets

SAP query packets are used to discover the identities of servers on the
internetwork.

Client applications use SAP queries to obtain the addresses of available
servers via SAP queries. Using the IPX address from the response, the
client application can then establish a session with a server.

Although application servers usually use SAP queries only on startup,
if an application server needs to establish a session with another server,
the application server would use a SAP query to obtain the address of
the other server.
128 NetWare Transports

The fields for a SAP Query packet are listed in Table 5-2 and described
below:

SAP Query Operation

This field also indicates the scope of the query, whether it is general (for
all servers) or specific (for the nearest server of a particular type). It can
be set to one of the following values:

◆ 0x0001 for General Service Query packet (SAP_GSQ) is used to
query local servers and routers. The query can be for all servers or
all servers of a particular type or it can be directed to a specific
node.

In a response to broadcast requests (identified by the Destination Node
Address in the IPX header as 0xFFFFFFFFFFFF), the split horizon
algorithm described in the IPX Router Specification is followed.

However, in responding to any direct requests (the Destination Node
Address in the IPX header is not broadcast nor multicast), the split horizon
algorithm is not followed.

◆ 0x0003 for a Nearest Server Query packet (SAP_NSQ) is used to
query for the nearest server of a particular type. The response to
this query is always information about a single server.

Server Type

This field follows the SAP Query Type field and is used to differentiate
the types of servers and limit the scope of the query. Server types are
object types and are assigned by Novell. Some of the more common
object types are listed in Table 5-1 on page 120.

Server types are object types and are administered by Novell. Application
developers who create servers that advertise services must apply to Novell to
be assigned a unique server type.

Table 5-2

SAP Query Packet

 Field Size Byte order

 Operation Type (SAP Query) uint16 hi-lo

 Server Type uint16 hi-lo
Service Advertising Protocol (SAP) 129

SAP Response Packets

Because SAP response packets are sent in response to SAP queries, the
types of responses match the types of queries. Each response packet has
a field that indicates the type of the SAP response and one or more
Server Information Structures.

Table 5-3 lists the elements of the SAP response format.

SAP Response Operation

This field indicates whether the response is to a general query (for any
server regardless of type) or to a specific query (for a server of a
particular type). It can be set to one of the following values:

◆ 0x0002 for a General Service Response (SAP_GSR) answers a
General Service Query packet. SAPD responds to all General
Service Query packets in behalf of all NetWare servers and all
application servers that use SAP.

Previous systems defined a fifth packet type, a Periodic Broadcast packet.
Because its format is the same as a General Service Response, it has been
eliminated as a separate type. However, the #define has been left in the
include file to provide backward compatibility.

◆ 0x0004 for a Nearest Server Response (SAP_NSR) is used to send an
answer in response to a Nearest Server Query packet. This packet
usually contains just one Server Information Structure. SAPD will
find the nearest server of the requested type. If SAPD determines it
is the best source for information about the server, it responds to the
query.

Table 5-3

SAP Response Format

 Field Size Byte Order

 Operation Type (SAP Response) uint16 hi-lo

 Server Information Structures SAPS[n] hi-lo
130 NetWare Transports

Server Information Structure

This field contains an array of one or more (up to a maximum of seven)
Server Information Structures. Each structure contains information for
a particular advertising server.

The fields of the Server Information Structure are described beginning
on page 119.

Periodic Broadcasts

Periodic Broadcast packets are used to advertise that a service is
available and to remove services that are no longer available. When a
server first comes up, it sends one of these packets out to let the SAP
agents know that its services are now available. The SAP agents use this
first broadcast to add the server to their Server Information Tables and
to propagate the new server information to all their networks.

The server then sends out a periodic broadcast at regular intervals to let
the SAP agents know that its services are still available. SAP agents use
these broadcasts to keep their Server Information Tables up-to-date.

Any server or service that does not send a broadcast for three minutes
is presumed “downed.” That server’s information is then removed
from the SAP agent’s table, and the SAP agent sends out a broadcast
indicating that the server is down.

When a server is going down, the server sends a periodic broadcast
with the Server Hops field set to 16. The “16” signals SAP agents to
remove that server from their tables.

Periodic Broadcast packets have the same format as a General Service
Response packet, but the Operation Type (SAP Response) field is set to
0x0002 (SAP_PIB). Otherwise, the difference between the two packets is
functional: a General Service Response packet is a solicited response,
whereas a Periodic Broadcast packet is unsolicited.

SAP Programming Interface

For SAP programming information, see Chapter 8, “SAP Library”on
page 233.
Service Advertising Protocol (SAP) 131

132 NetWare Transports

c h a p t e r 6 TLI/XTI for IPX
Overview

This chapter describes the functions and structures used by NetWare’s
Internetwork Packet eXchange (IPX) under the UNIX Transport Layer
Interface (TLI). IPX is NetWare’s connectionless datagram protocol.

The following discussion assumes a working knowledge of both
NetWare and TLI/XTI. It includes the following sections:

◆ IPX-specific information for TLI functions

◆ TLI structures

◆ Sequence of TLI functions

◆ IPX considerations

◆ TLI reference for IPX

For information on the IPX protocol, packet structure and fields, see
Chapter 1, “Internetwork Packet Exchange (IPX) Protocol.”

IPX-Specific Information for TLI Functions

In the UNIX environment, IPX is accessed via TLI. This chapter
documents only the TLI functions that are transport-provider layer
specific for IPX.

Developers should also have the “ipx_app.h” file.

Other TLI calls are handled transparently by the TLI library. For
information about TLI calls not discussed in this chapter, see AIX
Version 4 Technical Reference Vol. 4: Communications (SC23-2617-01).
TLI/XTI for IPX 133

TLI Data Structures

The following structures from the UNIX Transport Interface Library are
transport-provider specific for IPX:

For a detailed description of these structures, see Network Programming
Interfaces.

Each structure is included in the “Remarks” section of the documentation for the
function that uses the structure.

Sequence of TLI Functions

To use IPX, a UNIX process calls the following functions in the listed
order:

1. Open the IPX driver “/dev/ipx” using the t_open call.

The t_open call returns a file descriptor (fd).

2. Bind fd to a static or dynamic socket using the t_bind call.

t_bind (fd, &bind, &bind)

3. If necessary, set options using t_optmgmt call.

t_optmgmt (fd, &req, &ret)

The t_optmgmt function is optional, but if it is used, it must be used
after the t_bind function and before the t_unbind function.

4. To send or receive data, use t_sndudata (fd, &ud) or t_rcvudata
(fd, &ud, &flags).

5. On exiting, unbind fd using a t_unbind call.

The t_unbind call is optional.

6. On exiting, close fd using a t_close call.

 t_bind t_optmgmt

 t_info t_unitdata
134 NetWare Transports

In addition, it is often necessary to allocate memory for the various data
structures used by these functions. The t_alloc function is used to
allocate memory and the t_free function should be called to free the
memory. The suggested use for t_alloc is included in code examples
presented with the documentation for each function.

The IPX driver generates unitdata error messages. The t_rcvuderr call
functions as specified by TLI. If a signal is sent to the IPX application
during a TLI system call, the TLI system call fails with errno set to
EINTR.

“TLI Reference for IPX” on page 135 describes the use of each of these
functions with IPX. Network Programming Interfaces describes the
standard use of these functions; refer to it for information not found in
this document.

IPX Considerations

IPX follows the state diagram in Network Programming Interfaces for a
connectionless service.

The device name for UNIX IPX is “/dev/ipx”.

An internal network number is required where there are either multiple
LANs or multiple frame types. In such a case, before starting the
NetWare protocol stack, use the nwcm utility to configure the NetWare
protocol stack by assigning an IPX internal network number.

nwcm -s ipx_internal_network = “n”

TLI Reference for IPX

This section describes how to use the following TLI functions with IPX.

t_bind page 137 Binds a socket to a given transport endpoint.

t_open page 143 Establishes a transport endpoint connected to
a transport provider.

t_optmgmt page 146 Manages transport protocol specific options.
TLI/XTI for IPX 135

For a description of the standard use of these functions or for functions
not described in this document, see Network Programming Interfaces.

t_rcvudata page 149 Receives message sent using t_sndudata.

t_sndudata page 154 Sends message to specified transport user.
136 NetWare Transports

t_bind

Binds a socket to a transport endpoint.

Syntax

#include “ipx_app.h”

int t_bind(

int ipxFd,

struct t_bind *req,

struct t_bind *ret)

Parameters

(IN) ipxFd

Passes the file descriptor that was returned by t_open.

(IN) req

Passes a pointer to (or the address of) a t_bind structure that in turn
points to a structure that contains the requested address. The socket
value in the structure is initialized to either a static socket number
(one you have been assigned) or to zero (to obtain a dynamic socket
number).

(IN) ret

Passes a pointer to (or the address of) a t_bind structure that in turn
points to a structure that contains the IPX address. The pointer can
point to and be the same structure that contains the requested
address, req.

(OUT) ret

Receives the full IPX address: network address, node address, and
socket number of the bound transport endpoint.
TLI/XTI for IPX 137

Return Values

If t_bind returns an error, both errno and t_errno may be set. t_errno may
be set to one of the following:

If t_errno is set to TSYSERR, errno may be set to the following:

See Network Programming Interfaces for other possible errors.

Remarks

The t_bind function binds an endpoint to an IPX socket. This means
that it associates a protocol address with a given transport endpoint.

The t_bind function is supported as documented in Network
Programming Interfaces. with the following additions.

 0 Successful

 -1 Unsuccessful

TBADADDR The requested socket number is in use.

TNOADDR There are no unused dynamic socket numbers.
The IPX user should try again.

TOUTSTATE This connection is in a state that invalidates a t_bind
request.

TSYSERR A system error occurred during the t_bind call.
See the values for errno.

ENOSR No message buffers were available to acknowledge the
bind request.
138 NetWare Transports

The t_bind structure has the following format:

struct t_bind {

struct netbuf addr;

unsigned int qlen;

};

IPX does not use the qlen field. It should be set to zero.

The netbuf structure has the following format:

struct netbuf {

unsigned int maxlen;

unsigned int len;

char *buf;

};

The t_bind call requires that a pointer to an ipxAddr_t type structure be
passed in the req t_bind structure (req.addr.buf field).

The ipxAddr_t structure has the following format:

typedef struct ipxAddress {

unsigned char net[4];

unsigned char node[6];

unsigned char sock[2];

}ipxAddr_t;

The t_bind call allows an application to bind to a socket number, which
can be either dynamic or static. IPX keeps track of which socket number
is bound to which transport endpoint.

◆ A dynamic socket number is an unused socket number returned by
the IPX driver and is guaranteed to be a unique unused number
among the IPX endpoints. The range is a value from 0x4000 to
0x7FFF.

◆ A static socket number can be requested in the req t_bind structure.
If the socket number is unused, it is granted and returned in the ret
t_bind structure. The range is 0x8000 to 0xFFFF and numbers are
assigned by Novell.
TLI/XTI for IPX 139

Static Socket Numbers

To obtain a static socket number, complete the following steps:

1. Allocate an ipxAddr_t structure.

2. Set the socket value in the ipxAddr_t structure.

The example on the following page uses two #defines to specify the
socket number and to ensure that the socket number is passed in
hi-lo format.

3. Allocate a t_bind structure.

4. Initialize the t_bind structure’s fields. The req.addr.buf field must
point to the ipxAddr_t structure allocated in Step 1.

5. Make the t_bind call by passing the ipxFd value returned in your
t_open call and by passing the address of the t_bind structure
allocated in Step 3 as both the req and the ret values.

The IPX driver looks at the socket field in the ipxAddr_t structure for
the IPX user’s desired socket number. The socket number must be
passed in hi- lo byte order.

If the socket number desired is not currently being used by another IPX
user, the IPX driver returns the local net, local node, and the allocated
or requested socket number in the corresponding fields of the
ipxAddr_t structure of the ret.addr.buf field.

Only one IPX endpoint can bind to a given socket number at a time. If
the user tries to bind to a socket that has already been bound to, an error
results and the bind fails.

Services written to run over IPX generally have well-known or static
socket numbers associated with them. (Contact Novell to obtain a static
socket number.) By having static socket numbers, IPX users ensure that
their server and client application types match.

Another method to coordinate servers and clients is to use the Service
Advertising Protocol (SAP). For programming information, see
Chapter 8, “SAP Library,”on page 233.
140 NetWare Transports

Dynamic Socket Number

A dynamic socket number is an unused socket number and is
guaranteed to be a unique unused number among the IPX endpoints. A
dynamic socket is a value from 0x4000 to 0x7FFF.

There are two methods for obtaining a dynamic socket number.

◆ If a dynamic socket is wanted, set the sock field in the ipxAddr_t
structure to zero (0).

The IPX driver attempts to allocate a dynamic socket number.

◆ If a dynamic socket is wanted and you do not need to know the
value of the socket number, pass NULL as req.

The IPX driver assumes then that the IPX user has requested a
dynamic socket number, and it tries to allocate and to assign a
dynamic socket number.

Regardless of which method you choose, if you do not need the address
that has been bound, you can pass NULL as ret.

Example

#define SOCKET_TO_BIND_HIGH 0x45 /*high order byte */
#define SOCKET_TO_BIND_LOW 0x00 /*low order byte */

struct t_bind bind;
ipxAddr_t localAddress;

localAddress.sock[0] = SOCKET_TO_BIND_HIGH;
localAddress.sock[1] = SOCKET_TO_BIND_LOW;

bind.addr.len = sizeof(ipxAddr_t);
bind.addr.maxlen = sizeof(ipxAddr_t);
bind.addr.buf = (char *)&localAddress;
bind.qlen = 0;

if (t_bind(ipxFd, &bind, &bind)<0) {
t_error(“t_bind failed”);
..
..
}

TLI/XTI for IPX 141

State

The state follows the state diagram in Network Programming Interfaces.

See Also

t_open
t_unbind
142 NetWare Transports

t_open

Establishes a transport endpoint connected to a
transport provider.

Syntax

#include “ipx_app.h”

int t_open(

char *ipxPath,

int oflag,

struct t_info *ipxInfo)

Parameters

(IN) ipxPath

Passes a pointer to the path of the IPX driver. The path on most
systems is “/dev/ipx”.

(IN) oflag

Passes the option flags for the opened stream.

(IN) ipxInfo

Passes the address of a t_info structure. See below for the format of
the structure.

(OUT) ipxInfo

Receives the initialized t_info structure. See below for the format of
the structure.

Return Values

 >0 Successful

 -1 Unsuccessful
TLI/XTI for IPX 143

If the t_open call is successful, it returns a file descriptor that identifies
the local transport endpoint. Refer to Network Programming Interfaces for
any errors that occur.

Remarks

The t_open function creates a local transport endpoint and returns
protocol-specific information associated with that endpoint. It also
returns a file descriptor that serves as the local identifier of the
endpoint.

This function is supported as documented in Network Programming
Interfaces.

The t_open function returns a TLI information structure upon the
successful return of an open. The t_info structure contains the following
information about IPX:

The t_optmgmt function cannot be used to negotiate any of the values
listed above.

Table 6-1

IPX Information in the t_info Structure

Field Value Description

addr 12 (bytes) This is the number of bytes required for an IPX address,
which consists of three components:
 network address 4 bytes
 node address 6 bytes
 socket number 2 bytes

options 3 (bytes) This is the maximum number of bytes in an options buffer.

tsdu n Size in bytes of a LAN’s maximum transport service data unit.
If connected to more than one LAN, the smallest value is
returned.

etsdu -2 Not supported.

connect -2 Not supported.

discon -2 Not supported.

servtype T_CLTS The service type for IPX is always T_CLTS (connectionless
mode service).
144 NetWare Transports

The tsdu value can be obtained for a specific LAN by using the t_getinfo
call after the endpoint has been bound using t_bind.

Example

int ipxFd;
char *ipxPath = “/dev/ipx”;
struct t_info ipxInfo;

if ((ipxFd=t_open(ipxPath,O_RDWR,&ipxInfo))<0) {
t_error(“t_open failed”);
..
..
}

State

The state follows the state diagram in Network Programming Interfaces.

See Also

t_bind
t_close
TLI/XTI for IPX 145

t_optmgmt

Manages protocol-specific options.

Syntax

#include “ipx_app.h”

int t_optmgmt(
int ipxFd,

struct t_optmgmt *req,

struct t_optmgmt *ret)

Parameters

(IN) ipxFd

Passes the file descriptor that was returned by t_open.

(IN) req

Passes a pointer to (or the address of) the structure that contains a
pointer to an ipxAddr_t structure.

(IN) ret

Passes a pointer to (or the address of) the structure that will be
initialized to the local IPX address.

(OUT) ret

Receives the local IPX address in the ipxAddr_t structure.

Return Values

Refer to Network Programming Interfaces for errors that may occur with
this call.

 0 Successful

 -1 Unsuccessful
146 NetWare Transports

Remarks

The t_optmgmt function enables the user to obtain the local IPX
address. (IPX does not support any negotiable options.)

This call is supported as documented in Network Programming Interfaces
except that it returns the local address instead of negotiating options.

The t_optmgmt structure has the following format:

struct t_optmgmt {

struct netbuf opt;

long flags;

};

IPX does not use the flags field. It should be set to zero.

The netbuf structure has the following format:

struct netbuf {

unsigned int maxlen;

unsigned int len;

char *buf;

};

The len and maxlen fields must be initialized to the size of an ipxAddr_t
structure. The buf field returns all the local information about this
transport endpoint: source network address, source node address, and
source socket number.

The req.buf and ret.buf fields must point to a structure large enough to
hold an ipxAddr_t (12 bytes). Upon successful completion, ret.buf
contains the source information.

The first four bytes are the local network address; the next six bytes, the
node address; and the last two bytes, the local socket number. All these
address numbers are in hi-lo byte order.

The local socket number is valid only if this local endpoint has already been
bound.
TLI/XTI for IPX 147

Example

struct t_optmgmt optionsRequest;
ipxAddr_t localIpxAddress;

optionsRequest.opt.maxlen = sizeof(ipxAddr_t);
optionsRequest.opt.len = sizeof(ipxAddr_t);
optionsRequest.opt.buf = (char *)&localIpxAddress;

/* flags are not used with the IPX options request */

optionsRequest.flags = 0;

/* ipxFd is the file descriptor of an opened IPX device */

if(t_optmgmt(ipxFd, &optionsRequest, &optionsRequest)<0) {
t_error(“t_optmgmt failed”);
..
..
}

State

The state follows the state diagram in Network Programming Interfaces.

See Also

t_open
148 NetWare Transports

t_rcvudata

Receives a message sent using t_sndudata.

Syntax

#include “ipx_app.h”

int t_rcvudata(

int ipxFd,

struct t_unitdata *ud,

int *flags)

Parameters

(IN) ipxFd

Passes the file descriptor that was returned by t_open.

(IN) ud

Passes a pointer to a t_unitdata structure. See “Remarks” for the
format of this structure.

(IN) flags

Passes a pointer to an integer. The flag should be set to zero (0).

(OUT) ud

Receives the information in the t_unitdata structure. The
ud.udata.buf field points to the data that was sent with the IPX
packet.

(OUT) flags

Indicates if a complete data unit has been received.
TLI/XTI for IPX 149

Return Values

If t_rcvudata fails, refer to t_rcvuderr for more information, which is
documented in Network Programming Interfaces. See this guide for
additional errors that may occur with the t_rcvudata call.

Remarks

The t_ rcvudata (receive unit data) function enables transport users to
receive data units from other users.

This call is supported as documented in Network Programming Interfaces.

The t_unitdata structure has the following format:

struct t_unitdata {

struct netbuf addr;

struct netbuf opt;

struct netbuf udata;

};

The netbuf structure has the following format:

struct netbuf {

unsigned int maxlen;

unsigned int len;

char *buf;

};

The address (addr.buf field) must point to an ipxAddr_t structure, which
has the following format:

 0 Successful

 -1 Unsuccessful
150 NetWare Transports

typedef struct ipxAddress{

unsigned char net[4];

unsigned char node[6];

unsigned char sock[2];

} ipxAddr_t;

This call is the reverse of t_sndudata. The address of the sender is
returned to the ud.addr field. The packet type is in the ud.opt field, and
the packet data is in the ud.udata field.

The len field of opt, udata, and addr is set according to the incoming
packet. The amount of data received in the IPX packet is in ud.udata.len.

If a complete data unit is received by the t_rcvudata call, flags will be set
to 0. If more data remains to be received flags will be set to T_MORE.

Because IPX is a datagram service, there is no flow control on incoming
data. If the IPX application cannot service the incoming data as fast as
it is generated, the IPX driver drops the excess incoming packets.

Both static and dynamic allocation are illustrated in the examples
below.

Example 1

/* This example uses statically allocated data buffers. */

struct t_unitdata ud;
unsigned char ipxPacketType;
unsigned char ipxDataBuf[IPX_MAX_DATA];
ipxAddr_t sourceAddress;
int flags = 0;

/* When the t_rcvudata unblocks, ipxPacketType will have the packet type
** from the IPX packet. */

ud.opt.len = sizeof(ipxPacketType);
ud.opt.maxlen = sizeof(ipxPacketType);
ud.opt.buf = (char *)&ipxPacketType;
TLI/XTI for IPX 151

/* When the t_rcvudata unblocks, sourceAddress will have the IPX address
of ** the datagram sender */

ud.addr.len = sizeof(ipxAddr_t);
ud.addr.maxlen = sizeof(ipxAddr_t);
ud.addr.buf = (char *)&sourceAddress;

/* When the t_rcvudata unblocks, ipxDataBuf will contain the data in the
** IPX packet */

ud.udata.len = IPX_MAX_DATA;
ud.udata.maxlen = IPX_MAX_DATA;
ud.udata.buf = (char *)&ipxDataBuf[0];
if (t_rcvudata (ipxFd, &ud, &flags)<0) {
t_error(“t_rcvudata failed”);
..
..
}

Example 2

/* This example uses dynamic allocation and checks for receipt of a
** complete data unit. */

struct t_unitdata *ud;
int flags = 0;

if ((ud = (struct t_unitdata *) t_alloc (ipxFd,
 T_UNITDATA, T_ALL)) == NULL)
{
t_error (“t_alloc failed”);
.
.
.
}
do
{
if (t_rcvudata (ipxFd, ud, &flags) <0) {
 t_error (“t_rcvudata failed”);
 ..
 ..
}
..
..
} while (flags == T_MORE);
152 NetWare Transports

State

The state follows the state diagram in Network Programming Interfaces.

See Also

t_alloc
t_rcvuderr
t_sndudata
TLI/XTI for IPX 153

t_sndudata

Sends a message to specified transport user.

Syntax

#include “ipx_app.h”

int t_sndudata(

int ipxFd,

struct t_unitdata *ud)

Parameters

(IN) ipxFd

Passes the file descriptor that was returned by t_open.

(IN) ud

Passes a pointer to (or address of) a t_unitdata structure. See
“Remarks” for the structure’s format.

Return Values

If the IPX driver cannot allocate memory, it sets t_errno to TSYSERR and
errno to ENOSR. Errors can also cause t_errno to be set to one of the
following values:

 0 Successful

 -1 Unsuccessful

TOUTSTATE The application hasn’t done a t_bind. A t_bind
must be done before issuing a t_sndudata.

TBADADDR The destination address is smaller than the size of
an IPX address (ipxAddr_t structure).

TACCES The destination network was not found in the
routing tables.
154 NetWare Transports

Errors can also cause the error field of the t_uderr structure to be set.
Refer to t_rcvuderr for more information on how to receive these error
messages. The t_rcvuderr function is documented in Network
Programming Interfaces.

Remarks

The t_sndudata (send unit data) function enables transport users to
send a self-contained data unit to the user at the specified protocol
address. This call is supported as documented in Network Programming
Interfaces.

The t_unitdata structure has the following format:

struct t_unitdata {

struct netbuf addr;

struct netbuf opt;

struct netbuf udata;

};

The netbuf structure has the following format:

struct netbuf {

unsigned int maxlen;

unsigned int len;

char *buf;

};

The address (addr.buf field) must point to an ipxAddr_t structure, which
has the following format:

typedef struct ipxAddress {

unsigned char net[4];

unsigned char node[6];

unsigned char sock[2];

} ipxAddr_t;

TNOADDR The allocation of streams memory failed. Check
whether more kernel memory buffers are needed.
TLI/XTI for IPX 155

The destination network address, node address, and socket number
must be filled in this IPX address structure by the user program. The
numbers must be in hi-lo order.

The IPX user sets the packet type of the outgoing IPX packet by passing
1 byte specifying the packet type in the options (opt) field. The IPX
driver fills in the other fields in the outgoing IPX packet: checksum (see
note below), length, transport control, source network address, source
node address, and source socket number.

To enable checksums on a packet, the IPX user must send 3 bytes of options in
the outgoing IPX packet. This includes 1 byte specifying the packet type and 2
bytes initialized to IPX_CHECKSUM_TRIGGER. The IPX driver will see that the
checksum is requested, calculate it, and insert the number into the header.

IPX does not support EXPEDITED data. All data is sent on a first-come,
first-served basis.

A successful return by the t_sndudata call doesn’t guarantee that the
data has been sent. A successful return guarantees only that the data
has been queued up to be sent. The t_sndudata call returns before the
data has actually been transmitted, so the application must take care not
to close the connection before the data has been transmitted.

If the socket is closed before the data has been transmitted, the data is
dropped. Before closing the connection, you should verify that the
endpoint has received all the data and is ready to close the connection.

For UNIX applications that communicate with an unknown machine
type, the byte order of data sent requires attention.

For example, if a UNIX application running on an 80386 CPU does a
t_sndudata, the data portion of the IPX packet is sent across the wire in
80386 (lo-hi) order. This presents a problem if the receiving CPU (for
example, a 68030) doesn’t account for the lo-hi order.

If ud.udata.len equals zero (0), no packet is sent.
156 NetWare Transports

Example

#define MAX_DATA_SIZE 546

ipxAddr_t remoteEndpointAddress;
unsigned char ipxPacketType;
unsigned char ipxData[IPX_MAX_DATA_SIZE];
struct t_unitdata ud;

/* There are three approaches to obtaining the address of the endpoint you
** wish to send to.

** 1. You can query a NetWare bindery for the server type you want.(This
** method assumes that you have established a connection to a NetWare
** server. Use the NWScanProperty function with NET_ADDRESS as the
** searchPropertyName.)

** 2. You can also create a file that maps a server name to an address.

** 3. You can use any appropriate method for discovering the endpoint’s
** address.

** You must allocate an ipxAddr_t structure and initialize the fields to
** the endpoint’s address before making the t_sndudata call. The following
** example code assumes that the endpoint has the following address: network
** address = 0x89415810, node address = 0x1, socket number = 0x500.*/

remoteEndpointAddress.net[0] = 0x89;
remoteEndpointAddress.net[1] = 0x41;
remoteEndpointAddress.net[2] = 0x58;
remoteEndpointAddress.net[3] = 0x10;
remoteEndpointAddress.node[0] = 0x00;
remoteEndpointAddress.node[1] = 0x00;
remoteEndpointAddress.node[2] = 0x00;
remoteEndpointAddress.node[3] = 0x00;
remoteEndpointAddress.node[4] = 0x00;
remoteEndpointAddress.node[5] = 0x01;
remoteEndpointAddress.sock[0] = 0x05;
remoteEndpointAddress.sock[1] = 0x00;

ipxPacketType = 0;

ud.opt.len = sizeof(ipxPacketType);
ud.opt.maxlen = sizeof(ipxPacketType);
ud.opt.buf = (char *)&ipxPacketType;

ud.addr.len = sizeof(ipxAddr_t);
ud.addr.maxlen = sizeof(ipxAddr_t);
TLI/XTI for IPX 157

ud.addr.buf = (char *)&remoteEndpointAddress;

ud.udata.maxlen = IPX_MAX_DATA_SIZE;

/* actual number of data bytes sent */

ud.udata.len = IPX_MAX_DATA_SIZE;
ud.udata.buf = (char *) ipxData;

if (t_sndudata(ipxFd, &ud)<0) {
t_error(“t_sndudata failed \n”);
..
..
}

State

The state follows the state diagram in Network Programming Interfaces.

See Also

t_bind
t_rcvudata
158 NetWare Transports

c h a p t e r 7 TLI/XTI for SPX/SPXII
Overview

This chapter describes the functions and structures used by NetWare’s
Sequenced Packet Exchange (SPX/SPXII) protocol under the UNIX
Transport Layer Interface (TLI). Application developers should have a
working knowledge of both NetWare and TLI/XTI. The chapter
includes the following sections:

◆ TLI differences between SPX and SPXII

◆ SPX/SPXII-specific TLI functions

◆ TLI data structures

◆ Sequence of TLI functions

◆ SPX/SPXII considerations

◆ TLI reference for SPX/SPXII

For information on the SPXII protocol, packet structure and fields, and
data flow, windowing and packet size negotiation, see Chapter 4,
“Enhanced Sequenced Packet Exchange (SPXII) Protocol” on page 41.

To compare the SPXII protocol with the earlier SPX protocol, see
Chapter 3, “Sequenced Packet Exchange (SPX) Protocol” on page 27.

Application developers should use the enhanced SPXII protocol, which
is backward compatible with SPX. The SPXII driver can open either
 /dev/nspx2 or /dev/nspx. (Code samples, with two exceptions, use
 /dev/nspx2.)

References to SPX/SPXII should be understood generically. The exception is
when a distinction between SPX and SPXII is the subject of the discussion.
TLI/XTI for SPX/SPXII 159

TLI Differences between SPX and SPXII

While TLI applications written for SPX will function on SPXII, their
developers should be aware of the following:

◆ Orderly release changes

◆ Option management structure changes

◆ Compatibility procedures

Orderly Release Differences

SPXII supports the TLI orderly release functions; SPX does not. If SPXII
applications use the orderly release functions, precautions must be
taken because they can connect to both SPXII and SPX endpoints.
Before issuing an orderly release packet, an SPXII application should
verify that the connected endpoint is an SPXII endpoint. If the endpoint
is an SPX endpoint, the SPXII driver generates an EPROTO error, which
causes all subsequent system calls to fail.

At connection time, an SPXII application can use the SPX2_OPTIONS
structure to discover whether the connected endpoint is an SPXII or an
SPX endpoint. The application needs to save this information so that it
can issue the proper sequence of function calls for a release.

In SPX and in the AIX version of SPXII, an endpoint could potentially
lose data under two conditions:

◆ When a disconnection indication arrives before all data is sent
upstream to the application or before it is read by the application.

◆ When the application closes the local endpoint before all data is
sent and acknowledged.

The new SPX Linger feature in the SPXII driver addresses both of these
conditions.

If a disconnect indication arrives from the remote endpoint, SPXII now
attempts to send all data upstream to the application before taking
action on the disconnection indication.
160 NetWare Transports

If an application issues a close, SPXII delays the closing of the local
endpoint until all data has been sent and acknowledged.

 In both cases, SPXII attempts to deliver all data, but when it is not
possible to do so within the timeout period (default 120 seconds), SPXII
completes the requested action.

Differences in the t_optmgmt Structure

TLI provides the following two mechanisms for exchanging option
information between the protocol stack and the application:

◆ The t_optmgmt function

◆ The t_call structure

SPXII has increased the size of the t_optmgmt structure and added
options for such features as windowing and packet size negotiation. On
the other hand, SPX uses these TLI methods to negotiate only three
options in the t_optmgmt structure.

Because the SPXII driver has been implemented so that it is backward
compatible with SPX, it is capable of using either the SPX/TLI structure
or the SPXII/TLI structure. For more information, see “Device Selection
Procedures” on page 167.

The SPX and SPXII t_optmgmt structures are described below.

SPX t_optmgmt Structure

The following t_optmgmt structure applies to SPX:

typedef struct spx_optmgmt {

 uint8 spxo_retry_count;

 uint8 spxo_watchdog_flag;

 uint16 spxo_min_retry_delay;

} SPX_OPTMGMT;
TLI/XTI for SPX/SPXII 161

SPXII t_optmgmt Structure

While SPX has three options, SPXII uses an SPX2_OPTIONS structure
which has 13 fields that an application may need to set or examine.

typedef struct spx2_options {

uint32 versionNumber;

uint32 spxIIOptionNegotiate

uint32 spxIIRetryCount;

uint32 spxIIMinimumRetryDelay;

uint32 spxIIMaximumRetryDelta;

uint32 spxIIWatchdogTimeout;

uint32 spxIIConnectionTimeout;

uint32 spxIILocalWindowSize;

uint32 spxIIRemoteWindowSize;

uint32 spxIIConnectionID;

uint32 spxIIInboundPacketSize;

uint32 spxIIOutboundPacketSize;

uint32 spxIISessionFlags;

} SPX2_OPTIONS;

Table 7-1

SPX Fields in the t_optmgmt Structure

Field Description

spxo_retry_count The value in this field specifies how many times
SPX will resend an unacknowledged packet
before concluding that the destination node is
not functioning properly.

spxo_watchdog_flag The value in this field determines whether the
SPX watchdog is activated. Setting this field to
zero disables the watchdog.

spxo_min_retry_delay The value in this field specifies the initial
timeout value before SPX resends a data
packet. The SPXII driver does not support this
option.
162 NetWare Transports

The fields in this structure are defined in Table 7-2 on the following
page. The comments in the structure definition use the following
symbols and indicate whether

◆ The attribute is read (r), write (w), or read/write (r/w)

◆ The field is applicable to the t_optmgmt function (o), the t_call
structure (c), or both (o/c)

Whether an application uses the t_optmgmt function or the t_call
structure to set values depends on the application’s needs and the state
of the connection.

◆ An application can use the t_optmgmt function only during the
T_IDLE state (clients, between t_bind and t_connect; servers,
between t_bind and t_listen).

During this time, the application is able to negotiate the t_optmgmt
values, and the SPXII driver returns information about the
adjustments.

◆ When an application uses the t_call structure during t_connect or
t_listen, the protocol stack uses any valid t_optmgmt values, but is
unable to inform the application if the requested values were
ignored because they were invalid.

Applications use t_call when they know their requested values are
valid and they want to avoid the overhead of negotiation.

Each field is described below.

Table 7-2

SPXII Fields in the t_optmgmt Structure

Field Comment Description

versionNumber (r/w, o/c)
Must be set to
OPTIONS_VERSION

This field is a monotonically increasing number
which can be used by the protocol to determine
the fields supported by the application. Each time
the structure is enhanced this version number will
be increased. It is recommended that for
transparency, an SPXII TLI-based application use
t_alloc and t_getinfo to allocate and determine
the size of the options structure rather than the C
operator sizeof(SPX2_OPTIONS).
TLI/XTI for SPX/SPXII 163

spxIIOptionNegotiate (r/w, o/c)
Exchange options and
negotiate packet size

This field specifies whether the application wants
to exchange option information with the remote
endpoint and negotiate size. This field has the
following values:
SPX_NEGOTIATE_OPTIONS (default)
SPX_NO_NEGOTIATE_OPTIONS

spxIIRetryCount (r/w, o/c)
Number of retries on
data packets

When a transmission failure for a data packet is
detected, SPXII will resend the data. This field
specifies the number of attempts SPXII will make
before unilaterally aborting the connection. A
value of zero indicates to SPXII to use the current
default value. (The default is 10.)

spxIIMinimumRetryDelay (r/w, o/c)
Minimum retry
timeout, in
milliseconds

Setting this field to nonzero indicates that the
application wants to override the internal round
trip time calculation algorithm and wants to
specify a minimum timeout value before SPXII
resends a data packet. A value of zero indicates
to SPXII to use the current round trip time as the
retry delay.

spxIIMaximumRetryDelta (r/w, o/c)
Maximum retry delta,
in milliseconds

The value of this field is added to
spxIIMinimumRetryDelay or to the current round
trip time (if spxIIMinimumRetryDelay is zero) to
determine the maximum retry delay. A value of
zero indicates to SPXII to use the current default.
value. (The default is 5 seconds.)

spxIIWatchdogTimeout (r/w, o/c)
Number of
milliseconds to wait
before 1st watchdog

This value determines the amount of time the
watchdog algorithm will allow to pass on a client
connection before sending a watchdog query
packet to determine if the other side is still
available. This option is not implemented in the
SPXII driver; the driver uses a default value of 60
seconds.

spxIIConnectionTimeout (r/w, o/c)
Number of
milliseconds to wait
for full connection
setup

This value determines the amount of time after a
successful connect request before the session
setup packet must arrive. This option is not
implemented in the SPXII driver; the driver uses a
default value of 60 seconds.

