Contents

About This Book ix
Who Should Use This Book ix
How This Book Is Organized ix
Command Format .. x
Typographic Conventions xi

Part 1. Command Reference Volume 2 1

Chapter 1. Commands 3
System Partitioning and Commands
SDR_config .. 3
SDR_init .. 9
SDR_test .. 12
SDRAddSyspar .. 14
SDRArchive ... 16
SDRChangeAttrValues 19
SDRClearLock .. 21
SDRCreateAttrs 22
SDRCreateClass 23
SDRCreateFile ... 24
SDRCreateObjects 26
SDRCreateSystemClass 27
SDRCreateSystemFile 28
SDRDeleteFile ... 30
SDRDeleteObjects 31
SDRGetObjects ... 33
SDRListClasses 37
SDRListFiles .. 39
SDRMoveObjects 40
SDRRemoveSyspar 42
SDRReplaceFile 43
SDRRestore .. 45
SDRRetrieveFile 47
SDRScan .. 48
SDRSetsTsAuth ... 50
SDRValidateString 52
SDRWhoHasLock 54
seqfile .. 55
services_config 57
sethacws ... 58
setup_authent ... 60
setup_CWS ... 63
setup_logd ... 65
setup_server ... 68
setupdce ... 70
sp_configd Daemon 73
sp_configdctrl Script 76
spacctnd ... 81
spacl .. 84
<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>sptgtprin</td>
<td>240</td>
</tr>
<tr>
<td>spunmirrorvg</td>
<td>242</td>
</tr>
<tr>
<td>spverify_config</td>
<td>244</td>
</tr>
<tr>
<td>spvsd</td>
<td>246</td>
</tr>
<tr>
<td>st_clean_table</td>
<td>250</td>
</tr>
<tr>
<td>st_status</td>
<td>252</td>
</tr>
<tr>
<td>st_verify</td>
<td>255</td>
</tr>
<tr>
<td>startvsd</td>
<td>257</td>
</tr>
<tr>
<td>statvsd</td>
<td>259</td>
</tr>
<tr>
<td>stopvsd</td>
<td>263</td>
</tr>
<tr>
<td>supfilesrv Daemon</td>
<td>265</td>
</tr>
<tr>
<td>supper</td>
<td>268</td>
</tr>
<tr>
<td>suspendvsd</td>
<td>272</td>
</tr>
<tr>
<td>switch_stress</td>
<td>274</td>
</tr>
<tr>
<td>sysctl</td>
<td>277</td>
</tr>
<tr>
<td>sysctld Daemon</td>
<td>282</td>
</tr>
<tr>
<td>SYSMAN_test</td>
<td>289</td>
</tr>
<tr>
<td>syspar_ctrl</td>
<td>291</td>
</tr>
<tr>
<td>sysparauid</td>
<td>296</td>
</tr>
<tr>
<td>s1term</td>
<td>304</td>
</tr>
<tr>
<td>tecad_pssp</td>
<td>306</td>
</tr>
<tr>
<td>ucfghsd</td>
<td>308</td>
</tr>
<tr>
<td>ucfghsdvbsd</td>
<td>309</td>
</tr>
<tr>
<td>ucfvgsd</td>
<td>311</td>
</tr>
<tr>
<td>unallnimres</td>
<td>313</td>
</tr>
<tr>
<td>undefhsd</td>
<td>315</td>
</tr>
<tr>
<td>undefvsd</td>
<td>316</td>
</tr>
<tr>
<td>unfencevsd</td>
<td>318</td>
</tr>
<tr>
<td>updatehsd</td>
<td>320</td>
</tr>
<tr>
<td>updatevsdnode</td>
<td>322</td>
</tr>
<tr>
<td>updatevsdtab</td>
<td>325</td>
</tr>
<tr>
<td>updauthfiles</td>
<td>327</td>
</tr>
<tr>
<td>verparvsd</td>
<td>329</td>
</tr>
<tr>
<td>vhostname</td>
<td>332</td>
</tr>
<tr>
<td>vsdata.lst</td>
<td>334</td>
</tr>
<tr>
<td>vsdchgserver</td>
<td>337</td>
</tr>
<tr>
<td>vsddiag</td>
<td>339</td>
</tr>
<tr>
<td>vsdelnode</td>
<td>341</td>
</tr>
<tr>
<td>vsdelvg</td>
<td>343</td>
</tr>
<tr>
<td>vsdnode</td>
<td>345</td>
</tr>
<tr>
<td>vsdsklist</td>
<td>348</td>
</tr>
<tr>
<td>vsdvg</td>
<td>353</td>
</tr>
<tr>
<td>vsdvgts</td>
<td>355</td>
</tr>
<tr>
<td>vsdvts</td>
<td>357</td>
</tr>
<tr>
<td>wrap_test</td>
<td>359</td>
</tr>
</tbody>
</table>

Part 2. Technical Reference

Chapter 2. RS/6000 SP Files and Other Technical Information

<table>
<thead>
<tr>
<th>File</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>auto.master File</td>
<td>364</td>
</tr>
<tr>
<td>bootptab.info File</td>
<td>366</td>
</tr>
<tr>
<td>haemloadlist File</td>
<td>367</td>
</tr>
<tr>
<td>hmacls File</td>
<td>373</td>
</tr>
</tbody>
</table>
Chapter 3. SP Subroutines

getvhostname Subroutine .. 418
hacws_set Subroutine ... 421
hacws_stat Subroutine .. 423
LAPI_Addr_get Subroutine .. 425
LAPI_Addr_set Subroutine .. 427
LAPI_Address Subroutine ... 429
LAPI_Address_init Subroutine 431
LAPI_Amsend Subroutine ... 433
LAPI_Amsendv Subroutine 439
LAPI_Fence Subroutine ... 445
LAPI_Get Subroutine .. 447
LAPI_Getcntn Subroutine ... 450
LAPI_Getv Subroutine .. 452
LAPI_Init Subroutine .. 455
LAPI_Msg_string Subroutine 459
LAPI_Nopoll_wait Subroutine 461
LAPI_Probe Subroutine ... 463
LAPI_Purge_totask Subroutine 465
LAPI_Put Subroutine .. 467
LAPI_Putv Subroutine ... 470
LAPI_Qenv Subroutine ... 473
LAPI_Resume_totask Subroutine 476
LAPI_Rmw Subroutine .. 478
LAPI_Senv Subroutine ... 481
LAPI_Setcntn Subroutine .. 483
LAPI_Setcntn_wstatus Subroutine 485
LAPI_Term Subroutine .. 487
LAPI_Waitcntn Subroutine 489
setvhostname Subroutine .. 491
swclockGetIncrement Subroutine 493
swclockInit Subroutine .. 494
swclockRead Subroutine .. 496
swclockReadSec Subroutine 498
swclockTerm Subroutine .. 500
swtbl_adapter_connectivity Subroutine 501
swtbl_adapter_resources Subroutine 504
Part 3. Appendixes ... 537

Appendix A. Perspectives Colors and Fonts 539
Perspectives Colors with Red, Green, and Blue (RGB) Triplets 539
Perspectives Fonts ... 540

Notices .. 541
Trademarks .. 542
Publicly Available Software .. 542
Software Update Protocol ... 542

Glossary of Terms and Abbreviations ... 543

Bibliography ... 551
Information Formats .. 551
Finding Documentation on the World Wide Web 551
Accessing PSSP Documentation Online .. 551
Manual Pages for Public Code ... 552
RS/6000 SP Planning Publications .. 552
RS/6000 SP Hardware Publications ... 552
RS/6000 SP Switch Router Publications .. 553
RS/6000 SP Software Publications ... 553
AIX and Related Product Publications ... 556
DCE Publications .. 556
Red Books .. 557
Non-IBM Publications ... 557

Index ... 559
About This Book

This book provides detailed syntax and parameter information for all commands you can use to install, customize, and maintain the IBM RS/6000 SP system.

For a list of related books and information about accessing online information, see the bibliography in the back of the book.

This book applies to PSSP version 3 release 2. To find out what version of PSSP is running on your control workstation (node 0), enter the following:

```
splst_versions -t -n0
```

In response, the system displays something similar to:

```
0 PSSP-3.2
```

If the response indicates **PSSP-3.2**, this book applies to the version of PSSP that is running on your system.

To find out what version of PSSP is running on the nodes of your system, enter the following from your control workstation:

```
splst_versions -t -G
```

In response, the system displays something similar to:

```
1 PSSP-3.2
2 PSSP-3.2
7 PSSP-3.1.1
8 PSSP-2.4
```

If the response indicates **PSSP-3.2**, this book applies to the version of PSSP that is running on those nodes.

If you are running mixed levels of PSSP, be sure to maintain and refer to the appropriate documentation for whatever versions of PSSP you are running.

Who Should Use This Book

This book is intended for anyone not familiar with the syntax and use of the RS/6000 SP commands.

How This Book Is Organized

This book consists of two volumes. Volume 1 contains RS/6000 SP commands A - R. Volume 2 contains RS/6000 SP commands S - W, RS/6000 SP Files and Other Technical Information, and RS/6000 SP Subroutines. Both volumes share a common frontmatter, appendix, glossary, and bibliography. The indexes are customized for each volume.
Command Format

The commands in this book are in the following format:

Purpose
Provides the name of the command and a brief description of its purpose.

Syntax
Includes a diagram that summarizes the use of the command.

Flags
Lists and describes the options that control the behavior of the command.

Operands
Lists and describes the objects on which the command operates.

Description
Includes a complete description of the command.

Environment Variables
Lists any environment variables that affect the operation of the command. Lists any environment variables that are affected by the operation of the command.

Files
Lists any RS/6000 SP system files that are read, employed, referred to, or written to by the command, or that are otherwise relevant to its use.

Standard Input
Describes what this command reads from standard input.

Standard Output
Describes what this command writes to standard output.

Standard Error
Describes what and when this command writes to standard error.

Exit Values
Describes the values returned and the conditions that caused the values to be returned.

Security
Describes who can run this command and provides other security-related information.

Restrictions
Lists restrictions beyond the security restrictions described previously.

Implementation Specifics
Identifies the package of each individual command.

Prerequisite Information
Provides a pointer to other documents that would enhance the user's understanding of this command.

Location
Specifies the location of the command.

Related Information
Lists RS/6000 SP commands, functions, file formats, and special files that are employed by the command, that have a purpose which is related to that of the command, or that are otherwise of interest within the context of the command. Also listed are related RS/6000 SP documents, other related documents, and miscellaneous information related to the command.

Examples
Provides examples of how the command is typically used.
Typographic Conventions

This book uses the following typographic conventions:

<table>
<thead>
<tr>
<th>Typographic</th>
<th>Usage</th>
</tr>
</thead>
</table>
| **Bold** | • **Bold** words or characters represent system elements that you must use literally, such as commands, flags, and path names.
 • **Bold** words also indicate the first use of a term included in the glossary. |
| *Italic* | • *Italic* words or characters represent variable values that you must supply.
 • *Italics* are also used for book titles and for general emphasis in text. |
| **Constant width** | Examples and information that the system displays appear in **constant width** typeface. |
| [] | Brackets enclose optional items in format and syntax descriptions. |
| { } | Braces enclose a list from which you must choose an item in format and syntax descriptions. |
| | A vertical bar separates items in a list of choices. (In other words, it means “or.”) |
| < > | Angle brackets (less-than and greater-than) enclose the name of a key on the keyboard. For example, <Enter> refers to the key on your terminal or workstation that is labeled with the word Enter. |
| ... | An ellipsis indicates that you can repeat the preceding item one or more times. |
| <Ctrl-x> | The notation <Ctrl-x> indicates a control character sequence. For example, <Ctrl-c> means that you hold down the control key while pressing <c>. |
| \ | The continuation character is used in coding examples in this book for formatting purposes. |
Chapter 1. Commands

This volume contains the RS/6000 SP Commands R - W, RS/6000 SP Files and Other Technical Information (Chapter 2), and RS/6000 SP Subroutines (Chapter 3). See Volume 1 for RS/6000 SP Commands A - P.

To access the RS/6000 SP online manual pages, set the MANPATH environment variable as follows:

for ksh
 export MANPATH=$MANPATH:/usr/lpp/ssp/man
for csh
 setenv MANPATH $MANPATH:/usr/lpp/ssp/man

System Partitioning and Commands

When you partition your system, you create one or more system partitions which, for most tasks, function as separate and distinct logical RS/6000 SP systems. Most commands function within the boundary of the system partition in which they are executed. A number of commands, however, continue to treat the RS/6000 SP as a single entity and do not respect system partition boundaries. That is, in their normal function they may affect a node or other entity outside of the current system partition. In addition, some commands which normally function only within the current system partition have been given a new parameter which, when used, allows the scope of that command to exceed the boundaries of the current system partition.

On the control workstation, the administrator is in an environment for one system partition at a time. The SP_NAME environment variable identifies the system partition to subsystems. (If this environment variable is not set, the system partition is defined by the primary: stanza in the /etc/SDR_dest_info file.) Most tasks performed on the control workstation that get information from the System Data Repository (SDR) will get the information for that particular system partition.

In managing multiple system partitions, it is helpful to open a window for each system partition. You can set and export the SP_NAME environment variable in each window and set up the window title bar or shell prompt with the system partition name. The following script is an example:
sysparenv:

```
#!/bin/ksh

for i in 'splst_sypars'
do
  syspar='host $i | cut -f 1 -d"."'
  echo "Opening the $syspar partition environment"
  sleep 2
  export SP_NAME=$syspar
  aixterm -T "Work Environment for CWS 'hostname -s' - View: $syspar" -ls -sb &
done
exit
```

.profile addition:

```
# Added for syspar environment setup
if [ "'$env | grep SP_NAME | cut -d= -f1'" = SP_NAME ]
  then
    PS1="['hostname -s'<<p>$SP_NAME] ["'PWD"]> '
  else
    PS1="['hostname -s']["'PWD"]> '
  fi
export ENV
```

As a user, you can check what system partition you're in with the command:
```
spget_sypars -n
```

The following table summarizes those commands which can exceed the boundary of the current system partition. Unless otherwise stated, commands not listed in this table have as their scope the current system partition.

<table>
<thead>
<tr>
<th>Command</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>arp</code></td>
<td>Can reference any node (by its host name) in any system partition.</td>
</tr>
<tr>
<td>Automounter commands</td>
<td>Host names need not be in the current system partition.</td>
</tr>
<tr>
<td><code>chauthpar -p</code></td>
<td>The -p flag allows specification of a system partition other than the current system partition.</td>
</tr>
<tr>
<td>Command</td>
<td>Effect</td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
</tr>
<tr>
<td>chauthpts -p</td>
<td>The -p flag specifies the partition for which the active authentication methods are set.</td>
</tr>
<tr>
<td>config_spsec -p</td>
<td>The -p flag configures SP Services into the DCE database for servers in the specified partition only.</td>
</tr>
<tr>
<td>create keyfiles -p</td>
<td>The -p flag creates keyfiles for principals in the specified partition only.</td>
</tr>
<tr>
<td>crunacct</td>
<td>Merges accounting data from all nodes regardless of system partition boundaries.</td>
</tr>
<tr>
<td>cshutdow -G</td>
<td>The -G flag allows specification of target nodes outside of the current system partition.</td>
</tr>
<tr>
<td>cstartup -G</td>
<td>The -G flag allows specification of target nodes outside of the current system partition.</td>
</tr>
<tr>
<td>dsh</td>
<td>Hosts added to the working collective by host name need not be in the current system partition.</td>
</tr>
<tr>
<td>dsh -w (hostname</td>
<td>The -G flag modifies the -a flag (all nodes in the current system partition) by expanding the scope to all nodes in the entire physical SP system.</td>
</tr>
<tr>
<td>dsh -aG</td>
<td>The system partition-sensitive control script for the haem subsystem supports the -c option, which crosses system partitions.</td>
</tr>
<tr>
<td>Efence -G</td>
<td>The -G flag allows specification of nodes outside of the current system partition.</td>
</tr>
<tr>
<td>Emonctrl -c</td>
<td>The system partition-sensitive control script for the emon subsystem supports the -c option, which crosses system partitions.</td>
</tr>
<tr>
<td>Eunfence -G</td>
<td>The -G flag allows specification of nodes outside of the current system partition.</td>
</tr>
<tr>
<td>Haemctrl -c</td>
<td>The system partition-sensitive control script for the haem subsystem supports the -c and -u options, which cross system partitions.</td>
</tr>
<tr>
<td>haemcmd</td>
<td>Specifies the IP address of the system partition in which the haem daemon is to execute.</td>
</tr>
<tr>
<td>haemqvar</td>
<td>If the SP_NAME environment variable is not set, the default system partition is used.</td>
</tr>
<tr>
<td>hagsctrl -c</td>
<td>The system partition-sensitive control script for the hags subsystem supports the -c and -u options, which cross system partitions.</td>
</tr>
<tr>
<td>hagsctrl -u</td>
<td>The system partition-sensitive control script for the hags subsystem supports the -c and -u options, which cross system partitions.</td>
</tr>
<tr>
<td>hatsctrl -c</td>
<td>The system partition-sensitive control script for the hats subsystem supports the -c and -u options, which cross system partitions.</td>
</tr>
<tr>
<td>hatsctrl -u</td>
<td>The system partition-sensitive control script for the hats subsystem supports the -c and -u options, which cross system partitions.</td>
</tr>
<tr>
<td>hmcmds -G</td>
<td>The -G flag allows the hmcmds commands to be sent to any hardware on the SP system.</td>
</tr>
<tr>
<td>hmmon -G</td>
<td>The -G flag allows for the specification of hardware outside of the current system partition.</td>
</tr>
<tr>
<td>hostlist</td>
<td>Host names need not be in the current system partition.</td>
</tr>
<tr>
<td>hostlist -f filename</td>
<td></td>
</tr>
<tr>
<td>hostlist -w hostname</td>
<td></td>
</tr>
<tr>
<td>hostlist -aG</td>
<td>The -G flag modifies the -a, -n, or -s flag by expanding the scope to the entire physical SP system.</td>
</tr>
<tr>
<td>Command</td>
<td>Effect</td>
</tr>
<tr>
<td>--------------------</td>
<td>--</td>
</tr>
<tr>
<td>hrctrl -c</td>
<td>The system partition-sensitive control script for the hr subsystem supports the -c option, which crosses system partitions.</td>
</tr>
<tr>
<td>hsdatalist -G</td>
<td>The -G flag causes the display of HSD information to be for all system partitions.</td>
</tr>
<tr>
<td>lppdiff -aG</td>
<td>The -G flag modifies the -a flag (all nodes in the current system partition) by expanding the scope to all nodes in the entire physical SP system.</td>
</tr>
<tr>
<td>lsauthpar -p</td>
<td>The -p flag allows specification of a system partition other than the current system partition.</td>
</tr>
<tr>
<td>lsauthpts -p</td>
<td>The -p flag specifies the partition for which the active authentication methods are to be listed.</td>
</tr>
<tr>
<td>nodecond -G</td>
<td>The -G flag allows specification of a node outside of the current system partition.</td>
</tr>
<tr>
<td>psyslrpt -w hostnames</td>
<td>The host names supplied with the -w flag can be in any system partition (the -a flag will select all nodes in the current system partition).</td>
</tr>
<tr>
<td>psyslcrl -w hostnames</td>
<td>The host names supplied with the -w flag can be in any system partition (the -a flag will select all nodes in the current system partition).</td>
</tr>
<tr>
<td>penotify -w hostnames</td>
<td>The host names supplied with the -w flag can be in any system partition (the -a flag will select all nodes in the current system partition).</td>
</tr>
<tr>
<td>pmanctrl -c</td>
<td>The system partition-sensitive control script for the pman subsystem supports the -c option, which crosses system partitions.</td>
</tr>
</tbody>
</table>

