

SCSI Reference

SCSI Reference

-	nation and the produ		

First Edition (October 2005)

This is the first edition of the IBM System Storage TS3310 Tape Library.

© Copyright International Business Machines Corporation 2005. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

Read This First

This is the first edition of the *IBM System Storage TS3310 Tape Library* (October 2005).

Send Us Your Feedback

Send us your comments by e-mail to *starpubs@us.ibm.com* or use the Readers' Comments form at the back of this publication. Be sure to include the following:

- Exact publication title
- Form number (for example, GA32-1234-02)
- · Page numbers to which you are referring

© Copyright IBM Corp. 2005

Contents

Read This First iii	Chapter 3. Using the SCSI Commands 11
Send Us Your Feedback iii	INITIALIZE ELEMENT STATUS (07h)
	INITIALIZE ELEMENT STATUS WITH RANGE
Tables vii	(E7h)
	INQUIRY (12h)
Preface ix	LOG SENSE (4Dh)
	MODE SELECT 6 (15h)
Related Publications ix	MODE SENSE 6 (1Ah)
3576 Tape Library Publications ix	MOVE MEDIUM (A5h)
Other IBM Publications and Sources ix	PERSISTENT RESERVE IN (5Eh) 41
Related Information ix	PERSISTENT RESERVE OUT (5Fh) 45
	POSITION TO ELEMENT (2Bh) 47
Chapter 1. Introduction 1	PREVENT/ALLOW MEDIUM REMOVAL (1Eh) 48
	READ BUFFER (3Ch)
Chapter 2. General SCSI Information 3	READ ELEMENT STATUS (B8h)
Media Changer Commands and Parameters 3	RELEASE ELEMENT 6 (17h) 65
General Command Support Behavior 4	REQUEST SENSE (03h) 66
Element Addressing 4	RESERVE ELEMENT 6 (16h)
Command Status 4	SEND DIAGNOSTIC (1Dh)
Unit Attentions 5	TEST UNIT READY (00h)
Resets 5	WRITE BUFFER (3Bh)
Common CDB Fields 5	
Supported Interfaces 6	Notices
SCSI Parallel Interface Support 6	Comments or Suggestions
Supported Messages 6	Trademarks
Fibre Channel Interface Support 8	
Logical Libraries	Glossary 81
Mailbox Behavior 8	anoccary:
Autocleaning	Index 07
Removed Drives 9	Index

© Copyright IBM Corp. 2005

Tables

1.	Media Changer Device Supported Commands	3	31.	Transport Geometry Parameters Page (1Eh)	37
2.	Media Changer Device Supported Parameters	4	32.	Device Capabilities Page (1Fh)	. 38
3.	Control byte	6	33.	MOVE MEDIUM CDB	40
4.	Supported SCSI messages	7	34.	PERSISTENT RESERVE IN CDB	41
5.	INITIALIZE ELEMENT STATUS CBD 1	12	35.	Read Keys Response	42
6.	Initialize Element Status With Range CDB	13	36.	Read Reservations Response	43
7.	Inquiry CDB	15	37.	PERSISTENT RESERVE OUT CDB	45
8.	IBM standard inquiry data format	16	38.	PERSISTENT RESERVE OUT parameter list	46
9.	Supported vital product data page 1	19	39.	POSITION TO ELEMENT CDB	47
0.	Unit Serial Number page	20	40.	PREVENT/ALLOW MEDIUM REMOVAL	
1.	Device Identification Page	21		CDB	48
2.	General identification Descriptor	21	41.	READ BUFFER CDB	
13.	Media Changer Identification Descriptor 2	22	42.	Read Buffer Response	. 50
4.	Firmware Revision page	23	43.	Offset Boundary	
15.	Implemented SCSI-2 Command page (E0h)	24	44.	Read Element Status CDB	. 52
16.	Implemented Vendor Specific Command page		45.	Element Type Code	
	(E1h)		46.	Element Status header	
7.	LOG SENSE CDB format		47.	Element Status Page format	
18.	Page Code field	27	48.	Medium Transport Element Descriptor format	
9.	Log Page format	27	49.	Storage Element Descriptor format	
20.	Log Parameter Format	28	50.	Import/Export Element Descriptor	. 60
21.	Supported Log Page (00h)		51.	Data Transfer Element Descriptor page format	
22.	Tape Alert Log Page Parameters	29	52.	RELEASE ELEMENT 6 CDB	
<u>2</u> 3.	MODE SELECT CDB		53.	REQUEST SENSE CDB	
24.	Mode Select (6) Parameter Header	32	54.	Sense Information Format	
<u>2</u> 5.	MODE SENSE CDB format		55.	Sense Keys	
26.	Page Control (PC) field	33	56.	Additional Sense Codes and Qualifiers	
27.	Mode Parameter Header format for MODE		57.	RESERVE ELEMENT 6 CDB	
	SENSE (6)		58.	Send Diagnostic CDB	
28.	Supported Mode Pages	34	59.	Mode State Responses	. 74
<u> 1</u> 9.	0 ()	35	60.	TEST UNIT READY CDB	
30.	Element Address Assignment Page (1Dh)	36	61.	WRITE BUFFER CDB	. 75

© Copyright IBM Corp. 2005 vii

Preface

This manual contains information about how to use and program the IBM System Storage TS3310 Tape Library. It is intended for those who use the Small Computer System Interface (SCSI) to communicate with the library. The book contains the following chapters:

Chapter 1, "Introduction," on page 1 provides general information about the library and its components.

Chapter 2, "General SCSI Information," on page 3 provides an overview of SCSI bus operations, messages, and commands.

Chapter 3, "Using the SCSI Commands," on page 11 provides detailed information about the SCSI library commands.

Related Publications

Refer to the following publications for additional information about the library. To ensure that you have the latest publications, visit the web at:

http://www.ibm.com/storage/lto

3576 Tape Library Publications

- IBM System Storage TS3310 Tape Library Setup and Operator Guide, GA32-0477
- IBM System Storage TS3310 Tape Library Maintenance Information, GA32-0478

Other IBM Publications and Sources

- For a list of compatible software, operating systems, and servers, visit the web at http://www.ibm.com/storage/lto.
- http://www.ibm.com/storage/lto (for bar code and bar code label specifications for LTO Ultrium Tape Cartridges)
- *IBM Translated Safety Notices*, 95P0851
- IBM Ultrium Device Drivers Installation and User's Guide, GA32-0430
- IBM Ultrium Device Drivers Programming Reference, GC35-0483

Related Information

For additional related information, see:

- Fibre Channel Arbitrated Loop (FC-AL-2), published by the American National Standards Institute (ANSI) as NCITS 332:1999.
- Fibre Channel Tape and Tape Medium Changers (FC-TAPE), published by the American National Standards Institute. Final draft available as T11/99-069v4 on the web at http://www.t11.org; actual document available from ANSI as NCITS TR-24:1999.
- Fibre Channel Protocol for SCSI, Second Version (FCP-2), published by the American National Standards Institute and available on the web at http://www.t10.org.

- SCSI Parallel Interface-3 (SPI-3), published by InterNational Committee on Information Technology Standards (INCITS) and available on the web at http://www.t10.org.
- *SCSI-3 Stream Commands (SSC)*, published by the American National Standards Institute and available on the web at http://www.t10.org.
- *SCSI Stream Commands-2 (SSC-2)*, published by the American National Standards Institute and available on the web at http://www.t10.org.
- *SCSI Primary Commands-2 (SPC-2)*, published by the American National Standards Institute and available on the web at http://www.t10.org.
- SCSI Primary Commands-3 (SPC-3), published by the American National Standards Institute and available on the web at http://www.t10.org.

Portions of this manual were adapted from documentation provided by the InterNational Committee on Information Technology Standards (INCITS).

Chapter 1. Introduction

The IBM System Storage TS3310 Tape Library is the newest member of the IBM TotalStorage family of tape solutions and consists of the IBM System Storage TS3310 Tape Library Model L5B and the IBM System Storage TS3310 Tape Library Model E9U.

This library offers high performance, capacity, and technology designed for reliability and the heavy demands of tape storage. The library is highly modular with scalability varying from the base library 5U control module to additional expansion units of 9U height each. This automated tape library incorporates high-performance IBM LTO Ultrium 3 Tape Drives for the midrange to enterprise open systems environment. Tape cartridge physical capacity has doubled to 400 GB native capacity (800 GB with 2:1 compression) with the IBM TotalStorage LTO Ultrium 400 GB Data Cartridge (for use only with Ultrium 3 format Tape Drives), and drive performance has more than doubled to 80 MB/second native data transfer rate with the IBM TotalStorage LTO Ultrium 3 Tape Drives compared to IBM LTO Ultrium 2 Tape Drives. IBM LTO Ultrium 3 tape drives can read and write original LTO Ultrium 2 data cartridges and read LTO Ultrium 1 data cartridges.

The IBM System Storage TS3310 Tape Library Model L5B is the 5U base library unit which contains the library control module, fixed tape cartridge storage with 30 slots, I/O station with 6 slots, touch screen display, cartridge handling robotics, and up to 2 LTO Ultrium 3 tape drives.

The IBM System Storage TS3310 Tape Library Model E9U is an optional 9U expansion module that can be stacked on top of or below a base TS3310 L5B Tape Library. Each E9U expansion module can accommodate up to 4 LTO Ultrium 3 Tape Drives and up to 92 tape cartridge slots, and 0-12 configurable I/O station slots. In this initial release of this model, one of these TS3310 E9U Tape Libraries can be stacked under a TS3310 Model L5B Tape Library forming an integrated 14U tape library (5U base library and one 9U expansion module).

6

Chapter 2. General SCSI Information

Media Changer Commands and Parameters

The commands supported by the Media Changer device are shown in the following table.

Table 1. Media Changer Device Supported Commands

Command	Code
INITIALIZE ELEMENT STATUS	07h
INITIALIZE ELEMENT STATUS WITH RANGE	E7h
INQUIRY	12h
LOG SENSE	4Dh
MODE SELECT (6)	15h
MODE SENSE (6)	1Ah
MOVE MEDIUM	A5h
PERSISTENT RESERVE IN	5Eh
PERSISTENT RESERVE OUT	5Fh
POSITION TO ELEMENT	2Bh
PREVENT ALLOW MEDIUM REMOVAL	1Eh
READ BUFFER	3Ch
READ ELEMENT STATUS	B8h
RELEASE ELEMENT (6)	17h
REQUEST SENSE	03h
RESERVE ELEMENT (6)	16h
SEND DIAGNOSTIC	1Dh
TEST UNIT READY	00h
WRITE BUFFER	3Bh

7

The supported parameters are summarized in Table 4.

Table 2. Media Changer Device Supported Parameters

Command	Page	Code
Inquiry	Supported VPD Pages	00h
Inquiry	Unit Serial Number Page	80h
Inquiry	Device Identification Page	83h
Inquiry	Firmware Revision Page	C0h
Inquiry	Vendor Specific Command	D0h
Inquiry	Implemented SCSI-2 Command Page	E0h
Inquiry	Implemented Vendor Specific Command	E1h
Log Sense	Supported Log Pages	00h
Log Sense	TapeAlert page	2Eh
Mode Sense	Informational Exceptions Control Page	1Ch
Mode Sense	Element Address Assignment Page	1Dh
Mode Sense	Transport Geometry Parameters Page	1Eh
Mode Sense	Device Capabilities Page	1Fh
Mode Sense	Return all pages	3Fh

The Media Changer will not support any diagnostic parameters.

General Command Support Behavior

- "Element Addressing"
- "Command Status"
- "Unit Attentions" on page 5
- "Resets" on page 5
- "Common CDB Fields" on page 5

Element Addressing

The starting addresses of the four element types are:

- 0001h: Medium Transport
- 0010h: Import/Export
- 0100h: Data Transfer
- 1000h: Storage

Command Status

Individual command status responses are not documented, as they all follow the same general format as described here. After processing any command, the library returns status from among the following:

- Good The library returns a Good status (00h) when it is able to process the command without errors.
- **Busy** The library returns Busy status (08h) when a motion command is still being processed, or the library is generally not able to process additional commands at that time.

- Reservation Conflict The library returns a Reservation Conflict (18h) whenever an initiator attempts to access a logical unit that has been reserved by another initiator, except for the following commands:
 - INOUIRY
 - LOG SENSE
 - PREVENT/ALLOW MEDIUM REMOVAL
 - REQUEST SENSE
- Check Condition The library returns the Check Condition status (02h) when the following general situations occur (all generate sense data):
 - The library is Not Ready (sense key 02h).
 - The library has encountered a Hardware Error (sense key 04h).
 - A parameter in the CDB is invalid or there is an invalid field in a parameter list, resulting in an Illegal Request (sense key 05h).
 - A Unit Attention condition is pending (sense key 06h).
 - A command has been aborted (sense key 0Bh).

A complete list of all possible sense data and their causes is located in Table 56 on page 69. This status information will not be separated by individual commands.

Status values of Condition Met, Intermediate Condition Met, and Queue Full are not currently used. The Initiator should issue a Request Sense command to determine the precise cause of the Check Condition status and clear it.

Response data, however, will be documented as applicable for each command, and included as part of the command section.

Unit Attentions

Unit Attentions will be queued by the library as necessary to report all events and conditions. They are presented in the order of their occurrence (first in, first out). Unit attentions are generated for the following conditions:

- A power on or a reset (external or internal) occurred.
- A library door closed, or a transition from not ready to ready occurred.
- A mailbox closed.
- A firmware update completed.
- A persistent reservation has been preempted or released, or a registration has been preempted.
- · Mode parameters have changed.

Resets

Either a Power On Reset or a SCSI Reset resets the library. When reset, the library does the following:

- · Returns to Bus Free
- All non-persistent reservations are cleared.

Common CDB Fields

Each Command Descriptor Block contains a Logical Unit Number (LUN) field as well as a Control byte field. The LUN field is bits 5-7 of byte 1 and is there only for legacy compatibility. Logical Unit selection should be accomplished via the Identify message.

Table 3. Control byte

The Control byte is shown in Table 3. It is always the last byte of a CDB, regardless of the size of the CDB.

Bit	7	6	5	4	3	2	1	0
Byte								
last	Vendor	Specific		Reserved		NACA	Flag	Link

Vendor Specific - This field is used to provide additional data or control for a command. Specific uses are described within the applicable commands.

Normal Auto Contingent Allegiance (NACA) - If this field is set to 0, the initiator should issue a REQUEST SENSE command immediately following receipt of a Check Condition. If this field is set to 1, ACA support will be provided.

Flag - This field is not supported and must be set to 0.

Link - This field is not supported and must be set to 0.

Reserved Fields

Reserved fields are not checked, and no error will be sent if they contain non-zero values.

Online/Offline Operation

Each Media Changer device can be placed in either an online or offline mode. The purpose of these modes is to configure whether the Media Changer is being controlled by a SCSI initiator or by the operator panel. When the Media Changer is online, a SCSI initiator is controlling it and all SCSI commands are supported. When the Media Changer is offline, the operator panel is controlling it, and the only allowed SCSI commands are INQUIRY and REQUEST SENSE. All other commands will respond with a check condition, along with an ASC/ASCQ of 04/8D (unit offline).

The READ ELEMENT STATUS command is allowed with DVCID=1, VOLTAG=0 while the library is offline or the main door is open.

Supported Interfaces

SCSI Parallel and Fibre Channel interface types are supported as described below.

SCSI Parallel Interface Support

The library supports parity checking on the SCSI Parallel interface. It will attempt to retry when parity errors are detected, but if unsuccessful will attempt to respond with a Check Condition indicating in which phase the parity error was detected.

If permitted by the initiator, the library will also support disconnects for commands that take a lengthy time to process, such as MOVE MEDIUM. Disconnect privilege is granted by the initiator via the Identify message.

Supported Messages

The SCSI message system (Message In/Message Out) allows communication between an initiator and a target for the purpose of physical path management. The supported messages are shown in Table 4 on page 7. The direction is relative

to the initiator.

Table 4. Supported SCSI messages

Description	Code	Direction
COMMAND COMPLETE	00h	In
EXTENDED MESSAGE	01h	Out
SAVE DATA POINTERS	02h	In
RESTORE POINTERS	03h	In
DISCONNECT	04h	In
INITIATOR DETECTED ERROR	05h	Out
ABORT	06h	Out
MESSAGE REJECT	07h	Both
NO-OP	08h	Out
MESSAGE PARITY ERROR	09h	Out
BUS DEVICE RESET	0Ch	Out
IDENTIFY	80h-FFh	Both

COMMAND COMPLETE (00h) - This message is sent from the target to an initiator to indicate that the execution of a command completed and valid status has been sent to the initiator.

EXTENDED MESSAGE (01h) – This message is sent from an initiator to the target to attempt to negotiate synchronous or wide data transfers. The library supports both.

SAVE DATA POINTERS (02h) - This message is issued before every disconnect message following a Data In or Data Out phase. The message is not sent when disconnecting after a Command Descriptor Block (CDB) that did not transfer data.

