
Managing VLDB Using DB2 UDB EEE

Jonathan Cook, Eduardo Fontana, George Latimer

SG24-5105-00

International Technical Support Organization

http://www.redbooks.ibm.com

Managing VLDB Using DB2 UDB EEE

SG24-5105-00

June 1998

International Technical Support Organization

© Copyright International Business Machines Corporation 1998. All rights reserved
Note to U.S Government Users – Documentation related to restricted rights – Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (June 1998)

This edition applies to DB2 Universal Database Version 5.0 Enterprise - Extended Edition for use with
the AIX V4 Operating System.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. JN9B Building 045 Internal Zip 2834
11400 Burnet Road
Austin, Texas 78758-3493

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

Before using this information and the product it supports, be sure to read the general information in
Appendix C, “Special Notices” on page 265.

Take Note!

Contents

Figures .ix

Tables. .xi

Preface . xiii
The Team That Wrote This Redbook . xiii
Comments Welcome . xiv

Chapter 1. Overview . 1
1.1 DB2 Universal Database Enterprise - Extended Edition 1
1.2 Terminology Used in DB2 UDB EEE . 2

1.2.1 Parallel Architecture and Processing . 5

Chapter 2. Building a Large DB2 UDB EEE Database 7
2.1 The Hardware Configuration. 7
2.2 Designing and Implementing the DIsk Space Allocation 8

2.2.1 Instance and Database Partition Servers 9
2.2.2 Database . 10
2.2.3 Nodegroups . 10
2.2.4 Table Spaces for Data and Index . 10
2.2.5 Temporary Table Space . 11
2.2.6 Container Definitions . 12
2.2.7 File Systems for Log Files . 12
2.2.8 Mapping LVs and FSs to Physical Disks 12
2.2.9 Sizing of LVs and FSs . 14
2.2.10 Naming of VGs, LVs and FSs . 14
2.2.11 Volume Groups per SP node . 16
2.2.12 File Systems per Database Partition . 16
2.2.13 Logical Volumes per Database Partition 16
2.2.14 File System for the DB2 Instance Home Directory 17
2.2.15 How to Create the VGs, LVs and FSs . 17

2.3 Installing and Configuring DB2 UDB EEE . 17
2.3.1 Making /home/tp3an01 Available to all the SP Nodes 18
2.3.2 Installing DB2 UDB EEE . 18
2.3.3 Adding a Group and User . 20
2.3.4 Adding Services Entries . 22
2.3.5 Creating an Instance . 22
2.3.6 Adding Profile Entries . 23
2.3.7 Editing db2nodes.cfg . 23
2.3.8 Creating .rhosts Entries . 24
2.3.9 Setting up db2diag.log . 24
© Copyright IBM Corp. 1998 iii

2.3.10 Setting up syslog.conf . 25
2.3.11 Starting the Instance. 25

2.4 Creating the Database, Nodegroups, Table Spaces and Tables 27
2.4.1 Creating the Database . 27
2.4.2 Setting Archival Logging . 28
2.4.3 Creating Nodegroups . 28
2.4.4 Creating a Temporary Table Space . 28
2.4.5 Creating Table Spaces for Data and Index 29
2.4.6 Creating the Tables . 33
2.4.7 Creating Indexes . 34

2.5 Loading Data into the Database . 35
2.5.1 Creating the Input Data . 35
2.5.2 Using Autoloader with Concurrent db2splits 36
2.5.3 When to Create Indexes . 37
2.5.4 The Number of db2split Processes . 38
2.5.5 Notes on Using Autoloader . 38
2.5.6 Problems running Autoloader . 39
2.5.7 Autoloader Log files . 39
2.5.8 Verifying the Load . 42
2.5.9 Creating the Index on which the Data is Clustered 43
2.5.10 Reorganizing the Table on the Clustering Index 44
2.5.11 Running REORGCHK to Check Clustering 46
2.5.12 Creating Other indexes . 47
2.5.13 Space Taken by the Indexes . 47

Chapter 3. DB2 UDB EEE Backup and Recovery using ADSM 49
3.1 Overview of DB2 UDB EEE Backup and Recovery 49
3.2 Recovery Methods . 50

3.2.1 Crash Recovery . 50
3.2.2 Version (or Restore) Recovery . 50
3.2.3 Roll-Forward Recovery . 50

3.3 Logging . 51
3.3.1 Circular Logging . 51
3.3.2 Archival (or Log Retention) Logging . 52

3.4 Recovery History File . 55
3.5 Choosing A Backup Strategy . 56
3.6 Introducing ADSTAR Distributed Storage Manager (ADSM) 58
3.7 Planning for ADSM. 61
3.8 Installing and Configuring ADSM and DB2 UDB EEE 63

3.8.1 Hardware Configuration . 63
3.8.2 Software Used . 63

3.9 ADSM Server and Client Installation. 64
3.9.1 Install the ADSM Server Software. 64
iv Managing VLDB Using DB2 UDB EEE

3.9.2 Install the ADSM Client Software . 65
3.10 ADSM Server Configuration . 66

3.10.1 Allocate ADSM Database and Log . 67
3.10.2 Format the ADSM Database and Log . 71
3.10.3 Customize ADSM Server Options . 71
3.10.4 Start the ADSM Server . 73
3.10.5 Define an ADSM System Administrator. 75
3.10.6 Register Additional ADSM Administrators 76
3.10.7 Register ADSM Licenses . 77
3.10.8 Define Tape Drives to ADSM . 78
3.10.9 Define Storage Pools to ADSM. 81
3.10.10 Create ADSM Policy Domains . 83
3.10.11 Customize ADSM Server . 85
3.10.12 Create ADSM Administrative Schedules 86
3.10.13 Configure ADSM Server to Start at Boot 87
3.10.14 Prepare IBM 3590 Tape Drives. 89
3.10.15 Prepare Tape Media . 90
3.10.16 High Availability Considerations for ADSM Server 91

3.11 ADSM Client Configuration . 92
3.11.1 Create Client System Options File (dsm.sys) 92
3.11.2 Create Client User Options File (dsm.opt) 95
3.11.3 Create Include-Exclude Options File . 96
3.11.4 Define the Client Nodes to the ADSM Server 97
3.11.5 Set the Initial ADSM Password on Client Nodes 100

3.12 Overview of Backing up a Database Using ADSM 102
3.13 Online Database Backup Using ADSM . 105
3.14 Database Restore Using ADSM . 106
3.15 Tablespace Restore Using ADSM . 109
3.16 Archiving DB2 Log Files Using ADSM . 110
3.17 Using db2adutl to Manage Backups and Logs 114

3.17.1 ADSM and DB2 Concepts. 114
3.17.2 Query Option of db2adutl . 115
3.17.3 Delete Option of db2adutl . 116
3.17.4 Extract Option of db2adutl . 117
3.17.5 An Example Usage of db2adutl. 117

3.18 Using ADSM to Query Archived UDB Log Files 122
3.19 Tuning Considerations for ADSM on the RS/6000 SP. 122
3.20 Scripts Used in the Test Configuration . 123

3.20.1 Policy.mac . 123
3.20.2 TCP/IP Options Script (tuning.cust) . 127

Chapter 4. DB2 UDB EEE High Availability using HACMP 129
4.1 Overview of HACMP. 129
 v

4.1.1 Components of HACMP . 129
4.1.2 Considerations for High Availability of DB2 UDB EEE. 129
4.1.3 Points of Failure . 130
4.1.4 Example Scenarios. 133

4.2 High Availability for DB2 UDB EEE on RISC/6000 SP 139
4.2.1 Hardware Configuration . 140
4.2.2 Installed Software . 142
4.2.3 Network Interfaces . 143
4.2.4 DB2 UDB EEE Configuration . 144

4.3 HACMP Takeover for this Configuration . 145
4.4 HACMP Considerations for DB2 UDB EEE. 151

4.4.1 SP Ethernet Considerations . 151
4.4.2 DB2 UDB EEE Executables . 151
4.4.3 Cluster Size . 152
4.4.4 Standby Nodes or Mutual Takeover . 153
4.4.5 DB2 UDB EEE Database Partitions per SP Node 153
4.4.6 Instance Home Directory Considerations 153
4.4.7 Considerations for Our Example . 155
4.4.8 Effect of Switch Restart on DB2 UDB EEE 156
4.4.9 DB2 UDB EEE Behavior in Case of Node Failure 156

4.5 Prerequisite Tasks for Installation of HACMP with DB2 UDB EEE . . 158
4.5.1 Creating ttys for Serial Null Modem Lines 158
4.5.2 Enabling Target Mode SCSI . 159
4.5.3 Creating Our Own File Collection . 160
4.5.4 Creating /.rhosts Files on all Nodes . 161
4.5.5 Updating the /etc/hosts File on All Nodes 162
4.5.6 TCP/IP Definitions . 163
4.5.7 Creating Aliases for the Switch . 164
4.5.8 Disk Logical Name Definition . 164
4.5.9 Creating Shared Volume Groups . 165
4.5.10 Creation of Logical Volumes . 168
4.5.11 Creating Shared File Systems . 171
4.5.12 Enabling Disk Mirroring. 174
4.5.13 Renaming the Shared Logical Volumes 175
4.5.14 Varying Off Shared Volume Groups on All Nodes 176
4.5.15 Importing Shared Volume Groups . 176
4.5.16 Changing Volume Groups on Destination Nodes 177
4.5.17 Varying Off Volume Groups on Destination Nodes 177
4.5.18 Creating a DB2 Instance and Databases 178
4.5.19 HACMP Installation . 179

4.6 HACMP Configuration of cluster_09_13 . 180
4.6.1 Defining the Cluster ID and Name . 180
4.6.2 Defining Nodes . 180
vi Managing VLDB Using DB2 UDB EEE

4.6.3 Defining Adapters . 180
4.6.4 Synchronizing Cluster Definition on All Nodes 184
4.6.5 Configuring Resource Groups . 184
4.6.6 Configuring Application Servers . 185
4.6.7 Configuring Resources for Resource Groups 187
4.6.8 Synchronizing Node Environment . 189
4.6.9 Verifying Cluster Configuration . 189
4.6.10 Configuring Client Nodes . 189
4.6.11 Starting Cluster Services . 190
4.6.12 Activating I/O Pacing . 191
4.6.13 Using AIX Error Notification . 191

4.7 Review of Configuration in Non-Catalog Cluster 195
4.7.1 Switch Primary Node Failure . 195
4.7.2 Switch IP Address Takeover . 196
4.7.3 Node and Frame Power Recovery . 196

4.8 HACMP Configuration of cluster_01_05 . 197
4.8.1 NFS-Mounting /home/db2inst1 in cluster_09_13. 198
4.8.2 Configuring NFS Access to /home/db2inst1 199
4.8.3 Modifying the cl_deactivate_nfs Script 200
4.8.4 Adding a Post-Event Script to the node_up_remote_complete Script
202
4.8.5 Adding a Post-Event Script to the stop_server Script 203
4.8.6 Adding a Pre-Event Script to start_server 203
4.8.7 Adding a Post-Event Script to node_down_remote_complete . . 204

4.9 How HACMP Takeover Affects DB2 UDB EEE 204
4.9.1 Takeover of the DB2 Instance Owner’s Home Directory 205
4.9.2 DB2 UDB EEE Database Partition Failure 205
4.9.3 Other SP Component Failures . 206
4.9.4 Failover and Cluster Reintegration Times 207

4.10 Miscellaneous Configuration Issues . 207
4.10.1 Use of /etc/netsvc.conf . 207
4.10.2 Use of /etc/xtab . 207
4.10.3 NFS Permissions . 208

4.11 Scripts Used in the Test Configuration . 208
4.11.1 Install the db2.admin File Collection . 208
4.11.2 Start and Stop DB2 UDB EEE . 211
4.11.3 Allocate Disks and Logical Volumes . 218
4.11.4 Synchronize Volume Groups . 238

Appendix A. Autoloader Examples . 243
A.1 Autoloader Example 1: Split on 1 DP, Load on 15 DPs 243

A.1.1 TPCD Generator. 245
4.11.5 Autoloader Configuration File . 245
 vii

A.1.2 Autoloader Command. 247
A.1.3 Autoloader Output. 247
A.1.4 The Phases of Autoloader Processing . 247
A.1.5 Log Files . 248
A.1.6 In Case of Problems . 249

A.2 Autoloader Example 2: Split on 4 DPs, Load on 15 249
A.2.1 Autoloader Command. 252
A.2.2 Autoloader Output. 253
A.2.3 How Many db2split Processes to Use? . 253

Appendix B. Running Commands on Multiple Database Partitions . 255
B.1 Creating Tailored Scripts . 255
B.2 Performing Backups . 260
B.3 Examples of db2_all and rah . 263

B.3.1 Suppress Execution of the User’s .profile . 263
B.3.2 Display the Number of the DP where the Command was Run. . . . 263

Appendix C. Special Notices . 265

Appendix D. Related Publications. 269
D.1 International Technical Support Organization Publications 269
D.2 Redbooks on CD-ROMs . 269
D.3 Other Publications . 269

How to Get ITSO Redbooks . 271
How IBM Employees Can Get ITSO Redbooks . 271
How Customers Can Get ITSO Redbooks. 272
IBM Redbook Order Form . 273

Index . 275

ITSO Redbook Evaluation . 281
viii Managing VLDB Using DB2 UDB EEE

Figures

1. Database Partitions . 3
2. Multiple Database Partitions per Host . 4
3. Shared Nothing Architecture . 5
4. Hardware Configuration . 8
5. SP Nodes and DP Servers . 9
6. Nodegroups and Table Spaces for Data and Index. 11
7. Containers, Logical Volume and Disks . 13
8. Online, Active and Unused Log Files. 54
9. Hardware Configuration . 63
10. Overview of Backing up a Database using ADSM. 104
11. db2adutl Syntax . 115
12. HACMP Mutual Takeover Scenario . 134
13. HACMP Mutual Takeover before Takeover . 135
14. HACMP Mutual Takeover after Takeover . 136
15. HACMP Rotating Standby Scenario . 137
16. HACMP Rotating Standby before Takeover . 138
17. HACMP Rotating Standby After Takeover. 139
18. Hardware Configuration Used for the Test . 141
19. Software Configuration Used for the Test . 143
20. Network Interfaces Available in Each Node. 144
21. Symbols Used in HACMP . 146
22. Configuration before HACMP Takeover . 147
23. Configuration after HACMP Takeover of node1 by node5. 149
24. Configuration after HACMP Takeover of node9 by node13. 150
25. Two HACMP Clusters with Two Nodes Each . 156
26. Shared Volume Group and File System Definition 166
27. Autoloader Example 1 . 244
28. Autoloader Example 2 . 251
29. Using Tailored Scripts to Run Commands in Parallel 256
30. 257
© Copyright IBM Corp. 1998 ix

x Managing VLDB Using DB2 UDB EEE

Tables

1. Logical Volumes per Database Partition . 15
2. Tables Defined in the TPCD30 Database . 145
3. ogical Volumes and Their Usage . 168
4. HACMP LPPs Installed . 179
© Copyright IBM Corp. 1998 xi

xii Managing VLDB Using DB2 UDB EEE

Preface

This redbook is intended to help database administrators manage very large
databases using DB2 Universal Database Enterprise-Extended Edition (EEE)
on RS/6000 SP hardware. Specifically, it discusses how to plan the allocation
of disk space and then load data into a large database.

A detailed explanation of how to use ADSTAR Storage Manager (ADSM) to
backup and restore DB2 UDB EEE databases is included. A section is also
devoted to archiving log files using ADSM.

Configuring your database system to be highly available using HACMP is
also covered. The complexities inherent in using multiple database partitions
on each SP node are explained.

All the programs and scripts that were used to create a large database and
configure the system for use with ADSM and HACMP are included in this
book.

Some knowledge of DB2 Universal Database or DB2 Parallel Edition is
assumed.

The Team That Wrote This Redbook

This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Austin Center.

This project was designed and managed by:

Jonathan Cook is an Advisory Software Engineer at the International
Technical Support Organization, Austin Center. He writes extensively and
teaches IBM classes worldwide on DB2 for the UNIX and Intel platforms.

The authors of this document are:

Jonathan Cook
International Technical Support Organization, Austin Center.

Eduardo Fontana is a Data Management Pre-Sales Technical Specialist who
works for the Software Group at IBM Argentina. He has extensive experience
in AIX, HACMP, RS/6000 SP, DB2, and Intel Operating Systems.
© Copyright IBM Corp. 1998 xiii

George Latimer is a Senior Availability Services Specialist who works for
IBM Global Services based in Charlottesville, Virginia. His areas of speciality
are ADSM, RS/6000 SP, DB2, and HACMP.

Thanks to the following people for their invaluable contributions to this
project:

Calene Janacek
International Technical Support Organization, Austin Center

Dwaine Snow
IBM Toronto Lab

Dale McInnis
IBM Toronto Lab

Bob Harbus
IBM Toronto Lab

A special thanks goes to the staff at the IBM Teraplex Center in
Poughkeepsie, NY, without whose help this project would never have been
completed:

Joe Labriola, Joe Catucci, Gus Branish, Kurt Sulzbach, and Paul Bildzok

Comments Welcome

Your comments are important to us!

We want our redbooks to be as helpful as possible. Please send us your
comments about this or other redbooks in one of the following ways:

 • Fax the evaluation form found in “ITSO Redbook Evaluation” on page 281
to the fax number shown on the form.

 • Use the electronic evaluation form found on the Redbooks Web sites:

For Internet users http://www.redbooks.ibm.com

For IBM Intranet users http://w3.itso.ibm.com

 • Send us a note at the following address:

redbook@us.ibm.com
xiv Managing VLDB Using DB2 UDB EEE

Chapter 1. Overview

The approach of this redbook is to address some of the issues in managing
very large databases (VLDBs) using DB2 Universal Database
Enterprise-Extended Edition (DB2 UDB EEE). Specifically, we discuss how
to:

 • Allocate disk space for the data

 • Load the data into a database

 • Backup and restore databases using ADSM

 • Make the database system highly available using HACMP

A step-by-step guide to each of the above topics is provided in the following
chapters. We were fortunate when writing this book to have the use of an
RS/6000 SP system configured with four high nodes (eight CPUs per node), a
high-speed switSch and around 300 GB of disk. This allowed us to run tests
with a relatively large database (30 GB) and a configuration of DB2 UDB EEE
with four database partitions (logical nodes) per SP node. This system was
made available to us by the IBM TerSaplex Center in Poughkeepsie, New
York.

1.1 DB2 Universal Database Enterprise - Extended Edition

DB2 Universal Database Enterprise-Extended Edition has features that help
to satisfy the needs of decision support and data warehousing applications.
These features include:

 • Intelligent data distribution. DB2 UDB EEE supports parallel queries by
using intelligent database partitioning. In an MPP (Massively Parallel
Processor) or cluster configuration, DB2 UDB EEE distributes the data
and database functions to multiple hosts. DB2 UDB EEE uses a hashing
algorithm that enables it to manage the distribution (and redistribution) of
data as required.

 • A cost-based SQL optimizer. DB2’s cost-based SQL optimizer makes use
of information about how the data is distributed to evaluate the different
access paths for an SQL query. It will then use the access path with the
estimated shortest elapsed execution time. The optimizer supports SQL
query rewrite, OnLine Analytical Processing (OLAP), SQL extensions,
Dynamic Bit-Mapped Indexing ANDing (DBIA), and Star Joins. These
features are commonly used in data warehousing applications.
© Copyright IBM Corp. 1998 1

 • Parallel everything. DB2 UDB EEE’s capabilities include taking advantage
of cluster hardware configurations, partitioning of data, accessing plans
automatically created for parallel execution with standard SQL, and
parallel execution of utilities. DB2’s parallel execution applies to SELECT,
INSERT, UPDATE, and DELETE functions. Data scans, joins, sorts, load
balancing, table reorganization, data load, index creation, indexed access,
and backup and restore are all performed simultaneously on all hosts in
the DB2 cluster.

 • Scalability. As your business grows, DB2 can accommodate more users
and more data with predictably scalable performance. It uses a concept
called shared nothing. (This is discussed in more detail in “Parallel
Architecture and Processing” on page 5). The Shared nothing architecture
allows parallel queries to be processed with the minimum of contention for
resources between the hosts in the DB2 cluster. Because the number of
data partitions has little impact on traffic between hosts, performance
scales in an almost linear manner as you add more machines to your DB2
cluster.

DB2 UDB EEE provides the ability for a database to be partitioned across
multiple independent computers using the same operating system. To the
end-user or application developer, the database appears to be a single logical
entity. DB2 UDB Enterprise-Extended Edition is designed for applications
where the database is simply too large for a single computer to handle
efficiently. SQL operations can operate in parallel on the individual database
partitions, thus improving the performance of a single query.

1.2 Terminology Used in DB2 UDB EEE

This section focuses on some of the terms and definitions we’ll use for the
remainder of the book.

A database is simply a collection of data. If you’re familiar with DB2 or
another RBDMS, you’ll know that data is stored in tables in a database with
tables having a certain number of columns and rows. In DB2 EEE, the
database is distributed into many database partitions. A database partition is
a part of the database that has its own portion of the user data, indexes,
configuration files, and transaction logs. Let’s look at a simple environment
where there is one database partition for every machine in your cluster.
2 Managing VLDB Using DB2 UDB EEE

Figure 1. Database Partitions

Figure 1 is an example of a simple four host cluster. A configuration file
determines which machines will be part of the DB2 UDB EEE environment. A
database partition server holds a portion (partition) of the database. The
hosts communicate using TCP/IP through a token-ring or Ethernet connection
with DB2.

A database instance is a logical database manager environment. You can
have several instances of the database manager product executing within the
same group of hosts. You can use these instances to separate a development
environment from a production environment, to tune the database manager to
a particular environment, or to protect sensitive information from a particular
group of people.

A database is created within a database instance. The database may either
be partitioned or non-partitioned. It will be probably be a partitioned database
when using DB2 UDB EEE because you have the ability to distribute the
function and data among all the hosts in your DB2 cluster.

It is possible to have multiple database partitions on a single host.

Database

Host1

1

Partition
Database

Host2

2

Partition
Database

Host3

3

Partition
Database

Host4

4

Partition

Token-Ring/Ethernet

Database
Partition

Server

Database
Partition

Server

Database
Partition

Server

Database
Partition

Server

Partitioned Database

Database Instance
Overview 3

Figure 2. Multiple Database Partitions per Host

Figure 2 uses the same four-host DB2 cluster used in the last example
(Figure 1 on page 3). Notice that each host has two database partitions. Quite
often, this type of configuration is used to take advantage of SMP (Symmetric
Multi-Processor) hardware. You can distribute the database function and
processing among different hosts and among processors on the same host.

It is desirable to have the same number of database partitions on each host,
though there may be exceptions to this statement. For example, if your
original cluster consisted of single CPU machines and you added new
hardware to your DB2 cluster that included SMP machines, you might
consider creating multiple database partitions on the new SMP hardware.

You might also want to keep one database partition reserved to store only the
System Catalogs and not contain any user data. The database partition that
holds the System Catalog tables is referred to as the catalog partition. You
may also come into contact with the term catalog node. The term node was
used in DB2 Parallel Edition and caused some confusion because it referred
to both software and hardware. A node in DB2 terminology is a database
partition. However, we also refer to uniprocessor or symmetric multiprocessor
machines as nodes. This book tries to avoid confusion in terminology.
However, some of the DB2 commands and SQL statements use the old
terminology.

Database

Host1

Partition

Database
Partition

Server

Database
Partition

Server

Database
Partition

Server

Database
Partition

Server

2

Database

Host2

Partition

4

Database

Host3

Partition

6

Database

Host4

Partition

83 5

Token-Ring/Ethernet

71

Database Instance

Partitioned Database
4 Managing VLDB Using DB2 UDB EEE

1.2.1 Parallel Architecture and Processing
This section explains some more terminology that is used in a partitioned
database environment. We show how DB2 UDB EEE uses this terminology.

DB2 UDB EEE is a product that takes advantage of the shared nothing
architecture.

Figure 3. Shared Nothing Architecture

Figure 3 shows an example of the shared nothing architecture. Here we see
loosely coupled processors are linked by some high-speed interconnection.
Each processor has its own memory and accesses its own disks. The
advantages of this type of architecture are the following:

 • Scalability in terms of database size and number of processors

 • Performance gains from not sharing resources across a network

Total memory has a fixed capacity. By increasing the number of machines,
you can exceed that fixed amount because the memory is shared among
machines. The same is true for total disk capacity. The other advantage that
could be gained is in the number of operations that are performed. Each

CPU2

Memory2

CPU3

Memory3

User Query

Disk n

Disk 2

Disk 1

CPUn

Memoryn

CPU1

Memory1

Disk n

Disk 2

Disk 1

Disk n

Disk 2

Disk 1

Disk n

Disk 2

Disk 1
Overview 5

machine only needs to do part of the work. So, processing is more
distributed, and the database can manage a larger amount of data.

Performance gains are assisted by the concept of function shipping. Function
shipping assists in the reduction of network traffic because functions, such as
SQL queries are shipped instead of data. Function shipping means that
relational operators are executed on the processor containing the data
whenever possible. So, the operation (or the SQL) is moved to where the
data resides. Function shipping is well suited to the shared nothing
architecture model.

The high-speed interconnection used between hosts is represented in Figure
3 on page 5 by the dotted lines. In an SP cluster, this would be the
high-speed switch. The smoother lines represent another type of network.
The user query issues an SQL statement. For example, an SQL SELECT
statement is issued. Every database partition receives the operation from one
processor that works as a dispatcher. This dispatcher is sometimes referred
to as the coordinator partition. Each database partition executes the
operation on its own set of data. An exchange of information among the hosts
may occur. The result from the operation is sent back to the coordinator
partition. The coordinator partition assembles the data and returns it to the
requestor.
6 Managing VLDB Using DB2 UDB EEE

Chapter 2. Building a Large DB2 UDB EEE Database

There are many issues to consider when building a large database. The
approach of this section is to take you through an example of physically
designing, implementing and loading a 30 GB DB2 UDB EEE database on a
RS/6000 SP with four high nodes. Every step that was taken in real life is
documented here, with comments where appropriate. Rather than explaining
all the possible methods to perform each task, we merely explain the method
we chose. Our choice of methods was based on either simplicity or
performance. The tasks we cover are:

 • “Designing and Implementing the DIsk Space Allocation” on page 8

 • “Installing and Configuring DB2 UDB EEE” on page 17

 • “Creating the Database, Nodegroups, Table Spaces and Tables” on
page 27

 • “Loading Data into the Database” on page 35

We also perform the necessary tasks to support an HACMP configuration.
This subject is covered fully in “DB2 UDB EEE High Availability using
HACMP” on page 129.

2.1 The Hardware Configuration

The hardware configuration used for this example is shown in Figure 4. It
shows a RS/6000 SP with four high nodes.

Each high node has:

 • 8 CPUs (604)

 • 4 GB of internal SCSI disk

There is 288 GB of external SSA disk. These disks are physically connected
to all four SP nodes using SSA loops.

The SP nodes have these network interfaces:

 • Token-ring using tp3an01, tp3an05, tp3an09, tp3an13

 • Ethernet using tp3an01b, tp3an05b, tp3an09b, tp3an13b

 • Switch using tp3sn01, tp3sn05, tp3sn09, tp3sn13
© Copyright IBM Corp. 1998 7

Figure 4. Hardware Configuration

2.2 Designing and Implementing the DIsk Space Allocation

The available disk was allocated to hold a 30 GB TPCD database. This
database was to loaded with data using the TPCD generator program dbgen
with a size factor of 30, resulting in the following tables:

 • lineitem with 180,000,000 rows (69 percent)

 • orders with 45,000,000 rows (16 percent)

 • partsupp with 24,000,000 rows (11 percent)

High Node 4
Switch 4

High Node 3

High Node 2

External
Token-Ring

Control
Workstation

Internal
Ethernet

SSA
Disk

Subsystem

SSA Loop

High Node 1

Switch 3

Switch 2

Switch 1
8 Managing VLDB Using DB2 UDB EEE

 • customer with 4,000,000 rows (2 percent)

 • part with 6,000,000 rows (2 percent)

 • supplier with 300,000 rows (<1 percent)

 • nation with 25 rows and region with 5 rows

Indexes are also created against these tables.

2.2.1 Instance and Database Partition Servers
We decided to configure 16 database partition servers across the four SP
nodes, making four servers per SP node. This is based on the sizing rule of
one database partition server per two CPUs.

 • Database partition 1 holds only the System Catalogs and very small
tables. This is done for the following reasons:

 • For backup processing, the partition holding the System Catalogs must
finish before the other partitions can start. So we store as little data as
possible on this partition.

 • This frees up some CPU power on this host. This partition can thus be
used as the coordinator partition, and also as an ADSM server.

Figure 5. SP Nodes and DP Servers

SP NODE: tp3an01

DP 9

DP 11

DP 10

DP 12

SP NODE: tp3an09

DP 13

DP 15

DP 14

DP 16

SP NODE: tp3an13

DP 5

DP 7

DP 6

DP 8

SP NODE: tp3an05

DP 1

DP 3

DP 2

DP 4
Building a Large DB2 UDB EEE Database 9

In Figure 5, the relationship between SP nodes and DB2 database partition
(DP) servers is shown.

2.2.2 Database
The database is created with the name TPCD30.

2.2.3 Nodegroups
Two user-defined nodegroups were defined:

 • NG_BIG for the large and medium tables (lineitem to supplier). This
nodegroup is defined on partitions (2-16), leaving partition 1 for the
System Catalogs and very small tables.

 • NG_LIT for the very small tables (nation and region). This nodegroup is
defined on partition 1.

2.2.4 Table Spaces for Data and Index
Five Database Managed Space (DMS) table spaces for data and indexes
were defined in total. Four of these were defined in nodegroup NG_BIG:

 • TS_DAT_BIG for the lineitem table data

 • TS_IND_BIG for the lineitem table indexes

 • TS_DAT_MED for the medium tables (orders to supplier) data

 • TS_IND_MED for the medium tables indexes

The lineitem and medium tables were separated into different table spaces
because:

 • We can backup and restore at the table space level. So lineitem could be
backed up independently of the medium tables.

 • When loading data, a load of lineitem can be run simultaneously with a
load of one of the medium tables, for example, orders.

One DMS table space was defined in NG_LIT:

 • TS_LIT for the very small tables (region and nation) data and indexes
10 Managing VLDB Using DB2 UDB EEE

Figure 6. Nodegroups and Table Spaces for Data and Index

In Figure 6, we can see the relationship between the nodegroups and the
table space that will hold the data and indexes.

2.2.5 Temporary Table Space
A temporary table space was created (TS_TMP) as System Managed Space
(SMS) which uses containers which are separate file systems. This was done
for these reasons:

 • Performance: isolate log space and temp space: The logs and the
temporary space are on separate file systems and so use different disks.

 • Granularity of disk allocation: We can allocate the disk space for the
temporary table separately from the disk space for the logs.

tp3an01

1 2 3 4

tp3an05

5 6 7 8

tp3an09

9 10 11 12

tp3an13

13 14 15 16

NG_LIT

NG_BIG

TS_DAT_BIG

TS_IND_BIG

TS_DAT_MED

TS_IND_MED

TS_LIT
Building a Large DB2 UDB EEE Database 11

2.2.6 Container Definitions
On each of the SP nodes these Logical Volumes (LVs) or file systems (FSs)
were defined as containers for the table spaces (SMS or DMS):

 • Two raw LVs for the DMS table space TS_DAT_BIG

 • Two raw LVs for the DMS tables space TS_IND_BIG

 • Two raw LVs for the DMS table space TS_DAT_MED

 • Two raw LVs for the DMS table space TS_IND_MED

 • Two FSs for the SMS table space TS_TMP

In addition, on the first SP node alone, tp3an01:

 • One raw LV for the table space which holds the System Catalogs

 • One raw LV for the DMS table space TS_LIT

2.2.7 File Systems for Log Files
On each SP node, a separate file system is defined to hold the log files. The
logical volume used by this file system is mirrored because any loss of log file
data will cause the database to be non-recoverable.

2.2.8 Mapping LVs and FSs to Physical Disks
These LVs were mapped to disk in the following way:

 • We have 16 physical disks (external SSA) available on each SP node.

 • Since we have four database partitions per SP node, there are four
physical disks available per partition.

 • We place the index and data parts of each table on different disks. This is
to reduce disk head movement when using an index to access the data
portion of a table.

 • For the large and medium tables, we define two disks each for data and
index.

 • The two disks used for the data of the large table are also used for the
indexes of the medium tables.

 • The two disks used for the index of the large table are also used for the
data of the medium tables.

 • Each container used for data or index is mapped to one physical disk so
that DB2 can do intelligent striping.

 • The two FSs for TS_TMP are placed on two disks each per partition.
12 Managing VLDB Using DB2 UDB EEE

Figure 7. Containers, Logical Volume and Disks

Figure 7 shows the allocation of disk to containers and logs. Note that this
scheme is repeated across all 15 partitions (2-16) which the NG_BIG
nodegroup includes. On partition 1, the logs file system and SMS directories
for the temporary table space are defined, but not the BIG and MED
containers. Instead, there is one container for the data and indexes of the
very small tables defined in TS_LIT.

It is normally recommended to mirror all of the disks used for data and index
because a loss of one of these disks would usually render the database
unusable. However, this was not done in our configuration. This means that
if a disk fails, after replacing the disk, the database would have to be
restored from backup and rolled forward. This could easily take a
considerable time during which the database is not available. So if long
recovery times are unacceptable, you MUST mirror all data and index disk.

Mirroring Disks

DAT_BIG
1st cont.

DAT_MED
1st cont.

LOGS
file system

TEMPORARY
1st container (SMS Dir)

DAT_BIG
2nd cont.

DAT_MED
2nd cont.

IND_BIG
1st cont.

IND_MED
1st cont.

IND_BIG
2nd cont.

IND_MED
2nd cont.

MIRROR of LOGS

TEMPORARY
2nd container (SMS Dir)

ONE DATABASE PARTITION

DISK 1 DISK 2 DISK 3 DISK 4
Building a Large DB2 UDB EEE Database 13

2.2.9 Sizing of LVs and FSs
The sizing of the LVs and FSs was based on:

 • TS_DAT_BIG, the table space for lineitem’s data. We know the lineitem
table will take around 70 percent of 30 GB for all its data across all the
partitions. This equals 21 GB spread over the 15 partitions, or 1.4 GB per
partition. To allow for a margin of growth, we allocated 2 LVs each of 150
physical partitions (PPs) each of 8 MB = 2.4 GB of disk.

 • TS_IND_BIG, the table space for lineitem’s indexes. By testing with
smaller TPCD databases, we found that the indexes need up to the same
amount of disk as we defined for the data. So we allocated 2.4 GB disk for
the indexes per partition.

 • TS_DAT_MED. The data of the medium tables takes 30 percent of the
total data. This makes less than half the space allocated to lineitem. So
we allocated 2 LVs each of 75 PPs of 8 MB = 1.2 GB of disk.

 • TS_IND_MED. For the indexes of the medium tables, we allocated the
same amount of disk as for their data–that is, 1.2 GB of disk.

 • Logs: For the FS holding the log files, we allocated one FS of 1.2 GB
spread over two disks. This disk was mirrored on the other two disks
available for the partition.

 • Temporary Space: For the 2 FSs holding TS_TMP, we allocated a total of
4.8 GB per partition. This comprised of two FSs of 2.4 GB, each using two
disks. The size of the temporary table space was designed to be big
enough to be able to hold another copy of the largest table in case of a
REORG.

2.2.10 Naming of VGs, LVs and FSs
To be compatible with an HACMP configuration, volume groups, logical
volumes and file systems must be named so that no conflict arises after
HACMP takeover.

We used the following naming rules:

 • Volume groups: vg_<SP node>_<unique id>.

For example, vg_n01_01 is the first volume group on SP node tp3an01.

 • Logical volumes: lv_<SP node>_<VG id>_<LV id>.

For example, lv_n05_01_103 is a logical volume on SP node tp3an05,
defined in the vg_n05_01 volume group.

 • File systems:
14 Managing VLDB Using DB2 UDB EEE

 • The file systems used for TS_TMP containers are named:
/DB_TMP/db2inst1/NODE00<DP id>/T1 and
/DB_TMP/db2inst1/NODE00<DP id>/T2, where <DP id> is the
database partition identifier.

For example, /DB_TMP/db2inst1/NODE0013/T1 is one of the two FSs
used as containers for TS_TMP for database partition 13.

 • The file systems used to store the log files are named:
/DB_LOG/db2inst1/NODE00<DP id>, where <DP id> is the database
partition identifier.

For example, /DB_LOG/db2inst1/NODE0009 is the FS used to store
the log files for database partition 9.

This table summarizes the logical volumes that are created per database
partition:

Table 1. Logical Volumes per Database Partition

The name of the logical volume is based on:

 • Its usage (log, data, index, temp and so on)

 • The database partition that uses the logical volume

 • The SP node where the logical volume is defined

For example, for the LV used for the log files, the name is lv_nyy_0z_x03,
where:

 • x=1 for partitions 5, 9, and 13
 • x=2 for partitions 2, 6, 10, and 14

LV Name Used For LV Type TS Type Disks Partitions

lv_n01_01_101
lv_n01_01_102
lv_nyy_0z_x03
lv_nyy_0z_x04
lv_nyy_0z_x05
lv_nyy_0z_x06
lv_nyy_0z_x07
lv_nyy_0z_x08
lv_nyy_0z_x09
lv_nyy_0z_x10
lv_nyy_0z_x11
lv_nyy_0z_x12
lv_nyy_0z_x13

Catalog data
Small data
Logfiles
Temp1
Temp 2
Large data1
Large data 2
Large index 1
Large index 2
Medium data 1
Medium data 2
Medium index 1
Medium index 2

raw
raw
JFS
JFS
JFS
raw
raw
raw
raw
raw
raw
raw
raw

DMS
DMS
SMS
SMS
SMS
DMS
DMS
DMS
DMS
DMS
DMS
DMS
DMS

1
1
2(Mirror)
2
2
1
1
1
1
1
1
1
1

1
1-16
1-16
1-16
1-16
2-16
2-16
2-16
2-16
2-16
2-16
2-16
2-16
Building a Large DB2 UDB EEE Database 15

 • x=3 for partitions 3, 7, 11, and 15
 • x=4 for partitions 4, 8, 12, and 16

and:

 • yy=2-digit node number (01, 05, 09, 13)

and:

 • z=1 for partitions 1, 2, 5, 6, 9, 10, 13, 14
 • z=2 for partitions 3, 4, 7, 8, 11, 12, 15, 16

2.2.11 Volume Groups per SP node
Two volume groups were created per SP node. For example, for tp3an01,
these VGs are: vg_n01_01 and vg_n01_02.

2.2.12 File Systems per Database Partition
If we look at database partition 1, the file systems used by the database are:

These file systems hold the temporary data and log data for partition 1 of the
database. There are 3 similar file systems for each partition.

2.2.13 Logical Volumes per Database Partition
If we consider the logical volumes used as containers for data and index of
the large and medium tables, database partition 2 has the following LVs
assigned:

Filesystem 1024-blocks Free Mounted on

/dev/lv_n01_01_103 2031616 2015520 /DB_TMP/db2inst1/NODE0001/T1
/dev/lv_n01_01_104 2031616 2015520 /DB_TMP/db2inst1/NODE0001/T2
/dev/lv_n01_01_105 1228800 1206432 /DB_LOG/db2inst1/NODE0001

LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT

lv_n01_01_206 udb 150 150 1 closed/syncd N/A
lv_n01_01_207 udb 150 150 1 closed/syncd N/A
lv_n01_01_208 udb 150 150 1 closed/syncd N/A
lv_n01_01_209 udb 150 150 1 closed/syncd N/A
lv_n01_01_210 udb 75 75 1 closed/syncd N/A
lv_n01_01_211 udb 75 75 1 closed/syncd N/A
lv_n01_01_212 udb 75 75 1 closed/syncd N/A
lv_n01_01_213 udb 75 75 1 closed/syncd N/A
16 Managing VLDB Using DB2 UDB EEE

These logical volumes hold the data and indexes for the large and medium
tables on database partition 2. Note that these tables are not defined on
partition 1. The names of the logical volumes are decided according to the
rules defined in Table 1 on page 15.

2.2.14 File System for the DB2 Instance Home Directory
A file system was also created at the first SP node, tp3an01, to hold the
instance owner’s home directory:

2.2.15 How to Create the VGs, LVs and FSs
The volume groups, logical volumes and file systems were all defined using a
shell script, setup_VG.ksh, as shown in “Allocate Disks and Logical Volumes”
on page 218. This shell script also provides the ability to destroy all the
definitions (VGs, LVs, FSs) if required, which is useful if we need to change
the configuration in any way.

2.3 Installing and Configuring DB2 UDB EEE

To install and configure DB2 UDB EEE, we performed the following tasks:

 • Make the file system for the DB2 instance’s home directory
(home/tp3an01) available across NFS to all the SP nodes.

 • Install DB2 UDB EEE.

 • Add a group and a user for the DB2 instance.

 • Add entries to /etc/services on all SP nodes.

 • Create the DB2 instance.

 • Edit .profile.

 • Edit db2nodes.cfg.

 • Edit .rhosts.

 • Setup db2diag.log and syslog.

 • Start the DB2 instance.

Filesystem 1024-blocks Mounted on
/dev/lv_n01_01_114 819200 /home/tp3an01
Building a Large DB2 UDB EEE Database 17

2.3.1 Making /home/tp3an01 Available to all the SP Nodes
The /home/tp3an01 file system, which will hold the DB2 instance owner’s
home directory, was NFS-exported using SMIT:

smitty nfs
-->Network File System (NFS)
---->Add a Directory to Exports List

These fields were specified:

PATHNAME of directory to export/home/tp3an01
HOSTS allowed root accesstp3an05,tp3an09,tp3an13

Note: It is important to list the hostnames of the other three SP nodes in HOSTS
allowed root access during the definition of Add a Directory to Exports List.

On the other three SP nodes (tp3an05, tp3an09, tp3an13), this directory was
NFS-mounted. For example, on tp3an05:

smitty nfs
-->Network File System (NFS)
---->Add a File System for Mounting

These fields were specified:

PATHNAME of mount point............................./home/tp3an01
PATHNAME of Remote Directory......................../home/tp3an01
HOST where remote directory resides.................tp3an01
Remount file system now,
update /etc/filesystems or both?....................both
/etc/filesystems entry will mount the directory
on system RESTART...................................yes
Mount file system soft or hard......................soft

2.3.2 Installing DB2 UDB EEE
To install DB2 UDB EEE, the method we used was to:

 • Log in as root on the first SP node (tp3an01).

 • Change directory into the directory where the images are located.

During testing, we noticed that any trap files (*.trp) produced by DB2 are
written in the instance owner’s home directory on tp3an01 (even if the trap
occured one of the other SP nodes). For this reason, we found it necessary
to NFS mount /home/tp3an01 over the switch.

NFS Mount /home/tp3an01 over the Switch
18 Managing VLDB Using DB2 UDB EEE

 • Run smitty installp, then specify . (dot) as the input directory.

 • Select F4 against Software to install.

 • Choose License for DB2 UDB EEE (this will pull in all the other LPPs as
prerequisites).

Once that has finished, edit /smit.log to find the installp command that was
run:

installp -acgNQqwX -d. ’db2_05_00.xsrv 5.0.0.1’

For the installp command to work on the other SP nodes, the DB2 images
must be in a directory which is available through NFS to the other SP nodes.
In our case, we placed the images under the file system that will be used for
the home directory of the instance owner (db2inst1), which is /home/tp3an01.

Then we installed the other nodes using this command:

installp -acgNQqwX -d/home/tp3an01 ’db2_05_00.xsrv 5.0.0.1’

from each of the three other SP nodes (tp3an05, tp3an09, tp3an13) while
logged in as root at those SP nodes.

To see what LPPs were installed, look at /smit.log on each SP node. Here is
the output from the first node:

Note that the DB2 EEE components installed in this example take around 60
MB in /usr/lpp/db2_05_00.

Installation Summary

Name Level Part Event Result

ifor_ls.client.base 4.2.0.0 USR APPLY SUCCESS
ifor_ls.client.base 4.2.0.0 ROOT APPLY SUCCESS
db2_05_00.xsrv 5.0.0.1 USR APPLY SUCCESS
db2_05_00.pext 5.0.0.1 USR APPLY SUCCESS
db2_05_00.db2.samples 5.0.0.1 USR APPLY SUCCESS
db2_05_00.cs.sna 5.0.0.1 USR APPLY SUCCESS
db2_05_00.cs.ipx 5.0.0.1 USR APPLY SUCCESS
db2_05_00.cs.drda 5.0.0.1 USR APPLY SUCCESS
db2_05_00.client 5.0.0.1 USR APPLY SUCCESS
db2_05_00.db2.rte 5.0.0.1 USR APPLY SUCCESS
db2_05_00.db2.engn 5.0.0.1 USR APPLY SUCCESS
db2_05_00.das 5.0.0.1 USR APPLY SUCCESS
db2_05_00.cs.rte 5.0.0.1 USR APPLY SUCCESS
db2_05_00.cnvucs 5.0.0.1 USR APPLY SUCCESS
Building a Large DB2 UDB EEE Database 19

To install the documentation in HTML format, we chose to install to one SP
node only to avoid wasting disk space. This is the output from running the
install:

This takes an additional 22 MB. The documentation is installed in
compressed format. To decompress these files, we ran:

cd /usr/lpp/db2_05_00/doc
./db2insthtml en_US

After completion, /usr/lpp/db2_05_00 takes up around 130 MB.

2.3.3 Adding a Group and User
Since the RS/6000 SP is configured to use File Collections to manage user
and group information, users and groups must be defined on the Control
Workstation and then copied to all the SP nodes using the supper utility.

To add a group called db2asgrp on the Control Workstation when logged in as
root, enter:

smitty group
-->Add a Group

This field was specified:

Group NAME db2asgrp

To add a user called db2inst1 on the Control Workstation when logged in as
root, enter:

smitty user
-->Add a User

These fields were specified:

Installation Summary

Name Level Part Event Result

db2_05_00.html.en_US 5.0.0.1 USR APPLY SUCCESS

For the db2insthtml script to complete, you need enough space in
/usr/lpp/db2_05_00to hold the compressed (22 MB) and decompressed
(70 MB) versions.

Space Required to Install the Online Manuals
20 Managing VLDB Using DB2 UDB EEE

User NAME............................. db2inst1
Primary GROUP......................... db2asgrp
HOME directory /home/tp3an01/db2inst1

Before distributing this user to the SP nodes we need to:

 • Set its password because to be able to log in as the new user, a password
must exist.

 • Change its password because, by default, when we first log in as this new
user, the system will prompt us to change the password.

To set the password on the Control Workstation when logged in as root,
enter:

To make the system prompt you to change the password, we logged in as
db2inst1 using the AIX login command:

Now we are ready to distribute the new user and group information to the SP
nodes. From the Control Workstation, when logged in as root, enter:

sp-tp3cw[/] dsh -a /var/sysman/supper update user.admin

Here is the output from the supper command:

This is a normal AIX user, not an SP user. An SP user uses AMD
(Automounter) to manage the home directory. Since the DB2 instance
owner’s home directory must be constantly available, mounting it over NFS
is a better option.

Instance Owner as a Normal AIX User

sp-tp3cw[/]> passwd db2inst1
Changing password for "db2inst1"
db2inst1’s New password:
Enter the new password again:

sp-tp3cw[/]> login db2inst1
3004-610 You are required to change your password.
 Please choose a new one.

db2inst1’s New password:
Enter the new password again:
Building a Large DB2 UDB EEE Database 21

2.3.4 Adding Services Entries
Before creating the DB2 UDB EEE instance, entries must be made in the
/etc/services file on all SP nodes to be included in the instance. As we are
using 4 database partitions (DPs) per SP node, we need to reserve 4 ports
per SP node. To support HA/CMP failover, another 4 ports must be reserved,
making 8 in total.

On tp3an01, tp3an05, tp3an09, tp3an13 these lines were added to
/etc/services:

DB2_db2inst1 30000/tcp
DB2_db2inst1_END 30007/tcp

This means that ports 30000 to 30007 inclusive are reserved for DB2.

2.3.5 Creating an Instance
Now we are ready to create the DB2 UDB EEE instance. Logged in as root at
tp3an01:

tp3an01.ppd.pok.ibm.com: Updating collection user.admin from server sp-tp3.ppd.p
ok.ibm.com
tp3an01.ppd.pok.ibm.com: File Changes: 3 updated, 0 removed, 0 errors.
tp3an05.ppd.pok.ibm.com: Updating collection user.admin from server sp-tp3.ppd.p
ok.ibm.com
tp3an05.ppd.pok.ibm.com: File Changes: 3 updated, 0 removed, 0 errors.
tp3an09.ppd.pok.ibm.com: Updating collection user.admin from server sp-tp3.ppd.p
ok.ibm.com
tp3an09.ppd.pok.ibm.com: File Changes: 3 updated, 0 removed, 0 errors.
tp3an13.ppd.pok.ibm.com: Updating collection user.admin from server sp-tp3.ppd.p
ok.ibm.com
tp3an13.ppd.pok.ibm.com: File Changes: 3 updated, 0 removed, 0 errors.

tp3an01[/]> cd /usr/lpp/db2_05_00/instance
tp3an01[/usr/lpp/db2_05_00/instance]> ./db2icrt -udb2inst1 db2inst1
DBI1070I Program db2icrt completed successfully.

The fenced user ID is specified (using -u) as the instance owner because
security is not an issue.

Fenced User
22 Managing VLDB Using DB2 UDB EEE

2.3.6 Adding Profile Entries
Entries need to be added to .profile of db2inst1 so that environment variables
and DB2 profile variables are set. On tp3an01, logged in as db2inst1, these
lines were added to /home/tp3an01/db2inst1/.profile:

. ~/sqllib/db2profile
Set the default DB
db2set -i db2inst1 db2dbdft=tpcd30

2.3.7 Editing db2nodes.cfg
The file db2nodes.cfg in the directory $INSTHOME/sqllib defines which
database partition servers will be started when a db2start is issued. Using vi,
we added these lines:

1 tp3an01 0 tp3sn01
2 tp3an01 1 tp3sn01
3 tp3an01 2 tp3sn01
4 tp3an01 3 tp3sn01
5 tp3an05 0 tp3sn05
6 tp3an05 1 tp3sn05
7 tp3an05 2 tp3sn05
8 tp3an05 3 tp3sn05
9 tp3an09 0 tp3sn09
10 tp3an09 1 tp3sn09
11 tp3an09 2 tp3sn09
12 tp3an09 3 tp3sn09
13 tp3an13 0 tp3sn13
14 tp3an13 1 tp3sn13
15 tp3an13 2 tp3sn13
16 tp3an13 3 tp3sn13

Note that:

 • We started numbering the database partitions (DPs) (nodenums or first
column) at 1 so that they would be synchronized with the hostnames of the
SP nodes.

 • Hostname (2nd column) is defined as the first Ethernet interface (en0) on
each SP node.

 • Logical port (3rd column) must be 0, 1, 2, 3 for the four DPs on each SP
node.

 • Switchname (4th column) is the network interface of the switch on each
SP node.
Building a Large DB2 UDB EEE Database 23

2.3.8 Creating .rhosts Entries
Before issuing a db2start, we have to make sure that remote execution
permission is defined across the SP nodes. In other words, if we execute rsh
tp3an05 date from tp3an01, we will not be prompted for a password. This
needs to be true for all the network interfaces defined in db2nodes.cfg.

This permission is set by adding these lines to .rhosts in
/home/tp3an01/db2inst1 on tp3an01:

tp3an01 db2inst1
tp3sn01 db2inst1
tp3an05 db2inst1
tp3sn05 db2inst1
tp3an09 db2inst1
tp3sn09 db2inst1
tp3an13 db2inst1
tp3sn13 db2inst1

The permission on this file MUST be 600 by running:

chmod 600 .rhosts

Because /home/tp3an01 is a file system that is shared across the SP nodes,
we only have to create these entries once.

It is recommended that you test that remote execution permission has been
enabled for each network interface before issuing a db2start.

2.3.9 Setting up db2diag.log
Most DB2 informational and error messages are written to db2diag.log. This
file is, by default, stored in the $INSTHOME/sqllib/db2dump directory, which
is NFS-shared to all the SP nodes. It is a good idea to change this path so
that the db2diag.log is written locally on each SP node.

To do this, logged in as db2inst1 at tp3an01:

db2 update dbm cfg using diagpath /tmp/db2

where /tmp/db2 is a file system that exists locally on each SP node (not
NFS-shared). Since this parameter (diagpath) is defined at the database
manager level, this command is executed once for the DB2 instance.

Note that all the DPs on the same SP node will write to the same file. So
output from DPs 1, 2, 3, and 4 will all go into /tmp/db2/db2diag.log on
tp3an01.
24 Managing VLDB Using DB2 UDB EEE

2.3.10 Setting up syslog.conf
Some DB2 informational and error messages apply to the SP node and are
independent of the DB2 instance. These messages are captured by
configuring the AIX syslog daemon.

To do this, logged in as root:

1. Add this line to /etc/syslog.conf:

user.warn /tmp/db2/syslog.db2

Note: /tmp/db2 is a non-NFS directory

2. Create the /tmp/db2/syslog.db2 file

touch tmp/db2/syslog.db2

3. Find the process id (pid) of the syslogd process:

ps -ef|grep syslogd

4. Send a -1 signal to this process using kill:

kill -1 <syslogd-pid>

This set of commands should be run at each one of the SP nodes.

2.3.11 Starting the Instance
Now we are ready to start the instance. To do this, logged in as db2inst1,
enter:

db2start

This is the output from running a db2start:

03-09-1998 14:25:00 4 0 SQL1063N DB2START processing was successful.
03-09-1998 14:25:00 1 0 SQL1063N DB2START processing was successful.
03-09-1998 14:25:00 3 0 SQL1063N DB2START processing was successful.
03-09-1998 14:25:01 2 0 SQL1063N DB2START processing was successful.
03-09-1998 14:25:06 6 0 SQL1063N DB2START processing was successful.
03-09-1998 14:25:07 8 0 SQL1063N DB2START processing was successful.
03-09-1998 14:25:07 7 0 SQL1063N DB2START processing was successful.
03-09-1998 14:25:07 5 0 SQL1063N DB2START processing was successful.
03-09-1998 14:25:07 11 0 SQL1063N DB2START processing was successful.
03-09-1998 14:25:08 10 0 SQL1063N DB2START processing was successful.
03-09-1998 14:25:08 12 0 SQL1063N DB2START processing was successful.
03-09-1998 14:25:08 9 0 SQL1063N DB2START processing was successful.
03-09-1998 14:25:08 14 0 SQL1063N DB2START processing was successful.
03-09-1998 14:25:08 13 0 SQL1063N DB2START processing was successful.
03-09-1998 14:25:09 16 0 SQL1063N DB2START processing was successful.
03-09-1998 14:25:09 15 0 SQL1063N DB2START processing was successful.
SQL1063N DB2START processing was successful.
Building a Large DB2 UDB EEE Database 25

Note that the 3rd column indicates the number of the database partition
server. They are started in random order.

If any DP servers fail to start, for example DP server 16, you can use db2start
to start a single DP server:

db2start nodenum 16

When you specify the nodenum parameter, you can only supply a single DP
server number.

To see the processes on one SP node (tp3an01), enter:

db2_local_ps

This is a typical output from db2_local_ps:

Node 1
 UID PID PPID C STIME TTY TIME CMD
db2inst1 25428 22862 0 14:36:05 - 0:01 db2sysc 1
db2inst1 21614 25428 0 14:36:06 - 0:01 db2fcmdm 1
db2inst1 25686 25428 0 14:36:05 - 0:00 db2gds 1
db2inst1 28786 25428 0 14:36:07 - 0:00 db2pdbc 1
db2inst1 29044 25428 0 14:36:07 - 0:00 db2ipccm 1
db2inst1 30076 25428 0 14:36:07 - 0:00 db2panic (idle) 1
db2inst1 29818 25686 0 14:36:07 - 0:00 db2resyn 1
Node 2
 UID PID PPID C STIME TTY TIME CMD
db2inst1 27750 26976 0 14:36:06 - 0:01 db2sysc 2
db2inst1 18050 27750 1 14:36:07 - 0:01 db2fcmdm 2
db2inst1 23684 27750 0 14:36:07 - 0:00 db2pdbc 2
db2inst1 28008 27750 0 14:36:06 - 0:00 db2gds 2
db2inst1 30342 27750 0 14:36:07 - 0:00 db2ipccm 2
db2inst1 30858 27750 0 14:36:07 - 0:00 db2panic (idle) 2
db2inst1 30600 28008 0 14:36:07 - 0:00 db2resyn 2
Node 3
 UID PID PPID C STIME TTY TIME CMD
db2inst1 24392 24134 0 14:36:05 - 0:01 db2sysc 3
db2inst1 24650 24392 0 14:36:05 - 0:00 db2gds 3
db2inst1 26460 24392 0 14:36:06 - 0:01 db2fcmdm 3
db2inst1 27234 24392 0 14:36:06 - 0:00 db2pdbc 3
db2inst1 27492 24392 0 14:36:06 - 0:00 db2ipccm 3
db2inst1 28524 24392 0 14:36:06 - 0:00 db2panic (idle) 3
db2inst1 28266 24650 0 14:36:06 - 0:00 db2resyn 3
Node 4
 UID PID PPID C STIME TTY TIME CMD
db2inst1 25944 25170 0 14:36:05 - 0:01 db2sysc 4
db2inst1 20096 25944 0 14:36:07 - 0:00 db2panic (idle) 4
db2inst1 22640 25944 0 14:36:07 - 0:01 db2fcmdm 4
db2inst1 26202 25944 0 14:36:05 - 0:00 db2gds 4
db2inst1 29302 25944 0 14:36:07 - 0:00 db2pdbc 4
db2inst1 29560 25944 0 14:36:07 - 0:00 db2ipccm 4
db2inst1 15486 26202 0 14:36:07 - 0:00 db2resyn 4
26 Managing VLDB Using DB2 UDB EEE

Here we can see that there are four sets of processes per SP node,
representing the four database partition servers. The name of each process
is followed by the DP server number.

2.4 Creating the Database, Nodegroups, Table Spaces and Tables

Now that the DB2 UDB EEE instance is running, we can start to create the
database and DB2 objects within it. We cover:

 • Creating the database

 • Configuring Archival Logging

 • Backing up the database

 • Creating nodegroups

 • Creating a temporary table space

 • Creating table spaces for data and index

 • Creating tables

2.4.1 Creating the Database
To create the database, we issued the following commands:

db2 terminate
export DB2NODE=1
db2 -v "create db tpcd30 on /DB_LOG catalog tablespace managed by
database using (device ’/dev/rlv_n01_01_101’ 10240)"

Note:

 • We have explicitly set DB2NODE; so we know which DP the System Catalogs
will be stored on. We will need to know this for backup because the
catalog DP must be backed up first.

 • The db2 terminate is issued before the setting of DB2NODE just to make sure
that any existing connections using another value of DB2NODE are
terminated.

 • The database is created on /DB_LOG so that the file systems for the
logfiles will be used (for example: /DB_LOG/db2inst1/NODE0001 for the
first DP).

 • We have overridden the defaults for the container used for the System
Catalog table space (SYSCATSPACE). We use the DMS raw device,
lv_n01_01_101.
Building a Large DB2 UDB EEE Database 27

 • The size is set to 10240 4 KB pages or 40 MB. This should be sufficient for
the number of DB2 objects we intend to store in the System Catalogs.

2.4.2 Setting Archival Logging
To enable archival logging, we set logretain on at this point. This will force a
backup, which will be much faster now rather than after we load the data. To
run db2 update db cfg at all DPs, we issued:

db2_all "||db2 update db cfg for tpcd30 using logretain on"

The double pipe (||) before the DB2 command means that the command will
be run in parallel on all DPs.