Parallel commands:

- **p_cat**
- **pcp**
- **pdf**
- **pfck**
- **pexec**
- **pexecr**
- **pfnd**
- **pfts**
- **pls**
- **pmv**
- **pppred**
- **pps**
- **prm**

Parallel commands can take the following options and will behave accordingly:

- **-w** Host names specified with -w need not be in the current system partition.
- **noderange** Nodes specified by noderange must be in the current system partition.
- **hostlist_args** Host names specified with hostlist options -w or -G need not be in the current system partition (any other hostlist options operate within the current system partition).

<table>
<thead>
<tr>
<th>Command</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>rm_spsec</td>
<td>The -p flag removes configuration from DCE service principals and keyfiles for the specified partition.</td>
</tr>
<tr>
<td>SDR Archive</td>
<td>Archives/restores the SDR representing the entire SP.</td>
</tr>
<tr>
<td>SDR Restore</td>
<td></td>
</tr>
<tr>
<td>SDRGetObjects -G</td>
<td>The -G flag allows for retrieval of partitioned class objects from partitions other than the current system partition. Without the -G, objects which are in a partitioned class are retrieved from the current system partition only.</td>
</tr>
<tr>
<td>SDRMoveObjects</td>
<td>Moves objects from one system partition to another.</td>
</tr>
<tr>
<td>SDR Scan</td>
<td>Scans SDR database files.</td>
</tr>
<tr>
<td>SDR Validate String</td>
<td>Checks a character string for valid SDR input.</td>
</tr>
<tr>
<td>Other SDR commands</td>
<td>SDR commands that create, change or delete values work within the system partition. Note though that System classes (Frame, for example) are shared among all system partitions. Changes to system classes will affect other system partitions.</td>
</tr>
<tr>
<td>Command</td>
<td>Effect</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Security commands:</td>
<td>The function of these security commands is unchanged under system</td>
</tr>
<tr>
<td></td>
<td>partitioning. That is, if they previously affected the entire SP, they</td>
</tr>
<tr>
<td></td>
<td>continue to do so even if the system has been partitioned. If they</td>
</tr>
<tr>
<td></td>
<td>previously had the ability to affect a remote node that function is</td>
</tr>
<tr>
<td></td>
<td>unchanged in a system partitioned environment.</td>
</tr>
<tr>
<td>ext_srvtab</td>
<td></td>
</tr>
<tr>
<td>kadmin</td>
<td></td>
</tr>
<tr>
<td>kdb_destroy</td>
<td></td>
</tr>
<tr>
<td>kdb_init</td>
<td></td>
</tr>
<tr>
<td>kdb_util</td>
<td></td>
</tr>
<tr>
<td>k4destroy</td>
<td></td>
</tr>
<tr>
<td>k4init</td>
<td></td>
</tr>
<tr>
<td>k4list</td>
<td></td>
</tr>
<tr>
<td>kpasswd</td>
<td></td>
</tr>
<tr>
<td>kprop</td>
<td></td>
</tr>
<tr>
<td>ksrvtgt</td>
<td></td>
</tr>
<tr>
<td>ksrvutil</td>
<td></td>
</tr>
<tr>
<td>kstash</td>
<td></td>
</tr>
<tr>
<td>rcmdtgt</td>
<td></td>
</tr>
<tr>
<td>setup_authent</td>
<td></td>
</tr>
<tr>
<td>spseccfg</td>
<td></td>
</tr>
<tr>
<td>sp_configdctrl -c</td>
<td>The system partition-sensitive control script for the sp_configd</td>
</tr>
<tr>
<td></td>
<td>subsystem supports the -c option, which crosses system partitions.</td>
</tr>
<tr>
<td>spapply_config</td>
<td>Applies a system partition configuration to the entire SP.</td>
</tr>
<tr>
<td>spacl -G</td>
<td>Manages ACLs for object instances outside the current partition.</td>
</tr>
<tr>
<td>spbootins</td>
<td>If a boot server outside of the current system partition is specified,</td>
</tr>
<tr>
<td></td>
<td>that node is prepared appropriately.</td>
</tr>
<tr>
<td>spbootlist</td>
<td>The command targets nodes in any system partition.</td>
</tr>
<tr>
<td>spchvobj</td>
<td>The command targets nodes in any system partition.</td>
</tr>
<tr>
<td>spframe</td>
<td>Configures data for one or more frames across the entire SP.</td>
</tr>
<tr>
<td>sphardware</td>
<td>Global system partition can be selected from within the Perspective</td>
</tr>
<tr>
<td>splm</td>
<td>The target nodes defined in the input table can include nodes from any</td>
</tr>
<tr>
<td></td>
<td>system partition.</td>
</tr>
<tr>
<td>splst_versions -G</td>
<td>The -G flag allows retrieval of PSSP version information from nodes</td>
</tr>
<tr>
<td></td>
<td>outside the current system partition.</td>
</tr>
<tr>
<td>splstdata -G</td>
<td>The -G flag allows display of information on nodes and adapters</td>
</tr>
<tr>
<td></td>
<td>outside of the current system partition.</td>
</tr>
<tr>
<td>splstadapters -G</td>
<td>The -G flag lists information about target adapters outside of the</td>
</tr>
<tr>
<td></td>
<td>current system partition.</td>
</tr>
<tr>
<td>splstnodes -G</td>
<td>The -G flag lists information about target nodes outside of the</td>
</tr>
<tr>
<td></td>
<td>current system partition.</td>
</tr>
<tr>
<td>spmirrorvg</td>
<td>The command targets nodes in any system partition.</td>
</tr>
<tr>
<td>spmkvgobj</td>
<td>The command targets nodes in any system partition.</td>
</tr>
<tr>
<td>spmon -G</td>
<td>The -G flag allows specification of nodes outside of the current</td>
</tr>
<tr>
<td></td>
<td>system partition.</td>
</tr>
<tr>
<td></td>
<td>The -G flag is required when performing operations on any frame or</td>
</tr>
<tr>
<td></td>
<td>switch.</td>
</tr>
<tr>
<td>sprestore_config</td>
<td>Restores the entire SP SDR from a previously made archive.</td>
</tr>
<tr>
<td>sprmvobj</td>
<td>The command targets nodes in any system partition.</td>
</tr>
<tr>
<td>Command</td>
<td>Effect</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
</tr>
<tr>
<td>spsitenv</td>
<td>Site environment variables are specified for the SP system as a whole. The specification of acct_master= can be any node in the SP regardless of system partition. The specification of install_image= may cause boot server nodes outside of the current system partition to refresh the default installation image they will serve to their nodes.</td>
</tr>
<tr>
<td>spsyspar</td>
<td>Command is always in global mode.</td>
</tr>
<tr>
<td>sptg</td>
<td>Can launch TaskGuides that affect nodes in any system partition.</td>
</tr>
<tr>
<td>spunmirrorvg</td>
<td>The command targets nodes in any system partition.</td>
</tr>
<tr>
<td>spverify_config</td>
<td>Verifies the configuration of all system partitions in the SP system.</td>
</tr>
<tr>
<td>st_clean_table</td>
<td>Can specify a node name which is outside the current partition.</td>
</tr>
<tr>
<td>st_status</td>
<td>Can specify a node which is outside the current partition.</td>
</tr>
<tr>
<td>supper</td>
<td>File collections are implemented and managed without respect to system partition boundaries.</td>
</tr>
<tr>
<td>sysctl</td>
<td>The Sysctl client can send requests to any node in the SP.</td>
</tr>
<tr>
<td>syspar_ctrl -c -G</td>
<td>The -c and -G flags allow for the crossing of system partitions in providing a single interface to the control scripts for the system partition-sensitive subsystems.</td>
</tr>
<tr>
<td>s1term -G</td>
<td>The -G flag allows specification of a node outside of the current system partition.</td>
</tr>
<tr>
<td>vsdatalst -G</td>
<td>The -G flag causes the display of IBM Virtual Shared Disk information to be for all system partitions.</td>
</tr>
<tr>
<td>vsdsklst -G</td>
<td>The -G flag specifies the display of information for disks outside the current system partition.</td>
</tr>
</tbody>
</table>
SDR_config

Purpose

SDR_config – Queries the existing hardware on the SP and updates the System Data Repository (SDR) as necessary.

Attention

The System Data Repository (SDR) commands are to be used by the IBM Parallel System Support Programs for AIX (PSSP) system management software. Use of these commands by a user can cause damage to system configuration data. Exceptions are: SDRArchive, SDRGetObjects, SDRListClasses, SDRRetrieveFile, SDR_test, and SDRWhoHasLock.

Use this command only under the direction of the IBM Support Center. You should only run this command if SDR configuration problems have been diagnosed.

Syntax

```
SDR_config [-l] [-u] [-e frame:slot:type...] [-v] [-d][
```

Flags

- `-l` Logs output. All output will be logged to the SDR_config log file `/var/adm/SPlogs/sdr/SDR_config.log`.
- `-u` Updates switch information.
- `-e frame:slot:type` Adds one or more external or dependent nodes. Each node is specified by the triple `frame:slot:type` where frame and slot indicate the physical location of the node, and type is the hardware type for the node (for example, 99 for dependent nodes). Additional nodes can be specified by separating the triples with a colon (`:`).
- `-v` Verbose mode. Status messages, informational messages, and SDR commands will be echoed to stdout.
- `-d` Debug mode. No SDR changes will be made. This option is most useful if run with the verbose (-v) option to see what the command would do during normal execution.

Operands

None.

Description

SDR_config creates and configures objects in the SDR. It queries hardmon for a current list of all frames, nodes, and switches. It then queries the existing data in the SDR. New objects are created as necessary and existing objects are updated to match the hardmon data for SDR frames, nodes, dependent nodes, switches, host responds, switch responds and the system partitioning map. Data in the SDR for which no hardware information is available is NOT deleted, since the hardware may be temporarily disabled or cannot be sensed by hardmon.

SDR_config is normally invoked during system initialization when the SP logging daemon is started, when **hardmon** records hardware changes through the logging daemon, and by the **hmreinit**, **spframe**, and **endefnode** commands.

If **SDR_config** encounters severe problems, no changes will be made and the SDR will be restored to the same state as it was before the command was invoked.

When **SDR_config** is invoked, it creates a lock file in **/var/adm/SPlogs/sdr/SDR_config.lock** and removes it when the command has completed execution. This lock file prevents two instances of **SDR_config** from executing at the same time.

Files

- **/var/adm/SPlogs/sdr/SDR_config.log**
 - Records output if the **-v** option was specified.

- **/var/adm/SPlogs/sdr/SDR_config.lock**
 - Locks the command to prevent more than one instance of the **SDR_config** command from running at a time.

- **/spdata/sys1/sdr/archives/backup.Julian date. Time.SDR_config**
 - An SDR archive that is created by **SDR_config** when it encounters recoverable errors. This allows you to restore the SDR to the state it was before **SDR_config** was run.

Standard Output

All informational messages generated as a result of the **-v** option will be written to standard output.

If the **-l** option is specified, standard output will be redirected to the log file **/var/adm/SPlogs/sdr/SDR_config.log**.

Standard Error

All error messages will be written to standard output.

If the **-l** option is specified, standard error will be redirected to the log file **/var/adm/SPlogs/sdr/SDR_config.log**.

Exit Values

- **0** Indicates the successful completion of the command.
- **1** Indicates that a recoverable error occurred.
- **2** Indicates that an irrecoverable error occurred.
- **3** Indicates that **SDR_config** lock exists - command is already in use.

Security

You must have root privilege to run this command or be a member of the AIX system group.

You must run this command from a user who has "monitor" access to the Hardware Monitor Subsystem.
You must have write access to the SDR to run this command.

Restrictions

Use this command only under the direction of the IBM Support Center. You should only run this command if SDR configuration problems have been diagnosed.

This command can only be issued on the control workstation.

Implementation Specifics

This command is part of the IBM Parallel System Support Programs (PSSP) Licensed Program Product (LPP) `ssp.basic` file set.

Location

`/usr/lpp/ssp/install/bin/SDR_config`

Related Information

Commands: `endefnode`, `hmreinit`, `SDR_init`, `SDRRestore`, `spframe`, `splogd`

Examples

This command is for PSSP use only.
SDR_init

Purpose

SDR_init – Initializes the System Data Repository (SDR) during PSSP installation.

Attention

The System Data Repository (SDR) commands are to be used by the IBM Parallel System Support Programs for AIX (PSSP) system management software. Use of these commands by a user can cause damage to system configuration data. Exceptions are: **SDRArchive**, **SDRGetObjects**, **SDRListFiles**, **SDRRetrieveFile**, **SDR_test**, and **SDRWhoHasLock**.

Use this command only under the direction of the IBM Support Center. You should only run this command if SDR configuration problems have been diagnosed.

Syntax

```
SDR_init [-l] [-v] [-d]
```

Flags

- **-l**
 Logs output. All output is logged to the **SDR_config** log file `/var/adm/SPlogs/sdr/SDR_config.log`.

- **-v**
 Verbose mode. Status messages, informational messages, and SDR commands is echoed to **stdout**.

- **-d**
 Debug mode. No SDR changes will be made. This option is most useful if run with the verbose option (-v) to see what the command would do during normal execution.

Operands

None.

Description

SDR_init initializes the SDR during PSSP installation. It creates and initializes new SDR classes and attributes as required by the new level of PSSP being installed.

Files

```
/var/adm/SPlogs/sdr/SDR_config.log
```

Records output if the -l option was specified.

Standard Output

All informational messages generated as a result of the -v option will be written to standard output.

If the -l option is specified, standard output will be redirected to the log file `/var/adm/SPlogs/sdr/SDR_config.log`.
Standard Error

All error messages are written to standard error.

If the -I option is specified, standard error will be redirected to the log file /var/adm/SPlogs/sdr/SDR_config.log.

Security

You must have root privilege to run this command or be a member of the system group.

You must run this command from a user who has monitor authority in /spdata/sys1/spmon/hmacls. The user must have a non-expired authentication ticket.

You must have SDR administrator access to run this command.

Restrictions

Use this command only under the direction of the IBM Support Center. You should only run this command if SDR initialization problems have been diagnosed.

This command can only be issued on the control workstation.

Location

/usr/lpp/ssp/install/bin/SDR_init

Related Information

Commands: SDR_config

Examples

This command is for PSSP use only.
SDR_test

Purpose

SDR_test – Verifies that the installation and configuration of the System Data Repository (SDR) component of the SP system completed successfully.

Syntax

SDR_test [-q] [-l log_file]

Flags

-q Specifies quiet mode; suppresses output to standard error.

-l log_file Specifies the path name of the log file to which error messages are written. (This is lowercase l, as in list.)

Operands

None.

Description

This command verifies that the SDR is functioning properly. After clearing out a class name, it creates the class, performs various SDR tasks, and removes the class when done.

A return code of 0 indicates that the test completed as expected; otherwise it returns the number of errors. If you do not specify the -q flag, a message is displayed on standard output that indicates if the tests were successful or not. In either case, the command returns 0 if successful, 1 if unsuccessful. If errors are detected, more detailed information is recorded in the log file. If you do not specify the -l flag, error messages are recorded in /var/adm/SPlogs/SDR_test.log for root users. For non-root users, error messages are recorded in /tmp/SDR_test.log.

