

ibm.com/redbooks

The POWER4 Processor
Introduction and Tuning Guide

Steve Behling
Ron Bell

Peter Farrell
Holger Holthoff

Frank O’Connell
Will Weir

Comprehensive explanation of POWER4
performance

Includes code examples and
performance measurements

How to get the most from
the compiler

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

The POWER4 Processor Introduction and Tuning
Guide

November 2001

International Technical Support Organization

SG24-7041-00

© Copyright International Business Machines Corporation 2001. All rights reserved.
Note to U.S Government Users – Documentation related to restricted rights – Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (November 2001)

This edition applies to AIX 5L for POWER Version 5.1 (program number 5765-E61), XL Fortran
Version 7.1.1 (5765-C10 and 5765-C11) and subsequent releases running on an IBM ^
pSeries POWER4-based server. Unless otherwise noted, all performance values mentioned in this
document were measured on a 1.1 GHz machine, then normalized to 1.3 GHz.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. JN9B Building 003 Internal Zip 2834
11400 Burnet Road
Austin, Texas 78758-3493

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

Take Note! Before using this information and the product it supports, be sure to read the
general information in “Special notices” on page 175.

Note: This book is based on a pre-GA version of a product and may not apply when the product
becomes generally available. We recommend that you consult the product documentation or
follow-on versions of this redbook for more current information.

Contents

Figures . vii

Tables . ix

Preface . xi
The team that wrote this redbook. xii
Notice . xiii
IBM trademarks . xiv
Comments welcome. xiv

Chapter 1. Processor evolution . 1
1.1 POWER1 . 1
1.2 POWER2 . 2
1.3 PowerPC . 2
1.4 RS64 . 3
1.5 POWER3 . 4
1.6 POWER4 . 4

Chapter 2. The POWER4 system . 5
2.1 POWER4 system overview . 5
2.2 The POWER4 chip . 6
2.3 Processor overview . 8

2.3.1 The POWER4 processor execution pipeline. 9
2.3.2 Instruction fetch, group formation, and dispatch 9
2.3.3 Instruction execution, speculation, rename resources 11
2.3.4 Branch prediction . 12
2.3.5 Translation buffers (TLB, SLB, I- and D-ERAT) 13
2.3.6 Load instruction processing . 13
2.3.7 Store instruction processing . 14
2.3.8 Fixed-point execution pipeline. 15
2.3.9 Floating-point execution pipeline. 15
2.3.10 Group completion . 16

2.4 Storage hierarchy . 16
2.4.1 L1 instruction cache . 17
2.4.2 L1 data cache . 17
2.4.3 L2 cache . 17
2.4.4 L3 cache . 18
2.4.5 Interconnecting chips to form larger SMPs . 18
2.4.6 Multiple module interconnect . 19
© Copyright IBM Corp. 2001 iii

2.4.7 Memory subsystem . 20
2.4.8 Hardware data prefetch. 21
2.4.9 Memory/L3 cache command queue structure. 22

2.5 I/O structure . 23
2.6 The POWER4 Performance Monitor . 23

Chapter 3. POWER4 system performance and tuning 25
3.1 Tuning for numerically intensive applications 25

3.1.1 The tuning process for numerically intensive applications 26
3.1.2 Hand tuning overview for numerically intensive programs 26
3.1.3 Key aspects of the POWER4 design . 27
3.1.4 Tuning for the memory subsystem . 34
3.1.5 Tuning for the FPUs . 40
3.1.6 Cache and memory latency measurement . 47
3.1.7 Selected fundamental kernel performance within on-chip cache . . . 49
3.1.8 Other tuning considerations . 51

3.2 Tuning non-floating point applications . 52
3.2.1 The load/store and integer units . 52
3.2.2 Memory configurations . 53

3.3 System tuning . 54
3.3.1 POWER4 virtual memory architecture overview 54
3.3.2 Small and large page sizes . 58
3.3.3 AIX system parameters. 61
3.3.4 Minimizing variation in job performance . 67

Chapter 4. Optimizing with the compilers. 69
4.1 POWER4-specific compiler options . 69

4.1.1 General performance options . 70
4.1.2 Options for POWER4 . 75
4.1.3 Using XL Fortran vector-intrinsic functions . 76
4.1.4 Recommended options . 79
4.1.5 Comparing C and Fortran compiler code generation 79

4.2 XL Fortran compiler directives for tuning . 80
4.2.1 Prefetch directives. 81
4.2.2 Loop-related directives . 82
4.2.3 Cache and other directives . 83

4.3 The object code listing . 84
4.4 Basic coding practices for performance . 88

4.4.1 Language-independent tips. 88
4.4.2 Fortran tips . 89
4.4.3 C and C++ tips . 89
4.4.4 Inlining procedure references . 90
4.4.5 Structuring code for optimal grouping . 91
iv POWER4 Processor Introduction and Tuning Guide

4.5 Tuning for 64-bit integer performance. 91

Chapter 5. General tuning guidelines . 93
5.1 Hand tuning code . 93

5.1.1 Local or global variables? . 93
5.1.2 Pointers . 94
5.1.3 Expressions. 94
5.1.4 Data type conversions. 95
5.1.5 Tuning loops . 95

5.2 Using pre-tuned code . 101
5.3 The performance monitor . 101
5.4 Tuning for I/O . 107
5.5 Locating hot spots (profiling) . 110

Chapter 6. Performance libraries . 113
6.1 The ESSL and Parallel ESSL libraries . 114

6.1.1 Capabilities of ESSL and Parallel ESSL . 115
6.1.2 Performance examples using ESSL . 115

6.2 The MASS libraries . 117
6.2.1 Installing and using the MASS libraries. 117
6.2.2 Description and performance of MASS libraries 119

6.3 Modular I/O (MIO) library . 120
6.4 Watson Sparse Matrix Package (WSMP) . 122

Chapter 7. Parallel programming techniques and performance 125
7.1 Shared memory parallelization . 126

7.1.1 SMP runtime behavior. 126
7.1.2 Shared memory parallel examples . 129
7.1.3 Automatic shared memory parallelization . 130
7.1.4 Directive-based shared memory parallelization 131
7.1.5 Measured SMP performance . 132

7.2 MPI in an SMP environment . 133
7.3 Programming with threads . 137

7.3.1 Basic concepts . 137
7.3.2 Coding and performance considerations . 143
7.3.3 The best approach for shared memory parallelization 147

7.4 Parallel programming with shared caches . 148

Chapter 8. Application performance and throughput 153
8.1 Memory to memory copy . 155
8.2 Memory bandwidth limited throughput . 157
8.3 MPI parallel on pSeries 690 and SP . 159
8.4 Multiple job throughput . 160

8.4.1 ESSL DGEMM throughput performance . 161
 Contents v

8.4.2 Multiple ABAQUS/Explicit job streams . 161
8.4.3 Memory stress effects on throughput . 162
8.4.4 Shared L2 cache and logical partitioning (LPAR) 165

8.5 Genetic sequencing program . 168
8.6 FASTA genetic sequencing program . 168
8.7 BLAST genetic sequencing program . 169

Related publications . 171
IBM Redbooks . 171

Other resources . 171
Referenced Web sites . 172
How to get IBM Redbooks . 173

IBM Redbooks collections. 173

Special notices . 175

Abbreviations and acronyms . 177

Index . 183
vi POWER4 Processor Introduction and Tuning Guide

Figures

2-1 The POWER4 chip. 7
2-2 The POWER4 processor . 8
2-3 The execution pipeline . 9
2-4 A logical view of the interconnection buses within an MCM 18
2-5 Logical view of MCM-to-MCM interconnections. 19
2-6 Multiple MCM interconnection . 20
2-7 Hardware data prefetch operations . 21
2-8 I/O structure . 23
3-1 The POWER4 L1 data cache. 29
3-2 POWER4 data transfer rates for multiple prefetch streams. 37
3-3 Outer loop unrolling effects on matrix-vector multiply (1.1GHz system) 44
3-4 Latency in machine cycles to access N bytes of random data 48
3-5 32-bit environment segment register usage. 55
3-6 POWER address translation . 56
3-7 Translation of 64-bit effective address to 80-bit virtual address. 57
4-1 Integer computation: B(I)=A(I)+C. 92
6-1 ESSL DGEMM single processor GFLOPS . 116
7-1 Shared memory parallel job flow . 127
8-1 Memory copy performance . 155
8-2 C library memcpy performance . 156
8-3 System memory throughput for pSeries 690 HPC. 157
8-4 System memory throughput on pSeries 690 Turbo 158
8-5 Job throughput effects on a 375 MHz POWER3 SMP High Node. . . . 163
8-6 Job throughput effects on an eight-way pSeries 690 HPC 163
8-7 Job throughput effects on a 32-way pSeries 690 Turbo 164
© Copyright IBM Corp. 2001 vii

viii POWER4 Processor Introduction and Tuning Guide

Tables

1-1 Comparative POWER3-II, RS64-III, and POWER4 processor metrics . . 4
2-1 Issue queues . 10
2-2 Rename resources. 11
2-3 Storage hierarchy organization and size . 16
3-1 Performance of various fundamental loops . 49
4-1 Vector-intrinsic function speedups . 77
6-1 DGEMM throughput summary . 116
6-2 Mass library functions and performance . 119
7-1 Loop A parallel performance elapsed time . 132
7-2 Loop B parallel performance elapsed time . 132
7-3 Loop C parallel performance elapsed time . 133
7-4 Advantages and disadvantages of message passing techniques 136
7-5 Shared memory cache results, pSeries 690 Turbo 149
7-6 Counter and semaphore sharing cache line . 150
7-7 Counter and semaphore in separate cache line 150
7-8 Heavily used shared cache line performance 151
8-1 Memory copy performance relative to one CPU 156
8-2 MPI performance results for AWE Hydra code 159
8-3 Effects of running multiple copies of DGEMM 161
8-4 Multiple ABAQUS/Explicit job stream times . 162
8-5 FIRE benchmark: Impact of shared versus non-shared L2 cache 166
8-6 FIRE benchmark: Uniprocessor, single job versus partitioning 167
8-7 FIRE benchmark: Throughput performance versus partitioning 167
8-8 Performance on different systems . 168
8-9 Relative performance of FASTA utilities . 168
8-10 Blastn results . 169
8-11 Tblastn results . 169
© Copyright IBM Corp. 2001 ix

x POWER4 Processor Introduction and Tuning Guide

Preface

This redbook is designed to familiarize you with the IBM ^ pSeries
POWER4 microarchitecture and to provide you with the information necessary to
exploit the new high-end servers based on this architecture.

The eight to 32-way symmetric multiprocessing (SMP) pSeries 690 Model 681
will be the first POWER4 system to be available. Thus, most analysis presented
in this publication refers to this system.

Specifically, this publication will address the following issues:

� POWER4 features and capabilities

� Processor and memory optimization techniques, especially for Fortran
programming

� AIX XL Fortran Version 7.1.1 compiler capabilities and which options to use

� Parallel processing techniques and performance

� Available libraries and programming interfaces

� Performance examples of commonly used kernels

The anticipated audience for this redbook is as follows:

� Application developers

� Technical managers responsible for equipment purchase decisions

� Managers responsible for project planning

� Researchers involved in numerical algorithm development

� End users with an interest in understanding the performance of their
applications

While this publication is decidedly technical in nature, the fundamental concepts
are presented from a user point of view and numerous examples are provided to
reinforce these concepts.
© Copyright IBM Corp. 2001 xi

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Austin Center.

Stephen Behling is an Application Specialist based in Minneapolis, Minnesota,
USA. He has 27 years of experience in the computer aided engineering field. He
has specialized in high performance computing for the past 15 years with Cray
Research Inc., Silicon Graphics, Inc., and since 1999, IBM. His areas of
expertise include computational fluid dynamics, parallel programming,
benchmarking and performance tuning.

Ron Bell is an IBM IT Consultant in the UK. He has an MA in Physics and a
DPhil in Nuclear Physics from the University of Oxford. He has 30 years of
experience with IBM High Performance Computing. His areas of expertise
include the Fortran language, performance tuning for POWER architecture, and
MPI parallel coding and tuning for the RS/6000 SP. He has for many years
collaborated with HKS Inc. to optimize their ABAQUS product for IBM platforms.

Peter Farrell is a Consulting IT Specialist in Australia. He has worked with
computer systems for over 30 years and has extensive experience in operating
systems and networking software development. He has over 15 years
experience in UNIX technical support with a special interest in system
performance. He has worked at IBM for two years and before that was with
Sequent Computer Systems. His current areas of responsibility include
benchmarking and performance tuning.

Holger Holthoff is an IBM IT Consultant in Germany. He has been involved in
parallel computing on RS/6000 SP since he joined the IBM Scientific Center,
Heidelberg in 1994. Currently, he is a member of the pSeries Technical Support
group focusing on high-performance computing projects and CAE applications in
manufacturing industries. His areas of expertise include performance tuning for
the POWER architecture and message passing programming for the
RS/6000 SP.

Frank O’Connell is a Senior Technical Staff Member in the Future Processor
Performance Department, where he has been a member of IBM’s
high-performance processor development effort since 1992. For the past 15
years, he has focused on scientific and technical computing performance within
IBM, including microprocessor and systems design, operating system and
compiler performance, algorithm development, and application tuning, in the
capacity of both product development and customer support. Mr. O'Connell
received a B.S.M.E. degree from the University of Connecticut and an M.S.
degree in engineering–economic systems from Stanford University.
xii POWER4 Processor Introduction and Tuning Guide

Will Weir is an IBM IT Specialist in the UK. He has worked on scientific
applications and systems on IBM RS/6000 and RS/6000 SP for 11 years.
Currently he is a member of the High Performance Computing team based in
IBM Bedfont. His areas of expertise include application porting and
benchmarking, and RS/6000 SP systems.

The project that produced this Redbook was managed by:

Scott Vetter from IBM Austin

A special thanks to Steve White from IBM Austin, for his determination and
pursuit of excellence.

Thanks to the following people for their contributions to this project:

Arthur Ban, Bill Hay, Harry Mathis, John McCalpin, Alex Mericas, William
Starke, Steve Stevens, Joel Tendler from IBM Austin

Joan McComb and Frank Johnston from IBM Poughkeepsie

Richard Eickemeyer from IBM Rochester

Bob Blainey, Ian McIntosh, and Kelvin Li from IBM Toronto

Notice
This publication is intended for developers of numerically intensive code for the
IBM ^ pSeries POWER4, for business partners and sales specialists
wanting supporting metrics for pSeries 690 Model 681, and for technical
specialists who require detailed product information to help demonstrate IBM’s
industry-leading technology. See the PUBLICATIONS section of the IBM
Programming Announcement for Fortran Version 7.1.1 for more information
about what publications are considered to be product documentation.
 Preface xiii

IBM trademarks
The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

Comments welcome
Your comments are important to us!

We want our IBM Redbooks to be as helpful as possible. Send us your
comments about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an Internet note to:

redbook@us.ibm.com

� Mail your comments to the address on page ii.

AIX®
AIX 5L™
e (logo)®
IBM ®
iSeries™
LoadLeveler®
PowerPC®
PowerPC Architecture™
PowerPC 601®

PowerPC 603™
PowerPC 604™
pSeries™
Redbooks™
Redbooks Logo
RISC System/6000®
RS/6000®
Sequent®
SP™
xiv POWER4 Processor Introduction and Tuning Guide

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.redbooks.ibm.com/contacts.html

Chapter 1. Processor evolution

In this section, the stages of RS/6000 and pSeries processor development are
discussed, starting with the POWER1 architecture through to the latest
POWER4.

1.1 POWER1
The first RS/6000 products were announced by IBM in February of 1990, and
were based on a multiple chip implementation of the POWER architecture,
described in IBM RISC System/6000 Technology, SA23-2619. This technology is
now commonly referred to as POWER1, in the light of more recent
developments. The models introduced included an 8 KB instruction cache
(I-cache) and either a 32 KB or 64 KB data cache (D-cache). They had a single
floating-point unit capable of issuing one compound floating-point multiply/add
(FMA) operation each cycle, with a latency of only two cycles. Therefore, the
peak MFLOPS rate was equal to twice the MHz rate. For example, the Model 530
was a desk-side workstation operating at 25 MHz, with a peak performance of 50
MFLOPS. Commonly occurring numerical kernels were able to achieve
performance levels very close to this theoretical peak.

In January of 1992, the Model 220 was announced, based on a single chip
implementation of the POWER architecture, usually referred to as RISC Single
Chip (RSC). It was designed as a low-cost, entry-level desktop workstation, and
contained a single 8 KB combined instruction and data cache.

1

© Copyright IBM Corp. 2001 1

The last POWER1 machine, announced in September of 1993, was the Model
580. It ran at 62.5 MHz and had a 32 KB I-cache and a 64 KB D-cache.

1.2 POWER2
Announced in September 1993, the first POWER2 machines included the
55 MHz Model 58H, the 66.5 MHz Model 590, and the 71.5 MHz 990. The most
significant improvement introduced with the POWER2 architecture for scientific
and technical applications was the floating-point unit (FPU) that was enhanced to
contain two 64-bit execution units. Thus, two floating-point multiply/add
instructions could be executed each cycle. A second fixed-point execution unit
was also provided. In addition, several new hardware instructions were
introduced with POWER2:

� Quad-word storage instructions. The quad-word load instruction moves two
adjacent double-precision values into two adjacent floating-point registers.

� Hardware square root instruction.

� Floating-point to integer conversion instructions.

Although the Model 590 ran with only a marginally faster clock than the
POWER1-based Model 580, the architectural improvements listed above,
combined with a larger 256 KB D-cache size, enabled it to achieve far greater
levels of performance.

In October 1996, IBM announced the RS/6000 Model 595. This was the first
machine to be based on the P2SC (POWER2 Super Chip) processor. As its
name suggests, this was a single chip implementation of the POWER2
architecture, enabling the clock speed to be increased further. The Model 595
ran at 135 MHz, and the fastest P2SC processors, found in the Model 397
workstation and RS/6000 SP Thin4 nodes, ran at 160 MHz, with a theoretical
peak speed of 640 MFLOPS.

1.3 PowerPC
The RS/6000 Model 250 workstation, the first to be based on the PowerPC 601
processor running at 66 MHz, was introduced in September, 1993. The 601 was
the first processor arising out of the partnership between IBM, Motorola, and
Apple. The PowerPC Architecture includes most of the POWER instructions.
However, some instructions that were executed infrequently in practice were
excluded from the architecture, and some new instructions and features were
added, such as support for symmetric multiprocessor (SMP) systems. In fact, the
601 did not implement the full PowerPC instruction set, and was a bridge from
2 POWER4 Processor Introduction and Tuning Guide

POWER to the full PowerPC Architecture implemented in more recent
processors, such as the 603, 604, and 604e. Currently, the fastest
PowerPC-based machines from IBM for technical purposes, the four-way SMP
system RS/6000 7025 Model F50 and the uniprocessor system RS/6000 43P
7043 Model 150, use the 604e processor running at 332 MHz and 375 MHz,
respectively. The POWER3 and POWER4 processors are also based on the
PowerPC Architecture, but discussed in the following sections.

1.4 RS64
The first RS64 processor was introduced in September of 1997 and was the first
step into 64-bit computing for RS/6000. While the POWER2 product had strong
floating-point performance, this series of products emphasized strong
commercial server performance. It ran at 125 MHz with a 2-way associative, 4
MB L2 cache and had a 64 KB L1 instruction cache, a 64 KB L1 data cache, one
floating-point unit, one load-store unit, and one integer unit. Systems were
designed to use up to 12 processors. pSeries products using the RS64 were the
first pSeries products to have the same processor and memory system as
iSeries products.

In September 1998, the RS64-II was introduced. It was a different design from
the RS64 and increased the clock frequency to 262 MHz. The L2 cache became
4-way set associative with an increase in size to 8 MB. It had a 64 KB L1
instruction cache, a 64 KB L1 data cache, one floating-point unit, one load-store
unit, two integer units, and a short in-order pipeline optimized for conditional
branches.

With the introduction of the RS64-III in the fall of 1999, this design was modified
to use copper technology, achieving a clock frequency of 450 MHz, with a L1
instruction and data cache increased to 128 KB each. This product also
introduced hardware multithreading for use by AIX. Systems were designed to
use up to 24 processors.

In the fall of 2000, this design was enhanced to use silicon on insulator (SOI)
technology, enabling the clock frequency to be increased to 600 MHz. The L2
cache size was increased to 16 MB on some models. Continued development of
this design provided processors running at 750 MHz. The most recent version of
this microprocessor was called the RS64-IV.

During the history of this family of products, top performance publications have
been made for a large variety of benchmarks, including TPC-C (online
transaction processing), SAP (enterprise resource planning - ERP), Baan (ERP),
PeopleSoft (ERP), SPECweb (web serving), and SPECjbb (Java).
 Chapter 1. Processor evolution 3

1.5 POWER3
The POWER3 processor brought together the fundamental design of the
POWER2 microarchitecture, as currently implemented in the P2SC processor,
with the PowerPC Architecture. It combined the excellent floating-point
performance delivered by P2SC’s two floating-point execution units, while being
a 64-bit, SMP-enabled processor ultimately capable of running at much higher
clock speeds than current P2SC processors. Initially introduced in the fall of 1998
at a processor clock frequency of 200 MHz, most recent versions of this
microprocessor incorporate copper technology and operate at 450 MHz.

1.6 POWER4
The new POWER4 processor, described in detail in Chapter 2, “The POWER4
system” on page 5, continues the evolution. The POWER4 processor chip
contains two microprocessor cores, chip and system pervasive functions, core
interface logic, a 1.41 MB level-2 (L2) cache and controls, the level-3 (L3) cache
directory and controls, and the fabric controller that controls the flow of
information and control data between the L2 and L3 and between chips.

Each microprocessor contains a 64 KB level-1 instruction cache, a 32 KB level-1
data cache, two fixed-point execution units, two floating-point execution units, two
load/store execution units, one branch execution unit, and one execution unit to
perform logical operations on the condition. Instructions dispatched in program
order in groups are issued out of program order to the execution units, with a bias
towards oldest operations first. Groups can consist of up to five instructions, and
are always terminated by a branch instruction. The processors on the first IBM
POWER4-equipped servers, the IBM ^ pSeries 690 Model 681 servers,
operate at either 1100 MHz or 1300 MHz.

A quick look at comparative metrics may help you put the capacity of the latest
POWER-based processors in perspective, as provided in Table 1-1.

Table 1-1 Comparative POWER3-II, RS64-III, and POWER4 processor metrics

Metric POWER3-II
450 MHz

RS64-III
450 MHz

POWER4
1300 MHz

SPECint2000 335.0 234.0 814.0

SPECfp2000 433.0 210.0 1169.0
4 POWER4 Processor Introduction and Tuning Guide

Chapter 2. The POWER4 system

The POWER4 system is a new generation of high-performance 64-bit
microprocessors and associated subsystems especially designed for server and
supercomputing applications. POWER4 systems power the next generation of
servers that will be the replacements for the POWER3 and RS64-series high-end
RS/6000 and pSeries technical servers. This chapter provides details of the
POWER4 system that are significant to application programmers concerned with
understanding or improving application performance.

2.1 POWER4 system overview
The POWER4 system is a high-performance microprocessor and storage
subsystem utilizing IBM’s most advanced semiconductor and packaging
technology. It is the building block for the next-generation pSeries and iSeries
SMP servers. The POWER4 system implements the PowerPC AS Processor
Architecture, which specifies the instruction set, register set, and storage model,
to name a few, in other words, all functions that are visible to the programmer.

A POWER4 system logically consists of multiple POWER4 microprocessors and
a POWER4 storage subsystem, interconnected together to form an SMP system.
Physically, there are three key components: the POWER4 processor chip, the L3
Merged Logic DRAM (MLD) chip, and the memory controller chip.

� The POWER4 processor chip contains two 64-bit microprocessors, a
microprocessor interface controller unit, a 1.41 MB (1440 KB) level-2 (L2)

2

© Copyright IBM Corp. 2001 5

cache, a level-3 (L3) cache directory, a fabric controller responsible for
controlling the flow of data and controls on and off the chip, and chip/system
pervasive functions.

� The L3 merged logic DRAM (MLD) chip, which contains 32 MB of L3 cache.
An eight-way POWER4 SMP module will share 128 MB of L3 cache
consisting of four modules each of which contains two 16 MB merged logic
DRAM chips.

� The memory controller chip features one or two memory data ports, each 16
bytes wide, and connects to the L3 MLD chip on one side and to the
Synchronous Memory Interface (SMI) chips on the other.

The pSeries 690 Model 681 is built around the POWER4 Multi-chip Module
(MCM) which contains four POWER4 chips. A 32-way SMP system contains four
MCMs. POWER4 MCMs are mounted on system boards along with the L3,
memory cards including the memory controllers, and support chips to form the
heart of the pSeries 690 Model 681.

2.2 The POWER4 chip
The main components of the POWER4 chip are shown in Figure 2-1 on page 7.
The POWER4 chip has a maximum of two microprocessors, each of which is a
fully functional 64-bit implementation of the PowerPC AS Architecture
specification. Also on the chip is a unified second-level cache, shared by both
microprocessors through a core interface unit (CIU). The L2 cache is physically
divided into three equal-sized parts, each having an L2 cache controller. The CIU
connects each of the three L2 controllers to each processor though separate
32-byte wide data reload and instruction reload ports. Each microprocessor also
has an 8-byte wide store port to the CIU that in turn is used to store data through
the appropriate L2 controller.

Each processor also has associated non-cacheable unit (NCU), shown in
Figure 2-1 on page 7, responsible for handling instruction-serializing functions
and performing any non-cacheable operations in the storage hierarchy. Logically,
these are part of the L2 cache.

To improve performance by reducing the latency to memory, the directory for the
level 3 cache (L3 cache) and its controller are also located on the POWER4 chip
(while the actual L3 arrays are located on the L3 MLD module). Additionally, for
I/O device communication, the GX bus controller and the two associated
four-byte wide GX bus, one on chip and one off chip, are on the chip as well.
6 POWER4 Processor Introduction and Tuning Guide

Figure 2-1 The POWER4 chip

Each POWER4 chip contains a fabric controller that provides master control of
the network of buses. These buses connect together the on-chip L2 controllers,
L3, other POWER4 chips, and other POWER4 modules, and also perform
snooping and coherency duties. The Fabric Controller directs a point-to-point
network between each of the four chips on the MCM made up of unidirectional
16-byte wide buses running at half the processor frequency, the 8-byte buses
also operating at half the processor speed connecting each chip to a
corresponding chip on a neighboring MCM, and also controls the unidirectional
16-byte wide buses (running at 3:1 in the pSeries 690 Model 681) between the
POWER4 chip and the L3 cache, as well as the buses to the NCU and GX
controller.

Although not related to performance, it is worth mentioning that the chip also
includes an important set of pervasive functions. These include trace and debug
facilities used for First Failure Data Capture, built-in self-test (BIST) facilities,
performance monitoring unit (PMU), an interface to the service processor (SP)
used to control the overall system, power-on reset (POR) sequencing logic, and
error detection and logging circuitry.

Processor
Core 1

IFetch Store Loads

Processor
Core 2

IFetch Store Loads

L2
Cache

Trace &
Debug

BIST
Engines

Perf
Monitor

SP
Controller

POR
Sequencer

Error Detect
And Logging

Fabric

Controller

L3
DirectoryGX Controller

Controller
Controller

32B

32B

32B

32B

32B

32B

32B

8B

32B

8B

32B

8B

8B

8B
8B

8B

8B
8B

8B

16B

16B

16B

8B

16B

16B

16B

16B

16B

4B

4B

32B
8B 32B

32B
8B

JTAG

L3/MemBus
(3:1)

MCM-MCM
(2:1)

MCM-MCM
(2:1)

GX Bus
(n:1)

Chip-Chip
Fabric
(2:1)

Chip-Chip
Fabric
(2:1)

CIU Switch

L2
Cache

L2
Cache

L2
Cache

Core1
NC
Unit

Core2
NC
Unit

L3
Mem

Fabric Controller
 Chapter 2. The POWER4 system 7

2.3 Processor overview
Figure 2-2 shows a high-level block diagram of a POWER4 microprocessor. The
POWER4 microprocessor is a high-frequency, speculative superscalar machine
with out-of-order instruction execution capabilities. Eight independent execution
units are capable of executing instructions in parallel providing a significant
performance attribute known as superscalar execution. These include two
identical floating-point execution units, each capable of completing a multiply/add
instruction each cycle (for a total of four floating-point operations per cycle), two
load-store execution units, two fixed-point execution units, a branch execution
unit, and a conditional register unit used to perform logical operations on the
condition register.

Figure 2-2 The POWER4 processor

To keep these execution units supplied with work, each processor can fetch up to
eight instructions per cycle and can dispatch and complete instructions at a rate
of up to five per cycle. A processor is capable of tracking over 200 instructions
in-flight at any point in time. Instructions may issue and execute out-of-order with
respect to the initial instruction stream, but are carefully tracked so as to
complete in program order. In addition, instructions may execute speculatively to
improve performance when accurate predictions can be made about conditional
scenarios.

FX1
Exec
Unit

FX2
Exec
Unit

FP1
Exec
Unit

FP2
Exec
Unit

CR
Exec
Unit

BR
Exec
Unit

BR/CR
Issue Q

FX/LD 1
Issue Q

FX/LD 2
Issue Q

D -cache

StQ

LD2
Exec
Unit

LD1
Exec
Unit

Decode,
Crack &
Group

Formation

Instr Q

I-cache

GCT

BR
Scan

BR
Predict

FX1
Exec
Unit

FX2
Exec
Unit

FP1
Exec
Unit

FP2
Exec
Unit

CR
Exec
Unit

BR
Exec
Unit

BR/CR
Issue Q

FX/LD 1
Issue Q

FX/LD 2
Issue Q

D -cache

StQ

LD2
Exec
Unit

LD1
Exec
Unit

FX1
Exec
Unit

FX2
Exec
Unit

FP1
Exec
Unit

FP2
Exec
Unit

CR
Exec
Unit

BR
Exec
Unit

BR/CR
Issue Q

FX/LD 1
Issue Q

FX/LD 2
Issue Q

D -cache

StQ

D -cache

StQ

LD2
Exec
Unit

LD1
Exec
Unit

Decode,
Crack &
Group

Formation

Instr Buffer

IFAR
I-cacheI-cache

GCT

BR
Scan

BR
Predict

FP
Issue
Q

FP
Issue
Q

FP
Issue
Q

8 POWER4 Processor Introduction and Tuning Guide

2.3.1 The POWER4 processor execution pipeline
Figure 2-3 depicts the POWER4 processor execution pipeline. The deeply
pipelined structure of the machine’s design is shown. Each small box represents
a stage of the pipeline (a stage is the logic which is performed in a single
processor cycle). Note that there is a common pipeline which first handles
instruction fetching and group formation, and this then divides into four different
pipelines corresponding to four of the five types of execution units in the machine
(the CR execution unit is not shown, which is similar to the fixed-point execution
unit). All pipelines have a common termination stage, which is the group
completion (CP) stage.

Figure 2-3 The execution pipeline

2.3.2 Instruction fetch, group formation, and dispatch
The instructions that make up a program are read in from storage and are
executed by the processor. During each cycle, up to eight instructions may be
fetched from cache according to the address in the instruction fetch address
register (IFAR) and the fetched instructions are scanned for branches
(corresponding to the IF, IC, and BP stages in Figure 2-3).

Since instructions may be executed out of order, it is necessary to keep track of
the program order of all instructions in-flight. In the POWER4 microprocessor,
instructions are tracked in groups of one to five instructions rather than as
individual instructions. Groups are formed in the pipeline stages D0, D1, D2, and
D3. This requires breaking some of the more complex PowerPC instructions
down into two or more simpler instructions.

Instructions that are broken into two internal instructions are named cracked
instructions. Instructions that are broken into three or more internal instructions
are named millicoded instructions. Common instructions that are cracked are:

� All load/store-update forms (cracked into load/store + addi for gpr update)

MP ISS RF EA DC WB Xfer

MP ISS RF EX WB Xfer

MP ISS RF EX WB Xfer

MP ISS RF F6

Xfer

F6F6F6F6F6

D1 D2 D3 Xfer GD

IF BP
CP

BR

LD/ST

FX

FPGroup Formation

Instruction Fetch

Branch Redirects Out-of-Order Processing

WB

Fmt

D0

IC
MP ISS RF EA DC WB Xfer

MP ISS RF EX WB Xfer

MP ISS RF EX WB Xfer

MP ISS RF F6

Xfer

F6F6F6F6F6

D1 D2 D3 Xfer GD

IF BP
CP

BR

LD/ST

FX

FP
Instruction Crack and

Group Formation

Instruction Fetch

Branch Redirects

Interrupts and Flushes

Out-of-Order Processing

WB

Fmt

D0

IC
 Chapter 2. The POWER4 system 9

� X-form fixed-point stores (cracked into an add + store)

� Load algebraic (cracked into load + sign extend)

� CR-logicals, except for destructive forms (RT=RB)

Common instructions that are millicoded are:

� lmw, lswi (all multiples and string load instructions)

� mtcrf (move to condition register fields, more than one target field)

� mtxer and mfxer

Groups are formed that contain up to five internal instructions, each occupying
an internal instruction slot (numbered 0 through 4) of a dispatch group. After a
group is assembled, it is readied for dispatch, which is the process of sending the
instructions as a group to the issue queues. As part of the dispatching operation,
internal group instruction dependencies are determined and internal resources
such as issue queue slots, rename registers, reorder queues, and mappers are
assigned (GD and MP stages). Groups are dispatched and tracked using the
20-entry global completion table (GCT) in program order at a rate of up to one
per cycle. (See discussion on completion in Section 2.3.10, “Group completion”
on page 16).

Each internal instruction slot in a group feeds separate issue queues for the
floating-point units, the branch execution unit, the CR execution unit, the logical
CR execution unit, the fixed-point execution units and the load/store execution
units. The fixed point and load/store execution units share common issue
queues. Table 2-1 summarizes the depth of each issue queue and the number of
queues available for each type of queue. For the floating-point issue queues and
the common issue queues for the fixed point and load/store units, the issue
queues fed from slots 0 and 3 of the instruction group hold instructions to be
executed in one of the execution units, while the issue queues fed from slots 1
and 2 of the group feed the other execution unit. The CR execution unit draws its
instructions from the CR logical issue queue fed from instruction slots 0 and 1.

Table 2-1 Issue queues

Queue type Entries per queue Number of queues

Fixed point and load-store units 9 4

Floating point 5 4

Branch execution 12 1

CR logical 5 2
10 POWER4 Processor Introduction and Tuning Guide

During the issue stage (ISS), instructions that are ready to execute are pulled out
of the issue queues and enter the register file access stage, where they access
their source operands from registers. If more than two instructions from a
particular queue are ready to execute, the issue logic attempts to issue the oldest
instruction.

2.3.3 Instruction execution, speculation, rename resources
The speculative-execution design of the POWER4 microprocessor can execute
instructions before it is certain that those instructions will be required to be
executed. Speculative execution can significantly enhance performance by
potentially eliminating stalls associated with waiting for a condition associated
with a branch to be resolved.

It is important to understand the distinction between instructions that finish
execution and instructions that complete. The term completion carries an
important architectural meaning: completion makes results available to a
program. An instruction or group of instructions may have been speculatively
executed by the hardware, but unless they complete, their results are not visible
to the program. (This, however, does not hold up speculative execution of
instructions dependent on these results.)

A superscalar speculative-execution design requires an orderly way to manage
machine resources and to flush instructions, along with affected registers, when
predictions are found to be incorrect. The POWER4 microprocessor uses
physical resources called rename registers throughout its design that are critical
to this capability. Rename registers are assigned to instructions during the
mapping (MP) stage and are typically released when the next instruction writing
to the same logical resource (for example, the same architected general purpose
register) is completed. At any point in time, a rename register may represent an
architected register or a target buffer register. In the latter case, the register will
be reclassified as an architected register upon successful completion of the
instruction or released for reuse if the instruction is flushed. For each type of
PowerPC register group, Table 2-2 lists the number of architected registers in the
PowerPC specification and the corresponding number of physical (rename)
registers in the POWER4 microprocessor.

Table 2-2 Rename resources

Resource type Architected (PowerPC) Physical

General-Purpose Register (GPR) 32 80

Floating-Point Register (FPR) 32 72

Condition Register (CR) eight 4-bit fields 32
 Chapter 2. The POWER4 system 11

2.3.4 Branch prediction
If an instruction sequence contains a conditional branch instruction, the
conditional test associated with that branch directs the flow of execution, either to
take the branch or to continue execution at the next sequential instruction. In the
POWER4 microprocessor, all such conditional branches are predicted, and
instructions are fetched and executed speculatively based upon that prediction.
Instruction streams are scanned for branch instructions, and upon encountering
a conditional branch, a prediction is made as to the outcome of its conditional
test. This prediction is used to direct the fetching of instructions beyond the
branch. If the prediction is correct, processing simply continues and the branch
instruction completes normally. If, however, the prediction is incorrect, the
instructions corresponding to the incorrect prediction are flushed and instruction
fetching is redirected down the correct path, incurring a performance penalty of
at least 12 cycles.

To make accurate predictions about the outcome of a conditional branch
instruction, the POWER4 microprocessor tracks two different prediction
methodologies simultaneously, and also tracks which method is predicting a
particular branch more effectively, so that it may use the more successful
prediction method for a given branch. The first employs a traditional branch
history table, each entry of which corresponds to whether a given branch was
taken or not taken. The second method attempts to predict the direction of a
branch by using information about the path of execution that was taken to get to
that branch. Both methods use a 16 KB entry table to hold their 1-bit prediction
per branch, and a third 16 KB table holds the 1-bit selector indicating the
preferred predictor for that branch. This combination of branch prediction
methods produces very accurate predictions across a wide range of workload
types. As branch instructions are executed and resolved, the branch history
tables and the other predictors are updated to reflect the latest and most
accurate information.

If the first branch encountered in a particular cycle is predicted as not taken and
a second branch is found in the same cycle, the POWER4 processor predicts
and acts on the second branch in the same cycle. In this case, the machine will
register both branches as predicted, for subsequent resolution at branch
execution, and will redirect the instruction fetching based on the second branch.

Link/Count Register (LCR) 2 16

Floating-Point Status and Control Register
(FPSCR)

1 20

Fixed-Point Exception Register (XER) four fields 24

Resource type Architected (PowerPC) Physical
12 POWER4 Processor Introduction and Tuning Guide

Dynamic branch prediction can be overridden by hint bits in the branch
instructions. This is useful in cases where knowledge at the application level
exists that can result in better predictions than the execution-time hardware
prediction methods. It is accomplished by setting two previously reserved bits in
conditional branch instructions, one to indicate a software override and the other
to predict the direction. When these two bits are zero, the hardware branch
prediction previously described is used. Since only reserved bits are used for this
purpose, 100 percent binary compatibility with earlier software is maintained.

The POWER4 processor also has target address prediction logic for predicting
the target of branch to link and branch to count instructions, which often have
repeating and therefore predictable targets.

2.3.5 Translation buffers (TLB, SLB, I- and D-ERAT)
The PowerPC Architecture specifies a virtual storage model for applications, in
which each program’s effective address (EA) space is a subset of a larger virtual
address (VA) space that is managed by the operating system (see Section 3.3.1,
“POWER4 virtual memory architecture overview” on page 54). Virtual addresses
are, in turn, translated into real (physical) storage locations. Each POWER4
processor has three types of buffer caches to speed this process of translation: a
translation look-aside buffer (TLB), a segment look-aside buffer (SLB), and an
effective-to-real address table (ERAT). The SLB is a 64-entry, fully associative
buffer for caching the most recent segment table entries (STEs). The TLB is a
1024-entry, four-way set-associative buffer for caching the most recent page
table entries (PTEs). These page table entries may represent either the standard
4 KB page or a 16 MB large page. The POWER4 microprocessor also has
separate ERATs for instructions (I-ERAT) and for data (D-ERAT), both of which
are 128-entry, two-way set-associative arrays. The ERATs hold the most recent
{EA,RA} pairs to facilitate the high-frequency, high-bandwidth design of the
POWER4 microprocessor. Both ERATs are indexed using the effective address
and require 10 cycles to reload from the TLB, assuming that pages EA to RA
translation exists in the TLB. ERAT entries are always maintained on a 4 KB page
basis.