RESTORE POINTERS (03h) - This message is sent from the target to direct the initiator to continue sending data.

DISCONNECT (04h) - This message is sent by the target to inform an initiator that the present data transfer will be suspended. The target will reselect the initiator at a later time to continue the current operation.

INITIATOR DETECTED ERROR (05h) - This message is sent from an initiator to inform the target that an error occurred. This allows the target to retry the operation.

ABORT (06h) - This message is sent from the initiator to the target to clear the current or pending operation. The target goes directly to the BUS FREE phase after successful receipt of this message.

MESSAGE REJECT (07h) - This message is sent from the initiator or target to indicate that the last message received was inappropriate or not implemented.

NO-OP (08h) - This message is sent from the initiator to inform the target that no message is valid in response to the target request for a message.

MESSAGE PARITY ERROR (09h) - This message is sent from the initiator to the target to indicate that one or more bytes in the last message received contained a parity error.

BUS DEVICE RESET (0Ch) - This message is sent from an initiator to clear all commands, data, and status at the target. When the target recognizes this message, it aborts the command currently being executed and proceeds to the BUS FREE state.

IDENTIFY (80h - FFh) - These messages are sent either by the initiator or by the target to establish (or re-establish) the logical connection path (nexus) between an initiator and target for a particular logical unit.

Fibre Channel Interface Support

The library Fibre Channel ports can be N_Ports for point-to-point topologies or NL_Ports for arbitrated loop topologies. Only Class 3 service is supported. Private arbitrated loops are supported if the library is not attached to a Fibre Channel fabric, and public arbitrated loops are supported if the library is attached to a Fibre Channel fabric.

Logical Libraries

The underlying physical library is not exposed externally to applications. Rather, logical representations of Media Changer devices are created, and these are presented instead. Through this method the physical library can be partitioned and concurrently shared in a heterogeneous environment. Storage and Data Transfer elements cannot be shared across logical libraries; they can only be assigned to one logical library at a time. The Medium Transport element (the robotic mechanism) is shared across all logical libraries, and as a result there may be some delays encountered as each logical library waits its turn for this shared resource.

Import/Export elements can also be shared across logical libraries. This is further discussed in Mailbox Behavior. All other aspects of the logical Media Changer devices are identical to an independent physical Media Changer.

Mailbox Behavior

There are three characteristics affecting Import/Export elements that warrant explanation.

First, these elements are contained in removable magazines. When the magazines are removed, the elements are still counted in the number of Import/Export elements and will have element descriptors returned for them in response to a READ ELEMENT STATUS command. Their element status will indicate that they are not accessible, and will also report an exception with an ASC/ASCQ of 3B/12.

Secondly, some IBM libraries are configured with multiple physical mailboxes, each containing their own set of magazines. Whenever a mailbox is opened, the status for the elements it contains will indicate that they are not accessible until the mailbox is closed again.

And finally, the mailbox magazine(s) can be assigned to and shared by different logical libraries. The Import/Export elements they contain are then used on a "first come, first served" basis. When shared Import/Export elements are in use by one logical library, element status for those elements will indicate that they are empty,

but not accessible for all other logical libraries that share them. The presence of media and associated volume tag information will only be available to the logical library using the elements at that time. When media is removed from the shared elements, they become available for use by the next logical library requesting them, and their element status indicates that they are accessible.

These three characteristics require applications to process the complete element status returned in the element descriptors (including accessibility and exception conditions) to achieve optimum usage of the Import/Export elements. Reliance on only full or empty element status may result in failed operations (e.g., an Export). This might be due to not locating a usable Import/Export element when several may actually be available, if the search had only taken into account full status rather than accessibility.

Autocleaning

IBM libraries support a user-configurable option to have the library automatically clean drives when requested by the drives (refer to the specific IBM library documentation for details). This process involves the library loading a special cleaning cartridge into the requesting drive, allowing the drive to perform the cleaning operation, and then the library unloading the cartridge and returning it to storage.

If this option is enabled and configured, the library maintains a pool of storage slots that contain the cleaning cartridges. These slots and cartridges are not associated with or counted towards any logical library, and as such are not reported to any application.

The library typically checks for cleaning requests from drives after unloading data cartridges. If a cleaning request is found, the library will select a cleaning cartridge from the pool and perform the clean. While the cleaning operation is in progress, the logical library containing the drive being cleaned will continue to accept and perform SCSI commands. If a Move Medium command is received with the drive as a destination, and it is still being cleaned, the command will be queued until the cleaning operation completes. Cleaning operations vary by drive and conditions, but can take up to a few minutes to complete.

Element status for the Data Transfer element being cleaned will not reflect the presence of the cleaning cartridge. It will continue to report that it is empty and accessible.

Removed Drives

Depending on how the library is configured, occasionally Data Transfer elements will be reported where no drive is physically present at the time. This could be due to a drive that has been removed for service, or simply a placeholder for the addition of a future drive. These empty "drive bays" will be counted and reported via Mode Sense and Read Element Status commands. Status for such elements will indicate that they are not accessible, and will report an ASC/ASCQ of 83/04. These elements could appear in between Data Transfer elements that are present, creating "gaps" among the physical drives. This should not be considered an error.

Chapter 3. Using the SCSI Commands

This chapter describes the following SCSI commands:

"INITIALIZE ELEMENT STATUS (07h)" on page 12
"INITIALIZE ELEMENT STATUS WITH RANGE (E7h)" on page 13
"INQUIRY (12h)" on page 15
"LOG SENSE (4Dh)" on page 26
"MODE SELECT 6 (15h)" on page 31
"MODE SENSE 6 (1Ah)" on page 33
"MOVE MEDIUM (A5h)" on page 39
"PERSISTENT RESERVE IN (5Eh)" on page 41
"PERSISTENT RESERVE OUT (5Fh)" on page 45
"POSITION TO ELEMENT (2Bh)" on page 47
"PREVENT/ALLOW MEDIUM REMOVAL (1Eh)" on page 48
"READ BUFFER (3Ch)" on page 49
"READ ELEMENT STATUS (B8h)" on page 52
"RELEASE ELEMENT 6 (17h)" on page 65
"REQUEST SENSE (03h)" on page 66
"RESERVE ELEMENT 6 (16h)" on page 72
"SEND DIAGNOSTIC (1Dh)" on page 73
"TEST UNIT READY (00h)" on page 74
"WRITE BUFFER (3Bh)" on page 75

© Copyright IBM Corp. 2005

INITIALIZE ELEMENT STATUS (07h)

The library will determine status (full or empty) for all elements, as well as barcode label information (volume tags) for the media. Barcode labels will be scanned unless otherwise directed (and the library supports a non-barcode option). The library may not fully execute this command if the Automatic Inventory option is enabled, and element status is already known.

Results of the status initialization will be buffered by the library for retrieval via the READ ELEMENT STATUS command. Element status and barcode label information is retained by the library across power cycles.

Usage

This command can be used to gather status for all the elements, and should be issued whenever the library indicates that element status may have changed, such as after a power cycle or door opening and closing. It should then be followed by a READ ELEMENT STATUS command to retrieve the status.

CDB Format

The INITIALIZE ELEMENT STATUS CDB format in shown in Table 5.

Table 5. INITIALIZE ELEMENT STATUS CBD

	Bits	7	6	5	4	3	2	1	0	
Bytes										
0			Op Code (07h)							
1		Logic	Logical Unit Number Reserved							
2			Reserved							
3			Reserved							
4		Reserved								
5		NBL	NBL Control							

Parameters

NBL (No Barcode Label)

A value of 0 indicates that the specified elements will be checked for all relevant status, including bar code labels. A value of 1 indicates that elements will be checked for media presence only (no bar code labels). The NBL bit is not supported on libraries that have a barcode scanner.

INITIALIZE ELEMENT STATUS WITH RANGE (E7h)

The library will examine the range of elements requested and determine their status relative to media presence (full or empty). Barcode labels will be scanned unless otherwise directed (and the library supports a non-barcode option). The library will always fully execute this command regardless of the Automatic Inventory setting.

Results of the status initialization will be buffered by the library for retrieval via the READ ELEMENT STATUS command. Element status and barcode label information is retained by the library across power cycles.

Usage

This command can be issued to gather status for some or all of the elements, and can be used in conjunction with host application error handling if the normal element status maintained by the library returns an unexpected result. It should then be followed by a READ ELEMENT STATUS command to retrieve the status.

CDB Format

The INITIALIZE ELEMENT STATUS WITH RANGE CDB format is shown in Table 6.

Table 6. Initialize Element Status With Range CDB

	Bits	7	6	5	4	3	2	1	0
Bytes									
0					Ор Сос	de (E7h)			
1		Logi	ical Unit Nuı	nber		Rese	erved		Range
2		MSB							
:					Starting Elen	nent Address	3		
3			LSB						
4			Reserved						
5			Reserved						
6		MSB							
:			Number of Elements						
7			LSB						
8			Reserved						
9		NBL				Control			

Parameters

Range A value of 0 indicates that all element addresses will be checked and that the Starting Element Address and Number of Elements fields will be ignored. A value of 1 indicates that the series of elements beginning at the specified Starting Element Address for the specified Number of Elements will be checked.

Starting Element Address

The Starting Element Address specifies the beginning address of the range to check. It must be a valid address for an element that exists within the library; no adjustment will be made to convert to a next higher valid address. This field is ignored if the Range field is 0.

INITIALIZE ELEMENT STATUS WITH RANGE (E7h)

Number of Elements

This field specifies the number of elements to check. Gaps in element types and addresses are automatically handled until a quantity of physical elements equal to this number has been checked. If this field is 0, the range checked will start with the Starting Element Address and continue through all remaining elements. This field is ignored if the Range field is 0.

NBL (No Barcode Label)

A value of 0 indicates that the specified elements will be checked for all relevant status, including bar code labels. A value of 1 indicates that elements will be checked for media presence only (no bar code labels). The NBL bit is not supported on libraries that have a barcode scanner.

INQUIRY (12h)

In response to this command the library returns static data that describes various subsystem parameters. If an INQUIRY command is received from an initiator with a pending unit attention condition, the library will perform the INQUIRY command and will not clear the unit attention condition. An INQUIRY command will respond with a Check Condition status only when it cannot return the requested Inquiry data.

Usage

This command would normally only be issued once for each logical unit as desired by the initiator to facilitate the initialization process.

CDB Format

The INQUIRY CDB format is shown in Table 7.

Table 7. Inquiry CDB

	Bits	7	6	5	4	3	2	1	0							
Bytes																
0		Op Code (12h)														
1		Logi	ical Unit Nur	nber		EVPD										
2		Page Code														
3		Reserved														
4		Allocation Length														
5					Cor	ntrol			Control							

Parameters

Command Support Data (CMDDT)

This field is not supported and must be set to 0.

Enable Vital Product Data (EVPD)

An EVPD value of 1 indicates that the vital product data specified by the Page Code should be returned. A value of 0 indicates that standard inquiry data should be returned.

Page Code

This field specifies which vital product data page to return if the EVPD bit is set to 1. If the EVPD bit is set to 0, the Page Code must be 00h. The library supports the following page codes:

00h	Supported Vital Product Data pages
80h	Unit Serial Number page
83h	Device Identification page
C0h	Firmware Revision page
D0h	Vendor Specific page
E0h	Implemented SCSI-2 Command page
E1h	Implemented vendor Specific Command page
FFh	Vendor Use Only

Allocation Length

The Allocation Length field specifies the maximum number of bytes that the initiator allocated for returned inquiry data. An Allocation Length of 0 indicates that no inquiry data is to be transferred (this condition is not considered an error).

The library terminates the data transfer when it has transferred the lesser of either the number of bytes specified by the Allocation Length field or all of the available inquiry data. The lengths for inquiry data returned are:

3Ah (58 bytes)

(depending on device type) for the Standard Inquiry data

0Ch (12 bytes)

for the Supported Vita Product Data page (00h)

14h (20 bytes)

for the Unit Serial Number page (80h)

30h (48 bytes)

for the Device Identification page (83h)

1Ah (26 bytes)

for the Firmware Revision page (C0h)

87h (135 bytes)

for the Vendor Specific Command Support page (D0h)

16h (22 bytes)

for the Implemented SCSI-2 Command page (E0h)

05h (5 bytes)

for the Vendor Specific commands page (E1h)

Response

The standard INQUIRY response returns information as shown in Table 8.

Table 8. IBM standard inquiry data format

	Bits	7	6	5	4	3	2	1	0
Bytes									
0		Per	ipheral Qual	ifier		Perip	heral Device	Туре	
1		RMB		Reserved					
2			Version						
3		AERC	Obsolete	NormACA	HiSup		Response I	Data Format	
4			Additional Length						
5		SCCS				Reserved			
6		BQue	EncServ	BarC	MultiP	MChngr	Obsolete	Obsolete	Addr16
7		RelAdr	Obsolete	Wbus16	Sync	Linked	Obsolete	CmdQue	SftRe
8		MSB							
:					Vendor Ide	entification			
15									LSB
16		MSB							
:					Product Id	entification			
31									LSB

8

6

Table 8. IBM standard inquiry data format (continued)

	Bits	7	6	5	4	3	2	1	0
Bytes									
32		MSB							
:					Firmware Re	evision Level			
35									LSB
36		MSB							
:					Plant of M	anufacture			
37									LSB
38		MSB							
:					Serial N	Number			
49									LSB
50		MSB							
:					'0' (in	ASCII)			
51									LSB
52									
:					Rese	erved			
57									

Peripheral Qualifier

A return value of 0 indicates that the library is a single LUN device. If a LUN other than 0 was specified, this field returns 011b, which indicates that only LUN 0 is supported.

Peripheral Device Type

The value returned by this field is set to 01000b, indicating a Medium Changer Device. Any LUN other than 0 returns 11111b, which indicates that the device is unknown.

RMB (Removable Medium Bit)

This field returns 1, indicating media is removable.

Version

This field returns 03h, indicating compliance with the SCSI-3 standard.

AERC (Asynchronous Event Reporting Capability)

Returned as 0, indicating AERC is not supported.

NormACA (Normal ACA Supported)

This field returns a 0, indicating the NACA bit in the Control byte of a CDB is not supported.

HiSup (Hierarchical Support)

This field returns a 1, indicating that the hierarchical addressing model is used to assign LUNs, and that the REPORT LUNs command is supported.

Response Data Format

Returned as 0010b, indicating response data is in standard SCSI format.

Additional Length

This field returns 35h, indicating 53 additional bytes of data are available.

SCCS (SCC Supported)

This field returns a 0.

BQue (Basic Queuing)

Returned as 0, indicating basic queuing is not supported.

EncServ (Enclosure Services)

Returned as 0, indicating an enclosure services component is not included.

BarC (Bar Code)

This field returns a 1, indicating a bar code scanner is installed (also returned in byte 55 below).

MultiP (Multi Port)

Returned as 0, indicating that this is not a multi-port device.

MChngr (Media Changer)

This field returns a 0, indicating it is not an attached Media Changer device.

Wide SCSI Addr16 (Address 16)

Returned as 1, indicating a 16-bit wide SCSI addresses are supported (applies to parallel SCSI only).

Relative RelAdr (Address)

Returned as 0, indicating relative addressing is not supported.

Wbus16 (Wide Bus 16)

Returned as 1, indicating 16 bit transfers are supported (applies to parallel SCSI only).

Sync (Synchronous Transfer)

Returned as 1, indicating synchronous transfers are supported (applies to parallel SCSI only).

Linked (Linked Commands)

Returned as 0, indicating linked commands are not supported.

CmdQue (Command Queuing)

For Fibre Channel, this is returned as 1, indicating command queuing is supported. For SCSI, this is returned as 0, indicating no command queuing is supported.

SftRe (Soft Reset)

Returned as 0, indicating a soft reset is not supported.

Vendor Identification

Returned as "IBM", space filled to eight bytes.

Product Identification

Returned as "3576-MTL". It is space filled to 16 bytes.

Firmware Revision Level

Returned as the ASCII representation of the revision level, such as "100A" or "203A".

Plant of Manufacture

Returned as the ASCII representation of the manufacturing facility.

Serial Number

Returned as serial number of device, right justified with leading zeros (in ASCII).

Supported Vital Product Data Page

Table 9 shows the format of the Supported Vital Product Data page.

Table 9. Supported vital product data page

	Bits	7	6	5	4	3	2	1	0		
Bytes											
0		Per	pheral Quali	fier	Peripheral Device Type						
1					Page Co	de (00h)					
2					Rese	rved					
3					Page I	Length					
4]	First Page Co	de Supporte	d				
5				Se	econd Page C	ode Support	ed				
6				Т	Third Page Co	ode Supporte	d				
7				F	ourth Page C	ode Supporte	ed				
8]	Fifth Page Co	de Supporte	d				
8				S	Sixth Page Co	de Supporte	d				
10			Seventh Page Code Supported								
11				Е	ighth Page C	ode Supporte	ed				

Peripheral Qualifier

A return value of 0 indicates that the library is a single LUN device. If a LUN other than 0 was specified, this field returns 011b, which indicates that only LUN 0 is supported.

