
International Technical Support Organization

Examples Using NetView for AIX Version 4

December 1995

SG24-4515-00

International Technical Support Organization

Examples Using NetView for AIX Version 4

December 1995

SG24-4515-00

IBML

Take Note!

Before using this information and the product it supports, be sure to read the general information under
“Special Notices” on page xi.

First Edition (December 1995)

This edition applies to Version 4 Release 1 of the NetView for AIX feature of of IBM SystemView for AIX, Program
Number 5765-527 for use with RISC System/6000 AIX.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications
are not stocked at the address given below.

An ITSO Technical Bulletin Evaluation Form for reader ′s feedback appears facing Chapter 1. If the form has been
removed, comments may be addressed to:

IBM Corporation, International Technical Support Organization
Dept. HZ8D Building 678
P.O. Box 12195
Research Triangle Park, NC 27709-2195

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1995. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Abstract

This document is intended to provide the network and systems management
professional with details of the new features in NetView for AIX Version 4. It
illustrates these features by means of practical examples of how the functions in
NetView for AIX Version 4 can be used to address network and system
management challenges.

This document is intended to supplement the standard product documentation
regarding NetView for AIX and its related family of products. Although the focus
of this document is on an individual feature of SystemView for AIX, it is intended
to contribute to the growing body of information that shows how NetView for AIX
participates in a SystemView strategy.

This document is intended for personnel who will be administrating or
customizing NetView for AIX. A general knowledge of NetView for AIX and
TCP/IP network management is assumed. Some of the examples make use of C
language programming, and the reader may need some knowledge of
programming in an AIX environment to fully benefit from them.

(285 pages)

 Copyright IBM Corp. 1995 iii

iv NetView for AIX V4 Examples

Contents

Abstract . i i i

Special Notices . xi

Preface . xii i
How This Document is Organized . xiii
Related Publications . xiv
International Technical Support Organization Publications xiv
ITSO Redbooks on the World Wide Web (WWW) xiv
Acknowledgments . xv

Chapter 1. Introduction . 1
1.1 What′s New in NetView for AIX Version 4? 1

1.1.1 General . 1
1.1.2 Client/Server . 1
1.1.3 GUI Improvements . 2
1.1.4 Manager Takeover Improvements . 2
1.1.5 Security Implementation . 3
1.1.6 Event Rulesets . 4
1.1.7 Event Display Enhancements . 4
1.1.8 Object Collection Facility . 4
1.1.9 Agent Policy Manager . 5
1.1.10 Intention to Support SNMP Version 2 5

Chapter 2. Client/Server Support in NetView for AIX 7
2.1 NetView for AIX Internal Structure . 7

2.1.1 Components of NetView for AIX V3 . 8
2.1.2 Components of NetView for AIX V4 . 10
2.1.3 Map Database Options . 12

2.2 Performance Considerations . 14
2.2.1 How Much is Enough? . 14
2.2.2 Testing Memory Utilization with Client/Server 15
2.2.3 Testing Network Utilization with Client/Server 17

2.3 API Considerations with Client/Server Concept 20
2.3.1 The wteuiap6 Sample . 20
2.3.2 Updating wteuiap6 for Client/Server . 21
2.3.3 Installation . 22
2.3.4 Configurations . 22

Chapter 3. Security . 25
3.1 Why Network Management Security? . 25
3.2 Security in NetView for AIX Version 4 . 25
3.3 Terminology . 26
3.4 How to Create a Trusted Environment . 26
3.5 Login Flow . 34
3.6 Major Customization of Menu Bar Options 37
3.7 Shift Takeover . 37
3.8 Auditing . 38

3.8.1 Configuring the Audit Options . 38
3.8.2 Viewing the Audit Logs . 38

3.9 Integrating Your Own Applications with Security 41

 Copyright IBM Corp. 1995 v

3.9.1 Determine What You Need to Secure 42
3.9.2 Build an SRF File . 42
3.9.3 Modify the ARF . 43
3.9.4 Code New API Calls . 43
3.9.5 A Sample Integration . 43

3.10 Client/Server Considerations . 48
3.11 Multiple Servers Environment . 50
3.12 NetView Service Point Considerations . 51

Chapter 4. The Collection Facility . 53
4.1 Summary of NetView for AIX V4 Object Collection Facility 53
4.2 NetView for AIX V4 Collection Types . 53
4.3 Using the Collection Editor . 54
4.4 Using the EUI to Create a New Collection 57

4.4.1 Creating a Subnet Collection . 59
4.4.2 Creating a Node List Collection . 61
4.4.3 Creating an Attribute Collection . 63

4.5 The Collection APIs . 67
4.5.1 The Grammar of the Collection Rules 68

4.6 Practical Examples . 69
4.6.1 Makefile . 69
4.6.2 Using the APIs to Create a Subnet Collection 69
4.6.3 Using the APIs to Delete a Collection 71
4.6.4 Using the APIs to Execute a Command on All Objects in a Collection 73

4.7 The wtcoll Sample Program . 76

Chapter 5. Introducing NetView for AIX Event Rulesets 79
5.1 Events in NetView for AIX . 79

5.1.1 A Review of SNMP Traps . 79
5.1.2 Event Flow in NetView for AIX . 80
5.1.3 What Are NetView for AIX Version 4 Event Stream Enhancements? . 82

Chapter 6. Examples of NetView for AIX Rulesets 85
6.1 Understanding the Ruleset Editor . 85
6.2 Examples Using the Ruleset Editor . 91

6.2.1 Clearing Outstanding Events via Correlation 92
6.2.2 Suppressing Events by Setting Thresholds 101
6.2.3 Using Thresholds in Combination with Correlation 108
6.2.4 Automated Paging and E-Mail Notifications 112
6.2.5 Using Traps to Override Status Color and Severity 118
6.2.6 Setting Correlation States . 124
6.2.7 Setting Database Fields . 133
6.2.8 Setting Global Variables . 140
6.2.9 Setting MIB Variables . 147
6.2.10 Using Rulesets to Supplement Event Capabilities of Another

Manager . 151
6.2.11 Suppressing Events for Interfaces That Are Administratively Down 162

6.3 Combining ESE Rulesets . 166
6.3.1 Operation of the Include Function . 167
6.3.2 Conflicts when Combining Rulesets 169

6.4 Saving the Dynamic Workspace Environment 170

Chapter 7. Using the Collection Facility with Event Rulesets 171
7.1.1 Receiving Only Events from One Collection 171
7.1.2 Manipulating Event Severity on the Basis of Node Importance . . . 175

vi NetView for AIX V4 Examples

7.1.3 Suppressing Subsidiary Events When a Router Is Down 181
7.1.4 The wtdepend Sample Application . 187

Chapter 8. Implementation Recommendations for Rulesets 195
8.1 Objectives of Event Processing . 195
8.2 Tackling the Event Stream . 195

8.2.1 Know the Enemy . 196

Chapter 9. Agent Policy Manager (APM) . 201
9.1 Systems Monitor Agents . 201
9.2 Administering Systems Monitor . 202
9.3 How APM Helps . 204
9.4 An APM Example . 204

9.4.1 Results from APM Monitors . 213
9.5 Activating APM . 214

Chapter 10. NetView for AIX Open Topology 215
10.1 Introduction . 215
10.2 Open Topology Components . 216
10.3 Terms and Concepts . 218

10.3.1 Specifying Icons when Using Open Topology 220
10.4 Network Discovery with Open Topology 221
10.5 Open Topology Service Access Points 222

10.5.1 The Discovery Process . 222
10.5.2 Open Topology Invocations . 223
10.5.3 Using Open Topology Correlation . 224

10.6 The Open Topology API . 225
10.6.1 Elements of the Open Topology API 226

10.7 Open Topology Samples . 226
10.7.1 Worked Example Using Open Topology Sample Code 226

Chapter 11. Report Generation for NetView for AIX 241
11.1.1 Steps to Generate a Report For SNMPOutPackets 241
11.1.2 Generating reports from the NetView for AIX Version 4 EUI 243
11.1.3 Generating the Report Script for a Graphical Report 243

Appendix A. How to Obtain the Samples in this Book 257

Appendix B. C Code for the wtcoll Sample Program 259

Appendix C. C Code for the wtdepend_list Sample Program 267

Appendix D. C Code for the wtotapi1 Sample Program 271

Index . 285

Contents vii

viii NetView for AIX V4 Examples

Figures

 1. Components of NetView for AIX Pre-Client/Server 8
 2. Components of NetView for AIX Client/Server 11
 3. Defining Client Configuration Options . 13
 4. Map Selection List . 14
 5. Comparing Memory Utilization in Client/Server Mode 16
 6. Network Utilization for ″Typical″ User Script 18
 7. Network Utilization for EUI Startup . 19
 8. Components of wteuiap6 . 20
 9. Wtmenu6 Status . 23
10. NetView Security Administration Main Panel 28
11. Copy Group Panel . 29
12. Add/Change Group Security Registration Panel 29
13. List of SRFs . 30
14. Add/Change Group Security Registration 31
15. Add User Panel . 32
16. Global Settings Main Panel . 33
17. NetView for AIX Version 4 Login Panel . 34
18. Boring NetView for AIX Version 4 Main Window for User lluser 35
19. Audit Log Main Panel . 39
20. Displaying Audit Log Entries . 40
21. Set Audit View Criteria . 41
22. Wteuiap4 Readme File . 44
23. Wteuiap4 Registration File . 44
24. Wteuiap4 SRF File . 44
25. Security Administration Panel with wteuiap4.srf 45
26. Selecting Group and SRF to Modify . 46
27. Defining Access Permissions for the Oper Group 46
28. NetView for AIX Version 4 Root Panel for Users in Group Oper 47
29. Example of nvs_isClientAuthorized API Call 47
30. Example Using the nvs_GetClientPerms API Call 48
31. Example Using the nvs_Audit API Call . 48
32. Relationships Among the Security Daemons 49
33. Security Distribution Panel . 50
34. Collection Editor Dialog Box . 55
35. Collection in Dialog Format . 56
36. Collection in Text Format . 57
37. Adding a New Collection Using the Collection Editor 58
38. Creating the Subnet Collection . 59
39. Calculating a Subnet Based on an IP Address 60
40. Result Obtained for the Subnet Using Test Button 61
41. Objects Selected on Map . 62
42. List of Objects in the Modify Definition Dialog Box 63
43. Attribute Format for Modify Definition Dialog Box 64
44. Collection of All Hubs . 65
45. Collection of All Hubs and Workstations 66
46. Collection of All Hubs and Workstations Submap 67
47. Makefile for the wtcoll Sample . 69
48. Example of Adding a Collection Rule Using the API 70
49. Nodes in Collection myITSOsubnet . 71
50. Example of Removing a Collection Using the API 72
51. Result of Deleting a Collection . 73

 Copyright IBM Corp. 1995 ix

52. Example of Listing the Resources in a Collection Using the API 74
53. Shell Script that Invokes the wtcoll4 Program 75
54. Nodes in Collection myITSOsubnet and Trap Received in rs60002 76
55. SNMP Trap Structure . 80
56. NetView for AIX Event Processing Flow . 81
57. Components of the Event Stream Enhancements 83
58. The Ruleset Editor′s Initial Appearance . 86
59. Defining Default Event Behavior . 89
60. Flowchart of Correlation Example . 92
61. Identifying the Node Down Event . 93
62. Adding the Trap Settings Node for the Node Up Event 94
63. Pass on Match Attributes Dialog . 95
64. After Adding the Pass on Match Node . 96
65. Adding the Resolve and Block Event Display Nodes 97
66. The Completed Correlation Example Ruleset 98
67. The Node Down Event Arrives . 99
68. The Node Down Event Disappears After It Is Resolved 100
69. How the Threshold/Rearm Function Works 101
70. Threshold/Rearm with Erratic Data . 102
71. Flowchart of Threshold Example . 103
72. Basic Ruleset Using the Threshold Function 103
73. Configuring the Threshold Event . 104
74. Adding the Thresholds Node . 105
75. Adding the Action Node . 106
76. Result of a CPU Load Trap Passing through the Threshold Ruleset . . 107
77. Flowchart of Ruleset that Combines Thresholds with Correlation . . . 108
78. Ruleset that Combines Thresholds with Correlation 109
79. Configuring the Pass on Match Dialog 110
80. Configuring the Action Node for Combined Thresholds 111
81. Flowchart of Automated Notification Example 112
82. Complete Ruleset of Automated Notification Example 113
83. Our TTY Settings . 113
84. Our /usr/OV/conf/nvpager.config File . 114
85. Identifying a Node Down Trap for a Particular Router 115
86. Configuring Pager Dialogs . 116
87. Adding Action for Sending Automatic E-Mail 117
88. Flowchart of Override Example . 118
89. Ruleset that Overrides Status and Severity 119
90. Identifying The Systems Monitor ThresholdArm Trap 120
91. Configuring the Query Database Field Dialog 121
92. Setting the Override Function to Change Status and Severity 122
93. Results of Status and Severity Overrides 123
94. Flowchart of Set State Example . 125
95. Event Configuration Window . 126
96. Editing Event Attributes . 127
97. Complete Ruleset for the Set State Example 128
98. Adding the Event Attributes Nodes . 128
99. Adding the Set State Nodes . 129
100. Checking for Repeated Failures . 130
101. The Workspace after Application Event Stream 131
102. The Object Attribute Window . 132
103. Flowchart of Setting Database Fields Example 133
104. C Program to Add A Field to the Object Database 134
105. Results of ovobjprint Command . 135
106. Rule that Sets an Object Database Field 136

x NetView for AIX V4 Examples

107. Identifying NetFinity Trap Types . 137
108. Configuring the Set Database Field Dialog 138
109. Overriding the Severity of NetFinity Traps 139
110. NetFinity Event and Corresponding Database Field Setting 139
111. Flowchart of Setting Global Variables Example 140
112. Completed Ruleset of Setting Global Variables Example 141
113. Adding the Trap Settings Node for Backup Started 142
114. Adding the Set Global Variable Node . 143
115. Adding the Query Global Variable Node 144
116. Workspace Showing Threshold and Backup Process Events 146
117. Flowchart of Set MIB Variable Example 147
118. Rule that Shortens Polling Time when Threshold is in Breached State 148
119. Using the MIB Browser to Aid with Set MIB Variable Configuration . . 149
120. Configuring the MIB Variable Dialogs . 150
121. Diagram Showing Correlation of NetFinity Traps 151
122. Configuring NetFinity to Forward all Alerts through TCP/IP 152
123. Defining the High Disk Load NetFinity Alert 153
124. Defining the Low CPU NetFinity Alert . 153
125. Defining the Low Adapter Load NetFinity Alert 154
126. Converting an Alert by Generating a New One 155
127. An Alert before Conversion . 156
128. An Alert after Conversion . 156
129. Completed Ruleset for Supplementing Other Managers 157
130. Adding the Event Attributes Nodes . 158
131. Adding the Correlation Attributes Nodes 159
132. Adding the Action Node . 160
133. Net_alert Shell . 160
134. The .netrc File . 160
135. Remotely Executed Alert Received at NetFinity 161
136. Flow Diagram for Check Administrative Status Example 162
137. Completed Ruleset for Check Administrative Status Example 163
138. chk_admin_stat Shell Script . 164
139. get_ifnumber.c Program to Extract Interface Index Number 164
140. Adding the Inline Action Node . 166
141. Combined Ruleset combined.rs . 168
142. Example of Conflicting Override Nodes 169
143. The Complete Ruleset . 172
144. Adding the Inline Action Nodes . 173
145. The myColl Collection . 174
146. The Filtered myColl Workspace . 175
147. Flowchart of Manipulating Trap Severity Example 176
148. Creating the Servers Collection . 177
149. Creating the Clients Collection . 178
150. The Complete Ruleset . 179
151. Detecting the System Monitor Threshold Arm Trap 179
152. Using Inline Action Nodes to Check for Collection Membership 180
153. Event Display With Override . 181
154. The Dependent Nodes Problem . 182
155. The Complete Dependent Node Suppression Ruleset 183
156. Adding the Event Attributes Node . 184
157. Adding the Trap Settings Nodes . 185
158. Adding the Inline Action Node . 186
159. Detecting a Node Down Event . 187
160. wtdepend: Defining Interface Dependencies 188
161. wtdepend: A Dependent Subnet Collection 189

Figures xi

162. The wtdepend.rs Ruleset . 190
163. The wtdepdisp.rs Ruleset . 192
164. Creating the Dynamic Workspace for the wtdepend Sample 193
165. The make_summary_log Ruleset . 197
166. logsort Shell Script for Analyzing the Ruleset-Created Trap Log 197
167. Shell Script for Analyzing the Ruleset-Created Trap Log 199
168. Hierarchy of Systems Monitor Agents . 203
169. The APM Configuration Panel . 205
170. Configuration Panel for a Threshold Monitor 206
171. Using the MIB Browser to Identify MIB Object IDs 207
172. Defining Threshold Actions . 208
173. Assigning a Collection to the Threshold Monitor 209
174. Threshold Entry Defined but not yet Distributed 210
175. Result of a Failed Distribution Attempt 210
176. Listing the Distribution Status . 211
177. Defining Community Name and Status Polling Interval 212
178. Successful Distribution of the Threshold Example 212
179. Result of Inoperative SNA Subsystem Being Detected 213
180. Symbol Representing a Threshold Monitor 214
181. Components of IP and Open Topology 217
182. Some Elements of the Open Topology Model 220
183. The Discovery Process and the Open Topology MIB 221
184. SNA and Physical Network Topologies with No Correlation 223
185. LNM/6000 and SNA/6000 with Correlation 225
186. Command File nfsmap Using wtotapi1 Sample Code 228
187. The Root Submap as Updated by this Example 229
188. The NFS Server Submap . 230
189. The Mounted File System Connections 231
190. Commands to Add Vertices to NFS Submaps 232
191. rs60002 Submap, Showing Vertex Symbols 233
192. Systems Monitor Threshold Table Definition for NFS Monitoring 235
193. Systems Monitor Threshold Action Definition 236
194. Shell Script set_down - Send Change Vertex Status Trap 236
195. File Systems Submap with Status Change 237
196. Adding SAP Entries Correlating NFS and IP 238
197. Merged Lowest-Layer Submap Due to SAP Correlation 238
198. Protocol Switching Option . 239
199. Protocol Switching Panel . 239
200. MIB Data Collection Screen . 241
201. MIB Data Collection, Add Collection for snmpOutPkt 243
202. Script for Report snmpOutPkts of a Selected Node 244
203. Run Report File Window . 245
204. Result of the snmpOutPkt Report . 246
205. Script /usr/OV/reports/C/snmpOutTotal 247
206. Result of the snmpOutTotal Report . 248
207. Partial Ascii Output of Default snmpColDump 249
208. snmpColDump man Page (August 1995) 250
209. Readme File for the Samples Package 258
210. Sample Program Using the Collection API, wtcoll.c 259
211. Sample Program to Maintain a Collection of Collections,

wtdepend_list.c . 267
212. wtotapi1 Usage . 271
213. wtotapi1 Help Message . 271
214. wtotapi1.c Source Code (Including Debug Information) 272

xii NetView for AIX V4 Examples

Tables

 1. Test Script for Network Data Collection . 17
 2. Summary of Login/Logout Flow . 37
 3. Collection Facility API Summary . 68
 4. Ruleset Editor Templates . 86
 5. Summary of the Ruleset Examples . 91

 Copyright IBM Corp. 1995 xiii

xiv NetView for AIX V4 Examples

Special Notices

This publication is intended to help network and systems management
professionals to use NetView for AIX Version 4.1. The information in this
publication is not intended as the specification of any programming interfaces
that are provided by NetView for AIX. See the PUBLICATIONS section of the IBM
Programming Announcement for NetView for AIX for more information about
what publications are considered to be product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not intended
to state or imply that only IBM′s product, program, or service may be used. Any
functionally equivalent program that does not infringe any of IBM′s intellectual
property rights may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, NY 10594 USA.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The use of this information or the
implementation of any of these techniques is a customer responsibility and
depends on the customer′s ability to evaluate and integrate them into the
customer ′s operational environment. While each item may have been reviewed
by IBM for accuracy in a specific situation, there is no guarantee that the same
or similar results will be obtained elsewhere. Customers attempting to adapt
these techniques to their own environments do so at their own risk.

Any performance data contained in this document was determined in a
controlled environment, and therefore, the results that may be obtained in other
operating environments may vary significantly. Users of this document should
verify the applicable data for their specific environment.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

C-bus is a trademark of Corollary, Inc.

Windows is a trademark of Microsoft Corporation.

AIX DatagLANce
DB2 IBM
NetView OS/2
RISC System/6000 RMONitor
SystemView System/390
Trouble Ticket

 Copyright IBM Corp. 1995 xv

PC Direct is a trademark of Ziff Communications Company and is
used by IBM Corporation under license.

UNIX is a registered trademark in the United States and other
countries licensed exclusively through X/Open Company Limited.

Other trademarks are trademarks of their respective companies.

Microsoft Microsoft Corporation
X/Open X/Open Company Limited
X-Windows Massachusetts Institute of Technology
NFS Sun Microsystems Incorporated
HP Hewlett-Packard Company
Sun Sun Microsystems, Incorporated
NCR NCR Corporation
APM Astek International Limited
IPX Novell, Incorporated
DECnet Digital Equipment Corporation
Solaris Sun Microsystems, Incorporated
Moti f Open Software Foundation, Incorporated

xvi NetView for AIX V4 Examples

Preface

This document is intended to provide the network and systems management
professional with details of the new features in NetView for AIX Version 4. It
illustrates these features by means of practical examples of how the functions in
NetView for AIX Version 4 can be used to to address network and system
management challenges.

This document is intended to supplement the standard product documentation
regarding NetView for AIX and its related family of products. Although the focus
of this document is on an individual feature of SystemView for AIX, it is intended
to contribute to the growing body of information that shows how NetView for AIX
participates in a SystemView strategy.

How This Document is Organized
The document is organized as follows:

• Chapter 1, “Introduction”

This chapter provides overall information regarding the project involved in
creating this document and summarizes the enhancements to NetView for
AIX in Version 4.

• Chapter 2, “Client/Server Support in NetView for AIX”

Describes the elements of the Client/Server feature of NetView for AIX
Version 4 and shows some examples of the performance impact of it. It also
discusses aspects of converting a program that uses the NetView for AIX
APIs to the Client/Server environment.

• Chapter 3, “Security”

Describes the security feature of NetView for AIX Version 4 and shows
examples of how to implement and customize it.

• Chapter 4, “The Collection Facility”

Describes how to use the Collection Facility to organize network resources
into logical groups. It also shows examples of use of the Collection Facility
APIs.

• Chapter 5, “Introducing NetView for AIX Event Rulesets,” Chapter 6,
“Examples of NetView for AIX Rulesets” and Chapter 7, “Using the
Collection Facility with Event Rulesets”

These chapters describe what Event Rulesets are, how they are invoked and
then provide a number of practical ruleset examples.

• Chapter 9, “Agent Policy Manager (APM)”

Summarizes the capabilities of the Agent Policy Manager feature by means
of worked examples.

• Chapter 10, “NetView for AIX Open Topology”

Describes the Open Topology API and illustrates its use with a sample
program.

• The appendices includes instructions on how to obtain the code samples
from this book and listings of some of the sample programs.

 Copyright IBM Corp. 1995 xvii

Related Publications
The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this document.

• NetView for AIX Administrator′s Guide, Version 4, SC31-8168-00

• NetView for AIX Administrator′s Reference, Version 4, SC31-8169-00

• NetView for AIX Diagnosis Guide, Version 4, SC31-8162

• NetView for AIX Programmer′s Guide, Version 4, SC31-8164

• NetView for AIX Programmer′s Reference, Version 4, SC31-8165

• NetView for AIX User′s Guide for Beginners, Version 4, SC31-8158-00

All of these publications are also provided in Dynatext (browsable) format if you
install the nv6000.books component of NetView for AIX.

International Technical Support Organization Publications
• Examples of Using Netview for AIX (V3), GG24-4327

• IBM Systems Monitor Anatomy of a Smart Agent, GG24-4398

A complete list of International Technical Support Organization publications,
known as redbooks, with a brief description of each, may be found in:

International Technical Support Organization Bibliography of Redbooks,
GG24-3070.

To get a catalog of ITSO redbooks, VNET users may type:

TOOLS SENDTO WTSCPOK TOOLS REDBOOKS GET REDBOOKS CATALOG

A listing of all redbooks, sorted by category, may also be found on MKTTOOLS
as ITSOCAT TXT. This package is updated monthly.

How to Order ITSO Redbooks

IBM employees in the USA may order ITSO books and CD-ROMs using
PUBORDER. Customers in the USA may order by calling 1-800-879-2755 or by
faxing 1-800-445-9269. Almost all major credit cards are accepted. Outside
the USA, customers should contact their local IBM office.

Customers may order hardcopy ITSO books individually or in customized
sets, called BOFs, which relate to specific functions of interest. IBM
employees and customers may also order ITSO books in online format on
CD-ROM collections, which contain redbooks on a variety of products.

ITSO Redbooks on the World Wide Web (WWW)
Internet users may find information about redbooks on the ITSO World Wide Web
home page. To access the ITSO Web pages, point your Web browser to the
following URL:

http://www.redbooks.ibm.com/redbooks

xviii NetView for AIX V4 Examples

IBM employees may access LIST3820s of redbooks as well. Point your web
browser to the IBM Redbooks home page:

http://w3.itsc.pok.ibm.com/redbooks/redbooks.html

Acknowledgments
The authors of this document are:

This advisors for this document are:

Dave Shogren and Rob Macgregor
International Technical Support Organization, Raleigh Center

This publication is the result of residencies conducted at the International
Technical Support Organization, Raleigh Center.

Thanks to the following people for the invaluable advice and guidance provided
in the production of this document:

Barry Nusbaum
David Boone
International Technical Support Organization, Raleigh Center

Martha Crisson
Ken Chambers
Judith Dietz
Heather Kreger
Terry Simpson
Lee Cook
Cristina Zabeu
Lynnie Tierney
Pam Buckoski
Rich Hall
Dave Legrys
John Harmer
and the entire NetView for AIX development group, IBM Raleigh

Many members of Information Development, IBM Raleigh

Massimo Carnevali IBM Italy
Luigi Casagrande IBM Italy
Randy Craig IBM US (NSD Raleigh)
Paul Fearn IBM UK
Cristiane Petril lo Hilkner IBM Brazil (Sumare)
Mark Hodge IBM UK
Sergio Costa Lage IBM Brazil (Sumare)
Blaz Mertel j IBM Slovenia

Preface xix

Request for Feedback

Readers of this document are encouraged to feed back any information or
comments regarding any of the material in this document. Please send your
comments to:

Dave Shogren or Rob Macgregor
ITSO-Raleigh
VNET: SHOGREN at WTSCPOK or MCGREGOR at WTSCPOK

 or: IBM International Technical Support Organization
Dept. HZ8D/B678/D100
1001 Winstead Drive
Cary, N.C. 27513

INTERNET: shogren@vnet.ibm.com
robmacg@vnet.ibm.com

xx NetView for AIX V4 Examples

Chapter 1. Introduction

NetView for AIX is the Network Operations Management feature of SystemView
for AIX. NetView for AIX is primarily an SNMP-based management application.
However it also provides platform functions that are used by many other
management applications. The platform facilities that NetView for AIX provides
may be summarized as follows:

Network mapping NetView for AIX provides an extensive set of APIs to allow
other applications to use its topology display capabilities.

Menu registration Applications can add functions to the NetView for AIX menus.
Such applications do not necessarily also make use of the
network mapping APIs (although many do).

Event handling NetView for AIX provides a standardized facility for
processing and displaying event messages, based on SNMP
traps.

Non-IP topology The open topology API simplifies the integration of other
network topologies along with the IP views.

Communications Applications can also gain access to SNMP and CMOT
protocols using APIs provided by NetView for AIX.

In Version 4, many enhancements have been made to NetView for AIX, affecting
almost every aspect of its capabilities and use. In this book we describe
examples which illustrate or exploit some of these enhancements, developed
during projects at the ITSO-Raleigh center. The time available precluded us
from covering all of the new features in equal depth. In this chapter, therefore,
we will briefly introduce the enhancements before going on describe the detailed
examples.

1.1 What ′s New in NetView for AIX Version 4?
The following sections summarize the new features in NetView for AIX Version 4.

1.1.1 General
NetView for AIX Version 4 runs on either AIX Version 3.2.5 or 4.1.3 (or higher).
When running on a Version 4.1.3 system it is compatible with the Common
Desktop Environment (CDE).

NetView for AIX Version 4 is fully National Language Support (NLS)- and
double-byte character set (DBCS)-enabled. It is available translated into a
number of languages, including Japanese and simplified Chinese.

1.1.2 Client/Server
The client/server support as implemented in NetView for AIX Version 4 provides
the ability to distribute the graphical user interface (GUI) and the processes that
support it to other RISC System/6000 AIX systems.

This has the effect of reducing load and resource demand on the server system
and on the network between the server and the GUI. Where possible,
application programming interfaces (APIs) are unchanged by the client/server
implementation, but there may be some impact on applications, because

 Copyright IBM Corp. 1995 1

previously they only had to be concerned with running on a single system. Such
applications can run exactly as before, but it may be better to re-design them to
take full advantage of the client/server environment.

We describe the details of the client/server implementation and some of its
implications in Chapter 2, “Client/Server Support in NetView for AIX” on page 7.

1.1.3 GUI Improvements
The graphical user interface (GUI) of NetView for AIX Version 4 retains the same
general appearance as the previous releases. However, there have been
several small enhancements made to improve usability, as follows:

Navigation Tree and View Stack Enhancement: The NetView for AIX network
mapping capability differs from many other similar products in that it attempts to
minimize the number of windows displayed at any one time. It does this by
overlaying the existing subnet display when you double-click on a symbol to
open the lower-level submap. This means that you may have many submaps
open, but only have one or two of them displayed. The navigation tree and view
stack are tools that allow you to easily move between open submaps. The
navigation tree shows you all the open submaps and the parent-child
relationships between them. The view stack shows you the parentage of the
submap you are currently viewing.

Logically, each submap has one parent object. That is, when you double-click
on a symbol that represents an object, the child submap of that object is opened.
However, prior to Version 4, the parent of a submap was not its parent object,
but the symbol representing that object. This had an unfortunate effect if an
object had symbols on multiple submaps, since it meant that when you
double-clicked on the symbol, the submap containing the parent of the new
submap that you saw would not necessarily be the submap that you had just
come from. In Version 4 the navigational relationships are preserved correctly.

Enhancements to Context Menus and Tool Palette: Three new functions allow
an application to dynamically add menu entries to the object menu for a specific
object, or to the tool palette. The function calls are OVwAddObjMenuItem,
OVwAddObjMenuItemFunction and OVwAddToolPalItem. This new capability is
used by the MIB Application Builder to dynamically add new monitoring
applications to context menus.

There is also a new flag for tool palette registration entries that allows you to
specify the order in which items appear.

Print Tool Enhancement: The print tool gives you the ability to print an image of
a selected window. This tool can now be used with a color postscript printer, if
you wish.

1.1.4 Manager Takeover Improvements
Manager takeover is a NetView for AIX function that allows you to subdivide
management of the network among two or more systems. Manager takeover is
not a full peer-to-peer communication system between managers, but rather a
way of allowing one NetView for AIX to provide backup for another. Network
container objects (such as IP subnetworks and segments) are associated with a
primary and a fallback NetView for AIX. Both the primary and the fallback
system have to discover the complete network, but the fallback system will have

2 NetView for AIX V4 Examples

the objects in an unmanaged state. That is, it will not poll them. The fallback
system also polls the primary system to check that it is available and, if it is not,
NetView for AIX asks the user whether to manage the primary manager′s
resources.

In NetView for AIX Version 4, several enhancements have been made to the way
in which this process is implemented, as follows:

• Instead of monitoring to see if the whole of the system on which the primary
manager is running is up, NetView for AIX now monitors an SNMP MIB table,
which reports the status of the NetView for AIX daemons. There is a new
SNMP subagent daemon, mgragentd, which provides this MIB table.

• There is a new submap that shows the NetView for AIX managers discovered
in the network and shows their status.

• When the fallback NetView for AIX detects that the primary NetView for AIX
has failed, it pops up a message asking whether the user wants to manage
all the affected nodes. If the user clicks on OK , Version 3 would open
submaps for all the affected nodes. With Version 4 the nodes are managed
without opening submaps.

• When the primary NetView for AIX returns, another pop-up asks whether the
resources should be unmanaged again. In Version 3 the user had to close
all submaps to achieve this, but in Version 4 there is a Close All button to
make this more convenient.

We do not cover manager takeover in more detail in this book, but you will find a
full description of the Version 3 function in Examples Using NetView for AIX,
GG24-4327.

1.1.5 Security Implementation
NetView for AIX Version 4 provides new security features that enable the
network administrator to keep under control who is going to use the product and
the capabilities of each user.

The facilities provided include the following:

• User authentication

• Controlled access to all NetView for AIX Version 4 items:

Menu bar

Context aenu

Tool palette

Command line commands

• Auditing

• Customization

• Integration of user-written programs

We describe the security feature in detail in Chapter 3, “Security” on page 25,
including examples of how to configure it for your own use.

Chapter 1. Introduction 3

1.1.6 Event Rulesets
The processing of events in NetView for AIX is completely changed in Version 4,
by the introduction of event rulesets. These provide the following capabilities:

• Correlation between different events, or the ability to treat two related events
as one trigger

• Read and write access to additional information, external to the event stream
itself (for example, the object database, MIB data and global variables)

• An override capability so that event severity and node status may be
dynamically modified

• For all of these features, the ability to trigger on and have access to any of
the information carried within the event

We describe the event stream enhancements in Chapter 5, “Introducing NetView
for AIX Event Rulesets” on page 79. We also show a large number of ruleset
examples in Chapter 6, “Examples of NetView for AIX Rulesets” on page 85 and
Chapter 7, “Using the Collection Facility with Event Rulesets” on page 171.

1.1.7 Event Display Enhancements
There are several changes to the event display application, nvevents, in NetView
for AIX Version 4, as follows:

• Integration of event rulesets. Correlation and filtering can now be done
using ruleset processing. The filtering capability of Version 3 is still
supported, but it has been functionally superseded by rulesets.

• Support for the client/server implementation. The event display application,
nvevents, can now run on distributed client systems. This is achieved by
means of a new daemon, nvserverd, with which each copy of nvevents
establishes a socket connection. The nvserverd daemon is then responsible
for distributing events as they arrive.

• Synchronization between different users. Prior to Version 4, any actions that
a user made against events in an nvevents workspace were not seen by
other users. Specifically this applied to adding notes or clearing events from
the display. With Version 4 these changes can be broadcasted to all other
NetView for AIX users. In addition, a user can make a severity or category
change to an event, and it will also be reflected in all users′ displays.

• Color-coded card tabs. The card format event display now has a colored tab
on the top of which indicates the severity of the event. The mapping of
colors to severity is controlled by X-Windows resources. At the time of
writing, the list format of the event display did not have color coding, but it
was a planned enhancement.

1.1.8 Object Collection Facility
The object collection facility as implemented in NetView for AIX Version 4
provides important enhancements to the organization of network management.
Collections can be created of nodes with similar characteristics, such as
hardware, network address or object database information.

There are two tools provided with the object collection facility: the graphical
user interface (GUI) and the collection APIs. The first supports all functions
needed by the user to create, test, modify, delete any collection. The second
one is helpful in implementing applications that use collections features.

4 NetView for AIX V4 Examples

We describe the collection facility in detail in Chapter 4, “The Collection Facility”
on page 53, including several examples of how to create collections and sample
code that uses the API.

1.1.9 Agent Policy Manager
The agent policy manager is a new feature of NetView for AIX Version 4 which
simplifies the configuration and management of Systems Monitor agents. We
describe the facility in more detail in Chapter 9, “Agent Policy Manager (APM)”
on page 201.

1.1.10 Intention to Support SNMP Version 2
As part of the announcement of NetView for AIX Version 4, a statement of
direction was made that SNMPv2 will be supported in the near future. The main
reason for the delay of this support is the unfortunate confusion over the security
aspects of the new SNMP Version 2 standards.

NetView for AIX Version 4 will use a dual stack approach, providing a WINSNMP
API implementation to allow applications to have transparent access to SNMP
Version 1 and Version 2 agents, while at the same time preserving the current
OVSNMP API.

Chapter 1. Introduction 5

6 NetView for AIX V4 Examples

Chapter 2. Client/Server Support in NetView for AIX

From the very first version, NetView for AIX has been designed to permit
multiple concurrent users. Prior to Version 4 this support was achieved by each
additional user establishing an X-Windows session to the NetView for AIX
machine. Internally, NetView for AIX consists of a number of background and
foreground processes. When additional X-Windows users are added some of
those processes are replicated. We can therefore divide the NetView for AIX
processes into two categories, user-specific (that is, related to a single end user
interface) and common services (that is, providing functions used by all users).

As the NetView for AIX configuration grows, it becomes desirable to distribute
the functions across more than one machine. One approach to this was
implemented in NetView for AIX Version 3 and Systems Monitor for AIX Version
2. Systems Monitor for AIX performs some of the network polling (for device
status and performance thresholds) that would normally be the responsibility of
NetView for AIX. There are two main benefits to this:

 1. Reduced CPU and memory requirement on the NetView machine

 2. Reduced network load, since polling occurs locally

With NetView for AIX Version 4 client/server support the distribution of function is
taken one step further. Instead of the user-specific and common services
processes all running on the same RS/6000, it is now possible to spread them
across several RS/6000s. We expect this to deliver a number of benefits:

 1. Reduced CPU and memory requirement on the main NetView for AIX
processor, which in turn allows an increased maximum number of
concurrent users.

 2. Reduced network load, since the distributed EUIs do not require as much
network bandwidth as the X-Windows sessions required previously.

 3. More power to handle larger networks and more operators because having
separate processors handling EUI and background tasks effectively gives us
parallel processing.

These benefits also give us more flexible ways to configure NetView for AIX. For
example, instead of installing one large RS/6000 to support (say) four users we
could install two smaller machines and configure one as a server and the other
as a client each with two attached users.

In this chapter we describe the internal structure of NetView for AIX, we look at
some preliminary performance results and finally we consider the impact that
client/server has on applications using the NetView for AIX EUI and API facilities.

2.1 NetView for AIX Internal Structure
First we will show the pre-client/server (Version 3) components of NetView for
AIX and then we will describe how they are modified in Version 4.

 Copyright IBM Corp. 1995 7

2.1.1 Components of NetView for AIX V3
Figure 1 shows the main user-specific and common services parts of NetView
for AIX Version 3.

Figure 1. Components of NetView for AIX Pre-Client/Server. Note that some components and connections have
been removed for clarity.

In the diagram, processes (both user processes and daemons) are shown as
ellipses. There is only ever one instance of the common services processes
(below the dotted line) but each new user ID creates another set of user-specific
processes (above the dotted line).

We can divide up the components into the following series of process areas
(numbered on the diagram):

 1. IP network discovery and polling

The netmon daemon is the engine for IP network polling. It discovers nodes
in the network using SNMP requests and polls nodes for availability and
configuration. As netmon detects changes in the network configuration it
generates internal event records that are passed to the trapd daemon and it
updates the IP topology database and object database. These two

8 NetView for AIX V4 Examples

databases contain similar information but have different purposes. The
object database contains one record for every network resource (node,
interface, segment, etc.) whether they are IP resources or not. Associated
with each record are a set of database fields describing the resource. All of
this information can be queried and modified by API calls, so it can be used
by any application within the NetView for AIX framework. By contrast the IP
topology database is an unpublished format containing only information
about IP network resources.

 2. Non-IP network discovery and polling

The non-IP components mirror the IP side. There is a closed-format topology
database controlled by the gtmd daemon which is equivalent to the IP
topology database controlled by iptopmd. The difference is that instead of
the data being specific to one protocol it is in a generic format. An API (the
NetView Open Topology (NVOT) API) is provided to allow applications to
populate the non-IP topology database. Applications are required to provide
their own version of the netmon daemon for network discovery and polling.
Many other SystemView for AIX features use this facility, for example: LAN
Network Manager, Lan Management Utilities and IHMP for AIX.

 3. Event processing

Events in NetView for AIX are mainly packaged as SNMP traps (the exception
is events originating from the XMP API, which are OSI CMIP format). Traps
are received by the trapd daemon, either from remote SNMP agents or from
other NetView for AIX processes. These events are then merged with those
from XMP by the pmd daemon and passed to the sieve agent, ovesmd. This
implements a filtering process so that applications (for example, the event
display application, nvevents) can receive specific event types.

 4. MIB data collection and monitoring

The snmpCollect daemon polls SNMP agents for for performance data. The
data may be stored and/or compared with a threshold value.

 5. The ovw API

This API is at the heart of the NetView for AIX facilities for displaying network
topology and configuration information. It is really divided into two parts:

• ovwdb, which allows a program to query and modify information in the
object database

• ovw, which allows a program to query and modify the map database
(that is, the contents of the topology views seen by the user)

Notice that this second (map database) part is provided by the ovw program.
This is a user-specific process, so calls to the API will be associated with a
particular user′s display. To put this another way, if you want your code to
update every user′s map you have to have a separate copy of the code
running for each user. The corollary is that you cannot run a program to
update or read map information if there is no EUI active.

 6. The user interface processes

When a user invokes the NetView for AIX EUI, the ovw process is started.
The ovw process reads registration files to determine how to build the EUI
menu bar and which other processes to launch. Three processes that are
always invoked in this way are:

Chapter 2. Client/Server Support in NetView for AIX 9

ipmap Reads IP topology and object database information and uses the
ovw API to create and maintain the IP network submaps (you will
see the message: ″Synchronizing″ on the main NetView window
when ipmap is updating the map database in this way)

xxmap Performs the equivalent function to ipmap, but for non-IP
resources

nvevents Displays event records in a card or list format

There are also other user-specific processes that are non-persistent, such as
the MIB Browser, MIB monitoring applications and other applications
launched from the menu bar.

2.1.2 Components of NetView for AIX V4
It is possible to run NetView for AIX V4 in the same way as V3 - that is, with both
the user-specific and common services processes on one machine. In fact, the
internal structure of the product changes little when it is operating in
client/server mode, as Figure 2 on page 11 shows.

10 NetView for AIX V4 Examples

Figure 2. Components of NetView for AIX Client/Server. In the event-processing path the pmd and ovesmd
daemons from Version 3 are still there, but we have omitted them from this diagram for clarity.

In general the only differences from the single system version are:

 1. The user-specific processes are running on the client machine and the
common services are on the server.

 2. Process-to-process connections between client and server are encapsulated
in TCP/IP sessions.

You should note that a client machine can support multiple concurrent users
(using X-Windows to distribute the displays) and that client users can coexist
with users directly connected to the server. It would, for example, be possible to
have a system with twelve X-station users, six supported from the server and six
from one or more clients.

There are several points to note from the internal process diagram (Figure 2):

• The registration files that control menu entries and EUI applications are
located on the client machine. This means that any change to these must be
installed on all attached clients. For example, if you install an application on

Chapter 2. Client/Server Support in NetView for AIX 11

the server that adds menu entries you will only see those menu entries on
the client machine if you copy the registration files and the executables that
they invoke.

• The ovw API at the client machine is unchanged. Any application that uses
this API in single system mode should be able to run unchanged on the
client machine. On the server the ovw API is restricted in the same way as
with Version 3; if no EUI is running only the object database can be
accessed. Although, as we have said, many applications will run unchanged
on the client, there are several reasons why this may not be straightforward:

− If the application has common code that relies on all EUIs running on the
same system it may need to be restructured or rewritten.

− If the application employs a daemon using the ovwdb or nvot APIs, it will
need to be restructured so that the daemon is installed on the server and
the EUI function is installed on the clients.

− There are software licensing considerations, since multiple copies of the
code have to be installed.

• Although the map database is logically located on the client machine, there
is an option to use NFS to mount it from the server. We discuss this option
in more detail in 2.1.3, “Map Database Options.”

• Menu bar applications that use SNMP (for example, the MIB Browser and
graphing tool) will run on the client. They use SNMP community information
from the /usr/OV/conf/ovsnmp.conf file and NetView for AIX will automatically
mount this from the server via NFS so that it is consistent. However the
agents that the applications are accessing may need community information
updated to grant access to requests originating on the client machine(s).

• The daemons involved in event handling have changed. This is a result of
the introduction of event rulesets (see Chapter 5, “Introducing NetView for
AIX Event Rulesets” on page 79) rather than client/server.