2.3.6 Load instruction processing
Load instructions execute in the LD/ST pipeline shown in Figure 2-3 on page 9.
After a load instruction issues, it must generate the effective address of the
operand being loaded or stored using the contents of the general-purpose
registers specified along with the instruction. The RA stage is the cycle in which
the registers are accessed and the EA cycle is the address generation stage,
also called AGEN.
 Chapter 2. The POWER4 system 13

To keep track of hazards associated with loads and stores executing out of order
with respect to each other, two 32-entry queues exist: the load reorder queue
(LRQ) and the store reorder queue (SRQ). All loads and stores are allocated an
entry in these queues at dispatch, respectively. Loads and stores are checked
against the entries in these tables to ensure that program correctness is
maintained.

The cycle following the AGEN cycle is the DC cycle, in which the real address
from the D-ERAT is obtained and the data cache is accessed for the appropriate
cache line. If the DC cycle is successful, the data is formatted and written into a
register, and it is ready for use by a dependent instruction. If a D-ERAT miss
occurs, the instruction is rejected, but it is kept in the issue queue. Meanwhile a
request is made to the TLB to reload the D-ERAT with the address translation
information. The rejected instruction is then re-issued a minimum of 7 cycles
after it was first issued. If the D-ERAT still does not contain the translation
information, the instruction is again rejected. This process continues until the
D-ERAT is reloaded.

In the case of loads, hits in the L1 data cache result in the requested bytes being
formatted and written into the appropriate register. In the event of a cache miss, a
request is initiated to the L2 cache to retrieve the line. Requests to the L2 cache
are stored in the load miss queue (LMQ), which acts as a repository for all
outstanding L1 cache line misses. The LMQ can hold up to eight requests to the
L2 cache; hence each POWER4 microprocessor is capable of managing up to
eight data cache line requests to the L2 cache (and beyond) at any given time,
providing an effective mechanism for reducing the average latency of cache line
reloads. If the LMQ is full, the load instruction that missed in the data cache is
rejected and is re-issued again in a minimum of 7 cycles. If there is already a
request to the L2 cache for the same line from another load instruction, the
second request is merged into the same LMQ entry. If a third request to the same
line occurs, the load instruction is rejected and processing continues as above.
All reloads from the L2 cache check the LMQ to see if there is an outstanding
request yet to be honored against a just-returned line. If there is, the requested
bytes are forwarded to the register to complete the execution of the load
instruction. After the line has been reloaded, the LMQ entry is released for reuse.

2.3.7 Store instruction processing
Store instructions are assigned an entry in the SRQ during the issue stage for
tracking by the real address of the stored data. The store data queue (SDQ) has
32 double-word entries and receives the data being stored in an entry
corresponding to the address entry in the SRQ. Stores are removed from the
SRQ and SDQ and the data is written to the L2 once it has been completed and
all older stores have been successfully sent to the L2.
14 POWER4 Processor Introduction and Tuning Guide

Loads that are to the same address as a previous store may be forwarded
directly from the SDQ to the target register of the load, provided the data for the
load is completely contained within the store operand and the data has not yet
been written to the cache.

The L1 data cache is a store-through design: all data stored to cache lines that
exist in the L1 data cache are also sent to the L2 cache to ensure that
modifications to lines in the L1 cache are always reflected in corresponding lines
in the L2 cache. If data is stored to a cache line that is not found in the L1 data
cache, the data is simply transferred straight through to the L2 cache without
establishing the cache line in the L1 data cache. All data contained in the L1 data
cache is guaranteed to be in the L2 cache. If the L2 needs to cast out data that is
contained in the L1 data cache, that line is invalidated in the L1 data cache.

Stores can be sent to the L2 cache at a maximum rate of one store per cycle.
Store data is directed to the proper L2 controller (through a hashing function) by
way of the storage slice queue (SSQ) and the L2 store queue (STQ).
Steady-state store performance is described in detail in Section 3.1.7, “Selected
fundamental kernel performance within on-chip cache” on page 49.

2.3.8 Fixed-point execution pipeline
The pipeline for the two fixed-point execution units (FXUs) is shown as the FX
pipe in Figure 2-3 on page 9. Both units are capable of basic arithmetic, logical,
and shifting operations, and both units are capable of fixed-point multiplies
(non-pipelined). One of the FXUs is capable of fixed-point divides, and the other
can handle special-purpose register (SPR) operations.

2.3.9 Floating-point execution pipeline
The POWER4 microprocessor contains two symmetrical floating-point execution
units each of which implement a fused multiply/add pipeline with single cycle
throughput conforming to the PowerPC microarchitecture. All floating-point
instructions pass though both the multiply stage and the add stage. For
floating-point multiplies, 0 is used as the add operand, and for floating-point
adds, 1 is used as the multiplicand. Each floating-point execution unit supports
single-cycle throughput and six-cycle data forwarding for dependent instructions.

The floating-point operations square root (fsqrt and fsqrts) and divide (fdiv and
fdivs) are not pipelined. Each pipeline can execute the operations with the
assistance of additional logic to handle their numerical algorithms. The
performance of these and other floating-point operations is highlighted in
Section 3.1.7, “Selected fundamental kernel performance within on-chip cache”
on page 49.
 Chapter 2. The POWER4 system 15

The POWER4 microprocessor also implements the optional PowerPC
instructions fres (floating-point reciprocal estimate) and frsqrte (floating-point
reciprocal square-root estimate), as well as fsel (floating-point select). The last
instruction provides for a conditional floating-point assignment operation without
branching, which eliminates the chance of incurring a performance penalty for a
mispredicted branch.

2.3.10 Group completion
Results are written to registers or cache/memory when the group completes.
Completion carries an important architectural meaning: completion makes
results available to a program through architected resources (such as
floating-point registers). An instruction or group of instructions may have been
executed speculatively by the hardware, but do not complete unless all
conditions associated with their execution have been successfully resolved. A
group can complete when all older groups have completed and when all
instructions in the group have finished execution free of exceptions. One group
can complete in a cycle, which matches the rate at which groups can be
dispatched.

2.4 Storage hierarchy
The POWER4 system storage hierarchy consists of three levels of cache and the
memory subsystem. The L1 caches and L2 cache is physically on the POWER4
chip. The directory for the L3 cache is also on the chip, but the actual cache itself
is on a separate. Table 2-3 summarizes the capacities and organization of the
various levels of cache.

Table 2-3 Storage hierarchy organization and size

Component Organization Capacity

L1 instruction cache Direct map, 128-byte line 128 KB per chip
(64 KB per processor)

L1 data cache Two-way, 128-byte line 64 KB per chip
(32 KB per processor)

L2 cache Four-way to eight-way, 128-byte line 1440 KB per chip
(1.41 MB)

L3 cache Eight-way, 512-byte lines,
managed as four 128-byte sectors

128 MB per MCM
16 POWER4 Processor Introduction and Tuning Guide

2.4.1 L1 instruction cache
Each POWER4 microprocessor has an L1 instruction cache that is a 64 KB direct
mapped cache and capable of either one 32-byte read or write each cycle. It is
indexed by the effective address of the instruction cache line.

2.4.2 L1 data cache
Each POWER4 microprocessor contains an L1 data cache that is 32 KB in size,
two-way set associative, and has a replacement policy of first-in-first-out (FIFO).
It is capable of two eight-byte reads and one eight-byte write per cycle (it is
effectively triple ported).

When the cache line containing the operand of a load instruction is not in the L1
data cache, the processor requests a cache line reload, which retrieves the line
from the memory subsystem and places it in the L1 data cache across a reload
interface to the CIU that is 32 bytes wide. Since the maximum the processor can
demand per cycle from the register file is two doubleword loads (for example,
16 bytes/cycle) this reload rate is twice the rate that the processor itself can
demand data.

The L1 data cache implements a store-through design, which means that any
updates to data in the L1 data cache are immediately stored through to the L2
cache to keep it synchronized with the L1 data cache. If the operand of a store
instruction is not found in any of the cache lines currently resident in the L1 data
cache (such as when there is an L1 store miss), the data that is in the source
register of the store instruction is stored through to the L2 cache, and the cache
line is not established or reloaded into the L1. The data to be stored passes
through various queues in the processor (the Store Data Queue), the CIU (the
Slice Store Queue), and the L2 cache (the L2 Store Queue) before it actually
gets stored into the L2 cache. These queues act as buffers for stored data, which
allows the store instruction itself to complete and facilitates the optimization of
store performance through a technique named store gathering.

2.4.3 L2 cache
Each POWER4 chip has an L2 cache that is supervised by three L2 controllers,
each of which manages 480 KB, for a total L2 size of 1440 KB. Cache lines are
hashed across the three controllers. Cache line replacement is implemented as a
binary-tree pseudo-LRU algorithm. The L2 cache is a unified cache: it caches
instructions, data, and page table entries. The L2 cache is also shared by the
processors on the chip. For HPC features of the pSeries Model 690, there is only
one processor per chip, and thus the L2 cache is entirely owned by that
processor.
 Chapter 2. The POWER4 system 17

Memory coherency in the system is enforced primarily at the L2 cache level by
L2 cache controllers. Each L2 has associated command queues, known as
coherency processors. Snoop processors within each controller observe all
transactions in the system and respond accordingly, providing responses or
delivering cache lines if the situation merits.

2.4.4 L3 cache
The L3 cache is eight-way set-associative organized in 512-byte blocks, but with
coherence still maintained in the system cache line size of 128 bytes. POWER4
chips are connected to memory through an L3 cache (see Figure 2-4). Generally,
it caches data that comes from the memory port to which it is attached. An
exception to this is when the cache line has been sent from a remote MCM, in
which case an attempt is made to cache the line in an L3 cache on the
requesting module.

The L3 cache is designed to be combined with other L3 caches on the same
processor module in pairs or quadruplets to create a larger, address-interleaved
L3 cache of 64 MB or 128 MB. Combining L3 caches into groups not only
increases the L3 cache size, but also increases the L3 bandwidth available to any
processor. When combined into groups, L3 caches and the memory behind them
are interleaved on 512-byte granularity.

2.4.5 Interconnecting chips to form larger SMPs
The basic building block for a pSeries is a multi-chip module (MCM) with four
POWER4 chips forming an 8-way SMP, as shown in Figure 2-4. Multiple MCMs
can then be interconnected to form 16-, 24-, and 32-way SMPs.

Figure 2-4 A logical view of the interconnection buses within an MCM

L3

Mem
CtrlL3

L3

GX Bus

GX Bus GX Bus

GX Bus

Multi-chip Module Boundary

>1 Ghz
Core

>1 Ghz
Core

Chip-chip communication

Shared L2

Shared L2

Shared L2

Shared L2

L3
D

ir

L3
Mem
Ctrl

Mem
Ctrl

Mem
Ctrl

M
E
M
O
R
Y

M
E
M
O
R
Y

Multi-Chip Module (MCM)
18 POWER4 Processor Introduction and Tuning Guide

The logical interconnection of four POWER4 chips is point-to-point, with
uni-directional buses connecting each pair of chips to form an 8-way SMP with an
all-to-all interconnection topology. The fabric controller on each chip monitors (for
example snoops) all buses and writes to its own bus, arbitrating between the L2
cache, I/O controller, and the L3 controller for the bus. Requests for data from an
L3 cache are snooped by each fabric controller to determine if it has the data
being requested in its L2 cache (in a suitable state), or in its L3 cache, or in the
memory attached to its L3 cache. If any one of these is true, then that controller
returns the requested data to the requesting chip on its bus. The fabric controller
that generated the request then sees the response on that bus and accepts the
data.

2.4.6 Multiple module interconnect
Figure 2-5 shows the interconnection of four MCMs to form a 32-way SMP. Up to
four MCMs can be interconnected by extending each bus from each module to its
neighboring module in one direction. Inter-module buses run at half the
processor frequency and are 8-bytes wide. The inter-MCM topology is that of a
ring in which requests and data move from one module to another module in one
direction. As with the single MCM configuration, each chip always sends
requests, commands and data on its own bus but snoops all buses for requests
or commands from other MCMs.

Figure 2-5 Logical view of MCM-to-MCM interconnections

POWER4

GX Bus

Memory

GX Bus

Memory

GX Bus

Memory

GX Bus

Memory

L3L3 L3 L3

GX Bus

Memory

GX Bus

Memory

GX Bus

Memory

GX Bus

Memory

L3L3 L3 L3

GX Bus

Memory

GX

Memory

GXBus

Memory

GX Bus

Memory

L3L3 L3 L3

GX Bus

Memory

GX Bus

Memory

GX Bus

Memory

GX Bus

Memory

L3L3 L3 L3

Bus
 Chapter 2. The POWER4 system 19

2.4.7 Memory subsystem
Each POWER4 chip can optionally have a memory controller attached behind
the L3 cache. Memory controllers are packaged two to a memory card and
support two of the four POWER4 chips on a module (as shown by the placement
of memory slots in Figure 2-6). A pSeries 690 Model 681 has two memory slots
associated with each module. No memory cards, one, or two memory cards can
be installed per module. Memory controllers can each have either one or two
ports to memory.

The memory controller is attached to the L3 MLD chips, with each memory
controller having two 16-byte buses to the L3, one in each direction. These buses
operate at one-third of the processor speed.

Each port to memory has four 4-byte bidirectional buses operating effectively at
400 MHz connecting load/store buffers in the memory controller to four System
Memory Interface (SMI) chips used to read and write data from memory. When
two memory ports are available, they each work on 512-byte boundaries. The
memory controller has a 64-entry read command queue, a 64-entry write
command queue, and a 16-entry write cache queue.

Figure 2-6 Multiple MCM interconnection

If one memory card or two unequal size memory cards are attached to a module,
then the L3 caches attached to the module function as two 64 MB L3 caches.

GXGX

P

L2

PP

L2

P

P

L2

P P

L2

P

GXGX

P

L2

PP

L2

P

P

L2

P P

L2

P

GX

GX

P

L2

PP

L2

P

P

L2

P P

L2

P

GX

GX

GX

GX

GX

P

L2

PP

L2

P

P

L2

P P

L2

P

GX

GX

GX

GX

GX

Mem
Slot

GX
Slot

L3 L3 L3 L3L3 L3L3 L3

L3 L3

L3 L3

L3 L3L3 L3 L3 L3

L3 L3

L3 L3

L3 L3

L3 L3

L3 L3

L3 L3

L3 L3

MCM 1

MCM 3MCM 2

MCM 0

GX
Slot

Mem
Slot

Mem
Slot

Mem
Slot

Mem
Slot

Mem
Slot

Mem
Slot

Mem
Slot

GX
Slot

GX
Slot
20 POWER4 Processor Introduction and Tuning Guide

The two L3 caches that act in concert are the L3 caches that would be in front of
the memory card. (Note that one memory card is attached to two chips.)

2.4.8 Hardware data prefetch
In addition to out of order execution and the ability to sustain multiple outstanding
cache misses, POWER4 systems provide additional hardware to hide memory
latency by prefetching data cache lines from memory, L3 cache, and L2 cache
transparently into the L1 data cache. The POWER4 processor can prefetch
streams, which are defined as a sequence of loads from storage that reference at
least two or more contiguous data cache lines, in order, either in an ascending or
descending pattern (the loads themselves need not be monotonically increasing
or decreasing). Eight such streams per processor are supported. Hardware
prefetching is triggered by data cache line misses, and then paced by loads to
the stream. Pacing prefetches by monitoring loads provides a
consumption-driven method to provide timely and effective prefetching.

The prefetch engine typically initiates a prefetch stream after detecting misses to
two consecutive cache lines. Figure 2-7 shows the sequence of prefetch
operations in the steady-state after a ramp-up phase. L1 prefetches are one
cache line ahead of the cache line currently being loaded from in the program. L2
prefetches, which prefetch cache lines from the L3 cache (or memory) into the L2
cache, are five cache lines ahead, which is sufficient to hide the latency between
the L3 cache and the L2 cache. Finally, L3 prefetches, which prefetch data from
the memory into the L3 cache, are 17 to 20 lines ahead of the current cache line
being loaded from in the program. L3 prefetches are usually done as logical
512-byte lines, for example, four 128-byte lines at a time. This increases the
efficiency of the transactions and need only be performed every fourth line
referenced.

Figure 2-7 Hardware data prefetch operations

EU 0 1EU 0 1

Hardware Data Prefetch

L2

L3
Memory

Core L2

l 1 l2 l4l3 l5l 1 l2 l4l3 l5

L3

l l l ll l l ll l l l5 6 7 8

l 9 l 10 l11 l12

l13 l 14 l15 l 16

l 17 l18 l 19 l20

5 6 7 85 6 7 8

l 9 l 10 l11 l12l 9 l 10 l11 l12

l13 l 14 l15 l 16l13 l 14 l15 l 16

l 17 l18 l 19 l20l 17 l18 l 19 l20

l 17 l18 l 19 l20l 17 l18 l 19 l20l 17 l18 l 19 l20

Memory

DL1

l

Core

l

 Chapter 2. The POWER4 system 21

To begin a stream, the prefetch engine either increments or decrements the real
address of a cache line miss (so that it is the address of the next or the previous
cache line) and places that address in the prefetch filter queue. The decision
whether to increment or decrement is based upon the offset within the line
corresponding to the load operand. As new cache misses occur, if the real
address of the new cache miss matches one of the guessed addresses in the
filter queue, a stream has been detected. If the prefetch engine has fewer than
eight streams active, the new stream is installed in the prefetch request queue
and the prefetching ramp-up sequence is begun. Once placed in the prefetch
request queue, a stream remains active until it is aged out. Normally a stream is
aged out when the stream reaches its end and other cache misses displace its
entry in the filter queue.

The hardware prefetch engine issues prefetches only within a real page since it
does not carry information about the effective to real address mapping. Hence,
page boundaries curtail prefetching and end streams. If a prefetchable storage
reference pattern crosses a page boundary, a new stream is started at the
beginning of the new real page according to the startup logic described above.
Since this results in a performance penalty that can be significant, POWER4
systems support, in addition to the standard 4 KB page, an additional page size
of 16 MB (concurrently with 4 KB pages). Applications which place data into 16
MB pages can significantly improve prefetching performance by essentially
eliminating this penalty associated with stream re-initialization at page
boundaries.

2.4.9 Memory/L3 cache command queue structure
Each L3 cache controller has eight all-purpose coherency processors and eight
special-purpose coherency processors. In the desired mode in which four L3
cache arrays are operating in shared mode and therefore appear as one logical,
interleaved L3 cache, there are a total of 32 all-purpose coherency processors
and 32 special-purpose coherency processors. Coherency processors are busy
processing a request until the operation is complete. Special-purpose coherency
processors handle primarily cache line writes to memory. For many workloads,
the majority of requests to the L3 cache will be read requests or data prefetch
requests, and hence the all-purpose coherency processors performance will
essentially determine the overall performance of the L3 cache and memory
subsystem.
22 POWER4 Processor Introduction and Tuning Guide

2.5 I/O structure
Figure 2-8 on page 23 shows the I/O structure in POWER4 systems. The
POWER4 GX bus is attached to a Remote I/O (RIO) bridge chip. This chip
transmits the data across two one-byte wide RIO buses to PCI Host Bridge
(PHB) chips.

Figure 2-8 I/O structure

Two separate PCI buses attach to PCI-PCI bridge chips that further fan the data
out across multiple PCI buses. When multiple nodes are interconnected to form
clusters of systems, the RIO Bridge chip is replaced with a chip that connects to
the switch. This provides increased bandwidth and reduced latency compared to
switches attached using the PCI interface.

2.6 The POWER4 Performance Monitor
The POWER4 design includes powerful performance monitoring facilities that
can collect data on various system events and provide valuable performance
data. The performance monitor facilities enable the counting of up to eight
concurrent events, and counting can be started and stopped and the results
retrieved by software. Counters can be frozen until a user-selected trigger event
occurs and then incremented, or they can be incremented until a trigger event
occurs and then be frozen. It enables the monitoring of classes of instructions
selected by the instruction matching facility, or the random selection of
instructions for detailed monitoring, as well as count start/stop event pairs that
exceed a selected time-out value threshold.

7 0 4 0 - 6 1 D I / O d r a w e r

R IO H U B

G X b u s

A c t i v eA c t iv e

P a s s i v e / f a i l o v e r

B u r s t
1 7 0 0 M B / s S im p le x

3 4 0 0 M B / s D u p le x

S u s ta i n e d
1 2 5 0 M B / s S im p le x
2 5 0 0 M B / s D u p le x P e r P l a n a r :

B u r s t
5 0 0 M B / s S im p le x

1 0 0 0 M B / s D u p le x

S u s ta i n e d
4 0 0 M B / s S im p le x
5 5 0 M B / s D u p le x

R IO B u s

R I O to P C I
B r id g e

R IO B u s

R IO to P C I
B r i d g e

6 4 b it P H B
5 0 0 M B / s B u r s t
3 0 0 M B / s S u s t a in e d

3 2 b it P H B
2 5 0 M B / s B u r s t
1 5 0 M B / s S u s t a in e d

3 2

U l t r a 3
S C S I

U l t r a 3
S C S I

U l t r a 3
S C S I

U l t r a 3
S C S I

6 4

P la n a r 2P l a n a r 1

3 26 4 6 46 4

P H B 2
P C I - P C I

B r id g e

P H B 1
P C I - P C I
B r id g e

P H B 3
P C I - P C I
B r id g e

P H B 2
P C I- P C I
B r id g e

P H B 1
P C I - P C I

B r id g e

P H B 3
P C I - P C I

B r id g e

2 P la n a r s p e r
R IO H U B
 Chapter 2. The POWER4 system 23

AIX 5L contains application program interface (API) code for customer use in
enabling and using the performance monitor facilities from their applications. Use
of the POWER4 Performance Monitor API is discussed in Section 5.3, “The
performance monitor” on page 101.
24 POWER4 Processor Introduction and Tuning Guide

Chapter 3. POWER4 system
performance and tuning

This chapter provides a guide for Fortran or C programmers who have a general
understanding of tuning techniques to tune their programs for POWER4. The
following major topics are discussed within:

� Tuning for scientific and technical numerically intensive applications

� Tuning for non-numerically intensive or commercial applications

� General system level aspects of tuning

For more information on the general aspects of tuning, see Optimization and
Tuning Guide for Fortran, C, and C++, SC09-1705.

3.1 Tuning for numerically intensive applications
Before describing specific tuning techniques, this section first reviews the tuning
process and discusses those aspects of POWER4 microarchitecture that
particularly influence the performance of numerically intensive scientific and
technical programs.

3

© Copyright IBM Corp. 2001 25

3.1.1 The tuning process for numerically intensive applications
For an existing program, the following steps summarize the tuning process in
approximate order of importance. Taking these guidelines into account when
writing a new program should significantly reduce the need for tuning at a later
stage.

1. If I/O is a significant part of the program, tuning for this is an important but
separate activity from computational tuning. Some guidelines for efficient I/O
coding are given in Chapter 4, “Optimizing with the compilers” on page 69.

2. Use the best set of compiler optimization flags. See Section 4.1,
“POWER4-specific compiler options” on page 69.

3. Locate the hot spots in the program (profiling). This step is very important. Do
not waste time tuning code that is infrequently executed.

4. Use the MASS library and ESSL (and maybe other performance-optimized
libraries) when possible. These libraries are discussed in Chapter 6,
“Performance libraries” on page 113.

5. Make sure that the generic common sense tuning guidance given in
Chapter 4, “Optimizing with the compilers” on page 69 has been followed.

6. Hand tune the code to the POWER4 design. This will be discussed in the rest
of this chapter.

3.1.2 Hand tuning overview for numerically intensive programs
Hand tuning for cache-based RISC architecture computers such as a pSeries
690 Model 681 is divided into two parts:

1. Avoid the negative.

Tune to avoid or minimize the impact of a cache and memory subsystem that
is necessarily slower than the computational units. Basic techniques for doing
this include:

– Stride minimization
– Encouragement of data prefetch streaming
– Avoidance of cache set associativity constraints
– Data cache blocking

2. Exploit the positive.

Tune to maximize the utilization efficiency of the computational units, in
particular the floating-point units.

Techniques for CPU tuning include:

– Unrolling inner loops to increase the number of independent computations
in each iteration to keep the pipelines full.
26 POWER4 Processor Introduction and Tuning Guide

– Unrolling outer loops to increase the ratio of computation to load and store
instructions so that loop performance is limited by computation rather than
data movement.

It will be assumed that the reader has a basic understanding of the concepts of:

� Loading and storing (into and from floating-point registers)

� Stride and what determines it in Fortran and C loops

� Loop unrolling

3.1.3 Key aspects of the POWER4 design
This section covers those parts of the POWER4 design that are relevant to tuning
the performance of floating-point intensive applications. Additional details are
provided in Chapter 2, “The POWER4 system” on page 5.

The components described here are:

� The L1, L2, and L3 caches

� The ERAT and TLB

� Data prefetch streaming

� Floating point and load/store units

The level 1, 2, and 3 caches
A brief description of the caches follows.

The L1 instruction cache
The L1 instruction cache (I-cache) is 64 KB and is direct mapped. It can be of
considerable importance for commercial applications such as transaction
processing.

For computationally intensive applications, it does not usually have a significant
impact on performance because such applications usually consist of highly
active loops (DO-loops in Fortran or for-loops in C) that contain relatively few
instructions. The amount of data handled is usually much larger than the space
taken by the instruction stream.

Tuning for the I-cache consists mainly of ensuring that active loops do not contain
a very large number of instructions.
 Chapter 3. POWER4 system performance and tuning 27

The L1 data cache
Each processor has a dedicated 32 KB L1 data cache. It is two-way set
associative with a first-in-first-out (FIFO) replacement algorithm. These concepts
and the implications for tuning are explained fully in “Structure of the L1 data
cache” on page 28.

The L2 cache
Each POWER4 chip has a dedicated L2 (data and instruction combined) cache
1440 KB in size. The pSeries 690 Model 681 and pSeries 690 Turbo have two
processors per chip that share the L2 cache. The pSeries 690 HPC feature has
one processor per chip that, therefore, has the L2 cache dedicated. Cache
coherence is maintained across the entire pSeries 690 Model 681 system at the
L2 level.

The L3 cache
Four POWER4 chips are combined into an multi-chip module (MCM) each of
which has a 128 MB Level 3 cache. For pSeries 690 Model 681 systems with
more than one MCM, the L3 caches on remote MCMs are accessible with a
modest performance penalty. This applies even if the system is partitioned using
LPAR.

The L3 cache is eight-way set associative.

General cache considerations
The high bandwidth from L2 to L1 is more than enough to feed the floating-point
units. Thus, the primary difference from a performance point of view between L1
and L2 is latency. A load/store between floating-point register and L1 has a
latency of about 4 cycles; between registers and L2 it is approximately 14 cycles.

The tuning recommendation for dense (as opposed to sparse) computation is
therefore to block data for the L2 cache and to structure the data access (array
leading dimension, for example) for the L1. This tuning advice will be explained in
subsequent sections.

An application whose performance is dominated by latency (such as the
pointer-chasing code described in Section 3.1.6, “Cache and memory latency
measurement” on page 47) may need to be blocked for L1 for best performance.

Structure of the L1 data cache
There are two concepts, cache lines and set associativity, that are key to
understanding the structure of the pSeries 690 Model 681 data cache, discussed
in the following sections.
28 POWER4 Processor Introduction and Tuning Guide

Cache lines
Conceptually, memory is sectioned into contiguous 128-byte lines, each one
starting on a cache-line boundary whose hardware address is a multiple of 128.
The cache is similarly sectioned and all data transfer between cache and
memory is in units of these lines.

If, for example, a particular floating-point number is required to be copied
(loaded) into a floating-point register to be used in a computation, then the whole
cache line containing that number is transferred from memory to cache.

Set associativity
The L1 data cache is mapped onto memory, as shown in Figure 3-1. Each
column in one of the diagrams is called a congruence class, and any particular
line from memory may only be loaded into a cache line in a particular congruence
class, that is into one of only two locations.

The POWER4 L1 data cache is two-way set associative with 128 congruence
classes. Each cache line is 128 bytes. In total, the L1 data cache can contain
32,768 bytes of data.

Figure 3-1 The POWER4 L1 data cache

When a new line is loaded into L1, it displaces the oldest of the two lines in the
congruence class (FIFO replacement).

The 2-way set associative POWER4 L1 data cache

...

...

...

...

Cache
2 locations for any
particular line.

Memory
via L2 cache

0

32 KB
16 KB

48 KB
64 KB
80 KB

16*n KB

Load Store

128 lines of 128 bytes each (16 KB)
128 congruence classes
 Chapter 3. POWER4 system performance and tuning 29

The set associative structure of the cache can lead to a reduction in its effective
size. Suppose successive data elements are being processed that are regularly
spaced in memory (that is with a constant stride). With the POWER4 cache, the
worst case is when the stride is exactly 16 KB or a multiple of 16 KB. In this case,
all elements will lie in the same congruence class and the effective cache size
will be only two lines. This effect happens, to a lesser extent, with any stride that
is a multiple of a power of 2 less than 16 KB.

Characteristics of the L2 cache
The size of the L2 cache is 1440 KB per POWER4 chip, and this is shared
between the two processors in the chip. As with the L1 data cache, the cache line
size is 128 bytes. The replacement policy is pseudo-LRU (least recently used) so
frequently accessed cache lines should be readily maintained in the cache. The
L2 cache is a combined data and instruction cache. Instruction caching aspects
of the L2 cache are not considered here.

The L2 cache is divided into three equal parts, each under control of a separate
L2 cache controller. The particular portion a line is stored is in is determined from
the real memory address using a hashing algorithm. Sixteen consecutive
double-precision Fortran array elements (138 bytes) are held in the same cache
line, and therefore under control of the same cache controller. The 17th element
will be in a different cache line and the hashing algorithm guarantees it will be
stored under control of a different cache controller. This has implications for the
optimization of store processing when accessing arrays sequentially.

Loads are processed by loading a cache line from L2 into the L1 data cache 32
bytes at a time. This means that the L2 cache can load the equivalent of four
double-precision floating-point data elements per cycle, which is double the
capability of the processor to issue load instructions. Prefetched data will be
loaded into the L1 at the same rate.

The L2 cache is a store-in cache, which means that stores are always written to
the L2 cache whether there is a hit in the L2 cache or not. This is in contrast to
the store-through L1 data cache where a store miss will not result in the data
being written into this level. Stores are passed to the L2 cache interface 8 bytes
at a time. The rate at which stores can be accepted by the interface depends on
whether the stores are to the same L2 section or not. See 3.1.7, “Selected
fundamental kernel performance within on-chip cache” on page 49 and 3.1.8,
“Other tuning considerations” on page 51 for discussions concerning store
performance.
30 POWER4 Processor Introduction and Tuning Guide

Once the store has been accepted by the interface unit, the store instruction is
released by the processor, freeing up resources. Note that store data is never
written into the caches until they have been completed, such as, made visible to
the program, by the processor. Completion in this sense is separate and later
than execution.

In the case where the cache line is not already present in the L2 cache (an L2
cache miss), then it must be loaded from either memory, another chip’s L2 cache,
or the L3 cache to ensure that the L2 cache contains the latest copy of this cache
line. Depending on whether the line already exists in another L2 cache on
another chip, some coherency processing may be required to ensure that the
local chip has permission to modify the line. Once the line is updated in the L2
cache, then it is marked as dirty and will eventually be written out to memory and
potentially to L3 cache.

The ERAT and TLB
The instruction stream addresses data using a 64-bit effective addresses (EA).
To access the data in memory, the EA is first converted to an 80-bit virtual
address (VA) and then to a 64-bit real address (RA). The translation lookaside
buffer (TLB) holds the 1024 entries organized in a 4-way set-associative
structure. It contains previously translated EAs to RAs and other information on a
page basis, either 4 KB or 16 MB page sizes. For 4 KB pages, the TLB
addresses a total of 4 MB of (not necessarily contiguous) memory. Data that is
within a page addressed by the TLB will not take the overhead of a TLB miss
when the EA is accessed. The ERAT is effectively a cache for the TLB. It is a
256-entry 2-way set-associative array. All ERAT entries are based on 4 KB pages
pages, even if 16 MB pages are used.

The TLB addresses a greater amount of memory (at least 4 MB) than the L2
cache (1.41 MB). Therefore, any program that is tuned to take any advantage of
the L2 cache is unlikely to experience serious overheads due to TLB misses (this
is different from POWER3 where the TLB addressed 1 MB but L2 was 4 MB or
8 MB). It is still possible on POWER4 to construct situations involving high strides
that will create a TLB miss and not a cache miss, but tuning for the TLB is beyond
the scope of this document. For codes in which a blocking strategy is used,
empirically determining the blocking factors will also include ERAT and TLB
effects.

Prefetch data streaming
The POWER4 design provides a prefetch mechanism that can identify streams
as defined in Section 2.4.8, “Hardware data prefetch” on page 21. Each
POWER4 microprocessor can support up to eight independent prefetch streams.
In contrast, the POWER3 processor supported four independent prefetch
streams. Note that there is no prefetch on store operations.
 Chapter 3. POWER4 system performance and tuning 31

The prefetch mechanism is based on real addresses. Therefore, whenever a real
address reference crosses a page boundary, the prefetch mechanism is stopped.
Two consecutive cache line misses on the subsequent page are required to
restart the mechanism. Large pages are supported in AIX 5L only through
shared memory segments. More general large page support will be available in a
future release of AIX 5L. There can be performance benefits because the
prefetch mechanism can operate over much larger arrays before crossing page
boundaries.

The floating-point units and maximum GFLOPS
To achieve the maximum floating-point rate possible on a single pSeries 690
Model 681 processor, the delays due to the memory subsystem have to be
eliminated and the program must reside in the L1 cache.

The following key facts summarize the way the FPUs perform:

� A single pSeries 690 Model 681 processor has two FPUs (sharing a single L1
cache) that can operate independently. The two FPUs see only floating-point
registers. There are a total of 72 physical registers. An assembler program
can address 32 architected registers and these are mapped onto the physical
registers through a hardware process known as renaming. The 72 physical
registers serve both FPUs. They all have 64 bits. floating-point computation is
carried out only with data in these registers. They are all 64-bits wide. All
floating-point arithmetic instructions are register-to-register operations,
logically using only floating-point registers as sources and targets.

� Data is copied into the registers from the L1 cache (loaded) and copied back
to the L2/L1 cache (stored) by two load/store units.

� For data in the L1 or L2 cache, loads or stores of floating-point
double-precision (REAL*8) variables can be done by each load/store unit at
the rate of one per cycle, but for loads, there is a latency before the FPU can
use the data for computation. This latency is approximately four cycles if the
data is in L1, or 14 cycles if it is in L2 but not L1. For maximum performance,
it is important that loaded data is in L1, because the compiler will assume the
L1 latency.

� Single precision (REAL*4) variables use the same register set as REAL*8.
Each variable occupies an entire 64-bit register (there is no ability to pack two
REAL*4s into a single register).

� The basic computational floating-point instruction is a double-precision
multiply/add, with variants multiply/subtract, negative multiply/add, and
negative multiply/subtract. There are also single precision variants.
32 POWER4 Processor Introduction and Tuning Guide

A single add, subtract, or multiply (not divide) is done using the same
hardware as a multiply/add and takes the same amount of time. A
multiply/add counts as two floating-point operations. For example, a program
doing only additions might run at half the MFLOPS rate of one doing alternate
multiplies and adds.

The assembler acronym for the double-precision floating-point multiply/add is
FMA. This term will be used extensively as shorthand for any of the variants
of this basic floating-point instruction.

The computational part of an FMA takes six cycles.

The worst case would be a sequence of wholly dependent 6-cycle FMAs
(where a result of one FMA is needed by the next) where only one of the
FPUs would be active. This would run at the rate of one FMA per six cycles.

A sequence of independent FMAs, however, can be pipelined and the
throughput can then approach the peak rate of two FMAs per cycle (one per
FPU).

� Divides are very costly and are not pipelined.

� A fundamental aspect of RISC architecture is that the functional units can run
independently. Therefore, FMAs can run in parallel with load/stores and other
functions.

Conditions for approaching peak GFLOPS
When considering a numerically intensive loop, the following applies to the
instruction stream within the loop:

� Operate efficiently within L1 and L2 caches.

� No divides (or square roots or function calls and so on).

� To achieve peak megaflops, loops must contain FMAs only, therefore using
floating-point adds or subtracts with multiplies.

� FMAs must be independent and at least 12 in number to keep two pipes of
depth six busy.

� The loop should be FMA-bound. That is, cycles needed for instructions other
than FMAs (mainly load/stores) should be less than that needed for FMAs so
that they can be overlapped with FMAs and effectively hidden. In principle,
they could be equal to the FMA cycles, but, in practice, peak performance is
approached most easily if there are fewer.
 Chapter 3. POWER4 system performance and tuning 33

� The performance of floating-point intensive applications on 1.3 GHz
POWER4 is typically between two and three times faster than on 375 MHz
POWER3 but is usually somewhat less than that as indicated merely by a
comparison of clock rate ratios. This is because it is more difficult to approach
peak performance on POWER4 than on POWER3 because of factors such
as:

– The increased FPU pipeline depth

– The reduced L1 cache size

– The higher latency (in terms of processor cycles) on the higher level
caches

3.1.4 Tuning for the memory subsystem
There are four basic tuning techniques (some of these techniques may be done
by the compilers) that will be discussed in this section, namely:

� Stride minimization

� Encouragement of data prefetch streaming

� Structuring for L1 set associativity

� Data cache blocking

Stride minimization
Sequential accessing of data is beneficial for two reasons:

� It ensures that, once a line is loaded into cache, all other operands in the
same cache line will also be referenced. If the data is accessed with a large
stride, less data from the cache line will be referenced. If the stride is greater
than 16 for double precision words, or 32 for single precision words, only one
number in each line will be referenced. There will then be a high probability
that, when the other numbers in the line are accessed at a later stage, the line
will no longer be in cache leading to the overhead of a cache miss.

� Sequentially accessed (forwards or backwards - stride 1 or -1) data can start
one of the eight hardware prefetching streams. Other low-value strides may
also start a prefetching stream provided that they are contiguous cache line
references.

Fortran arrays are stored in memory in column major order, C arrays in row-major
order. Coding nested loops to access data the right way so that
multi-dimensioned arrays are accessed sequentially (stride 1) is the most basic
tuning technique of all.
34 POWER4 Processor Introduction and Tuning Guide

The following examples illustrate this:

Correctly tuned stride 1 sequential access

Fortran
do i=1,n

do j=1,n
a(j,i)=a(j,i)+b(j,i)*c(j,i) ! Left subscript same as inner loop var.

enddo
enddo

C
for(i=0;i<n;i++)

for(j=0;j<n;j++)
{a[i][j]+=b[i][j]*c[i][j];} /* Right index same as inner loop variable

*/

If the nesting order of the loops is changed, the arrays are then accessed with a
large stride.

In this simple case, the compilers will reverse the order of the loops for you.
However, it is sound coding practice not to rely on the compiler and always to
code loops in the correct order.

It is, of course, not always possible to code so that all arrays are accessed
stride 1. For example, the following is a typical matrix multiply code fragment:

do i=1,n
 do j=1,n
 do k=1,n
 d(i,j)=d(i,j)+a(j,k)*b(k,i)
 enddo
 enddo
 enddo

No matter how the loops are coded, one or more arrays will have non-unit stride.
In this case, data cache blocking may be necessary as described in “Data cache
blocking” on page 38.

Encouragement of data prefetch streaming
Data prefetching is implemented in the POWER4 processor hardware so that
prefetching is transparent to the application: it does not require any software
assistance to be effective. There are, however, situations where the performance
of an application can be improved with code tuning to more fully exploit the
capabilities of the hardware prefetch engine. These situations arise when:

� There are too few or too many streams in a performance-critical loop

� The length of the streams in a performance-critical loop is too short.
 Chapter 3. POWER4 system performance and tuning 35

The POWER4 data prefetch design was optimized for loops with four to eight
concurrent hardware streams. Figure 3-2 on page 37 shows the performance for
a series of loops with one to eight streams per loop. Note that increasing the
number of streams from one to eight can improve data bandwidth out of the L3
cache and memory by up to 70 percent, and that most of the improvement
comes from increasing the number of streams from one to four.

The number of streams in a loop can be increased by fusing adjacent loops (a
capability which the XL compilers posses with the -qhot optimization) or by
midpoint bisection of the loop. Fusing simply means combining two or more
compatible loops into a single loop. For example:

DO I=1,N
S = S + B(I) * A(I)

 ENDDO
DO I=1,N

R(I) = C(I) + D(I)
 ENDDO

may be combined into:

DO I=1,N
S = S + B(I) * A(I)
R(I) = C(I) + D(I)

 ENDDO

Midpoint bisection of a loop doubles the number of streams but halves its vector
length. Consider the standard dot-product loop:

DO I=1,N
S = S + B(I) * A(I)

 ENDDO

This loop contains two streams corresponding to the two arrays on the right hand
side of the expression. Midpoint bisection doubles the number of streams by
starting two more streams at the halfway point of each of the arrays, as shown in
the following:

 NHALF = N/2
S0=0.D0
S1=0.D0
DO I=1,NHALF

 S0 = S0 + A(I)*B(I)
 S1 = S1 + A(I+NHALF)*B(I+NHALF)

 ENDDO
IF(2*NHALF.NE.N) S0 = S0 + A(N)*B(N)
S = S0+S1
36 POWER4 Processor Introduction and Tuning Guide

For this example, in situations where the data is being reloaded from beyond the
L2 cache, the break-even vector length is approximately 220. Loops with vector
lengths beyond 220 which have been midpoint bisected as shown have superior
performance by up to 20 percent.