See also “Running Commands on Multiple Database Partitions” on page 255.

2.4.2.1 Backing up the Database
To backup the database requires a db2 backup db command be run on all DPs.
The Catalog DP backup must finish before the other DPs can start in parallel.
To achieve this:

db2_all "<<+1<db2 backup db tpcd30 to /backdb"
db2_all "<<-1<||db2 backup db tpcd30 to /backdb"

Note that:

 • <<+1< means runs the following command only at DP 1.

 • <<-1<|| means run the following command in parallel at all DPs except DP
1.

2.4.3 Creating Nodegroups
We decided to create two nodegroups to hold the user table spaces and
tables. The first, NG_BIG, covers DPs 2 to 15 and will hold all tables apart
from the very small tables (nation and region). The second, NG_LIT, is
defined on DP 1 only and is for the very small tables.

2.4.4 Creating a Temporary Table Space
A temporary table space, TS_TMP, is created to make use of the file systems
that were created for temporary usage. First, the new temporary table space
is created, and then the default temporary table space is dropped. This order

create nodegroup NG_BIG on nodes (2 to 16);
create nodegroup NG_LIT on nodes (1);
28 Managing VLDB Using DB2 UDB EEE

of events is necessary because the database must have at least one
temporary table space defined in it.

Note that relative paths can also be used for the container definitions. For
example, if the database had been created on /DB_TMP, then we could run
this command:

create temporary tablespace TS_TMP in nodegroup IBMDEFAULTGROUP managed
by system using (’T1’,’T2’)

2.4.5 Creating Table Spaces for Data and Index
These are the commands that were issued to create the five table spaces to
be used for data and index:

For TS_LIT, which will hold the very small tables (data and index):

create temporary tablespace TS_TMP in nodegroup IBMTEMPGROUP
managed by system
using (’/DB_TMP/db2inst1/NODE0001/T1’,’/DB_TMP/db2inst1/NODE0001/T2’)
on node (1)
using (’/DB_TMP/db2inst1/NODE0002/T1’,’/DB_TMP/db2inst1/NODE0002/T2’)
on node (2)
using (’/DB_TMP/db2inst1/NODE0003/T1’,’/DB_TMP/db2inst1/NODE0003/T2’)
on node (3)
using (’/DB_TMP/db2inst1/NODE0004/T1’,’/DB_TMP/db2inst1/NODE0004/T2’)
on node (4)
using (’/DB_TMP/db2inst1/NODE0005/T1’,’/DB_TMP/db2inst1/NODE0005/T2’)
on node (5)
using (’/DB_TMP/db2inst1/NODE0006/T1’,’/DB_TMP/db2inst1/NODE0006/T2’)
on node (6)
using (’/DB_TMP/db2inst1/NODE0007/T1’,’/DB_TMP/db2inst1/NODE0007/T2’)
on node (7)
using (’/DB_TMP/db2inst1/NODE0008/T1’,’/DB_TMP/db2inst1/NODE0008/T2’)
on node (8)
using (’/DB_TMP/db2inst1/NODE0009/T1’,’/DB_TMP/db2inst1/NODE0009/T2’)
on node (9)
using (’/DB_TMP/db2inst1/NODE0010/T1’,’/DB_TMP/db2inst1/NODE0010/T2’)
on node (10)
using (’/DB_TMP/db2inst1/NODE0011/T1’,’/DB_TMP/db2inst1/NODE0011/T2’)
on node (11)
using (’/DB_TMP/db2inst1/NODE0012/T1’,’/DB_TMP/db2inst1/NODE0012/T2’)
on node (12)
using (’/DB_TMP/db2inst1/NODE0013/T1’,’/DB_TMP/db2inst1/NODE0013/T2’)
on node (13)
using (’/DB_TMP/db2inst1/NODE0014/T1’,’/DB_TMP/db2inst1/NODE0014/T2’)
on node (14)
using (’/DB_TMP/db2inst1/NODE0015/T1’,’/DB_TMP/db2inst1/NODE0015/T2’)
on node (15)
using (’/DB_TMP/db2inst1/NODE0016/T1’,’/DB_TMP/db2inst1/NODE0016/T2’)
on node (16);

drop tablespace TEMPSPACE1
Building a Large DB2 UDB EEE Database 29

For TS_DAT_MED, which will hold the medium tables data:

Note that the size of 153600 4 KB pages (or 600 MB) is equal to the size of
the LVs that have already been created. See “Sizing of LVs and FSs” on
page 14 for more details.

There is no ON NODE clause for node 1 because the TS_DAT_MED table space
is not defined on the first database partition. The relationship between the
table space name, device name and database partition is shown in Table 1 on
page 15.

For TS_IND_MED, which will hold the medium tables indexes:

create tablespace TS_LIT in NG_LIT
managed by database
using (device ’/dev/rlv_n01_01_102’ 10240);

create tablespace TS_DAT_MED in NG_BIG
managed by database
using (device ’/dev/rlv_n01_01_210’ 153600,
 device ’/dev/rlv_n01_01_211’ 153600) on node (2)
using (device ’/dev/rlv_n01_02_310’ 153600,
 device ’/dev/rlv_n01_02_311’ 153600) on node (3)
using (device ’/dev/rlv_n01_02_410’ 153600,
 device ’/dev/rlv_n01_02_411’ 153600) on node (4)
using (device ’/dev/rlv_n05_01_110’ 153600,
 device ’/dev/rlv_n05_01_111’ 153600) on node (5)
using (device ’/dev/rlv_n05_01_210’ 153600,
 device ’/dev/rlv_n05_01_211’ 153600) on node (6)
using (device ’/dev/rlv_n05_02_310’ 153600,
 device ’/dev/rlv_n05_02_311’ 153600) on node (7)
using (device ’/dev/rlv_n05_02_410’ 153600,
 device ’/dev/rlv_n05_02_411’ 153600) on node (8)
using (device ’/dev/rlv_n09_01_110’ 153600,
 device ’/dev/rlv_n09_01_111’ 153600) on node (9)
using (device ’/dev/rlv_n09_01_210’ 153600,
 device ’/dev/rlv_n09_01_211’ 153600) on node (10)
using (device ’/dev/rlv_n09_02_310’ 153600,
 device ’/dev/rlv_n09_02_311’ 153600) on node (11)
using (device ’/dev/rlv_n09_02_410’ 153600,
 device ’/dev/rlv_n09_02_411’ 153600) on node (12)
using (device ’/dev/rlv_n13_01_110’ 153600,
 device ’/dev/rlv_n13_01_111’ 153600) on node (13)
using (device ’/dev/rlv_n13_01_210’ 153600,
 device ’/dev/rlv_n13_01_211’ 153600) on node (14)
using (device ’/dev/rlv_n13_02_310’ 153600,
 device ’/dev/rlv_n13_02_311’ 153600) on node (15)
using (device ’/dev/rlv_n13_02_410’ 153600,
 device ’/dev/rlv_n13_02_411’ 153600) on node (16);
30 Managing VLDB Using DB2 UDB EEE

For TS_DAT_BIG, which will hold lineitem’s data:

create tablespace TS_IND_MED in NG_BIG
managed by database
using (device ’/dev/rlv_n01_01_212’ 153600,
 device ’/dev/rlv_n01_01_213’ 153600) on node (2)
using (device ’/dev/rlv_n01_02_312’ 153600,
 device ’/dev/rlv_n01_02_313’ 153600) on node (3)
using (device ’/dev/rlv_n01_02_412’ 153600,
 device ’/dev/rlv_n01_02_413’ 153600) on node (4)
using (device ’/dev/rlv_n05_01_112’ 153600,
 device ’/dev/rlv_n05_01_113’ 153600) on node (5)
using (device ’/dev/rlv_n05_01_212’ 153600,
 device ’/dev/rlv_n05_01_213’ 153600) on node (6)
using (device ’/dev/rlv_n05_02_312’ 153600,
 device ’/dev/rlv_n05_02_313’ 153600) on node (7)
using (device ’/dev/rlv_n05_02_412’ 153600,
 device ’/dev/rlv_n05_02_413’ 153600) on node (8)
using (device ’/dev/rlv_n09_01_112’ 153600,
 device ’/dev/rlv_n09_01_113’ 153600) on node (9)
using (device ’/dev/rlv_n09_01_212’ 153600,
 device ’/dev/rlv_n09_01_213’ 153600) on node (10)
using (device ’/dev/rlv_n09_02_312’ 153600,
 device ’/dev/rlv_n09_02_313’ 153600) on node (11)
using (device ’/dev/rlv_n09_02_412’ 153600,
 device ’/dev/rlv_n09_02_413’ 153600) on node (12)
using (device ’/dev/rlv_n13_01_112’ 153600,
 device ’/dev/rlv_n13_01_113’ 153600) on node (13)
using (device ’/dev/rlv_n13_01_212’ 153600,
 device ’/dev/rlv_n13_01_213’ 153600) on node (14)
using (device ’/dev/rlv_n13_02_312’ 153600,
 device ’/dev/rlv_n13_02_313’ 153600) on node (15)
using (device ’/dev/rlv_n13_02_412’ 153600,
 device ’/dev/rlv_n13_02_413’ 153600) on node (16);
Building a Large DB2 UDB EEE Database 31

Note that the size of 307200 4 KB pages (or 1200 MB) equals the size of the
LVs that have been created in “Sizing of LVs and FSs” on page 14.

For TS_IND_BIG, which will hold lineitem’s indexes:

create tablespace TS_DAT_BIG in NG_BIG
managed by database
using (device ’/dev/rlv_n01_01_206’ 307200,
 device ’/dev/rlv_n01_01_207’ 307200) on node (2)
using (device ’/dev/rlv_n01_02_306’ 307200,
 device ’/dev/rlv_n01_02_307’ 307200) on node (3)
using (device ’/dev/rlv_n01_02_406’ 307200,
 device ’/dev/rlv_n01_02_407’ 307200) on node (4)
using (device ’/dev/rlv_n05_01_106’ 307200,
 device ’/dev/rlv_n05_01_107’ 307200) on node (5)
using (device ’/dev/rlv_n05_01_206’ 307200,
 device ’/dev/rlv_n05_01_207’ 307200) on node (6)
using (device ’/dev/rlv_n05_02_306’ 307200,
 device ’/dev/rlv_n05_02_307’ 307200) on node (7)
using (device ’/dev/rlv_n05_02_406’ 307200,
 device ’/dev/rlv_n05_02_407’ 307200) on node (8)
using (device ’/dev/rlv_n09_01_106’ 307200,
 device ’/dev/rlv_n09_01_107’ 307200) on node (9)
using (device ’/dev/rlv_n09_01_206’ 307200,
 device ’/dev/rlv_n09_01_207’ 307200) on node (10)
using (device ’/dev/rlv_n09_02_306’ 307200,
 device ’/dev/rlv_n09_02_307’ 307200) on node (11)
using (device ’/dev/rlv_n09_02_406’ 307200,
 device ’/dev/rlv_n09_02_407’ 307200) on node (12)
using (device ’/dev/rlv_n13_01_106’ 307200,
 device ’/dev/rlv_n13_01_107’ 307200) on node (13)
using (device ’/dev/rlv_n13_01_206’ 307200,
 device ’/dev/rlv_n13_01_207’ 307200) on node (14)
using (device ’/dev/rlv_n13_02_306’ 307200,
 device ’/dev/rlv_n13_02_307’ 307200) on node (15)
using (device ’/dev/rlv_n13_02_406’ 307200,
 device ’/dev/rlv_n13_02_407’ 307200) on node (16);
32 Managing VLDB Using DB2 UDB EEE

2.4.6 Creating the Tables
For the small tables, the index and data are stored in TS_LIT:

For the medium tables, the data is stored in TS_DAT_MED, and the indexes
are stored TS_IND_MED:

create tablespace TS_IND_BIG in NG_BIG
managed by database
using (device ’/dev/rlv_n01_01_208’ 307200,
 device ’/dev/rlv_n01_01_209’ 307200) on node (2)
using (device ’/dev/rlv_n01_02_308’ 307200,
 device ’/dev/rlv_n01_02_309’ 307200) on node (3)
using (device ’/dev/rlv_n01_02_408’ 307200,
 device ’/dev/rlv_n01_02_409’ 307200) on node (4)
using (device ’/dev/rlv_n05_01_108’ 307200,
 device ’/dev/rlv_n05_01_109’ 307200) on node (5)
using (device ’/dev/rlv_n05_01_208’ 307200,
 device ’/dev/rlv_n05_01_209’ 307200) on node (6)
using (device ’/dev/rlv_n05_02_308’ 307200,
 device ’/dev/rlv_n05_02_309’ 307200) on node (7)
using (device ’/dev/rlv_n05_02_408’ 307200,
 device ’/dev/rlv_n05_02_409’ 307200) on node (8)
using (device ’/dev/rlv_n09_01_108’ 307200,
 device ’/dev/rlv_n09_01_109’ 307200) on node (9)
using (device ’/dev/rlv_n09_01_208’ 307200,
 device ’/dev/rlv_n09_01_209’ 307200) on node (10)
using (device ’/dev/rlv_n09_02_308’ 307200,
 device ’/dev/rlv_n09_02_309’ 307200) on node (11)
using (device ’/dev/rlv_n09_02_408’ 307200,
 device ’/dev/rlv_n09_02_409’ 307200) on node (12)
using (device ’/dev/rlv_n13_01_108’ 307200,
 device ’/dev/rlv_n13_01_109’ 307200) on node (13)
using (device ’/dev/rlv_n13_01_208’ 307200,
 device ’/dev/rlv_n13_01_209’ 307200) on node (14)
using (device ’/dev/rlv_n13_02_308’ 307200,
 device ’/dev/rlv_n13_02_309’ 307200) on node (15)
using (device ’/dev/rlv_n13_02_408’ 307200,
 device ’/dev/rlv_n13_02_409’ 307200) on node (16);

create table NATION (N_NATIONKEY integer not null,
 N_NAME char(25) not null, N_REGIONKEY integer not null,
 N_COMMENT varchar(152))
in TS_LIT;

create table REGION (R_REGIONKEY integer not null,
 R_NAME char(25) not null, R_COMMENT varchar(152))
in TS_LIT;
Building a Large DB2 UDB EEE Database 33

For the large table, the data is stored in TS_DAT_BIG, and the indexes are
stored TS_IND_BIG:

2.4.7 Creating Indexes
The indexes are created after the load. Because we will be using concurrent
db2splits, the order of input data cannot be guaranteed. To have the data in
each table clustered by the desired index, we will have to REORG each table

create table PART (P_PARTKEY integer not null,
 P_NAME varchar(55) not null, P_MFGR char(25) not null,
 P_BRAND char(10) not null, P_TYPE varchar(25) not null,
 P_SIZE integer not null, P_CONTAINER char(10) not null,
 P_RETAILPRICE float not null, P_COMMENT varchar(23) not null)
in TS_DAT_MED index in TS_IND_MED;

create table SUPPLIER (S_SUPPKEY integer not null,
 S_NAME char(25) not null, S_ADDRESS varchar(40) not null,
 S_NATIONKEY integer not null, S_PHONE char(15) not null,
 S_ACCTBAL float not null, S_COMMENT varchar(101) not null)
in TS_DAT_MED index in TS_IND_MED;

create table PARTSUPP (PS_PARTKEY integer not null,
 PS_SUPPKEY integer not null, PS_AVAILQTY integer not null,
 PS_SUPPLYCOST float not null, PS_COMMENT varchar(199) not null)
in TS_DAT_MED index in TS_IND_MED;

create table CUSTOMER (C_CUSTKEY integer not null,
 C_NAME varchar(25) not null, C_ADDRESS varchar(40) not null,
 C_NATIONKEY integer not null, C_PHONE char(15) not null,
 C_ACCTBAL float not null, C_MKTSEGMENT char(10) not null,
 C_COMMENT varchar(117) not null)
in TS_DAT_MED index in TS_IND_MED;

create table ORDERS (O_ORDERKEY integer not null,
 O_CUSTKEY integer not null, O_ORDERSTATUS char(1) not null,
 O_TOTALPRICE float not null, O_ORDERDATE date not null,
 O_ORDERPRIORITY char(15) not null, O_CLERK char(15) not null,
 O_SHIPPRIORITY integer not null, O_COMMENT varchar(79) not null)
in TS_DAT_MED index in TS_IND_MED;

create table LINEITEM (L_ORDERKEY integer not null,
 L_PARTKEY integer not null, L_SUPPKEY integer not null,
 L_LINENUMBER integer not null, L_QUANTITY float not null,
 L_EXTENDEDPRICE float not null, L_DISCOUNT float not null,
 L_TAX float not null, L_RETURNFLAG char(1) not null,
 L_LINESTATUS char(1) not null, L_SHIPDATE date not null,
 L_COMMITDATE date not null, L_RECEIPTDATE date not null,
 L_SHIPINSTRUCT char(25) not null, L_SHIPMODE char(10) not null,
 L_COMMENT varchar(44) not null)
in TS_DAT_BIG index in TS_IND_BIG;
34 Managing VLDB Using DB2 UDB EEE

after loading it. So building indexes during the load is not a good idea as they
would have to be rebuilt after the REORG. See “Reorganizing the Table on
the Clustering Index” on page 44 for more details.

2.5 Loading Data into the Database

The task of loading data into each table involved these steps:

 • Create the input data.

 • Load the data into the table using Autoloader.

 • Create the index used for clustering.

 • Reorganize the table on that index.

 • Create the other indexes.

This methodology assumes that we know by which index the table should be
clustered.

When loading this volume of data (for example 21 GB for lineitem), using
concurrent db2splits with Autoloader is ideal. This is because:

 • If we use a single db2split process, the db2split processing, not the input
data stream, is the bottleneck in the complete load cycle. Using multiple
db2split processes speeds up the splitting part of the process.

 • Using multiple db2split processes will mean sending large amounts of
data between the SP nodes. We have a high-speed switch, so this task is
very fast.

2.5.1 Creating the Input Data
The Transaction Processing Council D (TPCD) package contains a program
called dbgen which allows you to generate data for a TPCD database of a
user-defined size (in this case 30 GB), and for one particular table in the
TPCD database. The output from dbgen is piped into Autoloader. The tables
must be treated individually since one Autoloader job can only work on one
table at a time.

We tested with the lineitem table at the 1 GB TPCD database size first before
trying the 30 GB version. From our testing it became apparent that the
bottleneck for loading the data was the data stream coming from dbgen. So
for the purposes of the tests, we decided to find a way to speed up the input
stream. The way chosen was to create a lineitem table at the 1 GB size,
output this to disk, and then cat this file 30 times sequentially into a pipe used
as the input for the Autoloader job. The implications of this are:
Building a Large DB2 UDB EEE Database 35

 • The database is not a "real" 30 GB TPCD database, but a 1 GB TPCD
duplicated 30 times.

 • Any unique indexes will have to be made non-unique.

These implications are acceptable as the objectives of these tests were:

 • Design the disk storage and load a 30 GB database

 • Implement a backup and recovery strategy using ADSM

 • Implement a failover strategy using HACMP

We do not test the TPCD queries themselves.

2.5.2 Using Autoloader with Concurrent db2splits
Here is the lineitem.aload script used:

Note that this script must be run from a directory which is available (using
NFS) from all the SP nodes.

Here is the Autoloader configuration file, lineitem.cfg:

L1 is 1 GB version of lineitem table

date
rm lineitem.tbl
mkfifo lineitem.tbl

db2autold -c lineitem.cfg &

cat L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 \
 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 \
 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 \
> lineitem.tbl

wait

rm lineitem.tbl
date
36 Managing VLDB Using DB2 UDB EEE

Note that:

 • The option nonrecoverable was used in the load command because this will
leave the table space for lineitem (TS_DAT_BIG) in a normal state after
the load has finished. Without this option, the table space would be put
into a "Backup Pending" state, forcing us to do a backup before the next
step (create index).

 • After a table space has been put into "Backup Pending" as the result of a
load without "nonrecoverable", you are permitted to:

 • Perform another load of a table in the same table space

 • Select data from tables in the table space

You are not permitted to change the data of tables in the table space in
any way (such as insert, update or delete on its tables), or add or drop
indexes on the tables in the table space. You will receive this error:

SQL0290N Table space access is not allowed.

2.5.3 When to Create Indexes
We chose to create the indexes after Autoloader processing for the following
reasons:

 • When we use concurrent db2splits, the order of the input data cannot be
guaranteed, meaning that there is less value in creating the indexes
during the load as we will have to REORG the data anyway.

 • In order to create indexes during the load:

RELEASE=V5.0

db2 "load from lineitem.tbl of del modified by coldel| replace into lineitem \
 nonrecoverable using /work"

DATABASE=tpcd30

OUTPUT_NODES=(2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)

SPLIT_NODES=(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)

MODE=SPLIT_AND_LOAD

LOGFILE=LOG

NOTNFS_DIR=/work

CHECK_LEVEL=NOCHECK

TRACE=1
Building a Large DB2 UDB EEE Database 37

 • Sort directories must be defined in the load command. This requires a
large amount of additional disk space, enough to hold all the index
keys for all the indexes defined on the table.

 • Since we can only supply one load command to Autoloader, each of the
four DPs per SP node must share the same sort directories.

 • If we try to create indexes during the load and we do run out of sort space,
the whole Autoloader process must be restarted.

2.5.4 The Number of db2split Processes
We have 15 DPs and 32 CPUs in total over four SP nodes. Therefore 15
loads will be run in parallel. If we configure Autoloader to run 16 db2split
processes, then there should be at least one db2psplit, 16 db2splits and 15
loads (making a total of 32) processes running concurrently across the 32
CPUs. So all the CPUs should be kept busy during this Autoloader job. In
fact, subsequent testing showed that a lower number of db2split processes
will keep the CPUs busy.

2.5.5 Notes on Using Autoloader
1. To monitor Autoloader, you can copy the db2autold script and then modify

the copy. By changing debug=0 to debug=1 at line 49, this will cause set
-x to be applied throughout the script, and so all executed lines will be
echoed to the screen.

2. Because we were running remotely, and we needed the Autoloader job to
keep running even if our network connection to the RS/6000 SP was
broken, we used nohup, as in:

nohup timex lineitem.aload &

If you use nohup before a command:

 • The output from the command is sent to a file called nohup.out

 • If the session that initiated the command is terminated, the command
will continue to run.

3. When running a lot of db2split and load processes, the time taken for
Autoloader to prepare the named pipes and directories is relatively long.
This is because the pipes and directories are created serially with error
checking after each one.

4. In our environment, namely 16 DPs on four SP nodes, the following
changes to the supplied db2autold script improved the startup time:
38 Managing VLDB Using DB2 UDB EEE

 • The function check_remote_access_permission was commented out.
Normally, this checks that rsh commands can be run on SP nodes
using the switch.

 • Creating the named pipes. For our tests, 240 named piped were
created (16*15) just for the db2split and load processing. These pipes
are created in serial normally. We changed the code to run mknod in the
background and then wait for all to finish.

 • Creating the "psplitload" and "psplittemp" directories

 • For our tests, we changed the script to run mkdir in the background
and then wait for all to finish.

These changes reduced the startup time from 20 mins to 5 mins.

Note that these changes speed up the startup processing of the db2autold
script, especially for our environment (16 db2splits, 15 loads). They
bypass error checking. We felt safe doing this because we knew that
permissions were already in place to perform these functions (rsh, mknod
and mkdir). In the worst case, if a problem arose from making these
changes, we could resume using the supplied db2autold script. (After
having run a cleanup!).

These changes improved the cleanup time:

 • All rsh jobs were started in background and then wait to finish

2.5.6 Problems running Autoloader
Sometimes db2autold fails, and in one or several of the db2split or load logs
you see:

SQL2043N Unable to start a child process or thread.

We changed maxuproc from 500 to 1000 on all SP nodes and the problem did
not occur again.

2.5.7 Autoloader Log files
The log files for the load processes are kept in files called load_LOG.<DP>.
For example, for DP 2, the file is load_LOG.2:
Building a Large DB2 UDB EEE Database 39

We can see from this log file that:

 • 12,082,560 lines were loaded at DP 2.

 • The load for DP 2 started at 15:22:42 and finished at 17:53:34.

 • This makes a total elapsed time of: 2 hours, 30 minutes, 52 seconds.

The log files for the split processes are kept in files called splt_LOG.<DP>.
For example, for DP 2, the file is splt_LOG.2:

 Database Connection Information

 Database product = DB2/6000 5.0.0
 SQL authorization ID = DB2INST1
 Local database alias = TPCD30

SQL3109N The utility is beginning to load data from file
"/work/db2inst1/psplittemp/lineitem.tbl.002".

SQL3500W The utility is beginning the "LOAD" phase at time "03-06-1998
15:22:42.692650".

SQL3519W Begin Load Consistency Point. Input record count = "0".

SQL3520W Load Consistency Point was successful.

SQL3110N The utility has completed processing. "12082560" rows were read
from the input file.

SQL3519W Begin Load Consistency Point. Input record count = "12082560".

SQL3520W Load Consistency Point was successful.

SQL3515W The utility has finished the "LOAD" phase at time "03-06-1998
17:53:34.725487".

Number of rows read = 12082560
Number of rows skipped = 0
Number of rows loaded = 12082560
Number of rows rejected = 0
Number of rows deleted = 0
Number of rows committed = 12082560

0
DB20000I The TERMINATE command completed successfully.
40 Managing VLDB Using DB2 UDB EEE

We can see from this log file that:

The log file "splt_LOG.2" was opened successfully.
Starting time: "03-06-1998 15:23:08.303928".
The type of the input date file is "1" (0-ASC, 1-DEL, 2-BIN).
The input file was not found, using stdin as input.
Program is running with check level: "NOCHECK".
The string delimiter is """, the column delimiter is "|", and the decimal point
is ".". Tracing "1" delimited record(s).
The output partitioning map file "LINEITEM.lineitem.tbl.map" was opened
successfully.
Read of input partitioning map is in progress.
Input partitioning map was successfully read.
The run type is "PARTITION".
The output partitioning map file "OutMap.2" was opened successfully.
Distribution file name: "DISTFILE.2".
The distribution file "DISTFILE.2" was opened successfully for writing.
This utility is using " 1" partitioning keys.
"L_ORDERKEY " Start:" 0" Len:" 0" Position:" 1" Type:"NN(-1)
INTEGER".
The output data file will be "/work/db2inst1/psplitload/lineitem.tbl2".
All output data files were opened successfully.
Processing record number " 1".
Key Index: "0". Data: "L_ORDERKEY" "1" "0" "0" "33".
Paritioning number returned from hash function: "0349" (hex) " 841" (decimal).
Processed " 50000" records (or lines).
Processed " 100000" records (or lines).
(........................SKIPPED...)
Processed " 11050000" records (or lines).
Processed " 11100000" records (or lines).
Writing output partition map to file "OutMap.2".
Writing distribution map to "DISTFILE.2".
Total number of records processed: " 11112444".
Total number of records discarded: " 0".
Stop time "03-06-1998 17:53:33.755367".
Elapsed time: " 2" hours, "30" minutes, "25" seconds.
Throughput: "1231" records/sec.
Record counts for output nodes:
Node: "16". Record count: "743869".
Node: "15". Record count: "739931".
Node: "14". Record count: "732357".
Node: "13". Record count: "743043".
Node: "12". Record count: "737117".
Node: "11". Record count: "737207".
Node: "10". Record count: "743003".
Node: "9". Record count: "739060".
Node: "8". Record count: "742680".
Node: "7". Record count: "743197".
Node: "6". Record count: "747024".
Node: "5". Record count: "743851".
Node: "4". Record count: "735586".
Node: "3". Record count: "737253".
Node: "2". Record count: "747266".
Complete.
Program ran successfully with "0" warning message(s) and "0" discarding
record(s).
Building a Large DB2 UDB EEE Database 41

 • The db2split for DP 2 started at 15:23:08 and finished at 17:53:33

 • The total elapsed time was 2 hours, 30 minutes, 25 seconds.

 • The db2split processes start just after the load processes and finish just
before the end of the load processes.

 • The number of lines processed not same as loaded at DP 2. This is
because the output from each db2split is divided among the 15 DPs.

2.5.8 Verifying the Load
To verify how many rows were actually loaded in the lineitem table, enter:

To see how much of the table space for lineitem’s data (TS_DAT_BIG) has
been used up, enter:

db2 terminate; export DB2NODE=2
db2 list tablespaces show detail

Then if we look at the output for TS_DAT_BIG:

 > timex db2 "select count(*) from lineitem"

1

 180036450

 1 record(s) selected.

real 252.12
user 0.01
sys 0.14

 Tablespace ID = 6
 Name = TS_DAT_BIG
 Type = Database managed space
 Contents = Any data
 State = 0x0000
 Detailed explanation:
 Normal
 Total pages = 614400
 Useable pages = 614336
 Used pages = 419552
 Free pages = 194784
 High water mark (pages) = 419552
 Page size (bytes) = 4096
 Extent size (pages) = 32
 Prefetch size (pages) = 32
 Number of containers = 2
 Minimum recovery time = 1998-03-06-20.19.21.000000

Available Space

Used Space
42 Managing VLDB Using DB2 UDB EEE

We can see that 419,552 pages out of a total of 614,336 (or 68 percent)
usable pages have been filled. This leaves some room for growth.

2.5.9 Creating the Index on which the Data is Clustered
Now that the data portion of the table has been loaded, we must ensure that
the data is clustered with respect to one of the indexes. We chose the index
on L_ORDERKEY for clustering, which is called FK_L_OKEY. First, we must
create the index:

Next, we must run REORGCHK to check the current CLUSTERRATIO of the
data with respect to this index, FK_L_OKEY:

Here is the part of the output from REORGCHK relating to the index,
FK_L_OKEY:

We can see that the CLUSTERRATIO (F4) is 74 percent . If we run a REORG
based on this index, the CLUSTERRATIO should change to 100 percent,
meaning that the data is perfectly clustered on the index FK_L_OKEY.

create index FK_L_OKEY on LINEITEM (L_ORDERKEY)
DB20000I The SQL command completed successfully.

real 753.62
user 0.02
sys 0.13

db2 terminate
export DB2NODE=2
db2 -v "reorgchk on table db2inst1.lineitem"

Index statistics:

F4: CLUSTERRATIO or normalized CLUSTERFACTOR > 80
F5: 100*(KEYS*(ISIZE+10)+(CARD-KEYS)*4) / (NLEAF*4096) > 50
F6: 90*((4000/(ISIZE+10))**(NLEVELS-2))*4096/ (KEYS*(ISIZE+10)+(CARD-KEYS)*4)<10
0

CREATOR NAME CARD LEAF LVLS ISIZE KEYS F4 F5 F6 REORG

Table: DB2INST1.LINEITEM
DB2INST1 FK_L_OKEY 2e+08 2e+05 3 4 2e+06 74 73 0 *--

Building a Large DB2 UDB EEE Database 43

Note that we set explicitly the value of DB2NODE to 2 before running the
REORGCHK. This ensures that the analysis will be based on the data at DP
2. If we happen to have a connection to the database still available at DP 1,
(which has no data for this table) the REORGCHK will still work. DB2 will find
the first DP where the lineitem table has data.

2.5.10 Reorganizing the Table on the Clustering Index
The next step is to REORG the lineitem table on the clustering index,
FK_L_OKEY:

Note that:

 • We specified use ts_tmp. This means that the temporary table space,
TS_TMP, will be used to hold a temporary copy of the table during REORG
processing. If we don’t specify a value, then the REORG utility will use the
same table space where lineitem’s data is held, namely TS_DAT_BIG. By
using TS_TMP, we will also be using different disks (compared to those
used by TS_DAT_BIG) to hold the temporary copy. This will result in a
much shorter elapsed time for the REORG.

 • There must be enough log files (LOGPRIMARY plus LOGSECOND)
defined for the REORG to complete. We changed the number of
secondary log files to 48 using:

The contents of the log file directory for DP 2
(/DB_LOG/db2inst1/NODE0002/SQL00001/SQLOGDIR) after the REORG
was:

reorg table db2inst1.lineitem index db2inst1.fk_l_okey use ts_tmp
DB20000I The REORG TABLE command completed successfully.

real 3369.62
user 0.02
sys 0.30

db2_all "||db2 -v update db cfg for tpcd30 using LOGSECOND 48"
44 Managing VLDB Using DB2 UDB EEE

We can see that as our job started at 08:17 and finished at 09:10, that 15 log
files were needed in this UOW; so LOGPRIMARY + LOGSECOND must be
greater than 15 for this UOW to finish. Note that the LOGFILSZ was left at the
default of 1000 (so each log files is 4 MB in size).

You can use the GET SNAPSHOT command to estimate the amount of log space
needed. For instance, after the REORG completed, we ran a snapshot:

This is the result:

We can see that:

log space used = 11410 * 4K = 11.1 4 MB log files

The value of Rows read and Log pages written can be used to calculate the
amount of log space required for the REORG. If we test with 1 percent of the

-rw------- 1 db2inst1 dbadmin1 139264 Mar 06 23:37 S0000003.LOG
-rw------- 1 db2inst1 dbadmin1 811008 Mar 07 00:14 S0000004.LOG
-rw------- 1 db2inst1 dbadmin1 4104192 Mar 07 00:36 S0000005.LOG
-rw------- 1 db2inst1 dbadmin1 4104192 Mar 07 00:39 S0000006.LOG
-rw------- 1 db2inst1 dbadmin1 4104192 Mar 07 00:42 S0000007.LOG
-rw------- 1 db2inst1 dbadmin1 4104192 Mar 07 00:46 S0000008.LOG
-rw------- 1 db2inst1 dbadmin1 3891200 Mar 07 00:49 S0000009.LOG
-rw------- 1 db2inst1 dbadmin1 4104192 Mar 07 08:17 S0000010.LOG
-rw------- 1 db2inst1 dbadmin1 4104192 Mar 07 08:20 S0000011.LOG
-rw------- 1 db2inst1 dbadmin1 4104192 Mar 07 08:24 S0000012.LOG
-rw------- 1 db2inst1 dbadmin1 4104192 Mar 07 08:27 S0000013.LOG
-rw------- 1 db2inst1 dbadmin1 4104192 Mar 07 08:30 S0000014.LOG
-rw------- 1 db2inst1 dbadmin1 4104192 Mar 07 08:33 S0000015.LOG
-rw------- 1 db2inst1 dbadmin1 4104192 Mar 07 08:36 S0000016.LOG
-rw------- 1 db2inst1 dbadmin1 4104192 Mar 07 08:40 S0000017.LOG
-rw------- 1 db2inst1 dbadmin1 4104192 Mar 07 08:43 S0000018.LOG
-rw------- 1 db2inst1 dbadmin1 4104192 Mar 07 08:46 S0000019.LOG
-rw------- 1 db2inst1 dbadmin1 4104192 Mar 07 08:49 S0000020.LOG
-rw------- 1 db2inst1 dbadmin1 4104192 Mar 07 09:08 S0000021.LOG
-rw------- 1 db2inst1 dbadmin1 184320 Mar 07 09:10 S0000022.LOG
-rw------- 1 db2inst1 dbadmin1 4104192 Mar 07 09:10 S0000023.LOG
-rw------- 1 db2inst1 dbadmin1 4104192 Mar 07 09:10 S0000024.LOG

USED
DURING
REORG

db2 terminate
export DB2NODE=2
db2 get snapshot for all on tpcd30 | egrep ’Log pages w|Rows read’

Log pages written = 11410
Rows read = 11625924
Building a Large DB2 UDB EEE Database 45

data for example, the log pages written value for 1 percent can be multiplied
by 100 to give the required log space at full size.

We must also be careful not to run out of sort space when running REORG.
Since we are using TS_TMP for sort space, if we run:

du -ak /DB_TMP/db2inst1/NODE0002/T1

We can see the temporary file used for REORG processing, in this case
SQL00002.DTR:

This file reached a maximum size of 820 MB. As there are two containers (T1
and T2) per DP, the space required by REORG per DP is 1.6 GB. If we look at
the space taken by the data for lineitem per DP, we can see from doing a db2
list tablespaces show detail, that for TS_DAT_BIG at DP 2:

Used pages = 419552

Since each page is 4 KB, this equals 1.638 GB of data per DP. This means
that for the REORG to complete, the table space used for REORG temporary
processing must be at least as big as the space taken by the data for the
table.

Note that as we have done no updates or deletes to the lineitem table, the
space taken by REORG is easy to calculate.

2.5.11 Running REORGCHK to Check Clustering
Now that the REORG has completed, we run REORGCHK again to see the
effect on the CLUSTERRATIO:

This shows that CLUSTERRATIO (F4) has changed to 100 percent.

Sat Mar 7 09:01:41 EST 1998
4 /DB_TMP/db2inst1/NODE0002/T1/SQLTAG.NAM
839552 /DB_TMP/db2inst1/NODE0002/T1/SQL00002.DTR
839560 /DB_TMP/db2inst1/NODE0002/T1

CREATOR NAME CARD LEAF LVLS ISIZE KEYS F4 F5 F6 REORG

Table: DB2INST1.LINEITEM
DB2INST1 FK_L_OKEY 2e+08 2e+05 3 4 2e+06 100 73 0 ---

46 Managing VLDB Using DB2 UDB EEE

2.5.12 Creating Other indexes
Now we will create the other indexes on lineitem:

We run REORGCHK again to see the CLUSTERRATIO for each index:

As the CLUSTERRATIO (F4) is over 80 percent for all indexes, they will all be
considered by the optimizer for index access to the table.

2.5.13 Space Taken by the Indexes
If we look at the output relating to TS_IND_BIG from db2 list tablespaces
show detail at DP 2, we see:

create index L_SDATE on LINEITEM (L_SHIPDATE)
DB20000I The SQL command completed successfully.

create index L_RDATE_CDATE on LINEITEM (L_RECEIPTDATE,L_COMMITDATE)
DB20000I The SQL command completed successfully.

real 2148.77
user 0.03
sys 0.14

CREATOR NAME CARD LEAF LVLS ISIZE KEYS F4 F5 F6 REORG

Table: DB2INST1.LINEITEM
DB2INST1 FK_L_OKEY 2e+08 2e+05 3 4 2e+06 100 73 0 ---
DB2INST1 L_RDATE_CDATE 2e+08 2e+05 3 8 246247 83 73 0 ---
DB2INST1 L_SDATE 2e+08 2e+05 3 4 2525 83 73 0 ---

 Tablespace ID = 7
 Name = TS_IND_BIG
 Type = Database managed space
 Contents = Any data
 State = 0x0000
 Detailed explanation:
 Normal
 Total pages = 614400
 Useable pages = 614336
 Used pages = 49056
 Free pages = 565280
 High water mark (pages) = 49056
 Page size (bytes) = 4096
 Extent size (pages) = 32
 Prefetch size (pages) = 32
 Number of containers = 2
 Minimum recovery time = 1998-02-20-19.44.27.000000
Building a Large DB2 UDB EEE Database 47

This shows that there is enough space to create more indexes; which we may
need as this is a Decision Support System (DSS) style database.
48 Managing VLDB Using DB2 UDB EEE

Chapter 3. DB2 UDB EEE Backup and Recovery using ADSM

This chapter first covers the backup and recovery features of DB2 UDB EEE.
This includes recommendations for implementing a backup and recovery
strategy.

This chapter also includes a detailed guide to configuring and managing a
DB2 UDB EEE backup and recovery environment using ADSM Server
Version 3 and AIX Version 4.2.1 on an RS/6000 SP with a switch. In addition,
it addresses the installation and customization of the ADSM server and the
ADSM clients, shows how to modify DB2 UDB EEE to use ADSM, and
provides sample procedures to perform online backups and to manage
database backup files and archived logs.

3.1 Overview of DB2 UDB EEE Backup and Recovery

To begin to create a backup and recovery strategy, the recovery requirements
of each database must be defined. Once these requirements are determined,
the database administrator can develop backup procedures to enable
recovery.

Some items to consider when developing a recovery plan follow:

 • How critical is the database?

 • How large is the database?

 • How volatile is the database?

 • How current must the database be?

 • What about application errors?

 • How much space can be allocated for backup copies and archived logs?

Creating a backup and recovery strategy also requires an understanding of
the features provided by the product to support backup and recovery.
Subsequent sections cover:

 • Methods of recovery. DB2 UDB supports crash recovery, restore (or
version recovery), and roll-forward recovery.

 • Logging. DB2 UDB supports two basic types of logging: circular logging
and log retention logging.

 • Online versus offline backup.

 • Managing logs and backups.
© Copyright IBM Corp. 1998 49

Some issues concerning backup and recovery are best considered early in
the planning process.

 • If the recovery plan requires use of logs, mirroring of the logs is highly
recommended. A disk failure causing loss of one or more logs could
prevent meeting recovery objectives.

 • If ADSM is to be used to store backups and archived logs and multiple
database instances are to be run on the same host, do not use the same
database alias in each instance. ADSM uses the database alias name as
part of the filename of each object. ADSM cannot distinguish objects for
one instance from objects in the other instance.

 • For a database to be online, DB2 UDB EEE requires that its catalog
partition be available. Consequently, we highly recommend that you
configure the catalog partition to tolerate a disk failure. Allocate both the
catalog partition’s log files and the catalog tablespace on mirrored or
RAID-5 disks.

3.2 Recovery Methods

DB2 UDB supports three methods of recovery: crash recovery, version
recovery (also called "restore recovery"), and roll-forward recovery.

3.2.1 Crash Recovery
Transactions (more accurately, units of work) against the database can be
interrupted unexpectedly. For example, if power fails before all of the changes
that are part of a logical unit of work are committed, the database becomes
inconsistent and unusable. Crash recovery returns the database to a
consistent, usable state.

3.2.2 Version (or Restore) Recovery
This recovery method requires loading a backup copy of the database or
table space(s). The database will be restored to exactly the same state that it
was in when it was backed up.

3.2.3 Roll-Forward Recovery
This recovery method also requires loading a backup copy of the database or
table space(s) and then applying log records to recover changes made after
the backup image was created. This method provides recovery from media,
hardware, operational, and software failures. The recovery can be to a point
in time or to the last committed unit of work.
50 Managing VLDB Using DB2 UDB EEE

If a multipartition tablespace is to be recovered to a point in time, then the
load of the backup image and the application of the logs must be performed
on all partitions where the tablespace is defined.

Roll-forward recovery requires enabling "log retention." Retention logging is
further discussed in the next section.

3.3 Logging

Transaction logging records each change to a database to permit recovery of
the database to a consistent state. As data in the database buffer pool is
modified, log records reflecting these changes are written into a log buffer. At
commit time, all of the log records reflecting changes to the database during
this unit of work MUST be written to the log files on disk. Once the log records
are successfully stored to disk, recoverability can be guaranteed (at least as
long as the log files are available).

After commit, the only certainty is that the log records are written to disk. The
modified data in the buffer pool is not written to the database files until some
later time. But even if a crash occurs before the database is updated, the log
records stored on disk contain all the information needed to rebuild the
committed changes.

If you desire a fully recoverable database, allocate the log files on a
fault-tolerant disk complex: mirrored, duplexed, or RAID-5 for example.
Imagine a situation where your log files are allocated on a disk. The disk is
not a member of a RAID configuration. The log files are not mirrored to a
separate disk. There is no backup copy of the log file. If you now lose this
disk, you cannot recover the database up to the current unit of work. Make an
immediate backup of your database!

DB2 UDB supports two basic types of logging: circular logging and archival
logging. Archival logging is also referred to as log retention logging

In a partitioned database environment, log files must be allocated for each
database partition.

3.3.1 Circular Logging
Circular logging initially uses a specified number of primary log files. The log
files reflect changes by in-process transactions. The logs are used
sequentially. A log file cannot be reused until all units of work contained within
it are either committed or rolled back AND the committed changes are written
to the disks used by the database.
DB2 UDB EEE Backup and Recovery using ADSM 51

If the database manager requests the next log in sequence and that log is not
available for reuse, a secondary log file will be allocated. After the secondary
log fills, the database manager again checks if the next sequential primary
log is available for reuse. If the primary log is still unavailable, another
secondary log file is allocated. This process continues until either the primary
log file becomes available for reuse or until the number of secondary logs
permitted for allocation is exceeded.

If DB2 UDB cannot continue logging due to a log full condition, the database
manager will halt.

Circular logging supports crash and version/restore recovery. It does not
support roll-forward recovery. For more information on the recovery methods
(crash, version/restore, and roll-forward) see “Recovery Methods” on
page 50.

3.3.2 Archival (or Log Retention) Logging
The second type of logging supported by DB2 UDB is archival logging.
Archival logging is also called log retention logging. This type of logging is
activated in UDB by setting the logretain parameter in the database
configuration to ON. And don’t forget, each database partition has its own set
of database configuration parameters!

With archival logging, when a log file fills, the database manager allocates
another. The database administrator normally configures several primary log
files so that the next log file can be allocated before it is needed. The
database configuration parameter logprimary specifies how many primary log
files are allocated when the database is created. With archival logging, the
database manager will allocate no more log files than the total of the primary
and secondary database configuration parameters (logprimary plus
logsecond). Once that total has been allocated, the need for more logging
space will cause the database to halt with a log full condition. Allocate a
sufficient number of adequately sized log files to handle the workload.
Beware the application that tries to process too large a unit of work. Consider,
too, that in-doubt transactions can prevent the freeing of a log file. Be sure to
check for in-doubt transactions following a database recovery action. Quickly
resolve each that exists to free its log space (and any locks on the database it
may hold).

At any point in time, a log file associated with log retention logging will be in
one of three states:

1. Active. These logs contain records for units of work which have not yet
committed (or rolled back). Active logs also contain information for
52 Managing VLDB Using DB2 UDB EEE

transactions which have committed but have not yet had the changes
written from the buffer pool in memory to the database files on disk.

Active log files are used for crash recovery.

2. Online Archive. These logs contain information for completed transactions
which no longer require protection from crash recovery. All changes in the
log have been written to the database files. They are called online
because these logs still reside in the same subdirectory (LOGPATH) as
the active logs.

3. Offline Archive. The log files have been moved out of the active log file
subdirectory. A manual process or a process invoked through a user exit
can be used to move the files.

When archival logging is used, the database manager will truncate and close
the current active log when the last application disconnects from the
database. This is a positive feature if the database is to be inactive for some
period of time. But for a low-activity database where there are short periods
when no application will be connected to the database, the overhead of
continuously truncating the last active log and then reallocating the primary
log files when a new application connects can be costly. In such situations,
the DBA should consider the ACTIVATE DATABASE command. This command will
keep the database active and log file truncation will not occur. But if log files
are not mirrored (or otherwise protected from a disk failure), the administrator
must evaluate the impact on recovery. To lose the log through disk failure will
make the point of recovery for the database to be less than the current unit of
work. The DEACTIVATE DATABASE command can be entered to allow log file
truncation to occur for databases on which the ACTIVATE DATABASE command
has been used.
DB2 UDB EEE Backup and Recovery using ADSM 53

Figure 8. Online, Active and Unused Log Files

The database manager uses a control file to track the status of the log files.
The control file identifies the active log with the lowest name, the oldest
active log. As shown in Figure 8, this log file is called the First active log file.
The control file also specifies the name of the next log file to be used.
Appropriately enough, this log is called Next active log file.

The values for first active log file and next active log file can be displayed by
using the following command:

db2_all ’;db2 get database configuration for TPCD100’ | grep "active
log"

where TPCD100 is our database alias. Log files that are older than the first
active log file are known as archive log files. They are not required for crash
recovery and can be moved to different media.

By using the values of nextactive and firstactive, the database administrator
can determine the number of active logs that are currently allocated. If this
number is abnormally large, an application may not be committing on a timely
basis. If the number of allocated active logs is close to the total of primary
and secondary logs, the installation may be approaching a log full condition.
And when a log full condition occurs, the database will hang.

The log file naming convention starts at S0000000.LOG and sequentially
names logs until S9999999.LOG is reached. After S9999999.LOG the name
wraps back to S0000000.LOG, and the sequence starts again. The higher log
file numbers will only be used when archive logging is configured for the

Online
Archive Log

Active
Log File

Active
Log File

Active
Log File

Unused
Log File

Unused
Log File

TIME

First Active Log File Next Active Log File
54 Managing VLDB Using DB2 UDB EEE

database. For circular logging, only the numbers corresponding to the actual
number of primary and secondary circular logs will be used.

3.4 Recovery History File

The recovery history file resides in the same directory as the database
configuration file. There is a file for each database partition. The database
manager updates the recovery history file whenever one of the following
operations are performed:

 • Backup a database or table space

 • Restore a database or table space

 • Load a table

 • Quiesce a table space

 • Roll forward a database or table space

When a recovery action is required, the summary information contained in the
file can help the database administrator to create the recovery plan.
Information that may be useful includes:

 • The part of the database that has been copied by a backup, load, or copy
operation.

 • When the database was copied

 • Where the copy is located

 • Time of the last restore

 • Quiesce entry with local and CUT timestamps provided

 • Table space point-in-time recover information

DB2 UDB provides two commands to extract information from the recovery
history file: LIST HISTORY and LIST BACKUP. The commands differ in the amount
of information provided. LIST BACKUP retrieves only information pertaining to
backups and restores. LIST HISTORY retrieves the full spectrum of records. The
database administrator can control how long history file information is kept
before it is purged. The database configuration parameter REC_HIS_RETN can
be set to specify the retention period for history file records. The database
software automatically prunes records older than the value of REC_HIS_RETN,
which by default is 366 days. Records can also be removed manually using
the PRUNE HISTORY command. The timestamp may be abbreviated to as little as
yyyy (4-digit year). All entries with timestamps equal to or less than the
timestamp provided are deleted from the file. Using the WITH FORCE option
specifies that entries will be pruned according to the specified timestamp
DB2 UDB EEE Backup and Recovery using ADSM 55

even if the command causes entries from the most recent restore set to be
deleted.

3.5 Choosing A Backup Strategy

Defining a robust backup strategy for your database requires careful
consideration of your business requirements, including factors such as the
requirements for database availability and the maximum time the database
can be down for backups. The Backup Database SmartGuide (included in the
DB2 UDB V5 Control Center on Intel platforms), helps you with the
decision-making. This section describes the considerations and issues in
more detail in order to provide you with a better understanding of this
important area.

To begin, you must decide on the types of failure that you are protecting
against. The purpose of running a backup is to be able to use it to perform a
recovery. Therefore, you must test your processes and procedures to ensure
that your backups will be useful in the event of a failure. Backups that cannot
be used to restore data are pointless.

The following are general guidelines for planning a recovery strategy:

 • The type of data contained in your database is relevant. Databases that
contain read-only data do not need to be protected through archive
logging. Off-line backups can be run following each new data load activity.
The use of circular logging would be sufficient in this case.

 • With continuously updated data that is deemed important to your
business, you must use archive logging.

 • If your database must be continuously available, you must take online
backups. This requires the use of archive logs.

 • If, in the event of a failure, your database must be recovered in a short
time, you will need to run more frequent backups. In this case, you need to
establish how long it would take to recover from a failure (the sum of the
time to restore the database from a backup plus the time needed to roll the
log forward).

Beyond transaction failures and system crashes, both of which DB2 will
recover from, you should consider application errors. This refers to the
general case of data being damaged in some manner. Clearly, there is no
way to prevent an authorized user from altering data inappropriately. The best
strategy for dealing with this type of problem is to ensure that you have
archive logs to roll forward the database to the point just prior to the
corruption of the data. Be sure to factor into your schedule the maximum time
56 Managing VLDB Using DB2 UDB EEE

the database can be down for backups, and whether these are online or
offline.

Probably the most common type of failure is caused by media problems. This
is not limited to disk problems, but can extend to other I/O devices, including
disk controllers and tape devices. As a starting point, it is suggested that you
do not back up your database to the same disk on which the production
version exists: use either a separate disk or external media. The handling of
your logs should be similar: Consider directing these to a separate physical
disk from that of the database. In addition to protecting against a disk failure
affecting both, this may also result in performance improvements.

Though unlikely, it is possible that your backup media could suffer a problem
just when it is needed to enable you to recover from a disk failure. Consider
the impact of a tape becoming unusable. If your data is absolutely critical, you
should consider having duplicate tape media. Another strategy is to minimize
the potential for impact caused by a failed disk. This applies to the disks that
both the database and logs reside upon. Using disk arrays for your database
volumes or logs (or both) is perhaps the best defense against disk media
failures. See the DB2 UDB V5 Administration Guide for information on disk
arrays. If you extend redundancy to disk controllers as well, it is highly
unlikely that your database will ever be unavailable or that logs will be lost
due to a media failure.

When a database is first connected to, or activated, the database manager
formats the primary logs for that database. The more logs to be formatted, the
more time DB2 UDB requires to initialize. To minimize startup time, specify no
more primary logs than needed to support crash recovery. Use secondary
logs to handle the rare times when many logs are required. Let’s say DB2
UDB starts logging with file S0000000.LOG and after some time the log fills.
DB2 UDB allocates the next log and calls the user exit, db2uext2, to copy the
full log to ADSM storage. The full log, though copied, is still active. The full
log will remain in active status until every unit of work having changes in that
log commits and until every logged (and now committed) change is written to
the database disk. Once all the changes are committed and written to the
database disk, the log becomes inactive. It is no longer required for crash
recovery. At this time, the now inactive log is renamed. It becomes the
highest numbered allocated log.

For example, say logprimary equals 5. When a connect or activate is issued,
DB2 UDB will allocate five primary logs. Assume the log file names are
S0000017.LOG through S0000021.LOG. UDB starts recording changes in
S0000017.LOG. Eventually, the logs fills. UDB starts using the next log,
S0000018.LOG, and calls db2uext2 to archive S0000017.LOG to ADSM
DB2 UDB EEE Backup and Recovery using ADSM 57

storage. Eventually, all the changes reflected in S0000017.LOG will be
committed or rolled back. Later yet, all the changes will finally be written to
the database disk files. At this time, DB2 UDB no longer requires
S0000017.LOG to support crash recovery. S0000017.LOG is renamed to
S0000022.LOG.

Now what if a database partition must be restored? Or worse, what if an
application error requires that the entire database be restored and rolled
forward to a point just before the errant application ran? Not only must all of
the database backups be restored from tape, but the necessary logs must be
retrieved as well. This may involve many tape mounts. Bear in mind also that
even query-only database systems do their share of logging.

Wouldn’t it be nice to have on disk all of the logs needed to roll forward from
the most recent backup? To be able to avoid waiting for log files to be recalled
from ADSM tape storage? Wouldn’t it be nice if DB2 UDB wasn’t so quick to
rename those inactive log file too allow some number of log files to remain in
the LOGPATH directory? Maybe just enough to roll forward from the most
recent backup?

A possible solution to this log-on-tape dilemma is to use the sample exit,
which writes logs to an alternate directory instead of to ADSM. A daemon
program could be written to archive the older logs to ADSM. Also you would
need to update the database configuration parameter to specify this disk
directory as an alternate log path.

3.6 Introducing ADSTAR Distributed Storage Manager (ADSM)

ADSTAR Distributed Storage Manager (ADSM) is an enterprisewide storage
management application. ADSM is a client/server application that provides
automated storage management services to multivendor workstations,
personal computers, and local area network (LAN) file servers. This section
aims to introduce the components and terminology of ADSM. A later section
of this chapter describes how to set up and use ADSM for database backup
and recovery.

ADSM includes the following components:

 • Server

The server provides backup, archive, and space management services. It
maintains a database and a recovery log. The database contains
information about ADSM resources and users and points to the location of
user data that is stored by ADSM. ADSM stores user data in storage pools
58 Managing VLDB Using DB2 UDB EEE

(defined below), not in the ADSM database. ADSM records changes to its
database in the recovery log.

 • Administrative client

This component allows ADSM administrators to control and monitor server
activities, to define how stored user data is to be managed, and to set up
schedules to provide services at regular intervals. The administrative
client will be used in a later section that explains how to install and set up
ADSM for use by DB2 UDB EEE.

 • Backup-archive client

This component allows users to maintain backup versions of their
workstation files, which they can then restore if the original files are lost or
damaged. Users can also archive files for long-term storage and retrieve
the archived files when necessary.

 • Hierarchical storage management (HSM) client

ADSM users can free workstation storage space by migrating less
frequently used files to ADSM server storage. A user accesses a migrated
file just as if it were an ordinary file. The migrated file is automatically
recalled from ADSM server storage and made available to the user.

 • Application programming interface (API)

Application programs can use defined program calls to request ADSM
services like backup, restore, archive, and retrieve. When ADSM is used
to store its backups and archived log files, UDB requests the services
through the API.

The ADSM server supports two methods for storing user data: backup and
archive. The purpose of backup is to guard against loss of information.
Multiple copies (called versions) of user data files can be stored by the ADSM
server. The process to get a backup version from ADSM storage is called
restore. The restored backup version remains in ADSM storage; it is not
deleted. ADSM provides two types of backup:

 • Incremental backup copies all files that are new or that have changed
since the last incremental backup.

 • Selective backup copies only specific files named by the user.

The archive method preserves files for long-term storage. Unlike backup,
archive does not support versions. The process to return an archived file from
ADSM storage to the client node is called retrieve. The archived file remains
in ADSM storage.

So, an ADSM backup version is restored; an archived file is retrieved.
DB2 UDB EEE Backup and Recovery using ADSM 59

DB2 UDB EEE can use both ADSM processes: backup/restore and the
archive/retrieve. When the USE ADSM clause is included in the DB2 UDB
command to backup (or restore) a database or tablespace, the ADSM backup
(restore) function is used. The ADSM version of the db2uext2 user exit uses
the ADSM archive and retrieve functions to handle copied database log files.

To store user data, the ADSM server requires two things: where to put the
copied data and how to manage those copies.

During the example configuration detailed in “Installing and Configuring
ADSM and DB2 UDB EEE” on page 63, the following ADSM objects are
defined:

 • Library. An administrator-defined collection of one or more drives that
share similar media mounting requirements.

 • Device class. Each device is associated with an ADSM device class. A
device class contains information about the device type and the way the
device manages its media.

 • Storage pool. A named collection of storage volumes that are associated
with one device class.

 • Backup and Archive copy groups. Where you specify parameters that
control the generation and expiration of backup and archive data.

 • Management class. Associates backup and archive groups with files and
specifies if and how client node files are migrated to storage pools.

 • Policy set. Specifies the management classes that are available to groups
of users. Policy sets contain one or more management classes consisting
of a default management class and any number of additional management
classes.

 • Policy domain. Lets an administrator group client nodes by the policies
that govern their files and by the administrators who manage their policies.
A policy domain contains one or more policy sets, but only one policy set
(named ACTIVE) can be active at a time. ADSM uses the active policy set
to manage files for client nodes assigned to a policy domain.

 • Include/exclude list. This allows users to:

 • Exclude files or directories from backup operations

 • Include any previously excluded files

 • Bind a file to a specific management class
60 Managing VLDB Using DB2 UDB EEE

After all these ADSM objects have been defined, there is an overview
diagram which shows how the relationships between the definitions in
“Overview of Backing up a Database Using ADSM” on page 102.

For additional information about ADSM, consult the ADSM product manuals
or visit the ADSM home page at:

http://www.storage.ibm.com/software/adsm/adsmhome.htm

3.7 Planning for ADSM

To develop a hardware configuration for ADSM, a number of items must be
evaluated. The following is by no means an exhaustive list:

 • How many tape transports? The number of drives required is mostly a
function of the amount of data and the duration of your backup window.
The number of concurrent backup tasks directed to an ADSM server
should not exceed the number of drives on that server. If there exist more
tasks than drives, the extra processes will hang in a media wait condition.
If the wait is longer than a configurable time, the waiting process is
cancelled. Perhaps the amount of data on a single partition is so large that
multiple sessions must be used to complete the backup in the time
required. The number of concurrent backup sessions should be no more
than the number of available drives. You might consider spreading your
backups over several days. Say, backup one-third of your database
partitions on one day, the second third on the next day, and the following
third on the day after. To support ADSM tasks like reclaiming tapes and
copying storage pools, consider no fewer than two tape drives.