Table 7-2 continued

SPXII Fields in the t_optmgmt Structure

Field Comment Description
164 NetWare Transports

spxIILocalWindowSize (r/w, o/c)
Number of packets in
data window

This specifies the size, in packets, of the local
endpoint receive window. A value of zero
indicates that SPXII will determine the receive
window size. (The default for the SPXII driver is
8.)

spxIIRemoteWindowSize (r, c)
Number of packets in
data window

This is an information-only field and is valid only
after a connection has been established. It is the
size, in packets, of the remote endpoint’s receive
window.

spxIIConnectionID (r, c)
Valid only after
connection is
established

This is an information-only field and is valid only
after a connection has been established. It is the
local endpoint connection ID.

spxIIInboundPacketSize (r, c)
Size of packets
coming from other
endpoint

This is an information-only field and is valid only
after a connection has been established. It is the
size in bytes for incoming packets. This value may
change if SPXII has to renegotiate after a route
change. There is no way to inform an application
when packet size changes because of
renegotiation.

spxIIOutboundPacketSize (r, c)
Size of packets being
sent to other endpoint

This is an information-only field and is valid only
after a connection has been established. It is the
size in bytes for outgoing packets. This value may
change if SPXII has to renegotiate after a route
change. There is no way to inform an application
when packet size changes because of
renegotiation.

spxIISessionFlags Session characteristic
options (see
description for
r/w)

This is a bit field and contains a set of flags used
to control characteristics of the SPXII packets on
the wire. These characteristics might include
packet checksums, data encryption, or data
signing. The following flags have been defined:
SPX_SF_NONE 0x00
SPX_SF_IPX_CHECKSUM 0x01 //(r/w, o/c)
SPX_SF_SPX2_SESSION 0x02 //(r, c)
After a connection is established, this field
indicates whether the connection is an SPXII or
an SPX connection.

Table 7-2 continued

SPXII Fields in the t_optmgmt Structure

Field Comment Description
TLI/XTI for SPX/SPXII 165

Compatibility Procedures

Although the SPXII driver is backward compatible, SPX applications
can’t use all the features in SPXII without some modification. Also,
some coding practices that worked with SPX may allow the application
to access only the SPX features in SPXII.

Developers should be aware of the following:

◆ Allocation procedures for TLI structures

◆ Datastream type differences

◆ Device selection procedures

Allocation Procedures for TLI Structures

An SPXII/TLI-based application should use t_alloc and t_getinfo to
allocate and determine the size of the options structure rather than
using stack variables and the C operator sizeof(SPX2_OPTIONS).

Since the size of the structure changed between SPX and SPXII, using
the TLI functions allows the application to remain compatible with both
SPX and SPXII, as well as future releases of SPXII which may modify the
SPX2_OPTIONS structure.

Datastream Type Differences

SPXII has a defined value for 0xFD (Orderly Release request) and
reserves the values from 0x80 through 0xFB in the Datastream field of
the SPX/SPXII header.

SPX allowed applications to use values from 0x00 through 0xFD. SPX
applications which use the reserved or defined values need to be
modified.
166 NetWare Transports

Device Selection Procedures

The SPXII driver has been implemented so that an application can use
either SPXII or SPX t_optmgmt structure.

To request the SPXII t_optmgmt structure, an application uses one of
the following methods:

◆ Opens “/dev/nspx2”

◆ Issues the SPX_SPX2_OPTIONS ioctl (for information on SPX
ioctls, see Chapter 10, “SPX/SPXII ioctls”)

To request the SPX t_optmgmt structure from the SPXII driver, an
application uses the following method:

◆ Opens “/dev/nspx”

SPX/SPXII Specific Information for TLI Functions

In the UNIX environment, SPX/SPXII is accessed via TLI. The TLI
functions that are transport-provider layer specific for SPX/SPXII are
documented in this chapter.

The order and use of these calls is described in Network Programming
Interfaces, which you should also refer to for
TLI/XTI calls and other information not found in this document.

Developers should also have the “spx_app.h” file.

Because SPXII is a session-based service and SPX is a connection-based
service, both deliver data reliably. In addition, the transport user is
notified if any errors occur during data transmission. This service is an
attractive feature for applications that require relatively long-lived,
datastream-oriented interaction. Upon encountering a data
transmission error, SPX/SPXII retries a given number of times before
closing the connection and notifying the connection user. SPX/SPXII
also notifies the user if a disconnection indication is received from the
remote connection endpoint.

Because the actual values for retries and the intervals between retries are
tunable by the system administrators, the values will vary from host system to
host system.
TLI/XTI for SPX/SPXII 167

SPX/SPXII can function in both synchronous and asynchronous
modes. The application developer determines the mode.

TLI Data Structures

The Transport Layer Interface to SPX/SPXII uses the following TLI
structures which require transport provider-specific data:

Each structure is included in the “Remarks” section of the
documentation for the function that uses the structure. For more
information about these structures, see Network Programming Interfaces.

Sequence of TLI Functions

The state of the endpoint follows the connection mode table in Network
Programming Interfaces.

The type of application determines the sequence and the types of TLI
calls.

◆ Server applications need to open a transport endpoint, listen for
client connections, and then service client requests.

◆ Client applications need to open a transport endpoint, establish a
connection with a server, and then request and receive information
from the server.

The steps for these two types of procedures using a synchronous mode
are outlined in the following sections.

 t_bind t_info

 t_call t_optmgmt

 t_discon
168 NetWare Transports

Server Applications

To create a synchronized UNIX server application, follow the sequence
outlined below:

1. Open the SPXII driver “/dev/nspx2” using the t_open call.

The t_open call returns a file descriptor (fd).

2. To bind fd to a well-known socket number (so that subsequent client
connection requests can arrive on it), use the t_bind call.

3. To obtain a second file descriptor (fd2), use the t_open call with the
device set to the SPXII driver”/dev/nspx2”.

4. To bind fd2 to a dynamic socket number, use the t_bind call.

5. If necessary, set options using t_optmgnt call.

The t_optmgmt function is optional, but if it is used, it must be used
after the t_bind function and before the t_accept function.

6. To listen for incoming connection requests on fd, use the t_listen
call.

If clients are supposed to discover the server address, the server
application must use SAP to advertise its services. For
programming information, see Chapter 8, “SAP Library.”

7. Upon receiving a connection request, fork a child.

8. The parent should close fd2 and return to Step 3.

The parent continues looping through Steps 3 to 7 until the parent
exits (skips to Step 13).

The forked child completes Steps 8 through 12.

9. To accept the connection request, the forked child issues a t_accept.

t_accept (fd, fd2, call).

10. The forked child should close fd with t_close.

11. The forked child uses t_snd or t_rcv to send or receive data on fd2.
TLI/XTI for SPX/SPXII 169

12. The forked child listens for or sends a disconnection indication
using t_rcvdis or t_snddis.

13. On exiting, the forked child unbinds fd2 using a t_unbind call and
closes fd2 using a t_close call.

14. On exiting, the parent unbinds fd using a t_unbind call and closes
fd using a t_close call.

Client Applications

To create a synchronized UNIX client application, follow the sequence
outlined below:

1. Open the SPXII driver “/dev/nspx2” using the t_open call.

The t_open call returns a file descriptor (fd).

2. Obtain the address of the server you want to connect to.

The client application can use any appropriate method for
obtaining the endpoint’s address:

◆ Create a file that maps a server name to an address.

◆ Use SAP API functions (for programming information, see
Chapter 8, “SAP Library”)

◆ Scan a NetWare server’s bindery for the destination address if
the application has already established a connection with that
particular server. (See the NWScanProperty function in NetWare
Library Reference for C and then use NET_ADDRESS as
searchPropertyName.)

Although NetWare 4.x servers have Directory Services, they run
in bindery emulation mode as a default.

3. Bind to a static or dynamic socket using a t_bind call.

4. If necessary, set options using t_optmgnt call.

The t_optmgmt function is optional, but if it is used, it must be used
after the t_bind function and before the t_connect function.

5. Send a connection request to the server using a t_connect call.
170 NetWare Transports

6. Use t_snd to send or t_rcv to receive data on fd.

7. Listen for or send a disconnection request. Use t_rcvdis to receive a
disconnect request or t_snddis to send a disconnect request.

8. On exiting, use the t_unbind call to unbind the file descriptor
obtained in Step 1 and then close it using the t_close call.

SPX Considerations

The SPXII driver is accessible via “/dev/nspx2” or “/dev/nspx”.
These are the nodes that applications open to access SPX/SPXII.

◆ Opening “/dev/nspx2” allows an expanded set of options (as
described in t_optmgmt on page 205).

◆ Opening “/dev/nspx” provides a set of options compatible with
SPX (see t_optmgmt).

After a connection is established with TLI, an application can pop
“timod” and push “tirdwr” to get a read/write interface for SPXII. For
more information, refer to Network Programming Interfaces.

TLI Reference for SPX

This section describes how to use the following TLI functions (listed in
alphabetical order) with the SPXII driver.

 t_accept page 173 Accepts a connection request.

 t_bind page 177 Binds a socket to a given transport
endpoint.

 t_connect page 186 Establishes a connection with an SPX/
SPXII server application at a specified
destination.

 t_listen page 195 Enables an SPX/SPXII application server to
receive connection requests from SPX/
SPXII clients.
TLI/XTI for SPX/SPXII 171

For a description of the standard use of these functions or for functions
not described in this document, see Network Programming Interfaces.

 t_open page 201 Establishes a transport endpoint connected
to a transport user.

 t_optmgmt page 205 Manages protocol-specific options.

 t_rcv page 211 Receives data over an established
transport connection.

 t_rcvdis page 214 Returns a disconnect indication from the
remote transport endpoint.

 t_rcvrel page 219 Acknowledges receipt of an orderly release
indication.

 t_snd page 222 Send data over a transport connection.

 t_snddis page 226 Aborts a connection or rejects a connection
request.

 t_sndrel page 230 Requests orderly release of a connection
(SPXII only).
172 NetWare Transports

t_accept

Accepts a connection request.

Synopsis

#include “spx_app.h”

int t_accept (
int spxFd,

int spxFd2,

struct t_call *call)

Parameters

(IN) spxFd

Passes the file descriptor of the endpoint that is receiving
connection requests.

(IN) spxFd2

Passes the file descriptor of the endpoint on which the connection
is to be established.

(IN) call

Passes a pointer to (or the address of) a t_call structure that the SPX
server application used in its t_listen call. This structure contains
the address of the remote transport endpoint, the remote
endpoint’s connection ID, its allocation number, and the sequence
number of the connection request.

Return Values

 0 Successful

 -1 Unsuccessful
TLI/XTI for SPX/SPXII 173

If t_accept returns an error, t_errno may be set to one of the following.

Remarks

An SPX/SPXII server application uses the t_accept call to accept a client
connection request. The SPX/SPXII server application uses t_snddis to
reject the connection request.

This function works as specified in Network Programming Interfaces.

For server applications (applications that wait for incoming connection
requests), we recommend that the server application use two file
descriptors. The server uses one file descriptor and socket to listen for
incoming connection requests and uses another separate file descriptor
and socket to accept a connection request each time a connection
request arrives.

Usually the endpoint that listens for connections opens the SPXII driver
and binds to a well-known socket (spxFd). Upon receiving a connection
request, the SPX/SPXII server opens another file descriptor (spxFd2),
binds to a dynamic socket, and issues a t_accept. When both the
t_accept and the t_connect calls are successful, the client’s t_connect
call returns the dynamic socket number of the server. This procedure
causes all client/server traffic to be on the server’s dynamic socket.

TBADF The specified file descriptor does not refer to a
transport endpoint, or the application is illegally
accepting a connection on the same endpoint on
which the connection indication arrived.

TOUTSTATE The local transport endpoint or the accepting stream
(specified by the accepting fd) is not in the
appropriate state for issuing t_accept.

TBADSEQ The connection request specified by the sequence
number in the call structure is invalid.

TLOOK An asychronous event has occurred on the transport
endpoint referenced by spxFd and requires
immediate attention.

 TSYSERR A system error has occurred during execution of this
function; check errno for possible further information.
174 NetWare Transports

A connection request can be accepted on the same fd as the listen fd
(spxFd=spxFd2), but this is not recommended. Only a single connection
request can be accepted if file descriptors are equal. The SPXII driver
drops any further connection requests to the local transport endpoint
(spxFd) because this endpoint is now in the data transfer state.

If a client’s connection request timeout is short, the client may time out
before the SPXII server application can issue a t_accept call. If the client
connection request times out before the server application issues a
t_accept call, you need either to extend the client’s connection request
timeout or to reduce the server’s delay between the t_listen and the
t_accept.

The SPXII driver detects a transmission failure of a connection request
acknowledge and resends it.

If the t_accept call fails with t_errno equal to TOUTSTATE or TSYSERR,
the SPXII driver marks the outstanding connection request (that the
t_accept was replying to) invalid. If a TOUTSTATE or TSYSERR occurs,
the SPXII server application should not retry the t_accept.

If any other errors occur, the SPXII server application can retry the
t_accept.

Example

{
 char *spxDevice = “/dev/nspx2”;
 int spxFd;
 int spxFd2;
 struct t_info spxInfo;
 SPX2_OPTIONS *reqOpts;

 if ((spxFd2 = t_open(spxDevice, O_RDWR, &spxInfo)) < 0) {
 t_error(“t_open failed”);
 exit(-1);
 }
 ..
 ..

 /* Bind to dynamic socket. I don’t want to know what address I am
 ** bound to. */

 ..
 ..
TLI/XTI for SPX/SPXII 175

 if ((t_bind(spxFd2, NULL, NULL)) < 0) {
 t_error(“t_bind failed”);
 exit(-1);
 }
 ..
 ..

 /*
 ** spxFd is the file descriptor representing the stream that the
 ** connection request arrived on. The call structure is also the
 ** same call structure that was returned from the t_listen when
 ** the connection request arrived. Some options can be set/changed
 ** on the t_accept call, but no confirmation will be returned.
 */

 reqOpts = (SPX2_OPTIONS *)rcvcall->opt.buf;
 reqOpts->spxIILocalWindowSize = 12;
 reqOpts->spxIIRetryCount = 8;
 reqOpts->spxIIMinimumRetryDelay = 250; /* 1/4 second */
 reqOpts->spxIIMaximumRetryDelta = 2000; /* 2 seconds */

 if ((t_accept(spxFd, spxFd2, rcvcall)) < 0) {
 t_error(“t_accept failed”);
 if (t_errno == TLOOK) {
 lookVal = t_look(spxFd);
 printLookVal(lookVal);
 }
 exit(-1);
 }
}

State

The state after a successful connection establishment is T_DATAXFER
for both the client and server. An unsuccessful t_accept call leaves the
state T_IDLE.

See Also

t_connect
t_getstate
t_optmgmt
t_listen
t_open
176 NetWare Transports

t_bind

Binds a socket to a given transport endpoint.

Syntax

#include “spx_app.h”

int t_bind (

int spxFd,

struct t_bind *req,

struct t_bind *ret)

Parameters

(IN) spxFd

Passes the file descriptor of the local transport endpoint.

(IN) req

Passes a pointer to a t_bind structure. The t_bind structure contains
the socket number to bind to. The socket value in the structure is
initialized either to a static socket number (an assigned number) or
to zero (to obtain a dynamic socket number).

The application can set req to NULL to obtain a dynamic socket
(qlen is assumed to be zero).

(IN) ret

Passes a pointer to a t_bind structure. The local endpoint address is
returned in the structure to which ret is pointing.

If the application does not care to which address it was bound, it
can set ret to NULL.

(OUT) ret

Returns the local endpoint’s address: network address, node
address, and socket number.
TLI/XTI for SPX/SPXII 177

Return Values

If t_bind returns an error, t_errno may be set to one of the following.

Remarks

The t_bind call associates a protocol address with a given transport
endpoint. This call binds the endpoint to an SPX/SPXII socket. This call
also directs the transport provider to begin accepting incoming
connection requests.

This function works as specified in Network Programming Interfaces with
the additions explained below.

 0 Successful

 -1 Unsuccessful

TBADF The specified file descriptor does not refer to a
transport endpoint.

TOUTSTATE This transport endpoint is in a state that invalidates a
t_bind request.

TBADADDR Either the address passed down was not the same
size of an ipxAddr_t, or the size of the address was
not zero (NULL bind pointer).

TNOADDR There are no unused dynamic socket numbers. The
SPX user should try again later.

TACCES The socket number requested was in use.

TBUFOVFLW The number of bytes allowed for the return argument
is not sufficient to store the value of that argument.

TSYSERR A system error has occurred during the execution of
this function. Check errno for possible further
information.
178 NetWare Transports

The t_bind structure has the following format:

struct t_bind {

netbuf addr;

unsigned qlen;

};

The qlen field is used to indicate the total number of outstanding
connection requests allowed on this endpoint.

◆ Applications that do not service connection requests should set this
field to zero (0).

◆ Applications that service connection requests should set this field
to one (1).

For additional information, see “Outstanding Connection Requests” on
page 181.

The netbuf structure has the following format:

struct netbuf {

unsigned int maxlen;

unsigned int len;

char *buf;

};

For a t_bind call, a pointer to an ipxAddr_t structure must be passed in
the req.addr.buf field to bind to a static socket. If binding to a dynamic
socket, a NULL pointer can be passed.

The ipxAddr_t structure has the following format:

typedef struct ipxAddress{

 uint8 net[4];

 uint8 node[6];

 uint8 sock[2];

} ipxAddr_t;
TLI/XTI for SPX/SPXII 179

The t_bind call allows an endpoint to bind to a socket number, which
can be either dynamic or static. SPX keeps track of which socket number
is bound to which transport endpoint.

◆ A dynamic socket number is an unused socket number returned by
the SPXII driver and is guaranteed to be a unique unused number
among the IPX/SPX endpoints. A dynamic socket is a value from
0x4000 to 0x7FFF.

If a dynamic socket is wanted, set the sock field in the ipxAddr_t
structure to zero.

◆ A static socket number can be requested. If it is unused, it is granted
and returned in the ret structure. Static socket numbers are in the
range of 0x8000 to 0xFFFF and are assigned by Novell. If your
application requires a static socket number, contact Novell for an
assignment.

If a static socket number is desired, set the sock field in the
ipxAddr_t structure to the assigned socket number.

The net and node fields do not need to be filled in the ipxAddr_t
structure, but the sock field must be initialized to either a static or
dynamic socket value.

Static Socket Numbers

Services written to run over SPX/SPXII generally have well-known or
static socket numbers associated with them. (Again, contact Novell to
obtain an assignment for a static socket number for your application.)
By having static socket numbers, SPX/SPXII users can be sure that their
server and client application types match.

To bind to a static socket number, complete the following steps.

1. Allocate a t_bind structure for req and ret. They can be the same
structure.

2. Set the socket value in the ipxAddr_t structure before making the
t_bind call. The example code uses two #defines to specify the
socket number and to ensure that the socket number is passed in
hi-lo format.
180 NetWare Transports

3. Initialize the structure’s fields. The req.addr.buf field must point to
the ipxAddr_t structure allocated in Step 1.

4. Make the t_bind call by passing the spxFd value returned in the
t_open call and by passing the address of the t_bind structure
allocated in Step 1.

The SPXII driver looks at the socket field in the ipxAddr_t structure for
the SPX user’s desired socket number. The socket number must be
passed in hi-lo byte order.

If the socket number desired is not currently being used by another
IPX/SPX user, the SPXII driver returns the local network address, local
node address, and the allocated or requested socket number in the
corresponding fields of the ipxAddr_t structure of the ret.addr.buf field.

Only one IPX/SPX endpoint can bind to a given socket number at a
time. If the user tries to bind to a socket that has already been bound to,
an error results and the bind fails.

Another method to coordinate servers and clients is to use the Service
Advertising Protocol (SAP). For programming information, see
Chapter 8, “SAP Library,” on page 233.

Dynamic Socket Number

Two methods can be used to have the SPXII driver allocate and assign
a dynamic socket number.

◆ Pass zero (0) in the sock field of the ipxAddr_t structure

◆ Set req to NULL—when you do not need to know the value of the
socket number

Outstanding Connection Requests

An outstanding connection request is a connection request that has
arrived and has been delivered to the UNIX application, but to which
the application has not responded with a connection request
acknowledge (t_accept) or connection request reject (t_snddis).
TLI/XTI for SPX/SPXII 181

The qlen field in the t_bind structure indicates to SPXII the total number
of outstanding connection requests allowed on this transport endpoint.

SPXII allows up to a specified number of outstanding connection
requests per transport endpoint. This is currently set to 5. Even if the
UNIX application requests more than 5, only 5 are given.

Although you are allowed to have more than one outstanding
connection request, we recommend that you have only one.

If a value greater than 1 is specified in the qlen field during a t_bind, a
connection request can arrive from a remote transport endpoint,
making the t_listen unblock.

If another connection request arrives between the time the t_listen
unblocks and the t_accept is issued, the t_accept fails, saying that an
event has occurred. You will not be able to t_accept the connection
requests until all pending connection requests have been retrieved from
the stream head using t_listen. A t_bind with qlen equal to 1 should be
issued to avoid this outcome.

Example 1 shows how to bind to a dynamic socket, while Example 2
shows how to bind to a specific or static socket number.

Example 1

 /* Bind to dynamic socket. I don’t want know what address I am
 ** bound to.
 */
{
 ..
 ..
 if ((t_bind(spxFd, NULL, NULL)) < 0) {
 t_error(“t_bind failed”);
 exit(-1);
 }
 ..
 ..
}

182 NetWare Transports

Example 2

/* This example shows how to bind to the specific socket 0x4500.
** The SPXII driver fills in the net, node fields of the IPX address,
** and returns the full address.
*/

/*
** Bind to static socket 0x4500; then print full address after t_bind.
*/

#define SOCKET_TO_BIND_HIGH 0x45
#define SOCKET_TO_BIND_LOW 0x00
{
 int spxFd;
 struct t_bind *bind_req;
 struct t_bind *bind_ret;
 ipxAddr_t *ipxAddr;
 ..
 ..

 /*
 ** Allocate structures for t_bind request
 */

if ((bind_req = (struct t_bind *)t_alloc(spxFd, T_BIND, T_ALL)) == NULL) {
 t_error(“t_alloc of T_BIND request structure failed”);
 exit(-1);
}

 /*
 ** Allocate structures for t_bind return values
 */

if ((bind_ret = (struct t_bind *)t_alloc(spxFd, T_BIND, T_ALL)) == NULL) {
 t_error(“t_alloc of T_BIND return structure failed”);
 exit(-1);
}

 /*
 ** qlen 0 for clients, 1-5 for servers. qlen is the # of
 ** outstanding connect indications allowed.
 */
TLI/XTI for SPX/SPXII 183

bind_req->qlen = 0;
bind_req->addr.len = sizeof(ipxAddr_t);
ipxAddr = (ipxAddr_t *)bind_req->addr.buf;
ipxAddr->sock[0] = SOCKET_TO_BIND_HIGH;
ipxAddr->sock[1] = SOCKET_TO_BIND_LOW;

if (t_bind(spxFd, bind_req, bind_ret) < 0) {
 t_error(“t_bind failed”);
 exit(-1);
}

 /*
 ** Print t_bind returned values
 */

 fprintf(stderr,“\nt_bind returned:\n”);

 /* qlen */
 fprintf(stderr,“\t%4d for qlen from %s\n”, bind_ret->qlen, spxDev);

 /* number of address bytes returned */
 fprintf(stderr,“\t%4d bytes of address from %s\n”,
 bind_ret->addr.len, spxDev);
 ipxAddr = (ipxAddr_t *)bind_ret->addr.buf;

 /* network */
 fprintf(stderr,“\tBound to address:\n\t net 0x%02X%02X%02X%02X\n”,
 ipxAddr->net[0],ipxAddr->net[1],ipxAddr->net[2],ipxAddr->net[3]);

 /* node */
 fprintf(stderr,“\t node 0x%02X%02X%02X%02X%02X%02X\n”,
 ipxAddr->node[0],ipxAddr->node[1],ipxAddr->node[2],
 ipxAddr->node[3],ipxAddr->node[4],ipxAddr->node[5]);

 /* socket */
 fprintf(stderr,“\t socket 0x%02X%02X\n”, ipxAddr->sock[0],
 ipxAddr->sock[1]);

 /*
 ** free structures used for t_bind
 */

 t_free((char *)bind_req, T_BIND);
 t_free((char *)bind_ret, T_BIND);
 ..
 ..
}

184 NetWare Transports

State

After a successful bind, the state is T_IDLE.

After an unsuccessful bind, the state is T_UNBND unless t_error was
TOUTSTATE.

See Also

t_open
t_optmgmt
t_unbind
TLI/XTI for SPX/SPXII 185

t_connect

Establishes a connection with an SPX/SPXII
server application at a specified destination.

Syntax

#include “spx_app.h”

int t_connect (
int spxFd,

struct t_call *sndcall,

struct t_call *rcvcall)

Parameters

(IN) spxFd

Passes the file descriptor of the local transport endpoint.

(IN) sndcall

Passes a pointer to a t_call structure that contains the IPX address
of the server to which the SPX/SPXII client wants to connect.

If spxFd is an SPXII “/dev/nspx2” file descriptor, then the sndcall
structure can contain an option structure (SPX2_OPTIONS) to
change the current options.

(IN) rcvcall

Passes a pointer to a t_call structure that will contain the server’s
connection information upon successful completion of the call.

(OUT) rcvcall

Receives the server’s connection information: network address,
node address, socket number, connection ID, and allocation
number.

If spxFd is an SPXII “/dev/nspx2” file descriptor, then the rcvcall
structure will contain an option structure (SPX2_OPTIONS) with
the current options.
186 NetWare Transports

Return Values

The SPXII driver tries to connect with the remote transport endpoint.
After trying a given number of times without receiving an
acknowledgment, the SPXII driver generates a disconnection indication
of TLI_SPX_CONNECTION_FAILED (refer to t_rcvdis). If this error
occurs, the state of the stream is set to T_IDLE.

See Network Programming Interfaces for other possible errors.

Remarks

A client SPX/SPXII application uses the t_connect call to request a
connection to an SPX/SPXII server application at a specified
destination. This call may be executed in either synchronous or
asynchronous mode.

SPX/SPXII supports both synchronous and asynchronous modes
according to the specifications in Network Programming Interfaces. This
function works as specified in that manual.

In the synchronous mode, the call waits for the server’s response before
returning control to the client. In asynchronous mode, the call initiates
connection establishment but returns control to the client before a
response arrives. The t_rcvconnect function must be used to complete
an asynchronous connection.

The t_call structure has the following format:

struct t_call {

struct netbuf addr;

struct netbuf opt;

struct netbuf udata;

int sequence;

};

 0 Successful

 -1 Unsuccessful
TLI/XTI for SPX/SPXII 187

The SPXII driver does not use the udata structure. Its fields should be
initialized. You must set the udata.len and udata.maxlen fields to zero and
set the udata.buf field to NULL.

The SPXII driver does not use the sequence field.

The netbuf structure has the following format:

struct netbuf {

unsigned int maxlen;

unsigned int len;

char *buf;

};

For standard information about the t_call and netbuf structures, see
Network Programming Interfaces.

The t_connect call uses the following t_call structures:

◆ sndcall

◆ rcvcall

The sndcall.addr.len and sndcall.addr.maxlen fields must be initialized to
the size of an ipxAddr_t or equivalent structure. The sndcall.addr.buf
field must point to an ipxAddr_t structure. The ipxAddr_t structure
must be initialized to the server’s IPX address.

The ipxAddr_t structure has the following format:

typedef struct ipxAddress{

 uint8 net[4];

 uint8 node[6];

 uint8 sock[2];

} ipxAddr_t;

All information passed in the ipxAddr_t structure must be in hi-lo byte
order. See Figure 4-1 on page 46 for an illustration of byte order.
188 NetWare Transports

The sndcall.opt.len and sndcall.opt.maxlen fields must be initialized either
to the size of a valid option structure or to zero. SPXII supports two
different option structures, one for SPX (SPX_OPTS) and the other for
SPXII (SPX2_OPTIONS).

See page 206 for the t_optmgmt option structure formats.

The SPX_OPTS structure has the following format:

typedef struct spxopt_s {

 unsigned char spx_connectionID[2];

 unsigned char spx_allocationNumber[2];

} SPX_OPTS;

Both endpoints must support orderly release before an application can
use the orderly release calls. Although older versions of SPX did not
support orderly release, the spxIISessionFlags can be used to determine
whether both endpoints support orderly release. The spxIISessionFlags
in the opt (SPX2_OPTIONS) structure should be saved if the application
wants to use orderly release. See t_sndrel on page 230 for further
information.

The t_connect call sends an SPX/SPXII connection request to the IPX
address specified in sndcall.addr.

If the rcvcall structure is passed in t_connect, the server’s address and
connection information are returned.

If an rcvcall structure is passed, the maxlen and buf variables must be set
appropriately to receive the ipxAddr_t and option structures.

The server’s IPX address is returned in the rcvcall.addr.buf field, while
the server’s connection ID and allocation number are passed back in the
rcvcall.opt.buf field.

Example 1 below is for an SPXII connection request, while
Example 2 is for SPX.
TLI/XTI for SPX/SPXII 189

Example 1

{
 char *spx2Device = “/dev/nspx2”;
 int spxFd;
 uint32 spxIISessionFlags;
 ipxAddr_t *serversAddress;
 struct t_call *sndcall;
 struct t_call *rcvcall;
 SPX2_OPTIONS *reqOpts;
 SPX2_OPTIONS *retOpts;

 ..
 ..
 ..

 /* Open an spxII device */
 if ((spxFd = t_open(spx2Device, O_RDWR, &spxInfo)) <0) {
 t_error(“t_open failed”);
 exit(-1);
 }

 /* Bind to dynamic socket */
 if ((t_bind(spxFd, NULL, NULL)) < 0) {
 t_error(“t_bind failed”);
 exit(-1);
 }

 /* Allocate call structures */
 if ((sndcall = (struct t_call *)t_alloc(spxFd, T_CALL, T_ALL))==NULL) {
 t_error(“t_alloc of T_CALL failed”);
 exit(-1);
 }

 if ((rcvcall = (struct t_call *)t_alloc(spxFd, T_CALL, T_ALL))==NULL) {
 t_error(“t_alloc of T_CALL failed”);
 exit(-1);
 }

 /* The first step in making a connection is to obtain the address of
 ** the SPXII user you want to establish the connection with. There are
 ** three approaches to obtaining an address.
 ** 1. You can query a NetWare bindery for the server type you want.
 ** (This method assumes that you have established a connection with
 ** a NetWare file server. Use the NWScanProperty function with
 ** NET_ADDRESS as the searchPropertyName.)
 ** 2. You can create a file that maps a server name to an address.
190 NetWare Transports

 ** 3. You can use any appropriate method for discovering the endpoint’s
 ** address, for example, the SAP APIs.
 ** You must allocate an ipxAddr_t structure and initialize the
 ** fields to the endpoint’s address before making the t_connect
 ** call. The following example code assumes that the server has
 ** the following address: network = 0x0101038B, node = 0x01,
 ** socket = 0xDEAD.*/

 serversAddress = (ipxAddr_t*)sndcall->addr,buf;
 serversAddress.net[0] = 0x01;
 serversAddress.net[1] = 0x01;
 serversAddress.net[2] = 0x03;
 serversAddress.net[3] = 0x8B;
 serversAddress.node[0] = 0x00;
 serversAddress.node[1] = 0x00;
 serversAddress.node[2] = 0x00;
 serversAddress.node[3] = 0x00;
 serversAddress.node[4] = 0x00;
 serversAddress.node[5] = 0x01;
 serversAddress.sock[0] = 0xDE;
 serversAddress.sock[1] = 0xAD;
 sndcall->addr.len = sndcall->addr.maxlen;

 /*
 ** Change SPXII options on t_connect
 */
 reqOpts = (SPX2_OPTIONS *)sndcall->opt.buf;
 reqOpts->versionNumber = OPTIONS_VERSION;
 reqOpts->spxIIOptionNegotiate = SPX2_NEGOTIATE_OPTIONS;
 reqOpts->spxIIRetryCount = 7;
 reqOpts->spxIIMinimumRetryDelay = 500; /* 1/2 second */
 reqOpts->spxIIMaximumRetryDelta = 2000; /* 2 seconds */
 reqOpts->spxIILocalWindowSize = 10;
 sndcall->opt.len = sndcall->opt.maxlen;

 if ((t_connect(spxFd, sndcall, rcvcall)) < 0) {
 t_error(“t_connect failed”);
 if (t_errno == TLOOK) {
 lookVal = t_look(spxFd);
 printLookVal(lookVal);
 }
 exit(-1);
 }
 /*
 ** Upon successful completion, rcvcall->opt.buf will have the
 ** connection identification number of the server and the current
 ** options.
 */
TLI/XTI for SPX/SPXII 191

 retOpts = (SPX2_OPTIONS *)rcvcall->opt.buf;
 retOpts = (SPX2_OPTIONS *)rcvcall->opt.buf;

 /* Save spxII session flags, needed for orderly release */
 spxIISessionFlags = retOpts->spxIISessionFlags;

 fprintf(stderr,“Servers Window size:----------- %06d\n”,
 retOpts->spxIIRemoteWindowSize);
 fprintf(stderr,“Servers connection ID Number:-- %06d\n”,
 GETINT16(retOpts->spxIIConnectionID));
 fprintf(stderr,“Inbound Packet size:----------- %06d\n”,
 retOpts->spxIIInboundPacketSize);
 fprintf(stderr,“Outbound Packet size:---------- %06d\n”,
 retOpts->spxIIOutboundPacketSize);
 fprintf(stderr,“SPXII Session Flags: ---------- 0x%04X\n”,
 retOpts->spxIISessionFlags);

 t_free((char *)rcvcall, T_CALL);
 t_free((char *)sndcall, T_CALL);
}

Example 2

{
 char *spxDevice = “/dev/nspx”;
 int spxFd;
 ipxAddr_t serversAddress;
 struct t_call *call;
 SPX_OPTS *ret_Opts;
 uint16 connectionId;
 ..
 ..
 ..

 /* Open an spx device */
 if ((spxFd = t_open(spxDevice, O_RDWR, &spxInfo)) <0) {
 t_error(“t_open failed”);
 exit(-1);
 }

 /* Bind to dynamic socket */
 if ((t_bind(spxFd, NULL, NULL)) < 0) {
 t_error(“t_bind failed”);
 exit(-1);
 }
192 NetWare Transports

 if ((spxFd=t_open(spxDevice, O_RDWR, &spxInfo))<0) {
 t_error(“t_open failed”);
 ..
 ..
 }

 /* Allocate call structure */
 if ((call = (struct t_call *)t_alloc(spxFd, T_CALL, T_ALL))==NULL) {
 t_error(“t_alloc of T_CALL failed”);
 exit(-1);
 }

 serversAddress = (ipxAddr_t*)call->addr,buf;
 serversAddress.net[0] = 0x01;
 serversAddress.net[1] = 0x01;
 serversAddress.net[2] = 0x03;
 serversAddress.net[3] = 0x8B;
 serversAddress.node[0] = 0x00;
 serversAddress.node[1] = 0x00;
 serversAddress.node[2] = 0x00;
 serversAddress.node[3] = 0x00;
 serversAddress.node[4] = 0x00;
 serversAddress.node[5] = 0x01;
 serversAddress.sock[0] = 0xDE;
 serversAddress.sock[1] = 0xAD;

 call->addr.len = call->addr.maxlen
 call->opt.len = 0;
 call->opt.buf = NULL;

 /*
 ** We pass the address of the call structure for both the request
 ** and return fields so that the call->opt.buf field will be filled
 ** in with the server’s information.
 */
 if ((t_connect(spxFd, call, call)) < 0) {
 t_error(“t_connect failed”);
 if (t_errno == TLOOK) {
 lookVal = t_look(spxFd);
 printLookVal(lookVal);
 }
 exit(-1);
 }

 /*
 ** Upon successful completion, call->opt.buf will have the
 ** connection identification number of the server.
 */
TLI/XTI for SPX/SPXII 193

 ret_Opts = (SPX_OPTS *)call->opt.buf;
 memcpy(&connectionId, ret_Opts->spx_connectionID,
 sizeof(connectionId));
 fprintf(stderr,“Servers connection ID number: %06d\n”,
 GETINT16(connectionId));
 t_free((char *)call, T_CALL);
}

State

The state after a successful connection establishment is T_DATAXFER
for both the client and server. The state after an unsuccessful connection
establishment is T_IDLE.

See Also

t_accept
t_listen
t_open
t_optmgmt
t_sndrel
194 NetWare Transports

t_listen

Enables an SPX/SPXII application server to
receive connection requests from SPX/SPXII
clients.

Syntax

#include”spx_app.h”

int t_listen (

int spxFd,

struct t_call *rcvcall)

Parameters

(IN) spxFd

Passes the file descriptor of the local transport endpoint.