2.1.3 Map Database Options
As we have seen (Figure 2 on page 11) the map database logically resides on
the client machine. However this means that map customization changes are
only applied to the client. Furthermore, that map will not be available for users
at any other client, nor at the server machine.

NetView for AIX provides a way around these limitations. You can configure a
client to use a map database mounted via NFS from the server. This allows
maps to be centrally configured and used anywhere, at the expense of increased
network load and reduced security. 2.2.3, “Testing Network Utilization with
Client/Server” on page 17 discusses the performance implications.

You configure a client to use local or NFS mounted maps by selecting
Configure →Add/Change Server from the clients in NetView for AIX SMIT screen.
Figure 3 on page 13 shows the SMIT configuration screen.

12 NetView for AIX V4 Examples

Figure 3. Defining Client Configuration Options

Although the map database may now effectively be divided (some maps may
reside on client machines and others on the server) it is still treated as if it were
a single entity. To manage this, NetView for AIX enforces the following rules:

 1. Each map name can only exist once. Even though it cannot access the
contents of the maps, the server is aware of what maps exist on each of the
client machines. It prevents the creation of duplicate map names.

 2. Only one user can have a map open in read/write mode. This restriction
also existed in previous versions of NetView for AIX. It is now enforced
across clients (for NFS-mounted maps) and within clients (for multiple users
on a single client).

Figure 4 on page 14 shows the screen displayed when you select File→Open
Map from the NetView for AIX menu bar.

Chapter 2. Client/Server Support in NetView for AIX 13

Figure 4. Map Selection List

In this case we are running on a client machine with local maps. Two maps
exist on the client, but we only have update access to one of them. The other
two maps listed are either on the server or on another client, and therefore not
available to us. Notice that the default map name has changed for client maps.
Instead of simply being called default it is now default_xxxxxx where xxxxxx is
the machine where it exists. For EUIs running on the server the default map
name remains default.

2.2 Performance Considerations
We have already mentioned the performance advantages that we anticipate from
the client/server feature.

 1. We expect to be able to support more concurrent users, since the
user-specific code (to be precise, the memory and CPU cycles used by that
code) is spread across more systems.

 2. We expect to need less network bandwidth to support multiple users, since
the client/server connections should transfer less data than the X-Windows
protocol and they should also be less seriously affected by poor response.

Before we look in more detail at the effect of client/server on resource
utilization, we will briefly explore the murky world of performance measurement
and prediction.

2.2.1 How Much is Enough?
The sort of questions we want to be able to answer are:

• What size machines do I need to run NetView for AIX for a network of ″X″
nodes and ″Y″ concurrent operators?

• What will be the network load from monitoring ″Z″ nodes?

The problem with these questions is that they expect absolute answers. In
reality there are many unknown variables, which make it impossible to give such
an answer. Some examples of the unknown variables are as follows:

14 NetView for AIX V4 Examples

• As CPU load increases, responsiveness will decline. But how do you define
the point at which it becomes unacceptable?

• How do you assess CPU utilization for an application that is driven erratically
by a user using a graphical user interface. To put it another way: what is a
″typical″ user load?

• Memory utilization is a critical factor in NetView for AIX, because it maintains
a lot of network resource data in memory. You can measure memory
utilization accurately, but AIX provides a virtual memory, paging system.
How do you predict the point at which page faults degrade performance to
an unacceptable level?

• Network problems may affect the polling processes of NetView and can
seriously affect performance of a normally healthy system. How do you
judge the extra capacity needed to cope with these crises?

The normal response to these difficulties is to create rules of thumb based partly
on empirical data and partly on experience. At the time of writing, these rules of
thumb have not yet been derived for NetView for AIX V4. However, we have
seen that the internal design has not changed greatly from Version 3, so it
seems reasonable to extrapolate to a limited extent from that version. The
currently accepted rules of thumb for sizing NetView for AIX Version 3 are
described in SystemView for AIX: Sizing Considerations, GG24-2586.

In this project we did not have the time or resources to try to create rules of
thumb for sizing NetView for AIX V4, but we did perform some simple tests to
verify that we were realizing the expected performance benefits from
client/server.

2.2.2 Testing Memory Utilization with Client/Server
The memory requirements for NetView for AIX V3 are tied to two factors:

• The number of managed resources in the network

• The number of concurrent users

We expect that the latter factor will be greatly decreased in Version 4 by placing
the users on client machines. We performed a simple test to verify this
behavior.

We used Performance Toolbox/6000 (a SystemView Feature) to measure memory
and page space utilization for the system as a whole and for individual NetView
for AIX processes. We took the measurements with 0, 1, 2 and 3 users active,
firstly via X-Windows sessions and secondly from a client machine with local
maps. The results we obtained are shown in Figure 5 on page 16.

Chapter 2. Client/Server Support in NetView for AIX 15

Figure 5. Comparing Memory Utilization in Client/Server Mode

We see the expected results: when using X-Windows the user-specific processes
add a memory delta of about 12Mb per additional user. When the users are
accessing the system via client/server we see a negligible increase (in fact, we
measured an increase of about 128Kb for each additional user, shared among
five of the NetView daemons).

We also measured memory utilization on the client system and saw an increase
in memory allocation with each additional active user. The delta was, as
expected, the same as we saw on the server in the X-Windows case (about
12Mb).

16 NetView for AIX V4 Examples

What Does This Prove?

This test merely shows that using client/server has the expected effect of
sharing the memory requirement between server and client. It appears that
the memory used by NetView is similar in each case (although the total
memory requirement will be larger because it must also include the base
memory needs of AIX on each client machine).

The test does not give any idea of how much real memory is needed (for that
we would need to know how volatile the memory is, and hence what
proportion of it can be paged-out without degrading performance). The test
also takes no account of network size or user activity. Network size is the
major factor in deciding memory requirements. You should refer to
SystemView for AIX: Sizing Considerations, GG24-2486, to see how network
size affects memory demand. At the time of writing the figures in that book
are based on NetView for AIX Version 3, but they make a good starting point
for sizing estimates.

Although we see from this test that the cost of additional clients in terms of
memory is small, there will also be a cost in CPU cycles. We did not attempt
to assess this, indeed it is difficult to do so, since it is dependent on many
different factors. As more experience is gained with different client/server
configurations, we will be able to create rules of thumb for this.

2.2.3 Testing Network Utilization with Client/Server
For this test we wanted to get a feel for the comparative network cost of the
following three options for connecting remote users:

 1. Single system with X-Windows access

 2. Client/Server with local maps

 3. Client/Server with NFS-mounted maps

We used DatagLANce to perform the data collection. DatagLANce is a
OS/2-based LAN analyzer with powerful facilities for data collection,
interpretation and display. In our case we only used the frame capture facilities
to trace all the activity to and from our client and server machines. We then
employed the IBM LAN Doctor service to get reports showing a breakdown of
network activity. LAN Doctor offers a detailed LAN problem determination and
analysis service, including application profile modelling and load prediction.

We needed to make sure that we captured a similar set of end-user activities for
each of the three cases. We therefore designed a standard sequence of
plausible user actions and repeated them for each of the cases. Table 1 shows
the script we used.

Table 1 (Page 1 of 2). Test Script for Network Data Collection

Time into test Operation

Start the NetView for AIX EUI and wait for initialization to
complete (map synchronization complete and nvevents display
active). We did not capture network activity during this period.

0 seconds Open sequence of submaps: IP Internet, Network, Segment,
Node.

Chapter 2. Client/Server Support in NetView for AIX 17

The traffic recorded between the client and server machine for this script is
summarized in Figure 6.

Table 1 (Page 2 of 2). Test Script for Network Data Collection

Time into test Operation

30 seconds Return to Root submap using the view stack, open MLM
Managers submap and one of the MLM domain submaps.
Return to the Segment submap previously opened using the
Navigation Tree.

60 seconds From another RS/6000, send three traps that appear as event
cards in the nvevents window.

90 seconds Using the Search option, create a static events workspace
containing all events from a single node (5 event cards in each
case)

120 seconds Select a node from the segment submap and start a monitor
graph of interface traffic.

150 seconds Using the same node, start the MIB Browser, select
Mgmt→MIB2 →System and retrieve all the system information
from the SNMP agent on the selected node.

Figure 6. Network Utilization for ″Typical″ User Script. Note that the ″client″ is the user ′s
machine and the ″server″ is the NetView machine, even though this should technically be
reversed for the X-Windows case.

The comparison between the X-Windows case and the client with local maps is
as expected. There is about a ten-fold difference between the amount of data
transferred. In fact, the raw figures do not fully illustrate the differences. In the
X-Windows case any delay in the network is perceived by the user, whereas the
client user may not be aware of it. For example, a user may be unhappy with a
half-second delay when opening a menu or displaying a window, but will not
notice a similar delay in (say) a change in the status color of a node.

One aspect of Figure 6 that we initially found puzzling, is that the case with local
maps and NFS-mounted maps are almost identical. We had expected to see

18 NetView for AIX V4 Examples

more activity due to NFS access when the submaps were opened. The reason
for this discrepancy is that all the map actions taken by the user were reads;
there were no status changes, so ipmap did not have to update the map
database. NFS provides a caching function, so data that is unchanged may be
read locally. We had just started NetView for AIX at which point the
synchronization process causes ipmap to update status on all IP map symbols.
The cache would therefore be up-to-date, hence the lack of extra network
activity. To test this theory we did another data capture, this time just capturing
the EUI startup (from the initial command until map synchronization completed
and the nvevents display was active). We used the worst case situation of a new
map, so that the startup included the complete map build in each case. The
result of this test is shown in Figure 7.

Figure 7. Network Utilization for EUI Startup

As expected, we see a lot of activity in the NFS case, as ipmap on the client
updates the map database on the server. This was also reflected in the time
taken to start up. The NFS client took almost three minutes, compared with a
little over one minute for the other two cases. One other aspect to this is that
using NFS may give erratic performance, depending on whether the map data in
the NFS cache has been flushed by newer data from other NFS activity.

What Does This Prove?

These tests show that, as expected, the local map option has the lowest
network cost. In a LAN environment the extra traffic of X-Windows is
probably not significant, but across a WAN link it would be. The test also
show that the increased convenience of using NFS for the maps is offset by
slow initialization and potentially erratic performance.

The tests do not give any general rules of thumb for the network cost of the
three configurations. They are based on a synthetic user load which may
bear little resemblance to reality.

Chapter 2. Client/Server Support in NetView for AIX 19

2.3 API Considerations with Client/Server Concept
In Examples of Using NetView for AIX, GG24-4327, the example program wteuiap6
was discussed. This program uses the ovw and ovwdb APIs described in 2.1.1,
“Components of NetView for AIX V3” on page 8 and 2.1.2, “Components of
NetView for AIX V4” on page 10, to provide an easy way to create and modify
network topology displays in NetView for AIX.

In this section we will discuss what needed to be done to modify the way that
wteuiap6 is implemented in order to make it operate in a NetView for AIX
Version 4 client/server configuration.

2.3.1 The wteuiap6 Sample
Figure 8 shows the different components of wteuiap6.

Figure 8. Components of wteuiap6

As Figure 8 shows, there are three programs within the application, as follows:

wtdriver6 This is the command line program that the user enters to invoke the
wteuiap6 functions. It takes a series of arguments that define the
action to take, for example: to add nodes or submaps, make
connections, set status, etc.

20 NetView for AIX V4 Examples

wtpbxd This is a daemon that uses the ovwdb API to update the NetView for
AIX object database. The wtpbxd daemon is defined to NetView for
AIX by means of a local registration file (lrf). It is started by ovspmd
at the same time as the other NetView for AIX daemons.

wteuiap6 This is a background process that uses the ovw API to update the
map database (and thus the users′ display). Note that as the ovw API
is supported by the ovw process, there is one copy of wteuiap6 for
each copy of ovw that is running. The wteuiap6 process is defined to
NetView for AIX by means of an application registration file.

The sequence of events that takes place when wteuiap6 is used is as follows
(the numbers refer to the numbered arrows in Figure 8 on page 20):

 1. When wtpbxd starts it opens the ovwdb API and waits for NetView for AIX
end user interfaces to start.

 2. As each end user interface is started, a new copy of wteuiap6 is also started.
These send a message to wtpbxd to signal their existence. The wtpbxd
daemon keeps a table in storage with details of all the current EUIs,
including details such as the map name and permission (Read/Write or Read
Only).

 3. Later, a wtdriver6 command is entered by a user or from within a shell
script. The arguments are parsed and then sent in a message to wtpbxd.

 4. The wtpbxd daemon can perform directly any wtdriver6 requests that only
need access to the object database, such as queries or updates of database
fields.

 5. If the wtdriver6 request needs to update the map database, wtpbxd sends it
to each copy of wteuiap6, which executes the request by calling the ovw API
(the default behavior is to update every EUI, but the user can restrict it to a
specific one by using a wtdriver6 option).

 6. Finally the user receives a message indicating the success or failure of the
request.

2.3.2 Updating wteuiap6 for Client/Server
The ovw and ovwdb API calls that the wteuiap6 components use are unchanged
by the client/server environment. They are all available on both the client and
server machines. However this does not mean that the application does not
need changes. If we project the wteuiap6 structure onto the NetView for AIX
client/server environment we can see that:

• The wtpbxd daemon is a central coordinating function that logically should
be placed on the server.

• A wteuiap6 process is associated with each EUI. It will therefore be running
on the system where the EUI itself is running, which may be client or server.

• The wtdriver6 command may be invoked on either a client or server system.

We made the following changes to the wteuiap6 components to support the
client/server structure:

• When a new copy of wteuiap6 registers itself with wtpbxd it now has to send
the message to the server system. We used the new
OVDefaultServerName() API call to find out the IP address of the server.

Chapter 2. Client/Server Support in NetView for AIX 21

• We added the client system IP address to the table of active copies of
wteuiap6 that wtpbxd maintains.

• We added a parameter to wtdriver6 to identify the system where wtpbxd is
running (that is, the server system).

In addition to the wtdriver6 command interface we provided a menu driven
driver. Upon startup this attempts to connect to wtpbxd on the local host and if
this fails will request the host name on which wtpbxd is running. This can be
called either from the ovw menu bar by selecting WTEUIAP6→wtmenu6, or from
the command line by entering /usr/OV/raleigh/wtmenu6. It is not a requirement
that ovw should be running on the same system as wtmenu6.

2.3.3 Installation
You can get the wteuiap6 sample via anonymous FTP. Refer to Appendix A,
“How to Obtain the Samples in this Book” on page 257 for details.

Installation of the modified package is performed by running the command make
install. This will install the executables into /usr/OV/raleigh and place the
registration files in the relevant directories. It will also give the option to install
the necessary files on clients that are recognized by the server.

There are also some shell script samples that demonstrate the abilities of
wteuiap6. To try them, run either buildIDNX or buildMQSeries on the NetView for
AIX Version 4 server system.

2.3.4 Configurations
These applications have been tested in client/server operation with the following
permutations with both NFS and local client configurations.

• All Server Configuration

When operating in an all server configuration there is no difference between
wteuiap6 on NetView for AIX Version 4 and NetView for AIX Version 3.

• Client driver - Server applications.

With wtdriver6 on the client and the wteuiap6, wtpbxd and ovw applications
running on the server.

• Client applications - Server daemons.

With wtdriver6, wteuiap6 and ovw on the client and wtpbxd on the server.

• Client application - Server daemons and driver.

With wteuiap6 and ovw on the client and wtdriver6 and wtpbxd on the server.

2.3.4.1 Example of Stat Option
The status of wteuaip6 connections to wtpbxd can be seen from the wtmenu6
panel and will appear as shown in Figure 9 on page 23. In this example
rs600010 is the server with IP Address 9.24.104.109. There are two clients active,
9.24.104.28 (which uses NFS-mounted maps) and 9.24.104.26 (which uses local
maps). Each of the clients is serving two X-Stations. One of the X-Stations,
itsoxst43, is using the server1 map in read-only mode. This map is also open in
read-write mode on the HFT display on the server. Note that this configuration is
only possible for a client with NFS-mounted maps. The user on itsoxst49
(connected to the client with local maps) would be able to see that the server1

22 NetView for AIX V4 Examples

map exists by selecting File→Open Map, but he would not be able to open it,
because it is on the server.

SHOWING STATUS OF DAEMON
pbxd: Statistics:

Total Calls: 22
With a bad magic number: 0
With a bad version number: 0
With a bad command number: 0
Which leaves 22 good calls

EUI Table, 5 entries
Entry Mode Map X-Display Application Pid IP Address.Port
[0] RW nfs1 itsoxst47:0.0 EUI Application 6 44386 9.24.104.28.3074
[1] RW local1 itsoxst49:0.0 EUI Application 6 43213 9.24.104.26.110
[2] RW local2 itsoxst46:0.0 EUI Application 6 46807 9.24.104.26.1173
[3] RW server1 rs600010:0.0 EUI Application 6 46055 9.24.104.109.2637
[4] RO server1 itsoxst43:0.0 EUI Application 6 51627 9.24.104.28.4256
Press any key to continue

Figure 9. Wtmenu6 Status

There are four open maps, one of which (server1) has a read-write and read-only
connection. All of these maps can be modified using wteuiap6 or wtmenu6 from
the active EUIs or any other machine connecting to wtpbxd on rs600010.

Chapter 2. Client/Server Support in NetView for AIX 23

24 NetView for AIX V4 Examples

Chapter 3. Security

This chapter discusses the security features built into NetView for AIX Version 4.
The examples will show you how to add new users and how to group them
accordingly to different NetView for AIX Version 4 maps and applications access
policies.

3.1 Why Network Management Security?
There are basically five reasons why the new concept of network management
security has been introduced in NetView for AIX Version 4:

Authentication An AIX system manager has different needs from a network
manager, so it is a good practice to keep their environments
separate. To obtain this separation you must use different
authentication steps for AIX and for NetView for AIX Version 4.

Access Control Different NetView for AIX Version 4 operators may need access
to different NetView functions. You can modify policies
concerning:

Menu bar Items

Tool Palette

Command line commands

Context menus

Audit Security is nothing without logging. The network administrator
must have the knowledge of what happened on the network
regarding access violations, normal flow of operations,
login/logout procedures, administrative changes and so on.

Administration All of this must be handled in an easy way, which means a
simple end user interface, with contextual help, etc.

Customization Besides the security aspect, removing items from menus and
limiting command line options offers also the considerable
benefit of creating customized environments. For example, it
can simplify the work of non-skilled operators by reducing the
available menu options to just those that the operator uses.

3.2 Security in NetView for AIX Version 4
Previous versions of the product used standard AIX security features (user ID
validation, file permissions, etc.).

In Version 4 a new concept of application security was introduced.

With this new concept, three possible levels of security are available:

Minimal Uses only standard AIX features, same as the previous version
(default at startup).

2 Party NetView for AIX Version 4 takes care of security, authentication and
validation.

 Copyright IBM Corp. 1995 25

3 Party A third, dedicated, application validates users. A sample application
may be IBM Network Security Program SLC or any other application
supporting GSS API.

3.3 Terminology
These are the main terms we will use:

User Not (necessarily) an AIX user. A NetView
for AIX Version 4 user may not have its
correspondent in AIX (that is, with an entry
in /etc/passwd). You can log in to NetView
for AIX Version 4 with a user ID that is not
also an AIX user ID , but you still must
have an AIX user ID just to reach an AIX
shell. Putting this the other way around, an
AIX user may not be able to login to
NetView for AIX Version 4 unless explicitly
authorized (root authority is not enough).

Security Registration Files (SRF) These files contain the list of elements to
be secured. They are provided by the
application developers based on which
elements they want to be secured.

Domain Group Profiles These files contain definitions for ″can do″
and ″can′ t do″ for every single application.
Domain Group Profiles for all standard
NetView for AIX Version 4 functions are
included in the product.

Group Not (necessarily) an AIX group. A NetView
for AIX Version 4 group is a correlation
between NetView for AIX Version 4 user IDs
and SRFs. A user may belong to multiple
groups (and choose one during login) and
an SRF can be associated with multiple
groups.

API The security feature provides a simple
application programming interface (API).
Any application can use new the API calls
to implement security functions.

3.4 How to Create a Trusted Environment
In this section we show how to set up a trusted environment using the 2 party
level of security of NetView for AIX Version 4. The detail of configuring profiles
and user IDs is only part of the process. It is equally important to plan the
configuration in advance, to ensure that it meets your requirements.

We recommend that you follow the following sequence of steps:

 1. Define (on paper) which level of security you need to implement.

Ask yourself the following questions:

26 NetView for AIX V4 Examples

• Do I really need Network Management Security? You only need to
impose security if you want to protect NetView for AIX from its users. If
all the users of NetView for AIX are trusted, administrative, users you do
not need additional security above the AIX login. In this case, you can
use the default level of NetView for AIX Version 4 security (minimal).

• Have I already installed a security application with GSS API? If the
answer is yes, use the GSS API application as a 3 party security server.
Inform the GSS security application manager of your needs.

• Am I going to use NetView for AIX Version 4 internal security? If the
answer is yes, decide:

Who is going to manage user IDs for this additional environment?

Who is going to implement the policies?

How will this be documented?

In our example we will assume this last situation and we will implement
NetView for AIX Version 4 internal security.

 2. Define (on paper) which level of auditing you need to implement

Are you interested in auditing configuration changes?

Are you interested in auditing the accesses to functions?

Are you interested in auditing login/logout activities?

In general it is good security practice to log too much, rather than too little,
even if it means using up a lot of disk space. Disk space is cheap these
days. Of course, logging too much can also result in a harder search for the
right information when needed.

You can start initially with full auditing and keep an eye on the growing rate
of your files. If it is unacceptable, you can later restrict the logging options.

 3. Define (on paper) your groups, users and rules.

The product comes with two predefined users, each of which is the sole
member of a group:

• Group:Oper user: operator for basic network operation functions

• Group:SrAdmin user: admin for network administrators

We recommend using these two groups as a starting sample and then
adding your own. Remember that a user can be assigned to more than one
group, which allows him to access NetView for AIX Version 4 with different
privileges.

 Change Default Passwords !

The default passwords (admin and operator) are trivial and can be found
in the NetView for AIX manuals. Be sure to change default passwords as
soon as you go in production.

 4. Start customizing NetView for AIX Version 4

Log in to AIX as root and start the X-Window interface (it is also possible to
delegate security authorization to a different user, see NetView for AIX
Version 4 Administrator′s Guide SC31-8168).

From a shell prompt execute the command /usr/OV/bin/nvsec_admin. The
panel in Figure 10 on page 28 will be shown.

Chapter 3. Security 27

Figure 10. NetView Security Administration Main Panel

Let us start to familiarize ourselves with this panel.

The first box (Users) lists the users and their associated groups with
comments. If the system has just been installed only the two default users
are here: operator and admin.

The second box (Groups) lists the groups defined and the associated SRFs.
We′ ll see later where this correlation is set. Again, if the system has just
been installed only the two default groups are here: Oper and SrAdmin.

In the last box (Security Registration Files) there is the list of the pre-defined
SRFs. You can scroll through the list and see that all NetView for AIX
Version 4 basic functions are there. In this example we won′ t create a new
SRF, we will use the standard ones.

 5. Create any new groups we want to define.

In our example we′ ll add two new groups, each with one user, and a third
user able to log in in both groups.

Let′s think about a very low level user only able to see the topology and the
status of the network but without any interaction available; we will give him a
user ID of lluser.

The second user will be someone that will be responsible for handling MIBs,
so he will be able to load MIBs, browse them, make MIB applications and so
on. We will give him user ID mibuser.

These two users will be put in two new groups: llfunct and mibit.

28 NetView for AIX V4 Examples

A third user, with ID llormib will have the option to choose his role during
login.

To create our two new groups we will use the Oper group as a template and
take off all the functions we don′ t need. We can start by copying the Oper
group to our new groups by selecting Oper in the Groups box and then
selecting Copy . The panel shown in Figure 11 will appear. Enter mibit in the
Target Group field and click on Ok to add the new group.

Figure 11. Copy Group Panel

We repeated this step for the other group, llfunct.

 6. Configure application access for the user groups.

Now we have created the new groups, but the access they provide is
identical to the group that we copied, Oper. Next we need to grant
authorization to users in the groups by selecting the group from the list in
the Groups box and selecting Add/Chg .

The panel shown in Figure 12 will appear.

Figure 12. Add/Change Group Security Registration Panel

Selecting the right arrow near the Applications field, we can see the list of
applications available, as shown in Figure 13 on page 30.

Chapter 3. Security 29

Figure 13. List of SRFs

Although the title of the panel is Select Applications, the entries listed are
really the Security Registration Files (SRFs) that define the programs and
menu options that are protected by NetView for AIX security. We describe
how to define SRFs in 3.9, “Integrating Your Own Applications with Security”
on page 41.

The functions are logically divided in the SRF files by application area, but
you can choose to display all possible functions by selecting all the lines.
Do this and click on OK and then OK again. After a few minutes you are
presented with the list of NetView for AIX Version 4 menu items and
executable programs (see Figure 14 on page 31).

30 NetView for AIX V4 Examples

Figure 14. Add/Change Group Security Registration

There are three types of resource defined in this list:

a. menustring resources control the NetView for AIX menu structure

b. toolitem resources control the contents of the NetView for AIX tool bar

 c. executable resources control use of programs that invoke the NetView
for AIX security API

The access given to a group member is defined in the attributes field
towards the right of the panel. This field has three possible values:

... No access (for a menustring or toolitem entry this means that the
option will not appear on the user′s screen)

r Read-only (for a menustring or toolitem entry this means that the
option will appear greyed-out, that is, not selectable)

rx Read and Execute (user has full access to the function)

As an example, scroll through the panel to the ovw_binary entry. This
represents the NetView for AIX EUI itself, so it needs to be set executable
(rx) if the user is to be able to start the EUI at all. If you were to click on the
rx field and remove the check mark from the x, the user would not be able to
run it.

We will leave ovw_binary as executable, but we must still assign the menu
options that are to be made available to users in the group.

The lines classified as menustring control the menu hierarchy of the main
NetView for AIX menu bar, so if we want to allow the user to use some
functions we must flag them rx.

Chapter 3. Security 31

For our low level user we will only allow the File→Exit option and the options
under the Locate and Help menus. The Options menu will be shown but will
not be executable.

To obtain all these functions you must remove all the r and x indicators from
all the lines excluding the ones we are allowing. This is where selecting
Propagate can be helpful because it propagates the choices made for the
major level to lower levels. For example if we disable access to the NetView
Windows->Edit entry and click on Propagate, all the menu entries (Add, Cut,
Paste etc.) will also be disabled.

Having defined our llfunct group in this way, we repeated the process thing
for the mibit group this time leaving MIB related menu items with the rx
option.

 7. Add new users and assign them to groups.

To do this, select Add in the Users section to obtain the panel shown in
Figure 15.

Figure 15. Add User Panel

To create the user ID, simply fill in the fields on the panel. You will notice
that in this case we have restricted the user ID to only be usable on
weekdays. You have to define a password for the user at this point, by
clicking on Set Password . If you do not do this, the user will not be able to
log in.

After selecting Ok the new user ID, lluser, is added to the Users list.

32 NetView for AIX V4 Examples

 8. Test your security and put it into production.

Nothing that we have defined so far will have any effect until we activate
NetView security at the global level. From the main panel of NetView
Security Administration select the Options→Global Settings... from the menu.
The Global Settings main panel will be shown (see Figure 16).

Figure 16. Global Settings Main Panel

From here we selected Change... and then ON to activate security. We could
also have selected the audit options on this panel, but for now we simply
clicked on Apply to exit the Global Setting panel and activate security (we
will discuss the audit options in 3.8, “Auditing” on page 38).

From this point on, all NetView for AIX functions require you to have first
authenticated yourself with a user ID and password.

Chapter 3. Security 33

3.5 Login Flow
Let us now consider carefully the flow of login operations because now there are
two different user validations: one performed by AIX and the one performed by
NetView for AIX Version 4.

Suppose that on AIX you have a user called myaixid. With NetView for AIX
Version 4 security ON, the complete login flow is as follows:

 1. Log in to AIX as myaixid.

At this point you have the AIX privileges of myaixid but no NetView for AIX
Version 4 privileges (that is, you cannot use any NetView command, even if
AIX privileges allow you to do it).

 2. Start NetView for AIX Version 4. You will see the panel shown in Figure 17.

Figure 17. NetView for AIX Version 4 Login Panel

Fill the fields with the NetView for AIX user ID, group and password (lluser,
llfunct and the password you set in the user definition panel) and click on
Apply .

Now you have the AIX privileges of myaixid and the NetView for AIX
privileges of llfunct. Because the capabilities of the llfunct group are greatly
curtailed, the menu bar will be very sparse (see Figure 18 on page 35).

34 NetView for AIX V4 Examples

Figure 18. Boring NetView for AIX Version 4 Main Window for User lluser. Not only
does this user have a very limited set of menus, but even the ones that are there contain
very few selectable entries.

 3. Next exit the end user interface and restart it, but this t ime log in as mibuser
in group mibit. Now you have the same AIX privileges but different NetView
for AIX privileges.

Chapter 3. Security 35

Warning!

Notice that if you now, from another AIX terminal, log in as myaixid you will
find yourself automatically with mibuser NetView for AIX privileges without
the need of any kind of NetView password.

This is due to the fact that only one NetView for AIX Version 4 login is
allowed for each AIX login.

Each AIX login has a well defined set of AIX functions available. When the
user logs in to NetView for AIX, he receives a well defined set of NetView for
AIX functions. These two sets of functions are related to the pairing of AIX
user ID and NetView for AIX user ID and not related to the terminal from
which you are working.

Consider this very carefully when sharing AIX logins or, better, don ′ t share
them when you are using NetView for AIX security features.

A partial solution to this last problem could be the use of a procedure that
checks for the name of the user ID during AIX login and prevents the user
from logging in a second time.

To prevent the second login modify the /etc/security/login.cfg file adding an
auth_method like:

CHECK_UNIQUE:
program = /etc/security/check_unique

Then create /etc/security/check_unique with the following statements:

 who | grep $* >/dev/null 2>&1 && exit 1
 exit 0

To make NetView for AIX Version 4 login faster you can add the following two
statements to your $HOME/.profile file:

export NVID=your_netview_id
export NVGID=your_netview_group

These two environment variables set the default NetView for AIX Version 4 user
ID and group. Of course the password must be given interactively.

Notice also that ovstart and ovstop commands are not protected by any SRF, but
you have to be the AIX root user to use them to start and stop NetView for AIX
daemons. Note, however, that you can add your own SRF files to protect these
commands if you don ′ t want to give root this possibility.

If you want to login to NetView for AIX without starting the end user interface (to
use command line operations for example) just type nvauth from the AIX
command line. You can use the same application to log out when you have
finished. If you are not working from a graphic terminal you can use the
following syntax:

nvauth -login youruserid yourgroupid

and you will be prompted for a password.

Table 2 on page 37 summarizes login/logout flow in various situations:

36 NetView for AIX V4 Examples

Table 2. Summary of Login/Logout Flow

Situation How to login How to logout

Using EUI Start nv6000 Exit EUI

Using command line commands
from a graphic terminal

Start nvauth Start nvauth

Using command line commands
from a text only terminal

Use nvauth -login your_userid
your_groupid

Use nvauth -logout your_userid

3.6 Major Customization of Menu Bar Options
It may be that you are not too concerned about the ultimate security of your
system, but want to tailor users′ NetView EUIs to suit the jobs they do. NetView
for AIX Version 4 security provides a consistent and practical method to achieve
such major customization on menu bars, tools and context menus. The example
shown in the previous section (Figure 18 on page 35) showed how a much
simplified menu configuration can be created.

You could do this in previous releases by setting the $OVREGDIR environment
variable to point to a customized registration directory. This is a more complex
process to set up and administer than defining groups and setting access flags
in NetView for AIX Version 4 security, however.

3.7 Shift Takeover
One unique feature of the security mechanism is the shift-out/shift-in capability.
What is the difference between logout/login and shift-out/shift-in?

When you log out from NetView for AIX, the end user interface is closed and you
start your operations again with a new user ID. With shift-out/shift-in, the EUI is
never closed, but the incoming user has to authenticate him or herself to access
it. Both activities can leave a track on the audit trail if Login/Logout recording is
enabled. The advantage of shift-out/shift-in is that you do not have to suffer the
delay of restarting the EUI.

This is the flow of operations for shift-out/shift-in:

 1. The departing operator selects: Tools→User Security→Options→Shift_Out to
lock the the display.

Now the screen is locked and there is a big key in a box on the display.

 2. The incoming operator clicks on the key box on the screen to obtain the
NetView Authentication dialog panel (see Figure 17 on page 34).

 3. The incoming operator enters the new NetView for AIX Version 4 user ID and
resumes working at the point left by the previous operator.

The only restriction to this feature is that both operators must belong to the
same user group (because menu configuration takes place as part of the EUI
initialization process).

Chapter 3. Security 37

3.8 Auditing
Security is nothing without effective logging. NetView for AIX Version 4 security
features now include a complete set of auditing functions. A variety of actions
are recorded in the audit log. If you activate the default functions you will find
the following record types there:

Configuration changes These record specific activities that alter the way that
NetView for AIX operates, specifically:

• Event Configuration (updates to trapd.conf)

• Changes to polling intervals

• SNMP configuration (changes to community names
and status polling)

Function accesses Creates a record each time a user selects a protected
function, whether it is a program or a menu entry.

Login/Logoff log Records all logins, logouts, shift-ins and shift-outs.

3.8.1 Configuring the Audit Options
To configure the audit options, enter the command nvauth to go to the main
security administration panel and select Options →Global Settings... from the
menu to get to the Global Setting panel (see Figure 16 on page 33).

It is then a simple matter to select which of the three audit categories to
activate. The default configuration will be to record everything.

You should also think about whether you want to alter the Audit Log File Name
field, you may consider putting it in a different place for security or disk space
considerations.

The maximum file size and maximum number of files fields define how much
data you will be able to store. The default values (3 files of 30MB each) will
allow you to keep approximately 400,000 events before the oldest one is
overwritten, but make sure there is enough free space in the file system,
particularly if you take the default file name, since if /usr becomes full serious
problems can result.

3.8.2 Viewing the Audit Logs
The audit logs are just ASCII flat files, so you can easily look at the contents
using standard Unix editors and utilities. Alternatively, you can use the reporting
facility that is built in to NetView for AIX.

From the NetView Security Administration Panel (Figure 10 on page 28) select
Options →Audit Report from the menu bar to see the NetView Security Audit
panel (see Figure 19 on page 39).

38 NetView for AIX V4 Examples

Figure 19. Audit Log Main Panel. This is not very exciting unti l you select a fi le to open.

Now select File→Open and select the audit log from the list to display the
activities your system has recorded. Your panel will look something like
Figure 20 on page 40.

Chapter 3. Security 39

Figure 20. Displaying Audit Log Entries. In this case we can see examples of login, logout and shift-in records, as
well as records from successful and unsuccessful command and menu selection attempts.

The meaning of the different audit log entries are:

LI/LO These entries identify Login/Logout activities either succeeded of
failed, with a timestamp on it.

SI/SO These entries identify Shift-In/Shift-Out activities.

FA These entries identify Functional Activities, which means mainly the
starting of NetView for AIX Version 4 registered programs like
ovw_binary (main EUI) or nvsec_admin and access to menu items and
functions.

CH These entries identify Configuration Changes (like changing polling
intervals in our sample case).

You can filter the view of the audit log by setting criteria for text strings, user IDs
and record categories. You do this by choosing View →Set Criteria from the
menu bar and filling in the View Criteria panel (see Figure 21 on page 41).

40 NetView for AIX V4 Examples

Figure 21. Set Audit View Criteria

3.9 Integrating Your Own Applications with Security
If you have an application which integrates in some way with NetView for AIX
Version 4, you can choose to add it into the NetView for AIX security
configuration.

The following are the steps to do this:

 1. Assess which elements to protect

 2. Build a Security Registration File (SRF)

 3. Optionally, modify the Application Registration File (ARF) of your application

 4. Optionally, modify the code of your application to add calls to the security
APIs

In many cases you will only take the first two actions. These give control over
applications that are launched from the menu bar and tool panel. Of course this
will not prevent someone executing your application from the command line,
outside of NetView for AIX, but you may consider that this is enough protection.
Often the requirement for security is to prevent users from doing foolish things
accidentally, not to repel a determined hacker.

Chapter 3. Security 41

You only need to take the last action (modify the code) if your application can be
started outside the NetView for AIX end user interface and you want thorough
protection or if it needs to explicitly access security functions (like auditing for
example).

You should bear in mind that if you don′ t implement an SRF for your application
and NetView for AIX security is active, your application can be run by anybody,
and any menu entries it creates will appear on all user ′s displays. This means
you have to be thorough when creating SRFs if you are employing the security
mechanisms to do menu personalization (see 3.6, “Major Customization of Menu
Bar Options” on page 37).

You also need to consider whether your application will conflict with NetView for
AIX functions. For example, your application may be a shell script that invokes
the ovobjprint command to get object database field information. ovobjprint is
protected by an SRF, so any users that are authorized to use your application
will also need to be authorized to execute ovobjprint.

We will now look at each of the steps in a little more detail.

3.9.1 Determine What You Need to Secure
Consider:

 1. Menu bar items

 2. Object context menu items

 3. Tool window items

 4. Command line commands

 5. Configurable resources (these can be audited)

3.9.2 Build an SRF File
SRF files are located in /usr/OV/security/$LANG/Domains/registration. You will
avoid confusion if you call the SRF by the same name as the corresponding ARF
file.

For more information about the syntax used in SRF files see NetView for AIX
Version 4 Programmer′s Guide SC31-8164.

In general all the information needed for your SRF files are in the ARF files so
you can create them automatically by processing the ARF definition with the
c_arf2srf command.

 Warning!

Pay a lot of attention to special characters (like square brackets, braces)
when you are creating SRFs from ARFs. If they are left inside the SRF file
they may cause problems for nvsec_admin during syntax checking.

42 NetView for AIX V4 Examples

3.9.3 Modify the ARF
Application Registration Files (ARFs) are in the /usr/OV/registration/C directory
and its subdirectories. You may want to modify them to suit your security needs.

In the Action stanza, you can add the keyword Security to specify that this action
is only available if NetView for AIX Version 4 security is active (ON).

For more information about ARF files see NetView for AIX Version 4
Programmer ′s Guide SC31-8164.

3.9.4 Code New API Calls
Remember that only if your application needs to be protected from access
outside the NetView for AIX end user interface, must you modify your code.

The following are the new API calls related to security included in NetView for
AIX Version 4:

nvs_isClientAuthorized() Code this at the start of the program. It returns
SEC_AUTHORIZATION_SUCCESS if the client does
have the required access and
SEC_AUTHORIZATION_FAILURE otherwise. You can
also use this API to check permissions on the other
elements of your application, such as menu items,
files, etc.

nvs_getClientPerms() Code this for more detailed information on the
permissions that the user has on an element (read
only, read write, etc.).

nvs_Audit() Use this only if you are interested in writing your own
messages in the audit log.

nvs_deleteSecContext() Code this just before your application terminates.

The security APIs require you to add #include statements for the following
header files:

/usr/OV/include/OV/sec_api.h
/usr/OV/include/OV/sec_errs.h

3.9.5 A Sample Integration
In this chapter we′ ll see an example of this integration.

We chose for our example a program called wteuiap4.Figure 22 on page 44
shows the program README file.

Chapter 3. Security 43

1. login to the AIX as root user
2. Copy files Submap_List and Xpsp to the / directory
3. Copy file wteuiap4.reg to the /usr/OV/registration/C directory
4. Start NetView for AIX from smit or issue the

/usr/OV/bin/nv6000 command, and
the new item Wteuiap4 will appear in the menu bar.

5. You can test the program by selecting Wteuiap4 from the menu
bar in NetView for AIX.

6. The first menu item ″Submap List″ will list the IDs and names of
all submaps in a scrollable window

7. The second menu item ″Process Monitor″ will add an executable icon inthe
the Root submap. The user can double click the icon to start the
process tree program. only

Figure 22. Wteuiap4 Readme File

As you can see from the README, this application adds some menu entries to
NetView for AIX. They are defined by the registration file shown in Figure 23.

/*
Registration for OVw API sample application WTEUIAP4
*/

Application ″OVw API Example WTEUIAP4″ {

Description {
″Sample API menu program″
}

// wteuiap4 resided in the path /wteuiap4/wteuiap4
// it can be initiated from NV/6K menu bar

MenuBar ″Wteuiap4″ _W {
″Submap List″ f.action Lsubmap;
″Process Monitor″ f.action Picon;
}
Action Lsubmap {
Command ″ /wteuiap4/wteuiap4″ ;
}
Action Picon {
Command ″ /wteuiap4/addicon″ ;
}
Action Xpsp {
Command ″ /wteuiap4/xpsp -zoomed &″ ;
}
}

Figure 23. Wteuiap4 Registration File

We took this registration file and entered the command c_arf2srf wteuiap4.reg
to create a SRF from it. Figure 24 shows the resulting file.

#
DOMAIN_ID = WTEUIAP4
DESCRIPTION = ″Sample API menu program″
SEPARATORS = ->
VALID_PERMISSIONS = rx
ELEMENTS =
″OVw API Example WTEUIAP4->Wteuiap4″ . FALSE menustring
″OVw API Example WTEUIAP4->Wteuiap4->Submap List″ . FALSE menustring
″OVw API Example WTEUIAP4->Wteuiap4->Process Monitor″ . FALSE menustring
#

Figure 24. Wteuiap4 SRF File

The program creates the SRF with the same name as the original ARF and
places it in directory /usr/OV/security/$LANG/Domains/registration. Thereafter,
when we enter security administration (using the nvsec_admin command or the

44 NetView for AIX V4 Examples

option from the Administer menu) we see the new application added to the list in
the Administration Panel (see Figure 25 on page 45).

Figure 25. Security Administration Panel with wteuiap4.srf

Now we can add permissions for the menu entries defined in the SRF to user
groups, as described in 3.4, “How to Create a Trusted Environment” on page 26.
We assigned full (rx) permission to the SrAdmin group but only allowed the Oper
group to be able to execute the Submap List option.

The sequence of configuration screens for the Oper group is shown in Figure 26
on page 46 and Figure 27 on page 46.

Chapter 3. Security 45

Figure 26. Selecting Group and SRF to Modify

Figure 27. Defining Access Permissions for the Oper Group

If we now log in to NetView for AIX and start the end user interface, we can see
two different menu bars depending on the user ID and group used for the
connection.

The menu bar for the Oper group with both options present but only one
available is shown in Figure 28 on page 47.

46 NetView for AIX V4 Examples

Figure 28. NetView for AIX Version 4 Root Panel for Users in Group Oper

For the Oper group you′ ll see the same menu bar but with all options greyed-out
in the pull-down menu of Wteuiap4.

If the program can be started by the command line, you should add the security
APIs to check authorization. To do that, you should add a line containing the
executable name to the SRF:

″wteuiap4″ . FALSE executable

Click on the Add/Chg... button to set permissions related to the Oper and
SrAdmin groups. Next, you need to add the API calls to your code. Figure 29
shows a code fragment from wteuiap4 which performs a simple check to see if
the user has the execute (x) permission.

#include <OV/sec_api.h>
#include <OV/sec_errs.h>

void main (int argc, char ** argv)
{
int authorized, status;

/* Check if the user has permissions to execute this program. */
nvs_isClientAuthorized (″wteuiap4″, ″x″, &authorized, &status);
if ((status != SEC_SUCCESS) || (!authorized))
{
/* Treat error. */
nvs_deleteSecContext ();
exit (1);

}

Figure 29. Example of nvs_isClientAuthorized API Call

Chapter 3. Security 47

If you want to get details of the permissions of a protected object (menustring,
toolitem or executable), you should encode something like the fragment shown
in Figure 30 on page 48.

int permissions, status;

nvs_getClientPerms (″WTEUIAP4->Wteuiap4->Submap List″, &permissions,
&status);

if (status != SEC_SUCCESS)
{
/* Treat error. */
nvs_deleteSecContext ();
exit (1);

}
/* Check if the element has read permission. */
if (permissions & SEC_ACL_PERM_READ)
/* Take the necessary actions. */

else
/* Check if it has write permission. */
if (permissions & SEC_ACL_PERM_WRITE)
/* Take the necessary actions. */

Figure 30. Example Using the nvs_GetClientPerms API Call

Some API calls (for example, nvs_isClientAuthorized) will automatically generate
an audit log record if they are unsuccessful. However, you may want to add
further description information to the log, or report errors that your code detects
internally. The code fragment in Figure 31 shows how to do this.

char * auditMsgs[3]; /* 3 messages will logged */

auditMsgs[0] = strdup (″Message 1″) ;
auditMsgs[1] = strdup (″Message 2″) ;
auditMsgs[2] = strdup (″Message 3″) ;

if (nvs_Audit (ATYPE_CONFIG, 3, auditMsgs) != SEC_SUCCESS)
/* Treat error. */

Figure 31. Example Using the nvs_Audit API Call

When compiling programs that use the security APIs, you will also need to link
some additional libraries. They are: libnvsec.a and libnvgss.a, located in
/usr/OV/lib.