 • How many adapters are needed? How many tape drives can be attached
to an adapter and still provide reasonable performance?

 • Will backup ADSM server(s) be needed in case the server host crashes?
The failover host will need adapters to at least take over the tape and
disk(s) storing the ADSM logs, database, and storage pools. To provide a
non-TCP/IP heartbeat path for HACMP, additional serial adapters be
called for. These considerations lead to the next question.

 • On what kind of node(s) will the ADSM server(s) run? Most likely your
choice for an ADSM node will be at least a wide node, perhaps even
larger. The node must provide a sufficient number of slots to contain the
adapters. Consider dedicating a host to the ADSM server. Avoid running
the server function on one of your database hosts. Remember that the
response of a DB2 UDB EEE database is as fast as the slowest database
partition (or host). To give processing cycles to ADSM requires taking
cycles from the database server. Increased contention for the processor(s)
DB2 UDB EEE Backup and Recovery using ADSM 61

leads to more waiting. And the additional wait time will slow down the
speed at which the database server on the partition can do its work and
reply back to the coordinator node.

 • Where will the ADSM server run? If the server is located within the
RS/6000 SP complex, the clients can send their files to the ADSM server
across the SP switch. Network bottlenecks are less likely.

 • Will tape drives, if used, be installed in an automated library? Using an
automated library like the 3575 Tape Dataserver for small complexes or
the 3494 Dataserver for larger installations will minimize the need for
personnel to perform the tasks of mounting and dismounting tapes. The
library will likely be more responsive to tape mount requests and will work
24 hours a day every day of the year.

 • So, what about recovery? As discussed above, the hardware plan must
allow backups to complete in the allotted time. And while a backup of all
the database partitions might be spread across several days, you probably
cannot get away with that in a recovery situation. What if an application
error necessitates recovering the entire database to the time just before
the errant program started? How does an unavailable database impact the
business? This and other factors determine how quickly the database
must be restored to operation.

 • Another factor to evaluate is how the backup images are stored on tape.
For example, what is the likelihood that you will try to restore two different
database partitions at the same time only to discover that both backup
images are on the same tape? The question applies mostly to installations
running multiple database partitions on the same host. Let’s say you
configure four database partitions on each of your high nodes. ADSM
provides a feature called collocation, which if enabled on a storage pool,
makes ADSM keep each client’s files on a minimal number of volumes
within the storage pool. This feature can be enabled for hosts or for file
systems. But here’s the problem. Host collocation may not work because
you have four database partitions on the same host. Collocation by file
space also fails to guarantee separation because the entire set of backups
(today, yesterday’s, last week’s, node01’s, node23’s) are all part of the
same file space (the database alias name translated to uppercase).
Perhaps you might backup all the partitions on the same host at the same
time. Just be sure that you have enough drives. If you run four
simultaneous backups each using a single ADSM session, ideally four
drives should be available. But even this plan could be undone when tape
reclamation runs. The reclamation process consolidates the active,
unexpired data on many volumes onto fewer volumes. ADSM will just
consolidate those mostly empty tapes and fill new tapes. And the current
62 Managing VLDB Using DB2 UDB EEE

backups for partition 1 and for partition 2 are now perhaps on the same
tape! Another option is to assign each partition to a separate backup
storage pool. Or, using host collocation, assign the first partition on each
host to one storage pool, the second logical partition to another, and so
on.

3.8 Installing and Configuring ADSM and DB2 UDB EEE

This section goes through the steps necessary to configure ADSM and DB2
UDB EEE so that DB2 backups will use ADSM storage and full log files will be
copied to ADSM storage.

3.8.1 Hardware Configuration
Throughout the steps, the same example will be referenced, namely a four
high-node RS/6000 SP with a high sped switch (HPS). Each SP node has 64
GB of external SSA disk. Four 3590 tape libraries are attached to the first SP
node. The SP nodes have hostnames tp3an01, tp3an05, tp3an09, and
tp3an13. The Control Workstation’s hostname is sp-tp3cw.

Figure 9. Hardware Configuration

3.8.2 Software Used
The four high nodes have the following software installed:

 • AIX 4.2.1

 • PSSP 3.1

HPS

High Node 01

High Node 05

High Node 09

SSA

SSA
Disk

Disk

3590
Library

3590
Library

3590
Library

3590
Library

High Node 13
DB2 UDB EEE Backup and Recovery using ADSM 63

 • DB2 UDB EEE V5.0.0.1

 • ADSM Client for AIX V2.1.20.7

The first high node (tp3an01) has in addition:

 • ADSM Server for AIX V3.1

The DB2 UDB EEE database referenced is a 30 GB TPCD database.

Advice will be given where appropriate for configurations that differ from the
configuration used in our tests.

3.9 ADSM Server and Client Installation

The following steps describe a new install of ADSM Version 3. If migrating
from an earlier version, refer to the ADSM V3 for AIX Quick Start manual.

Having determined the number and location of the ADSM server(s), the
ADSM Server product must be installed on the chosen host(s). For this
project, one ADSM server is sufficient. It will be installed on the first node in
the RS/6000 SP complex. The ADSM client software will be installed on all
SP nodes and on the Control Workstation. For our example, the 3590 tape
drives require the Atape.driver device driver. If using the 3494 tape drive, you
will require (in addition to Atape.driver) the atldd.driver product.

One of two basic methods can be used to install the software: the installp
command or smitty. The ADSM software images were copied to an install
directory, /usr/sys/software. The /usr/sys/software directory was exported
using NFS in read-only mode to all SP nodes.

3.9.1 Install the ADSM Server Software
For this project, we installed ADSM Server Version 3, PTF U452223. The PTF
brings the adsm.server.rte fileset to level 3.1.0.1.

Notice the single quotes surrounding the installp and tee command sent to
node 1. This prevents the shell on our host from interpolating variable $$ and

dsh -w tp3an01 mount sp-tp3cw:/usr/sys/software /mnt

dsh -w tp3an01 ’installp -acgNqX -d /mnt adsm.server \
adsm.devices adsm.license 2>&1 \
| tee /tmp/install.adsmserv.$$’ | dshbak | more

dsh -w tp3an01 umount /mnt
64 Managing VLDB Using DB2 UDB EEE

from implementing the redirection of STDERR and the pipe from installp to
tee. If you wish to preview, but not actually perform, the software installation,
add the -p flag to the installp command above.

After a successful installation, a list of installed products can be obtained by
using the lslpp command at the ADSM server SP node (tp3an01):

3.9.2 Install the ADSM Client Software
We installed the ADSM Version 2 client code on all SP nodes and on the
Control Workstation, sp-tp3cw.

The /usr/sys/software directory contains the install images for the ADSM
client. Using the installp command, we install all hosts at the same time. (As
with the ADSM server install above, notice the use of single quotes.) To
preview, add the -p flag to the installp command below.

After a successful installation, a list of installed products can be obtained by
using the lslpp command at a client SP node (in this case tp3an05):

[tp3an01][/]> lslpp -L ’adsm*’

Fileset Level State Description
--
adsm.devices.rte 3.1.0.0 C ADSM Device Support runtime
adsm.license.rte 3.1.0.0 C ADSM Server License Registration
adsm.server.gif 3.1.0.0 C ADSM Server Web Administrator
 Icons
adsm.server.rte 3.1.0.1 C ADSM Server Runtime
adsm.server.util 3.1.0.0 C ADSM Server Utilities

ADSM Version 2 Client was used in our tests because at the time of writing,
DB2 UDB did not support the ADSM Version 3 Client. The support of ADSM
Version 3 Client by DB2 UDB is planned for June 1998. We did try to use the
Version 3 Client and encountered problems with offline backups and the
db2adutl command.

ADSM Version 3 Client and DB2 UDB

dsh -a -w sp-tp3cw mount sp-tp3cw:/usr/sys/software /mnt

dsh -a -w sp-tp3cw ’installp -acgNqX -d /mnt \
adsm.client 2>&1 | tee /tmp/install.adsmcli.$$’ \
| dshbak| more

dsh -a -w sp-tp3cw umount /mnt
DB2 UDB EEE Backup and Recovery using ADSM 65

It is recommended to check that the device driver for the tape drives are
installed. For example, IBM 3590 Magstar Tape (which we used) and IBM
3570 Magstar MP Tape require Atape.driver. The automated IBM 3494
Magstar Tape Library requires the atldd.driver product. (The IBM 3575
Magstar MP Tape Library Dataserver does not require the atldd.driver
product.)

3.10 ADSM Server Configuration

This section describes how to set up and customize Version 3 of ADSM
server. To integrate DB2 UDB EEE into existing ADSM installations, only a
few of the steps apply. Specifically, your ADSM administrator should consider
the modification of the current policy domain to add a management class for
UDB backup and log archive files. Additionally, insure that the storage
volumes are sufficient to handle the increased requirement. More tape
volumes may need to be formatted and inserted into the library. Automated
schedules may require adjustment.

The tasks outlined below and in the following section on ADSM client
customization will serve as a guide for those installations which are setting up
ADSM for the first time. The following sequence of steps describes the setup
and customization of the ADSM server:

 • Allocate and format the ADSM log and database files.

 • Create a set of customized server options, dsmserv.opt.

 • Register and grant authority to ADSM administrators.

 • Revoke system authority from SERVER_CONSOLE ID.

 • Register ADSM licenses.

 • Define libraries, devices and devices classes.

 • Define storage pools.

[tp3an05][/]> lslpp -L ’adsm*’

Fileset Level State Description
--
adsm.client.admin 2.1.20.7 C ADSM Client - Administrative GUI
adsm.client.api 2.1.20.7 C ADSM Client - Application
 Programming Interface
adsm.client.base 2.1.20.7 C ADSM Client - Backup/Archive
adsm.client.common 2.1.20.7 C ADSM Client - Common Files
adsm.web.client 2.1.20.7 C ADSM Client - WebClient
66 Managing VLDB Using DB2 UDB EEE

 • Establish storage management policy (domain, policy set, and
management class definitions).

 • Register client nodes.

 • Set up schedules to automate client and server operations.

 • Initialize storage pool volumes.

 • Automate the start of the ADSM server and/or the client scheduler when a
node is booted.

 • Implement procedures to manage the ADSM environment.

3.10.1 Allocate ADSM Database and Log
First, let’s discuss some considerations to bear in mind when creating the
ADSM database and log files.

3.10.1.1 ADSM Database and Log Configuration
In addition to storing server configuration data, the ADSM database contains
information about (and pointers to) all versions of a client node’s backup and
archive files which reside in the storage pools. When a client requests that a
specific version of a backup file be restored, the ADSM server consults its
database to locate the requested file in the storage pool. The ADSM recovery
log reflects changes to the database. Without the recovery log, all changes to
the ADSM database since the last backup are lost. And if you lose your
ADSM database, you lose all the backup/archive data of all the clients. To
provide greatest availability and protection, mirror both the database and the
recovery logs used by ADSM. For resource constrained systems, at least try
to mirror the ADSM log. Also, enable roll-forward recovery mode. This mode
allows the database to be recovered to its most current state or the point at
which the database was lost.

The normal rules for mirroring apply. Put the file and its mirror on different
disks. Attach the mirroring disk to a different adapter and to a different power
circuit than the mirrored disk.

If you cannot tolerate the unavailability of the ADSM server for a prolonged
node failure, consider using HACMP to switch the server functions to a
backup node.

ADSM supports the use of either journaled file system (JFS) files or raw
logical volumes for the database, recovery log, and disk storage pools. Either
ADSM or AIX can provide the mirroring function. (Note: If you decide to use
raw logical volumes, be sure to use ADSM, not AIX, mirroring. AIX overwrites
ADSM control information when raw logical volumes are mirrored.)
DB2 UDB EEE Backup and Recovery using ADSM 67

3.10.1.2 Sizing the ADSM Database and Log Files
The ADSM V3 Administrator’s Guide details how to calculate the sizes for the
database, for the recovery log, and for disk storage pools. The current setup
plans to use roll-forward logging. For this mode, the guide recommends an
initial log size of 25 MB. Disk storage pools will not be used. The allocation
size of the ADSM database was computed as follows:

To determine the size of the ADSM database, you must estimate the total
number of client files to be stored, the number of versions of each file, the
amount of database storage needed to describe each object, and factors to
account for overhead, growth, and a margin of safety.

These are the steps we took:

1. Determine the number of files on the clients. The following command was
run on the Control Workstation and on the four SP nodes.

find / -fstype jfs | wc -l

This resulted in:

42,000 files on the control workstation
25,000 files on each SP node
142,000 total files

2. Three backup and/or archive versions of each file will be stored.

3. Each stored object requires six hundred (600) bytes of database storage.

4. The ADSM Administration Guide suggests 50 percent additional space for
overhead.

5. The size in bytes is the product of the total number of files (142,000), the
number of versions per file (3) and the number of bytes per entry (600).
Calculate the size:

(142,000 * 3 * 600) * 1.50 = 383400000 bytes
= 383.4 MB

To allow for a safety factor, we allocated 501 MB to the ADSM database.

Why 501 MB and not 500? ADSM subtracts one (1) MB from the allocated
space for overhead. The remaining space is divided into 4 MB partitions. If
any partition is less than 4 MB, it is not used. So, had the database been
allocated with 500 MB, ADSM would have taken 1 MB for overhead. The
remaining 499 MB would be divided into one hundred twenty-four 4 MB
partitions and 3 MB of unused space. With an allocation of 501 MB, ADSM
removes 1 MB for overhead and divides the remaining 500 MB into one
hundred twenty-five 4 MB partitions and no unused space.
68 Managing VLDB Using DB2 UDB EEE

To summarize, the ADSM log is to be 25 MB, the database 501 MB. Both log
and database will be mirrored. Sometime in the future, the ADSM server may
be made highly available by using HACMP to switch the server to a backup
host. To prepare for that possibility, a new mirrored file system will be created.
You may even wish to create a separate volume group consisting of disks
dedicated to ADSM. Since our current system is disk-constrained, we will use
an existing volume group. In addition to the ADSM log and database, the new
file system will also contain a directory for configuration macros, ADSM
server options file (dsmserv.opt), and an ADSM start script.

3.10.1.3 Creating the File System for ADSM Database and Log
Since the log and database require a total of 526 MB, an allocation of
sixty-six 8 MB logical partitions (528 MB) would seem to be sufficient. Surely,
the remaining 2 MB would be enough to contain the inodes and the planned
configuration directory and files. In fact, if the file system is allocated with the
default which creates one inode for every 4096 bytes of file system storage
(nbpi=4096), you cannot even allocate the database and the log! By changing
the number of bytes per inode to 131072 (which also requires changing the
aggregation value to 64 (ag=64)) both files can be allocated. There’s even
enough space, barely, to store the planned configuration directory and files.
For the curious, the impact of different nbpi values is summarized below:

Using the default file system creation values of ag=8 and nbpi=4096:

The result is that not enough space remains to allocate both the recovery log
and the database. Free space is a little less than 524 MB; however, the two
files together require 526 MB.

Using creation values ag=64 and nbpi=131072:

Do not confuse ADSM partition size (always 4 MB) with AIX partition size,
which varies. For this example, it is 8 MB.

ADSM and AIX Partition Sizes

> df -k /tmp/test_fs

Filesystem 1024-blocks Free %Used Iused %Iused Mounted on
/dev/test_lv 540672 523652 4% 17 1% /tmp/test_fs
DB2 UDB EEE Backup and Recovery using ADSM 69

Now both files can be allocated and enough space will be left over to contain
the ADSM configuration source files.

So, a sixty-six partition logical volume will be created for the ADSM files,
where each partition is 8 MB. The file system will be created using the higher
(non-default) values for nbpi and ag. As mentioned above, you may wish to
create a separate volume group to contain the ADSM files. So, the first three
commands below (mkvg to create an ADSM volume group, mklv to allocate a
JFS log and logform to format the JFS log) are included as optional
commands. Our exercise, however, does not require a separate volume
group.

These are the commands you might use to create the volume group, allocate
a jfslog and format the jfslog:

Note that the JFS log will be one partition allocated in the center of one disk.
The JFS log mirror will be one partition in the center of the second disk.

To set up and mount the file system to contain the ADSM files for this
example:

To allocate the ADSM recovery log and database (the -m flag indicates that
the sizes (25 and 501) are in megabytes):

> df -k /tmp/test_fs
Filesystem 1024-blocks Free %Used Iused %Iused Mounted on
/dev/test_lv 540672 540004 1% 17 1% /tmp/test_fs

mkvg -f -y vg_adsm -s 8 hdisk9 hdisk10

mklv -y lv_adsm_log01 -t jfslog -a c -c 2 \
vg_adsm 1 hdisk9 hdisk10

yes | /usr/sbin/logform /dev/lv_adsm_log01

mklv -y lv_n01_01_115 -t jfs -a e -c 2 vg_n01_01 66 \
hdisk13 hdisk39

crfs -v jfs -d lv_n01_01_115 -m /adsmserv/tp3an01 \
-A yes -p rw -t no -a frag=4096 -a nbpi=131072 -a ag=64

mount /adsmserv/tp3an01
70 Managing VLDB Using DB2 UDB EEE

In the ADSM file system (/adsmserv/tp3an01) created above, we made an
additional subdirectory to contain customization source files: the server
options file, setup macros, the ADSM startup script, and more.

3.10.2 Format the ADSM Database and Log
The ADSM server locates its recovery log and its database(s) by referencing
the dsmserv.dsk file. Whenever a new ADSM log and/or database file is
formatted, the file dsmserv.dsk is created in the current working directory
unless it already exists. If dsmserv.dsk does exist, it is modified when the
format program runs.

For our example, the ADSM server program was started from our custom
directory, /adsmserv/tp3an01/config.

To format the ADSM log and database and create the dsmserv.dsk file:

The number "1" before each file name specifies that one ADSM log file and
one database file will be formatted. The dsmserv format command creates a
file, /adsmserv/tp3an01/config/dsmserv.dsk, which identifies the recovery log
and database files and contains:

3.10.3 Customize ADSM Server Options
During startup, the ADSM server requires an options file, dsmserv.opt. The
ADSM server program product provides an annotated sample server options
file, /usr/lpp/adsmserv/bin/dsmserv.opt.smp. Using the sample file as a guide,

dsmfmt -m -log /adsmserv/tp3an01/log.1 25

dsmfmt -m -db /adsmserv/tp3an01/db.1 501

mkdir -p /adsmserv/tp3an01/config

cd /adsmserv/tp3an01/config
dsmserv format 1 /adsmserv/tp3an01/log.1 \
 1 /adsmserv/tp3an01/db.1

/adsmserv/tp3an01/log.1
/adsmserv/tp3an01/db.1
DB2 UDB EEE Backup and Recovery using ADSM 71

we customized a server options file for our installation. The configuration file,
/adsmserv/tp3an01/config/dsmserv.opt, created for this exercise follows:

Most of the above parameters aim to optimize performance. In general,
ADSM will complete a process faster when it can work with larger blocks of
data.

 • We must have a COMMMETHOD parameter entry set to TCPIP as we will be
using the SP switch.

 • The TCPPORT parameter specifies the TCP/IP port to be used by the ADSM
server to wait for requests. You must ensure that this port is neither
already defined in /etc/services nor in use by another program.

 • The TCPWINDOWSIZE parameter, set to 640 KB, specifies the size of the
TCP/IP sliding window for the ADSM clients. This can vary from 0 to 2048
KB. Larger window sizes may improve performance while using more
memory.

 • The MAXSESSIONS parameter specifies the maximum number of
simultaneous client sessions. The default value, and the value coded
above, is 25 client sessions. We need at least four (one per SP node).
Your installation may require a greater number. The maximum value is
limited only by available virtual memory size or communication resources.

* ==
* File: dsmserv.opt
* Platform: AIX
*
* Customized ADSM V3.1 server options file
*
* ==
COMMmethod SHAREDMEM
SHMPort 1510
COMMmethod TCPIP
TCPPort 1500
TCPWindowsize 640
TCPNODELAY YES
ENABLE3590LIBrary Yes
MAXSessions 25
BUFPoolsize 131072
LOGPoolsize 2048
TXNGroupmax 256
COMMTimeout 6000
IDLETimeout 15
VOLUMEHistory /adsmserv/tp3an01/config/volumehistory1
DEVCONFig /adsmserv/tp3an01/config/devconfig1
MOVEBatchsize 1000
MOVESizethresh 500
USELARGebuffers Yes
72 Managing VLDB Using DB2 UDB EEE

 • The ENABLE3590LIBRARY parameter is only needed when 3590 Tape Drives
are installed in an IBM 3494 Dataserver.

 • The COMMTIMEOUT parameter defines the amount of time that the ADSM
server waits during a ADSM database update, or for an expected message
from a ADSM client, before terminating the session with the client. This is
set to 6000 seconds as recommended in the DB2 UDB Administration
Guide.

For a full description of all the parameters, see the ADSM for AIX V3.1
Administrator’s Reference, GC35-0275-00.

3.10.4 Start the ADSM Server
The ADSM server can be started using one of several methods: the ADSM
GUI, AIX commands or by using a script. A entry can be added to /etc/inittab
to automatically start the ADSM server when the host is booted.

The installation of ADSM server puts a start-up entry into /etc/inittab. We will
change that entry to use our custom start script.

The ADSM server can be started in either console mode or quiet mode (also
called background mode). In console mode, ADSM runs in a workstation
window. A default user ID called SERVER_CONSOLE is associated with the
session. To start an ADSM console session, enter the dsmserv command
without options. You may choose to run the ADSM server in the background.
An administrative client session must be used to control the server. To start
the server in background, run the dsmserv command with the -quiet option.

When the ADSM server product is installed, the administrator ID
SERVER_CONSOLE is created and granted system class (the highest)
authority. The SERVER_CONSOLE user ID does not have (nor can it be
given) a password. We will register an installation system administrator and
then reduce the authority of SERVER_CONSOLE as soon as possible.

You may decide to not reduce the authority of SERVER_CONSOLE. With
ADSM password protection enabled (the default), the SERVER_CONSOLE
ID cannot sign on to an administrative client. The signon requires a
password, and SERVER_CONSOLE cannot be assigned one. Furthermore,
two copies of the same server cannot be run simultaneously. (You can,

A full set of ADSM online manuals can also be found at:

http://www.storage.ibm.com/software/adsm/pubs

ADSM Online Manuals
DB2 UDB EEE Backup and Recovery using ADSM 73

however, run multiple DIFFERENT servers at the same time.) So, if the
ADSM server is automatically started in background (quiet) mode by the boot
process, a console session cannot be started as long as the original server
program continues to run. Without a console session, someone with bad
intentions could not use your SERVER_CONSOLE ID with system authority
to delete objects in your ADSM database.

We decided to take no chances (other than perhaps all the administrators
with system class authority forget their ADSM password at the same time!).
We reduced the authority of SERVER_CONSOLE at the earliest opportunity.

To start ADSM for the very first time:

After a series of messages, the ADSM prompt (adsm>) should appear.

Note that the ulimit command is issued to avoid having the start of the ADSM
server cancelled because of insufficient memory. If the start of the server is
cancelled for this reason, you will see messages similar to the following:

cd /adsmserv/tp3an01/config
ulimit -d unlimited
dsmserv
ANR7800I DSMSERV generated at 11:17:30 on Oct 6 1997.

ADSTAR Distributed Storage Manager for AIX-RS/6000
Version 3, Release 1, Level 0.1

Licensed Materials - Property of IBM

5765-C43 (C) Copyright IBM Corporation 1990, 1997. All rights reserved.
U.S. Government Users Restricted Rights - Use, duplication or disclosure
restricted by GSA ADP Schedule Contract with IBM Corporation.

ANR0900I Processing options file dsmserv.opt.
ANR0990I ADSM server restart-recovery in progress.
ANR0200I Recovery log assigned capacity is 24 megabytes.
ANR0201I Database assigned capacity is 500 megabytes.
ANR0306I Recovery log volume mount in progress.
ANR0353I Recovery log analysis pass in progress.
ANR0354I Recovery log redo pass in progress.
ANR0355I Recovery log undo pass in progress.
ANR0352I Transaction recovery complete.
ANR2100I Activity log process has started.
ANR2803I License manager started.
ANR8200I TCP/IP driver ready for connection with clients on port 1500.
ANR8285I Shared Memory driver ready for connection with clients on port 1510
ANR2560I Schedule manager started.
ANR0993I ADSM server initialization complete.

ADSM Server for AIX-RS/6000 - Version 3, Release 1, Level 0.1

adsm>
74 Managing VLDB Using DB2 UDB EEE

If the ADSM server is started by a script called from /etc/inittab, add the
command ulimit -d unlimited to that script ahead of the dsmserv command. In
a later step, after ADSM server customization is complete and tested, an
ADSM startup script will be developed and included in the /etc/inittab file to
automatically start ADSM when the system is booted.

3.10.5 Define an ADSM System Administrator
Next we defined an ADSM system administrator for our installation. The
administrator ID is sysadm; the password is password. Then we granted
system class authority to the new administrator:

From now on, we plan to customize the ADSM server using ADSM macro
files. These files contain one or more ADSM commands. Macro files
document the ADSM customization commands and can be useful to speed
recovery in a disaster recovery situation. Macros cannot be entered through
the ADSM server console session. They must be run from an ADSM
administrative client.

Create a macros subdirectory in our configuration directory. All configuration
macros will be kept and run from this subdirectory.

Start an ADSM administrative client by opening an AIXterm window. Change
to the macros directory and enter the dsmadmc command. When prompted,
enter the administrator ID (sysadm) created above and the password
(password):

System error - error data is:/usr/lpp/adsmserv/bin/dsmserv
System error: There is not enough memory available now.

The ADSM Server program requires a significant amount of paging space to
start. In our tests we noticed 170 MB more paging space was used after
starting ADSM Server. Make sure that you have sufficient paging space
defined.

Paging Space Requirements

adsm> register admin sysadm password
adsm> grant authority sysadm classes=system

mkdir /adsmserv/tp3an01/config/macros
DB2 UDB EEE Backup and Recovery using ADSM 75

Revoke system class authority from the SERVER_CONSOLE administrator
ID. Make sure that you know your ADSM system administrator password
before you issue this command.

3.10.6 Register Additional ADSM Administrators
If you need to register additional ADSM administrators, you should use a
macro file. For example, we created a macro file admin.mac in the
configuration directory, /adsmserv/tp3an01/config/macros:

It is recommended to not put the command to revoke system authority from
SERVER_CONSOLE in a macro file. You need to be certain that you can
login to the ADSM client with another ID and execute a system command
before reducing SERVER_CONSOLE’s authority.

The FORCEPWRESET option forces an ADSM administrator to change the
password at the next login.

> cd /adsmserv/tp3an01/config/macros
> dsmadmc
ADSTAR Distributed Storage Manager
Command Line Administrative Interface - Version 2, Release 1, Level 0.7
(C) Copyright IBM Corporation, 1990, 1996, All Rights Reserved.

Enter your user id: sysadm
Enter your password:
ANS5100I Session established with server ADSM: AIX-RS/6000

adsm>

adsm> revoke authority server_console classes=system

/* --- */
/* R E G I S T E R A D M I N I S T R A T O R S */
/* --- */
/* This macro file defines administrators and, if required, grants */
/* authorities. */
/* --- */

register admin ssmith - /* System administrator */
 2easy4u - /* initial password */
 forcepwreset=yes - /* Change password at first login */
 contact="S. Smith, pager: 1-xxx-xxxxxxx pin 123456"

grant authority ssmith -
 classes=system /* Authorize sysadmin */

register admin jjones - /* ADSM administrator (query only) */
 see4miles - /* initial password */
 forcepwreset=yes - /* Change password at first login */
 contact="J. Jones pager: 1-xxx-xxxxxxx pin 987654"
76 Managing VLDB Using DB2 UDB EEE

Notice a couple of things. Macro files can contain blank lines and comments.
A comment begins with the character string /* (slash-asterisk) and ends with
the string */ (asterisk-slash). To continue a command to the next line, use the
line-continuation character - (hyphen).

Back in the ADSM administrative client window (dsmadmc session), run the
macro:

Note that relative path names can be used. If you are in the directory
/adsmserv/tp3an01/config/macros, you could enter the shorter:

3.10.7 Register ADSM Licenses
Although our system currently has only five potential client hosts (the SP
Control Workstation and four SP nodes), nine client licenses will be
registered to allow for growth. To use the TCP/IP transport, ADSM requires a
network license. So we created a macro file called license.mac:

This macro file installs licenses to support nine ADSM clients. Note that
licenses can be repeated. In our case, since we want to allow up to nine
ADSM clients to be registered, one 5-client and three 1-client licenses are
used. One client license is installed with the ADSM Server product; so only
eight additional licenses need to be added. A network license is also
installed. Licenses are stored in the nodelock file in the directory in which the
ADSM client session is running. For our example, this file is
/adsmserv/tp3an01/config/nodelock.

adsm> macro /adsmserv/tp3an01/config/macros/admin.mac

adsm> macro admin.mac

/* --- */
/* R E G I S T E R L I C E N S E S */
/* --- */
/* Macro to install licenses to support 9 ADSM clients */

register license file(/usr/lpp/adsmserv/bin/1client.lic)
register license file(/usr/lpp/adsmserv/bin/1client.lic)
register license file(/usr/lpp/adsmserv/bin/1client.lic)
register license file(/usr/lpp/adsmserv/bin/5client.lic)

register license file(/usr/lpp/adsmserv/bin/network.lic)
DB2 UDB EEE Backup and Recovery using ADSM 77

To register the additional licenses, go to the ADSM administrative client
(dsmadmc) and enter:

The previous macro command and all subsequent macro commands will
specify the relative path name only.

3.10.8 Define Tape Drives to ADSM
Before the drives can be defined to ADSM, the hardware must be installed
and configured by AIX. To use the 3590 IBM Tape Drive with Automated
Cartridge Facility as an SCSI library, set the drive to Random mode. To verify
that the drives are configured correctly to AIX:

In our example, we see four 3590 tape devices defined to AIX. We also see
four library devices, which are named /dev/rmtn.smc where n=1,2,3,4.

To define these devices to ADSM, we created a macro called library.mac:

adsm> macro license.mac

> lsdev -Cc tape

rmt0 Available 00-06-01-0,0 IBM 3590 Tape Drive and Medium Changer
rmt1 Available 00-02-01-0,0 IBM 3590 Tape Drive and Medium Changer
rmt2 Available 00-17-01-4,0 IBM 3590 Tape Drive and Medium Changer
rmt3 Available 00-18-01-0,0 IBM 3590 Tape Drive and Medium Changer

> ls -l /dev/*smc*

crw-rw-rw- 1 root system 18, 2 Mar 16 18:03 /dev/rmt0.smc
crw-rw-rw- 1 root system 18,258 Mar 16 18:03 /dev/rmt1.smc
crw-rw-rw- 1 root system 18,514 Mar 16 18:03 /dev/rmt2.smc
crw-rw-rw- 1 root system 18,770 Mar 16 18:03 /dev/rmt3.smc
78 Managing VLDB Using DB2 UDB EEE

There are three steps to complete for each tape device:

1. Define the tape library to ADSM using the define library command. Here
we must specify the AIX device for the library, /dev/rmtn.smc

2. Define the tape drive to ADSM using the define drive command. Here we
must reference the library name assigned in the first step and specify the
AIX device for the tape drive, /dev/rmtn.

3. Define a device class to ADSM using the define devclass command. Here
we must reference the library name assigned in the first step and specify
other parameters for this device class.

An important parameter is MOUNTWAIT, which defines the amount of time an
ADSM client will wait for a tape device to become available before timing
out. This is important during backup processing when we will be backing
up 15 database partitions in parallel. These 15 backup images will be
divided equally over the four available tape devices; so while each tape
device is processing its first backup image, it will have a waiting list of up
to three additional backup images. MOUNTWAIT needs to be set sufficiently
high so that none of the ADSM clients time out. See “Archiving DB2 Log
Files Using ADSM” on page 110 for more details.

/* --- */
/* D E F I N E T A P E D E V I C E S */
/* --- */
/* Macro to define four 3590 tape devices to ADSM */

define library l3590_01 libtype=scsi device=/dev/rmt0.smc
define drive l3590_01 d3590_01 device=/dev/rmt0
define devclass devc3590_01 devtype=3590 library=l3590_01 -
 mountlimit=drives mountretention=2 mountwait=120
commit

define library l3590_02 libtype=scsi device=/dev/rmt1.smc
define drive l3590_02 d3590_02 device=/dev/rmt1
define devclass devc3590_02 devtype=3590 library=l3590_02 -
 mountlimit=drives mountretention=2 mountwait=120
commit

define library l3590_03 libtype=scsi device=/dev/rmt2.smc
define drive l3590_03 d3590_03 device=/dev/rmt2
define devclass devc3590_03 devtype=3590 library=l3590_03 -
 mountlimit=drives mountretention=2 mountwait=120
commit

define library l3590_04 libtype=scsi device=/dev/rmt3.smc
define drive l3590_04 d3590_04 device=/dev/rmt3
define devclass devc3590_04 devtype=3590 library=l3590_04 -
 mountlimit=drives mountretention=2 mountwait=120
commit
DB2 UDB EEE Backup and Recovery using ADSM 79

For a full explanation of these commands, see the ADSM for AIX 3.1
Administrator’s Reference Guide.

Using the ADSM administrative client (dsmadmc session), run the macro
library.mac:

To verify the defined libraries, use the q library ADSM command from
dsmadmc. For instance:

To verify the defined drives, use the q drive ADSM command from dsmadmc.
For instance:

To verify the defined device classes, use the q devclass ADSM command
from dsmadmc. For instance:

adsm> macro library.mac

adsm> q library

Library Name Library Device Private Scratch External
 Type Category Category Manager
------------ ---------- ---------------- -------- -------- --------------
L3590_01 SCSI /dev/rmt0.smc
L3590_02 SCSI /dev/rmt1.smc
L3590_03 SCSI /dev/rmt2.smc
L3590_04 SCSI /dev/rmt3.smc

adsm> q drive

Library Name Drive Name Device Type Device ON LINE
------------ ------------ ----------- ---------------- -------------------
L3590_01 D3590_01 3590 /dev/rmt0 Yes
L3590_02 D3590_02 3590 /dev/rmt1 Yes
L3590_03 D3590_03 3590 /dev/rmt2 Yes
L3590_04 D3590_04 3590 /dev/rmt3 Yes
80 Managing VLDB Using DB2 UDB EEE

3.10.9 Define Storage Pools to ADSM
Storage Pools are used by ADSM to access storage devices, which may be
groups of tape devices or disks. Create a macro, storage.mac, to define
storage pools to ADSM.

adsm> q devclass

Device Device Storage Device Format Est/Max Mount
Class Access Pool Type Capacity Limit
Name Strategy Count (MB)
--------- ---------- ------- --------- ------ -------- ------
DEVC3590- Sequential 2 3590 DRIVE 0.0 DRIVES
 _01
DEVC3590- Sequential 1 3590 DRIVE 0.0 DRIVES
 _02
DEVC3590- Sequential 1 3590 DRIVE 0.0 DRIVES
 _03
DEVC3590- Sequential 1 3590 DRIVE 0.0 DRIVES
 _04
DISK Random 3
DB2 UDB EEE Backup and Recovery using ADSM 81

Note that the second parameter of the define stgpool command is the device
class (for instance, devc3590_01). This must match the devclass names
created in the library.mac macro above.

The MAXSCRATCH parameter (set to 30) defines the maximum number of
labelled tapes that can be dynamically allocated to the storage pool.

For a complete description of the parameters of the define stgpool command,
see the ADSM for AIX V3.1 Administrator’s Reference.

To verify the storage pool definitions, use the q stgpool ADSM command from
the ADSM client, dsmadmc. For example:

/* -- */
/* Define ADSM storage pools */
/* -- */

define stgpool austin_tapepool_01 devc3590_01 -
 pooltype=primary -
 description="austin primary pool - 3590_01" -
 access=readwrite maxsize=nolimit collocate=no -
 reclaim=100 maxscratch=30 reusedelay=0
commit

define stgpool austin_tapepool_02 devc3590_02 -
 pooltype=primary -
 description="austin primary pool - 3590_02" -
 access=readwrite maxsize=nolimit collocate=no -
 reclaim=100 maxscratch=30 reusedelay=0
commit

define stgpool austin_tapepool_03 devc3590_03 -
 pooltype=primary -
 description="austin primary pool - 3590_03" -
 access=readwrite maxsize=nolimit collocate=no -
 reclaim=100 maxscratch=30 reusedelay=0
commit

define stgpool austin_tapepool_04 devc3590_04 -
 pooltype=primary -
 description="austin primary pool - 3590_04" -
 access=readwrite maxsize=nolimit collocate=no -
 reclaim=100 maxscratch=30 reusedelay=0
commit

define stgpool austin_copypool devc3590_01 -
 pooltype=copy -
 description="austin copy storage pool" -
 access=readwrite collocate=no -
 reclaim=100 maxscratch=30 reusedelay=3
commit
82 Managing VLDB Using DB2 UDB EEE

3.10.10 Create ADSM Policy Domains
Policy domains define the characteristics to be associated with ADSM client
requests (such a backup). Each ADSM client uses the register command to
specify its policy domain.

Within a policy domain, we define management classes. A management
class holds detailed information such as which file names to include in the
client request.

Also within a policy domain, we define copygroups for archive and backup.
These define details such as how many versions of a object such be retained.

Create a macro to define the policy domains to ADSM. This macro file defines
four policy domains, one for each 3590 tape library. We will show the full
details here of only the first policy domain, which relates to the first 3590 tape
library. The other three policy domains are identical in definition and only
differ in their name and which ADSM client they serve. The complete
policy.mac macro file is listed in “Policy.mac” on page 123.

Here is the first part of the policy.mac macro:

adsm> q stgpool

Storage Device Estimated Pct Pct High Low Next
Pool Name Class Name Capacity Util Migr Mig Mig Storage
 (MB) Pct Pct Pool
----------- ---------- ---------- ----- ----- ---- --- -----------
ARCHIVEPOOL DISK 0.0 0.0 0.0 90 70
AUSTIN_COP- DEVC3590_- 0.0 0.0
 YPOOL 01
AUSTIN_TAP- DEVC3590_- 992,207.0 2.9 3.3 90 70
 EPOOL_01 01
AUSTIN_TAP- DEVC3590_- 1,232,854. 3.0 3.3 90 70
 EPOOL_02 02 0
AUSTIN_TAP- DEVC3590_- 1,265,558. 3.0 3.3 90 70
 EPOOL_03 03 5
AUSTIN_TAP- DEVC3590_- 1,263,671. 3.0 3.3 90 70
 EPOOL_04 04 0
BACKUPPOOL DISK 0.0 0.0 0.0 90 70
SPACEMGPOOL DISK 0.0 0.0 0.0 90 70
DB2 UDB EEE Backup and Recovery using ADSM 83

When creating domains, management classes and copygroups, we use the
copy command to copy a standard version of the object, and then the update
command to change only the fields that differ from the standard definition.

These commands above:

 • Created a new domain called austin_domain_01 and defined its
properties.

 • Defined the standard management class for this domain.

 • Defined the standard backup and archive copy groups for the standard
management class for this domain. The DESTINATION parameter must
match the storage pool name defined in stgpool.mac.

Here is the rest of the policy.mac macro for the first policy domain:

/* ---*/
/* S E T U P P O L I C Y D O M A I N S */
/* ---*/

/* -- */
/* austin_domain_01 */
/* -- */

copy domain standard austin_domain_01

update domain austin_domain_01 -
 description="Custom domain for Austin" -
 backretention=30 archretention=365
commit

update mgmtclass austin_domain_01 standard standard -
 description="austin_domain_01 standard management class." -
 spacemgtechnique=none
commit

update copygroup austin_domain_01 standard standard standard -
 type=backup destination=austin_tapepool_01 -
 frequency=0 verexists=2 verdeleted=1 -
 retextra=30 retonly=60 -
 mode=modified serialization=shrdynamic

update copygroup austin_domain_01 standard standard standard -
 type=archive destination=austin_tapepool_01 -
 frequency=cmd retver=15 -
 mode=absolute serialization=dynamic
commit
84 Managing VLDB Using DB2 UDB EEE

These commands have:

 • Created a new management class called udb_mgmt_class within the
austin_domain_01 domain.

 • Defined the backup and archive copy groups for the udb_mgmt_class
management class. Again, the DESTINATION parameter must match the
storage pool name defined in storage.mac.

 • Assigned a default management class to the austin_domain_1 domain.

 • Validated and activated the policy set for the austin_domain_1 domain.

A full explanation of these commands can be found in the ADSM for AIX V3.1
Administrator’s Reference.

The ADSM commands q domain, q mgmtclass and q copygroup can be used
from the ADSM client dsmadmc to verify the definitions.

3.10.11 Customize ADSM Server
The ADSM server can be further customized by using the set ADSM
command. Create a macro, set.mac, to customize the ADSM server:

copy mgmtclass austin_domain_01 standard standard -
 udb_mgmt_class

update mgmtclass austin_domain_01 standard udb_mgmt_class -
 desc="Management class for DB2 UDB backups and log archives"
commit

update copygroup austin_domain_01 standard -
 udb_mgmt_class standard -
 type=backup destination=austin_tapepool_01 -
 frequency=0 verexists=1 verdeleted=0 -
 retextra=0 retonly=60 -
 mode=modified serialization=shrdynamic

update copygroup austin_domain_01 standard -
 udb_mgmt_class standard -
 type=archive destination=austin_tapepool_01 -
 frequency=cmd retver=365 -
 mode=absolute serialization=dynamic
commit

assign defmgmtclass austin_domain_01 standard standard

validate policyset austin_domain_01 standard

activate policyset austin_domain_01 standard

commit
DB2 UDB EEE Backup and Recovery using ADSM 85

These settings make the following customizations:

 • SERVERNAME. Identifies the server by its host's short name (hostname
-s). The system default value is ADSM.

 • ACTLOGRETENTION. Number of days (here 30) to keep messages in the
server activity log.

 • EVENTRETENTION. Number of days (here 30) to keep event records.

 • INVALIDPWLIMIT. When set to 0, this means that the node will not be
locked. Invalid administrator login attempts are not counted.

 • LOGMODE. When set to rollforward, this allows full recovery of the
ADSM database. Save record of all changes since last database backup.
This requires periodic database backups of the ADSM database.

 • PASSEXP. Number of days (here 60) to expire password.

 • REGISTRATION. When set to closed, this means that the system
administrator must register all client nodes to the ADSM server.

 • SCHEDMODES. When set to any, this means that an ADSM client can
select its scheduling mode.

ADSM set commands are described in detail in the ADSM for AIX V3.1
Administrator’s Reference.

3.10.12 Create ADSM Administrative Schedules
Administrative schedules allow you to define regular administrative tasks,
such as when to delete inactive backup images through the process known
as expiring the inventory. Create a macro, admin.mac, to create ADSM
administrative schedules:

/* -- */
/* S E T C O M M A N D S */
/* -- */

set servername tp3an01
set authentication on
set actlogretention 30
set eventretention 30
set invalidpwlimit 0
set logmode rollforward
set passexp 60
set registration closed
set schedmodes any
86 Managing VLDB Using DB2 UDB EEE

The define schedule command specifies that the EXPIRE INVENTORY task:

 • Will take place at 08:30 (STARTTIME).

 • Has as a one hour window to get started (DURATION and DURUNITS).

 • Will take place once a day (PERIOD and PERUNITS) on all days of the week
(DAYOFWEEK).

 • Will run at the first opportunity because it is immediately active (ACTIVE).

3.10.13 Configure ADSM Server to Start at Boot
The installation of the ADSM Server program product adds an entry in the
/etc/inittab file. The entry, which has the identifier "autosrvr," automatically
starts the ADSM server when the operating system is booted. We want to
initialize the ADSM server using the customized options file, dsmserv.opt,
created in an earlier step. To do so, we will replace the default inittab entry
with an entry that invokes our own ADSM startup script. First, create and test
the custom start script which will be called startadsm.rc and stored in the
custom configuration directory /adsmserv/tp3an01/config.

/* --- */
/* A D M I N I S T R A T I V E S C H E D U L E S */
/* --- */

delete schedule * type=admin
delete schedule austin_domain_01 * type=client
delete schedule austin_domain_02 * type=client
delete schedule austin_domain_03 * type=client
delete schedule austin_domain_04 * type=client

define schedule EXPIREINVENTORY type=administrative -
 cmd="expire inventory" -
 starttime=08:30 -
 duration=1 durunits=hour -
 period=1 perunits=day dayofweek=any -
 active=yes
DB2 UDB EEE Backup and Recovery using ADSM 87

Update /etc/inittab to use our custom script to start the ADSM server instead
of the one inserted when the ADSM Server product was installed.

When the ADSM Server is started at boot time, a message like this will be
displayed at the console:

To verify that the ADSM Server is running, do:

#!/bin/ksh

Script name: startadsm.rc
Owner: root
Group: system
Permissions: rwxr----- (740)

If installed, start up the 3494 tape library....

if [-x /etc/methods/startatl]; then
 /etc/methods/startatl
fi

Get the language correct....

export LANG=en_US

ulimit -d unlimited

Start the server

print "$(date ’+%D %T’) [$(basename $0)] Starting Server"
cd /adsmserv/tp3an01/config
export DSMSERV_CONFIG=./dsmserv.opt
export DSMSERV_DIR=/usr/lpp/adsmserv/bin
$DSMSERV_DIR/dsmserv quiet &

exit 0

rmitab autosrvr
mkitab "autosrvr:2:once:/adsmserv/tp3an01/config/startadsm.rc "\
> "2>&1 >/dev/console # Start the ADSM server"

03/26/98 12:06:56 [startadsm.rc] Starting ADSM Server

[tp3an01][/]> ps -ef|grep dsmserv
 root 10722 1 0 12:06:57 pts/0 0:13 /usr/lpp/adsmserv/bin/dsmserv quiet
88 Managing VLDB Using DB2 UDB EEE

3.10.13.1 Stopping the ADSM Server
To shut down the ADSM server, use the dsmadmc command to request an
administrative client session. When prompted, provide your administrator
name and your password. When the adsm> prompt appears, enter halt.

3.10.14 Prepare IBM 3590 Tape Drives
When the IBM 3590 Tape Drive with Automatic Cartridge Facility (ACF) is set
to random mode, it acts as a small, self-contained library of up to 10
cartridges, controlled by ADSM. ADSM uses the SCSI Medium Mover
commands to select a cartridge from a given cell and move it to its destination
cell. Control of the source and destination cells is left entirely to the ADSM
server.

To ensure the integrity of the library, the magazine has a lock. When the
magazine is installed in the ACF and locked, cartridges cannot be added or
removed by the operator. Input and output of cartridges is through the priority
cell under the control of ADSM (using the ADSM CHECKIN and CHECKOUT
commands). In this way, ADSM can maintain a correct inventory of the
cartridges in the library.

Prepare each 3590 drive for ADSM:

 • Load up to ten cartridges into the ACF magazine.

 • Insert the magazine into the ACF and press the Lock button.

[tp3an01][/]> dsmadmc
ADSTAR Distributed Storage Manager
Command Line Administrative Interface - Version 2, Release 1, Level 0.7
(C) Copyright IBM Corporation, 1990, 1996, All Rights Reserved.

Enter your user id: sysadm
Enter your password:
ANS5100I Session established with server ADSM: AIX-RS/6000

adsm> halt
ANR2234W This command will halt the server; if the command is issued from a
remote client, it may not be possible to restart the server from the remote
location.
Do you wish to proceed? (Yes/No) y

ANS5103I Highest return code was 0.

Be certain that you are at the ADSM prompt (adsm>) when you issue halt. If
you are at the AIX prompt and you have the necessary permissions, down
will come AIX!

Stopping ADSM Server
DB2 UDB EEE Backup and Recovery using ADSM 89

 • Using the operator panel on the ACF, set the ACF mode to Random Mode.

 • Again using the operator panel, start ACF.

All of the magazine status lights are activated to in use and remain so unless
random mode is disabled.

3.10.15 Prepare Tape Media
When the ADSM server accesses a tape volume, it checks the volume name
in the tape header to ensure that the correct volume is used. To prepare the
tapes for use by ADSM, they must be labelled and identified (that is, checked
in) to ADSM.

To label the cartridges for ADSM, log in as root and run the following
commands (one for each drive):

where:

 • drive is the AIX device of the tape drive (/dev/rmtn).

 • library is the AIX device of the tape library (/dev/rmtn.smc).

 • search means all usable tapes in the library will be labelled.

 • keep means that the tapes will kept in the library after labelling.

 • overwrite means that any existing label will be overwritten. Use with care.

After the tapes are labelled, ADSM must build the initial inventory of each
library. Using the ADSM administrative client, dsmadmc, log in to the ADSM
server as a system administrator.

dsmlabel -drive=/dev/rmt0 -library=/dev/rmt0.smc -search -keep -overwrite

dsmlabel -drive=/dev/rmt1 -library=/dev/rmt1.smc -search -keep -overwrite

dsmlabel -drive=/dev/rmt2 -library=/dev/rmt2.smc -search -keep -overwrite

dsmlabel -drive=/dev/rmt3 -library=/dev/rmt3.smc -search -keep -overwrite

adsm> checkin libvolume l3590_01 status=scratch search=yes

adsm> checkin libvolume l3590_02 status=scratch search=yes

adsm> checkin libvolume l3590_03 status=scratch search=yes

adsm> checkin libvolume l3590_04 status=scratch search=yes
90 Managing VLDB Using DB2 UDB EEE

 • The parameter search=yes specifies that ADSM should search the library
for volumes that can be checked in automatically. One after another, each
cartridge in the ACF is loaded into the 3590 drive. If ADSM does not
already have the volume in inventory (which it should not), the volume is
added.

 • The CHECKIN command also requires a library name (for example,
l3590_01). During ADSM server customization, a library name was
assigned to each 3590 tape drive. Refer to the library.mac macro file
which was used to define ADSM devices and device related objects.

The CHECKIN commands will run as ADSM background processes. The
administrative client will not be notified when a process completes. If you
wish to check the progress, periodically use either the ADSM QUERY PROCESS
command (which will indicate whether the process is running or not) or the
QUERY ACTLOG command. As each tape is checked in (or not), a record is
written to the activity log.

3.10.16 High Availability Considerations for ADSM Server
To use HACMP to switch the ADSM Server function to a backup host, the
following must be performed:

1. Select a backup host. Cable the external disk(s) containing the ADSM
Server database, recovery logs, disk storage pools, tape devices to the
backup host.

2. Install ADSM Version 3 filesets, adsm.server, adsm.license, and
adsm.devices, on the backup host.

3. On the primary host, remove from /etc/inittab the entry that starts the
ADSM server during boot.

4. Modify HACMP. Add application server scripts to start and stop the ADSM
server. Add the ADSM server’s volume group to the HACMP resource list.
Make sure that the switch service address of the primary ADSM host is a
failover resource. Add commands to make the tape devices available
(mkdev -l <tape>) on whichever host is the current ADSM server host;
make them unavailable (rmdev -l <tape>) on the non-server host.

5. Modify the ADSM client file dsm.sys on all hosts. Set parameter
TCPServeraddress to be the switch service address of the primary ADSM
server host. When an HACMP failover occurs, this service address will be
initialized as a switch alias on the takeover host.

6. Test the failover. Make sure that the ADSM server starts on the backup
host and that remove clients can backup files successfully.
DB2 UDB EEE Backup and Recovery using ADSM 91

3.11 ADSM Client Configuration

This section describes the configuration of Version 2.1.20.7 of ADSM Client
for AIX 4.2, which was installed in an earlier section. Note that, at the time of
writing, DB2 UDB EEE V5 does not support Version 3 of the ADSM Client for
AIX. This support is planned for June 1998.

3.11.1 Create Client System Options File (dsm.sys)
The required client system options file, dsm.sys, identifies one or more ADSM
servers to contact for services. The file contains communication options,
authorization options, backup and archive processing options, and
scheduling options for each server. ADSM provides default values for most of
the options. So, except for a few required communication entries, most can
be omitted.

ADSM provides a sample system options file,
/usr/lpp/adsm/bin/dsm.sys.smp, that contains the minimum entries required
to start using ADSM. For AIX hosts, the system options file, dsm.sys, must
reside in directory /usr/lpp/adsm/bin. As we only used four client SP nodes,
we simply copied this file to each of the SP nodes in /usr/lpp/adsm/bin.
Optionally, if you have a large number of client nodes, you could choose one
of these options:

 • Include /usr/lpp/adsm/bin/dsm.sys into the user.admin file collection and
propagate the file collection using supper update user.admin.

 • Move the dsm.sys to a NFS shared directory, such as the instance
owner’s home directory, and create a link in /usr/lpp/adsm/bin.

The contents of dsm.sys follow:
92 Managing VLDB Using DB2 UDB EEE

Some important parameters are:

 • SERVERNAME. This parameter defines the name of the ADSM server this
client will use.

 • COMMMETHOD. Needs to be TCP/IP in our example as we are using the
SP switch.

 • TCPPORT. Must be unused and match the port that was defined in the
ADSM server options file, dsmserv.opt.

 • TCPSERVERADDRESS. Defines the network interface to be used at the
ADSM server. In our example, we should use the switch interface to
ensure optimal performance.

**
* File: dsm.sys
*
* ADSM V2 Client System Options file for AIX
**

SErvername tp3an01

COMMmethod TCPip
TCPPort 1500
TCPServeraddress tp3sn01.ppd.pok.ibm.com * Via switch

* --------------------------
* Performance options
* --------------------------

TCPBuffsize 32
TCPNodelay YES
TCPWindowsize 640
TXNBytelimit 25600
USELARGebuffers Yes * V2 client above PTF 6

* --------------------------
* Security options
* --------------------------

Groups system
Users root
Mailprog /usr/bin/mail root
Passwordaccess Generate

* --------------------------
* Miscellaneous options
* --------------------------

InclExcl /admin/adsm/inclexcl.list
SCHEDLOGname /tmp/dsmsched.log
SCHEDLOGRetention 30
DB2 UDB EEE Backup and Recovery using ADSM 93

 • PASSWORDACCESS. The installation of an ADSM server automatically
sets password authentication on. To obtain services, the client node must
provide present a valid password to the server. In the above options set,
the Passwordaccess option specifies how to handle the ADSM password for
the client nodes. When the option is set to generate, ADSM automatically
creates a new password for the client node each time the client’s
password expires. The new password is encrypted and stored on the
client node, in the directory /etc/security/adsm. When the client requests
ADSM services, the password is retrieved from the local file and provided
to the server. In most cases, ADSM does not prompt the client user for a
password. If the ADSM administrator manually changes the client node
password at the server (using the ADSM UPDATE NODE command), ADSM
will prompt for the new password when the client next requests services.
API programs, such as the db2uext2 user exit and the DB2 UDB backup
and restore utilities, will fail in this situation. Once the initial password has
been set, avoid changing it manually. If such a change must be made, an
authorized user (usually root) should run the following command on the
client node for which the password was modified:

ADSM will then prompt the user to confirm the new password by
reentering it. If the old password is not known, the root user can delete the
encrypted password file from /etc/security/adsm directory at the client
node, and rerun the above dsmc command. Enter anything for the old
password.

Whenever a new password is automatically generated, ADSM will send
the new password using the user ID and program specified in the option
MAILPROG.

 • GROUPS and USERS. If you do not specify group names with the GROUPS
option or user IDs with the USERS option, all users can request ADSM
services. With the options coded as they are, only root and members of
the system group can request ADSM services. All other users are
prevented from accessing the server.

 • INCLEXCL. The file specified by the INCLEXCL parameter defines specific
groups of files to include in or to exclude from a backup. This file is
created at the Control Workstation (in /admin) and made available to the
SP nodes through NFS because each SP node has the same
requirements. See “Create Include-Exclude Options File” on page 96 for
more details.

dsmc set password <old_password> <new_password>
94 Managing VLDB Using DB2 UDB EEE

The full list of options are listed in ADSM V2 Installing the Clients,
SH26-4049.

3.11.2 Create Client User Options File (dsm.opt)
Entries in this file control processing for sessions with ADSM, including some
additional options that relate to backup, archive, restore, and retrieve
operations. A default client user options file, dsm.opt, is created by root. We
chose to write the file to the default directory, /usr/lpp/adsm/bin, but it could
be placed elsewhere. Use the environment variable DSM_CONFIG to locate the
dsm.opt if the file is stored in other than the default directory. Note that if you
use DSM_CONFIG, you will also have to set DSMI_CONFIG to the same directory for
the DB2 UDB EEE instance owner. You can do this either by using an
environment variable or by using db2set.

The contents of the customized client user options file appear below.

 • The DOMAIN option specifies the default list of file systems to include during
an incremental backup. Quite logically, "all-local" instructs ADSM to back
up all file systems currently mounted on the client host. Instead of
"all-local", a list of file systems could be provided. But what if a new file
system is added? If you forget to add the new file system to the domain
list, it will not be backed up. To avoid the possibility of omitting files from
the backup, we prefer to include them all. The include/exclude list,
described below, specifies files to exclude from the backup. So, by default,
we will backup all files except those specifically excluded in the
include/exclude list.

 • The TAPEPROMPT parameter must be set to no, otherwise an error message
will be generated when using the DB2 BACKUP command.

The full list of options are listed in ADSM V2 Installing the Clients,
SH26-4049.

**
* File: dsm.opt
*
* ADSM V2 Client User Options file for AIX
**

SErvername tp3an01
DOMain all-local
REPlace Yes
Tapeprompt No
Quiet
ERRORLOGRetention 30
DB2 UDB EEE Backup and Recovery using ADSM 95

3.11.3 Create Include-Exclude Options File
This optional file identifies files the you want to explicitly include in or exclude
from backup services. For example, you can exclude core files, local caches
of network file systems, files that contain compiled object code that can be
easily reproduced, and operating system files.

Another important use of this file is to assign a special management class to
a file or group of files. Management classes specify how ADSM should
handle certain files or groups of files in regard to how many backup versions
to keep and how long to retain backup versions and archive copies. If you do
not assign a management class to a file, ADSM assigns a default. Use the
INCLEXCL option of the dsm.sys file (see “Create Client System Options File
(dsm.sys)” on page 92) to identify the include-exclude options file to ADSM.

The include-exclude file below excludes some operating system files and
assigns a special management class, UDB_MGMT_CLASS, to UDB objects
stored by ADSM.

Notice how the DB2 objects are defined in the include clause. When DB2
UDB uses ADSM to copy DB2 backup images, load copies or full log files to
ADSM storage, the names given to the objects are:

 • A full database backup object is:
/<database>/NODEnnnn/FULL_BACKUP.timestamp.seq_no

exclude /unix/
exclude /.../core
exclude /tmp/.../*
exclude /etc/ibmatl.pid
exclude /u/.../.sh_history
exclude /home/.../.sh_history
exclude /usr/games/.../*
exclude /.../.sh_history
exclude /.../smit.log
exclude /.../smit.script
exclude /adsmserv/tp3an01/db.1
exclude /adsmserv/tp3an01/log.1
* --
* Exclude DB2 UDB files for TEMPORARY tables
* --
exclude /DB_TMP/.../*
* --
* Assign DB2 UDB backups and logs to special management class
* --
include /*/NODE????/FULL_BACKUP.??????????????.* UDB_MGMT_CLASS
include /*/NODE????/TSP_BACKUP.??????????????.* UDB_MGMT_CLASS
include /*/NODE????/LOAD_COPY.??????????????.* UDB_MGMT_CLASS
include /*/NODE????/S???????.LOG UDB_MGMT_CLASS
96 Managing VLDB Using DB2 UDB EEE

 • A table space backup object is:
/<database>/NODEnnnn/TSP_BACKUP.timestamp.seq_no.

 • A load copy object is:
/<database>/NODEnnnn/LOAD_COPY.timestamp.seq_no.

 • A full log files is:/<database>/NODEnnnn/Syyyyyyy.LOG.

where <database> is the database alias name, NODEnnnn is the node
number, and Syyyyyyy.LOG is the log file name.

