
SG24-5405-00

International Technical Support Organization

www.redbooks.ibm.com

Developing e-business Applications Using
Lotus Enterprise Solution Builder R3.0

Seiji Hamada, Masaya Higuchi, Isao Kadowaki, Makoto Katayama,
Shuhichi Murai, Kaori Nanba, Takashi Saitoh, Naomi Zenge

http://www.redbooks.ibm.com/

Developing e-business Applications Using
Lotus Enterprise Solution Builder R3.0

March 2000

SG24-5405-00

International Technical Support Organization

© Copyright International Business Machines Corporation 2000. All rights reserved.
Note to U.S Government Users – Documentation related to restricted rights – Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (March 2000)

This edition applies to Lotus Enterprise Solution Builder for Domino Release 3.0.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. JLU Building 107-2
3605 Highway 52N
Rochester, Minnesota 55901-7829

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

Before using this information and the product it supports, be sure to read the general information in
Appendix B, “Special notices” on page 269.

Take Note!

Contents

Figures .ix

Tables. xiii

Preface . xv
The team that wrote this redbook. xv
Comments welcome. xvii

Chapter 1. Introduction . 1
1.1 Business environment . 1
1.2 Features of ESB . 1
1.3 Positioning ESB . 3

1.3.1 Domino Enterprise Connection Services: Data virtualization. 3
1.3.2 Lotus Enterprise Integrator: Data movement. 3
1.3.3 Lotus Enterprise Solution Builder: Complete customization 4
1.3.4 Lotus Domino Connectors . 4

1.4 ESB functions . 5
1.4.1 Runtime environment . 6
1.4.2 Development environment . 7

Chapter 2. Architecture and configuration . 9
2.1 ESB architecture . 9

2.1.1 ESB Runtime . 9
2.1.2 Control between the client and ESB Runtime 9
2.1.3 Client application programming interface 9
2.1.4 Connection to backend data sources . 10

2.2 Supported platforms and system requirements 14
2.2.1 Supported platforms . 14
2.2.2 Windows NT version ESB Runtime. 14
2.2.3 AIX version ESB Runtime . 15
2.2.4 Solaris version ESB Runtime . 15
2.2.5 ESB Developer . 15
2.2.6 Windows version of Client Enabler . 16
2.2.7 AIX version of Client Enabler . 17

Chapter 3. Getting started with ESB . 19
3.1 Lesson 1: Creating your first ESB program. 19

3.1.1 Starting the ESB IDE . 19
3.1.2 Editing the Initialize procedure . 20
3.1.3 Running and stopping the programs . 21
3.1.4 Saving the programs . 21
iii

3.2 Lesson 2: Defining a Published class . 21
3.2.1 Class Creation tool . 21
3.2.2 Installing a member . 23

3.3 Lesson 3: Creating a client program . 23
3.3.1 Client Code Creation tool . 23
3.3.2 Running a program . 25

3.4 Lesson 4: Creating a client program using Notes LotusScript 25
3.4.1 Creating a new client form . 25
3.4.2 Creating a form (for Notes R5) . 26
3.4.3 Creating a form (for Notes R4) . 28
3.4.4 Creating an event script . 30
3.4.5 Saving a form . 32
3.4.6 Running a program . 33

3.5 Lesson 5: Handling errors . 33
3.5.1 Editing a form (for Notes R5) . 33
3.5.2 Editing a form (for Notes R4) . 34
3.5.3 Editing an event script . 35
3.5.4 Running a program . 36

3.6 Lesson 6: Obtaining client information . 36
3.6.1 Editing a server program . 36
3.6.2 Running a program . 37

3.7 Lesson 7: Creating a client program using Visual Basic 37
3.7.1 Creating a client program . 37
3.7.2 Running programs . 39

3.8 Lesson 8: The LSServer class . 39
3.8.1 Editing server programs . 39
3.8.2 Running a program . 41

Chapter 4. Server application programming. 43
4.1 ESB Runtime . 43

4.1.1 ESB Runtime development procedure . 44
4.2 Published class . 48

4.2.1 Example of the Published class . 49
4.2.2 Object initialization and deletion . 52
4.2.3 Transmitting data from ESB Runtime . 53
4.2.4 Transferring array data . 54
4.2.5 Transferring user-defined data . 56

4.3 Sharing data and resources between Published class objects 58
4.3.1 ESB threads . 58
4.3.2 Global variables and Published classes 59
4.3.3 LSServer class . 61
4.3.4 Global threads and serialization . 64
4.3.5 SsSharedStorage class . 65
iv Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

4.4 Error handling . 67
4.4.1 ON ERROR statement and RESUME statement 67
4.4.2 Runtime error handling when client program ended abnormally . 69

4.5 Security . 69
4.5.1 Authentication and access control . 69
4.5.2 Authentication when using DCOM . 71
4.5.3 Authentication when IIOP is used . 72
4.5.4 Anonymous authentication . 72
4.5.5 OS authentication . 72
4.5.6 Authentication using LDAP . 73
4.5.7 Authentication using a user-defined exit routine 73
4.5.8 Access control . 76
4.5.9 Programmable access control using LotusScript. 76
4.5.10 Declarative access control using project environment variables 78
4.5.11 Declarative access control using Notes database ACL 80

4.6 Designing an ESB application . 81
4.6.1 Programming model for ESB applications. 81
4.6.2 Synchronizing Notes user and ESB user authentication 82
4.6.3 Designing a Published class in a distributed environment 83
4.6.4 ESB project design related hints . 84

4.7 Other topics . 86
4.7.1 Timer . 86
4.7.2 Calling the DLL function . 87
4.7.3 Obtaining access logs using the exit routine 88

Chapter 5. Client application programming . 91
5.1 Overview . 91

5.1.1 Clients supported by ESB. 92
5.1.2 Client application creation flow . 93
5.1.3 The server program to be used. 94

5.2 Notes application . 95
5.2.1 Creating a client form . 95
5.2.2 Creating a Published class object . 97
5.2.3 Calling a procedure . 98
5.2.4 Displaying the result . 99
5.2.5 Error handling. 99
5.2.6 Deleting objects . 100
5.2.7 Summary . 100

5.3 Web applications . 102
5.3.1 Creating a client page. 103
5.3.2 Creating a Published class object . 113
5.3.3 Calling a procedure . 114
5.3.4 Displaying the results . 115
v

5.3.5 Error handling. 116
5.3.6 Deleting an object. 116
5.3.7 Summary . 116

5.4 VB application . 119
5.4.1 Creating a client screen view . 119
5.4.2 Creating a Published class object . 121
5.4.3 Calling a procedure . 122
5.4.4 Displaying the result . 122
5.4.5 Error handling. 122
5.4.6 Deleting an object. 123
5.4.7 Summary . 123

5.5 Programming hints . 125
5.5.1 Load distribution of the ESB program . 125
5.5.2 Internet Explorer applications . 125
5.5.3 Receiving arrays with a Web client . 126
5.5.4 Applications using multiple forms, pages, or screen views 126

Chapter 6. Using WebSphere . 129
6.1 Overview . 129

6.1.1 Applet programming . 129
6.1.2 JSP programming . 130

6.2 Programming using ESB applets . 131
6.2.1 Application creation example . 131
6.2.2 Running the application . 134

6.3 Programming using JSP . 135
6.3.1 An example of application creation . 135
6.3.2 Running the application . 139

6.4 Setting the HTTP communication function . 141
6.4.1 Setting the ESB servlet. 141
6.4.2 Setting security. 145
6.4.3 Setting the session management . 151

6.5 Application creation hints . 155

Chapter 7. Accessing from and to Notes and Domino 157
7.1 Outline . 157

7.1.1 ESB and Notes or Domino . 157
7.1.2 Prerequisites . 158

7.2 Connecting to Notes or Domino . 159
7.2.1 Flow of the sample program . 159
7.2.2 Preparation. 161
7.2.3 Creating a sample application. 162

7.3 Connecting from Notes or Domino . 166
7.4 Summary . 168
vi Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

7.4.1 Entire code . 168
7.4.2 Running the sample application . 171
7.4.3 Application creation hints . 172

Chapter 8. Connecting to a relational database 175
8.1 Overview . 175

8.1.1 Differences between using Domino Connectors with the LSX LC and
other LSX, CLI, and OCI. 175

8.2 Domino Connectors and the LSX LC . 176
8.2.1 What a Domino Connectors are . 176
8.2.2 Development using Domino Connectors, Lotus Connector LSX 177

8.3 CLI/ODBC and OCI . 191
8.3.1 CLI native call programming . 191
8.3.2 OCI native call programming . 195

8.4 Performance comparison . 199
8.4.1 Test environment . 199
8.4.2 Search processing comparison. 200

8.5 Linking with Query Builder . 203
8.5.1 Creating and using a source file by Code Generator. 204
8.5.2 Connection test . 205
8.5.3 Connection pooling. 206
8.5.4 Setting the transaction processing . 207
8.5.5 Setting for an Oracle connection. 208

Chapter 9. Accessing transaction systems . 209
9.1 Integration with mission-critical business applications using MQLSX 209

9.1.1 What MQLSX is . 209
9.1.2 Usable platforms . 210
9.1.3 How to obtain MQLSX . 210
9.1.4 Prerequisites . 211

9.2 Examples of MQLSX . 211
9.2.1 Process flow . 214
9.2.2 Setup procedure . 224
9.2.3 Usage. 227

Chapter 10. Deploying ESB applications . 229
10.1 Outline . 229

10.1.1 Overall flow from deployment to operation 229
10.1.2 Package files and projects . 230

10.2 Project deployment flow . 230
10.2.1 Starting the project . 231
10.2.2 Managing the deployment conditions 232
10.2.3 Stopping and starting projects . 238
10.2.4 Exiting a project . 238
vii

10.2.5 Automatically starting a package . 239
10.2.6 Starting the ESB Engine Service with a specific account 240

10.3 Setting properties . 241
10.3.1 Settings pertaining to client threads . 241
10.3.2 Setting the pool size . 244
10.3.3 Setting project priority. 248
10.3.4 System environment and project environment variables 249
10.3.5 Setting the client module automatic updating function 250

Appendix A. FAQs . 253
A.1 Creating ESB applications . 253

A.1.1 Runtime errors . 258
A.1.2 Deploying an ESB application . 259
A.1.3 HTTP communication function . 262
A.1.4 Access to databases. 262
A.1.5 ESB and Notes or Domino . 264
A.1.6 Linking with a mission-critical application using MQ. 266
A.1.7 ESB license . 266

Appendix B. Special notices . 269

Appendix C. Related publications . 273
C.1 IBM Redbooks publications . 273
C.2 IBM Redbooks collections . 273
C.3 Other resources . 274
C.4 Referenced Web sites . 274

How to get IBM Redbooks . 275
IBM Redbooks fax order form . 276

List of abbreviations . 277

Index . 279

IBM Redbooks review . 285
viii Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

Figures

1. Positioning Lotus Enterprise family connectivity . 5
2. ESB functions . 6
3. Overview of ESB Runtime and collaboration products 13
4. IIDE initial view. 20
5. Class Creation tool view . 22
6. Create Client Code display . 24
7. View of the design form image on Notes R5 Designer 27
8. Designing a form image on the Notes R4.6 design panel 29
9. Notes R5 Designer connection button and server name input field. 34
10. Form view created by Visual Basic . 38
11. ESB IDE. 45
12. Class Definition Tool . 46
13. Client Code Creation Tool . 46
14. ESB System Manager . 47
15. File extension naming and the ESB program development procedure . . . 48
16. Client Code Creation tool. 50
17. Client threads and global threads . 59
18. Global threads and LSServer class . 62
19. Global threads and serialization. 65
20. SsSharedStorage class . 66
21. ESB security components and the flow . 71
22. Project Property . 77
23. Relationship between the server program and client program 91
24. New Database dialog box . 95
25. Information box of a button . 96
26. Layout of the client application using Notes. 96
27. Executed results on Notes . 102
28. Attributes dialog box . 104
29. Extended Attribute dialog box . 105
30. Layout of the client application using TopPage . 106
31. Script dialog box . 108
32. Create Java Applet dialog box . 110
33. Information box of a Java applet . 111
34. OnLoad event of the form object . 112
35. JS Header script of the form object . 113
36. Executed results on a Web browser . 118
37. Layout of the client application using VB . 120
38. Results on VB application . 125
39. Relationship among the ESB applet, ESB servlet, and ESB bean 130
40. Relationship of the JSP programming type . 131
ix

41. Browser (IE) view of sample program (CFConv) using ESB Applet 135
42. Browser (IE) view of the sample program created by using JSP. 139
43. View of result.jsp . 140
44. View of result2.jsp . 141
45. Servlet configuration on WebSphere Application Server Administration . 142
46. JVM debug setting . 144
47. Authentification for Microsoft IIS . 148
48. Session Tracking Intervals setting . 152
49. Session Tracking Cookies setting . 153
50. Session Tracking enable URL rewriting. 154
51. Accessing a Domino server from an ESB project 158
52. Accessing an ESB project from a Domino agent 159
53. Process flow of the sample program . 160
54. Server program creation . 165
55. Domino agent creation. 168
56. Create Client Code dialog box . 171
57. Mail reporting a result . 172
58. Generic ESB backend connectivity . 176
59. RDMS access from ESB and Domino using Domino Connectors 177
60. Connection pooling of Domino Connectors . 179
61. Environment Variable panel in Project Property of ESB IDE 183
62. Initialization and termination of CLI . 191
63. SELECT SQL process . 192
64. Mechanics of the CLI programming model . 194
65. OCI process flow . 196
66. OCI programming model . 198
67. Query Builder Code Generator connected to a sample database 204
68. Codes generated by Query Builder Code Generator. 205
69. Overview of the relationship between ESB and MQSeries 212
70. Sample program on Notes Client. 214
71. Flow among each component for MQSeries and ESB 222
72. ESB development and deployment flow . 229
73. Package file and group package file . 230
74. System Manager running a project . 231
75. Runtime Monitor Summary panel . 232
76. Runtime Monitor Status panel . 233
77. Runtime Monitor Statistics panel . 235
78. Runtime Monitor Message panel . 236
79. ESB Message Output setting panel . 237
80. Service project on System Manager . 239
81. Project Property Client Thread panel. 242
82. Thread pooling . 245
83. Pool Size panel in the Project Properties of System Manager 246
x Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

84. Project Properties Priority panel in System Manager 248
85. Project Properties Environment Variable panel in System Manager 249
86. Project Properties Client Update panel in System Manager 251
xi

xii Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

Tables

1. Client connectivity . 9
2. Database connectivity . 10
3. IERP connectivity. 11
4. IMQ and transaction system connectivity . 12
5. Windows NT version of ESB Runtime system requirements 14
6. AIX version ESB Runtime system requirements . 15
7. Solaris version ESB Runtime system requirements 15
8. ESB Developer system requirements . 15
9. Windows version of Client Enabler system requirements 16
10. AIX version of Client Enabler system requirements. 17
11. Details of the created fields . 97
12. Details of the created fields . 106
13. Input values for the applet attributes . 107
14. Details of the created fields . 120
15. Sample user parameters for Go Webserver . 149
16. Sample access control parameters . 150
17. Sample parameters of protection. 150
18. Field, attribute, and type . 184
19. Flag property values of a search condition . 188
20. System hardware configuration for performance testing 199
21. System software configuration for performance testing. 199
22. Search comparison between DB2 and Oracle. 200
23. DB2 Access comparison by CLI and Domino Connector 202
24. Flag property values of search conditions . 203
25. Performance comparison of OCI direct call and Domino Connector 203
26. Storage area size and range of data types . 256
27. Maximum value of items . 256
28. Memory size for all data within a specified range 257
xiii

xiv Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

Preface

Learn how to develop applications using Lotus Enterprise Solution Builder
(ESB) R3.0! This redbook was written for developers who intend to integrate
the solutions of the e-business view from an actual implementation by
showing a sample source program. This redbook is especially designed for
users who plan to access enterprise backend systems from ESB. It includes
sample programs that were tested error free and run on the ESB R3.0
environment.

ESB was previously called LSCube, which was available only in Japan. It was
released in September 1997 as version 1.0. Please note that if you see the
word LSCube in a running ESB product, it is actually referring to ESB. The
difference is only in the name, not in the functionality.

Prior to reading this redbook, you must understand what ESB is and its
functionality. You must also have read the ESB R3.0 User's Guide.

The team that wrote this redbook

This redbook was produced by the ESB development team at the Yamato
Software Lab at IBM Japan.

Seiji Hamada is a Technical Master at the Solution Technology Development,
Business Intelligence Solution Development, Yamato Software Lab, IBM
Japan. He is a technical lead of ESB development team, and coordinated the
writing of this redbook from a technical point of view. He wrote Chapter 1 and
Chapter 2 of this redbook.

Masaya Higuchi works in Quality Evaluation for the ESB development team.
His experience with in-depth connectivity testing on backend systems proved
as a solid basis for him to write Chapter 8 on connecting to a relational
database.

Isao Kadowaki is a staff programmer on the ESB development team. He is
responsible for IDE and connectivity with the backend system. His three
years of experience in accessing transaction systems and involvement in
implementing actual customer solutions provided the foundation he needed to
write Chapter 9.

Makoto Katayama is a staff programmer on ESB development team. He
leads the Quality Evaluation group of the ESB development team. He wrote
© Copyright IBM Corp. 2000 xv

the frequently asked questions (FAQs) in Appendix A from a user's point of
view.

Shuhichi Murai works in Quality Evaluation for the ESB development team.
He specializes in System Verification Testing. He wrote on the complex topic
of WebSphere in Chapter 6.

Kaori Nanba writes manuals and develops ESB demonstration programs for
the ESB development team. She created most of the demonstration
programs that were presented here and shown at Solution ’99 in Las Vegas,
Nevada and at DevCon99 in San Francisco, California. She contributed her
expertise in writing Chapter 5 and Chapter 7.

Takashi Saitoh is a staff programmer on the ESB development team. His
expertise in debugging ESB application programs and experience with the
ESB System Manager helped him to write Chapter 10 on deploying ESB
applications.

Naomi Zenge is a programmer on the ESB development team, and is
responsible for the Client Link component. His vast knowledge of ESB was an
asset in writing Chapter 3 and Chapter 4.

Thanks to the following people for their invaluable contributions to this
project:

Takashi Ogura
First line manager of ESB development team

Masahiro Ohkawa
Tomoko Mito
Michio Kikuchi
Tadaaki Kawamura
Iwao Inagaki
Osamu Furusawa
ESB development team — Yamato Software Lab, IBM Japan

Mark Field
Martha Hoyt
Bart Lautenbach
Lance Young-Ribeiro
Lotus Cambridge, Lotus Corporation
xvi Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

A special thank you goes to the following people who dedicated special
efforts to oversee the publication of this redbook:

Takeshi Sakai (Project coordinator)
ESB development team – Yamato Software Lab, IBM Japan

Yasuhiro Kozuru (Japanese to English translator)
ITAS (International Translation and Services) Corp.

Jenifer Servais (Editor)
ITSO Rochester

Comments welcome

Your comments are important to us!

We want our Redbooks to be as helpful as possible. Please send us your
comments about this or other Redbooks in one of the following ways:

• Fax the evaluation form found in “IBM Redbooks review” on page 285 to
the fax number shown on the form.

• Use the online evaluation form found at http://www.redbooks.ibm.com/

• Send your comments in an Internet note to redbook@us.ibm.com
xvii

http://www.redbooks.ibm.com/contacts.html
http://www.redbooks.ibm.com/contacts.html

xviii Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

Chapter 1. Introduction

Lotus Enterprise Solution Builder (ESB) provides an Integrated Development
Environment (IDE) and a runtime environment, which allows LotusScript to be
used in developing and deploying sophisticated high-volume enterprise
applications. ESB solutions cover a full range of business activities and can
be used to access any enterprise system or application. By using the
enhanced functions provided by the IDE, you can develop three-tier
applications that integrate a Lotus Domino application, existing relational
databases, and such application systems as the Enterprise Resource
Planning (ERP) and host enterprise system. The development cycle for
integrating the ESB solution entails only a relatively short period of time.
You’ll benefit from the efficient performance that ESB applications offer in the
enhanced ESB runtime environment.

This chapter describes the characteristics and positioning of ESB.

1.1 Business environment

The typical office-working environment has dramatically changed with the
introduction of groupware. Groupware installations help to improve work
efficiency and to manage an enormous amount of data that accumulates in
office environments. Lotus Notes and Lotus Domino are the leading
groupware solutions used in office environments, which enable you to send
and receive electronic mail, manage schedules, share information through a
document database, and track project progress.

However, in addition to these office-related tasks that Notes excels at, an
office environment also typically includes such enterprise systems as an
order processing system and a management information system. Integration
of these systems and a Lotus Notes or Domino system in your current
business environment is urged. Taking advantage of ESB, you can easily
develop and operate such applications.

1.2 Features of ESB

ESB offers the following features:

• An enhanced runtime environment

ESB provides an enhanced runtime environment that supports
multi-thread processing to handle requests from multiple clients
simultaneously. You can develop and run any business application, such
© Copyright IBM Corp. 2000 1

as order entry, stock control, reservations, or accounting, that accesses
external data sources. This environment also supports thread pooling
functionality, which enables you to quickly respond to client requests. The
ESB Runtime environment can directly manage client requests by using
CORBA/IIOP, which are the basic technologies for handling distributed
objects, and Microsoft DCOM (for the Windows NT version) instead of
routing them through Domino. This means that Notes-based and
Web-based clients can run applications in real time without knowing what
is happening in the background.

• Integrated Development Environment (IDE) of ESB

In addition to features like compound document interface (Multiple
Document Interface (MDI)) support, a project browser, and class creation
tools, ESB provides an extended environment for developing server
applications in the IDE provided in the Notes environment. It also enables
the development of work applications composed from multiple source
files. As a result, you can develop deployable full-scale working
applications efficiently in a very short period of time. In addition to these
programming tools, we have added and support new, original ESB
classes.

• Support for various clients

ESB supports a variety of clients. Since Web clients and Notes clients are
treated in the same way, you can develop and run business applications
on the server without worrying about differences between client types.
ESB also works with clients that support object linking and embedding
(OLE) automation (such as Visual Basic). Since the business logic of
application program is executed on the ESB server, there is no need to
install any programs on client machines to gain access to ESB external
data sources.

• Support for LotusScript

The LotusScript supported by ESB is an object-oriented interpreter
language that meets cross-platform requirements. Since it is already
provided in Lotus Notes and other Lotus applications, you do not have to
learn a new programming language. Anyone who has used LotusScript or
who has script-like skills can quickly and easily develop programs with
ESB.

• Easy backend access

Lotus offers an entire family of connectors for accessing and integrating
enterprise data and e-business applications. The Lotus Domino Standard
Connectors are included with Domino and with Lotus Enterprise Integrator
(LEI) for access to DB2, Oracle, Sybase, OLEDB, ODBC, EDA/SQL, text,
2 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

and flat file systems. The Lotus Domino Standard Connectors are also
included with ESB for access to DB2, Oracle, Sybase, and ODBC. The
Lotus Domino Premium Connectors are sold separately and enable
access to SAP, R/3, PeopleSoft V7.0 and V7.5, Oracle applications, J.D.
Edwards with connectors for MQSeries, CICS, and XML in development.
You can also use other Lotus Software eXtension (LSX) groups where the
LSX is limited to be multi-thread-safe designed.

• Load balancing with the Domino server

When ESB is used in conjunction with Lotus Domino, you may offload
LotusScript server agents where those agents work in collaboration with
external resources to ESB. In doing so, you significantly reduce the load
on the Domino server.

1.3 Positioning ESB

Lotus has developed tools and techniques that work with enterprise systems.
The Lotus Domino family of enterprise integration tools offers a
comprehensive range of functionality to progressively deliver increasingly
sophisticated and interactive e-business solutions to meet the dynamic and
changing needs of the Web-enabled, extended enterprise. It is important that
you understand the characteristics and the value proposition of each product.
It is equally important that you use these products together as your first step
in obtaining the best overall solution.

The following sections offer a brief explanation of the Lotus Domino family of
enterprise integration tools that enable collaboration with enterprise backend
systems.

1.3.1 Domino Enterprise Connection Services: Data virtualization
Domino Enterprise Connection Services (DECS) is included and supported
as a standard component from Domino R4.6.3 and Domino R5 or later. DECS
is ideal for rapid application development. It provides real-time, forms-based
connectivity between Domino and any enterprise system or application, with
no programming required. DECS lets you access and update mission-critical
enterprise information as if it were native to Domino, creating “virtual” views
of RDBMS, ERP, and transactional data without moving, duplicating, or
compromising the integrity of the data.

1.3.2 Lotus Enterprise Integrator: Data movement
Lotus Enterprise Integrator (LEI) is a server-based tool that supports
high-volume, bi-directional data transfer. It also maintains the synchronization
Introduction 3

of data between any enterprise source or target that is supported by a
Domino Connector, including Domino applications, without programming. LEI
provides high-volume and high-performance data transfer and
synchronization, which can be a pre-selected schedule or event.

1.3.3 Lotus Enterprise Solution Builder: Complete customization
Lotus Enterprise Solution Builder (ESB) is an integrated development and
runtime environment specifically designed for high-performance access to
backend systems. ESB provides Domino solutions with a multi-tiered
environment, while offering application developer enhanced flexibility to
deliver sophisticated and interactive solutions. Applications that run on ESB
can execute remotely from Web clients, Notes clients, or 32-bit Windows
systems.

1.3.4 Lotus Domino Connectors
Lotus Domino Connectors are dynamic library links that handle the
connection, authentication, and data translation between Domino and any
Domino Connector support system. The Lotus Domino Connectors are used
with ESB, LEI, and DECS. The data sources that are supported include
RDBMS, ERP, and Transaction Processing Systems and Applications. The
Lotus Domino Connectors, which include RDBMS support, are bundled with
each of the Enterprise Integration products as a standard feature. The Lotus
Domino Premium Connectors, with access to ERP and Transaction
Processing Monitors, are provided as individual products and are available
for purchase from Lotus Development Corporation.
4 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

Figure 1. Positioning Lotus Enterprise family connectivity

1.4 ESB functions

ESB functions (Figure 2 on page 6) are divided into a runtime environment
and a development environment. The functions are described in the following
sections.

• Nonprogramming
• Scheduled
• Transfer,

synchronization and
transformation

• High volumes of data

• Programming
• Interactive
• Sophisticated

processing
• High throughput

• Real time
• Low volume
• Field mapping

Nonprogramming Programming
Introduction 5

Figure 2. ESB functions

1.4.1 Runtime environment
The following sections explain the ESB Runtime functions.

1.4.1.1 Multi-thread support
Multi-thread support includes the following enhanced functions:

• Published class

The LotusScript keyword Published, which was newly added to ESB, is
placed in front of the class keyword. This permits the Published class
objects to be remotely executed or invoked from the supported ESB
clients.

• LSServer class

The keyword LSServer is also newly provided for the sharing of data
between the respective threads run by multi-threads and for the
serialization of various resource accesses.

• Advanced thread pooling

The thread pooling function, which permits a variety of settings, enables
an outstanding response to client requests.
6 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

1.4.1.2 ORB support
ESB supports Object Request Broker (ORB) to assure superior interactivity
for connections between clients and ESB Runtime. ORB, in turn, supports
Microsoft's DCOM (Windows NT version only) and CORBA/IIOP. Due to
firewall and security considerations with IIOP, you may prefer to use the
HTTP protocol. If you do not wish to change its settings, ESB also supports
HTTP protocol combined with IBM WebSphere so that the client uses Web
browsers. ORB is not used as the protocol with the client.

1.4.1.3 System Manager and Runtime Monitor
ESB provides a System Manager as a tool for running or operating packages
created in IDE. A Runtime Monitor is also incorporated as a management tool
that displays the operating conditions when applications are running. System
Manager and Runtime Monitor are integrated as a single tool in the AIX
version.

1.4.2 Development environment
ESB provides the development environment described in the following
sections.

1.4.2.1 Integrated Development Environment (IDE)
The functions of ESB IDE are:

• Remote development support

The ESB IDE permits the display of multiple script editors. As a result, you
can simultaneously edit multiple files covering multiple projects.

• Multi-thread support debugging function

A function is provided that uses the thread selector incorporated into the
IDE to debug, while changing over threads.

• Project browser

When simultaneously editing multiple files, you can switch files
immediately by double-clicking a file name, class name, or procedure
name from the tree view provided by the project browser.

• Class Creation tool

The Class Creation tool provides a function for easily defining and
creating user-defined classes and member procedures in applications on
servers.
Introduction 7

1.4.2.2 Query Builder
The functions of ESB Query Builder are described here:

• Visual SQL Statement Creation function

Query Builder provides a graphical user interface (GUI) for creating SQL
statements.

• RDB data browsing

A function has been provided for the visual browsing of database
information.

• Automatic creation of access source codes using Domino
Connectors

LotusScript skeleton codes accessed through the access class of Domino
Connectors are automatically generated by using SQL statements, which
are created by the visual SQL statement function.
8 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

Chapter 2. Architecture and configuration

This chapter presents an outline of the architecture and the system
requirements of an ESB Runtime environment.

2.1 ESB architecture

This section describes the architecture of ESB.

2.1.1 ESB Runtime
ESB Runtime provides an enhanced LotusScript runtime environment that
features such functions as thread pooling for responding quickly to
simultaneous requests from multiple clients. ESB Runtime can be installed
regardless of Domino installation on a same node or into another
environment.

2.1.2 Control between the client and ESB Runtime
ESB Runtime provides a function for access from a client to application
objects coded in LotusScript by using the Object Request Broker (ORB). ESB
supports CORBA/IIOP and DCOM.

The changes in firewall settings are required when the ORB directly supports
the clients beyond the firewall. To use IIOP on a Web browser, time is
required to load the ORB module at the beginning. A servlet engine is
required for HTTP protocol support. WebSphere 2.02, 3.0, or the servlet
engine that ships with Domino 5.02b or later are recommended.

Note: The servlet engine with Domino versions earlier than 5.02b are not
suitable. In this case, the WebSphere version that ships with Domino 5.0 and
later should be used.

2.1.3 Client application programming interface
Three interfaces of Lotus Software eXtension (LSX), OLE automation, and
applets are provided as the application interface with clients. Table 1 shows
the relationship between the client type, link type, and protocol type.

Table 1. Client connectivity

Client type Link type High-level protocol Remarks

Notes LSX IIOP or DCOM 3

Applet IIOP or HTTP 4
© Copyright IBM Corp. 2000 9

2.1.4 Connection to backend data sources
The access methods described in the following sections are available for the
connection between ESB Runtime and the backend data source.

2.1.4.1 Database system
Table 2 shows the connectivities and interfaces for the backend database.
The access methods are provided as a standard component in ESB.

Table 2. Database connectivity

Web browser Applet HTTP 1 or IIOP OLE Automation
supports only MS IE

OLE
Automation

IIOP 2 or
DCOM 3

Win32 (for
example, Visual
Basic)

OLE
Automation

IIOP 2 or
DCOM 3

Java application Applet IIOP

Notes:

1. A servlet engine is required. WebSphere 2.02, 3.0, or Domino version 5.02b or
later are recommended.

2. ESB provides a function for bridging OLE Automation and IIOP. The module of
IIOP is included in the ESB package.

3. Only the Windows NT version of ESB Runtime supports this function.

4. Notes R5 or later is required.

Data source Link type Access interface Remarks

Notes/Domino LSX Notes Class Backend class only

Domino
Connector

Connector Class

DB2 Domino
Connector

Connector Class

Native API Call CLI

Oracle Domino
Connector

Connector Class

Native API Call OCI

Client type Link type High-level protocol Remarks
10 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

2.1.4.2 ERP system
Table 3 shows the connectivity of the backend system to the ERP system.

Table 3. IERP connectivity

2.1.4.3 Messaging and transaction system
Table 4 on page 12 shows connectivity to the MQSeries and other transaction
systems.

Sybase Domino
Connector

Connector Class

Any ODBC
Data Source

Domino
Connector

Connector Class The ODBC Driver must
be completely
thread-safe

ODBC API Call ODBC

Data source Link type Access interface Remarks

SAP R/3 Domino
Connector

Connector Class R/3 1, 2, 1

LSX LSX Class

PeopleSoft Domino
Connector

Connector Class 1, 2

Oracle
Applications

Domino
Connector

Connector Class 1, 2

J.D. Edwards Domino
Connector

Connector Class 1, 2

Lawson Domino
Connector

Connector Class 1, 2

SSA Domino
Connector

Connector Class 1, 2

Notes:

1. You must verify the combination of support with ESB and so on at the Lotus
Web site at http://www.lotus.com under Enterprise Integration.

2. These connectors are available as premium connectors at a separate package
and price.

Data source Link type Access interface Remarks
Architecture and configuration 11

Table 4. IMQ and transaction system connectivity

2.1.4.4 Other LSX components
You can use access components through LSX provided by sources other than
Lotus to access a variety of backed data sources. Because ESB runs
completely on a multi-thread environment, the LSX must be guaranteed to be
thread-safe. Prior to applying to actual business deployment, it must be
tested sufficiently.

Examples of other LSXs are supplied by sources in addition to Lotus include:

• Essbase LSX
• HLLAPI LSX (IBM eNetwork Personal Communication AS/400 and 3270)

Figure 3 shows an overview of ESB Runtime and the related products that
work with ESB Runtime.

Data source Link type Access interface Remarks

MQ Series LSX MQ LSX Class

CICS (directly of via
MQSeries)
IMS (via MQSeries)
MQSeries

LSX MQEI LSX MQSeries Enterprise
Integrator (part of the
MQSeries and CICS
Connections for Domino
product from Lotus)

Notes:

1. You must verify the combination of support with ESB at the Lotus Web site at
http://www.lotus.com under Enterprise Integration.

2. These connectors are available as premium connectors at a separate package
and price.
12 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

Figure 3. Overview of ESB Runtime and collaboration products
Architecture and configuration 13

2.2 Supported platforms and system requirements

This section describes the supported platforms.

2.2.1 Supported platforms
ESB components are divided into three parts:

• ESB Runtime Windows NT, AIX, and Solaris
• ESB Developer Windows NT
• ESB Client Enabler Windows NT, Windows 98, Windows 95, AIX, and

Solaris

Refer to the system requirements in Table 5 through Table 10 on page 17 for
detailed information, such as the operating system versions that are
supported.

2.2.2 Windows NT version ESB Runtime
Table 5 shows the system requirements for the Windows NT version of ESB
Runtime.

Table 5. Windows NT version of ESB Runtime system requirements

Item Requirement

Hardware IBM PC or 100% IBM compatible PC loaded with an Intel
processor (Pentium 133MHz or higher is recommended)
operated by Microsoft Windows NT version 4.0.

Disk capacity 100 MB of free capacity in a minimum configuration

Operating system Microsoft Windows NT Server 4.0, Microsoft Windows NT
Workstation 4.0 (Service Pack 3 or later must be applied)
14 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

2.2.3 AIX version ESB Runtime
Table 6 shows the system requirements for the AIX version of ESB Runtime.

Table 6. AIX version ESB Runtime system requirements

2.2.4 Solaris version ESB Runtime
Table 7 shows the system requirements for the Solaris version of ESB
Runtime.

Table 7. Solaris version ESB Runtime system requirements

2.2.5 ESB Developer
Table 8 shows the system requirements for the ESB Developer.

Table 8. ESB Developer system requirements

Item Requirement

Hardware RS/6000, operated by AIX (Version 4.3.2 or higher)

Disk capacity /usr 200 MB
/var 100 MB or more of free capacity

Memory capacity 128 MB (512 MB or more is recommended)

Operating system AIX Version 4.3.2 or higher

Item Requirement

Hardware SPARC machine with Solaris version 2.6

Disk capacity /opt 200 MB or more
/var 100 MB or more

Memory capacity 128 MB or more (512 MB or more is recommended)

Operating system Solaris 2.6

Software Java Development Kit 1.1.8 for Solaris Production or
Java Runtime Environment 1.1.8 Production Release

Item Requirement

Hardware IBM PC or 100% IBM compatible PC loaded with an Intel
processor (Pentium 133MHz or higher is recommended)
operated by Microsoft Windows NT version 4.0.

Disk capacity 25 MB of free capacity in minimum configuration

Memory capacity 48 MB or more
Architecture and configuration 15

2.2.6 Windows version of Client Enabler
Table 9 shows the system requirements for the Windows version of Client
Enabler.

Table 9. Windows version of Client Enabler system requirements

Operating system Microsoft Windows NT Server 4.0, Microsoft Windows NT
Workstation 4.0 (SP3 or higher application) 1

Note:

1. Verify the supported items of Windows 95 and Windows 98 at the Lotus home
page for Developer package at: http://www.lotus.com

Item Requirement

Hardware IBM PC or 100% IBM compatible PC loaded with an Intel
processor operated by Microsoft Windows NT Workstation 4.0,
Microsoft Windows 95 or Microsoft Windows 98.

Disk capacity 5 MB of free capacity (7 MB or more when installing sample)

Memory capacity 32 MB (Does not include capacity required to operate other
applications)

Operating system Microsoft Windows NT Workstation 4.0, Microsoft Windows 95,
or Microsoft Windows 98

Software • DCOM for Windows 95 Version 1.2 (Is included in ESB
and is automatically installed when you install Client
Enabler. The standard package of Microsoft Windows NT
4.0 and Microsoft Windows 98 includes DCOM)

• LotusScript R4.5 or higher (when using Notes as the
client)

• Microsoft Internet Explorer 4.0 or higher (when using
Web browser as the client)

• Netscape Navigator 4.5 or higher (when using Web
browser as the client)

Note: If the ESB HTTP Communication function is used, it is not necessary to install
ESB Client Enabler.

Item Requirement
16 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

2.2.7 AIX version of Client Enabler
Table 10 shows the system requirement for the AIX version of the Client
Enabler.

Table 10. AIX version of Client Enabler system requirements

Item Requirement

Hardware RS/6000, operated by AIX (Version 4.3.2 or higher)

Disk capacity /usr 15 MB or more of free capacity (17 MB when installing
sample)

Memory capacity 128 MB or more

Operating system AIX Version 4.3.2 or higher
Architecture and configuration 17

18 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

Chapter 3. Getting started with ESB

This chapter explains the following items in a tutorial format:

• Programming using the ESB Integrated Development Environment (IDE)
• Class Definition Tool and Client Code Creation Tool
• Creating an ESB server program that defines the Published class
• Creating a simple client program using ESB IDE
• Creating a client program using Notes
• Creating a client program using Microsoft Visual Basic
• Processing Runtime errors
• Transferring data between objects using the LSServer class
• Obtaining client information

As you read through this chapter, you should gain an understanding of the
basic operations and language specifications of ESB and the procedure for
creating task application programs.

3.1 Lesson 1: Creating your first ESB program

You use the Integrated Development Environment (IDE) of ESB Developer
when developing ESB server programs. The ESB server application program
defines Published classes, which is one of the functions that the ESB server
provides. For the first step of the ESB tutorial, we create a “Hello World!” type
program (for example, a statement line “Hello world!” is displayed on the
console or in the message box). Although this program is not an ESB server
program, because it does not define the Published class, you can obtain
general knowledge of what the ESB project is or how to use the ESB IDE.

3.1.1 Starting the ESB IDE
To start the ESB IDE, complete these steps:

1. Click the Start button on the task bar of a computer where ESP Developer
was installed. Select the Program menu.

2. Select Lotus ESP Developer, and click IDE.

3. A dialog box asking for a user ID, password, and server name is
displayed. Enter the character strings in the respective text boxes, and
then click OK.
© Copyright IBM Corp. 2000 19

Figure 4 shows the window that appears after the IDE started.

Figure 4. IIDE initial view

3.1.2 Editing the Initialize procedure
In LotusScript, when a program starts to run, the Initialize procedure is
automatically called once. You can insert a Print statement within this
Initialize procedure to display the character strings.

To edit the Initialize procedure, complete these steps:

1. Click the Script drop-down list of the Script Editor in the upper right corner
of the IDE.

If ESB Runtime was installed locally, you can also start the local IDE. In
this case, a dialog box asking for your user ID and so on is not displayed.

Hint
20 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

2. Select Initialize.

3. Add the following statement:

Sub Initialize
Print "Hello World!" '<<== ADD

End Sub

3.1.3 Running and stopping the programs
To run and stop the programs, complete these steps:

1. Select Build -> Run Project.

If it runs correctly, the character string "Hello World!" is displayed on the
IDE Output panel.

2. Select Debug -> Stop Running Project to stop the program.

3.1.4 Saving the programs
Save the respective LotusScript and project files. Follow these steps:

1. Select File-> Save Source Module as, and save it as Convert.lss.
2. Select File-> Save Project as, and save it as CFConv.lsp.

3.2 Lesson 2: Defining a Published class

In this section, you add a Published class to the program you created in
Lesson 1 to create an ESB server program. In the ESB application, ESB
server programs and ESB client programs send and receive data though
member procedures defined for the Published class.

3.2.1 Class Creation tool
Using the Class Creation tool of the ESB IDE facilitates the creation of class
patterns when defining Published classes and other classes. Complete the
following steps to create the template of the new Published class
ConvertClass:

1. Select Create -> Interface/Class.

Figure 5 on page 22 shows a view of the Class Creation tool.
Getting started with ESB 21

Figure 5. Class Creation tool view

2. Enter the character string ConvertClass into the Class Name text box, and
select the Published option from the Class Keyword group.

3. Click the Member Procedure tab.

4. Enter the character string CtoF into the Procedure Name text box.
Respectively select Function for the Method Type and Single for the
Return Type.

5. Click the Parameter button.

6. Enter the character string c in the Parameter text box. Select Single for
Parameter Type. Then, click Add.

7. Click OK, and then click Add. The following function is displayed:

Function CtoF(c As Single) As Single

8. Repeat steps 4 through 7. Then, define the following function:

Function FtoC(f As Single) As Single

9. Click OK, and then click OK in the dialog box that asks whether you want
to create a class.
22 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

3.2.2 Installing a member
To install a member, follow this process:

1. Enter the program into the Published class ConvertClass pattern created
by the Class Definition tool.

2. Enter the LotusScript statement for each member procedure with the
script editor:

Published Class ConvertClass
Sub New()

Print "New is called."
End Sub

Sub Delete()
Print "Delete is called."

End Sub

Function CtoF(c As Single) As Single
Dim f As Single
f = c * (9/5) + 32
CtoF = f

End Function

Function FtoC(f As Single) As Single
Dim c As Single
c = (f - 32) * (5/9)
FtoC = c

End Function
End Class

3.3 Lesson 3: Creating a client program

In this section, you create an ESB client program for communicating with the
Published class ConvertClass of the ESB server program that you created in
Lesson 2. Although ESB client programs are normally created in Domino
Designer using LotusScript, this process uses the IDE to develop a simple
program to confirm the operation of the Published class object.

3.3.1 Client Code Creation tool
ESB IDE includes a Client Code Creation tool for quickly creating operation
confirmation programs. To use the tool, follow these steps:

1. Start the IDE again.

2. Click Create -> Client Code.
Getting started with ESB 23

3. Enter CFConv in the Project Name box, ConvertClass in the Published Class
Name box, and the TCP/IP host name or TCP/IP address in the Server
Name box. Then, click OK (Figure 6).

Figure 6. Create Client Code display

4. Enter the portion described as “<<== Add” in the following code:

Sub Initialize
Dim ORSObj As New SsClink
Dim obj As Variant

On Error Goto ErrorHandler
On Event RuntimeError From ORSObj Call EventHandler

ORSObj.ConnType = "IIOP"
Set obj = ORSObj.CreateObject("CFConv.ConvertClass, node=ESB_SERVER")
Print "Object is successfully created."

'
' Now you can call Published class methods here.
' eg)
' Dim ret As Integer
' ret = obj.DoSomething(arg1, arg2)
'

Dim c As Single '<<== Add
Dim f As Single '<<== Add
f = 100 '<<== Add
c = obj.FtoC(f) '<<== Add
Print f & " degrees Fahrenheit is " & c & " degrees Celsius." '<<== Add
Set obj = Nothing
Print "Object is successfully deleted."

Exit Sub

ErrorHandler:
Print "ErrorHandler: " & Cstr(Err)
Print "ErrorHandler: " & Error
Exit Sub

End Sub

5. To create a Published class object, specify a class name and server name.
Then call the CreateObject member function of the SsClink class.
24 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

6. Select File -> Save Source Module as, and save it as Client.lss.

7. Select File -> Save Project as, and save it as Client.lss.

3.3.2 Running a program
To run a program, follow these steps:

1. Start two ESB IDEs.

2. Load the program you created in “Lesson 2: Defining a Published class”
on page 21, in one IDE. Select Build -> Run Project, and then start the
server program.

3. Load the program you created in “Lesson 3: Creating a client program” on
page 23, in the other IDE. Select Build -> Run Project. Then, start the
client program. When it runs normally, the following character string is
displayed on the IDE output panel where the client program was run:

100 degrees Fahrenheit is 37.77778 degrees Celsius.

3.4 Lesson 4: Creating a client program using Notes LotusScript

Use Notes LotusScript to create a client program. The user enters a
numerical value in a field on the Notes form, and then clicks the button to call
the member procedure for the Published class.

3.4.1 Creating a new client form
To create a new client form, follow this series of steps:

1. Select File -> Database -> New on the Notes workspace.

2. Enter Tutorial in the Database Name text box. Then, click OK.

The ESB client application requires that you load the SsClink class
using a USELSX statement. However, in ESB IDE, SsClink is loaded by
default.