(IN) rcvcall

Passes a pointer to a t_call structure. The fields in the structure must
be initialized to the proper size of the incoming data. See
“Remarks” for information about the fields and the appropriate
values for the fields.

(OUT) rcvcall

Receives the address of the remote endpoint, its connection ID, its
allocation number, and—if spxFd is an SPXII file descriptor—an
SPX2_OPTIONS structure. See “Remarks” for more information.

Return Values

See Network Programming Interfaces for other possible errors.

 0 Successful

 -1 Unsuccessful
TLI/XTI for SPX/SPXII 195

Remarks

The t_listen call enables an SPX/SPXII application server to receive
connection requests from SPX/SPXII clients. A successful t_listen call
returns the client’s address, connection ID, and allocation number. The
application server sends a response back to the client: either a t_accept
to accept the connection or a t_snddis to reject the connection.

This function works as specified in Network Programming Interfaces with
the following additions.

The t_call structure has the following format:

struct t_call {

struct netbuf addr;

struct netbuf opt;

struct netbuf udata;

int sequence;

};

The t_alloc call will allocate memory for all needed structures. It will
initialize the buf pointers and maxlen fields for all netbuf structures. The
len field of the netbuf structure must be initialized by the application for
buffers sent to SPX/SPXII.

The netbuf structure has the following format:

struct netbuf {

unsigned int maxlen;

unsigned int len;

char *buf;

};

Use of t_alloc to allocate structures will help ensure the compatibility of
user programs with future releases of SPXII.
196 NetWare Transports

On return, the addr.buf field will point to an ipxAddr_t structure with
the following format:

typedef struct ipxAddress{

 uint8 net[4];

 uint8 node[6];

 uint8 sock[2];

} ipxAddr_t;

A value is placed in the rcvcall.sequence field by SPX/SPXII. If the
application wants to accept the connection request, the sequence field
must be the same for the t_accept call. If the application wants to reject
the connection request it can use the t_snddis call with the same
sequence field from the t_listen call.

If t_listen returns successfully, rcvcall.addr points to an ipxAddr_t
structure that contains the net, node, and sock of the remote transport
endpoint requesting the connection. The net, node, and sock are in hi-lo
byte order. The rcvcall->opt.buf points to the option structure
(SPX2_OPTIONS or SPX_OPTS) returned by SPX. It will contain
information about the connection.

The SPX_OPTS structure has the following format:

typedef struct spxopt_s {

 unsigned char spx_connectionID[2];

 unsigned char spx_allocationNumber[2];

} SPX_OPTS;

See page 208 for the SPX2_OPTIONS structure format.

Both endpoints must support orderly release before an application can
use the orderly release calls. Although older versions of SPX did not
support orderly release, the spxIISessionFlags can be used to determine
whether both endpoints support orderly release. The spxIISessionFlags
in the opt (SPX2_OPTIONS) structure should be saved if the application
wants to use orderly release.

For further information, see t_sndrel on page 230 and t_optmgmt on
page 205.
TLI/XTI for SPX/SPXII 197

The t_listen call retrieves any connection requests residing on the
stream head. The t_listen call can function synchronously or
asynchronously.

◆ When the call functions synchronously, it blocks until a connection
request comes in.

◆ When the call functions asynchronously, it checks for a connection
request and returns failure if no connection requests exist.

SPX/SPXII ensures that each connection indication is unique by
dropping any duplicate connection requests. A duplicate request is a
request that comes from the same network, node, socket, and source
connection ID as a previous request.

When a t_connect call has been received from a client, the SPX/SPXII
server can either accept or reject the connection request.

◆ To accept the connection request, the SPX/SPXII server uses the
t_accept call. The sequence number from the t_listen call structure
should be the same for the t_accept call.

◆ To reject the connection, the SPX/SPXII server uses the t_snddis
call. The sequence number in the call structure used for the
t_snddis and sequence number in the t_listen call structure must
be the same.

SPX/SPXII sends a terminate connection indication if the application
issues a t_snddis after a t_listen return.

Example

{
 int spxFd;
 int len;
 uint32 spxIISessionFlags;
 struct t_call *rcvcall;
 SPX2_OPTIONS *retOpts;
 ipxAddr_t *ipxAddr;
 ..
 ..
198 NetWare Transports

 if((rcvcall = (struct t_call *)t_alloc(spxFd, T_CALL, T_ALL))==NULL) {
 t_error(“t_alloc of T_CALL failed”);
 exit(-1);
 }

 rcvcall->addr.len = rcvcall->addr.maxlen;
 rcvcall->opt.len = rcvcall->opt.maxlen;
 rcvcall->udata.len = 0;
 len = rcvcall->opt.maxlen;
 /*
 ** Since this is a synchronous call, the call will block until a
 ** connection request comes in. When the call returns, the
 ** rcvcall->addr will contain the remote address.
 ** The rcvcall->opt.buf will be a pointer to the option structure
 ** (SPX_OPTS or SPX2_OPTIONS). See t_optmgmt for the structure
 ** formats. If this call were in asynchronous mode, the t_listen
 ** call will return fail if no connection requests have arrived,
 ** or success if one has arrived.
 */

 /*
 ** Listen for a connect request
 */
 if ((t_listen(spxFd, rcvcall)) < 0) {
 t_error(“t_listen failed”);
 if (t_errno == TLOOK) {
 lookVal = t_look(spxFd);
 printLookVal(lookVal);
 }
 exit(-1);
 }

 ipxAddr = (ipxAddr_t *)rcvcall->addr.buf;
 fprintf(stderr,“\tConnect Request from:\n\t net 0x%02X%02X%02X%02X\n”,
 ipxAddr->net[0],ipxAddr->net[1],
 ipxAddr->net[2],ipxAddr->net[3]);
 fprintf(stderr,“\t node 0x%02X%02X%02X%02X%02X%02X\n”,
 ipxAddr->node[0],ipxAddr->node[1],ipxAddr->node[2],
 ipxAddr->node[3],ipxAddr->node[4],ipxAddr->node[5]);
 fprintf(stderr,“\t socket 0x%02X%02X\n”, ipxAddr->sock[0],
 ipxAddr->sock[1]);
TLI/XTI for SPX/SPXII 199

 retOpts = (SPX2_OPTIONS *)rcvcall->opt.buf;
 /* Save spxII session flags, which are needed for orderly release */
 spxIISessionFlags = retOpts->spxIISessionFlags;
 fprintf(stderr,“Clients Window size:----------- %06d\n”,
 retOpts->spxIIRemoteWindowSize);
 fprintf(stderr,“Clients connection ID Number:-- %06d\n”,
 GETINT16(retOpts->spxIIConnectionID));
 fprintf(stderr,“SPXII Session Flags: ---------- 0x%04X\n”,
 spxIISessionFlags);

 ..
 ..
 /* Accept this connect request on the same fd, only one connection */
 rcvcall->udata.len = 0;
 rcvcall->opt.len = len;

 if ((t_accept(spxFd, spxFd, rcvcall)) < 0) {
 t_error(“t_accept failed”);
 if (t_errno == TLOOK) {
 lookVal = t_look(spxFd);
 printLookVal(lookVal);
 }
 exit(-1);
 }
 t_free((char *)rcvcall, T_CALL);
}

State

When t_listen returns with a connect indication, the state will be
T_INCON.

See Also

t_accept
t_bind
t_connect
t_optmgmt
t_snddis
t_sndrel
200 NetWare Transports

t_open

Establishes a transport endpoint for a specified
transport provider.

Syntax

#include “spx_app.h”

int t_open (

char spxDevice,

int oflag,

struct t_info *spxInfo)

Parameters

(IN) spxDevice

Passes a pointer to the path of the SPXII driver.

(IN) oflag

Passes the option flags for the opened stream.

(IN) spxInfo

Passes a pointer to the t_info structure. See “Remarks” for the
format of the t_info structure.

(OUT) spxInfo

Receives the SPXII protocol information as a t_info structure. See
“Remarks” for the format of the t_info structure.

Return Values

See Network Programming Interfaces for other possible errors.

 >0 Successful

 -1 Unsuccessful
TLI/XTI for SPX/SPXII 201

If the t_open is successful, the value returned is a file descriptor that
identifies the local transport endpoint. This document uses the variable
spxFd to refer to this value.

If t_open returns an error, t_errno may be set to one of the following.

Remarks

The t_open function creates a local transport endpoint and returns
protocol-specific information associated with that endpoint as well as a
file descriptor that serves as the local identifier of the endpoint. Both
server and client applications can use this call to open a transport
endpoint.

This function works as specified in AIX Version 4 Technical Reference Vol.
4: Communications (SC23-2617-01). SPX/SPXII can be used either
synchronously or asynchronously.

The path and name of the clonable SPXII device is “/dev/nspx2” or
“/dev/nspx”. The difference between opening “nspx2” and “nspx”
depends on the options that are allowed in other TLI calls:

◆ Opening “nspx2” allows an expanded set of options associated
with SPXII (see the t_optmgmt documentation).

◆ Opening “nspx” allows a set of options compatible with SPX (see
the t_optmgmt documentation).

TSYSERR A system error has occurred during execution of this
function. Check errno for possible further information.

TBADFLAG An invalid flag was specified.
202 NetWare Transports

A successful t_open call returns a TLI information structure. The t_info
structure contains the following information about SPX/SPXII.

Example

 {
 char *spxDevice = “/dev/nspx2”;
 int spxFd;
 struct t_info spxInfo;
 ..
 ..

Table 7-3

SPX/SPXII Information in the t_info Structure

Field Value Description

addr 12 (bytes) This is the number of bytes required for an IPX address.
The address consists of three components:
 network address 4 bytes
 node address 6 bytes
 socket number 2 bytes

tsdu -1 An unlimited amount of data can be sent during a connection.

etsdu -2 Not supported.

connect -2 Not supported.

discon -2 Not supported.

servtype T_COTS_ORD The service type for SPXII is always T_COTS_ORD.
SPXII is a connection-oriented service with orderly release.

(nspx) options 4 SPX supports 4 bytes of option data.
For a description, see t_optmgmt.

(nspx2) options 52 SPXII supports 52 bytes of option data.
For a description, see t_optmgmt.
TLI/XTI for SPX/SPXII 203

 /* Open spxII with expanded options */
 if ((spxFd = t_open(spxDevice, O_RDWR, &spxInfo)) < 0) {
 fprintf(stderr,“open of %s failed \n”,spxDevice);
 t_error(“t_open failed”);
 exit(-1);
 }
 ..
 ..
 }

State

A t_open call changes the state of the service connection to T_UNBND
(unbound).

See Also

t_bind
t_close
t_optmgmt
204 NetWare Transports

t_optmgmt

Manages protocol-specific options.

Syntax

#include “spx_app.h”

int t_optmgmt (
int spxFd,

struct t_optmgmt *req,

struct t_optmgmt *ret)

Parameters

(IN) spxFd

Passes the file descriptor of the local transport endpoint.

(IN) req

Passes the address of the t_optmgmt structure that contains the
requested values for each option.

(IN) ret

Passes the address of a t_optmgmt structure that will contain the
granted values for each option.

(OUT) ret

Receives the granted values in the t_optmgmt structure.

Return Values

 0 Successful

 -1 Unsuccessful
TLI/XTI for SPX/SPXII 205

If t_optmgmt returns an error, t_errno may be set to one of the
following:

Remarks

The t_optmgmt function enables the user to get, verify, or negotiate
protocol options with the transport provider.

SPXII supports two different option structures: one for SPXII and the
other for SPX. The available options depend on whether you use
“nspx2” or “nspx”. The “nspx2” set of options is an expanded set, while
the “nspx” set of options is compatible with older versions of SPX.

This function works as specified in Network Programming Interfaces. This
call has one negotiable option that enables the SPX/SPXII user to set the
maximum number of retries when the SPXII driver tries to deliver data
reliably to the opposite transport endpoint.

The t_optmgmt structure has the following format:

struct t_optmgmt {

struct netbuf opt;

long flags;

};

The netbuf structure has the following format:

struct netbuf {

unsigned int maxlen;

unsigned int len;

char *buf;

};

TBADOPT The size of the structure was less than the size of the
SPX or SPXII option structure, or there has been an
internal SPX/TLI error.

TBADFLAG The flag specified is invalid.

TOUTSTATE This request was issued in some state other
than T_IDLE.
206 NetWare Transports

The t_optmgmt call uses two t_optmgmt structures: a request (req)
structure and a return (ret) structure. The same structure can be passed
as both the request structure and the return structure.

Although the SPX structure (SPX_OPTMGMT) is the same as in
previous releases of SPX, it should not be used for newly written
applications. SPX_OPTMGMT is available only for compatibility
reasons and has the following format:

typedef struct spx_optmgmt {

 uint8 spxo_retry_count;

 uint8 spxo_watchdog_flag;

 uint16 spxo_min_retry_delay;

} SPX_OPTMGMT;

The SPXII structure (SPX2_OPTIONS) is shown on the following page.
It is used for calls t_listen, t_accept, t_connect and t_optmgmt. Because
this structure is expandable in future versions of SPXII, a variable
should never be declared directly (such as “struct SPX2_OPTIONS
spxoptions;”). Likewise, the size of the structure should never be taken
(for example, “sizeof(SPX2_OPTIONS);”).

The t_alloc function should always be used to allocate the t_optmgmt
structure. The size of the opt.buf in the t_optmgmt structure can be
determined by either checking the value of the options field in the t_info
structure used during t_open, or by checking opt.maxlen after the
t_alloc call.

If the TLI calls are not used to allocate and determine the size, a TBUFOVFLW
error could be generated when an application is run with a newer version of
SPXII.

Only some of the SPXII structure elements are valid with the
t_optmgmt call. The others are used for t_listen, t_accept, and
t_connect.
TLI/XTI for SPX/SPXII 207

The SPXII structure (SPX2_OPTIONS) has the following format.

* Structure elements valid for t_optmgmt.

Table 7-4

The SPX2_OPTIONS Structure

Type Field Description

uint32 versionNumber * Must be set to
OPTION_VERSION

uint32 spxIIOptionNegotiate * Exchange options and
negotiate packet size with other
endpoint

uint32 spxIIRetryCount * Number of transmit retries on
data packets

uint32 spxIIMinimumRetryDelay * Minimum retry timeout, in
milliseconds

uint32 spxIIMaximumRetryDelta * Maximum retry delta, in
milliseconds

uint32 spxIIWatchdogTimeout This is a SYSTEM parameter
for UNIX SPXII

uint32 spxIIConnectionTimeout * Number of milliseconds to wait
for full connection setup

uint32 spxIILocalWindowSize * Number of data packets in
receive window

uint32 spxIIRemoteWindowSize Remote endpoints initial
receive window size

uint32 spxIIConnectionID Valid only after connection is
established

uint32 spxIIInboundPacketSize Maximum receive packet size

uint32 spxIIOutboundPacketSize Maximum transmit packet size

uint32 spxIISessionFlags Session characteristic options
208 NetWare Transports

The flags field in the t_optmgmt structure must be initialized to the
appropriate value. The t_optmgmt call supports the following flags:
T_NEGOTIATE, T_CHECK, and T_DEFAULT.

Example

 /*
 ** Change SPXII local window size and retry count.
 ** If SPX device, change retry count only.
 */

{
 struct t_optmgmt *req_opts;
 struct t_optmgmt *ret_opts;
 SPX2_OPTIONS *retIIOpts;
 SPX2_OPTIONS *reqIIOpts;
 SPX_OPTIONS *retOpts;
 SPX_OPTIONS *reqOpts;
 int len;
 ..
 ..

 /* Get proper size structure for request values t_optmgmt */
 if ((req_opts = (struct t_optmgmt *)
 t_alloc (spxFd, T_OPTMGMT, T_ALL)) == NULL) {
 t_error(“t_alloc failed”);
 exit(-1);
 }
 /* Get proper size structure for return values from t_optmgmt */
 if ((ret_opts = (struct t_optmgmt *)
 t_alloc (spxFd, T_OPTMGMT, T_ALL)) == NULL) {
 t_error(“t_alloc failed”);
 exit(-1);
 }
 len = req_opts->opt.maxlen;
 /*
 ** Get the DEFAULT options. Have defaults returned in request structure
 **/
 req_opts->flags = T_DEFAULT;
 req_opts->opt.len = len;
 if ((t_optmgmt(spxFd, req_opts, req_opts))<0) {
 fprintf (stderr,
 “t_optmgmt failed to %s failed t_errno= %d errno= %d\n”,
 spxDev, t_errno, errno);
 t_error (“t_optmgmt failed”);
 exit(-1);
 }
TLI/XTI for SPX/SPXII 209

 if (len == sizeof(SPX_OPTMGMT)) {
 /*
 ** SPX: Change retry count to 5.
 */
 reqOpts = (SPX_OPTMGMT *)req_opts->opt.buf;
 reqOpts->spxo_retry–count = 5;
 } else {
 /*
 ** SPXII: Change retry count to 5 and window size to 12.
 */
 reqIIOpts = (SPX2_OPTIONS *)req_opts->opt.buf;
 reqIIOpts->spxIIRetryCount = 5;
 reqIIOpts->spxIILocalWindowSize = 12;
 }
 req_opts->flags = T_NEGOTIATE;
 req_opts->opt.len = len;
 if ((t_optmgmt(spxFd, req_opts, ret_opts))<0) {
 fprintf (stderr,
 “t_optmgmt failed to %s failed t_errno= %d errno= %d\n”,
 spxDev, t_errno, errno);
 t_error (“t_optmgmt failed”);
 exit(-1);
 }
 t_free((char *)req_opts, T_OPTMGMT);
 t_free((char *)ret_opts, T_OPTMGMT);
 ..
 ..
}

State

The t_optmgmt call must be issued with the endpoint in the T_IDLE
state. The state does not change on the successful completion of the call.

See Also

t_accept
t_connect
t_listen
t_open
210 NetWare Transports

t_rcv

Receives data over an established transport
connection.

Synopsis

#include “spx_app.h”

int t_rcv (

int spxFd,

char *buf,

unsigned int nbytes,

int *flags)

Parameters

(IN) spxFd

Passes the file descriptor of the local transport endpoint.

(IN) buf

Passes the address of a buffer that will receive the data.

(IN) nbytes

Passes the maximum number of data bytes expected to be received.

(IN) flags

Passes the address of an integer that will indicate whether there is
more data to receive. SPX/SPXII does not support the
T_EXPEDITED flag.

(OUT) flags

Receives the flag (T_MORE) that indicates whether there is more
data to receive.
TLI/XTI for SPX/SPXII 211

Return Values

If the t_rcv is successful, the value returned is the actual number of data
bytes received. Refer to Network Programming Interfaces for additional
errors that may occur with this call.

If the watchdog determines that the remote transport endpoint is no
longer participating in the connection, the watchdog generates a
disconnect indication which causes t_rcv to return with a T_LOOK
error. (See t_rcvdis for more information.)

Remarks

The t_rcv function works as specified in Network Programming Interfaces,
except that the T_EXPEDITED flag is never set.

SPX/SPXII does perform flow control. If SPX/SPXII determines that
the remote endpoint is sending data faster than the application can
receive the data, a packet is sent notifying the remote endpoint to stop
sending data. When the application receives all of the data queued for
it, SPX/SPXII notifies the remote endpoint to begin sending data again.

The watchdog in the SPXII driver prevents blocking forever for a
packet. For example, suppose a local transport endpoint blocks waiting
for an incoming packet. While the local transport blocks, the remote
transport endpoint goes away before sending the packet. In this event,
the local transport endpoint could block forever. However, the
watchdog solves this problem by periodically checking all active
connections.

State

The t_rcv call is allowed only in the T_DATAXFER state. The state does
not change on successful completion of the call.

>=0 Successful.
Returns the number of bytes accepted by SPX/SPXII

 -1 Unsuccessful
212 NetWare Transports

See Also

t_look
t_open
t_rcvdis
t_snd
TLI/XTI for SPX/SPXII 213

t_rcvdis

Returns a disconnect indication from the remote
transport endpoint.

Synopsis

#include “spx_app.h”

int t_rcvdis (

int spxFd,

struct t_discon *discon)

Parameters

 (IN) spxFd

Passes the file descriptor of the local transport endpoint.

 (IN) discon

Passes the address of a t_discon structure.

(OUT) discon

Receives the information about the disconnect in the t_discon
structure.

Return Values

If any of the following conditions occur, a disconnect indication is
generated and passed to the stream head.

 0 Successful

 -1 Unsuccessful
214 NetWare Transports

 In the following situations, the reason integer of the t_discon structure
is set accordingly:

Remarks

The t_rcvdis function works as specified in Network Programming
Interfaces with the following additions:

The t_discon structure has the following format:

struct t_discon {

struct netbuf udata;

int reason;

int sequence;

};

The SPXII driver does not use the udata field in the t_discon structure.
SPX/SPXII doesn’t support the transmission of any user data with a
disconnect request.

Upon receiving a disconnect request, SPX/SPXII sets the stream to a
T_IDLE state.

TLI_SPX_CONNECTION_FAILED The remote transport endpoint fails to acknowledge any
transmission. This is generated by the SPX/SPXII
watchdog after failing to connect to the remote transport
endpoint.

 or The SPXII driver could not reliably deliver the data or
connection request. The remote transport endpoint doesn’t
acknowledge transmissions.

 or SPXII has tried a number of times to allocate memory and
has failed.

TLI_SPX_CONNECTION_TERMINATED No error occurred. An SPX/SPXII terminate connection
packet was received from the remote transport endpoint.
TLI/XTI for SPX/SPXII 215

Because a transmission error or a disconnect indication can arrive at
any moment from the remote transport endpoint, the application needs
to be aware of the asynchronicity of the disconnect indication arrival.

Example 1

/* The following code has two examples. The first example shows
** how to accept a disconnect indication that you know has arrived.
** The second example shows how to loop while you wait for a
** disconnect indication to arrive.
*/

{
 struct t_discon *discon;
 ..
 ..

 if((discon = (struct t_discon *)t_alloc(spxFd, T_DIS, T_ALL))==NULL) {
 t_error(“t_alloc of T_DIS failed”);
 exit(-1);

 discon->udata.len = 0;
 if(t_rcvdis(spxFd, discon) < 0) {
 t_free((char *)discon, T_DIS);
 t_error(“t_rcvdis failed”);
 exit(-1);
 }

 switch(discon->reason) {
 case TLI_SPX_CONNECTION_TERMINATED:
 fprintf(stderr,”Connection terminated by remote endpoint.\n”);
 ..
 ..
 break;
 case TLI_SPX_CONNECTION_FAILED:
 fprintf(stderr,”Connection failed.\n”);
 ..
 ..
 break;
 }
 t_free((char *)discon, T_DIS);
 t_close(spxFd);
}

216 NetWare Transports

Example 2

/*
** This example shows how to loop while you wait for a disconnect
** indication to arrive.
*/

{
 int lookVal;
 struct t_discon *discon;
 ..
 ..

 while(lookVal = t_look(spxFd)) {
 if (lookVal < 0) {
 t_error(“t_look failed”);
 exit(-1);
 }
 if (lookVal == 0) { /* Nothing there. Wait */
 sleep(1);
 continue;
 }
 if (lookVal == T_DISCONNECT) {
 if((rcvdis=(struct t_discon *)t_alloc(spxFd,T_DIS,T_ALL)) == 0) {
 t_error(“t_alloc of T_DIS failed”);
 exit(-1);
 }
 rcvdis->udata.len = 0;
 if(t_rcvdis(spxFd, rcvdis) < 0) {
 t_free((char *)rcvdis, T_DIS);
 t_error(“t_rcvdis failed”);
 exit(-1);
 }
 switch(discon->reason) {

 case TLI_SPX_CONNECTION_TERMINATED:
 fprintf(stderr,“Connection terminated by other endpoint\n”);
 ..
 ..
 break;

 case TLI_SPX_CONNECTION_FAILED:
 fprintf(stderr,“Connection failed.\n”);
 ..
 ..
 break;
 }
TLI/XTI for SPX/SPXII 217

 t_free((char *)rcvdis, T_DIS);
 break;
 }
 if (lookVal == T_ORDREL) {
 fprintf(stderr, “got T_ORDREL\n”);
 if(t_rcvrel(spxFd) < 0) {
 t_error(“t_rcvrel failed”);
 exit(-1);
 }
 break;
 } else {
 fprintf(stderr, “Not T_DISCONNECT or T_ORDREL %d\n”,lookVal);
 ..
 .. /* Take care of event */
 ..
 continue;
 }
 }
 t_close(spxFd);
}

State

The state after a t_rcvdis call is T_IDLE.

See Also

t_connect
t_listen
t_snddis
218 NetWare Transports

t_rcvrel

Acknowledges receipt of an orderly release
indication.

Synopsis

#include “spx_app.h”

int t_rcvrel (
int spxFd)

Parameters

(IN) spxFd

Passes the file descriptor of the local transport endpoint.

Return Values

If t_rcvrel returns a error, t_errno may be set to one of the following:

 0 Successful

-1 Unsuccessful

 TBADF The specified file descriptor does not refer to a
transport endpoint.

TNOREL No orderly release indication currently exists.

TLOOK An asychronous event has occurred on the transport
endpoint referenced by spxFd and requires
immediate attention.

TSYSERR A system error has occurred during execution of this
function; check errno for possible further information.

TNOTSUPPORTED This function is not supported by the underlying
transport provider.
TLI/XTI for SPX/SPXII 219

Remarks

The t_rcvrel function is used to acknowledge receipt of an orderly
release indication. After receipt of this indication, the user should not
attempt to receive more data because such an attempt will block
forever.

This call works as specified in Network Programming Interfaces.

Because the other endpoint might send a T_DISCONNECT, a user
should not loop waiting only for an orderly release indication.

If a loop is desirable, t_look should be used to detect T_INREL or
T_DISCONNECT.

If a t_sndrel call has not been issued by the user, the user can continue
to send data over the connection.

If the connection is not an SPXII connection, TNOREL is returned.

The correct procedure to orderly terminate an SPXII connection is for
both endpoints to send an orderly release request when there is no more
data to send. Then both continue to read data until an orderly release
indication is received. At this point both endpoints are finished sending
and receiving data, and the connection state is set to T_IDLE.

Example

{
 int spxFd;
 ..
 ..
 /*
 ** Receive data loop
 */
 while ((rcvbytes = t_rcv(spxFd,dataBuf,sizeof(dataBuf),&flags))!= -1)
{
 fprintf(stderr,“received %d bytes Do something with them\n”,rcvbytes);
 }

 /* t_rcv failed. Find out why */
 if (t_errno == T_LOOK) {
 lookVal = t_look(spxFd);
 switch (lookVal) {
 case T_ORDREL:
220 NetWare Transports

 /*
 ** If Orderly Release, receive it and continue
 */
 if(t_rcvrel(spxFd) < 0) {
 t_error(“t_rcvrel failed”);
 exit(-1);
 }
 break;
 case T_DISCONNECT:
 /*
 ** If disconnect, exit now
 */
 if(t_rcvdis(spxFd) < 0) {
 t_error(“t_rcvrel failed”);
 exit(-1);
 }
 exit();
 default:
 fprintf(stderr,“t_look return %d in receive loop\n”,lookVal);
 exit();
 }
 } else {
 t_error(“t_rcv failed “);
 exit(-1);
 }
 /*
 ** Send more data; then send Orderly Release request
 */
 ..
 ..
 t_close(spxFd);
}

State

If an orderly release request has been sent, the state will change from
T_OUTREL to T_IDLE.

If an orderly release request has not been sent, the state will change from
T_DATAXFER to T_INREL.

See Also

t_sndrel
TLI/XTI for SPX/SPXII 221

t_snd

Sends data over a transport connection.

Syntax

#include “spx_app.h”

int t_snd (

int spxFd,

char *buf,

unsigned int nbytes,

int flags)

Parameters

(IN) spxFd

Passes the file descriptor of the local transport endpoint.

(IN) buf

Passes the address of the buffer that contains the data to be sent.

(IN) nbytes

Passes the actual number of bytes to be sent.

(IN) flags

Passes a flag (T_MORE) that indicates whether there is more data
to send. (SPX/SPXII does not support the T_EXPEDITED flag.)

Return Values

 >= 0 Successful.
Returns the number of bytes accepted by SPX/SPXII

 -1 Unsuccessful
222 NetWare Transports

If the remote transport endpoint has gone away or fails to acknowledge
the transmitted data, the SPXII driver generates a disconnect indication
and changes the state of the local transport endpoint to T_IDLE.

Following the TLI specification, any t_snd issued in the T_IDLE state is
dropped by the SPXII driver. From the SPX/SPXII user’s point of view,
this indication is noticed only if that user issues some call other than
t_snd.

The SPX/SPXII user should check the return code in the disconnect
indication to make sure it is TLI_SPX_CONNECTION_TERMINATED.

The following errors can occur during the send request. These errors
lock the stream and disable the local transport endpoint. Only errno is
set to the following value (t_errno is not affected):

Remarks

The t_snd function works as specified in Network Programming
Interfaces. All data is sent on a first-come, first-served basis.

During the period of the connection, SPX/SPXII uses the most recent
round-trip delay multiplied by 1.5 as the timeout for the next
retransmission.

The T_MORE flag is supported by SPX/SPXII.

◆ If the UNIX application sets the T_MORE flag when doing a t_snd,
the EOF bit is not set in the SPX/SPXII packet header.

◆ If the receiving client is a UNIX machine, the T_MORE flag is set in
the t_rcv call.

EPROTO The data request was issued from a state other than
T_DATAXFER. This transport endpoint is no longer
valid and must be closed.

or

The size of the data request header or data portion of
the message received by SPXII was invalid (too small
or too large). This transport endpoint is no longer
valid and must be closed.
TLI/XTI for SPX/SPXII 223

◆ If the receiving client is a DOS/OS2 application, the EOF bit is not
set in the SPX/SPXII packet header.

SPXII breaks any large send requests into a series of maximum packets
for the given connection.

Example

/*
** SpxII will partition large messages into appropriately
** sized packets.
*/

#define TRANS_BUFFER_SIZE 4096
int flags;
int bytesRead;
unsigned char readBuffer[TRANS_BUFFER_SIZE];
char *someFileString = “someFileName”;
FILE *fp;

/* Open the file to send */
if ((fp=fopen(someFileString, “r+b”)) == NULL) {
 perror(“open failed “);
 ..
}

/* While there is data in the file, tell the remote endpoint that
** there is still data for this transmission */
flags = T_MORE;
while (!feof(fp)) {
 bytesRead=fread(readBuffer, 1, TRANS_BUFFER_SIZE, fp);
 /*
 ** spxFd2 is the local endpoint that has been bound and
 ** connected to a server */
 if (t_snd(spxFd2, readBuffer, bytesRead, flags)<0) {
 t_error(“t_snd failed “);
 ..
 ..
 }
 ..
 ..
}

 /* Check that we haven’t been cut off by remote end. NOTICE that the
 ** return code is greater than zero if we received a disconnect
 ** indication.
 */
224 NetWare Transports

if (t_rcvdis(spxFd2, &disconnectInfo)>=0) {
 printf(“remote endpoint aborted connection \n”);
 ..
 ..
}
/* Send one byte with the T_MORE flag turned off to indicate EOF */
flags = 0;
if (t_snd(spxFd2, readBuffer, 1, flags)<0) {
 t_error(“t_snd failed “);
 ..
 ..
}

State

The t_snd call is allowed only in the T_DATAXFER state. If any errors
occur, the state moves to T_IDLE.

See Also

t_open
t_rcv
TLI/XTI for SPX/SPXII 225

t_snddis

Aborts a connection or rejects a connection
request.

Syntax

#include “spx_app.h”

int t_snddis (

int spxFd,

struct t_call *call)

Parameters

(IN) spxFd

Passes the file descriptor that was returned by t_open.

(IN) call

Passes the address of a t_call structure.

Return Values

Refer to Network Programming Interfaces for errors that may occur with
this call.

Remarks

The t_snddis function sends a connection termination request, which
initiates the abortive release of a transport connection. It is used when
the application wishes to abort or break a connection. This call can be
issued by either transport user, and it may also be used to reject a
connect request during the connection establishment phase.

This function works as specified in Network Programming Interfaces.

 0 Successful

 -1 Unsuccessful
226 NetWare Transports

A t_snddis call generates an SPX/SPXII terminate connection request
and releases all outstanding data messages on both the local and remote
transport endpoint.

After an application issues a t_snddis, the application can do a
t_unbind and t_close immediately without waiting.

SPX/SPXII doesn’t support the function of sending address options or
user data along with a disconnect request.

The correct procedure for terminating an SPX/SPXII connection is for
both transport endpoints to correlate the moment that the connection is
no longer needed, and then use t_snddis and t_rcvdis to terminate the
connection or use orderly release now supported in SPXII.

The code samples illustrate the following:

◆ Example 1 shows how to terminate a connection that is in a
T_DATAXFER state.

◆ Example 2 shows how to deny a connection request.

Example 1

{
 ..
 ..
 /*
 ** If you want to terminate the current connection and the
 ** state is T_DATAXFER, you do not need to send a pointer to
 ** the t_call structure.
 */

 if(t_snddis(spxFd, (struct t_call *)NULL) < 0) {
 t_error(“t_snddis failed “);
 exit(-1);
 }
 ..
 ..
 t_close(spxFd);
}

TLI/XTI for SPX/SPXII 227

Example 2

/*
** If you wish to deny a connection request, you must supply the
** sequence number. The sequence number is in the sequence field of
** the t_call structure. The code below listens for connect request
** the uses the option structure returned by the listen to test if
** the other endpoint is using spxII. The t_listen sets the sequence
** field of the t_call structure, we use the same structure that
** t_listen returned to deny the connect request if the other
** endpoint is not using spxII.
*/

{
 struct t_call *rcvcall;
 SPX_OPTMGMT *retOpts;
 ..
 ..
 ..
 ..
 if((rcvcall = (struct t_call *)t_alloc(spxFd, T_CALL,T_ALL)) == NULL) {
 t_error(“t_alloc of T_CALL failed”);
 exit(-1);
 }

listenAgain:

 rcvcall->addr.len = rcvcall->addr.maxlen;
 rcvcall->opt.len = rcvcall->opt.maxlen;
 rcvcall->udata.len = 0;

/*
** Listen for a connect request
*/
 if ((t_listen(spxFd, rcvcall)) < 0) {
 t_error(“t_listen failed”);
 exit(-1);
 }

/*
** Deny connection request if other endpoint is not spxII
*/
 retOpts = (SPX2_OPTIONS *)rcvcall->opt.buf;
 if (!(retOpts->spxIISessionFlags & SPX_SF_SPX2_SESSION)) {
 rcvcall->addr.len = 0;
 rcvcall->udata.len = 0;
 rcvcall->opt.len = 0;
 if(t_snddis(spxFd, rcvcall) < 0) {
228 NetWare Transports

 t_error(“t_snddis failed “);
 t_free((char *)rcvcall, T_CALL);
 exit(-1);
 }
 ..
 ..
 ..
 ..
 ..
 goto listenAgain;
 }
 t_free((char*)rcvcall, T_CALL);
 ..
 ..
 ..
 ..
 ..
}

State

Regardless of the success of the call, the state is T_IDLE.

See Also

t_connect
t_listen
t_rcvdis
TLI/XTI for SPX/SPXII 229

t_sndrel

Requests an orderly release of an SPXII
connection.

Syntax

#include “spx_app.h”

int t_sndrel (
int spxFd)

Parameters

 (IN) spxFd

Passes the file descriptor of the local transport endpoint.

Return Values

If t_sndrel returns an error, t_errno may be set to one of the following:

 0 Successful

 -1 Unsuccessful

TBADF The specified file descriptor does not refer to a
transport endpoint.

TFLOW O_NDELAY or O_NONBLOCK was set, but flow
control prevented SPXII from accepting the function
at this time.

TSYSERR A system error has occurred during execution of this
function; check errno for possible further information.

TNOTSUPPORTED This function is not supported by the underlying
transport provider.
230 NetWare Transports

If t_sndrel is issued from an invalid state or if the connection is not an SPXII
connection, SPXII will generate a fatal EPROTO error. However, this error may
not occur until a subsequent reference to SPXII.

Remarks

The t_sndrel function is used to initiate an orderly release of a transport
connection and indicates to the transport provider (SPXII) that the
transport user (application) has no more data to send.

This function is supported only when both endpoints are using SPXII.

This function works as specified in Network Programming Interfaces. A
t_sndrel call sends a orderly release request, indicating to both
endpoints that the user sending the orderly release will not send any
more data. However, a user may continue to receive data if an orderly
release indication has not been received.