3.10 Client/Server Considerations
When operating from a NetView for AIX client EUI without using the security
feature, there are some menu bar selections that cause the user to be prompted
for the root password of the server machine. These selections are all for
functions that update server configuration parameters, such as polling intervals,
rulesets and event customization. When you implement NetView for AIX security
the client user is authenticated to the server when he starts the EUI. This means
that the server no longer needs to prompt the user for a password when he
selects one of the configuration options. From the user′s point of view this
means his life is much simpler, because the behavior of the EUI is identical,
whether he is running on the server or a client machine.

These new functions involve two new daemons:

nvsecd Is the daemon running in the server

nvsecltd Is the daemon running in the client

48 NetView for AIX V4 Examples

If you are working in a client/server environment these two daemons talk
through the network using encrypted tokens. If the tokens match the value
stored in the server security database, the client is granted the access with the
appropriate rules.

This conversation uses the Generic Security Services API interface and can be
opened to a third party security manager compliant with this architecture.
Remember that in a client/server environment SRF files are located on the
server only.

 Date/Time

The encryption mechanism used by the client and server daemons uses the
current time as a seed to ensure that messages are fresh and to counter a
″man in the middle″ hacking attack. This mean that the system clocks of
client and server systems need to be synchronized within a few minutes of
each other.

As an example of how the various daemons work together and how they relate
see Figure 32.

Figure 32. Relationships Among the Security Daemons

From a user perspective nothing changes in a client/server environment. That is
to say, all functions and capabilities are identical in either environment.

Chapter 3. Security 49

3.11 Multiple Servers Environment
If you are going to implement a multi-NetView for AIX Version 4 Server
environment, you must take care of distributing your security configurations to all
the servers in the network in such a way to keep all servers updated.

For this eventuality, NetView for AIX Version 4 implements a security distribution
feature which gives you the opportunity to distribute security configuration files
to multiple servers without the need to configure each one.

To activate the security distribution feature you must define a central distribution
server. In this server you must start the NetView Security Administration panel
and select Options →Global Settings from the menu bar.

Now, on the Main distribution machine, select Is Distribution Server . When you
click on Apply you return to the main panel, but now under the Options
pull-down menu an entry called Distribution is available.

Select it to see the Security Distribution panel (see Figure 33).

Figure 33. Security Distribution Panel

On the target server on which you are going to download the configurations you
must stop NetView for AIX and, of course, have the security switch set ON. Now
you can select your target server (or servers) and choose what components of
the security configuration to download.

If this is the first distribution, you should download everything but after that you
only need to download the changes you′ve made. Select Send to replicate the
configuration files. The new security files will be available in the target server at
the next restart of NetView for AIX. The old configuration files in the target
server will be saved as /usr/OV/security/$LANG/*.timeddmmyy.

If a manager takeover takes place, the new manager will handle the network
using its own security rules, so it is really very important to keep the security
configuration distributed and up-to-date in all servers on the network using this
method.

50 NetView for AIX V4 Examples

3.12 NetView Service Point Considerations
Security impacts the way that NetView Service Point works. When there is an
active connection between NetView for AIX and NetView/390 you can issue
NetView for AIX Version 4 commands from a host console or MSM graphical
user interface using the RUNCMD command.

If you activate security on NetView for AIX all the commands you send from host
will fail unless there is a user logged in NetView for AIX.

If no user is logged in to NetView for AIX you′ ll receive a message back on the
NetView/390 console saying you are not authorized to use NetView for AIX
Version 4.

Chapter 3. Security 51

52 NetView for AIX V4 Examples

Chapter 4. The Collection Facility

This chapter explains the Object Collection Facility, where this feature can be
applied today, and where it could be utilized as a tool for assistance when
developing APIs.

The NetView Object Collection Facility can be used to group database objects in
separate submaps, perform operations on the set of objects and use all submap
resources over them. At collection creation, a collection rule is defined, and it
determines which database objects will be part of the collection. This rule can
define a subnet, a list of nodes, a common database attribute or another
collection rule. The collection is updated dynamically, adding new objects if they
match the rule, or deleting them if they do not match it anymore.

4.1 Summary of NetView for AIX V4 Object Collection Facility
The Object Collection Facility is a tool created to help network managers to
group database objects in subsets, accordingly to their characteristics. The
collections are organized by name, but they follow a definition rule to inquire the
database and find which objects will join the collection. A rule uses four types of
definitions: node list, subnet, object attribute or another collection rule. All of
them can be combined together, using Boolean logic (logical ANDs and ORs),
allowing many different rules to be used, one for each case. These definitions
are detailed later in this chapter.

Collections can also be used to help in monitoring some kind of object, by
putting them in a separate submap. Even better, this new submap is
dynamically updated, as objects join or leave the collection and as their status
changes. For example, if some object is added to the database and it matches
the collection rule, it will be automatically copied to the map, without user
intervention.

Collections submaps are located under the Collections icon, displayed on the
Root submap. Each collection has a submap and can be seen separately, by
double-clicking on the desired icon.

There are two ways to create a collection: the Collection Editor and the
Collection APIs. Both tools have enough flexibility to build a collection as
complex as desired. Other operations can be performed for a collection such as
to modify the collection or delete it.

4.2 NetView for AIX V4 Collection Types
The primitives are used to compose rules that define what kind of objects are in
the collection. Some examples on how to use them will be shown in this
chapter.

There are four primitive collection types:

Node List This is a list of all desired nodes, selecting them by their
Selection Name or using selected objects from the map.

 Copyright IBM Corp. 1995 53

What ′s In a Name?

NetView for AIX has several places in which it keeps
names for resources, with the result that something
can be known by several different names. The name
that ties all these together is the Selection Name, which
is the key for the entry in the object database. So a
resource may be represented in some submaps as an
IP name and in others as a MAC address, but all
symbols refer back to the one, unique, selection name.

Attribute The attribute is one of the fields that describe the object in
the database. The Collection Facility makes a query on all
objects in the database and finds which ones have the
attribute value set to the value specified. In the Dialog
Editor there is a list of all attributes defined in the
database, and when an attribute is selected, a list of
possible values is displayed.

Collection Rule A previously defined collection rule can be used to be part
of a new collection definition. This primitive allows
creating more complex rules, based on a set of previously
defined rules. For example, a complex rule can be divided
on three simple rules. They are tested separately and
then the resulting lists are combined, making a logical OR
among them.

Subnet Used to select an IP subnetwork to be included in the
collection definition. All IP nodes that are part of the
selected subnet will be included in the collection set.

4.3 Using the Collection Editor
The Collection Editor is the /usr/OV/bin/collectioned program. It can be called
from the command line or by selecting Tools→Collection Editor... from the
NetView for AIX menu bar. The Collection Editor dialog box shows a list of all
available collections. Figure 34 on page 55 shows the Collection Editor.

54 NetView for AIX V4 Examples

Figure 34. Collection Editor Dialog Box

The editor has five main functions that can be selected from the push buttons on
the right side of the dialog box:

Add... Used to add a new collection to the collection list.

Modify... Modify the characteristics of the selected collection.

Copy... Copy a selected collection to a new one.

Resolve... Shows a list with all objects of the selected collection.

Delete Remove the selected collection from list.

The editor can work in one of two formats, selectable using the radio buttons.
These formats affect how the user accesses the information contained in the
collection. In Figure 35 on page 56 there is an example showing how a
collection is organized in the Dialog format. Figure 36 on page 57 shows the
same collection in the Text format.

The Dialog format is useful in most cases and is easier to use than the Text
format, but the Text format can compose more complex rules.

Chapter 4. The Collection Facility 55

Figure 35. Collection in Dialog Format

56 NetView for AIX V4 Examples

Figure 36. Collection in Text Format

4.4 Using the EUI to Create a New Collection
To open the Collection Editor using the NetView for AIX pull-down menu select
Tools→Collection Editor. Click on Add to add a new collection to the collection
list. The Add Collection dialog box can be seen on Figure 37 on page 58.

Name Add a name for the new collection. It will be used in all
references to the collection, like delete or modify. The
name must be different of all other names in the collection
list.

Description Used to add meaningful comments, related to the
collection resources.

Chapter 4. The Collection Facility 57

Not, And and Or Set the logical operation among the descriptions.

Modify Add or modify the definition type, opening the Modify
Definition dialog box.

Delete Clear the definition field.

Test Used to verify if the collection has the correct elements,
according to the definitions and the logical expression.

Figure 37. Adding a New Collection Using the Collection Editor

The following sections will show some examples of how to create a definition.

58 NetView for AIX V4 Examples

4.4.1 Creating a Subnet Collection
The subnet collection is a set of all resources of a particular IP subnetwork. To
create it, follow these steps:

 1. Open the Collection Editor and select Add .

 2. Enter the name and description of the new collection.

 3. Select Modify in the Definition 1 field. The Modify Definition dialog box will
appear.

 4. Choose Subnet in the Definition Type menu. Figure 38 shows the Modify
Definition dialog box after selecting the subnet option.

Figure 38. Creating the Subnet Collection

 5. Notice that the subnet address that you enter must include all four elements
(9.24.104.0 in our class C subnet example). If you are unsure of what to
enter, you may wish to click on Calculate to help you. It calculates the
address based on an IP address and a mask. Figure 39 on page 60 shows
an example of how to use it.

Chapter 4. The Collection Facility 59

Figure 39. Calculating a Subnet Based on an IP Address

The Test button can be used to see all resources that match the collection
definition before its creation. It is very useful to verify each step when
creating a complex definition. Figure 40 on page 61 shows the result of this
collection after selecting Test.

60 NetView for AIX V4 Examples

Figure 40. Result Obtained for the Subnet Using Test Button

 6. Select OK to add the new collection to the collection list.

4.4.2 Creating a Node List Collection
This option is an easy way to create a collection based on the objects selected
on the map. If desired, an object can be directly inserted into the list, by clicking
on the Add button.

To put the selected objects into the collection List of Nodes, do the following:

 1. Select all desired objects from the NetView for AIX submaps, as show in
Figure 41 on page 62 (you can select multiple nodes by holding down the
Ctrl key while you select them with the left mouse button).

 2. Start the Collection Editor. .

 3. Select Add to insert a new collection in the collection list.

 4. Enter the name and description of the new collection.

 5. Click on Modify to pop-up the Modify Definition dialog box.

 6. Select Node List in the Definition Type menu. The dialog box changes to the
format showed in Figure 42 on page 63.

Chapter 4. The Collection Facility 61

 7. Select Add From Map to include all selected objects from all submaps into
the List of Nodes.

 8. To remove a node from the list, select it from the list and click on Delete .

Figure 41. Objects Selected on Map

62 NetView for AIX V4 Examples

Figure 42. List of Objects in the Modify Definit ion Dialog Box

4.4.3 Creating an Attribute Collection
The Attribute collection option has a wide scope of definitions and can be used
to create a more complex expression to select specific resources. Any fields in
the NetView for AIX object database may be used to define the collection rule.
This includes not just the standard fields that are provided by NetView for AIX,
but also any fields of your own that you may wish to define.

We will illustrate the way that Attribute-based collections work by means of an
example. In this case we will create a collection containing all hubs and all
workstations. To create this collection, do the following:

 1. Start the Collection Editor by selecting Tools→Collection Editor from the
menu bar.

 2. Click on Add to begin editing a new collection.

 3. Enter the name and the description of the new collection.

 4. Select Modify in the Definition 1 field. The Modify dialog box will pop up.

 5. Change the Definition Type to Attribute . Figure 43 on page 64 shows the
Modify Definition dialog box format.

Chapter 4. The Collection Facility 63

Figure 43. Attribute Format for Modify Definit ion Dialog Box

 6. Select isHub in the Object Attributes list.

 7. Select True for the Boolean value.

 8. Click on OK .

 9. Select Test to see all hubs of this network. Figure 44 on page 65 shows the
result we obtained.

64 NetView for AIX V4 Examples

Figure 44. Collection of A l l Hubs

10. Click on Close to close the list of nodes.

11. Click on the Modify push button in the Definition 2 field. The Modify
Definition dialog box will pop-up.

12. Select isWorkstation in the Object Attributes list.

13. Select True for the Boolean value.

14. Click on OK .

15. Select the Or radio button between Definition 1 and Definition 2.

16. Select Test to see the result. Figure 45 on page 66 shows the resulting list
of nodes.

Chapter 4. The Collection Facility 65

17. Click on Close .

18. Select OK to create the collection and add it into the collections list.

Figure 45. Collection of A l l Hubs and Workstations

We can see the same list in a graphical way by going to the Collections submap
(under the Root submap) and selecting our new collection. The result is shown
in Figure 46 on page 67.

66 NetView for AIX V4 Examples

Figure 46. Collection of A l l Hubs and Workstations Submap. Notice that the status colors are automatically
propagated to this map.

4.5 The Collection APIs
The API calls allow programs to add, delete, modify and verify contents of
collections in the collections list. A notification method is also available for
programs to register for changes to a collection.

The Collection Facility is composed of a new daemon and library. The daemon
manages collections and rules and is called nvcold. The library contains the
object code of the Collection Facility API and is called libcollection.a. The
headers files that must be included on all C programs that use the Collection
APIs are:

/usr/OV/include/OV/nvCollection.h

/usr/OV/include/OV/nvCollectionErrs.h

Table 3 on page 68 summarizes the functions available and the API calls that
implement those functions. All APIs are fully documented in NetView for AIX

Chapter 4. The Collection Facility 67

Programmer ′s Reference, SC31-8165 (also provided in Dynatext for online
browsing).

Table 3. Collection Facility API Summary

Function Type API Calls

Open and close a connection to the nvcold daemon nvCollectionOpen
nvCollectionXOpen
nvCollectionDone
nvCollectionXDone

Add, Modify or Delete a Collection Rule nvCollectionAdd
nvCollectionModify
nvCollectionDelete

Obtain a list of all resources in a collection nvCollectionResolve
nvCollectionEvaluate

OR two or more collections together nvCollectionUnion
nvCollectionListUnion

AND two or more collections together nvCollectionIntersect
nvCollectionListIntersect

Get information about defined collections nvCollectionGetInfo
nvCollectionListCollections
nvCollectionGetTimestamp

List all collections that a resouce is in nvCollectionGetAllForObject

Define a routine to be called when a collection changes nvCollectionAddCallback
nvCollectionRead

Handle API Errors nvCollectionError
nvCollectionErrorMsg

Memory Management nvCollectionFreeDefn
nvCollectionFreeList
nvCollectionFreeChangeList

4.5.1 The Grammar of the Collection Rules
Programs using the APIs can work with collections previously defined using the
EUI ruleset editor. However, if you want to create new collection rules using the
API you have to provide the rule definition in text form. Collection rules defined
in this way must adhere to a defined grammar. The grammar is as follows:

IN <list of objects>
IN_COLLECTION <name of collection>
IN_SUBNET <subnet>
<field> <op> <value>

• The IN rule can be used to define a very specific collection where the
collection will be made up of the objects whose selection names are
specified in the list. If a list is provided, it needs to be enclosed in single
quotes.

• The IN_COLLECTION rule can be used to define new collections based on
the rule of an already existing collection.

• The IN_SUBNET rule can be used to define a collection of objects based on
the subnet in which the objects exist.

• The <f ie ld> <op> <value> ru le can be used to def ine a ru le based on
the fields in the object database. <op> can be one of the fo l lowing: =, !=,

68 NetView for AIX V4 Examples

< , > , < = , > = . If the <field> is composed of more than one string (for
example, SNMP sysObjectID), then it needs to be enclosed in single quotes.

In addition, the rules can be made more complex by joining simple rules with
AND, OR, !, and parenthesis. The actual keywords that can be used include
AND, &&, OR, ||, !, (,).

4.6 Practical Examples
We will now show several examples of programs that use the collections API. At
the end of the section (4.7, “The wtcoll Sample Program” on page 76) we
introduce the wtcoll sample program which brings together all of the individual
examples into one utility program.

4.6.1 Makefile
Figure 47 shows the makefile used to compile the wtcoll.c program, linking the
libraries libovw.a, libov.a and libcollection.a. All other C examples in this
chapter use a makefile exactly like this one, changing only the C program name.

INCDIRS =
LDRDIRS =
LIBS = -lovw -lov -lcollection

CC = /bin/cc

CFLAGS = -g $(INCDIRS) $(LDRDIRS)

SRCFILES = wtcoll.o

all: wtcoll

wtcoll: $(SRCFILES)
$(CC) $(CFLAGS) $(SRCFILES) -o wtcoll $(LIBS)

Figure 47. Makefile for the wtcol l Sample

4.6.2 Using the APIs to Create a Subnet Collection
The simple example in Figure 48 on page 70 shows how to create a subnet
collection using the API. It first opens the connection to nvcold, creates and
adds the collection rule, and then handles any error that may occur.

Chapter 4. The Collection Facility 69

#include <stdio.h>
#include ″ /usr/OV/include/OV/ovw_obj.h″
#include ″ /usr/OV/include/OV/nvCollection.h″
#include ″ /usr/OV/include/OV/nvCollectionErrs.h″

void main()
{
/*

collectionName - used to refer to the new collection
collectionDescription - used to describe/comment the new collection

 subnetName - used to define which subnet is the aim of the
collection

collectionRule - holds the rule used to create the collection
*/

static char *collectionName = ″myITSOsubnet″ ;
static char *collectionDescription = ″subnet on ITSO″ ;
static char *subnetName = ″9.24.104.0″;
char collectionRule [100];

 int collectionFD; /* collection file descriptor */
 int collectionConnectionFD; /* collection connection descriptor */

/* Estabilishes a connection with the Collection Facility daemon */
collectionConnectionFD = nvCollectionOpen();

/* Creates the collection rule */
strcpy(collectionRule, ″IN_SUBNET ″) ;
strcat(collectionRule, subnetName);

/* Add the new collection to the collections list */
/* It may take some CPU processing if the collection is large */
collectionFD = nvCollectionAdd(collectionName,

collectionDescription,
collectionRule,
1);

/* Verifies if the collection has been successfully created */
if (collectionFD != NV_COLLECTION_SUCCESS)
fprintf(stderr, ″Unsucessfull operation: %s\n″ ,

nvCollectionErrorMsg(nvCollectionError()));
else
fprintf(stderr, ″Collection %s created!\n″ , subnetName);

nvCollectionDone();
}

Figure 48. Example of Adding a Collection Rule Using the API

Figure 49 on page 71 shows the resulting submap under the Collections icon for
the collection myITSOsubnet created by this program.

70 NetView for AIX V4 Examples

Figure 49. Nodes in Collection myITSOsubnet

4.6.3 Using the APIs to Delete a Collection
In Figure 50 on page 72, we use the nvCollectionDelete call to show how to
remove an existing collection.

Chapter 4. The Collection Facility 71

#include <stdio.h>
#include ″ /usr/OV/include/OV/ovw_obj.h″
#include ″ /usr/OV/include/OV/nvCollection.h″
#include ″ /usr/OV/include/OV/nvCollectionErrs.h″

void main()
{
/*

collectionName - used to refer to the collection
*/

static char *collectionName = ″myITSOsubnet″ ;

 int collectionFD; /* collection file descriptor */
 int collectionConnectionFD; /* collection connection descriptor */

/* Estabilishes a connection with the Collecion Facility daemon */
collectionConnectionFD = nvCollectionOpen();

/* Add the new collection to the collections list */
/* It may take some CPU processing if the collection is large */
collectionFD = nvCollectionDelete(collectionName , 1);

/* Verifies if the collection has been sucessfully created */
if (collectionFD != NV_COLLECTION_SUCCESS)
fprintf(stderr, ″Unsucessfull operation: %s\n″ ,
nvCollectionErrorMsg(nvCollectionError()));

else
fprintf(stderr, ″Collection %s deleted!\n″ , collectionName);

nvCollectionDone();
}

Figure 50. Example of Removing a Collect ion Using the API

Figure 51 on page 73 shows the result of running this program twice: once to
delete the collection we added in the previous example and then again, thereby
generating an error message.

72 NetView for AIX V4 Examples

Figure 51. Result of Deleting a Collection

4.6.4 Using the APIs to Execute a Command on All Objects in a Collection
An important Collection Facility feature is its capability to execute operations
over each object. In this example we will show how to send a trap to each
object, using a script file and a C program. We have left some functions to be
executed in the script file to gain more flexibility by allowing us to re-use the C
program in other examples.

First, the C program extracts all object IDs from the collection using
nvCollectionResolve. This is shown in Figure 52 on page 74.

Chapter 4. The Collection Facility 73

#include <stdio.h>
#include <OV/ovw.h>
#include <ctype.h>

#include ″ /usr/OV/include/OV/ovw_obj.h″
#include ″ /usr/OV/include/OV/nvCollection.h″
#include ″ /usr/OV/include/OV/nvCollectionErrs.h″

 #define EVALUATE 0
 #define RESOLVE 1

/*
Function Prototypes

*/

OVwObjectIdList *getObjectIdList(char *collectionName ,
int eval_resol);

void printObjectIds(char *collectionName , int resolution);

/*
getObjectIdList - get a list of objects of a collection

char *collectionName is the name of the collection
int eval_resol - EVALUATE => evaluate the collection again

RESOLVE => only resolve the collection
*/
OVwObjectIdList *getObjectIdList(char *collectionName ,

int eval_resol)
{
int collectionConnectionFD; /* collection descriptor */
char *description;
char *rule;
OVwObjectIdList *objectList;

/* Estabilishes a connection with Collecion Facility daemon */
collectionConnectionFD = nvCollectionOpen();

if (eval_resol == RESOLVE)
/* resolve for collection name */

objectList = nvCollectionResolve(collectionName);
else
{

/* find collection rule */
nvCollectionGetInfo(collectionName, &description, &rule);

/* and evaluates the collection */
objectList = nvCollectionEvaluate(rule);

}

free(description); /* Free memory */
free(rule); /* Free memory */

 nvCollectionDone(); /* Close connection with the
Collection Facility daemon */

return objectList;
}

/*
printObjectIds - print the id of all objects

in a collection
*/
void printObjectIds(char *collectionName , int resolution)
{
int count = 0;
OVwObjectIdList *objList;

/* Get the object list */

Figure 52 (Part 1 of 2). Example of Listing the Resources in a Collection Using the API

74 NetView for AIX V4 Examples

objList = getObjectIdList(collectionName, resolution);
/* print all the objectIds */
for (count = 0 ; count < objList->count ; count++)
fprintf(stdout, ″%d\n″ , objList->object_ids[count]);

/* Free the object list */
OVwDbFreeObjectIdList(objList);

}

/*
main function

*/
void main(int argc , char **argv)
{
char collectionName[512];

OVwDbInit();

strcpy(collectionName, ″myITSOsubnet″) ;

printObjectIds(collectionName, RESOLVE);
}

Figure 52 (Part 2 of 2). Example of Listing the Resources in a Collection Using the API

The program in Figure 52 on page 74 was called wtcoll4. We invoked it from the
shell script shown in Figure 53.

#!/bin/ksh

For all objects in wtcoll4, do
for i in `wtcoll4`
do
Get the Selection Name using the Object Id
Select only the host name, without the ″.″ extensions
For example, rs60002.itso.ral.ibm.com will be changed to rs60002

export host=$(ovobjprint -o $i |grep Selection | \
awk ′ {gsub (/″ / , ″″) ; print $4}′ | \
awk ′ {gsub (/\./, ″ ″); print $1}′)

Shows the host name
echo Sending trap to $host

Execute the command: send a trap
/usr/OV/bin/snmptrap $host .1.3.6.1.4.1.2.6.3.1 $host 6 58916864 0\
1 integer 14 2 octetstring $host 3 octetstring ″Command Received″

done

Figure 53. Shell Script that Invokes the wtcol l4 Program

The script is a simple loop that executes two commands for each node in the list
returned by the wtcoll4 program.

 1. It uses the ovobjprint command to extract the Selection Name attribute from
the database. ovobjprint extracts all the field information from the database.
The awk command is then used to extract the desired string. This step could
be done in the C program, but using the object ID and the ovobjprint
command inside the script gives us more flexibility to choose any object
attribute we want.

 2. The selection name is then used to send a trap, using the snmptrap
command.

Figure 54 on page 76 is the submap with all objects of myITSOsubnet and the
event received in the events application.

Chapter 4. The Collection Facility 75

Figure 54. Nodes in Collection myITSOsubnet and Trap Received in rs60002

4.7 The wtcoll Sample Program
We brought together several of the collection facility API functions into a
program called wtcoll . wtcoll is a useful utility that allows you to perform a
number of operations on NetView for AIX collections from a command line.

The functions available from wtcoll are as follows:

76 NetView for AIX V4 Examples

• List all objects in a collection.

You specify the collection name and wtcoll will resolve the collection and
print a list of the objects in it.

• Create an object database field for all objects in a collection.

The program will create a string field in the object database and place a
value you specify into it for all the nodes in the collection.

• Update an object database field for all objects in a collection.

• Delete a collection.

You specify the collection rule name and wtcoll will remove it.

• Check whether a node is a member of a given collection.

You tell wtcoll the node selection name and the name of the collection. We
show several uses for this function in Chapter 7, “Using the Collection
Facility with Event Rulesets” on page 171.

You can find a listing of the the source code for wtcoll.c in Appendix B, “C Code
for the wtcoll Sample Program” on page 259. Instructions on how to get a copy
of the source code by anonymous FTP are printed in Appendix A, “How to
Obtain the Samples in this Book” on page 257.

Chapter 4. The Collection Facility 77

78 NetView for AIX V4 Examples

Chapter 5. Introducing NetView for AIX Event Rulesets

When people enter the world of systems management the first question they
usually want answered is “what is happening out there?” They want to know
about any significant event that may affect them, as it happens. Almost every
system environment provides some kind of mechanism for this. At the simplest
level, operating systems and applications provide messages and logs. As
systems become more complex and distributed there is a desire to filter these
event messages and bring them together to a central management function.

In general, you want to design a management system that can bring together
event messages from different hardware and software sources. For this reason
it is important to develop a standard to define how the messages should be
packaged and delivered. Fortunately, you do not have to go through this process
yourself since network management architectures provide ready-made
definitions. For example, SNA has generic alerts and SNMP has traps.

Traps and alerts are normally thought of as things that carry bad news. That is,
some kind of alarm message. However it could equally well be good news. For
example it is important to know that a resource has failed, but equally important
to know that it has subsequently returned to good health.

NetView for AIX provides a variety of facilities for handling management events.
With Version 4, those facilities are made stronger by a package of functions
called Event Stream Enhancements. InChapter 6, “Examples of NetView for AIX
Rulesets” on page 85 we show several examples that exploit event stream
enhancements. Before we discuss the examples in detail, we will review the
way that NetView for AIX handles events and the modifications that Version 4
has made.

5.1 Events in NetView for AIX
NetView for AIX is primarily an SNMP manager, so it is no surprise that the
events that flow through it are packaged as SNMP traps. These traps come from
several sources, namely:

• From SNMP agents running on distributed systems

• From status monitoring processes (which may be within NetView for AIX or
on distributed Mid-Level Manager agents)

• From threshold monitoring processes (which may be within NetView for AIX
or on distributed ″smart″ agents, such as IBM Systems Monitor or RMON
agents)

Normally, SNMP nodes do not offer much unsolicited event information and
therefore the number of events from the latter two sources is far greater than the
number of traps received directly from SNMP agents.

 Copyright IBM Corp. 1995 79

5.1.1 A Review of SNMP Traps
The trap is the only SNMP protocol data unit (PDU) that flows unsolicited from
the agent to the manager. All the other exchanges are initiated by a request
from the manager. The objective of the trap is to convey alarm information from
the agent. In the original conception of SNMP, the trap was expected to be used
to tell the manager of a problem but not to carry fully-detailed information. The
rationale for this is that the manager can determine the details using SNMP Get
requests. In fact the structure of the trap allows it to be expanded easily, and
some agents use traps to send a great deal of information.

Figure 55 shows the internal structure of the SNMP trap.

┌─────────────┬──────────────┬────────────┬───────────┬────────────┬─────────────┐
Trap Body: │ SNMP Header │Enterprise ID │Source Addr │Generic ID │Specific ID │Time │...

└─────────────┴──────────────┴────────────┴───────────┴────────────┴─────────────┘

┌─────────────┬─────────────┬───────────────┐
Variable Bindings: │ Length info │Variable OID │Variable Value │...

└─────────────┴─────────────┴───────────────┘
┌─────────────┬─────────────┬───────────────┐
│ Length info │Variable OID │Variable Value │...
└─────────────┴─────────────┴───────────────┘
.... any number of variables allowed

Figure 55. SNMP Trap Structure

You should note the following characteristics of this format:

• The Generic trap ID field identifies the basic type of trap. SNMP defines IDs
0-5 for specific purposes (such as Agent Warm Start and Authentication
Error). Generic ID 6 is reserved for Enterprise Specific traps. Most of the
traps that you see in NetView for AIX fall into this category.

• For enterprise specific traps, the combination of Enterprise ID and Specific
trap ID uniquely defines the type of trap. The Enterprise ID is a MIB object
ID, usually from the private part of the MIB tree. So, for example, traps
originating from NetView for AIX itself have an enterprise ID of
.iso.org.dod.internet.private.enterprises.ibm.ibmProd.netView6000 (or
.1.3.6.1.4.1.2.6.3). The specific trap ID is just an integer. The manufacturer of
the device that originates the trap is responsible for defining what different
specific IDs mean under their enterprise ID.

• A trap may include one or more items of variable data. Each item is
packaged as a combination of a MIB object ID to identify what type of data it
is plus the value of the data itself.

5.1.2 Event Flow in NetView for AIX
There are several daemons and other processes involved in processing events
as they flow through NetView for AIX. Figure 56 on page 81 shows the
relationship between these processes.

80 NetView for AIX V4 Examples

Figure 56. NetView for AIX Event Processing Flow

In this book we will not be dealing with every aspect of the event processing
system, only with the event stream enhancements of NetView for AIX Version 4.
However, it is useful to briefly summarize what each component does:

trapd This daemon receives SNMP traps from remote SNMP agents and
also events that are generated internally by other NetView for AIX
components. Notable sources for such events are netmon (which
generates events each time it detects some change in any IP
resource status) and snmpCollect which generates events whenever a
MIB threshold is exceeded or re-armed. The trapd daemon
processes events based on records in the /usr/OV/conf/C/trapd.conf
file. The things defined here are:

• Text format for the event - what is to appear on the event display
and in the log.

• Category and severity of the event.

• Whether to display the event or only to log it. The trapd daemon
logs all events it receives in /usr/OV/log/trapd.log.

• Whether to perform some automated action when the event
occurs.

ovactiond This daemon executes the automatic commands defined in trapd.conf.
Any AIX program or shell script can be invoked.

pmd This daemon, the postmaster daemon provides the XMP API for OSI
CMIP applications to use. It merges events generated through XMP
with the trapd event flow.

Chapter 5. Introducing NetView for AIX Event Rulesets 81

ovesmd This is the sieve agent. It provides a filtering capability so that
applications can register with it to receive a filtered event flow. This
function has been superseded by the event stream enhancements
application registration facility, but it is still used by the tralertd
daemon to generate SNA alerts from NetView for AIX events.

nvcorrd This daemon is the correlation engine. It processes the event stream
from trapd and applies the correlation rules to it. This is the heart of
the event stream enhancements, and we will discuss it in detail in
5.1.3, “What Are NetView for AIX Version 4 Event Stream
Enhancements?.”

nvserverd/nvevents nvevents is the display application that each user runs to
display events as event cards or in a list form. NetView for AIX
Version 4 allows users to be distributed to different client machines.
nvserverd is the daemon on the NetView for AIX server that routes
the event flow to the nvevents clients and also provides
communication between them.

actionsvr/nvpagerd If a ruleset being processed by nvcorrd calls for a command
to be run, this daemon executes it. Any AIX program or shell script
can be automatically executed in this way. Invoking a call to an
alphanumeric pager is a special case of a ruleset action. It is the
nvpagerd daemon that initiates the call.

5.1.3 What Are NetView for AIX Version 4 Event Stream Enhancements?
At the start of this chapter we said that the first thing we want to do is to bring
together network and system events in one place in a consistent format. Once
this has been done, we want a management application to work for us in
categorizing, filtering and adding value to the events.

We have seen how NetView for AIX achieves this, by putting external and
internal events into SNMP trap format and submitting them to a sequence of
processes. The processes available in NetView for AIX Version 3 (trapd,
ovactiond, the ovesmd filter mechanism and nvevents) provide several facilities
for handling the event stream:

• Assignment of priority and additional information

• Suppression of unwanted events, by sending them only to the log

• Automation: executing a command whenever a specific event occurs

• Viewing facilities to allow different selections of events to be seen, based on
the data within them

With Version 4, the design objective was to make this more sophisticated and
powerful, as follows:

• Correlation between different events, or the ability to treat two related events
as one trigger

• Read and write access to additional information, external to the event stream
itself (for example, the object database, MIB data, global variables)

• An override capability so that event severity and node status may be
dynamically modified

• For all of these features, the ability to trigger on and have access to any of
the information carried within the event

82 NetView for AIX V4 Examples

The NetView for AIX Event Stream Enhancements (ESE) are the outcome of this
design objective. Figure 57 on page 83 shows the components of ESE and the
connections between them.

Figure 57. Components of the Event Stream Enhancements

In Figure 57 the correlation engine is subdivided into two parts, the input
converter and the rule processor. These two functions are both performed by
the nvcorrd daemon. The nvcorrd daemon analyzes the incoming event stream
using a kind of program called a ruleset. These rulesets may be thought of as
road maps, with several routes through them. As an event progresses along any
of the routes it has to pass tests at a series of checkpoints along the road. In
ESE these checkpoints are called decision nodes.

As well as decision nodes, ESE defines a set of action nodes which, as their
name implies, cause some action to be taken. An event continues along a given
route in the ruleset until it reaches a test (decision node) that it cannot pass or
until it comes to the end of the route. As we have said, there may be many
routes through the ruleset and nvcorrd will attempt to send every event that it
receives along all of them. Clearly it is best for performance reasons to place
the most restrictive decision node at the beginning of each route through the
ruleset.

Each ruleset is stored as a single file containing definitions for the nodes and the
connections between them. However, you do not need to understand the format
of these files. ESE includes a powerful graphical ruleset editor which allows you
to draw the ruleset as a flow diagram and then save it in the ruleset file. We
show several worked examples using the ruleset editor in Chapter 6, “Examples
of NetView for AIX Rulesets” on page 85.

An application that wishes to use ruleset processing has to do two things:

• Register itself and the ruleset it wants to be processed

• Wait for events to be forwarded to it

Chapter 5. Introducing NetView for AIX Event Rulesets 83

ESE has an API which provides these functions, however in the current release
of NetView for AIX the API is not published. The only applications that use ESE
currently are:

• nvevents (the event display application). In fact it is the server component,
nvserverd, that opens the interface (see Figure 56 on page 81). The
nvevents application allows you to create dynamic event workspaces with
rulesets applied to them.

• actionsvr. This daemon executes automatic commands when they are
invoked within a ruleset by an Action or Pager node. In fact, actionsvr
performs this function for any application, so if you activate a dynamic event
workspace and the ruleset includes an Action node, it will be executed by
actionsvr. You can also register rulesets that only perform automated
actions by updating a configuration file.

84 NetView for AIX V4 Examples

Chapter 6. Examples of NetView for AIX Rulesets

In this chapter we will explore the capabilities of NetView for AIX Version 4 event
stream enhancements through the use of examples. We will show how to
operate the Ruleset Editor and construct flow diagrams called rulesets. Our
intention is to demonstrate the wide range of functions offered. In later chapters
(Chapter 4, “The Collection Facility” on page 53 and 6.3, “Combining ESE
Rulesets” on page 166) we will show how rulesets can be combined together
and how they can be used in conjunction with other features of NetView for AIX
Version 4.

Each example is described in a step-by-step format. However, to avoid
repetition we cover the mechanics of ruleset creation in more detail in the first
examples than in later examples. First we will give a short introduction to the
Ruleset Editor. You will find the worked examples themselves in 6.2, “Examples
Using the Ruleset Editor” on page 91.

6.1 Understanding the Ruleset Editor
The Ruleset Editor is available by selecting Tools →Ruleset Editor from the
NetView for AIX menu bar, or by dragging the Ruleset Editor icon from the tool
bar and releasing it anywhere on the screen. Two windows will appear on the
screen: The Template Window and the Ruleset Work Area, as shown in
Figure 58 on page 86.

 Copyright IBM Corp. 1995 85

Figure 58. The Ruleset Editor′s Init ial Appearance

The Template window contains all the possible templates of nodes what can be
added to the Ruleset Work Area. To add a node to the Ruleset area, simply drag
a template from the Template window into the work area.

A brief description of each type of template is listed inTable 4 .

Table 4 (Page 1 of 3). Ruleset Editor Templates. Decision nodes control whether an event proceeds further
into the ruleset. Action nodes invoke some asynchronous or synchronous action.

Template Node Type Description

Action Action Specifies the action to be performed when an event
is forwarded to this node. For example, you could
use this node to execute the /usr/OV/bin/ovxecho
command to display a dialog window. The action
defined is performed by the actionsvr daemon, as
we discussed in 5.1.3, “What Are NetView for AIX
Version 4 Event Stream Enhancements?” on
page 82.

Block Event Display Action Causes the event not to be forwarded (if the default
action is to forward it).

86 NetView for AIX V4 Examples

Table 4 (Page 2 of 3). Ruleset Editor Templates. Decision nodes control whether an event proceeds further
into the ruleset. Action nodes invoke some asynchronous or synchronous action.

Template Node Type Description

Check Route Action Checks for communication between two network
nodes and forwards the event based on the
availability of this communication. For example, you
can use this node to check the path from the
Manager to a device before forwarding a node down
trap.

Event Attributes Decision Compares any attribute of the incoming event to a
literal value. For example, you can use this node to
check for events generated by a particular device.

Forward Action Forwards the event to applications that have
registered to receive the output of the ruleset. For
example, when the registered application is
nvevents, you must use the Forward node if you
want to display the event.

Inline Action Action Specifies an action to be performed. Unlike the
Action node, which always executes the action under
the actionsvr daemon, the Inline Action executes
under the main ruleset processing daemon, nvcorrd.
Subsequent ruleset nodes wait for the action to
complete (or for a timeout to expire).

Override Action Overrides the object status or severity assigned to a
specific event and updates the Events Display
application. For example, you can use this node to
change the severity to Major when a node down
event is received for a router. Use this node with
the query database field node to override status or
severity for specific device types.

Pager Action Issues a call to a pager that has been defined in a
NetView for AIX user profile.

Pass on Match Decision Compares attributes between two events. You can
use this node to check for two events that have
something in common, for example, two events
generated by the same node in the network.

Query Database Field Decision Compares a value from the NetView for AIX object
database to a literal value or to a value contained in
the incoming event. For example, you can use this
node to check if the originating device is a router.

Query Global Variable Decision Queries the value of the global variable that has
been previously set using the Set Global Variable
node.

Reset on Match Decision Delays an event until either a timer has expired or
an event with matching attributes occurs. You can
use this node to check for two events that have
something in common, for example, two events
generated by the same node in the network.

Resolve Action Forwards a message to all registered applications
indicating that a previous event has been resolved.
You can use this node to delete an event card from
the events display application when an subsequent
event is received.

Set Database Field Action Sets the value of any NetView for AIX object
database field.

Chapter 6. Examples of NetView for AIX Rulesets 87

Table 4 (Page 3 of 3). Ruleset Editor Templates. Decision nodes control whether an event proceeds further
into the ruleset. Action nodes invoke some asynchronous or synchronous action.

Template Node Type Description

Set Global Variable Action Sets a variable for use within the ruleset itself. For
example, use this node to set a flag whose value will
be checked later in the ruleset using the query
global variable node.

Set MIB Variable Action Issues an SNMP SET command to set the value of a
variable in the MIB representing any network
resource. For example, you can use this node to
dynamically change the configuration of a LAN hub
device.

Set State Action Sets the correlation state of an object in the NetView
for AIX object database. The current state is
updated in the corrstat1 field in the object database,
and the previous value in the corrstat1 field is
moved to the corrstat2 field. This process continues
until the current state and as many as four previous
states are stored in the object database. You can
view the correlation state by selecting the object
and then selecting the Display Correlation Status
option from the context menu.

Thresholds Decision Checks for repeated occurrences of the same trap or
of traps with an attribute in common. You can use
this node to forward an event after receiving the
specific number of the same event received within a
specific time period. Use this node with the Trap
Settings node to identify a specific trap number.

Trap Settings Decision Specifies a specific trap to be processed and is
identified by a pair of generic and specific trap
numbers.

The ruleset work area is like an canvas upon which you can draw your ruleset.
When it is first initialized it contains the Event Stream node (which looks exactly
like a pizza). This node represents all events passed to nvcorrd by the trapd
daemon. If you double-click on this node you will be prompted for the default
behavior for the ruleset you are constructing (see Figure 59 on page 89). If you
set this to Pass, all events will be forwarded to the registered application unless
you place a Block Event Display node to prevent them.

88 NetView for AIX V4 Examples

Figure 59. Defining Default Event Behavior

The Ruleset work area window provides you with several menu bar functions
that are useful in editing your rulesets. There are 3 items: File, Edit, and New.

The menu items available under File are:

New Create a New RSFile.

Insert Read an existing ruleset and insert it into the current ruleset. We will
describe this option in more detail in 6.3, “Combining ESE Rulesets”
on page 166.

Open Open a previous created RSFile.

Save Save a RSFile.

Save as Save a RSFile with a new name.

Delete Delete a RSFile.

Exit Exit from Ruleset Editor.

The menu items available under Edit are:

Connect two Nodes Connect two different nodes with an arrow.

Delete node Select a node and delete it.

Delete line Select a line between two nodes and delete it.

Refresh Layout Redraw the ruleset and rearrange the nodes.

Unselect ... Unselect all the graphical symbols.

Reset Cursor Reset the cursor layout (useful if you select an operation
and then decide not to complete it).

Delete Selected .. Delete all the selected graphical symbols.

Chapter 6. Examples of NetView for AIX Rulesets 89

The menu items available under New are another means by which the templates
can be accessed. Each menu item corresponds to a template which is also
available in the Templates window.

90 NetView for AIX V4 Examples

6.2 Examples Using the Ruleset Editor
There are eleven ruleset examples in this section. Table 5 summarizes them.

Table 5. Summary of the Ruleset Examples

Example Ruleset Nodes Used Description

6.2.1, “Clearing
Outstanding Events via
Correlation” on page 92

Trap Settings, Pass on
Match, Resolve, Block
Event Display

This example looks for interface and node Up events
that match a previous Down event. If a match is
found, the Down event is removed from the
nvevents display and the Up event is suppressed.

6.2.2, “Suppressing
Events by Setting
Thresholds” on
page 101

Trap Settings,
Thresholds, Forward,
Action

This example checks for repeated performance
threshold events and suppresses them if they are
occurring at less than a given frequency.

6.2.3, “Using Thresholds
in Combination with
Correlation” on
page 108

Trap Settings,
Thresholds, Pass on
Match, Forward, Action

This example performs suppression in a similar way
to the previous example, unless two types of
performance error are being reported by the same
managed node.

6.2.4, “Automated
Paging and E-Mail
Notif ications” on
page 112

Trap Settings, Event
Attributes, Pager, Action

This example checks for a node down event from a
specific router and generates a paging request and
an e-mail message.

6.2.5, “Using Traps to
Override Status Color
and Severity” on
page 118

Trap Settings, Override,
Query Database Field

This example overrides the status (and hence the
symbol color) of a node as a result of a threshold
trap being received. It also shows how to override
the severity of an event based on the contents of an
object database field.

6.2.6, “Sett ing
Correlation States” on
page 124

Trap Settings, Event
Attributes, Set State,
Query Database Field,
Overr ide

This example uses the correlation state fields in the
object database to keep track of an automatic
recovery process.

6.2.7, “Setting Database
Fields” on page 133

Trap Settings, Event
Attributes, Set Database
Field, Override, Forward

This example changes the value of an object
database field based on the contents of traps sent
by NetFinity.