Peripheral Device Type

The value returned by this field is set to 01000b, indicating a Medium Changer Device. Any LUN other than 0 returns 11111b, which indicates that the device is unknown.

Page Code

Returned as 00h, indicating this page.

Page Length

Returned as 08h, indicating the remaining number of bytes in this page following this field.

First Page Code Supported

Returned as 00h, indicating support for the Supported Vital Product Data Page.

Second Page Code Supported

Returned as 80h, indicating support for the Unit Serial Number Page.

Third Page Code Supported

Returned as 83h, indicating support for the Device Identification Page.

Fourth Page Code Supported

Returned as C0h, indicating support for the Firmware Revision page.

Fifth Page Code Supported

Returned as D0h, indicating support for the Vendor Specific Command page.

Sixth Page Code Supported

Returned as E0h, indicating support for the Implemented SCSI-2 Command page.

Seventh Page Code Supported

Returned as E1h, indicating support for the Implemented Vendor Specific Command page.

Eighth Page Code Supported

Returned as FFh. Vendor use only.

Unit Serial Number Page (80h)

Table 10 shows the format of the Unit Serial Number page.

Table 10. Unit Serial Number page

	Bits	7	6	5	4	3	2	1	0		
Bytes											
0		Per	ipheral Quali	fier		Perip	heral Device	Туре			
1			Page Code (80h)								
2					Rese	rved					
3			Page Length								
4		MSB									
:					Serial 1	Number					
15									LSB		
16		MSB									
:				Uni	que Logical	Library Ident	ifier				
19									LSB		

Peripheral Qualifier

A return value of 0 indicates that the library is a single LUN device. If a LUN other than 0 was specified, this field returns 011b, which indicates that only LUN 0 is supported.

Peripheral Device Type

The value returned by this field is set to 01000b, indicating a Medium Changer Device. Any LUN other than 0 returns 11111b, which indicates that the device is unknown.

Page Code

Returned as 80h, indicating this page.

Page Length

Returned as 10h, indicating the remaining number of bytes following this field.

Serial Number

The value returned for this field is the serial number for the system, right justified with leading zeros.

Unique Logical Library Identifier

Such as the ASCII representation of the logical library name, for example _LL3.

Device Identification Page (83h)

Table 11 on page 21 shows the format of the Device Identification Page.

Table 11. Device Identification Page

	Bits	7	6	5	4	3	2	1	0	
Bytes										
0		Per	Peripheral Qualifier Peripheral Device Type							
1			Page Code (83h)							
2			Reserved							
3					Page Ler	igth (<i>n-3</i>)				
					Identification	ı Descriptors				
4				Fi	rst Identifica	tion Descript	or			
:										
N				L	ast Identificat	tion Descript	or			

Peripheral Qualifier

A return value of 0 indicates that the library is a single LUN device. If a LUN other than 0 was specified, this field returns 011b, which indicates that only LUN 0 is supported.

Peripheral Device Type

The value returned by this field is set to 01000b, indicating a Medium Changer Device. Any LUN other than 0 returns 11111b, which indicates that the device is unknown.

Page Code

Returned as 83h, indicating this page.

Page Length

Returns the remaining number of bytes following this field.

Identification Descriptors

shows the general format of an identification descriptor.

Table 12. General identification Descriptor

	Bits	7	6	5	4	3	2	1	0	
Bytes										
0			Reserved Code Set							
1		Rese	erved	Assoc	ciation		Identifi	er Type		
2					Rese	erved				
3					Identifier L	Length (n-3)				
4										
:			Identifier							
N										

Code Set

This field returns the following values:

- 1h the Identifier field contains binary values
- 2h the Identifier field contains ASCII characters

Association

This field returns the following values:

• 0h – the Identifier field is associated with the address physical or logical device

• 1h – the Identifier field is associated with the port that received the request

Identifier Type

This field returns the following values:

- 1h The identifier is a concatenation of the Vendor Identification field from the Standard inquiry Data and the Serial Number field (without the vendor ID prefix) from the Unit Serial Number page.
- 3h The identifier is an IEEE Registered format Name_Identifier (Worldwide Name).
- 4h The identifier is a port number. In this case, the Code Set and Association fields will both be set to 1.

Identifier Length

This is the length of the Identifier field, and will vary by identifier type.

Identifier

This is the identifier as described by the Code Set, Association, and Identifier Type fields.

Media Changer Identification Descriptor

Media Changer logical units will only report a single identifier as shown in Table 13. They will report the same identifier on either SCSI or Fibre Channel.

Table 13. Media Changer Identification Descriptor

	Bits	7	6	5	4	3	2	1	0		
Bytes											
0			Reserved Code Set = 2h								
1		Rese	Reserved Association - 0h Identifier Type = 1h								
2					Rese	erved					
3					Identifier Ler	ngth - 28h (40)				
4		MSB									
:					Vend	or ID					
11											
12		MSB									
:				De	vice Type and	l Model Nun	nber				
27									LSB		
28		MSB									
:					Serial N	Number					
39									LSB		
40		MSB									
:				Un	ique Logical l	Library Ident	ifier				
43									LSB		

Vendor ID

Returned as ""IBM

Device Type and Model Number

Returned as "3576-MTL

Serial Number

Returned as serial number of the device, right justified with leading zeros.

Unique Logical Library Identifier

Such as the ASCII representation of the logical library name, for example, LL3.

Firmware Revision Page (C0h)

Table 14 shows the format of the Firmware Revision page.

Table 14. Firmware Revision page

	Bits	7	6	5	4	3	2	1	0	
Bytes										
0		Per	Peripheral Qualifier Peripheral Device Type							
1			Page Code (C0h)							
2			Reserved							
3					Page I	Length				
4		MSB								
:			Revision							
25									LSB	

Peripheral Qualifier

A return value of 0 indicates that the library is a single LUN device. If a LUN other than 0 was specified, this field returns 011b, which indicates that only LUN 0 is supported.

Peripheral Device Type

The value returned by this field is set to 01000b, indicating a Medium Changer Device. Any LUN other than 0 returns 11111b, which indicates that the device is unknown.

Page Code

Returned as C0h, indicating this page.

Page Length

Returned as 16h, indicating the remaining number of bytes following this field.

Revision

Returned as the ASCII representation (22 bytes) of the firmware revision level in the form Firmware Revision = xxxx, where xxxx is the same value as reported in the Firmware Revision Level field of the Standard Inquiry response.

8

8

8

Implemented SCSI-2 Command Page (E0h)

Table 15 shows the format of the Implemented SCSI-2 Command Page.

Table 15. Implemented SCSI-2 Command page (E0h)

	Bits	7	6	5	4	3	2	1	0			
Bytes												
0		Per	Peripheral Qualifier Peripheral Device Type									
1			Page Code (E0h)									
2					Rese	erved						
3					Page 1	Length						
4					TEST UN	IT READY						
5					REQUES	ST SENSE						
6				IN	IITIALIZE EL	EMENT STAT	ΓUS					
7					INQ	UIRY						
8					MODE	SELECT						
9					RES	ERVE						
10					REL	EASE						
11					MODE	SENSE						
12					SEND DIA	AGNOSTIC						
13				PREVE	NT/ALLOW	MEDIUM RE	MOVAL					
14					POSITION T	O ELEMENT	1					
15					WRITE	BUFFER						
16					READ	BUFFER						
17					LOG	SENSE						
18			PERSISTENT RESERVE IN									
19			PERSISTENT RESERVE OUT									
20					MOVE I	MEDIUM						
21					READ ELEM	ENT STATUS	3					

Peripheral Qualifier

A return value of 0 indicates that the library is a single LUN device. If a LUN other than 0 was specified, this field returns 011b, which indicates that only LUN 0 is supported.

Peripheral Device Type

The value returned by this field is set to 01000b, indicating a Medium Changer Device. Any LUN other than 0 returns 11111b, which indicates that the device is unknown.

Page Code

Returned as E0h, indicating this page.

Page Length

Returned as 12h, indicating the remaining number of bytes following this field.

Implemented SCSI-2 Commands

Byte 4 through byte 21 list the implemented SCSI-2 commands for the library. Refer to Table 1 on page 3 for the command code associated with each command.

6

6

Implemented Vendor Specific Command Page (E1h)

Table 16 shows the format of the Implemented Vendor Specific Command Page.

Table 16. Implemented Vendor Specific Command page (E1h)

	Bits	7	6	5	4	3	2	1	0		
Bytes											
0		Per	ipheral Quali	fier		Perip	heral Device	Туре			
1					Page Co	de (E1h)					
2					Rese	erved					
3			Page Length								
4				Initia	lize Element	Status with I	Range				

Peripheral Qualifier

A return value of 0 indicates that the library is a single LUN device. If a LUN other than 0 was specified, this field returns 011b, which indicates that only LUN 0 is supported.

Peripheral Device Type

The value returned by this field is set to 01000b, indicating a Medium Changer Device. Any LUN other than 0 returns 11111b, which indicates that the device is unknown.

Page Code

Returned as E1h, indicating this page.

Page Length

Returned as 01h, indicating the remaining number of bytes following this field.

Implemented Vendor Specific Commands

Byte 4 lists the implemented vendor specific command for the library. Refer to Table 1 on page 3 for the command code associated with each command.

LOG SENSE (4Dh)

The library returns information for the requested log page. The only supported log page is the Tape Alert page, with a limited set of flags. The library will return the current values of the flags on request, and then clear them.

Usage

This command can be used to monitor conditions of the library.

CDB Format

The LOG SENSE CDB format is shown in the following table.

Table 17. LOG SENSE CDB format

Bits	7	6	5	4	3	2	1	0		
Bytes										
0				Op Cod	le (4Dh)					
1	Logic	Logical Unit Number Reserved PPC SP								
2	P	С			Page	Code				
3				Rese	rved					
4				Rese	rved					
5				Paramete	n Dointon					
6				raramete	r romiter					
7		Allowed and Lorenth								
8		Allocation Length								
9				Cor	itrol					

Parameters

PPC (Parameter Pointer Control)

Must be set to 0. The library will return log parameters starting with the parameter code specified in the Parameter Pointer field, and return up to the number of bytes specified in the Allocation Length field. Log parameters are returned in ascending order according to their parameter code. A PPC bit of 0 and a Parameter Pointer field of 0 will cause all available log parameters for the requested page code to be returned, subject to the Allocation Length.

SP (Save Parameters)

Must be set to 0. The library does not support the saving of log parameters.

PC (Page Control)

Must be set to 01b. The library only returns cumulative values for any log parameter rather than threshold or default values.

Page Code

The Page Code field identifies which log page is being requested by the initiator.

Table 18. Page Code field

Page Code	Page Name	Page Description
00h	Supported Log Pages	Returns list of supported log pages
2Eh	Tape Alert Log	Returns the 64 tape alert flags

Parameter Pointer

This field specifies which log parameter to begin with for the requested log page. A PPC bit of 0 and a Parameter Pointer field of 0 will cause all available log parameters for the requested page code to be returned, subject to the Allocation Length. More detailed definition of this field is contained within the specific log page descriptions.

Allocation Length

The Allocation Length field is used to determine the maximum amount of data to return. The transfer completes after either all the data has been transferred or an amount equal to the Allocation Length has been sent. Specify FFFFh to include all available data.

Response

The response to a LOG SENSE command returns the log page specified in the Page Code field of the CDB. The log page format is described in "Log Page Format." The valid Page Code fields are listed in Table 19. The various log parameters are described within their respective pages, along with their Parameter Codes. The Log Parameter format is described in "Log Parameter Format."

Log Page Format

The following table shows the Log Page format. The first four bytes are the Parameter List Header, followed by the list of log parameters.

Table 19. Log Page format

	Bits	7	6	5	4	3	2	1	0		
Bytes											
()	Rese	rved			Code					
1	l				Rese	rved					
2	2				Page Ler	orth (n. 3)					
3	3				rage Lei	igiii (11-3)					
4	1]	Log Param	eter (First)				
x-	⊦3				(Leng	gth x)					
n-y	7+1		Log Parameter (Last)								
r	ı		(Length y)								

Parameters

Page Code

This field identifies which log page is being transferred.

Page Length

This field indicates the total number of bytes available to return for this page, beginning with the first log parameter. The value set for this field depends on the value specified for the Page Code.

Log Parameters

These are dependent upon the log page. The various parameters as well as their format for the supported pages are listed below.

Table 20. Log Parameter Format

	Bits	7	6	5	4	3	2	1	0
Bytes									
0						or Codo			
1					Paramet	er Code			
2		DU	DS	TSD	ETC	TN	ИC	LBIN	LP
3				P	arameter I	Length (n-	3)		
4					Paramet	X/-1			
n					raramet	er value			

Parameter Code

This field identifies which log parameter was transferred. The valid values for this field depend on the log page.

DU (Disable Update)

Will be set to 0. The library will always update values reflected by the log parameters.

DS (Disable Save)

Will be set to 1. The library does not support saving of log parameters.

TSD (Target Save Disable)

Will be set to 0. The library provides a self-defined method for saving log parameters.

ETC (Enable Threshold Comparison)

Will be set to 0. No comparison to threshold values is made.

TMC (Threshold Met Criteria)

Will be set to 0. Comparison to threshold values is not supported.

LBIN (List Parameter Binary)

This field is only valid if LP is set to 1. When LBIN is set to 0, the list parameter is ASCII. When LBIN is set to 1, the list parameter is a binary value.

LP (List Parameter)

This field will be set to 0 for data counters and set to 1 for list parameters.

Parameter Length

This field indicates the number of bytes that follow this field, which is the size of the parameter value.

Parameter Value

This field contains the actual parameter data, which can be either a data counter or a list parameter (ASCII string or binary value).

Supported Log Page (00h)

This page returns a list of all log pages supported by the library.

Table 21. Supported Log Page (00h)

Bits	7	6	5	4	3	2	1	0		
Bytes										
0	Rese	rved			Page Co	de (00h)				
1				Rese	rved					
2				Daga Lang	4b (000 2 b)					
3				Page Leng	,111 (000211)					
4		Supported Log Page (00h)								
5			Тар	oe Alert Lo	og Page (2	Eh)				

Parameters

Page Code

The returned value is 00h, indicating this page.

Page Length

The returned value is 0002h.

The page codes for all the supported pages (including this one) follow the page length field.

Tape Alert Log Page (2Eh)

The Tape Alert log page follows the standard log page format. Each Tape Alert is returned as an individual log parameter, with its state reflected in bit zero of the one-byte Parameter Value field of the log parameter. When this bit is set to one, the alert is active.

When requesting the Tape Alert log page, the Parameter Pointer determines from what point in the Tape Alert table the alerts are returned. The value zero specifies that all tape alerts should be returned. If the Parameter Pointer is set from 1 to 64, all tape alerts from that point to the end of the list are returned. The various log parameters are listed in the following table.

Table 22. Tape Alert Log Page Parameters

Log	Param								Param
Param	Code	DU	DS	TSD	ETC	TMC	LBIN	LP	Length
Tape Alert Flag 1	0001h	0	1	0	0	0	0	0	1
Tape Alert Flag 2	0002h	0	1	0	0	0	0	0	1
		0	1	0	0	0	0	0	1
Tape Alert Flag 63	003Fh	0	1	0	0	0	0	0	1
Tape Alert Flag 64	0040h	0	1	0	0	0	0	0	1

5

LOG SENSE (4Dh)

The severity of the flags has the following meaning:

- Critical (C)
- Warning (W)
- Informational (I)

The set of flags that are supported is as follows:

Flag 2: Library Hardware B(W)

This flag is set for any unrecoverable mechanical error.

Flag 4: Library Hardware D (C)

This flag is set when the internal Power-On-Self-Tests (POST) fail or when a mechanical error occurs that requires a power cycle to recover, and is not internally cleared until the device is powered off.

Flag 13: Library Pick Retry (W)

This flag is set when a high retry count threshold is passed when performing an operation to pick a cartridge from a slot before the operation succeeds. It is internally cleared when another pick operation is attempted.

Flag 14: Library Place Retry (W)

This flag is set when a high retry count threshold is passed when performing an operation to place a cartridge back into a slot before the operation succeeds. It is internally cleared when another place operation is attempted.

Flag 15: Library Load Retry (W)

This flag is set when a high retry count threshold is passed when performing an operation to load a cartridge into a drive before the operation succeeds. It is internally cleared when another load operation is attempted. Note that if the load actually fails due to a media or drive problem, the appropriate TapeAlert flags should be set by the drive.

Flag 16: Library Door (C)

This flag is set when media move operations cannot be performed because a door is open, and is internally cleared when the door is closed.