Even if the service type T_COTS_ORD is returned on t_open or
t_getinfo, t_sndrel may return EPROTO if the connection is not an
SPXII connection. The spxIISessionFlags returned in the opt structure
from the t_listen or the t_connect function calls can be examined to
determine whether the connection is SPXII.

The correct procedure for an orderly termination of an SPXII connection
is for both endpoints to send an orderly release request when there is no
more data to send. Then both continue to read data until an orderly
release indication is received. At this point, both endpoints are finished
sending and receiving data, and the connection state is set to T_IDLE.

Example

{
 int spxFd;
 ..
 ..

 /* All done sending data. Send orderly release. */
 if(t_sndrel(spxFd) < 0) {
 t_error(“t_sndrel failed”);
 exit(-1);
 }
 /*
TLI/XTI for SPX/SPXII 231

 ** Receive more data and wait for orderly release indication.
 */
 ..
 ..
 t_close(spxFd);
}

State

If an orderly release indication has been received, the state will change
from T_INREL to T_IDLE after t_sndrel is called.

If an orderly release indication has not been received, the state will
change from T_DATAXFER to T_OUTREL after t_sndrel is called.

See Also

t_rcvrel
232 NetWare Transports

c h a p t e r 8 SAP Library
Overview

One of the design goals for NetWare transports for the UNIX
environment has been to provide an easy to use application
programming interface for NetWare service advertising and service
queries. The SAP library has been written to accomplish this goal.

The SAP library provides functionality in two modes. The mode used
by the library is dependent upon the status of the NetWare SAP daemon
(SAPD).

◆ If the SAP daemon is not active, the SAP library is unable to
advertise any services to the network.

In this mode, all service queries are handled by passing the request
to the network and processing the responses.

◆ If the SAP daemon is active, all of the SAP library functions are
supported.

In this mode, the SAP library is an Inter Process Communication
(IPC) library designed for processes running on the same platform
as the NetWare protocol stack. It provides fast and convenient
access to the information that the SAP daemon maintains.

As these functions become part of the Application Programming
Interface (API) and Transport products, application developers can use
them for the following tasks:

◆ Obtaining SAP information

◆ Authorizing the SAP daemon to advertise an application server

◆ Informing the SAP daemon that the application server is going
down
SAP Library 233

For example, SAP implementations for UNIX processes, such as the
Server Advertiser daemon and the Print Server daemon, use these
functions.

With the SAP daemon running, none of the SAP library query functions
send SAP packets out on the wire; they all obtain their information
directly from tables maintained by the SAP daemon in a mapped
memory region. Those functions that use mapped memory
automatically attach to the mapped memory region at the beginning of
each call and detach at the end of the call.

For those processes that desire multiple accesses to the SAP
information, SAPMapMemory allows the process to attach to the
mapped memory region and remain attached to the mapped memory
region until a detach function is used.

All functions in the SAP library use this mapped memory region except
for the following:

SAPAdvertiseMyServer
SAPNotifyOfChange
Advertise Service
ShutdownSAP

The functions that use the mapped memory region can only read
information; they cannot update or write to it. Hence, the functions that
require the updating of information (the four functions listed above) do
not use the mapped memory region.

Reference for SAP Functions

The following functions are defined in the “sap_app.h” file or in the
“sap_dos.h” file:

Table 8-1

Descriptions of SAP Functions

Name Description

SAPMapMemory Attaches to SAP daemon mapped memory

SAPUnmapMemory Detaches from SAP daemon mapped
memory
234 NetWare Transports

The functions are documented in the sections below.

SAPStatistics Gets SAP daemon statistics

SAPGetAllServers Gets all server information

SAPGetNearestServer Gets information for the nearest server of a
specific type

SAPGetChangedServers Gets changed server information

SAPNotifyOfChange Registers a callback function to be activated
if server information has changed

SAPGetServerByAddr Gets server information by address

SAPGetServerByName Gets server information by name

SAPAdvertiseMyServer Starts (or stops) the advertising of a service
of a specific type

SAPListPermanentServers Gets information about servers that have
been advertised with an Advertise Forever
flag

SAPGetLanData Gets LAN statistics for NetWare
management

SAPPerror Prints error message

AdvertiseService Native NetWare-compatible function;
advertises a service of a specific type

ShutdownSAP Native NetWare-compatible function;
discontinues advertising of all services
advertised by the calling process

QueryServices Native NetWare-compatible function;
allows General and Nearest Server Queries
of specific server types

Table 8-1 continued

Descriptions of SAP Functions

Name Description
SAP Library 235

SAPMapMemory

Attaches to SAP daemon’s mapped memory.

Syntax

#include “sap_app.h”

int SAPMapMemory()

Parameters

None

Return Values

Remarks

SAPMapMemory causes the process to map to the SAP daemon’s
mapped memory region in a read-only mode

This function always returns successfully when the SAP daemon is not running.

 0 Successful

 -7 Unable to find “nwconfig” file; or nwconfig parameter
not present

-22 Unable to generate mapped memory ID key

-23 Unable to get mapped memory ID

-24 Unable to attach to mapped memory
236 NetWare Transports

Example

int ret;
ret = SAPMapMemory();

See Also

SAPUnmapMemory
SAP Library 237

SAPUnmapMemory

Detaches from SAP daemon mapped memory.

Syntax

#include “sap_app.h”

void SAPUnmapMemory()

Parameters

None

Return Values

None

Remarks

SAPUnmapMemory causes the process to unmap from the SAP
daemon mapped memory region.

Example

SAPUnmapMemory ();

See Also

SAPMapMemory
238 NetWare Transports

SAPStatistics

Gets SAP daemon statistics.

Syntax

#include “sap_app.h”

int SAPStatistics(

 SAPD *sapstats)

Parameters

(OUT) sapstats

 Pointer to the address of the SAPD structure.

Return Values

Remarks

SAPStatistics returns a structure filled with statistics about the SAP
process and the available services. The sapstats argument specifies the
address of the SAPD structure which receives the statistics.

This function is supported only when the SAP daemon is running.

The SAPD structure contains the following fields:

typedef struct sap_data {

time_t StartTime;

pid_t SapPid;

uint16 Lans;

uint8 MyNetworkAddress[IPX_ADDR_SIZE];

int32 ConfigServers;

 0 Successful

-10 Not supported (SAP daemon not running)
SAP Library 239

clock_t RevisionStamp;

int32 ServerPoolIdx;

uint32 ProcessesToNotify;

uint32 NotificationsSent;

uint32 TotalInSaps;

uint32 GSQReceived;

uint32 GSRReceived;

uint32 NSQReceived;

uint32 SASReceived;

uint32 SNCReceived;

uint32 GSIReceived;

uint32 NotNeighbor;

uint32 EchoMyOutput;

uint32 BadSizeInSaps;

uint32 BadSapSource;

uint32 TotalInRipSaps;

uint32 BadRipSaps;

uint32 RipServerDown;

uint32 TotalOutSaps;

uint32 NSRSent;

uint32 GSRSent;

uint32 GSQSent;

uint32 SASAckSent;

uint32 SASNackSent;

uint32 SNCAckSent;

uint32 SNCNackSent;

uint32 GSIAckSent;

uint32 BadDestOutSaps;

uint32 SrvAllocFailed;

uint32 MallocFailed;

} SAPD, *SAPDP;

To display the information maintained by the SAPD structure, see the
nwsapinfo utility in the Utilities manual.
240 NetWare Transports

Table 8-2 describes the control information fields of the SAPD structure
(this is internal information concerning configuration and local
requests).

Table 8-2

SAPD Control and Miscellaneous Information Fields

Field Description

SapPid Process ID of SAP daemon process

Lans Number of connected LANs, including
internal LAN

MyNetworkAddress Workstation network address

ConfigServers Total configured server entries

RevisionStamp Revision of last update

ServerPoolIdx Index to next unused server entry

ProcessesToNotify Number of processes to notify of changes

NotificationsSent Number of notifications sent to processes

GSIReceived Number of local SAP Get Mapped Memory ID
requests

GSIAckSent Number of Get Mapped Memory ID ACKs

TotalInRipSaps Total “RIP network down” packets received

BadRipSaps Bad “RIP network down” packets received

RipServerDown Server set to “down” due to RIP interaction
SAP Library 241

The statistical fields in the SAPD structure contain counts only for
 over-the-wire requests and responses. Table 8-3 describes each of these
statistical fields.

Table 8-3

SAPD Statistical Fields

Statistical Type Field Description

StartTime Time in seconds since SAPD was started

Packets Received TotalInSaps Total SAP packets received

GSQReceived General Server Query packets received

GSRReceived General Server Reply packets received

NSQReceived Nearest Server Query packets received

SASReceived Number of local servers that have requested SAP to
advertise their service (SAS requests)

SNCReceived Number of local processes that have requested
notification of changes (SNC requests)

NotNeighbor Packets received from sources not on LAN. If all SAP
agents on the LAN are functioning correctly, this should
be zero.

EchoMyOutput Broadcast packets sent by SAPD which were echoed
back to SAPD by the LAN driver. This should be zero.

BadSizeInSaps Packets received which have an incorrect packet size.
This should be zero.

BadSapSource. Packets received which have a bad source address

Packets Sent TotalOutSaps Total SAP packets sent

NSRSent Nearest Server Response packets sent

GSRSent General Service Reply packets sent

GSQSent General Service Query packets sent

SASAckSent ACKs sent in response to SAS requests (see the
SASReceived field)
242 NetWare Transports

Example

SAPD sapstats;
ret = SAPStatistics(&sapstats);

SASNackSent NAKs (negative acknowledgments) sent in response to
SAS requests (see the SASReceived field)

SNCAckSent ACKs sent in response to SNC requests (see the
SNCRequest field)

SNCNackSent NAKs sent in response to SNC requests (see the
SNCRequest field)

BadDestOutSaps SAP packets sent which had an invalid destination
network address

Memory Error SrvAllocFailed Number of server allocation request failures. If greater
than zero, indicates memory problems. The NetWare
protocol stack needs to be downed, SAPD reconfigured
for a larger shared memory region, and the NetWare
protocol stack started again.

MallocFailed Number of Malloc request failures. If greater than zero,
indicates memory problems. The NetWare protocol
stack needs to be downed, SAPD reconfigured for a
larger shared memory region, and the NetWare
protocol stack started again.

Table 8-3 continued

SAPD Statistical Fields

Statistical Type Field Description
SAP Library 243

SAPGetAllServers

Gets all server information.

Syntax

#include “sap_app.h”

int SAPGetAllServers(

 uint16 ServerType,

 int *ServerEntry,

 SAPI *ServerBuf,

 int MaxEntries)

Parameters

(IN) ServerType

Specifies either a type of server or ALL_SERVER_TYPE to obtain
information on all servers. Servers types are defined in the include
file and are listed in Table 8-5 on page 262.

(IN/OUT) ServerEntry

Pointer to an index value that indicates the position in SAP
responses from which the next MaxEntries will be returned.
Modified on return. Should initially be set to 0.

(OUT) ServerBuf

Specifies the address of a buffer of size (sizeof(SAPI) * MaxEntries)
which will be filled with SAPI entries.

(IN) MaxEntries

Specifies the maximum number of SAPI entries which can be put in
ServerBuf.
244 NetWare Transports

Return Values

Remarks

SAPGetAllServers fills the provided buffer with one or more SAPI
structures. The SAPI structure contains information about the server
type requested. All integer values are returned in machine order,
including those values in the netInfo_t structure. However, the
serverAddress field is returned in network order.

The SAPI structure has the following format.

typedef struct sap_info {

uint16 serverType;

uint8 serverName[SAP_MAX_SERVER_NAME_LENGTH];

ipxAddr_t serverAddress;

uint16 serverHops;

netInfo_t netInfo;

} SAPI, *SAPIP;

The SAPI structure is similar to the information obtained from SAP
information packets except that it includes an additional structure,
netInfo_t, which describes the local network used to access the server.
All values in the netInfo_t structure are returned in machine order.

The netInfo_t structure has the following format:

typedef struct netInfo {

uint32 netIDNumber;

uint16 timeToNet;

uint8 hopsToNet;

uint8 netStatus;

uint32 lanIndex;

} netInfo_t;

 >=0 Successful

 < 0 Unsuccessful
SAP Library 245

Table 8-4 describes the fields of the netInfo_t structure.

If your host configuration is set so that the SAP daemon is running, the
netInfo_t structure will be filled. If SAPD is not active,
SAPGetAllServers retrieves its information from the network and the
netInfo_t structure is then set to NULL.

The ServerEntry argument must be set to zero on the first call and is
updated by the SAPGetAllServers function. The updated value should
be passed on subsequent calls. You should not modify the contents of
ServerEntry except to set the initial value of zero.

If successful, the function returns the number of SAPI entries placed in
ServerBuf. The ServerEntry argument is set to the index of the next server
entry to be read when the next function call is made. All server entries
have been returned when the function return value is less than the
value of MaxEntries or zero.

If an error occurs, the function returns a negative number which is the
negative of the error code.

Example

ServerType = FILE_SERVER_TYPE;
ServerEntry = 0;
MaxEntries = 1;

ret = SAPGetAllServers (ServerType, &ServerEntry, &ServerBuf, MaxEntries);

Table 8-4

netInfo_t Fields

Field Description

netIDNumber Network address

timeToNet Number of ticks to the network (Tick = 1/18 second)

hopsToNet Intermediate networks

netStatus Network status (defined in “ripx_app.h”)

lanIndex Index to the network’s LANs
246 NetWare Transports

SAPGetNearestServer

Gets information for the nearest server of a specific
type.

Syntax

#include “sap_app.h”

int SAPGetNearestServer(
 uint16 ServerType,

 SAPI *ServerBuf)

Parameters

(IN) ServerType

Specifies the type of server requested.

(OUT) ServerBuf

Pointer to the address of a SAPI structure to receive the server entry
information.

Return Values

Remarks

SAPGetNearestServer returns the nearest server of the type specified.
The ServerType argument specifies the type of server requested. The
ALL_SERVER_TYPE constant is not a legal value for ServerType on this
call. The ServerBuf argument specifies the address of a SAPI structure to
receive the server entry information. Server types are defined in the
include file and listed in Table 8-5 on page 262.

 1 Successful

 0 No servers of the specified type exist.

<0 Unsuccessful
SAP Library 247

If your host configuration is set so that the SAP daemon is running, the
netInfo_t structure will be filled.

If SAPD is not active, SAPGetAllServers retrieves its information from
the network and the netInfo_t structure is then set to NULL.

If successful, the function returns 1 (the number of server entries placed
in ServerBuf). If no servers of the specified type exist, the function
returns 0. If the function fails, it returns a negative number which is the
negative of the error code.

Example

ServerType = PRINT_SERVER_TYPE;
ret = SAPGetNearestServer (ServerType, &ServerBuf);
248 NetWare Transports

SAPGetChangedServers

Gets changed server information.

Syntax

#include “sap_app.h”

int SAPGetChangedServers(

 uint16 ServerType,

 int *ServerEntry,

 SAPI *ServerBuf,

 int MaxEntries,

 uint32 RevisionStamp,

 uint32 *NewRevisionStamp)

Parameters

(IN) ServerType

Specifies either the type of Server desired or ALL_SERVER_TYPE
to obtain information on all servers. Server types are defined in the
include file and listed in Table 8-5 on page 262.

(IN/OUT) ServerEntry

Pointer to an index value that indicates position in SAP responses
from which the next MaxEntries will be returned. Modified on
return. Should initially be set to zero (0).

(OUT) ServerBuf

Pointer to the address of a buffer of size (sizeof(SAPI) * MaxEntries)
which will be filled with SAPI entries.

(IN) MaxEntries

Specifies the maximum number of SAPI entries which can be put in
ServerBuf.

(IN) RevisionStamp

Address of the NewRevisionStamp value returned by the previous
series of calls to SAPGetChangedServers. See “Remarks” below.
SAP Library 249

(IN/OUT)NewRevisionStamp

Pointer to the value returned to be used in the next series of calls.
See “Remarks” below.

Return Values

Remarks

SAPGetChangedServers returns information about servers that have
changed since the last time the function was called.

This function is supported only when the SAP daemon is running.

Each server entry in the mapped memory region is stamped with a
revision or change stamp. Server entries are returned that have a value
greater than the value of RevisionStamp passed on the function call.
Information about servers that are no longer alive (HOPS >= 16) will
also be returned if the server RevisionStamp value is greater than the
function RevisionStamp value. Dead servers are never purged from the
mapped memory region. When that server is reactivated, the same
entry is updated to show the new status.

All server entries are maintained in the mapped memory region by
server name and server type.

The ServerEntry argument must be set to zero on the first call and is
updated by SAPGetChangedServers function. The updated value
should be passed on subsequent calls. You should not modify the
contents of ServerEntry except to set the initial value to zero.

The MaxEntries argument specifies the maximum number of SAPI
entries which can be put in ServerBuf.

The RevisionStamp argument is the NewRevisionStamp value returned by
the previous series of calls to SAPGetChangedServers. Server entries
with a revision stamp greater than the function’s RevisionStamp are
copied to ServerBuf. This includes services that are no longer active
(hops = SAP_SHUTDOWN). If the function’s RevisionStamp is set to

 >=0 Successful

 -10 Not supported (SAP daemon not running)
250 NetWare Transports

zero, all server information is returned. This field is not updated until
you update its value. This allows you to make a series of calls to retrieve
all changed servers.

The NewRevisionStamp argument returns a value to be used in the next
series of calls. The value of NewRevisionStamp should be set to zero (0)
before the first function call in a series is made. Its value will be updated
by calling SAPGetChangedServers. Subsequent function calls will not
alter the value. This allows multiple function calls to be used to retrieve
all the changed servers. After all changed servers are retrieved, the
process can be notified when additional changes are available. At this
time, the value of NewRevisionStamp returned on the last set of calls is
used for RevisionStamp and NewRevisionStamp is set to zero.

If successful, the function returns the number of SAPI entries returned
in ServerBuf. The ServerEntry argument is set to the index of the next
server entry to be read when the next function call is made. All server
entries have been returned when the function return value is less than
the MaxEntries or zero. The NewTimeStamp returns the current time
stamp value if the field is set to zero; otherwise, its value is not changed.

If an error occurs, the function returns a negative number which is the
negative of the error code.

Example

ServerType = FILE_SERVER_TYPE;
ServerEntry = 0;
MaxEntries = 1;
RevisionStamp = 0;
NewRevisionStamp = 0;
ret = SAPGetChangedServers (ServerType, &ServerEntry, &ServerBuf,
 MaxEntries, RevisionStamp, &NewRevisionStamp);

See Also

SAPNotifyOfChange
SAP Library 251

SAPNotifyOfChange

Registers a callback function to be activated if
server information changes.

Syntax

#include “sap_app.h”

int SAPNotifyOfChange(

 int Signal,

 void (*Function)(int),

 uint16 ServerType)

Parameters

(IN) Signal

Specifies the signal that will be used to notify the process when a
change has occurred.

(IN) (*Function)(int)

Specifies the callback function that will be invoked when a change
has occurred. See “Remarks” below.

(IN) ServerType

Set to either a type of server or ALL_SERVER_TYPE. Server types
are defined in the include file and listed in Table 8-5 on page 262.

Return Values

If unsuccessful, the function returns a negative number which is the
negative of the error code.

 0 Successful

- 5 Duplicate registration of callback function

-10 Not supported (SAP daemon not running)
252 NetWare Transports

Remarks

SAPNotifyOfChange gives control to the specified function when one
or more server entries have changed. This function allows the process
to maintain very accurate SAP information and is used by the Server
Advertiser.

This function is supported only when the SAP daemon is running.

The Signal argument specifies the signal that will be used to notify the
process when a change has occurred. SAPNotifyOfChange registers
the process for the indicated signal.

If Signal value is SAP_STOP_NOTIFICATION, notification of changes
will be discontinued, and the callback function will be unregistered.

The Function argument specifies the callback function that will be
invoked when a change has occurred. The specified function will
typically use SAPGetChangedServers so that the process can obtain
information about the changed servers.

If the Signal argument is set to SAP_STOP_NOTIFICATION, the
Function argument is ignored. The callback function needs no
knowledge of the actual signal mechanism involved. This mechanism
is set up when SAPNotifyOfChange is invoked.

The ServerType argument is set to either a type of server or to
ALL_SERVER_TYPE to obtain information on all servers.

Example

void Function (int Sig)
{
 return;
}
:
:
 ServerType = FILE_SERVER_TYPE;
 ret = SAPNotifyOfChange (SIGUSR1, Function, ServerType);

See Also

SAPGetChangedServers
SAP Library 253

SAPGetServerByAddr

Gets server information by address.

Syntax

#include “sap_app.h”

int SAPGetServerByAddr(
 ipxAddr_t *ServerAddr,

 uint16 ServerType,

 int *ServerEntry,

 SAPI *ServerBuf,

 int MaxEntries)

Parameters

(IN) ServerAddr

Pointer to the address structure of the requested server.

(IN) ServerType

Specifies either the type of server desired or ALL_SERVER_TYPE to
obtain information on all servers with that name. Server types are
defined in the include file and listed in Table 8-5 on page 262.

(IN/OUT) ServerEntry

Pointer to an index value that indicates position in SAP responses
from which the next MaxEntries will be returned. Modified on
return. Should initially be set to zero (0).

(OUT) ServerBuf

Pointer to the address of a buffer of size (sizeof(SAPI) * MaxEntries)
which will be filled with SAPI entries.

(IN) MaxEntries

Specifies the maximum number of SAPI entries which can be put in
ServerBuf.
254 NetWare Transports

Return Values

Remarks

SAPGetServerByAddr requests server entries by address and type. If
the specified type is ALL_SERVER_TYPE, then all servers at the
specified address are returned. For example, a NetWare file server and
its print server can be on the same machine.

If your host configuration is set so that the SAP daemon is running, the
netInfo_t structure will be filled. If SAPD is not active,
SAPGetServerByAddr retrieves its information from the network and
the netInfo_t structure is then set to NULL.

The ServerAddr argument specifies the net and node address of the
requested service. The socket number is not checked. Therefore, all
services on a host machine will have the same address.

The ServerType argument specifies either the type of server desired or
ALL_SERVER_TYPE to obtain information on all servers at that
address.

The ServerEntry argument must be set to zero (0) on the first call and is
updated by SAPGetServerByAddr. The updated value should be
returned on subsequent calls. You should not modify the contents of
ServerEntry except to set the initial value to zero.

The ServerBuf argument specifies the address of a buffer of size
(sizeof(SAPI) * MaxEntries) which will be filled with SAPI entries.

The MaxEntries argument specifies the maximum number of SAPI
entries which can be put in ServerBuf.

If successful, the function returns the number of SAPI entries placed in
ServerBuf. The ServerEntry argument is set to the index of the next server
entry to be read when the next call is made. All server entries have been
returned when the function return value is zero or less than the
MaxEntries.

 >=0 Successful

 < 0 Unsuccessful
SAP Library 255

If an error occurs, the function returns a negative number which is the
negative of the error code.

Example

memset ((char*) &addr, 0, sizeof(ipxAddr_t));
addr.net[0] = 0x01;
addr.net[1] = 0x23;
addr.net[2] = 0x45;
addr.net[3] = 0x67;
addr.node[5] = 0x01;
ServerType = FILE_SERVER_TYPE;
ServerEntry = 0;
MaxEntries = 1;
ret = SAPGetServerByAddr (ServerAddr, ServerType, &ServerEntry,
&ServerBuf,
 MaxEntries);

See Also

SAPGetServerByName
256 NetWare Transports

SAPGetServerByName

Gets server information by name.

Syntax

#include “sap_app.h”

int SAPGetServerByName(

 char *ServerName,

 uint16 ServerType,

 int *ServerEntry,

 SAPI *ServerBuf,

 int MaxEntries)

Parameters

(IN) ServerName

Pointer to the NULL-terminated name of the requested server.

(IN) ServerType

Specifies either the type of server desired or ALL_SERVER_TYPE to
obtain information on all servers with that name.

(IN/OUT) ServerEntry

Pointer to an index value that indicates position in SAP responses
from which the next MaxEntries will be returned. Modified on
return. Should initially be set to zero (0).

(OUT) ServerBuf

Pointer to the address of a buffer of size (sizeof(SAPI) * MaxEntries)
which will be filled with SAPI entries.

(IN) MaxEntries

 Specifies the maximum number of SAPI entries which can be put
in ServerBuf.
SAP Library 257

Return Values

Remarks

SAPGetServerByName requests server entries by name and type. If the
specified type is ALL_SERVER_TYPE, then all servers by that name are
returned. SAP allows servers to have the same name as long as they are
of different types. For example, a NetWare file server and its print
server could have the same name.

If your host configuration is set so that the SAP daemon is running, the
netInfo_t structure will be filled. If SAPD is not active,
SAPGetAllServers retrieves its information from the network and the
netInfo_t structure is then set to NULL.

Some limited wildcard capabilities are allowed in this function. If the
final character of ServerName is an “*” character, the string is matched
up only to the “*” character.

The ServerName argument specifies the NULL-terminated name of the
requested service. If the name contained in ServerName is not less than
SAP_MAX_SERVER_NAME_LENGTH, the service requested will be
rejected.

The ServerType argument specifies either the type of server desired or
ALL_SERVER_TYPE to obtain information on all servers with that
name.

The ServerEntry argument must be set to zero (0) on the first call and is
updated by SAPGetServerByName. The updated value should be
returned on subsequent calls. You should not modify the contents of
ServerEntry except to set the initial value to zero.

The ServerBuf argument specifies the address of a buffer of size
(sizeof(SAPI) * MaxEntries) which will be filled with SAPI entries.

 >=0 Successful

 -1 Server Type invalid

 -2 Server Name too long/too short

 < 0 Unsuccessful
258 NetWare Transports

The MaxEntries argument specifies the maximum number of SAPI
entries which can be put in ServerBuf.

If successful, the function returns the number of SAPI entries placed in
ServerBuf. The ServerEntry argument is set to index of the next server
entry to be read when the next call is made. All server entries have been
returned when the function return value is zero or less than the
MaxEntries.

If an error occurs, the function returns a negative number which is the
negative of the error code.

Example

strcpy (ServerName, “TEST_SERVER”);
ServerType = FILE_SERVER_TYPE;
ServerEntry = 0;
MaxEntries = 1;
ret = SAPGetServerByName (ServerName, ServerType, &ServerEntry,
&ServerBuf,
 MaxEntries);

See Also

SAPGetServerByAddr
SAP Library 259

SAPAdvertiseMyServer

Advertises (or stops the advertising of) a service of
a specific type on the internetwork.

Syntax

#include “sap_app.h”

int SAPAdvertiseMyServer(
 uint16 ServerType,

 char *ServerName,

 uint16 Socket

 int Action)

Parameters

(IN) ServerType

Specifies the type of server assigned by Novell for the server’s
service class.

(IN) ServerName

Pointer to the NULL-terminated name of the server to be
advertised (maximum of 48 characters including NULL).

(IN) Socket

Specifies the socket number at which the advertised service may be
accessed.

(IN) Action

Specifies the type of action the SAP daemon is to perform.
260 NetWare Transports

Return Values

Remarks

SAPAdvertiseMyServer causes the named server to be advertised by
the SAP daemon. To start the advertising process, this call needs to be
made once only.

This function is supported only when the SAP daemon is running.

This function does not use mapped memory, but sends a message via
the protocol stack to the SAP daemon. The message is acknowledged by
the SAP daemon to ensure that it was received.

Only the root user has permission to advertise using the
SAP_ADVERTISE_FOREVER flag, and only root can unadvertise a
server advertised with this flag.

When a server is advertised with the SAP_ADVERTISE_FOREVER
flag, the server description is written to a file called “sapouts” which
resides in the NetWare configuration directory. When NetWare services
are started, this file is read and the services are automatically
re-advertised. Servers can be removed from the “sapouts” file only via
a SAPAdvertiseMyServer call with the Action flag set to
SAP_STOP_ADVERTISING.

To obtain a list of servers that are permanently advertised, use the
SAPListPermanentServers function.

 0 Successful

 - 3 Invalid Action flag

 - 7 Unable to obtain NetWare configuration file path

 -10 Not supported (SAP daemon not running)

 -11 Service in use; try again

 -40 Unable to allocate local memory

 -42 Server to unadvertise not found

 -43 No permission to advertise/unadvertise server
SAP Library 261

If SAP_ADVERTISE is set in Action, the SAP daemon places the PID of
the advertising process in the advertise table entry.

If SAP_ADVERTISE_FOREVER is set in Action, the SAP daemon places
its own PID in the table.

The kill (pid, 0) system call is used to determine if the process that made
the SAPAdvertiseMyServer call is still active. As long as the process is
active, the services for that process will be advertised. When the process
terminates, the services for that process will be marked as HOPS = 16,
or down.

The ServerType argument specifies the type of server to be advertised.
See Table 8-5 following for some common values (contact Novell to be
assigned a number for new services).

The ServerName argument specifies the NULL-terminated name of the
server to be advertised. If the name contained in ServerName is not less
than SAP_MAX_SERVER_NAME_LENGTH, the request to advertise
the server will be rejected.

Table 8-5

Common Server Types

Defined Constants for SAP daemon Value Server Type

FILE_SERVER_TYPE 0x0004 NetWare Server

PRINT_SERVER_TYPE 0x0047 Print Server

BTRIEVE_SERVER_TYPE 0x004B Btrieve Server

ACCESS_SERVER_TYPE 0x0098 NetWare Access Server

OLD_NVT_SERVER_TYPE 0x009E NVT over NVT protocol

I386_SERVER_TYPE 0x0107 386 NetWare (3.x)

SPX_NVT_SERVER_TYPE 0x0247 NVT2 over SPX/SPXII
protocol

TIME_SYNC_SERVER_TYPE 0x026B Time Synchronization

DIRECTORY_SERVER_TYPE 0x0278 Directory Server
262 NetWare Transports

The Socket argument is the socket number to which clients may make
service requests. If Socket is zero (0), however, the effect of the
SAPAdvertiseMyServer call is a notification to the network without
providing real service.

The Action argument specifies the type of action the SAP daemon is to
perform. Three values are valid:

If successful, the function returns a zero (0); otherwise, it returns a
negative number which is the negative of the error code.

Example

strcpy (ServerName, “MY_SERVER”);
Socket = 0;
ServerType = AIX_TYPE;
Action = SAP_ADVERTISE_FOREVER;
ret = SAPAdvertiseMyServer (ServerType, ServerName, Socket, Action);

See Also

SAPListPermanentServers

Table 8-6

Flags for SAP daemon Action

Flag Description

SAP_ADVERTISE Advertise my server while my process
lives or until it is discontinued

SAP_ADVERTISE_FOREVER Advertise my server until it is
discontinued

SAP_STOP_ADVERTISING Discontinue advertising my server
SAP Library 263

SAPListPermanentServers

Gets a list of servers that are permanently
advertised.

Syntax

#include “sap_app.h”

int SAPListPermanentServers(

 char *ServerEntry,

 PersistList_t *ServerBuf,

 int MaxEntries)

Parameters

(IN/OUT) ServerEntry

Pointer to an index value that indicates the position in SAP
responses from which the next MaxEntries will be returned.
Modified on return. Should initially be set to 0.

(OUT) ServerBuf

Specifies the address of a buffer of size (sizeof(PersistList_t)
*MaxEntries) which will be filled with PersistList_t entries.

(IN) MaxEntries

Specifies the maximum number of PersistList_t entries which can
be put in ServerBuf.

Return Values

 >=0 Successful

 - 7 Unable to find/read NetWare configuration file path

 -28 Error opening “ sapouts” file

 -29 Unable to read “ sapouts” file
264 NetWare Transports

Remarks

SAPListPermanentServers fills the provided buffer with one or more
PersistList_t structures. The PersistList_t structure contains
information about servers that have been advertised with the
SAP_ADVERTISE_FOREVER flag. These servers are listed in a file
called “sapouts” in the NetWare configuration directory. This function
reads the records stored in that file. All numerical values are returned
in machine order.

This function is meaningful only when the SAP daemon is running.

The PersistList_t structure has the following format:

typedef struct PersistList{

uint8 ServerName[SAP_MAX_SERVER_NAME_LENGTH];

uint16 ServerType;

uint16 ServerSocket;

} PersistList_t;

If successful, SAPListPermanentServers returns the number of
PersistList_t entries placed in ServerBuf. The ServerEntry argument is set
to the index of the server entry to be read when the next function call is
made. All server entries have been returned when the function return
value is less than the value of MaxEntries or zero (0).

If an error occurs, the function returns a negative number which is the
negative of the error code.

Example

ServerEntry = 0;
MaxEntries = 1;

ret = SAPListPermanentServers(&ServerEntry, &ServerBuf, MaxEntries);

See Also

SAPAdvertiseMyServer
SAP Library 265

SAPGetLanData

Gets LAN statistics for NetWare management.

Syntax

#include “sap_app.h”

int SAPGetLanData(

 int lanNumber,

 SAPL *LanDataBuffer)

Parameters

(IN) lanNumber

Specifies the network to return information about. See “Remarks”
below.

(OUT) LanDataBuffer

Pointer to the address of the SAPL structure to fill with data about
the LAN.

Return Values

Remarks

SAPGetLanData returns LAN statistics information.

This function is supported only when the SAP daemon is running.

The lanNumber argument specifies the network to return information
about. LAN 0 is always the internal network. The other LAN numbers
are assigned sequentially starting with 1. You can get the number of
LANs from a SAPStatistics call.

 1 Successful.

 0 No data available for specified LAN

-10 Not supported (SAP daemon not running)
266 NetWare Transports

If no internal LAN exists, the LanDataBuffer is set to zeros and a
successful (1) code is returned. The LanDataBuffer argument is the
address of the SAPL structure to fill with data about the LAN.

The SAPL structure has the following format:

typedef struct SapLanData

{

uint16 LanNumber;

uint16 UpdateInterval;

uint16 AgeFactor;

uint16 PacketGap;

int32 Network;

int32 LineSpeed;

uint32 PacketSize;

uint32 PacketsSent;

uint32 PacketsReceived;

uint32 BadPktsReceived;

} SAPL, *SAPLP;

Table 8-7 describes the SAPL fields.

Table 8-7

Descriptions of SAPL Fields

Field Description

LanNumber LAN number

UpdateInterval Periodic update interval in seconds

AgeFactor Number of periodic update intervals to miss before
marking the server “down”

PacketGap Time in milliseconds between packets. Time is zero
for a WAN, nonzero for a LAN.

Network Network number for this LAN

LineSpeed Linespeed in MBS. If the sign bit is set, KBS.
Currently always zero.

PacketSize Packet size that will be sent on this LAN

PacketsSent Number of packets sent
SAP Library 267

If successful, the function returns a 1. If the LAN number specified does
not exist, the function returns a zero (0).

If an error occurs, it returns a negative number which is the negative of
the error code.

To display the information maintained in the SAPL structure, see the
nwsapinfo utility in the Utilities manual.

Example

ret = SAPGetLanData (1, &LanDataBuffer);

PacketsReceived Number of packets received

BadPktsReceived Number of bad packets received

Table 8-7 continued

Descriptions of SAPL Fields

Field Description
268 NetWare Transports

SAPPerror

Prints error message.

Syntax

#include “sap_app.h”

int SAPPerror(
 int saperr,

 char *text)

Parameters

(IN) saperr

SAP error number.

(IN) text

Pointer to the address of the text to be prepended to the error
message.

Return Values

Remarks

SAPPerror prints an error message for errors returned from the SAP
library. The saperr argument returns the error code as it is returned from
one of the SAP functions. The text argument specifies the address of the
text to be prepended to the error message returned by SAPPerror.

 If an error occurs, the function returns a -1.

 >0 Successful.

 -1 An error has occurred.
SAP Library 269

AdvertiseService

Advertises a service of a specific type on the
internetwork.

Syntax

#include “sap_dos.h”

int AdvertiseService(

 uint16 ServerType,

 char *ServerName,

 uint8 *Socket)

Parameters

(IN) ServerType

Specifies the type of server assigned by Novell for the server’s
service class.

(IN) ServerName

Pointer to the NULL-terminated name of the server to be
advertised (maximum of 48 characters, including NULL).

(IN) Socket

Pointer to a 2-byte array that specifies the socket number at which
the advertised service may be accessed.

Return Values

 0 Successful

 - 3 Invalid Action flag

 - 7 Unable to obtain NetWare configuration file path

 - 8 Invalid socket

 -10 Not supported (SAP daemon not running)

 -11 Service in use; try again
270 NetWare Transports

Remarks

AdvertiseService is compatible with native NetWare and it causes the
named server to be advertised by the SAP daemon. This call needs to be
made only once to start the advertising process.

This function is supported only when the SAP daemon is running.