6.2.8, “Setting Global
Variables” on page 140

Trap Settings, Set
Global Variable, Query
Global Variable, Action,
Forward, Thresholds

This example determines whether to display a trap
from an application based on whether the underlying
communications are active.

6.2.9, “Setting MIB
Variables” on page 147

Trap Settings, Set MIB
Variable, Forward,
Action

This example uses a SNMP set request to modify a
Systems Monitor agent polling frequency when a
threshold is exceeded.

6.2.10, “Using Rulesets
to Supplement Event
Capabilit ies of Another
Manager” on page 151

Trap Settings, Event
Attributes, Pass on
Match, Action, Forward

This example shows how a ruleset can be devised to
cause automated interactions with another
management platform, in this case, NetFinity.

6.2.11, “Suppressing
Events for Interfaces
That Are
Administrat ively Down”
on page 162

Trap Settings, Query
Database Field, Inline
Action, Block Event
Display

This example shows how to use an Inline Action as a
way to test for information that is not in the trap and
thus control the process flow.

In each example we show a flow diagram to illustrate the processing that we
want the ruleset to perform. The flow diagrams have been added for clarity, but
we found it a very useful design aid to draw out such diagrams whenever we
were contemplating creating a new ruleset.

Chapter 6. Examples of NetView for AIX Rulesets 91

6.2.1 Clearing Outstanding Events via Correlation
In most network operation centers, operators are not interested in problems that
have already been solved. At the very least, they do not want to mistake solved
problems with outstanding problems. ESE′s correlation feature provides an easy
way to clear solved problems from NetView for AIX′s event display automatically.
In this example we will show how you can clear a Node Down event from the
event display if a Node Up event arrives for the same node in a defined interval
of time. We will take the same actions for the Interface Down and Interface Up
traps.

Figure 60 displays a flow of what we want to obtain with this ruleset.

Figure 60. Flowchart of Correlation Example

6.2.1.1 Constructing the Ruleset
 1. Before we add other nodes we wil l want to configure the default behavior. Do

this by double-clicking the event stream node as shown in Figure 59 on
page 89. We want all events to appear, unless our ruleset explicitly
prevents them, so we choose the default setting of Pass.

 2. The next step is to identify the first of two traps that we wish to correlate.
Thus, we will drag the Trap Settings icon and release it on the ruleset
window. Another window appears (as shown in Figure 61 on page 93) and
in this new window we will identify the Node Down trap by selecting the
following settings:

92 NetView for AIX V4 Examples

Enterprise Name netview6000

Event Name IBM_NVDWN_EV

Specific Specific 58916865

The trap description appears when you choose the event name from the list
of defined events.

Figure 61. Identifying the Node Down Event

 3. Click on OK to complete the first node of the ruleset.

 4. Now connect the Event Stream node to the one you have just created by
selecting Edit→Connect Two Nodes from the menu bar. Your mouse pointer
will change to a connection icon. Now click on the Event Stream node first
and then on the Trap Settings node (the order is important, because the
direction of flow is from the first to the second node selected).

 5. Now we have to add the node for the Node Up Event in the same way. To
accomplish this, first click on the Event Stream node and then repeat steps
1-3, but this time use the following settings:

Enterprise Name netview6000

Event Name IBM_NVNUP_EV

Specific Specific 58916864

Chapter 6. Examples of NetView for AIX Rulesets 93

Because we first selected the Event Stream node this new node should be
automatically connected to it. Hence, we obtain a ruleset like that displayed
in Figure 62 on page 94.

Figure 62. Adding the Trap Settings Node for the Node Up Event

Automatic Node Connections

In this step we saw that the ruleset editor automatically connected two
nodes together with an arrow. If you have an existing node selected in
the editor, it will add an arrow from that node to the node you are
currently adding. This makes your job easier because you have one less
step to perform. However, it may happen that you have a node selected
without intending to. In that case, you will get a connection added that
you did not want. You have to remove the incorrect connection, by
clicking on Edit → Delete Line and add the correct one.

 6. Now drag the Pass on Match icon to the work area. You will see a dialog
box like that presented in Figure 63 on page 95. You may also see a dialog
box titled Multiple Input Node. Ignore this second box for now and complete
the Pass on Match dialog. This dialog is asking you which attributes of the
first and second trap you want to compare. In this case you only want to do
special processing for the second (Node Up) trap if you have previously
received a Node Up trap for the same node. If this trap had come from a
remote node, the attribute to compare would have been the trap origin.
However, the Node Up and Node Down traps are in fact created by NetView
for AIX itself (specifically the netmon daemon). The affected node is
therefore a variable in the trap. In the dialog box, select the number 2 into
both the Event 1 Attribute and Event 2 Attribute fields and leave the
Comparison Type set to Equal To. This means that we want to determine if
the second variable in each trap is the same. For NetView traps, the second
variable contains the hostname or IP address of the node that the trap is
concerned with.

94 NetView for AIX V4 Examples

How do you find out about the variables in a trap?

It is up to the sender of the trap to define how many variables to include
in a trap and what data to put in them. You may have to refer to
documentation from the vendor to find out these details. In the case of
NetView for AIX traps you can find out what variables are contained in
them from the Event Customization dialog (select Options → Event
Configuration → Trap Customization from the menu bar).

For this example, set the Event Retention Time to 10 minutes. This means
that the Pass on Match node will only be passed if a Node Up event arrives
within ten minutes after the corresponding Node Down event. You can think
of Pass on Match as having a short-term memory. It remembers the first
event until either the matching event arrives, or the timer expires.

Figure 63. Pass on Match Attributes Dialog

Select OK to save the Pass on Match details.

 7. Return now to the Multiple Input Node dialog box (see Figure 63). This is
asking you which trap should be considered Event 1 (that is, the first to
arrive) and which trap should be considered Event 2. Note that Event 1
initializes the correlation function and is the trap against which potential
Event 2 traps are compared. The reason the Multiple Input Node dialog box

Chapter 6. Examples of NetView for AIX Rulesets 95

was invoked when you dragged the Pass on Match node into the editor is
because of the automatic connection feature we described above.

For this example, you want to specify the Node Down trap as being Event 1,
so you will select Slot 1 when you connect Node Down to the Pass on Match
node and Slot 2 when you connect Node Up. We had Node Up selected in
this case, so we should select Slot 2 and then use Edit→Connect Two Nodes
to connect Node Down to Slot 1. Your ruleset should now look like that
shown in Figure 64.

Figure 64. After Adding the Pass on Match Node

 8. Now drag the Resolve node into the ruleset window and connect it to the
Pass on Match node. This node will act to remove the initial Node Down
trap from the workspace if an event passes the correlation conditions (that
is, if the corresponding Node Up trap arrives before the end of the ten
minute retention period).

 9. Finally, we must decide what to do with the Node Up event. When we
started we set the default behavior to pass events, so the Node Up will
normally always appear. As we are removing clutter from the event display
by removing the Node Down event, it seems reasonable also to not display
the Node Up (unless they occur more than ten minutes apart). We do this by
dragging the Block Event Event Display node onto the work area and
connecting it to the Pass on Match node. Your ruleset should now look like
Figure 65 on page 97.

96 NetView for AIX V4 Examples

Figure 65. Adding the Resolve and Block Event Display Nodes

10. Now we can repeat the procedure with the interface down and the interface
up traps. To accomplish this, repeat steps 1-8 setting the first Trap Setting
node (for interface down) to:

Enterprise Name netview6000

Event Name IBM_NVIDWN_EV

Specific Specific 58916867

And the second Trap Setting node (for interface up) to:

Enterprise Name netview6000

Event Name IBM_NVIUP_EV

Specific Specific 58916866

Now your entire Ruleset should look like that presented in Figure 66 on
page 98.

11. You should now save your ruleset via the Save As function available under
the File menu option. For our purposes we named this ruleset correlation.rs
(see Figure 66 on page 98).

Chapter 6. Examples of NetView for AIX Rulesets 97

Figure 66. The Completed Correlation Example Ruleset

6.2.1.2 Testing the Ruleset
Now we can test our ruleset by completing the following steps:

 1. Open a new dynamic workspace that uses our new ruleset. This can be
accomplished by choosing Create->Dynamic Workspace from the main
Events display. In the dialog that comes up, fill in the fields as follows:

Workspace Title Example 1

Correlation Rule correlation.rs

Then select OK . You should now see a new Dynamic Workspace.

 2. Now we can send some test traps to determine if a ruleset is working. In our
example, we typed the following command in order to send a node down
trap for host rs600013:

event -h rs600013 -e NDWN_EV

You should now see a new event in your workspace like that shown in
Figure 67 on page 99.

98 NetView for AIX V4 Examples

Figure 67. The Node Down Event Arrives

 3. Now we can send a Node Up Event message for the same host (rs600013) by
typing the following command:

event -h rs600013 -e NUP_EV

Immediately, the previously displayed event will disappear from our
workspace like that shown in Figure 68 on page 100.

Chapter 6. Examples of NetView for AIX Rulesets 99

Figure 68. The Node Down Event Disappears After It Is Resolved

 4. A similar test can be down with the Interface Up and Interface Down traps.
You can test this by using the following commands:

event -h rs600013 -e IDWN_EV

event -h rs600013 -e IUP_EV

100 NetView for AIX V4 Examples

6.2.2 Suppressing Events by Setting Thresholds
A frequent source of event clutter in an event display are those traps that keep
repeating themselves. You may be interested in these traps but do not need to
see them as frequently as they are appearing in your display. Or, perhaps you
are not interested in the circumstances that the trap is reporting unless the trap
is being sent at a rapid rate.

One example of a method to filter repeated events is provided by the NetView for
AIX Data Collection and Thresholding function. This is a built-in application that
polls for MIB data and compares it with a threshold. Data Collection and
Thresholding provides the rearm capability, as a method to filter out unwanted
″event noise″. Figure 69 shows how rearm works.

Figure 69. How the Threshold/Rearm Function Works. The rearm level is normal ly set a
little below the threshold level. In the example above, instead of six threshold events, we
would see two threshold events and one rearm event.

This rearm capability is only effective if you are monitoring counters with a high
degree of consistency. If the counter varies erratically from one sample to the
next you are likely to again be flooded with events, but now they will be
threshold events and rearm events interspersed.

You can use a different approach to this problem by using the NetView for AIX
ruleset Threshold function. This allows you to establish criteria that are based
on the frequency of a trap′s arrival in a defined interval of time.

Chapter 6. Examples of NetView for AIX Rulesets 101

In this example, we will use Data Collection and Thresholding to poll for CPU
utilization. This is a figure provided by the trapgend agent which is part of
NetView for AIX (you can distribute trapgend to any RS/6000s in your network).
The CPU utilization figure that trapgend gives is an instantaneous reading. It
therefore tends to be very erratic and using rearm just results in a large number
of threshold/rearm event pairs. See Figure 70 for an example of this.

Figure 70. Threshold/Rearm with Erratic Data. The CPU util ization figure is a snapshot,
so it can vary wildly from one sample to the next, causing a lot of threshold/rearm events.

What we want to do is only generate an alert if the threshold is persistently high.
Using a ruleset we will only display the event if it occurs five times consecutively
(specifically, we will send the fifth trap that occurs inside of six minutes). We will
also display a message on the screen if this trap is forwarded so that we can
emphasize its arrival. Figure 60 on page 92 displays a flow of what we want to
obtain with this ruleset.

102 NetView for AIX V4 Examples

Figure 71. Flowchart of Threshold Example

Figure 72 displays the ruleset that we constructed for this example.

Figure 72. Basic Ruleset Using the Threshold Function

6.2.2.1 Setting up the Threshold Monitor
 1. First we had to identify the value to monitor. The trapgend MIB reports CPU

utilization as a percentage multiplied by 100. We therefore defined a MIB
Expression that will return the true percentage figure. To do this we added
the following lines to /usr/OV/conf/mibExpr.conf:

Trapgend_CPU_util \
″% utilization, as reported by trapgend subagent, \
(Percentage CPU busy)″ \
 .1.3.6.1.4.1.2.6.4.5.1. 100 /

Chapter 6. Examples of NetView for AIX Rulesets 103

 2. We selected Tools→Data Collection and Thresholds and followed the dialog
to add a collection for our MIB expression.

 3. When specifying thresholds, we set a polling interval of one minute. We also
specified a threshold value of 50 and a rearm value of 100. The reason for
this strange rearm value is that we want to disable the rearm function, so
that we see threshold exception events for every poll where the MIB value
exceeds the threshold. We also elected to use our own trap numbers, in
place of the standard ones (we chose specific trap 1357 for the threshold,
which implies 1358 for the rearm).

 4. We configured the two new traps using the option Options→Event
Configuration→Trap Customization from the menu bar (see Figure 73).

Figure 73. Configuring the Threshold Event. The rearm event was configured in a similar way, except that we set
the event category to Log Only (we will get a rearm event with every threshold event, so we are not interested in
seeing them).

104 NetView for AIX V4 Examples

6.2.2.2 Constructing the Ruleset
We created the ruleset shown in Figure 72 on page 103 as follows:

 1. As before, the first step is to define the default behavior of the ruleset, by
double-clicking the event source node. In this case we only want to see
threshold events that pass the filter rule, so we set the default behavior to
Block (see Figure 59 on page 89).

 2. Our next step is to identify the CPU Load event. This is accomplished by
dragging the Trap Settings node into the work area and selecting the
following settings in the accompanying dialog box:

Enterprise Name netview6000

Event Name CPU_util_high (this is the name we chose when we
defined the event)

Specific Specific 1357

This node should now be attached to the Event Stream node.

 3. Next we can add the Thresholds node to the work area. Figure 74 shows the
Threshold dialog and the settings we used in this example. Note that we set
Type to At and Count to 5 because we want the ruleset to count five traps
and then forward the fifth one only if all the traps occur within a six minute
time period. Note also that we are checking that the second variable in the
trap is the same. This is the host name or IP address field (see Figure 63 on
page 95 for an explanation of this). If we did not consider the node name,
we would see every fifth threshold event, no matter which node they came
from.

Figure 74. Adding the Thresholds Node

Chapter 6. Examples of NetView for AIX Rulesets 105

 4. Next we attach a Forward node to the Thresholds node. This node will act to
display the event in the event display if it has been passed from the
Threshold node.

 5. In order to emphasize that this trap has been sent, we wil l also attach an
Action node to the thresholds node. This node will act to display a message
window on the screen. After dragging the Action node to the screen, we see
a dialog box like that shown in Figure 75.

Figure 75. Adding the Action Node

Notice that in the command to be executed we are using the environment
variable, NVATTR_2, which will contain the second variable from the trap. In this
case (as is the case for all NetView for AIX internal traps) this is the node name
of the machine that the trap is about. You can get a list of all the environment
variables available by selecting Help in the Action node configuration dialog box.
Using the `hostname`:0 construction will cause the xecho pop-up message to
appear on the hft screen of the machine running NetView for AIX.

Running Display Commands in Action Nodes

If you want to run an automated command that uses X-Windows display
functions, you need to specify the display environment, as in the example
shown here. The reason for this is that commands specified in the Action
and Inline Action nodes execute under a daemon (actionsvr and nvcorrd
respectively). They therefore do not inherit the environment variables of the
application that invoked the ruleset.

6.2.2.3 Testing the Ruleset
Now we can test our ruleset by completing the following steps:

 1. Start the threshold polling by selecting Tools→Data Collection and
Thresholds and clicking on Resume and then OK .

 2. Run a looping command on one of the machines being polled to drive up
CPU utilization. We used the lslpp command within a WHILE loop for this.

After five minutes or so, you should receive an event and see a message
displayed on your screen like that shown in Figure 76 on page 107.

106 NetView for AIX V4 Examples

Figure 76. Result of a CPU Load Trap Passing through the Threshold Ruleset

Chapter 6. Examples of NetView for AIX Rulesets 107

6.2.3 Using Thresholds in Combination with Correlation
In this example, we will combine the threshold function with the correlation
function in order to define a more specialized ruleset. This example will use the
last example as its starting point. However, we will add two important sets of
contingencies.

 1. In addition to seeing every fifth CPU load event, we wil l run a second
threshold monitor for IP interface utilization, and set up a ruleset to show an
event if this monitor generates five events within six minutes.

 2. If an interface busy event follows a CPU load event within one minute, we
will display the CPU load event regardless of the threshold settings.

The idea is that bursts of high CPU utilization and high network I/O are
acceptable, so long as they do not persist and do not occur together.

Figure 77 displays a flow of what we want to obtain with this ruleset.

Figure 77. Flowchart of Ruleset that Combines Thresholds with Correlation

108 NetView for AIX V4 Examples

The ruleset that we constructed for this example is displayed in Figure 78 on
page 109.

Figure 78. Ruleset that Combines Thresholds with Correlation

6.2.3.1 Setting up the Threshold Monitor
We followed the same procedure as for the CPU utilization monitor (see 6.2.2,
“Suppressing Events by Setting Thresholds” on page 101) except that the MIB
variable we were monitoring was IfInOctets (.1.3.6.1.2.1.2.2.1.10). We again used
a one minute polling period with a threshold value this time of 100,000 (that is,

Chapter 6. Examples of NetView for AIX Rulesets 109

we designated anything over one hundred thousand bytes per minute as a high
interface utilization).

We also created new threshold and rearm traps for this event using specific trap
numbers 1359 and 1360.

6.2.3.2 Construction the Ruleset
Use the following sequence of actions to create this ruleset:

 1. First, click on File→Save As to save the thresh.rs ruleset from the last
example with a new name.

 2. Next, to create a second set of nodes exactly like the existing ones, use
File→Include and select thresh.rs again. The Include function allows you to
combine two rulesets together, so you will now have a ruleset with the
thresh.rs nodes duplicated. You then need to modify the second Trap
Settings node. Double-click it and change the settings as follows:

Enterprise Name netview6000

Event Name IP_octets_high

Specific Specific 1359

 3. Now we can add the Pass on Match node to the work area so that it appears
as it does in Figure 78 on page 109. The values we put into the Pass on
Match dialog box are shown in Figure 79.

Figure 79. Configuring the Pass on Match Dialog

110 NetView for AIX V4 Examples

 4. The final Action node (see Figure 78 on page 109) generates a popup
window that warns that two thresholds have been exceeded together.
Figure 80 on page 111 shows the command we entered for this.

Figure 80. Configuring the Action Node for Combined Thresholds

 5. Next we can test the configuration by creating a dynamic events display with
our new ruleset, starting the threshold data collection and then creating both
high CPU and high interface utilization. An easier way to test the ruleset is
to simulate the threshold events using the following commands:

event -h ′ hostname′ -E 1357 (for the CPU trap)

event -h ′ hostname′ -E 1359 (for the interface utilization trap)

We will only get the fifth CPU load trap or the fifth interface utilization within
a minute unless an interface utilization trap follows a CPU load trap within a
one minute period. In this case a pop-up warning will be displayed.

Chapter 6. Examples of NetView for AIX Rulesets 111

6.2.4 Automated Paging and E-Mail Notifications
In the last two examples we showed how you can use the ruleset Action function
to display a message window that informs you about receiving certain traps.
While this has some merit, message windows do not have much value if you are
away from the workstation. Fortunately, NetView for AIX V4 provides the
capability to inform you about important events wherever you are. This,
combined with the logic processing in the ruleset nodes, is a powerful function
because you can automate notification on the basis of very specific criteria. In
our lab, we set up a ruleset that notified us about a particular router going down
by initiating a call to our pager and sending e-mail. Figure 81 shows the
flowchart of our automated notification ruleset. Figure 82 on page 113 shows
the completed ruleset.

Figure 81. Flowchart of Automated Notification Example

112 NetView for AIX V4 Examples

Figure 82. Complete Ruleset of Automated Notification Example

6.2.4.1 Constructing the Ruleset
We created this ruleset using the following sequence of actions:

 1. Our first step was to connect a modem. In our lab, we connected an IBM
5853 modem to our RISC machine and defined a TTY. The TTY was defined
via SMIT by progressing through the following menu options:

a. Devices

b. TTY

 c. Add a TTY

d. tty rs232 Asynchronous Terminal

e. sa1 Available 00-00-S2 Standard I/O Serial Port 2

The settings for our TTY are shown in Figure 83.

TTY tty1
TTY type tty
TTY interface rs232
Description Asynchronous Terminal
Status Available
Location 00-00-S2-00
Parent adapter sa1
PORT number s2
BAUD rate 2400
PARITY none
BITS per character 8
Number of STOP BITS 1
XON-XOFF handshaking yes
RTS-CTS handshaking no
CODESET map file sbcs
STATE to be configured at boot time available
Read Trigger 3
Transmit Buffer Count 16

Figure 83. Our TTY Settings

Chapter 6. Examples of NetView for AIX Rulesets 113

 2. NetView for AIX provides configuration files that work with pagers and
modems. For our purposes, we needed to edit /usr/OV/conf/nvpager.config
so that the paging program could work with our modem. Figure 84 on
page 114 shows a listing of our file. Although we did not have to modify it,
you may want to note that another file, /usr/OV/conf/nv.carriers, contains
information about each of the defined pager carriers. If the company that
provides your paging service is not listed you may have to modify this file to
add it.

#
GSC Paging configuration file
#
Outside Line # (p=Pause): 9p
This is any dialing that needs to be done for the attached modem to
get an outside dial tone. Numeric pager numbers as well as carrier
phone number should NOT include this. This will be dialed each time
a call is made by the modem.
Valid characters: 0123456789p
Outside Line # (p=Pause): 9p

Default Modem File: newhayes.modem
This is the modem information file that describes the initialization
needed for the attached modem and other control information specific
to each type of modem.
Default Modem File: ibm5853.modem

Default Baud Rate (300,1200,2400,4800,9600,19200,38400): 300
This is the baud rate between the computer and modem when direct-dial
numeric pagers are contacted and when the carrier′ s direct-dial DTMF
number is used for numeric pagers.
Valid values: 300,1200,2400,4800,9600,19200,38400
Default Baud Rate (300,1200,2400,4800,9600,19200,38400): 300

Default Data Bits (7,8): 7
This is the number of data bits between the computer and modem when
direct-dial numeric pagers are contacted and when the carrier′ s direct-
dial DTMF number is used for numeric pagers.
Valid values: 7,8
Default Data Bits (7,8): 7

Default Parity (N,E,O): E
This is the parity between the computer and modem when direct-dial numeric
pagers are contacted and when the carrier′ s direct-dial DTMF number is
used for numeric pagers.
Valid values: N,E,O
Default Parity (N,E,O): E

Default Stop Bits (1,2): 1
This is the number of stop bits between the computer and modem when
direct-dial numeric pagers are contacted and when the carrier′ s direct-
dial DTMF number is used for numeric pagers.
Valid values: 1,2
Default Stop Bits (1,2): 1

Default Device: tty1
This is the device that the modem is attached to. It must be in the /dev
directory. If your modem is attached to another tty port, this must be
changed.
Default Device: tty0

Figure 84. Our /usr/OV/conf/nvpager.config File

 3. Our first step was to identify exactly the circumstances under which the
notification was to take place. For this example, this entailed adding both a
Trap Setting node and an Event Attribute node so that we could identify that
it was both a Node Down trap and that the trap was reporting on a particular
router in our lab. Figure 85 on page 115 shows how we identified the trap.

114 NetView for AIX V4 Examples

Figure 85. Identifying a Node Down Trap for a Particular Router

 4. Our next step was to connect a Pager node to the Events Attributes node. In
the pager dialog, the User ID field refers to IDs that are defined in NetView
for AIX′s security system. Since we had not defined one yet, we just typed a
name in the field. When we clicked on OK , NetView determined that this
name had not been defined and put up a dialog called User Paging
Information. In this dialog, we typed in our PIN and chose our carrier from
the defined list. After selecting OK a file called
/usr/OV/security/C/Users/Craig was created. Figure 85 shows how the
paging information was configured.

Chapter 6. Examples of NetView for AIX Rulesets 115

Figure 86. Configuring Pager Dialogs

 5. Our next step was to add an action that sent e-mail. For us, this was a
simple Action node invoking the mail command. Figure 87 on page 117
shows how we added this command.

116 NetView for AIX V4 Examples

Figure 87. Adding Action for Sending Automatic E-Mail

6.2.4.2 Testing the Ruleset
We could have created a dynamic workspace to test this ruleset, in the same
way as in the previous examples. However, in this case the ruleset is simply
performing an automation function, so there is no need to involve an operator
display. We therefore want this ruleset to be registered to run in the
background, instead of being invoked by an nvevents workspace.

Follow these steps to register a ruleset for background processing:

• Place the filename of the ruleset in file /usr/OV/conf/ESE.automation (you
can register additional rulesets by adding multiple lines).

• Stop and restart the actionsvr daemon, using the ovstart and ovstop
commands.

To test the ruleset we used the event command as before (see 6.2.1.2, “Testing
the Ruleset” on page 98) specifying itso6611 as the node that was down. Within
a few seconds, our pager bleeped and showed the error message and we
received the e-mail message.

Chapter 6. Examples of NetView for AIX Rulesets 117

6.2.5 Using Traps to Override Status Color and Severity
Rulesets makes it easy to change the color-coded status of nodes on a submap
and also to change the severity of traps. This can be accomplished by using the
Override action node. In this example we show how to change the status color
for a node on the basis of threshold traps from System Monitor agents. We also
changed the severity of events based upon the type of device on which the trap
is reporting.

Specifically, we made use of a threshold that was set up to monitor the root file
system on a RISC machine. If the amount of space used exceeded 85%, a trap
was forwarded to an event workspace and the color of its symbol on the map
changed to purple (this is one of two user-defined statuses that NetView
provides). If the used space went below 85%, a rearm trap was forwarded and
the symbol changed back to green. Also, if a node down trap was received and
reported on a router, we changed the severity of the event to Major. Figure 88
displays a flowchart of what our ruleset accomplished.

Figure 88. Flowchart of Override Example

Figure 89 on page 119 displays the completed ruleset that was used in this
example.

118 NetView for AIX V4 Examples

Figure 89. Ruleset that Overrides Status and Severity

6.2.5.1 Constructing the Ruleset
The following steps describe how this rule was constructed.

 1. First, we identified the traps by using the Trap Settings function. In the upper
flow, we identified the Systems Monitor ThresholdArm trap as shown in
Figure 90 on page 120. In the middle flow we identified the Systems Monitor
ThresholdReArm trap. Finally, in the lower flow, we identified the node down
trap.

Chapter 6. Examples of NetView for AIX Rulesets 119

Figure 90. Identifying The Systems Monitor ThresholdArm Trap

 2. To the Trap Setting node for Node Down traps, we attached a Query
Database Field node. The database field we checked was isRouter which is
set to True if the node in question is a router. In this way we could
distinguish router nodes from other, less important, nodes. Figure 91 on
page 121 shows how we configured this node. Notice that the Object ID
Source field is set to 2 because Node Down is a NetView event, as we
described in 6.2.1, “Clearing Outstanding Events via Correlation” on page 92.

120 NetView for AIX V4 Examples

Figure 91. Configuring the Query Database Field Dialog

 3. To each flow, we then attached an Override node. It is with this node that
controls changes in color or severity. In the upper flow we changed the
status to User2. This means that a threshold trap will result in the node
status changing to User2 which causes the color of the symbol on the
submap to turn purple. In the middle flow, the status was changed to Normal
which means that the symbol will turn green when a Rearm trap is received.
In the lower flow, the severity was changed to Major which means that node
down events from routers will have a major severity setting instead of the
default (Indeterminate) severity. This does not affect the color of the symbol
on the submap (which will change to red as a result of Node Down anyway)
but it does change the color of the event card tab to red. Figure 92 on
page 122 displays the settings of the Override Nodes.

Chapter 6. Examples of NetView for AIX Rulesets 121

Figure 92. Setting the Override Function to Change Status and Severity

6.2.5.2 Testing the Ruleset
Since this ruleset works with different types of traps, we had to use more than
one method to generate them. To test the part of the ruleset that overrides
event severity we created simulated traps using the event command, as in the
case of several of the previous examples (see 6.2.1.2, “Testing the Ruleset” on
page 98). For the Systems Monitor events we could not easily simulate them, so
we set up a Threshold Table entry on a machine running the Systems Monitor
Mid-Level Manager, and then filled up a file system on the monitored machine to
trigger the threshold trap. We will not go into the detail of how to do this here.
Refer to IBM Systems Monitor: Anatomy of a Smart Agent (GG24-4398) for a full
description of the features of Systems Monitor and configuration examples.

We tested the ruleset by selecting it in a new dynamic workspace. The result of
the arrival of the Systems Monitor threshold event and a Node Down event for a
router is shown in Figure 93 on page 123.

122 NetView for AIX V4 Examples

Figure 93. Results of Status and Severity Overrides

Note that in this case we could not run this ruleset in the background, as we did
in 6.2.4, “Automated Paging and E-Mail Notifications” on page 112. The reason
is that the Override node only operates if the ruleset forwards the node to be
displayed by nvevents. The reason for this is that overriding of IP node status
color is achieved by updating the map database. We have seen inFigure 1 on
page 8 that the map database is updated by the end user interface processes. It
is therefore not possible to update symbol status directly from the daemon
where the rulesets are processed. This design provides some extra flexibility.
For example, you may want to highlight an event by changing the status color of
a node for one user but not for another user. If the two users have different
NetView for AIX maps open they only need to run different rulesets to achieve
this objective.

Chapter 6. Examples of NetView for AIX Rulesets 123

Changing Node Colors Without Displaying Events

There is one unfortunate side effect of the fact that the Override node only
works for events that are forwarded to nvevents. What if you want to
suppress the events from being displayed, but still update the status color of
the affected node (there is an example of this in 7.1.4, “The wtdepend Sample
Application” on page 187)? The best solution is to override both the status
color and the event severity. By setting a severity of, for example Minor, you
can then suppress the events from appearing by selecting not to display
Minor events when you create the dynamic workspace.

6.2.6 Setting Correlation States
In NetView for AIX, network objects are defined by a variety of different states
and variables. These states and variables are useful for a wide variety of
reasons and are often the point of integration for communication among
applications. ESE provides several methods to change the value of these states
and variables. In this example, we will learn about one such method called
Correlation States.

In NetView for AIX Version 4, the ruleset function includes five new object
database fields called corrstat1, corrstat2, corrstat3, corrstat4 and corrstat5.
These fields are generic string fields that can be set on the basis of trap activity
by using the Set State action node. The first time the Set State function is used,
corrstat1 is set to a user-defined value. The next time the function is used,
corrstat1 takes on the new value and passes the old value to corrstat2. This
passage of values continues to the rest of the corrstat variables with each use of
the set state function.

How would you use this function? Suppose you have some automatic process
which goes through a series of recovery steps. You could use the corrstat fields
to track the current state, plus the preceding states.

In this example, we imagine that we have an application that sends traps to tell
the operator of problems it is encountering. The application has a built-in
recovery function, so normally we are not concerned about the traps. However,
if the automatic recovery fails three times in succession we will have to
intervene manually. We will show how to use the corrstat fields to track this
process. Figure 94 on page 125 shows a flow of what we want this ruleset to
do.

124 NetView for AIX V4 Examples

Figure 94. Flowchart of Set State Example

To begin we will first define a new trap in NetView for AIX. This can be
accomplished by completing the following steps.

 1. First access the NetView for AIX Event Configuration function by selecting
Options →Event Configuration →Trap Customization from the menu bar.
Figure 95 on page 126 shows the Event Configuration window.

Chapter 6. Examples of NetView for AIX Rulesets 125

Figure 95. Event Configuration Window

 2. On this window you wil l see that we have already added the ITSO-Raleigh
experimental enterprise ID. You could use the NetView/6000 enterprise if
you want to generate your own traps. Now select the enterprise and click on
Add . This will result in the Add Event window shown in Figure 96 on
page 127.

126 NetView for AIX V4 Examples

Figure 96. Editing Event Attributes

 3. In this window we set the following attributes:

Event Name app_alert

Specific Trap Number
1

Event Category Application Alert Events

Source Character d

Event Log Message
$1 (this means: put the first variable from the trap in the
event display)

Chapter 6. Examples of NetView for AIX Rulesets 127

Now we are ready to build the ruleset for this example. The completed ruleset is
shown in Figure 97 on page 128.

Figure 97. Complete Ruleset for the Set State Example

This ruleset was constructed by completing the following steps:

 1. First we set the default behavior for the ruleset by double-clicking the event
stream node (see Figure 59 on page 89).

 2. Next we identify our trap with a Trap Settings node.

 3. We then want to detect whether the trap being sent is a failure message or a
recovery message. The application in this case always sends the same trap,
with the meaning contained in the text of the first variable. This means that
we use Event Attributes nodes to test, not the total message, but a word from
within that message. The first Event Attributes node looks for the second
word of the variable to be ″failed″ and the second looks for ″recovered″.
This is illustrated in Figure 98.

Figure 98. Adding the Event Attributes Nodes

In this dialog, we set the following fields:

128 NetView for AIX V4 Examples

Attribute 1.2 (meaning that we will compare the second word of the
first variable inside the trap)

Comparison Type Equal To

Value failed or recovered

 4. We then add Set State nodes to set the value of corrstat1 to Failed or
Resolved, depending on which message type we detected. Figure 99 shows
how to configure these nodes. Note that the Object ID Source field is set to
Origin. This means that the ruleset processor will try to update the corrstat1
field in the object database record for the node from which the trap came.

Setting the Origin ID

Several of the ruleset nodes ask you to specify an Object ID Source. This
specifies the object database record that it will refer to. For events that
come from NetView for AIX itself, or from the Systems Monitor Mid-Level
Manager the object node is a variable in the trap, usually variable 2. For
traps that actually originate directly from a managed node, as in this
case, the trap Origin should be chosen.

Figure 99. Adding the Set State Nodes

 5. Finally we want to check to see if the application failure message has
occurred three times in a row and if so, take some action. Each time we
update corrstat1 using the Set State node, the previous value is moved into
corrstat2 (and the previous value of corrstat2 is passed into corrstat3, etc.).
To perform our test we therefore need to check corrstat2 and corrstat3. The
Query Database Field node allows us to do this. Figure 100 on page 130
shows the configuration for this and also the Override node which will set
the status of the affected node to User2 and the severity of the event to
Major.

Chapter 6. Examples of NetView for AIX Rulesets 129

Figure 100. Checking for Repeated Failures

6.2.6.1 Testing the Ruleset
 1. First, we opened the workspace with the correct ruleset file.

 2. Then, we sent the application alert traps. We used a locally-written OS/2
program to generate a simple trap (you can get a copy of this program via
anonymous FTP, see Appendix A, “How to Obtain the Samples in this Book”
on page 257 for details). We could equally well have used the snmptrap
command provided by NetView for AIX or Systems Monitor for AIX to
generate the trap from AIX.

 3. The result of sending a failure event, followed by a recovery event followed
by three failure events is shown in Figure 101 on page 131.

130 NetView for AIX V4 Examples

Figure 101. The Workspace after Application Event Stream

 4. We can also check to see if the value for corrstat1 was set. This can be
accomplished by selecting the node on the map and clicking on
Edit->Modify/Describe->Object... from the menu bar and then selecting
General Attributes and clicking on View/Modify . The resulting Object
Attributes window is shown in Figure 102 on page 132.

Chapter 6. Examples of NetView for AIX Rulesets 131

Figure 102. The Object Attr ibute Window

132 NetView for AIX V4 Examples

6.2.7 Setting Database Fields
As we saw in the last example, event rulesets allow you to set the special
purpose database fields, corrstat1 through corrstat5. They also provide the
ability to set other database fields. This is a powerful function because not only
can you set fields that are already defined in the database, but you can also set
fields that you have defined yourself with field registration files or using NetView
for AIX APIs. We used this function to set a field that we created ourselves. The
field we created was defined according to information contained in a NetFinity
trap. If we received a trap from NetFinity that reported that a NetFinity manager
was offline, our field, called nfstatus, was set to express this state. This field
was then changed to Online if the manager was reported to be back online.
Figure 103 displays a flowchart of what we defined with this example.

Figure 103. Flowchart of Setting Database Fields Example

Our first step for this example was to create a database field. The easiest way
to do this is to create a field registration file in directory /usr/OV/fields/C and
then run command nv6000 -fields . This procedure is described in NetView for
AIX Programmer ′s Guide, SC31-8164 (also available as one of the NetView for
AIX online books).

In our case, however, we elected to use the NetView for AIX ovwdb API to create
the field. This turned out to be a relatively straightforward procedure. The
following steps were needed to add the field:

 1. We wrote and compiled a small C program that allows you to add a field by
issuing a simple command. The program is shown in Figure 104 on
page 134.

Chapter 6. Examples of NetView for AIX Rulesets 133

/*---
crea_set_field.c
Program to create and set a field value to something
Arguments: name of the object, name of the field, value of the field

--*/
#include <stdio.h>
#include <OV/ovw.h>
#include <OV/ovw_obj.h>

void main(int argc, char **argv)
{
char *fieldName ;
OVwFieldId newfieldId ;
char *selectionName ;
char *value ;
OVwObjectId objectId ;

selectionName = argv[1] ;
fieldName = argv[2] ;
value = argv[3] ;
OVwDbInit() ;
newfieldId = OVwDbCreateField(fieldName, ovwStringField, ovwGeneralField) ;
printf(″Field ID is %d\n″ , newfieldId) ;
objectId = OVwDbSelectionNameToObjectId(selectionName) ;
printf(″Object ID is %d\n″ , objectId) ;
OVwDbSetFieldStringValue(objectId, newfieldId, value) ;
}

Figure 104. C Program to Add A Field to the Object Database

 2. After compil ing this program, we were able to add a field called nfstatus into
the database by entering the following command into an AIX command
window:

crea_set_field netfos2.itso.ral.ibm.com nfstatus unknown

 3. To check that the field was created, we entered the following command:

/usr/OV/bin/ovobjprint -s netfos2.itso.ral.ibm.com

The results of entering this command are shown in Figure 105 on page 135.

134 NetView for AIX V4 Examples

OBJECTID SELECTION NAME

OBJECT: 2058

FIELD ID FIELD NAME FIELD VALUE
10 Selection Name ″netfos2.itso.ral.ibm.com″
11 IP Hostname ″netfos2.itso.ral.ibm.com″
14 OVW Maps Exists 2
15 OVW Maps Managed 2
19 IP Status Normal(2)
22 isIPRouter FALSE
34 vendor Unset(0)
44 isNode TRUE
46 isComputer TRUE
47 isConnector FALSE
48 isBridge FALSE
49 isRouter FALSE
50 isHub FALSE
68 isIP TRUE
84 isSNMPSupported TRUE
86 SNMP sysDescr ″OS/2 SNMP AGENT version 1.2
87 SNMP sysLocation ″Building 657″
88 SNMP sysContact ″Hermann″
89 SNMP sysObjectID ″1.3.6.1.4.1.2.6.46″
90 SNMPAgent Unset(0)
94 isMLM FALSE
95 isSYSMON FALSE
96 isSIA FALSE
97 isManager FALSE
99 isSLM FALSE
100 isSIAOS2 FALSE
104 TopM Interface Count 1
110 TopM Interface List ″802.5 Up 9.24.104.114
171 XXMAP Protocol List ″IP″
200 IP Name ″netfos2.itso.ral.ibm.com″
352 default IP Symbol List 367
1035 randy IP Symbol List 294
3533 RouterStatus ″Up″
3545 nfstatus ″unknown″

Figure 105. Results of ovobjprint Command. Our new nfstatus field is at the bottom of
the list.

Our next task was to create a ruleset that was able to set this field. Figure 106
on page 136 displays the completed ruleset that we constructed.

Chapter 6. Examples of NetView for AIX Rulesets 135

Figure 106. Rule that Sets an Object Database Field

To create this ruleset, we completed the following steps:

 1. As always the first step was to set the default behavior (to Pass in this case)
by double-clicking the event stream node.

 2. In this example, we wanted to identify when NetFinity indicated that a system
had gone offline and when it had gone online. To accomplish this, we added
a Trap Settings node and a Event Attributes node for each type of trap.
NetFinity uses one trap type for all events, so only one Trap Settings node is
needed. The Event Attributes nodes were checking the value of the eighth
parameter in the trap. For NetFinity traps, the eighth parameter is equal to
the trap type. If trap type was equal to 11, we knew that a NetFinity system
had gone offline. If trap type was equal to 10, then we knew that the system
was online. Figure 107 on page 137 illustrates how we identified these traps.

136 NetView for AIX V4 Examples

Figure 107. Identifying NetFinity Trap Types

 3. To each trap pathway, we then added a Set Database Field node. We
configured each of these nodes to set our database field called nfstatus to
either Offline or Online, depending on the pathway, as shown in Figure 108
on page 138.

Chapter 6. Examples of NetView for AIX Rulesets 137

Figure 108. Configuring the Set Database Field Dialog

 4. We also attached an Override node to each trap pathway. These were
configured to make traps of type 11 change the severity of the trap to
Warning, and to make traps of type 10 change the severity to Cleared.
Figure 109 on page 139 shows how this was accomplished.

138 NetView for AIX V4 Examples

Figure 109. Overriding the Severity of NetFinity Traps

We were able to test our ruleset by receiving traps from NetFinity that reported
on the online status of other NetFinity systems. One quick way of determining if
the database field had changed was to select the object and view database
settings by selecting Edit→Modify/Describe→Object... from the menu bar. This
selection led us to the Object Selection box from which we chose to view the
General Attributes. The window that resulted is shown in Figure 110. This
figure also shows the trap that caused the database field to be set.

Figure 110. NetFinity Event and Corresponding Database Field Setting

Having a database field that indicated whether a NetFinity system was online or
not was useful to us. We were able to build collections that used this database
field as part of a definition of nodes in trouble.

Chapter 6. Examples of NetView for AIX Rulesets 139

6.2.8 Setting Global Variables
In this example we revisit a previous example, 6.2.2, “Suppressing Events by
Setting Thresholds” on page 101. In that case we were filtering out unwanted
threshold exceptions by only forwarding them if they arrived at an unacceptably
high frequency. In this example we assume that once per day we run a backup
process on the server. While that process is running we expect high CPU
utilization, so any thresholds can be ignored.

The solution we have chosen is to add commands to the start and end of the
backup process which will send traps to NetView for AIX to indicate when the
backups are running. We then modified our ruleset to set a global variable
during the backup period and to suppress the event display based on its value.

Figure 111 displays a flow of what we want to obtain with this ruleset.

Figure 111. Flowchart of Setting Global Variables Example

The ruleset that we constructed to perform the task is shown in Figure 112 on
page 141.

140 NetView for AIX V4 Examples

Figure 112. Completed Ruleset of Setting Global Variables Example

The first step in creating this ruleset was to define the new traps representing
the start and end of the backup process. We again used our experimental
enterprise ID and defined specific trap 2 for backup started and 3 for backup
ended. Refer to Figure 95 on page 126 and Figure 96 on page 127 for details of
how to add traps.

Having defined the traps, we could then go ahead and create the ruleset by
doing the following:

 1. As we were using the previous ruleset as a starting point, we started
building the new ruleset by loading the old one into the editor. We did this
by selecting File→Open from the menu bar and then choosing our threshold
ruleset (thresh.rs) from the list. To avoid accidentally overwriting the
previous ruleset we immediately saved it under a new name.

 2. Next we added the Trap Settings node to check for the backup started event
and connected it to the event stream node (see Figure 113 on page 142).

Chapter 6. Examples of NetView for AIX Rulesets 141

Figure 113. Adding the Trap Settings Node for Backup Started

 3. We then added the Set Global Variable node, using the following parameters:

Variable Name backup_running

Set Variable we chose Set to Literal Value with the value 1

In this case we are only using the global variable as a flag, so we used a
single character (1) to represent the status. However, we could have placed
detailed information in the variable, or taken information from the trap itself.
Figure 114 on page 143 shows the dialog for adding this node.

142 NetView for AIX V4 Examples

Figure 114. Adding the Set Global Variable Node

 4. We then repeated the last two steps, but this t ime specifying the
backup_ended trap, and setting the variable to zero.

 5. Now we needed to modify the original part of the ruleset (inherited from the
threshold example) to check for our global variable flag. To do this, we first
removed the link between the Trap Settings node and the Thresholds node
by selecting Edit→Delete Line from the menu bar. We then added a Query
Global Variable node as shown in Figure 115 on page 144. This node will
only be passed if the variable backup_running is not equal to 1 (that is, if
there is not a backup running).

Chapter 6. Examples of NetView for AIX Rulesets 143

Figure 115. Adding the Query Global Variable Node

 6. Finally we connected the Query Global Variable node into the ruleset as
shown in Figure 112 on page 141.

You may wonder why we only have processing to pass the threshold events
when a backup is not running, and nothing to suppress them when the backup is
running. This is because we defined a default behavior of Block for the thresh.rs
ruleset that this was based on. Note, however that this means that the
backup_started and backup_ended traps will also not appear in the Event
display, unless we add a Forward node to those legs of the ruleset.