You can use the System Management Interface Tool (SMIT) to run this command. To use SMIT, enter:

smit SP_verify

and select the System Data Repository option.

Files

/var/adm/SPlogs/SDR_test.log

Default log file created by root users.

/tmp/SDR_test.log

Alternate log file created by non-root users.

Security

To run this command you must have root privilege or be a member of the AIX system group.

You must have SDR administrator access to run this command.
Location
/usr/lpp/ssp/bin/SDR_test

Related Information
Commands: CSS_test, st_verify, SYSMAN_test, spmon_ctest, spmon_itest

Examples
To verify the System Data Repository following installation, saving error messages in sdr_err in the current working directory, enter:

SDR_test -l sdr_err
SDRAddSyspar

Purpose

SDRAddSyspar – Creates a new daemon using the System Resource Controller (SRC). The new daemon creates a subdirectory under the `/spdata/sys1/sdr/partitions` directory.

Attention

The System Data Repository (SDR) commands are to be used by the IBM Parallel System Support Programs for AIX (PSSP) system management software. Use of these commands by a user can cause damage to system configuration data. Exceptions are: `SDRArchive`, `SDRGetObjects`, `SDRListClasses`, `SDRListFiles`, `SDRRetrieveFile`, `SDR_test`, and `SDRWhoHasLock`.

Syntax

```
SDRAddSyspar IP_address
```

Flags

None.

Operands

IP_address Specifies a TCP dotted decimal address (real or alias).

Description

This command creates a new instance of the SDR daemon and passes it the IP address of the system partition. It does not perform all of the system management tasks involved in creating a system partition.

Security

You must have root privilege to run this command.

Location

```
/usr/lpp/ssp/bin/SDRAddSyspar
```

Examples

This command is for PSSP use only.
SDRArchive

Purpose

SDRArchive – Archives the entire contents of the System Data Repository (SDR), except for the archives directory, for later retrieval.

Attention

Migration Note: Each new PSSP release may introduce new SDR classes and attributes. Use caution when using SDRArchive and SDRRestore to avoid overwriting new SDR classes and attributes. IBM suggests that after migration you do not execute SDRRestore from a back level system since it will overwrite any new SDR classes and attributes.

Syntax

SDRArchive [append_string]

Flags

None.

Operands

append_string If specified, the append_string is appended to the name of the backup file.

Description

Use this command to tar the contents of the SDR and put the file in the /spdata/sys1/sdr/archives subdirectory. You might want to mount this directory from another machine or physical disk drive to protect against an error in the drive holding the SDR. The file name is backup.JULIANdate.HHMM.append_string, where JULIANdate.HHMM is a number or string uniquely identifying the date and time of the archive and append_string is the argument entered in the command invocation, if specified.

Security

You must have root privilege to run this command.

Restrictions

This command can be run only on the control workstation.

Location

/usr/lpp/ssp/bin/SDRArchive
Examples

To create an archive of the current SDR database called backup.{JULIANdate}.HHMM.mysdr, enter:

SDRArchive mysdr
SDRChangeAttrValues

Purpose

SDRChangeAttrValues – Changes attribute values of one or more objects.

Attention

The System Data Repository (SDR) commands are to be used by the IBM Parallel System Support Programs for AIX (PSSP) system management software. Use of these commands by a user can cause damage to system configuration data. Exceptions are: SDRArchive, SDRGetObjects, SDRLibClasses, SDRLibFiles, SDRRetrievalFile, SDR_test, and SDRWhoHasLock.

Syntax

SDRChangeAttrValues class_name [attr==value ...] attr=value ...

Flags

None.

Operands

class_name Identifies the target object and checks the class to see if it is a system class or a partitioned class.

attr==value Specifies attribute values to match for the change to be made (note double equal signs signifying comparison.)

attr=value Specifies target attribute to change and value to be assigned.

Description

This command changes one or more attribute values in a specified object with certain other attribute values.

Exit Values

0 Indicates the successful completion of the command.

5 Indicates that the requested operation requires SDR write access.

Security

You must have write access to the SDR to run this command.

Location

/usr/lpp/ssp/bin/SDRChangeAttrValues
Examples

This command is for PSSP use only.
SDRClearLock

Purpose

SDRClearLock – Unlocks a System Data Repository (SDR) class.

Attention

The System Data Repository (SDR) commands are to be used by the IBM Parallel System Support Programs for AIX (PSSP) system management software. Use of these commands by a user can cause damage to system configuration data. Exceptions are: **SDRArchive**, **SDRGetObjects**, **SDRListClasses**, **SDRListFiles**, **SDRRetrieveFile**, **SDR_test**, and **SDRWhoHasLock**.

Syntax

```markdown
SDRClearLock class_name
```

Flags

None.

Operands

`class_name` Identifies the target class and removes the lock on that class if a lock exists.

Description

Use this command when a process that obtained a lock ends abnormally and does not unlock the class.

Exit Values

- **0** Indicates the successful completion of the command.
- **6** The requested operation requires SDR administrator access.

Security

You must have SDR administrator access to run this command.

Location

```
/usr/lpp/ssp/bin/SDRClearLock
```

Examples

This command is for PSSP use only.
SDRCreateAttrs

Purpose

SDRCreateAttrs – Creates new attributes for a System Data Repository (SDR) class.

Attention

The System Data Repository (SDR) commands are to be used by the IBM Parallel System Support Programs for AIX (PSSP) system management software. Use of these commands by a user can cause damage to system configuration data. Exceptions are: SDRArchive, SDRGetObjects, SDRListClasses, SDRListFiles, SDRRetrieveFile, SDR_test, and SDRWhoHasLock.

Syntax

SDRCreateAttrs class_name attr=datatype ...

Flags

None.

Operands

class_name Identifies the target object.
attr=datatype Names the new attribute and defines the data type as an integer (int), a floating-point value (float), or a string (string).

Description

This command creates one or more new attributes for a target class.

Exit Values

0 Indicates the successful completion of the command.
6 The requested operation requires SDR administrator access.

Security

You must have SDR administrator access to run this command.

Location

/usr/lpp/ssp/bin/SDRCreateAttrs

Examples

This command is for PSSP use only.
SDRCreateClass

Purpose

SDRCreateClass – Creates a partitioned class.

Attention

The System Data Repository (SDR) commands are to be used by the IBM Parallel System Support Programs for AIX (PSSP) system management software. Use of these commands by a user can cause damage to system configuration data. Exceptions are: **SDRArchive**, **SDRGetObjects**, **SDRListClasses**, **SDRListFiles**, **SDRRetrieveFile**, **SDR_test**, and **SDRWhoHasLock**.

Syntax

\[
\text{SDRCreateClass} \ class_name \ attr=\text{datatype} \ ...
\]

Flags

None.

Operands

- **class_name** Identifies the new object class.
- **attr=\text{datatype}**
 - Names the new attribute and defines the data type as an integer (**int**), a floating-point value (**float**), or a string (**string**).

Description

This command creates a partitioned class and defines its attributes.

Exit Values

- **0** Indicates the successful completion of the command.
- **6** The requested operation requires SDR administrator access.

Security

You must have SDR administrator access to run this command.

Location

```
/usr/lpp/ssp/bin/SDRCreateClass
```

Examples

This command is for PSSP use only.
SDRCREATEFILE

Purpose

SDRCREATEFILE – Reads the specified AIX file and puts it in the System Data Repository (SDR) under the specified SDR file name.

Attention

The System Data Repository (SDR) commands are to be used by the IBM Parallel System Support Programs for AIX (PSSP) system management software. Use of these commands by a user can cause damage to system configuration data. Exceptions are: SDRArchive, SDRGetObjects, SDRListClasses, SDRListFiles, SDRRetrieveFile, SDR_test, and SDRWhoHasLock.

Syntax

SDRCREATEFILE AIX_filename SDR_filename

Flags

None.

Operands

AIX_filename

Identifies the AIX file name to be written to the SDR.

SDR_filename

Specifies the name of the new SDR file.

Description

This command creates a partitioned SDR file from an AIX file. Use SDRCREATESYSTEMFILE to create a system file. Use SDRRETRIEVEFILE to retrieve the file.

Exit Values

0 Indicates the successful completion of the command.

6 The requested operation requires SDR administrator access.

Security

You must have SDR administrator access to run this command.

Location

/usr/lpp/ssp/bin/SDRCREATEFILE
Examples

This command is for PSSP use only.
SDRCreateObjects

Purpose

SDRCreateObjects – Creates new objects in a system class or a partitioned class.

Attention

The System Data Repository (SDR) commands are to be used by the IBM Parallel System Support Programs for AIX (PSSP) system management software. Use of these commands by a user can cause damage to system configuration data. Exceptions are: **SDRArchive**, **SDRGetObjects**, **SDRListClasses**, **SDRListFiles**, **SDRRetrieveFile**, **SDR_test**, and **SDRWhoHasLock**.

Syntax

```
SDRCreateObjects class_name attr=value ...
```

Flags

None.

Operands

- **class_name** Identifies the class of the new objects.
- **attr=value** Specifies the target attribute and value to be assigned.

Description

This command creates one or more new objects. Not all attributes for an object need to be specified in this call; however, a subset of the attributes that uniquely identify this object must be entered at this time.

Exit Values

- 0 Indicates the successful completion of the command.
- 5 The requested operation requires SDR write access.

Security

You must have write access to the SDR to run this command.

Location

```
/usr/lpp/ssp/bin/SDRCreateObjects
```

Examples

This command is for PSSP use only.
SDRCreateSystemClass

Purpose

SDRCreateSystemClass – Creates a system class.

Attention

The System Data Repository (SDR) commands are to be used by the IBM
Parallel System Support Programs for AIX (PSSP) system management
software. Use of these commands by a user can cause damage to system
configuration data. Exceptions are: SDRArchive, SDRGetObjects,
SDRListClasses, SDRListFiles, SDRRetrieveFile, SDR_test, and
SDRWhoHasLock.

Syntax

SDRCreateSystemClass class_name attr=datatype ...

Flags

None.

Operands

class_name Identifies the new object class.

attr=datatype

Names the new attribute and defines the data type as an integer (int),
a floating-point value (float), or a string (string).

Description

This command creates a system class and defines its attributes.

Exit Values

0 Indicates the successful completion of the command.

6 The requested operation requires SDR administrator access.

Security

You must have SDR administrator access to run this command.

Location

/usr/lpp/ssp/bin/SDRCreateSystemClass

Examples

This command is for PSSP use only.
SDRCreateSystemFile

Purpose

SDRCreateSystemFile – Creates a file that can be retrieved from any system partition.

Attention

The System Data Repository (SDR) commands are to be used by the IBM Parallel System Support Programs for AIX (PSSP) system management software. Use of these commands by a user can cause damage to system configuration data. Exceptions are: SDRArchive, SDRGetObjects, SDRListClasses, SDRListFiles, SDRRetrieveFile, SDR_test, and SDRWhoHasLock.

Syntax

SDRCreateSystemFile AIX_filename SDR_filename

Flags

None.

Operands

AIX_filename

Specifies the AIX file name.

SDR_filename

Specifies the System Data Repository (SDR) file name.

Description

This command reads the AIX file and puts it in the repository under the SDR file name. Note that only ASCII files can be saved. Results are unpredictable if binary files are used with this command. Clients connected to any system partition can read this file.

Use SDRRetrieveFile to retrieve this file. If a system file and a partitioned file exist with the same name, the partitioned file will be returned from SDRRetrieveFile.

Exit Values

0 Indicates the successful completion of the command.

6 The requested operation requires SDR administrator access.

Security

You must have SDR administrator access to run this command.
SDRCreateSystemFile

Location

/usr/lpp/ssp/bin/SDRCreateSystemFile

Examples

This command is for PSSP use only.
SDRDeleteFile

Purpose

SDRDeleteFile – Deletes the specified System Data Repository (SDR) file.

Attention

The System Data Repository (SDR) commands are to be used by the IBM Parallel System Support Programs for AIX (PSSP) system management software. Use of these commands by a user can cause damage to system configuration data. Exceptions are: SDRArchive, SDRGetObjects, SDRListClasses, SDRListFiles, SDRRetrieveFile, SDR_test, and SDRWhoHasLock.

Syntax

SDRDeleteFile SDR_filename

Flags

None.

Operands

SDR_filename

Specifies the name of the SDR file to be deleted.

Description

This command deletes the partitioned file SDR_filename, if it exists. If the SDR_filename partitioned file does not exist, it will delete the SDR_filename system file. This command will not delete both the partitioned file and the system file.

Exit Values

<table>
<thead>
<tr>
<th>Exit Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Indicates the successful completion of the command.</td>
</tr>
<tr>
<td>6</td>
<td>The requested operation requires SDR administrator access.</td>
</tr>
</tbody>
</table>

Security

You must have SDR administrator access to run this command.

Location

/usr/lpp/ssp/bin/SDRDeleteFile

Examples

This command is for PSSP use only.
SDRDeleteObjects

Purpose

SDRDeleteObjects – Deletes objects from the System Data Repository (SDR).

Attention

The System Data Repository (SDR) commands are to be used by the IBM Parallel System Support Programs for AIX (PSSP) system management software. Use of these commands by a user can cause damage to system configuration data. Exceptions are: **SDRArchive**, **SDRGetObjects**, **SDRLListClasses**, **SDRLListFiles**, **SDRRetrieveFile**, **SDR_test**, and **SDRWhoHasLock**.

Syntax

```
SDRDeleteObjects class_name [ attr==value ... ]
```

Flags

None.

Operands

- **class_name** Identifies the class of the object to be deleted.
- **attr==value** Specifies specific attribute values to match to qualify the object for deletion.

Description

This command deletes one or more objects. All objects in the specified class with attribute values matching those specified are deleted. If no **attr==value** pairs are specified, this command will match all objects in the class and all objects will be deleted.

Exit Values

- **0** Indicates the successful completion of the command.
- **5** The requested operation requires SDR write access.

Security

You must have write access to the SDR to run this command.

Location

```
/usr/lpp/ssp/bin/SDRDeleteObjects
```
Examples

This command is for PSSP use only.
SDRGetObjects

Purpose

SDRGetObjects – Sends contents of attributes in specified object to standard output.

Syntax

SDRGetObjects [−G] [−x] [−q] [−d delimiter] class_name
[attr==value ...] [attr ...]

Flags

- G
 For a partitioned class, returns the objects that match the attr==value arguments in the class specified from all system partitions. For system classes, the −G option has no effect.

- x
 Inhibits the output of the header line.

- q
 Specifies quiet mode; suppresses message output to standard error.

- d delimiter
 Allows the user to specify a delimiter in the output.

Operands

class_name
Identifies the target class.

attr==value
Specifies attribute values to match to qualify the objects for the operation (note the double equal signs, which signify comparison.)

attr
Specifies which attribute values should be returned by the command. The order of these arguments is the order they are written in the output. If no attr arguments are entered, all attributes will be selected.

Description

This command retrieves and sends to standard output attribute values in the specified objects.

Location

/usr/lpp/ssp/bin/SDRGetObjects

Examples

1. To query the SDR Adapter class for the node number and network address of all switch adapters, enter:

 SDRGetObjects -G Adapter adapter_type==css0 node_number netaddr

 You should receive output similar to the following:
SDRGetObjects

node_number netaddr

1 129.40.102.129
3 129.40.102.131
5 129.40.102.133
6 129.40.102.134
7 129.40.102.135
8 129.40.102.136
9 129.40.102.137
10 129.40.102.138
11 129.40.102.139
12 129.40.102.140
13 129.40.102.141
14 129.40.102.142
15 129.40.102.143
16 129.40.102.144

2. To determine the reliable host name, switch node number, and switch chip port of every Node object, enter:

SDRGetObjects -G Node reliable_hostname switch_node_number switch_chip_port

You should receive output similar to the following:
reliable_hostname switch_node_number switch_chip_port

k3n01.hpssl.kgn.ibm.com 0 3
k3n03.hpssl.kgn.ibm.com 2 0
k3n05.hpssl.kgn.ibm.com 4 1
k3n06.hpssl.kgn.ibm.com 5 0
k3n07.hpssl.kgn.ibm.com 6 2
k3n08.hpssl.kgn.ibm.com 7 3
k3n09.hpssl.kgn.ibm.com 8 3
k3n10.hpssl.kgn.ibm.com 9 2
k3n11.hpssl.kgn.ibm.com 10 0
k3n12.hpssl.kgn.ibm.com 11 1
k3n13.hpssl.kgn.ibm.com 12 1
k3n14.hpssl.kgn.ibm.com 13 0
k3n15.hpssl.kgn.ibm.com 14 2
k3n16.hpssl.kgn.ibm.com 15 3

3. To save each node's node number and hardware Ethernet addresses (which is needed for netboot) in a file called bootptab.info without the SDR header class information, enter:

SDRGetObjects -G -x Node node_number hdw_enet_addr > /etc/bootptab.info

You should receive output similar to the following:
<table>
<thead>
<tr>
<th></th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>02608C2D58D2</td>
</tr>
<tr>
<td>3</td>
<td>10005AFA2375</td>
</tr>
<tr>
<td>4</td>
<td>10005AFA22CE</td>
</tr>
<tr>
<td>5</td>
<td>10005AFA22B2</td>
</tr>
<tr>
<td>6</td>
<td>10005AFA2410</td>
</tr>
<tr>
<td>7</td>
<td>10005AFA223F</td>
</tr>
<tr>
<td>8</td>
<td>10005AFA2417</td>
</tr>
<tr>
<td>9</td>
<td>02608C2DA0C7</td>
</tr>
<tr>
<td>11</td>
<td>02608C2D9F62</td>
</tr>
<tr>
<td>13</td>
<td>02608C2D9E75</td>
</tr>
<tr>
<td>15</td>
<td>10005AFA1B03</td>
</tr>
<tr>
<td>16</td>
<td>10005AFA2B9B</td>
</tr>
</tbody>
</table>
SDRListClasses

Purpose

SDRListClasses – Lists the class names in the System Data Repository (SDR).