Hint

Two methods are provided in this lesson. One method uses Domino
Designer of Notes R5, and the other method uses the design of Notes R4.

Note
Getting started with ESB 25

3. Select Create -> Design -> Form in the Tutorial database. A new form is
created, and the Untitled Form window opens.

4. Select Design -> Form Properties in the Untitled Form.

5. Enter frmMain in the Name text box in the Property Info Box. Then, click
Close.

3.4.2 Creating a form (for Notes R5)
You can also directly create buttons and fields in forms. It is easier to create a
table, create the buttons and fields within it, and then arrange the position
and appearance of the form elements.

Figure 7 shows a view of designing the Form image on Notes R5 Designer.

You can also use a layout region to arrange the appearance of the form
elements. However, the layout regions are not correctly displayed when it
is published as a Web page. Tables are correctly displayed even on Web
pages.

Note
26 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

Figure 7. View of the design form image on Notes R5 Designer

3.4.2.1 Creating tables
To create the tables, complete these tasks:

1. Select Create -> Table on the FrmMain form.

2. Enter 1 in the Number of Rows box, and enter 3 in the Number of Columns
box. Then, click OK.

3. Select the entire table. Then, select Table -> Table Properties.

4. Select Center in the Vertical Alignment list box in the Cell group of the
Table Layout tab in the Property Info Box.

5. Click Set all to 0 in the Cell Border Thickness group under the Cell
Borders tab.

6. Click the Close button.

7. Use the ruler to arrange the size of the table cells.
Getting started with ESB 27

3.4.2.2 Creating fields
To create fields, follow this procedure:

1. Click the leftmost cell of the table, and then enter Celsius:.

2. Select the Create Field menu.

3. Enter txtC in the Name box under the Field Info tab of the Property Info
box. Then, click the Close button.

4. Click the rightmost cell of the table, and enter Fahrenheit:.

5. Select the Create Field menu.

6. Enter txtF in the Name box under the Field Info tab of the Property Info
box. Then, click the Close button.

3.4.2.3 Creating buttons
To create buttons, complete these steps:

1. Click the cell in the center of the table. Select Create -> Hotspot ->
Button.

2. Enter -> in the Name box under the Button Info tab of the Property Info
box.

3. Press the Enter key.

4. Select Create -> Hotspot -> Button.

5. Enter -> in the Name box under the Button Info tab of the Property Info
box.

3.4.3 Creating a form (for Notes R4)
You can create such components as buttons and forms directly in a form. It is
easier to create a layout region, create buttons and fields within it, and then
arrange the position and appearance of the form fields.

Figure 8 shows designing a form image on the Notes R4.6 design panel.
28 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

Figure 8. Designing a form image on the Notes R4.6 design panel

3.4.3.1 Creating layout regions
You can create layout regions by completing these steps:

1. Select Form -> Layout Region -> New Layout Region on the FrmMain
form.

2. Drag the handle of the layout region and enlarge it to an appropriate size.

3. Select Design -> Layout Properties.

4. Click the Basics tab of the Property Info box. Turn the Show Grid and
Snap to Grid check boxes to On under the Grid group. Then, click the
Close button.

3.4.3.2 Creating fields
Create the fields by following these steps:

1. Select the newly created layout region on the frmMain form.

2. Select Create -> Field.
Getting started with ESB 29

3. Select Design -> Field Properties.

4. Click the Basics tab in the Property Info Box. Enter txtC in the name text
box. Then, click the Close button.

5. Repeat steps 2 through 4 to create another field. Enter txtF in the Name
text box.

3.4.3.3 Creating buttons
To create buttons, complete these tasks:

1. Select Create -> Hotspot -> Button.

2. Select Design -> Object Properties.

3. Click the Basics tab of the Property Info box. Enter -> in the Button Label
text box. Click the Close button.

4. Repeat steps 1 through 3 to create another button. Enter -> in the Button
Label text box.

3.4.3.4 Creating static text
Create static text by completing these steps:

1. Select Create -> Layout Region -> Text.

2. Select Design -> Object Properties.

3. Enter Celsius in the Text text box in the Static Text Options group of the
Property Info box. Click the Close button.

4. Repeat steps 1 through 3 to create another static text. Enter Fahrenheit in
the Text text box.

3.4.4 Creating an event script
This section explains how a LotusScript sample code is produced when the
the button is pressed or the form is loaded.

3.4.4.1 Loading an ESB client and an LSX file
The ESB client program uses the CreateObject member of the SsClink class
to create a Published class object. Perform the following steps to load an
ESB client and an LSX file:

1. Click the Objects of the Design panel, and select (Globals)frmMain ->
(Options).

2. Enter the following statement in the script editor:

Uselsx "*SsClink"
30 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

3.4.4.2 Defining a global variable
To define a global variable, complete these tasks:

1. Select (Globals)frmMain -> (Options) in the Design panel.

2. Enter the following statement in the script editor:

Dim uidoc As NotesUIDocument
Dim doc As NotesDocument
Dim myObj As Variant

3.4.4.3 Creating a Published class object
You can create a Published class object by following this process:

1. Select frmMain(form) -> Postopen in the Design panel.

2. Enter the following statement with the script editor:

Note: Replace the character string ESB_SERVER specified for the node
parameter of the CreateObject member procedure function. Instead, use
the TCP/IP host name of the computer where the ESB server is installed
or the IP address in the dotted decimal notation (for example:
xxx.xxx.xxx.xxx).

Sub Postopen(Source As Notesuidocument)
Set uidoc = Source
Set doc = uidoc.Document

Dim ORSObj As New SsCLink
ORSObj.ConnType = "IIOP"
Set myObj = ORSObj.CreateObject("CFConv.ConvertClass,

node=ESB_SERVER")
Set ORSObj = Nothing

End Sub

3.4.4.4 Calling a member procedure
To call a member procedure, complete these steps:

1. Select ->(button) -> Click in the Design panel.

When using Notes R5 Domino Designer, select LotusScript in the Run
box.

Note
Getting started with ESB 31

2. Enter the following statement in the Edit window:

Sub Click(Source As Button)
Dim f As Single
Dim c As Single

c = CSng(uidoc.FieldGetText("txtC"))
f = myObj.CtoF(c)
Call uidoc.FieldSetText("txtF", Cstr(f))

End Sub

3. Enter the following statement in the event script for ->(button) -> Click:

Sub Click(Source As Button)
Dim f As Single
Dim c As Single

f = CSng(uidoc.FieldGetText("txtF"))
c = myObj.FtoC(f)
Call uidoc.FieldSetText("txtC", Cstr(c))

End Sub

3.4.4.5 Deleting a Published class object
Follow these steps to delete a Published class object:

1. Select (Globals)frmMain -> Queryclose in the Design panel.

2. Enter the following statement in the Edit window:

Sub Queryclose(Source As Notesuidocument, Continue As Variant)
Set myObj = Nothing

End Sub

3.4.5 Saving a form
Complete these tasks to save a form:

1. Select File -> Save.
2. Select File -> Close.

If you are using the Notes R5 Domino Designer, select the LotusScript
menu in the Run box.

Note
32 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

3.4.6 Running a program
To run a program, complete these steps:

1. Start IDE and load it. Run the program created in “Lesson 2: Defining a
Published class” on page 21.

2. Start Notes. Click the Tutorial database icon from the workspace to open
it. Select Create -> frmMain. A new document opens. Check that the
ConvertClass object was created in the IDE that is running the server
program.

3. Enter 0 in the Fahrenheit field. Click the -> button. If converted correctly, 32
is displayed in the Fahrenheit field.

3.5 Lesson 5: Handling errors

In this lesson, you add a Runtime error handling routine to the client program.
You add a field for specifying the server name and a button to the form. Then,
you check its operation by generating a Runtime error by specifying for the
server name a computer name that does not exist when running the program.

Use the LotusScript ON ERROR statement and SsClink class RuntimeError to
perform the error handling.

3.5.1 Editing a form (for Notes R5)
This section explains how to add a connection button and the Server name
input field in the form. Follow these steps to create a server name entry field:

1. Enter Server name: at the front of the form.

2. Select Create -> Field.

3. Enter txtServer in the Name box under the Field Info tab of the Property
Info box.

4. Press the Enter key.

5. Select Create -> Hotspot -> Button.

6. Enter Create Object in the Label box under the Button Info tab of the
Property Info box. Click the Close button.

Figure 9 on page 34 shows the newly added connection button and the
Server name input field on Notes R5 Designer.
Getting started with ESB 33

Figure 9. Notes R5 Designer connection button and server name input field

3.5.2 Editing a form (for Notes R4)
This section discusses the process for deleting a NoteBox. First, lay out the
fields, buttons, and static text. Then, create a server name entry field. Follow
these steps:

1. Click and select the layout region of the frmMain form.

2. Select Create -> Field.

3. Select Design -> Field Properties.

4. Click the Basics tab of the Property Info box. Enter txtServer in the
Name text box. Click the Close button.

5. Select Create -> Hotspot -> Button.

6. Select Design -> Object Properties.

7. Click the Basics tab of the Property Info box. Enter Create Object in the
Button Label text box. Click the Close button.

8. Select Create -> Layout Region -> Text.
34 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

9. Select Design -> Object Properties.

10.Enter Server Name in the Text text box in the Static Text Options group of
the Property Info box. Click the Close button.

3.5.3 Editing an event script
With the client program of “Lesson 4: Creating a client program using Notes
LotusScript” on page 25, we created a Published class object at the same
time that a form was opened. However, when the user enters a server name
in field and clicks the Create Object button, it changes the program, so that it
creates a Published class object. Follow these steps to edit an event script:

1. Click the Object tab of the Design panel. Select frmMain(Form) ->
Postopen.

2. Delete the statement that generates a Published class object from the
statement within the procedure:

Sub Postopen(Source As Notesuidocument)
Set uidoc = Source
Set doc = uidoc.Document

End Sub

3. Select Create Object (Button) ->Click in the Design panel.

4. Enter the following statement:

Sub Click(Source As Button)
Dim ORSObj As New SsCLink
Dim szServerName As String

On Error Goto ErrorHandler
On Event RuntimeError From ORSObj Call EventHandler

szServerName = uidoc.FieldGetText("txtServer")
ORSObj.ConnType = "IIOP"
Set myObj = ORSObj.CreateObject(_

"CFConv.ConvertClass, node=" + szServerName)
Set ORSObj = Nothing
Exit Sub

ErrorHandler:
Dim szMessage As String
szMessage = "LotusScript Error : " + Cstr(Err) + ":" + Error
Msgbox szMessage
Exit Sub

End Sub

Select LotusScript in the Run box when using Notes R5 Domino
Designer.

Note
Getting started with ESB 35

Sub EventHandler(ORSObj As SsClink, errorCode As Long, description As String)
Dim szMessage As String
szMessage = "ESB Error : " + Cstr(errorCode) + ":" + description
Msgbox szMessage

End Sub

5. Select File -> Save.

3.5.4 Running a program
To check the Runtime error handling, run the Runtime program without
starting up the server program. Follow these steps:

1. Select Design -> Preview in Notes.

2. Enter an appropriate character string, such as UNKNOWN in the Server Name
field.

3. Click the Create Object button. When a timeout occurs, the following error
message is displayed:

ESB Error:50017:Cannot connect to server UNKNOWN. The RPC server is not
available or not found name service.
LotusScript Error:219:Error accessing product object method

3.6 Lesson 6: Obtaining client information

You can obtain the user IDs and TCP/IP addresses that use the Published
class from the server program and the environment information of the server
where the Published class is operating. To obtain this information, invoke the
GetContext function within the member procedure for the Published class.

3.6.1 Editing a server program
To edit a server program, follow these steps:

1. Start ESB IDE. Open the server program created in “Lesson 2: Defining a
Published class” on page 21.

2. Add the following <<== Add statement to the CtoF member procedure:

Function CtoF(c As Single) As Single
Dim f As Single
Dim infoObj As Variant

f = c * (9/5) + 32
CtoF = f

Set infoObj = GetContext() '<<== Add
Print "CtoF is called by " & infoObj.HostName '<== Add
End Function
36 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

3.6.2 Running a program
To run the program, complete these tasks:

1. Run the server program.

2. Run the IDE client program created in “Lesson 3: Creating a client
program” on page 23, or the Notes client program created in “Lesson 4:
Creating a client program using Notes LotusScript” on page 25, and
“Lesson 5: Handling errors” on page 33.

3. Enter 0 for the Celsius field and click the -> button. If it runs correctly, the
server displays the following statement on the output panel of the server:

CtoF is called by XXX.XXX.XXX.XXX

3.7 Lesson 7: Creating a client program using Visual Basic

You can create an ESB client program if the language supports OLE
automation, even if the script language is other than LotusScript. In this
section, you use Microsoft Visual Basic (VB) to create a client program that
connects to the ESB server.

3.7.1 Creating a client program
Use VB to create a client program with the same functions as the program
you created in “Lesson 5: Handling errors” on page 33.

3.7.1.1 Creating a form
To create a form, follow these steps:

1. Start Visual Basic.

2. Lay out the components as shown in Figure 10 on page 38.

The name of the Create Object button is cmdCrateObject, the name of the
-> button is cmdCtoF, and the name of the <- button is cmdFtoC.

Use the CreateObject function of Visual Basic to create an SvClink class
object. Use the CreateObject member function in SvClink to create a
Published class object.

Note
Getting started with ESB 37

Figure 10. Form view created by Visual Basic

3.7.1.2 Editing programs
Edit the programs by following these steps:

1. Enter the following statement for the (General)-(declarations) procedure:

Dim myObj As Object

2. Enter the following statement for cmdCreateObject_Click:

Private Sub cmdCreateObject_Click()
Dim ORSObj As Object
Dim szText As String

Set ORSObj = CreateObject("SVCLink")

szText = "CFConv.ConvertClass, node=" & txtServerName.Text
Set myObj = ORSObj.CreateObject(szText)

Set ORSObj = Nothing
End Sub

3. Enter the following code for the cmdCtoF_Click procedure:

Private Sub cmdCtoF_Click()
Dim c As Single
Dim f As Single

c = CSng(txtC.Text)
f = myObj.CtoF(c)
txtF = CStr(f)

End Sub

4. Enter the following code for the cmdFtoC_Click procedure:
38 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

Private Sub cmdFtoC_Click()
Dim c As Single
Dim f As Single

f = CSng(txtF.Text)
c = myObj.FtoC(f)
txtC = CStr(c)
End Sub

3.7.2 Running programs
Run the programs by following these steps:

1. Start IDE. Load the server program created in “Lesson 6: Obtaining client
information” on page 36, and run it.

2. Select Run -> Start in Visual Basic.

3. Specify the TCP/IP host name where the ESB server is operating or the
dot decimal type IP address (for example: xxx.xxx.xxx.xxx) in the Server
Name text box. Click the Create Object button.

4. Enter 0 in the Celsius text box and click the -> button. If it runs correctly, 32
is displayed in the Fahrenheit text box.

3.8 Lesson 8: The LSServer class

When you use the LSServer class, you can transfer data between Published
classes. You can also serialize resource accesses, which is not possible with
the Published class alone. Add the LSServer class MyCounter created in
“Lesson 6: Obtaining client information” on page 36. Then, count the number
of ConvertClass objects created once the server program has run. Output the
value to the New script of the ConvertClass.

3.8.1 Editing server programs
This section decribes the procedure for adding the LSServer class definition
to the server program.

3.8.1.1 Defining the LSServer class MyCounter
Use the Class Creation tool to define the LSServer MyCounter in the server
program. Complete these steps:

1. Start ESB IDE. Load the program you created in “Lesson 6: Obtaining
client information” on page 36.

2. Select Create -> Interface/ Class. Start the Class Creation tool.
Getting started with ESB 39

3. Enter MyCounter in the Class Name text box. Select LSServer from the
Class Keyword group.

4. Click the Member Procedures tab. Enter GetNextNumber in the Procedure
Name text box. Respectively, select Function from the Procedure Type
drop-down box and Integer from Return Type drop-down box. Click the
Add button.

5. Click the Member Variable tab. Select the character string counter in the
Variable Name text box and Integer from the Variable Type drop-down
box. Click the Add button.

6. Click the OK button. You are asked whether you want to create a class.
Here, click the OK button.

3.8.1.2 Editing the LSServer class MyCounter
Perform these tasks to edit MyCounter:

1. Enter the following statement in the New member procedure of the
LSServer class MyCounter:

Sub New()
Print "MyCounter::New() was called."
counter = 0

End Sub

2. Enter the following statement in the Delete procedure:

Sub Delete()
Print "MyCounter::Delete() was called."

End Sub

3. Enter the following statement in the GetNextNumber member procedure:

Function GetNextNumber() As Integer
counter = counter + 1
GetNextNumber = counter

End Function

3.8.1.3 Editing the Published class ConvertClass
To edit ConvertClass, enter the following statement in the New member
procedure of the Published class ConvertClass:

Sub New()
Dim counterObj As MyCounter
Dim myNumber As Integer
Set counterObj = Bind("")
myNumber = counterObj.GetNextNumber()
40 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

Print Cstr(myNumber) & " - ConvertClass::New() was called."
End Sub

3.8.2 Running a program
To run a program, follow these steps:

1. Run a server program. If run correctly, the following statement is displayed
on the output panel of the server:

'CFConv': Compiling Project Files...
'Convert.lss': compiled successfully.
All of the project files compiled successfully.
MyCounter::New() was called.

2. Run the IDE client program created in “Lesson 3: Creating a client
program” on page 23, or the Notes client program created in “Lesson 4:
Creating a client program using Notes LotusScript” on page 25, and
“Lesson 5: Handling errors” on page 33. When the ConvertClass object is
created, it is displayed as follows on the Output panel:

1 - ConvertClass::New() was called.

3. Exit the client program. Restart it and then create an object. It is displayed
as follows on the Output panel:

1 - ConvertClass::New() was called.
ConvertClass::Delete() was called.
2 - ConvertClass::New() was called.
ConvertClass::Delete() was called.
Getting started with ESB 41

42 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

Chapter 4. Server application programming

This chapter explains the following items relating to ESB Runtime
programming:

• The configuration of the ESB Runtime, the environment used when
developing runtime, and the tools and their main functions

• Definitions, usages and notes on Published classes, which are core
elements of the ESB Runtime, and the procedures for sending and
receiving the array data and user-defined data that are widely used in
actual applications

• Definitions and usages of LSServer classes used in the transfer of data
between objects and the serializing of processing, and the
SsSharedStorage classes used for the sharing of data between projects

• Authentication and access control of ESB applications

• Notes on ESB application designs

• Topics relating to other ESB Runtime programming

This chapter simultaneously explains the ESB client programs required to
confirm the operation of the ESB Runtime. For a more detailed explanation of
client programming, refer to Chapter 5, “Client application programming” on
page 91.

4.1 ESB Runtime

ESB Runtime defines at least one Published class and provides services
through class member procedures. The Published class is a special class
implemented in ESB. It can create objects outside of the runtime, particularly
from computers other than those where the runtime is operating. It can call
the member procedure defined in the class. The Published class can also be
called from another process of the same computer. In this case, it can use a
common client program without having to recreate the client program,
according to the location where the ESB Runtime is running (local or remote).
© Copyright IBM Corp. 2000 43

The Published class is defined in the source code (extension LSS), and is
coded in LotusScript. The development and running units of ESB Runtime are
referred to as projects. They save LotusScript information included in the
project and information such as specific environment variables in project files
(extension LSP). Aside from LotusScript files, projects can include several
compiled LotusScript object files (extension LSO), several Include files, and
several LotusScript component files (extension LSX).

Completed ESB programs consolidate all of the files within a project into a
single file, because they lack operability when configured since they are from
multiple files. This is referred to as packaging. The created files are referred
to as package files (extension LPK). ESB Runtime is operated and managed
in the form of package files.

4.1.1 ESB Runtime development procedure
The following tasks show the ESB Runtime development procedure and the
ESB tools and functions used in each step:

1. Start the ESB IDE and enter the source code of runtime in script editor
panel.

Figure 11 shows the view of ESB IDE just after it is started. The window in
the right upper corner is a script editor panel.

When testing a created ESB application, you should first check the
operation by running the runtime and the client program on the same
computer. This allows you to efficiently locate errors and advance
development when you lay out the server and client programs on a
different computer to check their operation.

Hint
44 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

Figure 11. ESB IDE

2. Create a class pattern using the ESB IDE Class Wizard. Select Create ->
Interface/ Class or press the F3 key to start up the Class Wizard.

3. Enter the required information. Click OK.

4. Install the respective member procedures for the Published class.

Figure 12 on page 46 shows a view of the class definition tool. This tool is
located under the Basics tab.

script editor panel
Server application programming 45

Figure 12. Class Definition Tool

5. Create a client program to test the created Published class.

Figure 13 shows the client code creation tool, which can create a simple
version client program.

Figure 13. Client Code Creation Tool

6. Test your server’s application program by using IDE debugger. You can
run your code line-by-line by using the step function of the IDE debugger.

If you start another ESB IDE at this point and use it as a simple version
client program, you can quickly test and debug the runtime. Select
Create -> Create Client Code, and a template of client code is created.

Hint
46 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

Or, you can force a branch by changind the values of the variables for the
conditional branch.

7. Create and test the ESB client program.

8. Distribute the completed projects by packaging them in the ESB IDE, and
operate it using the system manager.

Figure 14 shows a view of the ESB System Manager. In this figure, the
CFConv project was just loaded.

Figure 14. ESB System Manager

Figure 15 on page 48 shows the flow of the ESB Runtime development and
the configuration of the files that are created.
Server application programming 47

Figure 15. File extension naming and the ESB program development procedure

4.2 Published class

The Published class is a special class that is newly implemented in ESB. In
ESB applications, server and client programs send and receive the data
using the Published class and the member procedure defined in the program.

The Published class is defined in the Declarations script of Globals object,
which is the same as usual user-defined classes. See the following example:

Public Published Class MyFirstESB
Sub SayHelloToWorld()

Print "Hello World!"
End Sub

End Class

The scope of the Published class is always public. Because the LotusScript
files created in ESB IDE are declared as standard to be Option Public in
(Globals) - (Options), it can be described as an abbreviation as follows:

Published Class MyFirstESB

Hint
48 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

4.2.1 Example of the Published class
In this section, we create an ESB Runtime that defines the Published class.
The Published class Average calculates the average value and the total
value, which was entered from the client. We explain the corresponding client
program and how to run the program.

4.2.1.1 Creating a server side program
Complete these steps to create a server side program:

1. Start the ESB IDE.

2. Select Globals -> Declarations. Enter the following code in the script
editor:

' Average.lss
Published Class Average

'--- member variables
total As Integer
counter As Integer

Sub New
total = 0
counter = 0

End Sub

Sub AddNumber(i As Integer)
total = total + i
counter = counter + 1

End Sub

Function GetTotal() As Integer
GetTotal = total

End Function

Function GetAverage() As Integer
GetAverage = total / counter

End Function
End Class

3. Save the LotusScript files as Average.lss and Math.lsp.

You can quickly create a template of class by using the IDE Class
Wizard. Select Create -> Interface/ Class or press the F3 key to start
the Class Wizard.

Hint
Server application programming 49

4.2.1.2 Creating client programs
This process starts another ESB IDE and creates a client program for
confirmation for a simple test, the runtime that was created in the previous
section. We can use the Client Code Creation tool to easily create a
confirmation program. Follow these steps:

1. Start another new ESB IDE.

2. Select Create Client Code.

Figure 16 shows a view of the Client Code Creation tool.

Figure 16. Client Code Creation tool

3. Enter Math in the Project Name box, Average in the Published Class box,
and the TCP/IP host name of the ESB server in the Server Name box.

Here, we affix the same file name as the Published class name to the
LotusScript file. However, this is not mandatory. You are free to assign a
name that is easy to remember. You can also assign the project file name
of your choice. The project file name will be used when the client specifies
a class name.

In this example, if the project is saved with a name other than Math.lsp, you
should replace the project name of the client program to be created in
following section with the specified project name.

Note

If the project file of the runtime was saved with a name other than
Math.lsp, you should specify the project file name that was saved in the
Project Name box.

Note
50 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

4. Click OK.

5. Add the call for the member procedure:

' MathClient.lss
Sub Initialize

Dim ORSObj As New SsClink
Dim obj As Variant

On Error Goto ErrorHandler
On Event RuntimeError From ORSObj Call EventHandler

ORSObj.ConnType = "IIOP"
Set obj = ORSObj.CreateObject("Math.Average, node=ESB_SERVER")
Print "Object is successfully created."

'
' Now you can call Published class methods here.
' eg)
' Dim ret As Integer
' ret = obj.DoSomething(arg1, arg2)
'
obj.AddNumber(100) '<<== ADD
obj.AddNumber(50) '<<== ADD
Print "Total : " & obj.GetTotal() '<<== ADD
Print "Average : " & obj.GetAverage() '<<== ADD

Set obj = Nothing
Print "Object is successfully deleted."

Exit Sub

ErrorHandler:
Print "ErrorHandler: " & Cstr(Err)
Print "ErrorHandler: " & Error
Exit Sub

End Sub

4.2.1.3 Running the sample program
Complete these steps to run the sample program:

1. Select Build -> Run Project in the IDE where you created the runtime to
run the runtime.

2. Select Build -> Run Project in the IDE where you created the client
program to run the client program.
Server application programming 51

If it is run correctly, the following sample code is displayed in the IDE output
panel on the client side:

'MathClient': Compiling Project Files...
'MathClient.lss': compiled successfully.
All of the project files compiled successfully.
Object is successfully created.
Total : 150
Average : 75
Object is successfully deleted.

4.2.2 Object initialization and deletion
Each Published class has the defined special functions New and Delete.
They are called automatically at the creation and deletion time. This section
explains the New and Delete functions.

4.2.2.1 New Member procedure and Delete Member procedure
The New Member procedure is a special procedure that runs automatically at
the creation of Published class object in the New Member procedure. ESB
executes the required pre-processing and variable initialization within the
Published class object. The member variables of the Published class object
initialized in this execution can be referenced only while the Published class
object exists.

The Delete Member procedure is a special procedure that runs automatically
at the deletion of a Published class object. In the Delete Member procedure,
ESB executes the required post-processing for the termination of the
Published class object.

In the following example, a log is written into the file each time an object is
created and deleted:

' NewAndDelete.lss
Published Class NewAndDelete

Sub New()
Dim fileNumber As Integer
fileNumber = Freefile
Open "NEW_DEL.LOG" For Append As fileNumber
Write #fileNumber, "New is called."
Close fileNumber

End Sub

Sub Delete()
Dim fileNumber As Integer
fileNumber = Freefile
Open "NEW_DEL.LOG" For Append As fileNumber
52 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

Write #fileNumber, "Delete is called."
Close fileNumber

End Sub
End Class

4.2.3 Transmitting data from ESB Runtime
There are two ways to transfer the data from ESB Runtime to an ESB client
program:

• Use the return value of the Published class member procedure.
• Use the ByRef argument of the Published class member procedure.

We previously saw an example using the return value in the initial example.
Define the Published class member procedure as a function, and substitute
the return value for the function name:

' GetBack.lss
Published Class GetBack

Function ReturnServerData() As String
ReturnServerData = "This is Server data"

End Function
End Class

To return data to the client using a ByRef argument, specify the ByRef
argument to the argument of the Published class member procedure. Assign
a value to this variable within the member procedure.

Sub GetServerData(data As String)
Sub GetServerData(ByRef data As String)

Here is an example of defining the member procedure by using a ByRef
argument:

Upon creating the template of a class by using Class Wizard, the New and
Delete procedures are defined automatically.

Hint

If nothing is specified for the definition of the member procedure, the
argument becomes a ByRef argument. The following two-member
procedures have the same definition.

Note
Server application programming 53

' GetBack.lss
Published Class GetBack

Function GetServerData(data As String) As Integer
data = "This is Server data"

End Function
End Class

The following example is part of a sample client program calling
ReturnServerData and GetServerData:

' GetBackClient.lss
Dim data As String
Dim rc As Integer
data = obj.ReturnServerData()
Print data '"This is Server data" is displayed.

data = "This is Client data"
Print data '"This is Client data" is displayed.
rc = obj.GetServerData(data)
Print data '"This is Server data" is displayed.

4.2.4 Transferring array data
The transfer of array data is performed differently by the category of array.
This section describes the process.

4.2.4.1 Sending and receiving fixed-length array data
Define the Published class member procedure as shown in the following
example to transfer fixed-length array data:

' ArrayServer.lss
Function FixedArray(arraydata() As String) As Integer

Dim i As Integer
'--- print client sent data
For i = LBound(arraydata) to UBound(arraydata)

Print "client data #" & CStr(i) & " : " & arraydata(i)
Next
'--- assign new data
For i = LBound(arraydata) to UBound(arraydata)

arraydata(i) = "new data #" & CStr(i)
Next

End Function

The client program can specify array type variables for the member
procedure argument. In this example, the elements of the array variables are
replaced by new data by the server:
54 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

' ArrayClient.lss
Dim data(2) As String
data(0) = "0th data"
data(1) = "1st data"
data(2) = "2nd data"
Print data(0) '"0th data" is displayed.
rc = obj.FixedArray(data)
Print data(0) '"new data #0" is displayed.

4.2.4.2 Sending and receiving variable-length array data
When sending and receiving variable length array data, particularly when the
number of array elements returned from the server are unknown, transfer the
data using the VARIANT type variable. In the following example, REDIM is
used to redefine the array:

' ArrayServer.lss
Function VariableArray(arraydata As Variant) As Integer

Redim arraydata(100) As String
arraydata(100) = "new data #100"

End Function

The client receives data using the VARIANT type variable. It can also send
data through the VARIANT type variable:

' ArrayClient.lss
Dim data(2) As String
data(0) = "0th data"
data(1) = "1st data"
data(2) = "2nd data"
Dim arrayVariant As Variant
arrayVariant = data
Print arrayVariant(0) '"0th data" is displayed.
rc = obj.VariableArray(arrayVariant)
Print arrayVariant(0) '"" is displayed.
Print arrayVariant(100) '"new data #100" is displayed.

You can also specify a VARIANT type variable for the return value to send or
receive variable length array data:

If REDIM is used to redefine an array, the data sent from the client is lost. In
the previous example, for the VARIANT type variable arrayVariant

following the VariableArray call, the value new data #100 is set only for the
arrayVariant(100). All the values other than that become zero-length
character strings ("").

Note
Server application programming 55

' ArrayServer.lss
Function ReturnArray() As Variant

Dim i As Integer
'--- assign return data
Dim returnData(100) As Integer
For i = 0 to 100

returnData(i) = i * 10
Next
ReturnArray = returnData

End Function

The client receives the variable length array of the return value by the
VARIANT type variable.

' ArrayClient.lss
Dim variantReturn As Variant
variantReturn = obj.ReturnArray()
Print variantReturn(2) '"20" is displayed.

4.2.5 Transferring user-defined data
You cannot specify direct user-defined data for the argument of the Published
class member procedure. When sending or receiving user defined data, you
either send and receive each member as an individual argument, or send and
receive by using the array of the VARIANT type variable.

4.2.5.1 Using the member procedure argument
When there are a few user-defined members, specify each member as the
argument of the Published class member procedure:

' UserDefine.lss
Type Employee

ID As Integer
lastName as String
firstName As String

End Type

Function QueryEmployee(ID As Integer, _
lastName as String, _
firstName as String) As Integer

'--- construct Employee data
Dim oneData As Employee
oneData.ID = ID
oneData.lastName = lastName
oneData.firstName = firstName

'--- do something with Employee data.
56 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

oneData.lastName = "Wilkinson"
oneData.firstName = "May"

'--- back Employee data to each arguments
ID = oneData.ID
firstName = oneData.firstName
lastName = oneData.lastName

End Function

The client program specifies each of the user-defined members in the
member procedure:

' UserDefineClient.lss
Dim myData As Employee
myData.ID = 1000
rc = obj.QueryEmployee(myData.ID, myData.lastName, myData.firstName)

4.2.5.2 Using a VARIANT type array
Because the number of arguments in member procedure is limited, you
cannot use a member procedure argument to send or receive user-defined
data, including a large number of members. In such cases, you should use a
VARIANT type array.

In the following example, the respective elements of the QueryEmployee2
argument correspond to the respective elements of the user-defined
Employee:

' UserDefine.lss
Function QueryEmployee2(varEmployee() As Variant)

'--- construct Employee data
Dim onedata As Employee
onedata.ID = varEmployee(0)
onedata.lastName = varEmployee(1)
onedata.firstName = varEmployee(2)

'--- do something with Employee data.
oneData.lastName = "Robinson"
oneData.firstName = "Bill"

'--- back Employee data to each element
varEmployee(0) = onedata.ID

A maximum of 30 Published class member procedure arguments is
allowed.

Hint
Server application programming 57

varEmployee(1) = onedata.lastName
varEmployee(2) = onedata.firstName

End Function

The client program uses the VARIANT type array to send user-defined data to
the runtime:

' UserDefineClient.lss
Dim myData As Employee
Dim varEmployee(3) As Variant
varEmployee(0) = myData.ID
varEmployee(1) = myData.lastName
varEmployee(2) = myData.firstName
rc = obj.QueryEmployee2(varEmployee)
myData.ID = varEmployee(0)
myData.lastName = varEmployee(1)
myData.firstName = varEmployee(2)

4.3 Sharing data and resources between Published class objects

Use the LSServer class when sharing data and resources between Published
class objects. Use the SsSharedStorage class when sharing data between
different projects.

4.3.1 ESB threads
An ESB Runtime can simultaneously process in parallel the request from
multiple clients using the multi-thread function. ESB uses the following two
threads:

• Client threads
• Global threads

Client threads are created for each Published class object generated by a
request from a client. Member variables and global variables declared with
the Published class have their own characteristic values for each of these

You can code concise, relatively error-free source code by defining the
conversion from a user-defined variable to a VARIANT type array variable.
Or you can define the conversion in reverse, which would be to convert
from a VARIANT type array variable to a user-defined variable as a
subroutine (or function).

Hint
58 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

client threads. You cannot directly reference a member variable in another
thread from a given thread.

Global threads are special threads that are present from the start-up to the
termination of the ESB Runtime. These are created not only for running
initialize and terminate procedures, but are also created for each LSServer
class object, which is described later.

Next, we show the relationship between client threads and global threads. In
Figure 17, the Published class objects for an ESB Runtime from two clients
are created. Note that the global variables with a characteristic value reside
in each thread.

Figure 17. Client threads and global threads

4.3.2 Global variables and Published classes
Consider the relationship between the global variables and the threads in the
following sample program:

' ThreadTest.lss
Dim gCounter As Integer
Published Class ThreadTest

Sub New()
Print "New(): gCounter = " & gCounter

End Sub

Sub Delete()
Print "Delete(): gCounter = " & gCounter

End Sub
Server application programming 59

End Class

Sub Initialize
gCounter = 100
Print "Initialize: gCounter = " & gCounter

End Sub

Sub Terminate
Print "Terminate: gCounter = " & gCounter

End Sub

The global variable gCounter is set to 100 by the Initialize procedure.
ThreadTest objects are created and deleted, and then a value is output by the
Terminate procedure. At first glance, it appears that 100 is displayed for every
PRINT statement. However, in actual fact, it happens as shown here:

Initialize: gCounter = 100
New: gCounter = 0
Delete: gCounter = 0
Terminate: gCounter = 100

This is because it has a different value of global variable in each client thread
and global thread. Consequently, global variables cannot be used when
sharing data between Published class objects.

The following list summarizes global variables:

• Global variables cannot share data between Published class objects.

• The initial value of the global variable is indefinite. It is not always 0.

• Initialize with the New procedure to use a global variable in a Published
class object. Even if a value has been initialized with the Initialize
procedure, it will not be valid for a Published class object.

In this example, 0 is displayed in the New procedure and the Delete
procedure. However, this value is indefinite. A different value is displayed
depending on the runtime environment.

Note

Global variables can be used when sharing data extending across the
member procedures of a Published class object.

Hint
60 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

4.3.3 LSServer class
The LSServer class is used to transfer data between Published class objects.
The LSServer class is a special class provided in ESB that can only be
created in one instance on a system. Data can be transferred between
Published class objects by accessing data through the LSServer class. You
can also use the LSServer class for safe accessing when using such
resources as external files.

The LSServer class is executed by the declaration scripts of global objects,
which is the same as Published classes and normal user-defined classes.

Public LSServer Class MyFirstLSServerClass

4.3.3.1 LSServer class and global threads
Figure 18 on page 62 shows the relationship among the Published class, the
LSServer class, client threads, and global threads in an ESB Runtime. A
client thread is created for every Published class. Here, Published classes A
and B each have three threads, for a total of six client threads. The LSServer
classes X and Y are run on their respective distinct global threads. Only one
LSServer class object is created. Since there are global threads for the
Initialize procedure and the Terminate procedure, in addition to the global
thread for the LSServer class, there is a total of three global threads.

The scope of the LSServer class is normally public. However, because
Option Public is declared as standard, the description of the LotusScript file
for creating ESB IDE can be omitted:

LSServer Class MyFirstLSServerClass

Hint
Server application programming 61

Figure 18. Global threads and LSServer class

When the ESB Runtime begins to run, it is initialized based on the following
sequence of events:

1. An LSServer class object is created by a global thread, and a new
procedure is called. When multiple LSServer classes are defined, the
LSServer class objects are created in the sequence in which they were
loaded into the IDE and in the sequence coded in the module.

2. The Initialize procedure is called by a global thread. When multiple script
files are defined for a project, the call sequence is in the order in which
they were loaded into the IDE.

When the ESB Runtime is stopped, the termination process is done in the
following sequence of steps:

1. The Terminate procedure is called by the global thread. When multiple
script files are defined for a project, they are called in the reverse order in
which they were loaded into the IDE.

2. The Delete procedures for the LSServer class objects are called by the
respective global threads. When multiple LSServer classes are defined for
a project, they are called in the reverse order in which they were created.
62 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

4.3.3.2 Example where an LSServer class has been used
The following sample program writes the user name that created the
Published class object to the log file. The Published class LSServerTest
obtains the client information using the GetContext function within the New
member procedure and writes the user name into the file using the LSServer
class UserLog. The LSServer class UserLog possesses an opened file
handle (gFileNumber) of the external file USER.LOG as a member variable
and a counter (gCounter) that holds the number of objects that were created.
When the Log member procedure is called, it writes them to files.

' LSServerTest.lss
Lsserver Class UserLog

gCounter As Integer
gFileNumber As Integer

Sub New()
gCounter = 0
gFileNumber = Freefile
Open "USER.LOG" For Append As gFileNumber

End Sub

Sub Delete()
Close gFileNumber

End Sub

Sub Log(userName As String)
gCounter = gCounter + 1
Write #gFileNumber, gCounter, userName

End Sub

End Class

Published Class LSServerTest
Sub New()

'--- get client user name
Dim userName As String
Dim context As Variant
Set context = GetContext()
userName = context.userID

'--- write log through LSServer class
Dim objLog As UserLog
Set objLog = Bind("")
objLog.Log(userName)

End Sub
End Class

Perfor this series of steps:

1. Create a new project and describe the above code for (Globals) -
(Declaration). Save the project name as LSServerTest.lsp.

2. Start another ESB IDE, and create the client program for operation
confirmation.
Server application programming 63

3. Select Create -> Client Code. Enter the LSServerTest.lsp for the project
name and class name, and the TCP/IP host name of the ESB server for
the server name. Click OK. The following code is automatically created:

' LSServerTestClient.lss
Sub Initialize

Dim ORSObj As New SsClink
Dim obj As Variant

On Error Goto ErrorHandler
On Event RuntimeError From ORSObj Call EventHandler

ORSObj.ConnType = "IIOP"
ORSObj.Userid = Inputbox$("Type your name")
Set obj = ORSObj.CreateObject("LSServerTest.LSServerTest, node=ESB_SERVER")

Print "Object is successfully created."
Set obj = Nothing
Print "Object is successfully deleted."

Exit Sub

ErrorHandler:
Print "ErrorHandler: " & Cstr(Err)
Print "ErrorHandler: " & Error
Exit Sub

End Sub

4. After repeating the starting and stopping of the client program, stop the
runtime and refer to the USER.LOG file.

4.3.4 Global threads and serialization
The LSServer class is executed in a global thread. When the ESB Runtime
begins the execution, ESB creates global threads equal to the number of
LSServer classes and creates one LSServer class object on each global
thread.

The member procedure of LSServer class can be called from another thread.
However, only one thread can be used at a time. When a member procedure
of LSServer class is called from a certain thread, a member procedure of
LSServer class is called from another thread. This member procedure call
automatically goes into the standby state until the initial member procedure
call ends. The exclusive control of this Server class is not controlled by the
basis of a method. It is controlled by the LSServer class basis. That means, if
the first thread is calling the member procedure fnShare1, even if another

The USER.LOG cannot be accessed from another program until the
runtime has stopped. Temporarily stop the runtime when confirming it.

Note
64 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

thread calls other than the member procedure fnShare1, it enters a standby
state. As shown in Figure 19, Client Thread1 called the member function
fnShare1 of LSServer. Client Thread2 is entered into the wait state, where it
calls another member function, fnShare2, of LSServer.

Figure 19. Global threads and serialization

4.3.5 SsSharedStorage class
The Published class can transfer data with the LSServer class of same
project, but cannot transfer data with the LSServer class of another project. A
SsSharedStorage class can be used to share the data beyond the project.
The SsSharedStorage class holds String type data with the combination of
key and value in shared memory. The held data can be referenced from any
project. Figure 20 on page 66 shows that multiple projects access the data of
SsSharedStorage class.

Wait until the end
of fnShare1
Server application programming 65

Figure 20. SsSharedStorage class

4.3.5.1 Example of SsSharedStorage class usage
The following sample program transfers data between multiple projects. Start
two ESB IDEs, and enter the following codes for the respective
(Globals)-(Declarations). Save the LotusScript file with the name
SharedClass.lss, and save the respective projects with the names
SharedProject1.lsp and SharedProject2.lsp.

' SharedClass.lss
Published Class SharedStorageClass

shrStorage As SsSharedStorage

Sub New()
Set shrStorage = New SsSharedStorage(1000)

End Sub

Sub Delete()
Set shrStorage = Nothing

End Sub

Sub WriteToSharedStorage(data As String)
Call shrStorage.setValue("TheKEY", data)

End Sub

Function ReadFromSharedStorage() As String
ReadFromSharedStorage = shrStorage.getValue("TheKEY")

End Function
End Class

Furthermore, start another ESB IDE. Then, create a client program for the
operation confirmation. Enter the following code for the subroutine. Be sure to
enter the TCP/IP host name for the node=parameter of the CreateObject
member function (there are two places).

' SharedClient.lss
Sub Initialize
66 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

Dim ORSObj As New SsClink
Dim obj1 As Variant
Dim obj2 As Variant

ORSObj.ConnType = "IIOP"
Set obj1 = ORSObj.CreateObject("SharedProject1.SharedStorageClass, node=ESB_SERVER")

'<== Change
Set obj2 = ORSObj.CreateObject("SharedProject2.SharedStorageClass, node= ESB_SERVER")

'<== Change

Call obj1.WriteToSharedStorage("Data wrote by obj1")
Print obj2.ReadFromSharedStorage()

Call obj2.WriteToSharedStorage("Data wrote by obj2")
Print obj1.ReadFromSharedStorage()

Set obj1 = Nothing
Set obj2 = Nothing

End Sub

The value is written in the SharedProject1 project. Read it in SharedProject2.
SharedProject1 reads the value written in SharedProject2.

4.4 Error handling

When an error occurs while LotusScript is executing, if the error handling
routine is not coded, the program execution is interrupted and suspended:

' ErrorHandle.lss
Published Class ErrorHandle

Function Divide1(x As Integer, y As Integer) As Integer
Dim answer As Integer
answer = x / y
Divide1 = answer

End Function
End Class

In this example, when 0 is specified for the second argument y of the member
procedure Divide1, a runtime error occurs that interrupts the processing. The
following message is displayed on the output panel:

[0010:000002] Division by zero
(Domain:XX.XX.XX.XX,Project:ErrorHandle,Module:ERRORHANDLE,Class:ERRORHAND
LE,Method:DIVIDE1,Line:13)

The ESB Runtime uses an ON ERROR statement and a RESUME statement
to embed the error handling routine.

4.4.1 ON ERROR statement and RESUME statement
ESB uses the ON ERROR statement and RESUME statement the same way
that LotusScript for Notes and Domino uses them for error handling.
Server application programming 67

4.4.1.1 Error handling using the ON ERROR GOTO label
Use the ON ERROR GOTO label to specify the error handling routine where
jump to, at an error, occurred. In the following example, when a 0 is
substituted to the variable y, a 0 division error occurs. The execution jumps to
the error handling routine ErrorExit. It outputs an error message and
terminates.

' ErrorHandle.lss
Function Divide2(x As Integer, y As Integer) As Integer

Dim answer As Integer
On Error Goto ErrorExit
answer = x / y
Divide2 = answer
Exit Function

ErrorExit:
Print "Line Number:" & Erl
Print "Error Number:" & Err
Print "Error Description:" & Error

End Function

4.4.1.2 Error handling using RESUME
You can use the RESUME statement to specify the location of execution to
be resumed after error handling is done. Altering the example in the previous
section appears as shown in the following code. In case 0 is specified for the
variable y, assign 1 to it temporarily. Then, continue the calculation.

' ErrorHandle.lss
Function Divide3(x As Integer, y As Integer) As Integer

Dim answer As Integer
On Error Goto ErrorExit

Calculate:
answer = x / y
Divide3 = answer
Exit Function

ErrorExit:
y = 1
Resume Calculate

End Function

In case there is no Exit Function statement on the sixth line, it runs up to
the Print statement for the error handling routine, even if it operates
normally.