144 NetView for AIX V4 Examples

Default Behavior: Should You Block or Pass?

In general, a default behavior of Pass is more ″natural″ for rulesets in an
event display workspace. That is, anything that is not explicitly blocked by a
ruleset Block Event Display or Thresholds node will be displayed to the user.
One big advantage of this is that if some trap that has never been seen
before should arrive, the user will know about it. The counter argument to
this is that you are in danger of flooding the user with events that he does
not need to see. We advocate that your policy should be to use a default
behavior of Pass, but that you should do a thorough job of filtering and
throttling unwanted events, to keep the event rate to an acceptable level. We
discuss this further in Chapter 8, “Implementation Recommendations for
Rulesets” on page 195.

For rulesets that are intended for automation only (that is, those added to
/usr/OV/conf/ESE.automation) the question is moot, since the event is not
passed on anywhere even if a Forward is indicated.

6.2.8.1 Testing the Ruleset
Now we can test if our ruleset works in the way we expect, using the following
steps:

 1. Open the workspace with the correct ruleset file, globvar.rs.

 2. Send a trap from our server host to the NetView for AIX machine (rsserver)
using the snmptrap command. The snmptrap command is provided by
NetView for AIX which is not installed on the server. However, a version of
the command is also provided by Systems Monitor for AIX SIA in the
directory /usr/lpp/smsia/original. The trap we want to send is

Enterprise ID .1.3.6.1.4.1.2.8.1 (our ITSO experimental enterprise)

Generic Trap 6

Specific Trap 2 (backup_started)

The command to do this is:

/usr/lpp/smsia/original/snmptrap rs60005 public .1.3.6.1.4.1.2.8.1 `hostname` 6 2 0

For the backup_ended trap use the same command with a specific trap ID of
3 instead of 2.

We tested the ruleset by sending these traps manually, with the expected results
(CPU utilization events ceased after the backup started trap and recommenced
after the backup ended trap). Figure 116 on page 146 shows the resulting event
display.

Chapter 6. Examples of NetView for AIX Rulesets 145

Figure 116. Workspace Showing Threshold and Backup Process Events. Note that we had to cheat a li t t le to get
this display, by adding Forward nodes to the backup_started and backup_ended paths in the ruleset. Otherwise
they would have been suppressed by the default behavior of Block.

Normally you would add these commands to the backup shell script, or execute
them as a job step using a scheduling package, such as SystemView Job
Scheduler for AIX.

146 NetView for AIX V4 Examples

6.2.9 Setting MIB Variables
Another means by which rulesets allows you to change information about
objects is through the Set MIB Variable function. We used this function to alter
the polling interval of a Systems Monitor threshold when the threshold was in its
breached state. Specifically, we shortened the polling time for a threshold that
was set to monitor paging space. If paging space usage for a device exceeded
80%, a threshold arm trap was forwarded to NetView for AIX. When this trap
arrived, a Set MIB Variable node was configured to reduce the polling time of
the paging space threshold. When the threshold was resolved, the ruleset
changed the polling time back to its original value. Figure 117 displays a
flowchart of the trap processing.

Figure 117. Flowchart of Set MIB Variable Example

Figure 118 on page 148 displays the ruleset that we constructed.

Chapter 6. Examples of NetView for AIX Rulesets 147

Figure 118. Rule that Shortens Poll ing Time when Threshold is in Breached State

The following steps describe how we constructed this ruleset:

 1. We first identified the Systems Monitor Arm trap and Rearm trap by using
the Trap Setting Nodes.

 2. To each of these Trap Settings nodes we attached a Set MIB Variable node.
In order to define the MIB information, we used the MIB Browser. To help us
enter the MIB Variable Name, we stepped through the Systems Monitor MIB
until we arrived at the smMlmThresholdPollTime variable. We then selected
Describe to get the name and variable type. From the Describe function, we
simply copied the name using the left mouse button and pasted it into the

148 NetView for AIX V4 Examples

MIB Variable Name field using the middle mouse button. To the end of the
name we added the MIB instance which we were able to get by clicking on
the Start Query function in the MIB Browser. Figure 119 on page 149 shows
how the MIB Browser was used.

Figure 119. Using the MIB Browser to Aid with Set MIB Variable Configuration

 3. Note that when the trap reported that the threshold was breached (armed)
we shortened the polling interval to 15 seconds. When the threshold was
resolved (rearmed), we returned the polling time to 10 minutes. These
settings are shown in Figure 120 on page 150.

Chapter 6. Examples of NetView for AIX Rulesets 149

Figure 120. Configuring the MIB Variable Dialogs

150 NetView for AIX V4 Examples

6.2.10 Using Rulesets to Supplement Event Capabilities of Another Manager
One useful concomitant capability of ESE event rulesets is their ability to
supplement the event management functions of other managers. Since NetView
for AIX can receive traps from other managers, it is possible for these other
managers to harness some of the ruleset intelligence to aid with their event
processing. In our lab, we tried this out with NetFinity. Since NetFinity does not
have a correlation capability of its own, we decided to make use of the ruleset
Pass on Match function to help process NetFinity traps.

In this example, we configured a ruleset to correlate traps from NetFinity and to
generate a NetFinity alert if a certain sequence of traps was detected.
Specifically, the ruleset was set up to detect if a high disk load trap from
NetFinity was followed by traps that indicated low CPU and low adapter load. If
such a sequence of traps was detected, the ruleset executed a remote command
that generated a NetFinity alert in the originating NetFinity machine. Figure 121
illustrates the logical flow of traps in this example.

Figure 121. Diagram Showing Correlation of NetFinity Traps

Chapter 6. Examples of NetView for AIX Rulesets 151

6.2.10.1 Configuring the NetFinity Traps for this Example
NetFinity generates all its traps with a single specific trap ID, the actual meaning
of the event being contained in a rather lengthy text string in a variable within
the trap. The Event Attributes ruleset node can be used to check for the
existence of a word at a given position within a trap parameter (see Figure 98
on page 128 for an example of this). Using this approach carries some risks,
however, because the text format may vary with a new release of NetFinity.

Instead of using this feature, we chose in this case to configure the traps in
NetFinity into a simplified version, to make the ruleset processing less complex.
We configured the NetFinity alerts by completing the following steps:

 1. Our first step was to be sure that NetFinity was forwarding its alerts to our
target NetView for AIX manager. In order to do this, we configured TCP/IP
on the NetFinity machine to include our NetView for AIX manager as a SNMP
trap destination. We also configured NetFinity to forward all of its alerts over
TCP/IP as shown in Figure 122.

Figure 122. Configuring NetFinity to Forward al l Alerts through TCP/IP

 2. We then defined the initial three NetFinity threshold alerts. These thresholds
were defined to send alerts concerning high disk load, low CPU, and low
adapter load. Figure 123 on page 153, Figure 124 on page 153, and
Figure 125 on page 154 show how these alerts were defined.

152 NetView for AIX V4 Examples

Figure 123. Defining the High Disk Load NetFinity Alert

Figure 124. Defining the Low CPU NetFinity Alert

Chapter 6. Examples of NetView for AIX Rulesets 153

Figure 125. Defining the Low Adapter Load NetFinity Alert

 3. Our next step was to convert the threshold traps into our customized alert.
This was accomplished by configuring the Action Editor in NetFinity. The key
to this step was to reduce the description of our customized alert to a single
word. In this way, the ruleset could distinguish the trap without having to
match individual words from the variable. In order to reduce the description,
we simply made our description equal to the name of the threshold.
Figure 126 on page 155 shows how we did this. Notice that we passed the
threshold name to the customized trap via the parameter: %P1. The
complete command needed to generate the alert in NetFinity is:

genalert /t:″%P1″ /app:monitorB/sev:3/type:dskwrn/atype:0011

154 NetView for AIX V4 Examples

Figure 126. Converting an Alert by Generating a New One

Our next two figures show the results of converting an alert. Figure 127 on
page 156 shows the standard threshold alert as it appears in the Alert log, and
Figure 128 on page 156 shows the converted, customized alert.

Chapter 6. Examples of NetView for AIX Rulesets 155

Figure 127. An Alert before Conversion

Figure 128. An Alert after Conversion

156 NetView for AIX V4 Examples

6.2.10.2 Creating the Ruleset
The ruleset for this example was configured to detect if a certain sequence of
NetFinity traps were forwarded to NetView for AIX. The completed ruleset is
shown in Figure 129.

Figure 129. Completed Ruleset for Supplementing Other Managers

This ruleset was constructed by completing the following steps:

 1. We first identified each of the three converted NetFinity traps via the Events
Attributes node. The key here was to determine if the first attribute in the
trap was equal to the name of the threshold originally defined in Netifinity.
Figure 130 on page 158 shows how the traps were identified.

Chapter 6. Examples of NetView for AIX Rulesets 157

Figure 130. Adding the Event Attributes Nodes

 2. We then specified the specific sequence of traps by using the Pass on Match
node. Figure 131 on page 159 shows how these nodes were configured.
Note that we first correlated the High Disk Load trap with the Low CPU trap.
If the Disk Load trap was followed by the CPU trap within ten minutes, the
Disk Load trap was passed to the second correlation node. This second
correlation node determined if the newly passed Disk Load trap was now
followed by a Low Adapter Load trap.

158 NetView for AIX V4 Examples

Figure 131. Adding the Correlation Attributes Nodes

 3. If the Disk Load trap was passed by both correlation nodes, we configured
an action to take place as shown in Figure 132 on page 160. The defined
action was to execute a shell script that started a command on the NetFinity
machine via TCP/IP′s REXEC. This script is shown in Figure 133 on
page 160.

Chapter 6. Examples of NetView for AIX Rulesets 159

Figure 132. Adding the Action Node

#!/bin/ksh
HOME=/u/luigi
COMMAND=″genalert /t:″The disk load doesn′ t match the general workload. \

Configuration problems !!!″ /sev:3 /app:NetAix /type:SYSWARN \
/atype:0000a″

rexec netfinn.itso.ral.ibm.com $COMMAND

Figure 133. Net_alert Shell

Note that it was very important to define the variable HOME inside the shell,
because rexec looked for the file .netrc in the home directory to determine the
user ID and password for access to the remote machine. Our .netrc file was as
shown in Figure 134

machine richard.itso.ral.ibm.com login richard password richard
machine netfinn.itso.ral.ibm.com login herbraun password herbraun
machine 9.24.104.114 login herbraun password herbraun

Figure 134. The .netrc File

160 NetView for AIX V4 Examples

6.2.10.3 Testing the Example
We tested the example in two ways. First we determined if the ruleset worked
by generating the traps at our NetView for AIX workstation. The commands to
generate these traps are listed below:

snmptrap rs600013.itso.ral.ibm.com .1.3.6.1.4.1.2.6.71.1.0 netfos2.itso.ral.ibm.com 6 9 0
1 Octetstring ″disk_3MBsec″ 2 Octetstring netfos2.itso.ral.ibm.com
3 Integer 3 4 Octetstring 04:16:00p 5 Octetstring 06-14-1995
6 Octetstring Application 7 OctetString MonCritF 8 I nteger 0
9 Octetstring netfos2.itso.ral.ibm.com

snmptrap rs600013.itso.ral.ibm.com .1.3.6.1.4.1.2.6.71.1.0 netfos2.itso.ral.ibm.com 6 9 0
1 Octetstring ″cpu_30″ 2 Octetstring netfos2.itso.ral.ibm.com
3 Integer 3 4 Octetstring 04:16:00p 5 Octetstring 06-14-1995
6 Octetstring Application 7 OctetString MonCritF 8 Integer 0
9 Octetstring netfos2.itso.ral.ibm.com

snmptrap rs600013.itso.ral.ibm.com .1.3.6.1.4.1.2.6.71.1.0 netfos2.itso.ral.ibm.com 6 9 0
1 Octetstring ″adapter_5kBsec″ 2 Octetstring netfos2.itso.ral.ibm.com
3 Integer 3 4 Octetstring 04:16:00p 5 Octetstring 06-14-1995
6 Octetstring Application 7 OctetString MonCritF 8 Integer 0
9 Octetstring netfos2.itso.ral.ibm.com

We also worked with the NetFinity machine in order to have the various
threshold conditions arise. We were pleased to see that the ruleset was working
and able to aid NetFinity in its correlation of alerts. Note that one of the alerts
that was remotely executed from NetView for AIX is shown in Figure 135.

Figure 135. Remotely Executed Alert Received at NetFinity

Chapter 6. Examples of NetView for AIX Rulesets 161

6.2.11 Suppressing Events for Interfaces That Are Administratively Down
Often, IP routers are configured with interfaces that are for backup purposes.
These interfaces will normally be down, unless a failure of some other
component calls for them to be used. MIB-II provides a way of indicating
interfaces that are configured but have been deliberately inactivated, by means
of the two following objects in the Interfaces Table part of the MIB:

• ifOperStatus shows the operational status of the interface; whether it is
active to the network or not.

• ifAdminStatus shows the administrative status of the interface; whether it is
intended to be active or not.

The backup interface we described above should have both MIB instances set to
Down.

Unfortunately, NetView for AIX does not take the ifAdminStatus field into account
when it sets object status and sends Interface Down events. In this example we
show a ruleset that partially alleviates this, by suppressing Interface down
events if the interface is administratively down.

Figure 136 shows a flow diagram of the example.

Figure 136. Flow Diagram for Check Administrative Status Example

The ruleset that we constructed to implement the example is shown in
Figure 137 on page 163.

162 NetView for AIX V4 Examples

Figure 137. Completed Ruleset for Check Administrative Status Example

We created this ruleset using the following steps.

 1. First we set the default behavior for the ruleset by double-clicking on the
Event Stream node. In this case we wanted to see all events, unless they
are blocked by the ruleset, so we chose a default of Pass.

 2. Next we added the Trap Settings node and configured it as follows:

Enterprise Name netview6000

Event Name IBM_NVIDWN_EV

Specific Specific 58916867

 3. The concept of an interface that is administratively down usually applies to
routers, so we further filtered the event stream by using a Get Database
Field node to check the isIPRouter flag in the object database. See 6.2.5,
“Using Traps to Override Status Color and Severity” on page 118 for an
example of how to configure this node.

 4. Next, we wanted to find the value of ifAdminStatus for the interface in
question, by doing an SNMP get. The Compare MIB Variable node will do an
SNMP get request, but unfortunately in this case we did not have enough
information to use it. We need to get the specific instance of ifAdminStatus
for the interface that is being reported as down. This means that we need to
know the node name and the index number of the failing interface. By
contrast, the interface down trap contains the following information:

• The node name (in variable 2)

• A text string that includes the interface name (in variable 3)

What we therefore chose to do, was to write a shell script and a small
program that uses the interface name from variable 3 and queries the
NetView for AIX object database to determine the interface index number
that it corresponds to. We then used the snmpget command to retrieve the
value of ifAdminStatus. Figure 138 on page 164 shows the shell script and
Figure 139 on page 164 shows the program that it calls to return the index
number.

Chapter 6. Examples of NetView for AIX Rulesets 163

#!/bin/ksh

Shell script that receives a node name and interface down trap text as
input and then does an SNMP GET to check the ifAdminStatus. If it is
down, the script exits with RC99

if_number=/usr/OV/raleigh/get_ifnumber $*

if [[$? != ″0″]]
then
 set /usr/OV/bin/snmpget $1 .1.3.6.1.2.1.2.2.1.7.$if_number
 if [[$4 = ″up″]]
 then
exit 0

 else
exit 99

 fi
fi
exit 0

Figure 138. chk_admin_stat Shell Script

/*---
get_ifnumber.c

This program looks for a specific interface name in the object
database record of a node and returns the index number (ie
relative position) of the interface
---*/

#include <stdio.h>
#include <OV/ovw.h>

int main(int argc, char ** argv)
{
OVwObjectId node_objid ;
OVwFieldValue * iface_list ;
int i ;
OVwListFieldEntry * if_entry ;
char * if_label = ″ ″ ;

if (argc < 4) {
printf(″Usage: get_ifnumber node_name message_text\n″) ;
printf(″Where node_name is the selection name for the node and\n″) ;
printf(″message_text is the text of the interface down message\n″) ;
exit(0) ;
}

/* Open the object database */
if (OVwDbInit() == EOF) {

printf(″OvwDbInit : %s\n″ , OVwErrorMsg(OVwError())) ;
exit(0) ;
}

/* Get the object ID of the node */
if ((node_objid = OVwDbSelectionNameToObjectId(argv[1])) == NULL) {

printf(″OVwDbSelectionNameToObjectId : %s\n″ , OVwErrorMsg(OVwError())) ;
exit(0) ;
}

Figure 139 (Part 1 of 2). get_ifnumber.c Program to Extract Interface Index Number

164 NetView for AIX V4 Examples

/* Get the contents of the interface list field */
if ((iface_list = OVwDbGetFieldValue(node_objid,

OVwDbFieldNameToFieldId(″TopM Interface List″))) == NULL) {
printf(″OVwDbGetFieldValue : %s\n″ , OVwErrorMsg(OVwError())) ;
exit (0) ;
}

/* Read the entries in the list until we find a matching interface name */
if_entry = iface_list->un.list_val->list ;

for (i=0; i < iface_list->un.list_val->count; i++) {
sscanf(if_entry++->un.string_val, ″%s″ , if_label) ;
if ((strcmp(if_label, argv[3])) == NULL) {

printf(″%d\n″ , i+1) ;
exit(i+1) ;
}

}

printf(″0\n″) ;
exit(0) ;
}

Figure 139 (Part 2 of 2). get_ifnumber.c Program to Extract Interface Index Number

 5. Having created a command that wil l check the administrative status of the
interface, we next needed to incorporate it into the ruleset. We have
previously shown an example of using the Action node to invoke commands
(6.2.4, “Automated Paging and E-Mail Notifications” on page 112). However,
the Action node is executed after the ruleset has completed, by the actionsvr
daemon. In this case we wanted the ruleset processing to be conditioned by
the result of the command, so we used the Inline Action node instead. You
can think of Inline Action as a kind of exit routine. Figure 140 on page 166
shows how we configured it in this case.

Chapter 6. Examples of NetView for AIX Rulesets 165

Figure 140. Adding the Inl ine Action Node

Notice that an Inline Action is a decision node. It will pass an event only if
the return code from the command matches the defined condition. In our
case we are checking for a return code of 99 that was set by the exit
statement within the shell script (see Figure 138 on page 164).

You should be careful when defining Inline Action nodes not to invoke a
command which is long-running, since ruleset processing will be suspended
while the action takes place. The node provides you with the Wait Interval
field to limit the effect of long-running commands. If a command has not
completed within the number of seconds specified it is abandoned. In this
event, ruleset processing does not proceed to the next node.

 6. Finally we added the Block Event Display node to prevent events that pass
the Inline Action node from appearing in the event cards.

6.3 Combining ESE Rulesets
In most of the above examples we have tested the ruleset by creating a dynamic
workspace and activating the ruleset in it. This is a reasonable approach to
take; you aim to protect the user from a high volume of events by using filtering
and prioritization.

If, however, this filtered event stream is directed to too many workspaces the
benefits are lost. The corollary of this is that we want to have multiple rulesets
active in a single workspace. Unfortunately nvevents does not support this

166 NetView for AIX V4 Examples

possibility at present. The alternative is to combine all the rules you want to
activate together into one monster ruleset. The disadvantage to this is that it
becomes unwieldy to modify it using the ruleset editor.

The approach we recommend is to build ruleset fragments, like in our examples
above and then to use the File→Include option to combine them into the
complete ruleset.

6.3.1 Operation of the Include Function
As its name suggests, Include incorporates a second ruleset into the existing
one. The best way to illustrate this is by way of an example. We combined the
rulesets from 6.2.1, “Clearing Outstanding Events via Correlation” on page 92
and 6.2.11, “Suppressing Events for Interfaces That Are Administratively Down”
on page 162 using the following steps:

 1. Load ruleset correlation.rs (see Figure 66 on page 98) into the editor by
selecting File→Open from the menu bar.

 2. Include ruleset chk_admin.rs (see Figure 137 on page 163) into this ruleset
by selecting File→Include.

 3. Save the combined ruleset as combined.rs by selecting File→Save As.

The resulting ruleset is shown in Figure 141 on page 168.

Chapter 6. Examples of NetView for AIX Rulesets 167

Figure 141. Combined Ruleset combined.rs

You can see that the Include function has taken a simplistic approach, merely
adding the nodes from the second ruleset as an additional strand. It could have
combined them further, for example both rulesets have a Trap Settings node that
checks for Interface Down which could have become one in the combined
ruleset. Because the ruleset processor tries to send each event along every
path in the ruleset it does not matter that a decision node is duplicated, although
it may be more efficient to combine them.

168 NetView for AIX V4 Examples

6.3.2 Conflicts when Combining Rulesets
When you use the Include function you need to keep in mind what function each
ruleset performs, and make sure you are not introducing conflicts. For example,
one ruleset may cause an event to be blocked and another may cause it to be
forwarded. In general the rules for conflicts are:

• If you combine two rulesets with different default behaviors, the resulting
ruleset will have the default behavior of the ruleset that you insert into, not
the ruleset that you insert.

• If one path in the ruleset leads to a Block Event Display node and another
leads to a Forward or Override node, the Block node will be ignored and
Override will take priority over Forward. Note, however, that you will only
ever get one copy of the event forwarded, even if it encounters multiple
Forward or Override nodes.

• If two paths in the ruleset lead to Override nodes the ″most serious″ severity
and/or status will take effect. So, for example, the ruleset shown in
Figure 142 will cause the event to be displayed with severity Major and the
node to change status to User2. ″Most serious″ in this case means in terms
of the order of statuses shown on the list of options, which in order of
increasing seriousness is: Unknown (blue), Normal (green), Marginal
(yellow), Critical (red), Unmanaged (brown), Acknowledged (forest green),
User1 (Pink), User2 (Purple).

Figure 142. Example of Confl ict ing Override Nodes

Chapter 6. Examples of NetView for AIX Rulesets 169

6.4 Saving the Dynamic Workspace Environment
Now that you have the power of event rulesets at your disposal, you will
probably want to always use filtered dynamic workspaces, with rulesets loaded
into them. What you probably don ′ t want to do is to have to set up the
workspaces manually each time you restart your NetView for AIX EUI.

Fortunately, NetView for AIX V4R1M1 (the refresh level of the code) gives you the
ability to save your configuration. To do this, you need to do the following:

 1. Change the nvevents.loadEnvOnInit X-windows default to True. This
resource is defined in file Nvevents in directory /usr/OV/app-defaults. You
can change it globally there, or alternatively take a copy of the file and place
it in your own home directory.

 2. Start up the NetView for AIX EUI and create the dynamic events workspaces
that you want.

 3. Switch to the main nvevents display (the one labelled Events) by pressing
the symbol on the left of the events display. Then select Options→Save
Environment from the nvevents menu bar (note: this does not actually save
anything, it just sets a flag).

 4. Still in the main events display, select File→Exit from the nvevents menu bar.
You will be prompted to confirm and will then receive a message that the
environment has been saved in a new NvEnvironment subdirectory of your
home directory.

 5. Restart nvevents by selecting Monitor→Events→Current Events from the
NetView for AIX main menu bar. You should see your dynamic event
displays are restored.

170 NetView for AIX V4 Examples

Chapter 7. Using the Collection Facility with Event Rulesets

In Chapter 4, “The Collection Facility” on page 53 and Chapter 6, “Examples of
NetView for AIX Rulesets” on page 85 we have seen examples that use two of
the powerful new facilities of NetView for AIX Version 4, Collections and
Rulesets. In this chapter, we discuss how we used the collection facility in
combination with rulesets to help us manage events. We will describe the
following examples:

• Receiving only events from a specific collection (7.1.1, “Receiving Only
Events from One Collection”).

• Overriding event severity on the basis of collection membership (7.1.2,
“Manipulating Event Severity on the Basis of Node Importance” on
page 175).

• Suppressing subsidiary events when a router is down (7.1.3, “Suppressing
Subsidiary Events When a Router Is Down” on page 181).

• wtdepend. A package that provides a generalized way to suppress events
and limit polling of resources that are dependent on an IP router interface
(7.1.4, “The wtdepend Sample Application” on page 187).

7.1.1 Receiving Only Events from One Collection
In this first example, we wanted simply to set up a dynamic event workspace
that only receives traps from a particular collection. At present there is no
ruleset node that checks for membership of a given collection (at the time of
writing it was planned as a future enhancement). However, we used the Inline
Action node to execute the wtcoll sample code to do the job for us. The wtcoll
program is described in 4.7, “The wtcoll Sample Program” on page 76 and the
source code is listed in Appendix B, “C Code for the wtcoll Sample Program” on
page 259.

7.1.1.1 Creating the Ruleset
The ruleset for this example was very simple. Figure 143 on page 172 shows
the completed ruleset.

 Copyright IBM Corp. 1995 171

Figure 143. The Complete Ruleset. The default behavior was set to Block, so only
events that pass the Inline Action decision nodes will appear.

You may wonder why there are two Inline Action nodes. The reason is that we
want to show events that originate from the node itself and events reported by
NetView for AIX or Systems Monitor for AIX. This means that we want one node
that checks the origin of the trap and another that checks the second variable in
the trap.

The Inline Action nodes were configured as shown in Figure 144 on page 173. It
uses the -isnodeincoll option of wtcoll to check to see if the node is in collection
myColl. wtcoll gives a return code of 1 if the node is in the collection, and 0 if it
is not, or if an error occurs. Notice that we are using two of the available
environment variables to substitute the second variable of the trap and the origin
(agent address).

172 NetView for AIX V4 Examples

Figure 144. Adding the Inl ine Action Nodes

7.1.1.2 Testing the Ruleset
In order to test this example we completed the following steps:

 1. First we created a collection called myColl. This was a simple node list
collection (see 4.4.2, “Creating a Node List Collection” on page 61 for an
example of how to do this). The resulting collection submap is shown in
Figure 145 on page 174.

Chapter 7. Using the Collection Facility with Event Rulesets 173

Figure 145. The myCol l Collection

 2. Next we opened a new dynamic workspace using the ruleset file that we
created called myColl.rs.

 3. We then sent two events. One event for a member of the collection and one
event for a node that is not a member. The trap commands that we used are
as follows

event -h rs600011.itso.ral.ibm.com -e NDWN_EV

and

event -h rs60003.itso.ral.ibm.com -e NDWN_EV

If our program and ruleset were correct, we should only receive the event from
rs600011 since it is a member of our collection. This is the result we obtained as
shown in Figure 146 on page 175.

174 NetView for AIX V4 Examples

Figure 146. The Filtered myCol l Workspace

7.1.2 Manipulating Event Severity on the Basis of Node Importance
A common problem in event management is being able to distinguish which
events come from important nodes and which events come from nodes of lesser
importance. One method that we used to overcome this problem involved
manipulating the severity of traps. In this example, we changed the severity of
traps on the basis of which collection the traps came from. If traps came from
nodes that were part of a server collection, severity was upgraded to Major. If
traps came from nodes that were part of a client collection, severity was
downgraded to Minor. Figure 147 on page 176 illustrates the logical flow of this
example.

Chapter 7. Using the Collection Facility with Event Rulesets 175

Figure 147. Flowchart of Manipulating Trap Severity Example

The processing for this example is very similar to the previous one. We again
used the -isnodeincoll function of our wtcoll sample to check whether a node
was part of a collection or not.

We first defined the server and client collections by using the Collection Editor.
Figure 148 on page 177 and Figure 149 on page 178 show how this was done.

176 NetView for AIX V4 Examples

Figure 148. Creating the Servers Collection

Chapter 7. Using the Collection Facility with Event Rulesets 177

Figure 149. Creating the Clients Collection

7.1.2.1 Creating the Ruleset
The complete ruleset for this example is shown in Figure 150 on page 179.

178 NetView for AIX V4 Examples

Figure 150. The Complete Ruleset

In order to construct this ruleset, we completed the following steps:

 1. We set the default ruleset behavior to Pass.

 2. Next we identified the System Monitor Threshold Arm Trap by using a Trap
Setting node as shown in Figure 151.

Figure 151. Detecting the System Monitor Threshold Arm Trap

Chapter 7. Using the Collection Facility with Event Rulesets 179

 3. Our next task was to enable the ruleset to identify if the trap came from a
server node or a client node. To accomplish this, we added two Inline Action
nodes both executing wtcoll. Figure 152 on page 180 shows how we
configured these nodes.

Figure 152. Using Inl ine Action Nodes to Check for Collection Membership

The command format is rather complex:

wtcoll -isnodeincoll `host $NVATTR_9 | awk ′ {print($1)}′ ` Servers

The reason for this is that Systems Monitor always works with IP addresses,
whereas the selection name in the NetView for AIX object database is the
system name. Hence, we used the host command to convert from address
to name.

Note also that the threshold trap comes from the Systems Monitor for AIX
Mid Level Manager (MLM), so the origin of the trap will be the MLM
machine. To check the machine to which the threshold applies we had to
specify the ninth variable in the trap.

 4. Our final step was to add Override nodes to change the severity of the
threshold event for the two collection types.

7.1.2.2 Testing the Manipulating Trap Severity Example
To test this example we created some Systems Monitor MLM threshold monitors
using the Agent Policy Manager feature of NetView for AIX. The threshold was
configured to be triggered when the SNA subsystem was found to be inactive on
the target node. The process we used to do this is shown in 9.4, “An APM
Example” on page 204. We elected to distribute the threshold to both the
Servers and Clients collections.

180 NetView for AIX V4 Examples

The result of starting the threshold monitor is shown in Figure 153 on page 181.
You can see that the trap for rsserver (9.24.104.108) has been changed to Major
severity, and the trap for rs600019 (9.24.104.249) has been set to Minor.

Figure 153. Event Display With Override

7.1.3 Suppressing Subsidiary Events When a Router Is Down
A frequent problem in event management is the flood of events that result from
the loss of one system such as a router. In these situations, the real interest is
in the root cause and not the effects of the problem. Figure 154 on page 182
illustrates the problem.

Chapter 7. Using the Collection Facility with Event Rulesets 181

Figure 154. The Dependent Nodes Problem. In this network the NetView for AIX
machine is in network 9.24.104. If the Superlab_router node were to fail there would be
no route to the 9.67 and 9.24.1 networks, with the result that we would receive Node
Down events for all the machines in those two networks. It would be better if those
events could be suppressed while the router was down.

In this example, we used the Collection Facility in combination with event
rulesets to demonstrate one method for dealing with this problem.

The method we used once again involved use of the wtcoll sample program.
Using the Collection Facility, we defined a collection called
nodes_dependent_on_router containing only those nodes that are in a particular
router ′s domain. Having done this we need a ruleset that will do the following
two things for us:

 1. Provide a trigger mechanism so that message suppression is activated when
the router fails. We chose to use a ruleset global variable to signal this.

 2. Suppress Node Down and Interface Down messages from nodes in the
dependent subnets once the trigger has fired.

7.1.3.1 Creating the Ruleset
The complete ruleset that we constructed for this example is shown in
Figure 155 on page 183.

182 NetView for AIX V4 Examples

Figure 155. The Complete Dependent Node Suppression Ruleset

To construct this ruleset, we completed the following steps:

 1. The first step is to set the default behavior of the ruleset to Pass (see
Figure 59 on page 89).

 2. Next we added a Trap Settings node to check for Node Down events (see
6.2.1, “Clearing Outstanding Events via Correlation” on page 92 for an
example of this).

 3. To the Trap Settings node we added an Event Attributes node, to look for
events coming from the router. Figure 156 on page 184 shows the
configuration of this.

Chapter 7. Using the Collection Facility with Event Rulesets 183

Figure 156. Adding the Event Attributes Node

 4. Completing this strand is a Set Global Variable node, which sets the value of
$ROUTERSTAT to DOWN.

 5. We repeated the sequence of nodes in steps 2 to 4 but this t ime checked for
Node Up in Trap Settings and changed the value of the global variable to UP.
This completes the trigger side of the ruleset.

 6. We only want the remainder of the ruleset to be active when the
$ROUTERSTAT global variable is set to DOWN. The first node in the final
strand is therefore a Query Global Variable.

 7. Next we added a Trap Settings node that checks for either a Node Down or
an Interface Down event. Figure 157 on page 185 shows the configuration of
this node and also of the Query Global Variable node.

184 NetView for AIX V4 Examples

Figure 157. Adding the Trap Settings Nodes

 8. Next we wanted to check to see if the node or interface down event was
reported for a node with connectivity dependent on the failed router. As in
the previous example we used an Inline Action node to execute the wtcoll
sample program. Figure 158 on page 186 shows you the configuration of
this node.

Chapter 7. Using the Collection Facility with Event Rulesets 185

Figure 158. Adding the Inl ine Action Node

 9. Finally we added the Block Event Display node to prevent display of the
event card for the dependent node.

7.1.3.2 Testing the Router Down Example
In order to test our example, we completed the following steps:

 1. We opened a new dynamic workspace using the rule_coll.rs file.

 2. We sent a Node Down event for our defined router using the command:

event -h 6611ral.superlab.ibm.com -e NDWN_EV

 3. Then we sent a Node Down event for a node in the 9.24.1 network using the
following command:

event -h supername.sl.dfw.ibm.com -e NDWN_EV

And nothing appeared in our workspace.

 4. We then reversed the process by sending a Node Up event for the router.

 5. Again we sent the node down event for node supername and this time, as
expected, the event appeared. The resulting workspace events are shown in
Figure 159 on page 187.

186 NetView for AIX V4 Examples

Figure 159. Detecting a Node Down Event

7.1.4 The wtdepend Sample Application
The rule_coll.rs ruleset described in the last example (7.1.3, “Suppressing
Subsidiary Events When a Router Is Down” on page 181) shows promise as a
technique for reducing event clutter. However, for practical purposes it falls
short in the following areas:

• It is unique to a specific router. A generic solution would be better.

• It can only handle one router failure at a time.

• It is triggered by a complete router failure, whereas really access to other
nodes is dependent on the availability of individual router interfaces.

• Configuring it is a very manual process.

• Even when the events are suppressed, the node status still changes to
Critical (the symbol goes red). A more accurate status would be Unknown.

The final shortcoming of rule_coll.rs is less obvious. It does a good job of
blocking node and interface down events from dependent nodes. However,
those events do not really come from the subject nodes at all. They are
generated by the NetView for AIX netmon daemon as a result of poll failures. It
is a general rule of automation and event handling that you should take action
as near to the source as possible. Therefore, instead of polling a node that we
know is unreachable (which involves timeouts and retries which may interfere
with regular polling), it would be better to suspend polling for the affected nodes
until the router has recovered.

We decided to produce an application to implement the dependent node failure
in a way that overcomes these problems. The result of this is the wtdepend
package.

Chapter 7. Using the Collection Facility with Event Rulesets 187

7.1.4.1 Elements of the wtdepend Package
There are three components to wtdepend, as follows:

• An EUI dialog that simplifies the definition of the collection of nodes that is
dependent on a given router interface.

• A trigger ruleset (wtdepend.rs) which runs in the background. It signals the
failure of a router interface and optionally alters netmon polling parameters
for the dependent nodes.

• A display ruleset (wtdepdisp.rs) which is activated when the trigger has fired,
and which overrides node status and event severity for the dependent nodes.

If you want to get a copy of the package, refer to the instructions in Appendix A,
“How to Obtain the Samples in this Book” on page 257.

7.1.4.2 Operation of the wtdepend Package
EUI Dialog: Having installed the package by following the instructions in the
README file, the first thing to do is to define the dependencies, as follows:

 1. Navigate to the IP Internet submap.

 2. Select a router interface (that is, the line connecting a router to a subnet, not
the router symbol itself).

 3. Select Tools→Define Router Interface Dependencies from the menu bar. A
dialog screen will appear.

 4. Select the subnets that wil l be unreachable if the router interface fails. Then
click on Add Selections to List . Figure 160 shows an example of this.

Figure 160. wtdepend: Defining Interface Dependencies

188 NetView for AIX V4 Examples

 5. Define the policy that you want to follow for the dependent nodes (to poll less
frequently, or never, or simply to suppress Node Down and Interface Down
events).

 6. Click on OK .

At this point the program does the following three things:

 1. It creates a collection containing the dependent subnets that you indicated in
the dialog. Figure 161 shows the collection created by the dialog shown in
Figure 161.

Figure 161. wtdepend: A Dependent Subnet Collection

 2. It adds a field named dependent_collection_exists to the object database
record for the router, and sets the value to TRUE.

Chapter 7. Using the Collection Facility with Event Rulesets 189

 3. It creates a further object database field called dependent_coll_command in
the record of the interface that you selected.

wtdepend.rs Ruleset: The wtdepend.rs ruleset is automatically added to
/usr/OV/conf/ESE.automation by the install process. The complete ruleset is
shown in Figure 162.

Figure 162. The wtdepend.rs Ruleset

The operation of this ruleset is as follows:

 1. First a Trap Settings node checks for Interface Down events.

 2. Next it uses a Query Database node to see if the dependent_collection_exists
field for the router is set to TRUE. If so, the two final nodes come into play.

 3. The Set Global Variable node increments a numeric variable,
router_interface_failures. This acts as a counter of the number of router
interfaces with dependent nodes that are currently down.

 4. The Action node executes a shell script. This extracts the name of the router
interface from the event message and then reads the value of the
dependent_coll_command field. It then executes this value as a command.
At present the command does one or two things, as follows:

a. If you specified that the netmon polling interval for the dependent nodes
should be increased, it will use wtcoll to issue xnmsnmpconf commands
that achieve this.

190 NetView for AIX V4 Examples

b. It always executes a program called wtdepend_list. This program
maintains a collection called unreachable_nodes. This is a collection of
collections. That is, it combines the dependent node collections of all
router interfaces that are currently down. The source code for
wtdepend_list is in Appendix C, “C Code for the wtdepend_list Sample
Program” on page 267.

 5. The second strand of the wtdepend.rs ruleset reverses the process. That is
to say: if it detects an Interface Up event from a router with dependent node
collections defined, it will decrement the router_interface_failures counter,
remove the dependent collection from the unreachable_nodes collection and
reset the polling intervals.

wtdepdisp.rs Ruleset: The wtdepdisp.rs ruleset is designed to be invoked in a
dynamic workspace. The complete ruleset is shown in Figure 163 on page 192.

Chapter 7. Using the Collection Facility with Event Rulesets 191

Figure 163. The wtdepdisp.rs Ruleset

The operation of this ruleset is as follows:

 1. The ruleset contains four paths, for handling Node and Interface Down and
Up events.

 2. In the Down path it first uses a Query Global Variable node to check the
value of router_interface_failures to see if it is greater than zero. This makes
the ruleset very efficient, since the rest of the nodes are ignored in normal
circumstances.

 3. Next it checks for event type, using two Trap Settings nodes. These are
configured to pass Node Down and Interface Down events.

192 NetView for AIX V4 Examples

 4. The next nodes are Inline Actions that uses wtcoll to check if the subject
node is in collection unreachable_nodes. This is the collection of dependent
node collections that was updated by the wtdepend.rs ruleset. Any node in
this collection is expected to be unreachable, because a router in the path to
it has failed.

 5. If the node is in the unreachable_nodes collection two things happen:

a. There is a node which blocks the event. For Interface Down this is a
simple Block Event Display node, but for Node Down an Override node
changes the node status to Unknown (because we don ′ t know if it is
really down or not) and sets the event severity to Minor. Ideally we
would want to block the event completely, but the node status override
only works if the event is passed to nvevents, which means that we
cannot use a Block Event Display node. The circumvention to this is to
limit the event severities that we choose to display when we create the
dynamic workspace. Figure 164 shows the creation of this workspace, in
which we both select the ruleset to invoke and choose not to display
Minor events.

b. A Pass on Match node is initialized which will wait up to one hour for the
corresponding Node Up and Interface Up.

Figure 164. Creating the Dynamic Workspace for the wtdepend Sample

 6. The Node Up and Interface Up paths of wtdepdisp.rs provide the resolving
input for the Pass on Match nodes. You may want to refer to 6.2.1, “Clearing
Outstanding Events via Correlation” on page 92 for a description of how this

Chapter 7. Using the Collection Facility with Event Rulesets 193

operates. We chose this processing because the Up events are expected to
occur after the failed router interface has returned. You can think of the
Pass on Match as a way of remembering that the node was previously in the
unreachable_nodes collection.

7.1.4.3 Testing wtdepend
It is rather disruptive to disable a router interface, so we chose to create an
unreachable network by setting an invalid IP route for the network. Note,
however, that in a dynamic routing environment this may not work. The steps to
testing wtdepend were:

 1. Create a dependent node collection for a router interface, as described in
“EUI Dialog” on page 188.

 2. Set up a dynamic workspace with the wtdepdisp.rs ruleset invoked, as
described in “wtdepdisp.rs Ruleset” on page 191.

 3. Change the polling frequency of the affected router to a short period (to
improve the chance of a router interface failure being detected before the
dependent failures).

 4. Make the affected subnet unreachable, using the TCP/IP route command.

194 NetView for AIX V4 Examples

Chapter 8. Implementation Recommendations for Rulesets

In Chapter 6, “Examples of NetView for AIX Rulesets” on page 85 and
Chapter 7, “Using the Collection Facility with Event Rulesets” on page 171, we
have shown many examples of ways in which you can use event rulesets. The
objective of all this function is to introduce some intelligence and automation into
the network monitoring process.

Automation, however, means different things to different people. If you are to
successfully attack the event flow in NetView for AIX you need to have a clear
definition of what the objectives are and the path by which you can achieve
them. In this section we will offer our suggestions of what the objectives should
be, the path to follow and some approaches you can take to start down that path.

8.1 Objectives of Event Processing
Any event that we are interested in should be capable of being placed into one
of the following three categories:

Error Event Something that provides information about a problem

Resolving Event Something that provides information about the resolution of a
problem

Informational Event Something that provides supporting information, that may
alter the impact or meaning of an event in the other two categories

If we view these categories as the fodder for our event processing system, there
are several things we want to do with them, as follows:

• Ensure that they are only presented to users to whom they have a meaning

• Arrange for important events to be delivered by appropriate alert
mechanisms (for example, pager or email)

• Arrange for resolving events to be paired with the problem events they
resolve

• Implement reactive automation of events for which a particular response is
always appropriate

• Implement intelligent automation of events for which the response requires
some knowledge of policy or environment

Event rulesets give us a powerful set of tools with which to attack each of these
objectives (the last objective really needs additional programming to tackle
effectively). However, before we start on this path we should first look at the
event stream we are dealing with.

8.2 Tackling the Event Stream
We have divided the events we want to handle into three categories, Error,
Resolving and Informational. However, there is a fourth category which makes
up a large proportion of the events in a typical NetView for AIX installation, that
is, unwanted events. Some of these events are quite easy to recognize. For
example, node and interface up and down events for user workstation devices
often fall into this category. Others are less easy to predict, depending on the

 Copyright IBM Corp. 1995 195

components in the network. If we are to do an effective job of handling events,
filtering out the unwanted ones has to be the first priority, partly so that we can
present the user with meaningful data and partly because we don′ t want the
event processing functions to be overwhelmed. With this in mind, we can map
out the following path to follow in our quest for good event handling:

 1. Suppress. The first thing to do is eliminate the unwanted events.

 2. Route. Send the remaining events only to the people who are interested in
receviving them.

 3. Throttle. Eliminate repetitious event streams.

 4. Correlate. Match failure with recovery to simplify the picture.

 5. Automate. Handle events automatically.

In all of this we need to remember the maxim that underlies all automation
processing: take action as near to the source of the event as possible. This
means that ruleset processing (at least in its present form) is usually the last
choice method to attack a problem, since it occurs relatively late in the
processing path. It is better to remove unwanted events by configuring them in
trapd.conf, rather than using a ruleset, if the facilities in trapd.conf are capable of
the task. Even better is to avoid generating the event in the first place. The
Interface Down event is a good example of this. This apparently simple event
represents a lot of processing and waiting by the netmon daemon. It is better to
avoid generating the Interface Down for unimportant nodes, by choosing not to
poll the nodes, than to generate it and then filter it out. You can cease polling
an IP device by unmanaging it in all the maps.

We can learn a lot about event handling from experiences in MVS operations
automation. Before MVS operators started to use consolidated console displays
(some five to ten years ago), a typical control area would have numerous
console screens, with continuous streams of messages coming from them. Only
a small proportion of the messages could be read by the operator and acted on.
With the advent of automation products such as AOC/MVS, MVS operations
shops started to suppress, route, correlate and automate. The results of this
were often spectacular, with 90% plus reductions in the quantity of messages
received by the operators.