When a loop has more than eight streams, reducing the number of streams per
loop may also boost overall performance. Since only eight of the streams can be
prefetched (as there are only eight prefetch request queues), streams beyond
eight will be reloaded on a demand basis. It may be possible to split the loop into
two or more loops, each with eight or fewer streams. This may or may not involve
introducing extra temporary vectors to allow the loop to be split. In any event,
profiling or loop timing should always be done within the application to check
whether the tuning, either to increase or decrease the number of streams per
loop, had a positive overall effect on performance.

Increasing vector length can significantly improve performance as well, simply
due to the fact that there is a fixed overhead resulting from loop unrolling and
prefetch stream acquisition. In some cases, increasing the vector length of an
application is under direct control of the programmer, such as in those in which
explicit integration of a variable permits operations on groups of entities of
arbitrary size. In these situations, there is often a trade-off between cache reuse
and vector length, so it is again advisable to determine the optimal vector length
empirically.

Figure 3-2 POWER4 data transfer rates for multiple prefetch streams

1.0E+5 1.0E+6 1.0E+7 1.0E+8 1.0E+9

Working set (bytes)

0.0

2.0

4.0

6.0

8.0

10.0

G
ig

ab
yt

es
pe

r
se

co
nd

1 stream
2 streams
4 streams
8 streams
 Chapter 3. POWER4 system performance and tuning 37

Structuring for L1 set associativity
In cases where it is not possible to access arrays sequentially, the stride is
typically determined by the leading dimension of the array. For example, consider
the following loop.

real*8 a(2048,75)
.
.

do i=1,75
a(100,i)=a(100,i)*1.15

enddo

This updates the 100th row of a Fortran array. The row is 75 elements long, so 75
cache lines will be accessed (if this were a column, only 5 cache lines would be
accessed). The L1 cache has a total of 256 lines. So, if, for example, this section
of the array has been recently accessed, you might hope to find these lines in the
cache.

However, the leading dimension of the array determines the stride for array A to
be 2048 REAL*8 numbers or 16384 bytes. These map to a single congruence
class in the L1 cache so that only two elements of A can be held in L1. At best,
only the first two lines (of the 75) accessed could possibly be in the L1 cache.

Changing the leading dimension to 2064 (that is, 2048 plus a single cache line of
16 REAL*8 numbers) would cause the 75 lines to map to different congruence
classes and all 75 lines would fit. With a two-way set associative cache, a leading
dimension of 2056 (2048 plus half a cache line) would also work. But 2046 would
work for any level of set associativity, including direct mapping.

The general rule is:

Avoid leading dimensions that are a multiple of a high power of two.

Any odd number of cache lines is ideal, that is for 128-byte cache lines, any odd
multiple of 16 for REAL*8 arrays or any odd multiple of 32 for REAL*4 arrays.

Data cache blocking
The data cache blocking idea is basic: if your arrays are too big to fit into cache,
then process them in blocks that do fit into cache. Generally with POWER4, it is
the 1440 KB L2 cache that needs to be large enough to contain the block.

There are two factors that determine if using blocking will be effective:

� When all arrays are accessed stride 1

� When each data item is used in more than one arithmetic operation
38 POWER4 Processor Introduction and Tuning Guide

The combination of these factors produces four scenarios:

� All arrays are stride 1 and no data reuse. There is no benefit from blocking.

! Summed dot products. Note each element of A and B used just once.
do j=1,n

do i=1,n
s = s + a(i,j)*b(i,j)

enddo
endd

� Some arrays are not stride 1 and there is no data reuse. Blocking will be
moderately beneficial.

! Summed dot products with transposed array.
do j=1,n

do i=1,n
s = s + a(j,i)*b(i,j)

enddo
endd

� All arrays are stride 1 and there is much data reuse. Blocking will be
moderately beneficial.

! Matrix multiply transpose.
do i=1,n
 do j=1,n
 do k=1,n
 d(i,j)=d(i,j)+a(k,j)*b(k,i)
 enddo
 enddo
 enddo

� Some arrays are not stride 1 and there is much data reuse. Blocking will be
essential.

! Matrix multiply.
do i=1,n
 do j=1,n
 do k=1,n
 d(i,j)=d(i,j)+a(j,k)*b(k,i)
 enddo
 enddo
 enddo
 Chapter 3. POWER4 system performance and tuning 39

The following example shows how matrix multiply should be blocked.

!3 blocking loops
do ii=1,n,nb

do jj=1,n,nb
do kk=1,n,nb

!
! In-cache loops

do i=ii,min(n,ii+nb-1)
 do j=jj,min(n,jj+nb-1)
 do k=kk,min(n,kk+nb-1)
 d(i,j)=d(i,j)+a(j,k)*b(k,i)
 enddo
 enddo

enddo
!

enddo
enddo

enddo

In this example, the size of the blocks of each matrix is NB x NB elements. For
blocking to be effective, it must be possible for the L2 cache to hold three such
blocks. On an pSeries 690 HPC, the process will have the whole L2 cache
available. On a non-HPC model, it may be sharing L2 with another process or
thread so that only half the cache is available. The relatively complicated
structure of the cache may also require NB to be smaller than a simple size
calculation would suggest. In practice, the right way to fix NB is to vary it and
measure the performance to achieve the optimum value. However, if a non-HPC
machine is being used, these measurements should not be run stand-alone if, in
practice, the application will be run when another application or thread is
competing for L2.

Note that, although this code leads to in-cache performance, it does not lead to
maximum GFLOPS. The reason for this is explained in the next section.

Blocking usually needs to be done by hand rather than leaving it to the compiler.

3.1.5 Tuning for the FPUs
In contrast to tuning for the memory subsystem, the compiler is generally very
successful at tuning for the FPUs and often there is little extra that can be
achieved by hand tuning. Some exceptions to this are highlighted in this section.
40 POWER4 Processor Introduction and Tuning Guide

Inner loop unrolling and instruction scheduling
To keep the FPU pipelines busy, the following conditions must apply in the inner
instruction loop:

� There must be enough (at least 12) independent FMAs in the compiled loop.

� Loads must precede FMAs in the instruction stream by at least four cycles to
overcome the L1 cache latency.

� The total number of architected registers used must not exceed 32. If this
happens, the compiler must generate spill coding that stores the register
values and reloads them later.

� The number of rename registers needed must not exhaust the hardware pool
available.

� The number of loads and stores must be less than or equal to the number of
FMAs, otherwise the load/store time dominates.

Techniques for dealing with the last item - load/store bound loops - are discussed
in “Outer loop unrolling to increase the FMA to load/store ratio” on page 41.

The basic technique for achieving multiple independent FMAs is inner loop
unrolling. While this can be done by hand, it produces convoluted coding and
usually there is no point since the compiler will do it for you efficiently and reliably.
If you unroll manually, there is a danger that the compiler will unroll again. This
may cause register spilling or other overheads and it may be beneficial to use the
-qnounroll compiler flag.

To help the compiler to avoid register spilling, you should avoid coding too many
unnecessary temporary scalar variables in the loop.

Apart from the items noted, you must rely on the compiler to produce the
optimum instruction stream unless assembler language is used. This is easier
than might be imagined, since advantage can be taken of the -S compiler option.
This will produce a file from the Fortran with a .s suffix that may be assembled
with the as command and linked into the program. Identifying the inner loop of
the routine and editing it to improve the instruction stream is then quite possible
for the experienced programmer without the necessity to fully learn assembler
language. Nevertheless, most programmers will not choose to do this and further
advice is beyond the scope of this publication.

Outer loop unrolling to increase the FMA to load/store ratio
In cases where the inner loop is load/store bound (loads + stores greater than
FMAs) it may be possible to significantly improve performance by increasing the
ratio of FMAs to loads and stores in the loop. This is only possible in data re-use
cases and the basic technique is usually outer loop unrolling.
 Chapter 3. POWER4 system performance and tuning 41

This section considers two cases: one simple loop that the compiler does not
handle successfully, and then blocked matrix multiply coding.

Simple loop benefitting from hand unrolling
Consider the following loop:

do i = 1,n
do j = 1,n

y(i) = y(i) + x(j)*a(j,i)
end do

end do

This loop is already well structured in that the inner loop both has stride 1 and is
a sum-reduction (y(i) is a scalar). This means that the number of loads and
stores needed in the inner loop is minimized because the scalar value y(i) can
be held in a single register and stored just once after the inner loop is complete.
Iteration of the inner loop needs just two loads (for x(j) and a(j,i)) and zero
stores. If the loop order were reversed (with the inner loop on I), there would be
two loads needed (for y(i) and a(j,i)) plus one store (for y(i)). In addition,
there would be poor stride on a(j,i).

However, the loop is load/store bound because there are more load and store
instructions than FMAs. Therefore, as it stands, the performance of this loop will
be limited by the effective rate at which the load/store unit can operate.

The compiler will successfully unroll the inner loop on J. This is necessary in
order to populate the inner loop with independent FMAs rather than dependent
ones. However, this does nothing to alter the FMA to load/store ratio.

The solution, in this case, is to unroll the outer loop on I. With this simple loop,
the compiler may optimize the code for you with the -qhot option, but, generally, it
is more reliable to do outer-loop unrolling by hand.

The following code shows the loops unrolled to depth 4 (tidy-up coding omitted
for cases where n is not a multiple of 4).

do i = 1,n,4
s0 = y(i)
s1 = y(i+1)
s2 = y(i+2)
s3 = y(i+3)

do j = 1,n
s0 = s0 + x(j)*a(j,i)
s1 = s1 + x(j)*a(j,i+1)
s2 = s2 + x(j)*a(j,i+2)
s3 = s3 + x(j)*a(j,i+3)

enddo
42 POWER4 Processor Introduction and Tuning Guide

y(i) = s0
y(i+1) = s1
y(i+2) = s2
y(i+3) = s3

enddo

Note the introduction of the temporary scalar values, S0, S1, S2, and S3. This is
very important because usually, whenever the inner loop contains anything more
complicated than a single subscripted scalar, the compiler may not recognize
that they are scalars and may generate unnecessary loads and stores. Generally
speaking, introducing temporary scalars to make the scalar nature of array
elements clear to the compiler is good coding practice. This does not contradict
previous advice to avoid the introduction of unnecessary scalar variables. In this
case, it is necessary for the compiler to recognize that y(i), y(i+1), y(i+2),
and y(i+3) are scalar in the inner loop.

The load/store to FMA ratio is reduced because the element x(j) is now re-used
three times in the inner loop. So, now, for four of the original iterations, there are
five loads rather than eight. Clearly, as the unrolling depth increases, the
load/store to FMA ratio reduces asymptotically from two to one.

The actual performance depends on the compiler optimization flags and the
depth of hand-unrolling. Selected results for a 1.1 GHz machine are shown in
Figure 3-3 on page 44. The label depth refers to the unrolling depth of the outer
loop of the hand-tuned code. The x-axis refers to dimension n. At n=64 the data
just exceeds the size of the L1 cache. Without hand-unrolling, the compiler does
not take advantage of the L1 cache. The top two lines are with different compilers
but the main reason for the difference in performance is that the top line is
compiled for -qarch=pwr4 rather than pwr3.

Note the “L1 cache peak” for the (top three) hand unrolled lines as the array size
is increased. The untuned code (the bottom line) does not show this peak.
 Chapter 3. POWER4 system performance and tuning 43

Figure 3-3 Outer loop unrolling effects on matrix-vector multiply (1.1GHz system)

M x N unrolling for matrix multiply
The following is the heart of the blocked matrix multiply code. The blocking loops
have been omitted for clarity.

do i=ii,min(n,ii+nb-1)
do j=jj,min(n,jj+nb-1)

do k=kk,min(n,kk+nb-1)
 d(i,j)=d(i,j)+a(j,k)*b(k,i)

enddo
 enddo

enddo

As with the previous example, having the inner loop on k (rather than i or j)
minimizes the number of loads and stores. The array element d(i,j) is a scalar
in the inner loop, since it does not depend on the inner loop variable, k, so the
inner loop is a sum reduction. The scalar may be held in a register during
iteration and only stored after the inner loop is complete. The inner loop requires
just two loads (for a(j,k) and b(k,i)) whereas if i or j were the inner loop
variable, there would be two loads plus one store.
44 POWER4 Processor Introduction and Tuning Guide

Let us recast the loop so as to make the scalar nature of d(i,j) explicit.

do i=ii,min(n,ii+nb-1)
do j=jj,min(n,jj+nb-1)

s = d(i,j)
do k=kk,min(n,kk+nb-1)
 s = s + a(j,k)*b(k,i)

enddo
d(i,j) = s

 enddo
enddo

As with the previous example, introduction of the variable S is sound coding
practice.

Although the number of load/stores in the inner loop has been minimized, the
loop is nevertheless clearly load/store bound. There are two loads and only one
FMA. This can be effectively transformed into an FMA-bound loop by unrolling
the outer two loops. If the outer loop is unrolled to depth M and the middle loop to
depth N, then the number of loads is m+n and the number of FMAs is m*n.
Unrolling 2x2 makes the loop balanced (load/stores = FMAs). Anything more
makes it FMA-bound. The following code shows 5x4 unrolling. This requires 29
architectured registers (20 for the holding of the 20 partial sums in the temporary
scalar variables and 9 for holding the elements of A and B). Anything higher
would exceed the number of architectured registers.

do i=ii,min(n,ii+nb-1),5
do j=jj,min(n,jj+nb-1),4

s00 = d(i+0,j+0)
s10 = d(i+1,j+0)
s20 = d(i+2,j+0)
s30 = d(i+3,j+0)
s40 = d(i+4,j+0)
s01 = d(i+0,j+1)
s11 = d(i+1,j+1)
s21 = d(i+2,j+1)
s31 = d(i+3,j+1)
s41 = d(i+4,j+1)
s02 = d(i+0,j+2)
s12 = d(i+1,j+2)
s22 = d(i+2,j+2)
s32 = d(i+3,j+2)
s42 = d(i+4,j+2)
s03 = d(i+0,j+3)
s13 = d(i+1,j+3)
s23 = d(i+2,j+3)
s33 = d(i+3,j+3)
s43 = d(i+4,j+3)
do k=kk,min(n,kk+nb-1)
 Chapter 3. POWER4 system performance and tuning 45

 s00 = s00 + a(j+0,k)*b(k,i+0)
 s10 = s10 + a(j+0,k)*b(k,i+1)
 s20 = s20 + a(j+0,k)*b(k,i+2)
 s30 = s30 + a(j+0,k)*b(k,i+3)
 s40 = s40 + a(j+0,k)*b(k,i+4)
 s01 = s01 + a(j+1,k)*b(k,i+0)
 s11 = s11 + a(j+1,k)*b(k,i+1)
 s21 = s21 + a(j+1,k)*b(k,i+2)
 s31 = s31 + a(j+1,k)*b(k,i+3)
 s41 = s41 + a(j+1,k)*b(k,i+4)
 s02 = s02 + a(j+2,k)*b(k,i+0)
 s12 = s12 + a(j+2,k)*b(k,i+1)
 s22 = s22 + a(j+2,k)*b(k,i+2)
 s32 = s32 + a(j+2,k)*b(k,i+3)
 s42 = s42 + a(j+2,k)*b(k,i+4)
 s03 = s03 + a(j+3,k)*b(k,i+0)
 s13 = s13 + a(j+3,k)*b(k,i+1)
 s23 = s23 + a(j+3,k)*b(k,i+2)
 s33 = s33 + a(j+3,k)*b(k,i+3)
 s43 = s43 + a(j+3,k)*b(k,i+4)

enddo
d(i+0,j+0) = s00
d(i+1,j+0) = s10
d(i+2,j+0) = s20
d(i+3,j+0) = s30
d(i+4,j+0) = s40
d(i+0,j+1) = s01
d(i+1,j+1) = s11
d(i+2,j+1) = s21
d(i+3,j+1) = s31
d(i+4,j+1) = s41
d(i+0,j+2) = s02
d(i+1,j+2) = s12
d(i+2,j+2) = s22
d(i+3,j+2) = s32
d(i+4,j+2) = s42
d(i+0,j+3) = s03
d(i+1,j+3) = s13
d(i+2,j+3) = s23
d(i+3,j+3) = s33
d(i+4,j+3) = s43

 enddo
enddo

As with all hand unrolling operations, extra “tidy-up” coding is necessary where
the array dimensions are not multiples of (in this case) 5 and 4. The tidy-up
coding is omitted for clarity.
46 POWER4 Processor Introduction and Tuning Guide

Together with blocking, this technique provides the best performance for
matrix-multiply kernel. Matrix factorization structured to use the rank-n update,
which is an operation identical to matrix-multiply but which updates the target
matrix, is also optimized using this unrolling technique. See Section 6.1.2,
“Performance examples using ESSL” on page 115 for the performance of ESSL
DGEMM, which uses similar optimization techniques.

3.1.6 Cache and memory latency measurement
Most of the examples so far in this chapter have been in connection with
structured data that can usually be accessed sequentially and for which data
prefetch streaming gives excellent performance even for very large amounts of
data that do not fit into the cache. Some applications, however, access data in a
much more random way and, for these applications, data streaming cannot be
used.

The key performance factor for such an application is the latency, that is, the time
before the computational units can make use of a data item. The latency is very
different depending on which cache holds the data or whether it is in memory. To
study this, the following loop was used:

ip1=ia(1)
do i=2,n

ip2=ia(ip1)
ip1=ip2

enddo

The data in the INTEGER*8 array ia was a random sequencing of the integers
from 1 to N, subject to the constraint that following the pointers as shown would
traverse the whole array. This ensured that each iteration was dependent on the
previous one and that data streaming could not operate. As usual, the loop was
iterated many times so that, if the whole of the ia array fitted into a particular
cache, it would be the latency of that cache that was being measured.
 Chapter 3. POWER4 system performance and tuning 47

The results in Figure 3-4 have been normalized to present the latency in terms of
numbers of cycles. Since a 1.3 GHz pSeries 690 HPC was used, the numbers
should be divided by 1.3 to get latency in nanoseconds. In the graph, the
numbers of bytes increase uniformly on a logarithmic scale.

Figure 3-4 Latency in machine cycles to access N bytes of random data

The following conclusions can be drawn from this graph:

� Latency for the L1 cache is around 4-5 cycles. The figures increase sharply
when bytes exceed about 32000, the size of the L1 cache.

� Latency for the L2 cache is around 11-14 cycles but seems to increase to
over 20 cycles as the cache becomes full at around 1500000 bytes.

� When data spills out of L2 cache, the combined L3 cache and memory
subsystem cause a fairly graceful increase in latency to a value of at least 340
cycles corresponding to memory latency. It is difficult to discern the L3 cache
latency separately from these figures. With a large volume of random data,
some will be in L3 and some will be in memory and this blurs the effect. If the
data had been structured non-randomly to ensure that data would not be in
cache unless it would all fit, the L3 cache effect might have been clearer.
However, the random distribution used is probably more realistic.
48 POWER4 Processor Introduction and Tuning Guide

3.1.7 Selected fundamental kernel performance within on-chip cache
Table 3-1 shows the measured performance of a set of fundamental loops on a
pSeries 690. These measurements serve as a reference for achievable
performance levels on the machine; both absolute performance in cycles per
iteration for the loop, and performance relative to a 375 MHz POWER3-II
processor, are given. Since the POWER4 processor has two levels of on-chip
cache, results are shown for loops contained within each level: the L1 data cache
and the L2 cache. The vector length, which is also the inner-loop limit, is shown
for each set of data. An outer repetition loop has been used to obtain accurate
timings. The inner loop is often unrolled by the compiler to minimize branch
instructions, break floating-point instruction dependencies, and to allow for more
flexibility in scheduling instructions for maximum performance. All of the loops
were compiled using the -qarch=pwr4 and -O3 flags with the development
version of XL Fortran Version 7.1.1 available at the time of publication.

Table 3-1 Performance of various fundamental loops

1. Loop 1 has only stfd (double-precision floating-point store) instructions in the
inner loop. As discussed in Section 2.3.7, “Store instruction processing” on
page 14, store data is placed in the SDQ and the data then proceeds to the
proper SSQ and STQ until it is finally written into the L2 array. Store
performance is determined by the rate at which the STQ can be drained, and
since there is an STQ per L2 cache controller, it depends on how stores are

ID Kernel L1 data cache contained results L2 cache contained results

Vector
length

Cycles
per
iteration

Performance
relative to
POWER3
Model 270

Vector
length

Cycles
per
iteration

Performance
relative to
POWER3
Model 270

1 x(i)=s 2000 1.7 2.0 40000 1.8 5.2

2 x(i)=y(i) 1000 1.7 2.8 20000 2.1 4.6

3 x(i)=x(i)+s*y(i) 1000 1.7 3.0 20000 2.2 2.9

4 x(i)=x(i)+y(i) 1000 1.7 3.0 20000 2.2 2.9

5 s=s+x(i) 2000 0.9 2.2 40000 1.7 3.1

6 s=s+x(i)*y(i) 1000 1.3 3.0 20000 1.9 2.8

7 x(i)=sqrt(y(i)) 1000 18.1 2.1 20000 18.1 2.1

8 x(i)=1.0/y(i) 1000 15.1 2.2 20000 15.1 2.2

9 x(i)=a(i)+x(i-1) 1000 6.5 1.7 20000 6.5 1.7

10 s=s+y(i)*a(ix(i)) 800 2.0 3.1 16000 2.5 3.2
 Chapter 3. POWER4 system performance and tuning 49

distributed across the three L2 controllers. The loop measured is a
straightforward stride 1 store pattern in which the compiler has unrolled the
inner loop by eight and has roughly scheduled the stores within the loop from
highest address to lowest (that is, in reverse order). The performance of
stores is relatively flat for vector lengths up through the size of the L2 cache
because of the store-through design, which always sends updates through to
the L2 cache.

2. Loop 2 is the copy loop, consisting of an lfd and stfd per iteration. The
performance of this loop is still determined by the store performance. Cache
lines corresponding to load instructions are always reloaded into the L1 data
cache on an L1 data cache miss; cache lines to which stores are directed are
not.

3. Loop 3, commonly known as DAXPY, is load/store bound like the first two
loops, but adds an fmadd. Since the vector being stored has been updated
with a multiple of the other vector, the line being stored into must first be
reloaded, and will then reside in the L1 data cache. Still, the modified data is
stored-through to the L2 cache.

4. Loop 4 is identical to DAXPY, but without the multiply/add. Therefore it has the
same execution performance. Since the arithmetic instruction is an fadd
rather than an fmadd, the work done is half that of DAXPY.

5. Loop 5 is the sum reduction of a vector. The compiler unrolls the loop by eight
producing eight partial sums (which are accumulated in registers), and totals
the partial sums at the conclusion of the loop. This breaks the
interdependence among the fadd operations, which would otherwise
determine the performance of the loop, and the resulting performance is
determined by the rate at which a single stream of floating-point loads can
execute.

6. Loop 6 is commonly known as DDOT, or dot product. Just as in the case of
loop 5, the sum reduction is split into eight partial sums to remove the
floating-point arithmetic interdependence. The resulting performance is
determined by the rate at which two streams of floating-point loads can be
completed.

7. Loop 7 shows the average performance of floating-point double-precision
square root. Floating-point square-root instructions may execute on either
floating-point unit, but are not pipelined. Independent work can execute in the
other floating-point unit concurrently, including another floating-point
square-root instruction. Since both execution units can work in parallel, and a
floating-point double-precision square root normally takes 36 cycles, the
average time is approximately 18 cycles.

8. Loop 8 shows the average performance of floating-point double-precision
divide. Floating-point divide instructions may execute on either floating-point
50 POWER4 Processor Introduction and Tuning Guide

unit but are not pipelined. Again, two divides execute in parallel, reducing the
average time to 15 cycles.

9. Loop 9 exposes the six-cycle dependent operation latency in the floating-point
execution unit. The loop represents a true mathematical recurrence: each
operation requires the result from the previous operation. Thus, the execution
time is limited by the effective pipeline depth of six. The performance ratio
relative to POWER3 is simply half the ratio of the processor frequencies,
since the dependent operation latency in the POWER3 is three.

10.Loop 10 is an indirect DDOT in which one of the vectors is independently
addressed using a vector of integer indices. This is the crux of the
sparse-matrix-vector multiply. Each iteration of the loop requires the index to
be loaded (as an integer), and that value to be shifted so as to become a
byte-oriented offset rather than doubleword index, and the shifted result is
used to load the double-precision element of vector a. This is multiplied by the
stride 1 vector y and accumulated into the scalar s. The compiler breaks
dependencies on the arithmetic by using eight partial sums, just as in DDOT.
The dependent chain of load-shift-(indirect) load is carefully scheduled to
avoid stalls.

3.1.8 Other tuning considerations
In this section, the topics of tuning for L2 cache access and a discussion of the
branch prediction mechanism are provided.

Tuning for L2 cache access
Blocking for an L2 cache is discussed in “Data cache blocking” on page 38.

Improving store performance to L2 cache
Store performance can be improved with some extra effort to distribute the stores
across the three L2 controllers. The following loop is a simple way to accomplish
this, and will perform as much as 40 percent faster than the code given in the
table for vector lengths greater than around 90.

nlim=(n/48)*48
do ii = 1,nlim,48

do i=ii,ii+15
x(i)=c0
x(i+16)=c0
x(i+32)=c0

enddo
end do
do i=nlim+1,n

x(i)=c0
end do
 Chapter 3. POWER4 system performance and tuning 51

3.2 Tuning non-floating point applications
In the following sections we discuss aspects of tuning that are relevant to
non-numeric applications. However, you should bear in mind that many of the
aspects discussed in Section 3.1, “Tuning for numerically intensive applications”
on page 25 are also relevant.

When tuning applications, you should determine whether to tune for throughput
or for response time, depending on the type of application. Different approaches
may be required in either case and, rather than studying the subject in detail
here, we suggest referring to some of the books written on the subject.

Once the approach has been determined, we recommend the following steps:

� If the application is CPU bound, identify the critical parts of the application
code using profiling (Section 5.5, “Locating hot spots (profiling)” on page 110)
and determine whether the critical code can be improved.

� If the application is paging, identify how much memory is being used and
what it is being used for. Consider using tools such as vmstat and svmon (refer
to the AIX commands documentation). If the memory is allocated by the
application, it may be possible to adjust this using configuration files. If there
is not enough system memory, you could use vmtune (see Section 3.3,
“System tuning” on page 54).

� If the application is disk or I/O bound, identify the hot disks or volumes
(iostat, svmon, filemon). You may need to change the way I/O is performed,
for example use asynchronous I/O instead of synchronous I/O or you may
simply be able to move files from hot disks to disks that are less busy.

� If the application is network bound, investigate this with tools such as netstat,
netpmon, and nfsstat. Tune network parameters with the no command.

� If your application is still not performing satisfactorily, start again at the top.

Chapter 4, “Optimizing with the compilers” on page 69 provides a number of
suggestions for tuning code.

3.2.1 The load/store and integer units
Loads, stores, and integer operations form the majority of non-floating point
instructions executed.

The load/store performance is documented in Section 8.1, “Memory to memory
copy” on page 155. Ultimately, the load/store performance depends on the size
of the units, that is bytes, 32-bit words or 64-bit words, and using larger units may
positively affect performance.
52 POWER4 Processor Introduction and Tuning Guide

There is a small penalty in load/store performance when data items cross
32-byte and 64-byte boundaries. Where possible, data structures should be
organized so that they start on double word or word boundaries.

Note that integer divide instructions are relatively slow compared to other
arithmetic instructions.

3.2.2 Memory configurations
pSeries 690 Model 681 systems support four memory controllers per MCM.
Physically, the memory subsystem is implemented using memory books where
each book contains two memory controllers, synchronous memory interfaces
(SMIs) and DIMMs. Each controller can support up to 16 DIMMs. For a detailed
description, see Chapter 2, “The POWER4 system” on page 5.

Memory is interleaved across controllers. Interleaving addresses is a function of
the L3 cache controllers and the L3 cache to which the memory controllers are
attached and is implemented by the L3 cache controller on the POWER4 chip.

Assuming an MCM has two equal-sized memory books attached to it, real
memory is interleaved across the four memory controllers. Then physical
memory on the next MCM is allocated and so on. The operating system is
responsible for mapping real memory to virtual memory.

If you have only one memory book attached to an MCM, the L3 cache configures
itself as a 64 MB shared L3 connected to one memory book, plus a 64 MB
shared L3 with no backing storage. Memory is interleaved across the two
controllers on the book. The bus between the L3 and the book must then process
twice the traffic compared to the same amount of memory spread over two
books, thus reducing memory bandwidth.

If an MCM has two books of different sizes installed, they operate independently
with each book being two-way interleaved.

In the current release of AIX 5L Version 5.1, pages are allocated to a process
from any memory book. In a future update to AIX 5L Version 5.1, pages will be
allocated from memory attached to the MCM where the process is running. This
memory affinity, combined with process affinity, will provide an improvement in
application performance for most classes of applications.
 Chapter 3. POWER4 system performance and tuning 53

3.3 System tuning
In this section we discuss the aspects of the system that are relevant to
application performance running on the pSeries 690 Model 681. We begin with a
review of the virtual memory architecture before examining large-page support.
We then examine some of the system tuning parameters that can have large
effects on application performance. Many of these are beyond the ability of the
application programmer or user to modify directly because they require root
authority to change, but it is useful to understand their possible effects.

3.3.1 POWER4 virtual memory architecture overview
This section provides an overview of the POWER4 virtual memory architecture
for those readers who may be unfamiliar with it.

The architecture is an extension of the POWER3 architecture. Unlike POWER3,
it provides two page sizes. The default page size is 4 KB but the hardware and
operating system provide a large page (16 MB), which can be advantageous in
certain circumstances. See Section 3.3.2, “Small and large page sizes” on
page 58.

Program structure
POWER programs access memory through segment-based addresses. A
segment-based address is calculated using a segment register (pointing to some
storage) and a segment offset. In the 32-bit environment there are 16 segment
registers and each can reference a segment of up to 256 MB. Some registers are
reserved to address kernel memory. Other registers can be used for several
purposes.

By default, segment 2 holds process data (Figure 3-5 on page 55). This includes
any constants and non-stack variables and they are allocated from the bottom of
the segment upwards. Stack space is allocated from the top of the segment
downwards.

Programmers can prevent the stack overwriting non-stack data by limiting the
size of the stack. This can be done by calling the linker (ld) with a -S option. The
programmer can also use the shell ulimit command (ksh: ulimit, csh: limit) to
limit the size of the stack and/or data area at run time.
54 POWER4 Processor Introduction and Tuning Guide

Figure 3-5 32-bit environment segment register usage

Alternatively, you can call the linker specifying the -bmaxdata option. This has
two effects: it specifies a maximum size for the user data area and it causes the
user data to be placed in segment 3 (and subsequent segments as required up
to a maximum of 8 segments for 32-bit programs) while the stack is placed in
segment 2.

32-bit programs that need to access more than 256 MB of data can do so by
using a contiguous set of segment registers. These programs need to be
compiled with the -bmaxdata option. For example, using -bmaxdata:0x80000000
enables the maximum possible data space of 2 GB.

In the 64-bit environment, there are effectively an unlimited number of segment
registers. Note that in the 64-bit environment, -bmaxdata should not be used
because it will limit the addressable data space.

Each segment consists of a number of pages (of the same size). By default,
pages are 4 KB.

Program virtual memory is mapped onto physical memory in units of pages. The
operating system maintains a map (page table) of virtual to physical memory for
each process. Entries in the map are called page table entries (PTEs).

Shared library data

Kernel

Shared libraries

15

14

13

12

11

10

0

2

1

3

4

Kernel

Program code

Process data

Memory mapping

and file mapping
 Chapter 3. POWER4 system performance and tuning 55

A PTE provides information about a corresponding page frame (which can be
4 KB or 16 MB in size). Pages of both sizes can co-exist on a system though a
segment can only have pages of one size. Each PTE contains a number of status
and protection bits as well as address information.

AIX Version 4.3 and AIX 5L Version 5.1 executables
Note that 32-bit executables compiled under AIX Version 4.3 will run unchanged
under AIX 5.1. Any code compiled in 64-bit mode under AIX Version 4.3 must be
re-compiled before it can be used on AIX 5L Version 5.1. This means that:

� AIX Version 4.3 64-bit executables must be re-compiled from the source code
to run under AIX 5L Version 5.1, not just relinked.

� AIX Version 4.3 64-bit object modules or library files cannot be linked with AIX
5L Version 5.1 object modules or library files. The AIX Version 4.3 64-bit
modules must be re-compiled.

Note that you cannot link 32-bit together with 64-bit object modules under either
operating system release.

Address translation
Figure 3-6 gives an overview of the steps in the address translation process.

Figure 3-6 POWER address translation

Effective Address

Lookup in SLB

Virtual Address

Look up in Page Table

Real Address
56 POWER4 Processor Introduction and Tuning Guide

An effective address (EA) is the address of data or an instruction generated by
the processor during the decode of an instruction. The EA specifies a segment
register and offset information within the segment.

Address translation occurs in two steps: EA to virtual address (VA) and VA to real
address (RA). If the EA cannot be translated, a storage exception occurs. While
there are a number of different reasons for exceptions, programmers need only
concern themselves with those caused by invalid data addresses. In these
cases, the operating system will send a signal to the offending process and
typically terminate it.

Conversion of a 64-bit effective address to a corresponding virtual address is
performed by looking up the segment identifier (ESID) in the Segment Lookaside
Buffer (SLB). The SLB is a cache of ESIDs and corresponding virtual segment
identifiers (VSIDs) maintained by the operating system and referenced by the
hardware. Each SLB entry also contains a valid bit and various flags. The 80-bit
virtual address is formed by concatenating the VSID with the page and byte
address from the EA as shown in Figure 3-7.

Figure 3-7 Translation of 64-bit effective address to 80-bit virtual address

64-bit Effective Address

36 28 -p p

BytePageESID

0
35 36 63-p 64-p 63

ESIDESIDESID

ESID VSID Flags

Segment Lookaside
Buffer (SLB)

52 28 -p p

BytePageESIDESIDESIDVSID

Virtual Page Number (VPN)
 Chapter 3. POWER4 system performance and tuning 57

Conversion of the 80-bit virtual address to its corresponding real address is done
by hardware lookup in the page table. The page table is maintained by the
operating system and its base address is held in a hardware register. The virtual
page number (VSID + page number) is used to construct an index into the page
table. The real address for the base of the page is extracted from the page table
Entry.

3.3.2 Small and large page sizes
Historically, the PowerPC Architecture supported the mapping between virtual
and physical memory at a granularity of 4 KB pages. POWER4 systems
introduce a new PowerPC Architecture feature that provides an alternate
large-page size that can be used in addition to the 4 KB base-page size. The
pSeries 690 Model 681 system supports a 16 MB large-page size. The
implementation involves the selective use of large virtual/physical memory pages
to back the process private data segment(s). A process can contain a mixture of
small (4 KB) and large (16 MB) pages at a 256 MB virtual segment granularity.
All pages within a 256 MB segment have the same size.

The primary benefit from large-page support is improved performance for
applications. This refers to applications that access a large amount of memory in
a sequential manner or have significant gather/scatter components (such as
large, randomly accessed user data spaces). Large pages can improve
performance for these applications by reducing the translation lookaside buffer
(TLB) miss rate. POWER4 systems use memory data prefetching (and other
techniques) to minimize memory latencies. Data prefetching starts when a new
page is accessed and grows more aggressive as the page continues to be
sequentially accessed. However, data prefetching must be restarted at page
boundaries. The use of large pages can improve performance by reducing the
number of prefetch startups.

An update of AIX 5L Version 5.1, targeted for mid-2002, introduces a usage
model that allows existing applications to use large pages without requiring
source code changes and/or recompilations. The need for investment protection
also dictates that the large-page data support must not impact source or binary
compatibility for existing applications and the kernel extensions they depend
upon if large-page support is not used by these applications. With the initial
release of AIX 5L Version 5.1, which supports the pSeries 690 Model 681, there
is already a low-level shmat/shmget interface, which will also be enhanced with
future releases.
58 POWER4 Processor Introduction and Tuning Guide

Large-page data areas
Large pages will be used for the data areas of the user address space. For
technical applications, these areas consist of the user heap and main program
BSS and data storage areas. These are the critical data areas for C programs,
since the user heap supports malloc storage, BSS holds uninitialized program
data, and data storage holds both initialized and (small) uninitialized data.

These are also the critical data areas for Fortran programs because the Fortran
storage classes that require large pages reside within these areas, as follows:

Static Static variables reside in the data storage area. Large, uninitialized
static variables reside in BSS.

Common If a common block variable is initialized, the whole block resides in
the data storage area; otherwise, the whole block resides in BSS.

Controlled This storage class is used for allocatable arrays. Controlled
variables reside in the user heap.

Large pages are not required for other areas of the user address space, so 4 KB
pages are used. These consist of the process stack, library data storage area,
mmap regions, and user text. At the cost of 16 MB of physical memory resource
per page, large pages would provide little or no benefit to applications if used for
the process stack or library data because both typically represent small
quantities of data. For a single-threaded process automatic and controlled
automatic Fortran storage classes reside within the process stack and therefore
do not use large pages. Typically, the amount of data is small.

Use of large pages for thread stacks within a multi-thread process is of value and
can provide benefit through larger TLB coverage. The use of large pages for
thread stacks is supported through the AIX pthreads library, which places thread
stacks within the user heap.

It is not planned to support large pages for mmap regions. The support of large
pages for user text data is not relevant for technical applications.

Note: At the time of writing this document the AIX implementation of
large-page support was still under development. The following description is
subject to change.
 Chapter 3. POWER4 system performance and tuning 59

Some technical and commercial (for example database) applications do map and
use shared memory segments within their user address spaces and can benefit
from large pages. This is supported by the implementation of a large-page
shmat/shmget interface. An application must be modified in order to use large
pages for shared memory segments. This is because a special option must be
specified at the time a shared memory segment is created if large pages are to
be used for the segment.

In a future release of AIX 5L large pages will be allocated preferentially from
physical memory that is close to the processor (or MCM) that initiated the
request. This memory affinity is intended to hide the non-uniformity in latency
and bandwidth (primarily the latter) of the memory subsystem.

Large pages are pinned (cannot be paged out or stolen) to memory the entire
time an application executes. The large-page memory pool is a limited system
resource. A failure will occur when a large-page application tries to allocate a
large page and none are available.

Large page application support

Although the 64-bit kernel is the strategic AIX kernel, large-page data support is
also provided in the 32-bit kernel.

A new bit flag will be maintained within the XCOFF and XCOFF64 executable file
headers to record the large-page data attribute of a program. If the flag is set,
this indicates that the program uses large pages; otherwise, it only uses small
pages. It is deemed better to fail a technical application that requests an
additional large page when none is available than have it silently execute with
4 KB pages.

The ldedit command will provide the ability to set and unset the large page flag
of an executable file without the need for source code changes, recompiling, or
relinking. It will also support setting maxdata and maxstack. The dump command
will be modified to display the status of a program’s large page data flag.

The large page data usage is inherited over fork(). Check the manual pages for
details on the memory duplication scheme. Large page data usage is not
inherited over exec().

Because of different page protection requirements, the data model for 32-bit
large page data applications is slightly different from the existing 32-bit process
models (default and large memory) shown in Figure 3-5 on page 55. You can
inspect a program’s memory layout with the help of the svmon command.
60 POWER4 Processor Introduction and Tuning Guide

Large-page command support
An extension of the vmtune command will be provided to select at boot time the
number of memory segments (256 MB) that will hold large pages.

A system administrator has the ability to control usage of the large-page memory
pool by user ID (such as with the chuser and mkuser commands). This prevents
unprivileged users causing privileged large-page data applications to fail due to
running out of large pages.

At this time, there is no Workload Manager (WLM) support provided to manage
large-page physical memory or large-page applications. Large pages are neither
pageable nor swappable. They are essentially pinned pages that are treated as
unmanaged resources by the WLM.

The commands ps, vmstat, and svmon have been extended to report on
large-page usage.