Hint
68 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

4.4.1.3 Error handling using ON ERROR RESUME NEXT
Use ON ERROR RESUME NEXT to ignore an error and to execute the next
statement. In the following example, when a 0 division error occurs, the initial
value 1 of the variable answer is returned:

' ErrorHandle.lss
Function Divide4(x As Integer, y As Integer) As Integer

Dim answer As Integer
On Error Resume Next
answer = -1
answer = x / y
Divide4 = answer

End Function

4.4.2 Runtime error handling when client program ended abnormally
When the Published class object is deleted, the Delete member procedure is
called. In a situation where the client program ends abnormally, it rolls back
the data prior to committing it in the Delete member procedure of the
Published class object and closes the opened resources.

4.5 Security

This section explains the security used in ESB and the configuration. It also
covers the creation and the usage of its own security logic.

4.5.1 Authentication and access control
The ESB security function is performed based on authentication and access
control. In authentication, when a Published class object is created, ESB
confirms the identity of the client that requested its creation. A user ID and
password that has been clearly or implicitly set by the client is used to confirm
the identity. The following options are available for ESB authentication:

• Anonymous authentication (no authentication)
• Operating system level authentication
• Authentication using LDAP
• Authentication using a user defined Exit Routine

The authentication of ESB is done in the Exit Routine. The Exit Routine is
included in the ESB installer, although you can also use it by creating,
registering, or setting an Exit Routine. Use the ESB Configuration Tool for
Windows NT and SMIT for AIX to register or setup an Exit Routine.
Server application programming 69

Setting in Windows NT
To set the exit routine in ESB Runtime of Windows NT, the ESB configuration
Tool is started with following procedure:

1. Start the ESB Configuration Tool.
2. Click the Exit Routine tab.

Setting in AIX
To set the exit routine in ESB Runtime under an AIX system, the ESB
Configuration Tool is started by this procedure:

1. Start SMIT.
2. Select Applications -> ESB -> System Configuration -> Change/Show

the Client Authentication.

Select the Exit Routine to be used for the authentication in the opened dialog
box or menu, and change the parameters settings.

With access control, ESB controls who can access a Published class object
and which Published class object can be accessed. The following options are
available for ESB access control:

• Programmable access control using LotusScript
• Declarative access control using project environment variables
• Access control using the ACL of the Notes database

These authentications and access controls can be used in combination.

Figure 21 shows the category of security that is usable in ESB, the valid
combinations, and the sequence in which access control and authentification
are checked.
70 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

Figure 21. ESB security components and the flow

4.5.2 Authentication when using DCOM
If DCOM is used as a communication protocol between the client and ESB
server, for the authentication when a Published class object is created, the
DCOM level authentication is executed first. Then, ESB is authenticated. The
user ID and password are used for DCOM level authentication. They are also
used at the network logon of Windows.

The DCOM level authentication is done prior to ESB authentication. When
authentication of the DCOM level fails, an error is returned to the client
without ESB authentication taking place. To omit authentication at the DCOM
level, validate the Guest account of the computer on which the ESB Runtime
is running.

• OS (NT, AIX)
• LDAP
• User-defined
• None

User-defined
Security

For Web client, ESB performs basic authentication on a Web server in
addition to the process previously described. It can perform access control
using the authenticated user ID. See Chapter 6, “Using WebSphere” on
page 129, for the details.

Note

The values set in the UserID property of SSClink class and SVClink class
are not used in DCOM authentication.

Note
Server application programming 71

On the DCOM level, authentication is successfully completed. ESB level
authentication takes place. At this point, you can select a user ID from the
following options to be used in the ESB level authentication:

• The values set for the UserID property of SSClink class and SVClink class
• The user ID used in the DCOM level authentication
• The domain name and user ID used in the DCOM level authentication (for

example, Domain or user ID)

To change the user ID, start the ESB Configuration Tool. Click the Exit
Routine tab.

4.5.3 Authentication when IIOP is used
When IIOP is used as the communication protocol between the client and
ESB server, ESB-level authentication is only performed at Published class
object creation. ESB-level authentication uses the UserID property and
password of SSClink class and SVClink class.

4.5.4 Anonymous authentication
The setting procedure to omit ESB level authentication is shown in this
section.

For Windows NT, add only Anonymous Security in the Exit Routine box of
Configuration Tool.

For AIX, specify the full path of libhpwdsec.a in Exit Routine #1 of SMIT, and
specify none for the other Exit Routine.

4.5.5 OS authentication
OS level authentication is performed to authenticate the client by the user ID
and password combination registered in the operating system.

When IIOP is used, any user can create a Published class object with this
procedure. However, if DCOM is used, the DCOM level authentication
must be disabled in addition to this procedure. Void the Guest account to
disable DCOM level authentication.

Note
72 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

For Windows NT, select OS security on the Exit Routine tab of
Configuration Tool.

For AIX, specify the fullpath of libhpwssec.a in Exit Routine of SMIT.

4.5.6 Authentication using LDAP
You can also use an external LDAP directory for authentication. The following
settings can be made to perform LDAP authentication.

For Windows NT, add LDAP Security in the Exit Routine tab of
Configuration Tool. Click the Properties button and specify the name of the
LDAP directory server.

For AIX, specify the fullpath of libhpwssec.a in Exit Routine of SMIT. Specify
the name of the LDAP directory server for the LDAP Server Name.

The client specifies the LDAP user name (Distinguished Name) and
password in the UserID property of SsClink class and SvClink class:

' LDAPClient.lss
Sub Initialize()

Dim ORSObj As New SsClink
Dim obj As Variant
ORSObj.UserID = "cn=Sandra Smith, o=Acme"
ORSObj.Password = "secret"
Set obj = ORSObj.CreateObject("MyProj.MyClass, node=MySvr")
'--- do something ---
Set obj = Nothing

End Sub

4.5.7 Authentication using a user-defined exit routine
All authentications introduced up to this point were done through the exit
routine provided by ESB. However, you can create your own exit routine, and
then register it and perform authentication. Moreover, you can use your Exit
Routine to access an authentication system outside ESB and to perform user
authentication.

To authentificate using LDAP on ESB of AIX, IBM eNetwork LDAP
Directory must be installed. The IBM eNetwork LDAP Directory is included
in IBM AIX Install CDs.

Note
Server application programming 73

4.5.7.1 Creating a user-defined exit routine
In this section, you create the exit routine MySec, which permits access when
the client user ID and password are the same. Complete these steps:

1. Enter the following code using a text editor and save it as the file name
mysec.cpp:

// mysec.cpp
#include <string.h>
struct secinfo {

long version;
char *userid; // userID
char *password; // password
char *winname;
char *ipaddr;
char *projectname;
char *classname;

};
extern "C"
{

long security_exit(void *secinfo);
}
long security_exit(void *pInfo)
{

struct secinfo *info = (struct secinfo *)pInfo;
if ((info == NULL) || (info->userid == NULL) || (info->password == NULL))
{

return -1;
}
if (strcmp(info->userid, info->password) == 0)
{

return 0;
}
else
{

return -1;
}

}

2. For Windows, prepare the following module definition file and save it with
the file name mysec.def:

; userlog.def (Windows only)
LIBRARY mysec
EXPORTS security_exit
74 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

3. Compile and link the routine as shown here:

For Windows NT (Microsoft Visual C++)

cl /c mysec.cpp
link /dll mysec.obj /def:mysec.def

For AIX (IBM VisualAge C++ for AIX)

xlc_r -c mysec.cpp
makeC++SharedLib_r -bmodtype:SRE -bnoentry -p \

-100 -o libmysec.a mysec.o

4.5.7.2 Registering and testing a created exit routine
Set the created Exit routine into the ESB Runtime registration, and test it as
described here:

1. Register the created exit routine as shown here:

For Windows NT, click Add on the Exit Routine tab of Configuration Tool.
Then, click Others and specify the created exit routine mysec.dll.

For AIX, specify the created exit routine libmysec.a in the Exit Routine of
SMIT with the full path.

2. Create a Server Application Program and save the project name as
UserExit.lsp:

' UserExit.lss
Published Class UserExit

Sub New
Print "UserExit object is created."

End Sub
End Class

3. Create a client program. Specify the TCP/IP host name of the ESB server
for node=parameter of the CreateObject member function:

' UserExitClient.lss
Sub Initialize()

Dim ORSObj As New SsClink
Dim obj1 As Variant

'--- success case. UserID is equivalent to Password ---
ORSObj.UserID = "Bob"
ORSObj.Password = "Bob"
Set obj = ORSObj.CreateObject("UserExit.UserExit, node=ESBServer")
Set obj = Nothing

'--- error case. UserID is not equivalent to Password ---
ORSObj.UserID = "Alice"
Server application programming 75

ORSObj.Password = "Ecila"
Set obj = ORSObj.CreateObject("UserExit.UserExit, node=ESBServer")
Set obj = Nothing

End Sub

Authentication was successful for the creation of the first object because the
same value, Bob, was set for both. However, the authentication failed for the
creation of the second object because the UserID property and password
property are different.

4.5.8 Access control
The access control includes programmable access control and declarative
access control.

Programmable access control is a method that dynamically controls the
access by external information, such as client information and project
environment variables. In ESB, you can perform this method by using the
client information obtained from the method and property of SsContext class
taken out through the GetContext function.

Declarative access control involves registering a list of users in advance that
can be accessed and users whose access is prohibited for each project and
class basis. ESB declarative access control includes access control using
project environment variables and access control using the Notes database
ACL.

4.5.9 Programmable access control using LotusScript
You can limit a call to member procedures, by means of the user name and
host name that created the Published class object and the information
registered in the project environment function. For example, you can limit the
updates of the corporate human resource database, so that only certain
determined users can do it.

4.5.9.1 Creating a programmable access control
This section shows an example of access control performed by using the
values set in the project environment function, and the member functions of
the SsContext class. Follow this process:

To use this function, the users who start the Server Application Program
must belong to the Administrators group.

Note
76 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

1. Start ESB IDE. Select File -> New Project.

2. Select File -> Project Property. Figure 22 shows a view of the project
property.

Figure 22. Project Property

3. Click the Project Environment Variable list box and move the blue arrow
in front of the Label Project Environment Variable.

4. Enter UpdateRight in the Variable text box. Enter Alice, Bob in the Value
text box. Then, click Set.

5. Click OK. Then, close the dialog box.

6. Select Globals -> Declarations. Enter the following code in the script
panel and then save it as project name CustomAccessControl.lsp:

' CustomAccessControl.,_,ì,ì
Published Class CustomAccessControl

Function CanIUpdate() As Integer
'--- get client user name ---
Dim userName As String
Dim context As Variant
Set context = GetContext()
userName = context.UserID

'--- check whether the client has an update right
Dim rc As Integer
rc = context.IsAllowed("UpdateRight")
If rc = 1 Then

Print userName & " : OK (registered user)"
Else

'--- check whether the client is belongs to "system" group
Dim groupNames As Variant
Server application programming 77

groupNames = context.getGroups()
If Datatype(groupNames) = 0 Then

Print userName & " : NG (no group)"
Else

Dim i As Integer
For i = Lbound(groupNames,1) To Ubound(groupNames,1)

Print groupNames(i)
If groupNames(i) = "system" Then

Print userName & " : OK (system member)"
rc = 1
Exit For

End If
Next
If rc <> 1 Then

Print userName & " : NG (is not belongs to system)"
End If

End If
End If
CanIUpdate = rc

End Function
End Class

7. Start another ESB IDE. Then, create a client program for the operation
confirmation. Enter the following code:

' CustomAccessControlClient.lss
Sub Initialize

Dim ORSObj As New SsClink
Dim obj As Variant
Dim rc As Integer

ORSObj.UserID = Inputbox("Type your user name.")
Set obj = ORSObj.CreateObject("CustomAccessControl.CustomAccessControl,

node=ESB_SERVER") '<<== Change
rc = obj.CanIUpdate()
Set obj = Nothing

End Sub

8. Set Anonymous Authentication using the ESB Configuration tool or
SMIT, so that another authentication mechanism does not work.

9. Run the server program on ESB Runtime. Then, run the client program.
Select Alice, Bob or a user that belongs to the System group at the input
dialog box of client. The value of CanIUpdate shows “1” as a returned
value.

4.5.10 Declarative access control using project environment variables
You can control the access by using project environment variables to request
Published class object creation from the client.

When there is a project environment variable named $classname_ACCESS$,
ESB uses this value as an access control list when creating objects. The user
can enter a permissible user ID or the group name delimited by commas (,).
78 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

4.5.10.1 Access control with project environment variables
This section shows an example of authentication by creating Published class
object using project environment variables. Follow this process:

1. Start ESB IDE. Select File -> New Project.

2. Select File -> Project Properties.

3. Enter $ClassAccessControl_ACCESS$ in the Variable text box. Enter Alice,Bob
in the Value text box. Then click Set.

4. Click OK.

5. Select Globals -> Declarations. Enter the following code in the script
panel, and save it as project name ClassAccessControl.lsp:

' ClassAccessControl.lss
Published Class ClassAccessControl

Sub New()
Dim context As Variant
Set context = GetContext()
Print context.UserID & " was authenticated."

End Sub
End Class

6. Start another ESB IDE. Then, create a client program for operation
confirmation. Enter the following code:

' ClassAccessControlClient.lss
Sub Initialize

Dim ORSObj As New SsClink
Dim obj As Variant
ORSObj.UserID = Inputbox("Type user name.")
Set obj =

ORSObj.CreateObject("ClassAccessControl.ClassAccessControl,
node=ESB_SERVER") <<== Change

Set obj = Nothing
End Sub

7. Set Anonymous Authentication using the ESB Configuration tool or
SMIT, so that another authentication mechanism does not work.

8. Run the Server Application Program first. Then, run the client program. If
you select Alice or Bob at the input dialog box of client, an object is

The user who starts the Server Application Program must belong to the
Administrators group to use this function.

Note
Server application programming 79

created normally. If another name is entered in the input dialog box, the
authentification error is returned.

4.5.11 Declarative access control using Notes database ACL
You can use the Notes database ACL to perform access control. Query the
ACL of a specified Notes database with the user ID taken out from the
GetContext function.

4.5.11.1 Declarative access control using the Notes database ACL
This section shows an example of access control using the Notes database
ACL. In this example, only a user can call a method, who is set as an
Administrator in the database access authority list.

Now we assume that Notes is installed on the computer where the ESB
Runtime is running and ESB is in an accessible state. Follow this procedure:

1. Right-click the Notes database for access control on the Notes work
space. Select Database -> Access Control.

2. Click Add. Enter Alice, and then click OK.

3. Select Alice from the list box, and select Manager in the Access list box.

4. Likewise, add Bob as a Reader.

5. Select Globals -> Declarations. Enter the following code in the script
panel and save it as project name NotesACL.lsp. Replace the values of the
function dbServer and dbFileName in the source code with an appropriate
Notes server name (local Notes DB by specifying "") and the Notes
database file name that set the access authority:

' NotesACL.lss
Const ACLLEVEL_NOACCESS = 0
Const ACLLEVEL_DEPOSITOR = 1
Const ACLLEVEL_READER = 2
Const ACLLEVEL_AUTHOR = 3
Const ACLLEVEL_EDITOR = 4
Const ACLLEVEL_DESIGNER = 5
Const ACLLEVEL_MANAGER = 6

Published Class NotesAccessControl
Function CanIUpdate() As Integer

Dim rc As Integer
Dim dbServer As String
Dim dbFileName As String

'--- setup Notes Database used fro AccessControl
dbServer = "" '"" means local server
dbFileName = "c:\lotus\notes\data\MyACLDB.nsf"
rc = SetACLDBInfo(dbServer, dbFileName)
If rc <> 0 Then

Print "Cannot find DB Server or DF File"
Exit Function
80 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

End If

'--- check your ACL ---
rc = IsAllowed()
If rc <> ACLLEVEL_MANAGER Then

Print "You must have a manager right for this operation"
Exit Function

End If
'--- do something

End Function
End Class

6. Start another ESB IDE. Then, create a client program for operation
confirmation. Enter the following code:

' NotesACLClient.lss
Sub Initialize

Dim ORSObj As New SsClink
Dim obj As Variant
Dim rc As Integer

ORSObj.UserID = Inputbox("Type user name.")
Set obj = ORSObj.CreateObject("NotesACL.ClassAccessControl, node=ESBServer")
rc = obj.CanIUpdate()
Set obj = Nothing

End Sub

7. Set Anonymous Authentication using the ESB Configuration Tool or SMIT,
so that another authentication mechanism does not work.

8. Run the ESB Server Application Program first. Then, run the client
program. If you enter Alice, who has manager authorization, at the input
dialog box of client, it is called correctly. However, if you enter Bob, which
only has reader authorization, an error is displayed.

4.6 Designing an ESB application

This section explains the ESB Server Application program design point to be
considered.

4.6.1 Programming model for ESB applications
The following two programming models are available for ESB applications
depending on whether the state on the server exists. Each model has their
respective advantages and disadvantages:

• State-full programming model
• State-less programming model

State refers to the application information held on the server. Client IDs and
connection handles for databases, for example, are included in the state.
Server application programming 81

The state-full programming model refers to a programming model that has a
state on the server. Since the essential information is held on the server in
advance, when you call a method for a Published class object from a client, it
can transfer just the information required for the execution of the member
procedure, thus reducing network traffic. Also, you can adopt a natural
programming style for client program, because it specifies only the specific
argument to the member procedure. However, because it must constantly be
in existence while the object is providing the service, a large amount of
memory and resources on the server are used to maintain the state.

In the state-less model, the application information is not saved on the server.
It creates and deletes an object each time it calls a member procedure for a
Published class object, and passes all the required information as a member
procedure argument. Since the object only exists while a certain member
procedure is running, it uses only a small amount of memory and resources
on the server. However, the network traffic increases, because it must
provide all the necessary information every time a member procedure is
called. The processing is also complicated due to the fact that the client
program creates and deletes an object before and after each member
procedure call.

4.6.2 Synchronizing Notes user and ESB user authentication

If the ESB client application is a Notes application and DCOM is used for the
connection type, at least two authentications must be confirmed for the ESB
client user:

• The authentication performed on a Notes client and a Domino server
• The DCOM authentication performed on an ESB client and an ESB server

For this reason, a problem of redundant user management arises, namely
Notes and Domino and the ESB server and the client.

Generally, the ESB application creates a Published class object using
LotusScript from the Notes form. A Notes form must be opened to run
LotusScript. The fact that a user can access a form means that it has
confirmed Notes authentication. Consequently, the Guest account of ESB
server is set to active, and then the authentification of DCOM is released. A
user who has received Notes authentication can automatically create a
Published class object. In short, the Notes authentication and the ESB
authentication can be synchronized.
82 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

4.6.3 Designing a Published class in a distributed environment
This section explains the design considerations of a specific distribution
environment.

4.6.3.1 Considering the number of network transmissions
In contrast to the fact that a normal class member procedure coded in
LotusScript is called within the same process space, network traffic is
generated each time a member procedure for an ESB server application is
called from an ESB client. When creating Published classes, you should
design them to reduce the number of transmissions between client and
server.

For example, consider the following two Published classes, Rectangle1 and
Rectangle2, which show quadrangles:

Published Class Rectangle1
width As Integer
height As Integer
Sub SetWidth(w As Integer)

width = w
End Sub
Sub SetHeight(h As Integer)

height = h
End Sub
Function Area() As Integer

Area = width * height
End Function
Function Is

End Class

Published Class Rectangle2
Function Area(width As Integer, height As Integer) As Integer

Area = width * height
End Function

End Class

Be careful not to disclose the form code for the client user. If the code is
disclosed to the public, since the DCOM authentication did not work, any
user can create a Published class object. However, in such a case, the
possibility of the object being accessed directly still remains. In this case,
use it in combination with other authentications and access controls.

Note
Server application programming 83

To determine the size of area of Rectangle1, a client must call the method on
three occasions:

Call obj.setWidth(w)
Call obj.setHeight(h)
area = obj.Area()

On the other hand, in the case of Rectangle2, it determines the size of the
area at one calling:

area = obj.Area(w,h)

The Rectangle1 alternative can flexibly respond to data changes, but the
Rectangle2 alternative is superior from the perspective of execution speed.

4.6.3.2 Considering the network traffic volume
Be careful not to send meaningless network data back and forth. Consider
the following client code for example. This is a program that obtains 100 sets
of data from the server. From the second loop on, it sends the data obtained
in the preceding loop back to the server.

Dim szData As String
Dim i As Integer
For i = 1 to 100

Call obj.GetDataFromServer(szData)
Print szData

Next

You can reduce the network traffic volume by clearing unnecessary data
before calling a member procedure:

Dim szData As String
Dim i As Integer
For i = 1 to 100

szData = ""
Call obj.GetDataFromServer(szData)
Print szData

Next

4.6.4 ESB project design related hints
The following sections offers hints to make an efficient ESB Server
Application Program.

4.6.4.1 Divide large script files into multiple files
Projects can be composed of multiple script files. Dividing script files
appropriately based on function facilitates source code management and
maintenance.
84 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

4.6.4.2 Use IDE to manage the run sequence for multiple script files
There are multiple script files for a certain project. Compiling and running
sequences of the script files become important. When running a project on
ESB, first the LSO file, then the include file, and finally the script file are
loaded in the order in which they appear in the IDE file viewer. The procedure
defined in the previously loaded file can be referenced in files loaded
subsequently. The reverse process results in an error. Consequently, you
should move script files and similar files containing common routines to the
front of the script file in the file viewer. To change the order sequence in the
IDE file viewer, drag the file name to be changed to the desired position.

4.6.4.3 Manage constants in another script file
When using numbers, you can flexibly respond to the changes of project by
consolidating their management in another file. When referencing constants
from a program, you can reference them by adding a file that stores the
constants in the Include folder of the ESB IDE or by using an INCLUDE
statement in the respective script file.

4.6.4.4 Use a few changed script files as object files
Programs with relatively few changes that are frequently used as common
routines, utility functions and so on can reduce compiling time when you use
them. First, they are compiled and converted into an object file form. Then,
they are added to the LSO folder in the ESB IDE. However, you must be
careful that the LSO file is loaded prior to any script file loading and that the
LSO is loaded in the sequence displayed in the ESB IDE file viewer.

4.6.4.5 Do not use multiple Published classes at one time from a
single client
The ESB server manages clients by Published class object basis and assigns
their respective characteristic thread. For example, when it creates two
Published class objects from a single client, two threads are used.
Consequently, you should design the number of Published classes, which are
simultaneously created from one client, so that the ESB server resources are
efficiently utilized. If you want to use multiple classes at the same time, define
them as Public classes and refer them from one Published class.

4.6.4.6 Adopt a reasonable number of projects to run at one time
We recommend that you do not divide projects into small units and run
multiple projects (100 or more for example) simultaneously. You should
choose a reasonable number of projects to run.
Server application programming 85

4.6.4.7 Avoid creating dependencies between projects
To run multiple projects on ESB, avoid creating dependency between the
respective projects to be run. Dependency occurs, for example, when you
create a Published class object in another project (B) from a certain project
(A). If there is no dependency, you can start and stop each project. However,
in this example, when you stop project B, you must also stop project A. If no
dependency exists, a certain project on ESB can be stopped and updated.

4.6.4.8 Set the parameter to be updated during operation as the
project environment variable
When operating a project, the project is packaged in a packaged file. The
created packaged file is run on the system manager. You may want to change
the project parameters, for example, for a project for accessing the data
source layer. The User ID of the account user and the password for data
source access may sometimes be changed at the time of operation.

In case these parameters are coded in a program file, you must modify the
source code and redo the packaging when you change the parameters. To
avoid the redundant operations, define the parameters in the project
environment variable. The parameters are intended to change at the time of
operation and refer the project environment variable from the program file.
Since project environment variables cannot only be changed from the ESB
IDE, but from the system manager as well, you can change project
parameters without redoing the packaging at the time of operation.

4.6.4.9 Minimize PRINT statement usage
Frequent use of PRINT statements to display messages in a program affects
the running speed of the server. Minimize the usage of PRINT statements
during operation.

4.7 Other topics

This section summarizes and explains other items related to server
application programming.

4.7.1 Timer
ESB provides an SsTimer class that generates events at a definite period of
time. You can use the SsTimer class to periodically poll the external
resources from the ESB application and process the scripts every so often at
a certain period of time.

The following example displays the character string I am alive! three times
per second and subsequently disables the event of the SsTimer class object:
86 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

' Timer.lss
Dim gTimerObj As Variant
Dim gCounter As Integer

Sub Initialize
gCounter = 0
Set gTimerObj = New SsTimer(1)
gTimerObj.Enabled = True
On Event Alarm From gTimerObj Call timerHandler

End Sub

Sub timerHandler(obj As SsTimer)
If gCounter < 3 Then

gCounter = gCounter + 1
Print "I am alive!"

Else
obj.Enabled = False

End If
End Sub

4.7.2 Calling the DLL function
To call the function defined in the external dynamic link library (DLL) from the
LotusScript running on Windows, use a DECLARE statement to define the
function. Then, call it the same as a normal function.

4.7.2.1 Example of calling a simple function
The following example calls the GetVersion function of Windows. The
GetVersion function returns the Windows version as the return value.

' GetVersion.lss
Declare Function GetVersion Lib "Kernel32" () As Integer
Sub Initialize

Dim lVersion As Long
lVersion = GetVersion()
Print "GetVersion() = " & CStr(lVersion)

End Sub

4.7.2.2 Example of calling a complex function
The following example calls the GetVersionExA function of Windows. The
GetVersionEx function returns the information of Windows version in the
member of the structure OSVERSIONINFO:

Type OSVERSIONINFO
dwOSVersionInfoSize As Long
dwMajorVersion As Long
dwMinorVersion As Long
dwBuildNumber As Long
dwPlatformId As Long
szCSDVersion As String*128

End Type

Declare Function GetVersionExA Lib "Kernel32" (version As OSVERSIONINFO) As Long

Sub Initialize
Server application programming 87

Dim version As OSVERSIONINFO
Dim bReturn As Long
version.dwOSVersionInfoSize = 148
bReturn = GetVersionExA(version)
Print "GetVersionEx() = " & version.dwMajorVersion & "." & version.dwMinorVersion & "

"& version.szCSDVersion
End Sub

4.7.3 Obtaining access logs using the exit routine
The ESB exit routine can be used as a function for logging the access of the
Published class objects aside from the use of authentication. The following
exit routine example writes, into the log, the client user ID, IP address, project
name, and class name that had to be created each time an object is created.
See 4.5.7.1, “Creating a user-defined exit routine” on page 74, for more
information about compiling, links, and usage.

// userlog.cpp
#include <stdio.h>

struct secinfo {
long version;
char *userid; // userID
char *password;
char *winname;
char *ipaddr; // client IP address
char *projectname; // ESB project name
char *classname; // Published class name

};

extern "C"
{

long security_exit(void *secinfo);
}

long security_exit(void *pInfo)
{

FILE *fp;
fp = fopen("access.log", "a+");

struct secinfo *info = (struct secinfo *)pInfo;

if (secinfo)
{

fprintf(fp, "User:%s at %s creates %s.%s\n",
info->userid, info->ipaddr,
info->projectname, info->classname);

}
else
{

fprintf(fp, "secinfo is null.\n");
}

fclose(fp);

Do not use this exit routine in the actual operation.
Note
88 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

return 0;
}

The following file is required when compiling on Windows:

; userlog.def (Windows only)
LIBRARY userlog
EXPORTS security_exit
Server application programming 89

90 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

Chapter 5. Client application programming

ESB supports a wide variety of connectivity with backend systems and also
supports a diverse range of front end systems (clients). This chapter uses the
example of a typical client to code the procedure for creating an ESB client
program.

5.1 Overview

The highlight of ESB server programing was defining the Published class,
which is described in Chapter 4, “Server application programming” on page
43. By defining the Published class, ESB can reference the member
procedure of a class from a remote client.

In contrast to server programming, the highlight of ESB client programming is
the creation of a Published class object. Creating a Published class object
establishes the connection with the ESB Runtime. It means the same as
preparing to use a server program. Once a Published class object is created,
you can call the member procedure in the server program with a dot notation,
same as other object oriented languages.

Figure 23 shows the relationship between the server program and the client
program. It also shows three buttons that are created in the client program.
Each button is respectively described and coded to the related functions.

Figure 23. Relationship between the server program and client program
© Copyright IBM Corp. 2000 91

The three buttons are further explained here:

• Creating a Published class object

The code creating Published class object is described in the Connect!
button within Figure 23 on page 91. When you click the Connect! button, it
establishes a connection with ESB Runtime. Then, New() member
procedure of the Published class is called and the object is initialized.

• Calling a member procedure

The code that calls MySub1 of the member procedure is described in the
Call! button. If you click the Call! button, MySub1 is processed on the
server and the result is returned to the client application.

• Deleting a Published class object

The code that deletes the Published class object is described in the
Disconnect! button. If you click the Disconnect! button, the Delete()
subroutine is called on the server side, the object is managed, and the
connection with ESB Runtime is disconnected.

5.1.1 Clients supported by ESB
ESB client programming refers to the creating of a Published class object
published on the server and the calling of its member procedure. In effect, the
ability to create a Published class object is a prerequisite for becoming an
ESB client. Published class objects can be created with any of the following
languages:

• LotusScript
• JavaScript or VBScript
• OLE automation support language (for example, Visual Basic)

Any environment that can execute these languages can be an ESB client.
Web browsers that cannot create Published class objects by themselves can
become ESB clients through the JSP programming of the ESB HTTP
communication function.

It is possible to become an ESB client if the conditions discussed above
are met. However, if you use a client not formally supported by ESB, you
should carefully test it in advance.

Note
92 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

In this chapter, we use the following typical applications to explain ESB client
programming:

• Lotus Notes applications (language used: LotusScript)
• Web applications (language used: JavaScript)
• Microsoft Visual Basic applications (language used: Visual Basic (VB))

5.1.2 Client application creation flow
To make the client application the same as all the clients, there are six stages
you need to follow:

1. Create a client form.

You create a form for receiving user inputs and displaying the results from
ESB Runtime.

2. Create a Published class object.

To use an ESB server program, you first create a Published class object.
In a normal application, you create a Published class object when the form
you created in step 1 is displayed. However, there are also circumstances
where it is alright to create and delete the Published class objects for
every procedure invocation, such as applications that leave a form
displayed for an extended period of time.

3. Call the procedure.

After you obtain the variable to be input and verify its compatibility (data
type and range), set the argument and call the procedure.

4. Display the result.

Receive and display the result of the called procedure from the return
value and the argument of the referenced transfer.

5. Error handling.

Describe the handling for when a connection has failed or the calling of a
procedure was unsuccessful.

6. Delete a Published class object.

Lastly, delete the Published class object and disconnect the connection
with ESB Runtime. When you create a Published class object along with a
form display, delete it when you close the form.

This chapter explains client applications along the lines of these six stages.
Client application programming 93

5.1.3 The server program to be used
A server program is required to create and run client programs. In this
chapter, we use the following server programs in all the clients:

Published Class Conversion

Sub New()
Print "Conversion Class: New()"

End Sub

Sub Delete()
Print "Conversion Class: Delete()"

End Sub

Public Function ToDoubleValue(myLong As Long, myString As String, _
myDoubles() As Double) As Long
Dim i%, LB%, UB%
On Error Goto ErrorHandler
Print "Conversion Class: ToDouble()"

myLong = myLong * 2
myString = myString & myString
LB% = Lbound(myDoubles)
UB% = Ubound(myDoubles)
For i = LB% To UB%
myDoubles(i) = myDoubles(i) * 2

Next
ToDoubleValue = 0
Exit Function

ErrorHandler:
Print "Error" & Str(Err) & ": " & Error$
ToDoubleValue = -1
Exit Function

End Function

End Class

This project has a Published class Conversion, and the Conversion class has
the member function ToDoubleValue. This member function ToDoubleValue
doubles and returns all the Long variable, String variable, and Double array
values entered by the user. The return value 0 implies that a normal
termination has occurred and -1 that a Runtime error (for example, overflow)
has occurred.

Our main objective in this chapter is to create a Published class Conversion
object and to call the member function ToDoubleValue. Before creating a
client program, save the above code as project name chap05 (file name:
chap05.1sp), and run it on the machine where you installed ESB Runtime.
94 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

5.2 Notes application

In this section, we use a Lotus Notes example to explain how to create a
client program using LotusScript. The software required for the client
machine is:

• Lotus Notes R4.5 or higher
• ESB Client Enabler

5.2.1 Creating a client form
In this section, we use Lotus Notes R5 for our explanation. The basic
operation is the same in Lotus Notes R4. Complete these steps:

1. Start Domino Designer.
2. Select File -> Database -> New.

The New Database dialog box is displayed (Figure 24).

Figure 24. New Database dialog box

3. Enter an appropriate name (for example, Conversion) in the Database
Name field. Then, click the OK button. Leave the template blank.

4. Select Create -> Design -> Form.

When using Lotus Notes R5, you must use Domino Designer to create
applications.

Note
Client application programming 95

5. Select Create -> Hotspot -> Button and create a button to call the
procedure. Enter Double! in the label field in the Information box as shown
in Figure 25.

Figure 25. Information box of a button

6. Create a table for laying out texts and fields. Select Create -> Table.
Then, create a table with four lines and three columns.

7. Create text and fields within the table and lay them out as shown in Figure
26.

Figure 26. Layout of the client application using Notes
96 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

The fields to be created are shown in Table 11.

Table 11. Details of the created fields

8. Select File -> Save to save the form. When it asks for a name for the form,
enter Conversion.

5.2.2 Creating a Published class object
It is useful to create Published class objects when you open a form. Use the
PostOpen event for form objects to accomplish this in the Notes Form.

You must prepare for creating a Published class, before entering the script in
the PostOpen event. First, open the form. Then, write the following line in the
(Options) script of the (Globals) object:

Uselsx "*SsClink" ' Load ESB client LSX

Use the SsClink class provided by ESB to create a Published class object.
The Uselsx statement means that it will load the LSX and define the SsClink
class. Next, define two variables as global variables. Describe the following
two lines in the (Declarations) script of the (Globals) object:

Dim ORSObj As SsClink ' SsClink class object
Dim ESBObj As Variant ' Published class object

ORSObj is the variable that holds the SsClink object. ESBObj is the one that
holds the Published class object. Define ESBObj as a global variable, so that
it can be referenced from all the objects within the form. ORSObj is an object
that is necessary when creating Published class objects. However, it has the
important function of generating a RuntimeError event and providing error

Field Type Description

inLong Number, editable Long type user entry field.

outLong Number, editable Long type result display field.

inString Text, editable String type user entry field.

outString Text, editable String type result display field.

inDoublen Number, editable Double type array user entry field. n is
an integer starting from 0. The form
shows up to two, but you can create
any number you like.

outDoublen Number, editable Double type array result display field.
Create the same number as the user
entry field.
Client application programming 97

information, when a runtime error has occurred while a Published class object
is in use.

This completes the preparations. Let us describe the script to create the
Published class object. First, create an SsClink class object. Then, use the
CreateObject member function of the SsClink class to create a Published
class object:

Set ORSObj = New SsClink
Set ESBObj = ORSObj.CreateObject("chap05.Conversion, node=myServer")

The host name (myServer), where ESB Runtime are operating, the project
name (chap05), and class name (Conversion) are set. Change the host name
as appropriate in conformity with the actual environment.

5.2.3 Calling a procedure
Let us try calling a procedure using the Published class object that you
created. Enter a script for the Click event of the Double! button object, so that
the procedure is called when you click the Double! button on the form.

First, obtain the value entered in the entry field. Then, substitute it into the
variable.

myLong& = Clng(uidoc.FieldGetText("inLong"))
myString$ = uidoc.FieldGetText("inString")
For i% = 0 To 2
myDoubles#(i%) = Cdbl(uidoc.FieldGetText("inDouble" & Cstr(i%)))

Next

Use the FieldGetText function of the NotesUIDocument class to obtain the
field value. Define the class object, uidoc, of the NotesUIDocment class as a
global variable. Obtain the instance in the PostOpen event of the form object.
Since the return value of the FieldGetText function is a string type, you should
expressly perform type conversion when necessary.

When you want to change the ORB to be used for connection or set the
user ID and password to be used for authentication, specify it before calling
the CreateObject member function. For example, when changing ORB to
DCOM, use:

ORBObj.ConnType = "DCOM"

Hint
98 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

Finally, set the argument to call the procedure:

rc = ESBObj.ToDoubleValue(myLong&, myString$, myDoubles#)

5.2.4 Displaying the result
The return value of the ToDoubleValue function is an error code. If it is not 0,
some error has occurred on the server side, which requires you to interrupt
the process without displaying the result.

If rc <> 0 Then
Msgbox "Some error has occurred on ESB Server."
Exit Sub

End IF

All of the arguments of the ToDoubleValue function are pass-by references. In
other words, when the function call finishes, the result is stored in the variable
specified in the argument. Use these variables to display the results in the
field, as shown here:

Call uidoc.FieldSetText("outLong", Cstr(myLong&))
Call uidoc.FieldSetText("outString",myString$)
For i% = 0 To 2
Call uidoc.FieldSetText("outDouble" & Cstr(i%), _
Cstr(myDoubles#(i%)))

Next

Use the FieldSetText subroutine of the NotesUIDocument class to set the
value for a field. Since the second argument of the FieldSetText subroutine is
a string type, you should use the Cstr function as required to convert the type.

5.2.5 Error handling
The SsClink class generates a RuntimeError event when a runtime error
occurs in a Published class object. You can easily describe the error handling
by catching this event.

Use the On Event statement to catch the RuntimeError event. Add the
following line to the PostOpen event of the form object:

On Event RuntimeError From ORSObj call RunErrHandler

This code signifies that if a RuntimeError event occurs, it will call the
RunErrHandler subroutine. The subroutine called here is referred to as an
event handling subroutine. Although the subroutine name and argument
name are optional, the number and type of the arguments are determined in
advance, as shown here:

Sub RunErrHandler (obj As SsClink, errCode As Long, errMsg As String)
Client application programming 99

Let us actually define an event handling subroutine. Enter the following code
in the (Declarations) script of the (Globals) object to permit referencing from
any object on the form:

Sub RunErrHandler(obj As SsClink, errCode As Long, errMsg As String)
MsgBox "Error!! rc = " & CStr(errCode) & " : " & errMsg

End Sub

This event handling subroutine is called when a RuntimeError event is
generated in ORSObj and the characteristic ESB error code and error
message are displayed.

Handling code is also necessary when a runtime error has occurred in other
than a Published class object. Use the On Error statement for the runtime
error handling. Add the following code to the beginning of the Click event of
the Double! button:

On Error Goto ErrorHandler

This code signifies that it will move the control to the error handling routine
ErrorHandler, when a Runtime error has occurred within a procedure. Now,
enter the content of the error handling routine at the end of the Click event of
the Double! button:

ErrorHandler:
MsgBox "Error!! rc = " & CStr(Err) & " : " & Error
Exit Sub

The error handling routine ErrorHandler displays the error code and the error
message in the message box and terminates the subroutine.

5.2.6 Deleting objects
It is appropriate to delete the Published class object created when you
display the form and when the form is closed. Use the QueryClose event of
the form object to accomplish this with Notes Form. Use the Nothing constant
to delete the object. You should delete the Published class object and the
SsClink class object at the same time:

Set ESBObj = Nothing 'Delete Published class object
Set ORSObj = Nothing 'Delete SsClink class object

5.2.7 Summary
Now you have finished creating the client application using Notes. The
following sections describe the entire code for the client application and how
to execute it.
100 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

5.2.7.1 Entire source code
The entire code for the client program you created in this section is shown
here:

(Globals) - (Options)
Option Public
Option Explicit
Uselsx "*SsClink" ' Load ESB client LSX

(Globals) - (Declarations)
Dim ORSObj As SsClink ' SsClink class object
Dim ESBObj As Variant ' Published class object
Dim uidoc As NotesUIDocument

'--- Error handling procedure
Sub RunErrHandler(obj As SsClink, errCode As Long, errMsg As String)
MsgBox "Error!!: rc = " & errCode & " : " & errMsg

End Sub

(Form) - (PostOpen)
Sub Postopen(Source As Notesuidocument)
On Event From ORSObj Call RunErrHandler
Set uidoc = Source ' Set a NotesUIDocument class object
Set ORSObj = New SsClink ' Create an SsClink class object

'--- Create a Published class object
Set ESBObj = ORSObj.CreateObject("chap05.Conversion, node=myServer")

End Sub

(Form) - (QueryClose)
Sub Queryclose(Source As Notesuidocument, Continue As Variant)
Set ESBObj = Nothing 'Delete the Published class object
Set ORSObj = Nothing 'Delete the SsClink class object

End Sub

(Double) - (Click)
Sub Click(Source As Button)
On Error Goto ErrorHandler
Dim myLong&, myString$, myDoubles#(2)
Dim i%, rc&

'--- Get field values
myLong& = Clng(uidoc.FieldGetText("inLong"))
myString$ = uidoc.FieldGetText("inString")
For i% = 0 To 2
myDoubles#(i%) = Cdbl(uidoc.FieldGetText("inDouble" & Cstr(i%)))

Next

'--- Call a member function of Published class
rc = ESBObj.ToDoubleValue(myLong&, myString$, myDoubles#)
If rc <> 0 Then
Msgbox "Some error has occurred on ESB Server."
Exit Sub

End IF

'--- Set results to fields
Call uidoc.FieldSetText("outLong", Cstr(myLong&))
Call uidoc.FieldSetText("outString",myString$)
For i% = 0 To 2
Call uidoc.FieldSetText("outDouble" & Cstr(i%), _
Cstr(myDoubles#(i%)))

Next
Client application programming 101

Exit Sub

'--- Error handling routine
ErrorHandler:
MsgBox "Error!! rc = " & CStr(Err) & " : " & Error
Exit Sub

End Sub

5.2.7.2 Running a sample program
In this section, we execute the application you created. Follow these steps:

1. Select File -> Save to save the form.

2. Select Design -> Preview in Notes.

3. Enter an appropriate value for the entry field, and click the Double! button.

The result returned from ESB for the result display field is displayed.
(Figure 27).

Figure 27. Executed results on Notes

5.3 Web applications

In this section, we use JavaScript as an example to explain how to create a
Web client program using an ESB HTTP applet. You must have one of the
following software applications on the client machine:

• Netscape Communicator R4.5 or higher
• Microsoft Internet Explorer 4.0 SP1 or higher
• Lotus Notes R5 or higher
102 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

5.3.1 Creating a client page
There are three primary methods for creating a client page for a Web
application:

• Using an HTML authoring tool

This is currently the creation method most generally considered. Tools
such as IBM NetObjects TopPage, NetObjects Fusion, and Microsoft
FrontPage Express are available. Some tools allow you to enter script
after a page has been created, and other tools do not. If your tool does not
permit this, you need to enter the script using a script development tool,
such as a text editor or NetObjects ScriptBuilder.

• Using Domino Designer

Domino Designer allows you can create a Web client page using the same
method as Notes Form. You can also edit the script with a conventional
IDE. In addition, you can create a client application that simultaneously
supports Notes and Web.

• Editing HTML directly

For a simple page, you can create the HTML document on an appropriate
text editor and enter the script at the same time. When creating a page
using a text editor, refer to the source code incorporated at the end of the
following section.

5.3.1.1 Creating a page using IBM NetObjects TopPage
To create a page using IBM NetObjects TopPage, follow these steps:

1. Start TopPage.

2. Select File -> New to create a blank page.

3. Select Insert -> Form and Input Fields -> Form.

4. Select Insert -> Form and Input Fields -> Push Button -> Button.

The Attributes dialog box is displayed as shown in Figure 28 on page 104.

5. Enter Double in the Name field and Double! in the Label field. Select Push
Button for the Button Type.

• Refer to Chapter 12, “HTTP Communication Programming,” in the ESB
User’s Guide for server side settings, such as WebSphere.

• You do not need to install ESB Client Enabler on the client machine.

Hint
Client application programming 103

Figure 28. Attributes dialog box

6. Click the Extended button, and select the Event tab on the Extended
Attribute dialog box as shown in Figure 29.
104 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

Figure 29. Extended Attribute dialog box

7. Select the OnClick event. Click the Add button. Enter doDouble() in the
Script field. Click the Configure button. Enter Procedure call and Result

Display for the content of the doDouble() function.

8. Click the OK button. Then, close the Attributes and Extended Attributes
dialog boxes.

9. Select Insert -> Table, and create a three-column by four-row table.

10.Insert the text and text fields. Create them by selecting Insert -> Form
and Input Fields -> Text Field. Align them as shown in Figure 30 on page
106.
Client application programming 105

Figure 30. Layout of the client application using TopPage

The text fields to be created are shown in Table 12.

Table 12. Details of the created fields

11.Place the cursor outside of the form, and select Insert -> Java Applet.

Name Entry format Application

inLong Text Long type user entry field

outLong Text Long type result display field

inString Text String type user entry field

outString Text String type result display field

inDoublen Text Double type array user entry field. n is
an integer starting from 0. The page
shows up to two, but you can create
any number you like.

outDoublen Text Double type array result display field.
Create the same number as the user
entry field.
106 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

12.Enter the values shown in Table 13 into the Attributes dialog box. Then,
click the OK button.

Table 13. Input values for the applet attributes

13.Select Edit -> Document Properties. Then click the Extended button in
the displayed Attributes dialog box. Click the Event tab in the Extended
Attributes dialog box. Set doInit() for the OnLoad event and doTerm() for
the OnUnload event, as explained in step 7.