The first step in this effort was to analyze the event flow, to identify the most
frequently-occurring messages. We recommend that you take a similar
approach when configuring NetView for AIX event processing.

8.2.1 Know the Enemy
One advantage we have in the world of NetView for AIX compared with the MVS
console messages is that all the event types are uniquely identified by their
SNMP elements: Enterprise ID, Generic ID and Specific ID. Unfortunately, the
standard event log, trapd.log, fails to record these key elements, thus making
analysis more difficult. We chose to use an automation ruleset to write the data
out to a log file in a format that is easier to handle. Figure 165 on page 197
shows this ruleset.

196 NetView for AIX V4 Examples

Figure 165. The make_summary_log Ruleset

Having collected the event informatin into a log, we wrote a relatively simple
shell script to analyze it. Figure 166 shows the shell script.

USAGE=″usage: $0 •mmdd“″ #Script to sort a logfile by activities

if (($# > 1))
then
print ″You passed too many arguments to $0.″
print ″$USAGE″
exit 1

elif (($# == 1))
then
logfile=$1

else
read logfile?′ Enter the date to examine (form = mmdd) ==> ′

fi

if •• ! -f /usr/OV/log/summary_log.$logfile ““
then
print ″ File /usr/OV/log/summary_log.$logfile does not exist!″
print ″Exiting...″
exit 1

fi

integer hour
integer total_traps
integer count
integer prev_hour

Figure 166 (Part 1 of 2). logsort Shell Script for Analyzing the Ruleset-Created Trap Log

Chapter 8. Implementation Recommendations for Rulesets 197

First sort the file, remove duplicates and add duplicate counts

sort /usr/OV/log/summary_log.$logfile | uniq -c > /tmp/summary_log.sorted

Read the file and print hourly summaries

exec 3< /tmp/summary_log.sorted
read -u3 total_traps hour mibID generic_trap specific_trap
((prev_hour = hour))
print ″=== Event Statistics for hour $hour =============================″
print
printf ″%-6s%-30s%-11s%s\n″ Count Enterprise_ID Generic_ID Specific_ID
printf ″%-6s%-30s%-11s%s\n″ $total_traps $mibID $generic_trap $specific_trap
while read -u3 count hour mibID generic_trap specific_trap
do
if ((hour == prev_hour))
then
printf ″%-6s%-30s%-11s%s\n″ $count $mibID $generic_trap $specific_trap
((total_traps = total_traps + count))

else
print ″Total Traps: $total_traps″
print
print ″=== Event Statistics for hour $hour =============================″
print
printf ″%-6s%-30s%-11s%s\n″ Count Enterprise_ID Generic_ID Specific_ID
printf ″%-6s%-30s%-11s%s\n″ $count $mibID $generic_trap $specific_trap
total_traps=count
((prev_hour = hour))

fi
done
print ″Total Traps: $total_traps″

rm /tmp/summary_log.sorted

Figure 166 (Part 2 of 2). logsort Shell Script for Analyzing the Ruleset-Created Trap Log

Figure 167 on page 199 shows a sample of the output produced by this logsort
shell script.

198 NetView for AIX V4 Examples

=== Event Statistics for hour 12 =============================

Count Enterprise_ID Generic_ID Specific_ID
1 1.3.6.1.4.1.2.6.3.1 6 59179056
1 1.3.6.1.4.1.2.6.3.1 6 59179057
4 1.3.6.1.4.1.2.6.3.1 6 1357
Total Traps: 6

=== Event Statistics for hour 13 =============================

Count Enterprise_ID Generic_ID Specific_ID
4 1.3.6.1.4.1.2.6.3.1 6 1358
3 1.3.6.1.4.1.2.6.3.1 6 58916865
3 1.3.6.1.4.1.2.6.3.1 6 58916867
3 1.3.6.1.4.1.2.3.1.2.1.1.3 4 0
Total Traps: 13

=== Event Statistics for hour 14 =============================

Count Enterprise_ID Generic_ID Specific_ID
1 1.3.6.1.4.1.2.6.3.1 6 1357
1 1.3.6.1.4.1.2.6.3.1 6 1358
1 1.3.6.1.4.1.2.6.3.1 6 50790445
1 1.3.6.1.4.1.2.6.3.1 6 58785793
1 1.3.6.1.4.1.2.6.3.1 6 58785795
2 1.3.6.1.4.1.2.6.3.1 6 58916864
2 1.3.6.1.4.1.2.6.3.1 6 58916865
2 1.3.6.1.4.1.2.6.3.1 6 58916866
2 1.3.6.1.4.1.2.6.3.1 6 58916867
1 1.3.6.1.4.1.2.6.3.1 6 58916965
6 1.3.6.1.4.1.2.6.3.1 6 58982401
3 1.3.6.1.4.1.2.3.1.2.1.1.3 4 0
Total Traps: 23

=== Event Statistics for hour 15 =============================

Count Enterprise_ID Generic_ID Specific_ID
1 1.3.6.1.4.1.2.6.3.1 6 1357
1 1.3.6.1.4.1.2.6.3.1 6 1358
1 1.3.6.1.4.1.2.6.3.1 6 58785793
1 1.3.6.1.4.1.2.6.3.1 6 58785795
5 1.3.6.1.4.1.2.6.3.1 6 58916865
6 1.3.6.1.4.1.2.6.3.1 6 58916867
2 1.3.6.1.4.1.2.6.3.1 6 58982401
2 1.3.6.1.4.1.2.6.3.1 6 1357
Total Traps: 19

=== Event Statistics for hour 16 =============================

Count Enterprise_ID Generic_ID Specific_ID
2 1.3.6.1.4.1.2.6.3.1 6 1358
1 1.3.6.1.4.1.2.6.3.1 6 50790404
1 1.3.6.1.4.1.2.6.3.1 6 58916864
8 1.3.6.1.4.1.2.6.3.1 6 58916865
1 1.3.6.1.4.1.2.6.3.1 6 58916866
8 1.3.6.1.4.1.2.6.3.1 6 58916867
1 1.3.6.1.4.1.2.6.3.1 6 58916868
1 1.3.6.1.4.1.2.6.3.1 6 58916869
2 1.3.6.1.4.1.2.6.3.1 6 59179056
2 1.3.6.1.4.1.2.6.3.1 6 59179057
1 1.3.6.1.4.1.2.6.3.1 6 58916864
Total Traps: 28

Figure 167. Shell Script for Analyzing the Ruleset-Created Trap Log

Use of the logsort shell script only gives us a first step in the direction of event
stream analysis. However, we believe that it provides a sound basis for a more
thorough approach.

Chapter 8. Implementation Recommendations for Rulesets 199

200 NetView for AIX V4 Examples

Chapter 9. Agent Policy Manager (APM)

Agent Policy Manager is a feature of NetView for AIX Version 4 that simplifies
the administration of Systems Monitor agents. In this project we did not work a
great deal with APM, so this section merely describes its capabilities and shows
a simple worked example of its capability. A more detailed discussion of APM
will be published during 1Q96 in IBM Systems Monitor: Anatomy of a Smart
Agent, SG24-4398 (the previous version of this book is numbered GG24-4398).

9.1 Systems Monitor Agents
Systems Monitor is a family of SNMP agents for UNIX systems. The family
currently contains the following six members:

 1. AIX Systems Monitor Systems Information Agent (SIA), Version 2 Release 2

 2. AIX Systems Monitor Mid-Level Manager (MLM), Version 2 Release 2

 3. AIX Systems Monitor System Level Manager (SLM), Version 2 Release 2

 4. HP-UX Systems Monitor Agent, Version 1 Release 2

 5. Sun Systems Monitor Agent, Version 1 Release 2

 6. NCR Systems Monitor Agent, Version 1 Release 2

The functions provided by these agent can broadly be subdivided into the
following categories:

Instrumentation An extended MIB that provides information about many
different aspects of a UNIX system, such as CPU, disk
and paging performance, active processes and users.
On AIX this function is provided by the SIA. On HP, Sun
and NCR machines it is provided by the single Systems
Monitor agent.

Extensibility The Systems Monitor command table is a MIB extension
that allows any UNIX command to be executed as a
result of an SNMP GET request. This is also provided by
the SIA for AIX nodes and by the Systems Monitor
Version 1 agent for the other UNIX varieties.

File Monitoring This is a regular monitoring process that can examine
files on the agent system and generate SNMP traps if it
detects changes to the files, or specified error text within
them. The File Monitor table is only available on the AIX
SIA.

MIB Threshold Polling This function provides regular polling of MIB variables.
It is provided by the AIX MLM and also by the Version 1
agents for the other UNIX types. The MIB variable being
polled can be on any SNMP-capable agent node, so you
can think of this function as a way of removing some
load from NetView for AIX, by distributing it to multiple
mid-level managers.

The Threshold Table is also provided by the AIX SLM
agent, but in that case it can only poll MIB variables on
the same (SLM) machine.

 Copyright IBM Corp. 1995 201

Trap Filtering This function is provided by the AIX MLM and by the
Version 1 agents for the other UNIX types. It allows
traps sent from any SNMP agent to be compared against
predefined criteria and either blocked or forwarded on to
NetView for AIX.

The filter table is also provided by the AIX SLM agent,
but in that case it can only receive traps from the same
(SLM) machine.

Status Polling This function allows Systems Monitor to perform regular
node status polling on behalf of NetView for AIX. This is
an ICMP echo (ping) to all the interfaces of a node that
is used to check for availability. Status Polling is only
provided by the AIX MLM. Placing the status polling
function on a mid-level manager reduces load on
NetView for AIX and the network.

There are other Systems Monitor functions that support these main capabilities.
If you want to understand Systems Monitor in more detail you should refer to
IBM Systems Monitor: Anatomy of a Smart Agent, GG24-4398 (this book will be
available in a revised edition during 1Q96, renumbered as SG24-4398).

9.2 Administering Systems Monitor
Many of the Systems Monitor functions require configuration updates to be made
on the agent nodes. To illustrate the kind of setup changes that are needed,
consider the hierarchy of agents shown in Figure 168 on page 203.

202 NetView for AIX V4 Examples

Figure 168. Hierarchy of Systems Monitor Agents

In this case we can see that there are two MLMs, each responsible for polling a
group of agents, some of them SIAs and some of them regular SNMP agents.
There are also several SLMs in the network. NetView automatically takes care
of configuring the status polling function, but the threshold and file monitor
tables have to be manually maintained. Setting up these tables would involve
the following steps:

• Configure the SNMP community names and trap destinations on each of the
MLM and SIA nodes.

• Create file monitor configurations on each SIA (or create them once and
copy the configuration file to each of the other SIA nodes).

• Create alias entries on the MLMs, listing the agents under its control, and
grouping them if required.

• Create threshold table configurations on the MLMs and SLMs to poll for the
required MIB variables, associating them with the node aliases where
applicable.

All of this can be executed from the central Systems Monitor configuration
interface, but clearly it is a rather repetitive task.

Chapter 9. Agent Policy Manager (APM) 203

9.3 How APM Helps
The agent policy manager function of NetView for AIX provides these three
enhancements for the administration and use of Systems Monitor agents:

 1. A single interface for configuring file monitor and threshold tables across
multiple agent nodes.

 2. Automatic update of Systems Monitor tables as nodes join and leave the
network.

 3. Display of icons to represent the status of threshold and file monitor table
entries in NetView for AIX submaps.

The first two enhancements rely on the collection facility. To illustrate how it
works, consider again the hierarchy shown in Figure 168 on page 203. Suppose
we want to use APM to define a file monitor entry and a threshold entry for all of
the SIA nodes in the diagram. First we would create a collection containing all
the nodes. This is easy, since there is a flag in the object database which
indicates if a node is an SIA or not (in fact we could use the collection called
siaNodes which is automatically created by NetView for AIX).

To create the file monitor table entry we would define the information we wanted
to monitor and then tell APM to distribute the update. Since the file monitor
table exists on each SIA, it would update every agent in the collection. If a new
SIA node appeared in the network, APM would add our monitor to it
automatically, as soon as the node was discovered.

To create the threshold monitor we would go through exactly the same
procedure; creating the entry and then distributing it. However, in this case the
monitoring is performed by MLM or SLM nodes, so instead of sending an update
to all of the nodes in the collection, APM would only update the SLMs and
MLMs. NetView for AIX creates node collections containing the list of nodes
managed by a given MLM. As before, if a new SIA or SLM node appeared in the
network the threshold tables would automatically be updated to include it.

9.4 An APM Example
The best way to describe the function of APM is to show an example of its use.
In this example we show the creation of a threshold monitor for a collection of
nodes. We use the collection called Servers that we created in 7.1.2,
“Manipulating Event Severity on the Basis of Node Importance” on page 175 for
this. The policy that we want to implement is to check regularly to make sure
that all the nodes in the Servers collection have the SNA subsystem active.

The process to implement this monitor is as follows:

 1. Select Agent Policy Manager Configuration from the Tools menu bar entry.
This displays the panel shown in Figure 169 on page 205.

204 NetView for AIX V4 Examples

Figure 169. The APM Configuration Panel

 2. To create a threshold table entry, click on Add to see the configuration panel
shown in Figure 170 on page 206. If you know Systems Monitor you will
recognize that this is very similar to the panel that you would use to
configure a threshold table entry on a single node.

Chapter 9. Agent Policy Manager (APM) 205

Figure 170. Configuration Panel for a Threshold Monitor

 3. Next, fil l in the details if the monitor. As you can see in Figure 170, we are
polling at one minute intervals and we will consider a threshold to be
breached when the selected MIB variable is equal to 11. The particular MIB
object we are polling is part of the instrumentation provided by the Systems
Monitor SIA. You can find the object ID and description by clicking on
Select... which takes you into the MIB Browser application. Figure 171 on
page 207 shows the MIB Browser dialog, with the description of the object
which we want to check against a threshold, in this case the subsystem
status code. on.

206 NetView for AIX V4 Examples

Figure 171. Using the MIB Browser to Identify MIB Object IDs. You can save effort by
performing a cut-and-paste operation to copy the Object ID from the Describe MIB
Variable pop-up into the configuration dialog.

 4. The final part of defining the threshold table entry is to set the action to be
performed when the threshold is breached or re-armed. Click on Threshold
Actions to get the panel shown in Figure 172 on page 208. In this case we
will send an SNMP trap to warn that the SNA subsystem is not active.

Chapter 9. Agent Policy Manager (APM) 207

Figure 172. Defining Threshold Actions

 5. Having defined the threshold table entry, we next need to define which nodes
it is to apply to. Click on Assign... to see the panel shown in Figure 173 on
page 209. In this dialog you can select the node collections that you want to
monitor. In our case we just selected one collection, Servers .

208 NetView for AIX V4 Examples

Figure 173. Assigning a Collection to the Threshold Monitor

 6. You can now select Apply and then Cancel to return to the main
configuration panel. The newly defined entry will appear on the list, with a
status of NeverDistributed (see Figure 174 on page 210).

Chapter 9. Agent Policy Manager (APM) 209

Figure 174. Threshold Entry Defined but not yet Distributed

 7. To distribute the new configuration, select it from the list and click on
Distribute and then Start . At this point APM will determine which Systems
Monitor nodes to send the update request to and perform the update. In our
case we are defining a threshold table entry, so the distribution will be to
MLM and SLM nodes only.

When we tried the distribution for our example configuration, we received an
error and the status changed to PartiallyDistributed (see Figure 175).

Figure 175. Result of a Failed Distribution Attempt

There are error message generated during the distribution process, but if
you need to check up which target nodes were successfully updated you can
find out by clicking on Node Status (see Figure 176 on page 211).

210 NetView for AIX V4 Examples

Figure 176. Listing the Distribution Status

Figure 176 shows us the nodes that APM has decided to update to monitor
the Servers collection. If you compare the nodes listed (rs60001 and
rs600013) with the list of nodes in the collection (see Figure 148 on
page 177) you will see that although rs60001 is in the collection, rs600013 is
not. The reason for this is that rs600013 has the MLM agent running, and it
will perform the threshold monitoring for most of the nodes in the collection.
rs60001 is an exception to this because it has the SLM agent installed, so it
can perform its own threshold monitoring locally.

 8. Next we have to determine why the distribution failed for rs60001. One key
item to remember when using Systems Monitor agents is that the tables are
configured using SNMP SET requests. This means that NetView for AIX has
to use a community name with read/write access on the agent node. In the
case of our distribution failure, we had not defined such a community name
for rs60001, which is why the problem occurred. You define the community
names that NetView for AIX wil l use by selecting Options ==> SNMP
Configuration from the menu bar. Figure 177 on page 212 shows this dialog.

Chapter 9. Agent Policy Manager (APM) 211

Figure 177. Defining Community Name and Status Poll ing Interval

 9. Finally we can retry the distribution from the APM configuration panel, in the
same way as before. This time the update for rs60001 is successful, as
shown in Figure 178.

Figure 178. Successful Distribution of the Threshold Example

212 NetView for AIX V4 Examples

9.4.1 Results from APM Monitors
APM creates standard Systems Monitor threshold and file monitors. These can
provide warnings by means of SNMP traps and they can also optionally execute
automated commands when they are triggered or re-armed. However, APM
adds an additional display function that represents the status of the monitor
graphically.

Using our previous threshold monitor example again, we stopped the SNA
subsystem on one of the nodes in the Servers collection. The result is that an
event card appears and the symbol representing the node changes color to red
in the APM monitors submap (seeFigure 179).

Figure 179. Result of Inoperative SNA Subsystem Being Detected

There is also an additional symbol added to the node submap for the affected
node. Figure 180 on page 214 shows the symbol for our SNA subsystem status
monitor, along with the IP interface symbols that are always present.

Chapter 9. Agent Policy Manager (APM) 213

Figure 180. Symbol Representing a Threshold Monitor

9.5 Activating APM
There are two main components of the Agent Policy Manager:

• A daemon, C5d, which maintains the Systems Monitor tables.

• A background process, C5eui, which updates the APM submaps and status
symbols. There is one copy of C5eui running for each NetView for AIX user.

The APM processes are not started by default when you first install NetView for
AIX Version 4. To cause them to start up you must register the C5d daemon, by
select ing Conf igure==>Set Opt ions for Daemons==> Set Opt ions for Agent
Policy Manager from the NetView for AIX SMIT menu. You do not need to
change any of the default parameters, just press Enter to perform the
registration process.

214 NetView for AIX V4 Examples

Chapter 10. NetView for AIX Open Topology

The material in this chapter has been extracted from Examples of Using NetView
for AIX, GG24-4327 and updated information has been slightly modified as a
result of testing on NetView for AIX Version 4.

10.1 Introduction
NetView for AIX provides APIs to allow you to integrate programs that manage
resources from different protocols.

Some examples of this might be:

 1. To allow the user to select a new action from a selected object

 2. An application to manage a new network protocol

 3. To allow an application to react to network events

In this way, NetView for AIX may be used as a platform to extend support beyond
the base capability to manage IP nodes and SNMP devices.

One key API is the OVw API, which gives a program the ability to directly modify
submaps and the object information underlying them. However, if you want to
manage and integrate networks that use other protocols, NetView for AIX
provides you with an alternative approach (Open Topology).

Open Topology has several advantages over using the OVw API directly:

 1. Simplification

All of the work to create the submaps and linkages between them is handled
by NetView for AIX, so user code may be much less complex.

 2. Integration and correlation

A standard part of the open topology function is the ability to identify
situations where one object appears as a symbol in more than one network
protocol, and provide linkage between them.

 3. Protocol switching

You can select the list of protocols associated with the object, and then
switch to the submap representing the required protocol. This allows you to
display the object in the context of the protocol that you are investigating.

For example, switch between the IP and SNA views of a PS/2.

 4. Integration with the control desk event cards

When there is an event card displayed, then the source of this event can be
highlighted. This function is standard, if the application uses NetView for AIX
Open Topology.

 5. Propagation of status between protocols

NetView for AIX Open Topology allows for a status change in a protocol
symbol to be automatically propagated to the object that is hosting the
protocol.

 Copyright IBM Corp. 1995 215

10.2 Open Topology Components
Figure 181 on page 217 shows the elements that make up the IP Topology and
the Open Topology parts of NetView for AIX. Notice the symmetry between the
two halves of the diagram; for each function that specifically deals with IP
Topology, there is an equivalent non-IP function. We will examine the roles
played by each of these component pairs, as follows:

netmon/Application code The netmon daemon performs discovery for the IP
network, and then polls for status. An application monitoring a non-IP
protocol has to provide the same function. The mechanism used for
monitoring may be specific to the protocol, or it may make use of
NetView for AIX facilities. A good example of the latter would be LAN
Management Utilities/6000, which monitors PS-based client/server
environments using an SNMP proxy agent.

iptopmd/gtmd These two daemons generate and maintain the databases that
contain topology information (iptopmd for IP and gtmd for Open).
Each creates its own database based on an abstract model of how a
network is constructed.

iptopmd uses an internal IP-specific model, and builds its database
from this, based on information provided by netmon. gtmd uses the
IBM Open Topology model to build its database using information
from specially formatted traps. Both daemons also create and
maintain entries in the object database.

The Open Topology model is defined by a MIB, the source for which
is found in file /usr/OV/snmp_mibs/drafts/nv6k_topo.mib. This MIB
defines network elements, plus the trap formats for defining them, in
a generic form.

ipmap/xxmap These two background processes are started whenever a user
starts the NetView for AIX GUI. They take information from the object
database and the topology databases (ipmap for IP and xxmap for
Open) and convert it into submap and symbol definitions. They
remain active, being responsible for maintaining symbol status.
xxmap additionally provides the symbol correlation and protocol
switching function previously described.

The only element of the Open Topology support that we have not mentioned is
noniptopod. This daemon registers with netmon to receive traps when a new
node is discovered. Using the IP node address and OID from the trap, it sends
SNMP get requests for each OID in the oid_to_command file, to the node named
in the trap. If it receives a valid responses, it sends the command named in the
oid_to_command file to start the data collection process on the node. We will
discuss this further in 10.4, “Network Discovery with Open Topology” on
page 221.

216 NetView for AIX V4 Examples

Figure 181. Components of IP and Open Topology

As you can see, all that an application has to do to create a set of submaps
depicting its own network topology is to send traps to gtmd. The format of these
traps, and the MIB objects encoded within them, is defined in the Open Topology
MIB.

Open Topology support was further enhanced in NetView for AIX Version 3 by
the addition of an API, which may be used in place of the trap interface. Some
additional enhancements were made to this API in NetView for AIX Version 4,
together with some improvements in the performance of the gtmd daemon. We
discuss the API further in 10.6, “The Open Topology API” on page 225.

Chapter 10. NetView for AIX Open Topology 217

10.3 Terms and Concepts
The Open Topology model is generic; it is designed to be applicable to many
different types of network topology. The terms used are therefore somewhat
abstract, and are mostly borrowed from mathematical graph theory.

One of the key concepts is of a protocol ID. This is a MIB instance that is
associated with each open topology object when it is created. The default
values for the protocol IDs are defined as instances of the ifType OID. The
mapping between the protocol object IDs and the text that defines them is in file
/usr/OV/conf/oid_to_protocol. When generating a network topology, all the
objects within the topology should have the same protocol ID. So if, for example,
we were creating an application to map an FDDI network, we would define the
objects in the network with a protocol ID of 1.3.6.1.2.1.2.2.1.3.15, where the 15
identifies the instance for FDDI.

To add confusion, when defining the protocol ID for a Vertex type object (see
below), the protocol ID is not referred to as a MIB instance but as an integer
value. These integers are defined in the open topology MIB
(/usr/OV/snmp_mibs/drafts/ibm-nv6ktopo.mib). Fortunately the values defined
are all identical to the instance ID of the protocol object ID previously described.
In the case of FDDI, therefore, we would define vertices using a protocol ID of 15.

In the following we list the more common types of object defined by the open
topology model: This is also contained in NetView for AIX Programmers Guide,
SC31-6238, but is included here for your convenience.

Vertex A vertex is some point in space. A vertex can contain a physical or
logical interface to a network. A logical interface is a protocol such
as IP or SNA. Physical interfaces are hardware adapters such as
token-ring or Ethernet.

Arc Arcs represent connectivity between vertices or graphs acting as
vertices. An example would be a connection between two SNA PU
Type 4s. This arc connection is independent of either point.

Graph A graph is a representation of a collection of vertices and the arcs
connecting them. It could represent either a physical network, like a
token-ring or Ethernet segment, or it could be a logical network like IP
or SNA. Graphs can also be used to group resources in a network, in
any way chosen by the user.

A graph can also represent a single computer node. Each of the
computer components are represented by vertices, with the
appropriate connections. This sort of graph is called a box graph.

Member When graphs, arcs and vertices are contained in another graph, they
are said to be members of that graph. For example, we may have a
graph representing a token-ring segment. The vertices representing
the adapters in the segment, and the arcs representing the
connections between a CAU and the adapters, would all be members
of the segment graph.

Underlying Arc An underlying arc is an arc that represents the lower-level
connectivity used by another arc. So, for example, we might have
one logical connection made up of several physical links. In this case
the logical connection would be an arc, and the physical links would
be underlying arcs. We say that the underlying arc is used by the arc.

218 NetView for AIX V4 Examples

Simple Connection A simple connection represents a connection as seen by one
of the end points. It can contain any information that is specific to the
end-point node. For example, if we have a switched link one end may
be up (ready for connection) and the other down. A simple arc
representation would only show the link as down, whereas two
connections representing the ends of the link could accurately depict
the status.

Service Access Point A service access point is a mechanism whereby one
network element provides services to other elements. For example, a
node might have IP, SNA, IPX, DECnet all using one Ethernet adapter
for physical transport. A vertex representing the LAN station would
provide a SAP. Vertices in each of the network protocols would be
using the SAP. A vertex can only use one SAP. The SAP used by the
vertex represents the lower-level protocol, and each vertex can only
use one lower-level protocol. A resource can provide services to
many other resources through one or more SAPs. The SAP usage is
represented as a table.

We will look further at how SAPs affect NetView for AIX′s depiction of
a network in 10.5, “Open Topology Service Access Points” on
page 222.

Figure 182 on page 220 illustrates the relationship between several of these
terms. When looking at this diagram, you should imagine each of the layers as
NetView for AIX submaps. You would get to a lower-layer submap by exploding
the higher-layer object that it is a member of or used by. This is exactly how
xxmap converts Open Topology database definitions into submap format.

Chapter 10. NetView for AIX Open Topology 219

Figure 182. Some Elements of the Open Topology Model

10.3.1 Specifying Icons when Using Open Topology
Although the open topology model is mostly abstract, we want the resulting
display on the NetView for AIX submap displays to be meaningful. For this
reason we have to supply icon information when adding new objects. Whether
we are driving open topology with traps or using the API, the icon details are
passed as MIB object instances.

The file /usr/OV/conf/C/oid_to_sym provides the mapping between object
instances and icons.

220 NetView for AIX V4 Examples

10.4 Network Discovery with Open Topology
NetView for AIX provides an extension to the network discovery process to allow
non-IP topology applications to benefit from the discovery polling performed by
netmon.

Figure 183 shows the discovery process in the context of the Open Topology
support.

 1. When netmon discovers a new network node, the discovery event is sent to
the trapd daemon.

 2. noniptopod uses event registration to allow itself to be sent copies of all
these discovery events. Assuming the discovered node supports SNMP,
noniptopod can use the sysObjectID retrieved from the node to extract a
command from the oid_to_command file. This command would normally be
a start command to start a non-IP network monitoring daemon.

 3. The non-IP daemon then solicits topology information and other details from
the newly discovered node.

 4. The daemon then sends requests to gtmd to add the new node to the Open
Topology database, and hence (via the services of xxmap) to the NetView for
AIX submaps. This interaction can be via SNMP traps or via an application
using the gtmd API.

 IP Resources
┌─────────┐
│IP Agents│
└─────────┘

	 �1� ┌─────────┐
│ │ xxmap │
� Discovery └─────────┘

┌──────┐ Event ┌─────┐ ┌───────┐ 	 	
│netmon│────────�│trapd│───�│ovtopmd│ │ │
└──────┘ └─┬───┘ └──┬────┘ ┌───┘ └───┐

│ � │ │
┌──────────┐ │ ┌─────┐ ┌───┴────┐┌─────┴─────┐
│ ovesmd │�──────┘ │ovwdb│─────�│Object ││non-IP Topo│
└──────────┘ └─────┘ │Database││ Database │
- - - - - - - �2� └────────┘└───────────┘
┌──────────┐ �4� 	 	
│noniptopod├────┐ │ │
└──────────┘ │ ┌───────────┐ ┌────┐ │ │

└──�│Proprietary├───�│gtmd├──┘ │
┌──�│daemon │ │ ├──────────────┘

┌─────────────┐ │ └───────────┘ └────┘
│Non IP Agents│�──┘
└─────────────┘

Non IP Resources �3�

Figure 183. The Discovery Process and the Open Topology MIB

Chapter 10. NetView for AIX Open Topology 221

10.5 Open Topology Service Access Points
As we have discussed, the SAP table gives us a technique for declaring that a
given network element provides a service for other network elements to use.

In this section we will illustrate how this affects the way that networks appear in
NetView for AIX, by means of a simple example. Consider the case where we
have a PS/2 with a token-ring adapter card, that is both:

• Physically attached to a token-ring CAU

• A node in the SNA network

We would like to present this information on NetView for AIX. Two IBM products,
LNM/6000 and SNA Manager/6000, will display these network protocols, but for
simplicity we will ignore the products and just look at the process from an Open
Topology point of view.

We start by discussing the discovery process during which the objects are added
to databases and maps.

10.5.1 The Discovery Process
During the discovery process, the applications will find the interface that is
appropriate to their environment. In the case of AIX LNM/6000, NetView for AIX
starts the lnm6kd daemon to talk to the LNM SNMP proxy agent. In the case of
SNA Manager/6000, the SNA topology information is provided from the
System/390 host in the form of preprocessed views.

Initially, there is no correlation between any of the symbols on the map, and
behind the symbols, there are two separate objects.

After this initial discovery, the NetView for AIX object database will contain the
following objects, in descending hierarchical order:

 1. SNA (representing The SNA Network)
 2. LAN (representing The LAN)
 3. WS-SNA (the workstation, from an SNA point of view)
 4. WS-LAN (the workstation, from a LAN physical point of view)
 5. PU (the SNA physical unit for the workstation)
 6. MAC Address (the LAN interface card)

The end result of this is shown in Figure 184 on page 223.

222 NetView for AIX V4 Examples

Submap ┌──┐
ROOT │ │

│ ┌─────┐ ┌─────┐ │
│ │ │ │ │ │
│ │ SNA │ │ LAN │ │
│ │ │ │ │ │
│ └──│──┘ └──│──┘ │
│ │ │ │
└──────┼───────────────────────────────┼─────┘

│ │
│ │
� �

┌────────────┐ ┌────────────┐
Submap │ ┌────┐ │ │ ┌────┐ │ Submap
SNA │ │ │ │ │ │ │ │ LAN

│ ┌┴────┴┐ │ │ ┌┴────┴┐ │
│ └──────┘ │ │ └──────┘ │
│ WS─SNA │ │ WS─LAN │
└───┬────┬───┘ └───┬────┬───┘

│ │ Object DB │ │
│ │ ┌────────────┐ │ │

┌─────────┐ │ │ │ SNA │ │ │ ┌─────────┐
 │Protocols│ �─────┘ │ │ LAN │ │ └─────� │Protocols│
 │─────────│ �─────┐ └─────�│ WS─SNA │ │ ┌─────� │─────────│
 │─ SNA │ │ │ WS─LAN │�─────┘ │ │─ 802.5 │
 │ │ │ ┌─────�│ PU │ │ │ │
 └─────────┘ │ │ │ MAC─ADRESS │�─────┐ │ └─────────┘

│ │ └────────────┘ │ │
│ │ │ │

┌───┴────┴───┐ ┌───┴────┴───┐
Submap │ ┌────┐ │ │ ┌────┐ │ Submap
WS─SNA │ │ │ │ │ │ │ │ WS─LAN

│ │ │ │ │ │ │ │
│ └────┘ │ │ └────┘ │
│ PU │ │ MAC─ADRESS │
└────────────┘ └────────────┘

Figure 184. SNA and Physical Network Topologies with No Correlation

10.5.2 Open Topology Invocations
The previous scenario would require a series of calls to be made to the Open
Topology interface (either as traps or API calls). The result of these calls is that
objects are added to the topology and object databases.

For the SNA side of the diagram, the following sequence of calls would be made:

 1. Trap newGraph for SNA with ISroot=True

This causes gtmd to create an SNA object in the object database. xxmap
adds an SNA submap symbol to the root map, associated with the SNA
object in the object database. xxmap also creates an SNA submap in the
map database.

 2. Trap newGraph for WS-SNA with isRoot=False

This creates an object for WS_SNA in the object database. xxmap cannot yet
create a symbol for WS_SNA, since we have not yet told it which graph the
WS_SNA graph is a member of. Therefore xxmap does not know the
parentage of the symbol. It can, however, create a WS_SNA submap in the
map database, associated with the WS_SNA object.

 3. Trap newMember for WS_SNA

xxmap can now create a symbol for WS-SNA in the map database, and place
it on the SNA submap.

Chapter 10. NetView for AIX Open Topology 223

 4. Trap newVertex for PU

gtmd creates PU in the object database

 5. Trap newMember

This is to place a PU in the WS-SNA submap. gtmd creates a PU symbol
associated with the PU object, and then places it into the WS-SNA submap.

10.5.3 Using Open Topology Correlation
Now that we have placed the SNA PU onto the submap, we want to correlate this
PU with the MAC object that has been created by gtmd during the LNM/6000
discovery process. This is not done by LNM/6000 and SNA/6000, as the
information about the existence of the other environment is not available to
either of them. By contrast it is done by LNM/6000 and NetView for AIX IP
support, because the MAC address of each IP interface is known, and can thus
be correlated with its LNM/6000 equivalent.

If we know the mapping between the PU and its MAC address, we can provide
correlation using the Open Topology MIB. To do the correlation, we need to
send gtmd a newSAP trap, to indicate that the PU vertex object uses services
provided by the MAC-ADDRESS vertex object. When this is done, the xxmap EUI
application will take the following actions:

 1. The WS_SNA object is linked to the WS_LAN object.
 2. The PU symbol is copied into the WS-LAN submap.
 3. The WS-SNA object is deleted.
 4. The WS-SNA submap is deleted.

The effect on the NetView for AIX submaps and object data is shown in
Figure 185 on page 225.

224 NetView for AIX V4 Examples

Submap ┌──┐
ROOT │ │

│ ┌─────┐ ┌─────┐ │
│ │ │ │ │ │
│ │ SNA │ │ LAN │ │
│ │ │ │ │ │
│ └─────┘ └─────┘ │
│ │ │ │
└──────┼───────────────────────────────┼─────┘

│ │
│ │
� �

┌────────────┐ ┌────────────┐
Submap │ ┌────┐ │ │ ┌────┐ │ Submap
SNA │ │ │ │ │ │ │ │ LAN

│ ┌┘ └┐ │ │ ┌┘ └┐ │
│ └──────┘ │ │ └──────┘ │
│ WS─SNA │ │ WS─LAN │
└───┬────┬───┘ └───┬────┬───┘

│ │ Object DB │ │
│ │ ┌────────────┐ │ │

┌─────────┐ │ │ │ SNA │ │ │ ┌─────────┐
 │Protocols│ �─────┘ │ │ LAN │ │ └─────� │Protocols│
 │─────────│ �─────┐ │ │ │ │ ┌─────� │─────────│
 │─ SNA │ │ └─────�│ WS─LAN │�─────┘ │ │─ 802.5 │
 │─ 802.5 │ │ ┌─────�│ PU │ │ │─ SNA │
 └─────────┘ │ │ │ MAC─ADRESS │�─────┐ │ └─────────┘

│ │ └────────────┘ │ │
│ │ │ │

┌──┐
Submap │ ┌────┐ ┌────┐ │
WS─LAN │ │ │ │ │ │

│ │ │ │ │ │
│ └────┘ └────┘ │
│ PU MAC─ADRESS │
└──┘

Figure 185. LNM/6000 and SNA/6000 with Correlation

The xxmap EUI application allows you to transfer between the SNA and the LAN
submaps. This can be done by listing what protocols are being used by the
workstation and switching to the one that you want.

10.6 The Open Topology API
Prior to NetView for AIX Version 3 we were only able to manipulate (create,
delete, set attributes of) Open Topology objects using SNMP TRAPs. There are
two main problems with this:

 1. It is inefficient, in that several processing steps are needed to encode the
trap, prepare and send it in a UDP frame, receive it, decode it, and finally
take the action requested.

 2. It is inherently unreliable, as it uses UDP. This could give us a problem
when the traps arrive in the wrong order.

NetView for AIX now provides an API for Open Topology, which has a TCP socket
connection to gtmd, thus overcoming these problems.

The API also improves the usability of the interface for the programmer. Using
traps, the programmer has to keep track of index numbers associated with each
object created. With the API, there is no need to worry about the index of the
object that you create, as this is managed for you.

Chapter 10. NetView for AIX Open Topology 225

Finally, the API provides list functions, which allows the application to retrieve
information about objects from the gtmd database.

10.6.1 Elements of the Open Topology API
There are three types of function provided by the Open Topology API:

• General-purpose routines. These start and stop the TCP socket connection
between the calling code and gtmd, and control the attributes of the session.

• Error-processing routines. These report and interpret error codes from the
API calls.

• Convenience routines. By far the largest group, these provide functions to
add, delete, and set variables for any of the open topology objects previously
described. There are also a number of get functions, which provide
information about objects. The names of these routines are all
self-descriptive. For example, nvotGetArcsInGraph returns a list of the arcs
that are members of a given graph.

The API routines are fully described in NetView for AIX Programmers Guide,
SC31-6238.

10.7 Open Topology Samples
In a previous project (documented in Examples Using NetView for AIX,
GG24-4327), we created the wtotapi1 sample program that drives the NetView for
AIX Open Topology processes. In this project we enhanced the wtotapi1 sample
program.

You will find a listing of the sample program in Appendix D, “C Code for the
wtotapi1 Sample Program” on page 271.

The objective of this program is to provide a simple command-line technique to
define and control network topology views, using the Open Topology support of
NetView for AIX. The program does not exploit the full capability of the API, but
it does serve to show the sort of thing that may be achieved with little
programming effort. To illustrate the use of the samples, we will use a worked
example.

10.7.1 Worked Example Using Open Topology Sample Code
For our example we chose to represent the NFS distributed file system of several
of the RISC System/6000s in the ITSO-Raleigh center.

Two machines act as NFS servers, providing disk access to three other RISC
System/6000s.. Therfore, the elements we want to map on the NetView for AIX
display are:

• The NFS servers

• The directories they export

• The NFS clients that mount the directories

• The file systems over which the directories are mounted

Ideally, we would issue commands to determine the relationships between these
resources and then issue Open Topology requests to automatically generate the

226 NetView for AIX V4 Examples

configuration submaps. However, for the purposes of our example we will
simply define the topology statically.

10.7.1.1 Defining the Protocol ID
The first thing to consider is the protocol ID that we will use. As previously
described in 10.3, “Terms and Concepts” on page 218, the protocol IDs are
defined in the following two places:

• As an object ID in file /usr/OV/conf/oid_to_protocol

• As an integer value in the Open Topology MIB

We edited the oid_to_protocol file, adding the following entry:

″ITSO″=1.3.6.1.4.1.2.8.1
${ITSO}.1=″NFS″
${ITSO}.56=″IP″

The object ID (1.3.6.1.4.1.2.8.1) that we have assigned to ITSO is an experimental
leg under the IBM enterprise ID in the MIB. In fact, the object ID used for the
Open Topology protocol ID is not correlated with other MIB definitions, so it is
not essential for it to be unique. However, it is good practice to use official OIDs
where possible. If you are adding your own protocols in this way, you may wish
to apply for an enterprise ID from the Internet Assigned Numbers Authority. IDs
can be obtained via email from iana@isi.edu.

There is presently no way to add a vertex protocol number to Open Topology, so
we will use 1 which has a description of Other.

10.7.1.2 Adding Symbols
We will want to use symbols that are not defined in the default
/usr/OV/conf/C/oid_to_sym file, so before we start building the topology we need
to update it. We added the following lines to oid_to_sym:

1.3.6.1.4.1.2.8.1.1:Network:Star
1.3.6.1.4.1.2.8.1.2:Computer:Workstation
1.3.6.1.4.1.2.8.1.3:Software:Process Tree
1.3.6.1.4.1.2.8.1.4:Software:Process
1.3.6.1.4.1.2.8.1.5:Device:Hard Disk

These lines associate a MIB object ID (in this case under the ITSO experimental
leg) with symbols defined in NetView for AIX ′s symbols directory:
/usr/OV/symbols/C. The first name after the MIB OID is the Symbol Class; it is
the name of a file in the symbols directory. The second name is the Symbol
Type, which references an entry in the Symbol Class file. This in turn references
a set of bitmaps.

10.7.1.3 Registering gtmd
Before you can work with the Open Topology you will have to register the gtmd
daemon as follows:

• As root user change directory into /usr/OV/lrf.
• Still as root run the command ovaddobj gtmd.lrf.

You should receive the following message:

ovaddobj - Static Registration Utility
Successful Completion

Chapter 10. NetView for AIX Open Topology 227

10.7.1.4 Defining the Topology
Although the sample program wtotapi1 can be invoked from the command line, it
is easier to place the commands in a file to be invoked together.

The command file used to create our NFS sample is shown in Figure 186.

prefix 1.3.6.1.4.1.2.8.1.
prot 1
add graph NFS Network:Star rowcol
focus NFS
add graph rs60003.nfs Software:Process tree
add graph rs60005.nfs Software:Process tree
focus rs60003.nfs
add box /usr/local Device:Hard Disk rowcol
add box /wtprint Device:Hard Disk rowcol
add box rs60004 Computer:Workstation rowcol
add box rs60002 Computer:Workstation rowcol
add box rs60001 Computer:Workstation rowcol
add arc rs60001 /usr/local
add arc rs60002 /usr/local
add arc rs60004 /usr/local
add arc rs60002 /wtprint
focus rs60005.nfs
add box /usr/sys/inst.images Device:Hard Disk rowcol
add box /u/harald Device:Hard Disk rowcol
add box rs60004 Computer:Workstation rowcol
add box rs60002 Computer:Workstation rowcol
add arc rs60004 /u/harald
add arc rs60004 /usr/sys/inst.images
add arc rs60002 /usr/sys/inst.images

Figure 186. Command File nfsmap Using wtotapi1 Sample Code

wtotapi1 reads commands from standard input, so we invoke the above
command file by entering wtotapi1 -p nfsmap (The ″-p″ option prevents printing
of the Command> prompt).

The following are some notes on the contents of the nfsmap command file:

 1. We want to use our own protocol OID (see 10.7.1.1, “Defining the Protocol
ID” on page 227) instead of the default one. Therefore we tell wtotapi1 the
dotted-decimal root for it.

 2. We will use protocol instance 1 (NFS).

 3. First we add a symbol to the root map to anchor our new topology. It wil l be
a network symbol and the submap below it will use the Row/Column layout.

 4. Next we want to add objects one layer further down the network hierarchy,
so we define the parent object for them (the NFS root-graph that we just
defined). In terms of the Open Topology model, the objects that we next add
will be members of the NFS graph.

 5. We add objects to represent the two NFS servers. Note that these are graph
graphs, not box graphs, because we will not add vertices directly under
them.

 6. We have now gone one layer further down, and we add objects representing
the directories exported by the NFS server on rs60003 and the machines that

228 NetView for AIX V4 Examples

mount them. Note that these are box graphs, since we will want to add
vertices below them.

 7. Next we establish the relationships between the exported directories and the
machines using them, by adding connections (in the Open topology model,
arcs) to the submap.

 8. Finally we repeat steps 6 and 7 for the resources connected to the NFS
server on rs60005.

The result of executing the previous sequence of instructions is shown in
Figure 187.

Figure 187. The Root Submap as Updated by this Example

The NFS symbol has been added by xxmap. There will also be an entry in the
NetView for AIX object database representing this object.

Next we explode the NFS symbol with a double-click of the left mouse button.
The panel shown in Figure 188 on page 230 is displayed.

Chapter 10. NetView for AIX Open Topology 229

Figure 188. The NFS Server Submap

Our two servers are represented by Software:Process symbols. We then
double-click on rs60003.nfs and the panel in Figure 189 on page 231 is
displayed.