Flag 23: Library Scan Retry (W)

This flag is set when a high retry count threshold is passed when performing an operation to scan the barcode on a cartridge before the operation succeeds. It is internally cleared when another barcode scanning operation is attempted.

MODE SELECT 6 (15h)

The library does not support any changeable parameters, and this command is supported for compatibility only.

Usage

A MODE SENSE command with the PC field set to 1h and the Page Code field set to 3Fh can be issued before the MODE SELECT command is issued to determine which mode parameters are supported, which mode parameters are changeable, and the supported length of each page. Since the library does not support any changeable parameters, use of MODE SELECT provides limited value. A list of the available mode pages can be found in the Mode Sense Specifications.

CDB Format

The six-byte MODE SELECT CDB format is shown in Table 23.

Table 23. MODE SELECT CDB

	Bits	7	6	5	4	3	2	1	0	
Bytes										
0					Ор Сос	de (15h)				
1		Logi	Logical Unit Number PF Reserved SP							
2					Rese	rved				
3					Rese	rved				
4			Parameter List Length							
5					Cor	itrol				

PF (Page Format)

This bit indicates that the data sent by the initiator after the MODE SELECT header and block descriptors complies with the definition of pages in the SCSI standard. The value must be set to 1.

SP (Save Parameters)

Savable pages are not supported and this field must be set to 0.

Parameter List Length

This field specifies the number of bytes that will be transferred for the MODE SELECT parameter list, and should be equal to the length of a single Parameter List Header plus the lengths of all pages to be transferred. A length of zero indicates that no data is transferred. This is not considered to be an error.

Mode Parameter Header

Following the MODE SELECT CDB, a single Mode Parameter Header should be sent as shown in Table 24 on page 32. None of the fields are actually used however; and, should all be set to zero.

MODE SELECT 6 (15h)

Table 24. Mode Select (6) Parameter Header

	Bits	7	6	5	4	3	2	1	0			
Bytes												
0			Reserved									
1					Rese	erved						
2			Reserved									
3			Reserved									

MODE SENSE 6 (1Ah)

The library will return the current settings for the supported mode pages.

Usage

This command can be used to determine certain operational settings governing the behavior of the library. For example, the number of elements and their assigned addresses can be obtained through use of MODE SENSE, which allows an application to adapt to a library configuration instead of using fixed values. Use of MODE SENSE to obtain these parameters during initialization is highly recommended to facilitate the most flexibility in supporting the library.

CDB Format

Table 25. MODE SENSE CDB format

Bits	7	6	5	4	3	2	1	0	
Bytes									
0				Op Cod	e (1Ah)				
1	Log	ical Unit Numl	ber	Rsvd	DBD		Reserved		
2	Р	C			Page	Code			
3				Reser	ved				
4	Allocation Length								
5				Con	trol				

Parameters

DBD (Disable Block Descriptor)

A value of 0 or 1 is supported, although block descriptors are not returned.

PC (Page Control)

This field indicates the type of mode page parameter values to return as shown in the following table.

Table 26. Page Control (PC) field

Page	Control	Description
0	0	Report current values defined by:
		The values set by the last successful MODE SELECT command.
		The default values if no saved values exist.
0	1	Report changeable values.
1	0	Report default values.
1	1	Report saved values (default values if no pages are previously saved).

Page Code

The Page Code field determines which pages should be reported. See Table 28 on page 34.

Allocation Length

This field specifies the number of bytes that the host allocated for returned

MODE SENSE data. A length of 0 means that the library will return no MODE SENSE data. This is not considered to be an error.

Response

The six-byte MODE SENSE response consists of a single four-byte Mode Parameter Header, followed by zero or more mode pages. Each page is individually described in "Mode Pages."

Mode Parameter Header

The following table lists the format of the Mode Parameter Header for the six-byte MODE SENSE command.

Table 27. Mode Parameter Header format for MODE SENSE (6)

Bits	7	6	5	4	3	2	1	0			
Bytes											
0				Mode Da	ta Length						
1				Rese	rved						
2				Rese	rved						
3				Rese	rved						

Mode Data Length

This specifies the length in bytes that is available to be transferred as part of the response. The Mode Data Length does not include itself but does include the remaining 3 bytes of the parameter header, as well as the overall total number of bytes being sent for all requested pages.

The following table lists the mode pages supported by the library.

Table 28. Supported Mode Pages

Page Code	Page Name	Page Description
1Ch	Informational Exceptions Control	Provides information regarding SCSI tape alert processing within the library.
1Dh	Element Address Assignment	Provides information regarding SCSI element address assignments and respective element ranges.
1Eh	Transport Geometry Parameters	Provides information regarding the Media Changer's capabilities.
1Fh	Device Capabilities	Provides information regarding cartridge movement possibilities within the library.
3Fh	All Mode Pages	Returns all mode pages.

Informational Exceptions Control Page (1Ch)

The Informational Exceptions Control mode page describes the capabilities of the library for reporting exception conditions. It was previously known as the Tape Alert mode page when exception conditions were limited to only Tape Alert flags.

The main purpose of this page is to indicate that the library can report exception conditions by being polled. The exception conditions primarily involve the Tape Alert flags, but may include additional conditions as well, as defined by the Sense

Data.

Table 29. Informational Exceptions Control Page (1Ch)

	Bit	7	6	5	4	3	2	1	0
Byte									
0		PS	Rsvd	Page Code (1Ch)					
1			Parameter List Length = 0Ah						
2		Perf	Rsvd	EBF	EWasc	Dexcpt	Test	Rsvd	LogErr
3			Rese	rved			Ml	RIE	
4					Intonio	l Timer			
7					muerva	1 IIIIlei			
8			Report Count						
11					Report	Count			

PS (Parameters Savable)

This page is not savable, and this field is set to zero.

Page Code

This field identifies the Informational Exceptions Control mode page and returns 1Ch.

Parameter List Length

This field is set to 0Ah (10).

LogErr (Log Errors)

This field is set to 0 to indicate that logging of informational exception conditions is vendor specific (unique to the library in this case).

Test This field is set to 0 to indicate that test failure indications will not be generated.

Dexcpt (Disable Exception Control)

This field is set to 1, indicating that the initiator must poll the LOG SENSE Tape Alert page.

EWasc (Enable Warning)

This field is set to 0, indicating that reporting of warnings is disabled.

EBF (Enable Background Function)

This field is set to 0 indicating that background functions are not enabled.

Perf (Performance)

This field is set to 0 to indicate that informational exception operations that are the cause of delays are acceptable.

MRIE (Method of Reporting Informational Exceptions)

This field is set to 0h to indicate that exception conditions or warnings will not be reported, and that the initiator must poll.

Interval Timer

This field is set to 0000 0000h to indicate that the interval is vendor specific. The library does not support a timer interval.

Report Count

This field is set to 0000 0000h to indicate that there is no limit on the number of exception conditions reported.

Element Address Assignment Page (1Dh)

The Element Address Assignment mode page returns the first element address and the element quantity for each element type. The quantity is based on the number of elements configured in the library, some of which may be temporarily removed (like a storage magazine or drive). Elements that are temporarily removed will not change the overall number of elements for that element type. The format of the page is shown in the table below. Initiators should always retrieve this page and use these values when communicating element-based commands with the library. The addresses and quantities of elements should never be assumed or hard-coded by the initiator, as they are subject to change.

Table 30. Element Address Assignment Page (1Dh)

	Bit	7	6	5	4	3	2	1	0			
Byte												
0		PS	Rsvd	d Page Code (1Dh)								
1			Parameter List Length = 12h									
2			First Medium Transport Element Address (0001h)									
3			FIRST	Medium	Transport	Element A	aaress (oc	iuin)				
4				Nīl	. C. M J	Tuesday	El to					
5				Number (n Mealum	Transport	. Elements					
6				Einst Stor	rago Elomo	nt Addros	a (1000 b)					
7				riist 5to	rage Eleme	ent Addres	s (1000H)					
8				Nur	nhan of Sta	waga Elam	onto					
9				INUI	nder of Su	orage Elem	ients					
10			E;,	ect Import	/Evport El	amant Ada	draga (001))h)				
11			FII	.st import	/ Export El	ement Ad	aress (0010)11)				
12				Numbo	r of Impor	t/Evport E	lomonte					
13				Number	or mipor	t/Export E	hements					
14			E	ret Data T	ransfor Ele	mont Add	ross (0100	h)				
15			Г	18t Data 1	ransier Eie	ement Add	iress (0100	11)				
16				Numbe	or of Data	Transfor F	lomonts					
17			Number of Data Transfer Elements									
18			Reserved									
19					Rese	ı veu						

PS (Parameters Savable)

This page is not savable, and this field is set to zero.

Page Code

This field identifies the Element Address Assignment mode page and returns 1Dh.

Parameter List Length

This field is set to 12h (18).

First Medium Transport Element Address

This returns 0001h, which is the address of the first medium transport element (accessor).

Number of Medium Transport Elements

This field returns 0001h.

First Storage Element Address

This field returns 1000h, which is the address of the first storage element.

Number of Storage Elements

This field varies, depending on the configuration of the subsystem.

First Import/Export Element Address

This field returns 0010h, which is the address of the first Import/ Export element.

Number of Import/Export Elements

This field varies, depending on the configuration of the subsystem. If no Import/Export elements are installed, this field returns zero.

First Data Transfer Element Address

This field returns 0100h, which is the address of the first data transfer element (drive).

Number of Data Transfer Elements

This field varies, depending on the configuration of the subsystem.

Transport Geometry Parameters Page (1Eh)

The Transport Geometry Parameters page describes whether a medium transport element is a member of a set of elements that share a common robotics subsystem, and whether it is capable of handling double-sided media. This library currently contains a single medium transport element, so all are the first element in a set of one.

Table 31. Transport Geometry Parameters Page (1Eh)

	Bit	7	6	5	4	3	2	1	0	
Byte										
0		PS	Rsvd	Page Code (1Eh)						
1				Para	meter Lis	t Length =	02h			
2			Reserved Rotate							
3		Member Number In Transport Element Set								

PS (Parameters Savable)

This page is not savable, and this field is set to zero.

Page Code

This field identifies the Transport Geometry Parameters mode page and returns 1Eh.

Parameter List Length

This field is set to 02h, since only a single medium transport is reported.

Rotate This field returns 0, since double-sided media is not supported.

Member Number In Medium Transport Element Set

This field returns 0, since the library has a single medium transport.

Device Capabilities Page (1Fh)

The Device Capabilities page defines the rules governing cartridge movement within the library. It describes from which element type to the next a cartridge can be moved, directly defining which element types can be used as either source or target elements. The library does not allow the medium transport element

MODE SENSE 6 (1Ah)

(accessor) to be a target, and only as a source on a limited basis.

Table 32. Device Capabilities Page (1Fh)

1	Bit	7	6	5	4	3	2	1	0
Byte									
0		PS	Rsvd			Page Co	de (1Fh)		
1				Para	nmeter List	Length =	0Eh		
2			Rese	rved		DT 1	I/E 1	ST 1	MT 0
3					Rese	rved			
4			Rese	rved		MT to DT 0	MT to I/E 1	MT to ST 1	MT to MT 0
5			Rese	rved		ST to DT 1	ST to I/E 1	ST to ST	ST to MT 0
6			Rese	rved		I/E to DT 1	I/E to I/E 1	I/E to ST 1	I/E to MT 0
7			Rese	rved		DT to DT 1	DT to I/E 1	Dt to ST	DT to MT 0
8 15					Rese	rved			-

PS (Parameters Savable)

This page is not savable, and this field is set to zero.

Page Code

This field identifies the Device Capabilities mode page and returns 1Fh.

Parameter List Length

This field is set to 0Eh (14).

DT (Data Transfer)

This field is set to 1 to indicate that the data transfer elements (drives) can store cartridges.

I/E (Import/Export)

This field is set to 1 to indicate that the Import/Export elements can store cartridges.

ST (Storage)

This field is set to 1 to indicate that the storage elements can store cartridges.

MT (Medium Transport)

This field is set to 0 to indicate that the accessor cannot store cartridges.

The remaining element type to element type fields describe the allowable source to target transitions. A zero is returned for any transition involving the Medium Transport (MT) except for when the MT is a source and the destination is either I/O or Storage. A one is returned for all other transitions.

All Mode Pages (3Fh)

When this page is requested, all supported mode pages are returned in ascending order.

MOVE MEDIUM (A5h)

The library will attempt to physically move a cartridge from the requested source element to the requested destination. The library will make reasonable attempts to retry this operation within the scope of its capabilities, but if unsuccessful, will try to return the cartridge to its source element. If the source element was a drive, the library will attempt to leave the cartridge in either a storage or I/O element if the configuration supports it (not partitioned in the case of the I/O), otherwise it may remain in the picker.

When the source and destination addresses are the same, the library will still do a full Get and Put, even if it is a drive (data transfer element).

The library will check that the source element is occupied and that the destination element is empty. It will also check for media compatibility between the source and destination elements. Failures in either of these will result in a Check Condition.

Usage

Storage, data transfer, and import/export elements can be used as valid source or destination elements. The medium transport element (picker) cannot be a destination element. It can be a source element to recover stranded media.

This is the primary command for the library, and should be used to accomplish any media movement within the system. If the library indicates a failure due to element status problems (source empty, destination full, media incompatible, etc.), element status should be re-initialized and re-synchronized. This would apply to both hardware errors and illegal requests.

CDB Format

Note: The TS3310 Tape Library will respond with a Good status whenever a received MOVE MEDIUM command exactly matches the saved last successful MOVE MEDIUM command and the current status of the source element is empty or inaccessible.

The MOVE MEDIUM CDB format is shown in Table 33 on page 40.

MOVE MEDIUM (A5h)

Table 33. MOVE MEDIUM CDB

	Bits	7	6	5	4	3	2	1	0			
Bytes												
0					Ор Сос	le (A5h)						
1		Logi	ical Unit Nur	nber			Reserved					
2		MSB										
:			Medium Transport Element Address									
3			LSB									
4		MSB										
:			Source Element Address									
5									LSB			
6		MSB										
:				D	estination El	ement Addre	ess					
7									LSB			
8												
:					Rese	erved						
9												
10			Reserved Invert									
11					Cor	ntrol						

Parameters

Medium Transport Element Address

This field contains the address of the Medium Transport element to use for the move. A value of 0001h is the address for all Medium Transport elements, but a value of 0000h is also supported to select the default Medium Transport element.

Source Element Address

This field specifies the element address from where the cartridge is retrieved.

Destination Element Address

This field specifies the element address for where the cartridge is to be placed.

Invert

This field must be set to 0 since the library does not support double-sided media.

The library returns information about persistent reservation and reservation keys that are currently active.

Usage

This command is used in conjunction with PERSISTENT RESERVE OUT to manage persistent reservations. It can be used to retrieive a list of the current reservations and the registered reservation keys. The PERSISTENT RESERVE IN and PERSISTENT RESERVE OUT commands should not be used with the RESERVE ELEMENT (6) and RELEASE ELEMENT (6) commands.

CDB Format

The PERSISTENT RESERVE IN command in CBD format is shown in Table 34.

Table 34. PERSISTENT RESERVE IN CDB

	Bits	7	6	5	4	3	2	1	0	
Bytes										
0			Op Code (5Eh)							
1		Logi	Logical Unit Number Service Action							
2			Reserved							
3			Reserved							
4					Rese	rved				
5					Rese	rved				
6			Reserved							
7-8			Allocation Length							
9					Cor	ntrol				

Parameters

Service Action

This field specifies the type of request being made as follows:

- 0h Read all registered reservation keys
- 1h Read all current persistent reservations

Allocation Length

This field specifies the byte length allowed for returning the requested data. The number of bytes returned is the lesser of the available data to return, or the allocation length.

Response

Persistent Reserve in Response

Two types of responses are available, depending on the requested service action.

Read Keys Response: The response for Read Keys service action is shown in

Table 35. Read Keys Response

Bi	ts 7	6	5	4	3	2	1	0		
Bytes										
0		•								
:		Generation								
3										
4										
:				Additional	Length (n-7)					
7										
			Reser	vation Key Lis	st					
8										
:				First Reser	vation Key					
15										
n-7		Last Reservation Key								
n				Last Resei	vanon Key					

6 6 6 6	Generation This field is a 32-bit counter that is incremented every time a PERSISTENT RESERVE OUT command requests a Register, a Register and Ignore Existing Key, a Clear, a Preempt, or a Preempt and Abort service action. This counter is not maintained across power cycles.
6 6	Additional Length This field indicates the length in bytes of the Reservation Key list.
6 6 6	Reservation Key List This is a list of all the 8-byte reservation keys that have been registered through the PERSISTENT RESERVE OUT command.