14.Click the Script button to display the Script dialog box (Figure 31 on page
108). Add the following code to the text box at the lower right, and then
click the OK button:

function doInit(){

}

function doTerm(){

}

function doDouble(){

}

Field name Input value Explanation

Code com.lotus.esb.applet.
SvClientApplet

ESB HTTP applet class name

Code Base (Example)
/esb_applet

URL of ESB HTTP applet

Substitute Text ESB HTTP applet Character string displayed when the
applet cannot be run

Archives SvClientApplet.jar Jar file that stores the ESB HTTP
applet class

Size Both height &
width 0

Applet display size. The ESB
applet does not have a GUI, so it does
not need to be displayed.

When you want to use the ESB IIOP applet to create a client
application, enter com.lotus.esb.iapplet.SvIIOPApplet in the code field
and SvIIOPApplet.jar in the archive. The other methods are the same
as for the ESB HTTB applet.

Hint
Client application programming 107

Figure 31. Script dialog box

15.Save the file with the file name chap05.htm.

The source code of the HTML document created in this procedure appears
as shown in the following example. You should consult this example when
using the text editor to create a page.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">
<HTML>
<HEAD>
<META name="GENERATOR" content="IBM NetObjects TopPage V4.0.3 for Windows">
<TITLE></TITLE>
<SCRIPT language="JavaScript">
<!--
function doInit(){
}

function doTerm(){
}

function doDouble(){
}
//-->

</SCRIPT></HEAD>
<BODY onload="doInit()" onunload="doTerm()">
<FORM><INPUT type="button" name="Double" value="Double!"
onclick="doDouble()">

<TABLE border="1">
<TBODY>
108 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

<TR>
<TD>Data Type</TD>
<TD>Input</TD>
<TD>Output</TD>
</TR>

<TR>
<TD>Long</TD>
<TD><INPUT size="20" type="text" name="inLong" value="inLong">
</TD>
<TD><INPUT size="20" type="text" name="outLong" value="outLong">
</TD>
</TR>

<TR>
<TD>String</TD>
<TD>
<INPUT size="20" type="text" name="inString" value="inString">
</TD>
<TD>
<INPUT size="20" type="text" name="outString" value="outString">
</TD>

</TR>
<TR>
<TD>Double Array</TD>
<TD>
<INPUT size="20" type="text" name="inDouble1" value="inDouble1">

<INPUT size="20" type="text" name="inDouble2" value="inDouble2">

<INPUT size="20" type="text" name="inDouble3" value="inDouble2">
</TD>
<TD>
<INPUT size="20" type="text" name="outDouble1"
value="outDouble1">

<INPUT size="20" type="text" name="outDouble2"
value="outDouble2">

<INPUT size="20" type="text" name="outDouble3"
value="outDouble2">

</TD>
</TR>

</TBODY>
</TABLE>
</FORM>
<P><APPLET code="com.lotus.esb.applet.SvClientApplet"
codebase="/esb_applet" alt="ESB HTTP applet" width="0" height="0"
archive="SvClientApplet.jar"></APPLET></P>
</BODY>
</HTML>

5.3.1.2 Creating a form using Lotus Notes R5
The basic creation procedure is the same as the process explained in 5.2,
“Notes application” on page 95. The difference is that you enter the ESB
HTTP applet required to create the Published class object inside the form.
Follow these steps:

1. Perform steps 1 through 8 in 5.3.1.1, “Creating a page using IBM
NetObjects TopPage” on page 103.

2. Place the cursor at the bottom of the form, and select Create -> Java
Applet.
Client application programming 109

The Create Java Applet dialog box appears as shown in Figure 32.

Figure 32. Create Java Applet dialog box

3. Select Import an applet from the file system or use an applet
resource.

4. Click the button. Specify SvClientApplet.jar. Copy SvClientApplet.jar
to a local directory, to create a client program on a computer where the
ESB HTTP communication function has not been installed.

5. Click the OK button.

6. Select Java Applet -> Java Applet Properties.

7. Click the Information tab (Figure 33). In the Basic Class Name field,
enter:

com.lotus.esb.applet.SvClientApplet
110 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

Figure 33. Information box of a Java applet

8. Click the <HTML> tab. In the other field, enter:

width="0" hight="0"

9. Close the InfoBox, and save the form.

10.Prepare a description location in advance for the script to be entered.
Enter doInit() for the onLoad event of the form object. Enter doTerm() for
the onUnload event. Then, enter doDouble() for the onClick event of the
Double! button (Figure 34 on page 112).
Client application programming 111

Figure 34. OnLoad event of the form object

11.Add the following code to the JS Header script of the form object as shown
in Figure 35.
function doInit(){

}

function doTerm(){

}

function doDouble(){

}

112 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

Figure 35. JS Header script of the form object

12.Save the form.

5.3.2 Creating a Published class object
Create a Published class object when an HTML document has been loaded.
It was set for creating the client page, so that the doInit function is called
when an HTML document is loaded. You should describe the creation of a
Published class object in the doInit function.

1. Define the following variable as a global variable prior to entering the
script in the doInit function. Enter the following code in the uppermost part
of the JavaScript code description section (the JS Header script of the
form object in Domino Designer, or the part surrounded by the SCRIPT
tags).

var ESBObj; // ESB HTTP applet

ESBObj is the variable that holds the ESB HTTP applet. In this section, we
use this ESB HTTP applet to create a Published class object. You must be
able to refer to it in all functions, so make it a global variable.

2. Enter the script that creates the Published class object in the doInit
function. First, obtain the ESB HTTP applet, and then assign it to the
ESBOj.

ESBObj = document.applets[0]; // Get ESB HTTP applet

3. Set the URL of the ESB HTTP servlet, the host name of ESB Runtime, the
project name, and the class name. Modify the URL and host name as
appropriate in conformity with the actual environment.
Client application programming 113

ESBObj.SetParameter("servlet_name","/servlet/SvSessionServlet");
ESBObj.SetParameter("server_name","myServer");
ESBObj.SetParameter("project_name","chap05");
ESBObj.SetParameter("class_name","Conversion");

4. Create the Published class object. Use the createObject function of the
ESB HTTP applet to create a Published class object in the Web
application.

rc = ESBObj.createObject();

The return value rc of the createObject function is an error code. Refer to
5.2.5, “Error handling” on page 99.

5.3.3 Calling a procedure
You call a procedure when you click the Double! button. Since the page was
created for calling the doDouble function for an onClick event of the Double!
button, you should describe the invocation steps of the procedure in the
doDouble function.

1. Obtain the value entered in the text box. Use the Document Object Model
(DOM) to obtain the value in the text box:

thisForm = document.forms[0]; // Get Form object
myLong = thisForm.inLong.value;

• You can also set the parameters using the PARAM tag within the
HTML document. For example, when specifying the project name,
consider this example:

<PARAM NAME="project_name" VALUE="chap05">

• Displaying the trace on a Java console is useful for debugging. Add
the following line:

ESBObj.setParameter("trace_level","5");

Hints

Unlike other clients, the Published class object that was created is held
within an ESB HTTP applet. It cannot be directly touched from a client
program. For this reason, such things as procedure calls are to be made
using ESB HTTP applets, rather than Published class objects.

Hint
114 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

myString = thisForm.inString.value;
for (i=0; i<3; i++){

myDoubles[i] = thisForm.elements[i+5].value;
}

2. Set the obtained value as the argument. Use the setArgument method for
setting the argument in the Web application.

ESBObj.setArgument(1,"(long)" + myLong);
ESBObj.setArgument(2,myString);
ESBObj.setArgument(3,"(array)(double)" + myDoubles.join(","));

The first argument of the setArgument method indicates the index of the
argument (an integer starting from 1). You can also specify the variable
name used for the procedure definition, for example:

ESBObj.setArgument("myString", myString);

The second argument of the setArgument method is the value to actually
be passed to the server. With the ESB HTTP applet, you cast it by adding
a “(data_type)” character string to the front of the variable. Also, when
setting the array for an argument, pass the character string that is
delimited by a comma (,) by casting it to the array.

3. Once you have completed preparing the argument, use the callMethod
method to call the Published class procedure. The argument of the
callMethod method is the procedure name.

rc = ESBObj.callMethod("ToDoubleValue");

5.3.4 Displaying the results
You can obtain the results of the procedure from the return value and
argument of the pass-by reference. Use the getReturnValue of the ESB HTTP
applet to obtain the return value. Use the getArgument to obtain the
argument. Use DOM to display the obtained results in the output text box.

thisForm.outLong.value = ESBObj.getArgument(1);
thisForm.outString.value = ESBObj.getArgument(2);
for (i=0; i<3; i++){
thisForm.elements[i+8].value = ESBObj.getArgument(3,i);

}

The first argument of the getArgument method is the argument index (an
integer starting from 1). Instead of the index, you can specify the argument
name used by the server for a procedure definition, for example:

thisForm.outString.value = ESBObj.getArgument("myString");
Client application programming 115

If the argument is an array, the return value of the getArgument method
becomes a character string delimiting the data by commas (,). You can also
obtain specific data alone by specifying an array index (an integer starting
from 0) for the second argument.

5.3.5 Error handling
Functions that perform such tasks as creating Published class objects and
calling procedures return error codes. The code 0 indicates a normal
termination, and there is no problem with continuing on to the next process.
However, a code other than 0 indicates that a problem has occurred, for
example with an ESB Runtime or client, or a network, that requires some
handling.

In this sample, if an error occurs, it displays an error message and interrupts
the processing. Add the following code after the createObject method or the
callMethod:

if (rc != 0) {
alert("Error!! rc = " + ESBObj.getErrorCode() + "\n"

+ ESBObj.getErrorMessage());
return;

}

When an error has been generated, this code displays the error code and
message in the warning dialog box and interrupts the process of the function
itself where the error was generated. You can use the getErrorNumber
method and getErrorMessage of the ESB HTTP applet to obtain the code and
the message of the error that occurred previously.

5.3.6 Deleting an object
Enter the script for deleting a Published class object in the doTerm argument
called when the HTML document is unloaded. Use the deleteObject method
of the ESB HTTP applet to delete a Published class object. Add the following
line within the doTerm function:

ESBObj.deleteObject();

5.3.7 Summary
Now you have finished creating the client application using Web browsers.
This section describes the entire code for the client application and how to
execute the application.
116 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

5.3.7.1 Entire source code
The entire code for the sample application code created in this section is
shown here:

var ESBObj; // ESB HTTP applet

function doInit(){
//--- Get ESB HTTP applet
ESBObj = document.applets[0];
//--- Set ESB HTTP applet parameters
ESBObj.setParameter("servlet","/servlet/SvSessionServlet");
ESBObj.setParameter("server_name","myServer");
ESBObj.setParameter("project_name","Chap05");
ESBObj.setParameter("class_name","Conversion");

//--- Create Published class object
rc = ESBObj.createObject();
if (rc != 0) {

alert("Error at CreateObject()!! rc = " +
ESBObj.GetErrorNumber() + " : " + ESBObj.GetErrorMessage());

return;
}

}

function doTerm(){
//--- Delete Published class object
ESBObj.deleteObject();

}

function doDouble(){
var thisForm;
var myLong, myString, myDoubles;
var i, rc, result;

myDoubles = new Array(2);
thisForm = document.forms[0]; // Get Form object
//--- Get text box values
myLong = thisForm.inLong.value;
myString = thisForm.inString.value;
for (i=0; i<3; i++){
myDoubles[i] = thisForm.elements[i+5].value;

}

//--- Set arguments
ESBObj.setArgument(1,"(long)" + myLong);
ESBObj.setArgument(2,myString);
ESBObj.setArgument(3,"(array)(double)" + myDoubles.join(","));

//--- Call member procedure of Published class
rc = ESBObj.callMethod("ToDouble");
if (rc != 0) {
alert("Error at callMethod()!! rc = " + ESBObj.getErrorNumber() +
" : " + ESBObj.getErrorMessage());
return;
}

//--- Get return value
rc = ESBObj.getReturnValue();
if (rc != null || rc != 0) {
alert("Some error has occurred on ESB Runtime!!");
return;
}

Client application programming 117

//--- Get and set results
thisForm.outLong.value = ESBObj.getArgument(1);
thisForm.outString.value = ESBObj.getArgument(2);
for (i=0; i<3; i++){
thisForm.elements[i+8].value = ESBObj.getArgument(3,i);

}
}

5.3.7.2 Running a sample program
Let us run the application program you created:

1. Save the client application.

2. Display the client page on a Web browser:

• When using IBM NetObjects TopPage, select Tools -> Browser ->
Internet Explorer or Tools -> Browser -> Netscape.

• When using Domino Designer, select Design -> Preview in Notes,
Design -> Preview in Web Browser -> Internet Explorer or Design
-> Preview in Web Browser -> Netscape Version 4.

• When using the text editor, open the URL that has the HTML document
created on the Web browser.

3. Set the appropriate value for the input field and click the Double! button
as shown in Figure 36. The value returned from ESB for the result display
field is shown.

Figure 36. Executed results on a Web browser
118 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

5.4 VB application

This section uses the VB example to explain the creation of a client
application using the OLE automation support language. The following
software is required for the client computer:

• Run module of Microsoft Visual Basic (the creator of the client application
also requires a VB development environment)

• ESB Client Enabler

Creating a client application in the OLE automation support language is
almost the same as the method for creating it in LotusScript. There are two
differences. It uses the SvClink class to create the Published class object,
and the error handling is only for runtime errors.

5.4.1 Creating a client screen view
To create a client screen view, follow these steps:

1. Start VB.

2. Select File -> New Project, and create a Standard EXE.

3. Create buttons and text boxes. Lay them out as shown in Figure 37 on
page 120.

Since LotusScript also supports OLE automation, it can create a Published
class object using the SvClink class. However, since it is compared to the
SsClink class, the SvClink class is limited to such tasks as arguments and
error handling. We recommend that you use SsClink with LotusScript.

Hint
Client application programming 119

Figure 37. Layout of the client application using VB

The buttons and text box properties are shown in Table 14.

Table 14. Details of the created fields

Object Type Application

ToDoubleValue CommandButton and
Caption are "Double!"

Button that calls a procedure.

inLong Textbox, Anumbers and
editing permissible

Long type user entry field.

outLong Textbox, Anumbers and
editing permissible

Long type result display field.

inString Textbox, Atext and editing
permissible

String type user entry field.

outString Textbox, Atext and editing
permissible

String type result display field.

inDoublen Textbox, Anumbers and
editing permissible

Double type array user entry field. n is
an integer starting from 0. The screen
view shows up to 2, but you can create
any number you like.

outDoublen Textbox, Anumbers and
editing permissible

Double type array result display field.
Create the same number as the user
entry field.
120 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

4. Select File -> Save Form1 As, and save it with the file name
conversion.frm. Also, select File -> Save Project As, and save it with the
file name chap05.vbp.

5.4.2 Creating a Published class object
It is useful to create a Published class object when you open a window. Use
the Load event of the Form object (Form_Load subroutine) to accomplish this
with VB:

1. Define the following variable as a global variable. Enter the following code
in the (Declarations) script of the (Globals) object:

Dim ESBObj As Object ' Published class object

ESBObj is the variable that holds the Published class object. ESB defines
it as a global variable to permit referencing from all the objects within the
form.

2. Enter the script for creating for creating Published class objects in the
Form_Load subroutine. Use the SvClink class provided by ESB to create a
Published class object using the OLE automation function.

a. Use the CreateObject function incorporated into VB to create an
SvClink class object.

b. Use the CreateObject member function to create a Published class
object.

Set ORSObj = CreateObject("SvClink")
Set ESBObj = ORSObj.CreateObject("chap05.Conversion, node=myServer")
Set ORSObj = Nothing

3. The project name (Chap05), the class name (Conversion), and the host
name (myServer) where ESB Runtime is operating are set for the
argument of the CreateObject function. Change the host name as
appropriate in conformity with the actual settings. ORSObj is no longer
necessary after the Published class object is created, so delete it
immediately.

When you want to change an ORB to be used for connection, or set a user
ID and password to be used for authentication, specify it before invoking
the CreateObject member function. For example, when changing ORB to
DCOM, consider this example:

ORBObj.ConnType = _gDCOM_h

Hint
Client application programming 121

5.4.3 Calling a procedure
Let us call a procedure using the Published class object you created. When
you click the Double! button on the screen view, you want to call a procedure.
Therefore, the script you must enter is the Click event (ToDoubleValue_Click
subroutine) of the ToDoubleValue button object.

1. Obtain the value entered in the entry field and assign it to the variable:

myLong = CLng(inLong.Text)
myString = inString.Text
myDoubles(0) = CDbl(inDouble0.Text)
myDoubles(1) = CDbl(inDouble1.Text)
myDoubles(2) = CDbl(inDouble2.Text)

Use the Text Property of the text box to obtain the field value. This is a
string type property, so you should perform a type conversion when
necessary.

2. Set the arguments, and call the procedure:

rc = ESBObj.ToDoubleValue(myLong, myString, myDoubles)

5.4.4 Displaying the result
The return value of the ToDoubleValue function is an error code. If it is other
than 0, some error has occurred on the server side. Therefore, the result is
not displayed, and it is necessary to interrupt the processing. Accordingly,
you should add the following code after the ToDoubleValue function value:

If rc <> 0 Then
MsgBox "Some error has occurred on ESB Server."
Exit Sub

End IF

All the ToDoubleValue function arguments are pass-by references. In other
words, when the calling of the function finishes, the result is stored in the
variable specified for the argument. Consequently, you use these arguments
to display the results in the output text box.

outLong.Text = CStr(myLong)
outString.Text = myString
outDouble0.Text = CStr(myDoubles(0))
outDouble1.Text = CStr(myDoubles(1))
outDouble2.Text = CStr(myDoubles(2))

5.4.5 Error handling
Prepare for cases where a runtime error has occurred in a Published class
object and at other locations, and write the error handling. Add the following
122 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

code to the beginning of the Form_Load subroutine and the ToDoubleValue
subroutine:

On Error Goto ErrorHandler

This code shifts the control to the error handling routine ErrorHandler when a
runtime error has occurred. Next, enter the content of the ErrorHandler. Add
the following code to the end of the Form_Load subroutine and the
ToDoubleValue subroutine:

ErrorHandler:
MsgBox "Error!! rc = " & CStr(Err) & " : " & Error
Exit Sub

When a runtime error occurs within a subroutine, the processing jumps to the
ErrorHandler and an error code, and messages are displayed in the message
box.

5.4.6 Deleting an object
It is appropriate to delete the Published class object created when a window
is displayed when you have closed the window. Use the Form_Unload
subroutine to accomplish this with VB. Use the Nothing constant to delete the
object:

Set ESBObj = Nothing

5.4.7 Summary
Now you have completed creating the client application using VB. This
section describes the entire code for the client application and how to run the
application.

5.4.7.1 Entire source code
The entire source code for the sample application created in this section is
shown here:

Dim ESBObj As Object ' Published class object

Private Sub Form_Load()
On Error Goto ErrorHandler ' Error Handling
Dim ORSObj As Object ' SvClink class object

'--- Create SvClink class object
Set ORSObj = CreateObject("SvClink")
'--- Create Published class object
Set ESBObj = ORSObj.CreateObject("chap05.Conversion, node=myServer")
Set ORSObj = Nothing ' Delete SvClink class object
Exit Sub

'--- Error handling routine
ErrorHandler:
Client application programming 123

MsgBox "Error!! rc = " & CStr(Err) & " : " & Error
Exit Sub

End Sub

Private Sub Form_Unload(Cancel As Integer)
'--- Delete Published class object
Set ESBObj = Nothing
End Sub

Private Sub ToDoubleValue_Click()
On Error Goto ErrorHandler
Dim myLong As Long
Dim myString As String
Dim myDoubles(2) As Double
Dim rc As Long

'--- Get textbox values
myLong = CLng(inLong.Text)
myString = inString.Text
myDoubles(0) = CDbl(inDouble0.Text)
myDoubles(1) = CDbl(inDouble1.Text)
myDoubles(2) = CDbl(inDouble2.Text)

'--- Call member function of Published class
rc = ESBObj.ToDoubleValue(myLong, myString, myDoubles)
If rc <> 0 Then
MsgBox ("Some error has occurred on ESB Runtime.")
Exit Sub

End If

'--- Set results to textboxes
outLong.Text = CStr(myLong)
outString.Text = myString
outDouble0.Text = CStr(myDoubles(0))
outDouble1.Text = CStr(myDoubles(1))
outDouble2.Text = CStr(myDoubles(2))
Exit Sub

'--- Error handling routine
ErrorHandler:
MsgBox "Error!! rc = " & CStr(Err) & " : " & Error
Exit Sub

End Sub

5.4.7.2 Running a sample program
Let us run the application you created:

1. Save the form and the project.

2. Select Run -> Start.

3. Substitute an appropriate value into the entry text box. Then, click the
Double! button.

The value returned from ESB to the result display field appears as shown
in Figure 38 on page 125.
124 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

Figure 38. Results on VB application

5.5 Programming hints

Refer to Chapter 4, “Server application programming” on page 43, which also
describes programming that relates to the transfer of array data and security.

5.5.1 Load distribution of the ESB program
The CreateObject member function of the SvClink class and SsClink class
can specify the multiple ESB Runtimes by delimiting them through the use of
semicolons (;). Here is an example of the chap05 project run on three hosts:
esb1, esb2, and esb3:

Set ESBobj =ESBObj.CreateObject _
("chap05.Conversion, node=esb1;esb2;esb3")

When multiple host names are specified, it attempts to create an object until it
succeeds, from the left side server to the right side server. It is necessary to
make the random order for attempting connections into ESB Runtime by
specifying the SHUFFLE option, to achieve a load distribution for ESB
Runtime. Also, if you specify the RETRY option at the same time, it uniformly
attempts to connect to all the hosts, regardless of whether it has failed to
connect in the past.

Set ESBobj = ESBObj.CreateObject _
("chap05.Conversion, node=esb1;esb2;esb3, option=SHUFFLE;RETRY")

5.5.2 Internet Explorer applications
When using Microsoft Internet Explorer as the client, you can use VBScript
and JScript, as well as JavaScript as the programming language. When you
Client application programming 125

use VBScript and JScript, you can also use the programming style by using
the SvClink class. Consider the following example for VBScript:

Set ORSObj = createObject("SVClink")
Set ESBObj = ORSObj.CreateObject("chap05.Conversion, node=myServer")

5.5.3 Receiving arrays with a Web client
In a simple application, we obtained arrays using the getArgument(int, int)
method. However, you can also obtain arrays with either the getArgument(int)
or the getReturnValue() methods. At this time, the arrays are transferred as
string type variables connecting the data with commas as the delimiters. A
handy approach is to use the split method of the String object of JavaScript to
convert these variables into arrays.

For example, when the return value has called an array function, refer to this
code:

var i, resultString, resultArray;
resultString = ESBObj.getReturnValue();
resultArray = resultString.split(",");
for (i = 0; i < resultArray.length; i++) { alert(resultArray[i]); }

5.5.4 Applications using multiple forms, pages, or screen views
In this chapter, we created a Published class object along with a screen
display. However, there are times where this programming style may not be
not appropriate, depending on the application. When using multiple forms in
Notes and VB applications in particular, multiple Published class objects are
created, which may possibly affect the server performance. Add processing
so that it will close new forms and transfer the Published class objects to
subforms.

When using multiple screens in a Web application, it is convenient to create a
non-displayed frame (a form with 0 width or height) and download the ESB
HTTP applet to the HTML document loaded there. To reference an applet
from a separate frame at this time, obtain the frame containing the applet
from the new window object to obtain the applet object.

For example, a menu frame and an invisible applet frame are included in
frame.html. The ESB HTTP applet downloaded to the applet frame is
referenced from the menu frame.

frame.html
<html>
<head>
<title>Frame Test</title>
126 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

</head>
<frameset cols="0,*">
<frame name="applet"" src="applet.html" noresize>
<frame name="menu" src="menu.html">

</frameset>
</html>

applet.html
<html>
<body>
<applet CODEBASE="/esb_applet" ARCHIVE="SvClientApplet.jar"
CODE="com.lotus.esb.applet.SvClientApplet" NAME="applet1" WIDTH=0
HEIGHT=0>

</applet>
</body>
</html>

menu.html
<html>
<HEAD>
<SCRIPT>
var ESBObj;
ESBObj = parent.applet.applets[0];

…

Client application programming 127

128 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

Chapter 6. Using WebSphere

Lotus ESB supports Web clients using HTTP. This chapter describes how to
create and manage ESB applications using IBM WebSphere.

6.1 Overview

ESB uses DCOM or IIOP as communication protocols between servers and
clients. This communication system is not suited to extranet or Internet
environments because it has normal firewall limitations. Moreover, the fact
that modules supporting these communications must be distributed to all the
client computers has been a major obstacle to its popularization.

ESB provides specialized servlets, beans, and applets to enable access from
Web browsers through HTTP. It enables the use of ESB in an extranet and
with the Internet by integrating these components with WebSphere.

An ESB servlet and ESB bean are loaded onto WebSphere, which receives
requests from clients through HTTP and sends those requests to ESB
Runtime through IIOP. Moreover, an ESB servlet provides a variety of
functions for the effective operation of such tasks as client object
management, used object pool functions, setting the maximum number of
client objects, session management, and security functions.

Web client programming methods can be classified into two types. The first
type is applet programming, such as JavaScript using an ESB applet. The
second type is JSP programming, which uses the JSP provided by
WebSphere for programming. The following sections describe their
respective characteristics.

6.1.1 Applet programming
The operational flow of applet programming involves this series of actions:

1. The ESB HTTP applet is embedded in an HTML document and
downloaded to a Web browser.

2. The Web browser communicates with the ESB servlet through script
(JavaScript, VBScript, and so on).

3. The ESB servlet communicates with the ESB server through IIOP whose
function is provided by the ESB bean.

4. The results are obtained through the method of the ESB applet. It is
possible to create client programs in formats similar to normal ESB
© Copyright IBM Corp. 2000 129

programming, such as creating objects using the createObject method
and calling a method using the callMethod method.

This programming method displays the outputs in the field of the same page
when the browser receives the result from the server because the field is
treated as one of the objects. As a result, the entire display does not refresh.
This is a significant benefit to suit the job for the Line of Business type. The
amount of traffic between client and server can be reduced drastically.

Figure 39. Relationship among the ESB applet, ESB servlet, and ESB bean

6.1.2 JSP programming
The client may request the creation of an object and method call, for
example, using the parameters from the HTML form for ESB servlets. The
HTML file must be created by using the JSP file matched to the respective
results because the results are received using the JSP file. It is possible to
code using Java in the JSP as well as HTML. The Java code is interpreted on
the server side. Then, it is downloaded to the client. The ESB servlet and
ESB beans provide two types of beans, servlet beans and client beans. The
benefit of the JSP programming style is that Java can be used from non-Java
VM Web browsers.
130 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

Figure 40. Relationship of the JSP programming type

6.2 Programming using ESB applets

This section describes programming an applet in ESB.

6.2.1 Application creation example
Let us try creating a client application that converts Celsius to Fahrenheit by
calling the CtoF(c As Single) As Single of the sample CFConv.

The CFConv server program is located in the samples\CFConv
(/usr/lpp/esb/samples/En_US/CFConv for AIX) in the directory, where ESB
Runtime is installed. The following information is included in the CFConv
project:

• Project name: CFConv
• Class name: ConvertClass
• Method: CtoF(c As Single) As Single

The client code appears as shown in the following example. The bold portions
are key programming elements. Each element is explained later in the same
sequence as the functions that are highlighted with a boxed number.

The following example is actually coded in the sequence written in the
sample. The number “1” appears at the bottom of this sample code
although it is executed first. The number “8” does not appear in a boxed
number. This means that unloading an applet is done explicitly when
another URL is executed or the browser is exited.

Note
Using WebSphere 131

<html>
<head>
<title>Simple Temperature Conversion Program</title>
<script language="JavaScript">
<!--
function calculate(){
var lsobj;
var TheForm;
var rc;
var c;
var f;
var ServerName;
<!-- myServer is the host name of ESB Server -->
var C_ServerName = "myServer" ;
var C_ProjectName = "CFConv";
var C_ClassName = "ConvertClass";

TheForm = document.CFConv;
lsobj = document.myobj1;

lsobj.setParameter("server_name", C_ServerName);
lsobj.setParameter("project_name", C_ProjectName);
lsobj.setParameter("class_name", C_ClassName);

rc = lsobj.createObject();
if (rc != 0)
{
alert("Connection to ESB Server has failed.");
return;

}
c = TheForm.txtC.value ;

lsobj.setArgument("c", c);

rc = lsobj.callMethod("CtoF");

if (rc != 0) {
alert("Calling a method has failed.");
return;

}

f = lsobj.getReturnValue();

TheForm.txtF.value = f;

lsobj.deleteObject();

lsobj = "";
}

//-->
</script>
</head>
<body><form name="CFConv">
Celsius<input type="text" size="8" name="txtC" value="0">
<input type="button" value="Calculate" onclick="calculate()">
Fahrenheit<input type="text" size="8" name="txtF" value="0">

<applet codebase="/esb_applet" archive="SvClientApplet.jar"
code ="com.lotus.esb.applet.SvClientApplet"
name="myobj1" width=0 height=0>

2

3

4

5

6

7

1

132 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

<!-- webserver is the host name of the web server. -->

<param name="servlet"
value="http://webserver/servlet/SvSessionServlet">

</applet>
</form>
</body>
</html>

The processing details are described as follows:

1. Load ESB HTTP applets.

The applet programming style begins by downloading the ESB HTTP
applet into a Web client. The downloading of the applets is normally
invoked by means of <APPLET> tags.

Specify SvClientApplet.jar for the archive attribute value and
com.lotus.esb.applet.SvClientApplet for the code attribute value. Enter the
virtual directory of SvClientApplet.jar for the CODEBASE. Specify the
object name of SvClientApplet for the NAME. Enter the URL of the servlet
for the servlet parameter. One applet makes one Published class object
respectively. When creating multiple Published class objects, it must be
coded the same number of <APPELET> tags as objects.

2. Set the ESB Runtime to be connected.

Set the host name of ESB Runtime, the project name, and the Published
class name to be connected for the downloaded applet. It is possible to set
other option parameters according to the conditions. There are two types
of setting methods. One method is to use <PARAM> tags within the
<APPLET> tags of the HTML document. The other method is to use a
setParameter method in the script.

An example of the <PARAM> tag is shown here:

<param name="server_name" value="myServer">

An example of the setParameter method is shown here:

lsobj.setParameter("server_name", "myServer");

3. Create the Published class objects.

Once settings are completed, such as for the server name, a Published
class object can be created. Use the createObject method for the
creation.

4. Set the argument for a Published class object.

The argument of a Published class must be set prior to calling a Published
class method. Use the setArgument method for setting the argument. It is
not necessary to define all of the arguments defined by the Published
class method. Set only the argument that sends the data to ESB Runtime.
Using WebSphere 133

5. Call a Published class method.

Once the arguments are set, the Published class method can be called
using the method callMethod.

6. Obtain the result.

Upon successful completion of the calling procedure, the result can be
obtained. Use the getArgument method to obtain the ByRef argument,
and use the getReturnValue method to obtain the return value.

7. Delete the object.

If the connection to ESB Runtime becomes unnecessary, use the
deleteObject method to delete the Published class object. Even if it is not
explicitly deleted, it will inevitably be deleted when the applet is unloaded.

8. Unload the applet.

The applet is unloaded along with the unloading of the HTML document
and the ESB applet program ends.

6.2.2 Running the application
Run the code created by following these steps:

1. Run the project CFConv on ESB Runtime.

2. Open the HTML document created on the Web browser.

Figure 41 shows the Browser (IE) view of the sample program that was
created by using ESB Applet.
134 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

Figure 41. Browser (IE) view of sample program (CFConv) using ESB Applet

3. Enter an appropriate numerical value in the Celsius file. Click the
Calculate button. The corresponding Fahrenheit value is displayed.

6.3 Programming using JSP

JSP programming performs the request for the creation of a Published class
object or the request for the calling of a Published class method in an HTML
document, and then receives the result in a JSP file. Thereafter, you can
recursively perform this series of tasks from the JSP file.

6.3.1 An example of application creation
This section shows an example of the creation of JSP programming using a
Celsius and Fahrenheit conversion program. It requests the conversion from
Celsius to Fahrenheit on the initial page (jsptest.html) and outputs the result
to the JSP (result1.jsp). Furthermore, result1.jsp can request conversion from
Fahrenheit to Celsius or from Celsius to Fahrenheit. The former result is
output to result2.jsp, and the latter is output to the same result1.jsp.

The CFConv server program is included in samples\CFConv
(/usr/lpp/esb/samples/En_US/CFConv for AIX) in the directory where you
installed ESB Runtime.
Using WebSphere 135

The following information is included in the CFConv project:

• Project name: CFConv
• Class name: ConvertClass
• Method1: CtoF(c As Single) As Single
• Method2: FtoC(f As Single) As Single

The files to be created are jsptest.html, result1.jsp, and result2.jsp for the
client application. First, create the CFConv object in jsptest.html. Then,
determine the Fahrenheit for the Celsius and output the calculation result to
result1.jsp. The calculation result is output to result1.jsp. Create a button to
enable further calculation from Fahrenheit to Celsius and from Celsius to
Fahrenheit. Set it up so that it outputs the result of the Celsius to Fahrenheit
calculation to the result1.jsp file and the result of the Fahrenheit to Celsius
calculation to the result2.jsp file.

6.3.1.1 Creating jsptest.html
Create a CFConv object. Then, call the CtoF method. The result is output to
result1.jsp. Name the client bean cfconv. At this point, enter the data to be
sent to the ESB servlet, and create a button for sending it.

<html>
<head>
<title>Test the JSP</title>
</head>
<body>
<h1>Using the CFConv sample with JSP.</h1>
<form method="get" action="/servlet/SvSessionServlet">

<!-- specify the published class object information. -->
<!-- myServer is the host name of the ESB server. -->
<input type="hidden" name="server_name" value="myServer">
<input type="hidden" name="project_name" value="CFConv">
<input type="hidden" name="class_name" value="ConvertClass">
<!-- specify the information for method call. -->
<input type="hidden" name="method_name1" value = "CtoF">
Celsius<input type="text" name="argument1-1" value="0">
<input type="hidden" name="bean_name" value="cfconv">
<!-- the result will be output into result1.jsp. -->
<input type="hidden" name="jsp_name"

value="/esb_samples/cfconv/result1.jsp">

<input type="submit" name="testJSP" value="Celsius -> Fahrenheit">
</form>

<form method="get" action="/servlet/SvSessionServlet">
<!-- specify the published class object information. -->
<!-- myServer is the host name of the ESB server. -->

Upon deleting type="hidden", the data is displayed on the browser.

Hint
136 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

<input type="hidden" name="server_name" value="myServer">
<input type="hidden" name="project_name" value="CFConv">
<input type="hidden" name="class_name" value="ConvertClass">
<input type="hidden" name="method_name1" value = "FtoC">
Fahrenheit<input type="text" name="argument1-1" value="0">
<input type="hidden" name="bean_name" value="cfconv">
<!-- the result will be output into result2.jsp. -->
<input type="hidden" name="jsp_name" value="/esb_samples/cfconv/result2.jsp">
<input type="submit" name="testJSP" value="Fahrenheit -> Celsius"></form>
</body>
</html>

6.3.1.2 Creating result1.jsp
To create result1.jsp, follow these steps:

1. Set the beans.

Define the servlet bean and the client bean. Name the object name of
client bean from the name specified in the bean_name parameter of the
jsptest.html.

2. Display the result of the procedure.

Obtain the calculation result using getReturnValue() or getArgument() of
the client bean object.

3. Prepare for a recall.

Create a button so that you can recall the two methods in the following
part. Set the result of the CtoF method outputs to the same JSP file and
the result of the FtoC method outputs to result2.jsp. At this time, the name
of the bean specified in the following two examples must be specified as
the same one.

The URL of the SvSessionServlet servlet, the server name, the project
name, and the class name of the ESB Runtime can use respectively the
getURL() and getServer() methods of the SvServletBean. They can also
use the getServerName(), getProjectName(), and getClassName()
methods of SvClientBean.

<html>
<head>
<title>Result of JSP Test</title>
</head>
<!-- Declare bean -->

In case the bean name specified in the bean_name parameter is already
active in the same session, this bean can be used for the calling of the
procedure. In other words, the server_name, project_name, and
class_name parameters can be omitted.

Hint
Using WebSphere 137

<bean name="SvServletBean" type="com.lotus.esb.servlet.SvServletBean"
introspect="no" create="no" scope="request">

</bean>
<bean name="cfconv" type="com.lotus.esb.bean.SvClientBean"
introspect="no" create="no" scope="request">

</bean>

<body><h1>result1.jsp</h1>
<!-- Display result. -->

<p>Celsius <%= cfconv.getArgument(1) %> = Fahrenheit <%=
cfconv.getReturnValue() %>

<!-- Prepare next call (Call CtoF method.) -->
<!-- Output ersult to result1.jsp -->
<form method="get" action="<%= SvServletBean.getURL() %>">
<input type="hidden" name="method_name1" value = "CtoF">
Celsius <input type="text" name="argument1-1">
<input type="hidden" name="bean_name" value="cfconv">

<input type="hidden" name="jsp_name"
value="/esb_samples/cfconv/result1.jsp">

<input type="submit" name="testJSP" value="Celsius -> Fahrenheit"></form>

<!-- Prepare next call (Call FtoC method.) -->
<!-- Output result to result2.jsp. -->
<form method="get" action="<%= SvServletBean.getURL() %>">
<input type="hidden" name="method_name1" value = "FtoC">
Fahrenheit<input type="text" name="argument1-1">
<input type="hidden" name="bean_name" value="cfconv">
<input type="hidden" name="jsp_name"

value="/esb_samples/cfconv/result2.jsp">
<input type="submit" name="testJSP" value="Fahrenheit -> Celsius"></form>
</body>
</html>

6.3.1.3 Creating result2.jsp
The content is the same as result1.jsp, other than the output of the
Fahrenheit to Celsius calculation. Since the same bean as result1.jsp is
contained in the same session, the server_name, project_name, and
class_name parameters can be omitted.

<html>
<head>
<title>Result of JSP Test</title>
</head>
<!-- Declare bean. -->
<bean name="SvServletBean" type="com.lotus.esb.servlet.SvServletBean"
introspect="no" create="no" scope="request">

</bean>
<bean name="cfconv" type="com.lotus.esb.bean.SvClientBean"
introspect="no" create="no" scope="request">

</bean>
<body><h1>result2.jsp</h1>
<!-- Display result. -->
<p>Fahrenheit <%= cfconv.getArgument(1) %> = Celsius <%=
cfconv.getReturnValue() %>

<!-- Prepare next call (Call CtoF method.) -->

1

2

3

4

138 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

<!-- Output ersult to result1.jsp -->
<form method="get" action="<%= SvServletBean.getURL() %>">
<input type="hidden" name="method_name1" value = "CtoF">
Celsius <input type="text" name="argument1-1">
<input type="hidden" name="bean_name" value="cfconv">
<input type="hidden" name="jsp_name" value="/esb_samples/cfconv/result1.jsp">
<input type="submit" name="testJSP" value="Celsius -> Fahrenheit"></form>

<!-- Prepare next call (Call FtoC method.) -->
<!-- Output result to result2.jsp. -->
<form method="get" action="<%= SvServletBean.getURL() %>">
<input type="hidden" name="method_name1" value = "FtoC">
Fahrenheit<input type="text" name="argument1-1">
<input type="hidden" name="bean_name" value="cfconv">
<input type="hidden" name="jsp_name" value="/esb_samples/cfconv/result2.jsp">
<input type="submit" name="testJSP" value="Fahrenheit -> Celsius"></form>
</body>
</html>

6.3.2 Running the application
Run the application that was created by following these steps:

1. Run the project CFConv on ESB Runtime.

2. Copy the three files—jspts.html, result1.jsp, and result2.jsp—to the
samples\CFConv directory where the HTTP communication function
(/usr/lpp/esb/samples/En_US/servlet/CFConv for AIX) directory was
installed. Figure 42 shows the Browser (IE) view of the sample program
created by using JSP.

Figure 42. Browser (IE) view of the sample program created by using JSP
Using WebSphere 139

3. Open jsptst.html on the Web browser.

4. Click the Celsius->Fahrenheit button.

5. result1.jsp is read in. The Fahrenheit value corresponding to 0 degrees
Celsius is displayed (Figure 43).

Figure 43. View of result.jsp

6. Enter 50 in the Fahrenheit field. Click the Fahrenheit -> Celsius button.

7. result2.jsp is read. The Celsius value corresponding to 50 degrees
Fahrenheit is displayed (Figure 44).
140 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

Figure 44. View of result2.jsp

6.4 Setting the HTTP communication function

This section describes the various settings for HTTP communication.

6.4.1 Setting the ESB servlet
Set the following ESB properties using WebSphere Application Server
Administration Tool:

1. Start the WebSphere Application Server Administration Tool.

2. Select Servlet -> Configuration to display the Servlet Configuration
page.

3. Select SvSessionServlet from the Servlet names. Then, the property
registered in the Servlet Properties field and its value are displayed
(Figure 45 on page 142).
Using WebSphere 141

Figure 45. Servlet configuration on WebSphere Application Server Administration

4. Modify the window as required. Then, click the Save button, and reload.

6.4.1.1 Setting the maximum value for the ESB object
Once a large number of clients are accessed, the performance may be
reduced depending on the speed of the computer in which the servlet runs.
Considering such a situation, the ESB servlet can limit the number of ESB
objects that can be accessed at the same time. When placing a limit, set the
maximum value of the ESB object in the property max_active_object of the
ESB servlet, where the object can be accessed simultaneously.

6.4.1.2 Remote setting of servlet properties
Setting the remote_control property of the ESB servlet to “1” enables you to
remotely set the following properties from a Web browser.
142 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

A malicious user may cause problems with the Remote setting turned “on” in
the deployment of the system. Therefore, we strongly recommend that you
turn the Remote setting to “off.”

• auth_type
• jsp_default_type
• max_pool
• max_active_object
• trace_level

Send the following command to the ESB servlet to remotely set these
properties:

http://your_web_server/servlet/SvSessionServlet?property=value

Here, your_web_server is the host name of the Web server being used by
WebSphere. For example, set the trace level to 5:

http://your_web_server/servlet/SvSessionServlet?trace_level=5

When the trace output destination (trace_file property of the ESB servlet) in
the ESB Servlet Properties is set to stdout (default), the trace log can be
referred to in real time on the Java Debug Console of WebSphere.

To start the Java Debug Console, select Server Execution Analysis -> JVM
Debug to display the JVM Debug Settings page (Figure 46 on page 144).
Then, click the Output tag and turn on the Java Debug Console.
Using WebSphere 143

Figure 46. JVM debug setting

6.4.1.3 Displaying servlet information
Set the remote_control property of the ESB servlet to “1”. This allows you to
check the ESB server information (such as maximum pool number and client
authentication) on a remote computer. Send the following URL to the ESB
servlet for displaying the information of servlet setting:

http://your_web_server/servlet/SvSessionServlet?servlet_info=

6.4.1.4 Displaying help
Set the help_disable property of the ESB servlet to “0”. This allows remote
referencing of the ESB servlet and the Help applet. Send the following URL to
the ESB servlet to refer the Help applet:

http://your_web_server/servlet/SvSessionServlet?help=servlet
http://your_web_server/servlet/SvSessionServlet?help=applet

Increasing the trace level decreases the performance. We recommend that
you set the level to “0” when deploying the system.

Hint
144 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

6.4.2 Setting security
Using the security function of ESB or Web server, it is possible to set a limit
on the access to the project. The security settings may be set using one of
the following options:

• Using the user ID and password properties of ESB
• Using basic Web server authentication
• Using both

6.4.2.1 Using the user ID and password parameters
Use the user ID and password parameters of ESB applets and servlets. Since
it is not mandatory to set the security of a Web server, this method applies
when the HTML document is disclosed to the public for any user, and the
connections to ESB Runtime is limited to a certain number of users.

The following series of actions describes how to set security for an ESB
HTTP applet using a sample configuration:

1. Open CFConv.html in the text editor.

For Windows NT, it is located in samples\CFConv under the directory
installed NT ESB HTTP communication function.

For AIX, it is in /usr/lpp/esb/samples/En_US/servlet/CFConv.

2. Correct the cmdConnect_OnClick() function as shown here.

Any user can connect to the server if the parameter of the user ID and the
password are defined in the HTML document. They should be entered by
the user. This example shows the use of the prompt function.

function cmdConnect_OnClick(){
var rc;
var TheForm;
var ServerName;
var UserID;
var Password;
TheForm = document.CFConv;
lsobj = document.myobj1;

if (Connected == true){
alert(ERROR_CONNECTED);
return;

}

ServerName = prompt(PROMPT_SERVER, C_ServerName);
if (ServerName == "" || ServerName == null){
ServerName = "" ;
return;

}

UserID = prompt("Enter user name.", UserID);
Password = prompt("Enter password", Password);
C_ServerName = ServerName
//Set server information
Using WebSphere 145

lsobj.setParameter("server_name", ServerName);
lsobj.setParameter("project_name", C_ProjectName);
lsobj.setParameter("class_name", C_ClassName);
lsobj.setParameter("userid", UserID);
lsobj.setParameter("password", Password);

//Call createObject method
rc = lsobj.createObject();
:
:

}

If you are using JSP, it is possible to send the user ID and password
parameters when creating an object in an HTML document:

<html>
:
<form method="GET" action="/servlet/SvSessionServlet">
<input type="hidden" name="server_name" value="myServer">
<input type="hidden" name="project_name" value="myProject">
<input type="hidden" name="class_name" value="myClass">
<p>user id:
<input type="text" name="userid">
<p>password:
<input type="password" name="password">
<input type="hidden" name="method_name1" value="Method1">
<input type="hidden" name="argument1-1" value="0">
<input type="hidden" name="argument1-2" value="1">
<input type="hidden" name="argument1-3" value="2">
<input type="hidden" name="bean_name" value="myBean">
<input type="hidden" name="jsp_name" value="/beanresult.jsp">
<input type="submit" name="go" value="Call Method1">
:

</html>

3. Use the WebSphere Application Server Administration Tool to set the
auth_type property of the ESB servlet to 0 and reload the ESB servlet.
The user IDs and passwords can then be sent to ESB Runtime.