Wildcards are used to specify the ADSM object names. Asterisk (*) means
one or many characters; a question mark (?) means a single character. So,
the entry:

include /*/NODE????/FULL_BACKUP.??????????????.* UDB_MGMT_CLASS

assigns a full backup image from any database, and on any node, to the
UDB_MGMT_CLASS management class.

In this way, using the include/exclude file allows us to define one ADSM
management class for all DB2 UDB instances and databases on the ADSM
client nodes.

If you need to have different management classes for different databases,
you could either:

 • specify the database name in an include entry in the include/exclude file.
For example, to assign full backups of the database TPCD30 to a
management class called TPCD30_MGMT_CLASS:

include /TPCD30/NODE????/FULL_BACKUP.??????????????.* TPCD30_MGMT_CLASS

 • use the database configuration parameter ADSM_MGMTCLASS. For example, to
assign ADSM management class TPCD30_MGMT_CLASS for TPCD30,
the database instance owner would execute:

db2_all "db2 update db cfg for TCPD30 using adsm_mgmtclass TPCD30_MGMT_CLASS"

Since each database partition has its own set of database configuration
parameters, the db2_all command is used to update the value on all
database partitions.

3.11.4 Define the Client Nodes to the ADSM Server
Before a workstation can request ADSM services like backup and archive, it
must be registered with the ADSM server. Using the ADSM Server
customization command SET REGISTRATION, an authorized administrator can
specify that ADSM client node registration be open or closed. With closed
registration, a system or policy administrator defines:
DB2 UDB EEE Backup and Recovery using ADSM 97

 • The workstation's node name. This should be set to the value returned by
the hostname command.

 • The ADSM client node password.

 • The policy domain to which the client node belongs.

 • Whether the user can choose to compress files before sending them to
server storage.

 • Whether the user is allowed to delete backup or archive files from server
storage.

With open registration, when a user attempts to access the server from an
unregistered client node, the server prompts the user for a node name,
password, and contact information, and registers the workstation. On UNIX
systems, only the root user can register a workstation as a client node with
the server. The server sets the following defaults:

 • Each client node is assigned to the policy domain named STANDARD.

 • Each user defines whether data compression is used before files are sent
to server storage.

 • Each user is allowed to delete archived files from server storage. The user
cannot delete backup files.

The administrator can reassign domains or change node attributes using the
UPDATE NODE command.

To register ADSM client nodes at the ADSM server, create a macro file,
nodes.mac, and file it in directory /adsmserv/tp3an01/config/macros with the
other customization macros.

For the DB2 UDB system administrator to use the db2adutl utility to
delete obsolete archived log files, the option ARCHDEL of the register (or
update) node command must be set to YES.

Using db2adutl to delete log files
98 Managing VLDB Using DB2 UDB EEE

Notice a new twist in this macro. The strings %1 and %2 are called substitution
variables. Parameters entered with the ADSM macro command replace these
variables. The first parameter replaces %1, the second replaces %2, and so on.
With the nodes.mac macro, the first parameter specifies the command (either
register new nodes or update existing nodes). The second parameter
supplies the password that the node will use when requesting services from
ADSM. For example, to register the ADSM client nodes and reset their
passwords, enter the following at the ADSM client (dsmadmc):

The previous command registers five client nodes (the Control Workstation
and four RS/6000 SP nodes) with the ADSM server. The initial password to
be used when the node contacts the server is nodepasswd.

/* -- */
/* R E G I S T E R C L I E N T N O D E S */
/* -- */
/* This macro file informs the ADSM server of client */
/* nodes that are authorized to connect to the server */

/* %1 = register or update */
/* %2 = client password */

%1 node sp-tp3cw.ppd.pok.ibm.com -
 %2 -
 domain=austin_domain_01

%1 node tp3an01.ppd.pok.ibm.com -
 %2 -
 domain=austin_domain_01 -
 archdel=yes

%1 node tp3an05.ppd.pok.ibm.com -
 %2 -
 domain=austin_domain_02 -
 archdel=yes

%1 node tp3an09.ppd.pok.ibm.com -
 %2 -
 domain=austin_domain_03 -
 archdel=yes

%1 node tp3an13.ppd.pok.ibm.com -
 %2 -
 domain=austin_domain_04 -
 archdel=yes

adsm> macro nodes.mac register newpasswd
DB2 UDB EEE Backup and Recovery using ADSM 99

3.11.5 Set the Initial ADSM Password on Client Nodes
When the client nodes were registered to the ADSM server, a password
(nodepasswd) was assigned. If password authentication is on (as it is for us),
the client node must provide its password when ADSM services are
requested. The ADSM client retrieves the password from a local file on the
client host. The encrypted password is stored in /etc/security/adsm directory.

When the client node’s password is initially set (REGISTER NODE command) or
changed (UPDATE NODE command) at the server, the local password file on the
client node must be updated as well. To do this, the root user can run the
DSMC SET PASSWORD command at each client host for which the
password has been modified or changed. When a lot of client nodes are
affected, the process of logging into each client, running the DSMC
command, logging out and repeating the process at each client host can
become tedious and error-prone.

Automating the Process
Two scripts are provided below as samples of how the password change
process might be automated. Instead of using the DSMC client command to
change the password on the node, a program provided by DB2 UDB is used.
This program, dsmapipw, is located in the /usr/lpp/db2_05_00/adsm directory.

The first sample script, dsmapipw.ksh, prompts the user, who must be root,
for some passwords. The script then queries the RS/6000 SP System Data
Repository (SDR) for all SP node names. The script was written with the
assumption that all SP hosts are DB2 UDB hosts. Once dsmapipw.ksh has
the necessary passwords and has determined the client hosts for which the
password will be changed, it calls dsmapipw.exp. Script dsmapipw.exp, which
is written using the Expect language, logs into each host as root, runs the
DB2 UDB program dsmapipw to set the password, and then logs out.

The Korn Shell script, dsmapipw.ksh, is basically a front-end to
dsmapipw.exp. It prompts the user to enter several passwords: the current
ADSM password, the new ADSM password, and the root password. For both
the current and the new ADSM passwords, enter the password that was
specified to the ADSM server when the client node was registered or
updated. When prompted, enter the root password.

Note that to use the script in its current form, the same ADSM password must
be used for all the client nodes. The root password must be consistent across
all nodes as well. The root password does not, of course, have to be the
same as the ADSM password.
100 Managing VLDB Using DB2 UDB EEE

This Korn Shell script, dsmapipw.ksh, after collecting passwords and making
a list of hosts, calls the Expect script, dsmapipw.exp. This script, which is
listed below, logs into each host in the list, changes the ADSM client
password, and exits.

#!/bin/ksh
#

dsmapipw.ksh : This script sets/resets the adsm password on the SP2 nodes
and the Control Workstation.

admin_db2="/admin/db2"

echo "\nEnter the current ADSM password: \c"
stty -echo
read OLD_PWD junk
stty echo
echo "\nEnter the new ADSM password: \c"
stty -echo
read NEW_PWD junk
stty echo
echo "\nEnter the new ADSM password again: \c"
stty -echo
read NEW_PWD2 junk
stty echo

if [["${NEW_PWD}" != "${NEW_PWD2}"]]; then
 echo "\nNew password does not verify. Try again!\n"
 exit 1
fi

echo "\nEnter the root password: \c"
stty -echo
read ROOT_PWD junk
stty echo
echo "\nEnter the root password again: \c"
stty -echo
read ROOT_PWD2 junk
stty echo

if [["${ROOT_PWD}" != "${ROOT_PWD2}"]]; then
 echo "\nRoot password does not verify. Try again!\n"
 exit 1
fi

HOST_NAMES=/tmp/host.names.$$
rm -f $HOST_NAMES

for i in $(SDRGetObjects -x host_responds|egrep -v " 0 $" \
 |awk ’{print $1}’)
do

SDRGetObjects -x Node node_number==$i \
 reliable_hostname >>$HOST_NAMES
done

$admin_db2/dsmapipw.exp ${ROOT_PWD} $HOST_NAMES $OLD_PWD $NEW_PWD
DB2 UDB EEE Backup and Recovery using ADSM 101

3.12 Overview of Backing up a Database Using ADSM

Figure 10 on page 104 illustrates how the ADSM definitions relate together to
take a DB2 backup image and store it onto a 3590 tape library. These are the
steps:

1. The DB2 BACKUP command specifies the clause USE ADSM. This instructs
DB2 to call ADSM and take the DB2 backup image as input. In the
diagram, only the backup image for database partition 1 is shown.

2. The ADSM client system options file, dsm.sys defines the ADSM server to
be used (tp3an01).

3. The DB2 backup image is named for ADSM:
/TPCD30/NODE0001/FULL_BACKUP.19980323130942, where the
database name is TPCD30, the database partition number is 1, and the
timestamp shown is for 13:09:42 on 23 Mar 1998. This backup image
name matches an entry in the include/exclude file, which defines that
images of this name will use the udb_mgmt_class ADSM management
class. The include/exclude file name is defined in the ADSM client system
options file, dsm.sys.

#!/usr/lpp/ssp/expect/bin/expect

dsiapipw.exp : Change ADSM passwords on multiple nodes

set password [lindex $argv 0]
set hostlist [lindex $argv 1]
set ADSM_oldpw [lindex $argv 2]
set ADSM_newpw [lindex $argv 3]
set list [exec cat $hostlist]
set l [exec wc -l $hostlist]
set len [lindex $l 0]

for {set i 0} {$i < $len} {set i [expr $i+1]} {
 set h [lindex $list $i]
 spawn telnet $h
 expect {login: }
 send root\r
 expect {*Password: }
 send $password\r
 expect {*}
 send /usr/lpp/db2_05_00/adsm/dsmapipw\r
 expect {*current password:}
 send $ADSM_oldpw\r
 expect {*your new password:}
 send $ADSM_newpw\r
 expect {*your new password again:}
 send $ADSM_newpw\r
 expect {*}
 send exit\r
 expect eof
}

102 Managing VLDB Using DB2 UDB EEE

4. The ADSM client node entry defines that this client will use the ADSM
policy domain called austin_domain_01 defined at the ADSM server,
tp3an01.

5. The destination storage pool, austin_tapepool_01, is defined in the policy
set entry which has:

 • domain=austin_domain_01

 • mgmt_class=udb_mgmt_class

 • copygroup=backup

6. The device class for this storage pool is defined as devc3590_01.

7. The library for this device class is l3590_01.

8. The AIX devices are defined as /dev/rmt0 for the tape and /dev/rmt.smc
for the library.
DB2 UDB EEE Backup and Recovery using ADSM 103

Figure 10. Overview of Backing up a Database using ADSM

db2 BACKUP DB TPCD30 USE ADSM

include /*/NODE????/FULL_BACKUP.???????? udb_mgmt_class

ADSM client node:

domain

ADSM include/exclude file:

ADSM CLIENT

ADSM SERVER

ADSM policy:

austin_domain_01

domain austin_domain_01
udb_mgmt_classmgmt class

copygroup backup
destination austin_tapepool_01

ADSM storage pool:

name
device class

austin_tapepool_01
devc3590_01

ADSM device class:

name
library

devc3590_01
l3590_01

ADSM drive:

name
device

l3590_01
/dev/rmt0

ADSM library:

name
device

l3590_01
/dev/rmt0.smc

DB2 SERVER

3590 Tape Library

ADSM client system options file:

servername tp3an01

1

2

3

4

5

6

7

8

104 Managing VLDB Using DB2 UDB EEE

3.13 Online Database Backup Using ADSM

To run a backup of a partitioned database using ADSM, you first need to run a
backup of the catalog database partition. Once that has finished, run a
backup of all the other partitions in parallel. If your catalog partition is not
necessarily on the first partition of the database (which is recommended),
then you can use the script below (DB_backup.ksh). This script first queries
the database directory to find the catalog partition. It then carries out the
backup on that partition, followed by a parallel backup of the other partitions.

#!/usr/bin/ksh
#
Sample KornShell script to which uses db2_all to perform
a full online backup of a database.
#
 ONLINE="online"
 ALIAS=${1:-TPCD30} # Set database alias
 SCRIPT_NAME=$(basename $0)

Determine catalog partition

 CAT_PART=‘db2 list database directory \
 | awk -F"=[]+" \
 ’/^ Database alias/ { \
 if ($2 == ALIAS) { \
 alias_found="y" \
 } \
 } \
 /^ Catalog node number/ { \
 if (alias_found=="y") { \
 print $2 \
 } \
 } \
 ’ ALIAS=$ALIAS‘
 if [-z "$CAT_PART"]; then # If cannot find catalog partition, exit
 print "$SCRIPT_NAME: Unable to determine catalog partition for"\
 "\n\tdatabase $ALIAS. Check alias and verify that database"\
 "\n\tis defined on this host, $(uname -n)."\
 "\n-----ABORTING-----\n"
 exit 1
 else
 print "$SCRIPT_NAME: Catalog partition for database $ALIAS is"\
 "$CAT_PART.\n"
 fi

Backup the catalog partition. The 2-character string \" in the prefix of
the db2_all command causes all occurrences of ## to be replaced by the
database partition number; the leading zero in RAHWAITTIME assignment
suppresses those rah status messages.

 print "$SCRIPT_NAME: Backing up catalog partition."

 db2_all "<<+$CAT_PART<\"export RAHWAITTIME=060;db2 terminate >/dev/null;echo DB
Partition=##;db2 backup db $ALIAS $ONLINE use adsm;db2 terminate >/dev/null"

Backup the rest of the partitions. The "||" in the db2_all prefix causes
the script to wait until all backround jobs complete. See notes above
concerning RAHWAITTIME and the \" in the db2_all prefix.
DB2 UDB EEE Backup and Recovery using ADSM 105

 print "$SCRIPT_NAME: Backing up remaining partitions....."

 db2_all "<<-$CAT_PART<||\"export RAHWAITTIME=060;db2 terminate >/dev/null;echo
DB Partition=##;db2 backup db $ALIAS $ONLINE use adsm;db2 terminate >/dev/null"

 print "$SCRIPT_NAME: All DB backups for $DB_ALIAS are complete!"
exit 0

To monitor the backup in ADSM, start an ADSM client session using
dsmadmc and use the q session command. Here is some example output:

Here we can see that at any one time, one database partition from each SP
node is writing to ADSM storage. The other partitions have to wait for access
to their assigned tape libraries. The column Bytes Recvd shows the amount of
data received by ADSM from DB2 UDB for each ADSM session.

3.14 Database Restore Using ADSM

To restore a partitioned database using ADSM, we must first identify the
backup images we wish to restore. The following scripts automate the

adsm> q sess

 Sess Comm. Sess Wait Bytes Bytes Sess Platform Client Name
Number Method State Time Sent Recvd Type
------ ------ ------ ------ ------- ------- ----- -------- --------------------
 367 Tcp/Ip MediaW 4.9 M 1.3 K 581 Node DB2/6000 TP3AN01.PPD.POK.IBM-
 .COM
 368 Tcp/Ip MediaW 4.9 M 1.3 K 581 Node DB2/6000 TP3AN01.PPD.POK.IBM-
 .COM
 369 Tcp/Ip RecvW 0 S 4.4 K 1.3 G Node DB2/6000 TP3AN01.PPD.POK.IBM-
 .COM
 370 Tcp/Ip MediaW 4.9 M 1.3 K 581 Node DB2/6000 TP3AN05.PPD.POK.IBM-
 .COM
 371 Tcp/Ip MediaW 4.9 M 1.3 K 581 Node DB2/6000 TP3AN05.PPD.POK.IBM-
 .COM
 372 Tcp/Ip RecvW 0 S 4.4 K 1.2 G Node DB2/6000 TP3AN05.PPD.POK.IBM-
 .COM
 373 Tcp/Ip MediaW 4.9 M 1.3 K 581 Node DB2/6000 TP3AN05.PPD.POK.IBM-
 .COM
 375 Tcp/Ip RecvW 0 S 5.0 K 1.4 G Node DB2/6000 TP3AN09.PPD.POK.IBM-
 .COM
 376 Tcp/Ip MediaW 4.9 M 1.3 K 581 Node DB2/6000 TP3AN09.PPD.POK.IBM-
 .COM
 377 Tcp/Ip MediaW 4.9 M 1.3 K 581 Node DB2/6000 TP3AN09.PPD.POK.IBM-
 .COM
 378 Tcp/Ip MediaW 4.9 M 1.3 K 581 Node DB2/6000 TP3AN09.PPD.POK.IBM-
 .COM
 379 Tcp/Ip MediaW 4.9 M 1.3 K 581 Node DB2/6000 TP3AN13.PPD.POK.IBM-
 .COM
 380 Tcp/Ip RecvW 0 S 4.9 K 1.4 G Node DB2/6000 TP3AN13.PPD.POK.IBM-
 .COM
 381 Tcp/Ip MediaW 4.9 M 1.3 K 581 Node DB2/6000 TP3AN13.PPD.POK.IBM-
 .COM
 382 Tcp/Ip MediaW 4.9 M 1.3 K 581 Node DB2/6000 TP3AN13.PPD.POK.IBM-
 .COM
 383 Tcp/Ip Run 0 S 49.6 K 576 Admin AIX SYSADM
106 Managing VLDB Using DB2 UDB EEE

process on the assumption that you wish to restore the last backup image
that exists on each partition, and then roll the logs forward to the end of logs.

The script DB_restore_all.ksh determines the catalog partition for a database.
Then for each database partition, the script DB_restore_partition.ksh is run.
This script determines the most current ADSM backup file for a partition,
determines the target directory, and runs the RESTORE command WITHOUT
PROMPTING.

Note that the catalog partition must be restored before the other partitions.
Finally, when all partition restores are complete, the ROLLFORWARD command is
submitted to the catalog partition.

#!/usr/bin/ksh
#
Script : DB_restore.ksh
#
Restore all database partitions and then perform a ROLLFORWARD to END OF LOGS.
#
 DB_ALIAS=${1:-TPCD30} # Default DB alias name
 SCRIPT_NAME=$(basename $0)

 if [[-z $DB2INSTANCE]]; then
 print "$SCRIPT_NAME: Variable DB2INSTANCE is not set."\
 #\n-----ABORTING-----\n"
 exit 1
 fi

 CAT_PART=‘db2 list database directory \
 | awk -F"=[]+" \
 ’/^ Database alias/ { \
 if ($2 == ALIAS) { \
 alias_found="y" \
 } \
 } \
 /^ Catalog node number/ { \
 if (alias_found=="y") { \
 print $2 \
 } \
 } \
 ’ DB_ALIAS=$DB_ALIAS‘
 if [-z "$CAT_PART"]; then
 print "$SCRIPT_NAME: Unable to determine catalog partition for"\
 "\ndatabase $DB_ALIAS. Check alias and verify that database"\
 "\nis defined on this host, $(uname -n)."
 exit 1
 else
 print "$SCRIPT_NAME: Catalog partition for database $DB_ALIAS is"\
 "$CAT_PART.\n"
 fi

 LOG_PATH=‘db2 get db cfg for $DB_ALIAS \
 | awk -F"=[]+" \
 ’/^ Path to log files/ { \
 print $2 \
 } \
 ’ ‘
 if [-z "$LOG_PATH"]; then
 print "$SCRIPT_NAME: Unable to determine log path for database"\
DB2 UDB EEE Backup and Recovery using ADSM 107

 "\n $DB_ALIAS. -----ABORTING-----"\n
 exit 2
 else
 print "$SCRIPT_NAME: Log path for database $DB_ALIAS is $LOG_PATH.\n"
 fi

 set -- $(echo $LOG_PATH | tr ’/’ ’ ’)

 typeset -i DIRECTORY_COUNT=$#
 typeset -i loop_count=0
 TARGET_DIRECTORY="/"
 while [[$loop_count -le $# && "$1" != "$DB2INSTANCE"]]; do
 TARGET_DIRECTORY="${TARGET_DIRECTORY}${1}/"
 shift 1
 done
 TARGET_DIRECTORY=${TARGET_DIRECTORY%*/} # Chop off trailing slash
 if [[$loop_count -gt "$DIRECTORY_COUNT"]]; then
 print "$SCRIPT_NAME: Unable to find instance name in path $DB_PATH."\
 "\n\t-----ABORTING-----\n"
 exit 3
 fi

 print "$SCRIPT_NAME: Restoring catalog partition."

 db2_all "<<+$CAT_PART<||\" export
RAHWAITTIME=060;$HOME/bin/DB_restore_partition.ksh $DB_ALIAS ##
$TARGET_DIRECTORY"

 print "$SCRIPT_NAME: Restoring remaining partitions..."

 db2_all "<<-$CAT_PART<||\" export
RAHWAITTIME=060;$HOME/bin/DB_restore_partition.ksh $DB_ALIAS ##
$TARGET_DIRECTORY"

 print "$SCRIPT_NAME: Rolling forward to end-of-logs and complete...\n"

 db2_all "<<+$CAT_PART<||\" export RAHWAITTIME=060;echo DB Partition=##;db2
rollforward db $DB_ALIAS to end of logs and complete;db2 terminate >/dev/null"

 print "$SCRIPT_NAME: All done!"

exit 0

This is the DB_restore_partition.ksh script:

#!/usr/bin/ksh
#
Script: DB_restore_partition.ksh

This script restores a DB2 UDB partition using the most
current ADSM backup file.

 SCRIPT_NAME=$(basename $0)

 if [["$#" -ne 3]]; then
 print "$SCRIPT_NAME: Invalid number of parameters...."\
 "\n\t-----ABORTING-----\n"
 exit 1
 fi
 DB_ALIAS=$1
 DB_PARTITION=$2
 TARGET_DIRECTORY=$3
 print "P1=$1, P2=$2,P3=$3"
108 Managing VLDB Using DB2 UDB EEE

Get timestamp of most recent full backup.

 LATEST_TIMESTAMP=‘db2adutl query full node $DB_PARTITION \
 | grep "Time:" \
 | awk ’BEGIN {FS="Time: |, Oldest"}{print $2}’ \
 | sort | tail -1 ‘

 if [-z "$LATEST_TIMESTAMP"]; then
 print "$SCRIPT_NAME: Unable to determine most recent backup for"\
 "\n\tdatabase $DB_ALIAS, partition $DB_PARTITION."\
 "\n-----ABORTING-----\n"
 exit 2
 fi

 print "$SCRIPT_NAME: Restoring database $DB_ALIAS, partition $DB_PARTITION,"\
 "\n\tusing backup with timestamp $LATEST_TIMESTAMP.\n"

 export DB2NODE=$DB_PARTITION # Not really necessary

 db2 restore db $DB_ALIAS use adsm taken at $LATEST_TIMESTAMP \
 to $TARGET_DIRECTORY without prompting

 RC=$?
 case "$RC" in
 0) print "$SCRIPT_NAME: Restore of database $DB_ALIAS, partition"\
 "$DB_PARTITION,"\
 "\n\tcompleted OK.\n"
 ;;
 2) print "$SCRIPT_NAME: Restore of database $DB_ALIAS, partition"\
 "$DB_PARTITION,"\
 "\n\tcompleted with warning. Warning number 2539 indicates that"\
 "\n\tthe restore command specified WITHOUT PROMPTING clause..\n"
 ;;
 *) print "\n$SCRIPT_NAME: Restore of database $DB_ALIAS, partition"\
 "$DB_PARTITION,"\
 "\n\t--->> FAILED ---- FAILED ---- FAILED. Return code=$RC.\n"
 ;;
 esac

 db2 terminate

exit 0

As long as you restore to the same database name, everything is automated.
If you want to restore to a new database name, it is gets a little bit more
difficult because the logs are archived under the old name, but the roll
forward will use the new database name when requesting the logs from
ADSM.

3.15 Tablespace Restore Using ADSM

To ensure that restored table spaces are synchronized with the rest of the
database, the table spaces must be rolled forward to the end of the logs. For
this reason, table-space-level backup and restore can only be performed if
roll-forward recovery is enabled. If roll-forward recovery is disabled at any
DB2 UDB EEE Backup and Recovery using ADSM 109

time after a table space level backup is executed, it will not be possible to
restore from the backup and then roll the table space forward to the current
point in time.

Using ADSM to archive UDB log files does have one drawback where table
space restores are concerned. When a table space is rolled forward, the
db2uext2 user exit will not be called. Consequently, archived log files will not
be automatically retrieved from ADSM. So before the ROLLFORWARD command is
issued, the database administrator must retrieve the logs and store them in
either the database log path or in an alternate log path. Be sure there is
sufficient space to contain the retrieved logs. If the retrieved log files are
stored in a different directory from the active log files, use the OVERFLOW LOG
PATH option of the ROLLFORWARD command. The following command shows how
to retrieve log files from ADSM by running the db2uext2 user exit manually:

Option -RQ above instructs the user exit to retrieve from database (-DB) TPCD
30 the log file named (-LN) S0000012.LOG for database partition (-NN) 1 and
store it in directory /work/NODE0001 as file named S0000012.LOG. There can be
no spaces between an option and its argument. A slash must terminate the
log path (option -LP) name. With the exception of log path directory (-LP), all
option arguments must be capitalized.

After all necessary log files have been retrieved and stored, the ROLLFORWARD
TABLESPACE command can be run. The ROLLFORWARD command must be run on
the host containing the database catalog partition.

3.16 Archiving DB2 Log Files Using ADSM

For this project, ADSM will store the UDB database log files. IBM supplies
three sample user exit programs: one for tape, one for disk, and one for
ADSM. After configuring the ADSM user exit, as soon as a log file becomes
full (even if it contains log records for active transactions), DB2 will call the
db2uext2 user exit program to copy the log file to ADSM storage.

Use of these sample programs is not mandatory. You may choose to create
your own user exit program, perhaps using one of the sample programs as a
model. Useful information can be found in comments at the start of each
sample program. Appendix J of the DB2 UDB Administration Guide describes
a number of considerations that apply to calling a user exit program for
archiving and retrieving log files. The guide also describes the database

db2uext2 -RQRETRIEVE -DBTPCD30 -NNNODE0001 -LP/work/NODE0001 -LNS0000012.LOG
110 Managing VLDB Using DB2 UDB EEE

manager format for calling the exit program on a UNIX operating system, and
it explains the specific return codes that the exit can provide back to the
calling database manager.

The steps to install the sample ADSM user exit follow:

1. To install the ADSM exit requires a C compiler, the ADSM user exit source
file, and access to the ADSM API library and header files. The library
(libApiDS.a) and the header files (dsmrc.h, dsmapifp.h, and dsmapitd.h)
are located in directory /usr/lpp/adsm/api/bin, which is part of the ADSM
Client for AIX Version 2.

Note: ADSM Client Version 2 must be installed on the DB2 UDB hosts. At
the time of writing, DB2 UDB did not currently support the Version 3 ADSM
client. Version 3 client support was planned for June 1998.

2. Log in to a UDB host as the instance owner. Change to a working
directory, the home directory perhaps.

3. Copy the ADSM sample user exit to the working directory:

4. Edit the copied file, db2uext2.c, to specify "installation defined variables"
which suit your environment. A few considerations apply:

 • Comments at the beginning of the db2uext2.c source code provide
useful information including several sample scenarios of changing
installation defined variables.

 • Both path names, TEMP_DIR and AUDIT_ERROR_PATH, must end
with a slash. These directories must exist; the user exit will not create
them. TEMP_DIR provides a temporary repository for files being
archived to or retrieved from ADSM. The directory
AUDIT_ERROR_PATH contains error and audit logs. The audit logs
report ADSM activity. One log documents the use of ADSM to archive
UDB log files. A separate file tracks the retrieval of UDB log files from
ADSM. If an ADSM archive or retrieve operation fails, the event is
recorded in the error log.

 • Although the comments in the source code state otherwise, the same
directory can be used for TEMP_DIR and for AUDIT_ERROR_PATH.

 • For each database partition, only one UDB log file will be archived or
retrieved at a time. When multiple database partitions run on the same
host, the number of archive (or restore) operations could equal the
number of database partitions. If a host runs four partitions of a

cp -p $HOME/sqllib/misc/c/db2uext2.cadsm ./db2uext2.c
DB2 UDB EEE Backup and Recovery using ADSM 111

database, TEMP_DIR could contain up to four copies of UDB log files
at the same time. Plan file system free space accordingly.

 • Periodically, delete obsolete entries from the user exit audit and error
logs. By default, the exit collects both error and audit information; the
files are opened in append mode. Without purging, the files continue to
grow and may eventually fill up the file system.

For this project, the variables BUFFER_SIZE, TEMP_DIR, and AUDIT_ERROR_PATH
will be modified. Observe that the same directory is used for both error
logs and for audit logs. Also, ignore the comment that TEMP_DIR will be
created and removed by the user exit. If TEMP_DIR (here
/var/tmp/UserExits/) does not exist, you must create it. Here are the define
statements we used from the db2uext.c file:

Note that the directory names end in a forward slash (/).

5. Compile the user exit. The exit must be named db2uext2. The -I (as in
Include) command flag directs the compiler to the location of the ADSM
API header files. An additional flag -l (lowercase L) instructs the C
compiler to include the ADSM API library, which will be found in directory
specified by the -L flag.

6. Copy (or move) the exit program to the sqllib/adm directory and insure that
the instance owner has execute permission.

7. Create the directories (or directory) specified for the TEMP_DIR and
AUDIT_ERROR_PATH installation variables. Verify that file system free
space is sufficient to contain the files.

8. Make the directory (root authority is not required to create a subdirectory
in /var/tmp):

#define BUFFER_SIZE 32768 /* transmit or receive the */
 /* log file in 32K portions */
#define TEMP_DIR "/var/tmp/UserExits/"
#define AUDIT_ACTIVE 1 /* enable audit logging */
#define ERROR_ACTIVE 1 /* enable error logging */
#define AUDIT_ERROR_PATH "/var/tmp/UserExits/"
#define AUDIT_ERROR_ATTR "a" /* append to text file */

> cc -o db2uext2 db2uext2.c -L/usr/lpp/adsm/api/bin -lApiDS \
-I/usr/lpp/adsm/api/bin

> cp -p db2uext2 $HOME/sqllib/adm
112 Managing VLDB Using DB2 UDB EEE

Since this project runs four database partitions on each high node, there
may be as many as four copies of database log files in the TEMP_DIR
directory at the same time, one for each database partition. The user exit’s
audit and error logs, if enabled, require additional free space. Remember
to prune the user exit log files. If the file system capacity is insufficient to
handle the additional requirements, work with your UNIX system
administrator to expand the file system.

9. Update the USEREXIT database configuration parameter for all partitions to
direct the database manager to begin using the db2uext2 user exit when it
is next started. Run the following command (tpcd30 is our database alias):

10.To activate the user exit, stop and start the database.

11.Perform a full offline backup of the database. The first time the database is
started after USEREXIT is enabled, the database will be in Backup Pending
state. Before it can be used, an offline backup must be made. First, back
up the catalog database partition (here nodenum 1). After that completes,
back up the remaining partitions.

Note the use of the db2_all special modifiers:

 • <<+1< means run the command on only the first database partition.

 • <<-1<; means run the command on all database partitions apart from
the first one in background simultaneously.

With our four-tape ADSM server setup, the full backup of a 30 GB
database completed in approximately thirty-five minutes.

After the backup of the catalog database partition finished, the commands
to back up the remaining 15 partitions were all submitted at the same time.
When the number of jobs requiring tape exceeds the number of tape

> mkdir /var/tmp/UserExits

db2_all "db2 update db cfg for tpcd30 using userexit on"

> db2stop
> db2start

> db2_all "<<+1< db2 backup db tpcd30 use adsm"
> db2_all "<<-1<;db2 backup db tpcd30 use adsm"
DB2 UDB EEE Backup and Recovery using ADSM 113

drives available, the excess jobs will queue waiting for drives to be freed
by current processes. When ADSM detects that a job has been waiting for
a tape mount for longer than a configurable time limit, the job will be
cancelled. The ADSM device class parameter MOUNTWAIT defines the length
of time a job is allowed to wait for a tape mount before the job is
terminated. The initial value for MOUNTWAIT is set when the device class is
defined using the ADSM DEFINE DEVCLASS statement (the default value is 60
minutes). The MOUNTWAIT value can be changed with the ADSM UPDATE
DEVCLASS statement. To submit the backup commands in parallel as above,
the MOUNTWAIT value needs to be at least 30 (minutes) to avoid the
possibility that ADSM will terminate one or more of the backup commands.
In fact, for this project, a MOUNTWAIT value of 120 minutes was chosen. Our
device class definitions can be found in the ADSM configuration macro
file, library.mac, in “Define Tape Drives to ADSM” on page 78.

3.17 Using db2adutl to Manage Backups and Logs

The db2adutl utility provides query, extract, and deletion of backups, logs and
copy images saved by ADSM. You can build your backup/log archive
management process around the function offered by db2adutl. This section
introduces some of the concepts of ADSM and UDB, highlights the options of
the db2adutl utility, and closes with some examples of how you might use
db2adutl to automatically manage your ADSM images.

3.17.1 ADSM and DB2 Concepts
ADSM manages UDB backups and logs differently. ADSM backups of UDB
log files are called (in ADSM) archive files. UDB backups are stored in ADSM
as backup files. An ADSM management class is associated with every ADSM
object. A management class informs ADSM of your requirements for the
assigned set of objects. For instance, how many backup versions of a file
should be kept, how long should backup versions and archive copies be kept
and so on. See “Create Include-Exclude Options File” on page 96 for details
of how to associate an ADSM management class with DB2 objects.
114 Managing VLDB Using DB2 UDB EEE

Figure 11. db2adutl Syntax

3.17.2 Query Option of db2adutl
With no other parameters, db2adutl QUERY lists all active database and
tablespace backups, load copy images, and log archive files for all databases
and in our case, all database partitions. To only list images and files for one
database partition, use the AT NODE parameter. An additional parameter
specifies a particular database alias where an instance includes more than
one database. Active tablespace images or backup images or load copy

database name

db2adutl QUERY

TABLESPACE

FULL

LOADCOPY

SHOW INACTIVE

EXTRACT

TABLESPACE

FULL

LOADCOPY

SHOW INACTIVE TAKEN AT timestamp

LOGS
BETWEEN sn1 AND sn2

LOGS
BETWEEN sn1 AND sn2

DELETE

TABLESPACE

FULL

LOADCOPY

KEEP n

TAKEN AT timestamp

LOGS
BETWEEN sn1 AND sn2

OLDER
THAN n days

timestamp

NODE n WITHOUT PROMPTINGDATABASE

DB
DB2 UDB EEE Backup and Recovery using ADSM 115

images can be displayed. The SHOW INACTIVE clause lists, in addition to the
active ADSM images, those which have been deleted using db2adutl DELETE.
For more details on db2adutl DELETE and active versus inactive images, see
the following section.

3.17.3 Delete Option of db2adutl
The DELETE option of db2adutl deletes log files or deactivates backup and load
copy files. Note the distinction here. DELETE LOGS removes entries from the
ADSM database. DELETE FULL (or TABLESPACE or LOADCOPY) deactivates the
database (or tablespace or loadcopy) image(s) maintained by ADSM. Unlike
the logs that are deleted, the backups are flagged as inactive (but not
deleted) by db2adutl. ADSM flags these inactive files for delete based upon
the backup copy group definition in the associated management class. When
the ADSM EXPIRE INVENTORY command runs, the files flagged for deletion will
be removed from the ADSM storage volume(s).

Using the management class definitions, you can set up ADSM so that
deletion of ADSM images is controlled by db2adutl, by ADSM, or by a
combination of both. Section 3.17.5, “An Example Usage of db2adutl” on
page 117, provides a step-by-step description of how a process might be set
up to manage backups and log archives.

The db2adutl DELETE command, with no other qualifiers, lists all active
backups and each logs. From this list, you can select the backups to
deactivate and/or the logs to delete. For database and tablespace backup
files and for load copy image files, db2adutl allows several methods to specify
what you want to be deactivated. You can:

1. Keep a number, n, of the most recent backup copies using the command
qualifier KEEP n.

2. Deactivate all backups older than a certain date by including the phrase
OLDER [THAN] timestamp_value. The brackets indicate that the word THAN is
optional.

3. Deactivate images older than n days with the OLDER [THAN] n DAYS qualifier.

4. Use the phrase TAKEN AT timestamp_value to deactivate a specific backup
or loadcopy image.

db2adutl DELETE will delete one or more archive log files. To delete a range of
log files use DELETE LOGS BETWEEN log_number1 AND log_number2. To delete a
single log, DELETE LOGS BETWEEN log_number1 AND log_number1 (a "range" of
one!).

To be able to delete the log files, verify that:
116 Managing VLDB Using DB2 UDB EEE

 • The node is defined to ADSM with ARCHDEL=YES.

 • If the client options file, dsm.sys, specifies authorized users or groups, be
sure that the instance owner (or group) is included.

3.17.4 Extract Option of db2adutl
The EXTRACT command of the utility copies backups, logs, or both from the
ADSM server to your current directory. As with DELETE and QUERY, the default
without qualifiers is to list all the active images and each log. And, as with
DELETE, you can specify a range of images or a specific image to copy to your
working directory.

3.17.5 An Example Usage of db2adutl
To illustrate the use of db2adutl, consider the following requirement. Say we
want to maintain the two most recent backups and all logs necessary to
restore the database from as far back as the oldest retained backup. By using
db2adutl DELETE on the backup images that we don’t need (all apart from the
two most recent) this command will not automatically delete the log files that
predate the latest two backups; you must do this as an additional step.

An additional factor is that our database is spread over 16 database partitions
on 4 SP nodes. Each database partition has its own log files. So each
database partition will have to be queried individually to find out which log
files to delete. If you miss off the NODE parameter, then db2adutl will list all the
backup images for all the partitions on the SP node, which is probably not
what you want.

We’ll start by running a db2adutl query on partition 1:

> db2adutl query node 1

Query for database TPCD30

Retrieving full database backup information.
 full database backup image: 1, Time: 19980311173855, Oldest log: S0000011.LOG
 full database backup image: 2, Time: 19980312152249, Oldest log: S0000011.LOG
 full database backup image: 3, Time: 19980312165637, Oldest log: S0000011.LOG
 full database backup image: 4, Time: 19980312171520, Oldest log: S0000011.LOG
 full database backup image: 5, Time: 19980313172308, Oldest log: S0000014.LOG
 full database backup image: 6, Time: 19980320181156, Oldest log: S0000017.LOG

Retrieving log archive information.
 Log file: S0000011.LOG
 Log file: S0000012.LOG
 Log file: S0000013.LOG
 Log file: S0000014.LOG
 Log file: S0000015.LOG
 Log file: S0000016.LOG

We can see that:
DB2 UDB EEE Backup and Recovery using ADSM 117

 • If we delete the first four backup images, then the log files before
S0000014.LOG can also be deleted.

 • Tablespace and loadcopy output have been removed for clarity.

 • As we only have one database defined, we don’t need the DATABASE
parameter.

Now, if we look at partition 2:

> db2adutl query node 2

Query for database TPCD30

Retrieving full database backup information.
 full database backup image: 1, Time: 19980311175452, Oldest log: S0000025.LOG
 full database backup image: 2, Time: 19980312152434, Oldest log: S0000025.LOG
 full database backup image: 3, Time: 19980312171621, Oldest log: S0000025.LOG
 full database backup image: 4, Time: 19980313172459, Oldest log: S0000033.LOG
 full database backup image: 5, Time: 19980320181514, Oldest log: S0000035.LOG

Retrieving log archive information.
 Log file: S0000025.LOG
 Log file: S0000026.LOG
 Log file: S0000027.LOG
 Log file: S0000028.LOG
 Log file: S0000029.LOG
 Log file: S0000030.LOG
 Log file: S0000031.LOG
 Log file: S0000032.LOG
 Log file: S0000033.LOG
 Log file: S0000034.LOG

We can see that:

 • The log sequence numbers are much higher than on partition 1. This is
because partition 1 holds only the System Catalogs.

 • The numbering of the backup images does not necessarily agree across
the partitions. In this case, the backup image numbered 5 (on partition 2)
correlates with the backup image numbered 6 (on partition 1). We can tell
this by the timestamp of 19980320nnnnnn, which means March 20, 1998.
There is only one backup image for each partition on this date.

 • If we delete the first three backup images, then the log files before
S0000033.LOG can also be deleted.

 • The output does not identify the partition number.

Note that db2adutl queries the local logging information on each SP node. So
if we need to run db2adutl query node 5, we must run this from the SP node
which holds database partition 5, namely tp3an05.

To delete all the backup images, apart from the last two on partition 1:

> db2adutl delete full keep 2 node 1
118 Managing VLDB Using DB2 UDB EEE

Query for database TPCD30

Retrieving full database backup information.
 full database backup image taken at: 19980312171520, Sessions used: 1
 full database backup image taken at: 19980312165637, Sessions used: 1
 full database backup image taken at: 19980312152249, Sessions used: 1
 full database backup image taken at: 19980311173855, Sessions used: 1

 Do you want to deactivate these backup images (Y/N)? y

 Are you sure (Y/N)? y

If we now run db2adutl QUERY on partition 1:

> db2adutl query node 1

Query for database TPCD30

Retrieving full database backup information.
 full database backup image: 1, Time: 19980313172308, Oldest log: S0000014.LOG
 full database backup image: 2, Time: 19980320181156, Oldest log: S0000017.LOG

Retrieving log archive information.
 Log file: S0000011.LOG
 Log file: S0000012.LOG
 Log file: S0000013.LOG
 Log file: S0000014.LOG
 Log file: S0000015.LOG
 Log file: S0000016.LOG

Note that the numbers assigned to the backup images change. The backups
known as 5 and 6 before the delete are now known as 1 and 2. In fact the
backup image numbers are assigned sequentially, oldest first, and change if
any backup images are added or deleted.

The logs S0000011.LOG to S0000013.LOG are now not needed and can be
deleted:

> db2adutl delete logs between S0000011.LOG and S0000013.LOG node 1 without
prompting

Query for database TPCD30

Retrieving log archive information.
 Log file: S0000011.LOG
 Log file: S0000012.LOG
 Log file: S0000013.LOG

Note that we used the WITHOUT PROMPTING clause here; so no confirmation
messages were displayed.

Another db2adutl QUERY on partition 1 to check:

> db2adutl query node 1

Query for database TPCD30

Retrieving full database backup information.
DB2 UDB EEE Backup and Recovery using ADSM 119

 full database backup image: 1, Time: 19980313172308, Oldest log: S0000014.LOG
 full database backup image: 2, Time: 19980320181156, Oldest log: S0000017.LOG

Retrieving log archive information.
 Log file: S0000014.LOG
 Log file: S0000015.LOG
 Log file: S0000016.LOG

To complete the job for the 16 database partitions in our example, as each
partition has different log sequence numbers, these steps (query, delete
backup images, delete unnecessary log files) must be repeated for each
partition. Care must be taken to run the db2adutl command from the SP node
that holds each database partition.

Here are some example scripts which perform this function. The
delfullandlogsall script calls "delfullandlogs once for each SP node. At each
SP node, for the database partitions which are defined there, delfullandlogs
deletes the log files to which precede the last two backup images, then
deletes all but the last two backup images.

script: ~/bin/delfullandlogsall

rsh tp3an01 ". ~/.profile;~/bin/delfullandlogs 1"
rsh tp3an05 ". ~/.profile;~/bin/delfullandlogs 5"
rsh tp3an09 ". ~/.profile;~/bin/delfullandlogs 9"
rsh tp3an13 ". ~/.profile;~/bin/delfullandlogs 13"
120 Managing VLDB Using DB2 UDB EEE

If for any reason some of the individual partition backups fail when doing a
overall database backup, then the practice of keeping the two latest backups
will still guarantee the integrity of the database. That is, the backup images
do not have to be have been generated from the same db2_all db2 backup
command. We can roll forward as long as we have all the log files available.
However, the recovery time will be severely impacted if some partitions have
to roll forward more logs than others.

script : ~/bin/delfullandlogs

$1 is the first of the four partitions on the host

a=$1
b=‘echo $1 + 1|bc‘
c=‘echo $1 + 2|bc‘
d=‘echo $1 + 3|bc‘

for n in $a $b $c $d
do

echo "DB2NODE=$n"

db2adutl query node $n | awk ’/Oldest/ {print $10}’ \
 | cut -c1-12 > /tmp/logs.$n

firstdelname=‘head -1 /tmp/logs.$n‘

firstdel=‘echo $firstdelname|cut -c2-8‘

keep=‘tail -2 /tmp/logs.$n | tail -2 | head -1 | cut -c2-8‘

lastdel=‘echo $keep - 1|bc‘

lastdelname=‘echo $lastdel | awk ’{ printf("S%07d.LOG\n",$1) }’‘

check that we have logs to delete

if [[$firstdel -lt $lastdel]] then
 db2adutl delete logs between $firstdelname and $lastdelname \
 node $n without prompting
fi

delete all but the last 2 backups

db2adutl delete full keep 2 node $n without prompting

db2adutl query node $n

done
DB2 UDB EEE Backup and Recovery using ADSM 121

3.18 Using ADSM to Query Archived UDB Log Files

If enabled, the UDB db2uext2 user exit is called when a log file fills. The exit
creates an ADSM archive object named
/<db_alias>/NODEnnnn/Syyyyyyy.LOG, where nnnn is the database partition
number and yyyyyyy is the log sequence number. For example, suppose DB2
UDB EEE log file S0000016.LOG in partition 3 of database alias TPCD30
fills. The database manager calls db2uext2, which in turn calls ADSM to
create an archive file named /TPCD30/NODE0003/S0000016.LOG.

An ADSM administrator can use the SQL feature of ADSM Version 3 to query
all or a subset of ADSM archive objects. For example, to list all archived log
files for database alias TPCD30:

3.19 Tuning Considerations for ADSM on the RS/6000 SP

More often than not, performance tuning seems a black art. An ADSM
environment is no exception. ADSM is a client/server application.
Consequently, a tuning effort involves the server host, the client hosts, and
the network in between. This section attempts to remove some of the mystery
by providing a starter-set of recommendations. As always, the normal caveat
applies: What’s good for one system is not necessarily good for another.

 adsm> select * from archives where filespace_name=’/TPCD30’
 ANR2963W This SQL query may produce a very large result table, or may require a
 significant amount of time to compute.

 Do you wish to proceed?y

 NODE_NAME: TP3AN01.PPD.POK.IBM.COM
 FILESPACE_NAME: /TPCD30
 TYPE: FILE
 HL_NAME: /NODE0003/
 LL_NAME: S0000016.LOG
 OBJECT_ID: 3075
 ARCHIVE_DATE: 1998-03-11 13:19:39.000000
 OWNER: db2inst1
 DESCRIPTION: Log file for DB2 database TPCD30
 CLASS_NAME: UDB_MGMT_CLASS

 NODE_NAME: TP3AN01.PPD.POK.IBM.COM
 FILESPACE_NAME: /TPCD30
 TYPE: FILE
 HL_NAME: /NODE0003/
 LL_NAME: S0000017.LOG
 OBJECT_ID: 3076
 ARCHIVE_DATE: 1998-03-11 13:25:13.000000
 OWNER: db2inst1
 DESCRIPTION: Log file for DB2 database TPCD30
 CLASS_NAME: UDB_MGMT_CLASS

 adsm>
122 Managing VLDB Using DB2 UDB EEE

Because ADSM is probably not the only process running on a host, some of
these values may not be reasonable in your environment. As with any tuning
effort, consult with your own network and system tuning specialists.

Basically, all tuning can be reduced to a small set of items: real memory, I/O,
network bandwidth (really just another form of I/O), and CPU power. You
figure out (most likely by being told) the critical applications. These are your
loved ones. Then you take care of them, especially when demand for
resource exceeds the supply. To give to one, you must take from another.

For ADSM, to improve performance, consider the TCP/IP no command
options, ADSM server configuration parameters (dsmserv.opt), ADSM client
options (dsm.sys and dsm.opt), and SP switch adapter parameters (RPOOLSIZE
and SPOOLSIZE).

The options used for this project are listed in “TCP/IP Options Script
(tuning.cust)” on page 127.

Use of these sample programs is not mandatory. You may choose to create
your own user exit program, perhaps using one of the sample programs as a
model. Useful information can be found in comments at the start of each
sample program. Appendix J of the DB2 UDB Administration Guide describes
a number of considerations that apply to calling a user exit program for
archiving and retrieving log files. The guide also describes the database
manager format for calling the exit program on a UNIX operating system, and
it explains the specific return codes that the exit can provide back to the
calling database manager.

3.20 Scripts Used in the Test Configuration

The scripts listed in this section perform the following tasks:

 • Setup the ADSM Policy Domains (see 3.20.2, “TCP/IP Options Script
(tuning.cust)” on page 127.)

 • Configure TCP/IP Options

3.20.1 Policy.mac
/* ---*/
/* S E T U P P O L I C Y D O M A I N S */
/* ---*/

/* -- */
/* austin_domain_01 */
/* -- */

copy domain standard austin_domain_01
DB2 UDB EEE Backup and Recovery using ADSM 123

update domain austin_domain_01 -
 description="Custom domain for Austin" -
 backretention=30 archretention=365
commit

update mgmtclass austin_domain_01 standard standard -
 description="austin_domain_01 standard management class." -
 spacemgtechnique=none
commit

update copygroup austin_domain_01 standard standard standard -
 type=backup destination=austin_tapepool_01 -
 frequency=0 verexists=2 verdeleted=1 -
 retextra=30 retonly=60 -
 mode=modified serialization=shrdynamic

update copygroup austin_domain_01 standard standard standard -
 type=archive destination=austin_tapepool_01 -
 frequency=cmd retver=15 -
 mode=absolute serialization=dynamic
commit

copy mgmtclass austin_domain_01 standard standard -
 udb_mgmt_class

update mgmtclass austin_domain_01 standard udb_mgmt_class -
 desc="Management class for DB2 UDB backups and log archives"
commit

update copygroup austin_domain_01 standard -
 udb_mgmt_class standard -
 type=backup destination=austin_tapepool_01 -
 frequency=0 verexists=1 verdeleted=0 -
 retextra=0 retonly=60 -
 mode=modified serialization=shrdynamic

update copygroup austin_domain_01 standard -
 udb_mgmt_class standard -
 type=archive destination=austin_tapepool_01 -
 frequency=cmd retver=365 -
 mode=absolute serialization=dynamic
commit

assign defmgmtclass austin_domain_01 standard standard

validate policyset austin_domain_01 standard

activate policyset austin_domain_01 standard

commit

/* -- */
/* austin_domain_02 */
/* -- */

copy domain standard austin_domain_02

update domain austin_domain_02 -
 description="Custom domain for Austin" -
 backretention=30 archretention=365
commit
124 Managing VLDB Using DB2 UDB EEE

update mgmtclass austin_domain_02 standard standard -
 description="austin_domain_02 standard management class." -
 spacemgtechnique=none
commit

update copygroup austin_domain_02 standard standard standard -
 type=backup destination=austin_tapepool_02 -
 frequency=0 verexists=2 verdeleted=1 -
 retextra=30 retonly=60 -
 mode=modified serialization=shrdynamic

update copygroup austin_domain_02 standard standard standard -
 type=archive destination=austin_tapepool_02 -
 frequency=cmd retver=15 -
 mode=absolute serialization=dynamic
commit

copy mgmtclass austin_domain_02 standard standard -
 udb_mgmt_class

update mgmtclass austin_domain_02 standard udb_mgmt_class -
 desc="Management class for DB2 UDB backups and log archives"
commit

update copygroup austin_domain_02 standard -
 udb_mgmt_class standard -
 type=backup destination=austin_tapepool_02 -
 frequency=0 verexists=1 verdeleted=0 -
 retextra=0 retonly=60 -
 mode=modified serialization=shrdynamic

update copygroup austin_domain_02 standard -
 udb_mgmt_class standard -
 type=archive destination=austin_tapepool_02 -
 frequency=cmd retver=365 -
 mode=absolute serialization=dynamic
commit

assign defmgmtclass austin_domain_02 standard standard

validate policyset austin_domain_02 standard

activate policyset austin_domain_02 standard

commit

/* -- */
/* austin_domain_03 */
/* -- */

copy domain standard austin_domain_03

update domain austin_domain_03 -
 description="Custom domain for Austin" -
 backretention=30 archretention=365
commit

update mgmtclass austin_domain_03 standard standard -
 description="austin_domain_03 standard management class." -
 spacemgtechnique=none
commit

update copygroup austin_domain_03 standard standard standard -
DB2 UDB EEE Backup and Recovery using ADSM 125

 type=backup destination=austin_tapepool_03 -
 frequency=0 verexists=2 verdeleted=1 -
 retextra=30 retonly=60 -
 mode=modified serialization=shrdynamic

update copygroup austin_domain_03 standard standard standard -
 type=archive destination=austin_tapepool_03 -
 frequency=cmd retver=15 -
 mode=absolute serialization=dynamic
commit

copy mgmtclass austin_domain_03 standard standard -
 udb_mgmt_class

update mgmtclass austin_domain_03 standard udb_mgmt_class -
 desc="Management class for DB2 UDB backups and log archives"
commit

update copygroup austin_domain_03 standard -
 udb_mgmt_class standard -
 type=backup destination=austin_tapepool_03 -
 frequency=0 verexists=1 verdeleted=0 -
 retextra=0 retonly=60 -
 mode=modified serialization=shrdynamic

update copygroup austin_domain_03 standard -
 udb_mgmt_class standard -
 type=archive destination=austin_tapepool_03 -
 frequency=cmd retver=365 -
 mode=absolute serialization=dynamic
commit

assign defmgmtclass austin_domain_03 standard standard

validate policyset austin_domain_03 standard

activate policyset austin_domain_03 standard

commit

/* -- */
/* austin_domain_04 */
/* -- */

copy domain standard austin_domain_04

update domain austin_domain_04 -
 description="Custom domain for Austin" -
 backretention=30 archretention=365
commit

update mgmtclass austin_domain_04 standard standard -
 description="austin_domain_04 standard management class." -
 spacemgtechnique=none
commit

update copygroup austin_domain_04 standard standard standard -
 type=backup destination=austin_tapepool_04 -
 frequency=0 verexists=2 verdeleted=1 -
 retextra=30 retonly=60 -
 mode=modified serialization=shrdynamic

update copygroup austin_domain_04 standard standard standard -
126 Managing VLDB Using DB2 UDB EEE

 type=archive destination=austin_tapepool_04 -
 frequency=cmd retver=15 -
 mode=absolute serialization=dynamic
commit

copy mgmtclass austin_domain_04 standard standard -
 udb_mgmt_class

update mgmtclass austin_domain_04 standard udb_mgmt_class -
 desc="Management class for DB2 UDB backups and log archives"
commit

update copygroup austin_domain_04 standard -
 udb_mgmt_class standard -
 type=backup destination=austin_tapepool_04 -
 frequency=0 verexists=1 verdeleted=0 -
 retextra=0 retonly=60 -
 mode=modified serialization=shrdynamic

update copygroup austin_domain_04 standard -
 udb_mgmt_class standard -
 type=archive destination=austin_tapepool_04 -
 frequency=cmd retver=365 -
 mode=absolute serialization=dynamic
commit

assign defmgmtclass austin_domain_04 standard standard

validate policyset austin_domain_04 standard

activate policyset austin_domain_04 standard

commit

3.20.2 TCP/IP Options Script (tuning.cust)
This is the tuning.cust file.

#!/bin/ksh
Module: <tuning.cust>
#---
Description: This script is a sample which is designed to be used by the
user as a guide to change the network options for TCP/IP and UDP/IP
communications on the SP system
#
These settings are only a sample and should be changed to the preferred
settings for your system.
#
For further recommendations on tuning, refer to the PSSP Administration
Guide
#---
#
Set default mbuf pool size for all TCP/IP and thread buffer
#
 /usr/sbin/no -o thewall=65536
#
Set default sb_max size for all IP connections
#
/usr/sbin/no -o sb_max=163840
 /usr/sbin/no -o sb_max=6000000
#
Set default TCP send window size for all TCP/IP connections
DB2 UDB EEE Backup and Recovery using ADSM 127

#
/usr/sbin/no -o tcp_sendspace=65536
 /usr/sbin/no -o tcp_sendspace=655360
#
Set default TCP receive window size for all TCP/IP connections
#
/usr/sbin/no -o tcp_recvspace=65536
 /usr/sbin/no -o tcp_recvspace=655360
#
Set default UDP send window size for all UDP/IP connections
Effective maximum is limited to 65536
#
 /usr/sbin/no -o udp_sendspace=65536
#
Set default UDP receive window size for all UDP/IP connections
#
 /usr/sbin/no -o udp_recvspace=655360
#
Set rfc1323 feature on for faster throughput for High Performance Networks.
#
 /usr/sbin/no -o rfc1323=1
#
Set default Maximum Transmission Unit size for transfers across networks.
(Value equals MTU size minue size of TCP header (=52 bytes))
#
/usr/sbin/no -o tcp_mssdflt=1500
 /usr/sbin/no -o tcp_mssdflt=1448 # Optimized for ethernet
/usr/sbin/no -o tcp_mssdflt=4300 # Optimized for FDDI
128 Managing VLDB Using DB2 UDB EEE

Chapter 4. DB2 UDB EEE High Availability using HACMP

In this chapter, we explain how to configure DB2 UDB EEE for high
availability using HACMP on an RS/6000 SP. A real example is given, namely
a four high node (8-way) SP with a 30 GB TPCD database spread over 16
DB2 UDB EEE database partitions.

4.1 Overview of HACMP

High-Availability Cluster Multi-Processing (HACMP) is used to provide high
availability services on the RISC System/6000. A set of systemized, shared
resources are utilized which cooperate to guarantee essential services.

HACMP/6000 Version 3 for AIX Version 3.2.5 and HACMP for AIX Version 4.2
and AIX Version 4 both support up to eight processors in a cluster. DB2 UDB
EEE configurations running under HACMP can exceed these limits by
spanning multiple HACMP clusters. SP nodes are defines as cluster nodes to
HACMP.

4.1.1 Components of HACMP
High Availability Cluster Multi-Processing/6000 Version 4.2 has two distinct
subsystems, which can be purchased together or separately.

 • The high availability subsystem provides a highly available environment
on a cluster of RS/6000s. This provides the function to allow independent
nodes, each running separate applications and accessing separate data,
to provide failure protection for each other.

 • The loosely coupled multi-processing or Concurrent Resource Manager
(CRM) subsystem allows two or more machines to concurrently access
the same data and run the same application, also providing failure
protection for each other.

The mode of operation of DB2 UDB EEE suits the high availability subsystem
of HACMP.

4.1.2 Considerations for High Availability of DB2 UDB EEE
Today, DB2 is a critical part of many businesses. Once a DB2 system is in
production, its consistent availability can become key to a business. A
reduction of system availability will incur costs to the business (either directly
or indirectly), taking one or more of these forms:

 • Direct Revenue loss
© Copyright IBM Corp. 1998 129

If system availability has a direct effect on a business’s ability to take
revenue, then revenue will be lost while the system is down.

 • Staff Productivity

The staff dependent upon a system will often be unable to perform any
useful work when a system is not available. This tends to induce
frustration in the users, causing them to think of the system as an
impediment to their work rather than an aid.

 • Customer satisfaction

If a business transaction cannot be performed because the system is
unavailable, customers may use an alternative source. Many potential
customers for a particular service may also base their choice of a provider
on their service level. Lower service levels generally lead to lower levels of
customer satisfaction and sometimes the loss of customers.

 • Circumvention costs

When a system and its supported business processes are unavailable, it
may be possible to provide an alternative solution, rather than simply
denying service altogether. There will probably be additional costs
associated with such solutions.

4.1.3 Points of Failure
For an HACMP/6000 cluster to be effective, single points of failure should be
eliminated. A single point of failure exists when a critical cluster function is
provided by a single component. If that component fails, the function can no
longer be provided, and an essential service becomes unavailable.