Read Reservations Response: The response to Read Reservations action is shown in Table 36:

Table 36. Read Reservations Response

В	Bits	7	6	5	4	3	2	1	0		
Bytes											
0											
:			Generation								
3											
4											
:					Additional L	ength (0010h)				
7											
				Resert	ation Descrip	tor					
8											
:					Reserva	tion Key					
15											
16											
:					Scope-speci	fic Address					
19											
20			Reserved								
21		Scope Type									
22			Obsolete								
23					Obs	oiete					

Parameters

Generation

This field is a 32-bit counter that is incremented every time a PERSISTENT RESERVE OUT command requests a Register, a Register and Ignore Existing Key, a Clear, a Preempt, or a Preempt and Abort service action. This counter is not maintained across power cycles.

Additional Length

This field indicates the length in bytes of the Reservation Descriptor, and returns 0010h (16).

Since element reservations are not supported, a single reservation descriptor is returned per logical unit

Reservation Key

This is the 8-byte reservation key that was registered through the PERSISTENT RESERVE OUT command.

Scope-specific Address

Element reservations are not supported and this field returns 0000h.

Scope This field returns a 0h, indicating a logical unit scope. Element scope is not supported.

Type This field returns the type of reservation as follows:

- 3h Exclusive Access The initiator holding the persistent reservation has exclusive read and write access. Requests from any other initiators to transfer data to or from the logical unit will result in a Reservation Conflict.
- 6h Exclusive Access, Registrants Only Any currently registered initiator has exclusive data transfer access. Requests from unregistered initiators to transfer data to or from the logical unit will result in a Reservation Conflict.

PERSISTENT RESERVE OUT (5Fh)

The library will perform service actions relative to persistent reservations as requested. This includes creating and clearing reservations.

Usage

This command is used in conjunction with PERSISTENT RESERVE IN to manage persistent reservations. It can be used to request exclusive access to the device. The PERSISTENT RESERVE IN and PERSISTENT RESERVE OUT commands should not be used with the RESERVE ELEMENT (6) and RELEASE ELEMENT (6) commands.

CDB Format

The PERSISTENT RESERVE OUT CBD format is shown in Table 37.

Table 37. PERSISTENT RESERVE OUT CDB

	Bits	7	6	5	4	3	2	1	0	
Bytes										
0			Op Code (5Fh)							
1		Logi	Logical Unit Number Service Action							
2			Scope Type							
3					Rese	rved				
4					Rese	rved				
5					Rese	rved				
6			Reserved							
7-8			Parameter List Length (18h)							
9					Cor	ntrol				

Parameters

Service Action

This field specifies what reservation action to take as follows:

- 00h Register Register a reservation key without making a reservation.
- 01h Reserve Create a persistent reservation of the specified scope and type.
- 02h Release Releases the selected reservation for the requesting initiator.
- 03h Clear Clears all reservations keys and all persistent reservations.
- 04h Preempt Preempt reservations keys from another initiator.
- 05h Preempt and Abort Preempt reservations from another initiator and abort all tasks for all initiators with the specified reservation key.
- 06h Register and Ignore Existing Key Register a new reservation key and discard the existing reservation key.

Scope Only logical unit scope is supported, and this field must be set to 0h.

Type This field specifies the type of reservation as follows:

PERSISTENT RESERVE OUT (5Fh)

- 3h Eclusive Access The initiator holding the persistent reservation has exclusive read and write access. Requests from any other initiators to transfer data to or from the logical unit will result in a Reservation Conflict.
- 6h Exclusive Access, Registrants Only Any currently registered initiator
 has exclusive data transfer access. Requests from unregistered initiators
 to transfer data to or from the logical unit will result in a Reservation
 Conflict.

Parameter List Length

This field returns 18h (24) to indicate the length of the PERSISTENT RESERVE OUT parameter list, which is shown in Table 38.

Table 38. PERSISTENT RESERVE OUT parameter list

	Bits	7	6	5	4	3	2	1	0			
Bytes												
0												
:			Reservation Key									
7												
8												
:				Sei	rvice Action	Reservation I	Key					
15												
16												
:					Scope-spec	ific Address						
19												
20					Reserved				APTPL			
21			Reserved									
22					Oba	olete						
23					Obs	oiete						

Reservation Key

This is an 8-byte reservation key that identifies the initiator.

Service Action Reservation Key

This field applies to the following service actions only, as follows:

- Register This is a new reservation key to register.
- Register and Ignore Existing Key This is the new reservation key to register.
- Preempt This is the reservation key of the persistent reservation to preempt.
- Preempt and Abort This is the reservation key of the persistent reservation to preempt.

Scope-specific Address

Element reservations are not supported, and this field must be 0000h.

Activate Persist Through Power Loss (APTPL)

Persistent reservations are not supported across cycles, so this field must be 0.

POSITION TO ELEMENT (2Bh)

The library will move the picker in front of the specified element.

Usage

This command can be used to pre-position the robotics to an element to enhance performance, or it can be used as a general-purpose way to relocate the robotics without involving media movement. This might be useful for diagnostic or demonstration purposes.

Parameters

The POSITION TO ELEMENT CDB format is shown in Table 39.

Table 39. POSITION TO ELEMENT CDB

	Bits	7	6	5	4	3	2	1	0		
Bytes											
0			Op Code (2Bh)								
1		Logi	cal Unit Nur	nber			Reserved				
2		MSB									
:				Medi	um Transpor	t Element Ad	ddress				
3									LSB		
4		MSB									
:				D	estination El	ement Addre	ess				
5									LSB		
6											
:					Rese	erved					
7											
8					Reserved				Invert		
9					Cor	ntrol					

Medium Transport Element Address

This field contains the address of the Medium Transport element to position. A value of 0001h is the address of the Medium Transport element, but a value of 0000h is also supported (which selects the default Medium Transport element).

Destination Element Address

This field contains the element address of the target to position to. It can be a storage, data transfer, or import/export element.

Invert This field must be set to 0.

PREVENT/ALLOW MEDIUM REMOVAL (1Eh)

The library will prohibit movement of media to an Import/Export element when media removal has been prevented. MOVE MEDIUM commands requesting such a move will be rejected with a Check Condition indicating Medium Removal Prevented. This command does not control locking or unlocking of a mailbox. The library automatically locks mailboxes during robotic access, and unlocks them afterwards.

While media removal is prevented, importing of media can still occur. The medium removal setting does not persist across power cycles of the library.

Any initiator issuing this command to allow medium removal (Prevent set to 00b) will allow medium removal for all initiators. This is done to maintain compatibility with certain bridged environment behavior (e.g., Fibre Channel to Parallel SCSI).

Usage

In conjunction with keyed access to the physical library doors, this command can be used to secure the library against unauthorized removal of media.

CDB Format

Table 40 shows The PREVENT/ALLOW MEDIUM REMOVAL CDB format.

Table 40. PREVENT/ALLOW MEDIUM REMOVAL CDB

	Bits	7	6	5	4	3	2	1	0			
Bytes												
0			Op Code (1Eh)									
1		Logi	Logical Unit Number Reserved									
2					Rese	rved						
3					Rese	rved						
4			Reserved Prevent									
5			Control									

Parameters

Prevent

This field controls medium removal as follows:

00b Allow medium removal

01b Prohibit medium removal

10b Not supported

11b Not supported

READ BUFFER (3Ch)

5

5

The library will return a requested buffer of data. The Media Changer logical unit supports the echo buffer mode only.

Usage

This command can be used primarily for enhanced domain validation. The initiator can use Descriptor mode first to determine the size of the data available to read, followed by Data mode to then read it. Depending on the size of the requested buffer, it can also be retrieved in blocks, utilizing offsets into the buffer.

CDB Format

The READ BUFFER CDB format is shown in Table 41.

Table 41. READ BUFFER CDB

	Bits	7	6	5	4	3	2	1	0	
Bytes										
0			Op Code (3Ch)							
1		Logi	Logical Unit Number Reserved Mode							
2			Buffer ID							
3		MSB								
:					Buffer	Offset				
5									LSB	
6		MSB								
:					Allocatio	n Length				
8									LSB	
9					Cor	ntrol				

Parameters

The function of this command and the meaning of fields within the command descriptor block depend on the contents of the mode field.

Mode The supported modes are:

- Ah Echo Buffer
- Bh Echo Buffer Descriptor

Echo Buffer Mode

In Echo Buffer Mode, data is transferred to the initiator from the echo buffer. The echo buffer will transfer the same data that was received from the last WRITE BUFFER command sent with Echo Buffer Mode. If the allocation length is insufficient to accommodate the number of bytes of data as received in the prior echo buffer mode WRITE BUFFER command, the returned data will be truncated. This is not considered an error. If a prior echo buffer mode WRITE BUFFER command was not successfully completed, the echo buffer mode READ BUFFER will return a Check Condition, with a Sense Key of Illegal Request and additional sense code of Command Sequence Error. The data may be read from the echo buffer multiple times.

Echo Buffer Descriptor Mode

In Echo Buffer Descriptor Mode, a maximum of four bytes of READ BUFFER descriptor information is returned for the echo buffer. The Buffer Offset field is reserved in this mode. The allocation length should be set to at least four for this mode.

Buffer ID

This field specifies which buffer the request is for. The IDs are the same for both the READ BUFFER and WRITE BUFFER commands.

Descriptor Mode can be used to determine the size or capacity of a given buffer. No Buffer IDs are supported at this time.

Buffer Offset

This field contains the byte offset within the specified buffer from which data shall be transferred. The initiator should conform to the offset boundary requirements returned in the READ BUFFER descriptor described in "Read Buffer Response."

Allocation Length

In Data Mode, this field should be set to accommodate the amount of data being requested for return. In Descriptor Mode, this field should be set to at least four.

Response

Read Buffer Response

In Data Mode, the requested buffer is returned per the buffer offset and allocation length.

In Descriptor Mode, a buffer descriptor is returned as shown in the following table:

Table 42. Read Buffer Response

	Bits	7	6	5	4	3	2	1	0		
Bytes											
0			Offset Boundary								
1											
:					Buffer C	Capacity					
3											

Offset Boundary

This field returns the boundary alignment (byte boundary) within the selected buffer for subsequent READ BUFFER commands. The value contained in this field is interpreted as a power of two.

Therefore, the value contained in the Buffer Offset field of subsequent READ BUFFER commands should be a multiple of 2^{offset boundary} as shown in the following table.

Table 43. Offset Boundary

Offset Boundary	2 ^{offset boundary}	Buffer Offsets
0h	$2^0 = 1$	Byte boundaries
1h	$2^1 = 2$	Even-byte boundaries
2h	$2^2 = 4$	Four-byte boundaries

6

Table 43. Offset Boundary (continued)

Offset Boundary	2 ^{offset} boundary	Buffer Offsets		
3h	$2^3 = 8$	Eight-byte boundaries		
4h	$2^4 = 16$	16-byte boundaries		
		Etc.		
FFh	Not applicable	0 is the only supported buffer offset.		

Buffer Capacity

This field returns the size of the requested buffer in bytes.

The Return Buffer stops being filled when the number of allocation length bytes has been transferred or when all the available data from the buffer has been transferred, whichever amount is less. This holds true for either mode.

The library returns current status and information regarding the requested elements. The data is primarily derived from having done an Inventory operation (using INITIALIZE ELEMENT STATUS or INITIALIZE ELEMENT STATUS WITH RANGE), but in the case of data transfer elements is also augmented by communication with the drives. Element status remains valid as long as the subsystem integrity has not been breached, such as by opening a door or through a power cycle.

Element status will be reported for all elements, including those represented by only a placeholder, as in the case of uninstalled drives or magazines that physically have a place reserved in the configuration. As such, it is important to process the fields governing accessibility and exception conditions.

Usage

This command should be issued whenever new element status information is needed, or the library has indicated that status may have changed. If the status information is suspect, an INITIALIZE ELEMENT STATUS WITH RANGE command should be issued to refresh it.

CDB Format

The Read Element Status CDB format is shown in Table 44.

Table 44. Read Element Status CDB

	Bits	7	6	5	4	3	2	1	0
Bytes									
0					Op Cod	e (B8h)			
1		Logic	al Unit Nun	nber	VolTag		Element T	ype Code	
2		MSB							
:				9	Starting Elen	nent Address			
3									LSB
4		MSB							
:					Number o	f Elements			
5									LSB
6				Rese	rved			CurData	DVCID
7		MSB							
:					Allocation	n Length			
9									LSB
10					Rese	rved			
11					Con	trol			

Parameters

VolTag (Volume Tag)

This field indicates whether the volume tag (bar code label) information should be returned. A value of 1 will return the labels, a value of 0 will not.

Element Type Code

This field specifies the element types selected for the returned information, as shown in Table 45.

Table 45. Element Type Code

Code	Selected Element Type
0000b (0)	All element types reported
0001b (1)	Medium Transport Element (Accessor)
0010b (2)	Storage Element
0011b (3)	Import/Export Element
0100b (4)	Data Transfer Element (drives)

Starting Element Address

This field specifies the minimum element address to report. Only elements with an element type code specified by the Element Type Code field, and with an address greater than or equal to the starting element address will be reported. The starting element address must be a valid element address, but not have to be within the range specified by the Element Type Code field.

Number of Elements

This field specifies the maximum number of element descriptors to return. Only those descriptors that can be completely transferred within the allotted allocation length will be returned.

CurData (Current Data)

This field is ignored (although the library will not cause device motion to report element status).

DVCID (Device ID)

This field indicates whether device identifiers (inquiry page information or serial numbers) are returned for the specified range. Identifiers are returned if this field is set to 1. They are not returned if this field is set to 0. Only data transfer elements can return device identifiers.

Allocation Length

This field specifies the byte length allowed for returned element descriptors. Only complete element descriptors are returned. The library returns element descriptors until one of the following conditions are met:

- All available element descriptors have been returned.
- The number of element descriptors specified in the Number of Elements field have been returned.
- The number of bytes specified in the Allocation Length field have been returned.
- There is less allocation length space available than is required by the next complete element descriptor.

Response

Read Element Status Response

Element status data consists of an eight-byte header, followed by one or more element status pages (per element type). Each element status page consists of a header, followed by one or more element descriptor blocks. A complete response then looks like:

```
Element Status Header
Element Descriptor
...(more descriptors)...
Element Descriptor
...(more status pages)...
Element Status Page Header (next element type)
Element Descriptor
...
Element Descriptor
Element Descriptor
```

There are only up to four Element Status Pages, one for each element type.

Element Status Header: One header is returned for each READ ELEMENT STATUS command. The format is shown in Table 46.

Table 46. Element Status header

	Bits	7	6	5	4	3	2	1	0			
Bytes												
0		MSB										
:			First Element Address Reported									
1									LSB			
2		MSB	SB									
:				Νι	umber of Ele	ments Availa	ble					
3									LSB			
4					Rese	erved						
5		MSB										
:				Ву	te Count of I	Report Availa	ble					
7									LSB			

First Element Address Reported

This field indicates the lowest element address found that meets the CDB request.

Number of Elements Reported

This field indicates the number of elements found that meet the CDB request.

Byte Count of Report Available

This field indicates the number of available element status bytes that meet the CDB requirements. The value does not include the eight -byte element status header, and is not adjusted to match the value specified in the Allocation Length field of the CDB. This facilitates first issuing a READ ELEMENT STATUS command with an allocation length of eight bytes in order to determine the allocation length required to transfer all the element status data specified by the command.

Element Status Page: Each element status page consists of an eight -byte header, followed by one or more element descriptor blocks. One Element Status Page header is returned for each grouping of element descriptor blocks, by element type. The format of the Element Status Page header is shown in Table 47 on page 55.

Table 47. Element Status Page format

	Bits	7	6	5	4	3	2	1	0		
Bytes											
0			Element Type Code								
1		PVolTag	Tag AVolTag Reserved								
2		MSB	3								
:			Element Descriptor Length								
3									LSB		
4					Rese	rved					
5		MSB	SB								
:				Byte Co	ount of Descr	riptor Data A	vailable				
7									LSB		

Element Type Code

This field indicates the specific element type being returned by the element descriptor.

PVolTag (Primary Volume Tag)

A value of one indicates that the primary volume tag field (barcode label) is present in each of the element descriptor blocks that follow. A value of zero indicates that they are not present.

AVolTag (Alternate Volume Tag)

Alternate Volume Tags are not supported. The returned value for this field is 0, and the alternate volume tag fields are omitted from the element descriptors.

Element Descriptor Length

This field indicates the number of bytes contained in a single element descriptor. Refer to the individual element descriptor descriptions for each element type for their respective possible lengths.

Byte Count of Descriptor Data Available

This field indicates the number of element descriptor data bytes available for the elements of this element type that meet the CDB requirements. This value represents the Element Descriptor Length field multiplied by the number of element descriptors for this element type. This value does not include the 8-byte Element Status Page header, nor is it adjusted to match the allocation length.

Element Descriptors

The following sections contain the field definitions for the following element descriptors:

- Medium transport element: accessor
- Storage elements: storage cells
- Import/Export elements: each I/O station cell
- Data transfer elements: each tape drive

Each element descriptor includes the element address, status flags, source storage element address, and barcode label. Some descriptors also contain extended status information. Additional sense code and qualifier information depends on the element type.