4. Register the users in the computer in which ESB Runtime is running.

For Windows NT, follow these steps:

a. Select Start -> Program -> Management Tool -> Domain User
Manager.

b. Set the user names to be given access authority and their passwords.

For AIX, follow these steps:

a. Run SMIT or SMITTY after the log-in by the root user.

b. Set the users to be given access authority and their passwords in
Security & Users -> Users -> Add a User.

5. Use the ESB Configuration Tool to set the exit routine for user
authentication to OS Security.
146 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

For Windows NT, follow these steps:

a. Open the ESB Configuration Tool.

b. Click the Exit Routine tab.

c. Click the Add button, and then select OS Security.

For AIX, follow these steps:

a. Run SMIT or SMITTY after the log-in by the root user.

b. Select the settings for Application -> ESB -> System Configuration
-> Change/ Show the Client Authentication.

c. Enter libhpwssec.a into the Exit Routine text box.

6. Restart ESB Runtime.

For Windows NT, stop the Lotus ESB Engine Service in the control panel
services, and then start it up.

For AIX, complete these tasks:

a. Run SMIT or SMITTY after the log-in by the root user.

b. Run Stop Subsystem in Application -> ESB -> System
Management, and then run Start Subsystem.

7. Run CFConv.lpk in the ESB System Manager.

8. Start the Web browser on the client side and open CFConv.html.

9. Click the Connect button. Enter the user name and password.

When the connection is successful, the user name of the connected user
is output to the system manager on the ESB Runtime side or inside the
Status tag in the Runtime monitor.

Entering an unregistered user name or wrong password causes the return of
security error. In case the authentification by user ID and password is used
with basic authentication, it can be implemented with more strict security by
setting the security of ESB Runtime and HTML document independently.

6.4.2.2 Using basic authentication
It is possible to use the basic authentication function of the Web server
without using the user ID or password parameter. In addition, after basic

The evaluation of the user ID and password depends on your security set
up. For more information, see 4.5, “Security” on page 69.

Note
Using WebSphere 147

authentication, it can be authenticated again in ESB Runtime by passing the
user name and password to ESB Runtime.

Although the setting of the basic authentication for each resource differs
depends on the Web server, we shows examples of the settings in Microsoft
Internet Information Server and Domino Go Server (AIX version).

Example of the settings in Microsoft Internet Information Server
Follow this process:

1. Start the Internet Service Manager.

2. Right-click Predetermined Web Site, and open Properties.

3. Open the Directory Security tag. Click the Edit button of Anonymous
Access and Approval Control.

4. Deselect Allow Anonymous Access. Then, select Basic Authentication
as shown in Figure 47.

Figure 47. Authentification for Microsoft IIS

5. Click the OK button to exit the setting of basic authentication.

6. Using the WebSphere Application Server Administration Tool, set the
auth_type property of the ESB servlet to 1 and reload the ESB servlet. The
user ID and password entered in the basic authentication are then sent to
ESB Runtime.
148 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

7. Register the user to the operating system in which ESB Runtime is
running.

8. Also register the same user to the operating system where Web Server is
running. This step can be omitted when Web Server and ESB Runtime are
on the same computer.

9. Start System Manager on ESB Runtime, and run CFConv.lpk.

10.Start the Web browser on the client, and read CFConv.html.

Note: There is no need to use the corrected CFConv.html. Use the user ID
and password parameters.

11.When CFConv.html is opened, a user name and password are requested,
so enter these.

12.Click the Connect button.

When the connection is successful, the user name of the connected user is
output to the system manager on the ESB Runtime side or inside the Status
tag in the Runtime monitor.

Examples of the settings in the Domino Go Webserver
Follow this process:

1. Open the Web browser, and set the Go Webserver.

After opening "http://Go_Webserver/", click CONFIGURATION AND
ADMINISTRATION FORMS.

In this URL, Go_Webserver is the name of the host where Go Webserver is
installed.

2. Click Add User in Administration of Users to register the users and the
group. An example is shown in Table 15.

Table 15. Sample user parameters for Go Webserver

Field Value

User name esbuser

Password esbuser

Group esb

Password file /usr/lpp/internet/server_root/protect/esb.passwd

Group file /usr/lpp/internet/server_root/protect/esb.group
Using WebSphere 149

3. After the user is registered, click Document Protection in Access
Control.

4. Set Document Protection as shown in Table 16 on page 150. Then, click
the Apply button.

Table 16. Sample access control parameters

5. Set Protection Setup as shown in Table 17. Then, click the Apply button.

Table 17. Sample parameters of protection

When the settings in Table 17 are completed, they are saved as follows to
/etc/httpd.conf:

Protect /* {
GroupFile /usr/lpp/internet/server_root/protect/esb.group
PasswdFile /usr/lpp/internet/server_root/protect/esb.passwd
ACLOverride Off
Mask Anybody@(*)
PostMask esbuser
GetMask esbuser
AuthType Basic
ServerID esb

}

Field Value

URL request
template

/* (Define basic authentication for all
documents)

Authentication
options

Password or user/group authentication

Define protection
settings

In-line

Field Value

Protection realm esb

Password file /lpp/internet/server_root/protect/esb.passwd

Group file /lpp/internet/server_root/protect/esb.group

Users with Read permission
(GET or POST)

esbuser
150 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

6. Click the Restart Server button or log in to the root user from the
computer terminal where Go Webserver was installed. Enter the following
commands:

stopsrc -s httpd
startsrc -s httpd

Once you complete this task, the basic settings of the Go Webserver are
complete.

7. Using the WebSphere Application Server Administration Tool, set the
auth_type property of the ESB servlet to 1 and reload the ESB servlet.
This sets it up so that the user ID and password entered in the basic
authentication are then sent to ESB Runtime.

8. Register the users (users and passwords registered in the Go Webserver;
in this example, it is esbuser/esbuser) to the operating system where ESB
Runtime is running.

9. Start the System Manager in ESB Runtime, and run CFConv.lpk.

10.Start the Web browser on the client, and read CFConv.html. There is no
need to use the CFConv.html corrected in [Use userid/password
parameters].

11.When CFConv.html is opened, a user name and password are requested.
Enter esbuser/esbuser.

12.Click the Connect button.

When the connection is successful, the user name of the connected user is
output to the system manager on the ESB Runtime side or inside the Status
tag in the Runtime monitor.

6.4.3 Setting the session management
This section explains how to set session management by using JSP.

6.4.3.1 Setting time-outs
Once a client object is created by using JSP, the client object will not be
deleted even though the Web browser is terminated. However, the
WebSphere session time-out function can be used to automatically delete the
object if there has not been any request from a client for a certain time. Use
the WebSphere Application Server Administration Tool to make this setting.
Follow these steps:

1. Start the WebSphere Manager Tool.

2. Select Setup -> Session Tracking to display the Session Tracking page
as shown in Figure 48 on page 152.
Using WebSphere 151

3. Click the Intervals tag. Set Invalidation Interval and Invalidate Time.
The units are in milliseconds.

4. Click the Save button.

Figure 48. Session Tracking Intervals setting

6.4.3.2 Using cookies
To manage sessions using cookies, both the server and client must be set so
that cookies can be used. To use cookies, follow this procedure:

1. Start the WebSphere Application Server Administration tool.

2. Select Setup -> Session Tracking to display the Session Tracking page
as shown in Figure 49 on page 153.

3. Click the Enable tag.

4. Set Enable Cookies to “on”.
152 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

Figure 49. Session Tracking Cookies setting

5. Click the Save button to save it.

6. Open Properties in the Web browser on the client side. Set it so cookies
can be used.

6.4.3.3 Using the rewriting function
It is possible to maintain the session on the browser that is not compliant to
the cookies by using a URL re-write function. When using this function, it
must be written as shown in the following JSP file to obtain the part specifying
the ESB servlet using getURL() method of the servlet bean. When the URL
rewrite function and the getURL() method are used, the session ID is added
to the URL of the SvSessionServlet. The session is maintained by using this
procedure for calling the next ESB servlet.

<form method="get" action="<%= SvServletBean.getURL() %>">
<input type="hidden" name="bean_name" value="myBean">
<input type="hidden" name="jsp_name" value="/output.jsp">
<input type="submit" name="delete" value="Exit">
</form>
Using WebSphere 153

Complete these steps to use the rewrite function:

1. Start the WebSphere Application Server Administration tool.

2. Select Setup -> Session Tracking to display the Session Tracking page
as shown in Figure 50.

3. Click the Enable tab.

4. Set Enable URL Rewriting to “on”.

5. Set Enable Cookies to “off”, or disable the cookies on the client.

Figure 50. Session Tracking enable URL rewriting

6. Click the Save button to save it.

7. Select Servlet -> Configuration to display the Servlet Configuration
page.

8. Select SvSessionServlet from the Servlet Names field.

9. Select the url_rewriting property from the Servlet Properties field. Then,
click the Modify button. If this property is not available, add it.

10.Enter 1 in the Value field. Then, click the Modify button.

11.After clicking the Save button, click the Unload and then Load buttons.
154 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

6.5 Application creation hints

This section offers helpful hints that you can use when creating the
application:

• The ESB servlet has a function that pools used client objects and holds
the connection with ESB Runtime. However, if ESB Runtime is stopped
while client objects are pooled, a mismatch occurs and it does not operate
normally. In case ESB Runtime stops periodically, we recommend that you
set the max_pool property to -1 (Do not pool). Also, if ESB Runtime is
stopped while the client objects are being pooled, reload the ESB servlet.

• When using JSP to create client objects, the client objects are not deleted
even if the Web browser terminates. Use the WebSphere session time-out
function. Or, set the function for deleting objects in HTML or JSP to
operate so that it explicitly deletes them from the Web browser.

• When using JSP to recursively call ESB servlets, we recommend that you
use the getURL() method of the ESB servlet bean instead of explicitly
specifying the URL of the ESB servlet. It is possible to use both of the
session managements using the cookies and the URL rewriting function.

<form method="get" action="<%= SvServletBean.getURL() %>">

• When using JSP to call ESB servlets, we recommend that you use the
getServer() method of the ESB servlet bean. You can also use the
getServerName() method of the client bean, instead of explicitly
specifying the server_name parameter. By doing so, when ESB Runtime
moves to another server or when the host name is changed, you do not
need to make any corrections.

<input type="hidden" name="server_name" value="<%=
SvServletBean.getServer() %>">

• Enabling the Remote setting (setting the remote_control property to “1”) in
the employment of system can result in trouble by a malicious user.
Therefore, we strongly recommend that you disable the Remote setting.
That is, set the remote_control property to “0” in such situations.

• When the trace level is increased, the performance deteriorates. Under
those circumstances, we recommend that you set the trace level to "0".
That is, set the trace_level property to “0”.

• In JSP programming, the loop can be created by using the argument of the
client bean. For example, assume that the second argument of the method
is an array element and that the first argument is its number of elements. It
appears as shown here:
Using WebSphere 155

<% for(int i; i < new Integer(myBean.getArgument(1)).intValue(); i++)
{
%>
Element[<%= i %>] = <% myBean.getArgument(2, i) %>
<%
}
%>

• After calling a procedure in JSP programming, set the delete_object
parameter to 1 to delete the client bean used previously.

<form method="get" action="<%= SvServletBeangetURL() %>">
<input type="hidden" name="delete_object" value="1">
<input type="hidden" name="bean_name" value="myBean">
<input type="hidden" name="jsp_name" value="/endJSP.jsp">
<input type="submit" name="delete" value"Exit">
</form>

• ESB applets do not support Variant types and two dimensional or more
arrays as arguments of procedures and return values. Consequently,
when creating applications using a Web client, design on the server
application side that does not use such arguments, or return values must
be adopted.
156 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

Chapter 7. Accessing from and to Notes and Domino

ESB can use the functions of Lotus Notes and Lotus Domino by using the
Notes classes of LotusScript. ESB can also access data on the Notes
databases, create and save documents, and use ESB functions from the
server agent of Lotus Domino. This chapter explains ESB programming using
Notes and Domino through the development of a sample program.

7.1 Outline

This section describes the relationship between ESB and Notes and Domino,
as well as the prerequisites for developing a sample application.

7.1.1 ESB and Notes or Domino
A Notes client is a typical ESB client. The primary reason for this is the high
degree of affinity with ESB because it has the same language as LotusScript
for its platform. The same may also be said for Lotus Domino. There is no
problem for ESB to invoke an application on Lotus Domino or Lotus Domino
invokes an ESB server application. The Lotus Software eXtension (LSX)
makes this mutual affinity possible. Loading the ESB client LSX by Lotus
Domino and loading Notes LSX by the ESB Runtime enables them to use
each other's functions.

In the sense that Lotus Domino bears the second tier of the three-tier
client-server application, the properties are similar to ESB. Consequently,
when ESB is collaborating with Lotus Domino, it is essential to use both
system’s advantages and balance the load carefully. Performance efficiency
and network traffic must be considered as well. Generally, data processing is
apportioned to the ESB, while data display and document creation is
allocated to Lotus Domino.

The creation and modification of documents on a Notes database should be
done by Lotus Domino. This way, efficient performance can be obtained
rather than performing such operations by ESB. It is also important to access
the database locally, unless it requires exclusive control.

On the contrary, when the application processes data from a RDB, such as
the calculation of annual interest or combined data with other RDBs, then the
processed data is sent to the client. The process logic should be executed in
ESB because it offers better performance, as well as flexibility and
maintainability in actual deployment.
© Copyright IBM Corp. 2000 157

7.1.2 Prerequisites
You need the following prerequisites to use Notes or Domino from ESB, or to
use ESB from Domino respectively:

• When using Lotus Notes or Lotus Domino functions from ESB

When ESB invokes the function of Lotus Notes or Domino (in other words,
the Notes class of LotusScript is called), it is required that Lotus Notes
R4.6 or higher or Lotus Domino R4.6 is up and running with ESB Runtime
on the same node. These Notes and Domino programs do not need to be
up and running when running an ESB application. Figure 51 shows an
ESB project accessing a Domino server.

Figure 51. Accessing a Domino server from an ESB project

• If Lotus Notes or Lotus Domino invokes an ESB function

When using an ESB function from Lotus Notes or Domino, ESB Client
Enabler must be installed on the node where Notes or Domino is running.
Figure 52 shows a Domino agent accessing an ESB project.

ESB supports Notes R4.5 as a client. However, since Notes LSX of
Notes Domino R4.5 is not thread-safe, it should not be used for
collaboration with ESB Runtime for a backend connection.

Note

ESB Client Enabler is automatically installed on a machine where ESB
Runtime or ESB Developer was installed. It is not necessary to do a
re-installation.

Hint
158 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

Figure 52. Accessing an ESB project from a Domino agent

7.2 Connecting to Notes or Domino

While creating a sample program, we explain how to use Notes or Domino
from an ESB server application.

7.2.1 Flow of the sample program
The scenario of a sample program is that, a name entered by the client is
searched for using a Notes database to obtain telephone numbers. The result is
returned to the client using mail. The specific program flow is shown here:

1. Request from the client.

The client invokes a request for a telephone number to the project being run
on ESB Runtime. The project name is chap07, the Published class name is
AddressBook, and the name of the function that processes the client
request is getPhoneNumber. The client passes the name of the person to
be searched and the mail address for sending the result as arguments to
the getPhoneNumber function.

2. Search the database.

The Address Book database (Domino Directory in R5) on Lotus Domino is
searched for the telephone number based on the name of the person. The
getPhoneNumber function that received the request from the client first
accesses the Address Book database. Then, it compares the fields with the
documents saved in the database for the name data of the argument, and
thus obtains the telephone numbers of the target persons.

3. Create the results document.

The database is used for result document creation, where the database is
created from the discussion template, which has the name chap07.nsf. First,
Accessing from and to Notes and Domino 159

chap07.nsf is accessed, and a new document is created. Then, the results of
step 2 are entered into a subject and body text of the document.

4. Send the document.

We send the document created in step 3 to the client by using mail.

5. Save the document.

The sent document is saved on the chap07.nsf database as a sent record.
The process of the getPhoneNumber function is completed. Figure 53 shows
the entire process flow of this sample program.

Figure 53. Process flow of the sample program

If a suitable Lotus Domino server cannot be provided on another node, the
development and testing of this sample application can be performed with a
local Lotus Domino of the same node where the ESB Runtime is running. In
this case, the mail server of Notes ID used in the sample program must be up
and running.

Hint
160 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

7.2.2 Preparation
You should run the following process before actually creating a sample
application:

1. Confirm the Address Book.

Confirm the file name of the Address Book located on Lotus Domino.
Usually, it is names.nsf.

2. Create a sample database to use in creating a document.

a. Start Lotus Domino.

b. Select File -> Database -> Create.

c. Enter a server name that is mounted on the Address Book database in
the Server text box.

d. Enter Chap07 in the Database Name text box.

e. If the template list is not displayed, select Template Server, and select
the server where the template is saved.

f. Select Discussion Template (discuss4.nsf or discsw50.nsf).

g. Deselect the Inherit future design changes check box.

h. Click OK.

i. After the database is created, close the policy document where it is
displayed.

3. Prepare a Notes ID for connecting to the Notes database.

Copy the Notes ID file onto the ESB Runtime machine. This Notes ID must
be authenticated by the target database connection (Address Book and
the database created in step 2).

4. Prepare for creating a server application as explained here:

a. Start ESB IDE.

b. Select Create -> Interface/Class.

c. Enter the Class Name: AddressBook. Then, select Published for the
class keyword.

While a project collaborating with Notes is running, the Notes ID that is
used by ESB Runtime should never be used by Notes client.

Note
Accessing from and to Notes and Domino 161

d. Click the Member Procedure tab. Then, add the following member
function:

Public Function getPhoneNumber(firstName As String, _
lastName As String, sendTo As String)

e. Click the OK button to create a class.

f. Save the script file name as AddressBook.lss and the project file name
as chap07.lsp.

7.2.3 Creating a sample application
Now, create a sample application program. Start the IDE and open the file
chap07.lsp created in the previous section. Then, follow these steps:

1. Load Notes LSX.

To use the Notes class in ESB, first you have to use the UseLSX
statement to load Notes LSX. Add the following code to the (Options)
script of the (Globals) object:

UseLSX "*Notes"

2. Connect to the Lotus database.

There are several types of connecting methods for the Notes database.
However, the most generic one is explained.

a. Create a NotesSession class object. Add the following code:

Set session = New NotesSession

b. Read the Notes ID file for connecting to the Notes Domino Server.
Then, set the password. For reading (switching) the Notes IDs file, it is
helpful to use the NotesRegistration class:

Set registration = New NotesRegistration
userName = registration.SwitchToID("d:\lotus\notes\data\user.id",_

"Password")

c. The first argument of the SwitchToID method is the path to the Notes ID
file. The second argument is the password for that ID. You enter the
password as simple text, so you should be careful when handling the
source file being developed.

Special settings are required to use Notes LSX in AIX. Before
proceeding to the next step, refer to the Lotus ESB User’s Guide and
read the section “Using Notes Classes” in Appendix A on page A-4.

Note
162 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

d. Use the GetDatabase method of the NotesSession class to connect to
the database. This method establishes a database connection at the
same time it obtains the NotesDatabase object, and permits the code
to be made succinctly.

Set addressDB = session.GetDatabase("esb/Lotus", "names.nsf")

e. Specify the server name in the first argument of the GetDatabase
method and specify the database name in the second argument. When
connecting to a local database, make the server name an empty string.

3. Search for documents and reference the field values.

a. Let us try to search for a document containing the names that were
entered and to obtain the telephone numbers. Once we are connected
to the database, the subsequent programming is the same as with
other Notes applications.

The Person form documents, where individual information is stored,
are displayed in the People view. Obtain this view first:

Set view = addressDB.GetView("People")

b. It retrieves the document contained in the view one-by-one and checks
whether the entered first name and last name match the values stored
in the field. If either matches, it obtains the value in the
OfficePhoneNumber field where the telephone number is stored,
creates a document for the mail body text, and stores it in the string
variable:

Set doc = view.GetFirstDocument
While Not(doc Is Nothing)
If doc.FirstName(0) = firstName Then
If doc.LastName(0) = lastName Then

The NotesRegistration class has been provided since Lotus Notes
R4.6. For those of you who cannot use this class, refer to the Lotus
ESB User’s Guide, and read the section “Connecting with a Notes
Database” in Appendix A on page A-2.

Hint

You can also obtain the Address Book database by using the
AddressBooks property of the NoteSession class.

Hint
Accessing from and to Notes and Domino 163

bodyText = firstName & " " &lastName & "'s phone number is "
&_

doc.OfficePhoneNumber(0) & "."
End If

End If
Set doc = view.GetNextDocument(doc)

Wend

c. Hereafter, the Address Book is not used. Disconnect the database:

Set addressDB = Nothing

4. Create a document.

a. Connect to the database (chap07.nsf) that was prepared for creating the
mail document:

Set mailDB = session.GetDatabase("esb/Lotus", "chap07.nsf")

b. Create a document. Since this document will be sent as mail later, set
the form to “Memo” and set the result in the Subject field and Body
field, where the result was obtained from the previous search
operation:

Set doc = New NotesDocument(mailDB)
doc.Form = "Memo"
doc.Subject = firstName & " " &lastName &"'s phone number"
If bodyText = "" Then
doc.Body = firstName & " " &lastName &_
" is not registered the address book."

Else
doc.Body = bodyText

End If

Figure 54 shows server program creation on ESB IDE.

It is possible to use the GetDocumentByKey method of the NotesView
class or the Search method of the NotesDatabase class for coding more
succinctly and efficiently. However, in this redbook, the previous codes
are used to absorb the differences between platforms and Notes
releases.

Hint
164 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

Figure 54. Server program creation

5. Send mail.

Send the document created as mail. Set the mail address entered in the
sendTo field and call Send method of the NotesDocument class:

doc.SendTo = sendTo
Call doc.Send(False)

The first argument of the Send method is a parameter that indicates
whether the form is stored and sent along with the document. Specify
False since you do not need to send a form at this time. The sender of the
mail will be the Notes user ID used for the database connection.

6. Save the documents.

Since this database does not contain a Memo form, change the form
name, and then save it.

Doc.Form = "Main Topic"
Call doc.Save(False, False)

The first argument of the Save method is a parameter that indicates the
process contention with another user. The second argument is a
parameter that indicates whether to save it as a reply document. In this
Accessing from and to Notes and Domino 165

case, the main topic was created as a new document, so specify False for
both arguments.

7.3 Connecting from Notes or Domino

Up to now, the Notes or Domino functions are called from ESB. Now create
an agent for connecting to the ESB server from Domino. Since this means
connecting to the ESB server from another process, it is the same as a client
application from the view of an ESB server.

An agent will be created on the Notes database used in the previous section
for saving the mail. It uses the server application that was also developed in
previous section.

Follow this process to connect from Notes or Domino:

1. Start Domino Designer, and open chap07.nsf on Lotus Domino.

2. Select Create -> Design -> Agent.

3. Enter Send Phone Number in the Name field, and check the Shared Agent
check box.

4. In "Which document(s) should it act on?", select Run once (@Commands
may be used).

5. Select LotusScript in the Run drop-down box. This completes the
preparations for creating an agent.

The Notes client AIX version is not formally supported as an ESB client. It
only supports connection from Domino agents. When connecting to ESB
Runtime from a Domino agent, you should set the ESB communication
environment according to the following procedure prior to starting Lotus
Domino:

1. Log on with the user running Lotus Domino.

2. Edit hpwclset.ksh (in case of a C shell, edit hpwclset.csh) located in
the /usr/lpp/esb.cb/bin directory. Set the IP address of TCP/IP to the
environment variable HOSTNAME.

3. Run hpwclset.ksh within the session that starts Lotus Domino.

4. Start Lotus Domino.

Note
166 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

6. Using the ESB server application, the ESB client LSX must be loaded.
Enter following codes in the (Options) script:

Uselsx "*SsClink"

7. Create a Published class object. Enter the following Initialize subroutine:

Dim ORSObj As New SsClink
Dim ESBObj As Variant

Set ESBObj = ORSObj.CreateObject("chap07.AddressBook, _
node=myServer")

Change the host name to be specified for the node in conformity with the
actual environment. You can also set the ConnType property or the UserID
property in the same way as other client applications.

8. Call the getPhoneNumber function of the server application. Modify the
three arguments of the getPhoneNumber function in conformity with the
actual environment.

ret = ESBObj.getPhoneNumber("John", "Smith", _
"Kaori Namba/esb/Lotus")

Once the calling of the function is completed, delete the Published class
object:

Set ESBObj = Nothing
Set ORSObj = Nothing

9. Describe the error handling, after defining of the ORSObj variable in the
getPhoneNumber function. Add the following two lines:

On Error Goto ErrorHandler
On Event RuntimeError From ORSObj Call EventHandler

Describe the error handling routine. Enter the following code at the bottom
of the Initialize subroutine:

ErrorHandler:
Print "ErrorHandler: " & Cstr(Err)
Print "ErrorHandler: " & Error
Exit Sub

End Sub

Now, enter the handling routine for the RuntimeError event. Enter the
following code in the (Declarations) script:

Sub EventHandler(ORSObj As SsClink, errorCode As Long, _
description As String)
Print "EventHandler:" & Cstr(errorCode) & " or 0x" & Hex(errorCode)
Print "EventHandler:" & description

End Sub
Accessing from and to Notes and Domino 167

10.Save the agent. Figure 55 shows the Domino agent creation on Domino
Designer.

Figure 55. Domino agent creation

7.4 Summary

This section describes the entire code that was created in this chapter and
how to execute this code.

7.4.1 Entire code
The entire code of the server application is as follows:

(Globals) - (Options)

Option Public
Option Explicit
'--- Load Notes LSX
Uselsx "*Notes"'NT
' Uselsx "/opt/lotus/latest/ibmpow/liblsxbe_r.a"'AIX
168 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

(Globals) - (Declarations)

Published Class AddressBook

Public Function getPhoneNumber(firstName As String, _
lastName As String, sendTo As String) As Long
On Error Goto ErrorHandler
Dim session As NotesSession
Dim registration As NotesRegistration
Dim addressDB As NotesDatabase
Dim mailDB As NotesDatabase
Dim view As NotesView
Dim doc As NotesDocument
Dim bodyText As String
Dim userName As String

GetPhoneNumber = -1
bodyText = ""

'--- Get a new session
Set session = New NotesSession

'--- Change a Note ID file
Set registration = New NotesRegistration
userName = registration.switchToID("D:\lotus\notes\data\user.id",_
"Password")

'--- Open the Address Book database, names.nsf
Set addressDB = session.GetDatabase("esb/Lotus", "names.nsf")
Set view = addressDB.GetView("People")
'--- Search a person whose name is "fisrtName lastName"
Set doc = view.GetFirstDocument
While Not(doc Is Nothing)
If doc.FirstName(0) = firstName Then
If doc.LastName(0) = lastName Then
bodyText = firstName & " " &lastName & "'s phone number is " & _
doc.OfficePhoneNumber(0) & "."

End If
End If
Set doc = view.GetNextDocument(doc)

Wend
'--- Close the Address Book database
Set addressDB = Nothing

'--- Open the sample database, chap07.nsf
Set mailDB = session.GetDatabase("esb/Lotus", "chap07.nsf")

'--- Create a new document
Set doc = New NotesDocument(mailDB)
doc.Subject = firstName & " " &lastName &"'s phone number"
doc.Form = "Memo"
doc.SendTo = sendTo
If bodyText = "" Then

doc.Body = firstName & " " &lastName &_
"is not registered the address book."

Else
doc.Body = bodyText

End If
'--- Send the document
Call doc.Send(False)
'--- Change the form and save the document
doc.Form = "Main Topic"
Call doc.Save(False,False)
Accessing from and to Notes and Domino 169

Set doc = Nothing
Set maildb = Nothing

Set session = Nothing
Set registration = Nothing
GetPhoneNumber = 0
Exit Function

'--- Error handling routine
ErrorHandler:

Print "Error!! code = " & Cstr(Err) & " : " & Error$
GetPhoneNumber = Err
Exit Function

End Function

End Class

The code created for the agent is shown in the following example. It will
operate even if you enter it in the event handling routine within the form.

'--- Load ESB client LSX
Uselsx "*SsClink"'NT

Sub Initialize
Dim ORSObj As New SsClink
Dim ESBObj As Variant
Dim ret As Long

On Error Goto ErrorHandler
On Event RuntimeError From ORSObj Call EventHandler

'--- Create a Published class object
Set ESBObj = ORSObj.CreateObject _
("chap07.AddressBook, node=myServer")

'--- Call getPhoneNumber function
ret = ESBObj.getPhoneNumber("John", "Smith", _
"ESB Lotus/esb/Lotus")

If ret <> 0 Then
MsgBox "Some error has occurred on ESB Runtime."

End If

'--- Delete the Published class object
Set ESBObj = Nothing
Set ORSObj = Nothing
Exit Sub

'--- Error handling routine
ErrorHandler:
Print "ErrorHandler: " & Cstr(Err)
Print "ErrorHandler: " & Error
Exit Sub

End Sub

'--- RuntimeError event handling subroutine
Sub EventHandler(ORSObj As SsClink, errorCode As Long, _
description As String)
Print "EventHandler: " & Cstr(errorCode) & " or 0x" & Hex(errorCode)
Print "EventHandler: " & description

End Sub
170 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

7.4.2 Running the sample application
Run the sample application program that you just created.

7.4.2.1 Connecting to Notes or Domino
In 7.2.3, “Creating a sample application” on page 162, you only created a
server application. In this section, you use the IDE as a client to run the
application. Because it includes a client code creation tool, you can easily
create client applications in the IDE.

1. Verify that Lotus Domino is operating where the Address Book and
chap07.nsf are located.

2. Run project chap07 on the ESB Runtime side.

3. Start the IDE, and create a new project.

4. Select Create-> Client Code.

5. Respectively, enter Chap07 and AddressBook for the Project Name and the
Published Class Name. Enter the host name where ESB Runtime is
operating in the Server Name. Click the OK button. A client code is
created in the Initialize subroutine (Figure 56).

Figure 56. Create Client Code dialog box

6. Add the following code after creating a Published class object to call the
getPhoneNumber function:

Dim ret As Long
ret= obj.getPhoneNumber("John", "Smith", "ESB Lotus/esb/Lotus")

Change the three arguments as appropriate in conformity with the actual
environment.

7. Select Build -> Run Project. When it ends normally, a new document is
created in the chap07 database. The mail reporting the result (Figure 57
on page 172) is delivered to the mail address specified within the client
code.
Accessing from and to Notes and Domino 171

Figure 57. Mail reporting a result

7.4.2.2 Connection from Notes or Domino
To run the application you created in 7.2.3, “Creating a sample application” on
page 162, complete the following steps:

1. Verify that Lotus Domino is operating where the Address Book and
chap07.nsf are located.

2. Run project chap07 on the ESB Runtime side.

3. Open chap07.nsf on Lotus Domino.

4. Select Action -> Send Phone Number.

When the application ends normally, a new document is created in the
chap07 database. The mail reporting the result is delivered to the mail
address specified within the agent.

7.4.3 Application creation hints
This section describes hints to develop an application using Notes or Domino:

• Shifting Notes or Domino applications

It is easy to shift Notes or Domino applications created with LotusScript to
ESB server applications. You can readily operate it as an ESB server
application, even if the loading of Notes LSX is described. However, the
following precautions are in order:

– Unlike Notes, there is no “Current” concept. Therefore, the
CurrentDatabase properties of the UI type class (NotesUIDocument
172 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

and so on) and of the NotesSession class cannot be used. When these
are used, they must be appropriately rewritten.

– When developing a program, such as updating documents, exclusive
control is required, so that contention never happens due to the ESB
multi-thread function. We recommend that you use the LSServer class.

• Accessing a local database

It is possible to connect to a local database using the GetDatabase
method of the NotesSession class. In this case, specify the Notes or
Domino data directory as a base reference for specifying the database
with a relative path. Be careful because it is not an ESB Runtime run
directory. An absolute path specification case does not apply.

• Unable to connect to a database

Even though the server name and Notes ID authentication have been set
correctly, you may be unable to connect a database. The reason may be
because the notes.ini where ESB Runtime is running is not correct
(location setting and so on). In such cases, start Notes, authorize the
access of target database for the Notes ID used in ESB, and specify the
correct location. Then, exit Notes.

• Searching a field

In this chapter, the operational flow is for a field search. One document is
opened at a time, and then the field values are compared. However, due to
the fact that this method results in redundant script descriptions,
performance problems may occur if the number of documents has
increased. Generally, you can search more efficiently by creating a view
for searching (one where the key of the search target is displayed in the
first column). Then, use the GetDocumentByKey method of the NotesView
class. Also, consider using the Search method of the NotesDatabase
class. Remember that the @ function for the Search method argument
cannot be used in the ESB Runtime for AIX.
Accessing from and to Notes and Domino 173

174 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

Chapter 8. Connecting to a relational database

The ESB can connect and link in real time to a variety of database
management systems (DBMS) and collaborate with those systems. This
chapter explains several methods for accessing the relational databases
(RDB), including DBMS.

8.1 Overview

The following items are supported as interfaces for database access from
ESB:

• Domino Connectors and LSX LC: Domino Connectors to various
backend systems executed with LotusScript code using the LotusScript
Extension for Lotus Domino Connectors (LSX LC)

• Custom LSXs: LotusScript Extensions for systems such as LS:DO, DB2
LSX, and MQSeries LSX

• CLI: The native interface of DB2

• OCI: The native interface of Oracle databases

• ODBC: An interface for connecting to various databases

With ESB, you can select the optimum connection configuration based on the
developer's needs and skill for each of the methods, which are explained in
the following sections.

8.1.1 Differences between using Domino Connectors with the LSX LC and
other LSX, CLI, and OCI

With Domino Connectors used with the LSX LC (which has a standard API
access to backend systems), the development is straightforward. LotusScript
Extensions (LSXs) that are designed as specialized DBMS, specifically for
CLI and OCI, and LSXs that have an original API are more complicated.
Consequently, there is no need to remember the API that is determined for a
specific DBMS. There is almost no overhead incurred when shifting to a
different DBMS. Also, because the initialization procedure required in normal
programming is processed internally, the developer does not need to perform
any complex processing for initialization or management of variables.

On the other hand, because the CLI and OCI achieve more native access, a
skilled developer can make very small settings for precise processing. Refer
to 8.4, “Performance comparison” on page 199, for a comparison of both.
© Copyright IBM Corp. 2000 175

Figure 58 shows the relationship between the ESB, Domino Connectors, and
the systems to which they can be connected.

Figure 58. Generic ESB backend connectivity

8.2 Domino Connectors and the LSX LC

This section explains how to use the Domino Connectors with the LSX LC.

8.2.1 What a Domino Connectors are
Domino Connectors are dynamic link (.dll) or shared library files. They
provide connecting and authenticating functionality with backend systems. To
access these .dlls from LotusScript, a special set of extensions has been
created called the LotusScript Extension for Lotus Domino Connectors. The
same classes, methods, and properties of the Connector LSX can be used
with any connector .dll file, regardless of the backend system that is desired.
The following list shows the Domino Connectors that are currently available:

• DB2/UDB
• Notes
• ODBC

ESBESB

ORB
(DCOM, CORBA/IIOP)

User's LOB
Applications

(LotusScript)Any
Clients

MQ Series

SAP R/3
JD Edwards
PeopleSoft

DB2
Oracle
Sybase
ODBC

Text

MDB
L

o
tu

s
C

o
n

n
ec

to
r

A
P

I

Domino
Connectors

Custom
Connectors

CLI Native
OCI Native
176 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

• Oracle
• Sybase
• File/Text
• SAP
• PeopleSoft
• JD Edwards
• Oracle applications

In this section, we incorporate specific examples for the connection to
DB2/UDB and Oracle. Figure 59 shows the access from ESB and Domino to
DBMS using Domino Connectors.

Figure 59. RDMS access from ESB and Domino using Domino Connectors

8.2.2 Development using Domino Connectors, Lotus Connector LSX
The following sections explain the step-by-step development using Domino
Connectors with the LSX LC.
Connecting to a relational database 177

8.2.2.1 Loading the LSX LC
The IDE requires that you load the LSX LC to use the Domino Connector
functions. Enter the (Options) script of the (Globals) object to load this LSX
LC as shown here:

Uselsx "*lsxlc"

When ESB is installed, the lsxlc keyword is registered, which enables its
use.

8.2.2.2 Classes that are provided
The following types of classes are provided in lsxlc:

• LCSession

This class manages the Domino Connector running environment. When a
runtime error has occurred, it holds the error information. It obtains the
error information from this class object to perform error handling.

• LCConnection

This class manages the connection with the database. This class method
is used to perform collaboration with the DBMS for such operations as
querying or updating data.

• LCFieldlist

This class stores field groups to be queried and updated when a database
is accessed. It facilitates data operations and linking by consolidating the
individual fields to be processed.

• LCField

This class is used in storing data. It can store all data types of the four
classes described in the following bullet.

• LCStream/LCNumeric/LCCurrency/LCDatetime

These classes are used for storing and the operation of a specific data
type.

8.2.2.3 Connection pooling
The following process is normally performed for accessing databases:

1. Connect to the database.
2. Run business logic, such as database queries.
3. Disconnect from the database.

In complex cases, such as where the business logic performed in step 2
queries or updates large volume data encompassing multiple tables, step 2
178 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

occupies a high proportion of the overall processing. In the current situation,
in most cases, connection pooling consumes even more time than running
the business logic. Under the connection pooling mechanism, when an ESB
application for connecting to a database is run, first (immediately after
running the ESB application), an appropriate amount of connections are
created. They are then allocated each time there is a connection request.
Even when an application requests a disconnection from the database, it
merely returns to the connection pool without actually disconnecting. For this
reason, even if there is another connection request, it just allocates a pooled
connection, which permits extremely fast connection processing. Figure 60
shows schematic view of connection pooling.

Figure 60. Connection pooling of Domino Connectors

The connection pooling procedure is further explained here.

To create a connection pool with LSX LC code, you must set the
ConnectionPooling property to “True”. With this setting, the Domino
Connector creates as many connections as necessary, and then ends.
Although the Disconnect method is called, if the ConnectionPooling property
has been set to True, the connection within the pool is not lost.

Normally, connection pooling should be created when you begin to run a
project. Therefore, you should enter that logic into the Initialize subroutine of
the ESB project. The following example shows how to create connection
pooling for DB2:

Sub Initialize()
Dim i As Integer
Dim sesObj As New LCSession
sesObj.ClearStatus
sesObj.ConnectionPooling = True 'Enable connection pooling

Dim conObjs() As LCConnection
Const poolNum=10 'Number of pooling connection is 10
Redim conObjs(poolNum)

Print "Initializing pooling for " & Cstr (poolNum) & " connections"
For i = 0 To (poolNum - 1)

Set conObjs(i) = New LCConnection("db2")
conObjs(i).Database = "TESTDB"
Connecting to a relational database 179

conObjs(i).userID = "userid"
conObjs(i).Password = "password"
conObjs(i).Connect

Next

For i = 0 To (poolNum - 1)
conObjs(i).Disconnect

Next

Print "Connection pool initialization complete."
Exit Sub

End Sub

Here, the required number of connections and disconnections is made. Even
after disconnections, the connections within the connection pool are not lost.
Therefore, pooling has been executed. However, because connection pooling
is optional, it does not necessarily have to be executed.

Be aware of the following points when running it:

• In DBMS, there is a fixed upper limit on the number of connections that the
pooling cannot exceed.

• Because it occupies a fixed number of connections, there may be an
impact when the database is accessed from another application.
Consequently, you should check, in advance, the upper license and
resource related limit value on the number of DBMS connections. Specify
an upper limit value in the INI file when necessary.

• When the database stops momentarily and then restarts, the handle of the
database being pooled will be invalidated. In other words, if an
ESB-related application uses an invalidated handle to connect to the
database, an error results. In this case, the connection pooling must be
recreated.

In the LEI.INI file located in the ESB run directory, enter the following
statement to set the maximum number of connection pools in the DBMS:

ConnectionPool=[db_type,poolMax[,singleMax]][,db_type …]

Consider this example:

ConnectionPool=oracle,10,db2,20,5

In this example, the maximum number of connection pools in Oracle/DB2 is
set to 10 and 20 respectively. In DB2, the maximum number of connection
pools per database is set to 5. This setting is made to prevent the inability to
create a connection pool for another database, such as when the connection
pool once created for one database is not used often thereafter and occupies
high portions of the maximum number of connections.
180 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

The connection processing to the DBMS in the code previously described is
discussed later in this chapter.

8.2.2.4 Transaction processing
In LSX LC, the Action method of the LCConnection class can be used for
Commit/Rollback transaction control. The properties necessary for each
DBMS have been provided, and values referred to as a token have been
assigned. The number “1” has been assigned as the token of the
CommitFrequency property that decides the mode to be used for the
transaction processing. Refer to the Enterprise Integrator Domino Connector
LotusScript Extension Guide, which is included with the Domino Connector
package, for details on the supported properties and tokens. Check whether
the CommitFrequency property is supported in the target DBMS. If it is, follow
the procedure for setting Manual-Commit. Check whether it is supported with
the LookupProperty method of the LCConnection class.

If(conObj.LookupProperty(COMMIT_FREQUENCY)) Then
.......

End If

If it is supported, True is returned. If it is not supported, False is returned. If
True is returned, MANUAL_COMMIT is set as the value of the property in the
SetPropertyInt method. Enter the following statement to process transactions
with Manual-Commit:

Const COMMIT_FREQUENCY = 1 'CommitFrequency property token is 1
Const MANUAL_COMMIT = 0
Dim conObj As LCConnection
If(conObj.LookupProperty(COMMIT_FREQUENCY)) Then

CallconObj.SetPropertyInt(COMMIT_FREQUENCY, MANUAL_COMMIT)
End If

.......

conObj.Action (LCACTION_COMMIT) 'Commit
or,

conObj.Action (LCACTION_ROLLBACK) 'Rollback

8.2.2.5 Connecting to and disconnecting from the DBMS
You must set various properties to connect to the DBMS. These properties
vary depending on the type of DBMS. Refer to the Enterprise Integrator

DB2 and Oracle both support the CommitFrequency property.

Hint
Connecting to a relational database 181

Domino Connector LotusScript Extension Guide for details. Here, we
describe the cases for DB2 and Oracle.

In DB2, the Database property is necessary, but in Oracle it does not need to
be specified. Conversely, in Oracle, the Server property is necessary.
However, if you use the default service name, no particular specification is
required.

The Metadata property indicates the aggregate configuration of the data on
the database to be connected. For DB2 and Oracle, this corresponds to
tables and views. Connect by using the Connect method when the setting of
the required properties is finished:

Dim conObj As New LCConnection (connector)
If connector = "db2" Then

conObj.Database = "SAMPLE"
Elseif connector = "oracle" Then

conObj.Server = "orcl" 'not required when accessing default service
End If

'Set properties to connect to data source
conObj.UserID = "userid"
conObj.Password = "password"
conObj.Metadata = "customer"
conObj.Connect

When connecting to a database, if you enter the database name, and the
user ID, and the password required for access directly into the source file,
and those settings are different in the development and deployment
environments, you must change the source code. It may be better to use
property environment variables for setting the database name, the user ID,
and the password, from the perspective of separating the development and
deployment of the ESB project.

Const connector = "db2"
Dim conObj As New LCConnection (connector)

Dim context As Variant
Set context = getContext()

'Set properties to connect to data source
conObj.Database = context.ProjectEnvValue("envDatabase")
conObj.UserID = context.ProjectEnvValue("envUserid")
conObj.Password = context.ProjectEnvValue("envPassword")
conObj.Metadata = context.ProjectEnvValue("envTablename")
conObj.Connect
182 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

This way, you obtain the project environment variable with the
ProjectEnvValue method after obtaining the context information. After the
developer has entered the code as indicated above in the source file, the
operator or the manager sets project environment variables corresponding to
envDatabase/envUserid/envPassword/envTablename. To set the project
environment variables, select File->Project Property on the IDE and set the
appropriate values as shown in Figure 61. Since the content set here is
entered into the 1sp file, it can be managed apart from the source file.

Figure 61. Environment Variable panel in Project Property of ESB IDE

Normally when designing ESB applications, the security and access control
for the respective clients is done when the Published class object is created
or in the logic within that class. When an ESB application connects to a
database, it is normal for a dedicated ID to be used, which provides adequate
authority for the processing to be done by the application.

Otherwise, there are cases where you may want to use the access control
function of DBMS based on the user ID information of the respective clients.
At such times, you should set the user ID and password when creating the
Published class object on the client side and use it for connection to the
database on the server side. In this case, the connection pooling function
cannot be used effectively.