Syntax

SDRListClasses

Flags

None.

Operands

None.

Description

This command outputs all of the class names (system and partitioned) currently defined in the SDR to standard output.

Location

/usr/lpp/ssp/bin/SDRListClasses

Examples

To list all classes in the SDR, enter:

SDRListClasses

You will see output such as:
SDRListClasses

- Adapter
- DependentAdapter
- DependentNode
- Frame
- Network
- Node
- SP
- SP_ports
- Switch
- Switch_adapter_port
- Switch_partition
- Syspar
- Syspar_map
- Syspar_ports
SDRLListFiles

Purpose

SDRLListFiles – Lists all of the files in the system file area first, then lists all of the files in the system partition area.

Syntax

SDRLListFiles

Flags

None.

Operands

None.

Description

This command outputs all the system partition files first, then the system files.

Location

/usr/lpp/ssp/bin/SDRLListFiles

Examples

To list all files in the SDR, enter:

SDRLListFiles

You will see output such as:

expected.top.annotated.1

hats.machines.inst

hats.machines.lst
SDRMoveObjects

Purpose

SDRMoveObjects – Moves objects from one system partition to another.

Attention

The System Data Repository (SDR) commands are to be used by the IBM Parallel System Support Programs for AIX (PSSP) system management software. Use of these commands by a user can cause damage to system configuration data. Exceptions are: SDRArchive, SDRGetObjects, SDRListClasses, SDRListFiles, SDRRetrieveFile, SDR_test, and SDRWhoHasLock.

Syntax

SDRMoveObjects source_syspar target_syspar class_name [attr== value ...]

Flags

None.

Operands

source_syspar

Specifies the system partition from which objects are to be moved.

target_syspar

Specifies the system partition to which objects should be moved.

class_name

Identifies the target object.

attr==value

Specifies attribute values to be moved.

Description

This command moves any objects in class_name that match all of the attr==value pairs from the source_syspar to the target_syspar.

Exit Values

<table>
<thead>
<tr>
<th>Exit Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Indicates the successful completion of the command.</td>
</tr>
<tr>
<td>5</td>
<td>The requested operation requires SDR write access.</td>
</tr>
</tbody>
</table>

Security

You must have write access to the SDR to run this command.

Location

/usr/lpp/ssp/bin/SDRMoveObjects
Examples

This command is for PSSP use only.
SDRRemoveSyspar

Purpose

SDRRemoveSyspar – Removes all of the partitioned classes in the System Data Repository (SDR) associated with the system partition whose address is IP_address. It removes the daemon that serves this system partition using the System Resource Controller (SRC).

Attention

The System Data Repository (SDR) commands are to be used by the IBM Parallel System Support Programs for AIX (PSSP) system management software. Use of these commands by a user can cause damage to system configuration data. Exceptions are: SDRArchive, SDRGetObjects, SDRListClasses, SDRListFiles, SDRRetrieveFile, SDR_test, and SDRWhoHasLock.

Syntax

SDRRemoveSyspar IP_address

Flags

None.

Operands

IP_address Specifies the dotted decimal address (real or alias) of a system partition.

Description

This command deletes a system partition in the SDR. It does not perform all of the system management tasks involved in deleting a system partition.

Security

You must have root privilege to run this command.

Location

/usr/lpp/ssp/bin/SDRRemoveSyspar

Examples

This command is for PSSP use only.
SDRReplaceFile

Purpose

SDRReplaceFile – Replaces the specified System Data Repository (SDR) file with the specified AIX file.

Attention

The System Data Repository (SDR) commands are to be used by the IBM Parallel System Support Programs for AIX (PSSP) system management software. Use of these commands by a user can cause damage to system configuration data. Exceptions are: SDRArchive, SDRGetObjects, SDRListClasses, SDRListFiles, SDRRetrieveFile, SDR_test, and SDRWhoHasLock.

Syntax

SDRReplaceFile AIX_filename SDR_filename

Flags

None.

Operands

AIX_filename

Identifies the AIX file name to be written to the SDR.

SDR_filename

Specifies the name of the SDR file to be overwritten.

Description

This command searches first for a partitioned file, then for a system file, and replaces the first one found.

Exit Values

0 Indicates the successful completion of the command.

5 The requested operation requires SDR write access.

Security

You must have write access to the SDR to run this command.

Location

/usr/lpp/ssp/bin/SDRReplaceFile
Examples

This command is for PSSP use only.
SDRRestore

Purpose

SDRRestore – Extracts the contents of the archived System Data Repository (SDR).

Attention

The System Data Repository (SDR) commands are to be used by the IBM Parallel System Support Programs for AIX (PSSP) system management software. Use of these commands by a user can cause damage to system configuration data. Exceptions are: SDRArchive, SDRGetObjects, SDRListClasses, SDRListFiles, SDRRetrieveFile, SDR_test, and SDRWhoHasLock.

Attention

Migration Note: Each new PSSP release may introduce new SDR classes and attributes. Use caution when using SDRArchive and SDRRestore to avoid overwriting new SDR classes and attributes. IBM suggests that after migration you do not execute SDRRestore from a back level system since it will overwrite any new SDR classes and attributes.

Syntax

SDRRestore archive_file

Flags

None.

Operands

archive_file Indicates the name of the archive file. The file name is backup.JULIANdate.HHMM, where JULIANdate. HHMM is a number or string uniquely identifying the time of the archive.

Description

Use this command to remove the contents of the SDR and retrieve the archived contents of the archive_file. The archive_file must be in the /spdata/sys1/sdr/archives directory. Any new SDR daemons that represent partitions in the restored SDR are then started and any daemons that are not in the new SDR are stopped.

Security

You must have root privilege to run this command.
SDRRestore

Restrictions

This command can be run only on the control workstation.

Location

/usr/lpp/ssp/bin/SDRRestore

Related Information

Command: SDRArchive

Examples

To restore an archive of the SDR database called
backup.{JULIANdate}.HHMM.mysdr, enter:

SDRRestore backup.{JULIANdate}.HHMM.mysdr
SDRRetrieveFile

Purpose

`SDRRetrieveFile` – Retrieves the specified System Data Repository (SDR) file into an AIX file.

Syntax

```
SDRRetrieveFile SDR_filename AIX_filename
```

Flags

None.

Operands

- `SDR_filename`
 Specifies the name of the SDR file to be retrieved.
- `AIX_filename`
 Identifies the name of the AIX file to be written.

Description

This command searches first for a partitioned file, then for a system file if a partitioned file was not found.

Location

`/usr/lpp/ssp/bin/SDRRetrieveFile`

Examples

This command is for PSSP use only.
Purpose
SDRScan – Scans the SDR database files for non-ASCII data.

Syntax
SDRScan [-q] [-f]

Flags
-qi Specifies quiet mode. No messages are displayed. A return code value is set to indicate whether non-ASCII data was found. The default is to display all messages.

-fi Specifies first only. The command stops after the first non-ASCII data value is found. The default is to scan all data.

Operands
None.

Description
The SDRScan command scans the SDR database files for non-ASCII data. ASCII data is defined as all characters in the range '00'x to '7F'x. If non-ASCII data is found, a non-zero exit value is set. If the -q option is not specified, a message is displayed for each non-ASCII value found, indicating the SDR class and attribute in which the data was found, along with the entire record from the SDR database. If the -f option is specified, processing stops after the first non-ASCII value is found.

Files
/spdata/sys1/sdr/*
SDR database files

Standard Output
All SDR objects containing non-ASCII data will be written to stdout.

Standard Error
Internal processing errors will be written to stderr.

Exit Values
0 Indicates that only ASCII data was found in the SDR database files.
1 Indicates that non-ASCII data was found in the SDR database files.

Security
You must have root privilege to run this command.
Restrictions

If SDRScan encounters data in the SDR that was generated under a different locale, the results displayed may be unreadable in the current locale. The command can only be run on the control workstation.

Implementation Specifics

This command is part of IBM Parallel System Support Programs (PSSP) Licensed Program Product (LPP) ssp.basic fileset.

Location

/usr/lpp/ssp/bin/SDRScan

Related Information

Commands: SDRValidateString

Examples

1. To scan the SDR for non-ASCII data, enter:

 SDRScan
SDRSetTsAuth

Purpose

SDRSetTsAuth – Updates the `ts_auth_methods` value in the Syspar Class.

Attention

The System Data Repository (SDR) commands are to be used by the IBM Parallel System Support Programs for AIX (PSSP) system management software. Use of these commands by a user can cause damage to system configuration data. Exceptions are: **SDRArchive**, **SDRGetObjects**, **SDRListClasses**, **SDRListFiles**, **SDRRetrieveFile**, **SDR_test**, and **SDRWhoHasLock**.

Syntax

```
SDRSetTsAuth syspar_name ts_auth_methods
```

Flags

None.

Operands

`syspar_name`

The subsystem name that identifies the Syspar object whose attribute is to be changed.

`ts_auth_methods`

Any valid value to be assigned to the Syspar's `ts_auth_methods` attribute, as defined for the **chauthpts** command.

Description

The **SDRSetTsAuth** command stops the SDR subsystem for the affected partition, modifies the Syspar class file, and restarts the subsystem.

Files

input: /spdata/sys1/sdr/defs/Syspar

/opacity/sys1/sdr/partitions/syspar-ip-address/classes/Syspar

output: /spdata/sys1/sdr/partitions/syspar-ip-address/classes/Syspar

Standard Error

Output consists of error messages, when the command cannot complete successfully.
Exit Values
0 Indicates successful completion of the command.
1 Indicates that an error occurred.

Security
You must be running on the control workstation with root privilege to run this command.
You must have write access to the SDR to run this command.

Implementation Specifics
This command is part of the IBM Parallel System Support Programs (PSSP) Licensed Program Product (LPP) (fileset ssp.clients).

Prerequisite Information
The chapters on security in PSSP: Administration Guide.

Location
/usr/lpp/ssp/install/bin/SDRSetTsAuth

Examples
Setting the trusted services authentication methods for a partition:
#/usr/lpp/ssp/install/bin/SDRSetTsAuth partB dce:compat
0513–044 The stop of the sdr.partB Subsystem was completed successfully.
0025–041 waiting for 28324 to exit
0025–043 waiting for 28324 to exit, will kill –9 in 1 minute
0025–044 28324 has exited
0513–059 The sdr.part Subsystem has been started. Subsystem PID is 14562.
#
SDRValidateString

Purpose

SDRValidateString – Checks a character string for valid input that can be written to the SDR.

Syntax

SDRValidateString [-q] string

Flags

- q Specifies quiet mode. No messages are displayed; only a return code value is returned.

Operands

string The input string to be checked.

Description

The SDRValidateString command verifies whether the input string to be written to the SDR is valid. If the string contains only ASCII characters, the command returns success indicating the string can be written to the SDR. ASCII characters are defined as any character in the range '00'x to '7F'x. If the string contains non-ASCII characters, the command returns either success or failure according to the following rules:

- if non-ASCII data is not allowed in the SDR, returns failure
- if non-ASCII data is allowed in the SDR and the client locale matches the SDR administrative locale, returns success; otherwise returns failure

The attribute SDR_ASCII_only in the SP class determines if non-ASCII data is allowed to be written to the SDR. If this attribute value is true, only ASCII data is allowed; if it is false, non-ASCII data is allowed. You can query the values of the SP admin_locale and SDR_ASCII_only attributes by running the splsdata -e command.

Environment Variables

The NLS environment variables (such as LC_ALL, LC_CTYPE, LANG) affect the operation of this command.

Standard Error

When the -q flag is omitted, the command failure message is written to standard error.

Exit Values

0 Indicates successful completion of the command.
45 Indicates the command has failed with non-valid data.
Implementation Specifics

This command is part of the IBM Parallel System Support Programs (PSSP) Licensed Program Product (LPP) (fileset ssp.basic).

Location

/usr/lpp/ssp/bin/SDRValidateString

Related Information

Commands: splstdata, spsitenv, SDRScan

Examples

1. To verify the string with no error message displayed, enter:

 /usr/lpp/ssp/bin/SDRValidateString -q "abc"

2. If the string contains non-ASCII characters that are not allowed in the SDR, you should get output similar to:

 SDRValidateString: 0025-045 The string contains non-ASCII character data that cannot be written to the SDR.
SDRWhoHasLock

Purpose

SDRWhoHasLock – Returns transaction ID of lock on specified class.

Syntax

SDRWhoHasLock class_name

Flags

None.

Operands

class_name Identifies the target object class.

Description

The lock transaction ID returned from this command takes the form
host_name:pid:session, where host_name is the long name of the machine running
the process with the lock, pid is the process ID of the process that has the lock,
and session is the number of the client's session with the System Data Repository
(SDR).

Location

/usr/lpp/ssp/bin/SDRWhoHasLock

Examples

1. To find the transaction ID of the SDR client holding a lock on the Frame class,
 enter:

 SDRWhoHasLock Frame
seqfile

Purpose

seqfile – Creates node sequence files for system startup and shutdown using information in the System Data Repository (SDR).

Syntax

seqfile [-b]

Flags

-b Includes lines for boot/install servers as well as /usr servers. Specify this option to create lines for /etc/cstartSeq.

Operands

None.

Description

seqfile uses information in the SDR to determine dependencies of SP nodes on /usr and, optionally, and boot/install servers, and to write the dependencies to standard output in the format of the node sequence files /etc/cstartSeq and /etc/cshutSeq.

/usr servers must shut down after and start before their clients. Boot-install servers must start before their clients. The node sequence files, /etc/cshutSeq and /etc/cstartSeq, have lines that describe these dependencies. The seqfile command eliminates the need for you to create these files from scratch. If the nodes in your system have sequencing dependencies in addition to those related to boot/install and /usr servers and clients, you can edit the output of seqfile to define those relationships.

seqfile defines only the nodes that have dependencies; if there are no /usr or boot/install dependencies, seqfile generates no output.

If you do not have a /etc/cstartSeq or /etc/cshutSeq file, the cstartup and cshutdown commands use seqfile to determine the default startup or shutdown sequence.

Files

The following files reside on the control workstation:

/usr/lpp/ssp/bin/seqfile
 The seqfile command.

/etc/cshutSeq Describes the sequence in which the nodes should be shut down. Nodes not listed in the file are shut down concurrently with listed nodes. If the file is empty, all nodes are shut down concurrently. If the file does not exist, cshutdown uses the output of seqfile as a temporary sequencing default.
seqfile

/etc/cstartSeq Describes the sequence in which the nodes should be started. Nodes not listed in the file are started up concurrently with listed nodes. If the file is empty, all nodes are started up concurrently. If the file does not exist, cstartup uses the output of seqfile as a temporary sequencing default.

Security

You must have write access to the /etc/cstartseq and /etc/cshutseq directories to run this command.

Location

/usr/lpp/ssp/bin/seqfile

Related Information

Commands: cshutdown, cstartup

Examples

1. To create the node sequence file for system startup from information in the SDR, enter:

   ```sh
   seqfile -b > /etc/cstartSeq
   ```

2. To create the node sequence file for system shutdown from information in the SDR, enter:

   ```sh
   seqfile > /etc/cshutSeq
   ```

3. To view the sequence used during system shutdown in the absence of a /etc/cshutSeq file, enter:

   ```sh
   seqfile | more
   ```
services_config

Purpose

services_config – Configures designated services on nodes or the control workstation.

Syntax

services_config

Flags

None.

Operands

None.

Description

Use this command to configure SP services on the node or control workstation.

Standard Error

This command writes error messages (as necessary) to standard error.

Exit Values

0 Indicates the successful completion of the command.

nonzero Indicates that an error occurred.

Security

You must have root privilege to run this command.

Implementation Specifics

This command is part of the IBM Parallel System Support Programs (PSSP) Licensed Program Product (LPP).

Location

/usr/lpp/ssp/install/bin/services_config

Related Information

Commands: setup_server, spbootins

Examples

To configure the SP services on a node or the control workstation, enter:

services_config
sethacws

Purpose

sethacws – Sets the HACWS state of the control workstation.

Syntax

sethacws state

Flags

None.

Operands

state Specifies a number of the set: 0, 1, 2, 16, 32.

Description

Use this command to set the current HACWS state of the control workstation. It is valid only when issued on the control workstation. When the command is executed and the calling process is not on a control workstation, an error occurs.

Note: The High Availability Cluster Multiprocessing (HACMP) event scripts and installation scripts supplied with the High Availability Control Workstation (HACWS) option of the IBM Parallel System Support Programs for AIX (PSSP), set the control workstation state. The state is changed during fail over or reintegration in the HACWS supplied pre- and post-event scripts for HACMP. The administrator should not normally have to set the control workstation state.

Exit Values

0 Indicates successful completion of the command.
1 Indicates that the command could not access the HACWS state location.
2 Indicates that the command was executed with an HACWS state that was not valid.
3 Indicates that the command was not executed on a control workstation.