Primary Volume Tag Field

Volume tags (returned in the Primary Volume Tag field) are basically barcode labels on the media. The library supports labels from 5 to 16 characters in length. The Primary Volume Tag field contains 32 bytes of label data (space filled to 32 bytes), followed by two reserved bytes, then two bytes of volume sequence number. The library returns zeros for the last four bytes of Primary Volume Tag data.

If the user has configured the library to support media identification, media identifiers will be reported as found on the barcode labels as part of the volume tag. If this feature is not enabled, any media identifiers found will not be reported.

Medium Transport Element Descriptor

Table 48 shows the Medium Transport Element Descriptor format.

Table 48. Medium Transport Element Descriptor format

	Bits	7	6	5	4	3	2	1	0				
Bytes													
0		MSB											
:					Elemen	t Address							
1			LSB										
2				Reserved			Except	Reserved	Full				
3			Reserved										
4					Additional	Sense Code	e						
5				Ad	lditional Sen	se Code Qu	alifier						
6													
:					Res	erved							
8													
9		SValid	Invert			Re	served						
10		MSB											
:				Son	urce Storage	Element Ac	ldress						
11									LSB				
12													
:			(Fiel	Prir d omitted it	nary Volume f PVolTag =	e Tag Infori O: remainir	mation og fields me	ove un)					
47			(Field omitted if PVolTag = 0; remaining fields move up)										
48													
:					Res	erved							
51					1100								

Element Address

This field contains the element address of the accessor.

Except This field is set to 1 if the element is in an abnormal state. Additional information will be available in the Additional Sense Code and Additional Sense Code Qualifier fields. This field is set to 0 if the element is in a normal state.

Full This field is set to 0 if the element does not contain media. It is set to 1 if it does. Since the medium transport element cannot be a destination element,

this field should normally return 0. There may be error situations where media is left in the picker, which would be indicated by this field. In the case of dual pickers, differentiation of state will be provided through the Additional Sense Code and Additional Sense Code Qualifier fields when exception conditions are present (such as stranded media).

Additional Sense Code

If the element is in an abnormal state (no error or exception associated with it), this field will be set to a value as described in Table 56 on page 69.

Additional Sense Code Qualifiers

If the element is in an abnormal state, this field will be set to a value as described in Table 56 on page 69.

SValid (Source Valid)

This field is set to 1 if the Source Storage Element Address field is valid, otherwise it is set to 0.

Invert This field is set to 0. The library does not support inverting media.

Source Storage Element Address

If the Source Valid field is set to 1, this field will contain the element address of the last storage element the media was in. Since the medium transport element cannot be a destination element, this would be an abnormal condition.

PVolTag (Primary Volume Tag)

This field will normally return spaces if the primary volume tag is requested, since the medium transport element cannot be a destination element. In certain error situations, a volume tag will be returned to indicate which cartridge may be stranded within the picker.

Storage Element Descriptor

Table 49 shows the format of the Storage Element Descriptor.

Table 49. Storage Element Descriptor format

Bits	7	6	5	4	3	2	1	0				
Bytes												
0	MSB	SB										
:		Element Address										
1		LSB										
2		Reserved Access Except Reserved Full										
3				Rese	erved							
4				Additional	Sense Code							
5			Ad	ditional Sens	se Code Qua	lifier						
6												
:				Rese	erved							
8												
9	SValid	Invert			Rese	erved						
10	MSB											
:			Sou	irce Storage	Element Add	dress						
11								LSB				
12												
:		/E: -1	Prin	nary Volume	Tag Inform	nation						
47		(Fiel	d omitted if	r voltag =	o, remaining	g neias mot	e up)					
48												
				Page	erved							
51				Rese	erveu							
51												

Element Address

This field contains the element address of the storage element.

Access

This field is set to 1 if access by a medium transport element is allowed. It is set to 0 if access is denied.

Except This field is set to 1 if the element is in an abnormal state. Additional information may be available in the Additional Sense Code and Additional Sense Code Qualifier fields. If this field is 1, the primary volume tag information could be invalid. This field is set to 0 if the element is in a normal state.

Full This field is set to 0 if the element does not contain media. It is set to 1 if it does.

Additional Sense Code (ASC)

If the element is in an abnormal state, this field will be set to a value as described in Table 56 on page 69.

Additional Sense Code Qualifier (ASCQ)

If the element is in an abnormal state, this field will be set to a value as described in Table 56 on page 69.

SValid (Source Valid)

This field is set to 1 if the Source Storage Element Address field is valid, otherwise it is set to 0.

Invert This field is set to 0. The library does not support inverting media.

Source Storage Element Address

If the Source Valid field is set to 1, this field will contain the element address of the last storage element the media was moved from. It may be the same as this element.

Primary Volume Tag Information

If requested, this field contains the volume tag (bar code label) information for media residing in this element address. Five to sixteen character barcode labels are supported.

Import/Export Element Descriptor

Table 50 shows the format of the Import/Export Element Descriptor.

Table 50. Import/Export Element Descriptor

	Bits	7	6	5	4	3	2	1	0
Bytes									
0		MSB							
:		Element Address							
1									LSB
2		Rese	rved	InEnab	ExEnab	Access	Except	Imp/Exp	Full
3		Reserved							
4		Additional Sense Code							
5		Additional Sense Code Qualifier							
6									
:		Reserved							
8									
9		SValid Invert Reserved							
10		MSB							
:		Source Storage Element Address							
11									LSB
12									
:		Primary Volume Tag Information (Field omitted if PVolTag = 0; remaining fields move up)							
47		(Head offitted if I vortag – 0, femanting fields move up)							
48									
		Reserved							
51					Rese	2.00			

Element Address

This field contains the element address of the import/export element.

InEnab (Import Enable)

A value of one indicates that the element supports movement of media into the scope of the Media Changer device. A value of zero indicates that this element does not support import actions. The library returns a value of one for all import/export elements.

ExEnab (Export Enable)

A value of one indicates that the element supports movement of media out of the scope of the Media Changer device. A value of zero indicates that this element does not support export actions. The library returns a value of one for all import/export elements.

Access

This field is set to 1 if access by a medium transport element is allowed. It is set to 0 if access is denied.

Imp/Exp (Import/Export)

A value of one indicates that media present in the element was placed there by an operator. A value of zero indicates that media present in the element was placed there by a medium transport element.

Full This field is set to 0 if the element does not contain media. It is set to 1 if it does.

Additional Sense Code

If the element is in an abnormal state, this field will be set to a value as described in Table 56 on page 69.

Additional Sense Code Qualifier

If the element is in an abnormal state, this field will be set to a value as described in Table 56 on page 69.

Svalid (Source Valid)

This field is set to 1 if the Source Storage Element Address field is valid, otherwise it is set to 0.

Invert This field is set to 0. The library does not support inverting media.

Source Storage Element Address

If the Source Valid field is set to 1, this field will contain the element address of the last storage element the media was moved from. It may be the same as this element.

Primary Volume Tag

If requested, this field contains the volume tag (bar code label) information for media residing in this element address. Five to sixteen character barcode labels are supported.

Data Transfer Element Descriptor Page

Table 51 shows the format of the Data Transfer Element Descriptor page.

Table 51. Data Transfer Element Descriptor page format

	Bits	7	6	5	4	3	2	1	0		
Bytes											
0		MSB									
:					Element	Address					
1									LSB		
2			Reser	rved		Access	Except	Reserved	Full		
3			Reserved								
4			Additional Sense Code								
5			Additional Sense Code Qualifier								
6		NotBus	Reserved	IDValid	LUValid	Reserved	d Logical Unit Number				
7			SCSI Bus Address								
8			Reserved								
9		SValid	Invert			Reser	ved				
10		MSB									
:				Sou	rce Storage I	Element Addre	ess				
11									LSB		
12											
:			(Field			Tag Informat); remaining		up)			
47											
48			Reser	rved			Code	e Set			
49			Reser	rved			Identifi	er Type			
50					Rese	rved					
51			Identifi	er Length = :	x; where x is	0h to 40h (va	lid identifie	r data)			
52					Device I	dentifier					
:			Fi	eld omitted	if DVCID=0;	remaining file	eds move uj	p			
115				(Always pa	dded to 64 b	yte length if I	OVCID=1)				

Element Address

This field contains the element address of the storage element.

Access

This field is set to 1 if access by a medium transport element is allowed. It is set to 0 if access is denied. When set to 1, it implies that cartridges are unloaded and accessible if present. When set to 0, it implies that cartridges are not unloaded if present.

Except This field is set to 1 if the element is in an abnormal state. Additional information may be available in the Additional Sense Code and Additional Sense Code Qualifier fields. If this field is 1, the primary volume tag information could be invalid. This field is set to 0 if the element is in a normal state.

Full This field is set to 0 if the element does not contain media. It is set to 1 if it does.

Additional Sense Code (ASC)

If the element is in an abnormal state, this field will be set to a value as described in "Additional Sense Codes and Qualifiers."

Additional Sense Code Qualifier (ASCQ)

If the element is in an abnormal state, this field will be set to a value as described in "Additional Sense Codes and Qualifiers."

NotBus

This field is not supported and is set to 0.

IDValid

A value of one indicates that the SCSI Bus Address field is valid. A value of zero indicates that it is not.

LUValid

This field is not supported and is set to 0.

Logical Unit Number

This field is not supported and is set to 0.

SCSI Bus Address

When the IDValid field is set to one, this field contains the tape drive SCSI address. This is only applicable to SCSI tape drives, and does not apply to Fibre Channel tape drives.

Svalid (Source Valid)

This field is set to 1 if the Source Storage Element Address field is valid, otherwise it is set to 0.

Invert This field is set to 0. The library does not support inverting media.

Source Element Address

If the Source Valid field is set to 1, this field will contain the element address of the last storage element the media was moved from.

Primary Volume Tag Information

If requested, this field contains the volume tag (bar code label) information for media residing in this element address. Five to sixteen character barcode labels are supported.

Code Set

This field is set to:

- 0h RESERVED.
- 1h The device identifier field contains binary values.
- 2h The device identifier field contains ASCII values.

Identifier Type

This field is set to:

- 0h The Device Identifier, if the Identifier Length is set, lists the vendor specific device serial number only.
- 1h The Device Identifier lists the eight-byte Vendor ID, followed by vendor specific unique identifier information.
- 2h The Device Identifier contains a Canonical form of IEEE Extended Unique Identifier, 64- bit (EUI-64). In this case, the Identifier Length field is set to 8.
- 3h The Device Identifier contains an FC-PH Name_identifier.

Identifier Length

This field contains the length in bytes of valid Device Identifier information. If no device identifier is available, or the DVCID bit in the

CDB is zero, the Identifier Length field is 0h and the Code Set and Identifier Type fields are also 0h. If the DCVID bit is set, the Identifier Length may be set between 0 and 64 (40h) bytes, depending on the associated drive type..

Device Identifier

This field provides up to 64 bytes of device identifier information for the device associated with the data transfer element. The format is Identifier Type 1, which is equivalent to the drive's Inquiry page 83h. The Identifier Length specifies the length of valid device identifier information. If the DVCID bit in the CDB is zero, this field is omitted. The Device Identifier field is padded with ASCII character 20h (space) to fill the complete 64 bytes. If the DVCID bit is set and the Identifier Length is 0, this field will still be 64 bytes long.

RELEASE ELEMENT 6 (17h)

The library releases any outstanding reservation that had previously been made by the same initiator via the RESERVE command. Only whole logical unit reservations are allowed; individual element reservations are not supported.

Usage

This command should be used to release the library from any reservations previously made.

CDB Format

The RELEASE ELEMENT 6 CDB format is shown in Table 52.

Table 52. RELEASE ELEMENT 6 CDB

8

	Bits	7	6	5	4	3	2	1	0			
Bytes												
0			Op Code (17h)									
1		Logi	Logical Unit Number 3rdPty Third Party Device ID I									
2			Reservation ID									
3												
:					Rese	erved						
4												
5					Cor	ntrol						

Parameters

3rdPty

This field is not supported, and the value must be set to 0.

Third Party Device ID

This field is not supported, and the value must be set to 0.

Element

This field is not supported, and the value must be set to 0.

Reservation ID

This field is not supported, and the value must be set to 0.

The library returns eighteen bytes of sense data to the requesting initiator. The data is preserved until either the REQUEST SENSE command or any other command is received. The library can queue multiple Unit Attentions for processing.

Usage

This command should be issued whenever the initiator receives a CHECK CONDITION from the library. It should continue to be issued until all check conditions have been cleared.

CDB Format

The REQUEST SENSE CDB format in shown in Table 53.

Table 53. REQUEST SENSE CDB

	Bits	7	6	5	4	3	2	1	0		
Bytes											
0			Op Code (03h)								
1		Logi	cal Unit Nur	nber	Reserved						
2					Rese	erved					
3					Rese	erved					
4			Allocation Length								
5					Cor	ntrol					

Parameters

Allocation Length

This field specifies the number of sense bytes requested by the initiator.

Response

Request Sense Response

The sense data format is shown in Table 54 on page 67.

Table 54. Sense Information Format

	Bits	7	6	5	4	3	2	1	0			
Bytes												
0		Valid			Res	ponse Code (70h)					
1					Rese	erved						
2			Rese	erved			Sense	е Кеу				
3		MSB										
:					Inforr	nation						
6			LSB									
7			Additional Sense Length (OAh)									
8		MSB	ASB .									
:				Comman	d Specific Int	formation (00	00 0000h)					
11									LSB			
12				A	dditional Ser	nse Code (AS	C)					
13				Add	itional Sense	Qualifier (AS	SCQ)					
14				F	ield Replacea	able Unit Cod	le					
15		SKSV	C/D	Reserved	Reserved	BPV		Bit Pointer				
16		MSB										
:					Field 1	Pointer						
17									LSB			

Valid The Valid field is set to 0 if the Information field is not valid. It is set to 1 if the Information field contains valid additional data as described below.

Response Code

The Response Code field is set to 70h to indicate that the library returns current errors.

Sense Key

The Sense Key values are shown in Table 55.

Table 55. Sense Keys

Sense Key	Description
0h	No Sense. No specific sense key information to report.
2h	Not Ready. The library is not ready to perform motion commands.
4h	Hardware Error. A hardware error was detected and operator intervention may be required.
5h	Illegal Request. The CDB or supplied parameter data contains an unsupported or illegal parameter.
6h	Unit Attention. The library operating status changed. Additional processing may be required.
Bh	Aborted Command . The library aborted the command.

Information

This field returns additional information for certain ASC/ASCQs where a specific device must be identified and the sense data is associated with a Unit Attention condition instead of a specific command. These are described as follows:

- If the ASC/ASCQ is related to Import/Export stations, then byte 6 indicates which I/O station it pertains to (1 to 4).
- If the ASC/ASCQ is related to a specific Data Transfer Element, then bytes 5 and 6 contain the element address of that element.
- If the ASC/ASCQ is related to Towers, then byte 6 indicates which Tower it pertains to (1 to n).

Additional Sense Length

This field specifies the number of additional sense bytes that follow this field, and returns 0Ah (10).

Command Specific Information

This field is not supported and returns 0000 0000h.

Additional Sense Code (ASC)

This field denotes a specific error condition. Additional information is provided in the Additional Sense Code Qualifier (ASCQ) field. Table 56 on page 69 lists all the codes.

Additional Sense Code Qualifier (ASCQ)

This field provides additional information for the ASC. Refer to Table 56 on page 69 for more information.

Field Replaceable Unit Code

This field is not used and returns zero.

SKSV (Sense Key Specific Value)

This field returns a value of 1 if bytes 15-17 contain valid data for a Sense Key of Illegal Request (05h). Otherwise this field returns 0.

C/D (Command/Data)

A value of 1 indicates that the illegal parameter was detected in the CDB. It returns 0 if the illegal parameter was detected in the data parameters. This field only applies if SKSV is 1.

BPV (Bit Pointer Valid)

A value of 0 indicates that the Bit Pointer field is not valid. A value of 1 indicates that the Bit Pointer field is valid. This field only applies if SKSV is 1.

Bit Pointer

This field indicates which bit of the byte designated by the field pointer is in error. For a multi-bit field, it points to the most significant bit of the field. This field only applies if SKSV is 1.

Field Pointer

This field indicates which byte of the CDB or Parameter List (starting with byte zero) was in error. For a multi-byte field, the Field Pointer points to the most significant byte. This field only applies if SKSV is 1.

Returned Error Codes

Table 56 on page 69 lists the Additional Sense Codes (ASC) and Additional Sense Code Qualifiers (ASCQ) associated with particular Sense Keys.

Additional Sense Codes and Qualifiers (ASC/ASCQ)

Table 56 on page 69 lists the Additional Sense Codes (ASC) and Additional Sense Code Qualifiers (ASCQ) associated with the reported Sense Keys. A sense key of 00h (no sense) has no ASC/ASCQ associated with it. A few ASC/ASCQs can be associated with more than one sense key.