This function does not use mapped memory, but sends a message via
the protocol stack to the SAP daemon. The message is acknowledged by
the SAP daemon to ensure that it was received.

Only the root user has permission to advertise using the
SAP_ADVERTISE_FOREVER flag, and only root can unadvertise a
server advertised with this flag.

When a server is advertised with the SAP_ADVERTISE_FOREVER
flag, the server description is written to a file called “sapouts” which
resides in the NetWare configuration directory. When NetWare services
are started, this file is read and the services are automatically
re-advertised. Servers can be removed from the “sapouts” file only via
a SAPAdvertiseMyServer call with the Action flag set to
SAP_STOP_ADVERTISING.

To obtain a list of servers that are permanently advertised, use the
SAPListPermanentServers function.

If SAP_ADVERTISE is set in Action, the SAP daemon places the PID of
the advertising process in the advertise table entry.

If SAP_ADVERTISE_FOREVER is set in Action, the SAP daemon places
its own PID in the table.

The SAP daemon places the PID of the advertising process in the
advertise table entry. The kill (pid, 0) system call is used to determine if
the process that made the AdvertiseService call is still active.

-40 Unable to allocate local memory

-42 Server to unadvertise not found

-43 No permission to advertise/unadvertise server
SAP Library 271

As long as the process is active, the services for that process will be
advertised. When the process terminates, the services for that process
will be marked as HOPS = 16, or down.

The ServerType argument specifies the type of server to be advertised.
For some common values, see Table 8-5 below. Contact Novell to be
assigned a number for new services.

The ServerName argument specifies the NULL-terminated name of the
server to be advertised. If the name contained in ServerName is not less
than SAP_MAX_SERVER_NAME_LENGTH, the request to advertise
the server will be rejected.

The Socket argument is the socket number to which clients may make
service requests. If Socket is zero (0), an invalid socket error will be
returned.

The service will be advertised until it is discontinued or until the
advertising process terminates.

If successful, the function returns a zero (0); otherwise, it returns a
negative number which is the negative of the error code.

Table 8-8

Common Server Types

Defined Constants for SAP daemon Value Server Type

FILE_SERVER_TYPE 0x0004 NetWare Server

PRINT_SERVER_TYPE 0x0047 Print Server

BTRIEVE_SERVER_TYPE 0x004B Btrieve Server

ACCESS_SERVER_TYPE 0x0098 NetWare Access Server

OLD_NVT_SERVER_TYPE 0x009E NVT over NVT protocol

I386_SERVER_TYPE 0x0107 386 NetWare (3.x)

SPX_NVT_SERVER_TYPE 0x0247 NVT over SPX/SPXII
protocol

TIME_SYNC_SERVER_TYPE 0x026B Time Synchronization

DIRECTORY_SERVER_TYPE 0x0278 Directory Server
272 NetWare Transports

Example

strcpy (ServerName, “MY_SERVER”);
Socket[0] = 0x40;
Socket[1] = 0x47;
ServerType = PRINT_SERVER_TYPE;
ret = AdvertiseService (ServerType, ServerName, Socket);

See Also

ShutdownSAP

SAPAdvertiseMyServer
SAP Library 273

ShutdownSAP

Discontinues advertising of all services advertised
by the calling process.

Syntax

#include “sap_dos.h”

int ShutdownSAP(void)

Parameters

None

Return Values

Remarks

ShutdownSAP is compatible with native NetWare and it instructs the
SAP daemon to discontinue advertising of all services advertised by the
calling process, if any. This call always returns a zero (0).

Example

ret = ShutdownSAP ();

See Also

 0 Successful

AdvertiseService

SAPAdvertiseMyServer
274 NetWare Transports

QueryServices

Gets all server information.

Syntax

#include “sap_dos.h”

int QueryServices(

 uint16 QueryType,

 uint16 ServerType,

 int ReturnSize,

 SAP_ID_PACKET *ServiceBuffer)

Parameters

(IN) QueryType

Specifies type of SAP request to broadcast.

(IN) ServerType

Specifies either a type of server or ALL_SERVER_TYPE to obtain
information on all servers.

(IN) ReturnSize

Specifies the size in bytes of the buffer pointed to by ServiceBuffer.

(OUT) ServiceBuffer

Pointer to the address of a buffer which will be filled with
SAP_ID_PACKET entries.

Return Values

 -9 Unable to allocate local memory

 -3 returnSize < sizeof(SAP_ID_PACKET)

 -2 Invalid QueryType
SAP Library 275

Remarks

QueryServices is compatible with native NetWare and it fills the
provided buffer with one or more SAP_ID_PACKET structures.

The number of structures returned is calculated by ReturnSize/
sizeof(SAP_ID_PACKET). If less than one, a -1 value is returned.

The SAP_ID_PACKET structure contains information about the server
type requested. All integer values are returned in machine order.

The SAP_ID_PACKET structure has the following format:

typedef struct {

uint16 serverType;

char serverName[SAP_MAX_SERVER_NAME_LENGTH];

uint8 network[IPX_NET_SIZE];

uint8 node[IPX_NODE_SIZE];

uint16 socket;

uint16 hops;

} SAP_ID_PACKET;

When the SAP daemon is not running, QueryServices retrieves its
information from the network.

QueryServices does not provide an index value for retrieving SAP
information in small batches. If more replies are received than can be
placed in ServiceBuffer, the replies are discarded.

If successful, the function returns the number of SAP_ID_PACKET
entries placed in ServiceBuffer.

If an error occurs, the function returns a negative number which is the
negative of the error code.

 -1 No servers found

>0 Successful

<0 Unsuccessful
276 NetWare Transports

Example

QueryType = SAP_NSQ;
ServerType = FILE_SERVER_TYPE;
ReturnSize = sizeof(SAP_ID_PACKET);

ret = QueryServices (QueryType, ServerType, ReturnSize, &ServiceBuffer);

See Also

SAPGetAllServers

SAPGetNearestServer
SAP Library 277

278 NetWare Transports

c h a p t e r 9 IPX Direct Interface
Overview

This chapter describes the ioctl commands used by NetWare’s IPX
driver for the UNIX environment. The ioctls described in this chapter
are a subset of TLI/XTI and apply either to the IPX Socket Multiplexer
or to the IPX LAN Router.

Sockets direct packets to different processes within a single node.
Applications bind sockets and then send and receive data via one of the
following programming interfaces:

◆ TLI/XTI for IPX

The Transport Layer Interface (TLI) is more easily ported to other
transports. Programming information specific to IPX is provided in
Chapter 6, “TLI/XTI for IPX,”on page 133.

◆ IPX Direct Interface

The direct interface to IPX bypasses some of the overhead involved
in portability issues. Only the latter of the two mechanisms is
documented in this chapter.

◆ getmsg/putmsg allows an application to transfer data to a
process on a per packet basis and leaves no residue. Refer to the
AIX Operating System API Reference for programming
information.

◆ ioctl commands allow an application to send and receive
parameters that specify directly to IPX how data is to be
transferred to processes. All ioctl commands described in this
chapter are issued using the STREAMS I_STR ioctl.

For information on the IPX protocol, packet structure, and fields, see
Chapter 1, “Internetwork Packet Exchange (IPX) Protocol.”
IPX Direct Interface 279

IPX Driver in the UNIX Environment

The IPX driver has two parts: an IPX Socket Multiplexer and an IPX
LAN Router. A set of ioctl commands applies to each.

IPX Socket Multiplexer

The Socket Multiplexer is the entity in the IPX driver that delivers an
IPX packet to the appropriate application. (If a version of IPX is running
that has no socket multiplexer, these ioctls will fail.)

A socket is assigned to a single UNIX process. (A process can use
multiple sockets, but a socket cannot be shared among multiple
processes.)

Table 9-1 lists the ioctls that apply to the Socket Multiplexer.

IPX LAN Router

The LAN Router is the entity in the IPX driver that delivers an IPX
packet on or between LANs configured in IPX. Table 9-1 lists the ioctl
commands that apply to the LAN Router.

Table 9-1

ioctls for IPX Socket Multiplexer

ioctl Command Description

IPX_SET_SOCKET Binds an open file handle to an IPX socket (must release before next
bind)

IPX_BIND_SOCKET Binds an open file handle to an IPX socket (multiple binds allowed)

IPX_UNBIND_SOCKET Releases a bound socket from an open file handle

Table 9-2

ioctls for IPX LAN Router

ioctl Command Description

IPX_GET_NET Returns 4 byte IPX network address for the internal LAN

IPX_GET_NODE_ADDR Returns 6 byte IPX node address for the internal LAN
280 NetWare Transports

Reference to IPX ioctls

Developers should have access to the “ipx_app.h” and the
“lipmx.app.h” files, which contain the structures and descriptions.

IPX_SET_SOCKET

This command binds an open file handle to an IPX socket. This ioctl
allows exactly one socket to be bound for the process. To bind another
socket, you must first release the socket by using the IPX_UNBIND
command. When you use this command, IPX fills in the socket number
on all packets you send.

IPX_BIND_SOCKET

This commands binds an open file handle to an IPX socket and allows
multiple sockets to be bound to the process. The command is used once
for each socket to be bound.

IPX_UNBIND_SOCKET

This command releases a bound socket from an open file handle. This
ioctl can be used multiple times to bind/release different sockets to the
same stream.

When you use this command, you must fill in the socket number on all
packets you send. If the non-zero socket number you fill in is invalid,
the packet is discarded.

IPX_GET_LAN_INFO Gets LAN state, mux, dlInfo, and RIP/SAP information

IPX_GET_CONFIGURED_LANS Gets configured LANs

IPX_STATS Gets IPX LAN and socket statistics

Table 9-2

ioctls for IPX LAN Router

ioctl Command Description
IPX Direct Interface 281

If you send zero as a socket number, an M_ERROR is sent to the stream head
with a status of EINVAL.

This command uses IpxSetSocket_t structure to specify the number of
the socket to unbind.

typedef struct {

uint16 socketNum;

} IpxSetSocket_t;

IPX_GET_NET

This command returns the 4-byte IPX network address for the internal
LAN. The IPX Network Address structure returns with the IPX Network
field filled in. The address is in network order (hi-lo).

typedef struct {

IpxNet_t myNetAddress;

} IpxNetAddr_t;

IPX_GET_NODE_ADDR

This command returns the 6- byte IPX node address for the internal
LAN. The IPX Node Address structure returns with the IPX Node field
filled in. The address is in network order (hi-lo).

typedef struct {

IpxNode_t myNodeAddress;

} IpxNodeAddr_t;

IPX_GET_LAN_INFO

This command returns the lanInfo_t structure which includes
information about the specific LAN, such as RIP and SAP information,
datalink information, and state. This structure and all elements of the
structure are contained in the “lipmx_app.h” file.

typedef struct lanInfo {

uint32 lan; /* Fill in for GET */

uint32 state; /* This value returned by GET */

uint32 streamError;/* This value returned by
/* GET */
282 NetWare Transports

uint32 network; / * Fill in for SET, returned by
/* GET mach order */

uint32 muxId; / * Fill in for SET, returned by
/* GET */

uint8 nodeAddress[6]; /* Ignored by SET,
/* dlInfo value used, returned by GET */

dlInfo_t dlInfo; /* DataLink Layer info,
/* supplied by the user, returned by GET */

ripSapInfo_t ripSapInfo; /* RIP and SAP lan info,
/* Fill in for SET, returned by GET */

} lanInfo_t;

IPX_GET_CONFIGURED_LANS

This command returns the IpxConfiguredLans_t structure with fields
filled.

The IpxConfiguredLans_t structure is defined in “lipmx.app.h” and has
the following format:

typedef struct {

uint32 lans; /*Current number of configured LANs*/

uint16 maxHops;

} IpxConfiguredLans_t;

IPX_STATS

This command gets IPX statistics from two structures: IpxLanStats _t
and IpxSocketStats_t. Developers must provide a data area large
enough to hold both structures.

The ipxinfo utility calls IPX_STATS to retrieve these structures and
print them out in human readable form. If the IPX Socket Multiplexer is
not present, all values in IpxSocketStats_t will be zero (0).

The IpxLanStats _t and IpxSocketStats_t structures contain information
about both LANs and sockets. The structures describing socket
statistics are in the “ipx_app.h” file. The structures describing LAN
statistics are in the “lipmx_app.h” file.

On return, the IpxLanStats_t structure precedes the IPXSocketStats_t
structure.
IPX Direct Interface 283

284 NetWare Transports

c h a p t e r 10 SPX/SPXII ioctls
Overview

This chapter describes the ioctl commands used by NetWare’s SPXII
driver in a UNIX environment. These ioctls are a subset of TLI/XTI and
allow an application to retrieve information or statistics about SPX/
SPXII or a specific SPX/SPXII connection.

Although ioctls are not required when using TLI/XTI, they can be used
to set up transfer data or tear down a connection with another endpoint.
Some ioctls described in this chapter are provided for compatibility
with older versions of SPX; others for setting or retrieving addition
information or statistics. All ioctl commands described in this chapter
are issued using the STREAMS I_STR ioctl.

SPX/SPXII is NetWare’s connection-oriented, reliable transport
protocol. For information on the enhanced SPXII protocol, packet
structure and fields, and data flow, windowing and packet size
negotiation, see Chapter 4, “Enhanced Sequenced Packet Exchange
(SPXII) Protocol,”on page 41.

Information on the SPX protocol, packet structure and fields, and data
flow is provided for purposes of comparison in Chapter 3, “Sequenced
Packet Exchange (SPX) Protocol,”on page 27.

For information not contained in this chapter, refer to Operating System
API Reference or to STREAMS Modules and Drivers.
SPX/SPXII ioctls 285

Table 10-1 lists the ioctls that apply to SPX/SPXII.

Reference to SPX ioctls

Developers should have access to the “spx_app.h” file, which contains
the structures and descriptions.

SPX_GS_MAX_PACKET_SIZE

This command allows the sender to determine the maximum DATA
packet size (MAX PACKET - SPXII header) that can be sent over the
connected interface.

Pass buffer to hold the return value (uint32).

This command returns the maximum data size that can be sent to the
wire.

Table 10-1

SPX/SPXII ioctls

ioctl Commands Description

SPX_GS_MAX_PACKET_SIZE Returns the maximum data packet size that can be sent to the wire

SPX_GS_DATASTREAM_TYPE Sends a value in the Datastream byte in the header so that sender’s
packets are passed to the application with SPX/SPXII header
preceding data

SPX_T_SYNCDATA_IOCTL Allows the sender to get an ACK/NAK for data sent as part of the ioctl

SPX_CHECK_QUEUE Allows an application to find out if all data has been sent and
acknowledged

SPX_GET_STATS Allows an application to get the current SPXII driver statistics

SPX_SPX2_OPTIONS Notifies the SPXII driver to use SPX2 rather than SPX options

SPX_GET_CON_STATS Returns the current statistics for an SPX/SPXII connection
286 NetWare Transports

SPX_GS_DATASTREAM_TYPE

Sending Side. This command allows the sender to send a value in the
Datastream Type byte in the SPX/SPXII header. After this ioctl, SPX/
SPXII will take the first byte of data from the message (t_snd) and put
it in the Datastream Type field of the header.

If SPXII needs to break up the message into smaller packets, the same
Datastream byte is on fragments of the message.

Receiving Side. After this ioctl, any packets received from the sending
endpoint will be passed up to the application with the SPX or SPXII
header in front of the data.

The receiving application is responsible for knowing the size of the
header: 42 bytes of SPX header or 44 bytes for SPXII header. The header
size can be determined at connection time. The t_connect and t_listen
calls can inform the application through the SPX2_OPTIONS structure
if the connection is SPX (42-byte header) or if the connection is SPXII
(44-byte header).

This command requires no data.

SPX_T_SYNCDATA_IOCTL

This command allows the sender to get an ACK/NAK for data sent as
part of the ioctl.

Pass data to send on the wire.

This command returns ioctl ACK after data is sent and acknowledged.
If data cannot be delivered, it returns ioctl NAK.

SPX_CHECK_QUEUE

This command allows an application to find out if all data has been sent
and acknowledged. It can be used to determine when all data has been
sent and acknowledged rather than using the Orderly Release
mechanism.

Pass buffer to hold the return value (uint32).

This command returns one of the following:
SPX/SPXII ioctls 287

◆ Size of last unacknowledged packet sent

◆ One (1) if there are more packets to send

◆ Zero (0) if there are no more packets to send (this means that all
data has been sent and acknowledged)

SPX_GET_STATS

This command allows an application to get the current SPXII driver
statistics.

Pass spxStats_t structure uninitialized.

This command returns spxStats_t with current SPXII driver statistics.

SPX_SPX2_OPTIONS

This command is used to notify the SPXII driver to use SPX2_OPTIONS
instead of SPX_OPTS. It is needed only if “/dev/nspx” was used on
t_open.

 If “/dev/nspx2” was used on t_open, the SPXII driver uses SPX2
options by default.

This command requires no data.

SPX_GET_CON_STATS

This command allows an application to get the current statistics of an
SPX/SPXII connection.

Pass spxConStats_t structure initialized with the requested connection
number (uint16) in the first field.

This command returns spxConStats_t structure with current values for
the requested connection.
288 NetWare Transports

c h a p t e r 11 NCP Extensions
What Are NCP Extensions?

A set of functions called the NetWare Core Protocol provides the
procedures that a server’s NetWare operating system follows to accept
and respond to workstation requests. Collectively, these routines
provide the fundamental NetWare services. Each routine is numbered
and referred to as an NCP.

“Extended” NCPs (NCP Extensions) provide a mechanism by which an
application, rather than the NetWare server, can respond to NCP
Extensions coming in to the server.

NCP Extensions are now available for Novell Network Services 4.1 for
AIX (NNS). When the NWS server is running on AIX, the NetWare
clients that are already authenticated to a Directory tree are provided
with a transport mechanism to access applications running on the AIX
application server.

The NCPX Handler library for NNS allows AIX programmers to write
an AIX application and register the services of this application as NCP
Extensions. This extends the services provided by the AIX OS and at the
same time maintains the advantages associated with NCPs.

Because Extended NCPs provide a simple authenticated method of
communication between NetWare client and the NNS server that is
similar to remote procedure calls, they can be used in place of other
commonly-used NetWare transports such as IPX/SPX or TIRPC
(Transport-Independent Remote Procedure Calls).

The API functions in the NCPX Handler library are identical to those
provided for the native NetWare SDK, but the execution environment
for server-side programs is different.

There are two sides to NCP Extensions:
Internetwork Packet Exchange (IPX) Protocol 289

◆ Server side

The service-providing side of the distributed application can run as

◆ An AIX application with an NWS server

◆ An NLM application on a native NetWare server

The NCPX application registers its services as an NCP Extension.
The server-side NCPX program (also referred to as an NCPX
Handler) provides the hooks into the native NetWare or AIX
services.

The application must be loaded on each server that provides the
NCP Extension. An NCPX program that is loaded on one server
cannot register NCP Extensions on a remote server.

◆ Client side

The client side uses the NCPX Handler’s callback service by calling
the registered NCP Extension. The client can be one of the
following:

◆ An NLM running on a native NetWare server and which is
acting as a client

◆ An application running on a DOS or Windows workstation

◆ Another AIX program acting as a client

The client can also obtain information about an NCP Extension by
invoking NCP 36 to scan and retrieve meta-information via the
query data buffer.

Novell has published APIs for the NetWare server, clients, and AIX. For more
information on DOS, Windows, OS/2, and UNIX as NetWare clients, see
NetWare Library Reference for C: Client Functions in the NetWare 4 Client SDK,
which is provided with the online AIX SDK documentation. For information on
NLMS, see Using Novell Network Services 4.1 for AIX for NLM Applications in
the NetWare 4 Server SDK. The AIX SDK and the NetWare 4 SDKs can be
located at Novell’s web site: http://www.novell.com.
290 NetWare Transports

This chapter covers the following topics:

◆ How NCP Extensions work

◆ Components of an NCPX program

◆ Registering and calling an NCP Extension

◆ NCPX on a AIX execution environment

◆ Writing an NCPX Handler program

◆ Programming issues

◆ NCPX Handler library reference

Potential Uses

Two key features of Extended NCPs suggest potential uses:

◆ NCP Extensions allow NetWare clients to access services that an
AIX application provides.

◆ NCP Extensions use the existing connection of the client.

Client-Server Applications

NCP Extensions work well for client-server applications, since they
allow the service-providing program, which is close to the resource, to
do the work for the client.

For example, with a database, the client could send a request to the
NCPX server program to search the database for a certain record. The
function registered as the NCP callback would interpret the request,
process the search, and return the related information to the client.

In contrast, a client application downloads the database file and the
client workstation performs the search.
Internetwork Packet Exchange (IPX) Protocol 291

IPX/SPX Alternative

NCP Extensions can simplify communication. By using the client’s
existing authenticated connection to the NWS server, developers are
freed from the necessity of setting up communication sockets. In some
cases, developers can use NCP Extensions in situations where they are
currently using IPX or SPX.

The disadvantage is that NCP Extensions take up a connection. If your
application doesn’t establish a NetWare NCP connection, and you don’t
want to establish one, use IPX and SPX instead.

Another disadvantage to NCP Extensions is that communication must
always be initiated by the client. (With IPX and SPX, either the client or
the server can initiate communication.)

Advantages

To summarize, the advantages of NCP Extensions are as follows:

◆ They allow NetWare clients to access virtually any AIX service.

◆ They use an existing connection with a NetWare server.

This eliminates the need to establish a separate communications
session with the server. With this existing connection comes
authentication to the Directory tree, packet signing,
checksumming, and all other features that pertain to the NCP
connection to the server.

◆ They allow use of arbitrary message sizes.

How NCP Extensions Work

When an application uses NCP Extensions, the following events occur
in a client-server paradigm:

◆ The NCPX client sends an NCP request to the NWS server.

◆ The NWS server delivers the request to the NCPX Handler
program for processing.
292 NetWare Transports

◆ The NCPX Handler program delivers the reply message to the
NWS server.

◆ The NWS server delivers the reply message to the client.

Components of an NCPX Program

An NCPX program runs on an NWS server (as an AIX process) and is
designed to handle processing of application-specific NCPs. This
program links with the NCPX Handler library to import functions used
to register the callback routines.

An NCPX program consists of the following components or functions:

◆ Query data buffer

◆ NCP callback

◆ Reply buffer manager callback (optional)

◆ Connection event callback (optional)

The callbacks are functions in the developer-written program, designed
to process events related to NCP processing. The NCP callback is
required for calling an NCP Extension.

Query Data Buffer

The query data buffer is a 32-byte buffer that is allocated by the NCPX
Handler library when an Extension is registered. A pointer to the buffer
is returned to the NCPX application, and the NCPX application can
store information in this buffer.

The query data buffer can be also be used as a “passive, one way”
information channel from the server-side NCPX program to the NCPX
client program. When clients query the NWS server for information on
registered NCP Extensions (invoke NCP 36), the NWS server requires
only the query data buffer to return the information.

The query data buffer becomes the sole communication mechanism
when an NCP callback is not registered.
Internetwork Packet Exchange (IPX) Protocol 293

NCP Callback

The NCP callback is a routine that runs on the NWS server.When this
callback is registered with the NCP Extension, the NCPX Handler
library calls this routine whenever the client calls a request function
(invoking NCP 37). The NCP callback interprets the message sent by
the client, processes the request, and returns information which the
NCPX library then returns to the client.

Reply Buffer Manager Callback

The reply buffer manager callback is a routine that determines what to
do with the reply buffer after the information in the buffer has been sent
to the client. If this callback is registered with the NCP Extension, the
NCPX Handler library calls this routine after it has copied the
information in the buffer to NWS shared memory.

The reply buffer manager can free the reply buffer, or it can return it to
a free list of buffers; the implementation is determined by the NCP
callback and the reply buffer manager.

Connection Event Callback

The connection event callback is currently called only when a
connection is freed or logged out. If this callback is registered with the
NCP Extension, the NCPX Handler library calls this routine to
determine when a connection has been freed or logged out.

The connection event callback can use this information to determine if
the connection belongs to a client that is being serviced by the NCP
callback, and if so, what action to take to clean up that connection’s
state.

The parameters to this routine are

◆ Connection (on which the event is happening)

◆ Event type
294 NetWare Transports

Callback Combinations

Not all combinations of NCPX callbacks are useful. The following table
lists all combinations of callback components and the level of NCPX
service provided in each case.

“Programming Issues” on page 314 provides further information on the
concerns you need to address in determining which Handler
components to use in your NCPX application.

Case NCP Callback
Reply Buffer
Manager Callback

Connection Event
Callback Description

1 No No No Clients can retrieve query data buffer
with NCP 36. The NCPX program places
data in the query data buffer.

2 Yes No No Clients can send NCP 37 requests which
are then dispatched to NCP callback.

3 Yes Yes No NCP callback allocates buffers, and the
reply buffer manager reclaims them.

4 No Yes No Nonsense. (Because there is no NCP
callback, the reply buffer manager will
never be called.)

5 No No Yes Not very useful. (Allows the NCPX
program to monitor logout and
connection “frees.”)

6 Yes No Yes Clients can send NCP 37 requests which
are then dispatched to NCP callback.
Can use the connection event callback.

7 Yes Yes Yes NCP callback allocates buffers, and the
reply buffer manager reclaims them.Can
use the connection event callback.

8 No Yes Yes Nonsense. (Because there is no NCP
callback, the reply buffer manager will
never be called.)
Internetwork Packet Exchange (IPX) Protocol 295

Identifying NCP Extensions

NCPX applications must register their services with the NWS server.
They identify themselves to the server with names and IDs.

NCP Extension Names

Every NCP Extension must have an identifying name. The following
rules apply for naming the NCP Extensions:

◆ The name is case-sensitive.

◆ The name can be any text character string up to 32 bytes long, not
counting the NULL terminator.

◆ The name must be unique.

To guarantee uniqueness, you should register your NCP Extension’s name
through Novell’s Developer Support.

Problems can occur if two service-providing NCPX applications use the
same name for their NCP Extensions. The clients accessing the
Extensions would face ambiguity; they would not know whether the
Extension they see registered is the one they want.

Note also that the NCPX Handler library refuses to register an
Extension with a name which matches that of an already-registered
Extension.

NCP Extension IDs

IDs are also required to identify NCP Extensions. The following rules
apply to NCP Extension IDs:

◆ They are unique.

◆ They can be dynamically assigned by the server when a Handler
registers NCP Extensions (using the name of the NCP Extension).

These dynamic IDs are determined by the NWS server on a first-
come, first-served basis. If an NCP Extension that is using dynamic
IDs is deregistered and then registered again, it has a different ID.
296 NetWare Transports

NCP Extension IDs increase monotonically. For example, if IDs 1
through 5 are used and the NCP Extension with an ID of 3 is
deregistered and then reregistered, it will have an ID greater than
5. The ID 3 is not used again until the server is brought down and
restarted.

Novell’s Developer Support does not assign IDs which are dynamically
assigned by the server when the NCP is registered. These IDs are not
attached to a specific NCP Extension.

◆ They can be assigned IDs that NCPX applications use to identify
NCP Extensions when they register the Extensions by ID.

Because these well-known IDs are the same each time an NCP
Extension is registered, they can be used to identify a specific NCP
Extension.

IDs are assigned by Novell’s Developer Support to guarantee that the ID is
unique and that the ID is within the valid range.

Problems can occur if two service-providing NCPX applications use the
same ID for their NCP Extensions. The clients accessing the Extensions
would face ambiguity; they would not know whether the Extension
they see registered is the one they want.

Note also that the NCPX Handler library refuses to register an
Extension with an ID which matches that of an already registered
Extension.

Registering an NCP Extension

Before clients can use the services of a server-side NCPX program, the
program must first register an NCP Extension with the NWS server via
the NCPX Handler library.

The following occurs:

1. The NCPX application calls a registration function (provided by the
NCPX Handler library). Three of the parameters may be functions
that can be called as part of the service.

The parameters to the call include

◆ NCP Extension name
Internetwork Packet Exchange (IPX) Protocol 297

◆ NCP Extension ID (optional)

◆ Pointer to the NCP callback (or NULL)

◆ Pointer to the reply buffer manager callback (or NULL)

◆ Pointer to the connection event callback (or NULL)

◆ Pointer to the query data pointer

2. The NCPX Handler library validates the parameters. If all
parameters are valid, the NCPX Handler library creates a new NCP
Extension and allocates the query data buffer.

3. A pointer to the query data buffer is returned as the NCP Extension
“handle” (to be used to deregister the NCP Extension).

Multiple NCP Extensions can be registered. After an NCP Extension is
registered with the NWS server, it is available to service requests from
clients.

Before using an NCP Extension, the clients must verify that an NCP
Extension is active for the service they want to use.

Calling the NCP Extension

For a description of the client functions referenced in the following
scenario, see NetWare Library Reference for C: Client Functions in the AIX
SDK, included with the AIX online documentation. They are also
described in Using Novell Network Services 4.1 for AIX for NLM
Applications in the NetWare 4 Server SDK, located at Novell’s web site:
http://www.novell.com.

When the client uses the service of an NCP Extension, the following
occurs:

1. The client sends an NCP Extension request (invoking NCP 37).

◆ If the client sends an NCP Extension request with
NWSendNCPExtensionRequest(), the client’s request must be
contained in one buffer.

◆ If the client sends a request with
NWSendNCPExtensionFraggedRequest(), the client’s request
can be placed in one buffer or in multiple buffers (up to four.)
298 NetWare Transports

Either way, the data is sent across the wire as a stream of bytes.

2. The NWS server via the NCPX Handler library creates the needed
request and reply buffers.

If the request buffer is large, it is sent in fragments to the NWS
server. The NWS server reassembles the fragments, making the
fragmentation transparent to NCPX application.

3. The NCPX Handler library calls the NCP callback function.

The NCPX Handler library passes pointers to the request and reply
buffers. The NCP callback reads the request buffer, performs
processing, and fills in the reply buffer. (If a reply buffer manager is
being used, the NCP callback routine allocates space for the reply
message and passes a pointer to the allocated buffer back to the
NCPX Handler library.)

The reply buffer manager callback can be thought of as a second
part of the NCPX Handler. The reply buffer manager can free
buffers and reset counters and semaphores that the NCP callback
has set. (For example, if the NCP callback has set a semaphore for a
buffer, the reply buffer manager can signal or free the semaphore.)

4. The NCPX Handler library sends the reply information to the
client.

If the reply data is large, the NCPX Handler library sends it across
the wire in fragments. The client’s
NWSendNCPExtensionRequest() or
NWSendNCPExtensionFraggedRequest() reassembles the packet,
making the fragmentation transparent to the client program.

The data in the reply buffer is sent to the client only if the NCP callback
returns SUCCESSFUL.

5. The NCPX Handler library frees the buffers it has created.

When the NCP Extension request is completed, the NCPX Handler
library frees the buffers it has allocated for the request and reply
data. When new requests come in, the NCPX Handler library
allocates new buffers.
Internetwork Packet Exchange (IPX) Protocol 299

Client’s View of an NCP Extension

The view from the client is different from that of the server-side NCPX
application. The client does not need to know the details of how the
NCP Extension works. The client needs to know only the protocol for
sending requests and receiving replies.

For a description of the functions referenced in the following scenario, see
NetWare Library Reference for C: Client Functions in the online AIX SDK (also
included in the NetWare 4 Client SDK), or see Using Novell Network Services
4.1 for AIX for NLM Applications in the NetWare 4 Server SDK. The NetWare 4
SDK manuals are also located at Novell’s web site: http://www.novell.com.

The client accesses the services of an NCP Extension in the following
ways:

1. The client checks to see if the NCP Extension has been registered
(invoking NCP 36).

A client cannot use an NCP Extension until it has been registered.
The client can use NWGetNCPExtensionInfo() or
NWScanNCPExtensions() to see if the NCP Extension has been
registered. This also returns the NCP Extension’s ID.

2. The client sends a request to the NCP Extension with either
NWSendNCPExtensionRequest() or
NWSendNCPExtensionFraggedRequest() and uses the
information that was returned (invoking NCP 37).

3. The client asks for the information in an NCP Extension’s query
data buffer by calling NWGetNCPExtensionInfo() or
NWScanNCPExtensions() and uses the query data that is returned.

Service Provider’s View of an NCP Extension

The server-side NCPX application does not need to know what the
client process looks like; it needs to know only the format of the request
coming from the client and how to format the reply:

1. The NCPX application registers the NCP Extension with the NCP
callback and optionally with the reply buffer manager callback and
the connection event callback. The query data buffer is returned
from the NCPX Handler library. (Multiple NCP Extensions can be
registered.)
300 NetWare Transports

2. When the NCP callback function is called, it finds the request in a
buffer that the NWS server has allocated via the NCPX Handler
library. The NCP callback processes the request and places the reply
in another buffer(s) that the NWS server returns to the clients.

3. If a reply buffer manager is used, the reply buffer manager callback
routine is called after the data in the reply buffer(s) has been copied
to NWS shared memory. When the NWS server calls the reply
buffer manager, the reply buffer manager determines what to do
with the buffer(s) where the reply is stored.

4. If the connection event callback routine is called, it determines
whether the connection event affects the NCPX server program,
and takes appropriate action.

5. The NCPX application updates the information in the query data
buffer.

6. The NCPX application deregisters the NCP Extension when it no
longer wants to provide the service or when the service-providing
NCP callback process is unloaded.

NCPX in a AIX Execution Environment

The NCPX Handler library for NNS provides the same APIs as those it
provides for NLMs for the native NetWare SDK. The differences for the
server-side programs in the AIX execution environment are described
in this section.

Functions in the server-side NCPX Handler library are documented in “NCPX
Handler Library Reference” beginning on page 319.

Process Model

NCPX applications are tightly coupled with the NNS running on AIX.
These Handler programs first invoke registration functions to “attach”
themselves as service routines for Extended NCPs coming in to the
NWS server. Then they call a dispatch loop (EventLoop) to begin
processing incoming Extended NCPs. Multiple NCP Extensions can be
registered can be registered before calling the EventLoop (as long as
each registered NCP Extension is deregistered before program
Internetwork Packet Exchange (IPX) Protocol 301

termination).When Extended NCPs arrive at the NWS server, the
dispatch loop awakens and invokes the registered callback routines in
the NCPX Handler code to service the request. The EventLoop code will
properly dispatch the incoming Extended NCPs to the appropriate
callback functions.

Like the NCPX NLMs running on native NetWare, NCPX applications
on AIX are tightly coupled to the server; certain kinds of faults in the
application programs could cause the rest of the NWS server to fail.

Unlike NCPX NLMs running on Native NetWare, NCPX applications
on AIX run as a single thread. More specifically, the functions in the
NCPX Handler library provided for the NWS server on AIX are not
thread-safe. Although, technically speaking, you can have multiple
threads running in your NCPX application, only one thread at a time
can be allowed to call the NCPX functions.

This limitation also affects the EventLoop function: If a thread is “in”
the EventLoop, only that thread is allowed to call NCPX functions
(during callback processing). If other threads call NCPX functions, a
deadlock will be the likely result.

Although you can have other threads running “background” tasks in
the NCPX application, remember that only one thread at a time can call
into the NCPX Handler library routines.

Handler Parents and Children

The NCPX application is composed of two processes:

◆ Parent

◆ Child

The only duty of the parent process is to wait for the child to die and
then clean up data structures which were not cleaned up by the child
program (for example, in the case of a core dump).

When the child exits, the parent receives notification of the child’s
termination (returns from a wait() system call). The parent can then
perform housecleaning steps required to free any leftover resources
which were in use by the child when it died.
302 NetWare Transports

This mechanism protects the overall NWS server from errant NCPX
application programs. If a child program malfunctions and exits
prematurely (for example, dumps core), the parent is there to make sure
the child’s “mess” in the NWS server’s internal state is cleaned up.

The child process is forked by the parent. The child runs the developer-
written HandlerMain(), which contains the application-specific NCPX
code.

All management of handler parents and children is performed by the
NCPX Handler library routines; application developers do not need to
write any code to manage parents and children.

System administrators need to be aware of this “dual process” nature of NCPX
programs so that they don’t inadvertently try to kill those “extra” (parent) NCPX
processes and then wonder why the “real” (child) NCPX Handler is also exiting.

EventLoop

NCPX applications are event-driven. Once initialization is complete,
the program calls NCPX_EventLoop() to service all incoming requests.
NCPX_EventLoop() is the “workhorse” of an NCPX application. The
EventLoop receives “work” information from the NWS server via an
event queue stored in the server’s shared-memory segment. It is the
EventLoop’s job to dispatch the “work” to the appropriate Handler
callback function(s) and return the results to the NWS server (which
then returns the results to the client which originated the request).