Large-page performance observations
General large-page support for Fortran and C application is not available in
AIX 5L Version 5.1. It is expected that when large-page support is available,
uniprocessor performance for memory-bound kernels such as DAXPY will
increase significantly. This is primarily due to the increased efficiency of data
prefetching long vectors in large pages (see Section 2.3.8, “Fixed-point execution
pipeline” on page 15).

3.3.3 AIX system parameters
System factors that can influence application performance include:

� Hardware configuration

– CPU configuration

The speed, number of CPUs and the particular type of pSeries 690 Model
681 processor module installed are, of course, extremely important to
application performance. In the POWER4 or POWER4 Turbo modules, the
L2 caches are each shared between two CPUs. In the POWER4 HPC
modules, the L2 caches are not shared. However, these are factors that
cannot be adjusted or tuned for a given machine configuration, but are
hardware characteristics of which the programmer should be aware.
 Chapter 3. POWER4 system performance and tuning 61

– Memory configuration

Similarly, the memory configuration is also important. As described in
Section 3.2.2, “Memory configurations” on page 53, the particular memory
configuration of a particular machine determines the overall memory
bandwidth available to the CPUs. This is not a factor that can be adjusted
for a given machine configuration, but the programmer should be aware of
the possible effects.

– Storage configuration

A detailed discussion of possible storage configurations that can be
attached to the pSeries 690 Model 681 is outside the scope of this book.
However, for I/O dependent applications, the underlying storage
configuration can have a very significant effect on application
performance. These can include General Parallel Filesystem (GPFS) or
AIX Journaled Filesystem (JFS) configurations spread across multiple
physical disks, which could include SSA, various types of SCSI disk, or
fiber-attached disks. For this reason, awareness of the target storage
configuration and the available memory configuration may favor
programming choices that trade memory use for I/O.

� Software configuration

– Paging space configuration

In the scientific and technical computing domain, it is common for the
application mix on a machine to be selected and controlled so as to avoid
paging. With the advent of AIX Version 4.3.2 the paging allocation
algorithm only allocates space in paging space when it is necessary to
free up a page in memory. This means that for a system that is under no
pressure for real memory pages, the paging space utilization will be very
small. The lsps -a command might show one percent utilization. For this
reason, and in order to save disk space, it is becoming common to
configure paging space that is somewhat smaller than real memory. Large
memory systems may be running applications that consume large
amounts of memory. If so, it is important to consider the effect if multiples
of these jobs are ever started such that memory becomes overcommitted,
possibly exhausting paging space. A control mechanism, for example a job
scheduling system such as LoadLeveler or AIX Workload Manager, should
be considered. Alternatively, the paging space should be made large
enough to accommodate such an event.
62 POWER4 Processor Introduction and Tuning Guide

– 32- or 64-bit kernel

In general, if the main application or applications are 64-bit applications,
then it is slightly better to use the 64-bit AIX kernel. For 32-bit applications
then it is slightly better to use the 32-bit kernel. However, the overhead of
running 64-bit applications on the 32-bit kernel (remapping system calls to
32-bit calls, and reshaping the data structures for these calls) is handled in
the kernel and is small. The overhead of running 32-bit applications on the
64-bit kernel (reshaping data structures in system calls) is likewise small.

Note that 64-bit applications from AIX Version 4.3.3 must be recompiled to
run under AIX 5L Version 5.1, whether they will be run on the 64-bit kernel
or not.

– Kernel parameters

Certain kernel tuning parameters can have a large effect on the
performance of certain applications, depending on the application’s use of
memory and files.

The vmtune command (provided in the AIX fileset bos.adt.samples)
provides a number of parameters that can be adjusted to suit particular
applications:

• Page replacement selection of file or application pages

As demand for memory increases, the AIX Virtual Memory Manager
(VMM) must occasionally reassign pages in use by programs to
maintain a minimum number of free pages. The vmtune parameters
minperm and maxperm set thresholds that determine the pool from
which the AIX VMM page replacement algorithm will select pages to be
reassigned.

For the purposes of this discussion, allocated memory pages can be
considered to be one of two types. File pages are pages containing
data from files mapped into memory by AIX. Computational pages are
pages allocated to running programs.

When the percentage of real memory occupied by file pages falls
below the minperm value, the page replacement algorithm steals both
computational and file pages.

When the percentage of real memory occupied by file pages is greater
than the maxperm value, the page replacement algorithm steals only
file pages.
 Chapter 3. POWER4 system performance and tuning 63

When the percentage of real memory occupied by file pages is
between the minperm and maxperm values, the page replacement
algorithm can steal pages from both computational and file pages. It
will normally steal only file pages, unless the repage rate for file pages
is higher than that for computational pages. If so, it will steal both types
of pages.

The default settings for these parameters are approximately
minperm=20, maxperm=80. That is 20 percent and 80 percent of real
memory.

Consider, for example, a program that uses a lot of memory for
computation, but that also writes out large files sequentially. As the
program writes out to the file, more and more file pages will be created
in memory. Once the number of file pages reaches 80 percent of real
memory, an application's computational pages will be largely protected
from being stolen by the page replacement algorithm. Below this level,
an application may find that its computational pages are being stolen to
make way for file pages. If the working set size of the program is larger
than 20 percent of real memory (100 - maxperm), then its performance
may well suffer as its computational pages are stolen to make way for
file pages. The larger the program, the greater this effect.

Therefore, such an application could well benefit from setting minperm
and maxperm lower than their default values, and in the case of
maxperm possibly much lower.

There is a third parameter, related to minperm and maxperm:
strict_maxperm. This makes the maxperm setting a hard limit rather
than a threshold.

For example, to set the threshold below which VMM page replacement
will steal computational pages to 5 percent and the threshold above
which it will steal only file pages to 20 percent, the following command
would be used:

/usr/samples/kernel/vmtune -p5 -P20

To set the maxperm threshold as a hard limit using strict_maxperm:

/usr/samples/kernel/vmtune -h 1
64 POWER4 Processor Introduction and Tuning Guide

• Memory page replacement parameters

The minfree, maxfree, mempools, and lrubuckets parameters may
need to be adjusted together to reduce memory scanning overhead in
a busy system and to maintain a large enough free list to readily satisfy
demands from programs allocating memory. Recommendations for
tuning these parameters can be found in the AIX Performance
Management Guide (product manual, available on the Web) and the
AIX 5L Performance Tools Handbook, SG24-6039.

The maxfree parameter should be at least maxpgahead (see the
maxpgahead kernel parameter description that follows in this section)
greater than minfree. It is worth experimenting with larger values for
minfree and maxfree than the defaults when trying to smooth out peaks
and troughs of mixed workloads.

Page replacement in AIX is performed by the lrud daemon. From AIX
4.3.3 onwards, this daemon is multi-threaded, and the system memory
is divided into a number of pools. The number of pools is specified by
the mempools parameter. On a large memory, SMP system, this allows
memory scanning to be performed more efficiently than with one large
memory pool.

Each memory pool can be further subdivided into a number of sections
called buckets. The size of these buckets is specified by the lrubuckets
parameter. These buckets are scanned individually by the lrud using
the VMM page replacement algorithm. This involves a two pass
process where unreferenced pages are marked in the first pass, and, if
a free page is not found a second pass is made and pages still marked
as unreferenced will be replaced. On a large, busy system, with a
single bucket across all of memory, this two pass memory scan would
be too great an overhead. The subdivision of memory into buckets
reduces this overhead.

• I/O pacing with min_pout and max_pout

These parameters are of importance in improving the performance of
both single, large applications performing sequential I/O, and multiple
jobs that perform I/O.

min_pout and max_pout are system attributes that control I/O pacing.
That is, max_pout sets a maximum threshold for pending I/O requests
per file. Above this level, an application generating large numbers of I/O
requests will be put into a sleep state until the number of pending I/O
requests falls to or below the min_pout value. The default settings are
zero for both values, which means no checking, but this can allow a
 Chapter 3. POWER4 system performance and tuning 65

high I/O volume application to saturate the system’s capabilities and
seriously affect the performance of other applications. However,
enabling checking with too low values for these parameters can reduce
the performance of such a high I/O volume application.

Therefore, where multiple applications must share a system, one
approach to setting I/O pacing would be to set these values high
(several thousand), and measure the effect on all types of workload on
the system. The aim should be to get these values as high as possible
for maximum throughput of the high I/O volume of the application while
not reducing the performance of other workloads.

These parameters can be set with the chdev -l sys0 command, using
the appropriate attribute.

• Read ahead with minpgahead and maxpgahead

These values control the amount by which the VMM will schedule
pages in advance of the current page when reading files sequentially.
When sequential access is detected, the read-ahead mechanism
brings in two pages, and at each confirmation the number of pages
read ahead is doubled up to maxpgahead. For applications that
perform large amounts of serial I/O, it may be advantageous to set a
relatively large maxpgahead value (the default value is 8).

However, the underlying I/O subsystem should be taken into account
when selecting this value. For example, if the file is stored on file
systems striped across multiple devices then a higher value may be
appropriate than if it is stored on a single disk device.

• max_coalesce

This parameter is an attribute of logical disk drives that sets the
maximum number of bytes to be transferred to the disk by the device
driver in a single operation. When using SSA RAID arrays for
sequential I/O, this value should be set to the number of disks across
which the data is striped multiplied by 64 KB.

• Sequential and random write-behind

Files mapped into memory are partitioned into 16 KB clusters (four
pages when using small pages). When writing sequentially, all four
pages in a cluster will be modified one after another. The parameter
numclust specifies the number of such clusters before the current
cluster, which the VMM will allow before scheduling the writing of their
modified pages. By default this is set to 1, which means that modified
pages from sequential files should not accumulate in memory. For
randomly written files, this mechanism does not apply. There is another
parameter, maxrandwrt, which sets a maximum number of modified
(also known as dirty) pages for a given file. Once this number is
66 POWER4 Processor Introduction and Tuning Guide

exceeded, then the VMM will schedule these pages for writing. It
should be noted that when the syncd daemon runs, these modified
pages will be written to disk anyway, but these parameters can prevent
the buildup of modified pages between runs of syncd to the extent that
syncd running affects system performance. These parameters can be
modified using the vmtune command.

• lgpg_regions, lgpg_size

As discussed in Section 3.3.2, “Small and large page sizes” on
page 58, the use of large pages for virtual memory has the potential to
significantly improve the performance of certain applications. In order
for an application to use large pages, there must have been large
pages defined to the system at system IPL. The lgpg_regions
parameter specifies the number of large pages to be made available at
the next reboot. The lgpg_size parameter specifies the size of these
pages, and for the IBM ^ pSeries 690 Model 681 POWER4
machines this would be 16 MB specified in bytes. An example of a
sequence of commands and actions to define 8 GB of large pages and
make them available might be as follows:

vmtune -g 16777216 -L 512
bosboot -a
shutdown -Fr

The exact usage of the bosboot command would depend on the
particular system being configured for large pages.

3.3.4 Minimizing variation in job performance
Various factors can affect the consistency of the performance of a job from run to
run. These include:

� System factors

– Competing jobs

Multiple jobs running in the system simultaneously can compete for
resources such as CPU, memory, and I/O bandwidth. One approach to
reducing the variability introduced by running multiple jobs on the system
is to carefully select jobs that require different types of resources to be run
together. Once jobs have been characterized in this way, the running of the
job mix can be controlled using a job scheduling system such as
LoadLeveler. In practice, many large applications have requirements for all
the above types of resource. Another approach is to use the AIX Workload
Manager to guarantee resources to a particular job, and perhaps sharing
the remaining resource between other jobs in the system. For examples of
the effects of multiple jobs running on the system, see Chapter 8,
“Application performance and throughput” on page 153.
 Chapter 3. POWER4 system performance and tuning 67

For more information on AIX Workload Manager, see AIX 5L System
Management Concepts: Operating System and Devices, and AIX 5L
System Management Guide: Operating System and Devices. For more
information on LoadLeveler, see Using and Administering IBM
LoadLeveler for AIX, SA22-7311.

– External I/O performance

If a job is dependent on the performance of shared storage facilities that
are heavily utilized at certain times, then it may experience variation in
runtime. In this situation, it may be possible to trade memory use for I/O to
reduce the dependency on the external I/O performance.

– System software levels

Occasionally, different system software levels will implement different
default values for certain tuning parameters. This can cause unexpected
variation in job performance. Software updates and fixes should therefore
be checked and tested carefully for such changes.

� Application factors

– Processor binding

In order to guarantee the sharing of L2 cache between certain threads, or
to guarantee that threads are using dedicated L2 cache, you may have
bound threads or processes to specific processors. Depending on the
thread scheduling scope (see Section 7.1.1, “SMP runtime behavior” on
page 126), and the numbers of threads and processors, this could
introduce variation in runtime behavior.

– Variation in data

The previous factors apply to variations in runtimes for the same job
running with the same data. It is also the case that variations in the data
input to the job can cause variability, even though the problem to be solved
is the same size, and the program may take longer to converge to a
solution. With parallel jobs variations in input data may lead to hotspots
where certain processors have more work to do than others, leading to an
overall increase in the runtime of the job. An approach to resolving this,
which is outside the scope of this book, is to implement a dynamic load
balancing design in the parallelization of the program.
68 POWER4 Processor Introduction and Tuning Guide

Chapter 4. Optimizing with the
compilers

In this chapter we describe the features of the XL Fortran and C and C++
compilers that relate to optimization for the POWER4 processors. We begin with
the optimization options available with particular emphasis on those that benefit
applications running on POWER4 processors. In subsequent sections the
particular techniques and considerations for improving performance using the
compiler are discussed.

4.1 POWER4-specific compiler options
In this section some useful XL Fortran compiler options that can be used to
improve performance are presented. We then focus on options with specific
benefits on POWER4 microarchitecture machines. Finally, we make some
recommendations for initial attempts at optimization.

It should be noted that, when specifying conflicting compilation options on the
command line, the last option wins. For example, consider the following
command:

xlf -O3 -qsource -qlist -o monte -O2 monte.f

4

© Copyright IBM Corp. 2001 69

The optimization flag -O is specified twice with two different levels. In this case,
optimization level two would be used because this is specified last. This also
applies to those options that are implied by another option. See the description of
-O4 and -O5 in the following section.

4.1.1 General performance options
In the following sections, useful Fortran, C and C++ compiler general
performance options are discussed.

XL Fortran options
The following options are provided by the XL Fortran compiler. For more details
see the XL Fortran for AIX User’s Guide, SC09-2866.

� -O, -O2, -O3, -O4, -O5

The -O flag is the main compiler optimization flag, and can be specified with
several levels of optimization. -O and -O2 are currently equivalent.

At -O2, the XL Fortran compiler’s optimization is highly reliable and usually
improves performance, often quite dramatically. -O2 avoids optimization
techniques that could alter program semantics.

-O3 provides an increased level of optimization. It can result in the reordering
of associative floating-point operations or operations that may cause runtime
exceptions. This could slightly alter program semantics. This can be
prevented through the use of the -qstrict option together with -O3. At this
optimization level, the compiler can also replace divides with reciprocal
multiplies. -O3 is often used together with -qhot, -qarch, and -qtune.

-O4 provides more aggressive optimization and implies the following options:

– -qhot

– -qipa

– -O3

– -qarch=auto

– -qtune=auto

– -qcache=auto

-O5 implies the same optimizations as -O4 with the addition of -qipa=level=2.

In general, increasing levels of optimization require more time (sometimes
considerably more time), and larger memory during the compilation. In
addition, -O4 and -O5 sometimes need additional space in /tmp (or the
location specified by the TMPDIR environment). The recommendation is to
have at least 200 MB available, and potentially up to 400 MB.
70 POWER4 Processor Introduction and Tuning Guide

� -qarch, -qtune, -qcache

These options allow the compiler to take advantage of particular hardware
configurations for the purposes of optimization.

– -qarch specifies the instruction set architecture of the machine, that is
which instructions the compiler will generate. Specifying certain values for
this option can generate code that will not run on other machine types. For
example, -qarch=pwr2 would generate code that might not run on a
POWER4 machine.

The -qarch=com option generates executable code that will run on any
POWER or PowerPC hardware platform. However, this option also
prevents the compiler from generating any of the optional PowerPC
architecture instructions. In the case of POWER4, these instructions
include the two floating-point square root instructions: fsqrt and fsqrts,
which are likely to be important in numerically intensive applications.

– -qtune instructs the compiler to perform optimizations for the specified
processor. These can include taking into account instruction scheduling
and memory hierarchy for the specified architecture. This option only has
an effect when used with an optimization level of -O (or -O2) or greater.

– The -qcache option is only effective if the -qhot option is also specified
explicitly or implicitly with, for example, -O4.

This option can be used to specify the exact cache hierarchy of the
machine. This can be useful if the target machine has a different cache
hierarchy from the default. -qcache is designed to describe the complete
cache hierarchy of the system including the TLB. If specifying cache
configurations with -qcache, then the specifications should be ordered by
capacity and to be very precise should include the ERAT, TLB, L1, L2, and
L3.

At present, the compiler uses the line size of the cache for optimization,
but a future level of the compiler may use capacity and miss cost more
aggressively. At that time, if compiling for machines with different cache
hierarchies, then the most conservative specification would be the larger
line size, the smaller capacity, the smaller associativity level, and the larger
cost.

If the program will be compiled and run on the same machine, then
-qarch=auto should be used or -qarch should be set to the specific processor.
The default setting is -qarch=com in 32-bit mode, and -qarch=ppc in 64-bit
mode. The compiler will then automatically select default settings for -qtune
and -qcache appropriate to the processor architecture selected. If the
compilation machine is different from the target machine, then it can be useful
to specify the target architecture for -qarch and -qtune.
 Chapter 4. Optimizing with the compilers 71

For example, if compiling and running on a POWER4 pSeries 690 Model 681,
then use -qarch=auto -qtune=auto, or -qarch=pwr4 -qtune=pwr4. If compiling
on this machine but executing on an RS/6000 SP 375 MHz POWER3 High
Node, then -qarch=pwr3 -qtune=pwr3 should be used. Different combinations
of these two options can be used to specify the machines on which the
executable will run, but produce code that is optimized for one of the target
machine types.

� -qhot

The -qhot option performs high-order transformations to maximize the
efficiency of loops and array language. It can optionally pad arrays for more
efficient cache usage and can generate calls to vector intrinsic functions such
as square root and reciprocal. As with -O3, some of the transformations can
slightly alter program semantics, but this can be avoided by also using -qstrict.
The -qhot option is made less effective by the -C array bounds checking
option, but remains active. Note that -qhot is selected by default when -O4,
-O5, or -qsmp=auto options are specified.

� -qalias

The -qalias option can be used to tell the compiler about the types of aliasing
that may be found in the program where an area of storage may be referred
to by more than one name. The compiler may be able to perform additional
optimization with this information, for example for programs that violate
parameter aliasing rules (see the discussion of -qalias in the XL Fortran
User’s Guide, SC09-2866).

Compiling with -O2 -qalias=nostd may give better performance than using no
optimization at all.

� -qalign

The -qalign option specifies the alignment of data objects in storage. There
are two suboptions:

– -qalign=4k, which causes certain objects over 4 KB to be aligned on 4 KB
boundaries and can be useful for optimizing I/O when using data striping.

– -qalign=struct, which can specify the alignment of derived type objects
such as structures.

� -qassert

The -qassert option can be used to give the compiler information about loop
dependencies and iteration counts, which may allow additional optimizations.
72 POWER4 Processor Introduction and Tuning Guide

� -qcompact

The -qcompact option reduces optimizations that increase the size of the
executable. For current systems with large memories this is not commonly
used. However, it can be useful in the rare cases where -O3 generates code
that performs worse than code generated with -O2. In these cases, -O3
-qcompact is often better.

� -qpdf, -qfdpr

The -qpdf option enables profile-directed feedback. This is a two-step process
where profile information from a typical run or set of runs is used for further
optimization.

-qfdpr generates object files containing the necessary information for use with
the AIX Feedback Directed Program Restructuring (FDPR) command.

� -qipa

The -qipa option can improve basic optimization by doing analysis across
procedures. This must be specified at both compile and link stages, and there
are various suboptions to give the compiler more information about the
characteristics of procedures within the program, and how to handle
references to procedures that have not been compiled with -qipa.

� -qsmp

The -qsmp option is used for shared memory parallelization of certain loops
within a program. It is possible to make the compiler use the minimum
optimization necessary to achieve parallelization by using -qsmp=noopt.

Shared memory parallelization is covered in more detail in Section 7.1,
“Shared memory parallelization” on page 126.

� -qstrict, -qstrict_induction

These options prevent the compiler (options -O3, -qhot and -qipa) from
performing optimizations that could alter the semantics of the program and
potentially producing results that differ from unoptimized code.
-qstrict_induction applies to such optimizations on loop counter variables.
Both of these options can result in reduced performance.

� -qunroll

The -qunroll option allows the compiler to unroll loops within a compilation
unit. By default, with optimization level 2 (-O, or -O2) the compiler performs
loop unrolling if analysis indicates that it will be beneficial. If such unrolling
actually reduces performance for a procedure, then -qnounroll could be used
to turn it off for a particular procedure. Loops where it is beneficial to unroll
within this procedure could then be marked with the UNROLL compiler
directive. See Section 4.2, “XL Fortran compiler directives for tuning” on
page 80
 Chapter 4. Optimizing with the compilers 73

� -Q

The -Q option allows the compiler to inline functions and procedures. That is,
the compiler can move the code from the inlined program unit into the code of
the calling unit and potentially achieve further optimizations by doing so. This
option can also take the names of functions or procedures to be inlined, or
those to be excluded from inlining.

� -qlibansi, -qlibessl, -qlibposix

These options specify that any references to functions that have the same
name as a library function are references to that function.

-qlibansi ANSI C library.

-qlibessl ESSL library. See Section 6.1, “The ESSL and Parallel ESSL
libraries” on page 114

-qlibposix POSIX 1003.1 library.

� -qnozerosize

The -qnozerosize option tells the compiler that there are no zero-sized
objects in the program that can improve performance in some programs by
removing the need to check for them.

� -g

The -g option is not a performance flag. It generates symbol and line number
information in the object files that can be used for debugging. However, it is
important to note that compiling with -g has almost no effect on performance.
It does not prevent optimizations performed by the compiler.

� -p, -pg

These options are used to generate monitoring information when producing
runtime profiles of a program. See Section 5.5, “Locating hot spots (profiling)”
on page 110 for more details.

Visual Age C and C++ options
With the following exceptions, all the options mentioned previously are also valid
when used with the C and C++ compilers:

� -qhot

� -qnozerosize

� -qlibessl, -qlibposix

� -qsmp is supported by the C compiler, but is not supported by the C++
compiler. However, C++ can declare (as extern “C”) and call C functions that
are coded with shared memory parallelism through OpenMP pragmas.
74 POWER4 Processor Introduction and Tuning Guide

In addition, the following performance-related options exist for these compilers:

� -qalias=ansi

The -qalias=ansi option specifies the use of type-based aliasing during
optimization. This is synonymous with the obsolete -qansialias, and allows
the compiler to make assumptions about the types of objects accessed via
pointers.

� -qfold

The -qfold option evaluates constant floating-point expressions at compile
time.

� -qinline

The -qinline option is equivalent to the -Q option described in the Fortran
options.

� -qunroll=n

The -qunroll option accepts a value n, where n is the depth to which the
compiler should unroll inner loops. The default value of n is four, and the
maximum value is eight. This option takes effect when an optimization level of
-O2 or higher is specified.

4.1.2 Options for POWER4
This section describes specific optimization actions performed by the compiler for
POWER4 microarchitecture machines.

Compiler options that perform specific optimizations for POWER4
microarchitecture machines are as follows:

� -qarch=pwr4

� -qtune=pwr4

� -qcache=auto

or

-qcache=level=1:type=i:size=64:line=128:assoc=0:cost=13 \
-qcache=level=1:type=d:size=32:line=128:assoc=2:cost=11 \
-qcache=level=2:type=c:size=1440:line=128:assoc=8:cost=125

Note that the cost value for the L2 cache miss above is derived from an
average for data misses across the various L3 caches.
 Chapter 4. Optimizing with the compilers 75

4.1.3 Using XL Fortran vector-intrinsic functions
The compiler is capable of generating calls to specially optimized vector versions
of intrinsic functions. These are included in the libxlopt.a library included with XL
Fortran, and the standard linkage sequences for the various invocations of the
Fortran compiler (for example xlf, xlf90, xlf90_r) include this library. Calls to
intrinsic functions can often make up a significant percentage of the CPU usage
profile. For example, one weather modelling program spends 22 percent of its
time in the intrinsic functions.

These calls may be generated using the -qhot compiler option and will be
satisfied from the libxlopt.a library. Certain other options will prevent the
generation of these calls: -qhot=novector, or -qstrict. For example, the following
code outline could generate vector-intrinsic function calls when compiled with
-qhot:

do i=1,n
c(i)=cos(a(i))
.
.

end do

Vector versions of the following functions exist with examples of the calls
provided in the following list:

� Cosine

cos(a(i))

� Division (not strictly speaking a function, but a vector division function exists
in libxlopt.a)

a(i)/b(i)

At present, although this function exists, the compiler does not generate this
function call, but uses a combination of a vrec or a vsrec function call and
multiply instructions.

� Exponential

exp(a(i))

� Natural logarithm

log(a(i))

� Reciprocal

1.0/a(i)

� Reciprocal square root

1.0/sqrt(a(i))
76 POWER4 Processor Introduction and Tuning Guide

� Sine

sin(a(i))

� Square root

sqrt(a(i))

� Tangent

tan(a(i))

There are two versions of each function, a double-precision version and a
single-precision version. The compiler will generate the appropriate call.

These functions are derived from the MASS library functions (see Section 6.2,
“The MASS libraries” on page 117 for more information on the MASS library).
Since the XL Fortran release schedule is separate from the freely available
MASS library, the libxlopt.a versions may lag behind the MASS library versions.
This means that any improvements in the performance of these routines, for
example by algorithm changes that take advantage of the POWER4 architecture,
are likely to be available in the MASS library first.

Also note that the use of these functions is subject to the same considerations as
the use of the MASS library functions.

Examples of the speedups that can be seen with the vector-intrinsic functions are
shown in Table 4-1.

Table 4-1 Vector-intrinsic function speedups

Function Speedup (double precision) Speedup (single precision)

cos 3.94 3.90

div not generated not generated

exp 4.60 4.55

log 5.80 5.74

reciprocal 1.10 2.17

rsqrt 2.26 6.23

sin 4.03 3.85

sqrt 1.09 2.17

tan 4.27 3.79
 Chapter 4. Optimizing with the compilers 77

The double-precision numbers were generated with the following program:

program cos_test

 integer m,n
 parameter (n = 1000)
 parameter (m = 10000)
 real*8 a(n)
 real*8 b(n)
 real*8 fns
 real*8 time1,time2,rtc
 real*8 ctime
 integer i,j

 ctime=0.0d0

 call random_seed
 call random_number(a)
 call random_number(b)

 do i=1,m
 time1=rtc()
 do j=1,n
 b(j)=cos(a(j))
 end do
 time2=rtc()
 ctime=ctime+(time2-time1)
 call dummy(b,a,n)
 end do

 fns=float(m*n)

 write(6,998)ctime,fns/(ctime*1.0e6)
998 FORMAT('Cosine: intrinsic time (s) = ',F6.2,
 & ' cos/s = ',F8.2)

 stop
 end

For the other vector-intrinsic functions, the call to cos_test in the preceding
example was replaced with the appropriate function or operation.

The dummy subroutine does nothing, but calling it prevents the compiler from
optimizing away the loop.
78 POWER4 Processor Introduction and Tuning Guide

4.1.4 Recommended options
The recommended starting compiler options for the POWER4 microarchitecture
are:

-O3 -qarch=pwr4 -qtune=pwr4

If the executable must execute on POWER3 and POWER4 machines, but the
performance on the POWER4 machine is most important, then -qarch=pwr3 and
-qtune=pwr4 should be specified instead.

The -qhot option may give significant performance benefits, at the cost of
additional compile time. It is also essential for certain other optimization flags to
take effect, including -qcache.

If the program makes extensive use of the intrinsic functions listed in
Section 4.1.3, “Using XL Fortran vector-intrinsic functions” on page 76 and the
programmer does not wish to modify the code to use the MASS library functions,
then there may be considerable benefit from using the vector versions from
libxlopt. The -qhot option should then be used. In this case, the benefit from the
vector-intrinsic functions can be determined by comparing the effect of compiling
with -qhot and compiling with -qhot=novector.

4.1.5 Comparing C and Fortran compiler code generation
This section compares C and Fortran compiler code generation.

Numeric intensive code
The IBM Fortran and C compilers share common technology and, in particular, a
common back-end optimizer. To investigate potential variations, we examined
the code generated by the C and Fortran compilers for simple loops (DDOT and
DAXPY). The C code was written using arrays instead of pointers for similarity
with Fortran.

Using only the -O2 compiler option, the Fortran compiler generates unrolled
loops while the C compiler does not. The Fortran examples run faster than the C
examples.

Using the recommended compiler options (-O3 -qarch=pwr4 -qtune=pwr4), the
code generated by the compilers was essentially the same. The execution times
for the C and Fortran loops were within 1 percent variation. This is as expected
since the back-end optimizer is common to both compilers.

Note: As described in Section 4.1.1, “General performance options” on
page 70, -O4 implies -qhot.
 Chapter 4. Optimizing with the compilers 79

The essential code is shown below:

ddot.f ddot.c
do j=1,iterations for (i=0;i<iterations;i++) {

c1=0.0d0 c1=0.0;
do i=1,array_size for (j=0;j<array_size;j++) {

c1 = c1 + x(i) * y(i) c1 += x[j] * y[j];
end do }
call dummy(x,c1) dummy(x,c1);

end do }

The example for DAXPY is similar to the code sample above:

x(i) = x(i) +c1 * y(i) x[j] += c1*y[i];

Non-numeric intensive code
We made a brief investigation of the impact of compiler options on non-numeric
C code by compiling applications with -O3 -qarch=com and -O3 -qarch=pwr4
-qtune=pwr4 and compared execution time. In one case, we compared the
performance of the UNIX utility nroff and in another we compared a string
manipulation script written in Perl (where the Perl compiler was compiled with the
different options). In both the nroff and Perl cases, there was no difference in
execution time.

We compiled the FASTA program (see Section 8.6, “FASTA genetic sequencing
program” on page 168) with both -qarch=com and -qarch=pwr3 -qtune=pwr3 and
re-ran the arp_arath test. Execution times of the com, pwr3, and pwr4 versions
were within 1 percent variation. Since this program performs large amounts of
I/O, we consider these execution times equivalent.

Note that -qarch=com will ensure that the compiler uses only standard PowerPC
instructions. Optional instructions such as the hardware floating-point square
root and non-PowerPC instructions such as the POWER2 loadquad instruction
will not be used. This can have a significant impact on performance.

4.2 XL Fortran compiler directives for tuning
A number of XL Fortran compiler directives exist that the programmer can use to
improve performance without extensive modification of source code. These
directives can be activated at compile time by specifying the -qdirective option
with the trigger expression that has been used. These directives are discussed in
the following sections.
80 POWER4 Processor Introduction and Tuning Guide

4.2.1 Prefetch directives
Prefetch directives are directives that generate specific machine instructions for
accessing memory locations. They can be used to influence the hardware
prefetch mechanism so that, for example, data that will be needed later in the
execution begins to be prefetched before it is actually needed. Not all of these
prefetch directives have an effect on all machine architectures.

� PREFETCH_BY_LOAD

This generates a load byte and zero (lbz) instruction for a memory location. It
can be used to trigger prefetching for data that may be loaded or stored later.

As discussed in Section 2.3.2, “Instruction fetch, group formation, and
dispatch” on page 9, load misses are entered into the prefetch filter queues,
and on confirmation will automatically initiate prefetching. This is not the case
for store misses. By using the PREFETCH_BY_LOAD directive and
specifying a data element to be stored, it is therefore possible to precede the
store miss with a load miss that will be entered into the prefetch filter queue. A
second prefetch directive to the next cache line in the desired direction will
initiate prefetching of the cache lines where the data will be stored.

This directive (and the related technique of multiplying a data element to be
stored by 0.0) was quite useful on the POWER3 architecture machines. With
POWER4, it is less useful with the exception of store only or initialization
operations. An example of its usage follows:

do i=1,n
!P4_bl* PREFETCH_BY_LOAD(x(i+17))

x(i) = s
.
.
end do

In this example, where x is a double precision floating-point array, the prefetch
directive generates a load instruction for a data element in the next cache line
beyond x(i). Subsequent iterations will issue loads for consecutive elements
of x in this cache line, with a new cache line being referenced every 16
iterations. The exact offset from i used in the prefetch directive depends on
the size of the loop.

This directive is not always beneficial and can be detrimental to performance.
The use of this directive inserts extra load instructions into the executable
code that must be scheduled and completed among the other instructions,
and for which the data will be loaded into L1 cache. This will not benefit the
store operation, and may replace data that would otherwise be reused from
L1 cache.
 Chapter 4. Optimizing with the compilers 81

� PREFETCH_FOR_LOAD, PREFETCH_FOR_STORE

Each of these directives generates a cache line touch instruction (dcbt and
dcbtst respectively). They will cause a cache line to be loaded into L1, but will
not by themselves initiate hardware prefetching. However, they are treated
like load misses and generate entries in the prefetch filter queue. Subsequent
directives targeting consecutive cache lines will therefore initiate prefetching.

These directives have an advantage over the PREFETCH_BY_LOAD
directive in that the instructions generated do not have to wait for the cache
line to be loaded for completion.

4.2.2 Loop-related directives
These directives are used to specify the characteristics of do loops in Fortran
and instruct the compiler to perform certain optimizations in relation to do loops.
They can also be used in association with automatic parallelization using the
-qsmp option.

� ASSERT

This directive can be used to specify likely iteration counts and dependency
information between iterations (not within an iteration) for a specific do loop.

� INDEPENDENT

This directive indicates that the iterations of a do loop can be performed in
any order.

� UNROLL(n)

This directive indicates that the compiler may unroll the following loop to depth
n. If the compiler can unroll the specified loop, then it should do so. This is
most useful for unrolling a particular loop in a compilation unit while
preventing other loops from being unrolled with the -qnounroll compiler flag.
Another use of this directive is to specify a different depth to unroll from that
which the compiler would select automatically at optimization level -O2 and
above.

� CNCALL

This directive indicates to the compiler that no dependencies between
iterations exist for procedures called by the following loop.

� PERMUTATION

This directive indicates to the compiler that one or more integer arrays have
no repeated values. This would be used where the integer array was being
used to index another array.
82 POWER4 Processor Introduction and Tuning Guide

4.2.3 Cache and other directives
In this section, the cache_zero and light_sync directives are discussed.

� CACHE_ZERO

This directive generates a dcbz instruction that zeros a cache line without
needing to first load the cache line from memory. It could be used for efficient
initialization of storage, or as a mechanism for establishing cache lines that
will be overwritten without the need for them to be loaded into cache first
(either by a load or store miss). However, this instruction should be used with
care. It modifies the whole cache line, so the programmer should make sure
that only data elements that it intended to set to zero are in this cache line and
that no other processor requires access to the cache line until this operation
is complete. For example, consider:

CACHE_ZERO(x(1))

This will cause the cache line containing x(1) to be set to zeros. There is no
certainty that x(1) will be at the beginning of a cache line, and it could be
anywhere in the cache line. It is, therefore, essential to check the location of
this element with, for example:

MOD(LOC(x(1)), 128)

On POWER4 microarchitecture machines, this directive is likely to be of
benefit only when the 128-byte line to be zeroed is in memory and not
anywhere in the cache hierarchy. If the data is in L1 or L2 caches, then using
this directive is likely to result in significant degradation in performance. If the
data is in L3 cache, then there is likely to be a slight degradation in
performance. However, when the programmer is sure that the data is not in
cache, for example in an initialization near the beginning of a program, then
this directive does give a performance benefit.

� LIGHT_SYNC

This directive allows synchronization between multiple processors without
waiting for a confirmation from each processor. This can reduce the
performance impact of synchronization between processors. It generates a
lightweight sync instruction, which is a special case of the sync instruction. It
can be used to guarantee the ordering of loads and stores relative to a
specific processor. This has some use in the pthread programming model
where for example, one thread updates a value that is then used by a second
thread. The lightweight sync can be used to ensure that the second thread
does not access the value until the first thread has updated it.

Thread 1 Thread 2
flag=0
. do while (flag .ne. 1)
. .
. .
 Chapter 4. Optimizing with the compilers 83

x=newvalue .
lightweight sync .
flag=1 end do
. y=x

The lightweight sync between the two store operations (shown in the
preceding example) in Thread 1 means that these operations must be
completed in order. This means that when Thread 2 polls the flag and finds
that it has been set to one, the update of x must be complete and so it is safe
to use this value.

4.3 The object code listing
This section reviews the process of obtaining an object code listing from the
compiler. The object code listing shows the instruction sequences generated by
the compiler and can assist the programmer in a number of ways:

� Understanding the impact of the compiler options used, such as the
optimization and unroll flags.

� Identifying instructions that may be platform specific and therefore cause the
code to fail on other platforms.

� Identifying potential problems with the compiler.

Obtaining an object code listing from a Fortran, C, or C++ compilation is simple.
Invoke the compiler with the -qlist option. This will generate a file with the same
prefix as the module being compiled but with an .lst extension.

For example, consider the following C program:

1 #include <stdio.h>
2 main()
3 {
4 printf(“Hello world.\n”);
5 }

Compiling with the -qlist option generates hello.lst. This file contains several
sections depending on the language and compiler:

� The options section lists the compiler options (both default and those
specified on the command line) that were used for the compilation.

� The file table section lists any included source files.

� The source section (only present if -qsource is specified) lists line-numbered
source code and warnings and errors from the compiler.

� The compilation epilogue section provides a summary of the number of
source lines processed, errors, warnings and other messages.
84 POWER4 Processor Introduction and Tuning Guide

� The object section lists the pseudo-assembler code generated.

The pseudo-assembler in the object section is somewhat easier to read (than
that generated with -s) and the listing includes line numbers that are normally
invaluable in understanding the listing. In addition to the assembler listing, the
object section also contains a map showing register usage.

The following is part of the object section for the hello world program:

 | 000000 PDEF main
 2| PROC
 0| 000000 mfspr 7C0802A6 1 LFLR gr0=lr
 0| 000004 stw 93E1FFFC 0 ST4A #stack(gr1,-4)=gr31
 0| 000008 stw 90010008 2 ST4A #stack(gr1,8)=gr0
 0| 00000C stwu 9421FFC0 0 ST4U gr1,#stack(gr1,-64)=gr1
 0| 000010 lwz 83E20004 1 L4A gr31=.+CONSTANT_AREA(gr2,0)
 4| 000014 ori 63E30000 2 LR gr3=gr31
 4| 000018 bl 4BFFFFE9 0 CALL gr3=printf,1,gr3,printf",gr1

,cr[01567]",gr0",gr4"-gr12",fp0"-fp13"
 4| 00001C ori 60000000 1
 5| 000020 addi 38600000 0 LI gr3=0
 5| CL.1:
 5| 000024 lwz 80010048 1 L4A gr0=#stack(gr1,72)
 5| 000028 mtspr 7C0803A6 2 LLR lr=gr0
 5| 00002C addi 38210040 1 AI gr1=gr1,64
 5| 000030 lwz 83E1FFFC 0 L4A gr31=#stack(gr1,-4)
 5| 000034 bclr 4E800020 2 BA lr

The left-hand column in the example shows the corresponding source line
number. Column two contains the relative instruction address and column three
contains the instruction. The right-hand column contains the instruction
operands.

Column five is a number indicative of the number of cycles to execute the
instruction. A zero means the instruction can be overlapped with previous
instructions. Note, these numbers should not be used to estimate execution time
from cycle times, because they do not accurately reflect the POWER4
microarchitecture.

Note: Compiling with the -S flag will generate assembler code that can be
read by the assembler, as (1) and used to generate a .o file.
 Chapter 4. Optimizing with the compilers 85

In the hello world example, locate the five instructions on line zero (which doesn’t
exist in a program). These instructions set up the stack and return address for the
program. Instructions for line four set up for and then call the printf function.
Instructions for line five restore the link register (program return address),
collapse the stack, and exit.