Examples of cluster components which are potential single points of failure
are:

 • SP nodes

 • Power sources

 • Network adapters and networks

 • Disk adapters and disks

4.1.3.1 SP Nodes
SP nodes can be eliminated as a single point of failure by having standby SP
nodes ready to take over their workload should they fail. These standby SP
nodes can be configured with HACMP/6000 to behave in three different ways:

1. Idle Standby. A standby SP node can be provided which will take over the
work of a failed SP node. When the failed SP node is fixed and
130 Managing VLDB Using DB2 UDB EEE

reintegrated into the cluster, it will reclaim its resources. The standby SP
node must have access to all resources required for the provision of the
essential services: disks, networks and so on. This method results in a
cluster which will lose no performance after a failure, as long as the
standby SP node has the same capacity. The disadvantage is the cost
since the standby SP node is not used except after an SP node failure.

2. Rotating Standby. A standby SP node is provided to take over the work of
a failed SP node, as in the idle standby scenario. However, when the
failed SP node is reintroduced, it does not reclaim its resources, but
becomes the new standby machine. This configuration has the same cost
characteristics as idle standby. Its advantage is that it avoids the impact of
the originally failed SP node by not reclaiming its resources when it rejoins
the cluster.

3. Mutual Takeover. There are no standby SP nodes; all SP nodes are
utilized in a normal state. After an SP node failure, the failed SP nodes
resources and essential services are taken over by one of the surviving
SP nodes in addition to its normal services. This method uses hardware
resources more efficiently because redundant SP nodes are not used. The
disadvantage is that there may be performance degradation after an SP
node failure.

4.1.3.2 Power Sources
Either uninterruptable power supplies, dual power sources or both should be
used.

4.1.3.3 Networks
Secondary networks should be available to cope with the failure of the
primary network for the SP nodes connected to the external network. Standby
network adapters are used to cope with an SP node failure in a mutual
takeover or hot standby cluster. After an SP node failure, the SP node that
takes over the failed nodes services will be required to have two network
addresses: its own network address and the address of the failed SP node.
To do this, two adapters are required for the machine on the same physical
network. The standby adapter can also take over the same machine’s primary
address if the primary network adapter of the machine fails. In an SP cluster,
it is not necessary to use double switch adapters in each node. HACMP
should be configured to react to a switch adapter failure as a complete node
failure. This also allows the use of thin nodes as part of the HACMP cluster.

The following TCP/IP networks are supported in an HACMP/6000
environment:

 • Ethernet
DB2 UDB EEE High Availability using HACMP 131

 • Token-Ring

 • Fiber Distributed Data Interchange (FDDI)

 • Asynchronous Transfer Mode (ATM)

 • IBM Serial Optical Channel Converter (SOCC)

It is strongly recommended that all nodes sharing an external disk have a
point-to-point, non-TCP/IP connection with each node sharing the disk.
Should TCP/IP fail, HACMP/6000 will still be able to connect using the
non-TCP/IP connection to prevent unwanted disk takeovers.

The following options are available:

 • Raw RS232 link

 • SCSI-2 differential bus

4.1.3.4 Disks
Disks can be attached to more than one SP node. This allows a disk to be
accessed by a takeover SP node. Data held on disks other than RAID disks
should be mirrored to prevent loss of data after a disk failure. To ensure no
single point of failure, these mirrors should be accessed through different
adapters. Disks that are supported include external SCSI disks and
enclosures, 9333 serial disk subsystems, and various RAID subsystems.

 • SCSI. SCSI-2 differential disk subsystems should be used. A chain of
SCSI disks can connect to up to four nodes. Each disk is only "owned'' by
one node at a time. This ownership can be transferred after a failure. This
solution has the benefit of lower cost, but access is relatively slow.
Because access time is usually important, SCSI disks are rarely used in
HACMP configurations.

 • 7133 Serial Disk Subsystems. These provide increased system
throughput, disk capacity and performance. With the SSA loop design, a
single cable failure will not cause loss of access to data. If there is a
failure on a loop, the SSA adapter will automatically continue accessing
the devices in a non-loop configuration. Once the path is restored, the
adapter will automatically reconfigure to resume the normal mode of
operation. If there is a disk failure, the hot-swappable disks can be
removed without loss of communication between the adapter and the
other disks on the loop. Similar automatic reconfigurations will set things
back to normal once the disk is repaired and/or replaced. The 7133 is also
designed with hot-swappable disk modules, redundant power supplies
and fans which can be replaced without affecting system operations. The
7133 provides superior performance due to its greater bandwidth for
132 Managing VLDB Using DB2 UDB EEE

multiple concurrent, full duplex I/O operations. The 7133 can connect to
eight nodes with Release 2.1 (and later releases) of HACMP/6000.

 • 7135 RAIDiant Array. This is a disk array controller with an SCSI-2
differential fast/wide host interface and multiple SCSI buses which have
attached disk drives. The array supports RAID levels 0, 1, 3, and 5. Levels
1, 3 and 5 offer data redundancy; so mirroring is not necessary.

 • Under level 0, each group of disks is used without any form of data
redundancy. This provides the most storage, but does not offer high
availability.

 • With level 1, all disks are mirrored on a one-for-one basis within a
group. This provides the fastest read access and the best performance
in case of a failure, but it is costly.

 • For level 3, one disk within the group is used for parity, and the other
disks hold the data. The parity disk contains sufficient information
about all the other disks in the group to be able to rebuild any data after
the loss of a single disk. After a disk failure, no data is lost, but the time
taken to access the data increases considerably.

 • Level 5 is similar to level 3, except the parity data is striped across all
disks within the group. This provides faster access than level 3. Level 5
provides fast write access, but read access is slower than level 1. It
has very good price/performance characteristics.

Level 1 and level 5 are the two RAID levels which should be considered
for DB2 UDB EEE. If cost is an issue, then level 5 is recommended. If
optimum performance is needed, and this must be maintained after a
failure, then level 1 should be considered.

 • 7137 High Availability External Disk Array - This provides functionality
similar to the 7135 RAIDiant Array. It only contains one controller, but
allows hot standby disks to be configured. After a disk failure, the data
from the failed disk will be re-created onto the standby disk. If a second
disk failure occurs, then the parity disk can be used to provide continuous
service. Only RAID-5 and RAID-0 are supported. RAID-0 does not provide
availability. The 7137 stripes the data sequentially across the full set of
disks.

4.1.4 Example Scenarios
An SP cluster is a group of RISC System/6000 machines connected through
at least one internal network. If a high-performance (HPS) switch is used as
an internal network, then data can be sent at a rate of up to 100 MB/sec in
both directions between any pair of SP nodes.
DB2 UDB EEE High Availability using HACMP 133

There are numerous configurations possible with HACMP/6000 and DB2
UDB EEE. Any implementation will have specific requirements which may
well dictate the properties of the implemented HACMP cluster. Two examples
of networked clusters are given in this section which will provide good
solutions in many cases. The first example should provide excellent
price/performance, but will suffer degradation after a failure. The second
example is a more costly solution, but performance after a failure should
suffer little degradation.

4.1.4.1 Mutual Takeover Scenario
The first example demonstrates the use of a mutual takeover configuration:

Figure 12. HACMP Mutual Takeover Scenario

This is a HACMP Mutual Takeover Cluster that uses RAIDiant arrays as the
storage method for the database. The SP nodes are connected through a
primary 16 Mb token-ring to the external network. The HPS and the internal
Ethernet network provide communication between the SP nodes. The
token-ring network has standby adapters to allow for takeover on nodes 01
and 05.

The connections to the RAIDiant arrays should be duplicated in each
machine to protect against a SCSI adapter failure or SCSI cable failure. RAID
level 5 would be implemented in the disk groups.

HPS

SP Node 01

SP Node 05

SP Node 09

SP Node 13
RAIDiant
Array

RAIDiant
Array

External Token-Ring Network
134 Managing VLDB Using DB2 UDB EEE

The cluster consists of two mutual takeover pairs of machines. Each pair has
access to a shared set of RAIDiant arrays. In normal use, some of the disks
will be used by one of the nodes and some by the other. If a node fails, its
partner will take over the rest of the RAIDiant array disks and the primary
logical and hardware IP address and will start up the failed node’s DB2 UDB
EEE processes. For example, after a failure of Node 05, Node 01 will take
over the resources (disks, IP address) from Node 05 and start the database
partitions originally running on Node 05.

Figure 13. HACMP Mutual Takeover before Takeover

After an SP node failure, the database will be running on three SP nodes
instead of four. This will probably result in a high degradation in performance.

The standby adapter will be used to provide TCP/IP services by the takeover
node with the same IP service address used normally by the failing node.

HPS

Partition 4

Partition 3

Partition 2

Partition 1

RAIDiant
Array

RAIDiant
Array

External Token-Ring Network
DB2 UDB EEE High Availability using HACMP 135

Figure 14. HACMP Mutual Takeover after Takeover

In this case, Node 09 and Node 13 (holding database partitions 1 and 2) are
used for the DB2 EEE engine only and are not used as coordinator nodes
since they do not have an external network.

After a disk failure, the RAIDiant arrays will continue to provide uninterrupted
access to data. However, access time will increase significantly since the
data will have to be extracted using the parity information.

This configuration provides a system that is very cost-effective. During
normal use, the database system is configured to take full advantage of the
SP nodes. However, after a failure, although the database will continue to be
available, the performance is likely to degrade significantly.

4.1.4.2 Rotating Standby Scenario
The first example demonstrates the use of a rotating standby configuration:

HPS

Partition 4
Partition 3

Partition 2

Partition 1

RAIDiant
Array

RAIDiant
Array

External Token-Ring Network
136 Managing VLDB Using DB2 UDB EEE

Figure 15. HACMP Rotating Standby Scenario

This is a HACMP Standby Cluster example where a cluster uses a 7133
high-performance serial disk subsystem as the disk storage. The nodes are
connected through a primary 16 Mb token-ring network and the HPS.

Three IP addresses and three database partitions are defined for the cluster,
and the first three nodes to be started will take these resources. The last
node will become a standby node for these resources. All the SP nodes are
connected to all the 7133 subsystems to allow them to access the correct
disks for their database partitions.

The data held on the 7133 subsystems should be mirrored to protect against
failure. These mirrors should be across different 7133 subsystems and
adapters to ensure no single point of failure.

Raw RS232 null modem connections could be connected between all nodes.
These non-TCP/IP connections would be used to prevent a node from
attempting to take over disks after a failure of TCP/IP. The serial ports must
be provided using eight serial port adapters because SP nodes do not have
serial ports.

After an HPS adapter failure, the cluster would be configured to run a
node_down script to allow the instance to move to a standby node.

HPS

SP Node 01

SP Node 05

SP Node 09

SP Node 13

External Token-Ring Network

(Standby)
7133

7133
Subsystem

Subsystem
DB2 UDB EEE High Availability using HACMP 137

Figure 16. HACMP Rotating Standby before Takeover

This example illustrates a configuration that should provide a high level of
performance. It should also provide a system which has little or no
degradation of performance after a failure.

HPS

Partition 3

Partition 2

Partition 1

No Applications

External Token-Ring Network

7133

7133
Subsystem

Subsystem
138 Managing VLDB Using DB2 UDB EEE

Figure 17. HACMP Rotating Standby After Takeover

As you can see in the figure above, the system does not need to return to the
original configuration. When the failing node is repaired, it becomes the
standby node that will be used in case of failure.

When using HACMP/6000 with DB2 UDB EEE and your system experiences
a failure, the HACMP software will execute. By using HACMP/6000, you can
take over resources such as disk. A machine could serve as a standby SP
node in the event of an SP node failure. The HACMP software will cause the
following to occur:

 • Takeover of the network address

 • Takeover of some file systems (user-defined)

 • Takeover of volume groups used for raw table spaces

 • Execute a user-defined script

4.2 High Availability for DB2 UDB EEE on RISC/6000 SP

Generally speaking, the goal of this chapter is to list and suggest alternatives
to those special issues raised by using DB2 UDB EEE on the RISC/6000 SP.
In this sense, the emphasis will be on High Availability Cluster
Multi-Processing (HACMP) from a DB2 UDB EEE perspective.

HPS

Partition 3

Partition 1

Partition 2

External Token Ring Network

7133

7133
Subsystem

Subsystem
DB2 UDB EEE High Availability using HACMP 139

After reviewing the hardware and software configuration used for the tests,
we provide an overview of the available design alternatives, then cover
HACMP installation and configuration to work with DB2 UDB EEE.

The approach followed in this chapter is to start from an existing standard
RISC/6000 SP environment with DB2 UDB EEE installed and to detail the
changes necessary in order to configure HACMP on the existing RISC/6000
SP system. However, there are customers who may want to include planning
for HACMP prior to the installation of the RISC/6000 SP and DB2 UDB EEE.
Those readers interested in the latter approach should refer to the redbook
An HACMP Cookbook, SG24-4553.

4.2.1 Hardware Configuration
The configuration used for DB2 UDB EEE and HACMP testing consists of a
four-high node RISC/6000 SP (see Figure 18) with eight processors and 2 GB
of memory per high node. The nodes are interconnected via a
High-Performance Switch (HPS). In addition, the standard administrative
Ethernet (SP Ethernet) connects the nodes to the RS/6000 Control
Workstation.

Nodes node01 and node05 shown in Figure 18 have two Ethernet adapters
each connected to allow TCP/IP address takeover in case of failure, and will
be used as a DB2 coordinator nodes. The other nodes, node09, and node13
will be used for the DB2 engine only, without connection to an external
network.
140 Managing VLDB Using DB2 UDB EEE

Figure 18. Hardware Configuration Used for the Test

Serial storage (7133) units are connected to the four SP nodes in a loop
configuration that allows access to disks from any node. There are a total of
64 x 4 GB disks in two independent loops of 32 disks, making a total of 256
GB of serial disk.

These disks are used to store any critical data, such as DB2 UDB EEE table
data, that needs to be protected against hardware failures. To protect against
disk failure, we use mirroring, and to protect against cable failure in the SSA
loop, we use a double loop.

Each node has an 8-port serial adapter connected with null modem cables
between pairs of nodes (node01 to node05 and node09 to node13). These
connections are used to carry the HACMP heartbeat, so that TCP/IP is not a
single point of failure.

HPS Switch

en0en1

7133 Disks

64 GB per
SP Node

8 CPU High Node
2GB Memory

SSA adapters

HPS Adapter
Admin Ethernet

Serial Ports

node09

8 CPU High Node
2GB Memory

SSA adapters

HPS Adapter
Admin Ethernet

Serial Ports

node13

SSA Loop

8 CPU High Node
2GB Memory

SSA adapters

HPS Adapter
Admin Ethernet

2 x Ext. Ethernet

Serial Ports

node01

8 CPU High Node
2GB Memory

SSA adapters

HPS Adapter
Admin Ethernet
2 x Ext. Ethernet

Serial Ports

node05
DB2 UDB EEE High Availability using HACMP 141

If you are using 7135 RAIDiant disks, for a two-node HACMP cluster with a
7135 disk unit, five cables and terminators are required, including two
52G7348 Y-cables, one 52G7349 system-to-system cable, and two 52G7350
terminators. The two resistive terminators on each SCSI-2 Differential
adapter have to be removed.

If you are using Target Mode SCSI for the TCP/IP heartbeat, then before the
SCSI adapters can be cabled together, it is necessary to check that they have
different SCSI identifiers by choosing an appropriate value for the Adapter
card SCSI ID field in the menu displayed by the SMIT chgscsi command.
Since each device (adapter) on an SCSI bus needs to have a unique
identifier and target mode SCSI connects two adapters together, the two
adapters cannot have the same identifier. It is recommended to select a value
other than 7 for each adapter’s SCSI identifier.

4.2.2 Installed Software
The Control Workstation and all the SP nodes are using AIX V4.2.1 with
PSSP V3.1, with HACMP V4.2.2 on the SP nodes only. Because HACMP
V4.1.1 and HACMP V3.1.1 have similar functionality to HACMP V4.2.2, the
descriptions in this chapter apply to these releases also. The only difference
is that some SMIT short paths have different names in older versions of
HACMP. The version we used (V4.2.2) has also some graphical
administrative tools that will not be covered here, since they provide a lesser
degree of functionality than SMIT.

If you experience security problems or high delays during cluster
synchronization, make sure that the latest available HACMP PTF has been
applied.
142 Managing VLDB Using DB2 UDB EEE

Figure 19. Software Configuration Used for the Test

4.2.3 Network Interfaces
The four node’s host names are hnode01, hnode05, hnode09, and hnode13.
The digits 01, 05, 09, and 13 are used because a high node uses four slots in
the SP2. It is recommended to number the SP nodes in this way to allow you
to easily map a host name to a slot in the SP. These names are the ethernet
(en0) network interface names. For the HPS, the network interface names are
switch1 to switch4. These are the names of the switch adapters in the SDR
(System Data Repository) of the SP. IP address takeover through HACMP
uses one switch adapter per node. As a result, it is not possible to use the
SDR switch names for IP address takeover. Each switch adapter has an
alias, called sw01, sw05, sw09, and sw13, corresponding to switch01,
switch05, switch09, and switch13. Finally, four switch boot addresses,
swboot01, swboot05, swboot09, and swboot13 are assigned. All these
network interface names are defined on the same subnet because the SP
switch does not use standby addresses. In our configuration, only the
ethernet standby adapters will use a different subnet. For a summary of
available network interfaces on each node, see Figure 20 on page 144.

AIX 4.2.1

PSSP 3.1

HACMP 4.2.2

DB2 UDB

NFS Server

EEE V5

node01

AIX 4.2.1

PSSP 3.1

HACMP 4.2.2

DB2 UDB EEE V5

node05,09,13

AIX 4.2.1

PSSP 3.1

Ctrl Workstation
DB2 UDB EEE High Availability using HACMP 143

Figure 20. Network Interfaces Available in Each Node

4.2.4 DB2 UDB EEE Configuration
DB2 UDB EEE is installed on each node. The instance owner is called
db2inst1 and belongs to the dbadmin1 group. There are four database
partitions defined in each SP node, making a total of 16 in all. The instance
owner’s home directory is made available to the other nodes using NFS. If
you use AMD (Automounter) to manage the instance owner’s home directory,
you risk intermittent failures.

One database is defined, called TPCD30, and the catalog node for this
database is node01. Eight tables are defined in this database: CUSTOMER,

HPS css0

Adm Ethernet en0

Ext. Ethernet en1

Serial Port tty1

sw01
swboot01
switch01

9.114.127.203
9.114.127.213
9.114.127.193

9.114.127.1 hnode01

Network mask

9.114.127.65 etsvc01

255.255.255.192

etsby01192.168.127.65

etboot019.114.127.75

Ext. Ethernet en2

node01 node05

css0 HPS

en0 Adm Ethernet

en1 Ext. Ethernet

tty1 Serial Port

9.114.127.204
9.114.127.214
9.114.127.194

9.114.127.2

9.114.127.66

192.168.127.66

9.114.127.76

en2 Ext. Ethernet

sw05
swboot05
switch05

hnode05

etsvc05

etsby05

etboot05

HPS Switch

HPS css0

Adm Ethernet en0

Serial Port tty1

sw09
swboot09
switch09

9.114.127.205
9.114.127.215
9.114.127.195

9.114.127.3 hnode09

node09 node13

css0 HPS

en0 Adm Ethernet

tty1 Serial Port

9.114.127.206
9.114.127.216
9.114.127.196

9.114.127.4

sw13
swboot13
switch13

hnode13
144 Managing VLDB Using DB2 UDB EEE

LINEITEM, NATION, ORDERS, PART, PARTSUPP, REGION, and
SUPPLIER.

The LINEITEM table is the largest with 180,036,450 rows and, as shown in
Table 2, is defined in the TS_DAT_BIG table space which exists at all
database partitions apart from the catalog partition. The other tables, apart
from REGION and NATION, are defined in the TS_DAT_MED table space,
which also exists at all database partitions apart from the catalog partition.
The REGION and NATION tables are defined in the TS_LIT table space and
only use the catalog partition.

Table 2. Tables Defined in the TPCD30 Database

Nodegroup NG_BIG is defined across all partitions except the catalog
partition. The NG_LIT nodegroup uses only the catalog partition.

DB2 UDB EEE uses the sw01, sw05, sw09, and sw13 switch network
addresses for inter-node communications in the db2nodes.cfg configuration
file.

A more detailed explanation of the database physical layout can be found in
“Designing and Implementing the DIsk Space Allocation” on page 8.

4.3 HACMP Takeover for this Configuration

In this section, we explain, step by step, how HACMP manages the takeover
of a failed SP node.

We will use the symbols shown in Figure 21. DPxx corresponds to the four
database partitions running on the SP node nodexx. When we move the

Table Name Table Space (data) Nodegroup Partitions

LINEITEM TS_DAT_BIG NG_BIG 2-16

ORDERS TS_DAT_MED NG_BIG 2-16

PARTSUPP TS_DAT_MED NG_BIG 2-16

CUSTOMER TS_DAT_MED NG_BIG 2-16

PART TS_DAT_MED NG_BIG 2-16

SUPPLIER TS_DAT_MED NG_BIG 2-16

NATION TS_LIT NG_LIT 1

REGION TS_LIT NG_LIT 1
DB2 UDB EEE High Availability using HACMP 145

DP01 symbol, for instance to node05, this means that the DB2 EEE
processes used to manage these four database partitions are running on
node05.

Figure 21. Symbols Used in HACMP

In Figure 22, we show the test machine in normal usage with four database
partitions on each SP node. For example, node01 has database partitions 1
to 4, node05 the next four and so on.

Each SP node uses two volume groups for DB2 EEE shown as VGnxx. For
example, node01 uses volume groups vg_n01_01 and vg_n01_02 (shown as
VGn01).

In these volume groups, there are four DMS raw device containers for data
table spaces and four more for indexes per database partition, except for
partition 1 which is reserved for database catalogs and very small tables. The
symbol DMS01 corresponds to all the DMS table spaces of database partition
1–in this case 3 x (4+4)= 24 containers or raw logical volumes.

There are two file systems used as SMS containers for temporary table
spaces and one file system used as SMS container for logs per database
partition, shown as SMSxx, giving a total of 12 on each SP node.

The database instance owner’s home directory file system is shown as IHD in
a dotted rectangle when it is mounted remotely through NFS.

Current active IP network interfaces are shown also.

4 Database Partitions on node01

File systems for Temp. and Logs SMS table spaces on node01

Logical volumes for Data DMS table spaces on node01

Volume Groups on node01

File system for DB2 EEE instance home directory

NFS mount pointing to DB2 EEE instance home directory

File system for ADSM

ent1
switch
ent2

Configured IP network interfaces:

SMS01

DMS01

ADSM

IHD

DP01

IHD

VGn01

etsvc01
sw01
etsby01
146 Managing VLDB Using DB2 UDB EEE

Figure 22. Configuration before HACMP Takeover

Now let’s say that SP node node01 loses power:

 • Since node01 holds the instance owner’s home directory,all the HACMP
clusters are affected.

 • After some seconds (depending on the type of networks involved), the
node01 failure is detected in cluster01_05, and node node05 initiates the
takeover procedure.

 • The ent2 adapter on node node05 is configured to the etsvc01 address to
replace the external TCP/IP services of node01.

 • In the switch interface of node05, an alias for sw01 will be configured to
replace the switch TCP/IP services of node01.

etsvc01
sw01
etsby01

node01

Cluster
01_05

DP01
VGn01

VGn05

node05

SMS05

DMS05
ADSM

IHD

DP05

etsvc05
sw05

etsby05

Cluster
09_13

VGn09

VGn13

sw09

SMS01

DMS01
ADSM

IHD

node09

SMS09

DMS09
IHD

DP09

SMS13

DMS13
IHD

DP13

node13

sw13
DB2 UDB EEE High Availability using HACMP 147

 • The VGn01 volume groups are varied on by node05 to gain access to the
disks used by the database partitions (1-4) which were running on
node01.

 • A file system check (fscs) of all the SMS01 file systems is performed, and
these file systems are mounted.

 • The instance owner’s home directory is mounted locally by HACMP in
node05. Since this SP node uses the alias sw01 for the switch, the SP
nodes in the HACMP cluster cluster09_13 regain access through NFS to
IHD.

 • We use an HACMP start script to start DB2 UDB EEE database partitions
on node05. Once this script completes, we have access to all the
database partitions in the DB2 UDB EEE database.

If we compare the configuration before and after HACMP takeover, we notice
that node05 experiences some performance degradation because it has eight
database partitions to manage.

The configuration after HACMP takeover is shown in Figure 23.
148 Managing VLDB Using DB2 UDB EEE

Figure 23. Configuration after HACMP Takeover of node1 by node5

When node01 is booted successfully, it will use the boot address swboot1 to
avoid any conflict with node node05, because node05 is still using the
address of node01.

When we choose (either manually or automatically) to return to normal
operation, the database partitions designated by DP01 are stopped by
another script that we wrote to stop DB2 EEE database partitions (see 4.11.2,
“Start and Stop DB2 UDB EEE” on page 211).

Then, on node05, HACMP does the following:

 • The SMS01, IHD and ADSM file systems are unmounted.

 • The VGn01 volume groups are varied off.

 • The adapter ent2 is reconfigured to use etsby05, and switch alias sw01 is
removed.

etsvc01
swboot01
etsby01

node01

Cluster
01_05

VGn01

VGn05

node05

SMS05

DMS05
ADSM

IHD

DP05

etsvc05
sw05, sw01

etsvc05

node09

Cluster
09_13

SMS09

DMS09
IHD

DP09
VGn09

VGn13

node13

SMS13

DMS13
IHD

DP13

Out of Service

SMS01

DMS01
DP01

sw13sw09
DB2 UDB EEE High Availability using HACMP 149

Then, on node01:

 • An alias sw01 is configured for the switch.

 • The adapter ent1 is changed to use etsvc01.

 • The VGn01 volume groups are varied on.

 • The SMS01, ADSM and IHD file systems are mounted.

 • The IHD is made available through NFS from node01 to the other SP
nodes.

Now we are once more in the normal operating condition.

Figure 24 shows the configuration after a HACMP takeover of node09 by
node13:

Figure 24. Configuration after HACMP Takeover of node9 by node13

IHD

etsvc01
sw01
etsby01

Cluster
01_05

VGn01

VGn05

node05
etsvc05

sw05
etsby05

node09

Cluster
09_13

VGn09

VGn13

node13

Out of Service

swboot09

node01

DP01

SMS01
DMS01
ADSM

IHD

SMS13

DMS13
DP13

SMS09

DMS09
DP09

IHD

SMS05
DMS05
ADSM

IHD

DP05

sw13, sw09
150 Managing VLDB Using DB2 UDB EEE

4.4 HACMP Considerations for DB2 UDB EEE

This section provides guidelines on configuring a HACMP environment
involving DB2 UDB EEE on the RS/6000 SP.

4.4.1 SP Ethernet Considerations
According to HACMP guidelines, the SP Ethernet should not be used for IP
address takeover since this could conflict with the node information stored in
the SDR (System Data Repository) on the Control Workstation.

4.4.1.1 Non-IP Network Considerations
Even though it would be possible to use the SP Ethernet and the HPS as the
only network for HACMP heartbeat, it is not recommended to do so. In case
of TCP/IP failure on one node, several nodes may be trying to acquire the
same shared resources at the same time because of TCP/IP failure. Most
customers will probably want to protect themselves against this type of
problem, making the use of a non-IP link for heartbeat a necessity. This link
can either be a serial RS-232 connection between nodes, requiring multiport
serial adapters in each node, or a target mode SCSI connection between
nodes. Actually, it is highly recommended to use two networks for heartbeat,
one being a non-IP network, the other being the SP Ethernet. When the
Estart command is issued, which happens each time the HPS needs to be
restarted on one of the nodes and in particular for each HACMP takeover and
node reintegration, the switch becomes momentarily unavailable. For
HACMP, if the SP Ethernet was not included in the configuration, this would
mean that there would be no TCP/IP link available during Estart processing.
To avoid possible problems caused by this, the SP Ethernet is included in the
HACMP configuration as backup heartbeat network, which guarantees an
TCP/IP communication between nodes at all times.

4.4.2 DB2 UDB EEE Executables
DB2 UDB EEE executables are located in /usr/lpp/db2_05_00. There are two
ways to make these files available on all nodes:

 • Install DB2 UDB EEE on each SP node

 • Export DB2 UDB EEE executables using NFS or AFS

It is recommended by the HACMP manuals to install the DB2 code on SP
nodes because:

 • The code may have keys to activate the software related to the processor
of the node.
DB2 UDB EEE High Availability using HACMP 151

 • If an upgrade of the DB2 code is related to a AIX upgrade, you will have to
do this node by node.

In our example configuration, we installed DB2 EEE on each node.

If DB2 is installed on one node and NFS is used to make the code available to
the other nodes, this can make software maintenance easier since DB2 UDB
EEE upgrades can be done on one node only. In this case, for availability
reasons, the exported file system should be placed on external shared disk
hardware. Having binaries accessed through NFS does not impact
performance in most cases (except for the first access to the executables).

In both cases, if the instance owner’s home directory is not available, it is not
possible to access the DB2 executables since access to these files goes
through soft links in the instance owner's home directory.

4.4.3 Cluster Size
HACMP supports cluster sizes ranging from two to eight nodes. If you are
sizing the cluster for use with DB2 UDB EEE, then at the hardware,
configuration, and maintenance level, there is probably no significant
advantage in using small versus large clusters. Since it is possible to have
multiple independent pairings of resource groups within one cluster, it might
even be more convenient to manage large eight-node clusters on the
RISC/6000 SP. There are several drawbacks associated with two-node
clusters:

 • If both nodes fail, there is no backup node. However, the probability of this
happening is minimal.

 • In a mutual takeover configuration, when one node fails, the surviving
node must support twice its usual load, possibly leading to performance
degradation.

 • Since two-node clusters are usually associated with cascading resources,
database operations are interrupted twice: first when a node fails and a
second time when it reintegrates into the cluster and the surviving node
needs to release the failing node's resources.

Large HACMP clusters can be configured to eliminate these problems, as will
be seen in the next section. But, when using large HACMP clusters, extreme
care must be exercised when configuring the resources under the control of
HACMP. For example, if you have a large amount of disk in each node,
HACMP takeover after the failure of a node involves a resync of all the disks,
and recovery time may become unacceptably long.
152 Managing VLDB Using DB2 UDB EEE

4.4.4 Standby Nodes or Mutual Takeover
The question of using standby nodes versus mutual takeover is linked to the
previous section about cluster size. In small clusters, it is usually too
expensive to waste up to 50 percent of the computing resources by
configuring standby nodes. In this case, it is more sensible to implement
mutual takeover with cascading resources. For large clusters, however, it can
be advantageous to use rotating resources, allowing for one standby node. In
this case, it is possible to avoid the problem of degraded performance and
double database operation interruption associated with two-node clusters.

For these reasons, we should consider two types of HACMP configurations
for DB2 UDB EEE. For smaller clusters, consider two-node clusters in mutual
takeover setups with cascading resources. For larger clusters, consider four-
to eight-node clusters with one standby node and rotating resources. The last
issue is how many DB2 UDB EEE database partitions should be configured
per RISC/6000 SP node.

4.4.5 DB2 UDB EEE Database Partitions per SP Node
The DB2 UDB V5 Administration Guide, S10J-8157, on page 865, provides
several examples of DB2 UDB EEE environments involving HACMP. From an
HACMP perspective, implementations using two or more database partitions
per SP node allow you to minimize the performance degradations normally
associated with mutual takeover configurations.

If you have four DB2 UDB EEE database partitions per SP node, when a SP
node fails, two database partitions could be restarted on two different SP
nodes, leading to a 50 percent load increase on each takeover node, instead
of 100 percent in a setup with one database partition per SP node.

Another point to consider is whether DB2 UDB EEE databases are well suited
to having two or more database partitions per SP node. It is recommended to
configure 1 database partition per two CPUs in an SMP SP node. So, in our
example using eight CPU high nodes, we have configured four database
partitions.

The catalog partition is accessed more frequently than the other database
partitions, which can lead to performance problems in some environments.
For this reason, consider keeping the catalog partition free of user tables.

4.4.6 Instance Home Directory Considerations
The management of the instance home directory can cause problems when
configuring HACMP with DB2 EEE. In order to have access to the DB2
DB2 UDB EEE High Availability using HACMP 153

commands, you need access to the instance home directory. Each time that
one node in a cluster does takeover of the instance home directory, all the
DB2 database partitions will wait to execute DB2 commands until the
instance home directory is made available through NFS from the takeover
node. This means that any applications using data from these database
partitions will be stopped during the HACMP takeover.

Also, when the takeover node gains access to the volume group where the
instance home directory resides, HACMP must destroy the old NFS mount
pointing to the instance home directory and replace it with a local mount. To
be able to perform the NFS unmount, the database partitions running on the
takeover node must be stopped.

4.4.6.1 A Very Important Tip
There is a way to simplify the management of the instance home directory.
The key is make all the nodes equal and always mount the instance home
directory across NFS. You may see some performance degradation because
the database partitions on the SP node that holds the instance home
directory will use NFS to access this directory across the switch, when really
it is locally available. The gain is in making the whole system more available if
an SP node fails.

Here is an overview of the steps:

 • Make a file system with a name different from instance home directory in a
shared volume group. For example: /db2home.

 • Then, if you mount /db2home across the switch as sw01:/home/db2inst1
(in our example), any database partition will access /db2home using NFS.

 • Now if you need mount or umount /db2home as part of a takeover,
HACMP does not need to stop any database partitions. The database
partitions will wait for the instance home directory to be made available
through NFS.

The scripts in “NFS-Mounting /home/db2inst1 in cluster_09_13” on page 198
are needed on each node to mount and umount sw01:/home/db2inst1 after
HACMP has started.

Here is what happens when a takeover occurs:

 • As soon as /db2home is mounted as a local file system on the takeover
node, it is NFS exported.

 • The sw01 network interface is made available.

 • The access to sw01:/home/db2inst1 is available.
154 Managing VLDB Using DB2 UDB EEE

 • The database partitions which have been migrated to the takeover node
are started.

A minor change to the HACMP script, cl_activate_nfs, is required to make this
work. Copy this script to another directory and modify the line:

mount -o "$OPTIONS" $HOST:$FS $FS

to allow the mount of a different name. Then use the new code in scripts in
“NFS-Mounting /home/db2inst1 in cluster_09_13” on page 198.

We will detail the configuration steps to set up an HACMP system where the
SP node which holds the instance home directory mounts this file system
locally (not using NFS).

4.4.7 Considerations for Our Example
Due the amount of disk involved in our example, we chose a configuration
with two clusters of two 8-way SMP SP nodes using mutual takeover in each
cluster. We did this in order to have the shortest disk resync time during a
takeover.

We chose four database partitions per SP node (two CPUs per database
partition) to allow a good balance between I/O intensive operations
(backup/restore) and CPU-bound operations.
DB2 UDB EEE High Availability using HACMP 155

Figure 25. Two HACMP Clusters with Two Nodes Each

4.4.8 Effect of Switch Restart on DB2 UDB EEE
In an HACMP configuration, the Estart switch initialization command needs to
be issued for each node takeover and each cluster reintegration. When Estart
is issued, NFS becomes briefly unavailable, since our test configuration
mounts NFS file systems over the switch. Running DB2 UDB EEE
transactions are delayed and resumed after Estart has completed.
Connections to databases are not lost.

4.4.9 DB2 UDB EEE Behavior in Case of Node Failure
This section gives some information on DB2 UDB EEE behavior when one of
the DB2 UDB EEE partitions fails. This corresponds to the case where
HACMP is not involved and can serve as a reference for the minimum level of
disruption one should aim at when implementing HACMP, as seen from a
DB2 UDB EEE viewpoint. In “Takeover of the DB2 Instance Owner’s Home
Directory” on page 205, we will compare this best-case behavior to the actual
behavior observed in the test configuration.

8 CPU High Node

node09

8 CPU High Node

node13

8 CPU High Node

node01

8 CPU High Node

node05

Shared
Disk

Database Partition 1

Database Partition 2

Database Partition 3

Database Partition 4

Database Partition 5

Database Partition 6

Database Partition 7

Database Partition 8

Database Partition 9

Database Partition 10

Database Partition 11

Database Partition 12

Database Partition 13

Database Partition 14

Database Partition 15

Database Partition 16

Cluster
01_05

Cluster
09_13
156 Managing VLDB Using DB2 UDB EEE

 • Coordinator Partition Failure

When the coordinator partition for a transaction fails, the transaction
needs to be restarted, and connection to the database is lost. When the
partition becomes available again, the transaction is rolled back.
Processing can resume after recovery has occurred, including database
roll back and roll forward.

 • Database Partition Failure

Queries or updates will hang forever until the missing database partition is
restarted and initiates recovery. Then, the user receives a SQL1229 error
message (transaction rolled back because of a system failure), and the
transaction is rolled back. Refer to “Takeover of the DB2 Instance Owner’s
Home Directory” on page 205, for more information about the SQL1229
error message.

 • Database Partition Not Used in Transaction

If a partition fails but it is not used in a running transaction, the transaction
completes undisturbed. This is the case, for instance, if a transaction
accesses a nodegroup that doesn't include all database partitions, and
one of the non-used database partitions becomes unavailable.

 • Catalog Partition Failure

Any running transactions will receive the SQL1229 (see above) error
message when the catalog partition is restarted and initiates recovery.
While the catalog partition is down:

 • System Catalog tables cannot be accessed.

 • The redistribute command cannot be run.

 • Other database partitions cannot be restored (because the restore
command needs a connection to the catalog partition).

 • Access to static SQL packages is not possible.

 • Issuing DDL (Data Definition Language) statements is not possible.
Databases cannot be rolled forward.

 • New connection attempts will fail and return an SQL1229 error
message.

This clearly shows how critical it is to place a special importance on the
catalog partition node when implementing HACMP for DB2 UDB EEE.

With no catalog partition, very little if anything can be done with DB2 UDB
EEE. The connect reset command will time-out with SQL1475 and system
error -25567 (connect reset successful but error occurred during
termination). As far as existing connections to databases are concerned,
DB2 UDB EEE High Availability using HACMP 157

they will be lost after MAX_CONNRETRIES times CONN_ELAPSE
number of seconds, which is 50 seconds by default. CONN_ELAPSE and
MAX_CONNRETRIES can be modified through the DB2 update database
manager configuration command.

4.5 Prerequisite Tasks for Installation of HACMP with DB2 UDB EEE

A number of preparation steps are required before installing HACMP. They
include creating and modifying shared volume groups and file systems for
HACMP and installing DB2 UDB EEE, among other tasks.

4.5.1 Creating ttys for Serial Null Modem Lines
This step is required if you are using serial lines to carry the HACMP
heartbeat. For clusters of two nodes, you need only one tty defined on each
node. For larger clusters, you must connect and define enough serial lines to
carry the heartbeat between all the nodes of the cluster.

Run smitty maktty, and make a tty without login on the port where you
connect the null modem cable on each node, as shown in the following
screen:

 Add a TTY

Type or select values in entry fields.
Press Enter AFTER making all desired changes.
[TOP] [Entry Fields]
 TTY type tty
 TTY interface rs232
 Description Asynchronous Terminal
 Parent adapter sa1
* PORT number [s2] +
 Enable LOGIN disable +
 BAUD rate [9600] +
 PARITY [none] +
 BITS per character [8] +
 Number of STOP BITS [1] +
 TIME before advancing to next port setting [0] +#
 TERMINAL type [dumb]
 FLOW CONTROL to be used [xon] +
 OPEN DISCIPLINE to be used [dtropen] +
 STTY attributes for RUN time [hupcl,cread,brkint,icrn> +
 STTY attributes for LOGIN [hupcl,cread,echoe,cs8]
 LOGGER name []
 STATUS of device at BOOT time [available] +
 TRANSMIT buffer count [16] +#
[MORE...23]
F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do
158 Managing VLDB Using DB2 UDB EEE

Press PF4 against Port Number and select the port where the null cable is
connected. In our example, this is s2.

Or if your configuration is equal in all the nodes, do:

dsh mkdev -c tty -t tty -s rs232 -p sa1 -w s2

Replace sa1 by the name of the parent adapter and s2 by the port number of
your configuration. A tty will be created on each node.

We assume you have set the environment variable, WCOLL, to use dsh over all
the required nodes. Otherwise, use dsh -a to send the command to all the
nodes.

In our example tty1 was created on each node.

To test the lines use:

stty </dev/tty1

on the two nodes where the line is connected. When you enter the second
command you should see tty data from both commands.

4.5.2 Enabling Target Mode SCSI
We are not using this hardware in our example, but if you are using SCSI
disks in your cluster, you could use Target Mode SCSI as an alternative to
serial ports.

First, make sure the resistor blocks on the SCSI adapters have been
removed and the adapters have different SCSI IDs, as explained in
“Hardware Configuration” on page 140. Then, on each node, put the SCSI
adapter in the Defined state. The name of the SCSI adapter can be found by
typing the following command:

lsdev -Cc adapter | grep scsi

Assuming that this command returned scsi1, enter:

rmdev -l scsi1

This will put the adapter in the defined state. To enable target mode SCSI,
type smitty chgscsi. Select your adapter; then press Enter. The following
menu appears:
DB2 UDB EEE High Availability using HACMP 159

Change the Enable Target Mode Interface field to yes, and press Enter. The
next step is to make the adapter available:

cfgmgr

You should now see several files in the /dev directory—tmscsin.im for the
initiator or sending interfaces and tmscsin.tm for the target or receiving
interfaces, with n going from 0 to 6.

After completing the above steps on all nodes, the connection between two
nodes can be tested in the following way. As an example, on node09, we
would type:

cat < /dev/tmscsi0.tm

On node13, we can send data to node09 by typing:

cat /etc/hosts > /dev/tmscsi0.im

The contents of node13 's /etc/hosts file should be displayed on node09.

4.5.3 Creating Our Own File Collection
To simplify the process of changing TCP/IP-related files, we will update the
TCP/IP files in the Control Workstation and create a file collection that
updates the files in all the nodes using the supper program.

To do this, we create a new file collection called db2.admin. This collection
will update the files /etc/hosts, /etc/services and so on in all the nodes.

 Change / Show Characteristics of a SCSI Adapter

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

 [Entry Fields]
 SCSI Adapter scsi0
 Description SCSI I/O Cont>
 Status Available
 Location 00-03
 Adapter card SCSI ID [7] +#
 BATTERY backed adapter no +
 DMA bus memory LENGTH [0x202000] +
 Enable TARGET MODE interface yes +
 Target Mode interface enabled no
 PERCENTAGE of bus memory DMA area for target mode [50] +#
 Name of adapter code download file /etc/microcode/8d77.44>
 Apply change to DATABASE only no +
F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do
160 Managing VLDB Using DB2 UDB EEE

Execute the script install_db2_coll.ksh (See “Install the db2.admin File
Collection” on page 208) with the file db2_coll.list, from the Control
Workstation as follows:

install_db2_coll.ksh db2.admin ~/db2_coll.file

Then copy this script to each node or to a directory common to all nodes, and
run it on each node:

install_db2_coll.ksh db2.admin

To update the collection on a regular basis, add (or modify) in each node a
crontab entry periodically. To force propagation of changes from the Control
Workstation, do:

dsh -a /var/sysman/supper update db2.admin

4.5.4 Creating /.rhosts Files on all Nodes
On all nodes, create or add the following lines to the /.rhosts file as user root
using your favorite text editor:

hnode01 root
hnode05 root
hnode09 root
hnode13 root
switch01 root
switch05 root
switch09 root
switch13 root
sw01 root
sw05 root
sw09 root
sw13 root
swboot01 root
swboot05 root
swboot09 root
swboot13 root

This /.rhosts file is required by HACMP for cluster startup, and it is also used
by the RS/6000 SP. Make sure that the permissions on the .rhosts file are set
to the correct permissions by using the following command:

chmod 600 /.rhosts

If you have rsh permission problems, you can optionally add a line: + root.
This will suppress security on remote commands.

If you add this line and you still have problems synchronizing your cluster,
remove the line and check the /.rhosts file, the name server definitions and
the Kerberos definitions for the TCP/IP network interface names involved in
DB2 UDB EEE High Availability using HACMP 161

the cluster. Both TCP/IP and Kerberos are queried by HACMP to find out if
you have permission to use rsh, which is used by the synchronization
process.

4.5.5 Updating the /etc/hosts File on All Nodes
Even if your environment has been set up to use a name server, it is
recommended to include all boot and service adapters in the /etc/hosts file on
all nodes to keep the cluster working in the event of the name server being
unavailable. For the tested system, we added the following lines to the
/etc/hosts in the Control Workstation (refer to Figure 20 on page 144 for an
overview of the network setup) and then we updated the file collection file,
db2.admin, on each node (see “Creating Our Own File Collection” on
page 160).

##
Network interface en0 setup
9.114.127.0 Network Netmask=255.255.255.192
#
9.114.127.61 sp-tp3cw.ppd.pok.ibm.com sp-tp3cw
9.114.127.1 tp3an01.ppd.pok.ibm.com hnode01
9.114.127.2 tp3an05.ppd.pok.ibm.com hnode05
9.114.127.3 tp3an09.ppd.pok.ibm.com hnode09
9.114.127.4 tp3an13.ppd.pok.ibm.com hnode13
##
Network Interface en1 service Ethernet addresses
9.114.127.64 Network Netmask=255.255.255.192
#
9.114.127.65 tp3an01b.ppd.pok.ibm.com etsvc01
9.114.127.66 tp3an05b.ppd.pok.ibm.com etsvc05

##
Network Interface en1 boot Ethernet addresses
9.114.127.64 Network Netmask=255.255.255.19
#
9.114.127.75 etboot01.ppd.pok.ibm.com etboot01
9.114.127.76 etboot05.ppd.pok.ibm.com etboot05

##
Network Interface en2 standby Ethernet addresses
192.168.127.64 Network Netmask=255.255.255.19
#
192.168.127.65 etsby01.ppd.pok.ibm.com etsby01
192.168.127.66 etsby05.ppd.pok.ibm.com etsby05

##
Network Interface css0 setup - SDR Switch Addresses
9.114.127.192 Network Netmask=255.255.255.192
#
9.114.127.193 tp3sn01.ppd.pok.ibm.com switch01
9.114.127.194 tp3sn05.ppd.pok.ibm.com switch05
162 Managing VLDB Using DB2 UDB EEE

9.114.127.195 tp3sn09.ppd.pok.ibm.com switch09
9.114.127.196 tp3sn13.ppd.pok.ibm.com switch13
##
Network Interface css0 setup - Service Switch Addresses
9.114.127.192 Network Netmask=255.255.255.192
#
9.114.127.203 tp3sn01s.ppd.pok.ibm.com sw01
9.114.127.204 tp3sn05s.ppd.pok.ibm.com sw05
9.114.127.205 tp3sn09s.ppd.pok.ibm.com sw09
9.114.127.206 tp3sn13s.ppd.pok.ibm.com sw13
###
Network Interface css0 setup - Boot Switch Addresses
9.114.127.192 Network Netmask=255.255.255.192
#
9.114.127.213 tp3sn01b.ppd.pok.ibm.com swboot01
9.114.127.214 tp3sn05b.ppd.pok.ibm.com swboot05
9.114.127.215 tp3sn09b.ppd.pok.ibm.com swboot09
9.114.127.216 tp3sn13b.ppd.pok.ibm.com swboot13

We add the second alias in order to clarify the function of each IP address,
and we use those aliases throughout this chapter.

4.5.6 TCP/IP Definitions
Some of the adapters involved were configured during SP installation (for
example: ccs0, en0, en1, tr0, tr1, and so on). Because of some limitations in
the PSSP programs, some adapters need to be configured manually.

In this case, we are using an additional Ethernet adapter en2 and we must
configure it manually. The best way to do this is by using the script that
performs the customize-installation stage, namely /tftpboot/script.cust. In this
way, if the node is reinstalled, you will preserve your configuration.

For the additional en2 adapter:

First setup cable type $CABLETYPE to bnc, dix or tp
$ADAPTER= ent2 $INTERFACE= en2
chdev -l $INTERFACE -a state=detach > /dev/null 2>&1
rmdev -l $ADAPTER > /dev/null 2>&1
chdev -l $ADAPTER -a bnc_select=$CABLETYPE > /dev/null 2>&1
mkdev -l $ADAPTER > /dev/null 2>&1
Now setup interface
chdev -l $INTERFACE -a netaddr=$IPADDRESS -a netmask=$SUBNETMASK \
-a state=up
where $SUBNETMASK is the network mask
and $IPADDRESS the ip address.
update ODM
chdev -l $INTERFACE -a netaddr=$IPADDRESS

You can run smitty mktcpip to do the configuration manually.
DB2 UDB EEE High Availability using HACMP 163

Because smitty mktcpip changes the hostname to the name of the network
interface, after you configure en2, use the hostname command to restore the
original hostname.

hostname original_host_name

We must do this process for adapter ent2 and interface en2 on nodes node01
and node05 using the standby addresses.

Additionally, HACMP expects that the service adapters will be configured
before HACMP starts using its boot address. That means that if you are
adding HACMP to a running DB2 EEE installation, you must change the SDR
configuration or customization script, to set up boot address and reconfigure
the nodes. If you do this manually and the node is reinstalled or recustomized
by PSSP software, then the boot configuration will be lost.

4.5.7 Creating Aliases for the Switch
Run the following command on each node to set up service and boot
addresses for the switch:

ifconfig css0 inet ipaddress netmask 255.255.255.192 alias up

where ipaddress is the IP address to be added as an alias.

For example, on node01, we ran:

ifconfig css0 inet 9.114.127.203 netmask 255.255.255.192 alias up
ifconfig css0 inet 9.114.127.213 netmask 255.255.255.192 alias up

This defines a switch service and boot address. It is not necessary define a
standby address because we are using aliases. Due to the absence of
standby addresses, we do not use a different subnet for switch addresses.

Never put the normal SDR switch address under HACMP control because
you will run in conflicts with the PSSP software.

The alias definitions will be lost on reboot. They are only necessary before
synchronization, after which time HACMP takes care of the aliases.

4.5.8 Disk Logical Name Definition
First, we use script in “Create Disk Devices” on page 218 to assign disk
logical names to our SSA disks.

Because the same script will run on each node, the disk names will be the
same on each node. This is very important because it is very easy to make
164 Managing VLDB Using DB2 UDB EEE

mistakes if you use the same disk name in another node pointing to a
different physical disk.

You should choose the logical name of a disk by using the name of adapter,
drawer and position in the drawer. This information will be needed to match
the disks to volume groups and make mirroring easier.

In a production environment, you should assign names related to the physical
position of the disks in the drawer and adapter. In this way, you could easily
find the disk when a failure requires physical inspection of disk. This is
important because there are usually many disks in a typical VLDB
configuration.

4.5.9 Creating Shared Volume Groups
Each node holds shared volume groups named vg_nii_yy, where ii is the slot
number and yy the sequential number of the volume group in the node. For
instance, on node01, to create and activate an eight-disk volume group, you
could use the command, as root:

mkvg -f -y vg_n01_01 -n hdisk2 hdisk3 hdisk4 hdisk5 hdisk6 hdisk7 \
hdisk8 hdisk9

varyonvg vg1_n01_01

The -n option means that the volume group will not be automatically activated
at system restart.

If you are planning a HACMP cluster of more than two nodes, because a
volume group can be activated by only one SP node at the same time, you
must define enough volume groups in each node to allow the volume groups
to be varied on in the takeover node. For example, if you have four database
partitions in each SP node and you plan to use two SP nodes for takeover
relocating two database partitions to one node and two to the other, you will
need at least two volume groups on this node. If you define a volume group
for each database partition, this will allow you to choose a different takeover
node for each database partition.

Additionally, you always should have more than three physical disk in each
volume group in order to allow quorum in case of failure of one disk. The
maximum permitted number of disks in a volume group is 32. In our example,
we chose to have two volume groups of eight disks in each SP node.
DB2 UDB EEE High Availability using HACMP 165

Figure 26. Shared Volume Group and File System Definition

Similar commands would be used on the remaining nodes to create the
corresponding volume groups. Refer to Figure 26 for a description of the
volume groups on the different nodes.

When configuring HACMP with a very large database, there are many
considerations related to disks, volume groups, logical volumes, and so on to
keep the HACMP administration manageable.

4.5.9.1 Example of Definition of Volume Groups
An example script can be found in Chapter 4.11.3.3, “Create Volume Groups
and Logical Volumes” on page 223.

It is important to choose carefully which disks you will use in each volume
group. If you using disk mirroring, the second copy should be in a different
drawer from the first copy, so that a power failure in one drawer would only
affect one of the two copies.

node01 node05

vg_n01_01 /home/db2inst1
/adsmserv

vg_n01_02

vg_n05_01

vg_n05_02

node09 node13

vg_n09_01

vg_n09_02

vg_n13_01

vg_n13_02
166 Managing VLDB Using DB2 UDB EEE

The set of disks that you choose for the volume group must be connected to a
SSA loop to which the owner node and all the involved takeover nodes of this
node have access. If you have more than one loop or adapter, you could split
the disks across the adapters to optimize the bandwidth of the adapters and
the SSA loop.

You should follow a naming convention which results in unique names. We
chose to include the node number and a sequential number. Future HACMP
requirements could force to you to import the volume group in another
takeover node, and to avoid name conflicts, the names must be different.

If your volume group becames corrupted, all the disks involved will be lost; so
consider using more volume groups in each node. Remember that mirroring
is not allowed between different volume groups.

Use a physical partition (PP) size at volume group (VG) creation compatible
with the biggest disk expected to be added to the VG in the future. An 8 MB
PP size will be fine for 4 GB disks but not for 9 GB disks. If you need to
change this value, you will have to destroy the VG. This task is time
consuming if you have to restore data to the volume group.

It very often useful to exclusively dedicate a DB2 EEE database partition to
manage the catalog tables and the very small tables. This removes some of
the workload from this database partition. In this case, the volume group
assigned to this database partition will be smaller.

4.5.9.2 Preserving the Volume Group Major Number for NFS
NFS requests retain the major device number of the volume group when a
takeover occurs. To be prepared for current and future NFS configurations, it
is a good idea to find the free major numbers on each node, using the
lvlstmajor command. Then assign to each volume group in the cluster a
different major number and force the major volume in the mkvg using the -V
option during creation.

mkvg -f -y v vg_n01_01 -s16 -V56 hdisk3

Major device number assignment is not provided by the script that we use to
make volume groups.

We use another script to deal with major number assignment (see
“Synchronize Volume Groups” on page 238). This script also deals with other
issues related to an installation already in operation when HACMP is
installed, such as NFS conflict definitions, mounted file systems, automount
on a shared file system, and DB2 permissions. The importvg in the takeover
node is made by this script, too.
DB2 UDB EEE High Availability using HACMP 167

HACMP comes now with a set of tools called C-SPOC (See the HACMP
Administration Guide, SC23-1941, Chapter 4). If you use these tools, you
could do volume group synchronization using smit cl_updatevg.hdr. These
tools prevent you from many common mistakes that happen during shared
volume group administration tasks.

4.5.10 Creation of Logical Volumes
It is strongly recommended to use a naming convention for logical volumes
that results in names that are unique and easy to locate. You could use a
combination of volume group name (because you already made this unique in
previous step), a logical volume sequential number, and the usage (Journaled
File System log, database log, temporary or data, and so on). We used the
naming convention shown in Table 3 on page 168:

Table 3. ogical Volumes and Their Usage

LV_name Usage DB partitions

lv_nyy_0z_log jfslog 1-16

lv_n01_01_101 catalog TS (raw DMS) 1

lv_n01_01_102 single NG table space 1

lv_nyy_0z_x03 UDB logfiles (jfs/SMS) 1-16

lv_nyy_0z_x04 UDB temp1 (jfs/SMS/2 drives) 1-16

lv_nyy_0z_x05 UDB temp2 (jfs/SMS/2 drives) 1-16

lv_nyy_0z_x06 UDB large data1 (raw/DMS) 2-16

lv_nyy_0z_x07 UDB large data2 (raw/DMS) 2-16

lv_nyy_0z_x08 UDB large index1 (raw/DMS) 2-16

lv_nyy_0z_x09 UDB large index2 (raw/DMS) 2-16

lv_nyy_0z_x10 UDB small data1 (raw/DMS) 2-16

lv_nyy_0z_x11 UDB small data2 (raw/DMS) 2-16

lv_nyy_0z_x12 UDB small index1 (raw/DMS) 2-16

lv_nyy_0z_x13 UDB small index2 (raw/DMS) 2-16

lv_nyy_0z_114 home/tp3an01 (jfs) 1
168 Managing VLDB Using DB2 UDB EEE

We used the script listed in “Create Volume Groups and Logical Volumes” on
page 223.

To assign the logical volumes, you must understand the logical design of the
database. The creation of logical volumes is very important to the
performance and availability of the database. It is often not easy to modify the
logical volume definitions once data has been loaded.

To create a logical volume manually, you could used smit mklv or the mklv
command directly:

where:
x=1 for partitions 5, 9, and 13
x=2 for partitions 2, 6, 10, and 14
x=3 for partitions 3, 7, 11, and 15
x=4 for partitions 4, 8, 12, and 16

and
yy= 2 digit node number

and
z=1 for partitions 1, 2, 5, 6, 9, 10, 13, 14
z=2 for partitions 3,4,7,8,11,12,15,16

LV_name Usage DB partitions
DB2 UDB EEE High Availability using HACMP 169

The disk I/O performance of your database will be affected by the position of
each logical volume on the disk. Remember that the minimal unit of backup
for a database is a table space, where each container points to a logical
volume.

We chose to use SMS table spaces for temporary and log table spaces. For
these table spaces, we create the logical volume first to ensure the desired
placement and name, and then we define a file system over it.

For data and indexes, we chose DMS table spaces. For these table spaces,
you only need to define the logical volumes to be used as raw containers.
Because the raw devices must be owned by the instance owner, and are lost
each time that HACMP activates the volume group, we set the type to udb to
allow easy identification of DMS raw devices. See “Start DB2 UDB EEE on
each resource” on page 211 for details on how to define DMS containers with
the type udb and set permissions before starting DB2.

If you want to use mirroring, set the number of copies to 2.

 Add a Logical Volume

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[TOP] [Entry Fields]
 Logical volume NAME [lv_n13_01_106]
* VOLUME GROUP name vg_n13_01
* Number of LOGICAL PARTITIONS [150] #
 PHYSICAL VOLUME names [] +
 Logical volume TYPE [udb]
 POSITION on physical volume middle +
 RANGE of physical volumes minimum +
 MAXIMUM NUMBER of PHYSICAL VOLUMES [] #
 to use for allocation
 Number of COPIES of each logical 2 +
 partition
 Mirror Write Consistency? yes +
 Allocate each logical partition copy yes +
 on a SEPARATE physical volume?
 RELOCATE the logical volume during yes +
 reorganization?
 Logical volume LABEL []
 MAXIMUM NUMBER of LOGICAL PARTITIONS [512]
[MORE...6]

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do
170 Managing VLDB Using DB2 UDB EEE

DB2 EEE will split the data of a table across the containers of the
corresponding table space and balance disk usage as long as the raw
devices are on different disks.

The log logical volume (LV) is created automatically the first time that you
create a file system. If you never create a file system, one easy way to create
a log LV is create one file system and drop it, and then rename the log LV
according your naming conventions. Another method is create a logical
volume with the correct type and name and format it with the logform
command.

If you already have many file systems, then the log LV will have already
created by AIX. In this case, rename the logical volume and after that edit the
/etc/filesystems file and change all the references to the old log logical
volume name to the new name.

4.5.11 Creating Shared File Systems
Once that logical volumes are defined we need to define a file system for
each DB2 instance and another for each SMS container or DMS file
container. Raw devices don’t need file systems. One additional file system
was required for ADSM configuration files.

We installed DB2 EEE on each node. If you choose to install the code on one
node and then use NFS to make the DB2 EEE code available to the other
nodes, you will need a shared file system for the DB2 code.

On all the nodes, we created file systems for logs and temporary table
spaces.