The NCPX application should not delay between the NCP Extension
registration step and the invocation of the EventLoop. This is because
Extended NCP requests begin queuing for services as soon as the
Extension is registered. The EventLoop services these queued requests.
If an NCPX application program registers an Extension and does not
call the EventLoop, requests will queue up and the clients will “hang”
waiting for service from the server.

The EventLoop returns to the server-side application in the following
circumstances:

◆ An internal error occurs in the EventLoop code.

◆ All NCP Extensions are deregistered (during callback processing).

◆ The NWS server goes down.
Internetwork Packet Exchange (IPX) Protocol 303

◆ The system administrator sends the NCP application a signal to
shut down (the kill command without parameters).

Signals

Although NCPX applications receive several signals, they don’t need to
respond to them because they are all intercepted by the NCPX Handler
library routines. The NCPX Handler library contains code to respond
properly to the various signals required by the server architecture.

Server-side application code should not manipulate these signals! Tampering
with the NCPX Handler library’s signal configuration will likely cause a
malfunction of the server.

The following table contains the signals that are processed by the NCPX
Handler library:

SIGHUP Causes the Handler program to exit immediately.

This signal is delivered to the NCPX application by the
NetWare server when the server requires the handler to
exit without cleaning up (such as when the server faults
internally and wants to dump a core image without having
the NCPX applications change the shared-memory
contents).

SIGQUIT Causes the Handler program to dump a core image.

This signal is delivered to the NCPX application when the
NWS server thinks the handler has faulted and should
generate a core dump.

SIGTERM Causes the EventLoop to return.

The NCPX application should deregister extensions and
exit. The NWS server delivers this signal to the NCPX
application when the NWS server is being shut down.
304 NetWare Transports

Never send a SIGKILL signal to an NCPX Handler process (kill -9). Doing
so causes the handler to die an untimely death with no cleanup, which will leave
server internal data structures in an inconsistent state. If a Handler process is
prematurely terminated (unclean), the undesired side effect is likely to be the
malfunctioning of the server.

NCPX Handler processes are a part of the running NetWare server, and they
should be treated with the same care and respect afforded all other server
daemons and processes.

Privileges

The NWS server requires a certain set of AIX process privileges to run.
Since NCPX Handler processes are a part of the NWS server, they also
must run with privileges. The NCPX program won’t run if the required
privileges are missing.

NCPX programs require the following privileges:

SIGINT Causes the EventLoop to return.

The NCPX application should deregister Extensions and
exit. System administrators send this signal when they
want the NWS server to remain “up” while the Extended
NCP service provided by the NCPX application is
discontinued.

You should tell system administrators that they can
terminate NCPX Handlers from the AIX command line with
the AIX kill command (default, without parameters).

P_OWNER P_SYSOPS

P_DACREAD P_DRIVER

P_DACWRITE P_RTIME

P_FILESYS P_FSYSRANGE

P_MOUNT P_TSHAR

P_MULTIDIR P_CORE

P_SETUID
Internetwork Packet Exchange (IPX) Protocol 305

The NCPX Handler library initialization code checks to ensure that the
process is running with the correct privileges. If any of the requisite
privileges are missing, the initialization code will print an error
message and exit the program.

System administrators who are running NCPX Handlers with their
NWS servers must grant privileges to the NCPX application. This can
be done in either one of the two “AIX-defined” ways of granting
privileges:

◆ Executable fixed privileges assigned with the filepriv command.

◆ Privileges derived from entries in the Trusted Facilities Manager
(TFM) database.

Either method works. The most direct way to grant the required
privileges is to use the filepriv command. However, this method has
the drawbacks associated with this “setuid style” of assigning
privileges. That is, any user with execute permissions can execute the
program, which will then run with the granted privileges.

In addition, using the filepriv command is less flexible than the TFM
method, which is more secure and more flexible. The TFM method
allows the administrator to restrict privileges to certain users and/or
roles defined in the TFM database. Using this method means that
privileges can be restricted on a per-user or a per-role basis.

Shared Memory

The NWS server maintains a shared-memory segment which is used to
keep most server state information. For NCPX programs to become a
“part of the server,” they must attach to this shared memory segment to
gain access to server internal data structures.

The attachment procedure is handled by the NCPX Handler library
initialization routines, so NCPX programs do not need to be concerned
with this task.

However, application developers should be aware that the shared-
memory segment is present in the address space of each and every
NCPX Handler process. If the application inadvertently writes to any
area of this shared memory segment, the NWS server will probably
crash or malfunction. (This is not unlike the kind of behavior native
306 NetWare Transports

NetWare encounters when rogue NLMs stomp on areas of memory not
assigned to them.)

NCPX programs are allowed to write to the shared memory segment of
the NWS server, and access is limited to NCPX Handler library
routines. The reason is that NCPX Handler library routines make
extensive use of this shared memory segment for the registration and
dispatch of Extended NCPs. The overhead associated with the un-
mapping of the shared memory segment on a per-NCP basis would
incur a substantial performance penalty on the servicing of Extended
NCPs. Thus, NCPX applications, like native NetWare programs, are
“trusted” extensions to the NWS server and presumed to be
“trustworthy.”

With NCP Extensions on AIX, the probability of an NCPX program
bringing the entire AIX server down is extremely low. The reason for
this low level of probability—compared with native NetWare—is that
the NCPX programs run in separately scheduled and managed
processes. The NCPX programs are not running on core OS threads as
they are in native NetWare.

Nevertheless, the NWS server’s shared memory segment represents a
“window of liability” for NCPX applications. If the NCPX program
stomps on the critical server state information stored in this segment,
the NWS server will probably malfunction. Thus, developers need to
ensure that their programs do not misbehave and do not violate this
“trust.”

NEMUX File Descriptor

A kernel module called NEMUX monitors the NWS server process
execution and performs low-level dispatch of packets to NCP service
engines. Since NCPX programs are a part of the server, they need to
open a communication channel with NEMUX. The file descriptor is the
NCPX program’s handle to the NEMUX channel. This channel is
opened by the NCPX Handler library initialization routines, so server-
side programs do not need to perform this task.

NWS server control signals are delivered to the NCPX Handler process
via the channel with NEMUX. The NCPX Handler library also uses this
channel to send reply packets to clients.
Internetwork Packet Exchange (IPX) Protocol 307

Miscellaneous Requirements

The NCPX Handler library routines require a global character-array
variable called ExecName[]. The string defined by this variable is
included in various NCPX Handler library error messages as a means
to identify the program which caused the error.

To meet this requirement, a programmer should include a definition
like this in the application code:

char ExecName[] = “NCPX Program”;

Limitations

The architecture for the NWS server imposes some limitations on
NCPX application. These are described below.

Single Threading

As discussed in “Process Model” on page 301, the NCPX Handler
library functions are not thread-safe. Due to internal implementation
constraints in NNS, NCPX applications cannot access the NCPX
Handler library functions with more than a single thread.

This limitation extends to NCPX_EventLoop(): Only the thread that is
“in” the EventLoop is allowed to call NCPX functions (during callback
processing). Other threads can run background tasks in the NCPX
Handler, but if other threads call NCPX functions, a deadlock will likely
result.

Cannot Loop Back

Constraints imposed by NWS internal implementation also prevent the
dispatch of multiple simultaneous NCP callbacks at once.

The EventLoop is a single thread of control, and hence cannot process
“loopback” requests. What this means is that you cannot make NCP
Extension request calls from within NCP callback routines.

Although it’s safe to call the registration and deregistration functions
from an NCPX callback routine, it’s not safe to call NCPX client-side
308 NetWare Transports

functions (functions which invoke NCP Extensions on the NWS server)
when running as apart of the server. Such “loopback” processing will
surely hang the Handler and all clients using the NCPX application.

Size of NCPX Pool

In the NWS server’s shared-memory segment, a pool of memory is
allocated specifically for NCPX data structures, message buffers, and
the LightWeight message queues. This pool has a small “default” size,
which imposes no significant additional shared memory requirements
on NWS servers that do not need to use NCPX.

The pool is allowed to grow to sixteen megabytes (16 MB), subject to the
availability of space in the NWS server’s shared memory segment. If
the space is available in the shared memory heap, the space will be
available for use by the server’s NCPX Handler library routines.

The Server’s overall shared memory size is controlled by the shm_size
nwcm parameter. The default value for this parameter is small, usually
4 MB. This default size leaves little room for NCPX use. If your
application makes heavy use of NCP Extensions on your server, you
should tell system administrators to increase shm_size to make
additional shared memory available for NCPX use. (System
administrators also need to adjust the AIX system tunable SHMMAX to
make the shared memory available to the NWS server.)

The maximum size of the NCPX pool is 16 MB. This means that the
NCPX pool might grab as much as 16MB of server shared memory and
link it onto the pool’s free list, making the memory unavailable to the
rest of the NWS server. This condition will occur only on servers that
use NCPX heavily.

To guarantee correct operation with heavy NCPX activity, system tell
administrators to set their SHMMAX and shm_size parameters to 16 MB
plus the normal shm_size requirement of the server. This allows the
NCPX pool to grab 16MB from the shared memory pool, while leaving
the remaining memory available for other NWS server operations.

Writing an NCPX Program

A server-side NCPX program is designed to handle processing of
application-specific NCPs. This Handler program links with the
Internetwork Packet Exchange (IPX) Protocol 309

libncpx_han.so and libncpx_cmn.so libraries to import APIs used to
register the NCPX Handler callback routines. (See “NCPX Handler
Library Reference” on page 319 for a description of the routines.)

The application portion of the Handler contains HandlerMain(), which
is called by the libncpx_han library to begin the application. (The
main() function is provided by the libncpx_han library and provides
process-startup functionality.)

The two processes associated with a Handler program, the parent and
child, are discussed in “Handler Parents and Children” on page 302

The minimum NCPX program must perform the following steps:

1. Call NWRegisterNCPExtension() to register the NCP Extension(s)
and their associated callback routines.

2. Call NCPX_EventLoop() to dispatch the NCPs.

3. On return from EventLoop, call NWDeRegisterNCPExtension() to
deregister the NCP Extension(s).

Multiple NCP Extensions can be registered before calling the EventLoop. The
EventLoop code will properly dispatch the incoming Extended NCPs to the
appropriate callback functions. Remember that each registered NCP Extension
must be deregistered before program termination.

These steps are performed via HandlerMain(), which is called by the
NCPX Handler library code in the Handler child process after the
library has initialized resources required to support NCPX processing.

A callback routine is one of three developer-written functions in the
NCPX Handler. These are functions designed to process events related
to NCP processing. In the Handler process, the EventLoop code blocks
on a LightWeight message queue until a message is available. When a
message is received, the EventLoop “calls back” into the developer-
written function to process the event.
310 NetWare Transports

Three types of callbacks can be associated with registered NCP
Extensions:

◆ NCP— called when an NCP 37 message is received.

◆ Connection event—called when a connection is cleared or logged-
out by the server.

◆ Reply buffer manager—called after the NCP response is sent.

The reply buffer manager’s “post processing” of the NCP allows
the application code to release buffer resources which were
allocated for the reply packet during processing of the NCP.

Callback functions are optional. An NCP Extension can be registered
which has no callbacks. In this case, the only service provided by the
Extension is the maintenance of the 32-byte queryData buffer which
clients can retrieve using NCP 36 calls. However, Extensions are
typically registered with at least the NCP Extension and connection
event callbacks.

There is one caveat: In the NWS implementation, using a reply buffer
manager callback actually decreases performance, due to architectural
constraints on the allocation of reply buffers. (In native NetWare, use of
a reply buffer manager can increase performance.) For further
discussion, see “Reply Buffer Manager” on page 315.

The next section contains sample code for an NCPX Handler program.
Subsequent sections discuss compiling and running NCPX Handler
programs.

Code Example

The following minimal NCPX Handler program compiles, but does no
useful work. You can use this “shell” as a template for your own NCPX
applications.

#include <sys/ncpx_app.h>

/* Name of this program which can be referenced globally */
char ExecName[] = “NCPX test program”;

/
**/
Internetwork Packet Exchange (IPX) Protocol 311

BYTE
NCP_callback(NCPExtensionClient *client,
 void *requestData,
 LONG requestDataLength,
 void *replyData,
 LONG *replyDataLength)
{
 printf(“NCP_Callback called for client %u, task %u.\n”,
 client->connection,
 client->task);

 return 0; /* SUCCESS! */
}

/
**/

void
ConnectionEvent_callback(LONG connection,
 LONG eventType)
{
 printf(“ConnectionEvent_callback called for connection %u, event
0x%08lx.\n”,
 connection,
 eventType);
}

/
**/
/
**/

int
HandlerMain(int argc, char *argv[])
{
 int ccode;
 void *queryData;

 NCPX_EventLoopState el_state;

 /***/
 /* Register the extension. */

 ccode = NWRegisterNCPExtension(“TEST EXTENSION”,
 NCP_callback,
 ConnectionEvent_callback,
 NULL, /* No reply-buffer-manager callback. */
312 NetWare Transports

 1, /* major version */
 2, /* minor version */
 3, /* revision */
 &queryData);
 if (ccode != 0) {
 printf(“%s had failure (ccode %d) registering NCP Extension.\n”,
 ExecName, ccode);
 exit(1);
 }

 /***/
 /* Commence processing of NCPs: callbacks will come when we have work
to do. */

 NCPX_EventLoop(&el_state);

 /***/
 /* DeRegister the extension. */

 ccode = NWDeRegisterNCPExtension(queryData);
 if (ccode != 0) {
 printf(“%s had failure (ccode %d) DEregistering NCP Extension.\n”,
 ExecName, ccode);
 exit(1);
 }

 return 0;
}

Compiling an NCPX Handler

A few special command-line options must be used when compiling
NCPX Handler programs. These options ensure that the proper
libraries are linked with the Handler.

The command-line options are listed in the table following:

-Kthread This option ensures that proper C runtime startup code is
included in the code (this is necessary to properly enable the
mutual-exclusion locks used in the NWS server library code).

-lncpx_han This option causes the NCPX Handler library to be linked with
the NCPX Handler program.
Internetwork Packet Exchange (IPX) Protocol 313

As an example, the following command can be used to compile the
program shown in the code example beginning on page 311:

cc -Kthread -o ncpx_prog \
 ncpx_prog.c -l ncpx_han -lnwu -lm

Running an NCPX Handler

NCPX applications are invoked just like any other AIX program: that is,
by typing the name of the program at the command line. To run the
Handler program compiled above, use a command line such as the
following:

ncpx_prog

The NCPX Handler library initialization code will check the process
privileges, daemonize the process (fork and run in the background,
returning the shell prompt to you), and perform the steps necessary to
associate the Handler process with the running server. (If the NWS
server isn’t running when you run the NCPX application, the program
exits with an error message indicating that the server isn’t up.)

After the process initialization is complete, HandlerMain() runs, which
runs your application-specific code to register NCP Extensions. When
the initialization and registration of Extensions is complete, EventLoop
runs, which causes the NCPX Handler process to sleep until an
incoming Extended NCP is received by the server. At that point, the
NCPX Handler library dispatches the work to the registered callback
functions.

Programming Issues

The issues you must address in writing an NCPX application are
discussed below.

-lnwu This option causes additional NWS server libraries to be linked
with the NCPX Handler program.

-lm This option causes the math library to be linked with the NCPX
Handler program (because some NWS server internal library
routines use the math library, you must link it with NCPX
Handler programs).
314 NetWare Transports

Reply Buffer Manager

If you are going to use a reply buffer manager, specify it when you
register the NCP Extension with the NWS server. The reply buffer
manager is a routine that the NCPX Handler library calls after it has
copied the NCPX Handler’s reply to server shared memory.

The reply buffer manager does not allocate reply buffers. However, it
can free the buffers that the Handler allocates.

Reply buffers are allocated in the following ways:

◆ The NCPX Handler library creates a single reply buffer and passes
its address to the NCPX Handler.

◆ The NCPX Handler allocates a single reply buffer and returns a
pointer to this buffer.

◆ The NCPX Handler allocates multiple reply buffers and returns a
structure pointing to all of them.

If your NCP Extension does not use a reply buffer manager, the NCPX
Handler library allocates a reply buffer that is the size specified by the
client. The NCPX Handler library then passes a pointer to the allocated
buffer as a parameter into your NCPX Handler. The Handler places its
reply into the buffer, and the NCPX Handler library sends the data in
the buffer to the client.

If your NCP Extension is going to return fragmented data, it must use
a reply buffer manager. In this case, the NCPX Handler sets its replyData
parameter to point to a structure containing pointers to multiple
fragments. The Handler also sets its replyDataLen parameter to
REPLY_BUFFER_IS_FRAGGED. The NCPX Handler library then sends
the information from the multiple buffers.

The structure that you use to point to the fragmented data must be
similar to the NCPExtensionMessageFrag structure, documented in the
client reference for NWSendNCPExtensionFraggedRequest(). The
difference is that the structure the Handler returns can have more than
four elements in its fragList. (The client is limited to four fragments, but
the Handler has no limits to the number of fragments it can return.)

In native NetWare, using a reply buffer manager can significantly
increase performance and decrease the amount of machine CPU
Internetwork Packet Exchange (IPX) Protocol 315

resource required to service an NCP Extension request. This
performance gain is realized because the native NetWare NCPX
libraries are able to copy data directly from the application-allocated
buffer to the LAN driver, with no intervening copies. However, in the
NNS implementation, using a reply buffer manager for NCPX on NWS
can significantly decrease performance, due to architectural constraints
on the allocation of reply buffers.

In native NetWare, reply data is copied into shared-memory before
being returned to the client.

In NCPX on NWS, all reply data must be placed in the NWS server’s
shared-memory segment before being sent back to the client. To make
the reply buffer available to the NCP service engines (which actually
send the data back to the client), the data must be placed in the shared-
memory segment.

◆ If you are not using a reply buffer manager, the reply buffer is
allocated in shared-memory by the NCPX Handler library routines.
The NCP callback fills in the shared-memory buffer directly.

◆ If you are using a reply buffer manager, the NCPX Handler library
must copy the process-local memory allocated by the NCPX
callback into the shared-memory reply buffer. This represents an
additional copy of the buffer (process-local to shared memory).

Therefore, in NCPX on NWS, you will see better NCPX service
performance if your NCPX application does not use a reply buffer
manager.

Even given the performance considerations outlined above, there are
good reasons for using a reply buffer manager. Some of these reasons
are outlined below.

1. A reply buffer manager is required for an NCP Extension that
returns fragmented data.

In this case, the NCP Extension could have a routine that is
constantly polling the server and placing information into various
buffers. When the NCP Extension is called, the NCPX Handler
simply returns a structure with fields pointing to the buffers where
the information is located. This avoids copying the data from
various locations and placing it in a single buffer.
316 NetWare Transports

2. A reply buffer manager serves as the second part of the NCPX
Handler.

In the case described in the previous paragraph, the Handler could
set a semaphore to stop the update routine from updating the
buffers. Then, after the information in the buffers has been sent to
the client, and the reply buffer manager is called, the reply buffer
manager can reset the semaphore, allowing the update routine to
continue with updating the buffers.

Connection Event Callback

The connection event callback keeps track of when connections are
freed or logged out. Depending on your application’s service, this
information could be important. For example, a service that limits the
number of users would be interested in knowing when a connection
was terminated, so it could allow another user to have access to the
service.

On the other hand, a service that allows unlimited access may not be
concerned with who is using it. If keeping track of connection status is
not important to you, do not register a connection event callback when
you register the NCP.

Deregistering Before Unloading

Before an NCPX server program unloads, it should deregister all NCP
Extensions that it has registered.

When an NCP Extension is deregistered, all new requests return with
ERR_NO_ITEMS_FOUND, and existing requests may or may not be
completed. Those that don’t complete also return with the value of
ERR_NO_ITEMS_FOUND.

Registering Multiple NCP Extensions

Some service-providing NCPX programs offer more than one service.
For example, if the service is a database, the following services could be
made available:

◆ Open the database

◆ Add a record
Internetwork Packet Exchange (IPX) Protocol 317

◆ Delete a record

◆ Search for a record

◆ Close the database

In the above case, you would have to make a decision: Do you register
five NCP Extensions to handle the requests, or do you register one NCP
Extension with a switch statement?

If you choose to register five NCP Extensions, you must create five
names for them. If you choose to use one NCP Extension, you need to
create only one name.

If you choose to register one name and use a switch statement, your
code might look like the following:

typedef MyStruct MyStruct;
struct requestDataStruct{
int operation;
char data[1000];
}MyStruct;
BYTE DataBaseControl(NCPExtensionClient *client,MyStruct *requestData,
LONG requestDataLen, BYTE *replyData, LONG *replyDataLen)
{
switch(requestData->operation)
{
case OPEN_DATABASE:
OpenDatabase(requestData->data);
break;
case ADD_RECORD:
AddRecord(requestData->data);
break;
case DELETE_RECORD:
DELETE_RECORD(requestData->data);
break;
case SEARCH_FOR_RECORD:
SearchForRecord(requestData->data);
break;
case CLOSE_DATABASE:
CloseDatabase(requestData->data);
}
}

318 NetWare Transports

NCPX Handler Library Reference

The APIs available on the native NetWare server have not been ported;
there is no native-style NetWare CLIB.NLM. NCPX applications must
use the equivalent AIX services. (Existing native NetWare NCPX NLMs
will probably have to be rewritten to use the AIX services rather than
native NetWare’s CLIB interface.)

The NCPX Handler library for NNS (libncpx) provides the NCPX
“interface” to the NWS server. It is loaded on AIX with the NNS
package and consists of the following AIX shared-object libraries.

◆ libncpx_han.so

This library contains APIs available to NCPX programs. It includes
APIs for the registration and deregistration of NCP Extensions. It
also contains code for the main() function and for the NCPX event-
dispatch loop.

NCPX programs actually link a number of other server libraries to
provide packet-handling and connection-management functions.
All of these extra libraries are “hidden” behind the interface
provided by the NCPX Handler library, but the other libraries are
required by the libncpx libraries in order to perform their tasks.

◆ libncpx_svr.so

This library contains functions available to support NCPX dispatch
in the NCP engines and the NWS NetWare daemon. This library is
required by the NCP engine and “nwserver” executables, but not
by applications.

◆ libncpx_cmn.so

This library contains common support routines for both
libncpx_han.so and libncpx_svr.so. Executables linking either of
those libraries automatically link this one too.

Overview of Library routines

The NCPX Handler library provides several types of services. (The
prototypes for the functions described below can be found in
 /usr/include/sys/ncpx_app.h.)
Internetwork Packet Exchange (IPX) Protocol 319

Initialization

The NCPX Handler library contains the main() function of the program.
This means the library initialization routines run before the developer-
written application code.

The initialization code performs several tasks which are required to
make the NCPX program act as part of the server, including privilege
checking, shared-memory attachments, NEMUX channel initialization,
signal-handler initialization, etc.

The developer-written application code must begin with the function
HandlerMain(argc, argc, envp). When the NCPX Handler library has
finished initializing the process as part of the NWS server, it calls the
developer-written HandlerMain() with the usual arguments (argc, argc,
envp).

Registration

Several native NetWare-compatible functions are provided for the
registration and deregistration of NCP Extensions:

NWRegisterNCPExtension()

NWRegisterNCPExtensionByID()

NWDeRegisterNCPExtension()

EventLoop

NCPX_EventLoop() controls the dispatch of incoming Extended NCPs
to the developer-written callback functions.

After HandlerMain() has finished application-specific initialization
and NCP Extension registration, it must immediately call
NCPX_EventLoop() to begin the processing of Extended NCPs. As
soon as the NCP Extension is registered, requests begin queuing for
services, which are performed by the EventLoop. If an NCPX Handler
registers an Extension and does not call the EventLoop, requests will
queue up and the clients will “hang” waiting for service from the server.

The EventLoop returns to the developer-written application when there
is an internal error occurs in the EventLoop code, or when all
Extensions are deregistered, the Handler receives a signal to shut down,
or when the server goes down.
320 NetWare Transports

Client Identification

One of the parameters to the NCP callback is the connection number.
NCPX_GetObjectName() is provided to translate a connection number
into the distinguished name of the object attached to the connection.
This provides NCPX Handlers with a means of identifying the client for
which a request is being processed.

Connection Status

Two functions are provided which return information about the “login
state” of a client:

◆ ConnectionIsLoggedIn() determines whether the client
originating a request is “logged-in”—that is, both authenticated to
the Directory tree and licensed to the NNS server.

◆ ConnectionIsAuthenticatedTemporary() determines whether a
client originating a request is in the “temporary authenticated”
state.

Each function returns TRUE (nonzero) if the connection meets the
specified condition, otherwise FALSE (zero).

When a client “attaches” (establishes a service connection) to a NNS
server, the client first authenticates to the Directory tree. This is a
“temporary authenticated” state. When the client then logs in to the
server, the client is both authenticated and licensed.

Clients are not required to log in to the NWS server before sending
NCPX packets to the server. They can be merely authenticated to the
Directory tree.

Child Detachment

NCPX Handlers are allowed to fork() to create independent child
processes. These children processes are not allowed to maintain any
association with the server.

When a Handler fork()s, the child inherits all of the parent’s
attachments and associations with the server (shared memory, open
files, signal disposition, etc). If these associations are not removed by
Internetwork Packet Exchange (IPX) Protocol 321

detaching the child process from the NWS server, the child prevents the
server from going down.

To detach the forked child from the server, the forked child must call
NCPX_DetachForkedChildFromServer()—This is not an optional
step!

This library routine detaches the forked child process from the NWS
server and allows the child process to continue running after the server
is shut down. This functionality should be used whenever an NCPX
Handler needs to fork off independent processes.

Index to NCPX Functions

Function Task Page

NCPX_EventLoop () Controls dispatch of incoming
Extended NCPs.

page 323

NWRegisterNCPExtension () Using a specific name, register an
NCP Extension with NNS.

page 326

NWRegisterNCPExtensionByID () Using a specific ID, register an NCP
Extension with Novell
Network Services 4.1 for AIX.

page 333

NWDeRegisterNCPExtension () Remove an NCP Extension from
NNS that was previously registered.

page 337

NCPX_GetObjectName () Returns the distinguished name of a
logged-in object.

page 339

ConnectionIsLoggedIn () Determines whether a client is
logged-in to the Novell
Network Services 4.1 for AIX server.

page 341

ConnectionIsAuthenticatedTemporary () Determines whether a client’s login
state is temporary authentication.

page 343

NCPX_DetachForkedChildFromServer () Detaches a forked child process
from NetWare resources.

page 345
322 NetWare Transports

NCPX_EventLoop

Controls dispatch of incoming Extended NCPs.

Syntax

#include “ncpx_app.h”

int NCPX_EventLoop (

 NCPX_EventLoopState *exitReason);

Parameters

exitReason

(OUT) Passes a pointer to a variable, the value of which identifies
the reason why the EventLoop has exited.

Return Values

Remarks

NCPX_EventLoop() controls the dispatch of incoming Extended NCPs
to the developer-written callback functions. It also returns the results to
the NWS server (which then returns the results to the client which
originated the request).

NCPX_EventLoop() should be called after HandlerMain() has finished
application-specific initialization and NCP Extension registration.
Calling NCPX_EventLoop() is not optional and should not be delayed
because Extended NCPs begin queuing for services as soon as the
Extension is registered.

NCPX_EventLoop() has one parameter: This is a pointer to a variable
of type NCPX_EventLoopState. When the EventLoop returns, it will set
the NCPX_EventLoopState variable to a value identifying the reason
why the EventLoop has exited.

 0 Successful

 non-zero Unsuccessful
Internetwork Packet Exchange (IPX) Protocol 323

typedef enum {

EL_RUNNING = 0, /* Never returned. */

EL_EXIT_ERROR,

EL_EXIT_ALL_HANDLERS_DEREGISTERED,

EL_EXIT_SERVER_GOING_DOWN,

EL_EXIT_SIGNAL_SHUTDOWN,

} NCPX_EventLoopState;

Example

int
HandlerMain(int argc, char *argv[])
{
 int ccode;
 void *queryData;

 NCPX_EventLoopState el_state;

 /***/
 /* Register the extension. */

 ccode = NWRegisterNCPExtension(“TEST EXTENSION”,
 NCP_callback,
 ConnectionEvent_callback,
 NULL, /* No reply-buffer-manager callback. */
 1, /* major version */
 2, /* minor version */
 3, /* revision */
 &queryData);
 if (ccode != 0) {
 printf(“%s had failure (ccode %d) registering NCP Extension.\n”,
 ExecName, ccode);
 exit(1);
 }

 /***/
 /* Commence processing of NCPs: callbacks will come when we have work
to do. */

 NCPX_EventLoop(&el_state);

 /***/
 /* DeRegister the extension. */
324 NetWare Transports

 ccode = NWDeRegisterNCPExtension(queryData);
 if (ccode != 0) {
 printf(“%s had failure (ccode %d) DEregistering NCP Extension.\n”,
 ExecName, ccode);
 exit(1);
 }

 return 0;
}

Internetwork Packet Exchange (IPX) Protocol 325

NWRegisterNCPExtension

Using a specific name, register an NCP Extension
with Novell Network Services 4.1 for AIX.

Syntax

#include “ncpx_app.h”

int NWRegisterNCPExtension (

 const char *NCPExtensionName,

 BYTE (*NCPExtensionHandler)(

 NCPExtensionClient *client,

 void *requestData,

 LONG requestDataLen,

 void *replyData,

 LONG *replyDataLen),

 void (*ConnectionEventHandler)(

 LONG connection,

 LONG eventType)

 void (*ReplyBufferManager)(

 NCPExtensionClient *client,

 void *replyBuffer),

 BYTE majorVersion,

 BYTE minorVersion,

 BYTE revision,

 void **queryData);

Parameters

NCPExtensionName

(IN) Specifies the name of the NCP Extension.

NCPExtensionHandler

(IN) Specifies the function that is to be executed when the NCP
Extension is called with NWSendNCPExtensionRequest(). (See
“Remarks” for the use of NULL in this field.)
326 NetWare Transports

ConnectionEventHandler

(IN) Specifies the function that to be called when a connection is
logged out or terminated on the server. (See “Remarks” for the use
of NULL in this field.)

ReplyBufferManager

(IN) Specifies a reply buffer manager that can be used to manage
buffers used to reply to NCP Extension requests. (See “Remarks”
for the use of NULL in this field.)

majorVersion

(IN) Specifies the major version number of the service provider.

minorVersion

(IN) Specifies the minor version number of the service provider.

minorVersion

(IN) Specifies the minor version number of the service provider.

revision

(IN) Specifies the revision number of the service provider.

queryData

(OUT) Receives a pointer to a 32-byte area that the NCPX Handler
library allocated. This buffer is used by the service provider to
return up to 32 bytes of information to the client.
Internetwork Packet Exchange (IPX) Protocol 327

Return Values

Remarks

NWRegisterNCPExtension() registers the NCP Extension with NNS
by using the name of the NCP Extension associated with the application
service. This returns a dynamic ID that is valid until the service
providing the Handler is terminated.

After an NCP Extension has been registered, clients can access the NCP
Extension. The Extension remains valid until the service-providing
program deregisters the NCP Extension.

NCPExtensionName is the name that the NCP Extension uses as an
identifier in the list of NCP extensions. NCP Extension names are case-
sensitive and must be unique. They have a maximum length of 32 bytes
plus a NULL terminator. For more information, see “NCP Extension
Names” on page 296.

When you call NWRegisterNCPExtension() to register an NCP
Extension, three of the parameters are functions that are called as part
of the Handler service. These parameters are NCPExtensionHandler,
ConnectionEventHandler, and ReplyBufferManager.

NCPExtensionHandler is a service routine (function) that is called when
the client usesNWSendNCPExtensionRequest()to call the NCP
Extension. In most cases, you want to provide an NCPX Handler.
However, if your service can provide all information needed by
updating the 32-byte queryData buffer, you do not need an NCPX
Handler and can pass NULL for the parameter. The clients would then

 0 (0x00) SUCCESSFUL

 5 (0x05) ENOMEM
Not enough memory was available on the
server to register the service.

 166 (0xA6) ERR_ALREADY_IN_USE
The NCP Extension name is already
registered. Your service is not registered.

 255 (0xFF) ERR_BAD_PARAMETER
The NCPExtensionName parameter was
longer than the 32-byte limit
328 NetWare Transports

obtain the information in the queryData buffer by calling
NWGetNCPExtensionInfo() or NWScanNCPExtensions(). This is a
passive method of passing information. The NCP Extension is not
notified that an access has been made to its queryData.

The NCPExtensionHandler routine takes the following parameters:

client

(IN) A pointer to an NCPExtensionClient structure (shown below)
containing the connection and task of the calling client. The client
pointer can be used by the ReplyBufferManager to associate the
request with the reply notification it receives.

typedef struct {
 LONG connection;

 LONG task;

} NCPExtensionClient;

requestData

(IN) A pointer to a buffer holding the request information.

requestDataLen

(IN) The size (in bytes) of the data in the request buffer.

replyData

(OUT) If the ReplyBufferManager parameter of
NWRegisterNCPExtension() is set to NULL, this is a pointer to a
buffer where the service routine can place its response data.

If a ReplyBufferManager was specified, this parameter points to the
address of a pointer which the NCPX Handler sets to a valid buffer
that it has created.

replyDataLen

(IN/OUT) On input, this is the maximum size (in bytes) of
information that can be stored in the reply buffer.

On output, this is the actual number of bytes that NCPX Handler
stored in the reply buffer.

You might want to have an NCPX Handler return other status
information (such as failure reasons) to the client. If you do this, do not
use any return values that have been defined for this call. The risk in
returning values other than SUCCESSFUL is that future versions of
Internetwork Packet Exchange (IPX) Protocol 329

NNS might return values that you have defined, leaving you unsure of
the return value’s meanings.

A better way for your NCPX Handler to return status information is to
have it always return SUCCESSFUL and then use a “status” field in the
replyData buffer. This technique guarantees that the status information
is always from the NCPX Handler.

The ConnectionEventHandler callback parameter keeps track of when
connections are freed or logged out. If keeping track of connection
status is not important to you, you can pass NULL for the
ConnectionEventHandler when you register the NCP Extension. For a
discussion on when to use connection event management, see
“Connection Event Callback” on page 317.

The ConnectionEventHandler routine has the following parameters:

connection

(IN) The number of the connection that was logged out or cleared.
(This notification is for all connections that are logged out or
cleared. The connection information is not always about an NCPX
client.)

eventType

(IN) This names the type of event that is being reported. This
parameter returns the following values:

ConnectionEventHandler does not return a value.

ReplyBufferManager is a function that is used if the service-providing
application wants to take care of reply buffer management for itself.
This function takes the following parameters:

CONNECTION_BEING_FREED Either the client has made a
call to return its connection,
or the server has cleared the
connection (watchdog).

CONNECTION_BEING_LOGGED_OUT The client has made a call to
log out.
330 NetWare Transports

client

(IN) A pointer to an NCPExtensionClient structure (shown below)
containing the connection and task of the calling client.

typedef struct {

 LONG connection;

 LONG task;

} NCPExtensionClient;

replyBuffer

(IN) A pointer to a buffer whose information has been returned to
the client.

Most cases do not require a reply buffer manager. If you do not need
one, pass NULL for this parameter. For a discussion of when to use a
reply buffer manager, see “Reply Buffer Manager” on page 315.

The majorVersion, minorVersion, and revision parameters allow you to
identify the version and revision of your service provider.

The queryData buffer is used by the service provider to return up to 32
bytes of information to the client.The pointer is also used by the
registering NCPX application as the NCP Extension handle, when
calling NWDeRegisterNCPExtension().

Returning the contents of the update buffer to the client also provides a
one-way, passive information passing scheme. Your service provider
can use the buffer to supply periodic update information to its clients.
This information can then be retrieved with a call to
NWGetNCPExtensionInfo() or NWScanNCPExtensions().

Example

int
HandlerMain(int argc, char *argv[])
{
 int ccode;
 void *queryData;

 NCPX_EventLoopState el_state;
Internetwork Packet Exchange (IPX) Protocol 331

 /***/
 /* Register the extension. */

 ccode = NWRegisterNCPExtension(“TEST EXTENSION”,
 NCP_callback,
 ConnectionEvent_callback,
 NULL, /* No reply-buffer-manager callback. */
 1, /* major version */
 2, /* minor version */
 3, /* revision */
 &queryData);
 if (ccode != 0) {
 printf(“%s had failure (ccode %d) registering NCP Extension.\n”,
 ExecName, ccode);
 exit(1);
 }

See Also

NWDeRegisterNCPExtension()
NWRegisterNCPExtensionByID()
332 NetWare Transports

NWRegisterNCPExtensionByID

Using a specific ID, register an NCP Extension with
Novell Network Services 4.1 for AIX.