The following are the valid state values and their defined control workstation state:

0 Indicates that this is a control workstation that is not part of an HACWS configuration.
1 Indicates that this is the primary control workstation, but not the active control workstation.
2 Indicates that this is the primary and active control workstation.
16 Indicates that this is the backup control workstation and not the active control workstation.
32 Indicates that this is the backup and active control workstation.
Security

You must have root privilege to run this command.

Prerequisite Information

Refer to PSSP: Administration Guide for information on the HACWS option.

Location

/usr/bin/sethacws

Related Information

Command: lshacws

Subroutines: hacws_set, hacws_stat

Examples

1. To set the HACWS state as a backup and active control workstation, enter:
 sethacws 32
2. To set the HACWS state as a backup and inactive control workstation, enter:
 sethacws 16
3. To set the HACWS state as a primary and active control workstation, enter:
 sethacws 2
4. To set the HACWS state as a primary and inactive control workstation, enter:
 sethacws 1
5. To set the HACWS state as a control workstation that does not belong to an
 HACWS configuration, enter:
 sethacws 0
setup_authent

Purpose

setup_authent – Sets up a workstation to use SP Kerberos Version 4 authentication services.

Syntax

setup_authent

Flags

None.

Operands

None.

Description

The setup_authent command configures SP Kerberos Version 4 authentication services during SP installation on the control workstation and on other IBM RS/6000 workstations connected to an SP system. It is not executed on SP nodes, where authenticated client services are automatically installed. Executing this command invokes an interactive dialog, in which instructions for the various steps are displayed and various utility programs are invoked to accomplish the configuration.

There are several ways that setup_authent can configure these services. The method chosen is based on runtime choice, the combination of SP options installed on the workstation, and the contents of any predefined authentication configuration file that you have supplied.

Primary Server: When the local system is to be configured as the primary server, both ssp.clients and ssp.authent SP options must have been installed. You may supply the configuration files, /etc/krb.conf and /etc/krb.realms, or let the system create one that lists the local system as the sole authentication server in the local realm. This command creates the files used by the Kerberos Version 4 authentication and ticket granting services. These include the configuration files, the authentication database files, and the master key cache file. The server daemon, kerberos, is added to the initab and started.

The administration of the Kerberos Version 4 authentication database is handled by the kadmind daemon, which is also added to initab and started. The setup_authent command requires you to define the initial principal who administers the database. Access control list files are created containing this name, to be used by kadmind for authorization.

This command invokes k4init to log you in as this administrator, to define additional principals used by the SP Kerberos Version 4 authenticated services for monitoring and system administration. A server key file is created for use by the monitor commands, SP remote commands, and Sysct1 remote command execution facility.
Backup Server: When the local workstation is to be configured as a secondary server, `ssp.clients` and `ssp.authent` must be installed. You must supply the configuration files, listing the local host as a slave server and some other workstation as the primary authentication server. The primary server must be configured and running and be available by standard TCP/IP connection to the local host.

You are required to authenticate your identity as the Kerberos Version 4 administrative user that you defined when you configured the primary server. The service principals for the local host are added to the primary database, and the server key file is created for them. Then the `kpropd` daemon is used in conjunction with the `kprop` command (executed remotely on the primary server) to copy the master database onto the local system. The server daemon, `kerberos`, is then added to the inittab and started.

Authentication Server: When the local host is to be configured only to provide Kerberos Version 4 authentication client services, just `ssp.clients` needs to be installed. As in the case of the slave server, you must supply the configuration files. In this case, however, the local host is not listed as a server. `setup_authent` simply requires the information to know how to get to the primary Kerberos Version 4 authentication server (already configured and accessible).

You are required to authenticate your identity as the Kerberos Version 4 administrative user that you defined when you configured the primary server. The service principals for the local host are added to the primary database, and the server key file is created for them.

Using AFS Authentication Services: When AFS Kerberos Version 4 authentication is to be configured, the local host must have already been established as either an AFS server or an AFS client. The `CellServDB` and `ThisCell` files are expected to exist in the `/usr/vice/etc` directory (or linked to that path). `ssp.clients` is the only required SP Kerberos Version 4 authentication option. When `setup_authent` finds these AFS configuration files on the local system, it allows you the choice of whether to use AFS Kerberos Version 4 authentication. If you choose not to use AFS, processing follows one of the other three variations described previously. When using AFS, you must supply an AFS user name and password that is a valid Kerberos Version 4 administrative ID in the local AFS cell. Then `setup_authent` creates the local service principals in the AFS database and creates a server key file for the SP Kerberos Version 4 authenticated services to use on the local host.

If you choose AFS Kerberos Version 4 authentication, you must do so for all workstations you configure with `setup_authent`, including the control workstation for your SP system.

You can reexecute `setup_authent` to change the configuration of your Kerberos Version 4 authentication services, but you add varying degrees of risk to system operations depending on how far you have progressed in the installation of the control workstation and nodes. Running it again on the control workstation prior to executing `install_cw` is not a problem. Reconfiguring a client workstation has little risk of disruption. A slave can be reconfigured provided the primary server is available. If the primary server must be reconfigured, all slave and client systems have to be reconfigured after the new primary server is up. If the control
workstation is a Kerberos Version 4 authentication server, you have to recustomize any SP nodes previously booted, after running `setup_authent`.

Files

- `/k` Master Kerberos Version 4 key cache file.
- `/etc/krb.conf` Kerberos Version 4 authentication configuration file.
- `/etc/krb.realms` Kerberos Version 4 authentication configuration file.
- `/etc/krb-srvtab` Server Kerberos Version 4 key file.
- `/usr/kerberos/admin_acl.(add,get,mod)` Access Control List files.
- `/usr/vice/etc/CellServDB, /usr/vice/etc/ThisCell` AFS configuration files.

Security

You must have root privilege to run this command. If you are running `setup_authent` on an active control workstation with DCE as the only Trusted Services authentication method, you must also have SDR write access.

Location

`/usr/lpp/ssp/bin/setup_authent`

Related Information

Commands: `add_principal`, `ext_srvtab`, `kadmin`, `kdb_edit`, `kdb_init`, `kdb_util`, `kerberos`, `k4init`, `k4list`, `krb_conf`, `krb_realms`, `ksrvutil`, `kstash`

Refer to the "RS/6000 SP Files and Other Technical Information" section of *PSSP: Command and Technical Reference* for additional Kerberos information.

Examples

See *PSSP: Installation and Migration Guide*.
setup_CWS

Purpose

setup_CWS – Updates control workstation files and directories for installation tasks.

Syntax

setup_CWS [-h]

Flags

-h Displays usage information. If the command is issued with the -h flag, the syntax description is displayed to standard output and no other action is taken.

Operands

None.

Description

Use this command to update control workstation files and directories for installation tasks. This includes control workstation-specific Kerberos and other files. This command can only be run on the control workstation.

Standard Error

This command writes error messages (as necessary) to standard error.

Exit Values

0 Indicates the successful completion of the command.
nonzero Indicates that an error occurred.

Security

You must have root privilege and write access to the SDR to run this command.

If Kerberos V4 is configured, Kerberos V4 administrator privileges are required whenever you run setup_CWS following the addition or name change of a network interface on a node (defined by an Adapter or Aggregate_IP object in the SDR) or on the control workstation.

Implementation Specifics

This command is part of the IBM Parallel System Support Programs (PSSP) Licensed Program Product (LPP).

Location

/usr/lpp/ssp/bin/setup_CWS
Related Information
Commands: setup_server

Examples
To update the control workstation environment for installation, enter:
setup_CWS
setup_logd

Purpose

setup_logd – Sets up the logging daemon (splogd). This is called by installation scripts when the IBM RS/6000 control workstation is installed. It can also be run by root on a different workstation to have splogd spawned by the System Resource Controller (SRC).

Syntax

setup_logd

Flags

None.

Operands

None.

Description

To run the splogd logging daemon on a workstation other than the control workstation, install the ssp.clients option on that workstation and run setup_logd. You may want to do this so that:

1. Offload error logging from the control workstation
2. Have your own script called when a state change on a particular variable or variables occurs

By default the /spdata/sys1/spmon/hwevents file is set up to do error logging and state change logging for all frames. If you are installing splogd on a workstation besides the control workstation to call your own script, you should edit the /spdata/sys1/spmon/hwevents file, removing the entries for SP_STATE_LOG and SP_ERROR_LOG and add a call for your own script. Refer to the splogd command for instructions.

The setup_logd command performs the following steps:

1. Creates directories in /var/adm that the logging daemon uses, if they do not already exist.
2. Adds an entry to syslog.conf for daemon.notice and sends a HUP signal to syslogd to reread its configuration file.
3. Adds errlog templates for SP messages.
4. Adds the splogd daemon to SRC as the splogd subsystem.
5. Adds an entry for splogd to /etc/inittab.

If you do not want to perform any of the preceding steps on your workstation, do not run setup_logd. If you are only using splogd to call your own script, you might only want to do step 4 and step 5 (add splogd to SRC and /etc/inittab).

To run the logging daemon on a separate workstation, you must add the following to the /etc/environment file:
setup_logd

SP_NAME={control_workstation}

To move a subset of error logging off of the control workstation, edit
/spdata/sys1/spmon/hwevents on the control workstation to define the subset that
you want to monitor. Then stopsrc and startsrc the logging daemon on the control
workstation to reread the hwevents file.

Starting and Stopping the splogd Daemon

The splogd daemon is under System Resource Controller (SRC) control. It uses
the signal method of communication in SRC. The splogd daemon is a single
subsystem and not associated with any SRC group. The subsystem name is
splogd. To start the splogd daemon, use the startsrc -s splogd command. This
starts the daemon with the default arguments and SRC options. The splogd
daemon is setup to be respawnable and be the only instance of the splogd
daemon running on a particular node or control workstation. Do not start the
splogd daemon from the command line without using the startsrc command to
start it.

To stop the splogd daemon, use the stopsrc -s splogd command. This stops the
daemon and does not allow it to respawn.

To display the status of the splogd daemon, use the lssrc -s splogd command.

If the default startup arguments need to be changed, use the chssys command to
change the startup arguments or the SRC options. Refer to AIX Version 4
Commands Reference and AIX Version 4 General Programming Concepts: Writing
and Debugging Programs for more information about daemons under SRC control
and how to modify daemon arguments when under SRC.

To view the current SRC options and daemon arguments, use the odmget -q
"subsysname=splogd" SRCsubsys command.

Files

/etc/inittab AIX file that contains a list of parameters to be brought up during
initialization.

/spdata/sys1/spmon/hwevents File that describes what logging is performed and what user exits
are called.

/etc/syslog.conf Describes where syslog messages are logged.

Security

You must have root privilege to run this command.

Location

/usr/lpp/ssp/bin/setup_logd
Related Information

Daemon: splogd

Refer to PSSP: Installation and Migration Guide for more information on setting up Hardware Monitor clients on separate workstations and the System Resource Controller.

Examples

1. To start the splogd daemon, enter:

 startsrc -s splogd

2. To stop the splogd daemon, enter:

 stopsrc -s splogd

3. To display the status of the splogd daemon, enter:

 lssrc -s splogd

4. To display the status of all the daemons under SRC control, enter:

 lssrc -a

5. To display the current SRC options and daemon arguments for the splogd daemon, enter:

 odmget -q "subsysname=splogd" SRCsubsys
setup_server

Purpose

setup_server – Configures a node or control workstation as a boot/install server.

Syntax

setup_server [-h]

Flags

-h Displays usage information. If the command is issued with the -h flag, the syntax description is displayed to standard output and no other action is taken.

Operands

None.

Description

Use this command to set up the node on which it is run as a boot/install server for client nodes as defined in the System Data Repository (SDR).

On a boot/install server, this command:

• Defines the boot/install server as a Network Installation Management (NIM) master
• Defines the resources needed for the NIM clients
• Defines each node that this server installs as a NIM client
• Allocates the NIM resources necessary for each NIM client
• Creates the node.install_info file containing netinstall information
• Creates the node.config_info file containing node-specific configuration information be used during network boot
• Creates server key files containing the service keys for the nodes
• Copies the install images from the control workstation for nodes which are boot/install servers

Creation of the Network Installation Management (NIM) lppsource resource on a boot/install server will result in setup_server creating a lock in the lppsource directory on the control workstation. The setup_server command calls mknimres which creates the lock.

Standard Error

This command writes error messages (as necessary) to standard error.
Exit Values

- 0 Indicates the successful completion of the command.
- -1 Indicates that an error occurred.

Security

You must have root privilege and write access to the SDR to run this command.

If Kerberos V4 is configured, Kerberos V4 administrator privileges are required whenever you run `setup_server` following the addition or name change of a network interface on a node (defined by an Adapter or Aggregate_IP object in the SDR) or on the control workstation.

Implementation Specifics

This command is part of the IBM Parallel System Support Programs (PSSP) Licensed Program Product (LPP).

Location

`/usr/lpp/ssp/bin/setup_server`

Related Information

Commands: `allnimres, create_krb_files, delnimclient, delnimmast, export_clients, mkconfig, mkinstall, mknimclient, mknimint, mknimmast, mknimres, setup_CWS, unallnimres`

Examples

To prepare a boot/install server node, enter the following on that node:

`setup_server`
setupdce

Purpose

setupdce – Creates DCE Security and CDS entries for SP nodes.

Syntax

setupdce [-h] [-c cell_admin_id] [-l lan_profile] [-v]

or

setupdce -u [-s master_security_server] [-d initial_cds_server] [-v]

Flags

-h Displays the command syntax.

-c cell_admin_id
 Specifies a DCE ID with cell administration authority. The default ID is
 "cell_admin".

-l lan_profile
 Specifies DCE lan profile path. The default DCE lan profile path and name
 is /./lan_profile.

-v Allows certain print statements of progress to be displayed.

-u Updates SDR with Master Security Server and Initial CDS Server
 hostname.

-s master_security_server
 Specifies the hostname of the DCE Master Security Server. The default is
 the hostname of the control workstation.

-d initial_cds_server
 Specifies the hostname of the DCE Initial CDS Server. The default is the
 hostname of the control workstation.

Operands

None.

Description

The setupdce command runs only on the control workstation. This command is
used to update the SDR with DCE servers information, and to register remote
nodes in the DCE database.

The command uses config.dce to register the remote nodes into the DCE
database. It will ensure that all the nodes in partitions which have DCE set as an
authentication method are registered in the DCE database. Each remote node will
have its self host machine principal account created and 'ftp' and 'host' principal
account entries created for each of its adapters. Each time the command is run, all
new nodes will be registered with all of their adapters. However, if new adapters
are added with a node after setupdce has been run, those adapters will not be
registered in the subsequent runs of setupdce.
When new adapters are added with a registered node, the `kerberos.dce` command should be run with the admin configuration option for the specific new adapter. Refer to DCE documentation for information on the `kerberos.dce` command.

The `−u` flag causes the command to update the SDR with the appropriate server hostnames. If `−u` is used by itself, a check is made to ensure the server values are stored in the SDR; if they are not, the SDR is updated with the control workstation hostnames. The `−s` and `−d` flag can be used only with the `−u` flag.

Files

- **input:** SDR
- **output:** DCE databases are updated.

A Log file is created in `/var/adm/SPlogs/auth_install/log`.

The SDR is updated.

Exit Values

- **0** Command successfully updated DCE database.
- **1** An error occurred during configuration; review either printed error messages to the console or error messages logged in the log file.

Errors may cause some principals to not be created for some remote nodes. Once `setupdce` is run again without any errors, there will not be any unexpected problems because of earlier unsuccessful runs.

Identify the problems in updating the DCE registry, correct the problem and rerun the command.

Security

The `−u` flag requires Unix root authority and write access to the SDR; otherwise DCE cell administrator authority is required.

Prerequisite Information

IBM Distributed Computing Environment 2.2 for AIX: Administration Guide

PSSP: Installation and Migration Guide.

Location

`/usr/lpp/ssp/bin/setupdce`

Related Information

Commands: `config.dce`, `kerberos.dce`

Examples

1. To register all new nodes in DCE partitions into DCE database, login as DCE cell administrator and enter:

 `$ setupdce`

2. To update the SDR with master security server and CDS server information, login as Unix root and enter:
3. To update the SDR to specify the control workstation as master security server and CDS server, login as Unix root and enter:

```bash
# setupdce -u
```
sp_configd Daemon

Purpose

sp_configd – Starts the Simple Network Management Protocol (SNMP) Proxy Agent daemon.

Syntax

```
sp_configd [-T] [-t secs] [-s secs] [-e secs]
```

Flags

- `-T` Specifies whether to perform internal tracing. Trace entries are placed in the `/var/tmp/sp_config.log` file. The default is off.
- `-t secs` Specifies the amount of time, data instance values that are nonconstant should be kept in cache before being considered stale. This is used to improve the performance associated with a dump of the `ibmSPEMVarValuesTable` (which is a series of SNMP `getnext-requests`). When a specific instance value from this table is requested by an SNMP `get-request`, the latest value is obtained from the SP Event Manager (EM) regardless of the amount of elapsed time since the last request for this data. If the `-t` flag is not specified, a default value of 720 seconds is used.
- `-s secs` Specifies the amount of elapsed time between sending requests for the SP EM to determine the set of EM variables for which a resource monitor is currently active. Current EM resource instance values can only be obtained for those EM resource which are currently being monitored. If the `-s` flag is not specified, a default value of 1200 seconds is used.
- `-e secs` Specifies the amount of elapsed time between retrying unsuccessful EM connection attempts. EM connection initialization causes requests to be sent to the System Data Repository (SDR) which may hinder performance if attempted too frequently. If the `-e` flag is not specified, a default value of 60 seconds is used.