Optimized code frequently shows more complex behavior. The optimizer will
move code sequences, unroll loops, and use a number of other techniques that
make it more difficult to interpret the object code listing. However, the line
numbers associated with each instruction are preserved and you can identify
code for given source lines without completely understanding why the compiler
has generated the specific sequences. Consider the following example:

1 #define NX 1000000
2
3 main()
4 {
5 int j;
6 double f1;
7
8 double e[NX], q[NX];
9
10 f1 = 1.5;
11
12 for (j=0;j<NX;j++)
13 {
14 q[j] = e[j] + f1*q[j];
15 }
16 }

This example was compiled with optimization for POWER4 and no loop unrolling.
In this case we specified no loop unrolling to keep the object code small. The
command used to compile is as follows:

xlc -O3 -qarch=pwr4 -qtune=pwr4 -qnounroll -qlist loop.c

The corresponding segment of the object list produced from this command is as
follows:

 | 000000 PDEF main
 3| PROC
 0| 000000 addis 3CE0000F 1 LIU gr7=15
 12| 000004 addi 38600000 1 LI gr3=0
 0| 000008 addis 3D80FF0C 1 LIU gr12=-244
 10| 00000C lwz 80A20004 1 L4A gr5=.+CONSTANT_AREA(gr2,0)
 0| 000010 addi 398CDBC0 1 AI gr12=gr12,-9280
 0| 000014 addi 38074240 1 AI gr0=gr7,16960,ca"
86 POWER4 Processor Introduction and Tuning Guide

 10| 000018 lfs C0650000 1 LFS fp3=+CONSTANT_AREA(gr5,0)
 0| 00001C mtspr 7C0903A6 1 LCTR ctr=gr0
 0| 000020 stwux 7C21616E 1 ST4U gr1,#stack(gr1,gr12)=gr1
 0| 000024 addis 3C810001 1 CFAA gr4=32760,gr1,1
 0| 000028 addi 38848038 1
 0| 00002C addi 38848000 1 AI gr4=gr4,-32768,ca"
 0| 000030 addis 3CC1007A 1 CFAA gr6=8026200,gr1,1
 0| 000034 addi 38C67898 1
 0| 000038 addi 38C699A0 1 AI gr6=gr6,-26208,ca"
 14| 00003C lfd C8260008 1 LFL fp1=q[]0(gr6,8)
 14| 000040 lfdu CC040008 1 LFDU fp0,gr4=e[]0(gr4,8)
 14| 000044 fmadd FC03007A 1 FMA fp0=fp0,fp3,fp1,fcr
 0| 000048 bc 4340001C 0 BCF ctr=CL.26,taken=0%(0,100)
 0| 00004C ori 60000000 2
 12| CL.3:
 14| 000050 lfdu CC240008 1 LFDU fp1,gr4=e[]0(gr4,8)
 14| 000054 lfd C8460010 1 LFL fp2=q[]0(gr6,16)
 14| 000058 stfdu DC060008 1 STFDU gr6,q[]0(gr6,8)=fp0
 14| 00005C fmadd FC0308BA 1 FMA fp0=fp1,fp3,fp2,fcr
 0| 000060 bc 4320FFF0 0 BCT ctr=CL.3,taken=100%(100,0)
 0| CL.26:
 14| 000064 stfdu DC060008 1 STFDU gr6,q[]0(gr6,8)=fp0
 16| 000068 lwz 80210000 1 L4A gr1=#stack(gr1,0)
 16| 00006C bclr 4E800020 0 BA lr

To locate a loop, we can look for a BCT instruction that branches back to a label
and confirm this by checking line numbers. In our example, there are two BCT
instructions. The relevant one is the second one with the additional hint
taken=100%. Note that some instructions associated with the loop appear to be
outside the loop code. This is caused by the instruction scheduling knowledge
built in to the optimizer.

Before entering the loop, the loop counter is loaded using a mtspr (move to
special register) instruction at address 01C and the single precision constant f1 is
loaded into fp3 and converted to double (at 018). We also set up registers
pointing to arrays e and q (020 through 038).

Starting at address 03C, q[j] is loaded into fp1. The lfd instruction loads a double
(8 bytes) into a floating-point register. Then the lfdu instruction loads e[j] into fp0
and also updates the register pointer to e[j]. Note that the address of e[j] is not
computed from j but rather by incrementing by the size of a double. A
floating-point multiply/add is initiated to generate the new value for q[j] in fp0.
 Chapter 4. Optimizing with the compilers 87

The following points are related to the inner loop processing:

� The lfdu loads fp1 with the next value of e[j], updating the pointer.

� The lfd loads fp2 with the next element in the array q[j]. Note carefully the
offset of 16 bytes from the pointer (gr6,16) and compare this with the previous
lfd, where the offset was 8 bytes (gr6,8).

� By this time, the previous FMA has completed and put its result in fp0. The
stfdu stores the new value of q[j] and then updates the pointer. Note the stfdu
also uses (gr6,8).

� We then initiate an FMA for the e[j] and q[j] just loaded.

� The bc conditional branch tests the counter and branches back to CL.3 if
appropriate.

� If we did not branch, we still need to store the result of the last FMA, hence
the stfdu following CL.26.

From this basic example, we can see how the compiler can optimize code by use
of registers as pointers and by appropriate scheduling of possibly overlapping
instructions. In production code, optimized code can appear very complex.

A complete description of the instruction set can be found on the AIX Extended
Documentation CD. It can also be found on the Web site:

http://www.ibm.com/servers/aix/library/techpubs.html

4.4 Basic coding practices for performance
In this section we list coding practices that can help the compiler to generate
more efficient code.

4.4.1 Language-independent tips
� Do not excessively hand-optimize your code (for example, unrolling or

inlining). This often confuses the compiler (and other programmers) and
makes it difficult to optimize for new machines.

� Avoid unnecessary use of globals and pointers. When using them in a loop,
load them into a local before the loop and store them back after.

� Avoid breaking your program into too many small functions. If you must use
small functions, seriously consider using the -qipa option.

� Use register-sized integers (long in C/C++ and INTEGER*4 or INTEGER*8 in
Fortran) for scalars.
88 POWER4 Processor Introduction and Tuning Guide

http://www.ibm.com/servers/aix/library/techpubs.html

� For large arrays or aggregates of integers, consider using 1- or 2-byte
integers or bit fields in C or C++.

� Use the smallest floating-point precision appropriate to your program. Use
long double, REAL*16, or COMPLEX*32 only when extremely high precision
is required.

� Obey all language aliasing rules (try to avoid -qassert=nostd in Fortran and
-qalias=noansi in C/C++).

� Use locals wherever possible for loop index variables and bounds. In C/C++,
avoid taking the address of loop indices and bounds.

� Keep array index expressions as simple as possible. Where indexing needs to
be indirect, consider using the PERMUTATION directive.

4.4.2 Fortran tips
� Use the [mp]xlf90[_r] or [mp]xlf95[_r] driver invocations where possible to

ensure portability. If this is not possible, consider using the -qnosave option.

� When writing new code, use module variables rather than common blocks for
global storage.

� Use modules to group related subroutines and functions.

� Use INTENT to describe usage of parameters.

� Limit the use of ALLOCATABLE arrays and POINTER variables to situations
that demand dynamic allocation.

� Use CONTAINS in subprograms only to share thread local storage.

� Avoid the use of -qalias=nostd by obeying Fortran alias rules.

� When using array assignment or WHERE statements, pay close attention to
the generated code with -qlist or -qreport. If performance is inadequate,
consider using -qhot or rewriting array language in loop form.

4.4.3 C and C++ tips
� Use the xlc[_r] invocation rather than cc[_r] when possible.

� Always include string.h when doing string operations and math.h when using
the math library.

� Pass large class/struct parameters by address or reference and pass
everything else by value where possible.

� Use unions and pointer type-casting only when necessary and try to follow
ANSI type rules.
 Chapter 4. Optimizing with the compilers 89

� If a class or struct contains a double, consider putting it first in the declaration.
If this is not possible, consider using -qalign=natural.

� Avoid virtual functions and virtual inheritance unless required for class
extensibility. These are costly in object space and function invocation
performance.

� Use volatile only for truly shared variables.

� Use const for globals, parameters and functions whenever possible.

� Do limited hand-tuning of small functions by defining them as inline in a
header file.

4.4.4 Inlining procedure references
Inlining involves replacing a procedure reference with a copy of the procedure’s
code, so that the overhead of referencing the procedure, and of returning from it,
is eliminated. In certain situations inlining can enable the compiler to perform
more optimization than without inlining.

The general advice is to avoid inlining in areas of a program that are infrequently
executed and to ensure that small functions are inlined in frequently executed
areas. Do not inline large functions. Inlining does not always improve
performance; therefore you should test the effects of this option on your code.

A program with inlining might slow down because of larger code size resulting in
more cache misses and page faults, or because there are not enough registers
to hold all the local variables in some combined routines (check the compiler
output for register spills).

Inlining by the compiler is controlled through the -Q and -O options and the
suboptions of the -qipa (not available for C++). You must specify at least
optimization level -O (equivalent to -O2) for -Q inlining to take effect. In Fortran,
by default, -Q only affects a procedure if both the caller and callee are in the
same source file or set of files that are connected by INCLUDE directives. To turn
on inline expansion for calls to procedures in different source files, you must also
use the -qipa option.

The compiler decides whether to inline procedures based on their size. Other
criteria might help to improve performance. For procedures that are unlikely to be
referenced in a standard execution (for example, error-handling or debugging
procedures), you might selectively disable inlining by using the -Q-names option.
For procedures that are referenced within hot spots, specify the -Q+names
option to ensure that those procedures are always inlined.
90 POWER4 Processor Introduction and Tuning Guide

Getting the right amount of inlining for a particular program may require some
trials. As a good starting point, consider identifying a few subprograms that are
called most often, and inline only those subprograms.

To verify whether the compiler has inlined the call of a certain procedure or not,
you can check whether the call has disappeared in the object listing (-qlist). The
following example shows how a call to a subroutine (named foo) may appear:

9| 000038 bl 4BFFFFC9 0 CALL gr3=foo,3,a",gr3,#1",gr4,i",gr5,
fcr",foo",gr1,cr[01567]",gr0",gr4"-gr12",fp0"-fp13",mq",lr",fcr",xer",fsr",ca",
ctr"

In C++ there are two methods to define a functions as inline: by using the inline
keyword or by defining (not just declaring) member functions within the class
definition. Inline functions are not necessarily inlined by the compiler, and
functions that are not defined as inline may still be inlined, depending on the
optimization level and the -Q compiler flag.

4.4.5 Structuring code for optimal grouping
The grouping of the internal microprocessor instructions is important in order to
exploit the potential performance of the different hardware execution units for a
specific calculation. As a general rule, it is desirable to fill out all four slots (five in
case of a branch) of an instruction group. Instructions that have to be first or last
in a group may prevent optimal grouping. Flushing instruction groups and
refetching instructions for reordering is a worst case situation to be avoided if
possible.

There are no means to influence instruction grouping from the C or Fortran
language level directly. The compiler has to cope with the requirements of
grouping. Only when writing assembler code is it possible to arrange the order of
instructions in order to optimize grouping.

Writing suitably structured high-level code might help the compiler to generate an
instruction stream, which can be grouped nicely. The key issues to be considered
carefully are proper alignment and data dependencies and these tuning
techniques are beneficial for overall performance anyway.

4.5 Tuning for 64-bit integer performance
Given a program that uses 64-bit integer data types, you need to compile with the
-q64 option in order to exploit the 64-bit integer hardware support of POWER3
and POWER4. Note that specifying the -q64 compiler option does not affect the
default setting for -qintsize.
 Chapter 4. Optimizing with the compilers 91

In 64-bit mode, the use of INTEGER(8) induction (loop counter) variables can
improve performance. The XLF 7.1 compiler automatically converts induction
variables declared as INTEGER or INTEGER(1) or (4) to INTEGER(8) unless
-qSTRICT_INDUCTION is specified. It is no longer necessary to set the size of
default INTEGER and LOGICAL data entities (-qintsize) to 8 bytes in order to
achieve this goal without source code changes. In this case the usage of
-qintsize=8 could increase the memory consumption and bandwidth
requirements unnecessarily.

Figure 4-1 shows some performance implications. A simple add operation,
B(I) = A(I) + C, is selected. In the context of this example 32-bit denotes 32-bit
array elements and 32-bit address space; 64-bit indicates 64-bit integer
elements. Fetching data from L1 and L2 cache, the 64-bit version with hardware
support (-q64) is not slower than the 32-bit version. The 32-bit version is faster
when going out to L3 cache and to memory. Twice the number of elements are
kept in L2 and L3 cache, so the performance degradation is delayed.

Without the 64-bit integer hardware support, the performance of the operation
with 64-bit operands is significantly worse. One should expect twice the number
of load, store, and add instructions. But the object code listing reveals that 64-bit
emulation is more complex. In addition, addic (add with carry) instructions are
generated, which probably lead to inefficient instruction grouping.

Figure 4-1 Integer computation: B(I)=A(I)+C
92 POWER4 Processor Introduction and Tuning Guide

Chapter 5. General tuning guidelines

This chapter covers general code tuning and application optimization techniques
that are not specific to POWER4 microarchitecture. It is intended to be a
repository of recommended coding practices.

5.1 Hand tuning code
Many of the following tips and advice can be found in the IBM Fortran and C
compiler manuals.

5.1.1 Local or global variables?
Use local variables, preferably automatic variables, as much as possible. The
compiler can accurately analyze the use of local variables, but it has to make
several worst-case assumptions about global variables. These assumptions tend
to hinder optimization. For example, if you write a function that uses global
variables heavily, and that function also calls several external functions, the
compiler assumes that every call to an external function could change the value
of every global variable. If you know that none of the function calls affects the
global variables that you are using, and you have to read them frequently with
function calls interspersed, copy the global variables to local variables and then
use these local variables. The compiler can then perform optimization that it
could not otherwise perform.

5

© Copyright IBM Corp. 2001 93

In C, if you must use global variables, use static variables with file scope rather
than external variables wherever possible. In a file with several related functions
and static variables, the optimizer can gather and use more information about
how the variables are affected.

To access an external variable, the compiler has to make an extra memory
access to obtain the address of the variable. When the compiler removes
extraneous address loads, it has to use a register to keep the address. Using
many external variables simultaneously takes up many registers. Those that
cannot fit into the available registers during optimization are spilled into memory.
The C compiler organizes all elements of an external structure so that they use
the same base address and hence base address register. Therefore, you should
group external data into structures or arrays wherever it makes sense to do so.
Do not group together data whose address is taken (either explicitly using an
ampersand (&) or implicitly, including arrays passed as parameters and C++
class objects passed as this parameters) in the same structure with other data
whose address is not taken.

In C, because the compiler treats register variables the same as it does
automatic variables, you do not gain performance by declaring register variables.
Note that this differs from other vendors’ implementations, where using the
register attribute can greatly affect program performance. However, declaring a
variable as register is a good hint to the compiler and means the variable cannot
be dereferenced.

5.1.2 Pointers
Keeping track of pointers during optimization is difficult and in some cases
impossible. Using pointers inhibits most memory optimization (such as dead
store elimination and store motion).

Using the C #pragma disjoint preprocessor directive to list identifiers that do not
share the same physical storage can improve the runtime performance of
optimized code.

5.1.3 Expressions
The Fortran compiler is good at recognizing identical expressions but not
permutations of them. For example, in the code:

x = a + b + c + d
y = a + c + b + d
94 POWER4 Processor Introduction and Tuning Guide

the compiler will only load the variables a, b, c, and d into registers once.
However, it evaluates the expressions separately and stores the results from
separate registers. Wherever possible, write identical expressions specifying
variables in the same order.

5.1.4 Data type conversions
Avoid forcing the compiler to convert numbers between integer and floating-point
internal representations.

Do not use floats (datatype real) for loop variables.

While this is not a performance issue, when comparing floating-point numbers for
equality, bear in mind that values may vary in the least significant bit, depending
on how the value is calculated. Where appropriate, test that the unsigned
difference between the values is less than an acceptable threshold of accuracy.

5.1.5 Tuning loops
There are a variety of techniques, basically good coding practice, that can be
applied to tuning loops. These techniques are not POWER4 specific. They are
described in the Fortran context but also apply to C.

� Keep the size of do loops manageable

Loops should not spread over many lines of code. If they do, there probably
exists a better algorithm. Large loops also make program maintenance more
difficult.

� Access data sequentially (unit stride)

Wherever possible, organize data arrays so that elements are accessed with
unit stride to improve cache utilization. Note, in Fortran arrays, elements
a(1,n), a(2,n), a(3,n) and so on are in sequential memory locations. In C
arrays, the order is reversed, that is a[n][1], a[n][2] and a[n][3] are in
sequential locations.

� Minimize loop invariant IF statements in loops

Reduce the loop instruction path length by moving IF statements outside the
loop and coding two separate loops. This is more important for small loops
where the IF test may be a significant contributor to the loop execution time.

� Avoid subroutine and function calls in loops (give routine its own loop)

Avoid subroutine calls within loops (where possible) to save the cost of the
branch and link instructions. Use code inlining instead.
 Chapter 5. General tuning guidelines 95

Alternatively, replace the loop with its subroutine call for each element with a
subroutine call, passing an array parameter, where the subroutine contains a
loop operating on each element.

� Simplify array subscripts

Avoid writing complex expressions for array subscripts if possible, particularly
expressions involving loop variables. Complex expressions may cause the
compiler to compute the array index even if the increment is fixed. For fixed
increments, the compiler can generate array element addresses with register
add instructions instead of a more complex calculation.

� Use INTEGER loop variables

Integer loop variables simplify loop counter optimization, since the counter
can be kept in a register and also used as an address index. Do not use
INTEGER*8 loop variables unless in 64-bit mode. Use of REAL loop variables
is strongly discouraged because both of the following affect performance:

– Calculation of the loop variable requires one or more floating-point
operations

– Use of the loop variable as an index requires conversion

In addition, the test for loop termination may be inexact and the loop may be
executed one fewer or one more time than expected.

In C, declare loop variables as type long. Long variables are the natural or
register size in 32-bit and 64-bit environments, that is they are 32 or 64 bits
accordingly. Loop variable arithmetic using the register size has significantly
better performance than using, for example, integer (32-bit) loop variables in a
64-bit environment. Note that in the 64-bit environment, the C compiler will
optimize integer loop variables to long if you specify -O3 (or greater) and do
not specify -qstrict_induction.

� Avoid the following constructs within loops:

– Flow control statements such as GOTO, STOP, PAUSE, RETURN
computed GOTO, ASSIGN, or ASSIGNED GOTO

– EQUIVALENCE data items

These constructs impair the ability of the compiler to optimize the loop.

� Avoid non-optimizable data types such as LOGICAL*1, BYTE, INTEGER*1,
INTEGER*2, REAL*16, COMPLEX*32, CHARACTER, and INTEGER*8 in
32-bit mode.

These data types do not correspond to the native hardware types and require
additional instructions for each operation, impacting performance.
96 POWER4 Processor Introduction and Tuning Guide

For performance-critical do loops, avoid the following:

� Access data with large stride

Large strides reduce the effectiveness of the cache

� Do few iterations of the loop

For very small numbers of loop iterations, it may be preferable to unroll the
loop by hand.

� Include I/O statements

I/O can introduce indeterminate delays in processing. I/O function calls will
also prevent automatic parallelization of loops.

Examples
These are some examples of how to correct some inefficient coding practices
that have been found in real codes:

Removal of invariant IF
Untuned Tuned
------- -----

DO I=1,N IF(D(J).LE.0.0)THEN
IF(D(J).LE.0.0)X(I)=0.0 DO I=1,N
A(I)=B(I)+C(I)*D(I) A(I)=B(I)+C(I)*D(I)
E(I)=X(I)+F*G(I) X(I)=0.0

ENDDO E(I)=F*G(I)
ENDDO

ELSE
DO I=1,N

A(I)=B(I)+C(I)*D(I)
E(I)=X(I)+F*G(I)

ENDDO
ENDIF

The compiler will recognize that the IF test is invariant within the loop but will not
generate two versions of the loop as in the tuned example.
 Chapter 5. General tuning guidelines 97

Boundary condition IF testing
A frequent requirement is to perform a different calculation for the first and/or last
iteration of a loop. If the loop is performance-critical, then it is important to treat
these special cases separately and remove the IF code from the main loop:

Untuned Tuned
------- -----

DO I=1,N A(1)=B(1)+C(1)*D(1)
IF(I.EQ.1)THEN X(1)=0.0

X(I)=0.0 E(1)=F*G(1)
ELSEIF(I.EQ.N)THEN DO I=2,N-1

X(I)=1.0 A(I)=B(I)+C(I)*D(I)
ENDIF E(I)=X(I)+F*G(I)
A(I)=B(I)+C(I)*D(I) ENDDO
E(I)=X(I)+F*G(I) X(N)=1.0

ENDDO A(N)=B(N)+C(N)*D(N)
E(N)=1.0+F*G(N)

Repeated intrinsic function calculation
In this example, the untuned code calls SIN() N2 times, whereas in the tuned
code, it is called N times and saved in a separate array. In the inner loop, the call
is replaced by a significantly cheaper load.

Untuned Tuned
------- -----

DO I=1,N DIMENSION SINX(N)
DO J=1,N .

A(J,I)=B(J,I)*SIN(X(J)) DO J=1,N
ENDDO SINX(J)=SIN(X(J))

ENDDO ENDDO
DO I=1,N

DO J=1,N
A(J,I)=B(J,I)*SINX(J)

ENDDO
ENDDO
98 POWER4 Processor Introduction and Tuning Guide

Replacing divides by reciprocal multiply
This optimization can sometimes be done automatically by the compiler by
specifying at least -O3 optimization level.

Since divides are costly, any loop that divides by the same value more than once
can be easily optimized by taking the reciprocal of the value and then multiplying
by the reciprocal, as in this example:

Untuned Tuned
------- -----

DO I=1,N DO I=1,N
A(I)=B(I)/C(I) OC=1.0/C(I)
P(I)=Q(I)/C(I) A(I)=B(I)*OC

ENDDO P(I)=Q(I)*OC
ENDDO

In practice, any improvement will depend on the ratio of divides to loads and
stores. For trivial loops, there is no benefit for reals but there is a benefit for
integers.

The following example shows a similar method that has been used when there
are two (or more) different divisors:

Untuned Tuned
------- -----

DO I=1,N DO I=1,N
A(I)=B(I)/C(I) OCD=1.0/(C(I)*D(I))
P(I)=Q(I)/D(I) A(I)=B(I)*D(I)*OCD

ENDDO P(I)=Q(I)*C(I)*OCD
ENDDO

Here, two divides have been replaced by one divide and five multiplies. In the
untuned case, the compiler can take advantage of the multiple FPU pipelines,
whereas in the tuned case, the code is dependent on a single floating-point
divide.
 Chapter 5. General tuning guidelines 99

Array dimensions that are high powers of two
The following discussion is an extension of what was described in “Set
associativity” on page 29.

The following code elements illustrate a problem that can arise with array
dimensions:

integer nx,nz
parameter (nx=2048,nz=2048)
real p(2,nx,nz)

...

...
do 25 ix=2,nx-1
 do 20 iz=2,nz-1

p(it1,ix,iz)= -p(it1,ix, iz)
 & +s*p(it2,ix-1,iz)
 & +s*p(it2,ix+1,iz)
 & +s*p(it2,ix, iz-1)
 & +s*p(it2,ix, iz+1)
20 continue
25 continue

The second dimension of p multiplied by the first dimension (in this case two) is
precisely one half of the size of the L1 cache. Array elements p(it2,ix-1,iz) and
p(it2,ix+1,iz) will (normally) be found in the same cache line as p(it2,ix,iz).
However, accessing p(it2,ix,iz-1) and p(it2,ix,iz+1) will displace this cache line
because each of these elements map to the same congruence class. In this
example, there are five loads to the same congruence class but only two cache
lines available, because L1 is two-way associative.

A simple solution is to increase the dimension of the array, as in

integer nx,nz
parameter (nx=2048,nz=2048)
real p(2,2080,nz)

Note that we are simply changing the dimension of the array, not the number of
elements accessed. In this example, the application performance increased by a
factor of two.

You can also get multiple loads to the same congruence class in loops that
access a large number of arrays because there are only 128 classes. In this
case, it is possible to improve performance by splitting the loop into multiple
loops and relocating array accesses into these separate loops.
100 POWER4 Processor Introduction and Tuning Guide

5.2 Using pre-tuned code
Do not spend time duplicating tuning work that has already been done. If your
program performs standard functions, such as matrix multiply, equation solving,
other BLAS functions, FFTs, convolution, and so on, then modify your code to call
the equivalent ESSL function. ESSL is described in 6.1, “The ESSL and Parallel
ESSL libraries” on page 114, and contains probably the most highly tuned code
available for RS/6000 and pSeries numerically intensive functions. Other
commercially and publicly available libraries, such as NAG, IMSL, LAPACK, and
so on, have also been tuned for cache-based superscalar architectures.

5.3 The performance monitor
The POWER3 and POWER4 processor designs (as well as RS64) include
hardware performance monitoring facilities. These facilities provide access to
counters that record highly detailed information about processor behavior and
instruction execution. At the lowest level, the interface consists of
special-purpose registers that control the state of counters and multiplexors
within the processor. These registers are only accessible at the operating system
level; therefore a programming interface is provided that accesses these
registers using a kernel extension.

The hardware provides eight counters each of which can count the number of
occurrences of one event. Events are things that happen inside the processor
such as the completion of an instruction or a load from a cache line. Events are
platform specific, therefore, certain events may exist on one processor type but
not another.

The programming interface provides a set of C routines to specify which events
should be counted, whether they should be counted for the kernel, the user, or at
the process level. Counting can be turned on or off within a program, thereby
providing a very accurate mechanism for determining processor usage in specific
parts of an application.

The API and documentation are provided on the AIX 5L installation media.

There is also a command, pmcount, which will execute a command or script. You
can specify countable events as options to pmcount. Using another set of options,
pmcount will display event numbers and their definitions for the current hardware
platform.
 Chapter 5. General tuning guidelines 101

The POWER3 and RS64 implementations allow the counting of events in any
counter for which the event is defined (although not all combinations may be
meaningful in the sense that the set of multiplexors used to accumulate into a
specified counter may not produce a meaningful result).

Event counting has been refined to provide a number of groups of events for
each processor type. The definition of a group is simply a set of eight events and
the particular counters on which they are counted. Combinations of events in a
group are meaningful.

A group may be specified as an option to pmcount in place of a set of events.

The increased level of complexity of the POWER4 design means that it is more
difficult to guarantee meaningful results from counting events. Therefore, only
counting by groups is supported.

The following example illustrates some of the techniques that may be useful in
programming the API:

#include <stdio.h>
#include <sys/time.h>
#include <malloc.h>
#include <stdlib.h>
#include “pmapi.h”

#define STRIDE_MAX 4096
#define NUM_LOOPS 100

void timevalsub(struct timeval *, struct timeval *);
void timevaladd(struct timeval *, struct timeval *);
void invalidate_tlb();

main(int argc, char **argv)
{

int i,j, testcount, /* various loop variables */
rc, /* return code */
stride, group_no;/* parameters */

char *progname;
float x,

array[512][513];

/* timestamps for loop start, end */
struct timeval loop_start, loop_end, total;

/* process monitor data structures */
pm_info_t myinfo;
pm_groups_info_tmygroupinfo;
102 POWER4 Processor Introduction and Tuning Guide

pm_prog_t myprog;
pm_data_t mydata;

stride=1;
total.tv_sec=0; total.tv_usec=0;

/* make sure all pages in array exist to minimize later timing issues */
for (i=0;i<512;i++) {

for (j=0;j<513;j++) {
array[i][j]=0.0;

}
}

progname = *argv;

if (argc == 3) {
argv++;
group_no=atoi(*argv);
argv++;
stride=atoi(*argv);

} else {
printf(“usage: %s group stride\n”,progname);
exit(1);

}

/* initialize API. Allow all possible events. */
if ((rc = pm_init(PM_VERIFIED|PM_UNVERIFIED|PM_CAVEAT,

&myinfo,&mygroupinfo)) > 0) {
 pm_error(“pm_init”, rc);
 exit(-1);

}

/* set up counting modes for call to pm_set-program_mythread() */

myprog.mode.w = 0;
/* count in user mode, not kernel mode */
myprog.mode.b.user = 1;
myprog.mode.b.kernel = 0;
/* defer starting counting until we call pm_start_mythread */
myprog.mode.b.count = 0;

/* set is_group to say we’re counting groups rather than events */
myprog.mode.b.is_group = 1;
/* since we’re counting groups, put the group number into events[0].

The API won’t look at other events[] structures. */
myprog.events[0]=group_no;

if ((rc=pm_set_program_mythread(&myprog)) != 0) {
 Chapter 5. General tuning guidelines 103

pm_error(“Calling pm_set_program_mythread”,rc);
exit(1);

}

testcount=NUM_LOOPS;

while (testcount-- > 0) {
invalidate_tlb();
gettimeofday(&loop_start,NULL);
/* Start counting. We don’t want to include the overhead of the
 invalidate_tlb() and gettimeofday() calls so we start and stop
 counting accordingly */
if ((rc=pm_start_mythread()) != 0) {

pm_error(“Calling pm_start_mythread”,rc);
exit(1);

}
for (i=0;i<512;i++) {

for (j=0;j<512;j+=stride) {
array[i][j]=array[i][j] * 1.5;

}
}

/* Stop counting but don’t reset the counters. Therefore, counting
 will simply continue on the next call to pm_start_mythread() */

if ((rc=pm_stop_mythread()) != 0) {
pm_error(“Calling pm_stop_mythread”,rc);
exit(1);

}
gettimeofday(&loop_end,NULL);
timevalsub(&loop_end,&loop_start);
timevaladd(&total,&loop_end);

}

/* retrieve counter data */
if ((rc=pm_get_data_mythread(&mydata)) != 0) {

pm_error(“pm_get_data_mythread”,rc);
exit(1);

}

x=(total.tv_sec*1000000)+total.tv_usec;
printf(“Time (usecs) = %8.2f\n”,x/NUM_LOOPS);
for (i=0;i<8;i++)

printf(“Counter %d = %-8lld\n”,
i+1,mydata.accu[i]/NUM_LOOPS);

return(0);
}

104 POWER4 Processor Introduction and Tuning Guide

Running this program produces the output below:

bu30b$./pm_example 5 8
Inside pm_set_program_mythread: prog->events[0] is 5.
 prog->mode.b.is_group is 1.
Time (usecs) = 375.19
Counter 1 = 249
Counter 2 = 215
Counter 3 = 0
Counter 4 = 7966
Counter 5 = 0
Counter 6 = 0
Counter 7 = 0
Counter 8 = 0
bu30b$

The first two lines of output are generated by the pm_set_program_mythread()
call, apparently as diagnostic information. The program prints the elapsed time
and counter values. We previously used pmcount to identify the groups and
counters. Group 5 counts information on sources of data. The definitions for the
individual counters used in this example are as follows:

Counter 1 The number of times data was loaded from L3

Counter 2 The number of times data was loaded from memory

Counter 3 The number of times data was loaded from L3.5

Counter 4 The number of times data was loaded from L2

Counter 5 The number of times data was loaded from L2 partition 1 in shared
mode

Counter 6 The number of times data was loaded from L2 partition 2 in shared
mode

Counter 7 The number of times data was loaded from L2 partition 1

Counter 8 The number of times data was loaded from L2 partition 2

Thus, in this example, we can see the relative sources of data for the calculation.
Other groups can be used to identify the efficiency of the prefetch mechanism,
floating-point unit and so on.

The API described above is provided in C. There is no Fortran API. However, it is
a reasonable task to write a suitable, simplified API.
 Chapter 5. General tuning guidelines 105

Subroutines to initialize the performance monitor, start and stop counting, and
print results are required. Here is some pseudo-code that implements these
subroutines.

#include <sys/types.h>
#include “pmapi.h”
int pminit(int group)
{

pm_info_t pm_myinfo;
pm_groups_info_t pm_mygroupinfo;
pm_prog_t myprog;

pm_init(PM_VERIFIED|PM_UNVERIFIED,&pm_myinfo,&pm_mygroupinfo);
myprog.mode.b.user=1; myprog.mode.b.kernel=0; myprog.mode.b.count=0;

myprog.mode.b.is_group=1; myprog.events[0]=group;
pm_set_program_mythread(&myprog);
return(0);

}

int pmstart()
{

pm_start_mythread();
return (0);

}

int pmstop()
{

pm_stop_mythread();
return(0);

}

int pmprint()
{

int i;
pm_data_t my_data;
pm_get_data_mythread(&my_data);
for (i=0;i<8;i++)
{

printf(“Counter %d = %-8lld\n”,i+1,my_data.accu[i]);
}
return(0);

}

You will need to compile these functions and save the object file for later use. The
-c option tells the compiler that the source file is not a complete program and it
should stop after the compilation stage and not attempt to link. For example:

xlc -O3 -c -o pm_subroutines.o mysourcefilename.c
106 POWER4 Processor Introduction and Tuning Guide

Here is how you might use these subroutines to monitor a Fortran program. Note
that we have passed the group to be monitored by value explicitly because
Fortran, by default, passes parameters by reference:

program pm_test

 integer pminit,pmstart,pmstop,pmprint,i,j
 integer result,group
 real*8 x,a(512,512)

 group=5
 result = pminit(%VAL(group))

 result = pmstart()

 do i=1,512
 do j=1,512
 a(i,j) = a(i,j) *1.5
 end do
 end do
 result = pmstop()
 result = pmprint()

 end program

To compile this program, we need to include the C subroutines and the
performance monitor libraries:

xlf -O3 -o pm_test pm_subroutines.o -lpmapi -L/usr/pmapi/lib pm_test.f

Note that the performance monitor has not been tested in LPAR environments.

5.4 Tuning for I/O
If I/O is a significant part of the program, it may well dominate the overall run time
and render CPU tuning unproductive. Some guidelines for improving I/O
efficiency in Fortran and C are discussed in the following sections. However, the
best advice is simply to eliminate or minimize I/O as much as possible. If I/O is
your performance bottleneck, then using the best hardware and software options
(high-speed storage arrays, striping over multiple devices and adaptors, and
asynchronous I/O, for example) may be the best tuning options. A detailed
discussion of these subjects is outside the scope of this publication.
Large-memory SMP systems are capable of generating large amounts of I/O, but
different I/O subsystems have different performance characteristics, so it is
difficult to make specific recommendations.
 Chapter 5. General tuning guidelines 107

Asynchronous I/O
Programs normally perform I/O synchronously. That is, execution continues after
the operating system has completed the I/O. AIX also supports asynchronous
I/O. In this case, a program executes an I/O call that returns immediately. The
program can then perform other useful work. The operating system will perform
the I/O and inform the program when it’s complete. There are a variety of
techniques for the program to detect that the I/O has finished.

Taking advantage of asynchronous I/O can result in reduced run time because
you can overlap computation and I/O. The degree of improvement will depend on
the amount of I/O the program performs.

Implementing asynchronous I/O will require program changes and the degree of
difficulty will vary from program to program.

In Fortran (introduced in XL Fortran Version 5), a program can open a file with
the ASYNC qualifier. Read and writes will be performed asynchronously. The
program needs to be changed to issue a wait for each asynchronous read or
write. a description of asynchronous I/O, including a discussion of error handling,
can be found in the XL Fortran Language documentation.

In C, asynchronous I/O is only supported for unbuffered I/O. The program
changes required for asynchronous I/O are typically more complex than those
required in Fortran. Refer to “Asynchronous I/O Overview”, in the AIX Version 4.3
Kernel Extensions and Device Support Programming Concepts documentation.

Direct I/O
Direct I/O is a form of synchronous I/O. By default, the operating system
transfers data between the application program and a file using intermediate
buffers. For example, for file system files, the operating system caches file data
and this typically improves I/O performance. Using direct I/O data is transferred
between the device and the application’s data buffers without intermediate
buffering. This can sometimes lead to degraded performance, typically with file
system files.

Paging I/O
Paging is a special case of I/O. You can measure paging rates using vmstat. This
command displays, among other statistics, the paging rates for a specified time
interval. It displays these statistics for the whole system, which must be taken
into account when evaluating the effect of a particular application. A certain
amount of paging during startup or when the program changes from one phase
to another is to be expected. However, any measurable paging rate over a
sustained period during program execution is an indication that you are
over-committing memory or are on the edge of doing so. This is likely to cause
108 POWER4 Processor Introduction and Tuning Guide

serious performance problems. The only solution is to reduce the level of
memory over-commitment. Either tune the program to use less memory, or run
on a computer with more memory (or fewer users). It should be noted that from
AIX Version 4.3.2 on, the paging space allocation algorithm only allocates a page
of paging space when it actually needs to write to that page. This means that it is
common for the amount of paging space configured on a large memory system
to be considerably less than the size of memory. In this situation any significant
amount of paging can have more serious effects than poor performance of an
application, as the system can quickly reach a state where virtual memory is
exhausted and thrashing ensues.

The topas command is also a useful real time monitor of system I/O activity.

C unbuffered and buffered I/O
C programs can make use of two techniques for I/O. These are buffered I/O, also
referred to as streams, and unbuffered I/O. Unbuffered I/O is implemented by
calls to operating system functions and offers the greatest opportunity for
performance at a cost in coding complexity. Buffered or stream I/O is
implemented by standard library functions that provide a higher level interface.
Refer to the “Input and Output Handling Programmer’s Overview” in AIX Version
4.3 General Programming Concepts: Writing and Debugging Programs.

Fortran I/O
Some guidelines for efficient I/O in Fortran follow:

� Reduce the number of calls to the I/O subsystem.

For example, the following three ways of writing the whole of a 2-D array to a
sequential file differ very considerably in performance. As well as performing
very slowly, Case 3 will create a file almost twice as large as Case 1 (if A is
REAL*8) because of the extra record length indicators.

DIMENSION A(N,N)
.
.

Case 1. Best. 1 record of N*N values.
WRITE(1)A

Case 2. N records, each of N values.
DO I=1,N

WRITE(1)(A(J,I),J=1,N)
ENDDO

Case 3. Worst. N*N records, each of one value.
DO I=1,N

DO J=1,N
 Chapter 5. General tuning guidelines 109

WRITE(1)A(J,I)
ENDDO

ENDDO

� Use long record lengths when reading or writing files in a sequential fashion.

Use at least 100 KB if possible, preferably 2 MB or more. This allows the I/O
to access the underlying devices more effectively.

� Prefer Fortran unformatted I/O to formatted.

This reduces binary to decimal conversion overhead.

� Prefer Fortran direct files to sequential.

This avoids Fortran record length and overflow checking. A Fortran direct file
in AIX is a simple sequential series of data bytes. A Fortran sequential file has
record length indicators at both ends of each record.

� Use asynchronous I/O to overlap computation with I/O activity.

� If you write a large temporary file sequentially and need to read through it
again at a later stage in processing, make it a direct access file and then try to
read the end records of the file first. Ideally, read it sequentially backwards.
This is because AIX will automatically use memory to buffer the file. Assuming
the file is larger than memory, after the write is completed, memory is likely to
contain a large number of buffers corresponding to the last part of the file. If
you then read these records, AIX will supply them to the program from
memory without physically reading the disk. If you read the file forwards, the
incoming records from the front of the file will flush out the in-memory buffers
before you reach them.

5.5 Locating hot spots (profiling)
Profiling tells you how the CPU time used by a program during execution is
distributed over the code. It identifies the active subroutines and loops so that
tuning effort can be applied most effectively.

It is important to understand that a profile relates just to the particular run of the
program for which the profile was obtained. The same program run with different
data may produce a different profile. Some numerically intensive programs
produce very consistent profiles with widely varying sets of input data. Others
produce quite different profiles when the data is changed.

From the point of view of the person tuning the code, the ideal situation is a
consistent profile with very pronounced concentrations of time spent in a few
routines. Tuning effort can then be concentrated on those routines.
110 POWER4 Processor Introduction and Tuning Guide

The AIX tools available for profiling the programs include:

� The AIX prof and gprof commands

� The AIX tprof command

The prof and gprof commands provide profiling at the procedure (subroutine
and function) level. The tprof command uses the AIX trace facility to interrupt
your program at each tick (10 milliseconds) of the AIX CPU clock and construct a
trace table that contains the hardware instruction address register. At the end of
your program execution, tprof creates a report (using the trace table) showing
the number of ticks that relate to each line of your source code.

To use prof and gprof, do the following:

1. Compile your program with the -p or -pg option in addition to the normal
compiler options

2. Run the program (this produces the gmon.out file)

3. Run prof or gprof by entering:

prof > filename

or

gprof > filename

The standard output, filename, of prof will contain the following information:

� The percentage of the program’s CPU time used by the procedure.

� The time in seconds required for all references to the procedure.

� The cumulative total of seconds required for all procedures in the list.

� The number of times the procedure was called and the time required to
perform each call.