230 NetView for AIX V4 Examples

Figure 189. The Mounted File System Connections

Here we see symbols representing the exported file systems and the NFS client
systems that have mounted them.

10.7.1.5 Adding Status Representation
Thus far we have created a map of our NFS configuration, but all the symbols
are blue (status unknown). We now want to add status representation to our
NFS network views.

In the Open Topology model, status flows from the bottom upward. That is, only
the elemental parts of the network (those lowest in the hierarchy) have status
directly; all the higher-layer parts derive their status from the objects that are
contained in them. The most basic network component in the Open Topology
model is the vertex. If we want to add status representation to our network,
therefore, we have to add vertices.

In the NFS network the lowest-level component is the file system (the real file
system on the server and the mounted file systems on the clients). It is the
status of these that we will monitor. To add vertices representing them, we pass
the following commands shown in Figure 190 on page 232 to wtotapi1.

Chapter 10. NetView for AIX Open Topology 231

prefix 1.3.6.1.4.1.2.8.1
prot 1
focus /usr/local
add vertex rs60003:/usr/local Device:Hard Disk
focus /wtprint
add vertex rs60003:/wtprint Device:Hard Disk
focus rs60001
add vertex rs60001:/usr/local Device:Hard Disk
focus rs60002
add vertex rs60002:/usr/local Device:Hard Disk
focus rs60002
add vertex rs60002:/mnt/wtprint Device:Hard Disk
focus rs60004
add vertex rs60004:/usr/local Device:Hard Disk
focus /usr/sys/inst.images
add vertex rs60005:/usr/sys/inst.images Device:Hard Disk
focus /u/harald
add vertex rs60005:/u/harald Device:Hard Disk
focus rs60002
add vertex rs60002:/usr/sys/inst.images Device:Hard Disk
focus rs60004
add vertex rs60004:/usr/sys/inst.images Device:Hard Disk
focus rs60004
add vertex rs60004:/u/harald Device:Hard Disk

Figure 190. Commands to Add Vertices to NFS Submaps

Adding these vertices has the effect of populating the submaps below the box
graphs in the lowest-layer submap (such as the submap shown in Figure 189 on
page 231). For example if we explode the rs60002 symbol, we will see the
screen in Figure 191 on page 233.

232 NetView for AIX V4 Examples

Figure 191. rs60002 Submap, Showing Vertex Symbols

When a vertex is created it gets a default status of normal (that is, up). This
causes the symbol representing it to be green. This green status is propagated
up the symbol hierarchy to the graph that contains it.

10.7.1.6 Setting Vertex Status
So far all of our work has been done on the manager (NetView for AIX). We
have created a picture of the NFS network, but as yet it is only a static set of
views. If our NFS application is to be useful, we need to have status information
updated by monitors running on the agent systems.

The agent needs to have two components:

 1. A method to detect the status change

 2. A method to communicate this to the central manager

For the first component we could have used a simple shell script, to check for
the existence of the file systems we are monitoring on a regular cycle. Instead,
we chose to install Systems Monitor for AIX and configure the Threshold and File
Systems MIB tables to perform this function. This monitoring capability is only
one of the many functions of the Systems Monitor for AIX MLM agent. We will
not explore the functions of the product here, but you may wish to read further
about it in AIX Systems Monitor Users Guide, SC31-7042 and the redbook IBM
Systems Monitor Anatomy of a Smart Agent, GG24-4398.

Chapter 10. NetView for AIX Open Topology 233

For the second component (communication of changes) we considered three
possibilities, using standard functions of the Systems Monitor for AIX Threshold
Table:

 1. Send a trap and use event configuration in NetView for AIX to execute
wtotapi1 when the trap arrives.

 2. Place a copy of wtotapi1 on the agent system and use it to remotely update
gtmd on the manager.

 3. Execute the snmptrap command to set the status directly.

All options have the same effect (a vertex status change request is passed to
gtmd on the NetView for AIX system). The differences lie in whether a TCP
socket (wtotapi1) or SNMP trap (option 3) is the vehicle. We elected to go for
option 3. The advantage is that because the snmptrap command is part of
Systems Monitor, it will work on systems to which wtotapi1 may not be portable
(for example, Sun Solaris or OS/2).

The Systems Monitor for AIX configuration screen for the Threshold Table is
shown in Figure 192 on page 235. This entry causes the Systems Monitor agent
on the target system (in this case rs60002) to poll every 30 seconds to see if the
/usr/local file system is mounted, and to take action if it is not.

The threshold action is defined by clicking on the Threshold Actions button.
Figure 193 on page 236 shows that we have told Systems Monitor for AIX to
issue a command set_down. There is an equivalent action panel for when the
threshold re-arms (which we have specified to be when the NFS mount is in
place again).

234 NetView for AIX V4 Examples

Figure 192. Systems Monitor Threshold Table Definit ion for NFS Monitor ing

Chapter 10. NetView for AIX Open Topology 235

Figure 193. Systems Monitor Threshold Action Definition. This action is tr iggered when
the threshold defined in the previous figure is exceeded.

The set_down and set_up shell scripts each contain a single snmptrap
command. The following is the set_down shell script:

us=`hostname`
resname=$us:$1
trap_tgt=rs60003
trapcmd=/usr/lpp/sm6000/original/snmptrap

$trapcmd $trap_tgt public .1.3.6.1.4.1.2.6.3.1 $us 6 1879048194 0 \
.1.3.6.1.4.1.2.5.3.1.1.1.2 Integer 1 \
.1.3.6.1.4.1.2.5.3.1.1.1.3 Octetstring $resname \
.1.3.6.1.4.1.2.5.3.1.1.1.9 Objectidentifier 1.3.6.1.4.1.2.8.1.0 \
.1.3.6.1.4.1.2.5.3.1.1.1.10 Integer 1 \
.1.3.6.1.4.1.2.5.3.1.1.1.11 Integer 1 \
.1.3.6.1.4.1.2.5.3.1.1.1.12 Integer 8 \
.1.3.6.1.4.1.2.5.3.1.1.1.13 Integer 2

Figure 194. Shell Script set_down - Send Change Vertex Status Trap

The snmptrap command sends an enterprise specific trap, as defined in the
Open Topology MIB. The specific trap number (1879048194) has the meaning
change vertex status. The last four variables in the trap are the Operational
Status, Unknown Status, Availability Status, and Alarm Status. Different
combinations of these variables map to different NetView for AIX symbol
statuses and, therefore, colors.

We enabled the Systems Monitor for AIX Threshold Table entry, and unmounted
the /usr/local file system on rs60002. Within 30 seconds the color of the vertex
symbol changed, and the change was propagated up the NFS submaps.

236 NetView for AIX V4 Examples

Figure 195. File Systems Submap with Status Change

10.7.1.7 Correlating with Other Protocols
The views of the NFS network that we have built are self-contained. The only
place that they meet other protocols is on the Root submap. We now want to
use the Open Topology Service Access Point function to provide correlation
between NFS resources and IP network resources.

Although the IP network submaps are not generated by gtmd/xxmap, hooks have
been placed in the Open Topology structure to enable correlation with IP
resources to be made. The hooks take the form of one vertex for each IP
interface whose name is the IP address of the interface and whose protocol
number is 56. Note that it is the IP address that is used, even though the
selection name by which the node is usually known may be an IP name from
/etc/hosts or DNS.

We want our correlation to reflect the relationship between the node and the file
systems in it (that is to say: Node ″x″ contains NFS file system ″y″). The way we
achieve this is by generating SAP table entries, provided by NFS file system
vertices and used by the node address. We used a file containing the following
sequence of commands as input to wtotapi1:

Chapter 10. NetView for AIX Open Topology 237

prefix 1.3.6.1.4.1.2.8.1.
prot 1
add sap providing rs60001:/usr/local
add sap providing rs60002:/usr/local
add sap providing rs60004:/usr/local
prot 56
add sap using 9.24.104.26 rs60001:/usr/local 1
add sap using 9.24.104.28 rs60002:/usr/local 1
add sap using 9.24.104.27 rs60004:/usr/local 1

Figure 196. Adding SAP Entries Correlating NFS and IP. Note the two protocol IDs in
use, 1 is our NFS protocol, 56 is the pre defined protocol ID for IP.

The most obvious result of this is that the submap below each node in the IP
world and the NFS world are merged. For example, if we explode the rs60002
symbol from the IP Internet submap, we see a window similar to Figure 197 on
page 238.

Figure 197. Merged Lowest-Layer Submap Due to SAP Correlation. Notice that both the
NFS file systems and the IP interfaces can now be seen to be ″part of″ rs60002. Status
changes to any of them may be propagated up both submap trees.

Another feature provided by SAP correlation is the protocol switching function.
Under the View menu bar there is a Protocols. menu option, as shown in
Figure 198 on page 239.

238 NetView for AIX V4 Examples

Figure 198. Protocol Switching Option

If we select rs60002 and select the Protocols option, we see the following panel
(Figure 199 on page 239) from which we can directly pass to the different worlds
in which rs60002 exists (in this case IP or NFS).

Figure 199. Protocol Switching Panel

Chapter 10. NetView for AIX Open Topology 239

240 NetView for AIX V4 Examples

Chapter 11. Report Generation for NetView for AIX

In Examples of Selected Configuration and Customization Matters With NetView
for AIX and Its Family, GG24-2521, an example was shown of generating reports
using NetView for AIX.

This chapter replaces the example from that document, using NetView for AIX
Version 4 and adds a section on the use of snmpColDump.

It is possible to collect data on any MIB value or MIB expression. In this
example we will show a collection of the snmpOutPkts MIB.

11.1.1 Steps to Generate a Report For SNMPOutPackets
Before you can generate a report, you must collect the data that is used to
generate the graph. NetView for AIX uses the snmpCollect daemon for data
collection.

11.1.1.1 MIB Data Collection
Select Tools --> Data Collection & Thresholds: SNMP from the NetView for AIX
menu bar and the window shown in Figure 200 on page 241 is displayed.

Figure 200. MIB Data Collection Screen

 Copyright IBM Corp. 1995 241

Select Add... to add a new entry for snmpOutPkts.

Select mgmt and click on Down Tree .

Select mib-2 and click on Down Tree .

Select snmp and click on Down Tree .

Select snmpOutPkts .

If you knew the numeric value for the MIB you could type this in directly. In this
case the value is .1.3.6.1.2.1.11.2. At this stage you should change the label to
a more meaningful value. We will use snmpOutPkts.

Select OK and you will get a new window as shown in Figure 201 on page 243.

The Source field shows the hosts for which the data is to be collected. It is
possible to collect from specific hosts or on a group of hosts by using the
collection facility. See Chapter 4, “The Collection Facility” on page 53 for
details about using collections in NetView for AIX Version 4. In this case we will
be collecting from all the nodes in two collections, mlmGroup and slmGroup.

Click on Add to add your hosts to the list of collection sources or click on Select
to add to the list of collection groups.

Click on Collection Mode to select the required value. In our example we want
to store the data without checking it against a threshold.

Select the Polling Interval (in this case every 10 minutes).

Select the Instances . We selected to collect data from instance 0 only.

Click on OK when you are done.

242 NetView for AIX V4 Examples

Figure 201. MIB Data Collection, Add Collection for snmpOutPkt

Now that the data is being collected it is possible to display it in two ways, as
discussed in the following sections.

11.1.2 Generating reports from the NetView for AIX Version 4 EUI
The NetView for AIX Version 4 EUI allows you to graph the data by selecting
Tools ==> Graph Collected Data: SNMP from the menu bar. From here it is
possible to choose Selected Nodes or All This will add a graph of the selected
data to the Control Desk. At any time it is possible to refresh the graph with the
latest data by selecting Fi le ==> Update Data from the menu bar.

To show the data in numerical form, return to the MIB Data Collection panel;
select the entry that you are interested in and click on Show Data .

11.1.3 Generating the Report Script for a Graphical Report
It is also possible to create your own reports by building scripts. The scripts for
the NetView for AIX reports are located in /usr/OV/reports/C. Figure 202 on
page 244 shows the script we built for the snmpOutPkts report.

Chapter 11. Report Generation for NetView for AIX 243

#!/bin/ksh
#
EXAMPLE NAME: SNMPOutPackets
FUNCTIONS: Requires that the SNMP Data Collector first be run to
collect snmpOutPackets data values. Use of the xnmgraph
facility to graph a specific MIB variable, snmpOutPackets.
No summarization is performed. Only the nodes that are
currently selected will be graphed. The graph will
represent a snapshot of the data collected.
Explanation of the xnmgraph options --
-browse will cause xnmgraph to look in /usr/OV/databases/snmpCollect
and not directly poll the target nodes.
-title specifies the title of the window that xnmgraph runs in.
-mib specifies each line on the graph. The ′ : ′ separated options
expressed in -mib are (see the xnmgraph man page for details):
1. mibOID .1.3.6.1.2.1.11.2
Dotted notation for snmpOutPkts. This is the MIB variable whose
value we are graphing. This will cause the snmpOutPkts.<instance>
files, in /usr/OV/databases/snmpCollect, to be considered.
Actually the files can be named something other than snmpOutPkts.
snmpOutPkts is the default name.
2. mibLabel SNMP Out Packets
Text string used to name the lines on the graph. If not supplied
will default to the last textual component of mibOID(snmpOutPkts)
3. instanceRE <default>
4. instMatchOID <default>
5. instMatchRE <default>
6. instLabelOID <default>
7. instLabelTrunc <default>
8. mult <default>
Multiply all sample values by 1. That is, no multiplication.
9. node *
Report all nodes whose values have been captured
collections.
name=$(basename $0)
Make sure that something has been selected
if [-z ″$OVwSelections″] ; then

ovxecho ″$name: Nothing has been selected from the map″
exit

fi
Make sure that there is not a : in the Selection name,
if [-n ″`echo $OVwSelections | grep ′ : ′ `″]; then

ovxecho ″$name: Selected object $OVwSelections is not a node″
exit

fi
exec xnmgraph \
-browse \
-title ″$name: Collected snmpOutPkts″ \
-mib \

″ . 1 . 3 . 6 . 1 . 2 . 1 . 1 1 . 2 : : : : : : : : :\
$OVwSelections″

Figure 202. Script for Report snmpOutPkts of a Selected Node

244 NetView for AIX V4 Examples

11.1.3.1 Activate a Report
The reports are activated from the NetView for AIX EUI.

Select the node for which you want the report.

Select Monitor --> Reports: Site provided from the menu bar to get a screen
such as the one shown in Figure 203 on page 245.

Select snmpOutPkts from the list and click on OK .

Figure 203. Run Report File Window

Now the xnmgraph command that is in the shell script is executed and displays
a graph of the selected data. The graph will look like Figure 204 on page 246.

To print this graph, you can use the NetView for AIX Print Tool.

Chapter 11. Report Generation for NetView for AIX 245

Figure 204. Result of the snmpOutPkt Report

11.1.3.2 Generating a Report Script for a List Report
To display the collected data as a graph for one specific node we invoked the
xnmgraph function within a shell script, as described above. Another way to use
the report function is to generate a report that is in a list or tabular format. In
this example we show a list of the sum of SNMP out packets for all nodes from
which we collected data. The list is sorted in descending order.

We are using the same data as for the previous report.

Figure 205 on page 247 shows the source of this report script.

246 NetView for AIX V4 Examples

#!/bin/ksh
EXAMPLE NAME: snmpOutTotal
#
FUNCTIONS: Requires that the SNMP Data Collector was run to collect
data values. Sums the number of selected snmpOutPkt values,
by Node name, from Data Collector data. Sorts in
descending order, by sum and displays on standard output.
This would provide you, at a gross level, which nodes have
the most SNMP traffic.
All nodes for which data has been collected will be reported
name=$(basename $0)
workfile=/tmp/$name$$
trap ″rm -f $workfile; exit″ 0 1 2 3 15 # Remove workfile on exit
cd /usr/OV/databases/snmpCollect # Go to where the collections are

snmpColDump -Tt snmpOutPkts.0 |
awk -F\t ′ {
Input Data Fields are:
$1 - Start Time, in ASCII
$2 - Domain Name
$3 - Collected Data
$4 - Start time in seconds
$5 - Stop time in seconds
sum[$2]+=int($3*($5-$4)) # Convert the value collected, which is in

changes per second and sum, indexed by Domain
name. Value * (StopTime - StartTime)

}
END {

for(i in sum) # Unload the sum array
printf(″%16.0lf\t%s\n″ , sum[i], i)

}′ | sort +0 -nr > $workfile # Put into descending order, by sum

Wrap the output in a resizeable Motif window for good looks
(don′ t exec xnmappmon, or trap won′ t get invoked)
xnmappmon -commandTitle ″$name″ \

-commandHeading ″Sum of SNMP Out Packets, By Host Name″ \
-cmd cat $workfile

Figure 205. Script /usr/OV/reports/C/snmpOutTotal

When you invoke this new report via the EUI as previously described, you will
get a list of all nodes with the sum of SNMP output packets for each one during
the collected time interval. Figure 206 on page 248 shows an example of this
list.

To print this list, click on File --> Print... in the window and enter your print
command.

Chapter 11. Report Generation for NetView for AIX 247

Figure 206. Result of the snmpOutTotal Report

To generate this report on a monthly basis, simply remove the data collection
input (in /usr/OV/databases/snmpCollect) after the report is generated, so you
will display the data for only one month.

Note: You can also start each report from the command line or from another
program (cron, for example), so you can easily automate the report function.

248 NetView for AIX V4 Examples

11.1.3.3 Generating the snmpColDump ASCII File
The data generated by Data Collection and Thresholds is stored in binary form.
If you need to load this data into another program such as a spreadsheet or
database it is necessary to convert it into a readable format. The NetView for AIX
application provides the snmpColDump command to do this. The command to
convert the snmpOutPkts example would be:

snmpColDump /usr/OV/databases/snmpCollect/snmpOutPkts.0 > /tmp/snmpOutPkts.ascii

This will produce a text file containing the data in ASCII format. Figure 207 on
page 249 shows a partial output of this command.

08/10/95 15:37:18 rs60002.itso.ral.ibm.com 0.00166658
08/10/95 15:37:18 rs60005.itso.ral.ibm.com 0.27332
08/10/95 15:37:18 rs60009.itso.ral.ibm.com 0.0766641
08/10/95 15:37:18 rs600013.itso.ral.ibm.com 0.0133333
08/10/95 15:47:18 rs60002.itso.ral.ibm.com 0.0316667
08/10/95 15:47:18 rs60005.itso.ral.ibm.com 0.161667
08/10/95 15:47:18 rs600013.itso.ral.ibm.com 0.020001
08/10/95 15:47:18 rs60009.itso.ral.ibm.com 0.00166669
08/10/95 15:57:18 rs60002.itso.ral.ibm.com 0.82
08/10/95 15:57:18 rs60005.itso.ral.ibm.com 1.06498
08/10/95 15:57:18 rs600013.itso.ral.ibm.com 1.11004
08/10/95 15:57:18 rs60009.itso.ral.ibm.com 0.0633344
08/10/95 15:57:24 rs60001.itso.ral.ibm.com 0.226667
08/10/95 16:07:18 rs60002.itso.ral.ibm.com 0.938333
08/10/95 16:07:18 rs60005.itso.ral.ibm.com 1.8033
08/10/95 16:07:18 rs600013.itso.ral.ibm.com 0.176676
08/10/95 16:07:18 rs60009.itso.ral.ibm.com 0.0666667
08/10/95 16:07:24 rs60001.itso.ral.ibm.com 0.0283333
08/10/95 16:17:18 rs60002.itso.ral.ibm.com 0.00166348
08/10/95 16:17:18 rs60005.itso.ral.ibm.com 0.17
08/10/95 16:17:18 rs600013.itso.ral.ibm.com 0.00166672
08/10/95 16:17:18 rs60009.itso.ral.ibm.com 0.00166669
08/10/95 16:17:24 rs60001.itso.ral.ibm.com 0.00166667

Figure 207. Partial Ascii Output of Default snmpColDump

The first two columns are the date and time the collection was made. The third
column is the resolved name of the host from which the collection was taken and
the last column is the value of the data. Further information on the
snmpColDump command can be found in the man entry. A copy is shown in
Figure 208 on page 250.

Now that the file is in ASCII format, it is necessary to transfer it to your system.
This is beyond the scope of this book but some possible methods would be to
use NFS, FTP or NetView Distribution Manager.

If your NetView for AIX Version 4 is configured to use a relational database, it is
possible to convert the ASCII files and run queries using SQL. This technique is
further explained in Netview for AIX Database Guide, SC31-8167. There are also
some examples of using the SQL support in Examples of Using NetView For AIX,
GG24-4327.

Chapter 11. Report Generation for NetView for AIX 249

snmpColDump(1)

Purpose

 Dumps, in ASCII, or modifies data collected by snmpCollect

 Syntax

 snmpColDump [-TIpfstoiu] [-l Object-ID] [-L Object-ID] filename
 snmpColDump [-r asciifile filename]

 Description

 The snmpColDump command formats a single binary data file in
 /usr/OV/databases/snmpCollect that was previously created by
 snmpCollect into human-readable and machine-parseable format. It
 also supports editing of the binary data.

 For each MIB variable being collected, snmpCollect creates the
 following two files in /usr/OV/databases/snmpCollect:

 o A binary data file containing the data collected for that
variable. The binary file has the same name as the label
specified in the MIB Data Collection menu.

 o A separate ID file containing the units, syntax, and object
ID for the MIB variable. This ID file has the same name as
the binary data file, except there is an ! appended to the
filename. The information in the ID file is also available
by way of various options to snmpColDump.

Figure 208 (Part 1 of 6). snmpColDump man Page (August 1995)

250 NetView for AIX V4 Examples

 The default output from snmpColDump consists of records, one per
 line, containing the following three tab-separated fields:

 o Date and time when the data was collected

 o Domain name of the node on which the data was collected

 o Value of the collected variable. MIB variables of type
COUNTER are printed in floating-point notation. COUNTER
values are recorded as changes-per-second. INTEGER and GAUGE
types are printed as whole (non floating-point) numbers.

 Flags

 The following options are used to add additional fields to
 snmpColDump output. To remove an unwanted field, use awk(1).

 -t
Displays the time the data was collected as seconds since
1970. This makes sorting records easier.

 -T
Displays the start time as seconds since 1970.

 -I
Displays the official IP address of the node.

 -p
Displays the collection period in seconds.

 -l Object-ID
Displays an instanceString which is obtained through SNMP.
SNMP getnext requests are made to the current node using this
object ID and the instance of the Object-ID whose value
matches the instance of the collection is displayed. See the
following examples for use.

Note: When you use the -l option, if the SNMP request cannot
get the requested data, it will create the string
(Instance_n).

Figure 208 (Part 2 of 6). snmpColDump man Page (August 1995)

Chapter 11. Report Generation for NetView for AIX 251

 -L Object-ID
Displays a value which is obtained through SNMP. The
instance is appended to the Object ID given as the argument
to this option. An SNMP get request is made to the current
node using this object ID and the resulting value is
displayed. Note that embedded blanks and tabs may be in this
returned value, which is why it is the last field displayed.
See the examples for information about usage.

Note: When you use the -L option, if the SNMP request cannot
get the requested data, it will create the string
instance_n.

 filename
Specifies path to the binary data file that is given as an
argument to snmpColDump.

 -r asciifile
Replaces the binary file filename with the binary equivalent
of asciifile. If asciifile is -, standard input is used.
This allows truncation of files, or modification of the
contents of the file. The asciifile must be an ASCII file in
the form of lines containing

<startTime> <endTime> <Dotted IPaddress> <value>

where <startTime> and <endTime> are integers representing
time since the epoc (time_t format), <Dotted IPaddress> is
the string containing the IP address, and <value> is the
double precision value for the interval. An example of this
form can be obtained using the command

snmpColDump -tTI FILE |
awk -F\t ′ {printf(″%d\t%%s\t%lg\n″ , $4, $5, $6, $3)}′

This allows deleting of old entries in the binary data base
file.

Figure 208 (Part 3 of 6). snmpColDump man Page (August 1995)

252 NetView for AIX V4 Examples

 The following options to snmpColDump help you gather additional,
 specific information for generating reports, but produce no data:

 -s
Displays type (syntax) string of the MIB variable.

 -o
Displays objectID string of the MIB variable.

 -i
Displays instance of the MIB variable.

 -u
Displays units string of the MIB variable.

 The following option to snmpColDump enables you to continually
 monitor the data collected by snmpCollect:

 -f
Follows the file, sleeping until more data is available to
display.

 Implementation Specifics

 The environment variable LANG determines the language in which
 messages are displayed. If LANG is not specified, or is set to
 the empty string, the default C is used instead of LANG. If any
 internationalization variable contains a setting that is not
 valid, snmpColDump behaves as if all internationalization
 variables are set to C.

 The snmpColDump command supports single-byte character code sets.

Figure 208 (Part 4 of 6). snmpColDump man Page (August 1995)

Chapter 11. Report Generation for NetView for AIX 253

Examples

 The following examples assume that data have been collected using
 snmpCollect under the label ifInOctets.1. It also assumes use of
 sh(1) or ksh(1).

 If you want to print out a the average value for node Moe, enter:

snmpColDump /usr/OV/databases/snmpCollect/ifInOctets.1 |
awk -F\t ′ / Moe/{num++; sum+=$3} END{print

sum/num}′

 If you want to retrieve information about node Curly, enter:

snmpColDump /usr/OV/databases/snmpCollect/ifInOctets.1 |
fgrep Curly

 If you want to additionally display the description of the
 collected interface, enter:

snmpColDump -L interfaces.ifTable.ifEntry.ifDescr \
/usr/OV/databases/snmpCollect/ifInOctets.1

 If you want to additionally display the IP address, of the
 interface, which is obtained as an instanceString from the
 ipAdEntIfIndex instance whose value matches the current instance
 of ifOctets, enter:

snmpColDump -l ip.ipAddrTable. ipAddrEntry.ipAdEntIfIndex \
/usr/OV/databases/snmpCollect/ifInOctets.1

Figure 208 (Part 5 of 6). snmpColDump man Page (August 1995)

254 NetView for AIX V4 Examples

 If you want to keep only the last 2000 entries in file
 1MinLoadAvg, enter:

lineno=′ snmpColDump 1MinLoadAvg | wc -l′
if [$lineno -gt 2000]; then

lineno=′ expr $lineno - 2001′
else

lineno=1
fi
In the awk program:
$4=startTime, $5=endTime, $6=dottedIPAddr, $3=value
snmpColDump -tTI 1MinLoadAvg | sed -n $lineno′ , $p′ |
awk -F\t ′ {printf(″%d\t%d\t%s\t%lg\n″ , $4, $5, $6, $3)}′ |
snmpColDump -r - 1MinLoadAvg

 Files

 /usr/OV/databases/snmpCollect/*

 /usr/OV/databases/snmpCollect/ *[!]

 Related Information

See ″snmpCollect(8).″

Figure 208 (Part 6 of 6). snmpColDump man Page (August 1995)

Chapter 11. Report Generation for NetView for AIX 255

256 NetView for AIX V4 Examples

Appendix A. How to Obtain the Samples in this Book

The C code, shell scripts and event ruleset examples in this book are all
available using anonymous FTP, as follows:

For Users Within the IBM TCP/IP Network

• Connect to rsserver.itso.ral.ibm.com via FTP.

• Specify a user ID of anonymous.

• Enter your internet mail address in place of a password.

You will find the samples in the file /pub/sg244515.tar.Z. This is a compressed
tar archive containing all the files. Unpack it in a temporary directory. You will
also find a file named sg244515.README in the same directory, which contains a
decription of the package contents. This README file is shown in Figure 209 on
page 258.

For Users Outside the IBM TCP/IP Network:

• Connect to ftp.almaden.ibm.com via FTP.

• Specify a user ID of anonymous.

• Enter your internet mail address in place of a password.

You will find the samples in file the /redbooks/SG244515/sg244515.tar.Z. This is
a compressed tar archive containing all the files. Unpack it in a temporary
directory. You will also find a file named sg244515.README in the same
directory, which contains a decription of the package contents. This README file
is shown in Figure 209 on page 258.

 Copyright IBM Corp. 1995 257

NetView for AIX V4 - Samples

This collection of stuff is from redbook SG24-4515, ″Examples using NetView for AIX
Version 4″ . The authors were Rob Macgregor (ITSO-Raleigh), Dave Shogren (ITSO-RALEIGH),
Randy Craig (IBM US, RTP), Luigi Casagrande (IBM Italy), Massimo Carnevali (IBM Italy),
Sergio Costa Lage (IBM Brazil), Blaz Mertelj (IBM Slovinia), Paul Fearn (IBM UK) and
Mark Hodge (IBM UK).

There are a lot of sample programs and event rulesets here to help you
make good use of the new features in NetView for AIX V4.

We don′ t give any guarantees for the code, and there are almost certainly
better ways to do it - please send any comments to Rob Macgregor (MCGREGOR
at WTSCPOK or robmacg@vnet.ibm.com) or Dave Shogren (SHOGREN at WTSCPOK or
shogren@vnet.ibm.com).

In this collection you will find the following files:

rulesets A subdirectory containing all the ruleset samples from the book

wtcoll.c A utility program that exploits the collections API

wteuiap6 A set of programs that use the OVw API to allow you to create
network topologies from command line. This is the latest incarnation
of a package that has been published in several previous redbooks.
It has been modified to support client/server operation.

wtotapi1 A program that exploits the open topology API. This also was
published previously. This version fixes some problems with the
earlier one.

wtdepend A package of programs, shell scripts and rulesets that allow you
to set up dependencies between routers and nodes ″behind″ them.
This means that you can suppress node down messages when the
router is down.

Several of the tar files and directories have further READMEs inside them.

Figure 209. Readme File for the Samples Package

258 NetView for AIX V4 Examples

Appendix B. C Code for the wtcoll Sample Program

/*--
wtcoll.c - General purpose program to manipulate objects in a

collection from the command line.

From: : Redbook ″Examples Using NetView for AIX V4″
(SG24-4515)

Written by: Sergio Costa Lage (IBM Brazil)
: Luigi Casagrande (IBM Italy)

and: Rob Macgregor (IBM ITSO-Raleigh)

For further information, contact:

Rob Macgregor or Dave Shogren, ITSO-Raleigh.
robmacg@vnet.ibm.com or shogren@vnet.ibm.com

Copyright (C) IBM Corporation 1995
--*/

#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>
#include <OV/ovw.h>

#include ″ /usr/OV/include/OV/ovw_obj.h″
#include ″ /usr/OV/include/OV/nvCollection.h″
#include ″ /usr/OV/include/OV/nvCollectionErrs.h″

#define ID 0
#define SELECTION_NAME 1

OVwMapInfo *map;

/*
Function Definitions

*/

void usage()
{
fprintf(stdout, ″\n===\n″) ;
fprintf(stdout, ″ >>>>>>> wtcoll program <<<<<<<\n\n″) ;
fprintf(stdout, ″Please choose one of the following options:\n\n″) ;
fprintf(stdout, ″(1) [-createField] to create a database field in an object\n″) ;
fprintf(stdout, ″ parameters: selection name, collection name, field name, value\n″) ;
fprintf(stdout, ″\n″) ;
fprintf(stdout, ″(2) [-setField] to change a field value in all objects of a\n″) ;
fprintf(stdout, ″ collection\n″) ;
fprintf(stdout, ″ parameters: collection name, field name, value\n″) ;
fprintf(stdout, ″\n″) ;
fprintf(stdout, ″(3) [-listIds] to list all object ids of a collection\n″) ;
fprintf(stdout, ″ parameters: collection name\n″) ;
fprintf(stdout, ″\n″) ;
fprintf(stdout, ″(4) [-listSelectionNames] to list the selection name of\n″) ;
fprintf(stdout, ″ all objects of a collection\n″) ;
fprintf(stdout, ″ parameters: collection name\n″) ;
fprintf(stdout, ″\n″) ;
fprintf(stdout, ″(5) [-deleteCollection] to delete a collection\n″) ;
fprintf(stdout, ″ parameters: collection name\n″) ;
fprintf(stdout, ″\n″) ;
fprintf(stdout, ″(6) [-isnodeincoll] to check to see if a given node is\n″) ;
fprintf(stdout, ″ in a named collection.\n″) ;
fprintf(stdout, ″ parameters: node name, collection name\n″) ;
fprintf(stdout, ″===\n″) ;

}

Figure 210 (Part 1 of 7). Sample Program Using the Collection API, wtcoll.c

 Copyright IBM Corp. 1995 259

/*
Database manipulation functions

*/

int createObjectField(OVwObjectId objectId,
char *fieldName,
char *value)

{
OVwFieldId newfieldId;

/* Create the database field */
newfieldId = OVwDbCreateField(fieldName, ovwStringField, ovwGeneralField);

if (newfieldId == -1) /* Could not create field */
return -1;

/* Set the database field */
if (OVwDbSetFieldStringValue(objectId, newfieldId, value) == -1)
return NULL;

}

char *getObjectField(OVwObjectId objectId,
char *fieldName)

{
OVwFieldId fieldId;

fieldId = OVwDbFieldNameToFieldId(fieldName);

if ((fieldId == ovwNullFieldId) ||
(objectId == -1))

return NULL;

return OVwDbGetFieldStringValue(objectId, fieldId);
}

OVwObjectId setObjectField(OVwObjectId objectId,
char *fieldName,
char *value)

{
OVwFieldId fieldId;

fieldId = OVwDbFieldNameToFieldId(fieldName);

if ((fieldId == ovwNullFieldId) ||
(objectId == -1))

return NULL;

if (OVwDbSetFieldStringValue(objectId, fieldId, value) == -1)
return NULL;

return objectId;
}

/*
Collection based functions

*/

void createFieldOnObject(char *collectionName, char *selectionName,
char *fieldName , char *value)

{
 int count;
 int collectionConnectionFD; /* collection connection file descriptor */

 OVwObjectIdList *objectList;
OVwObjectId objectId, tmpObjectId;

/* Estabilishes a connection with the Collecion Facility daemon */
collectionConnectionFD = nvCollectionOpen();

fprintf(stderr, ″selection Name: %s\n″ , selectionName);

Figure 210 (Part 2 of 7). Sample Program Using the Collection API, wtcoll.c

260 NetView for AIX V4 Examples

/* Verifies if the collection has been sucessfully created */
if (collectionConnectionFD == -1)
fprintf(stderr, ″Unsucessfull operation: %s\n″ ,

nvCollectionErrorMsg(nvCollectionError()));
else
{
objectId = OVwDbSelectionNameToObjectId(selectionName);

/* get a list of objects of a collection */
objectList = nvCollectionResolve(collectionName);

for (count = 0 ; count < objectList->count ; count++)
{
tmpObjectId = objectList->object_ids[count];

if (tmpObjectId == objectId)
if (setObjectField(objectId, fieldName, value) == NULL)
{
if (createObjectField (objectId, fieldName, value) == NULL)
fprintf(stderr, ″Could not create object field!\nSelection name: %s\n″ , selectionName);

break;
}

}

/* Free the object list */
OVwDbFreeObjectIdList(objectList);

}

nvCollectionDone();
}

void setFieldOnAllObjects(char *collectionName, char *fieldName, char *value)
{
char *selectionName;

 int count;
 int collectionConnectionFD; /* collection connection file descriptor */

 OVwObjectIdList *objectList;
 OVwObjectId objectId;

/* Estabilishes a connection with the Collecion Facility daemon */
collectionConnectionFD = nvCollectionOpen();

/* Verifies if the collection has been sucessfully created */
if (collectionConnectionFD == -1)
fprintf(stderr, ″Unsucessfull operation: %s\n″ ,

nvCollectionErrorMsg(nvCollectionError()));
else
{
/* get a list of objects of a collection */
objectList = nvCollectionResolve(collectionName);

for (count = 0 ; count < objectList->count ; count++)
{
objectId = objectList->object_ids[count];
fprintf(stdout, ″%d\n″ , objectId);

selectionName = OVwDbObjectIdToSelectionName(objectId);
if (setObjectField(objectId, fieldName, value) == NULL)
{
if (createObjectField (objectId, fieldName, value) == NULL)
fprintf(stderr, ″Could not create object field!\nSelection name: %s\n″ , selectionName);
}

Figure 210 (Part 3 of 7). Sample Program Using the Collection API, wtcoll.c

Appendix B. C Code for the wtcoll Sample Program 261

if (selectionName)
free(selectionName);

}

/* Free the object list */
OVwDbFreeObjectIdList(objectList);

}

nvCollectionDone();
}

void listAllObjects(char *collectionName, int IdOrSelectionName)
{
char *selectionName;

 int count;
 int collectionConnectionFD; /* collection connection file descriptor */

 OVwObjectIdList *objectList;
 OVwObjectId objectId;

/* Estabilishes a connection with the Collecion Facility daemon */
collectionConnectionFD = nvCollectionOpen();

/* Verifies if the collection has been sucessfully created */
if (collectionConnectionFD == -1)
fprintf(stderr, ″Unsucessfull operation: %s\n″ ,

nvCollectionErrorMsg(nvCollectionError()));
else
{
/* get a list of objects of a collection */
objectList = nvCollectionResolve(collectionName);

for (count = 0 ; count < objectList->count ; count++)
{
objectId = objectList->object_ids[count];

if (IdOrSelectionName == ID)
fprintf(stdout, ″%d\n″ , objectId);

else
{
selectionName = OVwDbObjectIdToSelectionName(objectId);
fprintf(stdout, ″%s\n″ , selectionName);

if (selectionName)
free(selectionName);
}

}

/* Free the object list */
OVwDbFreeObjectIdList(objectList);

}

nvCollectionDone();
}

void deleteCollection(char *collectionName)
{
char *selectionName;

 int collectionFD; /* collection file descriptor */
 int collectionConnectionFD; /* collection connection file descriptor */

/* Estabilishes a connection with the Collecion Facility daemon */
collectionConnectionFD = nvCollectionOpen();

Figure 210 (Part 4 of 7). Sample Program Using the Collection API, wtcoll.c

262 NetView for AIX V4 Examples

/* Verifies if the collection has been sucessfully created */
if (collectionConnectionFD == -1)
fprintf(stderr, ″Unsucessfull operation: %s\n″ ,

nvCollectionErrorMsg(nvCollectionError()));
else
{
/* Delete the new collection to the collections list */
/* It may take some CPU processing if the collection is large */
collectionFD = nvCollectionDelete(collectionName , 1);

}

nvCollectionDone();
}

int goexit(int retc) {

/* close the collection connection and exit */
nvCollectionDone() ;
exit(retc) ;

}

void isNodeInCollection(char *node_name, char *coll_name) {

OVwObjectId node_objid ;
 nvCollectionList * coll_list ;
 nvCollectionDefn * list_entry ;
 int collectionConnectionFD, i;

/* Establish the connection to the collection facility */
if ((collectionConnectionFD = nvCollectionOpen()) < 0) {

fprintf(stderr, ″CollectionOpen failed. %s\n″ ,
nvCollectionErrorMsg(nvCollectionError())) ;

exit(-1) ;
}

/* Open the ovwdb API */
if (OVwDbInit() == EOF) {

fprintf(stderr, ″OVwDbInit failed: %s\n″ , OVwErrorMsg(OVwError())) ;
goexit(-1) ;
}

/* Get the object ID of the node */
if ((node_objid = OVwDbSelectionNameToObjectId(node_name)) == NULL) {

fprintf(stderr, ″Error obtaining object ID: %s\n″ , OVwErrorMsg(OVwError())) ;
goexit(-1) ;
}

/* Get a list of collections that the object is in */
if ((coll_list = nvCollectionGetAllForObject(node_objid)) == NULL) {

fprintf(stderr, ″Error getting collections for node: %s\n″ ,
nvCollectionErrorMsg(nvCollectionError())) ;

goexit(-1) ;
}

/* Loop down the list checking for matches with the requested collection */
list_entry = coll_list->collections ;
for (i=0; i < coll_list->count ; i++) {

if ((strcmp(coll_name, list_entry++->name)) == 0) {
printf(″%s is in collection %s\n″ , node_name, coll_name) ;
goexit(1) ;
}

}
printf(″%s is not in collection %s\n″ , node_name, coll_name) ;
goexit(-1) ;

}

Figure 210 (Part 5 of 7). Sample Program Using the Collection API, wtcoll.c

Appendix B. C Code for the wtcoll Sample Program 263

/*
main function

*/
void main(int argc , char **argv)
{
/*

collectionName - used to refer to the new collection
*/

char *collectionName;
char *fieldName;
char *value;
char *selectionName;
char *option;

if (argc-- < 3)
{
usage();
exit(0);

}

argv++;

OVwDbInit();

map = OVwGetMapInfo();

option = *argv++;
argc--;

if (!strcmp(option, ″-setField″))
{
if (argc != 3)
{
usage();
exit(0);

}

collectionName = *argv++;
fieldName = *argv++;
value = *argv++;

setFieldOnAllObjects(collectionName, fieldName, value);
}

else
if (!strcmp(option, ″-createField″))
{
if (argc != 4)
{
usage();
exit(0);

}

selectionName = *argv++;
collectionName = *argv++;
fieldName = *argv++;
value = *argv++;

createFieldOnObject(collectionName, selectionName, fieldName, value);
}

else
if (!strcmp(option, ″-listIds″))
{
if (argc != 1)
{
usage();
exit(0);

}

collectionName = *argv++;
listAllObjects(collectionName, ID);

}

Figure 210 (Part 6 of 7). Sample Program Using the Collection API, wtcoll.c

264 NetView for AIX V4 Examples

if (!strcmp(option, ″-listSelectionNames″))
{
if (argc != 1)
{
usage();
exit(0);
}

collectionName = *argv++;
listAllObjects(collectionName, SELECTION_NAME);

}
else
if (!strcmp(option, ″-deleteCollection″))
{
if (argc != 1)
{
usage();
exit(0);

}

collectionName = *argv++;
deleteCollection(collectionName);

}
else
if (!strcmp(option, ″-isnodeincoll″))
{
if (argc != 2)
{
usage();
exit(0);

}

selectionName = *argv++;
isNodeInCollection(selectionName, *argv);
}

}

Figure 210 (Part 7 of 7). Sample Program Using the Collection API, wtcoll.c

Appendix B. C Code for the wtcoll Sample Program 265

266 NetView for AIX V4 Examples

Appendix C. C Code for the wtdepend_list Sample Program

/*---
wtdepend_list.c

This program maintains a collection of collections called
 unreachable_nodes. It is created and maintained by the wtdepend.rs
ruleset. The unreachable_nodes collection is then referenced by the
wtdepdisp.rs ruleset to check if a given node is reachable or not.

This program is a sample from ITSO Redbook, ″Examples Using NetView for AIX
Version 4″ (SG24-4515).