Operands

None.

Description

The **sp_configd** daemon is an SNMP Multiplexing Protocol (SMUX) peer, or proxy agent, of the **snmpd** daemon on the control workstation and on each node of the SP. For more information, refer to the “Managing SP System Events in a Network Environment” chapter in *PSSP: Administration Guide*.

The **sp_configd** daemon provides the following functions:

- It receives requests from network monitors for data from the `ibmSP MIB` (these requests are routed from the `snmpd` daemon to the **sp_configd** daemon over the SMUX interface). The results are returned by the **sp_configd** daemon to the `snmpd` daemon by the SMUX interface and are then sent to the originating monitor by the `snmpd` agent.
sp_configd Daemon

- It sends trap notifications about events occurring on the SP to all hosts listed in the `snmpd` daemon configuration file.

The `snmpd` daemon should be active before the `sp_configd` daemon is started. The following command activates the `snmpd` daemon:

```
startsrc -s snmpd
```

The `snmpd` daemon is controlled by the System Resource Controller (SRC) and activated whenever the system is initialized.

The `sp_configd` daemon has several sessions with the EM. These sessions are used to maintain SP EM variable instance data and information from the last trap issued associated with an SP EM event. See the `haem` command for information on starting the SP Event Manager.

The `sp_configd` daemon should be controlled using the SRC. IBM suggests that you do not enter `sp_configd` at the command line.

Manipulating the sp_configd Daemon with the System Resource Controller

The `sp_configd` daemon is a subsystem controlled by the SRC. Use the following SRC commands to manipulate the `sp_configd` daemon:

- `lssrc` Gets the status of a subsystem, group of subsystems, or a subserver. The long status form of the `lssrc` command is not supported.
- `startsrc` Starts a subsystem, group of subsystems, or a subserver. Issuing the `startsrc` command causes the `sp_configd` daemon to generate a coldStart trap. Use the `-a` switch to override default switch values.
- `stopsrc` Stops a subsystem, group of subsystems, or a subserver.

Files

`/etc/services` Contains port assignments for required services. The following entry must be present in the `/etc/services` file if the entries are not already present:

```
smux 199/tcp
```

Notes:

1. The SMUX port must be 199.
2. The `/etc/services` file is shipped with this entry already in place.
3. If the `/etc/services` file is being served from a server, this entry must be present in the server's `/etc/services` file.

`/etc/snmpd.conf` Specifies the SMUX association configuration for the `sp_configd` Proxy Agent. The following entry must be present:

```
smux 1.3.6.1.4.1.2.6.117 sp_configd_pw # sp_configd
```

These entries are created when the SP is installed.
/etc/snmpd.peers

Specifies the configuration for the sp_configd SMUX peer. The following entry must be present:

sp_configd 1.3.6.1.4.1.2.6.117 sp_configd_pw

These entries are created when the SP is installed.

Security

You must have root privilege to run this command or be a member of the AIX system group.

Location

/usr/lpp/ssp/bin/sp_configd

Examples

1. To start the sp_configd daemon, enter a command similar to the following:
 startsrc -s sp_configd -a '-T'
 This command starts the sp_configd daemon and logs information to the /var/tmp/sp_configd.log file.

2. To stop the sp_configd daemon normally, enter:
 stopsrc -s sp_configd
 This command stops the daemon. The -s flag specifies the subsystem that follows to be stopped.

3. To get short status from the sp_configd daemon, enter:
 lssrc -s sp_configd
 This command returns the daemon name, process ID, and state (active or inactive).
sp_configdctrl Script

Purpose

sp_configdctrl – A control script that is used to manage the installation of the SP Simple Network Management Protocol (SNMP) Proxy Agent subsystem.

Syntax

sp_configdctrl {-a | -s | -k | -d | -c | -t | -o | -r | -h}

Flags

- a Adds the subsystem.
- s Starts the subsystem.
- k Stops the subsystem.
- d Deletes the subsystem.
- c Cleans the subsystem, that is, deletes it.
- t Turns tracing on for the subsystem.
- o Turns tracing off for the subsystem.
- r Refreshes the subsystem.
- h Displays usage information.

Operands

None.

Description

Use this command to install or remove the SP SNMP Proxy Agent daemon. This command can be issued only by a user with root privileges or by a member of the system group.

The sp_configdctrl control script controls the operation of the SP SNMP Proxy Agent subsystem. The subsystem is under the control of the System Resource Controller (SRC). The subsystem is called sp_configd.

An instance of the SP SNMP Proxy Agent subsystem executes on the control workstation and on every node of a system partition. Because the information about SP nodes and Event Manager (EM) variables exists in system partitions, it is said to be system partition-sensitive. This control script operates in a manner similar to the control scripts of other system partition-sensitive subsystems. It can be issued from either the control workstation or any of the system partition's nodes.

From an operational point of view, the SP SNMP Proxy Agent subsystem group is organized as follows:

<table>
<thead>
<tr>
<th>Subsystem</th>
<th>SP SNMP Proxy Agent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subsystem Group</td>
<td>None</td>
</tr>
</tbody>
</table>
The `sp_configd` subsystem is associated with the `sp_configd` daemon. The subsystem name on the nodes and the control workstation is `sp_configd`. There is one daemon per node and control workstation.

The `sp_configdctrl` script is not normally executed from the command line. It is normally called by the `syspar_ctrl` command during installation of the system, and partitioning or repartitioning of the system.

The `sp_configdctrl` script provides a variety of controls for operating the SP SNMP Proxy Agent subsystem:

- Adding, starting, stopping, and deleting the subsystem
- Cleaning up the subsystem, that is, deleting it from all system partitions
- Turning tracing on and off

Adding the Subsystem

When the `-a` flag is specified, the control script uses the `mkssys` command to add the SP SNMP Proxy Agent subsystem to the SRC. The control script operates as follows:

1. It makes sure that the `sp_configd` daemon is stopped.
2. It removes the `sp_configd` subsystem from the SRC (just in case it is still there).
3. It adds the `sp_configd` subsystem to the SRC.
4. It adds an entry for the `sp_configd` subsystem to the `/etc/inittab` file. The entry ensures that the subsystem is started during boot.
5. It adds a smux entry to the `/etc/snmpd.conf` file and a password entry to the `/etc/snmpd.peers` file for the `sp_configd` Proxy Agent if they do not currently exist.
6. It appends the ibmSP MIB definitions to the `/etc/mib.defs` file if they do not currently exist.
7. It issues a `refresh -s snmpd` command so that `snmpd` processes the new entries placed in the `/etc/snmpd.conf` and `/etc/snmpd.peers` files.
8. It adds an errnotify stanza for the `snmp_trap_gen` function to the Object Data Manager (ODM). This function notifies the SP SNMP Proxy Agent when an entry is written to the AIX errlog which has a template specifying `Alert = true`.

Starting the Subsystem

When the `-s` flag is specified, the control script uses the `startscc` command to start the SP SNMP Proxy Agent subsystem, `sp_configd`.
Stopping the Subsystem

When the −k flag is specified, the control script uses the `stopsrc` command to stop the SP SNMP Proxy Agent subsystem, `sp_configd`.

Deleting the Subsystem

When the −d flag is specified, the control script uses the `rmssys` command to remove the SP SNMP Proxy Agent subsystem from the SRC. The control script operates as follows:

1. It makes sure that the `sp_configd` daemon is stopped.
2. It removes the `sp_configd` subsystem from the SRC using the `rmssys` command.
3. It removes the entry for the `sp_configd` subsystem from the `/etc/inittab` file.
4. It removes entries from `/etc/snmpd.conf` and `/etc/snmpd.peers` and removes ibmSP MIB definitions from `/etc/mib.defs`.

Cleaning Up the Subsystem

When the −c flag is specified, the control script stops and removes the SP SNMP Proxy Agent subsystem from the SRC. The control script operates as follows:

1. It stops the subsystem using the `stopsrc -s sp_configd` command.
2. It removes the subsystem from the SRC using the `rmssys` command.
3. It removes the entry for the `sp_configd` subsystem from the `/etc/inittab` file.
4. It removes entries from `/etc/snmpd.conf` and `/etc/snmpd.peers` and removes ibmSP MIB definitions from `/etc/mib.defs`.

Turning Tracing On

When the −t flag is specified, the control script turns tracing on for the `sp_configd` daemon, by stopping the daemon and restarting it with the −T option.

Turning Tracing Off

When the −o flag is specified, the control script turns tracing off for the `sp_configd` daemon, by stopping the daemon and restarting it without the −T option.

Refreshing the Subsystem

The −r flag has no effect for this subsystem.

Files

- `/etc/snmpd.peers`
 Contains password entries.
- `/etc/snmpd.conf`
 Contains smux entries.
- `/etc/mib.defs`
 Contains the ibmSP MIB definitions.
Standard Error

This command writes error messages (as necessary) to standard error.

Exit Values

0 Indicates the successful completion of the command.
1 Indicates that an error occurred.

Security

You must have root privilege to run this command.

Implementation Specifics

This command is part of the IBM Parallel System Support Programs (PSSP) Licensed Program Product (LPP).

Prerequisite Information

AIX Version 4 Commands Reference

Information about the System Resource Controller (SRC) in AIX Version 4 General Programming Concepts: Writing and Debugging Programs

Location

/usr/lpp/ssp/bin/sp_configdctrl

Related Information

Commands: sp_configd

Examples

1. To add the SP SNMP Proxy Agent subsystem to the SRC, enter:

 sp_configdctrl -a

2. To start the SP SNMP Proxy Agent subsystem, enter:

 sp_configdctrl -s

3. To stop the SP SNMP Proxy Agent subsystem, enter:

 sp_configdctrl -k

4. To delete the SP SNMP Proxy Agent subsystem from the SRC, enter:

 sp_configdctrl -d

5. To clean up the SP SNMP Proxy Agent subsystem, enter:

 sp_configdctrl -c

6. To turn tracing on for the sp_configd daemon in the current system partition, set the SP_NAME environment variable to the appropriate system partition name, enter:
sp_configdctrl Script

1. `sp_configdctrl -t`

7. To turn tracing off for the `sp_configd` daemon in the current system partition, set the `SP_NAME` environment variable to the appropriate system partition name, enter:
 `sp_configdctrl -o`

8. To display the status of the SP SNMP Proxy Agent subsystem on a node or the control workstation, enter:
 `lssrc -s sp_configd`
spacctnd

Purpose

spacctnd – Enters accounting data into the System Data Repository for a node or group of nodes.

Syntax

```
spacctnd {[-c acct_class_id] | [-e {true | false | default}]}
[-j acct_job_charge] [-x {true | false}]
{start_frame start_slot {node_count | rest} | -N node_group | -I node_list}
```

Flags

- **c acct_class_id**
 Indicates that the accounting class identifier attribute of each specified node should be changed to the value of `acct_class_id`. The accounting class identifier is an arbitrary string. All nodes with the same string value constitute a class for purposes of grouping and merging accounting data.

- **e**
 Indicates that the accounting enabled attribute of each specified node should be changed. The accounting enabled attribute is an indicator of whether accounting is enabled for the node. The possible values are:

 - **true** Accounting is enabled
 - **false** Accounting is disabled
 - **default** Accounting is enabled based on the value of the SP accounting enabled attribute

- **j acct_job_charge**
 Indicates that the accounting job charge value of each specified node should be changed to the value of `acct_job_charge`. The job charge value is used to determine the number of *charge fee units* to charge a user for exclusive use of the node. Its value is in units of seconds per charge fee unit. This value must be expressed as a float value with one or more digits followed by a decimal point which is followed by one or more digits.

- **x**
 Indicates whether accounting start and end job records and thus chargefee records are generated for jobs having exclusive use of the node. A value of **true** specifies that exclusive use accounting is enabled and start and end job records are generated. A value of **false** specifies that exclusive use accounting is not enabled and start and end job records are not generated.

- **N node_group**
 Specifies a node group to be used for this operation. This node group must be bound to the current system partition.

- **I node_list**
 Specifies a list of nodes to be used for this operation. Either specify a comma-delimited list of node numbers, or a file containing one line of data which is a comma-delimited list of node numbers. The file can also contain comment lines (preceded by a #) and lines that are all white.
Operands

start_frame
Indicates which frame is the starting frame for the range of nodes in this operation. If you use the `start_frame`, `start_slot`, and `node_count` fields, do not use the `node_list` field. Select a value from 1 through 128.

start_slot
Indicates which slot is the starting slot for the range of nodes in this operation. The slot is the position in the rack that a node occupies. For example, for a thin node which is the second node in a rack that has a wide node in the first slot, the slot number is 3. If you use `start_frame`, `start_slot`, and `node_count`, do not use the `node_list` field. Specify the start slot as a number from 1 through 16.

Note: The `start_frame` and `start_slot` must resolve to a node in the current system partition.

node_count
Indicates which nodes are to be used for the range of nodes in this operation. If the combination of `start_slot` and `node_count` goes past the nodes in a frame, the next sequential frame is used for the operation. If you use `start_frame`, `start_slot`, and `node_count`, do not use the `node_list` field. Specify a value from 1 through 1024. If `rest` is specified, all the nodes from `start_frame start_slot` to the end of your system are used.

Note: The `node_count` is considered to be within the current system partition.

Description

Run this command during installation of the SP or later to set the accounting class identifier, the accounting enabled attribute, job charge value or the exclusive use accounting enabled attribute of a node or set of nodes.

You can use the System Management Interface Tool (SMIT) to run the `spacctnd` command. To use SMIT, enter:

```
smit node_data
```

and select the Accounting Information option.

Note: This command should be run only on the control workstation. You must be logged into the control workstation as root to execute this command.

Security

You must have root privilege and write access to the SDR to run this command.
Location

/usr/lpp/ssp/bin/spacctnd

Examples

The following example adds accounting SDR information for a system with 2 frames and 32 nodes. Accounting and exclusive use accounting is to be enabled for each node and 60 seconds of exclusive use by a user is to constitute one charge fee unit.

spacctnd -e true -j 60.0 -x true 1 1 32
spacl

Purpose

spacl – Manages DCE access control lists (ACLs) for one or multiple instances of SP trusted service objects.

Syntax

```
spacl -a add -s service_name -o object_name -e entry_info -p permissions [-G] [-n | -N node_group | -l node_list | -r start_frame start_slot node_count] [-x] [-v]
spacl -a change -s service_name -o object_name -e entry_info -p new_permissions [-G] [-n | -N node_group | -l node_list | -r start_frame start_slot node_count] [-x] [-v]
spacl -a check -s service_name -o object_name [-G] [-n | -N node_group | -l node_list | -r start_frame start_slot node_count] [-x] [-v]
spacl -a perm[issions] -s service_name -o object_name [-x] [-v]
spacl -a remove -s service_name -o object_name -e entry_info [-G] [-n | -N node_group | -l node_list | -r start_frame start_slot node_count] [-x] [-v]
spacl -a show [-s service_name | -o object_name] [-G] [-n | -N node_group | -l node_list | -r start_frame start_slot node_count] [-x] [-v]
spacl -h
```

Flags

- **-G** Allows the operation to be performed on instances of the object residing outside the current partition. If this flag is not specified, the operation is performed on instances of the object in the current partition.

- **-N** Specifies that the operation is to be performed on instances of the object residing on nodes belonging to node_group.

- **-a** Specifies which SP ACL Management action is to be performed.

- **-e** Indicates that the next operand is entry information (entry_info).

- **-l** Specifies that the operation is to be performed on instances of the object residing on nodes belonging to node_list.

- **-n** Specifies that the the operation is not to be performed on instances of the object residing on any node.

- **-o** Indicates that the next operand is the object's name (object_name).

- **-p** Indicates that the next operand is access permissions (permissions or new_permissions).

- **-r** Specifies that the operation is to be performed on instances of the object residing on nodes belonging to the range specified by start_frame start_slot node_count.

- **-s** Indicates that the next operand is the trusted service's name (service_name).
-v Specifies that verbose mode is active, indicating informational messages are to be displayed to standard out. These messages include an echo of the spacl command issued, as well as the specific dcecp command or commands that are formulated and issued. If this flag is not used, informational messages are suppressed.

-x Specifies that the operation is to exclude the instance of the object residing on the control workstation

-h Displays the command syntax.

Operands

service_name Specifies the particular SP trusted service for which the object instances are associated. Valid values are found in the spsec_defaults file, located in /usr/lpp/ssp/config/spsec_defaults. If there is an overriding name in the spsec_overrides file, then use that name for this operand.

object_name Specifies the name of the object upon which the operation will occur. Valid object names are given by the SP trusted services. These can be listed using the show operation of spacl.

entry_info Specifies that the ACL entry be either added, removed, or changed on the object instances. It is specified by a concatenation of the ACL entry type information with the ACL entry key information, separated by a colon. Its form is:

type:key

For more information see the ACL Syntax section in *DCE AIX: Administrative Guide*, provided in the DCE online documentation.

new_permissions Specifies the string of permission accesses to replace the permissions part of an existing ACL entry for the object instances.

permissions Specifies the string of permission accesses used to specify a new ACL entry for the object instances.

node_group Specifies the name of a predefined node group. If -G is supplied, a global node group is assumed; otherwise a partition-bound node group is assumed.

node_list Specifies a list of nodes. Specify either a comma delimited list of node numbers, or a file containing one line of data which is a comma delimited list of node numbers. The file can also contain comment lines (preceded by a #) and lines that are all white space.

start_frame Specifies the frame number of the first node to be used for this operation. Specify a value between 1 and 250 inclusive.

start_slot Specifies a slot number of the first node to be used for this operation. Specify a value between 1 and 16 inclusive.

node_count Specifies the number of nodes to be used for this operation. The node information is added for successive nodes within a frame, and when the node count exceeds the nodes in a frame, for nodes in the next sequential frame. Specify a value between 1 and 4000 inclusive.
Description

This command enables management of DCE Access Control Lists (ACLs) for multiple instances of SP trusted service objects from anywhere on the SP. To use it, specify the SP security objects on which to operate and the type of operation you wish to perform.