The output of gprof contains all the information provided by prof, and in addition
the timing information of the calling tree for the procedures in the program.
 Chapter 5. General tuning guidelines 111

To use tprof on a program myprog.f, do the following:

1. Compile your program with the -g option

2. Run tprof on the program:

tprof -p myprog -x “myprog params”

This procedure creates two output files, namely __myprog.all and __t.myprog.f.
The first file shows all the processes involved in running your program and
provides a count of the timer ticks associated with each process. It also lists the
percentage of ticks that are associated with the complete program. The second
file is only produced if you compile your program with the -g option. It is an
annotated version of your source file, that indicates the CPU ticks associated
with each line of the source code being executed.

For more details on how to use prof, gprof, and tprof, see Optimization and
Tuning Guide for Fortran, C, and C++, SC09-1705.

By far the most user-friendly and powerful tool, providing graphically assisted
profiling down to the Fortran or assembler statement level, is xprofiler.
xprofiler is a supported IBM tool distributed as part of the IBM Parallel
Environment for AIX licensed program product (5765-D93). The specific fileset
component that supplies this tool is ppe.xprofiler. If you are running on a
workstation where PE is not installed, your profiling option is to use prof, gprof,
or tprof.

To use xprofiler, compile and link as for gprof with -g -pg options together with
-O3 or whatever other optimization you are using. It is important to use the same
optimization options as you will use for production, since changing the
optimization is highly likely to also change the profile.

Then simply run the executable against the chosen test data. This will produce
the standard gmon.out file containing the profiling data. Then run xprofiler.
Graphics will appear showing the subroutine tree of the program, with each
subroutine represented by a rectangle. The area of each rectangle is roughly
proportional to the CPU time spent in that routine, giving an immediate visual
indication of hot-spot locations. Clicking on a rectangle will produce a set of
options, one of which creates a source code listing with each statement
annotated with the amount of CPU time (in units of 1/100 of a second) used. This
enables the active loops to be easily identified.
112 POWER4 Processor Introduction and Tuning Guide

Chapter 6. Performance libraries

In this chapter we discuss performance-enhancing techniques that take
advantage of highly tuned variants of commonly needed operations.

Scientific and technical computational problems often contain common
mathematical constructs, such as matrix-vector multiply or matrix-matrix multiply,
which use a large portion of an application’s computational time. Many of these
common constructs have been extensively researched and tuned for efficient
computation. Basic linear algebra subprograms (BLAS) that compute many of
these common constructs are available from various sources. For example, you
can download the source or precompiled BLAS from:

http://www.netlib.org/blas

Subprograms for solving systems of linear equations, eigenvalue problems,
singular value problems, and so forth can be found in the public domain LAPACK
libraries:

http://www.netlib.org/lapack

LAPACK uses BLAS calls whenever possible to simplify its use and to be able to
take advantage of any available optimized BLAS libraries.

6

© Copyright IBM Corp. 2001 113

http://www.netlib.org/blas
http://www.netlib.org/lapack

The public domain BLAS or LAPACK are not highly tuned for a particular
architecture and locally compiled versions seldom approach peak GFLOPS
rates. An alternative is to download the package from the automatically tuned
linear algebra software (ATLAS) site:

http://math-atlas.sourceforge.net

With ATLAS, you must first generate a tuned library for a system by running an
extensive testing suite on a quiet system. The adjustable parameters in the tuned
library are determined by extensively testing processor speed, cache sizes and
speed, and memory size and speed. Some impressive performance results can
be obtained in this manner. However, the resulting library may not be well tuned if
it is subsequently used on a somewhat different machine configuration.

Another alternative is to use the IBM Engineering and Scientific Subroutine
Library (ESSL) and the parallel version, Parallel ESSL. These libraries are highly
tuned for IBM hardware, having been tested on many different PowerPC
processor configurations. ESSL and Parallel ESSL are discussed in The ESSL
and Parallel ESSL libraries section that follows.

A different type of specialized performance tuning is applying faster, but slightly
less accurate versions of Fortran intrinsic functions such as SIN, LOG, and EXP.
IBM has produced tuned versions of functions like these, which can be found in
the MASS library. MASS can be downloaded from:

http://www.rs6000.ibm.com/resource/technology/MASS

MASS is discussed in detail in Section 6.2, “The MASS libraries” on page 117.

6.1 The ESSL and Parallel ESSL libraries
The Engineering and Scientific Subroutine Library (ESSL) family of products is a
state-of-the-art collection of mathematical subroutines. Running on IBM pSeries
servers and IBM RS/6000 workstations, servers and SP systems, the ESSL
family provides a wide range of high-performance mathematical functions for a
variety of scientific and engineering applications.

The ESSL family includes:

� ESSL for AIX, which contains over 400 high-performance mathematical
subroutines tuned for IBM UNIX hardware.

� Parallel ESSL for AIX, which contains over 100 high-performance
mathematical subroutines specifically designed to exploit the full power of
RS/6000 SP hardware with scalability of up to 512 nodes.
114 POWER4 Processor Introduction and Tuning Guide

http://math-atlas.sourceforge.net
http://www.rs6000.ibm.com/resource/technology/MASS

Complete information on the ESSL and Parallel ESSL libraries, including
information on obtaining them, can be found at:

http://www-1.ibm.com/servers/eserver/pseries/software/sp/essl.html

6.1.1 Capabilities of ESSL and Parallel ESSL
ESSL provides a variety of mathematical functions, such as:

� Basic Linear Algebra Subprograms (BLAS)

� Linear Algebraic Equations

� Eigensystem Analysis

� Fourier Transforms

ESSL products are compatible with public domain subroutine libraries such as
Basic Linear Algebra Subprograms (BLAS), Scalable Linear Algebra Package
(ScaLAPACK), and Parallel Basic Linear Algebra Subprograms (PBLAS). Thus,
migrating applications to ESSL or Parallel ESSL is straightforward.

Both ESSL and Parallel ESSL have SMP-parallel capabilities. The term parallel
in the Parallel ESSL product name refers specifically to the use of MPI message
passing, usually across the SP switch. For SMP parallel use within a single
pSeries 690 Model 681, Parallel ESSL is not required. An SMP-parallel example
(DGEMM) for the pSeries 690 Model 681 is provided in Figure 6-1 on page 116.

6.1.2 Performance examples using ESSL
ESSL V3.3 and Parallel ESSL V2.3 are available for the IBM ^ pSeries
690 Model 681 and contain highly optimized routines tuned for the POWER4
processor. Significant optimizations have been done in ESSL to effectively use
the L1 and L2 cache, maximize data reuse in the caches, and minimize memory
bandwidth requirements. Any application that can be formulated with BLAS calls,
especially BLAS3 calls such as SGEMM or DGEMM, will benefit greatly from the
ESSL library.

Attention: Some performance numbers reported here used a pre-release
version of ESSL that was the latest available at the time this document was
written. Readers should perform their own studies to establish firm
performance metrics.
 Chapter 6. Performance libraries 115

http://www-1.ibm.com/servers/eserver/pseries/software/sp/essl.html

Single processor DGEMM
The ESSL version of DGEMM was used to perform matrix-matrix multiplies on a
single POWER4 processor on a pSeries 690 Turbo system. The measured
GFLOPS as a function of matrix size are shown in Figure 6-1. The best
performance is greater than 3.6 GFLOPS and the performance is excellent for a
wide range of matrix sizes.

Figure 6-1 ESSL DGEMM single processor GFLOPS

SMP-parallel DGEMM - optimal POWER4 GFLOPS from ESSL
Table 6-1 lists the performance of SMP parallel DGEMM on a pSeries 690 Turbo
for square REAL*8 matrices.

Table 6-1 DGEMM throughput summary

Parallelism 2000x2000 REAL*8 10000x10000 REAL*8

32 CPU pSeries 690 Turbo

8-way 25.80 not measured

16-way 47.86 not measured

24-way 69.00 not measured

32-way 84.30 96.13
116 POWER4 Processor Introduction and Tuning Guide

A sustained rate of over 96 GFLOPS was measured on a 1.3 GHz pSeries 690
Turbo for 32-way parallel DGEMM on 10000x10000 matrices, as provided in
Table 6-1 on page 116. This is the highest performance seen for a single job on a
single pSeries 690 Turbo during the preparation of this publication. Also see
Section 8.4.1, “ESSL DGEMM throughput performance” on page 161 for the
performance observed for multiple copies of a single processor DGEMM
application.

6.2 The MASS libraries
The mathematical acceleration subsystem (MASS) library provides
high-performance versions of a subset of Fortran intrinsic functions. These
versions sacrifice a small amount of accuracy to allow for faster execution.
Compared to the standard mathematical library, libm.a, the MASS library differs,
at most, only in the last bit. Thus, MASS results are sufficiently accurate in all but
the most stringent conditions.

There are two basic types of functions available for each operation:

� A single instance function

� A vector function

The single instance function simply replaces the libm.a call with a MASS library
call. The vector function is used to produce a vector of results given a vector
operand. The vector MASS functions may require coding changes while the
single instance functions do not.

6.2.1 Installing and using the MASS libraries
The MASS libraries can be downloaded from:

http://www.rs6000.ibm.com/resource/technology/MASS

This site also has extensive documentation and should be referred to for more
detailed explanations.

The download file is a compressed tar file that can be unpacked into /usr/lpp and
the resulting library files linked to /usr/lib, or the tar file may be unpacked into any
other location for inclusion at link time. There are separate libraries for the single
instance functions and the vector functions.

The following is an example using MASS. If libmass.a and the other libraries are
installed in /home/somebody/mass, it is used as:

xlf90 -c -O3 -qarch=pwr4 -qtune=pwr4 myprogram.f
xlf90 -o myjob -L/home/somebody/mass -lmass myprogram.o
 Chapter 6. Performance libraries 117

http://www.rs6000.ibm.com/resource/technology/MASS

All references to SINE, LOG, EXP and other functions in myprogram.f will have
been satisfied from the single instance functions in libmass.a rather than the
normally chosen functions in libm.a.

Some of the functions available in the MASS library have now been included in
the XL Fortran runtime environment. This means that at higher specified levels of
compiler optimization, a Fortran intrinsic function or operation may be replaced
with a faster version found in /usr/lib/libxlopt.a even if the MASS libraries have not
been installed. If you wish to track exactly which version of an intrinsic has been
used you can produce a detailed, sorted cross reference map using
-bsxref:myxref when creating the executable.

The following is an example using the MASS library with Fortran code:

real(8) a(*)
...
do i=1,n

a(i)=1.0d0/a(i)
enddo

This code would be rather expensive using the hardware divide function and may
be replaced using the vector MASS reciprocal approximation function vrec as:

call vrec(a,a,n)

Using the vector form, the speedup for this example is approximately 2.25 for
n>~50. See Table 6-2 on page 119 for more information.

The executable is linked as:

xlf90 -o myjob -bsxref:myxref -L/home/somebody/mass -lmassv myprogram.o

Examination of the file myxref shows that vrec has been loaded from libmassv.a.

However, if you are using XL Fortran Version 7.1 or later, compiling and linking
as:

xlf90 -c -O3 -qhot -qarch=pwr4 -qtune=pwr4 myprogram.f
xlf90 -o myjob -bsxref:myxref myprogram.o

you will find that a version of vrec has been loaded from libxlopt.a. Several other
functions are recognized and may be substituted by the compiler such as exp,
sin, cos, sqrt, and reciprocal square root.
118 POWER4 Processor Introduction and Tuning Guide

6.2.2 Description and performance of MASS libraries
Table 6-2 lists the functions available in the MASS libraries and an approximate
measure of performance. The performance numbers are based on POWER3
measurements. Similar speedups are expected on POWER4. While MASS
functions are somewhat less accurate than the standard function, errors are
mostly less than 1 bit.

Table 6-2 Mass library functions and performance

Function mass call speedup massv call speedupa

64-bit exponential exp 2.37 vexp 6.7

32-bit exponential exp 2.37 vsexp 9.7

64-bit natural log log 1.57 vlog 10.4

32-bit natural log log 1.57 vslog 12.3

64-bit sine or cosine sin,cos 2.25b vsin,vcos 7.2b

32-bit sine or cosine sin,cos 2.17b vssin,vscos 9.75b

64-bit sine and cosine sin,cos 2.42b vsincosc 10.0b

32-bit sine and cosine sin,cos 2.08b vssincos 13.2b

64-bit tangent tan 2.13 vtan 5.84

32-bit tangent tan 2.02 vstan 5.95

64-bit inverse tangent of complex number atan2 4.75 vatan2 16.5

32-bit inverse tangent of complex number atan2 4.70 vsatan2 16.7

Truncate to whole number dint 1.0 vdint 7.86

Convert to nearest whole number dnint 2.0 vdnint 7.06

64-bit reciprocal n/a vrec 2.6

32-bit reciprocal n/a vsrec 3.8

64-bit square root sqrt vsqrt 1.2

32-bit square root sqrt vssqrt 2.3

64-bit reciprocal square root rsqrt 1.34 vrsqrt 6.2

32-bit reciprocal square root rsqrt 1.34 vsrsqrt 13.2

Real raised to real power x**y 2.35 N/A N/A

aPer result for vector length 1000
bSpeedup for data range [-1,1]
cSee libmassv.f in installation directory for usage
 Chapter 6. Performance libraries 119

6.3 Modular I/O (MIO) library
The Modular I/O (MIO) library was developed by the Advanced Computing
Technology Center (ACTC) of the Watson Research Center at IBM to address
the need for an application-level method for optimizing I/O. Applications
frequently have very little logic built into them to provide users the opportunity to
optimize the I/O performance of the application. The absence of application level
I/O tuning leaves the end user at the mercy of the operating system to provide
the tuning mechanisms for I/O performance. Typically, multiple applications are
run on a given system that have conflicting needs for high-performance I/O
resulting, at best, in a set of tuning parameters that provide moderate
performance for the application mix.

The MIO library allows users to analyze the I/O of their application and then tune
the I/O at the application level for a more optimal performance for the
configuration of the current operating system.

Sequential access, predominantly reads, of very large files (tens of gigabytes) is
a common pattern of I/O, for example, in implicit finite element analysis codes.
Applications that are characterized by this I/O pattern tend to benefit minimally
from operating system buffer pools. Large operating system buffer pools are
ineffective since there is very little, if any, data reuse and system buffer pools
typically do not provide prefetching of user data. However, the MIO library can be
used to address this issue by invoking a prefetching (pf) module that will detect
the sequential access pattern and asynchronously preload the needed data into
a smaller cache. The pf cache need only be large enough to contain enough
pages to maintain sufficient read ahead. The pf module can optionally use direct
I/O, which will avoid an extra memory copy to the system buffer pool and also
frees the system buffers from the one-time access of the I/O traffic, allowing the
system buffers to be used more productively. Our early experiences with the aix
module have consistently demonstrated that the use of direct I/O with the pf
module is highly beneficial to system throughput.

The MIO library consists of four I/O modules that may be invoked at run time on a
per-file basis. The modules currently available are:

mio The interface to the user program

pf A data prefetching module

trace A statistics gathering module

aix The MIO interface to the operating system
120 POWER4 Processor Introduction and Tuning Guide

For each file that is opened with MIO there are a minimum of two modules
invoked: the mio module, which converts the user MIO calls (MIO_open,
MIO_read, MIO_write, to name a few) into the internal calling sequence of MIO,
and the aix module, which converts the internal calling sequence of MIO into the
appropriate system calls (open, read, write, for example). Between the mio and
aix module invocations the user may specify the invocation of the other modules,
pf and trace.

For applications that use the POSIX standard open, read, write, lseek, and close
I/O calls the application programmer should only need to introduce #define's to
direct the I/O calls to use the MIO library. MIO is controlled through four
environment variables. Among other things, these variables determine which
modules are to be invoked for a given file when MIO_open is called.

As an example, the output of a MIO trace invocation is shown for a simple
program. It opens a file, truncating it back to zero bytes in length, and then writes
100 records of 16 KB. The file is then read forwards with 100 reads of 16 KB, and
then read backwards with 100 reads of 16 KB.

MIO statistics file : Wed Feb 9 16:03:17 2000
hostname=v01n01.vendor.pok.ibm.com
program=a.out
MIO library built Feb 1 2000 12:53:59 : with aio calls
MIO_STATS =example.mio
MIO_DEBUG =OPEN
MIO_FILES = *.dat [trace/stats]
MIO_DEFAULTS= trace/kbytes

Opening file file.dat
 modules=trace/stats
==

Trace close : mio <-> aix : file.dat : (4800/1.80)=2659.71 kbytes/s
 demand rate=2611.47 kbytes/s=4800/(1.85-0.02))
 current size=1600 max_size=1600
 mode =0640 sector size=4096
 oflags =0x302=RDWR CREAT TRUNC
 open 1 0.03
 write 100 0.03 1600 1600 16384 16384
 read 200 1.65 3200 3200 16384 16384
 seek 101 0.00
 fcntl 1 0.00
 close 1 0.12
 size 100
==
 Chapter 6. Performance libraries 121

For more information about MIO, refer to the following Web site:

http://www.research.ibm.com/actc/Opt_Lib/mio/mio_doc.htm

The MIO library was shipped first with the AIX Version 4.3 and 5L Bonus Pack in
July 2001. More information on this is found at the following Web site:

http://www.ibm.com/servers/aix/products/bonuspack

6.4 Watson Sparse Matrix Package (WSMP)
The Watson Sparse Matrix Package (WSMP) is a high-performance, robust, and
easy-to-use software package for solving large sparse systems of linear
equations using a direct method on pSeries servers, RS/6000 workstations, and
the RS/6000 SP. It can be used as a serial package, in a shared-memory
multiprocessor environment, or as a scalable parallel solver in a
message-passing environment, where each node can either be a uniprocessor
or a shared-memory multiprocessor.

WSMP is comprised of two parts, both of which are bundled in the same library.
Part I of WSMP replaces the older software called WSSMP for the solution of
symmetric sparse systems of linear equations. Part II of the WSMP library deals
with the solution of general sparse systems of linear equations. Currently, WSMP
does not support the solution of general/unsymmetrical sparse systems in a
message-passing parallel environment. WSMP does not have out-of-core
capabilities. The problems must fit in the main memory for reasonable
performance.

Technical papers related to the software, some example programs, and
information about the latest updates can be obtained from the following Web site:

http://www.cs.umn.edu/~agupta/wsmp.html

IBM Research intends to provide a version of WSMP compiled for POWER4
when the hardware and compiler become available.

For solving symmetric systems, WSMP uses a modified version of the
multifrontal algorithm for sparse Cholesky factorization and a highly scalable
parallel sparse Cholesky factorization algorithm. The package also uses scalable
parallel sparse triangular solvers and an improved and parallelized version of the
previously released package WGPP for computing fill-reducing orderings.
Sparse symmetric factorization in WSMP has been clocked at up to 3.6 GFLOPS
on an RS/6000 workstation with four 375 MHz POWER3 CPUs and 90 GFLOPS
on a 128-node SP with two-way SMP 200 MHz POWER3 nodes.
122 POWER4 Processor Introduction and Tuning Guide

http://www.research.ibm.com/actc/Opt_Lib/mio/mio_doc.htm
http://www.ibm.com/servers/aix/products/bonuspack
http://www.cs.umn.edu/~agupta/wsmp.html

For solving general sparse systems, WSMP uses a modified version of the
multifrontal algorithm for matrices with an unsymmetrical pattern of nonzeros.
WSMP supports threshold partial pivoting for general matrices with a
user-defined threshold. WSMP automatically exploits SMP parallelism on an
RS/6000 workstation or SP node with multiple CPUs and this parallelism is
transparent to the user. On an RS/6000 with four 375 MHz POWER3 CPUs,
WSMP has been clocked at up to 2.4 GFLOPS for factoring general sparse
matrices with partial pivoting.
 Chapter 6. Performance libraries 123

124 POWER4 Processor Introduction and Tuning Guide

Chapter 7. Parallel programming
techniques and performance

There are several methods available to the application programmer to achieve
parallel execution of a program and more rapid job completion compared to
running on a single processor. These methods include:

� Directive-based shared memory parallelization (SMP)

� Compiler automatically generated shared memory parallelization

� Message passing based shared or distributed memory parallelization

� POSIX threads (pthreads) parallelization

� Low-level UNIX parallelization using fork() and exec()

Each of these techniques has been used to produce efficient parallel codes. The
best technique to use is highly dependent on the application, the programmer’s
skills and preferences, portability requirements for the application, and the target
machine’s characteristics.

In this chapter we discuss shared memory parallelization, both directive-based
and automatic, message passing based parallelization using the MPI standard,
and pthread parallelization.

7

© Copyright IBM Corp. 2001 125

7.1 Shared memory parallelization
Shared memory parallelization describes parallelization that can take place in a
computer in which all memory used by a program is locally addressable from
within the program. For current IBM computers and the current AIX 5L operating
system, this means running on a single node. In the future, non-uniform memory
access (NUMA) may be available in which memory on separate, remote nodes
may be addressable locally from within a single program.

A detailed description of shared memory parallelization, or SMP programming,
can be found in Scientific Applications in RS/6000 SP Environments,
SG24-5611. A brief overview is given in this section. All discussions refer to the
OpenMP standard implementation of SMP parallelism.

7.1.1 SMP runtime behavior
Shared memory parallelization is implemented by creating user threads that are
scheduled to run on kernel threads by the operating system. This parallel job flow
is illustrated in Figure 7-1 on page 127.

A single thread is created when a program starts. Additional threads are created
when the first parallel region is entered. After all parallel work for a thread is
completed, it spin waits for the next parallel section for a period, but it consumes
processor time while waiting. After the spin wait time has expired and if a yield
wait time has been specified, the thread can yield its place on the kernel thread
to another runable thread. If the yield wait time has expired and no new parallel
region has been entered, the thread goes to sleep. Reactivating a thread from a
sleep state is more costly than if the thread is in a yielded state.
126 POWER4 Processor Introduction and Tuning Guide

Figure 7-1 Shared memory parallel job flow

There are some important environment variables that can affect parallel
performance at run time. Different settings would be appropriate on a busy
machine compared to a quiet machine. Some of the more important environment
variables are:

� AIXTHREAD_SCOPE = S or P (default = P)

The thread contention scope can be system (S) or process (P). When system
contention scope is used, each user thread is directly mapped to one kernel
thread. This is appropriate for typical scientific and technical applications in
which there is a one-to-one ratio between threads wanted and processors
wanted. Process contention scope is best when there are many more threads
than processors. When process contention scope is used, user threads share
a kernel thread with other (process contention scope) user threads in the
process.

Time Program Threads

Sequential
Code

Sequential
Code

Parallel
loop

Parallel
loop

Sequential
Code

Threads
created

Synchronization

Synchronization

Threads active

Threads spinning

Threads yielding

Threads spinning

Threads sleeping

}

}
}
}

Wait time

Useful work
 Chapter 7. Parallel programming techniques and performance 127

� OMP_DYNAMIC = FALSE or TRUE (default = TRUE)

The OMP_DYNAMIC environment variable disables or enables dynamic
adjustment of the number of threads available for the execution of parallel
regions. If this variable is TRUE, the runtime environment can adjust the
number of threads it uses for executing parallel regions so it makes the most
efficient use of system resources. The dynamic checking can add a small
amount of overhead, so for benchmarking, scaling tests, or if an application
depends on a specific number of threads, this variable should be set to
FALSE.

� SPINLOOPTIME=n (default = 40)

If a user thread cannot acquire a lock (which is necessary to begin a parallel
loop, for example), it will attempt to spin for up to SPINLOOPTIME times.
Once the spin count has been exhausted, the thread will go to sleep waiting
for a lock to become available unless the YIELDLOOPTIME is set to a number
greater than zero. You want to spin rather than sleep if you are waiting for a
previous parallel loop to complete, provided there is not too much sequential
work between the loops. If YIELDLOOPTIME is set, upon exhausting the spin
count, the thread issues the yield() system call, gives up the processor, but
stays in a runable state rather than going to sleep. On a quiet system, yielding
is preferable to sleeping since reactivating the thread after sleeping costs
more time. For benchmarking or scaling tests, SPINLOOPTIME can be very
large, for example 100000 or more. On a busy system, it should not be too
large or much processor time that could otherwise be shared with other jobs
is consumed spinning. The best value to use depends on various system
characteristics such as processor frequency, and several values should be
tested to achieve optimal tuning.

� YIELDLOOPTIME = n (default = 0)

YIELDLOOPTIME controls the number of times that the system yields the
processor when trying to acquire a busy spin lock before going to sleep. The
processor is yielded to another kernel thread, assuming there is another
runable one with sufficient priority. YIELDLOOPTIME is only used if
SPINLOOPTIME is also set.

� MALLOCMULTIHEAP (default = not set)

Multiple heaps are useful so that a threaded application can have more than
one thread issuing memory allocation subroutine calls. With a single heap, all
threads trying to do a malloc(), free(), or realloc() call would be serialized (that
is, only one thread can do malloc/free/realloc at a time) which could have a
serious impact on multi-processor machines. With multiple heaps, each
thread gets its own heap, up to 32 separate heaps.
128 POWER4 Processor Introduction and Tuning Guide

� SMP stack size (default = 4 MB/thread)

For 32-bit OpenMP applications, the default limit on stack size per thread is
rather small and if it is exceeded it will result in a runtime error. Should this
occur, the stack size may be increased using the XLSMPOPTS environment
variable with:

export XLSMPOPTS=stack=n

where n is the stack size in bytes. However, the total stack size for all threads
cannot exceed 256 MB (one memory segment). This limitation of one
segment does not apply to 64-bit applications.

7.1.2 Shared memory parallel examples
Shared memory parallelization (SMP) programming can be done at a very high
level such as:

SUBROUTINE EXAMPLE(M,N,A,B)
REAL(8) A(N),B(N)

!$OMP PARALLEL DO PRIVATE(J), DEFAULT(SHARED)
DO J=1,M
CALL DOWORK(J,N,A,B)
ENDDO
...

The subroutine DOWORK and all subsequent subroutine calls must be carefully
checked to ensure they are, in fact, thread safe. This high level of parallelization
is usually the most efficient, and is recommended when possible.

It is also common to use shared memory parallelization at a low level, although
scaling efficiencies are often quite limited when little work is done in a parallel
region. The ease of implementation is an attractive feature of low-level
parallelization. The discussion and examples that follow demonstrate parallelism
at the loop level.

We have tested three loops from the solver of a computational fluid dynamics
code and use them as examples. The loops are:

LOOP A

 DO J=1,NX
 Q(J)=E(J)+F2*Q(J)
 ENDDO

LOOP B

 DO J=1,NX
 I1=IL(1,J)
 Chapter 7. Parallel programming techniques and performance 129

 I2=IL(2,J)
 I3=IL(3,J)
 I4=IL(4,J)
 I5=IL(5,J)
 I6=IL(6,J)
 E(J)=Y3(J)*Q(J)-(
 * Q2(1,J)*Q(I1)+Q2(2,J)*Q(I2)+
 * Q2(3,J)*Q(I3)+Q2(4,J)*Q(I4)+
 * Q2(5,J)*Q(I5)+Q2(6,J)*Q(I6))
 F3=F3+Q(J)*E(J)
 ENDDO

LOOP C

 DO J=1,NX
 Z0(J)=Z0(J)+X2*Q(J)
 B1(J)=B1(J)-X2*E(J)
 T1=B1(J)
 E(J)=T1*DBLE(C1(J))
 F1=F1+T1*E(J)
 F4=F4+ABS(T1)
 ENDDO

The declarations are:

 REAL(8) Z0(NX),B1(NX),E(NX),Q(0:NX)
 REAL(4) Y3(NX),Q2(6,NX),C1(NX)
 INTEGER(4) IL(6,NX)

In this example, NX is typically 100000 to 10000000.

Loop A is a simple multiply/add loop. Loop B is a complicated loop with 20
memory loads, a single store, and a reduction sum. Six of the memory
references, such as Q(I1) are indirect address references. Loop C is a
moderately complicated loop with five memory loads, three stores, and two
reduction sums.

7.1.3 Automatic shared memory parallelization
Automatic shared memory parallelization is successful when the compiler can
recognize parallel code constructs and safely produce efficient parallel code. The
IBM XL Fortran Version 7.1 compiler has state-of-the-art capabilities for
automatically parallelizing Fortran programs. A major concern with automatic
parallelization is the potential that a loop with little work or few iterations is
parallelized and runs more slowly than it would had it remained sequential.
However, when a large Fortran code is well written and it is compiled for
automatic parallelization, good speedups can be realized with very little effort.
130 POWER4 Processor Introduction and Tuning Guide

The three example loops are automatically parallelized with:

xlf90_r -c -qsmp=auto -qnohot -qreport=smplist -O3 -qarch=pwr4 -qtune=pwr4
-qfixed sub.f

The option -qsmp=auto initiates automatic parallelization and it also implies
-qhot. The option -qnohot was used to be consistent with the directive-based
SMP runs. The option -qreport=smplist reports the line number of each
successfully parallelized loop. The resulting file, sub.lst, has additional
information including reasons why parallelization may have been unsuccessful
for a loop. The xlf90_r compiler invocation should be used rather than xlf90 to
ensure the resulting object code is thread safe. Performance results are shown in
Section 7.1.5, “Measured SMP performance” on page 132.

7.1.4 Directive-based shared memory parallelization
Directive-based shared memory parallelization is more labor intensive than
automatic parallelization, but it does allow for more control over which loops get
parallelized and more options for scheduling individual loops.

For the example loops, the following directives were used:

LOOP A

!$OMP PARALLEL DO PRIVATE(J),DEFAULT(SHARED),SCHEDULE(GUIDED)

LOOP B

!$OMP PARALLEL DO PRIVATE(J,I1,I2,I3,I4,I5,I6)
!$OMP* REDUCTION(+:F3)
!$OMP* DEFAULT(SHARED),SCHEDULE(GUIDED)

LOOP C

!$OMP PARALLEL DO PRIVATE(J,T1)
!$OMP* REDUCTION(+:F1,F4)
!$OMP* DEFAULT(SHARED),SCHEDULE(GUIDED)

The loops use guided scheduling, which initially divides the iteration space into
one chunk equal to NX divided by N and then exponentially decreases the chunk
size to a minimum size of 1. This scheduling algorithm, which allows for a
processor that found more data in L1 or L2 cache to get another chunk of data
quickly while a processor requiring many L3 or memory references is working, is
often most efficient.
 Chapter 7. Parallel programming techniques and performance 131

Compiling for directive-based parallelization uses the following command
options:

xlf90_r -c -qsmp=omp -O3 -qarch=pwr4 -qtune=pwr4 -qfixed sub.f

The option noauto is implied when -qsmp=omp is used. However, with -qsmp=omp,
-qhot is not implied.

7.1.5 Measured SMP performance
The three example loops were run from within an application and timed using
realistic data for 200 repetitions with NX set to 1000000. The environment
settings used were:

export AIXTHREAD_SCOPE=S
export SPINLOOPTIME=100000
export YIELDLOOPTIME=40000
export OMP_DYNAMIC=false
export MALLOCMULTIHEAP=1

All results were run on a two-MCM, eight-processor pSeries 690 HPC. The
results for each of the three loops are shown separately in Table 7-1, Table 7-2,
and Table 7-3 on page 133.

Table 7-1 Loop A parallel performance elapsed time

Table 7-2 Loop B parallel performance elapsed time

Processors -O3 -qsmp=auto speedup -qsmp=omp speedup

1 1.211 1.378 0.88 1.238 0.98

2 0.815 1.49 0.706 1.72

4 0.481 2.52 0.431 2.81

6 0.364 3.33 0.335 3.61

8 0.307 3.94 0.262 4.62

Processors -O3 -qsmp=auto speedup -qsmp=omp speedup

1 4.190 4.758 0.88 4.268 0.98

2 2.000 2.10 2.068 2.03

4 1.143 3.67 1.146 3.66

6 0.885 4.73 0.883 4.75

8 0.787 5.32 0.720 5.82
132 POWER4 Processor Introduction and Tuning Guide

Table 7-3 Loop C parallel performance elapsed time

The data shows that for these test loops there is little difference between
automatic and manual parallelization. Some overhead due to parallelization can
be seen comparing the single processor results. Note that the compiler may be
using different optimization strategies when creating parallel code as well.

The reduction sums in loops B and C require the creation of critical sections in
which only one processor can update the reduced variable at a time. These
critical sections can significantly reduce parallel efficiency if the amount of work
in the loop is too small or too many processors are used.

The conclusions from this analysis are:

� SMP parallelization does result in improved run times.

� SMP parallelization is easy to implement.

� Overall speedups are limited for small loops, especially when there are
reduction sums.

7.2 MPI in an SMP environment
This section examines how existing MPI programs, written for distributed memory
systems, can make the best use of both SMP and distributed memory systems.

We do not attempt to provide a detailed discussion of distributed memory
parallelization or the use of MPI and refer the reader to the IBM Parallel
Environment for AIX product documentation, and the IBM Redbook Scientific
Applications in RS/6000 SP Environments, SG24-5611.

Processors -O3 -qsmp=auto speedup -qsmp=omp speedup

1 2.795 3.056 0.91 2.830 0.99

2 1.430 1.95 1.541 1.81

4 0.906 3.08 0.933 3.00

6 0.719 3.89 0.736 3.80

8 0.633 4.42 0.588 4.75
 Chapter 7. Parallel programming techniques and performance 133

In the following discussion, processes executing in parallel and communicating
using MPI calls are referred to as tasks. A number of different scenarios are
considered:

� MPI only

The MPI implementation in IBM Parallel Environment for AIX (PE) can use
several protocols for communication between tasks.

Internet Protocol (IP) can be used between tasks on the same node and
between tasks on different nodes. This incurs relatively high latencies and IP
overheads.

In the IBM RS/6000 SP environment with nodes attached to one of the types
of SP switch, then another protocol known as user space can be used for
communication between tasks. Depending on the type of switch involved and
the version and release of PE, there may be restrictions on the number of
user space tasks allowed per node. At the time of writing, the SP Switch2 with
PE 3.1 can support up to 16 user space tasks per POWER3 node. User
space significantly reduces the overhead and latency when compared to IP,
but it may still be higher between processes on the same node than using
shared memory.

MPI communication calls can also use shared memory for message passing
between MPI tasks on the same node. The PE MPI library is capable of using
shared memory automatically. In a cluster or SP configuration of POWER3
nodes, then IP or user space would be used between tasks on other nodes.

In this case, overall performance can still be limited by communication
between the nodes. This could be reduced for group operations (such as
broadcast) by having one processor per node handle all the internode
communication. This process would use shared memory to collect and
distribute data to other processes on the same node.

Since the different tasks on the same node are different processes, they have
different address spaces and the shared memory MPI library will
communicate though a shared memory segment. This mean a double copy of
the data (into and out of the shared memory segment). It would be possible
for each task to keep its data in the shared memory segment and not use MPI
for this communication but this would require some degree of reprogramming.
The advantage of using the PE shared memory MPI library is that no
reprogramming is required.
134 POWER4 Processor Introduction and Tuning Guide

In order to use shared memory for communication calls within a shared
memory machine one of the following two procedures should be followed:

– Use the following PE environment variable settings:

export MP_SHARED_MEMORY=yes
export MP_WAIT_MODE=poll

MP_WAIT_MODE is not essential in order to use shared memory, but
setting it to poll is recommended for performance in most scenarios where
MPI tasks will use shared memory.

– Use the following command line arguments either with the parallel
program or with the poe command depending on the way the parallel
program is started:

-shared_memory yes -wait_mode poll

� MPI and SMP Fortran

In this scenario, also known as the hybrid or mixed-mode programming
model, there are fewer MPI tasks than processors per node. Shared memory
parallelization techniques such as OpenMP directives can be used to execute
sections of the code between MPI calls in parallel. This means that each MPI
task has multiple threads executing in parallel, and the aim would be to keep
all of the processors busy all of the time. In practice, it will be difficult to
achieve this during the MPI communication phases of the program. However,
the benefit of this programming model is that it can be used to reduce the
amount of communication traffic between nodes, especially during global
communications, by reducing the total number of MPI tasks. This could be
especially important for large multi-processor systems such as 32-way
POWER4 systems clustered together.

The overhead of shared memory parallelization is similar to that of MPI data
transfers, so it is desirable to parallelize at a sufficiently coarse granularity to
keep the effect of this overhead small. Some recoding may be required to
achieve this hybrid parallelization.

� MPI and explicit large chunk threads

In this scenario, there is only one MPI process per node. The initial process
(or master thread) creates threads which, instead of issuing MPI calls, use
pthread techniques to transfer data between themselves and the master
thread. The master thread uses MPI to transfer all data between the nodes.

Data does not have to be copied between threads since they all use the same
address space. Synchronization can be achieved either with standard pthread
calls, or, with even less overhead, by using spin loops and the atomic
fetch_and_add function (which guarantees that only one thread at a time can
update a variable).
 Chapter 7. Parallel programming techniques and performance 135

The total number of messages between nodes is reduced and hence delays
due to latency are reduced. Since the master thread handles all messages, it
should perhaps be coded to do less work than the other threads.

However, all of this may imply considerable reprogramming. The program may
have used the MPI task ID to create its arrays and organize its data. The
threads will have to arrange this differently, because they share the same task
ID, and are using the same address space.

The advantages and disadvantages of these scenarios are summarized in
Table 7-4.

Table 7-4 Advantages and disadvantages of message passing techniques

To summarize, all of the scenarios can be useful depending on the particular
application requirements and the target environment. Descending the table, the
efficiency of the solution increases, but the amount of reprogramming required
also increases.

To gain addressability to 8 GB with a 32-bit MPI, the sPPM ASCI benchmark
code used the Hybrid mode. More information about this can be obtained from:

http://www.llnl.gov/asci_benchmarks/asci/limited/ppm/sppm_readme.html

Programming model Advantages Disadvantages

MPI only No program changes.
Same coding for calls between
all tasks, uses shared memory
on same node.

Double copy between
processes on same node.

Hybrid mode MPI exchanges reduced.
Can reduce off node
communication.

May not be possible to
fully use the CPUs.
Some reprogramming
required.

MPI and large chunk
threads

MPI exchanges reduced.
Exchanges and overhead
between threads reduced.

Considerable
reprogramming may be
required.
136 POWER4 Processor Introduction and Tuning Guide

http://www.llnl.gov/asci_benchmarks/asci/limited/ppm/sppm_readme.html

7.3 Programming with threads
The thread programming paradigm is a flexible, low-level model of distributing the
work of a given application into multiple streams of execution that share a single
memory address space. Each thread can execute its own function and can be
controlled independently. In the context of high-performance computing, threads
are used to distribute a workload onto multiple processors of an SMP system,
rather than to dispatch many threads onto a single processor, as is common for
graphical user interfaces.

There is a standardized application interface for threads called Pthreads (POSIX
threads) that is part of the UNIX specification. The redbook Scientific
Applications in RS/6000 SP Environments, SG24-5611, provides a compact
introduction to Pthreads for multi-processor applications on the AIX platform. The
corresponding AIX reference manual General Programming Concepts: Writing
and Debugging Programs (part of the AIX Programming Guides) can be found at:

http://www.ibm.com/servers/aix/library/techpubs.html

Programming explicitly with threads is not recommended for the casual user. In
many cases the benefits of multiple threads can be more easily obtained by
using the automatic parallelization capabilities of the compiler or OpenMP
directives.

7.3.1 Basic concepts
Threads can be described as light-weight processes. Each thread has its own
private program counter, stack, and registers. The memory state and file
descriptors are shared. For a brief overview of the usage of Pthreads a simple
hello world program is shown in Example 7-1 on page 138. Although this
program does no complicated work, it provides a useful template for thread
creation.

A Pthread program begins to execute as a single thread. Additional threads are
created and terminated as necessary to concurrently schedule work onto the
available processors. In this example, the initial thread creates three worker
threads, which will print hello messages and terminate. As will be familiar to
message passing programmers, it is a good practice for the master thread (or
MPI task) to take part in the computation. This yields good load-balancing when
N threads are dispatched on N processors.