Author: Rob Macgregor, ITSO-Raleigh

Copyright (C) IBM Corporation 1995
---*/

#include <stdio.h>
#include <stdlib.h>
#include <OV/ovw.h>
#include <OV/nvCollection.h>
#include <OV/nvCollectionErrs.h>

int collectionConnectionFD ;

int goexit(int retc) {
/* close the collection connection and exit */
nvCollectionDone() ;
exit(retc) ;
}

int main(int argc, char **argv){

char * coll_1_name = ″unreachable_nodes″ ;
char * coll_2_name ;
char * coll_desc ;
char * coll_rule ;
char * action ;
/* This is not nice. Should re-write with dynamic space allocation (sometime...) */
char * rule_list[40] ;
char new_rule[1024] ;

char * rule_type ;
int i, errcode, rule_count=0, remaining=0 ;

if (argc != 3)
{
printf(″Usage: wtdepend_list collection action\n″) ;
exit(-1) ;
}

coll_2_name=*++argv ;
action=*++argv ;
printf(″you said %s %s\n″ , action, coll_2_name) ;

Figure 211 (Part 1 of 3). Sample Program to Maintain a Collection of Collections, wtdepend_list.c

 Copyright IBM Corp. 1995 267

/* Establish the connection to the collection facility */
if ((collectionConnectionFD = nvCollectionOpen()) < 0) {

printf(″CollectionOpen failed. %s\n″ ,
nvCollectionErrorMsg(nvCollectionError())) ;

exit(-1) ;
}

/* Get the rule for the current list of unreachable nodes */
if (nvCollectionGetInfo(coll_1_name, &coll_desc, &coll_rule) != 0) {

errcode = nvCollectionError() ;
if ((errcode == NV_COLLECTION_DOES_NOT_EXIST) &&

(strcmp(action, ″ADD″) == 0)) {
/* Create the unreachable node collection */
strcpy(new_rule, ″ (IN_COLLECTION ″) ;
strcat(new_rule, coll_2_name) ;
strcat(new_rule, ″)″) ;
printf(″Will create %s with rule: %s\n″ , coll_1_name, new_rule) ;
if (nvCollectionAdd(coll_1_name,

″Collection of dependent node collections″ ,
new_rule, FALSE) != 0) {

printf(″Error adding %s collection: %s\n″ , coll_1_name, \
nvCollectionErrorMsg(nvCollectionError())) ;

goexit(-1) ;
}

printf(″Added collection %s\n″ , coll_1_name) ;
goexit(0) ;
}

else {
printf(″Error getting collection information: %s\n″ ,

nvCollectionErrorMsg(errcode)) ;
goexit(-1) ;
}

}

else {

/* Collection exists. Find all the pieces */

rule_type = (char *) strtok(coll_rule, ″ () | ″) ;

while ((rule_list[rule_count++] = (char *) strtok(NULL, ″ () |″)) != NULL) {
if(strcmp(rule_type, ″IN_COLLECTION″) != 0) {

printf(″Program cannot deal with this kind of collection\n″) ;
exit(-1) ;
}

rule_type = (char *) strtok(NULL , ″ () | ″) ;
}

rule_count -= 2 ;
}

/* Now handle the ADD or DEL function */
if (strcmp(action, ″ADD″) == 0) {

strcpy(new_rule, ″ ((IN_COLLECTION ″) ;

for(i=0 ; i <= rule_count ; i++) {
strcat(new_rule, rule_list[i]) ;
strcat(new_rule, ″) | | (IN_COLLECTION ″) ;
}

strcat(new_rule, coll_2_name) ;
strcat(new_rule, ″))″) ;
/* update the rule */
if (nvCollectionModify(coll_1_name,

″Collection of dependent node collections″ ,
new_rule, FALSE) != 0) {

printf(″Error modifying %s collection: %s\n″ , coll_1_name, \
nvCollectionErrorMsg(nvCollectionError())) ;

goexit(-1) ;
}

goexit(0) ;
}

Figure 211 (Part 2 of 3). Sample Program to Maintain a Collection of Collections, wtdepend_list.c

268 NetView for AIX V4 Examples

if (strcmp(action, ″DEL″) == 0) {
strcpy(new_rule, ″ ((IN_COLLECTION ″) ;

remaining = rule_count + 1 ;
for(i=0 ; i <= rule_count ; i++) {

if(strcmp(coll_2_name, rule_list[i]) != 0) {
remaining -= 1 ;
strcat(new_rule, rule_list[i]) ;
if(remaining > 0) strcat(new_rule, ″) | | (IN_COLLECTION ″) ;
}

else if(rule_count == 0) {
nvCollectionDelete(coll_1_name) ;
exit(0) ;
}

}
strcat(new_rule, ″))″) ;
printf(″%s\n″ , new_rule) ;
/* update the rule */
if (nvCollectionModify(coll_1_name,

″Collection of dependent node collections″ ,
new_rule, FALSE) != 0) {

printf(″Error modifying %s collection: %s\n″ , coll_1_name, \
nvCollectionErrorMsg(nvCollectionError())) ;

goexit(-1) ;
}

goexit(0) ;
}

}

Figure 211 (Part 3 of 3). Sample Program to Maintain a Collection of Collections, wtdepend_list.c

Appendix C. C Code for the wtdepend_list Sample Program 269

270 NetView for AIX V4 Examples

Appendix D. C Code for the wtotapi1 Sample Program

The wtotapi1 utility has been extensively modified and improved since its first
appearence in Examples of Using NetView for AIX, GG24-4327. It now supports
various command line options and an improved user interface. The source for
wtotapi1 (including debuging information) is listed in Figure 214 on page 272.

The usage information (which can be obtained using command: wtotapi -?) is
as follows:

wtotapi1 [-s <server>] [-h] [-p]
[-o <OID>] [-P <protocol>]
[-f <submap>] [-c <command>]

Figure 212. wtotapi1 Usage

-s <server> Indicates the server on which the gtmd is running.

-h Displays the help message as shown in Figure 213.

-p Will turn off the ″C o m m a n d > ″ prompt, useful when redirecting
commands from input files.

- o < O I D > Will set the oid prefix, equivalent to prefix command from the user
interface.

-P <protocol> Will set the protocol number, equivalent to the protocol
command from the user interface.

- f <submap> Will set the focus, equivalent to the focus command from the user
interface.

-c <command> Will instigate wtotapi1 in command line mode. The command (
which must be one argument only) will be executed and then
wtotapi1 will exit.

Commands:

protocol <Name> Set protocol number to ′ Name′
parent <Name> Set parent to ′ Name′
prefix <Name> Set prefix to ′ Name′
focus <Name> Set graph to ′ Name′
add graph <Name> <Layout> <Type> Add graph ′ Name′ to current graph
add box <Name> <Type> <Layout> Add box-graph ′ Name′ to current graph
add vertex <Name> <Type> Add vertex ′ Name′ to the current graph
add arc <Name> <Name> Add connection ′ Name′ between

box graphs or vertexes
add sap p <Vname> Add a providing SAP ′ Vname′
add sap u <Vname> <Vname> <P> Add a ′ using′ SAP ′ Vname′
set <Vertname> <Status> Change the status of a vertex
help Print this message
quit Quit Application

Figure 213. wtotapi1 Help Message

 Copyright IBM Corp. 1995 271

/***\

Sample Program to drive the NV6000 V3 gtm API

AUTHOR Rob Macgregor
HISTORY
Improvments to fix bugs and add functionality - Mark J Hodge

***/

#include <stdio.h>
#include <errno.h>
#include <string.h>
#include <wordexp.h>
#include <unistd.h>

#include <OV/ovw_obj.h>
#include <nvot.h>

#define MAX_NAME_LEN 48

typedef enum gtm_cmd_id {
GTM_SET_PROTOCOL, /* Set current protocol ID */
GTM_SET_PREFIX, /* Set prefix of protocol oid*/
GTM_SET_PARENT, /* Set parent graph */
GTM_ADD_OBJECT, /* Add something to network */
GTM_DEL_OBJECT, /* Remove something */
GTM_SET_OBJECT, /* Set variable for object */
GTM_QUIT, /* Set variable for object */
GTM_ADD_GRAPH, /* Add graph command */
GTM_ADD_BOX, /* Add box graph command */
GTM_ADD_VERTEX, /* Add vertex */
GTM_ADD_ARC, /* Add arc */
GTM_ADD_SAP, /* Add sap */
HELP,
QUIT

} gtm_cmd_id;

/* Global variables - current protocol, current graph name and graph protcol */

char cmd_string[80] ;
char oid_prefix[40] = ″1.3 .6 .1 .2 .1 .2 .2 .1 .3″ ;
char current_prot_char[40] ;
nvotGraphProtocolType current_prot_oid = current_prot_char ;
nvotVertexProtocolType current_prot_nbr = 0 ;
char current_graph[32] ;
char current_graph_prot[40] ;
nvotGraphType current_graph_type ;

extern int optind;
extern char *optarg;

int ep_to_arc_binding[] = {0,0,
ARC_GRAPH_GRAPH_NAME_BINDING,
ARC_VERTEX_GRAPH_NAME_BINDING,
ARC_GRAPH_VERTEX_NAME_BINDING,
ARC_VERTEX_VERTEX_NAME_BINDING} ;

void usage()
{
printf(″Usage: wtotapi1 [-s <server>] [-h] [-p] [-o <OID>] [-P

<protocol>] [-f <submap>] [-c <command>]\n″) ;
}

Figure 214 (Part 1 of 12). wtotapi1.c Source Code (Including Debug Information)

272 NetView for AIX V4 Examples

int print_help()
{
printf(″Commands:\n\n″) ;
printf(″protocol <Name>\t\t\t\tSet protocol number to ′ Name′ \n″) ;
printf(″parent <Name>\t\t\t\tSet parent to ′ Name′ \n″) ;
printf(″prefix <Name>\t\t\t\tSet prefix to ′ Name′ \n″) ;
printf(″focus <Name>\t\t\t\tSet graph to ′ Name′ \n″) ;
printf(″add graph <Name> <Layout> <Type>\tAdd graph ′ Name′ to current graph\n″) ;
printf(″add box <Name> <Type> <Layout>\t\tAdd box-graph ′ Name′ to current graph\n″) ;
printf(″add vertex <Name> <Type>\t\tAdd vertex ′ Name′ to the current graph\n″) ;
printf(″add arc <Name> <Name>\t\t\tAdd connection ′ Name′ between\n\t\t\t\t\tbox graphs or

vertexes\n″) ;
printf(″add sap p <Vname>\t\t\tAdd a providing SAP ′ Vname′ \n″) ;
printf(″add sap u <Vname> <Vname> <P>\t\tAdd a ′ using′ SAP ′ Vname′ \n″) ;
printf(″set <Vertname> <Status>\t\t\tChange the status of a vertex\n″) ;
printf(″help\t\t\t\t\tPrint this message\n″) ;
printf(″quit\t\t\t\t\tQuit Application\n″) ;
return(0);

}

/* Read /usr/OV/conf/C/oid_to_sym and return OID for given Icon name */
int sym_to_oid(char *icon, char *oid)
{
FILE *fid ;
char instring[120] ;
char *mapping_string ;
char *end_ptr ;
char *dotted_decimal_oid ;
char *sym_name ;
char *oid_to_sym_file = ″ /usr/OV/conf/C/oid_to_sym″ ;

if ((fid = fopen(oid_to_sym_file, ″r″)) == NULL) {
printf(″Error reading oid_to_sym file″) ;
exit(-1) ;

}
while(fgets(instring, 120, fid) != 0) {
if (strspn(instring, ″#″) == 0) {
mapping_string = strtok(instring, ″#″) ;

/* Strip off trailing blanks and tabs */
for (
end_ptr = mapping_string + strlen(mapping_string) -1 ;
(strcmp(end_ptr, ″ ″) == 0) | | (strcmp(end_ptr, ″\t″) == 0) ;
strcpy(end_ptr, 0x00), end_ptr--
) ;

if (strlen(mapping_string) > 1) {
dotted_decimal_oid = strtok(mapping_string, ″ : ″) ;
sym_name = strtok(NULL, ″\n″) ;

if(strncmp(oid_prefix, dotted_decimal_oid, strlen(oid_prefix)) == 0) {
if(strcmp(sym_name, icon) == 0) {

strcpy(oid, dotted_decimal_oid);
#ifdef _DEBUG

printf(″sym_to_oid: oid_prefix\t= %s\n″ , oid_prefix);
printf(″sym_to_oid: dotted_decimal_oid\t= %s\nsym_to_oid: sym_name\t= %s\n″ ,

dotted_decimal_oid, sym_name);
printf(″sym_to_oid: oid\t\t= %s\nsym_to_oid: sym_name\t= %s\n″ , oid, sym_name);

#endif
return(0);

}
}

}
}

}
printf(″No entry for %s found in %s. Try again\n″ , icon, oid_to_sym_file) ;
return(-1);

}

Figure 214 (Part 2 of 12). wtotapi1.c Source Code (Including Debug Information)

Appendix D. C Code for the wtotapi1 Sample Program 273

/* Routine to qualify what command was issued */
int cmd_to_table(char cmd[10])
{
struct cmdtable {
char *c_name;
int c_desc;

} cmdtable[] = {
{ ″protocol″ , GTM_SET_PROTOCOL },
{ ″prot″ , GTM_SET_PROTOCOL },
{ ″parent″ , GTM_SET_PARENT },
{ ″focus″ , GTM_SET_PARENT },
{ ″prefix″ , GTM_SET_PREFIX },
{ ″add″ , GTM_ADD_OBJECT },
{ ″a″ , GTM_ADD_OBJECT },
{ ″set″ , GTM_SET_OBJECT },
{ ″s″ , GTM_SET_OBJECT },
{ ″graph″ , GTM_ADD_GRAPH },
{ ″vertex″ , GTM_ADD_VERTEX },
{ ″box″ , GTM_ADD_BOX },
{ ″arc″ , GTM_ADD_ARC },
{ ″sap″ , GTM_ADD_SAP },
{ ″h″ , HELP },
{ ″?″ , HELP },
{ ″help″ , HELP },
{ ″q″ , QUIT },
{ ″quit″ , QUIT },
{ NULL, EOF }

} ;
int i ;

for(i=0; cmdtable[i].c_name != NULL; i++)
if(!strcmp(cmdtable[i].c_name, cmd))
return(cmdtable[i].c_desc);

return(EOF) ;
}

/* Routine to qualify what status is required */
int char_to_status(char *char_status)
{
struct status_tbl {
char *s_name;
int s_desc;

} status_tbl[] = {
{ ″up″ , STATUS_NORMAL },
{ ″down″ , STATUS_CRITICAL },
{ ″marginal″ , STATUS_MARGINAL },
{ ″marg″ , STATUS_MARGINAL },
{ ″unknown″ , STATUS_UNKNOWN },
{ ″unk″ , STATUS_UNKNOWN },
{ NULL, EOF }

} ;
int i ;
for(i=0; status_tbl[i].s_name != NULL; i++)
if(!strcmp(status_tbl[i].s_name, char_status))
return(status_tbl[i].s_desc);

printf(″Invalid status, options are: up, down, marginal, unknown\n″) ;
return(EOF) ;

}
/* Set the protocol number we are currently working with */
int set_cur_protocol()
{
if((current_prot_nbr = atoi(cmd_string)) == NULL)
{
printf(″The protocol id has to be a number\n″) ;
return(-1);

}
strcpy(current_prot_oid, oid_prefix) ;
strcat(current_prot_oid, ″ . ″) ;
strcat(current_prot_oid, cmd_string) ;
printf(″Successfull operation. Protocol = %d\n″ , current_prot_nbr) ;
return(0);

}

Figure 214 (Part 3 of 12). wtotapi1.c Source Code (Including Debug Information)

274 NetView for AIX V4 Examples

/* Set the graph. All ″add″s subsequently will be members of the
graph defined in here */

int set_cur_graph()
{
char * graph_name = cmd_string ;
/* We must have set a value for current protocol */
if (current_prot_nbr == 0)
{
printf(″You have to select a protocol ID before\n″) ;
printf(″You can set the parent graph\n″) ;
return(-1);

}
/* We want to know if it exists, and whether it is a box or graph-graph*/
nvotGetVerticesInGraph(current_prot_oid, graph_name) ;
if (nvotGetError() == NVOT_SUCCESS) current_graph_type = GRAPH ;
else {
nvotGetVerticesInBox(current_prot_oid, graph_name) ;
if (nvotGetError() == NVOT_SUCCESS) current_graph_type = BOX ;
else {
printf (″%s is not a box-graph or graph-graph in protocol %d\n″ ,

graph_name, current_prot_nbr) ;
return(-1);

}
}

strcpy(current_graph, graph_name) ;
strcpy(current_graph_prot, current_prot_oid) ;
printf(″Successfull operation. Current Graph = %s\n″ , current_graph) ;
return(0);

}

/* Convert layout character to nvotLayout value */
nvotLayoutType char_to_layout(char * layout_string)
{
struct layout_tbl{
char *l_name;
nvotLayoutType l_type;

} layout_tbl[] = {

{ ″none″ , NONE_LAYOUT },
{ ″p2p″ , POINT_TO_POINT_LAYOUT },
{ ″bus″ , BUS_LAYOUT },
{ ″star″ , STAR_LAYOUT },
{ ″ring″ , SPOKED_RING_LAYOUT },
{ ″rowcol″ , ROWCOL_LAYOUT },
{ ″p2pring″ , POINT_TO_POINT_RING_LAYOUT },
{ ″tree″ , TREE_LAYOUT },
{ NULL, NONE_LAYOUT }

};
int i ;
for(i=0; layout_tbl[i].l_name != NULL; i++)
if(!strcmp(layout_tbl[i].l_name, layout_string))
return(layout_tbl[i].l_type);

printf(″Unknown layout type - NONE_LAYOUT will be used\n″) ;
return(NONE_LAYOUT) ;

}

/* Add graph to Root map */
int add_root_graph()
{
char *tstr ;
char icon_oid[40] ;
char graph_name[MAX_NAME_LEN] ;
char graph_icon[30] ;
char graph_layout_c[10] ;

 nvotLayoutType graph_layout ;
nvotOctetString graph_details ;
OVwObjectId objid ;

strcpy(graph_name, strtok(NULL, ″ ″)) ;
strcpy(graph_icon, strtok(NULL, ″ ″)) ;
strcpy(graph_layout_c, strtok(NULL, ″ ″)) ;

Figure 214 (Part 4 of 12). wtotapi1.c Source Code (Including Debug Information)

Appendix D. C Code for the wtotapi1 Sample Program 275

while (tstr = strtok(NULL, ″ ″))
{
strcat(graph_icon, ″ ″) ;
strcat(graph_icon, graph_layout_c) ;

strcpy(graph_layout_c, tstr);
}

#ifdef _DEBUG
printf(″add_root_graph: graph_name\t= %s\nadd_root_graph: graph_icon\t= %s\nadd_root_graph:

graph_layout_c\t= %s\n″ , graph_name, graph_icon, graph_layout_c);
#endif

if (sym_to_oid(graph_icon, &icon_oid) != 0)
return(-1);

graph_layout = char_to_layout(graph_layout_c) ;
objid = nvotCreateRootGraph(

current_prot_oid,
&graph_name,
graph_layout,
″ ″ ,
&icon_oid,
&graph_name,
&graph_details) ;

printf(″%s″ , nvotGetErrorMsg(nvotGetError())) ;
printf(″ Object = %d\n″ , objid) ;
return(0);

}

/* Add graph graph */
int add_graph_graph()
{
char *tstr ;
char icon_oid[40] ;
char graph_name[MAX_NAME_LEN] ;
char graph_icon[30] ;
char graph_layout_c[10] ;

 nvotLayoutType graph_layout ;
nvotOctetString graph_details ;
OVwObjectId objid ;

strcpy(graph_name, strtok(NULL, ″ ″)) ;
strcpy(graph_icon, strtok(NULL, ″ ″)) ;
strcpy(graph_layout_c, strtok(NULL, ″ ″)) ;
while (tstr = strtok(NULL, ″ ″))

{
strcat(graph_icon, ″ ″) ;
strcat(graph_icon, graph_layout_c);
strcpy(graph_layout_c, tstr) ;

}
#ifdef _DEBUG
printf(″add_graph_graph: graph_name\t= %s\nadd_graph_graph: graph_icon\t= %s\nadd_graph_graph:

graph_layout_c\t= %s\n″ , graph_name,
graph_icon, graph_layout_c);
#endif

if (sym_to_oid(graph_icon, &icon_oid) != 0)
return(-1);

graph_layout = char_to_layout(graph_layout_c) ;
objid = nvotCreateGraphInGraph(

¤t_graph_prot,
¤t_graph,
current_prot_oid,
&graph_name,

graph_layout,
″ ″ ,
&icon_oid,
&graph_name,
&graph_details) ;

printf(″%s\n″ , nvotGetErrorMsg(nvotGetError())) ;
return(0);

}

Figure 214 (Part 5 of 12). wtotapi1.c Source Code (Including Debug Information)

276 NetView for AIX V4 Examples

/* Add box graph */
int add_box_graph(args)
{
char *tstr ;
char icon_oid[40] ;
char graph_name[MAX_NAME_LEN] ;
char graph_icon[30] ;
char graph_layout_c[10] ;

 nvotLayoutType graph_layout ;
nvotOctetString graph_details ;
OVwObjectId objid ;
strcpy(graph_name, strtok(NULL, ″ ″)) ;
strcpy(graph_icon, strtok(NULL, ″ ″)) ;
strcpy(graph_layout_c, strtok(NULL, ″ ″)) ;
while (tstr = strtok(NULL, ″ ″))

{
strcat(graph_icon, ″ ″) ;

strcat(graph_icon, graph_layout_c);
strcpy(graph_layout_c, tstr) ;

}
#ifdef _DEBUG
printf(″add_box_graph: graph_name\t= %s\nadd_box_graph: graph_icon\t= %s\nadd_box_graph:

graph_layout_c\t= %s\n″ , graph_name,
graph_icon, graph_layout_c);
#endif
if (sym_to_oid(graph_icon, &icon_oid) != 0)
return(-1);

graph_layout = char_to_layout(graph_layout_c) ;
objid = nvotCreateBoxInGraph(

¤t_graph_prot,
¤t_graph,
current_prot_oid,
&graph_name,
graph_layout,
″ ″ ,
&icon_oid,
&graph_name,
&graph_details) ;

printf(″%s″ , nvotGetErrorMsg(nvotGetError())) ;
printf(″ Object = %d\n″ , objid) ;
return(0) ;

}

/* Add vertex */
int add_vertex(args)
{
char *tstr ;
char icon_oid[40] ;
char vertex_name[MAX_NAME_LEN] ;
char vertex_icon[30] ;
nvotOctetString vertex_details ;
OVwObjectId objid ;
strcpy(vertex_name, strtok(NULL, ″ ″)) ;
strcpy(vertex_icon, strtok(NULL, ″ ″)) ;
while (tstr = strtok(NULL, ″ ″))

{
strcat(vertex_icon, ″ ″) ;
strcat(vertex_icon, tstr) ;

}
#ifdef _DEBUG
 printf(″add_vertex: vertex_name\t= %s\nadd_vertex: vertex_icon\t= %s\n″ , vertex_name, vertex_icon);
#endif
if (sym_to_oid(vertex_icon, &icon_oid) != 0)
return(-1) ;

Figure 214 (Part 6 of 12). wtotapi1.c Source Code (Including Debug Information)

Appendix D. C Code for the wtotapi1 Sample Program 277

if(current_graph_type == BOX)
objid = nvotCreateVertexInBox(

¤t_graph_prot,
¤t_graph,
current_prot_nbr,
&vertex_name,
&icon_oid,
&vertex_name,
&vertex_details,
STATUS_NORMAL) ;

else objid = nvotCreateVertexInGraph(
¤t_graph_prot,
¤t_graph,
current_prot_nbr,
&vertex_name,
&icon_oid,
&vertex_name,
&vertex_details,
STATUS_NORMAL) ;

printf(″%s″ , nvotGetErrorMsg(nvotGetError())) ;
printf(″Object = %d\n″ , objid) ;
return(0) ;

}

/* Add an arc */
int add_arc()
{
char end_pt_a[MAX_NAME_LEN] ;
char end_pt_z[MAX_NAME_LEN] ;
char arcid_char[4] ;
int arcid = 0 ;
int end_type_a ;
int end_type_z ;
OVwObjectId objid ;
nvotProtocolType end_prot_a ;
nvotProtocolType end_prot_z ;

strcpy(&end_pt_a, strtok(NULL, ″ ″)) ;
strcpy(&end_pt_z, strtok(NULL, ″ ″)) ;

/* the end point may be vertices or graphs. Test to see which*/
nvotGetVerticesInBox(current_prot_oid, end_pt_a) ;
if(nvotGetError() == NVOT_SUCCESS) {
end_type_a = 0 ;
end_prot_a.graphProtocol = current_prot_oid ;

} else {
end_type_a = 1 ;
end_prot_a.vertexProtocol = current_prot_nbr ;

}

nvotGetVerticesInBox(current_prot_oid, end_pt_z) ;
if(nvotGetError() == NVOT_SUCCESS) {
end_type_z = 2 ;
end_prot_z.graphProtocol = current_prot_oid ;

} else {
end_type_z = 4 ;
end_prot_z.vertexProtocol = current_prot_nbr ;

}
if (current_graph_type == GRAPH)
{
objid = nvotCreateArcInGraph (¤t_graph_prot,

¤t_graph,
ep_to_arc_binding[end_type_a + end_type_z],
end_prot_a,
&end_pt_a,
end_prot_z,
&end_pt_z,
arcid,
NULL ,
NULL,
NULL,
STATUS_NORMAL) ;

Figure 214 (Part 7 of 12). wtotapi1.c Source Code (Including Debug Information)

278 NetView for AIX V4 Examples

printf(″%s″ , nvotGetErrorMsg(nvotGetError())) ;
printf(″Object = %d\n″ , objid) ;

} else {
printf(″Arcs can only be added to a Graph graph, %s is a Box graph\n″ ,

current_graph) ;
return(-1) ;

}
return(0);

}

/* Add a providing or using SAP */
int add_sap()
{
char sap_type[9] ;
char sap_user_name[MAX_NAME_LEN] ;
char sap_provider_name[MAX_NAME_LEN] ;
nvotVertexProtocolType sap_provider_prot ;

strcpy(sap_type, strtok(NULL, ″ ″)) ;
if (sap_type[0] == ′ p′) { /* a ″Providing″ SAP */
strcpy(&sap_provider_name, strtok(NULL, ″ ″)) ;
printf(″About to add providing SAP entry %s, protocol %d\n″ ,

sap_provider_name, current_prot_nbr) ;
nvotCreateProvidingSap(

current_prot_nbr,
&sap_provider_name,
77,
&sap_provider_name) ; /* Note: uses vertex name as SAP name*/

printf(″%s\n″ , nvotGetErrorMsg(nvotGetError())) ;
return(0) ;

}
if (sap_type[0] == ′ u′) { /* a ″Using″ SAP */
strcpy(&sap_user_name, strtok(NULL, ″ ″)) ;
strcpy(&sap_provider_name, strtok(NULL, ″ ″)) ;
sap_provider_prot = atoi(strtok(NULL, ″ ″)) ;
printf(″About to add using SAP entry %s, to SAP provided by %s protocol %d\n″ ,

sap_user_name, sap_provider_name, sap_provider_prot) ;
nvotCreateUsingSap(

current_prot_nbr,
&sap_user_name,
77,
&sap_provider_name) ;

printf(″%s\n″ , nvotGetErrorMsg(nvotGetError())) ;
return(0) ;

}
printf(″Invalid add SAP command\n″) ;
print_help() ;
return(1) ;

}

/* ″add″ requested - sub-selection */
int add_sub_select()
{
 char add_cmd[10];
 int retc=0;

strcpy(add_cmd, strtok(cmd_string, ″ ″)) ;
#ifdef _DEBUG
printf(″add_sub_select: add_cmd\t\t= %s\n″ , add_cmd);

#endif
switch (cmd_to_table(add_cmd)) {
case GTM_ADD_BOX:

if (strcmp(current_graph, ″Root″) == 0) {
printf(″You cannot add a box graph to the Root submap\n″) ;
retc=-1;
} else

retc=add_box_graph();
break ;

Figure 214 (Part 8 of 12). wtotapi1.c Source Code (Including Debug Information)

Appendix D. C Code for the wtotapi1 Sample Program 279

case GTM_ADD_GRAPH:
#ifdef _DEBUG
printf(″add_sub_select: current_graph\t= %s\n″ , current_graph);

#endif
if (strcmp(current_graph, ″Root″) == 0)

retc=add_root_graph() ;
else

retc=add_graph_graph() ;
break ;

case GTM_ADD_VERTEX:
if (strcmp(current_graph, ″Root″) == 0) {

printf(″You must set the parent graph for vertex, use parent command\n″) ;
retc=-1;
} else

retc=add_vertex() ;
break ;

case GTM_ADD_ARC:
retc=add_arc() ;

break ;

case GTM_ADD_SAP:
retc=add_sap() ;

break ;
default:
print_help() ;
retc=-1;

}
return(retc);

}
/* Set the status of a vertex - up, down, marginal, unknown */
int set_vertex()
{
int vert_status ;
char vertex_name[MAX_NAME_LEN] ;
char status_requested[8] ;

sscanf(cmd_string, ″%s %s″, &vertex_name, &status_requested) ;
if ((vert_status = char_to_status(status_requested)) == EOF)
return(-1);

printf (″status - %d\n″ , vert_status) ;
/* Just issue the request */

nvotChangeVertexStatus(current_prot_nbr, &vertex_name, vert_status) ;
printf(″%s\n″ , nvotGetErrorMsg(nvotGetError())) ;
return(0);

}

int parse(char cmd[10])
{
int retc=0;

#ifdef _DEBUG
printf(″parse: cmd\t\t= %s\n″ , cmd);

#endif

switch (cmd_to_table(cmd)) {
case GTM_SET_PROTOCOL:

#ifdef _DEBUG
printf(″parse: GTM_SET_PROTOCOL\n″) ;
printf(″parse: cmd_string\t= %s\n″ , cmd_string);

#endif
retc=set_cur_protocol();
break;

Figure 214 (Part 9 of 12). wtotapi1.c Source Code (Including Debug Information)

280 NetView for AIX V4 Examples

case GTM_SET_PREFIX:
#ifdef _DEBUG

printf(″parse: GTM_SET_PREFIX\n″) ;
printf(″parse: cmd_string\t= %s\n″ , cmd_string);

#endif
if(strcpy(oid_prefix, cmd_string))
printf(″Sucessfull Operation. Prefix = %s\n″ , oid_prefix);

break;
case GTM_SET_PARENT:

#ifdef _DEBUG
printf(″parse: GTM_SET_PARENT\n″) ;
printf(″parse: cmd_string\t= %s\n″ , cmd_string);

#endif

retc=set_cur_graph(); break;
case GTM_ADD_OBJECT:

#ifdef _DEBUG
printf(″parse: GTM_ADD_OBJECT\n″) ;
printf(″parse: cmd_string\t= %s\n″ , cmd_string);

#endif
retc=add_sub_select(); break;

case GTM_SET_OBJECT:
#ifdef _DEBUG

printf(″parse: GTM_ADD_OBJECT\n″) ;
printf(″parse: cmd_string\t= %s\n″ , cmd_string);

#endif
retc=set_vertex(); break;

case HELP:
#ifdef _DEBUG

printf(″parse: HELP\n″) ;
#endif

retc=print_help();
break;

case QUIT:
#ifdef _DEBUG

printf(″parse: QUIT\n″) ;
#endif

retc=1;
break;

default:
#ifdef _DEBUG

printf(″parse: default\n″) ;
#endif

print_help();
retc=-1;

}
return(retc);

}

int main(int argc, char **argv)
{
int quit = FALSE ;
int command_line = 0;
int opt ;
int rc=0;
int prompt = 1;
int com_line = 0;
char hostname[48] ;
char cmd[10] ;
char *proto = NULL ;
char *focus = NULL ;
char command[255] ;
nvotReturnCode retc ;
static unsigned int ovwdbTimeout = 5;

strcpy(current_graph, ″Root″) ;
gethostname(hostname, 48) ; /* talk to our own host */

while((opt=getopt(argc, argv, ″o:P:f:c:s:ph?″)) != EOF)
switch(opt) {
case ′ o′ :

Figure 214 (Part 10 of 12). wtotapi1.c Source Code (Including Debug Information)

Appendix D. C Code for the wtotapi1 Sample Program 281

#ifdef _DEBUG
printf(″main: o selected\n″) ;
printf(″main: oid prefix is %s\n″ , optarg);

#endif
strcpy(oid_prefix, optarg);

break;
case ′ P′ :

#ifdef _DEBUG
printf(″main: P selected\n″) ;
printf(″main: protocol is %s\n″ , optarg);

#endif
proto = (char *)malloc(sizeof(optarg));
strcpy(proto, optarg);

break;
case ′ f′ :

#ifdef _DEBUG
printf(″main: f selected\n″) ;
printf(″main: focus is %s\n″ , optarg);

#endif
focus = (char *)malloc(sizeof(optarg));
strcpy(focus, optarg);

break;
case ′ c′ :

#ifdef _DEBUG
printf(″main: c selected\n″) ;
printf(″main: command is %s\n″ , optarg);

#endif
command_line = 1;
strcpy(command, optarg);

break;
case ′ s′ :

#ifdef _DEBUG
printf(″main: s selected\n″) ;
printf(″main: server is %s\n″ , optarg);

#endif
strcpy(hostname, optarg);

break;

case ′ h′ :
#ifdef _DEBUG

printf(″main: h selected\n″) ;
#endif

print_help();
exit(0);
break;

case ′ p′ :
#ifdef _DEBUG

printf(″main: p selected\n″) ;
#endif

prompt=0;
break;

case ′ ? ′ :
#ifdef _DEBUG

printf(″main: usage selected\n″) ;
#endif

usage();
exit(-1);

break;
}

#ifdef _DEBUG
if(strlen(command) > 1) {
printf(″main: OID is\t\t%s\n″ , oid_prefix);
printf(″main: Command is\t%s \n″ , command);
}

#endif

Figure 214 (Part 11 of 12). wtotapi1.c Source Code (Including Debug Information)

282 NetView for AIX V4 Examples

/* First, connect to gtmd */
if(retc = nvotInit(hostname, FALSE, TRUE) != NVOT_SUCCESS) {
printf(″Open Topology connection failed\n″) ;
printf(″%s\n″ , nvotGetErrorMsg(retc)) ;
exit(-1) ;

}
if(prompt)
printf(″Open Topology connection to %s successful\n″ , hostname) ;

/* Try for Synchronous operation */
if (nvotSetSynchronousCreation(ovwdbTimeout) == NVOT_SUCCESS)
if(prompt)
printf(″Open Topology calls will be synchronous\n″) ;

/* Set parameters specified on command line */

if(proto) {
#ifdef _DEBUG

printf(″main: proto\t=%s\n″ , proto);
#endif

strcpy(cmd_string, proto);
set_cur_protocol();

}

if(focus) {
#ifdef _DEBUG

printf(″main: focus\t=%s\n″ , proto);
#endif

strcpy(cmd_string, focus);
set_cur_graph();

}

if(command_line) {
#ifdef _DEBUG

printf(″main: Command line mode\n″) ;
#endif

strcpy(cmd, strtok(command, ″ ″)) ;
strcpy(cmd_string, strtok(NULL, ′ \n′)) ;
rc=parse(cmd);

} else {
#ifdef _DEBUG

printf(″main: Interactive mode\n″) ;
#endif

while (quit == FALSE){
if(prompt)
printf(″Command> ″) ;

if(scanf(″ %[¬\n]″ , command) == EOF)
quit=TRUE ;

else {
#ifdef _DEBUG

printf(″main: command = %s\n″ , command);
#endif

strcpy(cmd, strtok(command, ″ ″)) ;
strcpy(cmd_string, strtok(NULL, ′ \0′)) ;

#ifdef _DEBUG
printf(″main: cmd\t= %s\n″ , cmd);
printf(″main: cmd_string\t= %s\n″ , cmd_string);

#endif
if(parse(cmd))
quit=TRUE ;

}
}

}
/* Finished with gtm connection */
nvotDone() ;
return(rc);

}

Figure 214 (Part 12 of 12). wtotapi1.c Source Code (Including Debug Information)

Appendix D. C Code for the wtotapi1 Sample Program 283

284 NetView for AIX V4 Examples

Index

A
Access control 25, 37, 42

Configuring access to NetView for AIX
functions 29, 31

Propagate option 32
Example of restricted menu bar 35
Levels of access given 31

Action node (ruleset editor) 86, 106, 111, 116, 159
actionsvr 82, 106
Agent policy manager 5

Assigning node collections 208
C5d and C5eui processes 214
Distributing policies 210
Example of use 204
Problems with distribution 211
Submap displays 213
Summary of features 204

APIs 9
Collection facility API 53, 67

Examples using 69
Considerations with client/server 20
Open topology API 215
ovw 9, 12

New functions with client/server 21
Security API 26, 43

Example of using 47
APM, see Agent policy manager
Audit function 38

Reporting dialog 38
Authentication with NetView for AIX security 32, 33

B
Block event display node (ruleset editor) 86, 96, 193

C
c_arf2srf command 42, 44
C5d daemon 214
C5eui 214
CDE, see Common desktop environment
Check route node (ruleset editor) 87
chk_admin_stat sample script 164
Client/server in NetView for AIX 1, 7

Benefits of 7
Performance benefits 14

Compared to X-windows access 18
CPU utilization 17
Implications for applications 12
Internal organization 11
Map database options 12
Map restrictions 13
Memory requirements 16
Network util ization 17

Client/server in NetView for AIX (continued)
Performance effect of NFS maps 18
Security implications 48

Date/time synchronization 49
Update of wteuiap6 for client/server 21

Collection facility 4, 53
API 53, 67

Examples using 69
Collection editor 53, 54

Subnet mask calculator 60
Collection rule grammar 68
Collections submap 66, 70
Combining collections with rulesets 171
Creating collections 57
Deleting a collection using the API 72
Types of collection 53

Attribute collections 63
Collection of collections 191
Node list collections 61
Subnet collections 59

Use of collections by APM
collectioned program 54
Color-coded events cards 4
Common desktop environment 1
Community name (SNMP) 212
connectivity 218
correlation 222, 224
Correlation engine 83
corrstatX fields 124, 131
CPU usage with client/server 17
crea_set_field sample program 134

D
Daemons

actionsvr 82
C5d 214
gtmd 9, 216
mgragentd 3
netmon 8, 187
noniptopod 216
nvcold 67
nvcorrd 82
nvpagerd 82
nvsecd 48
nvsecltd 48
nvserverd 82
ovactiond 81
ovesmd 82
ovtopmd 216
ovwdb 9
pmd 9, 81
snmpCollect 9
trapd 81

 Copyright IBM Corp. 1995 285

database 221
map 223
object 222, 223, 224
topology 223

Databases 8
Map database 9, 12

Local maps 13, 14
NFS-mounted maps 12

Object database 9
Creating object database fields 75, 133
Selection name 54, 75

DatagLANce 17
Discovery 8, 221, 222, 224

netmon 221
Dynamic workspaces

Creating workspaces with event rulesets 98, 193
Saving dynamic workspace configurations 170

E
Enterprise ID 80, 196
ESE.automation configuration file 117
event 221

registrat ion 221
Event attributes node (ruleset editor) 87, 114, 128,

157
Event Card

highlight 215
integration 215

event command 98, 111, 174
Event flow in NetView for AIX 79, 80
Event rulesets 4, 79, 83

Background automation with rulesets 117
Combining rulesets (include function) 110, 166

Limitations of the include function 167, 169
Combining rulesets with collections 171
Connecting nodes together 93

Automatic node connections 94
Decision nodes and action nodes 83
Default event behavior, defining 88, 92, 105, 128

Should you block or pass? 145
Description of each node type 86
Environment variables in rulesets 106, 172
Examples of rulesets 85

Automated paging and e-mail notification 112
Clearing outstanding events via correlation 92
Manipulating event severity on the basis of

node importance 175
Receiving only events from one collection 171
Setting correlation states 124
Setting database fields 133
Setting global variables 140
Setting MIB variables 147
Suppressing events by setting thresholds 101
Suppressing events for interfaces that are

administratively down 162
Suppressing subsidiary events when a router is

down 181
Using rulesets to supplement event capabilit ies

of another manager 151

Event rulesets (continued)
Examples of rulesets (continued)

Using thresholds in combination with
correlation 108

Using traps to override status color and
severi ty 118

Implementation recommendations 195
Invoking in nvevents dynamic workspaces 98, 193

Saving dynamic workspace configurations 170
Registration API 84

Event stream enhancements (see also Event
rulesets) 79, 82

Event stream node (ruleset editor) 88
Event stream, analysis of 195

F
File Monitor table (Systems Monitor) 204
Filtering events 4
Forward node (ruleset editor) 87, 106

G
Generic trap ID 80, 196
get_ifnumber sample program 165
Groups (security) 26, 28

Adding new groups 29
GSS API 27
gtmd 9, 221

I
Inline action node (ruleset editor) 87, 163, 165
ipmap 10, 19, 216

L
LAN Doctor 17
Logging of security function, see Audit function
logical interface 218
Login to NetView for AIX 34, 36
logsort sample script 197

M
Makefile for collection API examples 69
Manager takeover feature 2
Map name 14, 22
Memory usage with cl ient/server 16
Menu bar access control, see Access control
menustr ing 31
mgragentd 3
MIB

Enterprise ID 227
OID 216
Open Topology 216, 227

MIB Browser 149, 207
MIB data thresholds 101

Defining MIB expressions 103

286 NetView for AIX V4 Examples

MIB-II 221
objectid 221

Modem configuration for pager (event rulesets) 113

N
National language support 1
Navigation tree 2
NetFinity 133, 151
netmon 187
NetView for AIX

Agent policy manager 201
APIs (see also API) 1, 9
Client/server (see also Client/server in NetView for

AIX) 1, 7, 11
Collection facility 4, 53
Event rulesets 4, 79
General capabilit ies 1
Manager takeover 2
Menu enhancements 2
Open topology feature 1, 9
Registration fi les 1, 5, 9, 11
Security feature 3, 25
Version 4

Can run like version 3 10
New features 1

NetView Service Point with NetView for AIX
security 51

Network uti l ization with client/server 17
NFS for map database 12, 22

Network util ization with 18
Node descriptions (ruleset editor) 86
noniptopod 221
nvauth command 34, 36
nvcold 67
nvcorrd 82, 83, 106
nvevents 10, 82

Creating dynamic workspaces 98
Saving dynamic workspace configurations 170
X-windows defaults for 170

nvpagerd 82
nvsec_admin 27, 45
nvsecd 48
nvsecltd 48
nvserverd 82

O
objects 215
oid_to_command 221
oid_to_command fi le 216
oid_to_protocol fi le 218, 227
Open topology 1

API 221, 223, 225
object types 218
traps 221

Open topology example
NFS 226
Protocol ID 227

Open Topology Terms
arc 218
connectivity 218
graph 218
member 218
SAP 219
Service Access Point 219
simple connection 219
underlying arc 218
vertex 218

ovactiond 81
Override node (ruleset editor) 87, 121, 138, 193

Changing node colors without displaying
events 124

Limitations when overriding node status 123
ovesmd 82
ovobjprint command 75, 134, 201
OVREGDIR environment variable 37
ovw 9, 12
ovwdb 9

P
Pager node (ruleset editor) 87, 115

Modem configuration 113
Pass on match node (ruleset editor) 87, 94, 110, 158
Passwords for NetView for AIX user IDs 27

Setting initial password 32
Performance Toolbox (PTX) 15
physical interface 218
pmd 9, 81
Propagate option in access control
protocol 219

transfer 225
protocol ID 218
protocol submaps

xxmap 225
protocols 215, 225
PTX, see Performance Toolbox

Q
Query database field node (ruleset editor) 87, 120,

129
Query global variable node (ruleset editor) 87, 142

R
Rearm function 101
Redbook references 3, 15, 17, 20
Registration files (see also Security Registration

Files) 9, 11, 41, 43, 133
Report 241
Reset on match node (ruleset editor) 87
Resolve node (ruleset editor) 87, 96
Router failure - suppressing dependent node

events 181, 187
Rulesets, see event rulesets

Index 287

rx access level 31, 45

S
Security in NetView for AIX 3, 25

Administration dialog 28
API 26, 43

Example of using 47
Audit log 38
Authentication 25
Client/server implications 48
Distributing configurations 50
Global activation of 33
Groups 26
Integrating applications with security 41

Example of 43
Levels of 25
Planning for security 26
Shift handover function 37
System/390 NetView implications 51
Types of resource protected 31, 42
User IDs, see User IDs in NetView for AIX 28

Security registration files (SRFs) 26, 30, 41
How to create an SRF 42

Selection name 54, 75
Set database field node (ruleset editor) 87, 137
Set global variable node (ruleset editor) 88, 142
Set MIB variable node (ruleset editor) 88, 148
Set state node (ruleset editor) 88, 129
Shift in/shift out 37
siaNodes collection 204
Sizing NetView for AIX 14

Rules of thumb 15
SNMP 215

Managers and agents 79
SNMP SET request 211
Traps 9, 79

Contents of 80
Variables in traps 80, 94
Version 2 5

snmpCollect 9, 241
Specific trap ID 80, 196
SRF, see Security registration files
status

propagation 215
symbols 215
Synchronizing (map synchronization process) 10, 19
Systems Monitor 79, 118

Agent hierarchy 202
Capabilit ies 201
List of Systems Monitor agents 201
Manual configuration 203
Mid level manager (MLM) 122
Use of SLM by APM 211
Use of SNMP SET 211
Uses node addresses instead of names 180

T
Threshold node (ruleset editor) 88, 101, 105
Threshold table (Systems Monitor) 204
topology 221
Trap settings node (ruleset editor) 88, 92, 114, 119,

141
trapd 81

U
UDP 225
Unmanaged state 3
User IDs for NetView for AIX 28

Adding new users 32
Compared to AIX IDs 34
Global variable for 36
Only one NetView ID per AIX user 36

V
vertex 219, 224

W
WINSNMP API 5
wtcoll 69, 76, 171
wtdepend 171, 187
wtdepend_list 191
wtdriver6 20
wteuiap4 43
wteuiap6 20
wtpbxd 21

X
X-Windows access 7, 11

Compared to client/server 18
xxmap 10, 216, 221, 223, 224

288 NetView for AIX V4 Examples

IBML

Printed in U.S.A.

SG24-4515-00