Syntax

#include “ncpx_app.h ”

int NWRegisterNCPExtensionByID (

 LONG NCPExtensionID,

 const char *NCPExtensionName,

 BYTE (*NCPExtensionHandler)(

 NCPExtensionClient *NCPExtensionClient,

 void *requestData,

 LONG requestDataLen,

 void *replyData,

 LONG *replyDataLen),

 void (*ConnectionEventHandler)(

 LONG connection,

 LONG eventType)

 void (*ReplyBufferManager)(

 NCPExtensionClient *NCPExtensionClient,

 void *replyBuffer),

 BYTE majorVersion,

 BYTE minorVersion,

 BYTE revision,

 void **queryData);

Parameters

NCPExtensionID

(IN) Gives the well-known ID for the NCP Extension. This is a
specific ID assigned by Novell’s Developer Support to be
associated with your application service.

NCPExtensionName

(IN) Gives the name that identifies the NCP Extension.
Internetwork Packet Exchange (IPX) Protocol 333

NCPExtensionHandler

(IN) Specifies the function to be executed when the NCP Extension
is called with NWSendNCPExtensionRequest().

ConnectionEventHandler

(IN) Specifies the function to be called when a connection is logged
out or terminated on the server.

ReplyBufferManager

(IN) Specifies a reply buffer manager that can be used to manage
buffers used to reply to NCP Extension requests.

majorVersion

(IN) Specifies the major version number of the service provider.

minorVersion

(IN) Specifies the minor version number of the service provider.

revision

(IN) Specifies the revision number of the service provider.

queryData

(OUT) Receives a pointer to a 32-byte area that the NCPX Handler
library allocated. This buffer is used by the service provider to
return up to 32 bytes of information to the client.
334 NetWare Transports

Return Values

Remarks

NWRegisterNCPExtensionByID() registers the NCP Extension with
NetWare using a well-known ID that is assigned by Novell’s Developer
Support. This ID is always associated with the application’s service.

After an NCP Extension has been registered, clients can access the NCP
Extension. The Extension remains valid until the service-providing
program deregisters the NCP Extension.

NCPExtensionID is the ID for the NCP Extension associated with your
application service. To be assigned a well-known ID, you should
contact Novell’s Developer Support. Your ID must be unique and
within the valid range. For more information, refer to “NCP Extension
IDs” on page 296.

NCPExtensionName is the name that the NCP Extension uses as an
identifier in the list of NCP Extensions. NCP Extension names are case-
sensitive and must be unique. They have a maximum length of 32 bytes
plus a NULL terminator. For more information about NCP extension
names, refer to “NCP Extension Names” on page 296.

When you call NWRegisterNCPExtensionByID() to register an NCP
Extension, three of the parameters are functions that are called as part

 0 (0x00) SUCCESSFUL

 5 (0x05) ENOMEM
Not enough memory was available on the
server to register the service.

 166 (0xA6) ERR_ALREADY_IN_USE
The NCP Extension name is already
registered. Your service is not registered.

251 (0xFB) ERR_UNKNOWN_REQUEST
The request was made on a server version
that does not support this function.

 255 (0xFF) ERR_BAD_PARAMETER
The NCPExtensionName parameter was
longer than the 32-byte limit.
Internetwork Packet Exchange (IPX) Protocol 335

of the Handler service. These parameters are NCPExtensionHandler,
ConnectionEventHandler, and ReplyBufferManager. For a more detailed
description of the parameters for NCPExtensionHandler,
ConnectionEventHandler, and ReplyBufferManager, see the
documentation for NWRegisterNCPExtension() beginning on
page 326.

NCPExtensionHandler is a service routine (function) that is called when
the client calls the NCP Extension with
NWSendNCPExtensionRequest() or
NWSendNCPExtensionFraggedRequest().

ConnectionEventHandler keeps track of when connections are freed or
logged out. If keeping track of connection status is not important to you,
you can pass NULL for the ConnectionEventHandler when you register
the NCP Extension. For a discussion on when to use connection event
management, see “Connection Event Callback” on page 317.

ReplyBufferManager is a function that is used if the service-providing
application wants to take care of reply buffer management for itself.
Most cases do not require a reply buffer manager. If you do not need
one, pass NULL for this parameter. For a discussion of when to use
reply buffer management, see “Reply Buffer Manager” on page 315.

The majorVersion, minorVersion, and revision parameters allow you to
identify the version and revision of your service provider.

The queryData buffer is used by the service provider to return up to 32
bytes of information to the client.The pointer is also used by the
registering NCPX application as the NCP Extension handle, when
calling NWDeRegisterNCPExtension().

Returning the contents of the update buffer to the client also provides a
one-way, passive information passing scheme. Your service provider
can use the buffer to supply periodic update information to its clients.
This information can then be retrieved with a call to
NWGetNCPExtensionInfo() or NWScanNCPExtensions().

See Also

NWRegisterNCPExtension()
NWDeRegisterNCPExtension()
336 NetWare Transports

NWDeRegisterNCPExtension

Remove an NCP Extension from NNS that was
previously registered.

Syntax

#include “ncpx_app.h ”

int NWDeRegisterNCPExtension (

void *queryData);

Parameters

(IN) queryData

Specifies the Extension handle used to identify the NCP Extension.

Return Values

Remarks

NWDeRegisterNCPExtension() removes an NCP Extension from the
NWS server’s list of NCP Extensions. If a program has more than one
NCP Extension registered, it must call NWDeRegisterNCPExtension()
for each extension that it has registered.

Outstanding NCP Extension requests are not guaranteed to complete
successfully after NWDeRegisterNCPExtension() is called.

When an NCP Extension is deregistered, all new requests return with
ERR_NO_ITEMS_FOUND, and existing requests may or may not be

 0 (0x00) SUCCESSFUL
The NCP Extension was deregistered.

 255 (0xFF) ERR_NO_ITEMS_FOUND
The NCP Extension has already been
deregistered.
Internetwork Packet Exchange (IPX) Protocol 337

completed. Those that don’t complete also return with the value of
ERR_NO_ITEMS_FOUND.

When an NCP Extension is registered with either
NWRegisterNCPExtension() or NWRegisterNCPExtensionByID(),
the address of the queryData pointer is passed as one of the parameters.
This pointer is then initialized to point to a 32-byte area of memory in
which the service provider can place data. This queryData pointer is
used here as a handle for deregistering the NCP Extension.

See Also

NWRegisterNCPExtension()
NWRegisterNCPExtensionByID()
338 NetWare Transports

NCPX_GetObjectName

Returns the distinguished name of a logged-in
object.

Syntax

#include “ncpx_app.h ”

int NCPX_GetObjectName (

 LONG connectionNumber,

 char *nameBuf,

 int bufLen);

Parameters

connectionNumber

(IN) The number of the connection slot where the object is logged-
in.

nameBuf

(OUT) Passes a pointer to the buffer where the object’s name will be
stored.

bufLen

(IN) Size (in bytes) of the nameBuf.

Return Values

Remarks

NCPX_GetObjectName() returns the name of the object logged-in at
the given connection slot. It translates a connection number into the
name of the object logged-in on the connection. This provides NCPX

 0 SUCCESSFUL

 0xFD UNSUCCESSFUL
Bad station number (connection).
Internetwork Packet Exchange (IPX) Protocol 339

Handlers with a means of identifying the client for which a request is
being processed.

The connectionNumber parameter allows the Handler to “look up” the
distinguished name of the object logged-in on the connection. If the
given connectionNumber is invalid, return a 0xFD. Otherwise, fill in the
nameBuf and return a zero.

If the connection isn’t logged in, the returned name is an empty string.

If there is an error building the name, the returned name is also an
empty string.

Example

BYTE
NCPCallback(NCPExtensionClient *client,
void *requestData,
LONG requestDataLength,
void *replyData,
LONG *replyDataLength)
{
char buffer[256];

if (NCPX_GetObjectName(client->connection, buffer, 256) == 0)
printf(“Object name is ‘%s’\n”, buffer);
else
printf(“Object not LOGGED IN.\n”);

return 0;
}

340 NetWare Transports

ConnectionIsLoggedIn

Determines whether a client is logged-in to the
NNS server.

Syntax

#include “ncpx_app.h ”

int ConnectionIsLoggedIn (

 LONG connectionNumber);

Parameters

connectionNumber

(IN) The number of the connection slot where the client is attached.

Return Values

Remarks

ConnectionIsLoggedIn() determines whether the client originating a
request is “logged-in”—that is both authenticated to the Directory tree
and licensed to the NNS server. If ConnectionIsLoggedIn() returns
FALSE, the client might be either “attached” (service connection only)
or in a “temporary authenticated” state.

Clients are not required to log in to the NWS server before sending
NCPX packets to the server. They can be merely authenticated to the
Directory tree.

If you need to know whether the client is licensed to use the full
resources of the server, use ConnectionIsLoggedIn() to ensure that
clients are “logged in”.

 FALSE (0) CONNECTION_NOT_LOGGED_IN

 TRUE (non-zero) CONNECTION_LOGGED_IN
Internetwork Packet Exchange (IPX) Protocol 341

Example

BYTE
NCPCallback(NCPExtensionClient *client,
void *requestData,
LONG requestDataLength,
void *replyData,
LONG *replyDataLength)
{
if (ConnectionIsLoggedIn(client->connection))
printf(“Connection is LOGGED IN\n”);
else if (ConnectionIsAuthenticatedTemporary(client->connection))
printf(“Connection is AUTHENTICATED TEMPORARY\n”);
else
printf(“Connection is ATTACHED\n”);

return 0;
}

See Also

ConnectionIsAuthenticatedTemporary()
342 NetWare Transports

ConnectionIsAuthenticatedTemporary

Determines whether a client’s login state is
temporary authentication.

Syntax

#include “ncpx_app.h”

int ConnectionIsAuthenticatedTemporary (

 LONG connectionNumber);

Parameters

connectionNumber

(IN) The number of the connection slot where the client is attached.

Return Values

Remarks

ConnectionIsAuthenticatedTemporary() determines whether a client
originating a request has authenticated to the Directory tree. When a
client “attaches” (establishes a service connection) to a NNS server, the
client first authenticates to the Directory tree. This is a “temporary
authenticated” state. When the client then logs in to the server, the client
is both authenticated and licensed.

Clients are not required to log in to the NWS server before sending
NCPX packets to the server. They can be merely authenticated to the
Directory tree. Although ConnectionIsAuthenticatedTemporary()
allows you to discriminate between clients in the “temporary

 FALSE (0) Connection is not in the authenticated
temporary state.

 TRUE (non-zero) Connection is in authenticated
temporary state.
Internetwork Packet Exchange (IPX) Protocol 343

authenticated” state and those that are not (either “attached” or
“logged in”), note that a “logged-in” client is also authenticated.

Example

BYTE
NCPCallback(NCPExtensionClient *client,
void *requestData,
LONG requestDataLength,
void *replyData,
LONG *replyDataLength)
{
if (ConnectionIsLoggedIn(client->connection))
printf(“Connection is LOGGED IN\n”);
else if (ConnectionIsAuthenticatedTemporary(client->connection))
printf(“Connection is AUTHENTICATED TEMPORARY\n”);
else
printf(“Connection is ATTACHED\n”);

return 0;
}

See Also

ConnectionIsLoggedIn()
344 NetWare Transports

NCPX_DetachForkedChildFromServer

Detaches a forked child process from NetWare
resources.

Syntax

#include “ncpx_app.h”

int NCPX_DetachForkedChildFromServer (

 void);

Parameters

None.

Return Values

Remarks

NCPX_DetachForkedChildFromServer() detaches from NWS server
resources and closes all file descriptors. It is called only by children
processes which are forked off during NCP callback processing.

In the forked child, this call should be immediately followed by a call to
exec().

NCPX Handlers are allowed to fork() and create independent child
processes, but these children processes are not allowed to maintain any
association with the server.

When a Handler fork()s, the child inherits all of the parent’s
attachments and associations with the NWS server (shared memory,
open files, signal disposition, etc.). If these associations are not removed

 0 Successful

 -1 Unsuccessful
Internetwork Packet Exchange (IPX) Protocol 345

by detaching the child process from the server, the child prevents the
server from going down.

To detach the forked child from the server, the forked child must call
NCPX_DetachForkedChildFromServer()—This is not an optional
step!

This library routine detaches the forked child process from the NWS
server and allows the child process to continue running after the server
is shut down. This functionality should be used whenever an NCPX
Handler needs to fork off independent processes.

Example

BYTE
run_app(NCPExtensionClient *client,
void *requestData,
LONG requestDataLength,
void *replyData,
LONG *replyDataLength)
{
pid_tpid;
struct sigactionaction;
char *command;

/* Set signal action stuff so children don’t become zombies
 * AND we don’t get SIGCHLD when children stop and continue.
 */

/* First get old action information. */
if (sigaction(SIGCHLD, NULL, &action)) {
printf(“run_app: sigaction() error (get), errno %d\n”, errno);
return 0xff;
}
action.sa_flags |= SA_NOCLDWAIT;/* Prevent children from becoming zombies.
*/
action.sa_flags |= SA_NOCLDSTOP;/* Don’t notify us when children stop/
continue. */
if (sigaction(SIGCHLD, &action, NULL)) {
printf(“run_app: sigaction() error (set), errno %d\n”, errno);
return 0xff;
}

/* Since parent isn’t going to wait around for the child to finish,
 * we can’t depend on requestData being valid in the child (since the
 * parent will cause the buffer to be reused immediately).
346 NetWare Transports

 * So we have to make a copy of any data we’re passing to the child
 * here, BEFORE the fork().
 */
command = strdup(requestData);
if (command == NULL) {
return 0xff;/* failure to dup() the command line. */
}

pid = fork();
if (pid == -1) {
free(command);
return 0xff;/* Failure to fork. */
}
if (pid != 0) {
/* Parent. */
free(command);/* Get rid of unneeded-in-parent command-line copy. */
return 0;
}

/* Else we’re the Child. */

/* Detach from the server environment.
 */
NCPX_DetachForkedChildFromServer();

/* Become session leader (detach from parent). */
if (setsid() == -1) {
printf(“setsid() failure, errno %d\n”, errno);
}

execlp(command, command, NULL);/* Shouldn’t return */

/* Exit with error code if execlp returns. */
exit(1);

}

Internetwork Packet Exchange (IPX) Protocol 347

348 NetWare Transports

Index
/dev/ipx, device name for IPX 16, 135
/dev/nspx, device name for SPX 171
/dev/nspx2, device name for SPXII 171
Acknowledge number

in NAK packet 59
incrementing 61, 65
tracking sender's received packets 56

Acknowledge Number, SPX field 34
Acknowledge Number, SPXII field 53
ACKs

implicit 57
SPXII data 57
SPXII informed disconnect 85
SPXII orderly release 89
SPXII piggy-back 61
SPXII watchdog 94

Address. SeeIPX address
Addressing scheme, IPX internetwork 2
Addressing services. SeeIPX
AdvertiseService() 270
Aging

networks 26
parallel routes 122
routing information 26
server entries 121

AIX execution environment
differences from native NetWare 301
NCP Extensions in 301

AIX filepriv command 306
AIX kill command 305
AIX process privileges

granting 306
required for NCPX program 305
restricting 306

AIX SDK 290

AIX server
robustness 307
services to NCPX applications 319

AIX shared-object libraries. See Libraries
Algorithm

changes, SPXII watchdog 92
for disparate versions of SPXII 108
retransmission timeout 223
split horizon 19, 124, 129
SPXII data packet timeout 111
SPXII watchdog 95
window management 45

Allocation number
incrementing 61
indicating sender's receive window size 57

Allocation Number, SPX field 35, 38
Allocation Number, SPXII field 53
Application

binding to a socket number 139
communicating with an unknown machine type

156
determining sequence of TLI calls 168
establishing SPXII connection 49
matching server and client 10
responsible for SPXII packet's data 46
setting IPX fields 7
SPX, works with SPXII driver 43

Application server 50, 128, 196
Asynchronous mode 168, 187, 202
Bi-directional communication, SPX 36
Bimodal operation, SPXII 43
Bindery

compared with SAP agent 117
emulation mode 117, 170
object types 120
 Index 349

Board address. SeeNode address
Broadcast interval

for routers 26
for SAP agents 115

Broadcast node address, disallowed 50
Broadcast packet

with routing information 26
with service information 114

Byte order
data in sapouts file 265
for internal network address 282
for IPX header 4
for ipxAddr_t 188
for netInfo_t 245
for node address 50
for RIP header 24
for SAP Information structure 245
for SAP query header 129
for SAP response header 130
for server object type 119
for socket number 181
for SPX header 29
for SPXII header 46
hi-lo illustrated 4, 24, 29, 46
network defined 4, 24, 29
unknown machine type 156

C runtime startup code, option for 313
Callback on changed SAP information 252
Change stamp 250
Checksum, IPX field 8, 49
Child process

detaching from NWS server 321, 345
forked by parent 302
inherits parent’s association with server 321

Client application, TLI sequence for 170
Client node address 3
Client, defined 41
Client-server applications

how NCP Extensions work in 292
using NCP Extensions for 291

Client-side NCPX program, defined 290
Compatibility, disparate versions of SPXII 108
Compatibility, SPX/SPXII

allocation procedures 166

Connection Control differences 46
Datastream Type differences 166
device selection procedures 167
mixed environment 42, 81
option management differences 161

Compiling NCPX programs
command to compile the code 314
command-line options 313

Connection ACK packet 68
Connection Control, SPX field 33
Connection Control, SPXII field 43, 46, 51
Connection endpoint, defined 42
Connection establishment

changing sockets 75
negotiating optional information 96
packet sequence 66
packet sequence for mixed SPX and SPXII

endpoints 81
SPXII to SPXII packet sequence 77
watchdog system 95
when complete 73
with negotiation 77
without negotiation 80

Connection event callback
defined 294
functionality 301
NCPX program component 293
when called 311
when to use 317

Connection event manager. See Connection event
callback

Connection ID numbers 52, 75
Connection number, used in name lookup 339
Connection partner, defined 42
Connection request

accepting 169, 174
dropping duplicates 198
lacks SPXII Negotiation Size field 53
listening for 50
outstanding, defined 182
packet format 66
rejecting 226
sending 170
with SPX2 bit set 43
350 NetWare Transports

without SPX2 bit set 43
ConnectionEventHandler callback. SeeConnection

event callback
ConnectionIsAuthenticatedTemporary() 321, 343
ConnectionIsLoggedIn() 321, 341
Data flow

SPX, defined 36
SPXII, defined 54

Data flow, SAP information
broadcasting 122
query/response 123

Data packets
out-of-sequence, flushing 102
SPXII flow with a NAK 63
SPXII flow, without NAK 61
SPXII format 56
SPXII, timeout algorithm 111

Data sequence, SPX
bi-directional communication 37
uni-directional communication 36

Data structures
internal Network Address 282
IPX Address 188
ipxAddr_t 139, 150, 155, 179, 188, 197
IpxConfiguredLans_t 283
IpxLanStats _t 283
IpxNetAddr_t 282
IpxNodeAddr_t 282
IpxSetSocket_t 282
IpxSocketStats_t 283
lanInfo_t 283
netbuf 139, 147, 150, 155, 179, 188, 196, 206
netInfo_t 245
Network Information 25
Option Management 160
PersistList_t 265
SAPD 239
SAPI 245
SAPL 267
SPX_OPTMGMT 161, 207
SPX_OPTS 189, 197
SPX2_OPTIONS 162, 208
spxConStats_t 288
spxStats_t 288

t_bind 139, 179
t_call 187, 196
t_discon 215
t_info, IPX information in 144
t_optmgmt 147, 206
t_optmgmt, SPX 161
t_optmgmt, SPXII 162
t_unitdata 150, 155
TLI Information 144, 203
TLI, IPX-specific list 134
TLI, SPX/SPXII-specific list 168

Data types
IPX Address 137
ipxAddress 139, 155, 179, 188, 197
lanInfo 282
netInfo 245
Node Address 282
PersistList 265
SAP Information 245
sap_data 239
sap_info 245
SapLanData 267
Server Information 131
spx_optmgmt 161, 207
spx2_options 162
spxopt_s 189, 197
unsigned integers with length designators 7, 48

Data unit
byte ordering 156
receiving from other transport users 150
sending to other transport users 155

Datagram service. SeeIPX
Datastream Type, SPX field 33
Datastream Type, SPX/SPXII field

differences 166
issuing ioctl to send value 287

Dead servers 250
Deregistering NCP Extensions 317
Destination Address, IPX fields 9
Destination address, passed to SPXII by

application 49
Destination Connection ID, SPX/SPXII field 52
Destination Socket, IPX field 22
Device name
Index 351

for IPX 16, 135
for SPX 171, 202
for SPXII 171, 202

Device node, accessed by TLI 16
Directory Services, backward compatibility with

bindery 117
Directory tree, authenticating to 321, 341, 343
Directory, defined 117
Disconnection indication

asynchronicity 216
generating 187
listening for or sending 170
reasons 215

Disconnection request
listening for or sending 171
sending 226

Dispatch loop. See EventLoop
Distributed applications, using NCP Extensions for

291
Duplicate connection request 198
Dynamic socket number

defined 139, 180
obtaining 141, 181

Enabling IPX checksums 156
Endpoint

active, defined 41
defined 41
detecting route change 100
disconnecting 92
receiving, defined 45

Ephemeral socket numbers. SeeSocket numbers
Errant programs 307
Errors

data transmission 167, 175
M_ERROR 282
SAP library, printing 269
t_errno settings 138, 154, 174, 178, 202, 206

Ethernet
assumed for RIP routing 25
frame types 6
maximum data size 6
packet size sequence for negotiation 45

Event queue 303
EventLoop

controlling 320
functionality 303, 314
invoking NCPX callbacks 302
processing NCP Extensions 301
reasons for exiting 303, 320
single-threaded 302
when to call 303

exec() 345
Expedited data, unsupported in IPX 156
Extended NCPs. See NCP Extensions
File descriptor

as local ID of endpoint 144
for SPXII server applications 174
NCPX handle to NEMUX channel 307

Flow control 212
SPX, on incoming data 38
SPX, on outgoing data 38
unsupported in IPX 151

fork() 321, 345
Fragmented data

requires reply buffer manager 316
transparent to NCPX programs 299

Frame types 3, 6, 14
General Request, RIP 25
General Service Query, SAP 129
General Service Response, SAP 130
global character-array variable 308
Guaranteed delivery service. SeeSPXII
Handler processes 305
Handler programs. See NCPX Handler
HandlerMain() 303, 310, 314, 320, 323
Header fields

for IPX 7
for RIP 24
for SAP 118
for SAP query 129
for SAP response 130
for SPX 31
for SPXII 48

Hi-lo byte order, defined 4, 29
Hop count 21
Hops

defined 18, 25
distance vector 121
352 NetWare Transports

signalling "downed" server 131
Hops to Server, distance vector for service

advertising 121
I_STR 279, 285
ID

how long valid 328
required for NCP Extensions 296

ID numbers, generating 52
Inactive connection, defined 39
Include files

ipx_app.h 133
lipmx_app.h 281, 283
ncpx_app.h 319
ripx_app.h 246
sap_app.h 234
sap_dos.h 234
spx_app.h 167, 281, 286

Independent process, forking off 322
Informed disconnect ACK packet 85
Informed disconnect packet 84
Initialization code, for NCPX Handler library 320
Intermediate networks 25
Internal data structures, NWS server 306
Internal network

as LAN 0 266
assigning IPX number 135
associated with server's logical node address 3

Internal network number 135
Internetwork address, stored in Routing

Information Table 19
Internetwork address. SeeIPX addressand

Network address
Internetwork Packet Exchange. See IPX
ioctl commands

list for IPX LAN Router 280
list for IPX Socket Multiplexer 280
list for SPX/SPXII 286
using STREAMS I_STR to issue 279, 285

ioctls Reference, for IPX
IPX_BIND_SOCKET 281
IPX_GET_CONFIGURED_LANS 283
IPX_GET_LAN_INFO 282
IPX_GET_NET 282
IPX_GET_NODE_ADDR 282

IPX_SET_SOCKET 281
IPX_STATS 283
IPX_UNBIND_SOCKET 281

ioctls Reference, for SPXII
SPX_CHECK_QUEUE 287
SPX_GET_CON_STATS 288
SPX_GET_STATS 288
SPX_GS_DATASTREAM_TYPE 287
SPX_GS_MAX_PACKET_SIZE 286
SPX_SPX2_OPTIONS 288
SPX_T_SYNCDATA_IOCTL 287

IPX
closing socket 156
expedited data unsupported 156
flow control unsupported 151
functionality 1
header fields 7
listening for incoming packets 138
negotiable options unsupported 147
packet size 6
packet structure 4
sockets 10
TLI functions specific to 133

IPX address
components described 2
destination 7, 9, 49
for service advertising 121
obtaining 116
required for routing 3, 19
router 18
socket 3
source 7, 11

IPX address structure 2
IPX checksums

enabling 156
setting 49

IPX driver
device name 135
dropping excess incoming packets 151
generating unitdata error messages 135
includes LAN router 17
ioctls applicable to 279
opening 134
routing services 2
Index 353

IPX encapsulation 31, 48
IPX header

fields set by SPXII driver 49
fields, defined 7
frame-specific differences 6
size 4, 7

IPX packet
Maximum Transmission Unit 4
size 4

IPX packet structure 4
IPX Router Specification 18
IPX TLI

considerations 135
sequence of functions 134

IPX/SPX, using NCPX as alternative 289
ipx_app.h file 8, 133, 283
IPX_BIND_SOCKET 281
IPX_GET_CONFIGURED_LANS 283
IPX_GET_LAN_INFO 282
IPX_GET_NET 282
IPX_GET_NODE_ADDR 282
IPX_SET_SOCKET 281
IPX_STATS 283
IPX_UNBIND_SOCKET 281
ipxAddr_t structure 139, 150, 155, 157, 179
IpxConfiguredLans_t structure 283
ipxinfo utility 283
IpxLanStats _t structure 283
IpxSetSocket_t structure 282
IpxSocketStats_t structure 283
LAN 0 266
LAN driver, determining maximum packet size 44
LAN router. SeeRouters
lanInfo_t structure 282
Length, IPX field 8, 72
libncpx. See NCPX Handler library
libncpx_cmn.so library 310, 319
libncpx_han library 310
libncpx_han.so library 310, 319
libncpx_svr.so library 319
Libraries

"hidden" 319
libncpx 319
libncpx_cmn.so 319

libncpx_han 310
libncpx_han.so 310, 319
libncpx_svr.so 319
linking 313
math 314
NCPX Handler 313, 319
NWS server 314

LightWeight message queue 309, 310
Limitations, for NCPX, imposed by NWS

architecture 308
lipmx_app.h file 282, 283
Logical node address, for NetWare 3.x+ servers 3
Login sequence to NWS server 321
Login state 321, 341, 343
Loopback requests 308
MAC header 3, 22
Mapped memory, SAPD

attaching to 236
dead servers 250
detaching from 238
for Server Information Table 234

Maximum packet size, determined by LAN driver
44

Maximum Stream Message Size 44
Maximum Transmission Unit 4, 24
Media Access Control protocol. SeeMAC header
Message-level service. SeeSPXII
Multiple LAN configuration 14
Multiple NCP Extensions

registering 301, 317
using switch statement 318

Multiple routes 18, 45, 121
NAKs

SPXII data sequence 63
SPXII format 59
SPXII support 45, 109
when sent 59

Names
naming rules 296
required for NCP Extensions 296

NCP 36 300
NCP 37 298, 300
NCP callback

connection number parameter 321
354 NetWare Transports

defined 294
filling in reply buffer 316
functionality 301
NCPX program component 293
required for calling NCP Extensions 293
when called 311

NCP engines 316, 319
NCP Extension

calling 298
client’s view 300
ID assigned by Novell 297
identifying by ID 296
identifying by name 296
registering name with Novell 296
registering with callbacks 300
service-provider’s view 300

NCP Extensions
alternative to IPX/SPX 292
client-side 290
deregistering 317
disadvantages 292
for client-server applications 291
multiple, when to register 310
names required 296
naming rules 296
potential uses 291
registering multiple 301, 317
registration and deregistration functions 320
server-side 289

NCP, defined 289
NCPExtensionClient structure 329, 331
NCPX application

command to compile code 314
compiling 313
components 293
event-driven 303
identifying clients 321
initializing 320
parent and child processes 302
required privileges 305
running 314
sample code 311
single-threaded 302
trustworthiness 307

writing 309
NCPX callbacks

combinations 295
optional 311
when called 311

NCPX child process 302, 345
NCPX client

accessing NCP Extension services 300
calling NCP Extension 298

NCPX client functions 298, 300
NCPX client program, defined 290
NCPX functions, index 322
NCPX Handler

code example as template 311
command to compile code 314
compiling 313
defined 290
detaching child process 321
forking child process 321
forking off independent processes 322
identifying clients 321
links with libraries 310
parent and child processes 302
required privileges 305
returning status information 329
running 314
sample code 311
signals 304
trustworthiness 307
writing 309

NCPX Handler code example, using as template
311

NCPX Handler library
access to shared memory 307
allocating reply buffers 315
controls dispatch of incoming NCP Extensions

320
creating buffers 299
daemonizing process 314
deregistration function 320
detaching child process from NWS server 321
determining client’s login state 321
determining connection status 321
freeing buffers 299
Index 355

getting distinguished names 321
handles attachment to shared memory 306
indentifying clients 321
initialization code 306, 320
intercepts signals 304
interface to NWS server 319
location of prototypes 319
manages parent and child processes 303
not thread-safe 302
opens channel to NEMUX 307
provides same API as native NetWare 301
reference to routines 319
registration functions 320
rejects duplicate name or ID 297
requires global character-array variable 308
validating registration parameters 298

NCPX Handler Library Reference
ConnectionIsAuthenticatedTemporary() 343
ConnectionIsLoggedIn() 341
NCPX_DetachForkedChildFromServer() 345
NCPX_EventLoop() 323
NCPX_GetObjectName() 339
NWDeRegisterNCPExtension() 337
NWRegisterNCPExtension(326
NWRegisterNCPExtensionByID() 333

NCPX memory pool, size 309
NCPX parent process, functionality 302
NCPX program

child process 321
command to compile code 314
command to run 314
compiling 313
components 293
dual process nature 303
event-driven 303
fragmentation transparent to 299
identifying clients 321
initializing 320
minimum steps 310
parent and child processes 302
process model 301
registering service as an NCP Extension 290
required privileges 305
running 314

running as an AIX process 293
sample code 311
signals 304
single-threaded 302
trustworthiness 307
where run 307
writing 309

NCPX requests
failure to complete 337
queuing 303, 320

NCPX signals, delivered via NEMUX 307
ncpx_app.h file 319
NCPX_DetachForkedChildFromServer() 322, 345
NCPX_EventLoop() 303, 320, 323
NCPX_GetObjectName() 321, 339
ncpx_prog command 314
NDS server 116
Nearest Server Query, SAP 125, 129
Nearest Server Response, SAP 130
Negotiation

defined SPXII types 108
SPXII sequence 77

Negotiation overhead, when to avoid 79
Negotiation Size, SPXII field 46, 53
NEMUX kernel module

functionality 307
initializing channel with 320
NCPX communication channel with 307

NetBIOS packets 9
netbuf structure 155, 179, 188, 196, 206
netInfo_t structure 245
NetWare bindery. SeeBindery
NetWare Core Protocol, defined 289
NetWare daemo 319
NetWare protocol stack

configuring 135
initial flow of information 122
SAP implementation for UNIX 233

NetWare Protocol Stack daemon (NPSD) 39
Network address, defined 3
Network backbone 16
Network entry. SeeNetwork Information

Structure
Network Information Structure
356 NetWare Transports

as network entry 22
fields, defined 24, 25
netInfo_t 245
size 22

Network number 3
NNS server. See NWS server
Node address

broadcast, disallowed 50
byte order 50
for clients 3
for server 3

Novell
administering NCP Extension names 296
administering NCP Extension well-known IDs

297
administering Negotiate Value Type numbers

108
administering object types 119
administering well-known socket numbers 11

Novell Network Services 4.1 for AIX API 290
Novell Network Services 4.1 for AIX server. See

NWS server
Number of Hops, distance vector for routing 19
Number of Ticks, time delay for routing 17, 19
Numbered packets 28
NVT2 server 116
nwcm utility 135
NWDeRegisterNCPExtension() 320, 337
NWGetNCPExtensionInfo() 300, 329, 331
NWRegisterNCPExtension() 320, 326
NWRegisterNCPExtensionByID() 320, 333
NWS server

licensed users 321, 341
login sequence 321
malfunction, causes 302, 304, 306, 307
NCPX limitations imposed by architecture 308
service connection 321
shared-memory segment 303
trusted extensions 307

nwsapinfo utility 240, 268
NWScanNCPExtensions() 300, 329, 331
NWSendNCPExtensionFraggedRequest() 298,

300, 315

NWSendNCPExtensionRequest() 298, 300, 326,
328

Object database, querying 117
One-way communication, SPX 36
Operation field

for RIP 22, 24, 25
for SAP 118, 128
for SAP queries 129
for SAP responses 130
SAP settings 125

Option information, exchanging 161
Option management differences

SPX/SPXII 160
Orderly release ACK packet 89
Orderly release request packet 88
Outstanding connection requests 179, 181
Packet header

IPX 7
RIP 24
SAP 118
SPX 30, 47
SPXII 47

Packet Length, IPX field 8, 72
Packet size

negotiated 44
SAP 126
SPX 29
SPXII 44
SPXII negotiation 77

Packet structure
illustrated for IPX 5
illustrated for RIP 23
illustrated for SAP 118
illustrated for SAP query 127
illustrated for SAP response 127
illustrated for SPX 30, 47
illustrated for SPXII 47
SPX and SPXII, compared 47

Packet Type, IPX field 8, 49
Packet types

for RIP 25
for SAP 118, 126
propagated 9
RIP broadcast 26
Index 357

RIP query 24, 25
RIP response 25
SAP broadcast 118, 131
SAP query 128
SAP response 130
SPX/SPXII value 49

Packet. See alsoFrame type
Packet-level service. SeeSPX
Padding SPXII packets 98
Parallel routes 45
Parent process 302, 345
Periodic Broadcast packet

for routing information 26
for service advertising 131

Permanent Service 116, 261, 265
PersistList_t structure 265
Physical network 3
PID 271
Piggy-back ACKs 57, 61
Piggy-back NAKs, not supported 65
Port. SeeSocket numbers
Print Server daemon 116, 234
Privileges

derived from TFM database 306
granting to NCPX program 306
required for NCPX program 305
restricting per-user or per-role 306

Process model, NCPX programs 301
Process, identified by socket number 3
Programming interface

direct IPX 279
for IPX 16
for SAP 233
for SPXII 112
getmsg/putmsg for IPX 279
IPX ioctls 279
lack of, for RIP 17
SPXII backward compatibility with SPX 43
SPXII ioctls 285

Propagated packet 9
Query data buffer

defined 293
functionality 331
NCPX program component 293

Query packet
for nearest server 125
for routing information 24
for service information 122
RIP format 24
SAP format 128
size of, SAP 126

QueryServices() 275
Receiving endpoint, passive 45
Redundant cabling 18, 121
Remote application servers 50
Renegotiate ACK packet 98
Renegotiate request packet 96
Renegotiation, SPXII 96
Reply buffer manager

functionality 315
performance considerations 311, 316
second component to NCPX Handler 299
when to use 315

Reply buffer manager callback
defined 294
functionality 301
NCPX program component 293
when called 311

Reply buffers, allocating 315
Request packet

for nearest server 125
for routing information 24
for service information 122

Response packet
for RIP 26
SAP contents 128
SAP format 127
SAP, size range for 126

Revision stamp 250
RIP

functionality 17
header fields 24
implemented within IPX driver 17
Network Information Structure 25
Operation field 22, 24
over IPX 17
packet size 24
packet structure 23
358 NetWare Transports

packet types 25
programming interface, lack of 17
socket numbers of 22
specifications 18

RIP header 22, 24
RIP packet

fields, defined 24
header 22
size 24
structure 22
types 25

RIP packet types
determining 25
General Request 25
Periodic Broadcast 26
Response 26
Specific Informational Response 26
Specific Request 26

ripx_app.h file 246
Route

determining most efficient 20
obtaining 19

Router Table. SeeRouting Information Table
Routers

broadcast interval 26
dedicated 17
IPX ioctls applicable to 279
listening for RIP packets 19
maximum number allowed in route 8, 32, 49
obtaining routing information 18

Routing
implemented within IPX driver 17
obtaining destination address 19
obtaining information for 18
reducing traffic 19
requires an IPX address 19
when needed 20