A threaded application should be compiled and linked with the _r-suffixed
invocation of the C compiler, for example xlc_r, which defines the symbol
_THREAD_SAFE and links with the Pthreads library.
 Chapter 7. Parallel programming techniques and performance 137

http://www.llnl.gov/asci_benchmarks/asci/limited/ppm/sppm_readme.html
http://www.ibm.com/servers/aix/library/techpubs.html

Example 7-1 Pthread version of a hello world program

#include <pthread.h>
#include <stdio.h>

void * thfunc(void * arg)
{
 int id;
 id = *((int *) arg);
 printf("hello from thread %d \n", id);
 return NULL;
}

int main(void)
{
 pthread_t thread[4];
 pthread_attr_t attr;
 int arg[4] = {0,1,2,3};
 int i;

 /* setup joinable threads with system scope */
 pthread_attr_init(&attr);
 pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);
 pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM);

 /* create N-1 worker threads */
 for (i=1; i<4; i++) {
 pthread_create(&thread[i], &attr, thfunc, (void *) &arg[i]);
 }

 /* let the master thread also take part in the computation */
 thfunc((void *) &arg[0]);

 /* wait for all other threads to finish */
 for (i=1; i<4; i++) {
 pthread_join(thread[i], NULL);
 }
 return 0 ;
}

Threads are created using the pthread_create function. This function has four
arguments: A thread identifier, which is returned upon successful completion, a
pointer to a thread-attributes object, the function that the thread will execute, and
the argument of the thread function. The thread function takes a single pointer
argument (of type void *) and returns a pointer (of type void *). In practice, the
138 POWER4 Processor Introduction and Tuning Guide

argument to the thread function is often a pointer to a structure, and the structure
may contain many data items that are accessible to the thread function. In this
example, the argument is a pointer to an integer, and the integer is used to
identify the thread.

The previous simple example creates a fixed number of threads. In many
applications, it is useful to have the program decide how many threads to create
at run time while providing the ability to override the default behavior by setting
an environment variable. For example, for OpenMP programs the default is to
create as many threads as processors are available. In AIX, you can get the
number of online processors by calling the sysconf routine from libc, as shown in
Example 7-2.

Example 7-2 Sample code for setting the number of threads at run time

#include <pthread.h>
#include <unistd.h>
#include <stdlib.h>
...
char * penv;
int ncpus, numthreads;
...
/* get the number of online processors */
ncpus = sysconf(_SC_NPROCESSORS_ONLN);
if (ncpus < 1) ncpus = 1;

/* check the NUMTHREADS environment variable */
penv = getenv("NUMTHREADS");
if (penv == NULL) numthreads = ncpus;
else numthreads = atoi(penv);
...

A thread terminates implicitly when the execution of the thread function is
completed. A thread can terminate itself explicitly by calling pthread_exit. It is
also possible for one thread to terminate other threads by calling the
pthread_cancel function. The initial thread has a special property. If the initial
thread reaches the end of its execution stream and returns, the exit routine is
invoked, and, at that time, all threads that belong to the process will be
terminated. However, the initial thread can create detached threads, and then
safely call pthread_exit. In this case, the remaining threads will continue
execution of their thread functions and the process will remain active until the last
thread exits. In many applications, it is useful for the initial thread to create a
group of threads and then wait for them to terminate before continuing or exiting.
This is can be achieved with threads that are joinable (see
 Chapter 7. Parallel programming techniques and performance 139

pthread_attr_setdetachstate). The AIX default is detached. The function
pthread_join suspends the calling thread until the referenced thread has
terminated. The system scope attribute is appropriate when N threads are
supposed to run on N processors concurrently.

Synchronization
As with OpenMP directive-based parallelization the distinction between
threadprivate and shared variables is essential for the correctness and
performance of a program. The access to shared variables has to be
synchronized to avoid conflicts and to assure correct results. The use of
synchronization should be balanced with its degradation of performance and
scalability.

A major difficulty of parallel programming for shared memory is to find the right
balance of local and global variables, since the scoping defines which variables
are private or shared. Contention for global variables, as in a reduction sum, is a
major source of performance problems. The introduction of temporary local
variables often helps to resolve such problems.

In multi-threaded applications the update of shared memory locations is usually
protected with mutex (mutual exclusion) locks. The operating system ensures
that access to the shared data is serialized. At a given time only one thread can
enter the region between lock and unlock to modify the data. The usage of mutex
locks is shown in Example 7-3. This example demonstrates how to construct a
basic barrier synchronization function. It is left as an exercise for the reader to
study a Pthread programming reference in order to understand this complex
construct.

Example 7-3 Usage of mutex locks to modify shared data structures

#include <pthread.h>
int barrier_instance = 0;
int blocked_threads = 0;

pthread_mutex_t sync_lock = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t sync_cond = PTHREAD_COND_INITIALIZER;

int syncthreads(int nth)
{

int instance;

/* the calling thread implements a lock, other threads block */
pthread_mutex_lock(&sync_lock);

/* the thread with the lock proceeds */
instance = barrier_instance;
blocked_threads++;
140 POWER4 Processor Introduction and Tuning Guide

if (blocked_threads == nth)
{

/* notify all threads that the sync condition is met */
blocked_threads = 0;
barrier_instance++;
pthread_cond_broadcast(&sync_cond);

}

while (instance == barrier_instance)
{

/* release the lock and wait here */
pthread_cond_wait(&sync_cond, &sync_lock);

}

/* all threads call the unlock function and return */
pthread_mutex_unlock(&sync_lock);

return(0);
}

Frequent mistakes
The most common mistakes of thread programming shown in this section occur
more frequently than we would like:

� Process exits before all threads have finished

The following example of code is not correct because when a process exits or
returns from main(), all of the process memory is deallocated and all threads
belonging to the process are terminated.

#include <pthread.h>
int main(void) {

pthread_t tid[NUMBER_OF_THREADS];
...
/* create threads */
for (i =0; i<NUMBER_OF_THREADS; i++)

/* each thread calls thread_main with parameter arg. */
pthread_create (&tid[i], NULL,(void*(*)(void*)) thread_main, (void *)

arg);
exit(0);

}

� Parent thread exits before child

A problem similar to the previous one; do not forget to call the pthread_join
routine before exiting.
 Chapter 7. Parallel programming techniques and performance 141

� Dangling pointer

The following code fragment is incorrect because errorcode resides on the
local stack of the thread and will be freed when the thread is destroyed,
leading to a dangling pointer.

void * thfunc(void * arg)
{
 int errorcode;

/* do something */
/* if error condition detected, errorcode = something; */

 pthread_exit(&errorcode);
...

}

Using Pthreads in Fortran
On IBM systems, a Fortran version of the Pthreads interface is available in
addition to the standard C Pthreads interface. This makes it relatively simple to
introduce threads into numerically intensive Fortran applications. The reader
should recognize that the Fortran interface is not backed by an industry-wide
standard. For example, Pthread constructs can be used within OpenMP
programs in rare instances when some direct control of thread management or
data access synchronization is necessary. In such a mixed mode the OpenMP
runtime environment will create and manage all threads used for the execution of
OpenMP parallel constructs. Explicit pthread creation is the responsibility of the
programmer.

The IBM Fortran version of the Pthreads API is similar to the C version, where
the function names and data types from C are preceded with f_. Fortran
programs that use explicit Pthread routines must have a statement to include the
f_pthread module. In general the -qnosave option is essential for correct behavior
of a program. A number of Fortran routines, including f_pthread_create, have call
sequences that differ from the standard C version. For example, the
f_pthread_create function takes an additional parameter to specify properties of
the argument to the thread function. The IBM Fortran implementation of Pthreads
is described in the XL Fortran for AIX Language Reference, SC09-2867.
142 POWER4 Processor Introduction and Tuning Guide

7.3.2 Coding and performance considerations
The following performance considerations apply to both Pthread hand-coded
programs and OpenMP based programs.

Thread creation
The time required for creation of a thread is of the order of magnitude of 100
microseconds. You should only create/awake/terminate threads that execute for
a significantly longer time.

Lock contention
Shared data structures that are modified within an innermost loop of a thread and
need to be protected against concurrent access can cause severe performance
degradation. The following example shows a loop that counts the number of
elements in a vector with a value equal to one. The counter is a shared variable
that has to be protected by a mutex lock when incremented. Assuming that every
second element is equal to one, this example takes more than 30 times longer to
execute on four processors than an equivalent sequential loop, which does not
need to call the Pthread lock routines.

int shared_count=0;
...
void * thfunc(void *id)
{

...
for (i=start; i<start+incr; i++) {

if (vector[i] == 1) {
pthread_mutex_lock(&lock);
shared_count++;
pthread_mutex_unlock(&lock);

}
}
...

}

Without increasing the default values of the SMP runtime variables
SPINLOOPTIME or YIELDLOOPTIME the performance is even slower. For
details on AIX environment variables that determine the runtime behavior of a
thread when waiting for a lock (spin, yield, sleep), see Section 7.1.1, “SMP
runtime behavior” on page 126.
 Chapter 7. Parallel programming techniques and performance 143

In this simple case, the performance problem can be resolved with the help of a
local counter variable, which turns the tremendous speed down into an expected
parallel speedup.

int shared_count=0;
...
void * thfunc(void *id)
{

int private_count=0;
...
for (i=start; i<start+incr; i++) {

if (vector[i] == 1) {
private_count++;

}
}
pthread_mutex_lock(&lock);
shared_count += private_count;
pthread_mutex_unlock(&lock);
...

}

Avoiding locks and OpenMP critical sections
In many multi-threaded programs, a barrier synchronization routine can help to
reduce extensive use of locks or OpenMP critical sections. For example, suppose
that multiple threads are working to fill out different entries of a table, and, once
that is done, each thread needs read access to the table for the next step. A
barrier synchronization point would ensure that no thread could proceed to the
next step until all threads have finished filling out the table. Instead of working
directly with the low-level pthread_mutex functions, a higher level thread
synchronization function is very useful.

If you cannot avoid a lock or critical section:

� Reduce the amount of time a lock is held. Move all unnecessary code outside
a critical section.

� Combine access to shared data in order to reduce the number of single
lock/unlock calls.

False sharing
False sharing of a cache line occurs when multiple threads on different
processors with private caches modify independent data structures that happen
to belong to the same cache line. In this situation, the cache line of a particular
CPU is flushed out due to another processor store operations and has to be
transferred repeatedly from remote caches. This is likely to happen when, for
example, a thread local variable is stored in a global array indexed by the logical
thread number. This causes the data to be located close together in memory.
144 POWER4 Processor Introduction and Tuning Guide

By using appropriate padding, false cache-line sharing can be avoided. Referring
to the proceeding example, the following implementation cures the lock
contention problem, but suffers from false sharing. On our machine, this leads to
a moderate speed down (of about 1.5) on four processors compared to the
sequential program.

int shared_count=0;
int private_count[4]={0,0,0,0};
...
void * thfunc(void *id)
{

...
myid = *((int *)id);
for (i=start; i<start+incr; i++) {

if (vector[i] == 1) {
 private_count[myid]++;
 }
 }

pthread_mutex_lock(&lock);
 gobal_count += private_count[myid];

pthread_mutex_unlock(&lock);
}

By introducing appropriate padding space, to fill up a cache line of 128 byte, false
sharing can be eliminated.

struct count{
 int private_counter;
 char pad[124];
}counter[4];
int shared_count=0;
...
void * count_ones(void *id)
{

...
for (i=start; i<start+incr; i++) {

if (vector[i] == 1) {
counter[myid].private_counter++;

}
}
pthread_mutex_lock(&lock);
shared_count += counter[myid].private_counter;
pthread_mutex_unlock(&lock);

}

For example, a similar false sharing problem can occur when storing a set of
mutex lock objects in a global array. The following Fortran code avoids false
sharing. The type pthread_mutex_t is declared in /usr/include/sys/types.h. In
64-bit mode it has a different size.
 Chapter 7. Parallel programming techniques and performance 145

use f_pthread
integer, parameter :: maxthreads=8
type plock

sequence
type(f_pthread_mutex_t) :: lock
integer :: pad(19)

end type plock
type(plock) :: locks(maxthreads)
common /global/ locks

As a rule of thumb, in an SMP program, global data whose access is not
serialized should not be close together.

Reducing OpenMP overhead
In general, an SMP parallel program does generate some computational
overhead. Even when executed by just a single thread a certain amount of
overhead compared to the execution of the equivalent sequential (non threaded)
version of a program can be observed. For discussion purposes, call this the
sequential overhead. Thread-safe system libraries, such as for I/O, that are
referenced by an _r-suffixed compiler invocation may also contribute to this
overhead.

For a fine-grain OpenMP program, the sequential overhead can be significant. If
the overhead exceeds, for example, 30 percent of the elapsed time, this can be
an indication of inefficient use of OpenMP directives. If global variables need to
be scoped threadprivate this often causes problems.

The following example is taken from a real application. To support the
threadprivate pragma (or directive in Fortran) the compiler generates calls to the
internal function _xlGetThreadValue. These calls are relatively expensive. In
general it is a good idea to reduce the number of calls by packing several
threadprivate variables into a single structure. This way we will encounter only
one call per dynamic path through each function where the threadprivate
variables are referenced. Otherwise, we will encounter one call per threadprivate
variable. As an example, consider the following lines of code:

static int n_nodes, num_visits;
static Node *node_array;
static int *val, *stack;
static Align_info *align_array;

#pragma omp threadprivate(\
n_nodes, num_visits, \
node_array, \
val, stack, \
align_array \

)

146 POWER4 Processor Introduction and Tuning Guide

This code could be substituted as follows to improve performance. More code
changes in the subsequent code are necessary to make this complete.

struct nn{
int n_nodes, num_visits;
Node *node_array;
int *val, *stack;
Align_info *align_array;

} glob;
#pragma omp threadprivate(glob)

7.3.3 The best approach for shared memory parallelization
As discussed, there are many different ways to parallelize a program for shared
memory architectures. The appropriate approach depends on several
considerations, for example: Does a sequential code already exist or will the
parallel program be written from scratch? What are the parallel programming
skills of the project team? and so on. The following are some pros and cons of
the different paradigms:

� Auto-parallelization by the compiler:

– Easy to implement (just a few directives)

– Enables teamwork easily

– Limited scalability because data scoping is neglected

– Compiler dependent (even on the release of a particular compiler)

– Not necessarily portable

� OpenMP directives:

– Portable

– Potentially better scalability of the auto-parallelization

– Uniform memory access is assumed

� RYO (subset or mixture of OpenMP and Pthreads, or UNIX fork() and exec()
parallelization, or platform-specific constructs)

– Might enable teamwork

– Needs a well-tested concept to assure performance and portability

– Not necessarily portable

� Pthread:

– Portable

– Potentially best scalability

– Needs experienced programmers
 Chapter 7. Parallel programming techniques and performance 147

� SMP-enabled libraries

– Least effort

– Limited flexibility

7.4 Parallel programming with shared caches
On all models of POWER4 microarchitecture machines currently available, each
processor has a dedicated L1 cache. As discussed in Section 2.4.3, “L2 cache”
on page 17, the L2 cache organization is that each L2 cache unit is shared
between two processors in the pSeries 690 Turbo and pSeries 690 Model 681,
but in the pSeries 690 HPC each processor has a dedicated L2 cache. In all
models L2 cache remains the level of coherency.

The sharing of the L2 cache raises a number of considerations, such as:

� Processors that share L2 cache will compete for the bandwidth from the L2
cache to L3 and memory. However, the effect of this is unlikely to differ very
much from the effect seen by independent processes sharing the bandwidth
from L2.

� In the configurations where two processors share L2 cache, and each are
accessing different memory addresses, then for each cache line loaded into
L2, there may be conflict.

� Interference when accessing the same cache lines

In the extreme case, two threads of a shared memory application may access
the same cache line. In this case, there may be a benefit to the shared L2
cache configuration, since there will be a higher percentage of hits in the L2
cache and there will be fewer cache snooping events.

An example of this would be the following, rather artificial loop:

!$OMP PARALLEL DO PRIVATE(s,j,time1,time2), SHARED(a,b,s1,ttime), &
!$OMP& SCHEDULE(STATIC,1)
 do i=1,m
 do j=1,n
 b(i,j)=a(i,j)+a(i,j)*c1
 end do
 end do
!$OMP END PARALLEL DO

In this example, when parallelized across two threads, each thread will
access alternate elements of the array.
148 POWER4 Processor Introduction and Tuning Guide

Measurements were performed on a 32-way pSeries 690 Turbo, with the
arrays dimensioned to fit in L2 but not in L1, and the results provided in
Table 7-5 were obtained.

Table 7-5 Shared memory cache results, pSeries 690 Turbo

The unshared cache times were obtained by binding the threads of the program
to alternate processors. Thread one was bound to processor one, thread two was
bound to processor three, and so on. The shared cache times were obtained by
binding the threads to adjacent processors.

The times are the average of the time obtained in three separate runs. Apart from
the four-thread case, it seems that for this example there is a clear benefit in the
shared cache. This is most noticeable with two threads. With a larger number of
threads, the amount of work done by the individual threads is reduced and so the
overhead of running in parallel starts to dominate the time.

Further examples where the loop appeared similar to the following were also run:

!$OMP PARALLEL DO PRIVATE(s,j), SHARED(a,b,s1), &
!$OMP& SCHEDULE(STATIC,1)

do i=1,m
do j=1,n

s=s+a(i,j)*b(i,j)
end do
s1(i)=s

end do
!$OMP END PARALLEL DO

These did not show any difference in speed between shared and dedicated L2
cache configurations.

We also tested two examples where we compared performance of two processes
accessing a shared cache line where the cache line was in a single L2 cache or
moved between L2 caches.

Threads Unshared cache time [s] Shared cache time [s] Unshared / shared

1 14.76 14.40 0.98

2 14.11 8.63 0.61

4 7.57 8.02 1.06

8 6.78 5.69 0.84

16 6.60 5.75 0.87
 Chapter 7. Parallel programming techniques and performance 149

The test programs we used forked child processes which then bound themselves
to specific processors. Each process acquired a semaphore, updated a counter,
and released the semaphore. The code kernel is as follows:

for (i=0;i<LOOPS;i++)
{

msem_lock(sem,0);
curr_value= (*shared_counter)++;
msem_unlock(sem,0);

}

The msem_ routines are part of the AIX libsys.a library. They implement an
atomic lock using the lwarx instruction.

In the first example (Table 7-6), the counter and semaphore were in the same
cache line.

Table 7-6 Counter and semaphore sharing cache line

In the second example (Table 7-7), the counter and semaphore were in separate
cache lines.

Table 7-7 Counter and semaphore in separate cache line

As expected, there is a significant performance benefit when two processes
share data in the L2 cache. There is also a benefit in separating data structures
and the semaphores that control them.

Case Time [s]

Single process (no sharing) 3.36

Two processes. L2 cache shared 8.95

Two processes. L2 caches on same MCM 13.31

Two processes. L2 caches on separate MCMs 13.40

Case Time [s] Ratio to shared
counter/semaphore

Single process (no sharing) 3.34 0.99

Two processes. L2 cache shared 8.85 0.98

Two processes. L2 caches on
same MCM

12.75 0.96

Two processes. L2 caches on
separate MCMs

12.82 0.95
150 POWER4 Processor Introduction and Tuning Guide

The previous code example makes use of a sleeping semaphore. In addition, the
amount of work done on the cache line is relatively small. We created a second
example using spin/wait instead of sleeping semaphores and increased the
amount of work on the cache line. The semaphore and the shared data structure
were in separate cache lines.

The relevant code segments are:

struct shared_data {
long long n;
int counter;
int i;
} *p_shared;

msemaphore *p_shared_sem;
....

for (i=0;i<LOOPS;i++)
{

/* spin waiting for semaphore */
while (((err=msem_lock(p_shared_sem,MSEM_IF_NOWAIT)) == -1)

&& (errno == EAGAIN));

(p_shared->counter)++;
p_shared->n=1;
/* now do some real work */
for (j=0;j<200;j++)

{
p_shared->n = p_shared->n * (p_shared->n +1);
}

msem_unlock(p_shared_sem,0);
}

We observed the results provided in Table 7-8.

Table 7-8 Heavily used shared cache line performance

Case Time [s]

Single process (no sharing) 38.72

Two processes. L2 cache shared 75.91

Two processes. L2 caches on same MCM 84.57

Two processes. L2 caches on different MCMs 84.51

Four processes on two chips on the same MCM 143.27

Four processes, one on each chip on an MCM 156.03

Four processes, each on a different MCM 156.12
 Chapter 7. Parallel programming techniques and performance 151

The shared L2 cache enables two processes to share the workload very
efficiently. Two processes run in twice the time of one process. When the cache
is not shared there is an 18 percent penalty. This is independent of whether or
not the processes run on the same MCM.

We also examined the case where four processes ran on two chips, that is, four
processors sharing two L2 caches, and compared this with unshared L2 caches.
We see a small benefit in sharing the L2 cache but once the L2 cache is not
shared, the impact of on or off the MCM is the same as for two processes. When
testing four processes, we observed that the run times of the individual
processes varied (results above are averages for two or four processes). We saw
that three processes would run in approximately the same time and one would
run in approximately 60 percent to 75 percent of the others. We were not able to
investigate this effect for this document. We assume it is either an artifact of the
operating system scheduler or an error in the test program. Note that this effect
was not observed in the two process test runs.
152 POWER4 Processor Introduction and Tuning Guide

Chapter 8. Application performance
and throughput

This chapter examines system performance achievable from running multiple
copies of a program or programs compared to a single copy of a program. On a
multiple processor machine (or node), throughput issues include:

� Processor utilization

Oversubscribing processors (for example, 12 concurrent jobs on an
8-processor machine) when running processor-bound jobs usually does not
increase total processor time significantly as measured by user processor
time and system processor time, since the operating system efficiently
schedules the jobs to run. Processor-bound jobs refer to programs that are
not bottlenecked by any other major system resources.

� Memory bandwidth utilization

A 32-processor pSeries 690 Turbo has a very high aggregate memory
bandwidth of approximately 200 GB/s. For many workloads, this is sufficient
to sustain 32 concurrent processes with a performance per process close to
that obtained if the processes were to run standalone.

However, a standalone process is capable of driving the memory bandwidth
at a far greater rate than 1/32nd of the total. As detailed in 8.4.3, “Memory
stress effects on throughput” on page 162, on a 32-way pSeries 690 Turbo or
a 16-way pSeries 690 HPC, a standalone application can use approximately

8

© Copyright IBM Corp. 2001 153

1/8th of the total bandwidth. This is a significant benefit of pSeries 690 design
in cases where such memory-stressing applications can be run in a mixed
workload together with low memory stress applications. However, if 32 copies
of a job that does use maximum bandwidth are run concurrently on a pSeries
690 Turbo, each job will necessarily take at least 4 times as long as a
standalone job. For 16 processes on a 16-way pSeries 690 HPC, it would be
at least twice as long.

Most applications, when run standalone, use far less than the maximum
bandwidth and there are many techniques, such as blocking, available for
reducing the extent of memory stress. Some of these techniques are
described in 3.1.4, “Tuning for the memory subsystem” on page 34.
Nevertheless, applications that, run standalone, use more than their
proportionate share of the total bandwidth, will necessarily run more slowly
when every processor is loaded with them. For such workloads, the pSeries
690 HPC is likely to be a more appropriate configuration than a pSeries 690
Turbo.

� Shared L2 cache

On a pSeries 690 Model 681 or pSeries 690 Turbo, two processors on a
single chip share the 1440 KB L2 cache. When two similar jobs are running
on the same chip they can effectively utilize only half of the L2 cache and the
L2 to L3 cache bandwidth and it could be anticipated that there will be some
performance degradation. In a pSeries 690 HPC, there is only one processor
that can access the L2 cache, which implies more predictable behavior.

� I/O channels

When a program has high I/O requirements the I/O channels and subsystems
often prove to be the performance bottleneck. When multiple copies of high
I/O jobs are run, performance can seriously degrade unless attention is given
to separating or hiding I/O transfers. See Section 6.3, “Modular I/O (MIO)
library” on page 120, which describes one useful tool that can be used to hide
I/O transfers.

The rest of this chapter shows some examples of throughput testing done on
POWER4 pSeries 690 Model 681 systems.
154 POWER4 Processor Introduction and Tuning Guide

8.1 Memory to memory copy
Figure 8-1 shows performance for a simple copy (a[i] = b[i]) for a range of array
sizes and numbers of copies. Maximum throughput is achieved when the array
fits into the L2 cache. The system was configured with two MCMs and four
memory books.

Tuning by using methods such as

a[i] = b[i] + zero*a[i];

does not make any significant difference to copy performance, whereas this
technique was often beneficial on the POWER3.

Figure 8-1 Memory copy performance

Figure 8-2 on page 156 shows corresponding performance when using the C
library memcpy() function. Performance is less than that achieved in the case
above because the load/stores are 8 bytes (Fortran REAL*8) whereas the
memcpy() function loads and stores bytes to a word boundary then loads and
stores words (4 bytes) and completes the copy with bytes if required.
 Chapter 8. Application performance and throughput 155

Figure 8-2 C library memcpy performance

The memory subsystem provides a reasonably linear response to increasing
processor load as provided in Table 8-1.

Table 8-1 Memory copy performance relative to one CPU

2 CPUs 4 CPUs 6 CPUs 8 CPUs

16 KB 2.0 3.9 6.0 8.0

32 KB 2.0 4.0 6.0 8.0

128 KB 2.0 4.0 6.1 8.1

1 MB 1.8 3.2 4.4 5.3

2 MB 1.9 3.2 4.5 5.4

4 MB 1.9 3.3 4.7 5.6

8 MB 1.9 3.2 4.7 5.6
156 POWER4 Processor Introduction and Tuning Guide

8.2 Memory bandwidth limited throughput
In contrast to the performance described in the previous section, this section
describes a throughput test that deliberately challenges the total system memory.
The program solves for the dot product of two REAL*8 arrays of length N. For this
throughput test, N was chosen to be 110000000 to ensure that most of the data
would not be resident in L3 cache.

A single copy of this program achieved a 2.3 GB/s transfer rate on a 1.3 GHz
processor. When eight copies of this job were run on a two MCM, eight processor
pSeries 690 HPC, the aggregate data transfer rate was 11.3 GB/s, a speedup of
4.9. The aggregate transfer rates for job counts of 1 through 8 are shown in
Figure 8-3.

Figure 8-3 System memory throughput for pSeries 690 HPC
 Chapter 8. Application performance and throughput 157

A second throughput test using the same program was run on a 32-way four
MCM,1.3 GHz pSeries 690 Turbo with 96 GB of real memory. This system had
512 MB of shared L3 cache so the array sizes were increased to 310 million
double-precision elements up through 16 processors to ensure most of the data
was not in L3 cache. For 32 copies of the program, the array sizes were reduced
to 150 million double-precision elements, to prevent the programs from
exceeding the real memory on the system. The aggregate system throughput
rates are shown in Figure 8-4.

Figure 8-4 System memory throughput on pSeries 690 Turbo

The shared L2 cache and non-shared L2 cache throughput rates for 2 through 16
jobs were obtained using the AIX bindprocessor command and related system
calls. For the shared L2 cache runs, pairs of jobs were bound to processors on
the same POWER4 chip. For the non-shared L2 cache runs, at most one job was
bound to any POWER4 chip. The non-shared L2 cache performance would be
nearly identical to the performance of a pSeries 690 HPC system. As expected,
when two jobs share the L2 cache, the system throughput decreased.

It should be noted that this program relies on hardware prefetch streams. The
performance of the prefetch streams are highly dependent on the size of memory
pages. At the time this document was written, only 4 KB pages were available in
AIX 5L. Large page sizes, which will be available in early 2002, are expected to
significantly increase the single job and multiple job throughput for these
examples.
158 POWER4 Processor Introduction and Tuning Guide

8.3 MPI parallel on pSeries 690 and SP
This section describes a hydrodynamics benchmark application called Hydra
from AWE, Aldermaston in the UK and is included as an example to illustrate the
comparative performance of pSeries 690 Model 681 and the RS/6000 SP 375
MHz POWER3 SMP High Node both with respect to absolute performance and
parallel scalability. The RS/6000 SP 375 MHz POWER3 SMP High Node, is a
shared memory unit that contains 16 POWER3-II processors running at a
frequency of 375 MHz.

Hydra is written in Fortran with MPI message passing and scales well to at least
512 processors for large problems. It does not use OpenMP or similar
paradigms.

The results for two test cases, a medium one called 2mm and a large one called
1mm are shown in Table 8-2. All MPI communication is shared memory with the
single exception of the 32-way RS/6000 SP 375 MHz POWER3 SMP High Node
case where user space MPI (EUILIB=us) was used over the IBM Switch2
connecting two SP nodes.

For this application, conclusions that can be drawn include:

� Up to 32-way parallel, a 1.3 GHz pSeries 690 Model 681 system is between
2.1 and 3.1 times faster than the same number of RS/6000 SP 375 MHz
POWER3 SMP High Node processors.

� Scalability characteristics of a single pSeries 690 Model 681 system are
similar to that of an RS/6000 SP 375 MHz POWER3 SMP High Node.

Table 8-2 MPI performance results for AWE Hydra code

2mm test case 1mm test case

Parallelism Elapsed
seconds

Parallel
speedup

Ratio over
NH2

Elapsed
seconds

Parallel
speedup
over 4-way
run

Ratio over
NH2

16-processor RS/6000 SP 375 MHz POWER3 SMP High Nodes

Serial 8776.4 1 1 not measured N/A 1

2-way 4598.9 1.91 1 not measured N/A 1

4-way 2331.1 3.76 1 28645 1 1

8-way 1286.2 6.82 1 14065 2.04 1

16-way 754.6 11.63 1 8033 3.57 1

32-way 388.5 22.59 1 3913 7.32 1
 Chapter 8. Application performance and throughput 159

* Assuming 4-way speedup is same as pSeries 690 HPC, that is, 3.56.

8.4 Multiple job throughput
This section discusses the extent to which the total execution times for different
types of jobs increases when multiple jobs are run concurrently. Examples are
given of two jobs that only lightly stress the I/O and memory subsystems and
hence give excellent throughput scaling. Then results from an artificial job are
shown adjusted to provided varying degrees of memory subsystem stress.

We have not been able to investigate throughput effects for I/O intensive jobs.
This is a very important subject area, but only a very limited I/O configuration was
available to us on the pSeries 690 Model 681 systems we tested. Results from
any I/O intensive applications would, therefore, have been unrealistic.

64-way 229.0 38.32 1 2080 13.77 1

128-way 141.2 62.16 1 1101 26.02 1

8-processor pSeries 690 HPC, results normalized to 1.3 GHz

Serial 3297.5 1 2.66 not measured not measured not measured

2-way 1701.6 1.93 2.70 not measured not measured not measured

4-way 926.9 3.56 2.51 11349 1 2.52

8-way 537.9 6.13 2.39 6307 1.80 2.23

32-processor pSeries 690 Model 681, 1.3 GHz.

4-way 752.3 3.56* 3.10 not measured not measured not measured

8-way 468.9 5.71* 2.74 not measured not measured not measured

16-way 272.1 9.84* 2.77 not measured not measured not measured

32-way 160.5 16.68* 2.42 1821 N/A 2.15

2mm test case 1mm test case

Parallelism Elapsed
seconds

Parallel
speedup

Ratio over
NH2

Elapsed
seconds

Parallel
speedup
over 4-way
run

Ratio over
NH2
160 POWER4 Processor Introduction and Tuning Guide

8.4.1 ESSL DGEMM throughput performance
Multiple copies of DGEMM from ESSL (see Section 6.1, “The ESSL and Parallel
ESSL libraries” on page 114) were run together on a 32-way pSeries 690 Turbo.
Each job multiplied matrices of 5000x5000 REAL*8 numbers, which require 600
MB of memory for the three arrays involved. However, because ESSL blocks the
code to achieve good memory locality, and because matrix multiply involves a
high ratio of computation to memory access, almost no slowdown was seen
when multiple copies were run.

Table 8-3 lists the performance of the jobs in GFLOPS. Any slowdown due to
running multiple copies would be evidenced by decreasing values for GFLOPS
as the number of jobs increases. However, the multiple job slowdown is very
small in all cases, being only 11 percent when 32 concurrent jobs were run on a
32-way pSeries 690 Turbo.

Table 8-3 Effects of running multiple copies of DGEMM

As can be calculated from Table 8-3, 32 copies of the same program achieve a
total performance rate of 98.5 GFLOPS.

8.4.2 Multiple ABAQUS/Explicit job streams
ABAQUS/Explicit is a commercially available structural analysis code from HKS
Inc. of Pawtuckett, Rhode Island. It uses an explicit (rather than implicit) solution
technique and, therefore, does not perform heavy I/O or memory access
operations. The jobs run were HKS’s seven standard timing tests, t1-exp through
t7-exp and the time reported is the total elapsed time to run all seven.

In addition to running a single stream of jobs, four and then eight sets of the
seven timing jobs were run concurrently on an eight-processor 1.3 GHz pSeries
690 HPC (different from the 1.1 GHz machine used for most of the other
measurements in this publication). The times for the three runs are shown in
Table 8-4 and are the total elapsed seconds to complete all jobs.

Number of jobs GFLOPS for 5000x5000
REAL*8 matrices

Slowdown ratio to single job

1.3 GHz 32-way pSeries 690 Turbo

1 3.417 1

8 3.338 1.02

16 3.253 1.05

24 3.167 1.08

32 3.079 1.11
 Chapter 8. Application performance and throughput 161

These results show excellent throughput scaling from the pSeries 690 HPC for
this application. The 8-stream run, using all processors, takes only 2 percent
longer than a single-stream run.

Table 8-4 Multiple ABAQUS/Explicit job stream times

8.4.3 Memory stress effects on throughput
Compared with the previous sections that showed jobs with excellent total
throughput, this section describes a worst case example of a job that is designed
to stress memory as much as possible. Most production applications will stress
memory significantly less than this. As will be explained, this study demonstrates
the benefits of the pSeries 690 HPC models for high-memory stress applications.

A simple program was used consisting of repeated calls to a subroutine that
executed the statement A(I)=B(I)+C(I)*D(I) in a loop. This code stresses memory
in much the same way as the dot-product test reported in Section 8.2, “Memory
bandwidth limited throughput” on page 157. The results presented here are
consistent with those in that section but are presented in a way that focuses on
the total throughput obtained by running multiple copies of the job.

Figure 8-5, Figure 8-6, and Figure 8-7 show the interactions between a number
of jobs plotted as a function of the total amount of memory accessed by each
program. Results are shown for a 16-way RS/6000 SP 375 MHz POWER3 SMP
High Node, an 8-way pSeries 690 HPC and a 32 processor pSeries 690 Model
681. First, these figures are discussed individually and then some overall
conclusions are drawn.

Number of job stream Elapsed seconds Slowdown ratio to single stream

1 2439 1

4 2459 1.01

8 2488 1.02
162 POWER4 Processor Introduction and Tuning Guide

Figure 8-5 Job throughput effects on a 375 MHz POWER3 SMP High Node

Figure 8-6 Job throughput effects on an eight-way pSeries 690 HPC
 Chapter 8. Application performance and throughput 163

Figure 8-7 Job throughput effects on a 32-way pSeries 690 Turbo

� 16-way RS/6000 SP 375 MHz POWER3 SMP High Node

Each processor has a local 8 MB L2 cache. The times for multiple jobs start to
exceed the single job time when the memory accessed by each job
approaches this value.

� pSeries 690 HPC and pSeries 690 Model 681

On the pSeries 690 HPC, each processor has its own local L2 cache whereas
on the pSeries 690 Turbo, even/odd pairs of processors share a local L2
cache. To illustrate the effect of this, on the pSeries 690 Turbo, the 8 and 16
job runs were done in two ways. The shared L2 cache runs were done with
the jobs bound sequentially to processors. The non-shared L2 cache runs
were done with the jobs bound only to even processors so that no two jobs
were ever sharing the cache. The non-shared runs are expected to behave in
the same way as a pSeries 690 HPC and it can be seen that the 8 jobs,
non-shared L2 graph in Figure 8-7 (pSeries 690 Turbo) is very similar to the
8 jobs graph in Figure 8-6 (pSeries 690 HPC).

Conclusions from the graphs
The following are the conclusions that may be developed from the graphs:

� The graphs for pSeries 690 Model 681 are more complicated than for
RS/6000 SP 375 MHz POWER3 SMP High Node because of the presence of
the Level 3 cache.
164 POWER4 Processor Introduction and Tuning Guide

� As a consequence of the pSeries 690 design, in which each processor has a
powerful data prefetch engine plus full access the L3 cache and memory
bandwidth on its MCM, it takes relatively few jobs as stressful at this to
consume the system's resources. This design feature provides the maximum
opportunity for a mixture of jobs with arbitrary resource demands to achieve
the best possible system throughput. Once a system resource such as L3
cache or memory bandwidth is fully consumed, however, adding more jobs to
the system will not improve overall system throughput. This effect is seen on
the pSeries 690 Model 681 around the point where each program accesses
around 100 MB of data. This happens because of the shared L3 cache
(256 MB on the two-MCM pSeries 690 HPC and 512 MB on the four-MCM
pSeries 690 Turbo). Multiple jobs can be slowed down by spilling out of L3
cache, necessitating additional accesses to main memory subsystem.

� A similar shared-L2 cache effect can be seen on the three shared L2 lines on
the pSeries 690 Turbo (Figure 8-7) around the point where the jobs access
around 750 KB of memory and spill out of L2. The pSeries 690 HPC-like lines
do not show any such effect.

� Throughput in the worst case region where the programs are working wholly
outside any cache shows job times of approximately four times single job
times for 32 jobs on a 32-way pSeries 690 Turbo, approximately two times for
16 jobs on a 16-way pSeries 690 HPC, and approximately 1.5 times for 8 jobs
on an 8-way pSeries 690 HPC.

� In general, throughput is expected to improve for this example with a future
update to AIX 5L in which pages are allocated from memory attached to the
MCM where the process is running, thus minimizing MCM-to-MCM traffic.
(See 3.2.2, “Memory configurations” on page 53).

� The benefit of the pSeries 690 HPC design over pSeries 690 Turbo for a
memory stressing job mix is clear.

8.4.4 Shared L2 cache and logical partitioning (LPAR)
FIRE is a commercially available computational fluid dynamics (CFD) analysis
code from AVL List GmbH, Austria (http://www.avl.com). There are optimized
versions of FIRE available for scalar, vector, and parallel (shared and distributed
memory) architectures. For the following study, the SMP Version V7.3, compiled
with XLF 6.1 for the POWER3 platform, was used.

AVL provides several standard test cases for benchmark purposes. In the
following, the test cases water (water cooling jacket; 284,000 cells) and ext3d
(external flow; 711,000 cells) are investigated. A sequential job needs about
300 MB (water) or 620 MB (ext3d) of memory, respectively. FIRE is a memory
bandwidth demanding application. The time for I/O is negligible.
 Chapter 8. Application performance and throughput 165

http://www.avl.com

The following machines were used, which not only differ by clock frequency but
also by memory speed and micro code level:

hpc 8-CPU pSeries 690 Model 681 HPC at 1.1 GHz (memory at 328 MHz)

turbo 32-CPU pSeries 690 Model 681 Turbo at 1.3 GHz (memory at 400
MHz)

lpar 8-CPU pSeries 690 Model 681 HPC at 1.0 GHz
(memory at 400 MHz, a development system, two logical partitions of
four processors each)

Performance impact of shared versus non-shared L2 cache
The performance impact of a shared L2 cache can be studied when binding two
threads of a two-CPU parallel job to two processors that either belong to the
same POWER4 chip or to different chips. It turns out that the shared cache has
very little impact on performance with respect to FIRE. Table 8-5 contains the job
execution times on a pSeries 690 Model 681 Turbo.

Table 8-5 FIRE benchmark: Impact of shared versus non-shared L2 cache

Impact of partitioning on single job performance
Logical partitioning is expected to introduce a little overhead on memory access.
However, it is possible to distribute a throughput workload across several LPARs
in order to isolate single jobs or groups of jobs. Whether throughput performance
can benefit from partitioning depends on how the physical resources are mapped
onto the different LPARs.

For the following benchmark a pSeries 690 Model 681 HPC system is divided
into two LPARs. Each LPAR consists of one MCM (four CPUs). Only the MCM’s
local memory was assigned to its LPAR (this configuration is not supported
through standard hardware management console function, a system reset after
an LPAR reconfiguration was required to achieve this through trial and error).
Results for a single sequential job running in a LPAR are presented in Table 8-6.
Timings normalized to 1.3 GHz are given in parentheses. Note, partitioning does

Elapsed time [s] water ext3d

Sequential (pSeries 690 Turbo) 228.8 525.6

Two-CPU -- shared (pSeries 690 Turbo) 127.1 303.7

Two-CPU -- not shared (pSeries 690 Turbo) 125.9 297.8
166 POWER4 Processor Introduction and Tuning Guide

not degrade single job performance. A slight benefit was even observed, which
might be close to the bounds of the experimental error. The benefit is likely due to
the chosen memory affinity. The ratio between clock frequency and memory
frequency also bias the measurement.

Table 8-6 FIRE benchmark: Uniprocessor, single job versus partitioning

Impact of partitioning on throughput performance
Running eight sequential FIRE jobs on an eight-way machine is the throughput
scenario that puts the most stress on the memory subsystem. For the particular
setup of this benchmark, it is observed that partitioning can reduce the
interference between different processes of a throughput workload and therefore
improve the throughput performance. The results are presented in Table 8-7.
Timings normalized to 1.3 GHz are given in parentheses.