To operate on a particular partition, set the environment variable SP_NAME to the particular partition name prior to issuing spacl.

Object identification information includes the name of the SP trusted service and the name of the object. If not all instances are to be operated on, you need to specify which instances by indicating where they reside. You can do this either by a node group name, a list, or a range of nodes. The ssp/hardmon service only has one instance of each object and that instance is on the control workstation. Any flags that are used to specify object instances on nodes for ssp/hardmon are ignored.

Operations to perform on SP trusted service objects include:

- **add**: Adds the specified ACL entry to the object instances.
- **change**: Replaces the permissions of an ACL entry in the object instances with a new set of permissions.
- **check**: Displays the invoker's ACL permissions in reference to the specified object instances.
- **permissions**: Returns the permission set defined by the ACL manager of the specified object.
- **remove**: Removes the specified ACL entry from the object instances.
- **show**: Shows the ACL entries for the object instances.

ACLs are composed of ACL entries. The string syntax of an ACL entry is type:key:permissions. Access to ACL objects relies solely on the ACL manager for that object. To find out what this permission set is, use the permissions operation. You need any one of the permissions set to perform this permissions operation. In order to check the permissions you currently have, you need "t" permission. In order to modify an ACL, you need "c" permission. You need any one of the permissions set to perform the show operation.

Files

If the operand node_list is used, and the node numbers are not specified after the –l flag, the command expects a filename following –l as input to this command.

Standard Output

The –h flag displays the command syntax.

The following is summarized by operation:

- **add**: If an ACL entry is added to an object's ACL and that exact entry already exists in the ACL, the entry is not duplicated, there are no errors, and an informational message is sent to standard out if the verbose flag is used. If an ACL entry is added to an object's ACL and the type and key already exists as an entry in the ACL, but with different permissions, the
permissions are changed, there are no errors, and an informational message is sent to standard out if the verbose flag is used.

If an ACL entry is added to an object's ACL and the type and key already exist as an entry in the ACL, but with different permissions, the permissions will be changed, there are no errors, and an informational message is sent to standard out if the verbose flag is used.

change If you try to change permissions for an instance that does not have an entry for the designated type and key, you will get an error.

check Displays a list of permissions that the invoker has on the specified objects.

permissions Displays the set of permissions that are associated with the specified SP trusted service's ACL manager. For example, Sysctl permissions:

{a {access: permission to access Sysctl resources}}

{c {control: permission to modify this acl}}

{t {test: permission to check access rights}}

remove If an ACL entry is removed from an object's ACL, and that entry does not exist in the ACL, the ACL remains unchanged, there are no errors, and an informational message is sent to standard out if the verbose flag is used.

show Displays each specified object instance followed by a list of its ACL entries. For example:

/.:/subsys/ssp/s1n01.xyz.com/sysctl/etc/sysctl.acl

{group spsec–admin –c–}

{group spsec–user a–t}

/.:/subsys/ssp/s1n02.xyz.com/sysctl/etc/sysctl.acl

{group spsec–admin –c–}

{group spsec–user a–t}

/.:/subsys/ssp/s1n03.xyz.com/sysctl/etc/sysctl.acl

{group spsec–admin –c–}

{group spsec–user a–t}

Standard Error

- You are not allowed to remove an entry containing the spsec–admin group (or the overriding group name, if it was overridden). If you try, the entry will not be removed, and you will receive an error message.

- You are not allowed to remove an entry containing a SP trusted service access group. If you try, the entry will not be removed, and you will receive an error message. Service access groups are defined in the spsec_defaults file.
If an operand is not defined, an error message will be displayed indicating which operand was not properly specified.

If an ACL entry is requested to be changed on a machine that is unavailable when the command is invoked, you will receive a warning message. To keep ACLs consistent, when the machine becomes available the command should be reissued for the instance on the particular machine.

Exit Values

0 Indicates successful completion of the command.

1 Indicates that an error occurred.

2 Indicates that a warning occurred.

Security

- All users can display the command syntax (-h).
- Only users with “c” access permission can successfully add, change, and remove ACL entries associated with SP trusted service object instances. By default this permission is granted only to the members of the spsec-admin group.
- Users must have “t” access permission to check their permissions on an object instance.
- To show the permissions defined for an object instance or to list ACL entries, you must have at least one access permission defined for the trusted service object instance.
- DCE ACLs are changed as a result of successfully invoking this command with the add, change, or remove operands.

Implementation Specifics

This command is part of the IBM Parallel System Support Programs (PSSP) Licensed Program Product (LPP).

Prerequisite Information

Section on DCE ACL Management for SP Trusted Services in *IBM RS/6000 Scalable POWERparallel Systems: Administrative Guide.*

Section on ACLs in *DCE for AIX: Administrative Guide* provided in the DCE online documentation.

Location

/usr/lpp/ssp/bin/spacl

Related Information

Files: spsecOverrides
Examples

1. To query whether you can change an ACL for service "sysctl" with object "etc/sysctl.acl" on the control workstation, enter:

   ```
   spacl -a check -s ssp/sysctl -o etc/sysctl.acl -n
   ```

2. To check what types of permissions the above object can have, enter:

   ```
   spacl -a permissions -s ssp/sysctl -o etc/sysctl.acl
   ```

3. To give the "sysctl-access" group access to the sysctl object "etc/sysctl.acl" for the control workstation and all nodes on the SP, and to allow the group to check permissions, enter:

   ```
   spacl -a add -s ssp/sysctl -o etc/sysctl.acl -e group:sysctl-access -p at -G
   ```
spacs_cntrl

Purpose

spacs_cntrl – Controls interactive access to SP nodes.

Syntax

spacs_cntrl [-v −s] [-a] [-d] [-h] [-l] [-f file_name] [−n netgroup_name]
{allow | block | deny | unblock} user_name ...

Flags

- d Specifies debugging mode. Displays additional messages, when available, to trace program flow and system errors.
- f file_name
 Specifies the name of a file in which the user names to be allowed or denied access are listed in a column. If no user names are specified on the command line invocation, the −f flag must be the last one used.
- h Displays the usage message when present on the command line.
- l Specifies log messages. This flag logs messages to the /var/adm/SPlogs/spacs/spacs.log file. Included are all messages regarding user states that are be displayed if the −v flag is specified, as well as any debug messages if −d is specified. (This is lowercase l, as in list.)
- s Specifies suppress mode. No error messages displayed. If −l is specified, error messages are sent to log file.
- a Specifies allow count only mode. In this mode an allow count is kept but a deny count is discarded. If more deny directives than allow directives come in, the extra deny directives are discarded, and the next allow directive will always grant access. This differs from the default behavior, which keeps track of all deny directives regardless of when they are received, and will only grant access on an allow directive if there are no outstanding deny directives.
- v Specifies verbose mode. A message is displayed for each user, containing the date, time and state of the user. User states resulting from this command include:
 Access was removed
 Access was allowed
 Access removed, user allowed
 Access removed, user denied
 Access allowed, user allowed
 Access allowed, user denied
 User name is not valid or is root.
- n netgroup_name
 Accepts one NIS netgroup name of a netgroup that contains user names in the user field. Netgroups embedded in a given netgroup name is resolved.
 allow Used by job submission systems. Requests that interactive access be granted to run a parallel job. Result depends on user state.
block Used by root user to set user state to a known denied state and remove
user state information used by job submission systems.

deny Used by job submission systems. Requests that interactive access be
denied after running parallel job. Result depends on user state.

unblock Used by root user to set user state to a known allowed state and
remove user state information used by job submission systems.

Operands

user_name
 Specifies the user name for which access is to be allowed or denied.
 Delineate with a blank space if specifying more than one user name.
 Any user names listed on the command line must follow all flags,
 including the −f file_name flag.

Description

The following types of access can be disallowed when spacs_cntrl block or deny
is used:

 login
 rlogin
 AIX rsh
 AIX rcp
 AIX rexec

The spacs_cntrl command does not allow individual types of access to be
disallowed.

Duplicate user names are removed from the user list whether entered from the
command line or in a file.

If you add a new user to a node for which all users are denied, you must reissue
spacs_cntrl to deny the new user as well.

Flags and Logging

Flags specified in combination have the following results:

None Error messages go to standard output.
−l Error messages got to standard output and are logged.
−l −s Error messages go to log only.
−s Error messages suppressed.
−l −d −v −s All messages go to log only.
−d −v −s Messages suppressed.
−d −l Debug and error messages go to standard output and log.

Use of the verbose flag (−v) causes the command to run longer due to extra
processing required to find state information.
spacs_cntrl

Security

You must have root privilege to run this command.

Location

/usr/lpp/ssp/bin/spacs_cntrl

Examples

1. To block a single user (Betty) on a single parallel node, on that node enter:
 spacs_cntrl block betty

2. To block users on multiple nodes, enter:
 a. Create the block_usr_sample file after adjusting threshold uid.
 b. Send file to all nodes in the current system partition. Note this example would require rsh privileges on the nodes.
 dsh -a rcp root@mynode:/tmp/usr.input /tmp/usr.input
 c. Issue the spacs_cntrl command to block users to all the nodes in the current system partition.
 dsh -a spacs_cntrl -f /tmp/usr.input block
spadaptrs

Purpose

spadaptrs – Enters configuration data for an additional adapter for a node or series of nodes in the System Data Repository (SDR).

Syntax

```
spadaptrs [-s {yes | no}] [-t {bnc | dix | fiber | NA | tp}]
[-r {4 | 16 | autosense}] [-f {10 | 100 | 1000 | auto}]
[-a {no | yes}]
[-n {yes | no}] [-o IP_address]
[-l node_list | -N node_group | start_frame start_slot {node_count | rest}]
adapter_name starting_IP_address netmask
```

Flags

- **-s yes | no**
 Indicates whether IP addresses should be skipped, as needed, when assigning IP addresses. If **-s no** is specified, no skipping occurs; each IP address assigned is equal to the previous address assigned plus one. If **-s yes** is specified, each IP address assigned is equal to the previous address assigned plus the difference in their respective node numbers.

- **-t bnc | dix | fiber | NA | tp**
 Designates the Ethernet type. Use **bnc** to designate a thin Ethernet. Use **dix** to designate a thick Ethernet (also called a twisted pair). Use **fiber** to designate a 1000 Base SX network. Use **NA** for an integrated Ethernet. Use **tp** to designate a twisted pair. The default is **bnc**.

- **-r 4 | 16 | autosense**
 Specifies the token-ring network speed. This is required for **tr0** and **tr1** token-ring adapters. Specify **4** for 4MB per second, **16** for 16MB per second, and **autosense** for adapters that automatically choose the network speed.

- **-d full | half | auto**
 Specifies the communication transfer as one way (**half**) or two way (**full**). The default is **auto**. If **-t fiber** is set then **-d** is set to **full**.

- **-f 10 | 100 | 1000 | auto**
 Specifies ethernet speed in megabits (Mb/s). Specify **10** for 10Mb per second, **100** for 100Mb per second or **1000** for 1000Mb per second. The default is **auto**.

- **-a no | yes**
 Indicates whether you want Address Resolution Protocol (ARP) to be used for the switch. If you want to assign IP addresses freely, as for other adapters, you must specify **yes**. If you specify **-a no**, you must not specify **-n no**. Do not use this flag unless you are specifying IP addresses for the css adapter. If you do not specify **-a**, the default is **yes**. On an SP Switch2 system, the only valid value for ARP is **yes**.
−n yes | no Indicates whether you want to use switch node numbers for assigning IP addresses for the switch. If you want to assign IP addresses freely, as for other adapters, you must specify −n no and −a yes. If you specify −n yes, you must not specify −s yes. If you specify −n yes, you must not specify your nodes with a node list. Do not use this flag unless you are specifying IP addresses for the css adapter. If you do not use −n, the default is yes.

−o ip_list Specifies a list of additional IP addresses associated with this adapter. The ip_list is a comma-delimited list of dotted decimal IP addresses. This flag is used in an HACMP environment only.

−l node_list Specifies a list of nodes to be used for this operation. Either specify a comma-delimited list of node numbers, or a file containing one line of data which is a comma-delimited list of node numbers. The file can also contain comment lines (preceded by a #) and lines that are all white space. If you use the node_list field, do not use the start_frame, start_slot, or node_count fields. (This is lowercase l, as in list.)

−N node_group Specifies a node group to be used for this operation. This node group must be bound to the current system partition.

Operands

start_frame Specifies the frame number of the first node to be used for this operation. Specify a value between 1 and 128 inclusive.

start_slot Specifies the slot number of the first node to be used for this operation. Specify a value between 1 and 16 inclusive.

Note: The start_frame and start_slot must resolve to a node in the current system partition.

node_count Specifies the number of nodes to be used for this operation. The information is added sequentially to nodes in slots within a frame and, if the slots in a frame are exhausted, to slots in the next sequential frame. Specify a value between 1 and 1024 inclusive. If rest is specified, all the nodes from start_frame start_slot to the end of your system are used.

Note: The node_count is considered to be within the current system partition.

adapter_name Specifies the name of the adapter. Valid adapter types are: ethernet (en), fddi (fi), token ring (tr), and switch (css).

starting_IP_address Specifies the IP address of the first node on the network. IP addresses of subsequent nodes are created via incrementing the IP address for each node.

Each IP address used in the operation must be resolved by the host command on the control workstation.

netmask Specifies the netmask for the network on which the adapter resides. Specify a valid IP address.
Description

Execute this command during installation of the SP to identify the IP addresses, netmask, and default route associated with node adapters other than en0. If all your IP addresses are in the same block, run this command once. If you have “holes” in your IP addressing scheme, run this command once for each block of addresses you want to assign.

You must obtain authorization using Kerberos 4 or DCE, according to the trusted services authentication methods setting. Refer to the chapter on security in *PSSP: Administration Guide*.

You can use the System Management Interface Tool (SMIT) to run the **spadaptrs** command. To use SMIT, enter:

```
smitty node_data
```

and select the Additional Adapter Information option.

Notes:

1. This command should be run only on the control workstation. You must be logged into the control workstation as root to execute this command.

2. After running this command, you must issue the `syspar_ctrl -r` command to refresh system partition-sensitive subsystems in each system partition where node customization was performed. Subsystems like `hats`, `hb`, and `hr` need to be refreshed whenever nodes or adapters are added or deleted.

3. Any changes made will not take effect on the nodes until they are customized.

Security

You must have root privilege and write access to the SDR to run this command.

Location

`/usr/lpp/ssp/bin/spadaptrs`

Related Information

Commands: `syspar_ctrl`

Examples

1. If you specify the `-s` flag to skip IP addresses when setting the `css0` switch addresses, you must also specify `-n no` to not use switch numbers for an IP address assignment. You must specify `-a yes` to use ARP.

 `spadaptrs -s yes -n no -a yes 1 1 30 css0 129.33.34.1 255.255.255.0`

2. The following example configures the Gigabit Ethernet adapter as (en1) on node (7) following the guidelines of: Adapter Type = `fiber`; Duplex = `full`; Adapter Speed = `1000`.

 `spadaptrs -t fiber -f 1000 -d full -l 7 en1 129.33.34.1 255.255.255.0`
spapply_config

Purpose

spapply_config – Applies a system partition configuration to the SP system.

Syntax

Flags

-h Displays usage information. If this command is issued with the -h flag, the syntax description is displayed to standard output and no other action is taken (even if other valid options or operands are entered with the -h flag).

-v Verifies, but does not apply, the specified configuration layout. With this option, the command:
 • Checks the contents of each custom file in the specified layout to ensure that the required stanza entries exist
 • Describes which system partitions would be changed and which would be unchanged by applying the specified configuration layout
 • Lists all nodes in the changed system partitions which are not shutdown

-A Archives the System Data Repository (SDR). With this flag, a copy of the SDR prior to applying the configuration is saved using the SDRArchive command.

-F Corrects recoverable errors encountered in the IBM Virtual Shared Disk subsystem in the application of the specified configuration layout. Irrecoverable errors encountered cause the command to terminate prior to applying the specified layout.

-q Specifies quiet mode. This option suppresses all status messages as well as the output from most internally called commands. The list of changed and unchanged system partitions, the list of nodes in changed system partitions which are not shutdown, and any warning or error messages are still displayed with this option.

Operands

config_dir Specifies the directory name for a configuration directory.

layout_dir Specifies the directory name for a layout directory within the configuration directory.

Description

The spapply_config command is valid only on systems with no switch or with an SP switch. The command is not valid on a system with an SP Switch2 switch, or on clustered enterprise servers.

The command functions in two phases: verification and application. Before applying a new system partition configuration, the administrator should back up the
SP system SDR. This can be accomplished by using either the SDR Archive command or by using the `-A` flag on `spapply_config`. If your system has an SP switch, the Eunpartition command must be run before applying a new system partition configuration. Otherwise there will be unpredictable results in the new system partitions. Refer to the “Managing System Partitions” chapter in PSSP: Administration Guide for additional information.