On node01, two additional shared file systems were defined: one to store the
instance owner's home directory and another for ADSM configuration files
(see Figure 26 on page 166). Shared file systems should not have disk
accounting activated.

4.5.11.1 Creating the /home/db2inst1 File System
The /home/db2inst1 file system is used on node01 to store the DB2 instance
owner’s home directory.

The Quick Beginnings Guide for DB2 UDB EEE, on Page 58 under "Prepare
for Installation," advises you to use an NFS-mounted file system. It is not
recommended to use AMD or Automounter because these utilities can cause
mounting or locking problems.
DB2 UDB EEE High Availability using HACMP 171

There are several methods of creating the file system, and shown below is
the command we used. On node01, this file system was created over the
logical volume previously defined, as root:

crfs -v jfs -d’lv_n05_01_103’ -m /home/db2inst1 -A no -p’rw’ -t no -a
frag=’4096’ -a nbpi=’4096’ -a ag=’8’

You should allocate at least 60 MB for /home/db2inst1.

Note that we specified that the file system should not be mounted
automatically at system restart (-A no) because we will do that using HACMP.
Since the file system will be NFS-mounted on the other nodes over the
switch, we need to export it on node01 using the smit mknfsexp command:

Alternatively, you could use the mknfsexp command:

/usr/etc/mknfsexp -d /home/db2inst1 -t rw -r sw05,sw09,sw13 -B

The main reason we NFS-mount this directory over the switch is not
performance, but availability, since IP takeover cannot be configured for the
SP Ethernet. As the number of nodes in the configuration increases, the
switch will also provide scalability.

On node05, make sure that the /home/db2inst1 directory entry exists. If it
doesn’t, create it using the command:

mkdir /home/db2inst1

If the /home/db2inst1 file system is not mounted, mount it first with the
command:

Add a Directory to Exports List

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

 [Entry Fields]
* PATHNAME of directory to export [/home/db2inst1]
* MODE to export directory read-only
 HOSTS & NETGROUPS allowed client access [sw05,sw09,sw13]
 Anonymous UID [-2]
 HOSTS allowed root access []
 HOSTNAME list. If exported read-mostly []
 Use SECURE option? no
* EXPORT directory now, system restart or both both
 PATHNAME of alternate Exports file []

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do
172 Managing VLDB Using DB2 UDB EEE

mount /home/db2inst1

Then, on the remaining nodes, create the home directory for DB2 and set the
correct permissions:

mkdir /home/db2inst1
chown db2inst1.dbadmin1 /home/db2inst1

This file system will be made available to the other nodes through NFS
across the switch for availability reasons. We will put DB2’s home directory
on node node01 in the volume group vg_n01_01 with the NFS mount under
the control of HACMP to allow file system takeover for node05.

The second cluster (node09 and node13) will have normal NFS mounts with
automatic mount. Either use mknfsmnt:

/usr/sbin/mknfsmnt -f /home/db2inst1 -d /home/db2inst1 -h sw01 -n -B -A
-t ’rw’ -w ’bg’ -H -Y -Z -X

or using SMIT:

Due the fact that we are not using AMD, the Control Workstation is not
involved in the DB2 home directory operation. This means also that it is not
necessary to install High Availability Control Workstation (HACWS) to protect
the control workstation against failure. Since we are not using HACWS, we
will attempt to become independent of the control workstation by eliminating
possible points of failure associated with it.

 Add a File System for Mounting

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[TOP] [Entry Fields]
* PATHNAME of mount point [/home/db2inst1] /
* PATHNAME of remote directory [/home/db2inst1]
* HOST where remote directory resides [sw01]
 Mount type NAME []
* Use SECURE mount option? no +
* MOUNT now, add entry to /etc/filesystems or both? both +
* /etc/filesystems entry will mount the directory yes +
 on system RESTART.
* MODE for this NFS file system read-write +
* ATTEMPT mount in foreground or background background +
 NUMBER of times to attempt mount [] #
 Buffer SIZE for read [] #
 Buffer SIZE for writes [] #
 NFS TIMEOUT. In tenths of a second [] #
F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do
DB2 UDB EEE High Availability using HACMP 173

4.5.11.2 Creating File Systems for Log Files and Temporary TS
The next step is to create file systems for:

 • Database log files

 • SMS directory containers for the temporary tablespaces

When defining these file systems, we need to select different names on each
node. Otherwise, it would not be possible to import the shared volume groups
between two nodes, a step required by HACMP. The naming convention we
used for the database log file systems is:

(database path)/(instance name)/NODE00(database partition number)

with database partition number ranging from 01 to 16. So, for partition 5, the
log files we be stored in:

/DB_LOG/db2inst1/NODE0005

To create this file system on node05 (since this SP node holds partition 6):

crfs -v jfs -d’lv_n05_01_103’ -m /DB_LOG/db2inst1/NODE0005 -A no -p’rw’
-t no -a frag=’4096’ -a nbpi=’4096’ -a ag=’8’

The remaining file systems should be created accordingly on node01,
node05, node09, and node13.

We follow a similar convention for temporary table space containers, using
names like:

/DB_TMP/db2inst1/NODE0005/T1

There are two containers per database partition, T1 and T2.

See the “Creating the Database, Nodegroups, Table Spaces and Tables” on
page 27 for more details about the commands used to create the DB2 objects
that use these file systems.

We used the script in “Create Volume Groups and Logical Volumes” on
page 223 to make all these file systems.

4.5.12 Enabling Disk Mirroring
Since the test configuration doesn't involve RAID disks, it is necessary to
protect ourselves against disk failures. You can do this by using mirroring at
the AIX logical volume level. When creating a logical volume, set the "number
of copies" to 2. For an example, see Chapter 4.5.10, “Creation of Logical
Volumes” on page 168. The following DB2 objects may be mirrored:

 • Catalog Tables
174 Managing VLDB Using DB2 UDB EEE

 • Log Files

 • Data

 • Index

To mirror a logical volume after creation, you can use the mklvcopy command.
As an example, to mirror the lv_n05_01_103 logical volume, at node05:

mklvcopy lv_n05_01_103 2

You must ensure that the two copies are on different physical disks and if
possible connected to different loops and power sources in order to avoid
single points of failure.

Note that, in the test configuration, the serial link adapters and controllers are
single points of failure. It would be possible to correct this by using multiple
adapters and 7133 units and by mirroring the logical volumes across two
adapters. In “Using AIX Error Notification” on page 191, we see that another
way to eliminate this single point of failure is through AIX error notification.

4.5.13 Renaming the Shared Logical Volumes
Since we are starting from an existing RISC/6000 SP environment where
logical volumes probably have default names, it is necessary to change
these. Each shared logical volume needs to have a unique name in the
cluster.

In our example, logical volume names on each node have names like
lv_nii_0z_yyy, where ii is the SP node number, z is the volume group number
in the node, and yyy is a sequential number.

In particular, it is necessary to rename each volume group’s log logical
volume since they probably have the same default loglv00 name, and you will

Quorum can be enabled or disabled. With quorum disabled, if a physical
volume is not available, the volume group cannot be varied on unless
varyonvg -f (force option) is used, leading to unpredictable results. On the
other hand, with quorum enabled, at least three disks are necessary in each
volume group to authorize varyon after one disk failed. This might not
always be feasible (as in the tested configuration). Moreover, since the
varyon command is under HACMP control, disk failures can go undetected.
HACMP guidelines are usually to disable quorum for non-concurrent access
volume groups.

Quorum Considerations
DB2 UDB EEE High Availability using HACMP 175

get a name conflict when you import the volume group in another SP node. If
you have any other default logical volume names in shared volumes groups,
you should also rename them too.

In our configuration, we have already created logical volume names which
conform to this rule in step Chapter 4.5.10, “Creation of Logical Volumes” on
page 168. As an example, the following command will rename a logical
volume to a new name:

chlv -n loglv_n01_01_01 loglv00

After changing the name of the log logical volume, make sure you change the
corresponding entries in the /etc/filesystems file. In particular, when you
rename a log logical volume, all the file system entries that use this log logical
volume must be corrected manually.

4.5.14 Varying Off Shared Volume Groups on All Nodes
To allow the volume group to be imported at the corresponding takeover
node, we need to take the volumes groups offline.

On node01, node05, node09, and node13, type:

varyoffvg vg_nxx_01
varyoffvg vg_nxx_02

This will deactivate the shared volume groups on all nodes.

4.5.15 Importing Shared Volume Groups
Since we have a pair of two-node clusters, we need to make node05's volume
groups known on node01, and vice versa. Then we must repeat this step on
the second cluster (node09 and node13).

When a node failure occurs, HACMP will varyonvg the volume group in the
takeover node. This only works if the takeover node has already processed a
importvg before the failure to update its volume group information about the
failing node.

In our configuration, we have two internal disks and 64 external disks in each
node. Assuming that vg_n13_01 includes hdisk21, as seen from node13, we
would type:

importvg -y vg_n13_01 hdisk21
varyonvg vg_n13_01

This will import, then activate vg_n13_01 on node13. On node09, we have to
specify:
176 Managing VLDB Using DB2 UDB EEE

importvg -y vg_n13_01 hdisk21
varyonvg vg_n13_01

Similar commands need to be run for the other volumes groups and must be
repeated on node01 and node05.

Also, these commands assume that the disk logical names are the same on
all the nodes. If you refer to the same physical disk by a different name on
each node, you might run an importvg which affects another volume group
(not the one you intended to importvg) and alter information about file
systems, logical volumes, and so on.

You must do an importvg for each volume group on each node that is set up to
do HACMP takeover. In our test, that means two volume groups on each
node.

We used the script listed in “Synchronize Volume Groups” on page 238 to
perform this task.

4.5.16 Changing Volume Groups on Destination Nodes
Shared volume groups should not be activated at system startup. To prevent
a given volume group from being activated on the service and the takeover
node at the same time, HACMP performs this operation.

To set activation at startup to off on node01:

chvg -a n -Q y vg_n01_01
chvg -a n -Q y vg_n01_02

Similarly, on node05:

chvg -a n -Q y vg_n05_01
chvg -a n -Q y vg_n05_02

These steps are repeated on node09 and node13 with the appropriate
parameters.

4.5.17 Varying Off Volume Groups on Destination Nodes
To free the volume groups for normal use, we must vary offline these volume
groups in the takeover nodes.

On node01:

varyoffvg vg_n05_01
varyoffvg vg_n05_02

Similarly, on node05:
DB2 UDB EEE High Availability using HACMP 177

varyoffvg vg_n01_01
varyoffvg vg_n01_02

These steps are repeated on node09 and node13 with the appropriate
parameters.

4.5.18 Creating a DB2 Instance and Databases
The DB2 UDB EEE instance is created on node01 using the DB2 db2icrt
command. An user different from the instance owner administrator and a new
group will be required if you plan to use unfenced user defined functions;
otherwise, the security of DB2 will be compromised.

Update /etc/services (on all SP nodes) with entries for the TCP/IP ports to be
used by DB2 EEE. You must allocate as many ports as the maximum number
of database partitions that would run per SP node after a takeover situation.
This is twice as many ports compared to normal usage. In our example, we
have four database partitions per SP node in normal usage. After an HACMP
takeover, we will have eight database partitions running on the takeover SP
node; so we need to configure eight ports.

Assuming that instance owner is db2inst1 and the user for unfenced UDF is
db2inst1uf, to create a DB2 instance, as root:

cd /usr/lpp/db2_05_00/instance
./db2icrt -u db2inst1uf db2inst1

You must run this only in one node, and then set up the db2nodes.cfg file. In
our example, db2nodes.cfg contains:

1 hnode01 0 sw01
2 hnode01 1 sw01
3 hnode01 2 sw01
4 hnode01 3 sw01
5 hnode05 0 sw05
6 hnode05 1 sw05
7 hnode05 2 sw05
8 hnode05 3 sw05
9 hnode09 0 sw09
10 hnode09 1 sw09
11 hnode09 2 sw09
12 hnode09 3 sw09
13 hnode13 0 sw13
14 hnode13 1 sw13
15 hnode13 2 sw13
16 hnode13 3 sw13

Normally, four ports are used, but in a takeover situation we will need eight,
four for the database partitions that normally run in the node and four more
for those that are taken over.
178 Managing VLDB Using DB2 UDB EEE

Databases can then be created with the DB2 create database command. For
example, as db2inst1:

db2 terminate
export DB2NODE=1
db2 -v "create db tpcd30 on /DB_LOG"

Note that DB2NODE is set to 1 to ensure that the System Catalog tables are
created at the first database partition. The db2 terminate makes sure that any
existing connections are released.

For more details on the DB2 commands used to create the DB2 database and
the objects inside it, see “Creating the Database, Nodegroups, Table Spaces
and Tables” on page 27.

4.5.19 HACMP Installation
HACMP must be installed locally on each node. More specifically, the
following components of the product were installed in our test machine:

Table 4. HACMP LPPs Installed

Using smit install_latest, enter the name of the directory or device where
the software resides, then select the products to be installed. You need

LPP Packages Description

cluster.adt.client 4.2.2.0 HACMP Client Include Files
4.2.2.0 HACMP Client Clstat Samples

To monitor cluster

cluster.base.client 4.2.2.0 HACMP Base Client Libraries
4.2.2.0 HACMP Base Client Runtime
4.2.2.0 HACMP Base Client Utilities

To allow access to
HACMP manager

cluster.base.server 4.2.2.0 HACMP Base Server Diags
4.2.2.0 HACMP Base Server Events
4.2.2.0 HACMP Base Server Runtime
4.2.2.0 HACMP Base Server Utilities

HACMP manager

cluster.cspoc 4.2.2.0 HACMP CSPOC commands
4.2.2.0 HACMP CSPOC dsh and perl
4.2.2.0 HACMP CSPOC Runtime commands

Smit tools to manage
shared volume
groups

cluster.man.en_US 4.2.2.0 HACMP Client Man Pages-U.S.English
4.2.2.0 HACMP CSPOC Man Pages-U.S.English
4.2.2.0 HACMP Server Man Pages-U.S.Englis

Manuals

cluster.msg.en_US 4.2.2.0 HACMP Client Messages-U.S.English
4.2.2.0 HACMP CSPOC Messages-U.S.English
4.2.2.0 HACMP Server Messages-U.S.English

Messages for
HACMP
DB2 UDB EEE High Availability using HACMP 179

around 10 MB of free space in the /usr file system, depending on the options
chosen. After the installation has completed, you should verify it using the
/usr/sbin/cluster/diag/clverify utility. Select the software option, then follow the
instructions. If all the nodes in the cluster have been installed from the same
image, the verification step needs to be performed only once.

4.6 HACMP Configuration of cluster_09_13

In this section, we follow an incremental approach to configuring the HACMP
clusters, starting from a relatively simple two-node mutual takeover
configuration to progressively include more resources in the failover scenario.
We have two HACMP clusters: one between node01 and node05 and one
between node09 and node13. The first cluster is the most complex since it
will be necessary to protect against NFS failure and also switch Eprimary
node failure. For this reason, we will start with the second cluster.

Each time it was necessary to change one of the HACMP scripts, we tried to
do it through the use of pre- and post-event scripts. This makes software
maintenance easier since these scripts are not affected by new releases of
HACMP or PTFs.

As a reminder, node09 and node13 share the same 7133 disk units. A serial
cable between the nodes provides a non-IP heartbeat network. The
configuration steps described below can be found with more detail in the
HACMP 4.1 for AIX Installation Guide, SC23-2769.

4.6.1 Defining the Cluster ID and Name
On node09, enter smit cm_config_cluster.add. In our example, we entered 10
in the Cluster ID field and cluster09_13 for the Cluster Name.

The cluster ID number must be unique in the connected networks in order to
allow distinguish each cluster in the SP2, and from others outside if there
more connected in the network.

4.6.2 Defining Nodes
On node09, enter smit cm_config_nodes.add. Set Node Names to node09,
node13.

4.6.3 Defining Adapters
For this initial cluster, we have four adapters per node: one switch adapter,
and one tty and SP Ethernet adapter for heartbeat communications and an
180 Managing VLDB Using DB2 UDB EEE

external Ethernet adapter. The reason why we define two networks for the
heartbeat is explained in 4.4.1, “SP Ethernet Considerations” on page 151.

On node09, type smit cm_config_adapters.add.

For node09's tty adapter, the fields for our example were:

Repeat this command for the definition of Adapter Label node13tty1 for
node13.

For node09's Ethernet adapter, en0:

Add an Adapter

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

 [Entry Fields]
* Adapter IP Label [node09tty1]
* Network Type [rs232] +
* Network Name [serial1] +
* Network Attribute serial +
* Adapter Function service +
 Adapter Identifier [/dev/tty1]
 Adapter Hardware Address []
 Node Name [node09] +

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do

 Add an Adapter

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

 [Entry Fields]
* Adapter IP Label [hnode09]
* Network Type [ether] +
* Network Name [ether1] +
* Network Attribute private +
* Adapter Function service +
 Adapter Identifier []
 Adapter Hardware Address []
 Node Name [node09] +

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do
DB2 UDB EEE High Availability using HACMP 181

Additionally, en0 is a private network because it is for cluster
communications. Repeat this command for definition of hnode13 Adapter
Label for node13.

For network name, we chose ether1 for en0 and ether2 for en1 and en2
because en1 and en2 are connected to the same physical network.

On nodes node01 and node05 only, we have a third Ethernet adapter; so this
next step is only for the cluster01_05 cluster:

Note that this network name is defined as ether2.

This step must be repeated for all the other adapters. In our example, for the
cluster01_05 cluster, these are:

 • etsvc01 as service adapter in node01

 • etsby01 as standby adapter in node01

 • etboot01 as boot adapter in node01

 • etsvc05 as service adapter in node05

 • etsby05 as standby adapter in node05

 • etboot05 as boot adapter in node05

For node09's switch adapter:

 Add an Adapter

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

 [Entry Fields]
* Adapter IP Label [etsby01]
* Network Type [ether] +
* Network Name [ether2] +
* Network Attribute public +
* Adapter Function standby +
 Adapter Identifier []
 Adapter Hardware Address []
 Node Name [node01] +

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do
182 Managing VLDB Using DB2 UDB EEE

Note that we don’t use the SDR switch address (switch3). Instead, HACMP
knows only the swxx address, which is defined on the same subnetwork as
the SDR switch addresses because there is no standby address for the
switch.

Note that the network name for the switch should contain the string HPS,
which will be required below when we enable IP address takeover. The
network type should always be private for the HPS.

This step must be repeated for the service switch address of node13.

Since we plan to use switch takeover, due to the NFS mounts across the
switch, do the same for the boot switch address of each node, using boot in
the adapter function field.

In the previous SMIT screens, the Adapter Identifier field has been left blank.
This is possible because HACMP looks up the address in the /etc/hosts file.

The remaining adapters can then be easily defined to HACMP in a way
similar to that shown above.

 Add an Adapter

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

 [Entry Fields]
* Adapter IP Label [sw09]
* Network Type [hps] +
* Network Name [HPS1] +
* Network Attribute private +
* Adapter Function service +
 Adapter Identifier []
 Adapter Hardware Address []
 Node Name [node09] +

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do

Don’t use the SDR switch address as the boot address for HACMP. This
might result in the nodes hanging with an error message.

SDR Switch Addresses
DB2 UDB EEE High Availability using HACMP 183

4.6.4 Synchronizing Cluster Definition on All Nodes
This step will copy the ODM definitions entered on node09 to node13.
Execute smit cm_cfg_top_menu, then select Synchronize Cluster Topology,
and press Enter.

If any errors are reported, synchronization is stopped.

If you have problems related to TCP/IP permissions, make sure that you have
applied the latest HACMP PTFs.

4.6.5 Configuring Resource Groups
We have one resource group on each node. These are called resource09 and
resource13 in cluster09_13. The resource groups contain the shared disks
and volume groups, file systems, network interfaces, and application servers
for each node. Since we are not using standby nodes, required for rotating
resource groups, nor the concurrent logical volume manager for concurrent
access resource groups, the groups must be cascading resource groups.

To define the resource09 resource group, type smit cm_add_grp, then enter the
following information:

This step must be repeated for the resource13 resource group:

 Add a Resource Group

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

 [Entry Fields]
* Resource Group Name [resource09]
* Node Relationship cascading +
* Participating Node Names [node09 node13] +

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do
184 Managing VLDB Using DB2 UDB EEE

Note that the first node in the node list specifies the high priority node,
sometimes called the owner, of the resources.

4.6.6 Configuring Application Servers
Since we want DB2 UDB EEE to be restarted when one of the nodes in the
cluster fails, we have to create start and stop scripts for DB2 UDB EEE. For
availability reasons, we put these scripts in the instance owner’s home
directory. Normally, each node has its own set of start/stop scripts. Because
of the large number of possibilities with 16 database partitions we wrote start
and stop scripts controlled by a configuration file (see “Start and Stop DB2
UDB EEE” on page 211).

They proved to work reliably in our configuration, but would probably have to
be modified in order to be integrated into other environments.

The configuration file used by the scripts allows you to choose the correct
network interfaces and ports for normal and takeover operation for each
resource and database partition. To handle post-takeover, remember that the
/etc/services files on each node must have twice as many ports available for
DB2 UDB EEE as are used in normal operation.

The scripts use the resource name and hostname to locate in the
configuration file the database partitions involved and will also reconfigure
DB2 EEE.

The core of the script is the db2start restart command. The syntax of this
command is:

db2start nodenum W restart hostname X netname Y port Z

 Add a Resource Group

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

 [Entry Fields]
* Resource Group Name [resource13]
* Node Relationship cascading +
* Participating Node Names [node13 node09] +

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do
DB2 UDB EEE High Availability using HACMP 185

This command causes database partition W (corresponding to the first
column of the db2nodes.cfg file) to be restarted on hostname X, using Y as
network interface, on logical port Z.

Note that Port Z is the logical port number used by DB2 EEE, not the name
that you include in /etc/services. Port 0 will be the first port number allocated
in /etc/services to be used by DB2 EEE, port 1 the second number and so on.

Typically, if you have four database partitions per SP node, you use ports 0 to
3, and during takeover, you need to map the ports of the failing partitions to
ports 4 to 7, because 0 to 3 are already in use by the partitions normally
owned by the takeover node.

The db2start command with the restart option will update the db2nodes.cfg
file and override the old values.

Before issuing db2stop, the stop script stops all DB2 UDB EEE applications
using the DB2 force application command. In a more tailored version, the
script could force only those applications that need access to the database
partitions we need to stop.

Since most applications need access to all database partitions, we felt that it
was not worth checking which database partitions the applications were
using.

This script highlights the benefits one would derive from using rotating
resources instead of cascading ones. With cascading resources, all
applications are forced out twice, the first time when a node fails, the second
time when it reintegrates the cluster. This may be unacceptable for some
critical environments.

To define the start and stop scripts to HACMP, we define two application
servers, called db2resource09 and db2resource13, on node09 and node13.
As an example, for db2resource09, enter smit claddserv.dialog:
186 Managing VLDB Using DB2 UDB EEE

where Start Script contains:

/home/db2inst1/start_db2.ksh \
db2inst1 \
resource09 \
/home/db2inst1/db2nodes.cfg.hacmp

and Stop Script contains:

/home/db2inst1/stop_db2.ksh \
db2inst1 \
resource09 \
/home/db2inst1/db2nodes.cfg.hacmp

The application server information is propagated automatically to node13.

We use the complete path name to avoid problems with the path used
internally by HACMP.

This step must be repeated for node01 and node05.

4.6.7 Configuring Resources for Resource Groups
Resources need now to be configured for the resource09 and resource13
resource groups. For example, for resource09, type smit cm_cfg_res.select,
select the group; then enter the following data:

 Add an Application Server

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

 [Entry Fields]
* Server Name [db2resource09]
* Start Script [/home/db2inst1/start_db2>
* Stop Script <ome/db2inst1/stop_db2]

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do

Make sure that the statd and lockd daemons are running on each node
before starting DB2 UDB EEE . Otherwise, SQL error 5005 will be returned.
These daemons are part of the nfs group that can be started with the
startsrc -g NFS command.

db2start problems
DB2 UDB EEE High Availability using HACMP 187

For each resource definition you must specify the service IP label, which is
sw01, sw05, sw09, or sw13 depending on the node.

For node01 and node05, we also have service adapters etsvc01 and etsrc05.
Specify sw01 etsvc01 in resource01 definition for Service IP Label and sw05
etsvc05 in resource05. Note that pressing F4 does not allow you to choose
this value. You must type this value.

For file system definition, “Importing Shared Volume Groups” on page 176
must be done before this step; otherwise F4 will not generate a list of options.

Press F4 in the entry field for Filesystems, and you obtain the list of file
systems defined in the shared volume groups. Choose the file systems
needed for the corresponding resource under normal operating conditions;
HACMP will take care of takeover situations.

 Configure Resources for a Resource Group

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[TOP] [Entry Fields]
 Resource Group Name resource09
 Node Relationship cascading
 Participating Node Names node09 node13

 Service IP label [sw09] +
 HTY Service Label []
 Filesystems [/DB_LOG/db2inst1/NODE000] +
 Filesystems Consistency Check fsck +
 Filesystems Recovery Method sequential +
 Filesystems to Export [] +
 Filesystems to NFS mount [] +
 Volume Groups [vg_n09_01 vg_n09_02] +
 Concurrent Volume groups [] +
 Raw Disk PVIDs [] +
Application Servers [db2resource09] +

 Miscellaneous Data []

 Inactive Takeover Activated false +
 9333 Disk Fencing Activated false +
 SSA Disk Fencing Activated false +
 Filesystems mounted before IP configured false +
[BOTTOM]

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do
188 Managing VLDB Using DB2 UDB EEE

In our example, we selected the file systems used by the database log files
and temporary table spaces on each node. On node01 only, we also selected
/home/db2inst1 and /adsmserv.

Note that the Volume Groups field must be specified to allow the raw devices
used for the DMS tablespaces to be accessed after takeover. The Raw Disk
PVIDs field can be left blank.

In a two-cluster configuration like our example, HACMP is unable to manage
the NFS-exported file systems as required. Leave Filesystems to Export
blank. This function is covered in “Configuring NFS Access to
/home/db2inst1” on page 199.

If you have only one cluster, you could specify the directories to be exported
using NFS.

You must include, in the resource01 on node01, the directories
/home/db2inst1 and /adsmserv in Filesystems to NFS mount. This allows
HACMP to automatically mount these file systems through NFS in the
takeover of node05 during normal operation and replace this NFS mount by a
direct mount during node01 takeover by node05.

Finally, in the field Application Servers, use F4 to generate a list, and select
all the application servers related to this resource.

This step must also be completed for resource13, changing the resources to
those appropriate for that resource group.

4.6.8 Synchronizing Node Environment
Propagate the above information to node13 by executing smit
cm_cfg_res_menu and selecting the Synchronize Cluster Resources option.

4.6.9 Verifying Cluster Configuration
To verify the cluster configuration, run the cluster option of the
/usr/sbin/cluster/diag/clverify utility on node09.

4.6.10 Configuring Client Nodes
The clinfo (cluster.client) program is required in order to update the Address
Resolution Protocol (ARP) caches after IP address takeover. It is also needed
to use the clstat cluster status monitoring program. Clinfo uses a
configuration file located in /usr/sbin/cluster/etc/clhosts. Edit this file,
comment out the line starting with 127.0.0.1, and add the following lines:
DB2 UDB EEE High Availability using HACMP 189

sw01
sw05
sw09
sw13
etsvc01
etsvc05

If we had clients, we would add their names to the PING_CLIENT_LIST variable
in the /usr/sbin/cluster/etc/clinfo.rc file. You may want to include any service
addresses in your system, such as Ethernet addresses.

In order for HACMP to work properly, add /usr/sbin/cluster/utilities and
/usr/sbin/cluster/events/utils to the PATH variable in the /.kshrc file on the
Control Workstation. This assumes that the /.kshrc file is propagated to the
SP nodes through the file collection mechanism, as is usually the case if file
collections are enabled. If they are not, modify this procedure to fit your
environment.

4.6.11 Starting Cluster Services
On node09 and node13, type smit clstart.dialog:

Start only one node at a time, and let each node complete its startup before
starting the next one. The startup is not complete when SMIT displays OK. It
is also necessary to monitor the HACMP log files (/var/adm/cluster.log or
/tmp/hacmp.out) to check for completion of the startup.

 Start Cluster Services

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

 [Entry Fields]
* Start now, on system restart or both now +

 BROADCAST message at startup? true +
 Startup Cluster Lock Services? false +
 Startup Cluster Information Daemon? true +

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do
190 Managing VLDB Using DB2 UDB EEE

4.6.12 Activating I/O Pacing
To avoid HACMP having to compete with I/O-bound applications for the CPU,
it is a good idea to activate I/O pacing. With smit chgsys, set the HIGH water
field to 33, and the LOW water field to 24. This will guarantee a correct failover
behavior for HACMP in most environments.

4.6.13 Using AIX Error Notification
HACMP provides a way to associate user-defined scripts (so-called Notify
methods) with errors logged by the AIX error notification services. The steps
shown below should be repeated on all cluster nodes. In each case, the
information to be entered can be accessed by typing smit
cm_add_notifymeth.dialog. More error messages can be found in the IBM
RISC System/6000 Scalable POWERparallel Systems Diagnosis and
Messages Guide, GC23-3899, and in the AIX Version 4.1 Problem Solving
Guide and Reference, SC23-2606, to suit other environments’ needs.

4.6.13.1 TTY Failure
For tty failure on the tty serial line, we sent a mail message to the system
administrator to notify him or her of the problem. Since failure of the tty1 is
not critical as long as there is a TCP/IP connection available, it is acceptable
to wait for some off-shift period until the adapter is serviced.

To avoid being prompted by the operating system to change the password
of the DB2 instance owner at logon time (which would interfere with the
execution of the DB2 UDB EEE start and stop scripts), delete the line
starting with flags= in the /etc/security/passwd file on the Control
Workstation (assuming you are using file collections) for the DB2 instance
owner.

DB2 Instance Owner’s Password
DB2 UDB EEE High Availability using HACMP 191

4.6.13.2 Switch Failure
As far as switch failures goes, there are two error messages to watch out for:
HPS_ER9, for switch adapter failures, and HPS_ER6, for switch adapter,
micro-channel bus slot, or external clock source failures leading to
termination of the Worm process. In both cases, it is necessary to determine
whether the failure happened on both cluster nodes, or only locally.

In the first case, for switch adapter failure (HPS-ER9), we should perform a
network failover or send a message to the root user if there is no backup
network available (as in our sample configuration).

In the second case, for failure of the Worm process (HPS_ER6), graceful
shutdown with takeover is performed, which allows DB2 UDB EEE to restart
the failing database partitions on the takeover SP node.

For example, for the HPS_ER6 error:

 Add a Notify Method

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

 [Entry Fields]
* Notification Object Name [tty1]
* Persist across system restart? No +
 Process ID for use by Notify Method [] +#
 Select Error Class Hardware +
 Select Error Type PERM +
 Match Alertable errors? None +
 Select Error Label [] +
 Resource Name [tty1]
 Resource Class [All]
 Resource Type [All]
 Notify Method
[echo "TTY1 line Problem. Check errorlog \" | mail root]

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do
192 Managing VLDB Using DB2 UDB EEE

4.6.13.3 Disk and Adapter Failure
For 7133 adapter failures, we will do a graceful shutdown with takeover as for
the switch failures:

Similarly, for 7133 controller failures:

 Add a Notify Method

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

 [Entry Fields]
* Notification Object Name [HPS_ER6]
* Persist across system restart? Yes +
 Process ID for use by Notify Method [] +#
 Select Error Class All +
 Select Error Type All +
 Match Alertable errors? None +
 Select Error Label [HPS_FAULT6_ER] +
 Resource Name [All]
 Resource Class [All]
 Resource Type [All]
 Notify Method [/usr/sbin/cluster/utilities/clstop -yNgr]

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do

 Add a Notify Method

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

 [Entry Fields]
* Notification Object Name [7133_adapt_0]
* Persist across system restart? Yes +
 Process ID for use by Notify Method [] +#
 Select Error Class Hardware +
 Select Error Type PERM +
 Match Alertable errors? None +
 Select Error Label [SDA_ERR1] +
 Resource Name [serdasda0]
 Resource Class [adapter]
 Resource Type [serdasda]
 Notify Method [/usr/sbin/cluster/utilities/clstop -yNgr]

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do
DB2 UDB EEE High Availability using HACMP 193

4.6.13.4 Memory Failures
For memory failures:

The same procedure should be used for the MEM2 and MEM3 error labels.
MEM1 indicates the absence of a memory card out of a memory card pair;
MEM2 indicates the failure of up to two SIMMs on a memory card, and MEM3
indicates the failure of a memory card out of a memory card pair.

 Add a Notify Method

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

 [Entry Fields]
* Notification Object Name [7133_contr_0]
* Persist across system restart? Yes +
 Process ID for use by Notify Method [] +#
 Select Error Class Hardware +
 Select Error Type PERM +
 Match Alertable errors? None +
 Select Error Label [SDC_ERR1] +
 Resource Name [serdasdc0]
 Resource Class [adapter]
 Resource Type [serdasdc]
 Notify Method [/usr/sbin/cluster/utilities/clstop -yNgr]

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do

 Add a Notify Method

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

 [Entry Fields]
* Notification Object Name [MEM_1]
* Persist across system restart? Yes +
 Process ID for use by Notify Method [] +#
 Select Error Class Hardware +
 Select Error Type PERM +
 Match Alertable errors? None +
 Select Error Label [MEM1] +
 Resource Name [All]
 Resource Class [memory]
 Resource Type [All]
 Notify Method [/usr/sbin/cluster/utilities/clstop -yNgr]

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do
194 Managing VLDB Using DB2 UDB EEE

4.7 Review of Configuration in Non-Catalog Cluster

What have we achieved so far? We have a running two-node HACMP cluster
with cascading resources in a mutual takeover configuration. From a DB2
UDB EEE perspective, we are protected against:

 • Disk failure through mirroring

 • TCP/IP failure through the heartbeat daemon

 • CPU failure through shared disks

We are not protected against:

 • Switch adapter failure

 • Switch primary node failure

 • Switch power failure or global failure

 • Node or frame power failure

 • Node main memory failure

 • Serial line failure

 • Disk adapter or controller failure

These points are addressed below. For the time being, in normal operating
mode, each node (node09 and node13) has its own DB2 UDB EEE database
partitions. In case of a node's failure, the surviving node will take over the
other node's DB2 UDB EEE partitions, releasing them when the failing node
reintegrates into the cluster. Time for takeover, assuming no DB2 UDB EEE
rollback and rollforward is required, is less than one minute.

During node reintegration, the switch is reinitialized automatically by HACMP.

4.7.1 Switch Primary Node Failure
In order to activate Eprimary node takeover, execute the
/usr/sbin/cluster/events/utils/cl_HPS_Eprimary manage command on node09.
This feature ensures switch availability even in the case of the Eprimary node
being unavailable. Should node09 be defined as Eprimary (by executing the
Eprimary node09 command on the Control Workstation) and fail, HACMP will
move the Eprimary node to node13. The Eprimary resource is defined as a
rotating resource, so that node13 will keep the Eprimary function until it
becomes unavailable and node09 becomes Eprimary again.

As we will see below, it makes more sense to define the Eprimary function in
the other cluster (node01 and node05). If the switch is not running, HACMP
DB2 UDB EEE High Availability using HACMP 195

cannot start properly. If NFS is down, it cannot start either. In our setup, NFS
files are mounted over the switch. Since node01 is the NFS server, it should
also be the Eprimary node. The unmanage option of the cl_HPS_Eprimary
command can be used to move the Eprimary takeover function to another
cluster. Only one cluster can have this feature enabled.

4.7.2 Switch IP Address Takeover
Because of the way db2start using the restart option works, DB2 UDB EEE
does not really need switch IP address takeover. The failing DB2 UDB EEE
database partition is restarted through another network interface on the
surviving node. For clients and applications, however, it can certainly be
useful to implement IP address takeover. The following points need to be
considered:

 • ARP must be enabled for the HPS network. You can check this by
executing smit list_node_switch on the Control Workstation. The
RISC/6000 SP documentation recommends enabling ARP in all situations.
If ARP is not enabled, change the boot response field to customize,
enable ARP, and press Enter. Then, network boot the SP nodes by
selecting the global commands submenu from the spmon -g interface.

 • HACMP HPS network names must contain the HPS string.

 • HPS networks must be private networks.

 • Standby addresses are not required. Since IP takeover cannot use the
SDR switch addresses, we use the swnn and swbootnn addresses as
service and boot addresses, where nn is 01, 05, 09, or 13. These
addresses are on the same subnet as the SDR switch addresses.

4.7.3 Node and Frame Power Recovery
RISC/6000 SP frames contain between one and three AC/DC 48 volt power
supplies, depending on the type of frame. If the N+1 feature is installed, this
implies that there are at least two power supplies per frame. A failure with one
of these power supplies will not interrupt the operation of the RISC/6000 SP
because of the backup that will be provided by the other power supply.
Furthermore, the defective power supply is hot-pluggable and can be
replaced without interruption to the system.

Each power supply can service up to eight nodes. With this in mind, if you
have more than eight nodes per frame, it becomes necessary to consider
configuring three power supplies to protect your system against unforeseen
power supply failure.
196 Managing VLDB Using DB2 UDB EEE

However, there is only one power cord from the external power network to the
SP. Customers should implement uninterrupted power sources (UPS) to
guard themselves against a global power loss. The same is true concerning
the power source for the external disks.

4.8 HACMP Configuration of cluster_01_05

Now we have completed the HACMP configuration of the cluster which
includes node09 and node13. This section covers the additional steps
necessary on the cluster that includes node01 and node05. These extra steps
are needed as:

 • node01 holds the instance owner’s home directory which is made
available to the other nodes through NFS.

 • node01 is the switch Eprimary node.

The steps listed above for the cluster comprised of node09 and node13
should be repeated for node01 and node05 with the following differences:

 • “Creating the /home/db2inst1 File System” on page 171 is done only on
node01.

 • Assuming the resource groups are now called resource01 and
resource05, for resource01, we have to specify (see “Configuring
Resources for Resource Groups” on page 187):

Filesystems to Export = /home/db2inst1 /adsmserv
Filesystems to NFS mount = /home/db2inst1 /adsmserv

 • The vg_n01_01 volume group must have the same major number on
node01 and node05 because it contains NFS-mounted file systems. This
number can be specified when importing and creating the volume group.
Available major numbers are given by the lvlstmajor AIX command. To
change an existing volume group's major number, it is possible to export it
then import it and specify the major number in the importvg command.
(See “Synchronize Volume Groups” on page 238).

 • The switch Eprimary node should be node01 since node01 is also the NFS
server. Assuming that the cluster, cluster09_13, is still managing Eprimary
takeover, to deactivate this function on node09:

/usr/sbin/cluster/events/utils/cl_HPS_Eprimary unmanage

Then, to activate this function on node01:

/usr/sbin/cluster/events/utils/cl_HPS_Eprimary manage

Then, at the Control Workstation:

Eprimary hnode01
DB2 UDB EEE High Availability using HACMP 197

4.8.1 NFS-Mounting /home/db2inst1 in cluster_09_13
There are two scenarios to consider:

 • Mount Time - when a node comes up

 • Unmount Time - when a node goes down

4.8.1.1 Mount Time
To NFS-mount /home/db2inst1 on node05 over the switch from node01, we
use HACMP (see “Configuring Resources for Resource Groups” on
page 187).

However, in cluster_09_13, we need to mount /home/db2inst1 after HACMP
has been started in order to have the switch available. In both nodes in
cluster09_13, we add a post-event script to the node_up_local HACMP script
to mount the file system after the switch starts.

By typing smit clcsclev.select, the list of HACMP event scripts is displayed.
Select the event you want to add a post- or pre-event script to (node_up_local
in this case). The following menu appears:

In the Post-event Command field, add the name of the script you want to
create. For maintenance reasons, it is not be a good idea to locate this script
in the HACMP install directory since its contents could be overwritten by
applying a new release of the product. Instead, you might want to choose a
separate directory to store the pre- and post-event scripts, such as

 Change/Show Cluster Events

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

 [Entry Fields]

 Event Name node_up_local

 Description Script run when it is the local node joining the cluster

* Event Command [/usr/sbin/cluster/events/node_up_local]

 Notify Command []
 Pre-event Command []
 Post-event Command [/admin/hacmp/post_node_up_local]
 Recovery Command []
* Recovery Counter [0] #

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do
198 Managing VLDB Using DB2 UDB EEE

/admin/hacmp, by creating the necessary entry with the mkdir command. The
naming convention for the scripts should follow a simple scheme such as
pre_ resp. post_<event name>.

The contents of the /admin/hacmp/post_node_up_local are:

#!/bin/sh
STATUS=0
/usr/sbin/cluster/events/utils/cl_activate_nfs 1 sw01 /home/db2inst1
if [$? -ne 0]
then
 echo Failed to mount /home/db2inst1 from sw01
 echo Manual intervention required
 STATUS=1
fi
exit $STATUS

The script should be made executable. Assuming that it belongs to the root
user:

chmod +x /usr/hacmp/post_node_up_local

4.8.1.2 Unmount Time
We need to unmount /home/db2inst1 when a node comes down; so we added
a post_node_down_local script as a post-event to node_local_down. This
script will unmount the instance home directory:

#!/bin/sh
STATUS=0
/usr/sbin/cluster/events/utils/cl_deactivate_nfs /home/db2inst1
if [$? -ne 0]
then
 echo Failed to umount /home/db2inst1 from sw01
 echo Manual intervention required
 STATUS=1
fi
STATUS=0
exit $STATUS

4.8.2 Configuring NFS Access to /home/db2inst1
In our example configuration, making the DB2 instance owner’s home
directory available to the other nodes through NFS required some changes to
the HACMP scripts.

The problems relate to how /etc/xtab file is updated. Since we declared
/home/db2inst1 to be mounted by NFS in resource01 in cluster01_05,
HACMP will overwrite the export permissions in the /etc/xtab file with
permissions to allow automatic access to cluster09_13’s nodes.
DB2 UDB EEE High Availability using HACMP 199

This works fine if you have only one cluster, but if you have more than one
cluster using the same file system, as in our example, this creates problems.
For example, we found that the nodes in cluster09_13 were not allowed to
mount the file system.

As stated in the HACMP Admin Guide, SC23-1941, Chapter 11, you must
modify the cl_export_fs script and remove the -i flag in the two places where
exportfs command is used. This will force HACMP to use /etc/exports file
when exporting using NFS.

However, as a result of this change, you must perform the NFS exports
manually in each node using the /etc/exports file.

To perform an NFS export manually, use smitty mknfsexp:

You must do this in node01 and node05 and allow access to any host where
you plan to NFS mount /home/db2inst1 and /adsmserv.

In this example, due to the use of aliases, we must specify the switchxx
network interface name in addition to the swxx name.

4.8.3 Modifying the cl_deactivate_nfs Script
The node_down_remote script, executed by the surviving node after failure of
a node, calls the cl_deactivate_nfs script. By default, cl_deactivate_nfs will
try to umount the /home/db2inst1 file system by first killing all processes
having open file descriptors in this file system, then issuing a umount -f
against this file system.

 Add a Directory to Exports List

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

 [Entry Fields]
* PATHNAME of directory to export [/home/db2inst1]
* MODE to export directory read-write +
 HOSTS & NETGROUPS allowed client access [sw05,sw09,sw13,switch01>
 Anonymous UID [-2]
 HOSTS allowed root access []
 HOSTNAME list. If exported read-mostly []
 Use SECURE option? no +
* EXPORT directory now, system restart or both both +
 PATHNAME of alternate Exports file []

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do
200 Managing VLDB Using DB2 UDB EEE

For DB2 UDB EEE, HACMP needs to stop node05’s database partitions
when node01 goes down in order to free up the /home/db2inst1 file system
mount point. To do this on node05, comment out the lines in the
cl_deactivate_nfs script (located in /usr/sbin/cluster/events/utils) containing
the cl_nfskill command without the -t flag:

cl_nfskill -k -u $fs

and uncomment the lines with the -t flag:

cl_nfskill -k -u -t $fs

Consider also amending this script so that the umount command is issued
once, instead of repeatedly in a loop. If the file system is not busy, it will be
unmounted. If it is busy, the umount is unlikely to be any more successful if it
is executed several times. Please read the comments in the HACMP script
because this change could kill another applications not related to the
resources to be taken over.

To restart node05’s database partitions, you must add a post-event script to
the node_down_remote_complete script. Here is an example:

#!/bin/sh
STATUS=0
added for DB2 UDB EEE
i=0

while ((i < 240))
do

if ! su - db2inst1 -exec date 2>&1 |grep "Unable to change"
then

break
fi

sleep 3
((i = i + 1))
done
if ((i == 240))
then

echo Problem with NFS...Manual intervention required
STATUS=1

fi
/home/db2inst1/start_db2.ksh \

db2inst1 \
resource05 \
/home/db2inst1/db2nodes.cfg.hacmp

if [$? -ne 0]
then

STATUS=1
fi
exit $STATUS
DB2 UDB EEE High Availability using HACMP 201

On node09 and node13, this is not required because the NFS mounts for
/home/db2inst1 are outside HACMP control.

4.8.4 Adding a Post-Event Script to the node_up_remote_complete Script
When node01 reintegrates into the cluster, the cl_deactivate_fs script is
executed on node05. This script will call the AIX fuser command, which will
kill those processes having open file descriptors in the file systems to be
unmounted. For DB2 UDB EEE, this means the DB2 processes used by
node05’s database partitions are killed. Since DB2 applications are forced
out during cluster reintegration, stopping node05 's database partitions will
not make any difference for most applications. To restart DB2 UDB EEE on
node05 after node01's reintegration, create the
post_node_up_remote_complete script as a post-event script to the
node_up_remote_complete event as follows:

#!/bin/sh
STATUS=0
added for DB2 UDB EEE

i=0
while ((i < 240))
do

if ! su - db2inst1 -exec date 2>&1 |grep "Unable to change"
then

 break
fi

sleep 3
((i = i + 1))
done
if ((i == 240))
then

echo Problem with NFS...Manual intervention required
STATUS=1

fi

/home/db2inst1/start_db2.ksh \
db2inst1 \
resource05 \
/home/db2inst1/db2nodes.cfg.hacmp

if [$? -ne 0]
then

STATUS=1
fi
exit $STATUS
202 Managing VLDB Using DB2 UDB EEE

The lines before the call to start_db2.ksh prevent DB2 UDB EEE starting
before NFS has stabilized. This assumes that we know the name of the
instance.

We use the command su - db2inst -exec date to test if the instance home
directory, /home/db2inst1, is already available because it is NFS-mounted
from node01.

If /home/db2inst1 is not available after 240 seconds, a failure is reported. The
wait time is to allow for node01 to become available and to be taken over by
node05, and to have /home/db2inst1 ready to use.

4.8.5 Adding a Post-Event Script to the stop_server Script
As explained in the previous section, by default, HACMP will kill node05’s
database partitions when node01 reintegrates into the cluster. To avoid the
risk of damaging a database by a brute force kill of DB2, create the
post_stop_server as a post-event script to the stop_server event.

#!/bin/sh
STATUS=0
/home/db2inst1/stop_db2.ksh \

db2inst1 \
resource05 \

/home/db2inst1/db2nodes.cfg.hacmp

if [$? -ne 0]
then

STATUS=1
fi
exit $STATUS

4.8.6 Adding a Pre-Event Script to start_server
We create the pre_start_server script as a pre-event script to the script
start_db2.ksh event on node05 in order to make sure that start_db2.ksh is not
issued before NFS has stabilized.

#!/bin/sh
STATUS=0
i=0
while ((i < 30))
do

if ! su - db2inst1 -exec date 2>&1 |grep "Unable to change"
then

 break
fi
sleep 3
((i = i + 1))

done
DB2 UDB EEE High Availability using HACMP 203

if ((i == 30))
then

echo Problem with NFS...Manual intervention required
STATUS=1

fi
exit $STATUS

4.8.7 Adding a Post-Event Script to node_down_remote_complete
During failover on node05, sometimes we observed that restarting database
partition 01 on node05 would cause the node05’s four database partitions to
terminate. To prevent this, we created the
post_node_down_remote_complete script as a post-event script to the
node_down_remote_complete event as follows:

#!/bin/sh
/home/db2inst1/start_db2.ksh \

db2inst1 \
resource05 \
/home/db2inst1/db2nodes.cfg.hacmp

This has no effect if node05 ’s database partitions are already running, as
they should be.

4.9 How HACMP Takeover Affects DB2 UDB EEE

During HACMP takeover, DB2 transactions are terminated with SQL error
message SQL1229 when the database partitions are restarted (using
db2start restart). During restart, DB2 performs a roll-back of all uncompleted
transactions, then a roll-forward to the last commit.

Shown below is the full text of the SQL1229 error message:

SQL1229N The current transaction has been rolled back because of a
system error.
Explanation: A system error, such as node failure or connection
failure, has occurred. The application is rolled back to the previous
COMMIT.

This is the behavior of various DB2 utilities when they are rolled back:

 • Import of a table

The application is rolled back. If the COMMITCOUNT parameter was used, the
operation is rolled back to a previous committed point.

 • Table Reorganization

The operation is aborted and must be resubmitted.

 • Nodegroup Redistribute
204 Managing VLDB Using DB2 UDB EEE

The operation is aborted. Some of the tables in the nodegroup may have
been successful redistributed. Issuing the request again will restart the
operation from the point of failure.

 • Roll forward of a database

The operation is aborted and the database is still in Roll Forward Pending
state. The command must be resubmitted.

 • Backup/Restore of a database

The operation is aborted and must be resubmitted.

4.9.1 Takeover of the DB2 Instance Owner’s Home Directory
If a node comes up while node01 is down, /home/db2inst1 will be
automatically mounted as soon as node01 becomes available.

In this example, node05 will take over node01’s file systems in the event of
node01’s failure. From a DB2 UDB EEE perspective, if node01 goes down, no
DB2 command can be issued until node05 takes over node01.

Normally, transactions that are already running are not affected since the
executables used by DB2 are already in local memory. Commands can be
issued again when the server comes back up or takeover has occurred.
Connection to a DB2 database is not lost.

4.9.2 DB2 UDB EEE Database Partition Failure
This section describes the behavior of the test system in the event of the
failure of a DB2 UDB EEE partition, depending on the partition type. This
should be compared to the behavior of DB2 UDB EEE without HACMP.

 • Coordinator Partition failure

All applications need to reconnect to the databases. The behavior is the
same as without HACMP.

 • Database Partition failure

After takeover (within one minute of failure), DB2 UDB EEE needs to
recover. The SQL1229 (transaction rolled back) error message is issued
when the database partition is restarted, and the transactions are rolled
back. Because the ha_stopscript stop script forces all applications out,
any connections to databases are lost. Until the DB2 UDB EEE partition is
restarted, transactions hang, as in the case where HACMP is not used.

 • Failure of Data Partition not used in transaction
DB2 UDB EEE High Availability using HACMP 205

When the failure occurs, transactions proceed undisturbed. During cluster
reintegration, however, the ha_stopscript will force all applications out,
leading to transactions being rolled back (SQL1229) and connections
being lost.

 • Catalog Partition failure

At the time the failure occurs, the behavior is the same as without HACMP.
After takeover, new connections and transactions are possible again.
When the catalog partition reintegrates into the cluster, the force
application command issued by the ha_stopscript script will force all
applications out, and connections will be lost. If takeover occurs within
CONN_ELAPSE * MAX_CONNRETRIES seconds, connections are not
lost during takeover. It might be advisable to increase the value of
MAX_CONNRETRIES to avoid losing connections during takeover.

4.9.3 Other SP Component Failures
In this section, we provide a quick overview of the effect of some RISC/6000
SP component failures on DB2 UDB EEE as recorded on the tested
configuration:

 • RISC/6000 SP Ethernet failure

Since the RISC/6000 SP Ethernet is used as a backup heartbeat network
in our setup, it is important that it be available. However, DB2 UDB EEE
operation is not directly impacted by failure of the RISC/6000 SP Ethernet.

 • PSSP software failure

The only relevant component for DB2 UDB EEE is the Worm switch
daemon (fault_service_Worm_RTG). It has to run in order for the switch to
be usable. If this daemon dies on any of the nodes, DB2 loses
communications. As seen in “Using AIX Error Notification” on page 191, it
is possible to use HACMP's support of AIX error notification mechanism to
alleviate this problem.

 • Control Workstation failure

In normal operation, the Control Workstation is not used. However, to
restart the switch or restart AMD on a node, the Control Workstation
needs to be running. This means that HACMP takeovers and node cluster
reintegrations are not possible if the Control Workstation is down. For this
reason, is should be protected with the HACWS software.

 • Serial line between the nodes and the Control Workstation

Failure of this serial line has no influence on DB2 UDB EEE.
206 Managing VLDB Using DB2 UDB EEE

4.9.4 Failover and Cluster Reintegration Times
Time for failover of node01 is about one to two minutes, assuming no DB2
UDB EEE recovery is necessary. If transactions need to be rolled back that
have been running for N minutes before the crash, add N minutes for a rough
estimate of the time needed for takeover. Cluster reintegration is a little bit
longer, 3 minutes 30 seconds to 4 minutes, the difference coming from the
fact that it takes about two minutes to stop node05’s database partitions when
node01’s database partitions have been running on node05.

4.10 Miscellaneous Configuration Issues

This section details some problems that occurred during the configuration of
the system.

4.10.1 Use of /etc/netsvc.conf
During Synchronize Cluster Topology, we got an error message:

’ERROR: IP label etsvc01 not found on node node01

This occurs due to a combination of problems in DB2 UDB EEE and HACMP.
At the time of writing, there was a known problem in HACMP V4.2 related to
incorrect use or non-existing definition of /etc/netsvc.conf. You can use fully
qualified TCP/IP addresses to circumvent the problem.

You must define the /etc/netsvc.conf file with at least one line containing:

hosts=local,bind

in order to tell TCPIP to look at /etc/hosts first, and pass short TCP/IP names
to HACMP. Otherwise, HACMP V4.2 can fail during synchronization if fully
qualified names are used. Also, you may have to apply the latest PTFs to
DB2 UDB EEE.

4.10.2 Use of /etc/xtab
We used /etc/services as source of permissions for NFS in order to preserve
permissions already in /etc/xtab outside of the control of HACMP. This file
must be preserved during "telinit a" processing. In the event scripts,
acquire_service_addr and acquire_takeover_addr HACMP has code to
preserve /etc/xtab. Some versions of these scripts use the copy command and
therefore fail. You should replace copy by cp.
DB2 UDB EEE High Availability using HACMP 207

4.10.3 NFS Permissions
We used alias to manage HACMP communications over the switch on the
same subnet. Under these circumstances, when you are mounting a NFS file
system across the switch service address, you must include the
corresponding SDR address in the export file, or you will get a permission
denied error.

4.11 Scripts Used in the Test Configuration

The scripts listed in this section perform the following tasks:

 • “Install the db2.admin File Collection” on page 208

 • “Start and Stop DB2 UDB EEE” on page 211

 • “Allocate Disks and Logical Volumes” on page 218

 • “Synchronize Volume Groups” on page 238

4.11.1 Install the db2.admin File Collection
This is the install_db2_coll.ksh script, which must be made executable.

#!/usr/bin/ksh
#--#
File: install_db2_coll.ksh
Version: 1.1.0
#
Description: This script installs a file collection (db2.admin by
default) unless the file collection is already installed.
##
Syntax:
install_db2_coll.ksh [file_collection_name] [collection_list]
#
where ’file_collection_name’ is the name of the file
collection to be installed. If no file_collection_name
is specified, the default collection name of "db2.admin"
will be used. ’collection_list’ is the name of the list file
of collection to be installed. If no file collection_list
is specified, the default collection file name of
"db2_coll.list" will be used. This parameter is only needed
when it is run from the control workstation.
#
Example:
install_db2_coll.ksh db2.admin db2_coll.list
#

ProgramName=$(basename $0)
FileCollection=${1:-db2.admin}
FileCollectionList=${2:-~/db2_coll.list}
208 Managing VLDB Using DB2 UDB EEE

function install_db2_CW {
--
Build and install db2.admin file collection.
--

if [! -f "$FileCollectionList"]; then
 print "\n\n[$ProgramName]: File collection List file"\
 " $FileCollectionList not found \n\n"
 return 99
 fi
 CollDir=/var/sysman/sup/$FileCollection
 mkdir -p -m755 $CollDir
 chown root.system $CollDir
 set -o noclobber
 /usr/bin/cp /var/sysman/sup/sup.admin/* $CollDir
 /usr/bin/rm -f $CollDir/when $CollDir/last $CollDir/scan
 /usr/bin/cp -p $FileCollectionList $CollDir/list
 set +o noclobber
 cd /var/sysman/sup # Return to previous directory
 /usr/bin/ln -sf /var/sysman/sup/$FileCollection/list \
 /var/sysman/sup/lists/$FileCollection
 if [[! $(grep -c $FileCollection /var/sysman/file.collections) \
 -gt 0]];then
 /usr/bin/ed -s /var/sysman/file.collections <<-EOF!
 $
 a
 # --
 # $FileCollection - file collection to sync files
 # --
 primary $FileCollection - / - / EO power no
 .
 w
 q
 EOF!
 fi
 return
}

function install_db2_SPnode {
 print "\n\n[$ProgramName]: Installing collection on node.\n\n"
 /var/sysman/supper update sup.admin
 /var/sysman/supper install $FileCollection
 if [[$? -ne 0]]; then
 print "\n\n[$ProgramName]: Install of file collection"\
 "$FileCollection FAILED, RC=$RC\n\n"
 fi
 /var/sysman/supper update $FileCollection
 return $RC
}
--
M A I N
--
{
Check parameters
DB2 UDB EEE High Availability using HACMP 209

 if [["$(/var/sysman/supper status \
 | awk ’$1==FILEC {print $2}’ FILEC="$FileCollection")" \
 = Yes]]; then
 print "\n\n[$ProgramName]: File collection $FileCollection is "\
 "already installed\n\n"
 else
 print "\n\n[$ProgramName]: Installing file collection"\
 " $FileCollection.\n\n"
 if [["$(/usr/lpp/ssp/install/bin/node_number)" -eq 0]]; then
 install_db2_CW
 else
 install_db2_SPnode
 fi
 fi
} 2>&1

exit

Important: After the collection is defined in the Control Workstation, copy the
script to each node and run it to install the collection in the nodes. If you want
this collection to be updated automatically, you must add the following line in
each node in the root crontab file:

10 * * * * /var/sysman/supper update [collec_name] >/dev/null 2>&1

where: [collec_name] is the name of the collection.

Make sure that the user ID running the supper command has read access to
any files in the file collection.