Routing Information Table
in temporary memory 19
information stored in 19
updating 26

Routing services. SeeRIP
SAP

aging server entries 121

broadcasts 122
data flow 122
functionality 113
header fields 128, 129, 130
Operation field 118
over IPX 117
packet structure 118, 127
packet types 126
query packet 125
query packets 128
response packets 130
socket number of 115

SAP agent
binding to SAP socket 115
compared with bindery 116
connected to a WAN 122
for UNIX environment 113
for WAN 122
functions of 122
information returned from query 117
querying 116
SAP daemon (SAPD) 113
signalling server removal 131
updating/maintaining Server Information

Table 114
SAP daemon. SeeSAPD
SAP header fields 118, 129, 130
SAP library

functionality 234
list of functions 234
mode dependencies 233
Native NetWare compatible functions 235

SAP Library reference
AdvertiseService() 270
QueryServices() 275
SAPAdvertiseMyServer() 260
SAPGetAllServers() 244
SAPGetChangedServers() 249
SAPGetLanData() 266
SAPGetNearestServer() 247
SAPGetServerByAddr() 254
SAPGetServerByName() 257
SAPListPermanentServers() 264
SAPMapMemory() 236
Index 359

SAPNotifyOfChange() 252
SAPPerror() 269
SAPStatistics() 239
SAPUnmapMemory() 238
ShutdownSAP() 274

SAP packet
data for IPX packet 117
fields, defined 118
length 126
query format 127, 128
response format 127, 130
size 126, 128
structure 127
types 126

SAP packet formats 127
SAP packet types

broadcast 126, 131
distinguishing 131
General Service Query 126, 129
General Service Response 130
Nearest Server Query 129
Nearest Server Response 130

SAP statistics, defined 242
sap_app.h file 234
sap_dos.h file 234
SAP_ID_PACKET structure 276
SAPAdvertiseMyServer() 260
SAPD (SAP daemon)

active/inactive 233
as SAP agent 113
binding to SAP socket 115
broadcasts 122
determining best information source 130
maintaining mapped memory 234
obtaining SAP statistics 239
querying 116
removing server from Server Information Table

131
response to queries 130
SAP library dependent on 233
searching Server Information Table 125

SAPD structure 239
control information fields, defined 241
statistical fields, defined 242

SAPGetAllServers() 244
SAPGetChangedServers() 249
SAPGetLanData() 266
SAPGetNearestServer() 247
SAPGetServerByAddr() 254
SAPGetServerByName() 257
SAPI structure 245
SAPL structure 267
SAPListPermanentServers() 264
SAPMapMemory() 236
SAPNotifyOfChange() 252
sapouts file 261, 265, 271
SAPPerror() 269
SAPStatistics() 239
SAPUnmapMemory() 238
Sequence number

connection request 173
differentiating between retry and renegotiate

75
in NAK packet 59, 63
tracking sender's data packets 55

Sequence Number, SPX/SPXII field 34, 52
Sequence of TLI functions

for IPX 134
for SPXII client applications 170
for SPXII server applications 169

Sequenced packets 28
Server Address field 121
Server Advertiser daemon 234, 253
Server application

TLI sequence for 169
use of file descriptors 174

Server entry. SeeServer Information Structure
Server Hops, distance vector for service

advertising 131
Server Information Structure

fields, defined 119
Server Information Table

aging of server entries 121
building and maintaining 114
changed entries 250
fields 119
in SAPD mapped memory 234
memory copy 117
360 NetWare Transports

multiple accesses 234
registering services and addresses 113
removing servers from 121
searching 125
server object types for 120
storing SAP information 119
updating 131, 234

Server internal data structures 306
Server Name field 120
Server node address 3
Server object types 120, 272
Server Type field 119
Server, defined 41
Server-side NCPX program, defined 290
Service advertising. See also SAP

initiating 115
terminating 114, 131

Service name, obtaining 116
Session negotiate ACK packet 72
Session negotiate packet 69
Session setup ACK 76
Session setup packet 73
Session termination

informed disconnect 83, 86
informed disconnect sequence 86
orderly release 87, 90
orderly release sequence 90
SPXII types 82
unilateral abort 82

Shared memory
controlling size of 309
NWS server 306

Shared-memory segment
attaching to 306
NCPX programs allowed to write to 307
NWS server 303
present in address space 306
size of NCPX pool 309

shm_size, nwcm parameter 309
SHMMAX, AIX system tunable 309
ShutdownSAP() 274
SIGHUP, NCPX signal 304
SIGINT, NCPX signal 305
Signals, NCPX program 304

SIGQUIT, NCPX signal 304
SIGTERM, NCPX signal 304
Single threading in NCPX 302, 308
Size negotiation, SPXII packets 45
Socket address. SeeSocket numbers
Socket Multiplexer, IPX ioctls applicable to 279
Socket numbers

assigning well-known 139
binding to 180
binding to endpoint 138, 169, 170
byte order 180
dynamic (ephemeral) 4
obtaining dynamic 137, 141
obtaining static 140
range 139, 180
static (well-known) 4, 180
unrecognized 9
well-known, assigned by Novell 180

Sockets
changing 75
IPX 10

Source address, filled in by SPXII 50
Source Address, IPX fields 11
Source Connection ID, SPX/SPXII field 52
Source socket number 50
Source Socket, IPX field 22
Specific Informational Response, RIP 26
Specific Request, RIP 26
Split horizon algorithm 19, 124
SPX

acknowledge numbers 28
calculating number of outstanding listen buffers

35
clearing unresponsive connections 40
connection management 39
data flow 36
disconnection indication 38
flow control 27, 38
functionality 27
header fields 31, 32
maintaining connection table 39
number of retries 38
packet numbering system 28
packet retries 40
Index 361

packet sequencing 28, 36
packet size 29
packet structure 29
positive acknowledgment 45
retry procedure 40
sequence numbers 28
timeout procedure 40
use of Connection Control flags 51
watchdog 92
watchdog procedure 39
window size 35, 45

SPX flow control 38
SPX option fields, defined 162
SPX packet

sequencing 28, 36
size 29
structure 29

SPX watchdog. SeeWatchdog
SPX/SPXII

asynchronous/synchronous modes 187
features 167
over IPX 1
TLI functions specific to 167
tracking bound socket numbers 180

SPX/SPXII TLI
list of functions 171
prerequisites 171
sequence of functions 168

spx_app.h file 167
SPX_CHECK_QUEUE 287
SPX_GET_CON_STATS 288
SPX_GET_STATS 288
SPX_GS_DATASTREAM_TYPE 287
SPX_GS_MAX_PACKET_SIZE 286
SPX_OPTMGMT structure 161, 207
SPX_OPTS structure 189, 197
SPX_SPX2_OPTIONS 288
SPX_T_SYNCDATA_IOCTL 287
SPX2 bit (in Connection Control field) 43
SPX2_OPTIONS structure 162, 208
spxConStats_t structure 288
SPXII

acknowledgment, positive and negative 45
backward compatibility with SPX 42

bimodal operation 43
connection establishment 73
connection management 65
connection sequence to SPX endpoints 81
connection sequence to SPXII endpoint 77
connection terminology 41
data flow 54
discovering endpoint type 87
disparate versions 108
enhancements 41
error recovery 111
functionality 42
header fields 49
informed disconnect sequence 86
large packet size negotiation 44
large packets 44
negotiating other values 103
orderly release sequence 90
packet structure 46
renegotiating packet size 96
renegotiation sequence 100
session termination 82
supporting orderly release through TLI 87
use of Connection Control flags 51
use of Datastream Type flags 51
watchdog 92
windowing algorithm 109
windowing protocol 45

SPXII driver
bimodal operation 43
clearing unresponsive connections 95
default window size 110
demultiplexing packets 52
detecting transmission failures 175
determining largest packet size supported 44
device selection 167
dropping connection requests 175
generating connection ID numbers 52
ioctls applicable to 285
negotiating packet size 44
opening 174
setting fields in IPX header 49

SPXII option fields, defined
spxIIConnectionID 165
362 NetWare Transports

spxIIConnectTimeout 164
spxIIInboundPacketSize 165
spxIILocalWindowSize 165
spxIIMaximumRetryDelta 164
spxIIMinimumRetryDelay 164
spxIIOptionNegotiate 164
spxIIOutboundPacketSize 165
spxIIRemoteWindowSize 165
spxIIRetryCount 164
spxIISessionFlags 165
spxIIWatchdogTimeout 164
versionNumber 163

SPXII packet
compared with SPX structure 47
header fields 48
size 46
structure 46

SPXII packets
connection ACK format 68
connection request format 66
data ACK format 57
data packet format 56
data, sequence with a NAK 63
data, sequence without a NAK 61
informed disconnect ACK format 85
informed disconnect format 84
NAK format 59
orderly release ACK format 89
orderly release request format 88
renegotiate ACK format 98
renegotiate request format 96
session negotiate ACK format 72
session negotiate format 69
session setup ACK 76
session setup packet format 73
watchdog ACK format 94
watchdog format 93

SPXII server application
accepting/rejecting connection requests 174
sequence of TLI calls 169
use of file descriptors 174

spxStats_t structure 288
Static socket number

assigned by Novell 180

binding to endpoint 180
obtaining 180
range 139

Static socket numbers. SeeSocket numbers
Station address. SeeNode address
STREAMS I_STR, using to issue ioctl commands

285
Switch statement, code sample 318
Synchronous mode 168, 187, 202
t_accept() 173
t_bind()

IPX specific 137
SPX/SPXII specific 177

t_call structure 187, 196
t_connect() 186
t_discon structure 215
t_info structure

IPX information in 144
SPX/SPXII information in 203

t_listen() 195
t_open() 143
t_optmgmt structure 189, 206

for SPX 161
for SPXII 162, 208
request and return 207
SPX/SPXII differences 161

t_optmgmt() 146, 205
t_rcv() 211
t_rcvdis() 214
t_rcvudata() 149
t_snd() 222
t_snddis() 226
t_sndudata() 154
t_unitdata structure 155
Table

combinations of NCPX callbacks 295
command-line options for compiling NCPX

Handler 313
for connection management 39
for routing information 17
for server/service information 114
NCPX functions 322
privileges required by NCPX Handler 305
signals processed by NCPX Handler 304
Index 363

TFM database 306
Tick length, defined 19, 25
Time delay 17
Time Since Change, SAP daemon field 121
Timeout

algorithm for retransmission 223
client's connection request 175
failed acknowledgement for SPX data packet 40
sequence for SPXII data packets 112

Timer, maintained by SAP agent 121
timod 171
tirdwr 171
TIRPC (Transport-Independent Remote Procedure

Calls) 289
TLI

allocating structures 166
SPX and SPXII differences 160
SPXII orderly release 87
transport-provider specific functions 133, 167

TLI functions
list, IPX-specific 133
list, SPX/SPXII-specific 167
sequence, IPX-specific 134
sequence, SPX/SPXII-specific 168

TLI reference, IPX
t_bind() 137
t_open() 143
t_optmgmt() 146
t_rcvudata() 149
t_sndudata() 154

TLI reference, SPX/SPXII
t_accept() 173
t_bind() 177
t_connect() 186
t_listen() 195
t_optmgmt() 205
t_rcv() 211
t_rcvdis() 214
t_snd() 222
t_snddis() 226

Token ring, frame types 6
Traffic, reducing 44
Transport Control, IPX field 8, 22, 49
Transport endpoint

binding socket number to 180
binding to a socket number 138
bound socket numbers tracked 139
obtaining address 157, 173
sending disconnection indication 167

Trusted Facilities Manager (TFM) 306
Uni-directional communication, SPX 36
Unilateral abort 82
Unknown machine type, byte ordering 156
Updating SAP information 234
Utilities

ipxinfo 283
nwcm 135
nwsapinfo 240, 268

WAN link 122
Watchdog

algorithm changes 92
checking for inactive SPX connections 39
clearing SPX connections 39
default timeout 95
monitoring connection establishment 95
performing retries 95
preventing blocking 212
renegotiation 102
SPXII algorithm 95
SPXII support 92

Watchdog ACK packet 94
Watchdog packet 93
Window size

changing 110
SPX 35
SPXII default 110

Windowing
closing and reopening 110
closure 92
SPXII algorithm 109
SPXII support 45

Xerox Network Standard (XNS)
IPX packet, identical to 4
packet length definition 44
RIP, as modified implementation 17
SPX, as modified implementation 41
364 NetWare Transports

	About This Guide
	Contents
	1 Internetwork Packet Exchange (IPX) Protocol
	What Is IPX?
	How IPX Works
	IPX Addressing
	Table�1�1 continued IPX Internetwork Address Compo...
	Network Address
	Node Address
	Socket Address

	IPX Packet Structure
	Figure�1�1 Byte Order
	Figure�1�2 IPX Packet Structure

	IPX Header Fields
	Table�1�2 IPX Header Fields
	Checksum
	Packet Length
	Transport Control
	Packet Type

	Table�1�3 � Packet Type Values
	Destination Address Fields
	Network
	Node
	Socket
	Source Address Fields
	Network
	Node
	Socket

	IPX Driver in UNIX Environment
	Figure�1�3 Relationship between IPX, TLI/XTI Libra...
	Single LAN configuration

	Figure�1�4 Single LAN Configuration
	Multiple LAN Configuration

	Figure�1�5 Multiple LAN Configuration
	Router Only Configuration

	Figure�1�6 Router Only Configuration

	IPX Programming Interface
	2 Routing Information Protocol (RIP)

	What Is RIP?
	How Routing Works
	Routing Information Tables
	Obtaining a Route
	When Routing Is Not Needed
	Figure�2�1 Transmitting a Packet between Two Nodes...
	When Routing Is Needed

	Figure�2�2 Transmitting a Packet across Networks

	RIP Packet Structure
	Figure�2�3 RIP Packet Structure
	Figure�2�4 Byte Order

	RIP Packet Fields
	Table�2�1 RIP Packet Fields
	Operation
	Network Information Structure

	Table�2�2 Fields in the NetWork Information Struct...

	RIP Packet Types
	General Request (Operation = 1)
	Specific Request (Operation = 1)
	Periodic Broadcast (Operation = 2)
	Response (Operation = 2)
	Specific Informational Response (Operation = 2)
	3 Sequenced Packet Exchange (SPX) Protocol

	What Is SPX?
	How SPX Works
	SPX Packet Structure
	Figure�3�1 Byte Order
	Figure�3�2 SPX Packet Structure

	SPX Header Fields
	Table�3�1 Packet Header Fields for IPX/SPX
	Checksum
	Length
	Transport Control
	Packet Type
	Destination Address

	Table�3�2 � Destination Address
	Source Address
	Connection Control

	Table�3�3 Flags for SPX Connection Control
	Datastream Type
	Source Connection ID
	Destination Connection ID
	Sequence Number
	Acknowledge Number
	Allocation Number

	SPX Data Flow and Sequence
	Uni-directional Communication
	Figure�3�3 SPX Uni-Directional Data Sequence

	Bi-directional Communication
	Figure�3�4 SPX Bi-directional Data Sequence

	SPX Flow Control
	Flow Control on Incoming Data
	Flow Control on Outgoing Data

	SPX Connection Management
	SPX Watchdog
	SPX Timeout
	4 Enhanced Sequenced Packet Exchange (SPXII) Proto...

	What Is SPXII?
	How SPXII Works
	Backward Compatibility with SPX
	Compatibility on the Wire
	Programming Interface Compatibility

	Large Packets
	Large Packet Negotiation
	Windowing Protocol

	SPXII Packet Structure
	Figure�4�1 Byte Order
	Figure�4�2 SPX and SPXII Packet Structure

	SPXII Header Fields
	Table�4�1 Packet Header Fields for IPX/SPXII
	Checksum
	Length
	Transport Control
	Packet Type
	Destination Address

	Table�4�2 IPX Address Fields
	Source Address
	Connection Control

	Table�4�3 � Flags for SPXII Connection Control
	Datastream Type

	Table�4�4 Flags for Datastream Type
	Source Connection ID
	Destination Connection ID
	Sequence Number
	Acknowledge Number
	Allocation Number
	Negotiation Size

	SPXII Data Flow
	Data Packet Format
	Figure�4�3 SPXII Data Packet

	SPXII ACKs
	Figure�4�4 Fields and Values of an SPXII Data ACK

	SPXII NAKs
	Figure�4�5 Fields and Values of an SPXII NAK Packe...

	Sequence of Data Packets without a NAK
	Figure�4�6 Normal Data Sequence

	Sequence of Data Packets with a NAK
	Figure�4�7 Data Sequence with a NAK

	SPXII Connection Management
	Connection Establishment Packets
	Connection Request Packet
	Figure�4�8 Fields and Values of the Connection Req...
	Connection ACK Packet

	Figure�4�9 Fields and Values of the Connection ACK...
	Session Negotiate Packet

	Figure�4�10 Fields and Values of the Session Negot...
	Session Negotiate ACK

	Figure�4�11 Fields and Values of the Session Negot...
	Session Setup Packet

	Figure�4�12 Fields and Values of the Session Setup...
	Session Setup ACK Packet

	Figure�4�13 Fields and Values of the Session Setup...
	Packet Sequence for SPXII to SPXII Connection Esta...

	Figure�4�14 SPXII Client to SPXII Server Connectio...
	Figure�4�15 SPXII Client to SPXII Server Connectio...
	Packet Sequences for Mixed SPX and SPXII Connectio...

	Figure�4�16 Packet Sequence for an SPXII Client to...
	Figure�4�17 Packet Sequence for an SPX Client to a...

	Session Termination Packets
	Informed Disconnect Packets
	Figure�4�18 Fields and Values of the Informed Disc...
	Figure�4�19 Fields and Values of the Informed Disc...
	Figure�4�20 Informed Disconnect Sequence
	Orderly Release Request Packets

	Figure�4�21 Fields and Values of the Orderly Relea...
	Figure�4�22 Fields and Values of the Orderly Relea...
	Figure�4�23 Orderly Release Sequence

	Watchdog
	Watchdog Packet Format
	Figure�4�24 Fields and Values of the Watchdog Pack...
	Watchdog ACK

	Figure�4�25 Fields and Values of the Watchdog ACK
	SPXII Watchdog Algorithm
	Session Watchdog during Connection Establishment

	Renegotiation
	Renegotiate Request Packet
	Figure�4�26 Fields and Values of the Renegotiate R...
	Renegotiate ACK

	Figure�4�27 Fields and Values of the Renegotiate A...
	Packet Sequence for Renegotiation

	Figure�4�28 Renegotiation Sequence

	Negotiating Other Values between Endpoints
	Figure�4�29 Negotiate Value Format
	Value
	Type

	Figure�4�30 Type Field Format
	Table�4�5 ID Numbers and Size Values
	Table�4�6 � Size Subfield Values
	Figure�4�31 Extended Size Format
	Figure�4�32 Extended ID Format
	Extended Value Combinations

	Figure�4�33 Extended Value Format
	Table�4�7 Negotiate Value Format
	Currently Defined Types

	Table�4�8 Type Numbers
	Disparate Versions of SPXII

	SPXII Windowing Algorithm
	Positive and Negative Acknowledgments
	Variable Window Size
	Default Window Size
	Closing and Reopening a Window

	Error Recovery
	Data Packet Timeout
	1. Retry the data packet RETRY_COUNT/2 times, incr...
	2. Attempt to locate a new route. (If no route is ...
	3. If a route is available, send a watchdog packet...

	SPXII Programming Interface
	5 Service Advertising Protocol (SAP)

	What Is SAP?
	How SAP Works
	Figure�5�1 Dynamic Registering of Services

	Obtaining Service Names and Addresses
	Querying a SAP Agent
	Querying the Bindery or Directory Services

	SAP Packet Structure
	Figure�5�2 SAP Packet Structure
	IPX Header
	SAP Operation
	Server Information Structure
	Server Type

	Table�5�1 � Common Server Object Types
	Server Name
	Server Address
	Hops to Server

	SAP Information Aging
	SAP Information Flow
	SAP Broadcasts
	Figure�5�3 Initial Flow of Information
	Figure�5�4 Flow of SAP Information from SAPD

	Nearest Server Query

	SAP Packet Types
	Figure�5�5 Structure of SAP Packet Types
	SAP Header
	SAP Data

	SAP Query Packets
	Table�5�2 SAP Query Packet
	SAP Query Operation
	Server Type

	SAP Response Packets
	Table�5�3 SAP Response Format
	SAP Response Operation
	Server Information Structure

	Periodic Broadcasts

	SAP Programming Interface
	6 TLI/XTI for IPX

	Overview
	IPX-Specific Information for TLI Functions
	TLI Data Structures
	Sequence of TLI Functions
	1. Open the IPX driver “/dev/ipx” using the t_open...
	2. Bind fd to a static or dynamic socket using the...
	3. If necessary, set options using t_optmgmt call....
	4. To send or receive data, use t_sndudata (fd, &u...
	5. On exiting, unbind fd using a t_unbind call.
	6. On exiting, close fd using a t_close call.

	IPX Considerations
	TLI Reference for IPX

	t_bind
	Binds a socket to a transport endpoint.
	Syntax
	Parameters
	(IN) ipxFd
	(IN) req
	(IN) ret
	(OUT) ret

	Return Values
	Remarks
	Static Socket Numbers
	1. Allocate an ipxAddr_t structure.
	2. Set the socket value in the ipxAddr_t structure...
	3. Allocate a t_bind structure.
	4. Initialize the t_bind structure’s fields. The r...
	5. Make the t_bind call by passing the ipxFd value...

	Dynamic Socket Number

	Example
	State
	See Also

	t_open
	Establishes a transport endpoint connected to a tr...
	Syntax
	Parameters
	(IN) ipxPath
	(IN) oflag
	(IN) ipxInfo
	(OUT) ipxInfo

	Return Values
	Remarks
	Table�6�1 � IPX Information in the t_info Structur...

	Example
	State
	See Also

	t_optmgmt
	Manages protocol-specific options.
	Syntax
	Parameters
	(IN) ipxFd
	(IN) req
	(IN) ret
	(OUT) ret

	Return Values
	Remarks
	Example
	State
	See Also

	t_rcvudata
	Receives a message sent using t_sndudata.
	Syntax
	Parameters
	(IN) ipxFd
	(IN) ud
	(IN) flags
	(OUT) ud
	(OUT) flags

	Return Values
	Remarks
	Example 1
	Example 2
	State
	See Also

	t_sndudata
	Sends a message to specified transport user.
	Syntax
	Parameters
	(IN) ipxFd
	(IN) ud

	Return Values
	Remarks
	Example
	State
	See Also
	7 TLI/XTI for SPX/SPXII

	Overview
	TLI Differences between SPX and SPXII
	Orderly Release Differences
	Differences in the t_optmgmt Structure
	SPX t_optmgmt Structure
	Table�7�1 SPX Fields in the t_optmgmt Structure�
	SPXII t_optmgmt Structure

	Table�7�2 continued SPXII Fields in the t_optmgmt ...

	Compatibility Procedures
	Allocation Procedures for TLI Structures
	Datastream Type Differences
	Device Selection Procedures

	SPX/SPXII Specific Information for TLI Functions
	TLI Data Structures
	Sequence of TLI Functions
	Server Applications
	1. Open the SPXII driver “/dev/nspx2” using the t_...
	2. To bind fd to a well-known socket number (so th...
	3. To obtain a second file descriptor (fd2), use t...
	4. To bind fd2 to a dynamic socket number, use the...
	5. If necessary, set options using t_optmgnt call....
	6. To listen for incoming connection requests on f...
	7. Upon receiving a connection request, fork a chi...
	8. The parent should close fd2 and return to Step ...
	9. To accept the connection request, the forked ch...
	10. The forked child should close fd with t_close....
	11. The forked child uses t_snd or t_rcv to send o...
	12. The forked child listens for or sends a discon...
	13. On exiting, the forked child unbinds fd2 using...
	14. On exiting, the parent unbinds fd using a t_un...

	Client Applications
	1. Open the SPXII driver “/dev/nspx2” using the t_...
	2. Obtain the address of the server you want to co...
	3. Bind to a static or dynamic socket using a t_bi...
	4. If necessary, set options using t_optmgnt call....
	5. Send a connection request to the server using a...
	6. Use t_snd to send or t_rcv to receive data on f...
	7. Listen for or send a disconnection request. Use...
	8. On exiting, use the t_unbind call to unbind the...

	SPX Considerations
	TLI Reference for SPX

	t_accept
	Accepts a connection request.
	Synopsis
	Parameters
	(IN) spxFd
	(IN) spxFd2
	(IN) call

	Return Values
	Remarks
	Example
	State
	See Also

	t_bind
	Binds a socket to a given transport endpoint.
	Syntax
	Parameters
	(IN) spxFd
	(IN) req
	(IN) ret
	(OUT) ret

	Return Values
	Remarks
	Static Socket Numbers
	1. Allocate a t_bind structure for req and ret. Th...
	2. Set the socket value in the ipxAddr_t structure...
	3. Initialize the structure’s fields. The req.addr...
	4. Make the t_bind call by passing the spxFd value...

	Dynamic Socket Number
	Outstanding Connection Requests

	Example 1
	Example 2
	State
	See Also

	t_connect
	Establishes a connection with an SPX/SPXII server ...
	Syntax
	Parameters
	(IN) spxFd
	(IN) sndcall
	(IN) rcvcall
	(OUT) rcvcall

	Return Values
	Remarks
	Example 1
	Example 2
	State
	See Also

	t_listen
	Enables an SPX/SPXII application server to receive...
	Syntax
	Parameters
	(IN) spxFd
	(IN) rcvcall
	(OUT) rcvcall

	Return Values
	Remarks
	Example
	State
	See Also

	t_open
	Establishes a transport endpoint for a specified t...
	Syntax
	Parameters
	(IN) spxDevice
	(IN) oflag
	(IN) spxInfo
	(OUT) spxInfo

	Return Values
	Remarks
	Table�7�3 � SPX/SPXII Information in the t_info St...

	Example
	State
	See Also

	t_optmgmt
	Manages protocol-specific options.
	Syntax
	Parameters
	(IN) spxFd
	(IN) req
	(IN) ret
	(OUT) ret

	Return Values
	Remarks
	Table�7�4 � The SPX2_OPTIONS Structure

	Example
	State
	See Also

	t_rcv
	Receives data over an established transport connec...
	Synopsis
	Parameters
	(IN) spxFd
	(IN) buf
	(IN) nbytes
	(IN) flags
	(OUT) flags

	Return Values
	Remarks
	State
	See Also

	t_rcvdis
	Returns a disconnect indication from the remote tr...
	Synopsis
	Parameters
	(IN) spxFd
	(IN) discon
	(OUT) discon

	Return Values
	Remarks
	Example 1
	Example 2
	State
	See Also

	t_rcvrel
	Acknowledges receipt of an orderly release indicat...
	Synopsis
	Parameters
	(IN) spxFd

	Return Values
	Remarks
	Example
	State
	See Also

	t_snd
	Sends data over a transport connection.
	Syntax
	Parameters
	(IN) spxFd
	(IN) buf
	(IN) nbytes
	(IN) flags

	Return Values
	Remarks
	Example
	State
	See Also

	t_snddis
	Aborts a connection or rejects a connection reques...
	Syntax
	Parameters
	(IN) spxFd
	(IN) call

	Return Values
	Remarks
	Example 1
	Example 2
	State
	See Also

	t_sndrel
	Requests an orderly release of an SPXII connection...
	Syntax
	Parameters
	(IN) spxFd

	Return Values
	Remarks
	Example
	State
	See Also
	8 SAP Library

	Overview
	Reference for SAP Functions
	Table�8�1 continued Descriptions of SAP Functions

	SAPMapMemory
	Attaches to SAP daemon’s mapped memory.
	Syntax
	Parameters
	None

	Return Values
	Remarks
	Example
	See Also

	SAPUnmapMemory
	Detaches from SAP daemon mapped memory.
	Syntax
	Parameters
	None

	Return Values
	Remarks
	Example
	See Also

	SAPStatistics
	Gets SAP daemon statistics.
	Syntax
	Parameters
	(OUT) sapstats

	Return Values
	Remarks
	Table�8�2 SAPD Control and Miscellaneous Informati...
	Table�8�3 continued SAPD Statistical Fields

	Example

	SAPGetAllServers
	Gets all server information.
	Syntax
	Parameters
	(IN) ServerType
	(IN/OUT) ServerEntry
	(OUT) ServerBuf
	(IN) MaxEntries

	Return Values
	Remarks
	Table�8�4 netInfo_t Fields

	Example

	SAPGetNearestServer
	Gets information for the nearest server of a speci...
	Syntax
	Parameters
	(IN) ServerType
	(OUT) ServerBuf

	Return Values
	Remarks
	Example

	SAPGetChangedServers
	Gets changed server information.
	Syntax
	Parameters
	(IN) ServerType
	(IN/OUT) ServerEntry
	(OUT) ServerBuf
	(IN) MaxEntries
	(IN) RevisionStamp
	(IN/OUT)NewRevisionStamp

	Return Values
	Remarks
	Example
	See Also

	SAPNotifyOfChange
	Registers a callback function to be activated if s...
	Syntax
	Parameters
	(IN) Signal
	(IN) (*Function)(int)
	(IN) ServerType

	Return Values
	Remarks
	Example
	See Also

	SAPGetServerByAddr
	Gets server information by address.
	Syntax
	Parameters
	(IN) ServerAddr
	(IN) ServerType
	(IN/OUT) ServerEntry
	(OUT) ServerBuf
	(IN) MaxEntries

	Return Values
	Remarks
	Example
	See Also

	SAPGetServerByName
	Gets server information by name.
	Syntax
	Parameters
	(IN) ServerName
	(IN) ServerType
	(IN/OUT) ServerEntry
	(OUT) ServerBuf
	(IN) MaxEntries

	Return Values
	Remarks
	Example
	See Also

	SAPAdvertiseMyServer
	Advertises (or stops the advertising of) a service...
	Syntax
	Parameters
	(IN) ServerType
	(IN) ServerName
	(IN) Socket
	(IN) Action

	Return Values
	Remarks
	Table�8�5 � Common Server Types
	Table�8�6 Flags for SAP daemon Action

	Example
	See Also

	SAPListPermanentServers
	Gets a list of servers that are permanently advert...
	Syntax
	Parameters
	(IN/OUT) ServerEntry
	(OUT) ServerBuf
	(IN) MaxEntries

	Return Values
	Remarks
	Example
	See Also

	SAPGetLanData
	Gets LAN statistics for NetWare management.
	Syntax
	Parameters
	(IN) lanNumber
	(OUT) LanDataBuffer

	Return Values
	Remarks
	Table�8�7 continued Descriptions of SAPL Fields

	Example

	SAPPerror
	Prints error message.
	Syntax
	Parameters
	(IN) saperr
	(IN) text

	Return Values
	Remarks

	AdvertiseService
	Advertises a service of a specific type on the int...
	Syntax
	Parameters
	(IN) ServerType
	(IN) ServerName
	(IN) Socket

	Return Values
	Remarks
	Table�8�8 � Common Server Types

	Example
	See Also

	ShutdownSAP
	Discontinues advertising of all services advertise...
	Syntax
	Parameters
	None

	Return Values
	Remarks
	Example
	See Also

	QueryServices
	Gets all server information.
	Syntax
	Parameters
	(IN) QueryType
	(IN) ServerType
	(IN) ReturnSize
	(OUT) ServiceBuffer

	Return Values
	Remarks
	Example
	See Also
	9 IPX Direct Interface

	Overview
	IPX Driver in the UNIX Environment
	IPX Socket Multiplexer
	Table�9�1 ioctls for IPX Socket Multiplexer

	IPX LAN Router
	Table�9�2 ioctls for IPX LAN Router

	Reference to IPX ioctls
	IPX_SET_SOCKET
	IPX_BIND_SOCKET
	IPX_UNBIND_SOCKET
	IPX_GET_NET
	IPX_GET_NODE_ADDR
	IPX_GET_LAN_INFO
	IPX_GET_CONFIGURED_LANS
	IPX_STATS
	10 SPX/SPXII ioctls

	Overview
	Table�10�1 SPX/SPXII ioctls

	Reference to SPX ioctls
	SPX_GS_MAX_PACKET_SIZE
	SPX_GS_DATASTREAM_TYPE
	SPX_T_SYNCDATA_IOCTL
	SPX_CHECK_QUEUE
	SPX_GET_STATS
	SPX_SPX2_OPTIONS
	SPX_GET_CON_STATS
	11 NCP Extensions

	What Are NCP Extensions?
	Potential Uses
	Client-Server Applications
	IPX/SPX Alternative

	Advantages

	How NCP Extensions Work
	Components of an NCPX Program
	Query Data Buffer
	NCP Callback
	Reply Buffer Manager Callback
	Connection Event Callback
	Callback Combinations

	Identifying NCP Extensions
	NCP Extension Names
	NCP Extension IDs

	Registering an NCP Extension
	1. The NCPX application calls a registration funct...
	2. The NCPX Handler library validates the paramete...
	3. A pointer to the query data buffer is returned ...

	Calling the NCP Extension
	1. The client sends an NCP Extension request (invo...
	2. The NWS server via the NCPX Handler library cre...
	3. The NCPX Handler library calls the NCP callback...
	4. The NCPX Handler library sends the reply inform...
	5. The NCPX Handler library frees the buffers it h...

	Client’s View of an NCP Extension
	1. The client checks to see if the NCP Extension h...
	2. The client sends a request to the NCP Extension...
	3. The client asks for the information in an NCP E...

	Service Provider’s View of an NCP Extension
	1. The NCPX application registers the NCP Extensio...
	2. When the NCP callback function is called, it fi...
	3. If a reply buffer manager is used, the reply bu...
	4. If the connection event callback routine is cal...
	5. The NCPX application updates the information in...
	6. The NCPX application deregisters the NCP Extens...

	NCPX in a AIX Execution Environment
	Process Model
	Handler Parents and Children
	EventLoop
	Signals
	Privileges
	Shared Memory
	NEMUX File Descriptor
	Miscellaneous Requirements
	Limitations
	Single Threading
	Cannot Loop Back
	Size of NCPX Pool

	Writing an NCPX Program
	1. Call NWRegisterNCPExtension() to register the N...
	2. Call NCPX_EventLoop() to dispatch the NCPs.
	3. On return from EventLoop, call NWDeRegisterNCPE...
	Code Example
	Compiling an NCPX Handler
	Running an NCPX Handler
	Programming Issues
	Reply Buffer Manager
	1. A reply buffer manager is required for an NCP E...
	2. A reply buffer manager serves as the second par...

	Connection Event Callback
	Deregistering Before Unloading
	Registering Multiple NCP Extensions

	NCPX Handler Library Reference
	Overview of Library routines
	Initialization
	Registration
	EventLoop
	Client Identification
	Connection Status
	Child Detachment

	Index to NCPX Functions

	NCPX_EventLoop
	Controls dispatch of incoming Extended NCPs.
	Syntax
	Parameters
	exitReason

	Return Values
	Remarks
	Example

	NWRegisterNCPExtension
	Using a specific name, register an NCP Extension w...
	Syntax
	Parameters
	NCPExtensionName
	NCPExtensionHandler
	ConnectionEventHandler
	ReplyBufferManager
	majorVersion
	minorVersion
	minorVersion
	revision
	queryData

	Return Values
	Remarks
	client
	requestData
	requestDataLen
	replyData
	replyDataLen
	connection
	eventType
	client
	replyBuffer

	Example
	See Also

	NWRegisterNCPExtensionByID
	Using a specific ID, register an NCP Extension wit...
	Syntax
	Parameters
	NCPExtensionID
	NCPExtensionName
	NCPExtensionHandler
	ConnectionEventHandler
	ReplyBufferManager
	majorVersion
	minorVersion
	revision
	queryData

	Return Values
	Remarks
	See Also

	NWDeRegisterNCPExtension
	Remove an NCP Extension from NNS that was previous...
	Syntax
	Parameters
	(IN) queryData

	Return Values
	Remarks
	See Also

	NCPX_GetObjectName
	Returns the distinguished name of a logged-in obje...
	Syntax
	Parameters
	connectionNumber
	nameBuf
	bufLen

	Return Values
	Remarks
	Example

	ConnectionIsLoggedIn
	Determines whether a client is logged-in to the NN...
	Syntax
	Parameters
	connectionNumber

	Return Values
	Remarks
	Example
	See Also

	ConnectionIsAuthenticatedTemporary
	Determines whether a client’s login state is tempo...
	Syntax
	Parameters
	connectionNumber

	Return Values
	Remarks
	Example
	See Also

	NCPX_DetachForkedChildFromServer
	Detaches a forked child process from NetWare resou...
	Syntax
	Parameters
	None.

	Return Values
	Remarks
	Example
	Index