Dim context As Variant
Connecting to a relational database 183

Set context = getContext()
'Set properties to connect to data source
conObj.UserID = context. Userid
conObj.Password = context. Password

8.2.2.6 Creating or deleting tables
With the LSX LC, when you run SQL on a database, you can select whether
to run SQL directly (using the Execute method of the LCConnection class) or
to use the specialized method provided by the LSX LC. Here, we show the
two methods and look at their differences.

Table 18 shows the relationship between the five fields for the CustomerNo,
Name, E-mail, Phone, and Age, and the attributes and the type.

Table 18. Field, attribute, and type

• When using the Execute method

In this case, you create a string type variable to store the SQL statement,
make that variable the argument. Then, run the Execute method of the
LCConnection class.

Const STREAM_SIZE = 20
Const DECIMAL_SIZE = 4
Dim stmt As String
stmt = "create table customer(" &_
"CustomerNo DECIMAL(DECIMAL_SIZE,0), " &_
"Name CHAR("& STREAM_SIZE &"), " &_
"Email CHAR("& STREAM_SIZE &"), " &_
"Phone CHAR("& STREAM_SIZE &"), " &_
"Age DECIMAL(DECIMAL_SIZE,0))"

Field Field attribute Field type

CustomerNo Long LCTYPE_INT

Name String LCTYPE_TEXT

E-mail String LCTYPE_TEXT

Phone String LCTYPE_TEXT

Age Long LCTYPE_INT

When using ESB Runtime for AIX, enter the argument (type of DBMS) for
the New method of the LCConnection class in lower-case letters:

Incorrect: Dim conObj As New LCConnection ("DB2")

Correct: Dim conObj As New LCConnection ("db2")

Note
184 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

Call conObj.Execute(stmt, Nothing)
Print "Table was successfully created!"

Enter
stmt = "drop table customer"

to delete the table.

• When using the Create/Drop method

To create a table, define the table to be created. Then, use the Append
method to add it to the object of the LCFieldList class. To create a string
type field, you must use the SetFormatStream method of the LCField class
to set the format. Lastly, create the table with the Create method.

'Build field list "CustomerNo, Name, Email, Phone, Age"
Const STREAM_SIZE = 20
Dim flds As New LCFieldList
Dim fld As LCField
Set fld = flds.Append("CustomerNo",LCTYPE_INT)
Set fld = flds.Append("Name",LCTYPE_TEXT)
Call fld.SetFormatStream(LCSTREAMF_NO_CASE,STREAM_SIZE, _
LCSTREAMFMT_UNICODE)

Set fld = flds.Append("Email",LCTYPE_TEXT)
Call fld.SetFormatStream(LCSTREAMF_NO_CASE,STREAM_SIZE, _
LCSTREAMFMT_UNICODE)

Set fld = flds.Append("Phone",LCTYPE_TEXT)
Call fld.SetFormatStream(LCSTREAMF_NO_CASE,STREAM_SIZE, _
LCSTREAMFMT_UNICODE)

Set fld = flds.Append("Age",LCTYPE_INT)
Call conObj.Create(LCOBJECT_METADATA,flds)
Print "Table : "&conObj.Metadata & " was created sucessfully!"

Enter
Call conObj.Drop(LCOBJECT_METADATA)

to delete the table.

8.2.2.7 Inserting data
We use the following example to explain the procedure for inserting five
records:

• When using the Execute method

For this method, you create a string type variable to store the SQL
statement, make that variable the argument, and then run the Execute
method of the LCConnection class.

Const NUM_RECORD=5
Dim stmtBase As String
Dim stmt(NUM_RECORD) As String
stmt(0)="3909, 'Bill Johnson', 'Bill@aaa.com', '521-146-3233',40"
stmt(1)="4245, 'Dave Jackson', 'Dave@aaa.com', '352-496-4962',20"
stmt(2)="5252, 'Phil Sims', 'Phil@aaa.com', '232-787-5866',58"
stmt(3)="5486, 'Magic Johnson', 'Magic@aaa.com', '443-402-6661',57"
stmt(4)="5556, 'Janet Thomas', 'Janet@aaa.com', '644-618-1562',26"
Dim i As Integer
For i=0 To NUM_RECORD-1
stmtBase = "INSERT INTO CUSTOMER (CUSTOMERNO, NAME, EMAIL,) " &_
" PHONE, AGE VALUES ("& stmt(i) &") "

Call conObj.Execute(stmtBase, Nothing)
Next
Print NUM_RECORD & " records were inserted!"
Connecting to a relational database 185

• When using the Insert method

To insert data, prepare the string type and long type arrays matched to the
attributes for each field, and store the data. Create a field list by adding
fields to an LCFieldList object, which is the object of the LCFieldList class.
At that time, you should copy the values into the value property of the
LCField class object for each field to store the values of this array into the
five fields where you will insert the data. Lastly, you should insert the data
with the Insert method of the LCConnection class.

Const NUM_RECORD=5
'Field list to be inserted into table
Dim flds As New LCFieldList(NUM_RECORD)
Dim fld As LCField
Dim sData(NUM_RECORD-1) As String
Dim iData(NUM_RECORD-1) As Long
Dim msg As String

Print "Inserting Data ..."

Set fld = flds.Append("CustomerNo",LCTYPE_INT)
idata(0) =3909
idata(1) =4245
idata(2) =5252
idata(3) =5486
idata(4) =5556
fld.value = idata

Set fld = flds.Append("Name",LCTYPE_TEXT)
sdata(0) ="Bill Johnson"
sdata(1) ="Dave Jackson"
sdata(2) ="Phil Sims"
sdata(3) ="Magic Johnson"
sdata(4) ="Janet Thomas"
fld.value = sdata

Set fld = flds.Append("Email",LCTYPE_TEXT)
sdata(0) ="Bill@aaa.com"
sdata(1) ="Dave@aaa.com"
sdata(2) ="Phil@aaa.com"
sdata(3) ="Magic@aaa.com"
sdata(4) ="Janet@aaa.com"
fld.value = sdata

Set fld = flds.Append("Phone",LCTYPE_TEXT)
sdata(0) ="521-146-3233"
sdata(1) ="352-496-4962"
sdata(2) ="232-787-5866"
sdata(3) ="443-402-6661"
sdata(4) ="644-618-1562"
fld.value = sdata

Set fld = flds.Append("Age",LCTYPE_INT)
idata(0) =40
idata(1) =20
idata(2) =58
idata(3) =57
idata(4) =26
fld.value = idata
186 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

'Insert Data
Print conObj.Insert(flds,1,NUM_RECORD)& " records were inserted!"

8.2.2.8 Searching for data
In the following example, we explain the procedure of how the information on
CustomerNo 3909 is retrieved from the table:

• When using the Execute method

For this method, you create a string type variable to store the SQL
statement, make that variable the argument, and then run the Execute
method of the LCConnection class. After running the Execute method, use
the Fetch method to obtain the data.

Dim flds As New LCFieldList
Dim stmt As String
stmt = "Select * from customer Where CustomerNo=3909"
Call conObj.Execute(stmt, flds)

Dim count As Integer
count = flds.FieldCount
Dim resline As String
resLine = ""
Dim i As Integer

'Code below is for fetching data
For i = 1 To count
resLine = resLine & flds.GetName (i) & ", "

Next
Print resline

Dim Fetched As Long
Fetched = 0
Dim FetchOK As Integer
FetchOK = 1

While FetchOK = 1
FetchOK = conObj.Fetch(flds)
resline =""
If FetchOK <> 0 Then
Fetched = Fetched + 1
For i = 1 To count
resLine = resLine & flds.GetField(i).text(0)& ", "

Next
resLine = resLine
Print resline

End If
Wend
Print Fetched & "records were successfully retrieved from the table!"

• When using the Select method

To create a search key, add a CustomerNo field to the object of the
LCFieldList class. Next, specify the value that will be the search key and
the conditions in the Value property and the Flags property. In this case,
you should specify LCFieldF_KEY for the Flags property, so that it will
search for items having an equal value. After running the Select method of
the LCConnection class, use the Fetch method to obtain the data.
Connecting to a relational database 187

Dim flds As New LCFieldList
Dim keys As New LCFieldList
Dim fld As LCField
Dim iCustomerNo As Long
iCustomerNo= 3909

'Create key to find certain records to select
Set fld = keys.Append ("CustomerNo", LCTYPE_INT)
fld.value = iCustomerNo
fld.Flags = LCFieldF_KEY

conObj.FieldNames = "CustomerNo,Name,Email,Phone,Age"

'Search data
Call conObj.Select (keys, 1, flds)

'Fetch procedure is quite the same as above case.
.....

The Flags property that becomes the search condition is set as:

fld.Flags = LCFieldF_KEY

However, the Flags property is used as shown in Table 19 when setting other
conditions.

Table 19. Flag property values of a search condition

Be absolutely sure that the LCFIELDF_KEY is included. Refer to the Domino
Connector manual for other details.

8.2.2.9 Updating data
In the following example, we explain the procedure where the information on
CustomerNo 3909 is updated on the table, using the specified values:

• When using the Execute method

In this case, you create a string type variable to store the SQL statement,
make that variable the argument, and then run the Execute method of the
LCConnection class.

Dim fldLst As New LCFieldList
Dim stmt As String

Search
condition

Flags property value

>= LCFIELDF_KEY + LCFIELDF_KEY_GT

<= LCFIELDF_KEY + LCFIELDF_KEY_LT

<> LCFIELDF_KEY + LCFIELDF_KEY_NE

> LCFIELDF_KEY + LCFIELDF_KEY_GT + LCFIELDF_KEY_NE

< LCFIELDF_KEY + LCFIELDF_KEY_LT + LCFIELDF_KEY_NE
188 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

stmt = "UPDATE CUSTOMER " &_
" SET Name = 'newName, Email='newEmail', Phone='11111', Age=20 "&_
" Where CustomerNo = 3909"

Dim count As Integer
count = conObj.Execute(stmt, fldLst)
Print count & " data was updated!"

• When using the Update method

Create an LCFieldList class object in the same manner as when
searching, and set the search field property and the update data. Then,
run the Update method of the LCConnection class, and make this
LCFieldList class object the argument.

Dim flds As New LCFieldList
Dim keys As New LCFieldList
Dim fld As LCField
Dim rc As Long
Dim msg As String
Dim iCustomerNo As Integer
iCustomerNo= 3909

'Create key to find certain records to update
Set fld = keys.Append ("CustomerNo", LCTYPE_INT)
fld.value = iCustomerNo
fld.Flags = LCFieldF_KEY
conObj.FieldNames = "CustomerNo,Name,Email,Phone,Age"

'Search data
'Build field list to update
Set fld = keys.Append ("Name", LCTYPE_TEXT)
fld.text = "Bill Johnson"
Set fld = keys.Append ("Email", LCTYPE_TEXT)
fld.text = "Bill@aaa.com"
Set fld = keys.Append ("Phone", LCTYPE_TEXT)
fld.text = "521-146-3233"
Set fld = keys.Append ("Age", LCTYPE_INT)
fld.value = 40

'Update data
Dim count As Integer
count = conObj.Update(keys)
Print count & " data was updated successfully!"

8.2.2.10 Deleting data
In the following example, we explain the procedure where the information on
CustomerNo 3909 is deleted from the table:

• When using the Execute method

For this method, you create a string type variable to store the SQL
statement, make that variable the argument, and then run the Execute
method of the LCConnection class.

Dim fldLst As New LCFieldList
Dim stmt As String
stmt = "delete from customer Where CustomerNo = 3909"
Dim count As Integer
count = conObj.Execute(stmt, fldLst)
Print count & " data was removed!"
Connecting to a relational database 189

• When using the Remove method

Create an LCFieldList class object in the same manner as when
searching, and set the search field property. Then, run the Remove
method of the LCConnection class, and make this LCFieldList class object
the argument.

Dim keys As New LCFieldList
Dim fld As LCField
Dim iCustomerNo As Long
iCustomerNo= 3909

'Create key to find certain records to remove
Set fld = keys.Append ("CustomerNo", LCTYPE_INT)
fld.value = iCustomerNo
fld.Flags = LCFieldF_KEY

'Remove data
Print "Removing data ..."
Dim count As Integer
count = conObj.Remove(keys)
Print count & " record were removed successfully!"

8.2.2.11 Error handling
When a Runtime error occurs, you can use the GetStatusText method of the
LCSession class to obtain the error message. You can also use the Status
property to obtain the error number.

You must initialize the object of the LCSession class calling the ClearStatus
method for the Runtime error to be handled correctly.

Function Connect() As Integer
'// Set error handler
On Error Goto ErrorHandler
Dim sesObj As New LCSession
sesObj.ClearStatus

'Connection procedure

'// --
'// Error handler for 'Connect' method.
'// --

ErrorHandler:
If (SesObj.Status <> LCSUCCESS)Then
lastMessage = "[DB] " & SesObj.GetStatusText
Print lastMessage

Else
lastMessage = "[DB] No error specific message is available."
Print lastMessage

End If
ConnectFlag = False
Connect = -1
Exit Function

End Function
190 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

8.3 CLI/ODBC and OCI

When you want finer control than the Domino Connectors with the LSX LC in
the connections and SQL statement processing and when you must have
multiple query result sets for a single connection, you can directly use the API
of CLI/ODBC and OCI. In this section, we explain how to develop database
access programs on ESB using CLI (DB2) and OCI (Oracle), which are the
native interfaces of DB2 and Oracle.

8.3.1 CLI native call programming
This section provides an outline of the ESB project development procedure
using CLI native calls. Refer to the DBACC sample attached to ESB for the
detailed code.

8.3.1.1 Flow and outline of a basic CLI program
CLI programming is broadly divided into three steps: initial setting,
transaction processing, and termination. See Figure 62.

Figure 62. Initialization and termination of CLI
Connecting to a relational database 191

In the initial setting, the environment handle and the connection handle are
assigned, and the application is connected to the database. The handle is the
variable that refers to the data object to be controlled by DB2 CLI. There are
four types of handles: environment, connection, statement, and descriptor.

• Environment handle

The environment handle refers to the data objects containing the
information pertaining to the global status of the applications. They are
allocated by SQLAllocEnv() and are released by SQLFreeEnv(). To
allocate a connection handle, you must first allocate the environment
handle.

• Connection handle

The connection handle refers to the data objects containing the
information pertaining to specific database connections. This information
includes connection options, general status information, traffic conditions,
and diagnosis information. This connection handle is allocated by calling
SQLAllocEnv() and released by calling SQLFreeEnv().

Transaction processing runs the main SQL statement of the application.
Figure 63 shows a sample of the transaction processing that runs the
SELECT statement.

Figure 63. SELECT SQL process

The termination process disconnects from the database and releases the
handle.
192 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

8.3.1.2 Connection pooling
To use a connection pooling mechanism in the CLI programming on ESB,
enter its logic in the Server class. This is because connection pooling must be
shared between Published class objects. In the Server class, you first obtain
the number of connection handles pooled after initialization of the
environment handle. The environment handles are stored in Long type
variables, and the connection handles are stored in arrays for long type
elements. Create and then initialize the array that indicates the usage status
of the handle (False: Unused), to have exclusive control of the usage of the
handle. In addition, you should respectively provide a function for lending the
connection handle to clients and a function for returning the connection
handle. In the following example, we show the GetConHandle() function for
obtaining the connection handle and the ReleaseConHandle() for returning
the connection handle:

'arghdbc : Connection handle
Function GetConHandle(arghdbc As Long) As Variant

Dim i As Integer
Const Con_MaxConnect=5

'Use one of the UNUSED connection handles,
'and turn the status of this handle to USED.
For i = 0 To (Con_MaxConnect - 1)
If hdbc_state(i) = False Then
arghdbc = hdbc(i) 'hdbc(i) : Connection handle
hdbc_state(i) = True ' hdbc_state(i) : Status handle
GetConHandle = True
Exit Function

End If
Next i

GetConHandle = False ' UNUSED connection handle is not available.
End Function

The GetConHandle() checks the usage status of the connection handle,
allocates usage if it is unused, and then changes the usage status of the
handle to True. If there are no unused connection handles, it returns False,
and then reports that the handle could not be obtained.

You can enter the code for ODBC in the same step as DB2 CLI. Changing
both can be facilitated by switching the Include file on ESB. For example, in
the DBACC sample attached to ESB, remove the comment of the
unnecessary line in the (Options) script of the (Globals) object:

%INCLUDE "lsdbcli.lss"' Data access include file for CLI
'%INCLUDE "lsdbodbc.lss"' Data access include file for ODBC

Hint
Connecting to a relational database 193

Function ReleaseConHandle(arghdbc As Long) As Variant
Dim i As Integer
Const Con_MaxConnect=5

'Turn the status of the used connection handle to UNUSED.
For i = 0 To (Con_MaxConnect - 1)
If arghdbc = hdbc(i) Then
hdbc_state(i) = False
ReleaseConHandle = True
Exit Function

End If
Next i

'The used connection handle cannot be set to UNUSED.
ReleaseConHandle = False

End Function

By simply setting the usage status of the connection handle to False, the
ReleaseConHandle() function arranges for the corresponding connection to
be reallocated when the GetConHandle() function is again called. Figure 64
shows the mechanics of the CLI programming model.

Figure 64. Mechanics of the CLI programming model
194 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

The Published class object can obtain unused handles among the previously
pooled connection handles by binding Server classes and calling the
GetConHandle() function. At this time, it sets the usage status of the
connection handle to True so that no other Published class object can use
that handle. Subsequently, it uses the obtained connection handle to run the
CLI function for the SQL processing. Once the processing ends, it calls the
ReleaseConHandle() function. It then sets the usage status of the connection
handle to False and release the connection handle to other Published class
objects. The method calling of the server class is serialized, so handles
cannot be lent redundantly and no erroneous statuses are set.

8.3.2 OCI native call programming
The section outlines the development process of the ESB project using OCI
native calls (when using Oracle8). Refer to the OCI8ACC sample attached to
the ESB.

8.3.2.1 Flow and outline of the basic OCI program
The typical process flow of OCI is showed in Figure 65 on page 196.

If you are using Oracle7, refer to the OCIACC sample attached to ESB.

Hint
Connecting to a relational database 195

Figure 65. OCI process flow

The handle concept is used in several processes in OCI. The handles are
pointers to data structures, which comprehensively define the necessary
parameter group for each function when calling an OCI function. This handle
is passed when an OCI function is called. Handles serve to alleviate
programmers from such burdens imposed by parameter variable
declarations, data holds, parameter enumeration upon function calls, and
work area memory allocation for OCI functions. The primary handles are
explained here:

• Environment handle

The environment handle defines the environment that calls all the OCI
functions. The environment handle has a memory cache area. In the case
of multi-thread applications, exclusive control is implemented in
environment handle units. When using a single environment handle in
multiple threads, when one thread is accessing a resource within the
environment handle, such as the memory cache, for example, access by
others is blocked. Since ESB operates applications with multi-threads, a
handle is created for each thread in an effort to improve performance and
assure stability.
196 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

• Error handle

The error handle is passed as a parameter for almost all OCI calls and
handles the information on errors generated during OCI operation.

• Service context handle

The service context handle defines the OCI operating environment for the
server. It holds the pointer to the server handle, the user session handle,
and the transaction handle.

8.3.2.2 Connection pooling
To use the connection pooling mechanism in the programming on ESB, you
describe its logic in the Server class. This is because connection pooling
must be shared between Published class objects. After running the
initialization (OCIInitilize() function) of the OCI process, the Server class
repeats the initialization of the environment handle, the allocation of the error
handle, and the starting of the session the number of times that it pools the
connection. Each handle is stored in a long type element array. You must also
create and initialize an array indicating the usage status of the handle (False:
unused), to exclusively control the usage of the handle. In addition, you
should respectively provide a function for lending handles to the clients and a
function for returning handles. Here, we show an example of a GetHandle()
function for obtaining handles and a ReleaseHandle() for returning handles.

The GetHandle() checks the usage status of the handle, allocates it if it is
unused, and then changes the handle usage status to “True”. If there are no
unused handles, it returns “False” and reports that no handle could be
obtained.

'hnumber : Index of a handle
'envh : Environment handle
'errh : Error handle
'svch : Service context handle
Function GetHandle(hnumber As Integer, envhout As Long, _

errhout As Long, svchout As Long) As Variant
Dim i As Integer
Const Con_MaxConnect=5

' Use one of the UNUSED connection handles,
' and change the status of this handle to USED.
For i = 0 To (Con_MaxConnect - 1)
If h_state(i) = False Then
hnumber = i
h_state(i) = True ' h_state(i) : Status handle
envhout = envh(i) 'envh(i) : Environment handle
errhout = errh(i) 'errh(i) : Error handle
svchout = svch(i) 'svch(i) : Service context handle
GetHandle = True
Exit Function

End If
Next i
Connecting to a relational database 197

' UNUSED connection handle is not available.
GetHandle = False

End Function

By simply setting the handle usage status to “False”, the ReleaseHandle()
function arranges for the concerned handle to be reallocated when the
GetHandle() function is called.

Sub ReleaseHandle(hnumber As Integer)
Dim i As Integer
' Set the using handle to UNUSED.
h_state(hnumber) = False

End Sub

The mechanics of the OCI programming model are shown in Figure 66.

Figure 66. OCI programming model

The Published class object can obtain an unused handle among the
previously pooled handles, by binding the Service class and calling the
GetHandle() function. At this time, it sets the usage status of the connection
198 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

handle to “True” so that no other Published class object can use that handle.
Subsequently, it uses the obtained connection handle to run the CLI function
for the SQL processing. Once the processing ends, it calls the
ReleaseConHandle() function, and then sets the handle to the unused status,
releasing the connection handle to other Published class objects. The method
calling the Server class is serialized. Therefore, handles cannot be lent
redundantly, and no erroneous statuses are set.

8.4 Performance comparison

In this section, we measure the performance for each of several programming
methods for accessing databases. Then, we describe the results. After we
consider this performance and the relative difficulty of the programming, we
identify what programming method should be used.

8.4.1 Test environment
We prepared a total of three platforms: a database server, an ESB Runtime
server, and an ESB client. They are based on the configurations shown in
Table 20 and Table 21 for the performance test. For the database server, we
adopted the AIX environment and configured it for connection from the ESB
client through an ESB Runtime server using the Windows NT environment.

Table 20. System hardware configuration for performance testing

Table 21. System software configuration for performance testing

Hardware configuration CPU Memory

DB Server PowerPC3 200MHz 2GB

ESB NT Server Pentium-2 233Mhz 160MB

ESB Client Pentium 120Mhz 64MB

Software configuration Products

DB Server AIX V4.3.2.0

- DB2 DB2 UDB EE V5.2

- Oracle Oracle8 Release 8.0.5 for AIX

In the following section, “LSX LC” implies the use of the classes, methods,
and properties of the LSX LC with a Domino Connector.

Note
Connecting to a relational database 199

8.4.2 Search processing comparison
For the search processing test, we create a database with data for ten
thousand records and search for records matching the search key. The table
structure is shown in Table 22. We set a random numerical value in the client
program and search for records with IDs located in the Primary Key of the
table that equal this numerical value. We create an SQL based on this value
in ESB Runtime (or if we use the Select method of the LSX LC, we use it as
the method argument), and measure the time from the calling of the method
to the database server until it is returned. After one hundred measurements,
we calculate the average value, which is made the measurement value.

Table 22. Search comparison between DB2 and Oracle

The table image is shown here:

1, "A0001", "B000000001", "C(**************) 1", 10001
2, "A0002", "B000000002", "C(**************) 2", 10002
3, "A0003", "B000000003", "C(**************) 3", 10003
4, "A0004", "B000000004", "C(**************) 4", 10004
....................
100000, "A0000", "B000100000", "C(**************) 100000", 10000

In the server program, the LSX LC method is compared with the method
using the OCI/CLI native call. However, there are two description methods for
the LSX LC. On this occasion, multipoint processing is performed according
to the method that is used for search processing to measure the respective
performances.

Dim fldLst as New LCFieldList

Select Case whichway
Case 0 'This method is to execute SQL directly

ESB NT Server Windows NT Server + SP4

ESB Client Windows NT Workstation + SP3

Column DB2 Oracle

ID(Primary Key) INTEGER NUMBER

A CHAR(5) VARCHAR2(5)

B CHAR(10) VARCHAR2(10),

C VARCHAR(40) VARCHAR2(40),

D DECIMAL NUMBER

Software configuration Products
200 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

Dim stmt as string
stmt = "SELECT * FROM "& Userid+"."& Table &" where ID = " & keyVal
call conObj.Execute(stmt, fldLst)

Case 1 ' This method is to call domino connector unique method
Dim iCustomerNo As Long
Dim keys As New LCFieldList
Dim fld As LCField
'Create key to find certain records to select
Set fld = keys.Append ("ID", LCTYPE_INT)
fld.value = keyVal
fld.Flags = LCFieldF_KEY

conObj.FieldNames = "ID,A,B,C,D"

'Search data
call conObj.Select (keys, 1, fldLst)

End Select

'Data fetch procedure
Dim count As Integer
count = flds.FieldCount
Dim resline As String
resLine = ""
Dim i As Integer

For i = 1 To count
resLine = resLine & flds.GetName (i) & ", "

Next

Dim Fetched As Long
Fetched = 0
Dim FetchedOK As Integer
FetchOK = 1

While FetchOK = 1
FetchOK = conObj.Fetch(flds)
resline =""
If FetchOK <> 0 Then

Fetched = Fetched + 1
For i = 1 To count

resLine = resLine & flds.GetField(i).text(0)& ", "
Next
resLine = resLine & Chr(10)

End If
Wend

The most remarkable difference lies in the amount of code. We find that,
compared to the case where SQL is run directly with the Execute method, the
case where the specialized method provided by the LSX LC is used consists
of a substantially greater amount of code.
Connecting to a relational database 201

8.4.2.1 DB2
The results of a comparison of the CLI native call and the two LSX LC
methods are shown here and in Table 23:

Units: seconds

Table 23. DB2 Access comparison by CLI and Domino Connector

Items (2) and (3) in Table 23 represent the cases where the LSX LC was
used. Execute Direct in item (2) refers to the case where SQL is run directly
with the Execute method. The Select method in (3) indicates cases where the
LSX LC Select method was used. Here, we learn that the methods indicated
in (2) and (3) using the LSX LC were slightly faster than the CLI native call.
However, if we consider the measurement error in (1) and (3), there is
virtually no significant difference. Although the best performance was
obtained in the case of (2), when running SQL directly with the Execute
method, we find that it not only can be described relatively simply compared
to the voluminous code description required for the CLI native call, but also
operates faster. For example, in the CLI native call programming, several
APIs must be called, such as:

SQLAllocStmt()
SQLExecDirect()
SQLFetch()
SQLGetData() or SQLGetDataStr()
SQLFreeStmt()

As arguments, many handles must be respectively provided and managed.
On the other hand, in the case of (2), as we saw previously, the description is
done in a few lines. If we consider the hazard of bugs being produced and the
ease of description in code, the Domino Connector LSX code would appear to
be superior to CLI.

In the two LSX LC description methods indicated in (2) and (3), there is no
great difference in performance. Significant differences appear in the
respective description methods when running SQL in complex conditions. In
the previously described example, we searched for records matching a key.
However, when combining two or more tables for this or when taking data
within the range of certain conditions, in the approach using the LSX LC
method, we must master the peculiar description method. For example, when
searching for records matching a key, you set fld.Flags = LCFieldF_KEY.

(1) CLI Direct Call (2) LSX LC:
Execute Direct

(3) LSX LC:
Select Method

0.0119 0.0105 0.0115
202 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

However, if you change the search conditions, you must change the values
as shown in Table 24.

Table 24. Flag property values of search conditions

This is as described in how to search for data with the Select method
provided by the Domino Connector LSX. From this perspective, it appears
that it would be preferable to run SQL with the Execute method as indicated
in (2) for accessing an RDB that can use SQL.

8.4.2.2 Oracle
The results of the comparison of the case of the OCI native call and the two
Domino Connector methods are shown here and in Table 25:

Units: seconds

Table 25. Performance comparison of OCI direct call and Domino Connector

As in the case of DB2, the methods indicated in (2) and (3), in Table 25, using
the LSX LC, appear to be slightly faster than the OCI native call. However, it
can be said that if measurement error is taken into consideration, there is no
significant difference. Since the best performance was obtained in the case of
(2), when running SQL directly with the Execute method, it appears to be
preferable to run the SQL statement with the Execute method as indicated in
(2) for accessing an RDB that can use SQL.

8.5 Linking with Query Builder

This section briefly describes accessing the DBMS from Query Builder of
ESB. Figure 67 on page 204 shows the view of Query Builder Code
Generator connected to the DB.

Search
conditions

Flag property values

>= LCFIELDF_KEY + LCFIELDF_KEY_GT

<= LCFIELDF_KEY + LCFIELDF_KEY_LT

<> LCFIELDF_KEY + LCFIELDF_KEY_NE

> LCFIELDF_KEY + LCFIELDF_KEY_GT + LCFIELDF_KEY_NE

< LCFIELDF_KEY + LCFIELDF_KEY_LT + LCFIELDF_KEY_NE

(1) OCI Direct Call (2) Domino Connector -
Execute Direct

(3) Domino Connector -
Select Method

0.0102 0.0095 0.0098
Connecting to a relational database 203

Figure 67. Query Builder Code Generator connected to a sample database

8.5.1 Creating and using a source file by Code Generator
The codes are generated by the Query Builder Code Generator. Figure 68
shows the codes displayed in the Script panel of IDE.
204 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

Figure 68. Codes generated by Query Builder Code Generator

In ESB, you can use Query Builder Code Generator to create skeleton source
files for DBMS connections.

To create a source file on the IDE, select Tools->Create New Query from the
IDE and start Query Builder. When you create a source file with Code
Generator, it is automatically added to a project on the IDE and can then be
utilized. Refer to Chapter 5 of the ESB Users Guide for detailed usage of
Code Generator. Code generated with Code Generator supports connection
pooling and transaction processing. The following section briefly explains
how to use such generated code.

8.5.2 Connection test
The Initialize subroutine of a file created by Code Generator contains the test
code for the DBMS connection written as “'// Test code. . .”. The following
example shows the code generated when a user creates a class called an
ESBClass using the Code Generator. Deleting the %REM and %END REM
statements enables the running of the code for the connection test. If you run
the project file just as it was created, no result will be displayed and you will
not know whether it was successful. It is a good idea to insert a Print
statement for the Connect member and Disconnect member subroutines
within the (Declarations) script, so that the appropriate message is displayed.
Connecting to a relational database 205

'// --
'// Test code. . .
'// The code generated here will call simple test methods to display data
'// retrieved by SELECT statements. No test code is generated for INSERT,

. . .
'// your application. To enable the test code comment out or remove the
'// %REM and %End REM statements below.
'// ---
%REM
Dim shObj As ESBClass

Set shObj = New ESBClass

shObj.Connect
shObj.Disconnect
Set shObj = Nothing

%END REM

8.5.3 Connection pooling
The Initialize subroutine of the file created by the Configuration Tool contains
the following code. Deleting the %REM and %END REM statements enables
the running of the code for the connection test.

'// --
'// To automatically initialize connection pooling
'// remove the %REM and %End REM from below.
'// NB Pooling *must* be enabled, if not this
'// call simply wastes time.
'// --
%REM
Dim poolInitClass As ESBClass

Set poolInitClass = New ESBClass
poolInitClass.InitializeConnectionPool (InitialPoolSize)
Set poolInitClass = Nothing

%END REM

The class on the code generated by the Code Generator is generated as a
Public class rather than a Published class. Consequently, it cannot be
called directly from a client program. You can call it from within the same
project (Initialize event) as in the above case. The following two methods
are available for calling from a client program:

• Create the Published class separately, and then use the Public class
generated by the Code Generator indirectly.

• Change the Public keyword to the Published keyword, and substitute
the Get Property statement in the normal Function statement. The
Published class does not support the Property statement.

Note
206 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

To create the connection pool explained in the preceding item, you must set
the ConnectionPooling property of the LCSession class object to “True”. In
the source file crated by the Code Generator, you can set the
ConnectionPooling property in the New() member subroutine of the created
class.

Sub New()
'// Set error handler
On Error Goto ErrorHandler

'// --
'// Create Domino Connector Objects
'// --
'// Set session object
Set sesObj = New LCSession
sesObj.ClearStatus

'// Deal with connection pooling. . .
'// Uncomment the line below to enable connection pooling
'// sesObj.ConnectionPooling = True
...

End Sub

Remove the comment character within the New() member subroutine in the
line described as:

sesObj.ConnectionPooling = True

Make it effective. We understand, that as a result, the ConnectionPooling
property is set appropriately in the New() member subroutine by executing
the “Set poolInitClass = New ESBClass” line. Therefore, the correct
preprocessing can be performed before the InitializeConnectionPool method
is called. The connection pool default value has been set to 5. However, if
you change it, you should change the following description to an appropriate
value in the (Options) script of the (Globals) object:

Const InitialPoolSize = 5

8.5.4 Setting the transaction processing
Transaction processing is set up to be done in the Manual-Commit (no
Auto-Commit) mode in the source file created by the Code Generator. To
change this, set an appropriate value in the following section, in the (Options)
script of the (Globals) object within the code:

Const COMMIT_FREQUENCY = 1
Const MANUAL_COMMIT = 0

The explanation covering such items as the COMMIT_FREQUENCY constant
and the token of the DBMS property is redundant. Therefore, it will be
omitted. Verify whether the COMMIT_FREQUENCY property is supported by
the DBMS to be connected. If it is, the procedure to be followed for changing
Connecting to a relational database 207

to Manual-Commit mode is described as shown in the Connect member
function:

Function Connect() As Integer
...
If(conObj.LookupProperty(COMMIT_FREQUENCY)) Then
Call conObj.SetPropertyInt(COMMIT_FREQUENCY, MANUAL_COMMIT)

End If
...

End Function

Explicit Commit and Rollback processing is required when setting to the
Manual-Commit mode. Therefore, you should appropriately call the Commit()
and Rollback() member subroutines within the class created by the Code
Generator:

'Commit Method
Sub Commit()
If connectFlag = True Then
conObj.Action (LCACTION_COMMIT)

End If
End Sub

'Rollback Method
Sub Rollback()
If connectFlag = True Then
conObj.Action (LCACTION_ROLLBACK)

End If
End Sub

8.5.5 Setting for an Oracle connection
When connecting to an Oracle database, you must set the value for the
Server property of the LCConnection class to connect to the specific Oracle
database service, rather than if you do not connect to the default service. The
following description is contained within the New() member subroutine within
the class created by the Code Generator:

'// --
'// Set database parameters.
'// --
'// The default server was used to connect to oracle.
'// This means that no database or service name was used. To use
'// a specified database or service change the 'Default oracle
'// source' in the conObj.Server entry below and uncomment the
'// line.
'// conObj.Server = Default oracle source

Besides the default service, you can connect to a service name by changing
the value of the Server property described on the last line to the service name
to be connected:

conObj.Server = "orcl"
208 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

Chapter 9. Accessing transaction systems

As an information processing system in a corporation, the enterprise
business management system are built to run as a production management
system, service management system, and a corporate management system
for personal and financial information. These systems are built on a host
computer, and the information is stored on a database such as DB2. A
Customer Information Control System (CICS) or Information Management
System (IMS) is used as the transaction interface system of the database.
Multiple systems on different platforms in the corporation are often connected
through message-oriented middleware systems such as IBM MQSeries. The
latest information is used to improve business performance. These mission
critical business applications are referred to as “backend” applications, which
process large volumes of data at high speeds. Under these circumstances,
customers demand reliability, availability, and serviceability to provide
constant service without causing the problem of a system shutdown.

When the server application program of ESB is developed to work with the
backend application, a typical way to connect the backend application is to
use the emulator program for the main frame interactive or use the
application program interface directly provided by CICS or DB2. This chapter
introduces the MQSeries link LotusScript Extension (MQLSX) method, which
is provided by MQSeries.

9.1 Integration with mission-critical business applications using MQLSX

MQSeries is the product which collaborates with the application on the
Transaction Management Systems. By defining the message (data) unique to
an application on the MQSeries, it can be exchanged between different
applications, on multiple platforms. Lotus provides the MQSeries link
LotusScript Extension (MQLSX) to use MQSeries from LotusScript. It can be
one of the most effective selections for developing a server application with
ESB, which collaborates with the critical business applications. In this
section, we explain how to use MQLSX using ESB with the example of
UseMQLSX included in the ESB.

9.1.1 What MQLSX is
The MQSeries link LotusScript Extension (MQLSX) enables Domino
applications to integrate with mission-critical business applications on a host
computer. Here, it works with applications coded in LotusScript on Lotus
Notes or ESB.
© Copyright IBM Corp. 2000 209

MQLSX provides a series of classes with methods and properties designed to
facilitate the use of the message queue interface (MQI) provided by the
MQSeries from LotusScript. The classes include:

• MQSession Class
• MQQueueManager Class
• MQQueue Class
• MQMessage Class
• MQGetMessageOptions Class
• MQPutMessageOptions Class
• MQProcess Class

Moreover, through the use of On Event and On Error statements, the MQLSX
isolates error processing from the normal processing flow and provides each
class with a property Completion Code and Reason Code that saves the
event MQWARNING, MQERROR, and error information to permit concise
programming.

9.1.2 Usable platforms
MQLSX can be used on a variety of platforms:

• Intel platforms (OS/2, Windows 3.1, Windows 95, Windows 98, and
Windows NT)

• UNIX platforms (AIX, HP-UX, Sun Solaris)

Note: ESB must use MQLSX for Windows NT or AIX.

9.1.3 How to obtain MQLSX
You can obtain MQLSX from the SupportPac provided by IBM. You can also
get it as a tool in the MQSeries and CICS Connections for Domino tool from
the Lotus Enterprise Integration Web site:

• MA6D: MQSeries for AIX link LotusScript Extension
http://www.software.ibm.com/ts/mqseries/txppacs/ma6d.html

• MA7D: MQSeries for Windows 32-bit platforms link LotusScript Extension
http://www.software.ibm.com/ts/mqseries/txppacs/ma7d.html

• Lotus Enterprise Integration Web site: http://www.lotus.com/dominoei

The most recent version of the MQLSX ships with MQSeries V5.1 and is
called “MQLSX5.1”.

Note: These Web addresses were valid at the time that this redbook was
written.
210 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

9.1.4 Prerequisites
An MQSeries Server or MQSeries Client is required on the same machine
that is running ESB Runtime.

Note: The latest information on the respective MQSeries components,
including MQLSX, is available at the following Web site:
http://www.software.ibm.com/ts/mqseries/support/fixes/

The latest MQLSX version at the time this redbook was written was 5.1,
whihch ships with MQSeries V5.1. The program temporary fix (PTF) and
Corrective Service Diskettes (CSD) of the MQSeries Server and MQSeries
Client used with it are subject to revision at any time. Please refer to the
readme.txt file of the MQLSX for a description of the PTF and CSD, which is a
prerequisite for using MQLSX.

The following environments were used in preparing this example:

For Windows NT:

• MQSeries for Windows NT V5.0 + PTF U200095
• MQSeries for Windows 32-bit platforms link LotusScript Extension

Release 1.3.3

For AIX:

• MQSeries for AIX V5.0 + PTF U461602
• MQSeries for AIX link LotusScript Extension Release 1.3.3

9.2 Examples of MQLSX

In this sample, integrated processing is not performed with an actual host
application. Instead, it is composed of three classes:

• Published class UseMQLSXClass: Receives text data send or receive
requests from an ESB client program created in a Notes database,
accesses the queue manager, and then sends or receives data
(messages).

• LSServer class HostSimulatorClass: Independently accesses the queue
manager, and then automatically performs the reply processing for the
messages sent from the UseMQLSXClass.

• Public class MQAccessClass: Provides message sending and receiving
functions to the UseMQLSXClass and HostSimulatorClass to simplify the
use of MQLSX.
Accessing transaction systems 211

The queue manager accessed by the UseMQLSXClass and the
HostSimulatorClass can also be set to operate on a different machine in
which the queue interval has been remotely set, even if the setting
circumstances are the same. Therefore, the UseMQLS XClass, for example,
can be used as a substitute for the functions performed by the
HostSimulatorClass in the CICS program operating on the MVS/ESA.

By expanding the HostSimulatorClass, you can create server applications
that automatically perform a series of tasks. Such tasks include receiving
messages sent using the MQSeries, updating the DB2 database, and
sending the results in Notes Mail.

Finally, the MQAccessClass is a generic class created with the objective of
easily sending and receiving messages, by using a very small part of the
class methods and properties provided by MQLSX. Consequently, you can
develop other applications, by reusing MQCommon.lss, which includes the
MQAccessClass. In addition to the MQAccessClass, MQCommon.lss also
includes the LSServer class MessageIDClass that creates dedicated
MessageIDs for messages to be sent.

Figure 69 shows the relationship of each component to the process flow.

Figure 69. Overview of the relationship between ESB and MQSeries
212 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

The following functions can be run from client program of this sample:

• Object creation

Creates Published class UseMQLSXClass objects.

• Object deletion

Deletes Published class UseMQLSXClass objects.

• Sending and receiving

Sends text entered in [send text] to the message queue and receives
messages sent back by the LSServer class HostSimulatorClass from the
message queue.

• Sending only

Sends text entered in [send text] to the message queue. It does not run
the receiving of messages sent back from the LSServer class
HostSimulatorClass. It can complete this process asynchronously, even
when the LSServer process is not running.

• Receiving only

After the send process is completed, it runs only the receive process for
the messages that were sent back from the LSServer class
HostSimulatorClass. The receive process runs the message ID
automatically created at sending time as the key. The process can be
completed asynchronously, when the LSServer class has already run the
reply process for that message.

Figure 70 on page 214 shows a view of a sample program for MQSeries on
Notes client.
Accessing transaction systems 213

Figure 70. Sample program on Notes Client

9.2.1 Process flow
The sample UseMQLSX includes the Notes database UseMQLSX.nsf for
clients and the following three source files as the server programs:

• MQCommon.lss: Source file including Public class MQAccessClass
• PUBLISH.lss: Source file including Published class UseMQLSXClass
• SERVER.lss: Source file including Server class HostSimulatorClass

The following sections outline the MQAccessClass, UseMQLSXClass, and
HostSimulatorClass, which are the main elements in the server program. It
also explains the flow of their process.

9.2.1.1 Outline of the Public class MQAccessClass
MQAccessClass is a component class that consolidates a series of
processes performed on the MQLSX to facilitate the sending and receiving of
text (messages). By reusing MQCommon.lss, which includes the
MQAccessClass, you can send and receive messages without consciousness
of the MQLSX.
214 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

Loading MQLSX
To use MQLSX, you must load MQLSX using a UseLSX statement.

Object: (Globals) Script: (Options)

For Windows NT, enter: Uselsx "mqlsx" ’use MQLSX (NT)

For AIX, enter: Uselsx "/usr/lpp/mqm/ ’use MQLSX (AIX)

mqlsx/lib/libmqlsx.a"

Definition of the MQLSX class variables
The class provided by the MQLSX is defined as the member variable of the
MQAccessClass. At this time, each member variable is defined as a private
variable to prevent direct referral from the outside.

Object: (Globals) Script: (Declarations)

Public Class MQAccessClass
…
Private itsSess As MQSession
Private itsQMgr As MQQueueManager
Private itsPutOpt As MQPutMessageOptions
Private itsGetOpt As MQGetMessageOptions
Private itsQueue As MQQueue
Private itsQMsg As MQMessage
…

Creating MQAccessClass objects
Sub New() is defined to create the object of the MQAccessClass. The setting
of the source is enabled by calling the following member variable values to
make the MQAccessClass a generic class:

• Queue manager name (Private itsQMgrName As String)
• Sending queue name (Private itsSendQName As String)
• Receiving queue name (Private itsRecvQName As String)
• Receiving waiting time (Private itsWaitTime As Long)

Object: (Globals) Script: (Declarations)

Sub New(sQMgrName As String, _
sSendQName As String, _
sRecvQName As String, _
lWaitTime As Long)
…

When [Insert -> Insert LSX File] is selected to insert the MQLSX for a
project, a statement is unnecessary.

Hint
Accessing transaction systems 215

Connecting to the queue manager
To send and receive data (messages) through MQLSX, you must connect to
the queue manager that manages the queue for sending or receiving the
messages.

To do this, first create an MQSession object, which is the root class of the
MQLSX. Then, create the MQQueueManager by calling the
AccessQueueManager provided by the MQSession class. The connection to
the specific queue manager is completed when you set the queue manager
name (itsQMgrName) specified by the calling source as the argument.

Object: (Globals) Script: (Declarations)

Private Sub Connect()
Set itsSess = New MQSession
Set itsQMgr = itsSess.AccessQueueManager(itsQMgrName)
…

Sending a message
Complete the following process to send messages:

1. Set the send option.

The message send option creates the MQPutMessageOptions object and
sets it according to the option properties.

Object: (Globals) Script: (Declarations)

Private Sub OpenSendQueue ()
Set itsPutOpt = New MQPutMessageOptions
itsPutOpt.Options = _
MQPMO_FAIL_IF_QUIESCING + MQPMO_NO_SYNCPOINT
…

2. Connect to the sending queue.

To connect the sending queue, create an MQQueue object by calling the
AccessQueue provided by the MQQueueManager. Then, specify
MQOO_OUTPUT to open it as a sending queue.