4.11.1.1 List Collection File Used by the db2.admin Collection
This file is called db2_coll.list:

symlinkall
always ./etc/services
always ./etc/security/limits
always ./etc/inetd.conf
execute /usr/bin/refresh -s inetd >/dev/null 2>&1 (./etc/inetd.conf)
always ./etc/syslog.conf
execute /usr/bin/refresh -s syslogd >/dev/null 2>&1 (./etc/syslog.conf)
always ./etc/tftpaccess.ctl
always ./etc/ftpusers
always ./etc/resolv.conf
always ./etc/netsvc.conf
always ./etc/hosts
always ./etc/environment
upgrade ./etc/aliases
execute /usr/sbin/newaliases >/dev/null 2>&1 (./etc/aliases)
upgrade ./.profile
upgrade ./.kshrc
upgrade ./.sh_logout
210 Managing VLDB Using DB2 UDB EEE

4.11.2 Start and Stop DB2 UDB EEE
There are two scripts here, one to start DB2 and to stop DB2.

4.11.2.1 Start DB2 UDB EEE on each resource
This script, start_db2.ksh, must be made executable.

#--#
File: start_db2.ksh
Version: 1.1.0
#
Description: This script starts db2 UDB EEE, allowing start of each
partition separately for recovery purposes.
#
Syntax: # start_db2 instance resource config conf_file
#
where ’instance’ is the name of the DB2 instance
and ’resource’ is the HACMP resource name to be
started and ’conf_file’ is the file that describes
the configuration
#
Example: # start_db2 db2inst1 resource09
#
#--
#
function start_one_dp {
Start Data Partition
Args Instance NumDP NewDir NewPort NewSw OldDir OldPort OldSw
 RUN=‘ps -fu $1 |grep db2sysc | awk ’{print $9;}’ \
 | grep $2 |grep -v grep‘
 if ["$RUN" != ""]; then
 print "\n\n[$ProgramName]:In $1 Partition $2 already running.\n\n"
 return
 fi
 #Needs restart or only a start?
 if ["$5" = "$8" -a "$3" = "$6"] then
 MYRESTART=""

MYMSG=’Starting’
 else
 MYMSG=’Restarting’
 MYRESTART=" restart hostname $3 netname $5 port $4 "
 fi
 # temp file used to issue the db2 start command
 TEMP_FILE=/tmp/start_DB2_$1_$2
 rm -rf $TEMP_FILE
 cat >| $TEMP_FILE << EOF
j=0
print "\\n[$ProgramName]: $MYMSG $1 Partition $2\\n" \\
" on $3 through interface $5 port $4.\\n"
while ((j == 0)) do
if ! db2start nodenum $2 $MYRESTART |grep SQL6036
start or stop in progress
then
j=1
DB2 UDB EEE High Availability using HACMP 211

fi
done
EOF
 # make temp file executable
 chmod ogu+x $TEMP_FILE
 # execute as user DB2 administrator
 su - $1 -c "$TEMP_FILE"
}

M A I N

#!/bin/ksh
get parameters Instance Resource and Config File
ProgramName=$(basename $0)
MYINSTANCE=${1:-db2inst1}
RESOURCE=${2:-resource01}
FileConfigStart=${3:-db2nodes.cfg.hacmp}

Test instance name requested
if [! ‘/usr/lpp/db2_05_00/instance/db2ilist|grep $MYINSTANCE‘]; then
 print "\n\n[$ProgramName]: $MYINSTANCE is not a valid instance "\
 "name.\n\n"
 exit 98
fi

Look up instance home directory
MYHOMEDIR=‘su - $MYINSTANCE -c ’echo $HOME’ 2>/dev/null ‘

Look for start map file
if [! -f "$FileConfigStart"]; then
 print "\n\n[$ProgramName]: DB2-HACMP start config file"\
 " $FileConfigStart not found \n\n"
 return 99
fi

Build config of this resource
MYRESOURCES="/tmp/start_db2_"$RESOURCE
rm -rf $MYRESOURCES
grep -v ’^#’ $FileConfigStart | \
 awk ’{ if ($1 == "’$RESOURCE’") print $2,$3,$4,$5;}’ >$MYRESOURCES

what SP node are we on, look for alias choose in config tables
HOSTALIAS=‘hostname‘
HOSTALIAS=‘host $HOSTALIAS |awk ’{print $1,$5,$6,$7,$8;}’‘
MYHOST=""
for i in ‘awk ’{print $2;}’ $MYRESOURCES‘
do
 j=‘echo $HOSTALIAS | grep $i‘
 if ["$j" != ""]; then
 MYHOST=$i
 break
 fi
done
if [$MYHOST = ""]; then
212 Managing VLDB Using DB2 UDB EEE

 print "\n\n[$ProgramName]: $RESOURCE is not configured in this node"\
 " \n\n"
 return 99
fi

Check DB2 Logical Volume Permissions
VGLST=‘/usr/sbin/cluster/utilities/clshowres -g \
 "$RESOURCE"|grep ’^Volume Groups’‘
MYGRP=‘id $MYINSTANCE |awk ’{print $2;}’|cut -f 2 -d ’(’|cut -f 1 -d ’)’‘
echo "Seting DB2 access to raw LVs with type equal udb"
for vg in ‘echo $VGLST|sed -e ’{s/^Volume Groups//;}’‘ do
 MYDB2LVS=‘lsvg -l $vg \
 | awk ’{if ($2 == "udb") print "/dev/r"$1" ";}’‘
 chown $MYINSTANCE.$MYGRP $MYDB2LVS
done

Select resources for this host
awk ’{ if ($2=="’$MYHOST’") print $1,$2,$3,$4;}’ $MYRESOURCES
>$MYRESOURCES.dp

Which partitions ?
MYDPS=‘awk ’{print $1;}’ $MYRESOURCES.dp‘
Start them
for DPNUM in $MYDPS
do
 #Compute new parameters
 MYNEW=‘awk ’{ if ($1 == "’$DPNUM’") print $2,$3,$4;}’ \
 $MYRESOURCES.dp‘
 MYDB2NODES=$MYHOMEDIR"/sqllib/db2nodes.cfg"
 MYOLD=‘cat $MYDB2NODES | awk ’{if ($1 == ’$DPNUM’) print $2,$3,$4;}’‘
 start_one_dp $MYINSTANCE $DPNUM $MYNEW $MYOLD
done

Note: This function uses a config file (conf_file) in order to for each start
option. The data is similar to db2nodes.cfg file, but each row is preceded by
the resource name. In the form:

resource data_partition ip_address port_num switch_ip_address

When HACMP calls this start script with the resource and hostname, all the
database partitions defined in the resource will start. You must take care to
specify for each HACMP resource and database partition the starting
conditions for normal operation and also for each takeover or rotating
situation possible. You need one for each resource, hostname and database
partition involved. Be careful with port planning when many database
partitions are taken over by one machine. Port numbers must be different for
each partition running on the same node. The script will check db2nodes.cfg
and will restart the database partition with the specifications of conf_file. The
db2nodes.cfg file will be updated with the new values.
DB2 UDB EEE High Availability using HACMP 213

4.11.2.2 Stop DB2 UDB EEE on each resource
This script, start_db2.ksh, must be made executable.

#--#
File: stop_db2.ksh
Version: 1.1.0
#
Description: This script stops db2 UDB EEE, allowing stop of each
separately for recovery purposes.
#
Syntax: # stop_db2 instance resource conf_file
where ’instance’ is the name of the DB2 instance
and ’resource’ is the HACMP resource name stoping
and ’conf_file’ is the file that describes the
configuration
#
Example: # stop_db2 db2inst1 resource09

#--
#
Force Applications
function force_applications {
Args Instance NumDP Node
If not runnig I quit
 RUN=‘ps -fu $1 |grep db2sysc | awk ’{print $9;}’ \
 | grep $2 |grep -v grep‘
 if ["$RUN" = ""]; then
 print "\n\n[$ProgramName]:In $1 Partition $2 already stopped.\n\n"
 return
 fi

 # temp file used to issue the db2 force applications
 TEMP_FILE=/tmp/stop_DB2_$1
 rm -rf $TEMP_FILE
 cat >| $TEMP_FILE << EOF
force out applications
db2 terminate
export DB2NODE=$2
db2 force applications all
wait for applications to finish
j=0
print "\\n[$ProgramName]: Forcing all applications on $1 nodenum $2\\n."
while ((j == 0))
do
if db2 list applications | grep SQL1611 || db2 list applications | grep
SQL1032
then
j=1
fi
done
EOF

 # make temp file executable
214 Managing VLDB Using DB2 UDB EEE

 chmod ogu+x $TEMP_FILE
 # execute as user DB2 administrator
 su - $1 -c "$TEMP_FILE"
}
#--
#
function stop_one_dp {
Start Data Partition
Args Instance NumDP Node
 RUN=‘ps -fu $1 |grep db2sysc | awk ’{print $9;}’ \
 | grep $2 |grep -v grep‘
 if ["$RUN" = ""]; then
 print "\n\n[$ProgramName]:In $1 Data Partition $2 already
stoped.\n\n"
 return
 fi
 # temp file used to issue the db2 stop command
 TEMP_FILE=/tmp/stop_DB2_$1_$2
 rm -rf $TEMP_FILE
 cat >| $TEMP_FILE << EOF
Stopping data partition
j=0
print "\\n[$ProgramName]: Stopping $1 Partition $2 on $3.\\n"
while ((j == 0))
do
if ! db2stop nodenum $2 |grep SQL6036
start or stop in progress
then
j=1
fi
done
EOF
 # make temp file executable
 chmod ogu+x $TEMP_FILE
 # execute as user DB2 administrator
 su - $1 -c "$TEMP_FILE"
}

T H E M A I N L I N E

#!/bin/ksh
get parameters Instance Resource and Config File
ProgramName=$(basename $0)
MYINSTANCE=${1:-db2inst1}
RESOURCE=${2:-resource01}
FileConfigStart=${3:-db2nodes.cfg.hacmp}

Test instance name requested
if [! ‘/usr/lpp/db2_05_00/instance/db2ilist|grep $MYINSTANCE‘]; then
 print "\n\n[$ProgramName]: $MYINSTANCE is not a valid instance "\
 " name.\n\n"
 exit 98
fi
DB2 UDB EEE High Availability using HACMP 215

Look up instance home directory
MYHOMEDIR=‘su - $MYINSTANCE -c ’echo $HOME’ 2>/dev/null‘

Look for stop map file
if [! -f "$FileConfigStart"]; then
 print "\n\n[$ProgramName]: DB2-HACMP stop config file"\
 " $FileConfigStart not found \n\n"
 return 99
fi

Check for DB2 code access
if [$MYHOMEDIR = "/home/guest"]; then
 print "\n\n[$ProgramName]: DB2 code not accesible, allow HACMP "\
 "to kill DB2"
 return 98
fi

Build config of this resource
MYRESOURCES="/tmp/stop_db2_"$RESOURCE
rm -rf $MYRESOURCES
grep -v ’^#’ $FileConfigStart | \
 awk ’{ if ($1 == "’$RESOURCE’") print $2,$3,$4,$5;}’ >$MYRESOURCES

what SP node are we on, look for alias choose in config tables
HOSTALIAS=‘hostname‘
HOSTALIAS=‘host $HOSTALIAS |awk ’{print $1,$5,$6,$7,$8;}’‘
MYHOST=""
for i in ‘awk ’{print $2;}’ $MYRESOURCES‘ do
 j=‘echo $HOSTALIAS | grep $i‘
 if ["$j" != ""]; then
 MYHOST=$i
 break
 fi
done
if [$MYHOST = ""]; then
 print "\n\n[$ProgramName]: $RESOURCE is not configured in this node"\
 " \n\n"
 return 99
fi

Select resources for this host
awk ’{ if ($2=="’$MYHOST’") print $1,$2,$3,$4;}’ $MYRESOURCES
>$MYRESOURCES.dp

Which partitions ?
MYDPS=‘awk ’{print $1;}’ $MYRESOURCES.dp‘
Force applications connected to DB2 data partition.
for DPNUM in $MYDPS
do
 # Compute new parameters
 MYNEW=‘awk ’{ if ($1 == "’$DPNUM’") print $2,$3,$4;}’ \
 $MYRESOURCES.dp‘
 # Stop all applications
 force_applications $MYINSTANCE $DPNUM
216 Managing VLDB Using DB2 UDB EEE

done
Stop each data partition on the data partition server
for DPNUM in $MYDPS
do
 # Compute new parameters
 MYNEW=‘awk ’{ if ($1 == "’$DPNUM’") print $2,$3,$4;}’ \
 $MYRESOURCES.dp‘
 stop_one_dp $MYINSTANCE $DPNUM $MYNEW
done

This script uses the same resource file as start_db2.ksh. All the database
partitions defined in the resource will be stopped.

4.11.2.3 Configuration File for DB2 Start and Stop Scripts
This is conf_file:

Resource name,Data partition,Node name,Port Number,Switch Name
Normal conditions
resource01 1 hnode01 0 sw01
resource01 2 hnode01 1 sw01
resource01 3 hnode01 2 sw01
resource01 4 hnode01 3 sw01
resource05 5 hnode05 0 sw05
resource05 6 hnode05 1 sw05
resource05 7 hnode05 2 sw05
resource05 8 hnode05 3 sw05
resource09 9 hnode09 0 sw09
resource09 10 hnode09 1 sw09
resource09 11 hnode09 2 sw09
resource09 12 hnode09 3 sw09
resource13 13 hnode13 0 sw13
resource13 14 hnode13 1 sw13
resource13 15 hnode13 2 sw13
resource13 16 hnode13 3 sw13
Takeover conditions
resource01 1 hnode05 4 sw05
resource01 2 hnode05 5 sw05
resource01 3 hnode05 6 sw05
resource01 4 hnode05 7 sw05
resource05 5 hnode01 4 sw01
resource05 6 hnode01 5 sw01
resource05 7 hnode01 6 sw01
resource05 8 hnode01 7 sw01
resource09 9 hnode13 4 sw13
resource09 10 hnode13 5 sw13
resource09 11 hnode13 6 sw13
resource09 12 hnode13 7 sw13
resource13 13 hnode09 4 sw09
resource13 14 hnode09 5 sw09
resource13 15 hnode09 6 sw09
resource13 16 hnode09 7 sw09
DB2 UDB EEE High Availability using HACMP 217

4.11.3 Allocate Disks and Logical Volumes
There are two main tasks performed by the scripts in this section:

 • “Create Disk Devices” on page 218

 • “Create Volume Groups and Logical Volumes” on page 223

4.11.3.1 Create Disk Devices
This script, 7133_Config.ksh, is used is reserve disk numbers to be used at
the SP nodes and to use the same logical names for all the nodes in the
cluster. For example, hdisk32 will refer to the same device at all the nodes in
the cluster.

#!/usr/bin/ksh

name: 7133_Config.ksh
This script creates "hdisk" and "pdisk" AIX operation system
definitions for the SSA 7133 disks.

function update_ODM {

 echo "\nChecking ODM for user update of connwhere_shad attribute..."
 for i in $(egrep -v "^#|^$|^ *$" ${Tables_Dir}/${FileName} \
 | awk ’BEGIN {FS=":"} {print $4}’ | sort -u); do
 echo $i
 /usr/bin/odmchange -o PdAt -q "attribute=connwhere_shad and \
 uniquetype=pdisk/ssar/$i" <<-EOF!
PdAt:
 generic = DU
EOF!

 RC=$?
 if [$RC != 0]; then
 echo "\tODM upd of PdAt for /pdisk/ssar/$i failed with RC=$RC"
 fi
 done

 /usr/bin/odmchange -o PdAt -q "attribute=connwhere_shad and \
uniquetype=disk/ssar/hdisk" <<-EOF!
PdAt:
 generic = DU
EOF!

 RC=$?
 if [$RC != 0]; then
 echo "\tODM upd of PdAt for disk/ssar/hdisk failed with RC=$RC"
 fi

 return 0
}

218 Managing VLDB Using DB2 UDB EEE

function remove_SSA_all {

 for i in $(lsdev -C \
 |egrep "SSA C Physical Disk Drive|SSA Logical Disk Drive" \
 |cut -f1 -d’ ’) ; do
 echo "\nRemoving SSA device ${i}..."
 /usr/sbin/rmdev -l ${i} -d
 ReturnCode=$?
 echo "rmdev return code: ${ReturnCode}"
 done
 return
}

function remove_SSA_table {

 for i in $(egrep -v "^#|^$|^ *$" ${Tables_Dir}/${FileName} \
 | awk ’BEGIN {FS=":"} {print $1, $2}’); do
 echo "\nRemoving SSA device ${i}..."
 /usr/sbin/rmdev -l ${i} -d
 ReturnCode=$?
 echo "rmdev return code: ${ReturnCode}"
 done
 return
}

function define_hdisk {

 echo "\nMaking hdisk ${HdiskName}..."
 /usr/sbin/mkdev -l ${HdiskName} -p ssar -s ssar -t hdisk -c disk \
 -w ${ConnectionID} \
 -a "connwhere_shad=${ConnectionID}"
 ReturnCode=$?
 echo mkdev hdisk return code: ${ReturnCode}
 return $ReturnCode
}

function make_PVID {

 echo "\nMaking physical volume ID for ${HdiskName}..."
 /usr/sbin/chdev -l ${HdiskName} -a pv=yes
 ReturnCode=$?
 echo chdev hdisk return code: ${ReturnCode}
 return $ReturnCode
}

function define_pdisk {

 echo "\nMaking pdisk ${PdiskName}..."
 /usr/sbin/mkdev -l ${PdiskName} -p ssar -s ssar -t ${Type} -c pdisk \
 -w ${ConnectionID} \
 -a "connwhere_shad=${ConnectionID}"
 ReturnCode=$?
 echo mkdev pdisk return code: ${ReturnCode}
 return $ReturnCode
DB2 UDB EEE High Availability using HACMP 219

}

 SETUP_LOG=${SETUP_LOG:-"/tmp/SSA_Config.PID$$"}
 Msg_Prefix="[$(basename $0)]"
 Tables_Dir="/admin/ITSO_setup" # Location of defn table
 typeset -L1 first_character
{

 echo "\n\n${Msg_Prefix}: Defining 7133 SSA devices on $(date)."

mount jid030e0:/home/latimer /mnt

 while [[! -f ${Tables_Dir}/${FileName}]] ; do
 echo "\nEnter configuration file name ==> \c"
 read -s FileName x
 done

 echo "\n\n${Msg_Prefix}: Using table file \"${Tables_Dir}/${FileName}.\"
"

--
Make sure ODM allows user update
--
 update_ODM
 sleep 4 # Allow time to read msgs before following menu

--
Ask if any SSA devices should be removed.

 SSA_BOLD=$(tput smso)
 SSA_NORM=$(tput rmso)
 PS3="
Enter selection number: "
 clear
 echo "\n\tSelect an option to remove SSA pdisks/hdisks:\n"
 select one in \
 "Remove only those SSA hdisks and pdisks listed in the table" \
 "Remove ${SSA_BOLD}ALL${SSA_NORM} SSA hdisks and pdisks and
continue" \
 "Remove ${SSA_BOLD}ALL${SSA_NORM} SSA hdisks and pdisks; then QUIT"
\
 "Do not remove any SSA pdisks/hdisks" \
 "quit"
 do
 case $REPLY in
 1) remove_SSA_table;break;;
 2) remove_SSA_all;break;;
 3) remove_SSA_all;exit 0;;
 4) break;;
 5) exit 0:;;
 *) ;;
 esac
 done
220 Managing VLDB Using DB2 UDB EEE

 unset SSA_BOLD
 unset SSA_NORM

--
Make SSA hdisks and pdisks
--
 while read Table_row
 do
 first_character=${Table_row}
 if [${first_character} != ’#’] ; then # Skip comments
 Table_row_fields=$(echo ${Table_row}|tr ’:’ ’ ’)
 set -- ${Table_row_fields}
 HdiskName=${1} # Field 1 is "hdisk"
 PdiskName=${2} # Field 2 is "hdisk"
 ConnectionID=${3} # Field 3 is "connection ID"
 Type=${4} # Field 4 is physical device type

 define_hdisk && make_PVID
 define_pdisk
 fi
 done < $Tables_Dir/${FileName}

 echo "\n${Msg_Prefix}: 7133 SSA device setup completed on $(date)."\
 "\n\tSee file ${SETUP_LOG} for details.\n"
} 2>&1 |tee -a ${SETUP_LOG}

exit

4.11.3.2 Map disk addresses to logical names
This file is called node01.ssa and is used by the script 7133_config.ksh
above with the map of logical name, physical name and disk ID.

---#
SSA Disk Configuration for 9076 SP2 nodes 01, 05, 09, & 13
---#
-->tp3an01 adapter 2 port A2
#
hdisk29:pdisk27:0004AC9E48D800D:4000mbC:
hdisk14:pdisk12:0004AC9E110300D:4000mbC:
hdisk17:pdisk15:0004AC9E112500D:4000mbC:
hdisk19:pdisk17:0004AC9E112A00D:4000mbC:
to tp3an05 adapter 2 port A1-->A2
hdisk24:pdisk22:0004AC9E1AE900D:4000mbC:
hdisk20:pdisk18:0004AC9E19EA00D:4000mbC:
hdisk22:pdisk20:0004AC9E19F700D:4000mbC:
hdisk7 :pdisk5 :0004AC9E08B200D:4000mbC:
to tp3an09 adapter 2 port A1-->A2
hdisk18:pdisk16:0004AC9E112700D:4000mbC:
hdisk16:pdisk14:0004AC9E111300D:4000mbC:
hdisk21:pdisk19:0004AC9E19F100D:4000mbC:
hdisk25:pdisk23:0004AC9E1AEA00D:4000mbC:
to tp3an13 adapter 2 port A1-->A2
DB2 UDB EEE High Availability using HACMP 221

hdisk15:pdisk13:0004AC9E111200D:4000mbC:
hdisk8 :pdisk6 :0004AC9E08D300D:4000mbC:
hdisk13:pdisk11:0004AC9E10F500D:4000mbC:
hdisk23:pdisk21:0004AC9E1AE600D:4000mbC:
to tp3an01 adapter 2 port A1-->
#
-->tp3an01 adapter 2 port B2
hdisk5 :pdisk3 :0004AC7C548400D:4000mbC:
hdisk4 :pdisk2 :0004AC7C547A00D:4000mbC:
hdisk30:pdisk28:0004AC9E579300D:4000mbC:
hdisk31:pdisk29:0004AC9E579600D:4000mbC:
to tp3an05 adapter 2 port B1-->B2
hdisk33:pdisk31:0004AC9E602000D:4000mbC:
hdisk32:pdisk30:0004AC9E5FFD00D:4000mbC:
hdisk2 :pdisk0 :0004AC7C542B00D:4000mbC:
hdisk3 :pdisk1 :0004AC7C547700D:4000mbC:
to tp3an09 adapter 2 port B1-->B2
hdisk27:pdisk25:0004AC9E1B7F00D:4000mbC:
hdisk6 :pdisk4 :0004AC9E06F900D:4000mbC:
hdisk26:pdisk24:0004AC9E1B6B00D:4000mbC:
hdisk28:pdisk26:0004AC9E1B9100D:4000mbC:
to tp3an13 adapter 2 port B1-->B2
hdisk9 :pdisk7 :0004AC9E092D00D:4000mbC:
hdisk11:pdisk9 :0004AC9E092F00D:4000mbC:
hdisk10:pdisk8 :0004AC9E092E00D:4000mbC:
hdisk12:pdisk10:0004AC9E093700D:4000mbC:
to tp3an01 adapter 2 port B1-->
#
-->tp3an01 adapter 3 port A2
hdisk39:pdisk37:0004AC7C537100D:4000mbC:
hdisk57:pdisk55:0004AC9E2DE300D:4000mbC:
hdisk40:pdisk38:0004AC7C537500D:4000mbC:
hdisk45:pdisk43:0004AC7C53B800D:4000mbC:
to tp3an05 adapter 3 port A1-->A2
hdisk37:pdisk35:0004AC7C534200D:4000mbC:
hdisk63:pdisk61:0004AC9E599200D:4000mbC:
hdisk56:pdisk54:0004AC9E23A100D:4000mbC:
hdisk62:pdisk60:0004AC9E328600D:4000mbC:
to tp3an09 adapter 3 port A1-->A2
hdisk52:pdisk50:0004AC7C542200D:4000mbC:
hdisk59:pdisk57:0004AC9E301B00D:4000mbC:
hdisk58:pdisk56:0004AC9E2FE000D:4000mbC:
hdisk47:pdisk45:0004AC7C540300D:4000mbC:
to tp3an13 adapter 3 port A1-->A2
hdisk51:pdisk49:0004AC7C542000D:4000mbC:
hdisk43:pdisk41:0004AC7C538200D:4000mbC:
hdisk64:pdisk62:0004AC9E59EE00D:4000mbC:
hdisk53:pdisk51:0004AC7C543400D:4000mbC:
to tp3an01 adapter 3 port A1-->
#
-->tp3an01 adapter 4 port B2
hdisk38:pdisk36:0004AC7C536300D:4000mbC:
hdisk61:pdisk59:0004AC9E321000D:4000mbC:
hdisk54:pdisk52:0004AC7C546800D:4000mbC:
222 Managing VLDB Using DB2 UDB EEE

hdisk60:pdisk58:0004AC9E30EF00D:4000mbC:
to tp3an05 adapter 4 port B1-->B2
hdisk44:pdisk42:0004AC7C539300D:4000mbC:
hdisk46:pdisk44:0004AC7C53BC00D:4000mbC:
hdisk35:pdisk33:0004AC7C532900D:4000mbC:
hdisk50:pdisk48:0004AC7C541900D:4000mbC:
to tp3an09 adapter 4 port B1-->B2
hdisk48:pdisk46:0004AC7C540500D:4000mbC:
hdisk41:pdisk39:0004AC7C537800D:4000mbC:
hdisk49:pdisk47:0004AC7C540B00D:4000mbC:
hdisk65:pdisk63:0004AC9E5A0B00D:4000mbC:
to tp3an13 adapter 4 port B1-->B2
hdisk55:pdisk53:0004AC9DCD6600D:4000mbC:
hdisk34:pdisk32:0004AC7C532600D:4000mbC:
hdisk36:pdisk34:0004AC7C533E00D:4000mbC:
hdisk42:pdisk40:0004AC7C537C00D:4000mbC:
to tp3an01 adapter 4 port B1-->

4.11.3.3 Create Volume Groups and Logical Volumes
This script, setup_VG.ksh, creates the required VGs and LVs required. We
create two volume groups on each node, for a total of 16 volumes groups, 16
Journaled File System logs, 16 logs file systems, 32 temporary table spaces,
30 large data table spaces, 30 large index table spaces, 30 small data table
spaces, and 30 small index table spaces, plus space for catalogs and so on.

#!/usr/bin/ksh
--
name: setup_VG.ksh
author: George Latimer, IBM
date: 02/17/98
version: 1.0.0
--
Add db2untag to all rlvs
Verify correct LV seq numbers and sizes. Check disks to
see how they lay out.
--
M O D I F I C A T I O N S:
#
18 Feb 1998: Added deletion of lost+found from UDB SMS containers.
--
This script sets up UDB volume groups, logical volumes, and
filesystems. Log files and catalog tablespace will be mirrored.
Catalog tablespace will be on db partition 1.
Single partition tables will be on db partition 1.
Multiple partition tables will be split across db partitions 2 thru
16 (15 partition nodegroup).
ADSM and coordinator node will be SP physical node 01 (host=tp3an05).
--

set -x
INSTANCE=db2inst1 # <------------------------------ Verify!
GROUP=dbadmin1 # <------------------------------ Verify!
DB2 UDB EEE High Availability using HACMP 223

VG_DELETE_FILE=/admin/ITSO_setup/delete_VGs.tab # Optional file
INSTHOME=${INSTHOME:-~$INSTANCE} # Home directory of UDB instance owner
THIS_HOST=$(hostname -s) # Short hostname of this host

typeset -Z2 NODE_NUMBER=$(hostname -s|cut -c6-7) # 2-digit SP node number
LVS_TO_SYNC="" # initialize

UNTAG_PGM=$INSTHOME/sqllib/misc/db2untag # Location of UDB db2untag
program
LOGS_HLQ=/DB_LOG # High-level qualifier of path for UDB log

files. To this will be appended instance
name and database partition, eg.
<hlq>/<instance>/NODEnnnn where nnnn=partition
number.

TEMP_HLQ=/DB_TMP # High-level qualifier of path for tempspace
files. To this will be appended instance
name and database partition, eg.
#<hlq>/<instance>/NODEnnnn where nnnn=partition
number.

case "$(/usr/lpp/ssp/install/bin/node_number)" in
 0)
 echo "\n$(basename $0): Do not run on the Control Workstation."\
 "\n----- ABORTING -----"
 exit 1
 ;;
 1|5|9|13)
 ;;
 *)
 echo "\n$(basename $0): Must be run on an SP node."\
 "\n----- ABORTING -----"
 exit 1
 ;;
esac
if [["$(whoami)" != "root"]]; then
 print "\n$(basename $0): You must be root to run this script."\
 "\n----- ABORTING -----"
 exit 2
fi

trap ’sleep 3’ 0 1 2 3 15 # Bad things can happen to ODM if
 # cancel during LVM update!
. /admin/ITSO_setup/disk_table.ksh # Read hdisks per VG per SP node

if [[-r $INSTHOME/sqllib/db2nodes_cfg]]; then
 NODES_CFG=$INSTHOME/sqllib/db2nodes_cfg
else
 NODES_CFG=/admin/ITSO_setup_nodes.cfg
fi

function blow_it_all_away {
#
This function removes everything allocated for UDB. Any JFS files
(like logs, tempspace, etc) are unmounted and removed. Then for each
224 Managing VLDB Using DB2 UDB EEE

UDB volume group, all logical volumes -- including any jfslog(s) -- are
removed. Then the volume group itself is removed.

if [[-e "$VG_DELETE_FILE"]]; then
 VGs_to_delete=$(grep "vg_n${NODE_NUMBER}_" $VG_DELETE_FILE)
else
 VGs_to_delete=$(set|grep "vg_n${NODE_NUMBER}_"|cut -f1 -d’=’)
fi

To delete LV’s and filesystems, need to have VG varied on.
for vg in ${VGs_to_delete}; do
 varyonvg $vg
done
First, determine JFS filenames. Unmount filesystem if mounted. Then
remove the filesystem and it’s mount point (this should also remove the
underlying logical volume).
#
N O T E: The following DOES NOT DELETE /home/tp3an01!
#

for i in $(lsfs|tail +2|egrep "$LOGS_HLQ/|$TEMP_HLQ/"|awk ’{print $3}’);
do
 if [[! -z "$i"]]; then
 print "\n$(basename $0): Removing filesystem $i..."
 umount $i >/dev/null 2>&1
 rmfs -r $i
 RC=$?
 if [[$RC != 0]]; then
 print "\n$(basename $0): ERROR: Could not remove filesystem
$i."
 else
 print "\n$(basename $0): Filesystem $i deleted OK."
 fi
 fi
done

Delete all logical volumes, including jfslog. (To remove jfslog,
all filesystems must be previously removed. This should hav been done
in preceeding step.)
for VG in ${VGs_to_delete}; do
 for LV in $(lsvg -l $VG|tail +3|cut -f1 -d’ ’); do

print "\n$(basename $0): Removing LV $LV in VG $VG...."
 rmlv -f $LV
 RC=$?
 if [[$RC != 0]]; then
 print "\n$(basename $0): ERROR: Could not remove LV $LV."
 else
 print "\n$(basename $0): Logical volume $LV deleted OK."
 fi
 done
 print "\n$(basename $0): Removing VG $VG...."
 reducevg -df $VG $(lsvg -p $VG|tail +3|cut -f1 -d’ ’)
 RC=$?
DB2 UDB EEE High Availability using HACMP 225

 if [[$RC != 0]]; then
 print "\n$(basename $0): ERROR: Could not remove VG $VG."
 else
 print "\n$(basename $0): Volume Group $VG deleted OK."
 fi
done
unset VGs_to_delete

Everything should be removed! Ready to allocate.

return 0
}

function create_VG {
export PARTN_SIZE=${3:-8} # Default is 8MB partition

echo "\nCreating volume group $1 with $2..."
COMMAND="mkvg -f -y $1 -s${PARTN_SIZE} $2"
print "\n$(basename $0):COMMAND=$COMMAND"
VG=$(eval $COMMAND)
RC=$?
if [$RC != 0]; then
 echo "\tmkvg command failed for VG $1, RC=$RC."\
 "\n\t----- ABORTING -----"
 exit 3
fi

return 0
}

function alloc_jfslog {

echo "\nCreating jfslog $1..."
COMMAND="mklv -y $1 -t jfslog -m /tmp/map_jfslog $VG 1"
print "\n$(basename $0):COMMAND=$COMMAND"
eval $COMMAND
RC=$?
if [["$RC" != 0]]; then
 echo "\tmklv for jfslog $1 FAILED, RC=$RC."\

"\n\t----- ABORTING -----"
 exit 4
fi

yes | /usr/sbin/logform /dev/$1

return 0
}

function alloc_jfslog_mirror {

COMMAND="mklvcopy -u 2 -m /tmp/map_jfslog $1 2"
print "\n$(basename $0):COMMAND=$COMMAND"
eval $COMMAND
226 Managing VLDB Using DB2 UDB EEE

RC=$?
if [["$RC" != 0]]; then
 echo "\tmklvcopy for jfslog $1 FAILED, RC=$RC."\
 "\n\t----- ABORTING -----"
 exit 4
fi

syncvg -l $1

return 0
}
function create_LV {
p1=LVname; p2=VG; p3=map_name; p4=#partitions; p5=LVtype (jfs, udb, etc)

echo "\nCreating logical volume $1 ..."
COMMAND="mklv -y $1 $6 -t $5 -m $3 $2 $4"
print "\n$(basename $0): COMMAND=$COMMAND"
eval "$COMMAND"
RC=$?
if [["$RC" != 0]]; then
 echo "\tmklv for logical volume $1 FAILED, RC=$RC."
fi

return 0
}

function untag_container {
p1=LVname

echo "\nUntagging container $1 ..."
$UNTAG_PGM -f $1
RC=$?
if [["$RC" != 0]]; then
 echo "\tuntag for logical volume $1 FAILED, RC=$RC."
fi

return 0
}

--
main MAIN Main
--

set -x

SETUP_LOG=${SETUP_LOG:-"/tmp/setup_VG_beta2.PID$$"}
Msg_Prefix="[$(basename $0)]"

{

INITIALIZATION:
Blow away all filesystems, jfs logical volumes, raw logical volumes,
raw logical volumes. Need to unmount any UDB filesystems first.
DB2 UDB EEE High Availability using HACMP 227

To be safe, probably want to run untag after re-allocation.
#

blow_it_all_away

#
SETUP VOLUME GROUP(s)
1. How many VG’s per physical node? One per database node? One
per SP physical node. One per 16 drives?
2. LV and its mirror must be in same VG.

VGs_to_alloc=$(set|grep "^vg_n${NODE_NUMBER}_"|cut -f1 -d’=’)
for i in ${VGs_to_alloc}; do
 print $i
 if [[-z "$(lsvg|egrep "^${i}$")"]]; then # if VG does not exist
 disks="$(eval echo \$$i)" # ...create it
 create_VG $i "$disks"
 else # else, print message
 print "\n$(basename $0): VG $i will not be made. VG already
exists."
 fi
done

SETUP JFSLOG, LOGICAL VOLUMES, FILESYSTEMS, mount filesystems, run untag.

PARTITIONS_THIS_HOST=$(grep " ${THIS_HOST} " $NODES_CFG \
 |awk ’{print $1}’)
PARTITIONS_COUNT=$(echo ${PARTITIONS_THIS_HOST}|wc -w|tr -d ’ ’)
if [["${PARTITIONS_COUNT}" -ne 4]]; then
 print "$(basename $0): Expected 4 partitions per host. Found "\
 "${PARTITIONS_COUNT}"\
 "\ndefined database partitions for this host, ${THIS_HOST}."\
"\n---- ABORTING ----"
 exit 5
fi
for PARTITION in ${PARTITIONS_THIS_HOST}; do
 MOD_2=$(($PARTITION % 2)) # Determine VG
 MOD_4=$(($PARTITION % 4)) # Determines numbering of LV’s
 typeset -Z4 PARTITION_4DIGITS=$PARTITION # used for NODEnnnn

 print "\n$(basename $0): ---------------------------------------"\
 "\n\tUDB DATABASE PARTITION: $PARTITION"\
 "\n---\n"
 case $PARTITION in
 1)
 VG=vg_n${NODE_NUMBER}_01
 LV_PREFIX="lv_$(echo $VG|cut -c4-9)_"
 set -A VG_DISKS $(eval echo \$$VG)
 set -A DISKS ${VG_DISKS[0]} ${VG_DISKS[1]} ${VG_DISKS[6]} \
 ${VG_DISKS[7]}
 /admin/ITSO_setup/setup_VG_maps_catalog.ksh ${DISKS[*]}
 typeset -Z3 SEQ_NO=101
 alloc_jfslog ${LV_PREFIX}log $VG # jfslog for VG1
228 Managing VLDB Using DB2 UDB EEE

 ;;
 5|9|13)
 VG=vg_n${NODE_NUMBER}_01
 LV_PREFIX="lv_$(echo $VG|cut -c4-9)_"
 set -A VG_DISKS $(eval echo \$$VG)

set -A DISKS ${VG_DISKS[0]} ${VG_DISKS[1]} ${VG_DISKS[6]} \
 ${VG_DISKS[7]}
 /admin/ITSO_setup/setup_VG_maps.ksh ${DISKS[*]}
 typeset -Z3 SEQ_NO=103
 alloc_jfslog ${LV_PREFIX}log $VG # jfslog for VG1
 ;;
 2|6|10|14)
 VG=vg_n${NODE_NUMBER}_01
 LV_PREFIX="lv_$(echo $VG|cut -c4-9)_"
 set -A VG_DISKS $(eval echo \$$VG)
 set -A DISKS ${VG_DISKS[4]} ${VG_DISKS[5]} ${VG_DISKS[2]} \
 ${VG_DISKS[3]}
 /admin/ITSO_setup/setup_VG_maps.ksh ${DISKS[*]}
 typeset -Z3 SEQ_NO=203
 # next mirrors log for 1,5,9 & 13
 alloc_jfslog_mirror ${LV_PREFIX}log # mirror jfslog for VG1
 ;;
 3|7|11|15)
 VG=vg_n${NODE_NUMBER}_02
 LV_PREFIX="lv_$(echo $VG|cut -c4-9)_"
 set -A VG_DISKS $(eval echo \$$VG)
 set -A DISKS ${VG_DISKS[0]} ${VG_DISKS[1]} ${VG_DISKS[6]} \
 ${VG_DISKS[7]}
 /admin/ITSO_setup/setup_VG_maps.ksh ${DISKS[*]}
 typeset -Z3 SEQ_NO=303
 alloc_jfslog ${LV_PREFIX}log $VG # jfslog for VG1

;;
 4|8|12|16)
 VG=vg_n${NODE_NUMBER}_02
 LV_PREFIX="lv_$(echo $VG|cut -c4-9)_"
 set -A VG_DISKS $(eval echo \$$VG)
 set -A DISKS ${VG_DISKS[4]} ${VG_DISKS[5]} ${VG_DISKS[2]} \
 ${VG_DISKS[3]}
 /admin/ITSO_setup/setup_VG_maps.ksh ${DISKS[*]}
 typeset -Z3 SEQ_NO=403
 # next mirrors log for 3,7,11 & 15
 alloc_jfslog_mirror ${LV_PREFIX}log # mirror jfslog for VG2
 ;;
 *)
 print "\n$(basename $0): Partition #$PARTITION is invalid?"\
 "\n---- ABORTING ----"
 exit 6
 ;;
 esac

--
disk1 disk2 disk3 disk4
.6G SML_I .6G SML_I .6G SML_D .6G SML_D
1.2G BIG_D 1.2G BIG_D 1.2G BIG_I 1.2G BIG_I
DB2 UDB EEE High Availability using HACMP 229

.6G LOGS .6G LOGS .6G LOGS_MIRR .6G LOGS_MIRR
jfslog (1) jfslog_mirr (1)
1.2G TEMP 1.2G TEMP 1.2G TEMP 1.2G TEMP
###
Note 1: jfslog will be allocated disk 1 for partitions 1, 5, 9, & 13
jfslog mirror will be allocated on disk 3 for partitions
1, 5, 9, & 13
--
if [["$PARTITION" = 1]]; then

 # --------------------------------------#
 # Allocate catalog partition #
 # --------------------------------------#
 #allocate catalog_TS (1 container on disk 1; mirror on disk 3)
 LV=lv_$(echo $VG|cut -c4-9)_101 # seq 101
 create_LV $LV $VG /tmp/map_catalog 5 udb
 untag_container /dev/r$LV
 mklvcopy -u 2 -m /tmp/map_catalog_mirror $LV 2
syncvg -l $LV
 LVS_TO_SYNC="$LVS_TO_SYNC $LV"
 chown -R $INSTANCE.$GROUP /dev/r$LV
chmod u+x /dev/r$LV
 #
 #allocate single_node_TS (1 container on disk 2; mirror on disk 4)
 LV=lv_$(echo $VG|cut -c4-9)_102 # seq 102
 create_LV $LV $VG /tmp/map_single1 5 udb
 untag_container /dev/r$LV
 mklvcopy -u 2 -m /tmp/map_single1_mirror $LV 2
syncvg -l $LV
 LVS_TO_SYNC="$LVS_TO_SYNC $LV"
 chown -R $INSTANCE.$GROUP /dev/r$LV
chmod u+x /dev/r$LV
 #
 #allocate temp space across all 4 disks
 LV=lv_$(echo $VG|cut -c4-9)_103 # seq 103
 FS=${TEMP_HLQ}/$INSTANCE/NODE${PARTITION_4DIGITS}/T1
 create_LV $LV $VG /tmp/map_temp1 248 jfs
 crfs -v jfs -d $LV -m $FS -A yes \
 -p rw -t yes -a frag=4096 -a nbpi=16384 -a compress=no
 mount $FS
 LV=lv_$(echo $VG|cut -c4-9)_104 # seq 104
 FS=${TEMP_HLQ}/$INSTANCE/NODE${PARTITION_4DIGITS}/T2
 create_LV $LV $VG /tmp/map_temp2 248 jfs
 crfs -v jfs -d $LV -m $FS -A yes \
 -p rw -t yes -a frag=4096 -a nbpi=16384 -a compress=no
 mount $FS
 # Get rid of AIX 4.2’s lost+found directory:
 find ${TEMP_HLQ}/$INSTANCE/NODE${PARTITION_4DIGITS} \
 -name lost+found -exec rmdir {} \;
 chown -R $INSTANCE.$GROUP $TEMP_HLQ
 #
 #Allocate log files (copy 1 on disks 1 & 2; copy 2 on disks 3 & 4)
 LV=lv_$(echo $VG|cut -c4-9)_105 # seq 105

FS=${LOGS_HLQ}/$INSTANCE/NODE${PARTITION_4DIGITS}
230 Managing VLDB Using DB2 UDB EEE

 create_LV $LV $VG /tmp/map_log1 150 jfs
 crfs -v jfs -d $LV -m $FS -A yes \
 -p rw -t yes -a frag=4096 -a nbpi=16384 -a compress=no
 mklvcopy -u 4 -m /tmp/map_log1_mirror $LV 2
syncvg -l $LV
 LVS_TO_SYNC="$LVS_TO_SYNC $LV"
 mount $FS
 # Get rid of AIX 4.2’s lost+found directory:
 find ${TEMP_HLQ}/$INSTANCE/NODE${PARTITION_4DIGITS} \
 -name lost+found -exec rmdir {} \;
 chown -R $INSTANCE.$GROUP $LOGS_HLQ
 #
 #Allocate /home/tp2an01 (copy 1 on disks 1 & 2; copy 2 on disks 3
& 4)
 LV=lv_$(echo $VG|cut -c4-9)_114 # seq 114
 FS=/home/tp3an01
 create_LV $LV $VG /tmp/map_home 100 jfs
 crfs -v jfs -d $LV -m $FS -A yes \
 -p rw -t yes -a frag=4096 -a nbpi=16384 -a compress=no
 mklvcopy -u 4 -m /tmp/map_home_mirror $LV 2
syncvg -l $LV
 LVS_TO_SYNC="$LVS_TO_SYNC $LV"
 mount $FS
 chown -R $INSTANCE.$GROUP $LOGS_HLQ

 else

 # --------------------------------------#
 # Allocate all remaining #
 # partitions #
 # --------------------------------------#

 #allocate temp space across all 4 disks
 LV=lv_$(echo $VG|cut -c4-9)_$SEQ_NO # seq x03
 FS=${TEMP_HLQ}/$INSTANCE/NODE${PARTITION_4DIGITS}/T1
 create_LV $LV $VG /tmp/map_temp1 248 jfs
 crfs -v jfs -d $LV -m $FS -A yes \
 -p rw -t yes -a frag=4096 -a nbpi=16384 -a compress=no
 mount $FS
 SEQ_NO=$((SEQ_NO + 1))
 LV=lv_$(echo $VG|cut -c4-9)_$SEQ_NO # seq x04
 FS=${TEMP_HLQ}/$INSTANCE/NODE${PARTITION_4DIGITS}/T2
 create_LV $LV $VG /tmp/map_temp2 248 jfs
 crfs -v jfs -d $LV -m $FS -A yes \
 -p rw -t yes -a frag=4096 -a nbpi=16384 -a compress=no
 mount $FS
 # Get rid of AIX 4.2’s lost+found directory:
 find ${TEMP_HLQ}/$INSTANCE/NODE${PARTITION_4DIGITS} \
 -name lost+found -exec rmdir {} \;

chown -R $INSTANCE.$GROUP $TEMP_HLQ
 #
 #Allocate log files (copy 1 on disks 1 & 2; copy 2 on disks 3 & 4)
 SEQ_NO=$((SEQ_NO + 1))
 LV=lv_$(echo $VG|cut -c4-9)_$SEQ_NO # seq x05
DB2 UDB EEE High Availability using HACMP 231

 FS=${LOGS_HLQ}/$INSTANCE/NODE${PARTITION_4DIGITS}
 create_LV $LV $VG /tmp/map_log1 150 jfs
 crfs -v jfs -d $LV -m $FS -A yes \
 -p rw -t yes -a frag=4096 -a nbpi=16384 -a compress=no
 mklvcopy -u 4 -m /tmp/map_log1_mirror $LV 2
syncvg -l $LV
 LVS_TO_SYNC="$LVS_TO_SYNC $LV"
 mount $FS
 # Get rid of AIX 4.2’s lost+found directory:
 find ${TEMP_HLQ}/$INSTANCE/NODE${PARTITION_4DIGITS} \
 -name lost+found -exec rmdir {} \;
 chown -R $INSTANCE.$GROUP $LOGS_HLQ
 #
 #allocate large_TS_data (1 container on each of disk 1 & 2)
 SEQ_NO=$((SEQ_NO + 1))
 LV=lv_$(echo $VG|cut -c4-9)_$SEQ_NO # seq x06
 create_LV $LV $VG /tmp/map_large_data1 150 udb
 untag_container /dev/r$LV
 chown -R $INSTANCE.$GROUP /dev/r$LV
chmod u+x /dev/r$LV

 SEQ_NO=$((SEQ_NO + 1))
 LV=lv_$(echo $VG|cut -c4-9)_$SEQ_NO # seq x07
 create_LV $LV $VG /tmp/map_large_data2 150 udb
 untag_container /dev/r$LV
 chown -R $INSTANCE.$GROUP /dev/r$LV
chmod u+x /dev/r$LV
 #
 #allocate large_TS_index (1 container on each of disk 3 & 4)
 SEQ_NO=$((SEQ_NO + 1))
 LV=lv_$(echo $VG|cut -c4-9)_$SEQ_NO # seq x08
 create_LV $LV $VG /tmp/map_large_index1 150 udb
 untag_container /dev/r$LV
 chown -R $INSTANCE.$GROUP /dev/r$LV
chmod u+x /dev/r$LV

 SEQ_NO=$((SEQ_NO + 1))
 LV=lv_$(echo $VG|cut -c4-9)_$SEQ_NO # seq x09
 create_LV $LV $VG /tmp/map_large_index2 150 udb
 untag_container /dev/r$LV
 chown -R $INSTANCE.$GROUP /dev/r$LV
chmod u+x /dev/r$LV
 #
 #allocate small_TS_data (1 each on disk 3 & 4)
 SEQ_NO=$((SEQ_NO + 1))

LV=lv_$(echo $VG|cut -c4-9)_$SEQ_NO # seq x10
 create_LV $LV $VG /tmp/map_small_data1 75 udb
 untag_container /dev/r$LV
 chown -R $INSTANCE.$GROUP /dev/r$LV
chmod u+x /dev/r$LV

 SEQ_NO=$((SEQ_NO + 1))
 LV=lv_$(echo $VG|cut -c4-9)_$SEQ_NO # seq x11
 create_LV $LV $VG /tmp/map_small_data2 75 udb
232 Managing VLDB Using DB2 UDB EEE

 untag_container /dev/r$LV
 chown -R $INSTANCE.$GROUP /dev/r$LV
chmod u+x /dev/r$LV
 #
 #allocate small_TS_index (1 each on disk 1 & 2)
 SEQ_NO=$((SEQ_NO + 1))
 LV=lv_$(echo $VG|cut -c4-9)_$SEQ_NO # seq x12
 create_LV $LV $VG /tmp/map_small_index1 75 udb
 untag_container /dev/r$LV
 chown -R $INSTANCE.$GROUP /dev/r$LV
chmod u+x /dev/r$LV

 SEQ_NO=$((SEQ_NO + 1))
 LV=lv_$(echo $VG|cut -c4-9)_$SEQ_NO # seq x13
 create_LV $LV $VG /tmp/map_small_index2 75 udb
 untag_container /dev/r$LV
 chown -R $INSTANCE.$GROUP /dev/r$LV
chmod u+x /dev/r$LV
 fi
done

print "$(basename $0): Synchronizing mirrors (syncvg -l <lvname>)...."
for lv in $LVS_TO_SYNC; do
 nohup syncvg -l $lv >/dev/null 2>&1 &
done

echo "\n${Msg_Prefix}: VG/LV setup completed on $(date)."\
 "\n\tSee file ${SETUP_LOG} for details.\n"
} 2>&1 |tee -a ${SETUP_LOG}

exit

LV_name used for DB partitions
------------- ----------------------------- -----------------
lv_nyy_0z_log jfslog 1-16
lv_n01_01_101 catalog TS (raw DMS) 1
lv_n01_01_102 single NG tablespsace 1
lv_nyy_0z_x03 UDB logfiles (jfs/SMS) 1-16
lv_nyy_0z_x04 UDB temp1 (jfs/SMS/2 drives) 1-16
lv_nyy_0z_x05 UDB temp2 (jfs/SMS/2 drives) 1-16
lv_nyy_0z_x06 UDB large data1 (raw/DMS) 2-16
lv_nyy_0z_x07 UDB large data2 (raw/DMS) 2-16
lv_nyy_0z_x08 UDB large index1 (raw/DMS) 2-16
lv_nyy_0z_x09 UDB large index2 (raw/DMS) 2-16
lv_nyy_0z_x10 UDB small data1 (raw/DMS) 2-16
lv_nyy_0z_x11 UDB small data2 (raw/DMS) 2-16
lv_nyy_0z_x12 UDB small index1 (raw/DMS) 2-16
lv_nyy_0z_x13 UDB small index2 (raw/DMS) 2-16
lv_nyy_0z_114 home/tp3an01 (jfs) 1
#
where x=1 for partitions 5, 9, and 13
x=2 for partitions 2, 6, 10, and 14
x=3 for partitions 3, 7, 11, and 15
DB2 UDB EEE High Availability using HACMP 233

x=4 for partitions 4, 8, 12, and 16
#
and yy=2-digit node number (01, 05, 09, 13)
#
and z=1 for partitions 1, 2, 5, 6, 9, 10, 13, 14
z=2 for partitions 3, 4, 7, 8, 11, 12, 15, 16
--
All SP Nodes except node01, have 4 database partitions each. Large
tables are split across 15 database partitions: 3 partitions on
node01 and 4 partitions on each of nodes 05, 09, and 13.
#
SP node 01, in addition to supporting 3 database partitions, also
provides the following functions:
1. NFS server for user home directories
2. ADSM server
3. Logical partition 1 contains catalog tablespace and single
nodegroup tables (nation and region)
4. Coordinator node functions
--

The following script, setup_VG_maps.ksh, is called by setup_VG.ksh:

#!/usr/bin/ksh
--
name: setup_VG_maps.ksh
#
This script sets up mapfiles for logical volume allocation. See
also "setup_VG.ksh" whick calls this script.
--

/bin/rm -f /tmp/map_*

Disk #1

cat >> /tmp/map_small_index1 <<-EOF!
 $1:1-75
EOF!

cat >> /tmp/map_large_data1 <<-EOF!
 $1:76-225
EOF!

typeset -i i=226
while [[$i -le 287]]; do
 cat >> /tmp/map_temp1 <<-EOF!
 $1:$i

$2:$i
 $3:$i
 $4:$i
EOF!
 i=i+1
done
234 Managing VLDB Using DB2 UDB EEE

typeset -i i=288
while [[$i -le 349]]; do
 cat >> /tmp/map_temp2 <<-EOF!
 $1:$i
 $2:$i
 $3:$i
 $4:$i
EOF!
 i=i+1
done

cat >> /tmp/map_jfslog <<-EOF! # Use for both log and mirror
 $1:350
EOF!

typeset -i i=351
typeset -i j=350
while [[$i -le 425]] && [[$j -le 424]]; do
 cat >> /tmp/map_log1 <<-EOF!
 $1:$i
 $2:$j
EOF!
 i=i+1;j=j+1
done

Disk #2

cat >> /tmp/map_small_index2 <<-EOF!
 $2:1-75
EOF!

cat >> /tmp/map_large_data2 <<-EOF!
 $2:76-225
EOF!

$2:226-349 #This temp space is allocated under disk1

$2:350-424 #This log space is allocated under disk1

Disk #3

cat >> /tmp/map_small_data1 <<-EOF!
 $3:1-75
EOF!

cat >> /tmp/map_large_index1 <<-EOF!
 $3:76-225
EOF!
DB2 UDB EEE High Availability using HACMP 235

typeset -i i=350
while [[$i -le 424]]; do
 cat >> /tmp/map_log1_mirror <<-EOF!
 $3:$i
 $4:$i
EOF!
 i=i+1
done

Disk #4

cat >> /tmp/map_small_data2 <<-EOF!
 $4:1-75
EOF!

cat >> /tmp/map_large_index2 <<-EOF!
 $4:76-225
EOF!

exit

The following script setup_VG_maps_catalog.ksh, is called by setup_VG.ksh:

#!/usr/bin/ksh
--
name: setup_VG_maps_catalog.ksh
#
This script sets up mapfiles for logical volume allocation. See
also "setup_VG.ksh" which calls this script.
--

/bin/rm -f /tmp/map_*

Disk #1

cat >> /tmp/map_catalog <<-EOF!
 $1:200-224
EOF!

typeset -i i=225
while [[$i -le 286]]; do
 cat >> /tmp/map_temp1 <<-EOF!
 $1:$i
 $2:$i
 $3:$i
 $4:$i
EOF!
i=i+1
done
236 Managing VLDB Using DB2 UDB EEE

typeset -i i=287
while [[$i -le 348]]; do
 cat >> /tmp/map_temp2 <<-EOF!
 $1:$i
 $2:$i
 $3:$i
 $4:$i
EOF!
 i=i+1
done

 cat >> /tmp/map_jfslog <<-EOF! # Use for both log and mirror
 $1:349
EOF!

typeset -i i=350
typeset -i j=349
while [[$i -le 424]] && [[$j -le 423]]; do
 cat >> /tmp/map_log1 <<-EOF!
 $1:$i
 $2:$j
EOF!
 i=i+1;j=j+1
done

typeset -i i=425
typeset -i j=424
while [[$i -le 474]] && [[$j -le 473]]; do
 cat >> /tmp/map_home <<-EOF!
 $1:$i
 $2:$j
EOF!
 i=i+1;j=j+1
done

Disk #2

cat >> /tmp/map_single1 <<-EOF!
 $2:200-224
EOF!
 # ----------------
 # Disk #3
 # ----------------
cat >> /tmp/map_catalog_mirror <<-EOF!
$3:200-224
EOF!

typeset -i i=349
while [[$i -le 423]]; do
 cat >> /tmp/map_log1_mirror <<-EOF!
 $3:$i
 $4:$i
EOF!
DB2 UDB EEE High Availability using HACMP 237

 i=i+1
done

typeset -i i=424
while [[$i -le 473]]; do
 cat >> /tmp/map_home_mirror <<-EOF!
 $3:$i
 $4:$i
EOF!
 i=i+1;j=j+1
done

Disk #4

cat >> /tmp/map_single1_mirror <<-EOF!
 $4:200-224
EOF!

exit

4.11.3.4 Map disks to volume groups
This file is called disk_table.ksh. It is used by the setup_VG.ksh script listed
above.

export vg_n01_01="hdisk13 hdisk23 hdisk29 hdisk14 \
 hdisk64 hdisk53 hdisk39 hdisk57"
export vg_n01_02="hdisk10 hdisk12 hdisk5 hdisk4 \
 hdisk36 hdisk42 hdisk38 hdisk61"
export vg_n05_01="hdisk17 hdisk19 hdisk24 hdisk20 \
 hdisk40 hdisk45 hdisk37 hdisk63"
export vg_n05_02="hdisk30 hdisk31 hdisk33 hdisk32 \
 hdisk54 hdisk60 hdisk44 hdisk46"

export vg_n09_01="hdisk22 hdisk7 hdisk18 hdisk16 \
 hdisk56 hdisk62 hdisk52 hdisk59"
export vg_n09_02="hdisk2 hdisk3 hdisk27 hdisk6 \
 hdisk35 hdisk50 hdisk48 hdisk41"
export vg_n13_01="hdisk21 hdisk25 hdisk15 hdisk8 \
 hdisk58 hdisk47 hdisk51 hdisk43"
export vg_n13_02="hdisk26 hdisk28 hdisk9 hdisk11 \
 hdisk49 hdisk65 hdisk55 hdisk34"

4.11.4 Synchronize Volume Groups
We used this script, vg_mach.ksh, to map volume groups to a new (available)
major number in the SP nodes. It also handles DB2 raw device permissions,
detects NFS conflicts and so on.
238 Managing VLDB Using DB2 UDB EEE

We use lvlstmajor to detect a free major number in both owner and takeover
node. We only use the actual VG major number of owner node if this is free or
used by the same VG on the takeover node.

This script, vg_mach.ksh, must run in the node that owns the volume group.