Table 56. Additional Sense Codes and Qualifiers

	ASC	ASCQ	Sense Key	Description No. Additional Sense Code					
	00h	00h	00h	No Additional Sense Code.					
		00h		The library is not ready due to an unknown cause.					
		01h		The library is becoming ready.					
	04h	03h	02h	The library is not ready and a manual intervention is required.					
		83h		The library is not ready due to aisle power being disabled.					
		8Dh		The library is not ready because it is offline.					
6		01h		LU Communication - Timeout					
		80h		SCSI failure					
		82h		SCSI command execution or queuing failure					
		83h		SCSI command failed					
		84h		SCSI time-out					
		85h		SCSI autosense failed					
		86h		SCSI aborted					
		87h		SCSI abort failed					
	08h	88h	0Bh	SCSI status failed					
		B0h		FC data underrun					
		B1h		FC DMA error					
		B2h		FC reset					
		B3h		FC data overrun					
		B4h		FC queue full					
		B5h		Port unavailable					
		B6h		Port logged out					
		B7h		Port configuration changed					
	15h	01h	04h	A mechanical positioning error occurred.					
	1Ah	00h	05h	Parameter list length error					
	1Bh	00h	0Bh	Synchronous data transfer error					
	20h	00h		Illegal opcode in CDB.					
	21h	01h		Invalid element address in CDB.					
	24h	24h 00h		Invalid field in CDB.					
	25h	00h	05h	Illegal LUN.					
	26h	00h		Invalid field in Parameter List.					
	2011	04h		Invalid release of persistent reservation					

Table 56. Additional Sense Codes and Qualifiers (continued)

28h	00h		Not Ready to Ready change, door(s) opened and closed.						
2011	01h		I/O station opened and closed.						
	00h		Power on, SCSI bus reset, or Bus device reset occurred.						
29h	01h		Power on occurred						
	04h	06h	Internal reset occurred						
	01h		Mode parameters have been changed.						
2Ah	03h		Reservations preempted						
ZAII	04h		Reservations released						
	05h		Registrations preempted						
2Ch	00h		Command sequence error						
30h	00h	05h	Incompatible media installed.						
39h	00h		Saving parameters not supported						
	0Dh	04h, 05h	The destination element is full.						
3Bh	0Eh	0411, 0311	The source element is empty.						
JDII	12h	05h	Media magazine not installed.						
	A0h	0.511	Media type does not match destination media type						
3Eh	00h	02h	Logical Unit has not self-configured yet						
3Fh	01h	06h	New firmware loaded						
3511	0Fh	04h	Echo buffer overwritten						
40h	80h	04h	Component failure.						
43h	00h	0Bh	Message error						
44h	00h	04h, 0Bh	Firmware detected an internal logic failure.						
45h	00h	0Bh	Select or reselected failure						
47h	00h	0Bh	SCSI parity error						
48h	00h	0Bh	Initiator detected error message received						
49h	00h	0Bh	Invalid message error						
4Ah	00h	0Bh	Command phase error						
4Bh	00h	0Bh	Data phase error						
4Eh	00h	0Bh	Overlapped commands attempted						
	00h	04h	A drive did not load or unload a tape.						
	01h	04h,05h	A drive did not unload a cartridge.						
53h	02h	05h	Medium removal prevented.						
3311	81h	UJII	I/O Station door is open.						
	82h	04h	Cannot lock the I/O Station.						
	83h	U4N	Cannot unlock the I/O Station.						

6 8

Table 56. Additional Sense Codes and Qualifiers (continued)

	00h	04h	Label too short or too long.
02h 03h	02h		Barcode label questionable
		Cell status and bar code label questionable.	
83h	04h	05h	Data transfer element not installed.
	05h		Data transfer element is varied off and not accessible for library operations.
	06h		Element is contained within an offline tower or I/O Station and is not accessible for library operations.

RESERVE ELEMENT 6 (16h)

The library reserves the entire library for the initiator making the request. Only whole logical unit reservations are allowed; individual element reservations are not supported. The reservation remains in effect until either the initiator that made the reservation sends a RELEASE command, or a reset or powercycle of the library occurs.

Usage

This command should be used to reserve the library for extended operations, such as issuing a SEND VOLUME TAG followed by a REQUEST VOLUME ELEMENT ADDRESS sequence. Initiators issuing a RESERVE should follow it with a RELEASE when the extended operation sequence is complete.

CDB Format

Table 57. RESERVE ELEMENT 6 CDB

	Bits	7	6	5	4	3	2	1	0			
Bytes												
0			Op Code (16h)									
1		Logi	Logical Unit Number 3rdPrty Third Party Device ID Element									
2			Reservation Identification									
3		MSB										
:					Rese	erved						
4									LSB			
5					Cor	ntrol						

Parameters

3rdPrty

This field is not supported, and must be set to 0.

Third Party Device ID

This field is not supported, and must be set to 0.

Element

This field is not supported, and must be set to 0.

Reservation ID

This field is not supported, and must be set to 0.

SEND DIAGNOSTIC (1Dh)

If the Self Test option is requested, the library executes a pre-defined diagnostic.

Usage

This command can be used to verify the operational status of the library and its components.

CDB Format

The SEND DIAGNOSTIC CDB format is shown Table 58.

Table 58. Send Diagnostic CDB

	Bits	7	6	5	4	3	2	1	0			
Bytes												
0			Op Code (1Dh)									
1		Logi	ical Unit Nur	nber	PF	Reserved	Self Test	DevOfl	UnitOfl			
2			Reserved									
3		MSB										
:					Parameter	List Length						
4									LSB			
5					Cor	ntrol						

Parameters

PF (Page Format)

Diagnostic pages are not supported and this field should be set to 0.

SelfTest

When set to 1 the library will perform a predefined self-test. The SEND DIAGNOSTIC command will not return until this completes, and command completion status will indicate the results of this test. When set to 0, the self-test is not performed. The Self Test performs the following tests:

DevOfl (Device Offline)

This field is not supported and should be set to 0.

UnitOfl (Unit Offline)

This field is not supported and should be set to 0.

Parameter List Length

This field is not supported and should be set to 0.

TEST UNIT READY (00h)

The library returns status based on its current mode and state. These are defined in Table 59.

Table 59. Mode State Responses

Mode	State	Status
Online	Ready	Good
Online	Not Ready	Check Condition
Offline	Ready	Check Condition
Offline	Not Ready	Check Condition

It will also return any pending Unit Attentions regardless of the current mode and state, to convey changes within the subsystem, such as I/O station accesses, door openings, etc. The various types of Unit Attention conditions are listed in the Request Sense command section in Table 56 on page 69.

Usage

The TEST UNIT READY command allows the initiator to verify that the library is ready to accept commands or perform motion tasks. It is a suitable command for general polling to monitor the library, and receive information via Unit Attentions on any changes within the library.

CDB Format

The TEST UNIT READY CDB format is shown in Table 60.

Table 60. TEST UNIT READY CDB

	Bits	7	6	5	4	3	2	1	0	
Bytes										
0			Op Code (00h)							
1		Logic	cal Unit Nun	nber	Reserved					
2					Rese	rved				
3					Rese	rved				
4			Reserved							
5					Con	trol				

WRITE BUFFER (3Bh)

The library will receive a requested buffer of data and write it to the appropriate internal storage.

Usage

This command can be used primarily to perform enhanced domain validation (using the echo buffer mode). The initiator can either transfer the data with a single WRITE BUFFER command, or it can also transfer it in blocks utilizing offsets into the buffer.

CDB Format

The WRITE BUFFER CDB format is shown in Table 61.

Table 61. WRITE BUFFER CDB

6

6

6

6

	Bits	7	6	5	4	3	2	1	0
Bytes									
0		Op Code (3Bh)							
1		Logical Unit Number			Reserved		Mode		
2		Buffer ID							
3		MSB							
:		Buffer Offset							
5		LSB							
6		MSB							
:		Parameter List Length							
8		LSB							
9		Control							

Mode The supported mode is:

• Ah - Echo Buffer

Echo Buffer Mode

In this mode, the amount of data specified by the Parameter List Length is transferred from the initiator to the Echo Buffer. The Buffer ID and Buffer Offset fields are ignored in this mode.

Buffer ID

This field specifies which buffer the request is for. The IDs are the same for both the READ BUFFER and WRITE BUFFER commands.

Buffer Offset

This field indicates the starting location (byte offset) within the specified buffer to write data. The initiator should conform to the offset boundary requirements returned in the READ BUFFER descriptor that is described in the Read Buffer Response.

Parameter List Length

If applicable, this field should be set to indicate the amount of data being written.

WRITE BUFFER (3Bh)

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features described in this document in other countries or regions. Consult your local IBM representative for information on the products and services currently available in your area.

Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not give you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

The following paragraph does not apply to the United Kingdom or any other country or region where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Some states or regions do not allow disclaimer of express or implied warranties in certain transactions; therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM web sites are provided for convenience only and do not in any manner serve as an endorsement of those web sites. The materials at those web sites are not part of the materials for this IBM product and use of those web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.

Any performance data contained herein was determined in a controlled environment. Therefore, the results obtained in other operating environments may

© Copyright IBM Corp. 2005 77

vary significantly. Some measurements may have been made on development-level systems and there is no guarantee that these measurements will be the same on generally available systems. Furthermore, some measurement may have been estimated through extrapolation. Actual results may vary. Users of this document should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

If you are viewing this information in softcopy, the photographs and color illustrations may not appear.

Comments or Suggestions

Your feedback is important in helping to provide the most accurate and high-quality information. If you have comments or suggestions for improving this publication, you can send us comments electronically by using these addresses:

- IBMLink[™] from U.S.A.: starpubs@us.ibm.com
- IBMLink from Canada: STARPUBS at TORIBM
- IBM Mail Exchange: USIB3VVD at IBMMAIL
- Internet: starpubs@us.ibm.com
- Fax from U.S.A., Canada, and other countries (or regions): +1 520 799-2906

You can also mail your comments to:

International Business Machines Corporation Information Development Department GZW 9000 South Rita Road Tucson, Arizona 85744-0001 U.S.A.

Trademarks

The following are trademarks of International Business Machines Corporation in the United States, or other countries (or regions), or both:

- AIX
- AS/400
- @server
- IBM
- iSeries
- pSeries
- OS/400
- Tivoli
- TotalStorage

The following are U.S. trademarks of Hewlett-Packard Company, International Business Machines Corporation, and Seagate Technology.

Linear Tape-Open

- LTO
- Ultrium

Microsoft, Windows, Windows NT, Windows 2000, and the Windows logo are registered trademarks of Microsoft Corporation in the United States, or other countries (or regions), or both.

Other company, product, or service names may be the trademarks or service marks of others.

Glossary

This glossary defines the special terms, abbreviations, and acronyms that are used in this publication.

Numbers

2:1 compression. The relationship between the quantity of data that can be stored with compression as compared to the quantity of data that can be stored without compression. In 2:1 compression, twice as much data can be stored with compression as can be stored without compression.

IBM TotalStorage 3576 Tape Library. A device that can be attached to a supported server and used to write data to and from magnetic tape. With its robotics, the tape library can process up to 72 tape cartridges each with a capacity of 200 GB and at a data transfer rate of 35 MB per second.

A

A. Ampere.

ac. Alternating current.

adapter card. A circuit board that adds function to a computer.

alternating current (ac). An electric current that reverses its direction at regularly recurring intervals.

ambient temperature. The temperature of air or other media in a designated area, particularly the area surrounding equipment.

ampere (A). A unit of measure for electric current that is equivalent to a flow of one coulomb per second, or to the current produced by one volt applied across a resistance of one ohm.

arbitrated loop. See *Fibre Channel arbitrated loop* (*FC-AL*).

automatic cleaning. Represented as Auto Clean on the library's operator panel, a function that lets you specify that the library automatically clean the tape drive head with a cleaning cartridge.

В

bar code. A code representing characters by sets of parallel bars of varying thickness and separation which are read optically by transverse scanning.

bar code label. A specially coded label that can be affixed to a tape cartridge and which enables a device to identify the cartridge and its volume serial number. The bar code label must be affixed to a tape cartridge to enable the library to identify the cartridge and its volume serial number.

bar code reader. In the tape library, a device specialized for scanning and reading bar codes and converting them into either the ASCII or EBCDIC digital character code.

bit. Either of the digits 0 or 1 when used in the binary numbering system.

browser. A client program that initiates requests to a web server and displays the information that the server returns.

bus. See SCSI bus.

byte. A string consisting of a certain number of bits (usually 8) that are treated as a unit and represent a character. A fundamental data unit.

C

capacity. The amount of data that can be contained on storage media and expressed in bytes of data.

cartridge. See tape cartridge.

cartridge storage slot. Individual slot located within a magazine that is used to house tape cartridges.

caster. A wheel mounted in a swivel frame and used for supporting the tape library.

CD. Compact disc.

centimeter (cm). One one-hundredth of a meter (0.01 m). Approximately 0.39 inch.

cleaning cartridge. A tape cartridge that is used to clean the heads of a tape drive. Contrast with *data cartridge*.

cm. Centimeter.

compact disc (CD). A disc, usually 4.75 inches in diameter, from which data is read optically by means of a laser.

compression. The process of eliminating gaps, empty fields, redundancies, and unnecessary data to shorten the length of records or blocks.

© Copyright IBM Corp. 2005

configure. To describe to a system the devices, optional features, and programs installed on the system.

current. The quantity of charge per unit time, measured in Amperes (Amps, A).

D

data. Any representations such as characters or analog quantities to which meaning is, or might be, assigned.

data cartridge. A tape cartridge dedicated to storing data. Contrast with cleaning cartridge.

data compression. See compression.

data transfer rate. The average number of bits, characters, or blocks per unit time passing between corresponding equipment in a data transmission system. The rate is expressed in bits, characters, or blocks per second, minute, or hour.

dc. Direct current.

default setting. The value that is assumed when none is explicitly specified.

device. Any hardware component or peripheral, such as a tape drive or tape library, that can receive and send data.

device driver. A file that contains the code needed to use an attached device.

diagnostic. A software program that is designed to recognize, locate, and explain faults in equipment or errors in programs.

differential. See High Voltage Differential (HVD).

direct current (dc). An electrical current flowing in one direction only and substantially constant in value.

disable. To make nonfunctional.

download. To transfer programs or data from a computer to a connected device, typically a personal computer.

drive. See IBM Ultrium 1 Tape Drive or IBM TotalStorage LTO Ultrium 2 Tape Drive.

drive head. The component that records an electrical signal onto magnetic tape, or reads a signal from tape into an electrical signal.

F

eject. To remove or force out from within.

electronic mail. Correspondence in the form of messages transmitted between user terminals over a computer network.

e-mail. See electronic mail.

enable. To make functional.

erase. To remove recorded matter from a magnetic tape.

Ethernet. Local area network (LAN) technology that transmits information between computers at speeds of 10 and 100 million bits per second (Mbps).

export. To remove media from the library using the I/O station.

F

failover. The routing of all transactions to a second device when the first device fails.

Fibre Channel. An optics cable utilizing filaments to transmit data.

Fibre Channel arbitrated loop (FC-AL). In this topology, two or more Fibre Channel end points are interconnected through a looped interface. Information is routed through the loop to its destination.

Fibre Channel topologies. Shared loop host and storage controllers.

fiducial. Reference points (such as bar code labels on the library's columns and magazines) that guide the cartridge handling device to the cartridge's location.

file. A named set of records stored or processed as a unit.

file transfer protocol (FTP). In the Internet suite of protocols, an application layer protocol that uses TCP and Telnet services to transfer bulk-data files between machines or hosts (servers).

firmware. Proprietary code that is usually delivered as firmware as part of an operating system. Firmware is more efficient than software loaded from an alterable medium and more adaptable to change than pure hardware circuitry. An example of firmware is the Basic Input/Output System (BIOS) in read-only memory (ROM) on a PC motherboard.

FTP site. Any electronic repository of information that uses the File Transfer Protocol (FTP) for transferring files to and from servers. Use of an FTP site requires a user ID and possibly a password.

G

GB. gigabyte.

GBIC. Gigabit interface converter.

Gbit. gigabit

gigabit (Gbit). 1 000 000 000 bits.

gigabyte (GB). 1 000 000 000 bytes.

gigabit interface converter (GBIC). Converts copper interface to optic interface.

Н

head. See drive head.

hertz (Hz). A unit of frequency equal to one cycle per second.

High Voltage Differential (HVD). A logic signaling system that enables data communication between a supported server and another device, such as the tape library. HVD signaling uses a paired plus and minus signal level to reduce the effects of noise on the SCSI bus. Any noise injected into the signal is present in both a plus and minus state, and is thereby canceled. Synonymous with differential.

host. The controlling or highest-level system in a data communication configuration. Synonymous with server.

HVD. High voltage differential.

Hz. Hertz.