Table 8-7 FIRE benchmark: Throughput performance versus partitioning

Elapsed time [s] water ext3d

no LPAR
pSeries 690 HPC

260.1
(220.1)

627.0
(530.5)

LPAR 1
(64-bit kernel)

274.9
(211.5)

648.8
(499.1)

LPAR 2
(32-bit kernel)

283.0
(217.7)

659.2
(507.1)

Elapsed time [s] water ext3d

Single job, no LPAR
(pSeries 690 Turbo)

228.8 525.6

Single job, no LPAR
(pSeries 690 HPC)

260.1
(220.1)

627.0
(530.5)

Eight jobs, no LPAR
(pSeries 690 HPC)

452.8
(383.1)

1004.3
(849.8)

Four jobs using LPAR 2
LPAR 1 idle

415.9
(319.9)

905.6
(696.6)

Four jobs using LPAR 1

Four jobs using LPAR 2

409.5
(315.0)

421.8
(324.5)

919.7
(707.5)

926.4
(712.6)
 Chapter 8. Application performance and throughput 167

8.5 Genetic sequencing program
A genetic sequencing program was run on a number of systems including
POWER4 to determine relative performance. The program is written in C and
comprises a mixture of floating-point arithmetic, character manipulation and file
I/O. Table 8-8 lists performance results on the different systems. Use of
POWER4 specific optimization provides a noticeable benefit compared to
-qarch=com.

Table 8-8 Performance on different systems

8.6 FASTA genetic sequencing program
The FASTA program suite provides a number of utilities for local sequence
alignment of DNA or protein sequences against corresponding sequence
databases. The FASTA utility uses a fast, heuristic algorithm. The search utility
uses a Smith-Waterman algorithm. Comparison tests for two well-known
sequences, arp_arath (536AA) and metr_salty (276AA), were run against the
Swiss-Prot Release 39 database using both algorithms. Note that these utilities
do significant amounts of I/O. The sequence database is approximately 250 MB.
Table 8-9 provides a single-processor performance comparison against
POWER3.

Table 8-9 Relative performance of FASTA utilities

System and compiler flags Elapsed Time

POWER3 -O3 (375 MHz) 22m 21s

S80 -O3 (450 MHz) 45m 22s

POWER4 -O3 -qarch=com (1.3 GHz HPC) 11m 42s

POWER4 -O3 -qarch=pwr4 -qtune=pwr4 (1.3GHz HPC) 10m 42s

Sequence POWER3 POWER4 Speedup

arp_arath (fasta) 26.47 15.54 1.7

arp_arath(ssearch) 453.72 300.30 1.5

metr_salty(fasta) 20.84 12.09 1.7

metr_salty(ssearch) 230.45 153.03 1.5
168 POWER4 Processor Introduction and Tuning Guide

8.7 BLAST genetic sequencing program
BLAST (Basic Local Alignment Search Tool) is a suite of applications for
searching DNA sequence databases. The BLAST algorithm makes pairwise
comparisons of sequences, seeking regions of local similarity rather than optimal
global alignment. BLAST 2.2.1 can perform gapped or ungapped alignments.

blastn DNA sequence queries can be performed against DNA sequence
databases.

tblastn Protein sequence query performed against a DNA sequence database
dynamically translated in all six reading frames.

As with the FASTA tests, the BLAST programs perform varying and typically
significant amounts of I/O. Relative performance on POWER3 and POWER4 for
blastn and tblastn are provided in Table 8-10 and Table 8-11, respectively:

Table 8-10 Blastn results

Table 8-11 Tblastn results

Query POWER3 POWER4 Ratio

nt.2655203 180 81 2.2

nt.3283410 70 31 2.3

nt,5764416 10 4 2.5

Query POWER3 POWER4 Ratio

nt.1177466 170 68 2.5

nt.129295 63 23 2.7

nt,231729 95 35 2.7
 Chapter 8. Application performance and throughput 169

170 POWER4 Processor Introduction and Tuning Guide

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks”
on page 173.

� RS/6000 Scientific and Technical Computing: POWER3 Introduction and
Tuning Guide, SG24-5155

� Scientific Applications in RS/6000 SP Environments, SG24-5611

� AIX 5L Performance Tools Handbook, SG24-6039

Other resources
These publications are also relevant as further information sources:

� IBM RISC System/6000 Technology, SA23-2619

� XL Fortran for AIX User’s Guide, SC09-2866

� XL Fortran for AIX Language Reference, SC09-2867

� Optimization and Tuning Guide for Fortran, C, and C++, SC09-1705

� Accelerating AIX by Rudy Chukran, Addison-Wesley, 1998

� AIX Performance Tuning by Frank Waters, Prentice -Hall, 1996

� You can access all of the AIX documentation through the Internet at the
following URL: http://www.ibm.com/servers/aix/library

The following types of documentation are located on the documentation CD
that ships with the AIX operating system:

– User guides

– System management guides

– Application programmer guides

– All commands reference volumes

– Files reference

– Technical reference volumes used by application programmers
© Copyright IBM Corp. 2001 171

http://www.ibm.com/servers/aix/library

Referenced Web sites
These Web sites are also relevant as further information sources:

� AIX and RS/6000 SP manuals

http://www.ibm.com/servers/aix/library/techpubs.html

� MIO library

http://www.research.ibm.com/actc/Opt_Lib/mio/mio_doc.htm

� Watson Sparse Matrix Package (WSMP)

http://www.cs.umn.edu/~agupta/wsmp.html

� AIX Bonus Pack

http://www.ibm.com/servers/aix/products/bonuspack

� CFD (computational fluid dynamics) application FIRE

http://www.avl.com

� SPPM

http://www.llnl.gov/asci_benchmarks/asci/limited/ppm/sppm_readme.html

� BLAS

http://www.netlib.org/blas

� LAPACK

http://www.netlib.org/lapack

� ATLAS

http://math-atlas.sourceforge.net

� MASS

http://www.rs6000.ibm.com/resource/technology/MASS

� ESSL

http://www-1.ibm.com/servers/eserver/pseries/software/sp/essl.html

� HKS Abaqus

http://www.abaqus.com

� SPEC

http://www.specbench.org

� TPC

http://www.tpc.org

� STREAM

http://www.cs.virginia.edu/stream
172 POWER4 Processor Introduction and Tuning Guide 172 POWER4 Processor Introduction and Tuning Guide

http://www.abaqus.com
http://www.ibm.com/servers/aix/library/techpubs.html
http://www.research.ibm.com/actc/Opt_Lib/mio/mio_doc.htm
http://www.cs.umn.edu/~agupta/wsmp.html
http://www.ibm.com/servers/aix/products/bonuspack
http://www.avl.com
http://www.llnl.gov/asci_benchmarks/asci/limited/ppm/sppm_readme.html
http://www.netlib.org/blas
http://www.netlib.org/lapack
http://math-atlas.sourceforge.net
http://www.rs6000.ibm.com/resource/technology/MASS
http://www-1.ibm.com/servers/eserver/pseries/software/sp/essl.html
http://www.specbench.org
http://www.tpc.org
http://www.cs.virginia.edu/stream

� NAS

http://www.nas.nasa.gov//NAS/NPB

How to get IBM Redbooks
Search for additional Redbooks or Redpieces, view, download, or order hardcopy
from the Redbooks Web site:

ibm.com/redbooks

Also download additional materials (code samples or diskette/CD-ROM images)
from this Redbooks site.

Redpieces are Redbooks in progress; not all Redbooks become Redpieces and
sometimes just a few chapters will be published this way. The intent is to get the
information out much quicker than the formal publishing process allows.

IBM Redbooks collections
Redbooks are also available on CD-ROMs. Click the CD-ROMs button on the
Redbooks Web site for information about all the CD-ROMs offered, as well as
updates and formats.
 Related publications 173

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.cs.virginia.edu/stream
http://www.nas.nasa.gov//NAS/NPB

174 POWER4 Processor Introduction and Tuning Guide 174 POWER4 Processor Introduction and Tuning Guide

Special notices

References in this publication to IBM products, programs or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only IBM's product, program, or service may be used. Any functionally
equivalent program that does not infringe any of IBM's intellectual property rights
may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact IBM Corporation, Dept.
600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The information contained in this document has not been submitted to any formal
IBM test and is distributed AS IS. The information about non-IBM ("vendor")
products in this manual has been supplied by the vendor and IBM assumes no
responsibility for its accuracy or completeness. The use of this information or the
implementation of any of these techniques is a customer responsibility and
depends on the customer's ability to evaluate and integrate them into the
customer's operational environment. While each item may have been reviewed
by IBM for accuracy in a specific situation, there is no guarantee that the same or
similar results will be obtained elsewhere. Customers attempting to adapt these
techniques to their own environments do so at their own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of these
Web sites.
© Copyright IBM Corp. 2001 175

Any performance data contained in this document was determined in a controlled
environment, and therefore, the results that may be obtained in other operating
environments may vary significantly. Users of this document should verify the
applicable data for their specific environment.

This document contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples contain
the names of individuals, companies, brands, and products. All of these names
are fictitious and any similarity to the names and addresses used by an actual
business enterprise is entirely coincidental.

Reference to PTF numbers that have not been released through the normal
distribution process does not imply general availability. The purpose of including
these reference numbers is to alert IBM customers to specific information relative
to the implementation of the PTF when it becomes available to each customer
according to the normal IBM PTF distribution process.

The following terms are trademarks of other companies:

C-bus is a trademark of Corollary, Inc. in the United States and/or other
countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other
countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

PC Direct is a trademark of Ziff Communications Company in the United States
and/or other countries and is used by IBM Corporation under license.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel
Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through The Open Group.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks
owned by SET Secure Electronic Transaction LLC.

Other company, product, and service names may be trademarks or service
marks of others
176 POWER4 Processor Introduction and Tuning Guide

acronyms

GAMGPRMASS

ABI Application Binary Interface

AFPA Adaptive Fast Path
Architecture

AIX Advanced Interactive
Executive

ANSI American National Standards
Institute

APAR Authorized Program Analysis
Report

API Application Programming
Interface

ASCI Accelerated Strategic
Computing Initiative

ASCII American National Standards
Code for Information
Interchange

ASR Address Space Register

AUI Attached Unit Interface

BCT Branch on Count

BIST Built-In Self-Test

BLAS Basic Linear Algebra
Subprograms

BOS Base Operating System

CAD Computer-Aided Design

CAE Computer-Aided Engineering

CAM Computer-Aided
Manufacturing

CATIA Computer-Graphics Aided
Three-Dimensional
Interactive Application

CDLI Common Data Link Interface

CD-R CD Recordable

CE Customer Engineer

CEC Central Electronics Complex

Abbreviations and
© Copyright IBM Corp. 2001
CFD Computational Fluid
Dynamics

CGE Common Graphics
Environment

CHRP Common Hardware
Reference Platform

CIU Core Interface Unit

CLIO/S Client Input/Output Sockets

CMOS Complimentary Metal-Oxide
Semiconductor

CPU Central Processing Unit

CWS Control Workstation

D-Cache Data Cache

DAD Duplicate Address Detection

DAS Dual Attach Station

DASD Direct Access Storage Device

DFL Divide Float

DIMM Dual In-Line Memory Module

DIP Direct Insertion Probe

DMA Direct Memory Access

DOE Department of Energy

DOI Domain of Interpretation

DPCL Dynamic Probe Class Library

DRAM Dynamic Random Access
Memory

DSA Dynamic Segment Allocation

DSE Diagnostic System Exerciser

DSU Data Service Unit

DTE Data Terminating Equipment

DW Data Warehouse

EA Effective Address

EC Engineering Change
 177

ECC Error Checking and
Correcting

EEPROM Electrically Erasable
Programmable Read Only
Memory

EFI Extensible Firmware Interface

EHD Extended Hardware Drivers

EIA Electronic Industries
Association

EISA Extended Industry Standard
Architecture

ELF Executable and Linking
Format

EPOW Environmental and Power
Warning

ERAT Effective-to-Real Address
Table

ERRM Event Response resource
manager

ESID Effective Segment ID

ESSL Engineering and Scientific
Subroutine Library

ETML Extract, Transformation,
Movement and Loading

F/C Feature Code

F/W Fast and Wide

FBC Fabric Bus Controller

FDPR Feedback Directed Program
Restructuring

FIFO First In/First Out

FLIH First Level Interrupt Handler

FMA Floating-point Multiply/Add
operation

FPR Floating-Point Register

FPU Floating-Point Unit

FRCA Fast Response Cache
Architecture

FRU Field Replaceable Unit

GAMESS General Atomic and
Molecular Electronic Structure
System

GCT Global Completion Table

GFLOPS Billion FLoating-point
Operations Per Second

GPFS General Parallel File System

GPR General-Purpose Register

HACWS High Availability Control
Workstation

HiPS High Performance Switch

HiPS LC-8 Low-Cost Eight-Port High
Performance Switch

HPF High Performance Fortran

HPSSDL High Performance
Supercomputer Systems
Development Laboratory

Hz Hertz

I-CACHE Instruction Cache

I/O Input/Output

I2C Inter Integrated-Circuit
Communications

IA Intel Architecture

IAR Instruction Address Register

IBM International Business
Machines

ID Identification

IDE Integrated Device Electronics

IDS Intelligent Decision Server

IEEE Institute of Electrical and
Electronics Engineers

IETF Internet Engineering Task
Force

IFAR Instruction Fetch Address
Register

IHV Independent Hardware
Vendor

IM Input Method
178 POWER4 Processor Introduction and Tuning Guide

INRIA Institut National de Recherche
en Informatique et en
Automatique

IPL Initial Program Load

IRQ Interrupt Request

ISA Industry Standard
Architecture, Instruction Set
Architecture

ISO International Organization for
Standardization

ISV Independent Software Vendor

ITSO International Technical
Support Organization

L1 Level 1

L2 Level 2

L3 Level 3

LAPI Low-Level Application
Programming Interface

LED Light Emitting Diode

LFD Load Float Double

LID Load ID

LLNL Lawrence Livermore National
Laboratory

LMQ Load Miss Queue

LP Linear Programming

LP64 Long-Pointer 64

LPP Licensed Program Product

LRQ Load Reorder Queue

LRU Least Recently Used

MASS Mathematical Acceleration
Subsystem

MAU Multiple Access Unit

Mbps Megabits Per Second

MBps Megabytes Per Second

MCAD Mechanical Computer-Aided
Design

MCM Multi-chip Module

NCU Non-Cacheable Unit

MDI Media Dependent Interface

MES Miscellaneous Equipment
Specification

MFLOPS Million FLoating-point
Operations Per Second

MII Media Independent Interface

MIP Mixed-Integer Programming

MLD Merged Logic DRAM

MLR1 Multi-Channel Linear
Recording 1

MODS Memory Overlay Detection
Subsystem

MP Multiprocessor

MPI Message Passing Interface

MPP Massively Parallel Processing

MPS Mathematical Programming
System

MST Machine State

NTF No Trouble Found

NUMA Non-Uniform Memory Access

NUS Numerical Aerodynamic
Simulation

NVRAM Non-Volatile Random Access
Memory

NWP Numerical Weather Prediction

OACK Option Acknowledgment

OCS Online Customer Support

ODBC Open DataBase Connectivity

OEM Original Equipment
Manufacturer

OLAP Online Analytical Processing

OLTP Online Transaction
Processing

OSL Optimization Subroutine
Library

OSLP Parallel Optimization
Subroutine Library

P2SC POWER2 Single/Super Chip
 Abbreviations and acronyms 179

PBLAS Parallel Basic Linear Algebra
Subprograms

PCI Peripheral Component
Interconnect

PDT Paging Device Table

PDU Power Distribution Unit

PE Parallel Environment

PEDB Parallel Environment
Debugging

PHB Processor Host Bridge

PHY Physical Layer

PID Process ID

PII Program Integrated
Information

PIOFS Parallel Input Output File
System

PMU Performance Monitoring Unit

POE Parallel Operating
Environment

POSIX Portable Operating Interface
for Computing Environments

POST Power-On Self-test

POWER Performance Optimization
with Enhanced Risc
(Architecture)

PPC PowerPC

PPM Piecewise Parabolic Method

PSE Portable Streams
Environment

PSSP Parallel System Support
Program

PTF Program Temporary Fix

PTPE Performance Toolbox Parallel
Extensions

PVC Permanent Virtual Circuit

QP Quadratic Programming

RAM Random Access Memory

RAN Remote Asynchronous Node

RAS Reliability, Availability, and
Serviceability

RFC Request for Comments

RIO Remote I/O

RIPL Remote Initial Program Load

RISC Reduced Instruction-Set
Computer

ROLTP Relative Online Transaction
Processing

RPA RS/6000 Platform
Architecture

RPL Remote Program Loader

RPM Red Hat Package Manager

RSC RISC Single Chip

RSCT Reliable Scalable Cluster
Technology

RSE Register Stack Engine

RSVP Resource Reservation
Protocol

RTC Real-Time Clock

SAR Solutions Assurance Review

SAS Single Attach Station

ScaLAPACK Scalable Linear Algebra
Package

SCB Segment Control Block

SCO Santa Cruz Operations

SDQ Store Data Queue

SDRAM Synchronous Dynamic
Random Access Memory

SEPBU Scalable Electrical Power
Base Unit

SGI Silicon Graphics Incorporated

SHLAP Shared Library Assistant
Process

SID Segment ID

SIT Simple Internet Transition

SLB Segment Look-aside Buffer,
Server Load Balancing
180 POWER4 Processor Introduction and Tuning Guide

SLIH Second Level Interrupt
Handler

SLR1 Single-Channel Linear
Recording 1

SM Session Management

SMB Server Message Block

SMI System Memory Interface

SMP Symmetric Multiprocessor

SOI Silicon-on-Insulator

SP Service Processor

SP IBM RS/6000 Scalable
POWER Parallel Systems

SP Service Processor

SPCN System Power Control
Network

SPEC System Performance
Evaluation Cooperative

SPM System Performance
Measurement

SPR Special Purpose Register

SPS SP Switch

SPS-8 Eight-Port SP Switch

SRQ Store Reorder Queue

SRN Service Request Number

SSA Serial Storage Architecture

SSC System Support Controller

SSQ Store Slice Queue

SSL Secure Socket Layer

STE Segment Table Entry

STFDU Store Float Double with
Update

STP Shielded Twisted Pair

STQ Store Queue

SUID Set User ID

SUP Software Update Protocol

SVC Switch Virtual Circuit

SVC Supervisor or System Call

SYNC Synchronization

TCE Translate Control Entry

Tcl Tool Command Language

TCQ Tagged Command Queuing

TGT Ticket Granting Ticket

TLB Translation Lookaside Buffer

TOS Type Of Service

TPC Transaction Processing
Council

TPP Toward Peak Performance

TTL Time To Live

UDI Uniform Device Interface

UIL User Interface Language

ULS Universal Language Support

UP Uniprocessor

USLA User-Space Loader Assistant

UTF UCS Transformation Format

UTM Uniform Transfer Model

UTP Unshielded Twisted Pair

VA Virtual Address

VESA Video Electronics Standards
Association

VFB Virtual Frame Buffer

VHDCI Very High Density Cable
Interconnect

VLAN Virtual Local Area Network

VMM Virtual Memory Manager

VP Virtual Processor

VPD Vital Product Data

VPN Virtual Private Network

VSD Virtual Shared Disk

VT Visualization Tool

XCOFF Extended Common Object
File Format

XLF XL Fortran
 Abbreviations and acronyms 181

182 POWER4 Processor Introduction and Tuning Guide

Index

Symbols
 70

Numerics
32-bit

large page support 60
64-bit

performance, integer 91

A
ABAQUS/Explicit 161
addi instruction 9
addic instruction 92
address

effective 57
real 57
translation 56
virtual 57

affinity
memory 53, 60

AGEN cycle 14
AIX

5.1 58
AIXTHREAD_SCOPE 127
ALLOCATABLE

Fortran 89
application

FIRE 165
sPPM 136

application tuning
memory 34
numerically intensive 26

applications
large page 60

argument
by reference, by value 89

array
order in memory 34

arrays
C

element order 95
dimension 100
© Copyright IBM Corp. 2001
Fortran
element order 95

subscripts 96
ASCI

benchmark 136
assembler 41, 85

documentation 88
instructions 85
standard instructions 80

ASSERT 82
asynchronous I/O 108, 120
ATLAS 114
automatic parallelization 130
AVL

FIRE 165
AWE 159

B
bandwidth 148

64-bit 92
barrier 144

PThreads 140
binding

process, to a processor 149
bindprocessor command 158
BLAS 113, 115
BLAST 169
blocking 38
bosboot command 67
branch prediction 12
buffered I/O 109, 120
built-in self test 7

C
C

array order in memory 34
arrays

element order 95
compiler options 69
directives

#pragma disjoint 94
C/C++

virtual functions, performance 90
 183

volatile 90
cache

bandwidth 148
blocking 38
considerations 28
false sharing 144
interference 148
L1 28
L2 30
L2 slices 30
latency 32
lines 29
set associativity 29
shared 148
shared, L2 165
structure 27

cache considerations 28
cache miss

L2 31
cache misses

avoiding 38
CACHE_ZERO 83
CFD

FIRE 165
chdev command 66
Cholesky factorization 122
chuser command 61
CNCALL 82
commands

bindprocessor 158
bosboot 67
chdev 66
chuser 61
dump 60
fdpr 73
filemon 52
gprof 111
iostat 52
ldedit 60
limit 54
lsps 62
mkuser 61
netpmon 52
netstat 52
nfsstat 52
prof 111
ps 61
svmon 52, 60, 61
svmon command 61

topas 109
tprof 111
ulimit 54
vmstat 52, 61, 108
vmtume 63
vmtune 52, 61, 63, 67
xprofiler 112

communication
protocol 134

compiler directive
Fortran

ASSERT 82
CACHE_ZERO 83
CNCALL 82
INDEPENDENT 82
LIGHT_SYNC 83
PERMUTATION 82
PREFETCH_BY_LOAD 81
PREFETCH_FOR_LOAD 82
PREFETCH_FOR_STORE 82
UNROLL 82

compiler directives
Fortran 80
loop-related 82
prefetch 81

compiler option
C

-qalias 75
-qarch 80
-qfold 75
-qinline 75
-qlist 84
-qsmp 74
-qunroll 75

C++
-qsmp 74

Fortran 74
-g 74
-O 70
-O2 70
-O3 70
-O5 70
-p 74
-pg 74
-Q 74
-qalias 72
-qalign 72
-qarch 71
-qassert 72
184 POWER4 Processor Introduction and Tuning Guide

-qcache 71
-qcompact 73
-qfdpr 73
-qhot 72, 76
-qipa 73
-qlibansi 74
-qlibessl 74
-qlist 84
-qnozerosize 74
-qpdf 73
-qsmp 73
-qstrict 73
-qstrict_induction 73
-qtune 71
-qunroll 73

-O 90
-Q 90
-q64 91
-qalign 90
-qarch 168
-qintsize 92
-qipa 90
-qlist 91

compiler options 69
Fortran

conflicting 69
POWER4 specific 75
recommended 79

compilers
comparing code generation 79

congruence class 29
CONTAINS, Fortran

Fortran 89
copy

performance 155
core interface unit (CIU) 6
counters 105
critical sections 133

D
daemon, page replacement 65
dangling pointer 142
data

sources of 105
data prefetch 31, 35
DAXPY 79
dcbz instruction 83
DDOT 79

DGEMM 161
single processor 116
SMP parallel 117

dimension
arrays 100

direct I/O 108
directives

C
#pragma disjoint 94

distributed
memory, MPI 133

dump command 60
dynamic threads 128

E
effective address 57
effective address (EA) 13
effective-to-real address table (ERAT) 13
eigenvalue 113
environment variables

SMP 127
ESSL 114
events 102
executable format 60
execution unit

floating point 32
expressions

Fortran 94

F
fabric controller 7
false sharing 144
FASTA 168
fdiv instruction 15
fdivs instruction 15
fdpr command 73
fetch_and_add 135
filemon command 52
FIRE

computational fluid dynamics 165
First Failure Data Capture 7
floating point operation 32
floating point registers 32
floating point unit 32
FMA 33
fork

process 150
format
 Index 185

executable 60
Fortran

ALLOCATABLE 89
array order in memory 34
arrays

element order 95
automatic parallelization 130
coding tips 89
compiler directive 80

ASSERT 82
CACHE_ZERO 83
CNCALL 82
INDEPENDENT 82
LIGHT_SYNC 83
PERMUTATION 82
PREFETCH_BY_LOAD 81
PREFETCH_FOR_LOAD 82
PREFETCH_FOR_STORE 82
UNROLL 82

compiler options 69
CONTAINS 89
directives

prefetch 81
I/O 109
INCLUDE 90
INTENT 89
intrinsic functions

vectorized 76
module 89
option precedence 69
WHERE 89

FPU 32
fres instruction 16
frsqrte instruction 16
fsel instruction 16
fsqrt instruction 15
fsqrts instruction 15

G
general sparse system of linear equations 122
genetic

sequencing 168
global

const 90
variables, thread 140

global completion table (GCT) 10
gprof command 111
group completion (GC) stage 9

group operations
MPI 134

groups 102
GX bus controller 6

H
hand tuning 26
hardware prefetch 31

prefetch, hardware 21
High Node, 375 MHz 162
hot spots

locating 110
hybrid

programming 135

I
I/O

asynchronous 108
buffered 109
direct 108
Fortran 109
optimizing 120
paging 108
performance 120
tuning 107
unbuffered 109

I/O library, MIO 120
I/O pacing 65
IBM

SP 159
switch 159

INCLUDE
Fortran 90

INDEPENDENT 82
induction variable 92
inlining 90, 95
instruction 85
instruction fetch address register (IFAR) 9
instruction set

documentation 88
instructions

standard 80
integer

performance 91
interference

cache 148
interleaving 53
intrinsic functions 98, 114, 117
186 POWER4 Processor Introduction and Tuning Guide

Fortran
vectorized 76

invariant functions 97
iostat command 52
issue queues 10
issue stage (ISS) 11

L
L1 data cache 28, 32

structuring for 38
L2 cache 30, 32, 148

miss 31
store 30, 51

L2 cache slices 30
L3 cache structure 22
LAPACK 113
large page 158

applications 60
data inheritance 60
usage control 61
vmtune 61

large page data 59
large page memory

defining 67
large pages 58

pinned 60
latency

MPI 136
ldedit command 60
library

MIO 120
WSMP 122

library, tuned 114
libsys.a

semaphore 150
LIGHT_SYNC 83
light-weight synchronization 83
limit command 54
lmw instruction 10
load instruction

data load 30
load miss queue (LMQ) 14
load reorder queue (LRQ) 14
load-balancing

thread programming 137
loadquad instruction 80
local

variables, thread 140

lock 128
atomic 150
contention 143
mutex 140

logical
partitioning 165

loops
locating 87
performance 95
stride 95, 97
unrolling 86
variables 96

low level parallelization 129
LPAR 107, 165
lrubuckets 65
lrud 65
lsps -a command 62
lswi instruction 10

M
malloc 128
MALLOCMULTIHEAP 128
mapping (MP) stage 11
MASS 114, 117
math.h 89
mathematical functions 114
matrix

WSMP library 122
matrix multiply 44
max_coalesce 66
max_pout 65
maxfree 65
maxperm 63
maxpgahead 65, 66
maxrandwrt 66
MCM

partitioning, LPAR 166
memory

affinity 53
book 53
configuration 53
controller 53
interleaving 53

memory affinity 60
memory bandwidth 153, 157
memory copy 155
mempools 65
merged logic DRAM 5
 Index 187

message passing 133
WSMP library 122

mfxer instruction 10
millicoded instructions 9
min_pout 65
minfree 65
minimization, stride 34
minperm 63
minpgahead 66
MIO library 120
mixed-mode

programming 135
mkuser command 61
module

Fortran 89
monitoring

I/O 120
MP_SHARED_MEMORY 135
MP_WAIT_MODE 135
MPI 159

parallelization 133
msem_ 150
mtcrf instruction 10
mtxer instruction 10
multi-chip module (MCM) 18
multifrontal algorithm 122
multiple jobs 161
multiply-and-add instruction 8
mutex lock 140

N
netpmon command 52
netstat command 52
nfsstat command 52
non-cacheable unit (NCU) 6
nroff 80
NUMA 126
number of processors, online 139
numclust 66
numerically intensive applications 26

O
-O flags 70
O3 fortran option 70
object code 84

instructions 85
locating loops 87

OpenMP 126

critical section 144
false sharing 144
overhead 146
Pthreads 142
threadprivate 146

operation
floating point 32

optimization
see also performance
see also tuning
intrinsic functions 98
invariant statement 97
reciprocal multiply 99

optimizer 79
outer loop unrolling 41
overhead

parallel, OpenMP 146

P
P2SC 2
page replacement daemon 65
page size 54
page table 55, 58
page table entry 55
pages

large 58
paging 108
parallel

overhead, OpenMP 146
Parallel Environment 134
Parallel ESSL 114, 115
parallelization

automatic 130
comparison 147
directive based SMP 131
general 125
high level 129
low level 129
MPI 133
overhead 133
Pthreads 137
shared memory 126

partitioning 165
performance 166

PCI Host Bridge (PHB) 23
PE 134
Peak Megaflops 33
performance
188 POWER4 Processor Introduction and Tuning Guide

see also optimization
see also tuning
64-bit 91
array dimension 100
cache 150
coding tips 88
comparative 159
function arguments 89
I/O 120
inlining 90
integer arithmetic 91
intrinsic functions 98
invariant statement 97
lock contention 143
loops 95

unrolling 86
math.h 89
non numeric code 80
reciprocal multiply 99
semaphores 150
shared cache 166
string operations 89
threads 143
total system 161
variation 67

performance monitor 23, 101
events 102
groups 102
pmcount 101

performance monitoring unit (PMU) 7
PERMUTATION 82
pinned memory 60
pipeline

floating point 33
POWER4 9

pmcount 101
POE 134
pointer

dangling 142
pointers 94
POSIX

I/O 121
power on reset 7
POWER1 1
POWER2 2
POWER3 4, 159
POWER4

block diagram 8
caches 27

chip 6
introduction 4
memory subsystem 20
overview 5
performance characteristics 27
performance monitor 23

PowerPC 601 2
PowerPC 603 3
PowerPC 604 3
PowerPC 604e 3
prefetch 31, 35
PREFETCH_BY_LOAD 81
PREFETCH_FOR_LOAD 82
PREFETCH_FOR_STORE 82
prefetching

I/O 120
large pages 58

process scope 127
processor

introduction 4
POWER4 details 5

processor, online 139
prof command 111
profiling 110
program counter

thread programming 137
programming

model, MPI 135
protein

sequencing 168
ps command 61
pthread_create 138
Pthreads

detached 139
Fortran 142
joinable 139
OpenMP 142
programming 137
pthread_cancel 139
pthread_exit 139
pthread_mutex_t 145
thread creation 138, 143
thread termination 139

Q
qarch fortran option 70
qcache fortran option 70
qhot fortran option 70
 Index 189

qipa fortran option 70
-qlibposix 74
qtune fortran option 70

R
read command queue 20
real address 57
reciprocal approximation 118
reciprocal multiply 99
Redbooks Web site 173

Contact us xiv
reduction sum 133
register

physical 32
rename 32
segment 54
spilling 41
thread programming 137
usage in assembler listing 85

registers 32
renaming 32
runtime variables

SPINLOOPTIME, YIELDLOOPTIME 143

S
ScaLAPACK 115
scaling 160
scaling, MPI 159
scheduling, thread 131
scope, process 127
scope, system 127
scope, thread contention 127
segment addressing 54
segment lookaside buffer 57
segment look-aside buffer (SLB) 13
segment table entry (STE) 13
semaphore 150

sleep versus spin 151
sequencing

genetic 168
serialization, threads 140
set associativity 29
shared

cache 148
L2 cache 165
memory segment 134
memory, MPI 133
memory, Pthreads 137

parallelization, shared memory 126
shared L2 cache 158
size

apparent cache size 148
SLB 57
sleep

versus spin 151
slice queue (SSQ) 15
slices, L2 cache 30
small page 158
small pages 58
Smith-Waterman

algorithm 168
SMP

runtime variables 143
SP switch 134
sparse matrix

WSMP library 122
special purpose register (SPR) 15
speculative-execution 11
spilling 41
spin

versus sleep 151
spin wait 126
SPINLOOPTIME 128, 143
sPPM

code 136
stack

size, OpenMP 129
thread programming 137

storage slice queue (SSQ) 15
store queue (STQ) 15
store reorder queue (SRQ) 14
store-in 30
store-through 30
strict_maxperm 64
stride 34, 95, 97
string operation

performance 89
superscalar execution 8
svmon command 52, 60, 61
synchronization 135
synchronization, threads 140
sysconf 139
System Memory Interface (SMI) 20
system performance 61
system scope 127
system tuning 54
190 POWER4 Processor Introduction and Tuning Guide

T
thread

programming, see Pthreads 137
scheduling 131
shared cache 148

thread contention scope 127
thread safe 129, 131
threads 126
threadsafe 146
throughput 157, 160, 161, 162

I/O 120
partitioning, LPAR 165

TLB 31
large pages and 58

topas command 109
tprof command 111
trace file

I/O 121
Translation Lookaside Buffer 31
translation look-aside buffer (TLB) 13
translation lookaside buffer (TLB) 31
translation, address 56
triangular matrix solver 122
tuning

see also optimization
see also performance
application 25
application memory 34
floating point 40
for cache 38, 51
I/O 65, 107

vmtune 66
inlining 90
page replacement 63
system 54
VMM 63, 65

type conversion 95

U
ulimit command 54
unbuffered I/O 109
UNROLL 82
unrolling 41
user space

protocol 134

V
variables 93

global, thread 140
local, thread 140
loop 96

vector intrinsics 76
virtual address (VA) 13, 57
virtual memory 54
VMM tuning 63
vmstat command 52, 61, 108
vmtune command 52, 61, 63, 65, 66, 67

W
Watson Sparse Matrix Package (WSMP) 122
WHERE

Fortran 89
write cache queue 20
write command queue 20
write-behind 66
WSMP library 122

X
XLSMPOPTS 129
xprofiler 112
xprofiler command 112

Y
yield wait 126
YIELDLOOPTIME 128
 Index 191

192 POWER4 Processor Introduction and Tuning Guide

(0.2”spine)
0.17”<->0.473”

90<->249 pages

The POW
ER4 Processor Introduction and Tuning Guide

®

SG24-7041-00 ISBN 0738423556

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

The POWER4 Processor
Introduction and Tuning Guide

Comprehensive
explanation of
POWER4
performance

Includes code
examples and
performance
measurements

How to get the most
from the compiler

This redbook is designed to familiarize you with the IBM
^ pSeries POWER4 microarchitecture and to provide
you with the information necessary to exploit the new
high-end servers based on this architecture.

The eight to 32-way symmetric multiprocessing (SMP)
pSeries 690 Model 681 will be the first POWER4 system to be
available. Thus, most analysis presented in this publication
refers to this system.

Specifically, this publication will address the following issues:

� POWER4 features and capabilities

� Processor and memory optimization techniques,
especially for Fortran programming

� AIX XL Fortran Version 7.1.1 compiler capabilities and
which options to use

� Parallel processing techniques and performance

� Available libraries and programming interfaces

� Performance examples of commonly used kernels

While this publication is decidedly technical in nature, the
fundamental concepts are presented from a user point of view
and numerous examples are provided to reinforce these
concepts.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Figures
	Tables
	Preface
	The team that wrote this redbook
	Notice
	IBM trademarks
	Comments welcome

	Chapter 1. Processor evolution
	1.1 POWER1
	1.2 POWER2
	1.3 PowerPC
	1.4 RS64
	1.5 POWER3
	1.6 POWER4

	Chapter 2. The POWER4 system
	2.1 POWER4 system overview
	2.2 The POWER4 chip
	2.3 Processor overview
	2.3.1 The POWER4 processor execution pipeline
	2.3.2 Instruction fetch, group formation, and dispatch
	2.3.3 Instruction execution, speculation, rename resources
	2.3.4 Branch prediction
	2.3.5 Translation buffers (TLB, SLB, I- and D-ERAT)
	2.3.6 Load instruction processing
	2.3.7 Store instruction processing
	2.3.8 Fixed-point execution pipeline
	2.3.9 Floating-point execution pipeline
	2.3.10 Group completion

	2.4 Storage hierarchy
	2.4.1 L1 instruction cache
	2.4.2 L1 data cache
	2.4.3 L2 cache
	2.4.4 L3 cache
	2.4.5 Interconnecting chips to form larger SMPs
	2.4.6 Multiple module interconnect
	2.4.7 Memory subsystem
	2.4.8 Hardware data prefetch
	2.4.9 Memory/L3 cache command queue structure

	2.5 I/O structure
	2.6 The POWER4 Performance Monitor

	Chapter 3. POWER4 system performance and tuning
	3.1 Tuning for numerically intensive applications
	3.1.1 The tuning process for numerically intensive applications
	3.1.2 Hand tuning overview for numerically intensive programs
	3.1.3 Key aspects of the POWER4 design
	3.1.4 Tuning for the memory subsystem
	3.1.5 Tuning for the FPUs
	3.1.6 Cache and memory latency measurement
	3.1.7 Selected fundamental kernel performance within on-chip cache
	3.1.8 Other tuning considerations

	3.2 Tuning non-floating point applications
	3.2.1 The load/store and integer units
	3.2.2 Memory configurations

	3.3 System tuning
	3.3.1 POWER4 virtual memory architecture overview
	3.3.2 Small and large page sizes
	3.3.3 AIX system parameters
	3.3.4 Minimizing variation in job performance

	Chapter 4. Optimizing with the compilers
	4.1 POWER4-specific compiler options
	4.1.1 General performance options
	4.1.2 Options for POWER4
	4.1.3 Using XL Fortran vector-intrinsic functions
	4.1.4 Recommended options
	4.1.5 Comparing C and Fortran compiler code generation

	4.2 XL Fortran compiler directives for tuning
	4.2.1 Prefetch directives
	4.2.2 Loop-related directives
	4.2.3 Cache and other directives

	4.3 The object code listing
	4.4 Basic coding practices for performance
	4.4.1 Language-independent tips
	4.4.2 Fortran tips
	4.4.3 C and C++ tips
	4.4.4 Inlining procedure references
	4.4.5 Structuring code for optimal grouping

	4.5 Tuning for 64-bit integer performance

	Chapter 5. General tuning guidelines
	5.1 Hand tuning code
	5.1.1 Local or global variables?
	5.1.2 Pointers
	5.1.3 Expressions
	5.1.4 Data type conversions
	5.1.5 Tuning loops

	5.2 Using pre-tuned code
	5.3 The performance monitor
	5.4 Tuning for I/O
	5.5 Locating hot spots (profiling)

	Chapter 6. Performance libraries
	6.1 The ESSL and Parallel ESSL libraries
	6.1.1 Capabilities of ESSL and Parallel ESSL
	6.1.2 Performance examples using ESSL

	6.2 The MASS libraries
	6.2.1 Installing and using the MASS libraries
	6.2.2 Description and performance of MASS libraries

	6.3 Modular I/O (MIO) library
	6.4 Watson Sparse Matrix Package (WSMP)

	Chapter 7. Parallel programming techniques and performance
	7.1 Shared memory parallelization
	7.1.1 SMP runtime behavior
	7.1.2 Shared memory parallel examples
	7.1.3 Automatic shared memory parallelization
	7.1.4 Directive-based shared memory parallelization
	7.1.5 Measured SMP performance

	7.2 MPI in an SMP environment
	7.3 Programming with threads
	7.3.1 Basic concepts
	7.3.2 Coding and performance considerations
	7.3.3 The best approach for shared memory parallelization

	7.4 Parallel programming with shared caches

	Chapter 8. Application performance and throughput
	8.1 Memory to memory copy
	8.2 Memory bandwidth limited throughput
	8.3 MPI parallel on pSeries 690 and SP
	8.4 Multiple job throughput
	8.4.1 ESSL DGEMM throughput performance
	8.4.2 Multiple ABAQUS/Explicit job streams
	8.4.3 Memory stress effects on throughput
	8.4.4 Shared L2 cache and logical partitioning (LPAR)

	8.5 Genetic sequencing program
	8.6 FASTA genetic sequencing program
	8.7 BLAST genetic sequencing program

	Related publications
	IBM Redbooks
	Other resources

	Referenced Web sites
	How to get IBM Redbooks
	IBM Redbooks collections

	Special notices
	Abbreviations and acronyms
	Index
	Back cover