Object: (Globals) Script: (Declarations)

Continuation of Private Sub OpenSendQueue ()
…
Dim lOpenOpts As Long
lOpenOpts = MQOO_OUTPUT + MQOO_FAIL_IF_QUIESCING
Set itsQueue = itsQMgr.AccessQueue(itsSendQName,lOpenOpts, _
"","","")

…

216 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

3. Send a message.

You send a message by the MQQueue class Put method, by creating an
MQMessage object. Then, set the text data that will be conveyed from the
call source using the WriteString member. It deletes the MQMessage
object once the send is completed.

Object: (Globals) Script: (Declarations)

Private Sub PutMsg(sInput As String)
Set itsQMsg = New MQMessage
itsQMsg.WriteString sInput
itsQMsg.Format = MQFMT_STRING
itsQMsg.Persistence = MQPER_PERSISTENT
itsQMsg.Messageid = itsMsgID' ’Set MQ message ID
itsQMsg.Expiry = kEXPIRY' ’Set expiration time
itsQueue.Put itsQMsg, itsPutOpt
Delete itsQMsg
…

4. Release the connection to the sending queue.

After completing the sending of the message, release the connection to
the sending queue, by deleting the now unnecessary MQQueue object
and MQPutMessageOptions object.

Object: (Globals) Script: (Declarations)

Private Sub CloseSendQueue()
Delete itsQueue
Delete itsPutOpt
…

• If you explicitly set a value according to the properties of the
MessageID property and the CorrelationID property of the
MQMessage class, you can send the specific data possessed by that
value.

• In the UseMQLSX sample, the LSServer class MessageIDClass is
defined to create a dedicated MessageID.

• You can set MQMessage class Expiry property to automatically
delete from the queue any messages that have not been received
within the set time.

Hint
Accessing transaction systems 217

Receiving a message
Complete the following steps to receive messages:

1. Set the receive option.

The message receive option creates the MQGetMessageOptions object
and sets it according to the option properties. It also sets the waiting time
set according to the call source in the WaitInterval property.

Object: (Globals) Script: (Declarations)

Private Sub OpenReceiveQueue ()
Set itsPutOpt = New MQGetMessageOptions
itsGetOpt.Options = MQGMO_WAIT + MQGMO_FAIL_IF_QUIESCING + _
MQGMO_NO_SYNCPOINT

itsGetOpt.WaitInterval = itsWaitTime * 1000
…

2. Connect to the receiving queue.

To connect the receiving queue, create an MQQueue object by calling the
AccessQueue provided by the MQQueueManager. Then, specify
MQOO_INPUT_SHARED to open it as a receiving queue.

Object: (Globals) Script: (Declarations)

Continuation of Private Sub OpenReceiveQueue ()
…
Dim lOpenOpts As Long
lOpenOpts = MQOO_INPUT_SHARED + MQOO_FAIL_IF_QUIESCING
Set itsQueue = itsQMgr.AccessQueue(itsRecvQName,lOpenOpts,_
"","","")

…

3. Receive a message.

You receive messages by the Get method of the MQQueue class when
you create an MQMessage object. You can receive only messages that
have a specific message ID by using the MessageID property. When the
receiving process ends normally, it acquires the text data of the length
returned by the MessageLength property using the ReadString of the
MQMessage class and returns it to the call source. Lastly, it deletes the
MQMessage object.

Object: (Globals) Script: (Declarations)

Private Function GetMsg() As String
Set itsQMsg = New MQMessage
itsQMsg.MessageID = itsMsgID ' Set ID of message being received
itsQueue.Get itsQMsg, itsGetOpt
sMsg = itsQMsg.ReadString(itsQMsg.MessageLength)
218 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

Delete itsQMsg
…

4. Release the connection to the receiving queue.

After completing the receiving of the message, release the connection to
the receiving queue by deleting the now unnecessary MQQueue object
and MQPutMessageOptions object.

Object: (Globals) Script: (Declarations)

Private Sub CloseReceiveQueue ()
Delete itsQueue
Delete itsGetOpt
…

Releasing the connection to the queue manager
After completing the message sending or receiving processes, call the
Disconnect method for the MQQueueManager class to release the
connection to the queue manager. Delete the unnecessary
MQQueueManager object. This process is called from the Delete()
procedure, which deletes the MQQueueManager object.

Object: (Globals) Script: (Declarations)

Sub Delete()
Call Disconnect()
…

End Sub

Private Sub Disconnect ()
itsQMgr.Disconnect
Delete itsQMgr
…

End Sub

Sending data
The MQAccessClass provides a text data send function to an external
resource as the Public procedure Send(). Send() executes the process by
sequentially calling the Private procedure of the MQAccessClass that was
explained previously.

Object: (Globals) Script: (Declarations)

Public Sub Send(_
sText As String, _ ’Input: text to be sent
lRC As Long _ ’Output: return code
)
Call Connect() ’Connect to MQ
Call OpenSendQueue() ’Open send queue
Accessing transaction systems 219

Call PutMsg(sText) ’Send MQ message
Call CloseSendQueue() ’Close send queue
…

Receiving data
The MQAccessClass provides a text data receiving function to an external
routine as the Public procedure Receive(). Receive() executes the processing
by sequentially calling the Private procedures of the MQAccessClass that
was explained previously.

Object: (Globals) Script: (Declarations)

Public Function Receive(_
lRC As Long _ '’Output: return code
) As String '’Return: text received
Call Connect() ’Connect to MQ
Call OpenReceiveQueue() '’Open receive queue
Receive = GetMsg() '’Receive MQ message
Call CloseReceiveQueue() '’Close receive queue
…

9.2.1.2 Outline of the Published class UseMQLSXClass
The Published class UseMQLSXClass is defined in PUBLISH.lss and
provides the function for sending and receiving messages to the ESB client
(currently the Notes client) using the MQSeries.

Definition of the UseMQLSXClass class variable
The UseMQLSXClass defines the MQAccessClass as a member variable.

Object: (Globals) Script: (Declarations)

Published class UseMQLSXClass
itsMQObj As MQAccessClass

Creating UseMQLSXClass objects
Open the Notes form Use of the MQLSX sample and click the
[CreateObject] button. When the creation of a UseMQLSXClass object is
requested, Sub New is called. It then creates an MQAccessClass object and
saves it to the member variable itsMQObj, which in turn enables the use of
the member provided by the UseMQLSXClass. The argument for creating an
UseMQLSXClass object is defined in the following ways as a constant in
PUBLISH.lss and can be changed to a conformity running environment:

• Queue manager name

Private Const QMGR_SERVER = "SIMPLE"
220 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

• Sending queue name

Private Const Q_PUBLISHER_TO_SERVER = "PUBLISHER.TO.SERVER"

• Sending queue name

Private Const Q_SERVER_TO_PUBLISHER = "SERVER.TO.PUBLISHER"

• Receiving wait time

Private Const WAIT_TIME = 10

Object: (Globals) Script: (Declarations)

Sub New()
Set itsMQObj = New MQAccessClass(_
QMGR_SERVER, _
Q_PUBLISHER_TO_SERVER, _
Q_SERVER_TO_PUBLISHER , _
WAIT_TIME)

…

Sending and receiving data
Enter the text to be sent in the Notes form Use of the MQLSX sample. Click
the [Send & Receive] button to call the Public procedure SendText() of the
UseMQLSXClass. Calling the member and property provided by the
MQAccessClass in the following sequence causes SendText() to send the
entered text and receive the text returned by the HostSimulatorClass.

1. Send the text.

2. Obtain a message ID, which is automatically generated when the text is
sent.

3. Receive the text.

Object: (Globals) Script: (Declarations)

Function SendText(_
sSendText As String, _ '’Input: text to be sent
sMsgID As String, _ '’Output: message ID
sSendDate As Variant, _ '’Output: sent date & time
sRecvDate As Variant, _ '’Output: received date & time
lRC As Long _ '’Output: return code
) As String '’Return: text received
Call itsMQObj.Send(sSendText, lRC) '’Send text

In addition to SendText(), the UseMQLSXClass provides SendOnly() for
data sending alone and ReceiveOnly() for data receiving alone.

Hint
Accessing transaction systems 221

sMsgID = itsMQObj.MessageID '’Get message ID
sSendDate = Now '’Get sent date & time
SendText = itsMQObj.Receive(lRC) '’Receive text
sRecvDate = Now '’Get received date & time
…

Reusing MQLSX class objects
This sample creates, deletes, and calls members of MQLSX class objects
within a Published class object (client instance) by providing MQAccessClass
objects to the Published class UseMQLSXClass as member variables. When
you wish to reuse MQLSX client objects between multiple client threads, you
can do so by holding the MQAccessClass object as a member constant and
making single or multiple definitions for the LSServer class that provides the
same Public procedure as the UseMQLSXClass. This method is effective, for
example, when using a queue that is managed by means of an MQLSX
server, which uses an MQSeries client to operate on another machine.

Figure 71. Flow among each component for MQSeries and ESB

9.2.1.3 Outline of the LSServer class HostSimulatorClass
The LSServer class HostSimulatorClass is defined in the SERVER.lss. When
it receives a message sent by UseMQLSXClass, it immediately creates a
receipt confirmation message. Then, it replies using the MQSeries. The
HostSimulatorClass uses the SsTimer class to perform constant message
monitor processing.
222 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

Defining the HostSimulatorClass class variables
The HostSimulatorClass defines the MQAccessClass object as a member
variable. It defines the SsTimer class object as a member variable for
continuously running the message monitor processing.

Object: (Globals) Script: (Declarations)

Published class HostSimulatorClass
Private itsTimer As SsTimer
Private itsMQObj As MQAccessClass
…

Creating HostSimulatorClass objects
LSServer class HostSimulatorClass objects are created when projects are
run and called by Sub New(). The HostSimulatorClass object starts the
procedure GetMessage() for constantly processing the monitoring of
messages sent by the UseMQLSXClass.

Object: (Globals) Script: (Declarations)

Sub New()
Set itsTimer = New SsTimer(1)
On Event Alarm From itsTimer Call GetMessage
…

Message monitor processing
The GetMessage() procedure called in the SsTimer class function runs
through the following process:

1. Create the MQAccessClass object.
2. Wait for the message receipt.
3. Receive a message reply.
4. Repeat the process two to three times.

The argument for creating a MQAccessClass object is defined as follows as
the constant SERVER.lss. Therefore, it can be changed in conformity with the
running environment.

• Queue manager name

Private Const QMGR_SERVER = "SIMPLE"

• Sending queue name

Private Const Q_PUBLISHER_TO_SERVER = "PUBLISHER.TO.SERVER"

• Receiving queue name

Private Const Q_SERVER_TO_PUBLISHER = "SERVER.TO.PUBLISHER"
Accessing transaction systems 223

• Receiving wait time

Private Const WAIT_TIME = 600

Object: (Globals) Script: (Declarations)

Sub GetMessage(source As SsTimer)
source.Enabled = False ’Disable timer
Set itsMQObj = New MQAccessClass(_
QMGR_SERVER, _
Q_SERVER_TO_PUBLISHER, _
Q_PUBLISHER_TO_SERVER, _
WAIT_TIME)

Do While lRC = CC_OK
itsMQObj.MessageID = "" ’Receive any message
sText = itsMQObj.Receive(lRC) ’Wait & receive message
sText = Format$(Now()) & " Text received: " & _
Chr(13) & Chr(10) & sText ’Make reply
Call itsMQObj.Send(sText, lRC) 'Reply to the message

Loop
Set itsMQObj = Nothing
…

9.2.2 Setup procedure
This section explains the setup procedure of the UseMQLSX example.

9.2.2.1 Server side
Open the command prompt, and enter the following series of commands.
Before entering them, verify that the definition file (*.tst) of the MQSC
command is in the current directory.

For Windows NT, check:

> CD c:\Program Files\Lotus ESB Runtime\Samples\UseMQLSX

For AIX, check:

> mkdir /home/mqm/usemqlsx
> cd /home/mqm/usemqlsx
> cp /usr/lpp/esb/samples/En_US/UseMQLSX/* .

In case one queue manager is used in a single machine, perform the
following steps:

1. Create a queue manager named SIMPLE:

> crtmqm SIMPLE
224 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

2. Start running the queue manager SIMPLE:

> strmqm SIMPLE

3. Create two queues, PUBLISH.TO.SERVER and
SERVER.TO.PUBLISHER, to be used for sending and receiving
messages:

> runmqsc SIMPLE < SIMPLE.tst

In case individual queue managers are used on two machines, apply the
following steps to perform the tasks on different machines by separating them
into PUBLISHER and SERVER:

1. Create a queue manager named PUBLISHER

> crtmqm PUBLISHER

2. Start running the queue manager PUBLISHER:

> strmqm PUBLISHER

3. Edit the MQSC command file PUBLISH.tst. Set the correct TCP/IP host
name for that machine with the channel definition command DEFINE

CHANNEL and the parameter CONNAME.

4. Create a remote queue PUBLISHER.TO.SERVER, a local queue
SERVER.TO.PUBLISHER, a transmission queue, and a channel for
sending and receiving messages:

> runmqsc PUBLISHER < PUBLISH.tst

5. Create a queue manager named SERVER:

> crtmqm SERVER

6. Start running the queue manager SERVER:

> strmqm SERVER

7. Create a remote queue SERVER.TO.PUBLISHER, a local queue
PUBLISHER.TO.SERVER, a transmission queue, and a channel for
sending and receiving messages:

> runmqsc SERVER < SERVER.tst

8. Start running the listener program on the SERVER side:

For Windows NT, run the following program:

> runmqlsr -m SERVER -t TCP

For AIX, check the following settings. Refer to the MQSeries document for
details.
Accessing transaction systems 225

a. Check for the following settings in /etc/services. If they are not present,
add them.

MQSeries 1414/tcp # MQSeries channel listener

b. Check for the following settings in /etc/inetd.conf. If they are not
present, add them.

MQSeries stream tcp nowait mqm /home/mqm/mqchl mqchl

In this example, we assume that there is a Shell Script file such as the
following one in /home/mqm/mqchl:

Content of /home/mqm/mqchl

#!/bin/sh
export LANG=Ja_JP
export LC_MESSAGES=Ja_JP.IBM-943
exec /usr/lpp/mqm/bin/amqcrsta -m SERVER

c. Validate the inetd.conf setting:

> refresh -s inetd

9. Start running the channel on the PUBLISHER side. Open the respective
command prompts or windows again, and run the following commands:

> runmqchl -m PUBLISHER -c PUBLISHER.TO.SERVER
> runmqchl -m PUBLISHER -c SERVER.TO.PUBLISHER

10.Open the respective prompts PUBLISH.lsp and SERVER.lsp in IDE. Edit
PUBLISH.lss and SERVER.lss, and change the value of the constant
QMGR_SERVER from “SIMPLE” to “PUBLISHER” and “SERVER”.

9.2.2.2 Client side
The client also should be set as explained here to run the sample program:

1. Register the UseMQLSX.nsf file in the Domino server or copy it into the
Notes data directory (for example, NOTES\DATA) of the client that will do
the running.

2. Register UseMQLSX.nsf in the work space. Specify the database name
UseMQLSX in [Open file data base] on Notes. Then, select [Add icon]. It
records the internal configuration of this sample.
226 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

9.2.3 Usage
This section explains how to run the UseMQLSX sample.

9.2.3.1 Server side
Before running, verify the following Uselsx statement located among the
(Options) for MQCommon.lss, which is the one for the respective platforms to
be run. If necessary, make one of them a comment:

For Windows NT, check:

Loading of Uselsx "mqlsx"' MQLSX

For AIX, check:

Loading of Uselsx "/usr/lpp/mqm/mqlsx/lib/libmqlsx.a"' MQLSX

Select one of following cases according to the environment that the sample
program is testing:

• In case one queue manager is used from one ESB project SIMPLE.lsp,
start running it after opening the project SIMPLE.lsp in IDE.

• In case individual queue managers are used on each machine, you have
two options:

– Start running them after opening the project PUBLISH.lsp on the
machine where the queue manager PUBILSHER is running.

– Start running them after opening the project SERVER.lsp on the
machine where the queue manager SERVER is running.

• When using MQLSX, you must specify the environment variable
GMQ_XLAT_PATH correctly. See the document, which is attached the
MQLSX component package, published by Lotus for details.

For Windows NT, enter:

GMQ_XLAT_PATH=,ƒ:\mqm\MQLSX\conv

For AIX, enter:

GMQ_XLAT_PATH=/usr/lpp/mqm/mqlsx/conv

• When running on AIX, select the item [Change/ display maximum data
size of LSCube-system configuration-engine and parameter
setting-engine]. Set [Maximum data size of engine]. Then, restart the
ESB Runtime.

Note
Accessing transaction systems 227

9.2.3.2 Client side
Open the Notes database UseMQLSX.nsf. Run the sending and receiving of
messages according to the MQLSX form usage sample.
228 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

Chapter 10. Deploying ESB applications

This chapter explains the deployment of ESB applications, which operate
through ESB System Manager.

10.1 Outline

This section discusses the overall flow from development to deployment
using ESB System Manager. It also focuses on the settings at the time of
deployment and on more efficient deployment.

10.1.1 Overall flow from deployment to operation

The flow from development to deployment of an ESB application is shown in
Figure 72.

Figure 72. ESB development and deployment flow
© Copyright IBM Corp. 2000 229

The applications developed in ESB IDE are packaged by the developer using
ESB IDE. Once the packaging is completed, the created package file (*.lpk) is
placed in the deployment environment, which makes it possible to begin the
deployment by the ESB System Manager. The ESB System Manager can
change the various parameter settings of the respective package files other
than package file deployment. The ESB is designed for deployment with
optimum performance by setting the parameters appropriately.

10.1.2 Package files and projects

A package file is composed of a single project or multiple package files.
When a package file is composed of multiple package files, it is referred to as
a group package file to identify a single package file. Package files include
project files where the information relating to projects is stored, object files
that are inserted into projects (object files displayed on the IDE project
browser), and object files which are compiled from the source code in the
project. The LSX being inserted into projects and the object files using Use
statements are not included in package files. Therefore, you must lay those
out separately in the deployment environment. Figure 73 shows the
difference between a package file and a group package file.

Figure 73. Package file and group package file

10.2 Project deployment flow

Let us look at the actual deployment flow using a package file created in IDE.
First, start the System Manager to be used for the deployment. For the
230 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

Windows NT version, you can start from the Program Manager. For the AIX
version, start hpwisma from the terminal window.

10.2.1 Starting the project

A project has to be started as described here:

1. After starting System Manager, open a package file from the path File ->
Open Package File. The status in which a package file is opened implies
that System Manager can operate the package file. An opened package
file displayed in the Configuration panel can be manipulated for starting
projects and setting the various project parameters.

2. Select the package in the Configuration panel.

3. Select Action -> Start or click the Start button . The project starts to
run. When multiple package files are opened, select Action -> Start All to
start running all projects displayed on the configuration panel. The icon
displayed in the Configuration panel changes for projects that are running.
You can confirm that they are running. As shown in Figure 74, the user
lilac is running the project CFConv.

Figure 74. System Manager running a project
Deploying ESB applications 231

10.2.2 Managing the deployment conditions

At the deployment of a project, you are required to check the status of project
that was run and the client connection in a timely manner. ESB provides the
Runtime Monitor (integrated with System Manager in AIX) as a tool for the
monitoring runtime. Try using the Runtime Monitor (System Manager in AIX)
to obtain the various information and to manage the client:

1. Monitor the project deployment status:

Complete the following procedure to display the summary panel:

• For Windows NT, click the Summary tab on the NT Runtime Monitor as
shown in Figure 75.

• For AIX, select the Summary icon in the Monitor folder of System
Manager.

Figure 75. Runtime Monitor Summary panel

In the Windows NT version, when you specify the start of project from
System Manager, the Runtime Monitor starts automatically and monitors
the project running the status, the thread status, and so on.

Hint
232 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

The status of each project is displayed by project basis in the Summary
panel. The number of objects, the number of free pools, and the usage
rate displayed can be considered as a rough standard for setting the
appropriate pool size. Refer to 10.3.2, “Setting the pool size” on page 244,
to learn more about setting the pool size.

2. Thread management.

Complete the following procedure to display the Status panel:

• For Windows NT, click the Status tab on the Runtime Monitor as shown
in Figure 76.

• For AIX, select the Status icon in the Monitor folder of System
Manager.

Figure 76. Runtime Monitor Status panel

The information is displayed on a client thread basis in the Status panel.
You can monitor the project name to which it belongs, the Published class

The ID is a unique process number (engine ID) of ESB. The process
number is not identical from the number assigned by the operating
system, so be careful. This number is used to identify the message of
the project.

Note
Deploying ESB applications 233

name, and the user name of the created the object. You should actually
connect to the running Published class from the client and check the
change of the status panel display.

In ESB, a client thread is created on the server when a client application
creates a Published class object. In other words, monitoring each
Published class object in the deployment environment means managing
the basis of client thread.

To monitor whether the requests from clients are being processed
normally, you need to check the status of the client thread corresponding
to the respective Published class objects on the Status panel. You need to
check the thread conditions by such means as test deployment. Plus, you
need to assess whether the current pool setting is fit to gain adequate
performance in the actual operation under business.

3. Display specific projects.

A specific project can be displayed alone on the Status panel. While
multiple projects are operating, select Filtering Check on and select a
project name to display only the thread information created from that
project. You can use the filtering function to display just the project you
want to monitor.

4. Delete threads.

Select a client thread on the Status panel. Then, select Action -> Kill
Thread to delete a thread. Use this procedure if a thread cannot be
deleted from the client during development or testing, or if a problem
occurs during deployment and it becomes necessary to delete a specific
thread. Select Action -> Kill Thread (Forced) only when a thread is not
deleted by normal deletion. When forced deletion has been executed, you
should restart the corresponding project as soon as possible.

5. Display class statistical information.

Complete the following procedure to display the Statistics panel:

• For Windows NT, click the Statistics tab on the Runtime Monitor as
shown in Figure 77.

• For AIX, select the Statistics icon in the Monitor folder in the System
Manager.

For Windows NT, you can also delete threads by right-clicking the
corresponding client thread and selecting the Kill Thread pop-up menu.

Hint
234 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

Figure 77. Runtime Monitor Statistics panel

The cumulative information is displayed on a per-class basis on the
Statistics panel. It includes the statistics on the number of classes created
for each project, on the number of method calls, and on the number of
error, warning, or information messages. Because it allows such items as
the number of objects created and the number of calls created per unit
time of measurement, it is useful as a guideline for the required size of the
main memory area. It is also useful as criteria for subdividing and
integrating projects. When deploying a project, it is beneficial to check the
degree that each project is being used, for example, for planning the
resources for the deployment.

6. Set and display messages.

Complete the following procedure to display the Message panel:

• For Windows NT, click the Message tab on the Runtime Monitor as
shown in Figure 78 on page 236.

• For AIX, select the Message icon in the Monitor folder in the System
Manager.
Deploying ESB applications 235

Figure 78. Runtime Monitor Message panel

The display shown in Figure 78 shows the messages on the Message
panel that are output by the project and the type of messages to be output.
The message can be set to disable or enable to such output as a screen,
file, NotesDB, or Event log. Monitoring messages is important for checking
the deployment status. By appropriately setting messages, you can verify
the operating status of the project. When you feel that there is something
wrong in the project that is running, you should check the displayed
messages.

The following example shows the setting of the outputs to the log, with all
of the messages pertaining to the system and the error messages
pertaining to Runtime and the application.

Disabling unnecessary message output sometimes helps improve the
overall performance of ESB applications. Unnecessary message
outputs by PRINT statements in the application are particularly likely to
adversely affect performance. You should also remove the settings for
outputs to the Notes database or files unless processing is based on
those outputs. Normally, you should specify only logs and screen
outputs.

Hint
236 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

For Windows NT, when specifying the log to an output destination, it is
written as an event log.

For AIX, when specifying the log to an output destination, it is written to
the log provided as an ESB function.

a. Click the Event button (Log button for AIX) on the Message panel as
shown in Figure 79.

b. Display the Event panel (Log panel for AIX).

c. Mark the check box that logs for NT events. Also, select the
Application and Runtime Error check boxes and all of the System
check boxes. Click the OK button.

Figure 79. ESB Message Output setting panel

d. Confirm the message that is output. Start and stop the project and
repeat the connection from the client. Complete the following
procedure to display the log:

• For Windows NT, start the Event View on Windows NT, and select
Log -> Application.

• For AIX, select SMIT, and select Applications -> ESB -> Log ->
Show the Log.
Deploying ESB applications 237

10.2.3 Stopping and starting projects

Stop the project first. Stopping a project refers to stopping the running alone,
with the project placed in the main memory. At this time, you can resume the
project immediately from the main memory. When you want to pause, resume
a project under deployment, and select Stop without exiting.

The client process method for stopping a project is divided into three modes
(stopping modes):

• Warm: The project stops when the client is disconnected. Specify
stopping in Warm mode if you wish to safely stop in the deployment
environment.

• Cold (default value): The project is stopped after the connected client is
stopped. Specify the Cold mode when a forced stop is necessary during
development tests or maintenance.

• Force: Forcibly stop the project regardless of the client condition. Force
should not be used except for when the project cannot stop normally
(could not stop even by Cold mode).

If the Stop or Start button is specified, the process for the connected client
corresponds to the Stop mode specified in the ESB Project Properties of the
machine, which is the platform on which ESB is running. Use the Project
Properties dialog box to confirm or change the Stop mode:

At this point, stop a package in running mode, change the Stop mode to
Warm, and then resume the package to run:

1. Select Package in the Configuration panel.

2. Select Action -> Stop or Restart or click the Stop or Start button .
The project stops under holding in the main memory.

3. Select the Machine icon on the Configuration panel. Select View ->
Property to display the Project Properties panel.

4. Select Warm mode on the Stop Mode panel. Then, click the OK button.

5. Select the stopped package in the Configuration panel.

6. Select Action -> Stop or Restart, or click the Stop or Start button .

10.2.4 Exiting a project

When you exit a project or when exiting a project has been specified, the
project is removed from the main memory. This applies to the Stop mode
specified on the Machine icon.
238 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

1. Select Package in the Configuration panel.

2. Select Action -> Terminate, or click the Terminate button .

10.2.5 Automatically starting a package

This section describes the autostart of a package when the operating system
is started.

10.2.5.1 Starting automatically when the system starts
ESB can identify specific packages that automatically start when the machine
starts such as for automatic deployment. Follow these steps:

1. Select Package in the Configuration panel.

2. Select Auto Start -> Service, or click the Service button .

3. When you restart the system, the registered package is started
automatically.

Figure 80 shows that CFConv is set as a service project.

Figure 80. Service project on System Manager

For the AIX version, automatic startup for the ESB system must be
specified as well. Do it with SMIT on the AIX version.

Note
Deploying ESB applications 239

10.2.5.2 Automatic startup upon user logon (NT version only)
In the Windows NT version of ESB Runtime, you may want to control startup
so that the project starts automatically, when the user logs on, as described in
the following cases:

• To separate the machine startup and the control of ESB

• For specific, preferred users to control startup

• When the ESB Engine Service cannot be started from Windows NT
Service due to integration restrictions with other applications

ESB provides a way of registering a package in startup for such cases. Let’s
try registering a package for startup:

1. Select Package in the Configuration panel.

2. Select Auto Start -> Startup, or click the Startup button .

3. Log off, and then log on again with the user name you registered to
automatically start up the specified package.

10.2.5.3 Automatically starting up multiple packages
Multiple projects are created when a large scale system is developed. To
register these for automatic startup, create one consolidated group package
file, and then register it. Now, let us create a group package and register it for
automatic startup:

1. Select File -> Create New Package File to create an empty package file.

2. Open multiple package files to be used.

3. Drag and drop the Package File icon onto the group package file. A group
package file containing multiple packages is created.

4. Select the group package you created. Then, click the Service button

or the Startup button .

10.2.6 Starting the ESB Engine Service with a specific account

Note: This applies to Windows NT only.

For the Windows NT version of ESB Runtime installation, ESB Engine
Service and the ESB Package Service are registered in the NT Service. ESB
Engine Service is the default set for automatic startup. Leaving this setting
“as is” allows it to run normally without any problems. In this case, ESB
Engine Service starts with the ESB Service user specified when ESB was
installed.
240 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

There may be cases where ESB cannot connect to the external resources
with the account which ESB started, due to usage limitations of the
application integrated with ESB, for example:

• Communication using the API of the PC3270 Emulator
• Communication using DB2 Connect on AS/400
• Using the Notes Class

In such cases, complete the following procedure to start the ESB Engine
Service from the logged-on user:

1. Start Service on the Windows NT control panel. Then, select Lotus ESB
Engine Service and click the Stop button.

2. Click the Startup button, select Manual in the group of Startup Type, and
then click the OK button.

3. Click the Close button, and then terminate the Service window.

4. Right click the Start button, and select the Open menu. Open the Start
Menu folder, and then switch to the Program and Startup folders.

5. Start Windows NT Explorer. Then, open the Run Module directory of
Lotus ESB Runtime (C:\Program Files\Lotus ESB Runtime\bin).

6. Drag and drop the file hpwarb2n.exe from Windows NT Explorer to the
Startup folder to create a shortcut.

When you complete these steps, the next time the ESB Engine Service starts
is when the login is done by the user.

10.3 Setting properties

ESB has its own property settings to deploy the system conveniently.

10.3.1 Settings pertaining to client threads

It is necessary to run the project smoothly in deployment by automatically
deleting objects (threads), which were discarded due to the exception of a
network error and by managing the maximum number of connections. The
settings pertaining to the client thread by adjusting the resources of the
system for suitable settings in deployment are also required.

The settings pertaining to the client thread in the Project Properties are set on
the Client Thread panel (Figure 81 on page 242).
Deploying ESB applications 241

Figure 81. Project Property Client Thread panel

10.3.1.1 Max Number of Client Threads
The Max Number of Client Threads specifies the maximum number of client
threads that can be created. This is the maximum number of Published class
objects that can be created from a client at the same time. When “No Limit” is
set, it creates client threads as much as the resources are available.

• When sufficient resources are available

Set No Limit, if sufficient resources are available. In this scenario, there is
a certain number of clients to be connected and no need to limit the
number of connected clients.

• When there is a limit on the number of simultaneous connections

Because machine resources are normally limited, it is required to prevent
frequent swaps of the main memory for the operating system and avoid
lowering the running speed under heavy load. By specifying the maximum
number of threads, ESB limits the number of simultaneous connections
and maintains the performance. In addition, Actions at Max can be
specified in the settings, which causes the client to wait or return an error
to the client when the maximum number of threads reaches the maximum
limit.
242 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

In case “Wait” is specified, the server queues the requests. In other words,
the client side shifts to the wait status in object creation (for example,
CreateObject). After a Published class object is deleted during operation,
a Published class object is created in the queued sequence.

When “Error” is specified, the client side produces an object creation error.
For example, an automatic object cannot be created. You can attempt to
reconnect by entering appropriate error handling (for example, the On
Error statement) on the client side.

10.3.1.2 Idle Timeout
Idle Timeout can be set to delete unnecessary threads (Published class
objects) automatically after a certain period of time when client/server
communication is disabled due to such trouble as a network error.

“Idle Timeout Value” specifies the maximum period of time in which the
created client thread can be alive and no method is called. For example,
when this value is set to 60 seconds, if the client thread created by the
CreateObject function is not called within 60 seconds after the creation, “Idle
Timeout” is posted and the thread is deleted. If the initial value of “Idle
Timeout Value” is 0, no timeout is generated.

You should set this value if you want to automatically delete the client thread
which was not used due to a network error or trouble in the client computer,
or when you want to prevent leaving the long term thread created by a certain
client.

You must decide on the value to set for Idle Timeout according to the
nature of the client threads (Published class objects) that are created.
Because the lifetime for state-full threads is normally long, you should set it
to a value of about 1,800 seconds (30 minutes). On the other hand, you
should set it to a value of about 300 seconds (5 minutes) for stateless
threads.

Hint

The first digit of the timeout value set is rounded up to the next effective 10
second unit. For example, when 23 seconds is specified, it is treated
internally as 30 seconds.

Note
Deploying ESB applications 243

10.3.1.3 Method Timeout
If you can precisely predict the time until the method call is complete, you can
set this value to automatically delete client objects (Published class objects),
which can may indicate that a problem has occurred. You can use this setting
to prevent unnecessary threads from being left in the main memory.

“Method Timeout” specifies, in seconds, the maximum period of time that a
method is executed. Once the method is called, and the specified time
elapsed before the method call completed for any reason, the client thread is
automatically deleted. When the Default value is 0, no timeout occurs.

10.3.2 Setting the pool size

Set the pool size when you want to improve the response time to object
creation requests from clients. Set the following three pool size parameters:

• Initial pool size
• Additional pool size
• Maximum pool size

10.3.2.1 The thread pooling mechanism
When a request of the Published class object creation is received from a
client, a corresponding client thread is created on the server. Creating
threads imposes a certain cost, consequently. If possible, you should create
several such threads prior to running a project and making the threads
available, so the client can be run immediately. This may improve the
response to client requests. By setting an appropriate pool size, you can
improve the response time when running projects under the deployment
environment.

Thread pooling operates as shown in Figure 82. The process is further
described in the following series of events:

A normal method call does not take a long time. Consequently, you should
set about 60 seconds as the timeout value.

Hint

The first digit of the timeout value set is rounded up to the next effective 10
second unit. For example, when 23 seconds is specified, it is treated
internally as 30 seconds.

Note
244 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

Figure 82. Thread pooling

1. When the project starts, the number of client threads specified in the Initial
Pool Size are pooled in the thread pool. For example, if the Initial Pool
Size is 6, when pooling starts, six threads are created and available for
use.

2. When there is an object creation request from a client, a Thread Request
arises to the thread pool and a client thread is obtained from the thread
pool.

3. When the thread usage terminates, the thread is returned to the thread
pool. However, when the thread pool reaches the Maximum Pool Size, it is
discarded.

4. When there is an object creation request from a client while the thread
pool is empty, it creates the number of threads specified in Additional Pool
Size. When the first thread is created, it is immediately passed to the
requester. There is no waiting for all the threads to be pooled. For
example, when the Additional Pool Size is 2, the first thread is created and
passed to the requester. Thereafter, another thread is created and stored
in the thread pool.

5. The thread pool holds the number of threads specified by the Maximum
Pool Size. When the Maximum Pool Size is exceeded, it creates a thread
for one thread request and then returns it. For example, if the Maximum
Pool Size is 20, a maximum of 20 threads are held in the pool. When this
is exceeded, a thread is discarded even if it is returned.
Deploying ESB applications 245

10.3.2.2 Setting the pool size
Set the pool size on the Pool Size panel (Figure 83) in Project Properties of
the System Manager.

Figure 83. Pool Size panel in the Project Properties of System Manager

10.3.2.3 Initial Pool Size
“Initial Pool Size” specifies the number of threads automatically created at the
time that the project starts running. If there are sufficient resources, you
should set it for the projected maximum number of simultaneous client
connections (the maximum value of the number of objects created
simultaneously). This maximizes performance, because you can then
allocate threads that can be run immediately for all the object creation
requests from the clients. However, if you set a large value for the Initial Pool
Size, it takes time to create the threads when the project starts running.

The pooled threads are loaded into the main memory to run them
immediately. Consequently, if you set a large value for the Initial Pool Size,
you should monitor that the setting does not impose an undue burden on the
memory consumption in the system, while using system tools, and deploying
efficiently.
246 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

10.3.2.4 Additional Pool Size
“Additional Pool Size” specifies the number of additional threads to be
created when an object creation request is received from a client and the
entire number of threads specified in the Initial Pool Size is being used.

For example, assume that the Initial Pool Size is set to 5 and the Additional
Pool Size is set to 2. An additional object creation request comes from a
client while all five threads are currently in use after they are created and
passed on to the requester. It creates another one which it puts on standby. In
this case, if there is again a subsequent request, it can immediately allocate a
thread to the request.

To maintain a certain degree of performance even under the threads in the
Initial Pool Size that have been consumed, you can immediately allocate an
executable thread for more numerous requests by increasing the number in
the Additional Pool Size.

10.3.2.5 Maximum Pool Size
“Maximum Pool Size” specifies the maximum number of threads to be pooled.
When threads created in accordance with the Initial Pool Size and the
Additional Pool Size have increased, it holds the maximum value that was
created simultaneously until it reaches this value.

One of the criteria for determining the Maximum Pool Size value is the
capacity of the main memory. In case the number of threads being pooled
reaches the value of Maximum Pool Size, the memory area allocated to it is
left until the project is exited. Therefore, we recommend that you do not set
unnecessary large amounts for this value.

10.3.2.6 Pool size setting example
When the total number of clients connected simultaneously is 50 in normal
conditions, you should set the following parameters as indicated here:

• Initial Pool Size … 10
• Additional Pool Size … 5
• Maximum Pool Size … 50

As a result, when the pool size exceeds 10, performance will not decline.
Instead, it creates a pool with a total of five threads for one object creation
request. In this case, it is presumed that the system has sufficient resources,
even if 50 threads are permanently in memory.
Deploying ESB applications 247

10.3.3 Setting project priority

Projects can be divided into several categories by objective as shown here:

• A project that has an object created by the interactive operation of client
user.

• A project that has an object created by a request other than the interactive
operation of client user.

• A project performing a periodic task on the server.

A project that has an object created by the interactive operation of a client
user must be assigned a higher priority and get a shorter response than the
other two cases. Conversely, projects such as periodically performed tasks
are given a lower priority. Therefore, other tasks may be given preference
over them. You set the project priority for this purpose.

Select the Priority panel (Figure 84) from the Project Properties of the
System Manager to check and set the project priority.

Figure 84. Project Properties Priority panel in System Manager

In terms of project priority, “0” is high and “9” is low. The default value is “5”.
248 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

10.3.4 System environment and project environment variables

When deploying a program whose development was completed in the IDE, it
may be necessary to set elements, such as path names, to fit the deployment
environment. If a program value is coded in the source program, which
depends on the deployment environment, the freedom of deployment may
decrease. The difficulty is significant for operating the same package files on
a variety of environments. ESB provides system environment variables and
project environment variables by projecting to resolve such problems.

Display the Env. Variable panel (Figure 85) from the Project Properties in
System Manager to check and set the environment variables.

Figure 85. Project Properties Environment Variable panel in System Manager

Set the project priority to 0 for projects that have an object relating to a
user-interactive operation to be given a preferred response. Specify a
priority of 9 for projects relating to background processing, such as periodic
tasks.

Hint
Deploying ESB applications 249

10.3.4.1 System environment variables
System environment variables are set and enabled as operating system
environment variables at the beginning of project. They are used in the
following types of circumstances:

• Environment variables settings (path name and so on) of a system to be
linked, such as DB2

• Environment variables settings required in LSX

10.3.4.2 Project environment variables
Project environment variables are used within a program, and are used when
you want to use variables of different natures depending on the deployment
environment. As a result, you can change the nature of the variables required
in the deployment environment without changing the source code.

They are used in the following types of circumstances:

• Program specific user and group management
• Setting the host name and so on where the program communicates
• Setting the database to be used by the program and the user name to be

used for login

10.3.4.3 Initial setting of the environment variables
Set the initial values for these variables from the IDE. System Manager only
permits you to change the values of variables that were defined previously.
You cannot add or delete variables. Changed values are held within the
project file, so they are effective even after you terminate the project.

10.3.5 Setting the client module automatic updating function

ESB provides a function for automatically updating the previously installed
Client Enabler module. This enables the transmitting of the latest module
from the server to the client as required. Data files used with the client
module Automatic Updating Function are attached to such things as
subsequent releases and correction modules for the ESB program and are
automatically set when the installation program applies.

Stopping the Automatic Updating Function and setting the parameters of the
Automatic Updating Function (for example, the number of retries when an
automatic updating by a client has failed) can be changed in the Client
Update panel (Figure 86) of the ESB Configuration Tool. This applies to
Windows NT and in SMIT in the case of the AIX.
250 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

Figure 86. Project Properties Client Update panel in System Manager
Deploying ESB applications 251

252 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

Appendix A. FAQs

This appendix summarizes the frequently asked questions (FAQs) of the
LSCube Forum in IBM Japan. LSCube is the former product name of ESB
and was marketed in IBM Japan since September 1997 as Version 1
(Windows NT), Version 2.0 (Windows NT), and Version 2.1 (AIX).

A.1 Creating ESB applications

• Q: How do I include other LotusScript files into the ESB program?

A: There are two ways you can do this:

– Add the LotusScript file to the Include folder on the IDE project
browser.

– Import the LotusScript file by specifying a %INCLUDE statement.

Enter the %INCLUDE statement in the (Options) script. If no path name is
specified in the file to be imported in the %INCLUDE statement, it
searches under the current directory of the project or under the directory
of ESB Runtime.

• Q: Can I include the Visual Basic source code into the ESB program?

A: It is not formally supported. However, you can include source code files
(.BAS) by selecting Import Script… on the File menu. Part of the code
must be changed due to the differences of the language specification. The
form module and the files saved in binary format cannot be read.

• Q: Which is compiled first: a file defined in the Include folder of ESB IDE,
or a file defined by a %INCLUDE statement of the source file?

A: LotusScript files described in the Include folder of ESB IDE are
compiled first. Within each folder, they are compiled from the top
downward in the order defined by the IDE. This order is also the same for
LSX and object files.

• Q: Can character strings including a NULL character be sent and received
between ESB clients and servers?

A: In ESB, communication between clients and servers of string variables
including NULL character (0x00 or Chr(0)) is not assured.
© Copyright IBM Corp. 2000 253

• Q: Can a file located in the hard disk of a computer where ESB Runtime is
installed be referenced from ESB Runtime? When I use the FileCopy
statement, it emits the message: File cannot be found.

A: Include the path name in the file to be specified for the FileCopy
statement. If the path name is not specified, the bin directory of ESB
Runtime will be used as the current directory. You can use the ChDrive
and ChDir statements to change the current directory.

Example of changing the current directory:
ChDrive "C" ' setting of current drive
ChDir "\TEMP" ' setting of current directory
Filecopy "DBAccess.log", "DBAccess.001"

• Q: I want to record the number of client connections to ESB Runtime at a
certain point in time. Is this possible? For example, can I output the
number of connections to ESB at five minutes intervals?

A: ESB does not have such a function. However, it is possible in
combination with the LSServer class and the SsTimer class. Specifically,
LSServer keeps the number of client connections by the LSServer class.
Periodically, SsTimer class outputs that number.

• Q: Can I access the LSServer class directly using the SvClink class or
SsClink class from a client such as Notes or VB or from another ESB
project?

A: No. It is necessary to go through the Published class. That is, you
define the Published class that wraps the LSServer class and access it
indirectly through this Published class.

• Q: When I observe a sample, both the Variant type variable and the Object
type variable are mixed when declaring reference variables for SvClink
and SsClink objects. Which is better to use?

A: The Variant type variable is used in LotusScript. In Microsoft Visual
Basic, the Object type variable is used when creating an object using the
SvClink class. There is no Object type in LotusScript.

• Q: What is the advantage of using the SsClink class compared to SvClink
class?

A: The SsClink class is superior to the SvClink class in the following ways:
254 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

– Arrays of two or more dimensions can be used as the method’s
arguments in the Lotus clients.

– You can obtain more detailed error messages using RuntimeError
events.

Conversely, the SvClink class can be used, if OLE automation is
supported even from an environment where LSX cannot be used (for
example, Microsoft Visual Basic).

• Q: Can I send and receive user-defined type data between ESB client and
the server?

A: You cannot directly send and receive user-defined type data, but you
can substitute them into Variant type arrays. Refer to Chapter 4, “Server
application programming” on page 43, for details.

• Q: When there are variables in common with multiple projects, where and
how can I declare them? Can I use the LSServer class?

A: You cannot share variables between projects even using the LSServer
class. Use the SsSharedStorage class to share variables in multiple
projects.

• Q: Can I use the Published class of another project from a project running
on the same ESB Runtime?

A: Yes. You can create a Published class object using the SsClink class
the same way as when creating it from a normal Notes client. However,
you do not need to load SsClink LSX (Uselsx "*SsClink") because the
SsClink class is loaded automatically.

Due to the dependency established between those projects, you should
remind it in the operation of system. For example, when calling the
Published class of another project, the call destination project must be
running. If there is a possibility of the call destination being stopped, enter
an OnError statement in the program of the call source to set it up so that
it displays an error on the console. Or, attempt to recreate it at fixed
intervals until it recovers when an error occurs in the creation of a
Published class object.
FAQs 255

• Q: I am considering separating a single ESB project into multiple projects.
What are the advantages and disadvantages of doing this?

A: The advantage is that by separating a project, you can manipulate the
operating time over the respective projects. You can also delimit the
LSServer class.

The disadvantage is described here. The memory usage volume
increases due to the increased number of small projects. The program
must also be changed. For example, because you cannot interchange the
variables between projects by the LSServer class, the interchanging of
variables using the LSServer class must be replaced by the
SsSharedStorage class. Furthermore, because a Public class also cannot
be used beyond the project interval, when you use a Public class of
another project, you must change that Public class to a Published class.

• Q: Please indicate the size and range of the String type and Variant type
storage area.

A: They are defined as shown in the following tables in LotusScript.
However, they are also limited by the scope that is defined by the
concerned variable and the overall volume of the character string literal.

Table 26. Storage area size and range of data types

Table 27. Maximum value of items

Data type Storage area size Range

String (variable length) 2 bytes per character 0 to 2GB

String (fixed length) 2 bytes per character + 2 bytes 2 to 64KB

Variant (character string) 2 bytes per character + 16 bytes
+ 2 bytes

0 to 64KB

Item Maximum value

Number of character strings Depends on memory that can be used

Overall character string storage area Depends on memory that can be used

Length of the character string literal 16,267 characters (32,000 bytes)

Length of the character string value 2GB
256 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

Table 28. Memory size for all data within a specified range

• Q: Each function of the class and LSX used on the ESB must be
developed with the condition of thread-safe. What does thread-safe
mean?