#--#
File: vg_mach.ksh
Version: 1.1.0
#
Description: This script updates the definitions of volumes groups in
takeover node.
#
Syntax: # vg_mach.ksh vol_grp tko_node major_num
where ’vol_grp’ is the name of the volume group
to be updated; ’tko_node’ is the ip name of the
takeover node
(you need rsh access to it) and ’major_num’ is a major
number not used in all the nodes in the cluster.
#
Example: vg_mach.ksh vg_n01_01 hnode01 34
#
Fix parameter values
ProgramName=$(basename $0)
VGN=${1:-"vol_name_miss"}
DMVGN=‘ls -l /dev/$VGN | awk ’{print $5;}’ | awk -F, ’{print $1;}‘
TKONODE=${2:-"takeover_miss"}
MVGN=${3:-$DMVGN}
echo "actual major number $DMVGN "

#**
*
U P D A T E T H I S V A R I A B L E S *
DB2ADM="db2inst1"
DB2GRP="dbadmin1"
*
#**

#temp files
TMPFILE="/tmp/$ProgramName.info"
TMPFILE2="/tmp/$ProgramName.disks"
TMPFILE3="/tmp/$ProgramName.nfs"
TMPFILE4="/tmp/$ProgramName.confnfs"
NFSLOG="$ProgramName.$VGN.nfs.conf"
rm /tmp/$ProgramName.*

echo
"**"
echo "Are you sure to run update for volume group $VGN in local node"
echo "and node $TKONODE using major number $MVGN ?"
echo "DB2 LVs (type UDB) will be set to owner $DB2ADM.$DB2GRP."
echo
"**"
DB2 UDB EEE High Availability using HACMP 239

echo "y or n =>"
read yesno
if ["$yesno" != "y"]; then
 exit 99
fi

#get VG info.
lsvg -l $VGN | tail -n +3 >$TMPFILE
lsvg -p $VGN | tail -n +3 >$TMPFILE2
#filesystems
FS=‘awk ’{ if ($7 != "N/A") print $7;}’ $TMPFILE‘
#raw devices that have type as UDB
UDB=‘awk ’{ if ($2 != "UDB") print $1;}’ $TMPFILE‘
DISKS=‘awk ’{ print $1;}’ $TMPFILE2‘
FIRSTDISK=‘echo $DISKS | awk ’{ print $1;}’‘
IDOWN=‘lsattr -El $FIRSTDISK|grep pvid|awk ’{print $2;}’‘
IDTKO=‘rsh $TKONODE lsattr -El $FIRSTDISK|grep pvid|awk ’{print $2;}’‘
if [$IDOWN != $IDTKO]; then
 print "\\n[$ProgramName]: $DISK have different disk id on owner " \
 " an takeover node $TKONODE.\\n"
 exit 99
fi
got NFS definitions?
rsh $TKONODE lsnfsmnt | tail -n +1 >$TMPFILE3
touch $TMPFILE4
Mounted filesystems
MOUNTS=‘df| tail -n +2|awk ’{print $7 " ";}’‘
Automount filesystems
STRMOUNTS=‘lsfs| tail -n +2|awk ’{if($7== "yes") print $3 " ";}’‘

umounting filesystems and setting to no mount in start
for i in $FS
do
 FMNT=‘echo $MOUNTS | grep $i‘
 if ["$FMNT" != ""]; then
 echo "Umount $i."

umount $i
 fi
 FSTR=‘ echo $STRMOUNTS | grep $i‘
 if ["$FSTR" != ""]; then
 echo "Automount set to no for $i."
 chfs -A’’‘locale nostr | awk -F: ’{print $1}’‘’’ $i
 fi
 #check NFS conflicts?
 if grep $i $TMPFILE3
 then
 grep $i $TMPFILE3 >>$TMPFILE4
 echo "ERROR: NFS conflict in $i filesystem"
 echo " storing definition in $NFSLOG."
 cp $TMPFILE4 $NFSLOG
 echo " Removing NFS definition in $TKONODE."
 echo " Use HACMP to do NFS mount in $TKONODE."
 rsh $TKONODE /usr/sbin/rmnfsmnt -f $i -B
 fi
240 Managing VLDB Using DB2 UDB EEE

done

echo Free VG
varyoffvg $VGN
if rsh $TKONODE lsvg | grep $VGN
then
 echo "Attention: A VG called $VGN detected in $TKONODE."
 echo " The existing volume group is exported now."
 rsh $TKONODE exportvg $VGN
fi
echo Get new volume group in correct major number WAIT
echo Play attention to name conflicts here
rsh $TKONODE importvg -V $MVGN -y $VGN $FIRSTDISK
echo Put online $VGN on $TKONODE
rsh $TKONODE varyonvg $VGN
echo Set varyon to manual
rsh $TKONODE chvg -a n -Q y $VGN
permisions of UDB raw devices
echo "set UDB permisions to correct values in $TKONODE"
for i in $UDB do

chown $DB2ADM.$DB2GRP /dev/r$i
done
echo Set VG off
rsh $TKONODE varyoffvg $VGN
if ! ls -l /dev/$VGN | awk ’{print $5;}’ | grep "$MVGN" then

echo Local definition of VG gone
exportvg $VGN
echo Adjust local major number
importvg -V $MVGN -y $VGN $FIRSTDISK

fi
echo Put online $VG locally
varyonvg $VGN
permisions of UDB raw devices
echo "set UDB permisions to correct values here"
for i in $UDB do

chown $DB2ADM.$DB2GRP /dev/r$i
done
echo Set varyon to manual
chvg -a n -Q y $VGN

Note: This script can delete and re-create volume groups across SP nodes;
so use it with care as a volume group corruption can result in loss of the data
in the volume group. We assume there are no duplicate volume group names,
logical volume names or file system names in the cluster. If this is not the
case, conflicts may arise and must be manually resolved. Logical volumes of
class UDB will be set with permissions for DB2. The DB2ADM and DB2GRP
variables in the script are the DB2 owner and group of the instance
administrator. The script must be running in the node that owns the volume
group.
DB2 UDB EEE High Availability using HACMP 241

242 Managing VLDB Using DB2 UDB EEE

Appendix A. Autoloader Examples

This appendix provides some examples of using the Autoloader tool to load
data into a DB2 UDB EEE database. The information given here is designed
to complement the two sections on Autoloader in the DB2 UDB
Administration Guide, S10J-8157. These sections are in Chapter 5, Using the
Autoloader Utility, and Appendix O, Supplemental Autoloader Information.

A.1 Autoloader Example 1: Split on 1 DP, Load on 15 DPs

In this example, we use the Autoloader tool to:

 • Receive input from a file produced by the TPCD data generator (dbgen)

 • Split and Load in one run

 • Split on 1 database partition only

 • Load on 15 database partitions
© Copyright IBM Corp. 1998 243

Figure 27. Autoloader Example 1

In Figure 27 on page 244, an overview of the Autoloader processing is
shown. Note that:

 • The supplier table has been defined in a 15 database partition nodegroup.

 • There are four database partitions per SP node.

 • The four SP nodes are tp3an01, tp3an05, tp3an09, and tp3an13.

 • Database partition 1 is reserved for the System Catalogs.

tp3an01

db2split

S5

supplier.tbl

S6 S7 S8

S2 S3 S4

S13 S14 S15 S16

S9 S10 S11 S12

load load load

L2 L3 L4

2

DP

3

DP

4

DP

tp3an05

5

DP

load load load load

L5 L6 L7 L8

6

DP

7

DP

8

DP

tp3an09

9

DP

load load load load

L9 L10 L11 L12

10

DP

11

DP

12

DP

tp3an13

13

DP

load load load load

L13 L14 L15 L16

14

DP

15

DP

16

DP

S2 connects to L2, S3 connects to L3, S4 connects to L4 and so on
244 Managing VLDB Using DB2 UDB EEE

 • S2,S3,S4 ... S16 represent the 15 output named pipes of the split process.
These pipes are named:

 • supplier.tbl2.00n (where n = 2,3,4 ... 16) and are stored in the
/work/db2inst1/psplitload directory.

 • All these pipes exist on tp3an01.

 • L2,L3,L4 ...L16 represent the 15 input named pipes of the 15 load
processes. These pipes are named:

 • supplier.tbl.00n (where n = 2,3,4 ... 16) and are stored in the
/work/db2inst1/psplittemp directory.

 • The pipes supplier.tbl.002,003,004 exist on tp3an01.

 • The pipes supplier.tbl.005,006,007,008 exist on tp3an05.

 • The pipes supplier.tbl.009,010,011,012 exist on tp3an09.

 • The pipes supplier.tbl.013,014,015,016 exist on tp3an13.

A.1.1 TPCD Generator

First, dbgen is run to create the input data:

dbgen is run with these flags:

-Ts Only produce data for the supplier table

-v Verbose

-s1 Produce supplier data for a 1 GB TPCD database

This will produce this output file:

Note: For clarity, we will run the dbgen into a file, and then db2autold will use
that file as input. We could also use a named pipe to avoid having to store the
supplier.tbl file on disk.

4.11.5 Autoloader Configuration File
This is the Autoloader configuration file, supplier.cfg:

dbgen -Ts -v -s1

-rw-r--r-- 1 db2inst1 sys 1409633 Feb 27 11:53 supplier.tbl
Autoloader Examples 245

We must also create a non-NFS directory on each SP node. This directory is
used by Autoloader to store the named piped it uses to channel to output of
the splitting processes into the loading processes. In the supplier.cfg file, we
have specified NOTNFS_DIR=/work.

The supplier table and all its indexes has been created prior to running
db2autold; so during the load processing, all the indexes for supplier will be
built.

The load command will:

 • Generate statistics during the load (statistics yes and indexes all). Since
we have not specified a value for RUN_STAT_NODE in the configuration file,
statistics will be generated using the data at database partition 2, the first
in the list of OUTPUT_NODES. In a EEE database, statistics are only ever
generated from the data at a single database partition.

 • By specifying using /work in the load command, we will use /work (a local
non-NFS directory) for sort space when creating indexes. If we don’t
specify a non-NFS directory here, the default is $INSTHOME/sqllib/tmp,
which is shared across all database partitions. A local non-nfs directory
should be used in place of the default directory as:

 • The sort space will be managed locally on each SP node so all writes
will be to local disk (not writes across NFS). This all means the
performance will be much improved because there will be less
contention for disk.

RELEASE=V5.0

db2 "load from supplier.tbl of del modified by coldel| \
 replace into supplier statistics yes and indexes all using /work"

DATABASE=tpcd30

OUTPUT_NODES=(2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)

SPLIT_NODES=(2)

MODE=SPLIT_AND_LOAD

LOGFILE=LOG

NOTNFS_DIR=/work

CHECK_LEVEL=NOCHECK

TRACE=1
246 Managing VLDB Using DB2 UDB EEE

 • $INSTHOME will fill up very quickly as all the load commands (15) will
use this one directory for sort space.

A.1.2 Autoloader Command

When we run the db2autold command we must run it from a directory which is
shared across all the SP nodes in the instance. We created a subdirectory in
the instance owner’s home directory, (in our case /home/tp3an01/db2inst1)
as this directory must be shared for EEE to function.

This is the command which drives Autoloader:

A.1.3 Autoloader Output

When we run this command, this is the output:

A.1.4 The Phases of Autoloader Processing

Lets consider each phase in detail:

1. During the phase called "Start initializing autoloader process":

 • The values of NOTNFS_DIR (/work) and the username (db2inst1) are
used to make the path /work/db2inst1.

 • In this path, directories called psplitload and psplitemp are created (if
not already created).

 • psplitload is used to store the named pipes used as the output of the
split processing.

 • psplittemp is used to store the named pipes used as the input for
the load processing.

 • This happens on all SP nodes referenced in the db2nodes.cfg file for
this instance.

db2autold -c supplier.cfg

Start reading autoloader configuration file: supplier.cfg.
Start initializing autoloader process.
Start moving data from db2split process(es) to target loading nodes in
background.
Start loading data on "15" node(s) in background.
Start 1 db2split process(es) in background.
Autoloader completed with detailed log message in file "autoload.LOG".
Cleanup was done!
Autoloader Examples 247

2. During the phase called "Start moving data from db2split process(es) to
target loading nodes in background":

 • The named pipes used for the output of the split processing are
connected to the named pipes used for load processing. These latter
pipes exist on the SP nodes where the data will be loaded for each of
the split output files.

3. During the phase called "Start loading data on "15" node(s) in
background."

 • The load processes are started (15 in this case). Each load process:

 • Takes its input from a named pipe and is started in the background.

 • Is run on the SP node where its data belongs

4. During the phase called "Start 1 db2split process(es) in background."

 • The one split process is started. This split process:

 • Takes its input from the file supplier.tbl

 • Outputs to 15 named pipes

5. The message Cleanup was done indicates that:

 • All the named pipes are removed.

 • All the processes associated with Autoloader are terminated.

 • All the temporary message files used by Autoloader are removed.

Note that the 15 load processes are started in the background; then the
single split process is started. For split and load to communicate using pipes,
the reader of the pipe (load) must be started before the writer (split) starts.

A.1.5 Log Files

After cleanup has finished, these log files are produced:

 • autoload.LOG:

 • This is the log file of the complete autoloader processing.

 • Load_LOG.<dp>, where dp = 2,3,4 16

 • These files, one per value in OUTPUT_NODES, are the messages
from each load command.

 • In each file, we can see the named pipe used as input. For example, for
database partition 2, the named pipe is
/work/db2inst1/psplittemp/supplier.tbl.002
248 Managing VLDB Using DB2 UDB EEE

 • We can also see the time when the load started and finished, plus the
number of rows loaded.

 • splt_LOG.2

 • This file contains the messages from the single split process used in
this example.

 • In this file, we can see the output data file defined as:
/work/db2inst1/psplitload/supplier.tbl2. This means that 15 named
pipes called supplier.tbl2.002, supplier.tbl2.003 ... supplier.tbl2.016 in
the /work/db2inst1/psplitload directory will be used as the output of the
split process. The "2" after "tbl" indicates that split was run on database
partition 2.

 • We can also see the time when the split started and finished, plus the
number of processed input lines.

A.1.6 In Case of Problems

If any problems occur during Autoloader processing, cleanup may not take
place. In this case, you should rerun db2autold with the same configuration
file and add the -d flag. For example:

If you run Autoloader from a non-NFS directory, you will see output similar to
the following:

This messages indicate that the load script for database partition 5 cannot be
found. This is because the load process for partition 5 is run on tp3an05. But
as the autoloader job was started from a non-nfs directory on tp3an01, this
directory is not available on tp3an05.

A.2 Autoloader Example 2: Split on 4 DPs, Load on 15

In this example, we use the Autoloader tool to:

 • Split and Load in one run

 • Split on four database partitions (compared to 1 in Example 1)

 • Load on 15 database partitions

db2autold -c supplier.cfg -d

ksh: /work/frame: not found.
ksh: ./loadscript_supplier.tbl_5: not found.
Autoloader Examples 249

Running split on multiple database partitions will result in:

 • The input data being converted into a number of smaller pieces (in this
case four). This conversion is not done using db2split but by db2psplit,
which cuts the input data into four equally sized pieces irrespective of the
data.

 • Each of these data pieces will be split using db2split. In this case, there
are 15 outputs from each db2split, making a total of 60 outputs.

 • Each of these outputs will be piped to a load running on the correct
partition for the data.

We chose to split on four database partitions and specified the partitions 1, 2,
3, and 4 since these partitions are all located on the first SP node, tp3an01. If
the "split partitions" were located on other SP nodes, more data would have
to be sent between the SP nodes.
250 Managing VLDB Using DB2 UDB EEE

Figure 28. Autoloader Example 2

tp3an01

db2split

S5

supplier.tbl

S6 S7 S8

S2 S3 S4

S13 S14 S15 S16

S9 S10 S11 S12

load

L2

2

DP

PIECE 1 PIECE 2 PIECE 3 PIECE 4

P1

db2split

S5 S6 S7 S8

S2 S3 S4

S13 S14 S15 S16

S9 S10 S11 S12

P2

db2split

S5 S6 S7 S8

S2 S3 S4

S13 S14 S15 S16

S9 S10 S11 S12

P3

db2split

S5 S6 S7 S8

S2 S3 S4

S13 S14 S15 S16

S9 S10 S11 S12

P4

P1S2

P2S2

P4S2

P3S2

load

L3

3

DP

P1S3

P2S3

P4S3

P3S3

load

L4

4

DP

P1S4

P2S4

P4S4

P3S4

P[1,2,3,4]S[5,6,7,8]

tp3an05

tp3an09

tp3an13

P[1,2,3,4]S[9,10,11,12]

P[1,2,3,4]S[13,14,15,16]

These outputs are sent to the
other SP nodes to be joined
and then loaded

db2psplit
Autoloader Examples 251

Note that, in Figure 28:

 • Only tp3an01, the first SP node, is shown in this diagram.

 • The notation P1S2 refers to the split output for database partition 2
running against piece 1 (P1) of the input data, supplier.tbl.

 • The named pipes which receive the output of the split processes are
named supplier.tbl<P>.<dp>, where <P> is the number of the piece
(ranges from 1 to 4), and <dp> is the partition where this output data
belongs (ranges from 001 to 015). In this example, there are 60 such
named pipes.

This is the Autoloader configuration file, supplier.cfg:

Note that:

 • Compared to Example 1, the SPLIT_NODES clause has changed. Now it
is: SPLIT_NODES=(1,2,3,4).

 • The split log files, splt_LOG.1, splt_LOG.2, splt_LOG.3 and splt_LOG.4
show the output from each split.

A.2.1 Autoloader Command

This is the command that drives Autoloader:

RELEASE=V5.0

db2 "load from supplier.tbl of del modified by coldel| \
 replace into supplier statistics yes and indexes all using /work"

DATABASE=tpcd30

OUTPUT_NODES=(2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)

SPLIT_NODES=(1,2,3,4)

MODE=SPLIT_AND_LOAD

LOGFILE=LOG

NOTNFS_DIR=/work

CHECK_LEVEL=NOCHECK

TRACE=1

db2autold -c supplier.cfg
252 Managing VLDB Using DB2 UDB EEE

A.2.2 Autoloader Output

When we ran this command, this is the output:

Note that now four db2split processes were used.

A.2.3 How Many db2split Processes to Use?

Now that we can use multiple split processes against the input data, how can
we decide how many to use? The answer to this question depends really on
where the slowest part of the complete data loading process is. If it is the split
part, then using multiple split processes may well improve the performance of
the overall loading cycle.

Bear in mind that:

 • The more split processes used:

 • The more data has to pass between the SP nodes.

 • The greater the overhead to create and manage the named pipes

 • The greater the number of processes running simultaneously

 • The smaller the number of lines each split has to process. For
example, if 16 split processes are run simultaneously, each one only
has to process 6.25 percent of the input data.

 • The faster the speed at which data is input into Autoloader the greater the
benefit of having multiple split processes, such as with a very fast
mainframe connection using ESCON channels.

 • Conversely, if the input into Autoloader is the bottleneck, there is no point
running more split processes, such as when running a data generator like
dbgen when using SP high nodes. The dbgen program is single threaded
and cannot exploit the multiple CPUs.

Start reading autoloader configuration file: supplier.cfg.
Start initializing autoloader process.
Start moving data from db2split process(es) to target loading nodes in
background.
Start loading data on "15" node(s) in background.
Start 4 db2split process(es) in background.
Autoloader completed with detailed log message in file "autoload.LOG".
Cleanup was done!
Autoloader Examples 253

254 Managing VLDB Using DB2 UDB EEE

Appendix B. Running Commands on Multiple Database Partitions

In an environment with a lot of database partitions over several SP nodes, the
job of running commands on multiple partitions poses some performance
problems. With 16 DPs to cover, running a simple command like db2 update
db cfg can take a relatively long time. For example, we recorded these times:

1. db2_all with no special modifiers

db2_all "db2 update db cfg for TPCD30 using logretain on

This takes around 43 seconds.

2. db2_all using ||

db2_all "|| db2 update db cfg for TPCD30 using logretain on

This takes around 23 seconds.

3. db2_all using ;

db2_all "; db2 update db cfg for TPCD30 using logretain on"

This takes around 51 seconds.

B.1 Creating Tailored Scripts

To improve the performance of tasks like this, we wrote some scripts which
were tailored to our environment. These scripts reduce the number of remote
shells invoked and run as much function as possible at each SP node where
a particular DP resides. The following pages provide example scripts that
allow us to run db2 update db cfg in 3 to 4 seconds. This is an overview of the
function:
© Copyright IBM Corp. 1998 255

Figure 29. Using Tailored Scripts to Run Commands in Parallel

start 4 runcoms
(1 per DP) at this
host in parallel

tp3an01 tp3an05

start runcom.host
at each host in
parallel

tp3an09 tp3an13

4 runcoms
in parallel

4 runcoms
in parallel

4 runcoms
in parallel

runcom.host runcom.host runcom.host runcom.host

runall

db2 terminate
export DB2NODE=$1
db2 update db cfg for tpcd30
using logretain on

runcom

runcom 5
runcom 6
runcom 7
runcom 8

runcom 1
runcom 2
runcom 3
runcom 4

runcom 9
runcom 10
runcom 11
runcom 12

runcom 13
runcom 14
runcom 15
runcom 16

output from
each DP to
local file
in order

output from
each DP to
local file
in order

output from
each DP to
local file
in order

output from
each DP to
local file
in order

output from
each host
in order

*

*

256 Managing VLDB Using DB2 UDB EEE

Figure 30.

Here is the ~/bin/runall script:

Note that:

 • Like db2_all, /tmp/$USER is used to store output

 • A wait command is used. This means that execution of the command after
the wait will only take place after all the child and lower generations of
processes have terminated.

 • The output from the 16 DPs will be output to the terminal in the right order.

Here is the ~/bin/runcom.host script:

wd=‘pwd‘
c=$@ #the command

x=$USER
t=/tmp/$USER
cd $t

echo "Running $c on 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16"
rsh tp3an01 ". ~/.profile;cd $t;\
 ~/bin/runcom.host 1 2 3 4 $c" 2>&1 > $x.h1 &
rsh tp3an05 ". ~/.profile;cd $t;\
 ~/bin/runcom.host 5 6 7 8 $c" 2>&1 > $x.h5 &
rsh tp3an09 ". ~/.profile;cd $t;\
 ~/bin/runcom.host 9 10 11 12 $c" 2>&1 > $x.h9 &
rsh tp3an13 ". ~/.profile;cd $t;\
 ~/bin/runcom.host 13 14 15 16 $c" 2>&1 > $x.h13 &

wait

cat $x.h1 $x.h5 $x.h9 $x.h13 > $x.all
cat $x.all

cd $wd
Running Commands on Multiple Database Partitions 257

Here is the ~/bin/runcom script:

Some important points about these scripts:

 • They are all placed in a directory accessible from all SP nodes (in this
case ~/bin, which has been added to the PATH).

 • It is much more efficient to run four rsh commands which themselves
initiate other local processes at each host, than to run 16 rsh commands.

 • These scripts are very much tailored to our particular environment. If the
hostnames or number of DPs change then the scripts would have to be
modified. They are really designed to be examples of how to run
commands at all the DPs efficiently.

 • The reason that runcom.host calls runcom to run the DB2 command itself
is that:

 • If you try to run DB2 commands in parallel in the background from the
same script and each DB2 command addresses a different DP, for
example:

n1=$1;n2=$2;n3=$3;n4=$4

shift;shift;shift;shift

c=$@ #the command

x=$USER #get a id

for i in $n1 $n2 $n3 $n4
do
~/bin/runcom $i $c 2>&1 > $x.$i &
done

wait

cat $x.$n1 $x.$n2 $x.$n3 $x.$n4 > $x.$n1$n2$n3$n4

cat $x.$n1$n2$n3$n4

n=$1
shift
c=$@ # the command

h=‘hostname | cut -d’.’ -f1‘

db2 terminate 2>&1 >/dev/null
export DB2NODE=$n && echo "$h:DB2NODE=$DB2NODE"
$c 2>&1
258 Managing VLDB Using DB2 UDB EEE

db2 terminate;export DB2NODE=1;db2 "list tablespaces" &
db2 terminate;export DB2NODE=2;db2 "list tablespaces" &

The following error message is often generated:

DB21016E The command line processor encountered a system
 error while sending the command to the back-end
 process.

This problem goes away if we instead call another script to execute the
DB2 command.

Now if we try:

runall "db2 update db cfg for TPCD30 using logretain on"

This takes around three seconds and produces this output:

Note that the random script can be used by itself to run a DB2 command at a
single partition. For example, to check the number of log pages written on DP
2 using db2 get snapshot:

runcom 2 db2 get snapshot for all on tpcd30|grep ’Logs pages w’

Running db2 update db cfg for tpcd30 using logretain on on 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16
tp3an01:DB2NODE=1
DB20000I The UPDATE DATABASE CONFIGURATION command completed successfully.
DB21026I All applications must disconnect from this database before the
changes become effective.

tp3an01:DB2NODE=2
DB20000I The UPDATE DATABASE CONFIGURATION command completed successfully.
DB21026I All applications must disconnect from this database before the
changes become effective.

..............(OMITTED OUTPUT FROM DPs 3-14).............................

tp3an13:DB2NODE=15
DB20000I The UPDATE DATABASE CONFIGURATION command completed successfully.
DB21026I All applications must disconnect from this database before the
changes become effective.

tp3an13:DB2NODE=16
DB20000I The UPDATE DATABASE CONFIGURATION command completed successfully.
DB21026I All applications must disconnect from this database before the
changes become effective.

real 3.80
user 0.04
sys 0.44
Running Commands on Multiple Database Partitions 259

Running tasks which themselves are time-consuming (for example a load
across all DPs of a large database) will not gain much advantage from using
these tailored scripts. The scripts are really intended for commands that are
quick to execute and must be run at the DP level, such as:

 • db2 list application

 • db2 force application all

 • db2 get snapshot

 • db2 list tablespaces

B.2 Performing Backups

Once these scripts have been written, it is relatively easy to make similar
scripts to perform specialized functions such as backing up a small database
to disk. Here are the scripts we wrote to perform this function:

Here is the script ~/bin/backdball:
260 Managing VLDB Using DB2 UDB EEE

Note that:

 • The catalog DP must finish its backup before the other DPs start their
backups.

 • The backup images are stored in /backdb/NODE00nn, where nn is the DP
number.

 • This script was used to back up the database just after logretain was set
to on (which puts the table spaces in the database into Backup Pending
status). So there is very little data in the database and not a lot of disk
space will be used by the backup images.

Here is the ~/bin/backdb.host script:

id=$1 # id for this backup

wd=‘pwd‘

x=$USER
t=/tmp/$USER
cd $t

as its a backup, we need to finish DP 1 first !
echo "Running backup db using id $id on 1"

db2 terminate 2>&1 >/dev/null
export DB2NODE=1
mkdir /backdb/NODE0001/$id 2>&1 >/dev/null
db2 -v "backup db tpcd30 to /backdb/NODE0001/$id"

now the rest in parallel

echo "Running backup db using id $id on 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16"
rsh tp3an01 ". ~/.profile;cd $t;\
 ~/bin/backdb.host $id 1 2 3 4" 2>&1 > $x.h1 &
rsh tp3an05 ". ~/.profile;cd $t;\
 ~/bin/backdb.host $id 5 6 7 8" 2>&1 > $x.h5 &
rsh tp3an09 ". ~/.profile;cd $t;\
 ~/bin/backdb.host $id 9 10 11 12" 2>&1 > $x.h9 &
rsh tp3an13 ". ~/.profile;cd $t;\
 ~/bin/backdb.host $id 13 14 15 16" 2>&1 > $x.h13 &

wait

cat $x.h1 $x.h5 $x.h9 $x.h13 > $x.all
cat $x.all

cd $wd
Running Commands on Multiple Database Partitions 261

Note that the output from DP 1 must be cleared; otherwise, we will see the
output from a previous task.

Here is the ~/bin/backdb script:

Note that by storing the backup image from each DP in /backdb/NODE00nn,
where nn is the DP number. This script could be used to back up much larger
databases to disk. Each /backdb/NODE00nn directory could be a separate
filesystem.

To run a backup, the command is:

backdball <id>

where <id> is an identifier for this backup.

Similar scripts exist for restore. If we need to restore, we would use:

restdball <id>

id=$1
shift
n1=$1;n2=$2;n3=$3;n4=$4

x=$USER #get a id

#as its backup, don’t do it on 1, but empty 1’s output file
> $x.1

for i in $n1 $n2 $n3 $n4
do
[[$i -ne 1]] && ~/bin/backdb $i $id 2>&1 > $x.$i &
done

wait

cat $x.$n1 $x.$n2 $x.$n3 $x.$n4 > $x.$n1$n2$n3$n4

cat $x.$n1$n2$n3$n4

n=$1
id=$2

db2 terminate 2>&1 >/dev/null
export DB2NODE=$n && echo "DB2NODE=$DB2NODE"
[[$n -lt 10]] && out=NODE000$n || out=NODE00$n
mkdir /backdb/$out/$id 2>&1 >/dev/null
db2 -v backup db tpcd30 to /backdb/$out/$id 2>&1
262 Managing VLDB Using DB2 UDB EEE

B.3 Examples of db2_all and rah

This section lists some useful examples of running commands across
database partitions or hosts using the supplied utilities, db2_all and rah.

This information is designed to supplement Appendix P in the DB2 UDB
Administration Guide.

B.3.1 Suppress Execution of the User’s .profile

By default, the user’s profile will be executed before the command. If we use
a close parenthesis) before the command, the user’s .profile file will not be
run before executing the command. For example:

rah ")ps -F pid,ppid,etime,args -u $USER"

This makes sense in this example because the command to run (ps) does not
require any environment variables, such as $PATH to be set in order to execute
at the other hosts. By not running the .profile file, the rah command executes
faster.

B.3.2 Display the Number of the DP where the Command was Run

In an configuration with multiple DPs per SP node, if we run a command like
db2_all db2 list tablespaces, the output is tagged with the hostname, but not
the DP number. To display at the number of the DP where the DB2 command
was run, we can use the double quotes prefix. For example:

db2_all "\" echo DB2NODE=## && db2 list tablespaces | egrep Name\|State"

where the double quotes " tell db2_all to substitute any occurrence of double
hash ## with the DP number. Since we are enclosing the whole command with
a pair of double quotes, we must escape the double quotes that db2_all treats
as special with a backslash \.

The output of this command is:
Running Commands on Multiple Database Partitions 263

Note the difference between the table spaces at DP 1 compared to DP 2.

Another way to use the double quotes special modifier is to protect it using
single quotes. Here is an example where db2_all is used to stop the Governor
utility on each DP:

db2_all ’;"’ db2gov stop $Database nodenum ’##’

Note that since the semicolon, double quotes and hash (#) are all special to
the Korn Shell, they must be protected with single quotes. In this way, they
can be passed on to db2_all for interpretation.

DB2NODE=1
 Name = SYSCATSPACE
 State = 0x0000
 Name = TS_LIT
 State = 0x0000
 Name = USERSPACE1
 State = 0x0000
 Name = TS_TMP
 State = 0x0000
tp3an01: echo DB2NODE=## && ... completed ok

DB2NODE=2
 Name = USERSPACE1
 State = 0x0000
 Name = TS_TMP
 State = 0x0000
 Name = TS_DAT_MED
 State = 0x0000
 Name = TS_IND_MED
 State = 0x0000
 Name = TS_DAT_BIG
 State = 0x0000
 Name = TS_IND_BIG
 State = 0x0000
tp3an01: echo DB2NODE=## && ... completed ok

DB2NODE=3 and so on
264 Managing VLDB Using DB2 UDB EEE

Appendix C. Special Notices

This publication is intended to help system or database administrators to
manage very large databases using DB2 Universal Database
Enterprise-Extended Edition. The information in this publication is not
intended as the specification of any programming interfaces that are provided
by DB2 Universal Database. See the PUBLICATIONS section of the IBM
Programming Announcement for DB2 Universal Database
Enterprise-Extended Edition for more information about what publications are
considered to be product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not
intended to state or imply that only IBM’s product, program, or service may be
used. Any functionally equivalent program that does not infringe any of IBM’s
intellectual property rights may be used instead of the IBM product, program
or service.

Information in this book was developed in conjunction with use of the
equipment specified, and is limited in application to those specific hardware
and software products and levels.

IBM may have patents or pending patent applications covering subject matter
in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to the IBM
Director of Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood,
NY 10594 USA.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact IBM
Corporation, Dept. 600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The information about non-IBM
("vendor") products in this manual has been supplied by the vendor and IBM
assumes no responsibility for its accuracy or completeness. The use of this
information or the implementation of any of these techniques is a customer
responsibility and depends on the customer’s ability to evaluate and integrate
© Copyright IBM Corp. 1998 265

them into the customer’s operational environment. While each item may have
been reviewed by IBM for accuracy in a specific situation, there is no
guarantee that the same or similar results will be obtained elsewhere.
Customers attempting to adapt these techniques to their own environments
do so at their own risk.

Any performance data contained in this document was determined in a
controlled environment, and therefore, the results that may be obtained in
other operating environments may vary significantly. Users of this document
should verify the applicable data for their specific environment.

The following document contains examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the
examples contain the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and
addresses used by an actual business enterprise is entirely coincidental.

Reference to PTF numbers that have not been released through the normal
distribution process does not imply general availability. The purpose of
including these reference numbers is to alert IBM customers to specific
information relative to the implementation of the PTF when it becomes
available to each customer according to the normal IBM PTF distribution
process.

You can reproduce a page in this document as a transparency, if that page
has the copyright notice on it. The copyright notice must appear on each
page being reproduced.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

UNIX is a registered trademark in the United States and other
countries licensed exclusively through X/Open Company Limited.

Microsoft, Windows, Windows NT, and the Windows 95 logo are trademarks
or registered trademarks of Microsoft Corporation.

ADSTAR AIX
AT DB2
DB2 Universal Database HACMP/6000
IBM Magstar
RS/6000 RISC System/6000
SP Scalable POWERparallel Systems
9076 SP2
266 Managing VLDB Using DB2 UDB EEE

PC Direct is a trademark of Ziff Communications Company and is used
by IBM Corporation under license.

Pentium, MMX, ProShare, LANDesk, and ActionMedia are trademarks or
registered trademarks of Intel Corporation in the U.S. and other
countries.

UNIX is a registered trademark in the United States and other
countries licensed exclusively through X/Open Company Limited.

Other company, product, and service names may be trademarks or
service marks of others.
Special Notices 267

268 Managing VLDB Using DB2 UDB EEE

Appendix D. Related Publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

D.1 International Technical Support Organization Publications

For information on ordering these ITSO publications see “How to Get ITSO
Redbooks” on page 271.

 • Migrating to DB2 Universal Database Version 5, SG24-2006

 • Migrating and Managing Data on RS/6000 SP, SG24-4658

 • Backup, Recovery and Availability on RS/6000 SP, SG24-4695

D.2 Redbooks on CD-ROMs

Redbooks are also available on CD-ROMs. Order a subscription and
receive updates 2-4 times a year at significant savings.

D.3 Other Publications

These publications are also relevant as further information sources:

 • IBM DB2 Universal Database Administration Guide, S10J-8157

 • IBM DB2 Universal Database Extended Enterprise Edition for AIX Quick
Beginnings, S72H-9620

 • ADSM for AIX V3.1 Administrator’s Guide, GC35-0320

CD-ROM Title Subscription
Number

Collection Kit
Number

System/390 Redbooks Collection SBOF-7201 SK2T-2177
Networking and Systems Management Redbooks Collection SBOF-7370 SK2T-6022
Transaction Processing and Data Management Redbook SBOF-7240 SK2T-8038

Lotus Redbooks Collection SBOF-6899 SK2T-8039
Tivoli Redbooks Collection SBOF-6898 SK2T-8044
AS/400 Redbooks Collection SBOF-7270 SK2T-2849

RS/6000 Redbooks Collection (HTML, BkMgr) SBOF-7230 SK2T-8040
RS/6000 Redbooks Collection (PostScript) SBOF-7205 SK2T-8041
Application Development Redbooks Collection SBOF-7290 SK2T-8037
© Copyright IBM Corp. 1998 269

 • ADSM Installing the Clients, SH26-4080

 • HACMP Administration Guide, SC23-1941
270 Managing VLDB Using DB2 UDB EEE

How to Get ITSO Redbooks

This section explains how both customers and IBM employees can find out about ITSO redbooks,
CD-ROMs, workshops, and residencies. A form for ordering books and CD-ROMs is also provided.

This information was current at the time of publication, but is continually subject to change. The latest
information may be found at http://www.redbooks.ibm.com/.

How IBM Employees Can Get ITSO Redbooks

Employees may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and
information about redbooks, workshops, and residencies in the following ways:

 • Redbooks Web Site on the World Wide Web

http://w3.itso.ibm.com/

 • PUBORDER – to order hardcopies in the United States

 • Tools Disks

To get LIST3820s of redbooks, type one of the following commands:

 TOOLCAT REDPRINT
 TOOLS SENDTO EHONE4 TOOLS2 REDPRINT GET SG24xxxx PACKAGE
 TOOLS SENDTO CANVM2 TOOLS REDPRINT GET SG24xxxx PACKAGE (Canadian users only)

To get BokkManager BOOKs of redbooks, type the following command:

 TOOLCAT REDBOOKS

To get lists of redbooks, type the following command:

 TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET ITSOCAT TXT

To register for information on workshops, residencies, and redbooks, type the following command:

 TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ITSOREGI 1998

 • REDBOOKS Category on INEWS

 • Online – send orders to: USIB6FPL at IBMMAIL or DKIBMBSH at IBMMAIL

For information so current it is still in the process of being written, look at "Redpieces" on the
Redbooks Web Site (http://www.redbooks.ibm.com/redpieces.html). Redpieces are redbooks in
progress; not all redbooks become redpieces, and sometimes just a few chapters will be published
this way. The intent is to get the information out much quicker than the formal publishing process
allows.

Redpieces
© Copyright IBM Corp. 1998 271

How Customers Can Get ITSO Redbooks

Customers may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and
information about redbooks, workshops, and residencies in the following ways:

 • Online Orders – send orders to:

 • Telephone Orders

 • Mail Orders – send orders to:

 • Fax – send orders to:

 • 1-800-IBM-4FAX (United States) or (+1) 408 256 5422 (Outside USA) – ask for:

Index # 4421 Abstracts of new redbooks
Index # 4422 IBM redbooks
Index # 4420 Redbooks for last six months

 • On the World Wide Web

In United States
In Canada
Outside North America

IBMMAIL
usib6fpl at ibmmail
caibmbkz at ibmmail
dkibmbsh at ibmmail

Internet
usib6fpl@ibmmail.com
lmannix@vnet.ibm.com
bookshop@dk.ibm.com

United States (toll free)
Canada (toll free)

1-800-879-2755
1-800-IBM-4YOU

Outside North America
(+45) 4810-1320 - Danish
(+45) 4810-1420 - Dutch
(+45) 4810-1540 - English
(+45) 4810-1670 - Finnish
(+45) 4810-1220 - French

(long distance charges apply)
(+45) 4810-1020 - German
(+45) 4810-1620 - Italian
(+45) 4810-1270 - Norwegian
(+45) 4810-1120 - Spanish
(+45) 4810-1170 - Swedish

IBM Publications
Publications Customer Support
P.O. Box 29570
Raleigh, NC 27626-0570
USA

IBM Publications
144-4th Avenue, S.W.
Calgary, Alberta T2P 3N5
Canada

IBM Direct Services
Sortemosevej 21
DK-3450 Allerød
Denmark

United States (toll free)
Canada
Outside North America

1-800-445-9269
1-800-267-4455
(+45) 48 14 2207 (long distance charge)

Redbooks Web Site
IBM Direct Publications Catalog

http://www.redbooks.ibm.com
http://www.elink.ibmlink.ibm.com/pbl/pbl

For information so current it is still in the process of being written, look at "Redpieces" on the
Redbooks Web Site (http://www.redbooks.ibm.com/redpieces.html). Redpieces are redbooks in
progress; not all redbooks become redpieces, and sometimes just a few chapters will be published
this way. The intent is to get the information out much quicker than the formal publishing process
allows.

Redpieces
272 Managing VLDB Using DB2 UDB EEE

IBM Redbook Order Form

Please send me the following:

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

Title Order Number Quantity

First name Last name

Company

Address

City Postal code

Telephone number Telefax number VAT number

Invoice to customer number

Country

Credit card number

Credit card expiration date SignatureCard issued to
 273

274 Managing VLDB Using DB2 UDB EEE

Index

Symbols
.rhosts 24, 161
/etc/exports 200
/etc/hosts 162
/etc/netsvc.conf 207
/etc/services 178
/etc/xtab 199, 207

Numerics
3494 Dataserver 62
3575 Tape Dataserver 62
3590 IBM Tape Drive 78
7133 Serial Disk 132
7133_Config.ksh 218
7135 RAIDiant Array 133
7137 Disk Array 133
8-port serial adapter 141

A
acquire_service_addr 207
acquire_takeover_addr 207
ACTIVATE DATABASE 53
active log 53
ACTLOGRETENTION 86
Adapters, defining 180
Add a TTY 158
Adding

Group 20
User 20

admin.mac 76, 86
ADSM

ClientConfiguration 92
clients 49
server 49
SQL feature 122
Tuning 122

ADSM Administrative Schedules 86
ADSM Administrator, Registering 76
ADSM Client 59

Installation 65
ADSM copy groups 60
ADSM Database 67

Configuration 67
Formatting 71
Sizing 68
© Copyright IBM Corp. 1998
ADSM Device class 60
ADSM Library 60
ADSM Licenses, Registering 77
ADSM Log 67

Configuration 67
Formatting 71

ADSM Log Sizing 68
ADSM macro files 75
ADSM Policy domain 60
ADSM Policy Domains 83
ADSM Policy set 60
ADSM Server 58

Configuration 66
Customize 71, 85
Installation 64
Starting 73

ADSM Storage pool 60
ADSM System Administrator 75
ADSM Version 3 49
ADSM_MGMTCLASS 97
ADSTAR Distributed Storage Manager 58
AIX Error Notification 191
Application Servers 185
ARCHDEL 98, 117
Archival Logging 28, 52
archive files 114
Archiving DB2 Log Files Using ADSM 110
ARP 196
Asynchronous Transfer Mode 132
Atape.driver 64
atldd.driver 64
AUDIT_ERROR_PATH 111
Autoloader 35, 243

Log Files 248
Automatic Cartridge Facility 89

B
backdb 262
backdb.host 261
backdball 260
Backup and Recovery 49
Backup Database SmartGuide 56
backup files 114
Backup Strategy 56
Backup-archive client 59
bibliography 269
BUFFER_SIZE 112
275

C
catalog node 4
catalog partition 4
CHECKIN 89, 90, 91
CHECKOUT 89
Circular Logging 49, 51
cl_activate_nfs 155
cl_deactivate_fs 202
cl_deactivate_nfs 200
cl_export_fs 200
cl_HPS_Eprimary 196
Client Nodes 189
Client System Options File 92
Client User Options File 95
clinfo.rc 190
cluster 3
Cluster Reintegration 207
Cluster Services 190
cluster.log 190
clustering index 44
COMMMETHOD 72, 93
COMMTIMEOUT 73
Concurrent Resource Manager 129
conf_file 217
configuration files 2
Configuring

DB2 UDB EEE 17
CONN_ELAPSE 158
Control Workstation 20
coordinator partition 6, 9
Cost-based SQL optimizer 1
crash recovery 49
crontab 210

D
d dsmapitd 111
Database 10

Backup 28
Creating 27

Database Backup Using ADSM 105
Database Partition Server 9
database partitions 2
Database Restore Using ADSM 106
DAYOFWEEK 87
DB_backup.ksh 105
DB_restore_all.ksh 107
DB_restore_partition.ksh 107
DB2 cluster 3

DB2 instance owner’s home directory 18
DB2 Parallel Edition 4
db2.admin 160, 208
db2_all 113, 255, 263
db2_coll.list 161, 210
db2_local_ps 26
DB2ADM 241
db2adutl 98, 114

DELETE 116
DELETE FULL 116
DELETE LOGS 116
EXTRACT 117
QUERY 115

db2autold 245
db2diag.log 24
DB2GRP 241
db2icrt 178
db2insthtml 20
DB2NODE 27, 179
db2nodes.cfg 23, 178
db2psplit 250
db2start 25
db2start restart 185
db2uext2 94, 110
db2uext2.c 111
dbgen 8, 35, 243
DEACTIVATE DATABASE 53
define devclass 79
define drive 79
define library 79
define stgpool 82
delfullandlogs 120
delfullandlogsall 120
DESTINATION 84
diagpath 24
Disk Mirroring 174
disk_table.ksh 238
documentation 20
DOMAIN 95
dsm.opt 95
dsm.sys 92
DSM_CONFIG 95
dsmadmc 75
dsmapifp.h 111
dsmapipw.exp 100
dsmapipw.ksh 100
dsmc 94
DSMI_CONFIG 95
dsmlabel 90
276 Managing VLDB Using DB2 UDB EEE

dsmrc.h 111
dsmserv format 71
dsmserv.dsk 71
dsmserv.opt 71
DURATION 87
DURUNITS 87
Dynamic Bit Mapped Indexing 1

E
ENABLE3590LIBRARY 73
Eprimary 195
Estart 156
EVENTRETENTION 86
Expect 100
EXPIRE INVENTORY 87, 116

F
fault_service_Worm_RTG 206
Fiber Distributed Data Interchange 132
FIle Collections 20
File Collections 160
Filesystems

Database Partition 16
DB2 Instance Home Directory 17
Log Files 12

firstactive 54
FORCEPWRESET 76
function shipping 6
fuser 202

G
Group

Adding 20
GROUPS 94

H
ha_stopscript 205
HACMP

Components 129
Installation 179
Overview 129

HACMP Cluster Size 152
HACMP heartbeat 141
HACWS 173
hashing algorithm 1
Hierarchical storage management 59
high-speed interconnection 5

HPS_ER6 192
HPS_ER9 192

I
Idle Standby 130
INCLEXCL 94
Include/exclude file 60
Include-Exclude Options File 96
Indexes

Creating 34
install_db2_coll.ksh 161, 208
Installing

DB2 UDB EEE 17
installp 19
Instance 9

Creating 22
Starting 25

INVALIDPWLIMIT 86

L
libApiDS.a 111
library.mac 78
License

DB2 UDB EEE 19
license.mac 77
LIST BACKUP 55
LIST HISTORY 55
log control file 54
log retention logging 49
LOGFILSZ 45
Logging 51
Logical port 23
Logical Volumes

Database Partition 16
LOGMODE 86
LOGPRIMARY 44
LOGSECON 44
lvlstmajor 239

M
major device number 167
Massively Parallel Processor 1
MAX_CONNRETRIES 158
MAXSCRATCH 82
MAXSESSIONS 72
Mirroring Disks 13
MOUNTWAIT 79, 114
 277

multiple database partitions 3
Mutual Takeover 131, 153

N
Naming of VGs, LVs and FSs 14
nextactive 54
no command 123
node_down_remote 200
node_down_remote_complete 201, 204
node_local_down 199
node_up_local 198
node01.ssa 221
Nodegroup

Creating 28
Nodegroups 10
nodenum 23
nodes.mac 98
Notify methods 191
NOTNFS_DIR 246, 247

O
OnLine Analytical Processing 1
OUTPUT_NODES 246
OVERFLOW LOG PATH 110

P
Parallel Architecture 5
PASSEXP 86
PASSWORDACCESS 94
PERIOD 87
PERUNITS 87
PING_CLIENT_LIST 190
policy.mac 83
post_node_down_local 199
post_node_down_remote_complete 204
post_node_up_local 199
post_node_up_remote_complete 202
post_stop_server 203
Power Recovery 196
pre_start_server 203
primary log files 51
priority cell 89
Profile Entries 23
PRUNE HISTORY 55
psplitload 245
psplittemp 245

Q
Quorum Considerations 175

R
rah 263
RAID Disks 51
RAID levels 133
Recovery History File 55
REGISTRATION 86
Reorganize 44
reorgchk 44
Resource Groups 184
restore recovery 49
ROLLFORWARD 110
roll-forward recovery 49
Rotating Standby 131
RPOOLSIZE 123
RUN_STAT_NODE 246
runall 257
runcom 258
runcom.host 257

S
Scalability 2
SCHEDMODES 86
script.cust 163
SCSI Medium Mover 89
SCSI-2 differential disk 132
SDR Switch Address 183
Serial Optical Channel Converter 132
SERVER_CONSOLE 73
SERVERNAME 86, 93
Services Entries 22
SET PASSWORD 100
SET REGISTRATION 97
set.mac 85
setup_VG.ksh 223
setup_VG_maps.ksh 234
setup_VG_maps_catalog.ksh 236
Shared File Systems 171
shared nothing 2
shared nothing architecture 5
Shared Volume Groups 165
Sizing

LVs and FSs 14
snapshot 45
sort space for REORG 46
SPLIT_NODES 252
278 Managing VLDB Using DB2 UDB EEE

SPOOLSIZE 123
SQL query rewrite 1
SQL1229 204
start_db2.ksh 203, 211, 214
start_server 203
startadsm.rc 87
STARTTIME 87
stop_server 203
Storage Pools 81
storage.mac 81
supper 20, 92
Switch Failure 192
Switch Primary Node 195
Switchname 23
Synchronizing Cluster 184
Synchronizing Node 189
syslog.conf 25
System Catalogs 9

T
Table

Creating 33
Reorganizing 44

Table Space
Creating

Data and Index 29
Temporary 11

Creating 28
Table Spaces 10
Tablespace Restore Using ADSM 109
TAPEPROMPT 95
Target Mode SCSI 142, 159
TCPPORT 72, 93
TCPSERVERADDRESS 93
TCPWINDOWSIZE 72
telinit 207
TEMP_DIR 111
Terminology 2
transaction log 2
tuning.cust 127

U
ulimit 74
UPDATE NODE 94, 98
User

Adding 20
Fenced 22
SP user 21

USEREXIT 113
USERS 94

V
version recovery 49
vg_mach.ksh 239
Volume Groups

SP node 16

W
Worm switch 206
 279

280 Managing VLDB Using DB2 UDB EEE

© Copyright IBM Corp. 1998 281

ITSO Redbook Evaluation

Managing VLDB Using DB2 UDB EEE
SG24-5105-00

Your feedback is very important to help us maintain the quality of ITSO redbooks. Please complete
this questionnaire and return it using one of the following methods:

 • Use the online evaluation form found at http://www.redbooks.ibm.com
 • Fax this form to: USA International Access Code + 1 914 432 8264
 • Send your comments in an Internet note to redbook@us.ibm.com

Which of the following best describes you?
❒ Customer ❒ Business Partner ❒ Independent Software Vendor ❒ IBM employee
❒ None of the above

Please rate your overall satisfaction with this book using the scale:
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction __________

Please answer the following questions:

Was this redbook published in time for your needs? Yes___ No___

If no, please explain:

What other redbooks would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

Managing VLDB Using DB2 UDB EEE SG24-5105-00

P
ri

nt
ed

 in
 t

he
 U

.S
.A

.
SG

24
-5

10
5-

00

	Contents
	Figures
	Tables
	Preface
	The Team That Wrote This Redbook
	Comments Welcome

	Chapter 1. Overview
	1.1 DB2 Universal Database Enterprise - Extended Edition
	1.2 Terminology Used in DB2 UDB EEE
	1.2.1 Parallel Architecture and Processing

	Chapter 2. Building a Large DB2 UDB EEE Database
	2.1 The Hardware Configuration
	2.2 Designing and Implementing the DIsk Space Allocation
	2.2.1 Instance and Database Partition Servers
	2.2.2 Database
	2.2.3 Nodegroups
	2.2.4 Table Spaces for Data and Index
	2.2.5 Temporary Table Space
	2.2.6 Container Definitions
	2.2.7 File Systems for Log Files
	2.2.8 Mapping LVs and FSs to Physical Disks
	2.2.9 Sizing of LVs and FSs
	2.2.10 Naming of VGs, LVs and FSs
	2.2.11 Volume Groups per SP node
	2.2.12 File Systems per Database Partition
	2.2.13 Logical Volumes per Database Partition
	2.2.14 File System for the DB2 Instance Home Directory
	2.2.15 How to Create the VGs, LVs and FSs

	2.3 Installing and Configuring DB2 UDB EEE
	2.3.1 Making /home/tp3an01 Available to all the SP Nodes
	2.3.2 Installing DB2 UDB EEE
	2.3.3 Adding a Group and User
	2.3.4 Adding Services Entries
	2.3.5 Creating an Instance
	2.3.6 Adding Profile Entries
	2.3.7 Editing db2nodes.cfg
	2.3.8 Creating .rhosts Entries
	2.3.9 Setting up db2diag.log
	2.3.10 Setting up syslog.conf
	2.3.11 Starting the Instance

	2.4 Creating the Database, Nodegroups, Table Spaces and Tables
	2.4.1 Creating the Database
	2.4.2 Setting Archival Logging
	2.4.3 Creating Nodegroups
	2.4.4 Creating a Temporary Table Space
	2.4.5 Creating Table Spaces for Data and Index
	2.4.6 Creating the Tables
	2.4.7 Creating Indexes

	2.5 Loading Data into the Database
	2.5.1 Creating the Input Data
	2.5.2 Using Autoloader with Concurrent db2splits
	2.5.3 When to Create Indexes
	2.5.4 The Number of db2split Processes
	2.5.5 Notes on Using Autoloader
	2.5.6 Problems running Autoloader
	2.5.7 Autoloader Log files
	2.5.8 Verifying the Load
	2.5.9 Creating the Index on which the Data is Clustered
	2.5.10 Reorganizing the Table on the Clustering Index
	2.5.11 Running REORGCHK to Check Clustering
	2.5.12 Creating Other indexes
	2.5.13 Space Taken by the Indexes

	Chapter 3. DB2 UDB EEE Backup and Recovery using ADSM
	3.1 Overview of DB2 UDB EEE Backup and Recovery
	3.2 Recovery Methods
	3.2.1 Crash Recovery
	3.2.2 Version (or Restore) Recovery
	3.2.3 Roll-Forward Recovery

	3.3 Logging
	3.3.1 Circular Logging
	3.3.2 Archival (or Log Retention) Logging

	3.4 Recovery History File
	3.5 Choosing A Backup Strategy
	3.6 Introducing ADSTAR Distributed Storage Manager (ADSM)
	3.7 Planning for ADSM
	3.8 Installing and Configuring ADSM and DB2 UDB EEE
	3.8.1 Hardware Configuration
	3.8.2 Software Used

	3.9 ADSM Server and Client Installation
	3.9.1 Install the ADSM Server Software
	3.9.2 Install the ADSM Client Software

	3.10 ADSM Server Configuration
	3.10.1 Allocate ADSM Database and Log
	3.10.2 Format the ADSM Database and Log
	3.10.3 Customize ADSM Server Options
	3.10.4 Start the ADSM Server
	3.10.5 Define an ADSM System Administrator
	3.10.6 Register Additional ADSM Administrators
	3.10.7 Register ADSM Licenses
	3.10.8 Define Tape Drives to ADSM
	3.10.9 Define Storage Pools to ADSM
	3.10.10 Create ADSM Policy Domains
	3.10.11 Customize ADSM Server
	3.10.12 Create ADSM Administrative Schedules
	3.10.13 Configure ADSM Server to Start at Boot
	3.10.14 Prepare IBM 3590 Tape Drives
	3.10.15 Prepare Tape Media
	3.10.16 High Availability Considerations for ADSM Server

	3.11 ADSM Client Configuration
	3.11.1 Create Client System Options File (dsm.sys)
	3.11.2 Create Client User Options File (dsm.opt)
	3.11.3 Create Include-Exclude Options File
	3.11.4 Define the Client Nodes to the ADSM Server
	3.11.5 Set the Initial ADSM Password on Client Nodes

	3.12 Overview of Backing up a Database Using ADSM
	3.13 Online Database Backup Using ADSM
	3.14 Database Restore Using ADSM
	3.15 Tablespace Restore Using ADSM
	3.16 Archiving DB2 Log Files Using ADSM
	3.17 Using db2adutl to Manage Backups and Logs
	3.17.1 ADSM and DB2 Concepts
	3.17.2 Query Option of db2adutl
	3.17.3 Delete Option of db2adutl
	3.17.4 Extract Option of db2adutl
	3.17.5 An Example Usage of db2adutl

	3.18 Using ADSM to Query Archived UDB Log Files
	3.19 Tuning Considerations for ADSM on the RS/6000 SP
	3.20 Scripts Used in the Test Configuration
	3.20.1 Policy.mac
	3.20.2 TCP/IP Options Script (tuning.cust)

	Chapter 4. DB2 UDB EEE High Availability using HACMP
	4.1 Overview of HACMP
	4.1.1 Components of HACMP
	4.1.2 Considerations for High Availability of DB2 UDB EEE
	4.1.3 Points of Failure
	4.1.4 Example Scenarios

	4.2 High Availability for DB2 UDB EEE on RISC/6000 SP
	4.2.1 Hardware Configuration
	4.2.2 Installed Software
	4.2.3 Network Interfaces
	4.2.4 DB2 UDB EEE Configuration

	4.3 HACMP Takeover for this Configuration
	4.4 HACMP Considerations for DB2 UDB EEE
	4.4.1 SP Ethernet Considerations
	4.4.2 DB2 UDB EEE Executables
	4.4.3 Cluster Size
	4.4.4 Standby Nodes or Mutual Takeover
	4.4.5 DB2 UDB EEE Database Partitions per SP Node
	4.4.6 Instance Home Directory Considerations
	4.4.7 Considerations for Our Example
	4.4.8 Effect of Switch Restart on DB2 UDB EEE
	4.4.9 DB2 UDB EEE Behavior in Case of Node Failure

	4.5 Prerequisite Tasks for Installation of HACMP with DB2 UDB EEE
	4.5.1 Creating ttys for Serial Null Modem Lines
	4.5.2 Enabling Target Mode SCSI
	4.5.3 Creating Our Own File Collection
	4.5.4 Creating /.rhosts Files on all Nodes
	4.5.5 Updating the /etc/hosts File on All Nodes
	4.5.6 TCP/IP Definitions
	4.5.7 Creating Aliases for the Switch
	4.5.8 Disk Logical Name Definition
	4.5.9 Creating Shared Volume Groups
	4.5.10 Creation of Logical Volumes
	4.5.11 Creating Shared File Systems
	4.5.12 Enabling Disk Mirroring
	4.5.13 Renaming the Shared Logical Volumes
	4.5.14 Varying Off Shared Volume Groups on All Nodes
	4.5.15 Importing Shared Volume Groups
	4.5.16 Changing Volume Groups on Destination Nodes
	4.5.17 Varying Off Volume Groups on Destination Nodes
	4.5.18 Creating a DB2 Instance and Databases
	4.5.19 HACMP Installation

	4.6 HACMP Configuration of cluster_09_13
	4.6.1 Defining the Cluster ID and Name
	4.6.2 Defining Nodes
	4.6.3 Defining Adapters
	4.6.4 Synchronizing Cluster Definition on All Nodes
	4.6.5 Configuring Resource Groups
	4.6.6 Configuring Application Servers
	4.6.7 Configuring Resources for Resource Groups
	4.6.8 Synchronizing Node Environment
	4.6.9 Verifying Cluster Configuration
	4.6.10 Configuring Client Nodes
	4.6.11 Starting Cluster Services
	4.6.12 Activating I/O Pacing
	4.6.13 Using AIX Error Notification

	4.7 Review of Configuration in Non-Catalog Cluster
	4.7.1 Switch Primary Node Failure
	4.7.2 Switch IP Address Takeover
	4.7.3 Node and Frame Power Recovery

	4.8 HACMP Configuration of cluster_01_05
	4.8.1 NFS-Mounting /home/db2inst1 in cluster_09_13
	4.8.2 Configuring NFS Access to /home/db2inst1
	4.8.3 Modifying the cl_deactivate_nfs Script
	4.8.4 Adding a Post-Event Script to the node_up_remote_complete Script
	4.8.5 Adding a Post-Event Script to the stop_server Script
	4.8.6 Adding a Pre-Event Script to start_server
	4.8.7 Adding a Post-Event Script to node_down_remote_complete

	4.9 How HACMP Takeover Affects DB2 UDB EEE
	4.9.1 Takeover of the DB2 Instance Owner’s Home Directory
	4.9.2 DB2 UDB EEE Database Partition Failure
	4.9.3 Other SP Component Failures
	4.9.4 Failover and Cluster Reintegration Times

	4.10 Miscellaneous Configuration Issues
	4.10.1 Use of /etc/netsvc.conf
	4.10.2 Use of /etc/xtab
	4.10.3 NFS Permissions

	4.11 Scripts Used in the Test Configuration
	4.11.1 Install the db2.admin File Collection
	4.11.2 Start and Stop DB2 UDB EEE
	4.11.3 Allocate Disks and Logical Volumes
	4.11.4 Synchronize Volume Groups

	Appendix A. Autoloader Examples
	A.1 Autoloader Example 1: Split on 1 DP, Load on 15 DPs
	A.1.1 TPCD Generator
	4.11.5 Autoloader Configuration File
	A.1.2 Autoloader Command
	A.1.3 Autoloader Output
	A.1.4 The Phases of Autoloader Processing
	A.1.5 Log Files
	A.1.6 In Case of Problems

	A.2 Autoloader Example 2: Split on 4 DPs, Load on 15
	A.2.1 Autoloader Command
	A.2.2 Autoloader Output
	A.2.3 How Many db2split Processes to Use?

	Appendix B. Running Commands on Multiple Database Partitions
	B.1 Creating Tailored Scripts
	B.2 Performing Backups
	B.3 Examples of db2_all and rah
	B.3.1 Suppress Execution of the User’s .profile
	B.3.2 Display the Number of the DP where the Command was Run

	Appendix C. Special Notices
	Appendix D. Related Publications
	D.1 International Technical Support Organization Publications
	D.2 Redbooks on CD-ROMs
	D.3 Other Publications

	How to Get ITSO Redbooks
	How IBM Employees Can Get ITSO Redbooks
	How Customers Can Get ITSO Redbooks
	IBM Redbook Order Form

	Index
	ITSO Redbook Evaluation