IBM TotalStorage LTO Ultrium 2 Tape Drive. A data-storage device that controls the movement of the magnetic tape IBM LTO Ultrium Tape Cartridges. The drive houses the mechanism (drive head) that reads and writes data to the tape. Its native data capacity is 200 GB per cartridge; with 2:1 compression, its capacity is up to 400 GB.

IBM Ultrium 1 Tape Drive. A data-storage device that controls the movement of the magnetic tape in IBM LTO Ultrium Tape Cartridges. The drive houses the mechanism (drive head) that reads and writes data to the tape. Its native data capacity is 100 GB per cartridge; with 2:1 compression, its capacity is up to 200 GB. The drive is also known as the IBM Ultrium Internal Tape Drive.

ID. Identifier.

import. To insert media into the library using the I/O station.

independent software vendor (ISV). A company that makes and sells software products that run on one or more computer hardware or operating system platforms.

insert. Pertaining to the tape library, to place a tape cartridge into a cartridge storage slot in the library.

install. To set up for use or service. The act of adding a product, feature, or function to a system or device either by a singular change or by the addition of multiple components or devices.

Internet. The worldwide collection of interconnected networks that use the Internet suite of protocols and permit public access.

inventory. A survey of tape cartridges in the library.

ISV. See independent software vendor.

Κ

kg. Kilogram.

kilogram (kg). One thousand grams (approximately 2.2 pounds).

LAN. Local area network.

label. See bar code label.

LCD. See liquid crystal display.

Linear Tape-Open (LTO). A type of tape storage technology developed by the IBM Corporation, Hewlett-Packard, and Seagate. LTO technology is an "open format" technology, which means that its users will have multiple sources of product and media. The "open" nature of LTO technology enables compatibility between different vendors' offerings by ensuring that vendors comply with verification standards. The LTO technology is implemented in two formats: the Accelis format focuses on fast access; the Ultrium format focuses on high capacity. The Ultrium format is the preferred format when capacity (rather than fast access) is the key storage consideration. An Ultrium cartridge has a compressed data capacity of up to 200 GB (at 2:1 compression) and a native data capacity of up to 100 GB. The Ultrium format is designed with a 4-generation road map that provides for up to 1.6 TB per cartridge (at 2:1 compression) in Generation 4, with compressed transfer rate of up to 320 MB per second.

liquid crystal display (LCD). A low-power display technology used in computers and other I/O devices.

load. Pertaining to the tape library and following the insertion of a tape cartridge into a cartridge storage slot, the act (performed by the picker) of transferring

the cartridge from the storage slot to the drive and of positioning the tape (performed by the tape drive) for reading or writing by the drive head.

Local area network (LAN). A computer network that spans a relatively small area. Most LANs are confined to a single building or group of buildings.

Low Voltage Differential (LVD). A low-noise, low-power, and low-amplitude electrical signaling system that enables data communication between a supported server and another device such as the tape library. LVD signaling uses two wires to drive one signal over copper wire. The use of wire pairs reduces electrical noise and cross talk. This method of data transmission requires a cable that is no longer than 25 meters (82 ft.).

LTO. Linear Tape-Open.

LVD. Low-voltage differential.

M

m. Meter.

MB. Megabyte.

media. The plural of medium.

medium. A physical material in or on which data may be represented, such as magnetic tape.

megabyte (MB). 1 000 000 bytes.

metal particle tape. In the LTO Ultrium tape cartridge, tape that uses very small, pure metal particles (rather than oxide coatings) in the magnetic layer.

meter. In the Metric System, the basic unit of length; equal to approximately 39.37 inches.

Model L18. One of three versions of the tape library. The Model L18 has a storage capacity of 18 cartridges. Contrast with Model L36, and Model L72.

Model L36. One of three versions of the tape library. The Model L36 has a storage capacity of 36 cartridges. Contrast with Model L18, and Model L72.

Model L72. One of three versions of the tape library. The Model L72 has a storage capacity of 72 cartridges. Contrast with Model L18, and Model L36.

Ν

native data capacity. The amount of data that can be stored without compression on a cartridge.

NVRAM. Non-Volatile Random Access Memory

Non-Volatile Random Access Memory. A type of memory that retains its contents when power is turned off.

operating environment. The temperature, relative humidity rate, and wet bulb temperature of the room in which the tape library routinely conducts processing.

operating system. The master computer control program that translates the user's commands and allows application programs to interact with the computer's hardware.

operator panel. Located on the front door of the tape library, the functional unit that contains buttons to control the tape library, and an LCD display that provides information about the operation of the library.

P

PDF. Portable Document Format.

pick. Pertaining to the tape library, to remove, by means of a robotic device, a tape cartridge from a storage slot, tape drive, or I/O station.

picker. An electromechanical device located on the picker assembly that moves cartridges between the cartridge storage slots, tape drives, or I/O station.

picker assembly. The mechanism in the Tape Library that moves cartridges between the storage slots, tape drives, and the I/O station. The assembly includes the rotary axis motor, sensors, picker, and bar code reader.

Portable Document Format (PDF). A standard specified by Adobe Systems, Incorporated, for the electronic distribution of documents. PDF files are compact, can be distributed globally (via e-mail, the web, intranets, or CD-ROM), and can be viewed with the Acrobat Reader, which is software from Adobe Systems that can be downloaded at no cost from the Adobe Systems home page.

POST. Power-On Self Test.

PostScript. A standard specified by Adobe Systems, Incorporated, that defines how text and graphics are presented on printers and display devices.

power-off. To remove electrical power from a device.

power-on. (1) To apply electrical power to a device. (2) The state of a device when power has been applied to it.

Power-On Self Test (POST). A series of diagnostic tests that are run automatically by a device when the power to that device is turned on.

push buttons. Located below the operator panel of the tape library, 4 buttons that, when pressed, let you interact with the menus on the operator panel.

put. Pertaining to the tape library, to place, by means of a robotic device, a tape cartridge into a storage slot or drive.

R

rack. A unit that houses the components of a storage subsystem, such as the tape library.

rackmount kit. A packaged collection of articles used to install the rack-mounted version of the tape library.

read. To acquire or interpret data from a storage device, from a data medium, or from another source.

relative humidity. The ratio of the amount of water vapor actually present in the air to the greatest amount possible at the same temperature.

Remote Management Unit (RMU). Device that allows user access to the library using a web browser.

remove. Pertaining to the tape library, to take a tape cartridge from a cartridge storage slot.

RMU. Remote management unit.

robotics. The picker and any associated mechanisms that move a tape cartridge within the tape library.

S

SAN. Storage area network

SCSI. Small computer systems interface.

SCSI-2. Small computer systems interface-2.

SCSI bus. (1) A collection of wires through which data is transmitted from one part of a computer to another. (2) A generic term that refers to the complete set of signals that define the activity of the Small Computer Systems Interface (SCSI).

SCSI bus cable. See SCSI bus.

SCSI cable. See *SCSI bus*.

SCSI commands. An operation performed by a target (tape drive) for an initiator (host). The command is initiated by the operator from the host console.

SCSI connector. One of the set of all female and male connectors on the SCSI bus.

SCSI device. Anything that can connect into the SCSI bus and actively participate in bus activity.

SCSI host adapter card. The logic card that connects a host (server) to the SCSI bus cable. Synonymous with *SCSI* controller.

SCSI ID. The hexadecimal representation of the unique address (0-F) which a user assigns to the tape library and which is used in SCSI protocols to identify or select the drive. The user normally assigns and sets the SCSI ID when installing the drive.

seat, seated. (1) To fit to. (2) To ensure that one object is fitted to another object.

server. A functional unit that provides services to one or more clients over a network. Examples include a file server, a print server, and a mail server. The pSeries, iSeries, HP, and Sun are servers. Synonymous with *host*.

ship group. The group of supplies, cords, or documentation that is shipped with the tape library.

Simple Network Management Protocol (SNMP). An agreed-upon format for managing complex networks. SNMP works by sending messages, called protocol data units (PDUs), to different parts of a network. SNMP-compliant devices, called agents, store data about themselves in Management Information Bases (MIBs) and return this data to the SNMP requesters.

sled. Pertaining to a tape library, the enclosure that contains the tape drive.

Small Computer Systems Interface (SCSI). A standard used by computer manufacturers for attaching peripheral devices (such as tape drives, hard disks, CD-ROM players, printers, and scanners) to computers (servers). Pronounced "scuzzy". Variations of the SCSI provide for faster data transmission rates than standard serial and parallel ports (up to 160 MB per second). The variations include:

- Fast/Wide SCSI: Uses a 16-bit bus, and supports data rates of up to 20 MBps.
- SCSI-1: Uses an 8-bit bus, and supports data rates of 4 MBps.
- SCSI-2: Same as SCSI-1, but uses a 50-pin connector instead of a 25-pin connector, and supports multiple devices.
- Ultra SCSI: Uses an 8- or 16-bit bus, and supports data rates of 20 or 40 MBps.
- Ultra2 SCSI: Uses an 8- or 16-bit bus and supports data rates of 40 or 80 MBps.
- Ultra3 SCSI: Uses a 16-bit bus and supports data rates of 80 or 160 MBps.
- Ultra160 SCSI: Uses a 16-bit bus and supports data rates of 80 or 160 MBps.

Small Computer Systems Interface-2 (SCSI-2). See *Small Computer Systems Interface (SCSI)*.

SNMP. Simple Network Management Protocol.

Storage Area Network (SAN). High-speed, open-standard scalable network of storage devices and servers providing accelerated data access.

storage slot. See cartridge storage slot.

Т

TapeAlert. A patented technology from Hewlett-Packard that monitors the status of a tape device and media, and detects problems as they occur.

TapeAlert flags. Status and error messages that are generated by the TapeAlert utility and display on the host console. The messages indicate the type of problem and tell how to resolve it.

tape cartridge. A removable storage device that consists of a housing containing a belt-driven magnetic tape wound on a supply reel and a takeup reel.

tape drive. See IBM Ultrium Tape Drive.

TB. Terabyte.

teach. A process where the bar code reader reads the fiducial labels to identify the types of storage and tape drives installed in the library.

terminate, termination. To prevent unwanted electrical signal reflections by applying a device (a terminator) that absorbs the energy from the transmission line.

terminator. (1) A part used to end a SCSI bus. (2) A single-port, 75-Ω device that is used to absorb energy from a transmission line. Terminators prevent energy from reflecting back into a cable plant by absorbing the radio frequency signals. A terminator is usually shielded, which prevents unwanted signals from entering or valid signals from leaving the cable system.

terabyte (TB). 1 000 000 000 000 bytes.

transfer rate. See data transfer rate.

trap. An unprogrammed conditional jump to a specified address that is automatically activated by hardware.

U

Ultra SCSI. See Small Computer Systems Interface (SCSI).

Ultra2 SCSI. See Small Computer Systems Interface (SCSI).

Ultrium Tape Drive. See *IBM Ultrium 1 Tape Drive* or IBM TotalStorage LTO Ultrium 2 Tape Drive.

unload. Pertaining to the tape library, the act (performed by the tape drive) of rewinding the tape

into the cartridge and ejecting it from the drive and the act (performed by the picker) of transferring the cartridge to a cartridge storage slot.

V dc. Volts of direct current.

VOLSER. Volume serial number.

volume serial number (VOLSER). A number that a computer assigns to a tape cartridge when it prepares (initializes) the cartridge for use.

volt. The SI (international) unit of potential difference and electromotive force, formally defined to be the difference of electric potential between two points of a conductor carrying a constant current of one ampere, when the power dissipated between these points is equal to one watt.

voltage. The electric potential or potential difference expressed in volts.

Web. See World Wide Web.

wet bulb temperature. The temperature at which pure water must be evaporated adiabatically at constant pressure into a given sample of air in order to saturate the air under steady-state conditions. Read from a wet-bulb thermometer.

World Wide Web. A network of servers that contain programs and files. Many of the files contain hypertext links to other documents available through the network.

write. To make a permanent or transient recording of data in a storage device or on a data medium.

write protected. A tape volume is write protected if some logical or physical mechanism causes the device processing the tape volume to prevent the program from writing on the volume.

write-protect switch. Located on the LTO Ultrium tape cartridge, a switch that prevents accidental erasure of data. Pictures of a locked and unlocked padlock appear on the switch. When you slide the switch to the locked padlock, data cannot be written to the tape. When you slide the switch to the unlocked padlock, data can be written to the tape.

Index

Special characters

(15h) MODE SELECT 6 31 (1Ah) MODE SENSE 6 33 (4Dh) LOG SENSE 26

Numerics

00h - TEST UNIT READY 74
03h - REQUEST SENSE 66
07h - INITIALIZE ELEMENT
STATUS 12
12h - INQUIRY 15
16h - RESERVE ELEMENT 6 72
17h - RELEASE ELEMENT 65
1Dh - SEND DIAGNOSTIC 73
1Eh - PREVENT/ALLOW MEDIUM
REMOVAL 48
28h POSITION TO ELEMENT 47

2Bh - POSITION TO ELEMENT 47

3Bh - WRITE BUFFER 75 3Ch - READ BUFFER 49

5Eh - PERSISTENT RESERVE IN 41

5Eh - PERSISTENT RESERVE OUT 45

A

A5h - MOVE MEDIUM 39

B

B8h - READ ELEMENT STATUS 52

C

cartridge picker See picker commands, using SCSI 11

E

E7h - INITIALIZE ELEMENT STATUS WITH RANGE 13

Н

HVD/ SCSI interface

See High Voltage Differential (HVD)

SCSI interface

Implemented SCSI-2 Command Page (E0h) 24
Implemented Vendor Specific Command Page (E1h) 25
INITIALIZE ELEMENT STATUS command 12

INITIALIZE ELEMENT STATUS WITH RANGE command 13 INQUIRY command 15

L

LOG SENSE command 26 LVD SCSI interface See Low Voltage Differential (LVD) SCSI interface

M

MODE SELECT 6 command 31 MODE SENSE 6 command 33 MOVE MEDIUM command 39

Ν

notices 77

P

PERSISTENT RESERVE IN command 41
PERSISTENT RESERVE OUT
command 45
POSITION TO ELEMENT command 47
PREVENT/ALLOW MEDIUM
REMOVAL command 48

R

READ BUFFER command 49
READ ELEMENT STATUS command 52
RELEASE ELEMENT 6 command 65
REQUEST SENSE command 66
RESERVE ELEMENT 6 command 72

S

SAN

See storage area network (SAN) SAN Data Gateway Module See Storage Area Network (SAN) Data Gateway Module SCSI commands INITIALIZE ELEMENT STATUS 12 INITIALIZE ELEMENT STATUS WITH RANGE 13 INQUIRY 15 LOG SENSE 26 MODE SELECT 6 31 MODE SENSE 6 33 MOVE MEDIUM 39 PERSISTENT RESERVE IN 41 PERSISTENT RESERVE OUT 45 POSITION TO ELEMENT 47

SCSI commands (continued) PREVENT/ALLOW MEDIUM REMOVAL 48 READ BUFFER 49 READ ELEMENT STATUS 52 RELEASE ELEMENT 6 65 REQUEST SENSE 66 RESERVE ELEMENT 6 72 SEND DIAGNOSTIC 73 TEST UNIT READY 74 WRITE BUFFER 75 SEND DIAGNOSTIC command 73 small computer systems interface See SCSI interface See Simple Network Management Protocol (SNMP)

Т

TEST UNIT READY command 74

U

using the SCSI commands 11

V

VOLSER

See volume serial number (VOLSER)

W

WRITE BUFFER command 75

© Copyright IBM Corp. 2005

Readers' Comments — We'd Like to Hear from You

IBM System Storage TS3310 Tape Library SCSI Reference

Phone No.

Publication No. GA32-04	76-00				
Overall, how satisfied are	e you with the info	ormation in this	book?		
	Very Satisfied	Satisfied	Neutral	Dissatisfied	Very Dissatisfied
Overall satisfaction					
How satisfied are you tha	at the information	in this book is:			
	Very Satisfied	Satisfied	Neutral	Dissatisfied	Very Dissatisfied
Accurate Complete Easy to find Easy to understand Well organized Applicable to your tasks					
Please tell us how we car	n improve this boo	ık:			
Thank you for your respo	nses. May we conta	act you? 🗌 Ye	s 🗌 No		
When you send comments way it believes appropriat				or distribute your c	comments in any
Name		Ac	ldress		
Company or Organization	1				

Readers' Comments — We'd Like to Hear from You GA32-0476-00

Cut or Fold Along Line

Fold and Tape

Please do not staple

Fold and Tape

NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

BUSINESS REPLY MAIL

FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation Information Development Department GZW 9000 South Rita Road Tucson, AZ U. S. A. 85744-0001

Halaldaladdalladladlaadlaadla

Fold and Tape

Please do not staple

Fold and Tape

IBM.

Printed in USA

GA32-0476-00

Spine information:

IBM System Storage TS3310 Tape Library

TS3310 Tape Library SCSI Reference