A: Thread-safe means that no problem is caused under a multi-thread
operation.

ESB Runtime server programs are run on multi-threads to efficiently
process access from multiple clients. ESB programs described in
LotusScript are automatically thread-safe. However, external modules,
such as LSX, to be used from LotusScript must be created with a
consciousness of their being thread-safe.

When using an existing LSX, check the thread-safeness at the Lotus
home page or the LSX vendor home page. Test it on ESB. Because
multi-thread related problems may occur in the timing of access from
multiple clients, the thread-safeness must be verified using multiple
clients.

When creating a new LSX, you generally implement thread safety using a
C or C++ language functions. At such times, in addition to normal
concerns, such as avoiding the use of static variables and exclusive
control on the accessing of shared resources, you must implement thread
safety specified within the LSX Toolkit.

• Q: Can I call an external module (DLL, or common library) developed
using C or C++ from ESB?

A: Yes. Refer to the DECLARE statement item of the language reference
for the calling procedure.

Module Depends on memory size that can be used

Class 64KB

Procedure 32KB
FAQs 257

A.1.1 Runtime errors

• Q: I am trying to create a Published class object for another project on the
same Runtime from a certain ESB Runtime project. I declare Uselsx
“*SsClink” for the (Options) script and describe the process normally done
by the client. The following error is generated when I run it:

Loading errro of the [0002:000000] USE or USELSX module: *SsClink
(Module:SCRIPT5,Line:4)

A: The Uselsx “*SsClink” is unnecessary within an ESB server program.
Delete the Uselsx statement.

• Q: When I use DCOM from the client to connect to ESB Runtime, I cannot
connect due to a 0x800706D3 error. Why did I get this error?

A: 0x800706D3 is an error returned by the system (Windows), which is
generated when the security level of the DCOM does not match. Check
the following possibilities:

– If DCOM was installed on a Windows 95 client, has the file copied by
DCOM95 been overwritten by the old DLL file of Windows 95 or
Internet Explorer 3.0? If this is the case, you should reinstall Client
Enabler.

– Has an error (LsaRegister - LogonProcess) been shown to the event
viewer on the ESB server? If this is the case, you should install the
RPC Configuration in the network service on the ESB server side.

• Q: The Windows version of Client Enabler reports an error number not
included in the manual. Why? Also, what does this error number mean?

A: The Windows version of Client Enabler sometimes returns error
numbers for the Windows operating system. The main error numbers are
converted to characteristic ESB error numbers, but all Windows operating
system error numbers cannot be converted. Consequently, Windows error
numbers are sometimes returned directly. For details about Windows error
number and the operation, refer the Microsoft Win32 SDK.

• Q: The Windows version of Client Enabler returns a very large number as
an error number. I checked the ESB manual and Microsoft's SDK, but
cannot find it. What does this number mean?
258 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

A: This indicates a Windows operating system error number. Use the
following procedure to locate it:

1. Note the error number as a hexadecimal.

2. If the hexadecimal error number begins with “8007”, segregate the
following two bytes and convert it to a decimal:

0x800706BA => 0x06BA => 1722

3. Use either of the values obtained in step 1 or step 2 to locate it.

A.1.2 Deploying an ESB application

• Q: I am considering using Microsoft Internet Explorer (IE) as an ESB
client. What versions can be used as ESB clients?

A: Use 3.01 or higher when using IE VBScript to create a client program.
Use 4.01 or higher when using JavaScript (when using the HTTP
communication function).

• Q: When I connect to ESB Runtime from VBScript of IE 4.01, the IE
Security Warning dialog box is displayed. I do not want do display this
dialog box, so what should I do?

A: Perform the following procedure. Register the ESB Runtime site in the
Intranet Zone or the Secure Site Zone of the four IE zones to lower the
security setting. When this method is used, it does not lower the security
setting for regular Internet access:

1. Select Display Internet Menu in IE.

2. Click the Security tab.

3. Click Intranet Zone or Secure Site Zone from the list in the Zone box.

4. Click Add Site.

5. If you selected Intranet Zone in step 3, click the Details button.

6. Enter the Web address (URL) of the ESB application in the Add this
Web site to the zone box. Click the Add button.

• Q: Can a Published class object be created when the “Usage Rate” is
100% on the Summary panel of the Runtime Monitor (in the case of
Windows NT) or of the Monitor Folder of System Manager (in the case of
AIX)?

A: Yes, it can be created.
FAQs 259

When the number of Published class objects equivalent to the number of
currently pooled threads is created, the usage rate becomes 100%.
However, additional threads (Published class objects) can be created until
the maximum number of client threads is reached. The value for the
maximum number of client threads can be changed in System Manager. In
addition, you can select either to return an error or to have it wait when the
maximum value is reached.

• Q: Can a client program know why an object creation failed when the
maximum number of clients is already created?

A: Yes. By using System Manager, you can select either to make the client
wait or to return an error when the maximum number of client threads has
been reached. Therefore, you should first set it here to return an error.
Subsequently, a Runtime error is notified and should then be handled
using the OnError statement in the client.

• Q: For monthly data transfer from the Notes database to ESB Runtime,
which method provides better performance: transferring data daily (30
times per month) or transferring data once a month?

A: It is generally more advantageous to have a lower number of method
calls on ESB Runtime, because the ESB Runtime and the Notes client is
connected through the network logically. It is obviously clear that
transferring month data one time can reduce the network overhead and
provide better performance than transferring 30 times for daily data.

• Q: Although two network cards are used for ESB Runtime, is it true that
ESB validates only one of them? Can it validate both network cards?

A: It can only validate one of them. To insert and use more than one
network card in ESB Runtime, you should specify the IP address that will
communicate with ESB Runtime using the ESB Configuration Tool (for
Windows) or SMIT (for AIX).

• Q: Please advise the port number used by DCOM.

A: DCOM uses port number 135 and a dynamically assigned port number.
The standard number for the dynamically assigned port number is from
1024 to 65535. Consult Microsoft's SDK to learn how to assign
dynamically the port number.
260 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

• Q: Please advise the port number used by IIOP in ESB.

A: Usually ESB uses port number 3003. Use the ESB Configuration Tool
(for Windows) or SMIT (for AIX) to change this number. Other port
numbers are used depending on the operating configuration of the
application, but these have not been explicitly determined. ESB conforms
to the standalone ORB specification of IBM Component Broker.

• Q: How much is the upper limit on the transmission packet size for IIOP
connections?

A: There is no upper limit on the data transmission volume. However, from
the perspective of transmission speed and line quality, we recommend
that you verify it on the actual operating environment and then adjust the
transmission unit. You should also remember that the data size limitation
on the client of Notes prior R5 has a restriction.

• Q: I am trying to develop both a client program and a server program on
one computer. Must I install ESB Client Enabler after having installed ESB
Runtime?

A: No. ESB Client Enabler is automatically installed when you install ESB
Runtime. There is no need to separately install ESB Client Enabler. When
ESB Developer is installed, ESB Client Enabler is also installed
automatically.

• Q: ESB supports both DCOM and CORBA/IIOP as the communication
method between client and server. Which do you recommend?

A: When DCOM is used, Windows NT's security can be used. However,
DCOM is only supported in the Windows NT version. For this reason, we
recommend using CORBA/IIOP when you consider supporting the
different platforms.

• Q: Is it possible to automatically disconnect clients for which there is no
fixed time access?

A: Yes. Use the ESB Configuration Tool (for Windows) or SMIT (for AIX) to
set the Idle Timeout. When the timeout value is exceeded, the Published
class object corresponding to the client is deleted.
FAQs 261

A.1.3 HTTP communication function

• Q: Must ESB Client Enabler be installed to use the HTTP support function
of ESB to make a Web browser the client?

A: No.

• Q: Is it necessary to install IBM WebSphere and ESB Runtime on the
same machine to use the HTTP communication function of ESB?

A: No.

• Q: The HTTP communication function of ESB Runtime is the prerequisite
of the work with IBM WebSphere. Can the servlet provided by Domino R5
be used?

A: No. The HTTP communication function of ESB Runtime uses the
supplementary functions (for example, JSP) added by IBM WebSphere.
For this reason, the current ESB Runtime does not support the Domino R5
servlet.

• Q: Is it necessary to develop a servlet in the Java language when using
the HTTP communication function of ESB?

A: The ESB servlet provided in the HTTP communication function can be
used generically. Therefore, no development using Java is necessary.

A.1.4 Access to databases

• Q: I tried to access DB2 from ESB using CLI, but the connection failed.
What should I do?

A: Check the following possibilities:

– Was DB2 started up correctly? Check the DB2 server.

– Is the DB2 client configuration correct? Are the specified user ID and
password correct? Try connecting to the database that you want to use
from the DB2 command window. Be careful to use the correct upper
and lower case letters in the user ID and password since it
discriminates between them.

– When using the AIX version of ESB Runtime, an initial setting is
required prior to running the project. Refer to the description in
Readme.En_US, and check that it is set correctly.
262 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

• Q: I tried accessing an Oracle database from ESB using OCI, but the
connection failed. How can I overcome this?

A: Check the following possibilities:

– Were the Oracle service and listener started correctly? Check the
Oracle server.

– Do the Oracle server and client versions match? If they are different,
check in the Oracle manual whether the client can connect to that
server.

– Is the Oracle client configuration correct? Are the specified service
name, user ID and password correct? Try connecting to the database
you want to use, using SQLPlus.

– If you are using the AIX version of ESB Runtime, have the environment
variables been set correctly? Check the following on the root user.

• Has the Oracle installation directory been set to ORACLE_HOME?

• Has the directory stored by the Oracle library been included in
LIB_PATH?

• Has the language environment been set to NLS_LANG?

• Q: Just as I was accessing the database from the Windows NT version of
ESB Runtime using ODBC, I received the error message [Microsoft] and

[ODBC driver manager] datasource name and specified default driver

cannot be found, and the connection failed. How can I address this?

A: The ODBC datasource must be registered in the system DSN because
the NT version of ESB Runtime runs as an NT service. Consequently, you
should check the following process:

1. Click 32 Bit ODBC from the control panel to start the ODC data source
administrator.

2. Click the System DSN tab. Check whether the data source you are
trying to access is registered.

3. If it is not registered, register it in the System DSN. You cannot access
it, even if it is recorded in User DSN. You must register it again in
System DSN.

• Q: I cannot connect from ESB to DB2/400 using Client Access ODBC.
Why is this not possible?
FAQs 263

A: A phenomenon has been reported where an error is occurred by the
SQLConnect function when a connection is made through the ODBC using
DB2/400 on the AS/400 system. The cause is thought to be attributed to
trouble relating to usage of the driver for the DB2/400 from the program
being operated from the Windows NT service. Try the following procedure
for this:

1. Select the manual option of the ESB Engine Service in the Windows
NT service.

2. Start HPWARB2N.EXE from the command prompt (or Startup folder).

3. Run the project from System Manager or the IDE as you do normally
(see Chapter 9, “Accessing transaction systems” on page 209, for this
procedure). It is essential that you log on to Windows NT because ESB
operates on the user account.

• Q: The SQLGetDataStr function is defined as shown in the following
example with include files lsdbcli.lss and lsdbodbc.lss provided by ESB:

Declare Function SQLGetDataStr Lib CLILIB Alias "SQLGetData" _
(ByVal hstmt As Long, ByVal icol As Integer, _
ByVal fCType As Integer, ByVal rgbValue As String, _
ByVal cbValueMax As Long, pcbValue As Long) As Integer

The Target_Value of the fourth argument is defined in the pass by value,
by the appending the keyword ByVal. Why is this?

A: For external C function calls, the character string argument is ordinarily
passed by reference. That is, this keyword ByVAL does not imply that it is
a pass by value. It implies that you must convert the concerned character
string to an ASCII character string (ultimately, one containing 0x0).

A.1.5 ESB and Notes or Domino

• Q: Can I install ESB Runtime on a different computer than the Domino
Server?

A: ESB Runtime does not rely on the Domino Server. Therefore, you can
install it on either a different computer than Domino Server or on the same
computer.

• Q: Are there cases where I must install the Domino Server and ESB
Runtime on the same computer?
264 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

A: When you access a Notes database directly from ESB Runtime and
when you set it so as to write the log in the Notes database from Runtime
Monitor (for Windows NT) or from System Manager (for AIX), you must
install Domino Server and ESB Runtime on the same computer.

• Q: Are Domino Server and Notes Client essential for a system configured
by ESB?

A: Domino Server and Notes Client are not essential, provided all the
following conditions are met:

– You do not access a Notes database directly using Uselsx “*Notes”
from ESB Runtime.

– You describe the ESB client program in a script language other than
LotusScript.

– You do not output the log to the Notes database from Runtime Monitor
(for Windows NT) or from System Manager (for AIX).

• Q: I am considering directly accessing a Notes database using Uselsx
“*Notes” from the LSSserver class of the ESB Server program, with the
objective of exclusive control of Notes documents. What are some
considerations when doing this?

A: Use R4.6 or higher for both the Notes server and the Notes client.
Notes classes from R4.6 are fully multi-thread supported.

• Q: What is necessary on ESB Runtime when using remote installation for
the ESB client: Domino Server or Notes Client? Also, is it necessary that
they operate constantly? Is it alright if a module is installed?

A: To remotely install the ESB client, you just provide the Notes database
(HPWCINST.NSF) for the remote installation. ESB Runtime is not
particularly relevant. The setting is completed with the copying of the
Notes database for remote installation into Domino Server. It is not
necessary that ESB Runtime be operating, nor is it necessary to have
Notes Client or Domino Server on ESB Runtime.

• Q: What should I do to check whether ESB Client Enabler has been
introduced onto Notes Client using LotusScript or another method?
FAQs 265

A: When you load an ESB client application including *Uselsx SsClink on
a machine where ESB Client Enabler has not been installed, an error is
occurred. This is how you can check whether ESB Client Enabler has
been installed.

• Q: Please indicate the differences when using Notes Class on ESB and
when using Notes Class on Notes and Domino.

A: Only Notes Backend Class is supported on ESB. Also, when you use
Notes Client, you must enter USELSX "*notes" in the (Option) section.

A.1.6 Linking with a mission-critical application using MQ

• Q: How do I create a server application to use ESB and MQ to
automatically send Notes mail in response to requests from a host
application?

A: You create an LSServer class. Then define the method for receiving
MQ messages sent from the host application and sending Notes mail. This
method is run asynchronously using the SsTimer, which makes it possible
to create the target server application. A detailed example of the usage of
MQLSX in ESB is provided in Chapter 9, “Accessing transaction systems”
on page 209.

A.1.7 ESB license

• Q: What kind of licenses does ESB have?

A: The ESB product family includes:

– ESB Limited Runtime

This ESB Runtime has limitations, such as on the maximum number of
client threads. It is intended primarily to be used during development
and during test deployment prior to introduction of the main system.
For more details about restriction, refer to the ESB Users Guide. It
requires one license per node.

– ESB Standard Runtime

This is an ESB Runtime used during deployment. It requires one
license per node, on which one to four CPUs are installed.

– ESB Enterprise Runtime

This is an ESB Runtime used during deployment. It requires one
license per node, on which five to eight CPUs are installed.
266 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

– ESB Developer

This is the ESB server application development tool. It cannot operate
alone and requires a machine on which ESB Runtime is operating. One
license per user is required.

– ESB Client Enabler

This is the client module required for connection with ESB Runtime. No
license is required. It is included with all products.

• Q: Is ESB Y2K (Year 2000 ready) compliant?

A: Yes, it is compliant. Consult the Lotus home page at
http://www.lotus.com for details.
FAQs 267

268 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

Appendix B. Special notices

This publication is intended to help programmers to develop an ESB
application server program. The information in this publication is not intended
as the specification of any programming interfaces that are provided by Lotus
Enterprise Solution Builder Release 3.0 for Domino. See the PUBLICATIONS
section of the IBM Programming Announcement for Enterprise Solution
Builder for more information about what publications are considered to be
product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not
intended to state or imply that only IBM's product, program, or service may be
used. Any functionally equivalent program that does not infringe any of IBM's
intellectual property rights may be used instead of the IBM product, program
or service.

Information in this book was developed in conjunction with use of the
equipment specified, and is limited in application to those specific hardware
and software products and levels.

IBM may have patents or pending patent applications covering subject matter
in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to the IBM
Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY
10504-1785.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact IBM
Corporation, Dept. 600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The information about non-IBM
("vendor") products in this manual has been supplied by the vendor and IBM
assumes no responsibility for its accuracy or completeness. The use of this
information or the implementation of any of these techniques is a customer
responsibility and depends on the customer's ability to evaluate and integrate
them into the customer's operational environment. While each item may have
© Copyright IBM Corp. 2000 269

been reviewed by IBM for accuracy in a specific situation, there is no
guarantee that the same or similar results will be obtained elsewhere.
Customers attempting to adapt these techniques to their own environments
do so at their own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of
these Web sites.

Any performance data contained in this document was determined in a
controlled environment, and therefore, the results that may be obtained in
other operating environments may vary significantly. Users of this document
should verify the applicable data for their specific environment.

Reference to PTF numbers that have not been released through the normal
distribution process does not imply general availability. The purpose of
including these reference numbers is to alert IBM customers to specific
information relative to the implementation of the PTF when it becomes
available to each customer according to the normal IBM PTF distribution
process.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of the Lotus Development Corporation in
the United States and/or other countries:

The following terms are trademarks of other companies:

Tivoli, Manage. Anything. Anywhere.,The Power To Manage., Anything.
Anywhere.,TME, NetView, Cross-Site, Tivoli Ready, Tivoli Certified, Planet

CICS CT
DB2 eNetwork
IBM IMS
MQ MQSeries
MVS/ESA Netfinity
OS/2 RS/6000
SP SP1
SupportPac System/390
VisualAge WebSphere
XT 400

Lotus Domino
Lotus Notes Notes
NotesPump Lotus Enterprise Integrator
LotusScript
270 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

Tivoli, and Tivoli Enterprise are trademarks or registered trademarks of Tivoli
Systems Inc., an IBM company, in the United States, other countries, or both.
In Denmark, Tivoli is a trademark licensed from Kjøbenhavns Sommer - Tivoli
A/S.

C-bus is a trademark of Corollary, Inc. in the United States and/or other
countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other
countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

PC Direct is a trademark of Ziff Communications Company in the United
States and/or other countries and is used by IBM Corporation under license.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel
Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and other countries
licensed exclusively through The Open Group.

SET and the SET logo are trademarks owned by SET Secure Electronic
Transaction LLC.

Other company, product, and service names may be trademarks or service
marks of others.
Special notices 271

272 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

Appendix C. Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

C.1 IBM Redbooks publications

For information on ordering these ITSO publications see “How to get IBM
Redbooks” on page 275.

• Lotus Domino R5.0 Enterprise Integration: Architecture and Products,
SG24-5593

• Lotus Domino Release 5.0: A Developer’s Handbook, SG24-5331

• Lotus Solution for Enterprise, Volume 2: Using DB2 in a Domino
Environment, SG24-4918

• LotusScript for Visual Basic Programmers, SG24-4856

• Developing Web Applications Using Lotus Notes Designer for Domino 4.6,
SG24-2183

C.2 IBM Redbooks collections

Redbooks are also available on the following CD-ROMs. Click the CD-ROMs
button at http://www.redbooks.ibm.com/ for information about all the CD-ROMs
offered, updates and formats.

CD-ROM Title Collection Kit
Number

System/390 Redbooks Collection SK2T-2177

Networking and Systems Management Redbooks Collection SK2T-6022

Transaction Processing and Data Management Redbooks Collection SK2T-8038

Lotus Redbooks Collection SK2T-8039

Tivoli Redbooks Collection SK2T-8044

AS/400 Redbooks Collection SK2T-2849

Netfinity Hardware and Software Redbooks Collection SK2T-8046

RS/6000 Redbooks Collection (BkMgr) SK2T-8040

RS/6000 Redbooks Collection (PDF Format) SK2T-8043

Application Development Redbooks Collection SK2T-8037

IBM Enterprise Storage and Systems Management Solutions SK3T-3694
© Copyright IBM Corp. 2000 273

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

C.3 Other resources

For additional information, consult the following resources available from the
Lotus Development Corporation:

• ESB R3.0 User’s Guide, which is included in the ESB product package

• Domino Connector Manual, which is available with the Domino Connector
product

C.4 Referenced Web sites

These Web sites are also relevant as further information sources:

• To learn more about Lotus products and to verify Lotus support issues,
visit the Lotus home page at: http://www.lotus.com

• To access information and support regarding MA6D: MQSeries for AIX link
LotusScript Extension, visit the Web site at:
http://www.software.ibm.com/ts/mqseries/txppacs/ma6d.html

• To access information and support regarding MA7D: MQSeries for
Windows 32-bit platforms link LotusScript Extension, visit the Web site at:
http://www.software.ibm.com/ts/mqseries/txppacs/ma7d.html

• The latest information on MQSeries components, including MQLSX, is
available at the Web site:
http://www.software.ibm.com/ts/mqseries/support/fixes

• The Lotus Enterprise Integration Web site is at:
http://www.lotus.com/dominoei

• A host of LotusScript tutorials and related publications can be purchased
on the Web at: http://www.amazon.coms
274 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

http://www.lotus.com
http://www.software.ibm.com/ts/mqseries/txppacs/ma6d.html
http://www.software.ibm.com/ts/mqseries/txppacs/ma7d.html
http://www.software.ibm.com/ts/mqseries/support/fixes
http://www.lotus.com/dominoei
http://www.amazon.com

How to get IBM Redbooks

This section explains how both customers and IBM employees can find out about IBM Redbooks,
redpieces, and CD-ROMs. A form for ordering books and CD-ROMs by fax or e-mail is also provided.

• Redbooks Web Site http://www.redbooks.ibm.com/

Search for, view, download, or order hardcopy/CD-ROM Redbooks from the Redbooks Web site.
Also read redpieces and download additional materials (code samples or diskette/CD-ROM images)
from this Redbooks site.

Redpieces are Redbooks in progress; not all Redbooks become redpieces and sometimes just a few
chapters will be published this way. The intent is to get the information out much quicker than the
formal publishing process allows.

• E-mail Orders

Send orders by e-mail including information from the IBM Redbooks fax order form to:

• Telephone Orders

• Fax Orders

This information was current at the time of publication, but is continually subject to change. The latest
information may be found at the Redbooks Web site.

In United States
Outside North America

e-mail address
usib6fpl@ibmmail.com
Contact information is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

United States (toll free)
Canada (toll free)
Outside North America

1-800-879-2755
1-800-IBM-4YOU
Country coordinator phone number is in the “How to Order”
section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

United States (toll free)
Canada
Outside North America

1-800-445-9269
1-403-267-4455
Fax phone number is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

IBM employees may register for information on workshops, residencies, and Redbooks by accessing
the IBM Intranet Web site at http://w3.itso.ibm.com/ and clicking the ITSO Mailing List button.
Look in the Materials repository for workshops, presentations, papers, and Web pages developed
and written by the ITSO technical professionals; click the Additional Materials button. Employees
may access MyNews at http://w3.ibm.com/ for redbook, residency, and workshop announcements.

IBM Intranet for Employees
© Copyright IBM Corp. 2000 275

http://www.redbooks.ibm.com
mailto:usib6fpl@ibmmail.com
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://w3.itso.ibm.com/
http://w3.ibm.com/

IBM Redbooks fax order form

Please send me the following:

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

Title Order Number Quantity

First name Last name

Company

Address

City Postal code

Telephone number Telefax number VAT number

Invoice to customer number

Country

Credit card number

Credit card expiration date SignatureCard issued to
276 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

List of abbreviations

CB component broker

CLI Call Level Interface

COM Component Object
Model

CORBA Common Object
Request Broker
Architecture

DCOM Distributed COM

DECS Domino Enterprise
Connection Services

ERP Enterprise Resource
Planning

ESB Enterprise Solution
Builder

HTTP HyperText Transfer
Protocol

IBM International Business
Machines Corporation

IDE Integrated
Development
Environment

IIOP Internet Inter-ORB
Protocol

ITSO International Technical
Support Organization

JSP Java Server Page

JVM Java Virtual Machine

LEI Lotus Enterprise
Integrator

LSX Lotus Software
eXtention

OCI Oracle Call Interface

ODBC Open Database
Connectivity

OLE object linking and
embedding

ORB object request broker
© Copyright IBM Corp. 2000
SMIT System Management
Interface Tool

URL Uniform Resource
Locator
277

278 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

Index

Symbols
(Globals) - (Declarations) 169
(Globals) - (Options) 168

A
access control 69, 76
access from and to Notes and Domino 157
access source code creation 8
access to databases 262
accessing transaction systems 209
Additional Pool Size 247
advanced thread pooling 6
AIX version ESB Runtime 15
AIX version of Client Enabler 17
anonymous authentication 72
applet programming 129
application creation example 131, 135
application creation hints 155, 172
applications using multiple screens 126
architecture 9
array data 54
authentication 69

anonymous 72
OS 72
using a user-defined exit routine 73
using LDAP 73
when using DCOM 71
when using IIOP 72

B
backend access 2
basic authentication 147
basic CLI program 191
basic OCI program 195
business environment 1
button creation 28, 30

C
Call! button 92
calling a complex function 87
calling a member procedure 31, 92
calling a procedure 98, 114, 122
calling a simple function 87
calling the DLL function 87

Class Creation tool 7, 21
CLI native call programming 191
CLI/ODBC 191
client application creation flow 93
client application programming 91
client application programming interface 9
Client Code Creation tool 23
Client Enabler

AIX system requirements 17
Windows system requirements 16

client information 36
client module automatic updating function 250
client program creation 23, 37
client program ended abnormally, error handling 69
client programs 50
client side 226, 228
client support 2
client thread settings 241
client threads 58
clients supported by ESB 92
Code Generator 204
cold mode 238
complete customization 4
configuration 9
Connect! button 92
connecting from Notes or Domino 166
connecting to a relational database 175
connecting to DBMS 181
connecting to Notes or Domino 159
connection handle 192
connection pooling 178, 193, 197, 206
connection test 205
connection to backend data sources 10

database system 10
ERP system 11

connection to the queue manager 216
cookies 152
Creating 121, 136
creating a client program 23, 37

using Notes 25
using Visual Basic 37

creating a client screen 95, 103, 119
creating a form screen (for Notes R4) 28
creating a form screen (for Notes R5) 26
creating a new client form 25
creating a Published class object 31, 92, 97, 113,
121
creating a sample application 162
creating a screen
279

IBM NetObjects TopPage 103
Lotus Notes R5 109

creating a server side program 49
creating an event script 30
creating and using Code Generator source file 204
creating client programs 50
creating ESB applications 253
creating HostSimulatorClass objects 223
creating jsptest.html 136
creating result1.jsp 137
creating result2.jsp 138
creating UseMQLSXClass objects 220
creating your first ESB program 19

D
data movement 3
data virtualization 3
database access 262
database management system (DBMS) 181
database system 10
DB2 202
DBMS (database management system) 181
DBMS connection 181
DCOM 71
declarative access control 76

using Notes database ACL 80
using project environment variables 78

DECS (Domino Enterprise Connection Services) 3
defining a Published class 21
Delete Member procedure 52
deleting a Published class object 32, 92
deleting an object 116, 123
deleting data 189
deleting objects 100
deploying an ESB application 229, 259
deployment to operation flow 229
designing an ESB application 81
development environment 7
Disconnect! button 92
disconnecting from DBMS 181
displaying the result 99, 115, 122
Domino access 157
Domino connection 159, 166, 171, 172
Domino Connectors 8, 176

differences from LSX, CLI, OCI 175
with Lotus Connector LSX 177

Domino Designer 103
Domino Enterprise Connection Services (DECS) 3

Domino Go Webserver 149

E
editing a form

for Notes R4 34
for Notes R5 33

editing a server program 36, 39
editing an event script 35
editing programs 38
editing the Initialize procedure 20
environment handle 192, 196
environment variables 250
ERP system 11
error handle 197
error handling 67, 99, 116, 122, 190

client program ended abnormally 69
ON ERROR GOTO label 68
ON ERROR RESUME NEXT statement 69
ON ERROR statement 67
RESUME statement 67, 68

ESB
flow from deployment to operation 229
setting properties 241
with Notes or Domino 264

ESB (Lotus Enterprise Solution Builder) 1, 4
ESB applets 131
ESB application deployment 229, 259
ESB application design 81
ESB architecture 9
ESB Client Enabler 267
ESB client support 92
ESB configuration 9
ESB creation 19
ESB Developer 15, 267
ESB Engine Service 240
ESB Enterprise Runtime 266
ESB features 1

backend access 2
Integrated Development Environment (IDE) 2
load balancing with Domino server 3
LotusScript support 2
runtime environment 1
support for various clients 2

ESB functions 5
development environment 7
IDE 7
multi-thread support 6
ORB support 7
280 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

Query Builder 8
runtime environment 6
Runtime Monitor 7
System Manager 7

ESB license 266
ESB Limited Runtime 266
ESB project design related hints 84
ESB Runtime 9, 43

AIX system requirements 15
development procedure 44
transmitting data from 53
Windows NT system requirements 14

ESB servlet 141
ESB Standard Runtime 266
ESB threads 58
event handling subroutine 99
event script 30
exit routine 73

registration 75
testing 75

exiting a project 238

F
FAQ 253
field creation 28, 29
fixed-length array data 54
force mode 238
form creation 37

G
global threads 59, 64

LSServer class 61
serialization 64

global variable 59
definition 31

group package file 230
groupware 1

H
handling errors 33
HostSimulatorClass class variables definition 223
HostSimulatorClass LSServer class 211
HTML 103
HTML authoring tool 103
HTTP communication function 141, 262

I
IBM 103
IBM NetObjects TopPage 103
IDE (Integrated Development Environment) 1, 2, 7
Idle Timeout 243
Initial Pool Size 246
Initialize prodedure 20
inserting data 185
installing a member 23
Integrated Development Environment (IDE) 1, 2, 7
integration with mission-critical business applica-
tions 209
Internet Explorer applications 125

J
JSP programming 129, 130, 135
jsptest.html 136

L
layout region creation 29
LCConnection 178
LCCurrency 178
LCDatetime 178
LCField 178
LCFieldlist 178
LCNumeric 178
LCSession 178
LCStream 178
LDAP 73
LEI (Lotus Enterprise Integrator) 3
linking with a mission-critical application using MQ
266
load balancing 3
load distribution of the ESB program 125
loading ESB client and LSX file 30
loading MQLSX 215
loading the LSX LC 178
Lotus Connector LSX

with Domino Connectors 177
Lotus Domino Connectors 4
Lotus Enterprise Integrator (LEI) 3
Lotus Enterprise Solution Builder (ESB) 1, 4
Lotus Notes R5 109
LotusScript support 2
LSCube xv, 253
LSServer class 6, 39, 61

example 63
global threads 61
281

LSServer class HostSimulatorClass 211, 222
LSServer class MyCounter 39
LSX LC 176, 177, 178

M
managing deployment conditions 232
Max Number of Client Threads 242
Maximum Pool Size 247
MDI (Multiple Document Interface) 2
member procedure 64
member procedure argument 56
message monitor processing 223
messaging 11
Method Timeout 244
Microsoft Internet Information Server 148
MQAccessClass objects creation 215
MQAccessClass Public class 211
MQCommon.lss 214
MQLSX

examples 211
obtaining 210
using the example 227

MQLSX (MQSeries link LotusScript Extension) 209
MQLSX class variables 215
MQSeries 11
MQSeries link LotusScript Extension (MQLSX) 209
Multiple Document Interface (MDI) 2
multiple packages startup 240
multi-thread support 6

debugging function 7

N
network traffic volume 84
network transmissions 83
New Member procedure 52
Notes access 157
Notes application 95
Notes connection 159, 166, 171, 172
Notes LotusScript, creating a client program 25

O
object creation 213
object deletion 52, 213
object initialization 52
Object Request Broker (ORB) 7
obtaining access logs using the Exit routine 88
obtaining client information 36

OCI 191
OCI native call programming 195
ON ERROR GOTO label 68
ON ERROR RESUME NEXT statement 69
ON ERROR statement 67
Oracle 203
Oracle connection 208
ORB (Object Request Broker) 7
ORB support 7
OS authentication 72

P
package files 44, 230
packaging 44
password parameter 145
performance 199
pool size 244

setting example 247
positioning ESB 3
process flow 214
programmable access control 76

using LotusScript 76
programming hints 125
programming model for ESB applications 81
programming using JSP 135
project browser 7
project deployment flow 230
project environment variables 249, 250
project priority 248
projects 44, 230
Public class MQAccessClass 211, 214
PUBLISH.lss 214
Published class 6, 48, 59

designing in a distributed environment 83
example 49

Published class object 31, 58, 97, 113
Published class UseMQLSXClass 211, 220

Q
Query Builder 8

linking with 203
queue manager

connection 216
releasing connection 219

R
RDB data browsing 8
282 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

receiving 213
receiving a message 218
receiving arrays with a Web client 126
receiving data 221
receiving only 213
relational database 175
releasing connection to queue manager 219
remote development support 7
result1.jsp 137
result2.jsp 138
RESUME statement 67, 68
reusing MQLSX class objects 222
rewriting function 153
running the application 134, 139
running the sample application 171
runtime environment 1, 6
Runtime error handling routine 33
Runtime errors 258
Runtime Monitor 7

S
sample program flow 159
saving a form 32
search processing 200
searching for data 187
security 69, 145
sending 213
sending a message 216
sending data 221
sending only 213
serialization 64
server application programming 43
server program 94
server side 224, 227
server side program 49
SERVER.lss 214
service context handle 197
session management 151
setting project priority 248
setting properties 241
setting security 145
setting the HTTP communication function 141
setting the pool size 244
SMIT 69
SsSharedStorage class 65

example 66
SsTimer class 86
starting a package automatically 239

starting a project 231, 238
starting the ESB IDE 19
state 81
state-full programming model 82
state-less model 82
static text creation 30
stopping modes 238

cold 238
force 238
warm 238

stopping projects 238
supported platforms 14
synchronizing Notes user and ESB user authentica-
tion 82
system environment variables 249, 250
System Manager 7
system requirements 14

T
table creation 27
tables 184
thread pooling function 6
thread pooling mechanism 244
time-outs 151
Timer 86
transaction processing 181, 207
transaction system 11
transaction systems 209
transferring array data 54
transferring user-defined data 56
transmitting data from ESB Runtime 53

U
updating data 188
UseMQLSX setup procedure 224
UseMQLSXClass class variable definition 220
UseMQLSXClass Published class 211
user ID parameter 145
user-defined data 56
user-defined exit routine 73
using the UseMQLSX sample 227

V
variable-length array data 55
VARIANT type array 57
Visual Basic 37
Visual Basic (VB) application 119
283

Visual SQL Statement Creation function 8

W
warm mode 238
Web applications 102
Web client 126
WebSphere 129
Windows NT version ESB Runtime 14
Windows version of Client Enabler 16
284 Developing e-business Applications Using Lotus Enterprise Solution Builder R3.0

© Copyright IBM Corp. 2000 285

IBM Redbooks review

Your feedback is valued by the Redbook authors. In particular we are interested in situations where a
Redbook "made the difference" in a task or problem you encountered. Using one of the following
methods, please review the Redbook, addressing value, subject matter, structure, depth and
quality as appropriate.

• Use the online Contact us review redbook form found at http://www.redbooks.ibm.com/
• Fax this form to: USA International Access Code + 1 914 432 8264
• Send your comments in an Internet note to redbook@us.ibm.com

Document Number
Redbook Title

SG24-5405-00
Developing e-business Applications Using Lotus Enterprise Solution
Builder R3.0

Review

What other subjects would you
like to see IBM Redbooks
address?

Please rate your overall
satisfaction:

O Very Good O Good O Average O Poor

Please identify yourself as
belonging to one of the
following groups:

O Customer O Business Partner O Solution Developer
O IBM, Lotus or Tivoli Employee
O None of the above

Your email address:
The data you provide here may
be used to provide you with
information from IBM or our
business partners about our
products, services or activities.

O Please do not use the information collected here for future
marketing or promotional contacts or other communications beyond
the scope of this transaction.

Questions about IBM’s privacy
policy?

The following link explains how we protect your personal information.
http://www.ibm.com/privacy/yourprivacy/

http://www.redbooks.ibm.com/contacts.html
http://www.redbooks.ibm.com/contacts.html
http://www.redbooks.ibm.com/contacts.html
http://www.ibm.com/privacy/yourprivacy/

Printed in the U.S.A.

SG24-5405-00

D
eveloping

e-business
A

pplications
U

sing
L

otus
E

nterprise
Solution

B
uilder

R
3.0

S
G

24-5405-00

®

	Contents
	Figures
	Tables
	Preface
	The team that wrote this redbook
	Comments welcome

	Chapter 1. Introduction
	1.1 Business environment
	1.2 Features of ESB
	1.3 Positioning ESB
	1.3.1 Domino Enterprise Connection Services: Data virtualization
	1.3.2 Lotus Enterprise Integrator: Data movement
	1.3.3 Lotus Enterprise Solution Builder: Complete customization
	1.3.4 Lotus Domino Connectors

	1.4 ESB functions
	1.4.1 Runtime environment
	1.4.2 Development environment

	Chapter 2. Architecture and configuration
	2.1 ESB architecture
	2.1.1 ESB Runtime
	2.1.2 Control between the client and ESB Runtime
	2.1.3 Client application programming interface
	2.1.4 Connection to backend data sources

	2.2 Supported platforms and system requirements
	2.2.1 Supported platforms
	2.2.2 Windows NT version ESB Runtime
	2.2.3 AIX version ESB Runtime
	2.2.4 Solaris version ESB Runtime
	2.2.5 ESB Developer
	2.2.6 Windows version of Client Enabler
	2.2.7 AIX version of Client Enabler

	Chapter 3. Getting started with ESB
	3.1 Lesson 1: Creating your first ESB program
	3.1.1 Starting the ESB IDE
	3.1.2 Editing the Initialize procedure
	3.1.3 Running and stopping the programs
	3.1.4 Saving the programs

	3.2 Lesson 2: Defining a Published class
	3.2.1 Class Creation tool
	3.2.2 Installing a member

	3.3 Lesson 3: Creating a client program
	3.3.1 Client Code Creation tool
	3.3.2 Running a program

	3.4 Lesson 4: Creating a client program using Notes LotusScript
	3.4.1 Creating a new client form
	3.4.2 Creating a form (for Notes R5)
	3.4.3 Creating a form (for Notes R4)
	3.4.4 Creating an event script
	3.4.5 Saving a form
	3.4.6 Running a program

	3.5 Lesson 5: Handling errors
	3.5.1 Editing a form (for Notes R5)
	3.5.2 Editing a form (for Notes R4)
	3.5.3 Editing an event script
	3.5.4 Running a program

	3.6 Lesson 6: Obtaining client information
	3.6.1 Editing a server program
	3.6.2 Running a program

	3.7 Lesson 7: Creating a client program using Visual Basic
	3.7.1 Creating a client program
	3.7.2 Running programs

	3.8 Lesson 8: The LSServer class
	3.8.1 Editing server programs
	3.8.2 Running a program

	Chapter 4. Server application programming
	4.1 ESB Runtime
	4.1.1 ESB Runtime development procedure

	4.2 Published class
	4.2.1 Example of the Published class
	4.2.2 Object initialization and deletion
	4.2.3 Transmitting data from ESB Runtime
	4.2.4 Transferring array data
	4.2.5 Transferring user-defined data

	4.3 Sharing data and resources between Published class objects
	4.3.1 ESB threads
	4.3.2 Global variables and Published classes
	4.3.3 LSServer class
	4.3.4 Global threads and serialization
	4.3.5 SsSharedStorage class

	4.4 Error handling
	4.4.1 ON ERROR statement and RESUME statement
	4.4.2 Runtime error handling when client program ended abnormally

	4.5 Security
	4.5.1 Authentication and access control
	4.5.2 Authentication when using DCOM
	4.5.3 Authentication when IIOP is used
	4.5.4 Anonymous authentication
	4.5.5 OS authentication
	4.5.6 Authentication using LDAP
	4.5.7 Authentication using a user-defined exit routine
	4.5.8 Access control
	4.5.9 Programmable access control using LotusScript
	4.5.10 Declarative access control using project environment variables
	4.5.11 Declarative access control using Notes database ACL

	4.6 Designing an ESB application
	4.6.1 Programming model for ESB applications
	4.6.2 Synchronizing Notes user and ESB user authentication
	4.6.3 Designing a Published class in a distributed environment
	4.6.4 ESB project design related hints

	4.7 Other topics
	4.7.1 Timer
	4.7.2 Calling the DLL function
	4.7.3 Obtaining access logs using the exit routine

	Chapter 5. Client application programming
	5.1 Overview
	5.1.1 Clients supported by ESB
	5.1.2 Client application creation flow
	5.1.3 The server program to be used

	5.2 Notes application
	5.2.1 Creating a client form
	5.2.2 Creating a Published class object
	5.2.3 Calling a procedure
	5.2.4 Displaying the result
	5.2.5 Error handling
	5.2.6 Deleting objects
	5.2.7 Summary

	5.3 Web applications
	5.3.1 Creating a client page
	5.3.2 Creating a Published class object
	5.3.3 Calling a procedure
	5.3.4 Displaying the results
	5.3.5 Error handling
	5.3.6 Deleting an object
	5.3.7 Summary

	5.4 VB application
	5.4.1 Creating a client screen view
	5.4.2 Creating a Published class object
	5.4.3 Calling a procedure
	5.4.4 Displaying the result
	5.4.5 Error handling
	5.4.6 Deleting an object
	5.4.7 Summary

	5.5 Programming hints
	5.5.1 Load distribution of the ESB program
	5.5.2 Internet Explorer applications
	5.5.3 Receiving arrays with a Web client
	5.5.4 Applications using multiple forms, pages, or screen views

	Chapter 6. Using WebSphere
	6.1 Overview
	6.1.1 Applet programming
	6.1.2 JSP programming

	6.2 Programming using ESB applets
	6.2.1 Application creation example
	6.2.2 Running the application

	6.3 Programming using JSP
	6.3.1 An example of application creation
	6.3.2 Running the application

	6.4 Setting the HTTP communication function
	6.4.1 Setting the ESB servlet
	6.4.2 Setting security
	6.4.3 Setting the session management

	6.5 Application creation hints

	Chapter 7. Accessing from and to Notes and Domino
	7.1 Outline
	7.1.1 ESB and Notes or Domino
	7.1.2 Prerequisites

	7.2 Connecting to Notes or Domino
	7.2.1 Flow of the sample program
	7.2.2 Preparation
	7.2.3 Creating a sample application

	7.3 Connecting from Notes or Domino
	7.4 Summary
	7.4.1 Entire code
	7.4.2 Running the sample application
	7.4.3 Application creation hints

	Chapter 8. Connecting to a relational database
	8.1 Overview
	8.1.1 Differences between using Domino Connectors with the LSX LC and other LSX, CLI, and OCI

	8.2 Domino Connectors and the LSX LC
	8.2.1 What a Domino Connectors are
	8.2.2 Development using Domino Connectors, Lotus Connector LSX

	8.3 CLI/ODBC and OCI
	8.3.1 CLI native call programming
	8.3.2 OCI native call programming

	8.4 Performance comparison
	8.4.1 Test environment
	8.4.2 Search processing comparison

	8.5 Linking with Query Builder
	8.5.1 Creating and using a source file by Code Generator
	8.5.2 Connection test
	8.5.3 Connection pooling
	8.5.4 Setting the transaction processing
	8.5.5 Setting for an Oracle connection

	Chapter 9. Accessing transaction systems
	9.1 Integration with mission-critical business applications using MQLSX
	9.1.1 What MQLSX is
	9.1.2 Usable platforms
	9.1.3 How to obtain MQLSX
	9.1.4 Prerequisites

	9.2 Examples of MQLSX
	9.2.1 Process flow
	9.2.2 Setup procedure
	9.2.3 Usage

	Chapter 10. Deploying ESB applications
	10.1 Outline
	10.1.1 Overall flow from deployment to operation
	10.1.2 Package files and projects

	10.2 Project deployment flow
	10.2.1 Starting the project
	10.2.2 Managing the deployment conditions
	10.2.3 Stopping and starting projects
	10.2.4 Exiting a project
	10.2.5 Automatically starting a package
	10.2.6 Starting the ESB Engine Service with a specific account

	10.3 Setting properties
	10.3.1 Settings pertaining to client threads
	10.3.2 Setting the pool size
	10.3.3 Setting project priority
	10.3.4 System environment and project environment variables
	10.3.5 Setting the client module automatic updating function

	Appendix A. FAQs
	A.1 Creating ESB applications
	A.1.1 Runtime errors
	A.1.2 Deploying an ESB application
	A.1.3 HTTP communication function
	A.1.4 Access to databases
	A.1.5 ESB and Notes or Domino
	A.1.6 Linking with a mission-critical application using MQ
	A.1.7 ESB license

	Appendix B. Special notices
	Appendix C. Related publications
	C.1 IBM Redbooks publications
	C.2 IBM Redbooks collections
	C.3 Other resources
	C.4 Referenced Web sites

	How to get IBM Redbooks
	IBM Redbooks fax order form

	List of abbreviations
	Index
	IBM Redbooks review