The layout directory contains one system partition directory for each system partition in the configuration. Each partition directory contains the switch topology file and nodelist file. It also contains the custom file (created and updated by the spcustomize_syspar command). The `spapply_config` command verifies that these files exist. It also verifies the contents of the custom file. If an error is encountered in this verification phase, the command issues an appropriate message and terminates without attempting to apply a configuration layout that is not valid. As part of its verification phase, this command also calls the verparvsd command to determine the impact on the IBM Virtual Shared Disk subsystem of applying the specified configuration layout. If any errors or warnings are returned from `verparvsd`, the `spapply_config` command reports those messages and stops. The `-F` flag can be used to alter this behavior by correcting recoverable IBM Virtual Shared Disk errors encountered in the analysis of the IBM Virtual Shared Disk subsystem.

As part of its processing, `spapply_config` displays to standard output the list of changed system partitions and the list of unchanged system partitions. A changed system partition is a currently-defined partition which will be changed in some way by the application of the specified configuration layout. Nodes in changed system partitions should be shutdown prior to applying that configuration. Conversely, an unchanged system partition is a currently-defined partition which will be unchanged by the application of the specified configuration layout. Nodes in unchanged system partitions can remain in operation during the application of this configuration layout. The `spapply_config` command issues the Eannotator, Eprimary, and Etopology commands as necessary.

The `spapply_config` command issues status messages which track the progress of operation to standard output. These messages along with the lists of changed and unchanged system partitions can be suppressed by the using the `-q` flag.

In the event that `spapply_config` encounters an error during the application phase, a descriptive error message is displayed and the command stops. In this case, it will be necessary to restore the SP SDR and the system partition-sensitive subsystems (for example, hats, hb, and hr) to their previous state by using the sprestore_config command.

Note: Due to system partitioning changes, your SP_NAME environment variable may no longer be set to a valid system partition name. To get a list of valid system partition names, enter the splst_syspars -n command. Then verify that your SP_NAME environment variable is either unset or set to one of the system partition names in the list.
spapply_config

Files

| nodelist | Contains a list of switch node numbers contained in a system partition (used internally, not by end users). |
| topology | Contains the wiring configuration information for switch-to-switch and node-to-switch cabling in a switch network. This information is used during switch initialization. |

Security

You must have root privilege and write access to the SDR to run this command.

Related Information

Commands: Eunpartition, SDRArchive, spcustomize_syspar, spdisplay_config, sprestore_config, spverify_config, syspar_ctrl, verparvsd

Files: nodelist, topology

Location

/usr/lpp/ssp/bin/spapply_config

Examples

1. To apply the system partition configuration represented by the config.4_12/layout.2 layout directory, enter:

 spapply_config config.4_12/layout.2

2. To check (but not apply) the system partition configuration represented by the config.8_8/layout.1 layout directory, enter:

 spapply_config -v config.8_8/layout.1
spauthconfig

Purpose

spauthconfig – Installs and configures a node based on selected authentication methods. The command (called from /etc/rc.sp and psspfb_script) runs each time a node boots.

Syntax

spauthconfig [-h] [-I]

Flags

-h Displays the command syntax.
-I Used during the initial installation of a node.

Operands

None.

Description

You must run setupdce on the control workstation prior to running spauthconfig on a node. The spauthconfig command installs the DCE LPP as a client, if required. The node is added to the cell where the control workstation resides. It runs config.dce --local to configure the local piece of DCE client code. It creates or updates the local authorization files by calling updauthfiles, and sets the authentication methods and SP Trusted Services methods. The command adds an rc.dce entry to the /etc/inttab file so DCE will start on each boot. If DCE is no longer a selected authentication method this entry will be removed (only if the command added the entry). If DCE is selected, create_keyfiles will be run to create any service keyfiles required by the specified node. Prior to running create_keyfiles, this program will copy the spsecOverrides file from the control workstation.

The command may be run manually to update the node to pick up any changes to the authentication configuration that occurred on the control workstation. This command is similar to the process run on the control workstation except this is automated and relies on information in the SDR to control program flow. The ODM will be updated based on authentication methods set in the SDR.

Files

input: SDR database
ODM database
.rhosts
.klogin
.k5login

output: Log file created in /var/adm/SPlogs/auth_install/log
SDR database
ODM database
spauthconfig

| .rhosts |
| .klogin |
| .k5login |
| /etc/inittab |

Exit Values

- **0**: Indicates successful completion of the command.
- **1**: Indicates errors occurred. Review any reported errors either on the console or in the Log file.

Security

Root authority is required to run this command.

Location

`/usr/lpp/ssp/bin/spauthconfig`

Related Information

Commands: `chauthent`, `chauthts`, `create_keyfiles`, `lsauthent`, `upauthfiles`

File: `/etc/inittab`

Examples

This command may be run locally by the user, but generally will be run at boot time out of the `/etc/rc.sp` file. The following example will run the command on the local node:

`/usr/lpp/ssp/bin/spauthconfig`
spbootins

Purpose

spbootins – Enters boot/install configuration data for a node or series of nodes in the System Data Repository (SDR).

Syntax

spbootins { -c volume_group_name | -r { install | customize | disk | maintenance | diag | migrate }}

[-s { yes | no }] { start_frame start_slot { node_count | rest } | -l
node_list }

Flags

-c volume_group_name
 Specifies the name of the volume group to select for the target nodes. This volume group will become the current volume group for subsequent installations, and customizations.

-r
 Specifies the boot/install server's response to the bootp request from the nodes.

 install
 Indicates that you should specify install if you want the server to perform a network install (overwrite install) and customize each node.

 customize
 Indicates that you should specify customize if you want the server to place node-specific configuration information from the SDR into each node's local Object Data Management (ODM).

 disk
 Indicates that you should specify disk if you want the server to ignore the bootp request and have each node boot from its local disk.

 maintenance
 Indicates that you should specify maintenance to have each node boot in a prompted mode.

 A node that boots in a prompted mode, comes up with the “Install/Maintenance” panel. From this panel, you can choose option 3 to start a limited function maintenance shell. You may access files in the root volume group (rootvg) by choosing the panels to mount the root volume group and enter a shell.

 diag
 Sets the bootp_response to diag. The next time the node is network booted, a diagnostic menu will be displayed on the tty. From the diagnostic menu, you can execute simple or advanced diagnostics on the node or execute service aids. Service aids allow you to perform such tasks as formatting and certifying the hard drive on the node, or downloading microcode to a device attached to the node. When diagnostics are complete, set the bootp_response back to disk and reboot the node.
spbootins

The `diag` parameter can be used only on the IBM Parallel System Support Programs for AIX (PSSP) Version 2 Release 1 and later nodes. PSSP Version 1 Release 2 nodes cannot run remote diagnostics.

migrate

Indicates that you want the server to perform a migration installation on the specified nodes. See the *PSSP: Installation and Migration Guide* for more details on the migration installation method.

−s no | yes

Indicates whether `setup_server` should be run on the boot servers (including the control workstation) of the indicated nodes. If you specify `−s no`, `setup_server` is not run on the node’s boot server, and it must be run later to make any necessary changes to installation-related files. Specify `−s yes` if you have finished entering boot/install/usr server data during your initial installation or if you are changing data after the initial installation. Otherwise, specify `d5−s no`. If `−s` is not specified, the default is `−s yes`.

Note: In order to run the `spbootins -s yes` command, you must have SDR write authority and be authorized to perform an `rsh` to the target nodes. Therefore, your user ID must be in the appropriate authorization file (.k5login, .klogin, or .rhosts) on the target nodes.

−l node_list

Specifies a list of nodes to be used for this operation. Either specify a comma-delimited list of node numbers, or a file containing one line of data which is a comma-delimited list of node numbers. The file can also contain comment lines (preceded by a #) and lines that are all white space. If you use the `node_list` field, do not use the `start_frame`, `start_slot`, or `node_count` fields. (This is lowercase l, as in list.)

Operands

start_frame

Specifies the frame number of the first node to be used for this operation. Specify a value between 1 and 128 inclusive.

start_slot

Specifies the slot number of the first node to be used for this operation. Specify a value between 1 and 16 inclusive.

Note: The `start_frame` and `start_slot` must resolve to a node in the current system partition.

node_count

Specifies the number of nodes to be used for this operation. The node information is added for successive nodes within a frame. If the count of nodes causes the nodes in a frame to be exhausted, the operation continues for nodes in the next sequential frame. Specify a value between 1 and 1024 inclusive. If `rest` is specified, all the nodes from `start_frame start_slot` to the end of your system are used.

Note: The `node_count` is considered to be within the current system partition.
Description

Use this command to select a volume group for the target nodes to use as their root volume group and to select what action to perform using that volume group the next time this node is booted or network booted. Each time this command is run, the setup_server command is run on each of the affected boot/install servers.

You can use the System Management Interface Tool (SMIT) to run the spbootins command. To use SMIT, enter:

```
smit node_data
```

and select the Boot/Install Information option.

You cannot use SMIT if you are using AFS authentication services.

Notes:

1. This command should be run only on the control workstation. You must be logged into the control workstation as root to execute this command.
2. Any changes made will not take effect on the nodes until they are customized.

Security

You must have root privilege and write access to the SDR to run this command.

Location

```
/usr/lpp/ssp/bin/spbootins
```

Examples

1. To change the root volume group for node 1 and install that volume group, enter:

   ```
   spbootins -c rootvg2 -r install -s yes -l 1
   ```

2. To customize nodes 3 and 7 using their current volume group, enter:

   ```
   spbootins -r customize -s yes -l 3,7
   ```
spbootlist

Purpose

spbootlist – Sets the bootlist on a node or set of nodes based on the values in the Node and Volume Group objects.

Syntax

spbootlist {start_frame start_slot (node_count | rest) | -l node_list}

Flags

-l node_list Specifies a list of nodes for this operation. This list can be a single numeric node number, or a list of numeric node numbers separated by commas.

Operands

start_frame Specifies the frame number of the first node to be used for this operation.

start_slot Specifies the slot number of the first node to be used for this operation.

Note: The start_frame and start_slot must resolve to a node in the current system partition.

node_count Specifies the number of nodes to be used for this operation. The node information is added for successive nodes within a frame. If the count of nodes causes the nodes in a frame to be exhausted, the operation continues for nodes in the next sequential frame. Specify a value between 1 and 1024 inclusive. If rest is specified, all the nodes from start_frame start_slot to the end of your system are used.

Note: The node_count is considered to be within the current system partition.

Description

The spbootlist command is used to set the bootlist on a node or set of nodes based on the values in the Node and Volume Group objects. The selected_vg attribute of the Node object will point to a unique Volume_Group object for a node. spbootlist will look at the vg_name of the Volume_Group object and determine which physical volumes are in the volume group, and set the bootlist to “ent0” followed by all the physical volumes which contain boot logical volumes. In a mirrored environment, more than one physical volume will contain a boot logical volume.
Exit Values

- **0** Indicates the successful completion of the command.
- **1** Indicates that a recoverable error occurred, some changes may have succeeded.
- **2** Indicates that an irrecoverable error occurred and no changes were made.

Security

You must have root privilege to run this command.

You must have access to the AIX Secure Remote Commands to run this command.

Implementation Specifics

This command is part of the IBM Parallel System Support Programs (PSSP) Licensed Program Product (LPP).

Location

```
/usr/lpp/ssp/bin/spbootlist
```

Related Information

Commands: `spchvgobj`

Examples

1. To set the bootlist on node one, enter:

   ```
   spbootlist -l 1
   ```

2. To set the bootlist on a list of nodes, enter:

   ```
   spbootlist -l 1,2,3
   ```
spchuser

Purpose

spchuser – Changes the attributes of an SP user account.

Syntax

spchuser attribute=value ... name

Flags

None.

Operands

attribute=value Pairs of the supported attributes and values as follows.
name Name of the user account whose information you want to change.

Supported Attributes and Values

id ID of the user specified by the name parameter.
pgrp Principle group of the user specified by the name parameter.
gecos General information about the user.
groups The secondary groups to which the user specified by the name parameter belongs.
home Host name of the file server where the home directory resides and the full path name of the directory. You can specify a host and directory in the format host:path, just specify the directory and have the host default to a value set in SMIT site environment panel or the spsitenv command, or just specify a directory and have the host default to the local machine.
login Indicates whether the user specified by the name parameter can log in to the system with the login command. This option does not change the /etc/security/user file. Instead, it alters the user password field in /etc/security/passwd.
shell Program run for the user specified by the name parameter at the session initiation.

Description

No flags are supported. Except for home, the rules for the supported attributes and values correspond to those enforced by the AIX chuser command.

You can only change the values of the supported attributes.

You can use the System Management Interface Tool (SMIT) to run the spchuser command. To use SMIT, enter:

smit spusers

and select the Change/Show Characteristics of a User option.
Security

You must have root privilege to run this command. This command is run on the control workstation only.

Location

/usr/lpp/ssp/bin/spchuser

Examples

To change the default shell to /bin/csh, and change the secondary group membership to dev and dev2 for the user account charlie:

spchuser groups=dev,dev2 shell=/bin/csh charlie
spchvgobj

Purpose

spchvgobj – Changes the contents of a Volume_Group object.

Syntax

spchvgobj -r volume_group_name [-h pv_list] [-i install_image]
[-p code_version] [-v lppsource_name] [-n boot_server]
[-c {1 | 2 | 3}] [-q {true | false}]
{start_frame start_slot {node_count | rest} | -l node_list}

Flags

-r volume_group
Specifies the root volume group name to apply the changes towards.

-h pv_list
Indicates the physical volumes to be used for installation for the volume
group specified. The root volume group is defined on the disks indicated, and all data on the disks is destroyed. The physical volumes
may be specified as logical names (such as hdisk0), hardware location
(such as 00-00-00-0,0), or connwhere (such as
ssar//012345678912345). If multiple physical volumes are specified,
separate them by commas for logical names and by colons for hardware
location and connwhere. At installation, the value for each node's pv_list
is hdisk0.

Note: IBM strongly suggests that you use the hardware location or
connwhere format. It ensures that you install on the intended
disk by targeting a specific disk at a specific location. The logical
naming of physical volumes may change depending on hardware
installed or possible hardware problems. This is especially true
when there are external drives present, as the manner in which
the device names are defined may not be obvious.

-i install_image
Specifies the name of the install image to be used for the volume group
when they are next network-installed. Specify a file in the
/spdata/sys1/install/images directory on the control workstation. At
installation, the value for each volume group's install image name is
default, which means that the default install image name for the system
partition or the system is used for each node. The default install image
name is found in the Syspar or the SP object in that order.

-p code_version
Sets the volume group's code version. Use this to indicate the PSSP
level to install on the node. The code_version value you choose must
match the directory name that the PSSP installation files are placed
under in the /spdata/sys1/install/pssplpp directory during installation.
See the PSSP: Installation and Migration Guide for more details.

-v lppsource_name
Sets the volume group's lppsource name. Use this to indicate the AIX
level to install on the node. The lppsource_name value you choose must
match the directory name you choose to place the lppsource files under
in the `/spdata/sys1/install` directory during installation. See the PSSP: Installation and Migration Guide for more details.

--n boot_server

Identifies the boot/install server for the volume groups you have specified. The boot/install server is identified by a node number. Node number 0 represents the control workstation. The value of the boot/install server at installation depends on how many frames are in your system. In a single frame system, the control workstation (node 0) is the default server for each node. In a multiple frame system, the default server for the first node in each frame is the control workstation, and the default server for the rest of the nodes in a frame is the first node in that frame.

--c copies

Specifies the number of mirrors to create for the volume group. To enable mirroring, set this to 2 or 3. Setting this to 1 disables mirroring. When enabling mirroring, be sure that there are enough physical volumes to contain all the copies of the volume group. Each copy must have at least 1 physical volume.

--q true | false

Specifies whether quorum should be enabled. If quorum is enabled, a voting scheme will be used to determine if the number of physical volumes that are up is enough to maintain quorum. If quorum is lost, the entire volume group will be taken offline to preserve data integrity. If quorum is disabled, the volume group will remain online as long as there is at least 1 running physical volume.

--l node_list

Specifies a list of nodes to be used for this operation. Specify a comma-delimited list of node numbers. If you use the -l flag, do not use the `start_frame`, `start_slot`, or `node_count` operands.

Operands

start_frame

Specifies the frame number of the first node to be used for this operation.

start_slot

Specifies the slot number of the first node to be used for this operation.

node_count

Specifies the number of nodes to be used for this operation. The node information is added for successive nodes within a frame. If the count of nodes causes the nodes in a frame to be exhausted, the operation continues for nodes in the next sequential frame. Specify a value between 1 and 1024 inclusive. If `rest` is specified, all the nodes from `start_frame` `start_slot` to the end of your system are used.

Note: The `node_count` is considered to be within the current system partition.
spchvgobj

Description
This command is used to change the configuration information for an existing volume group on a node or group of nodes in the System Data Repository (SDR). When this command is run and the SDR is changed, setup_server must be run on the affected boot/install servers and affected nodes may need to be customized or installed to apply the changes. Certain volume group information such as mirroring and the pv_list may be updated using the spmirrorvg or spunmirrorvg commands.

Exit Values
0 Indicates the successful completion of the command.
1 Indicates that a recoverable error occurred, some changes may have succeeded.
2 Indicates that an irrecoverable error occurred and no changes were made.

Security
You must have root privilege and write access to the SDR to run this command.

Implementation Specifics
This command is part of the IBM Parallel System Support Programs (PSSP) Licensed Program Product (LPP).

Location
/usr/lpp/ssp/bin/spchvgobj

Related Information
Commands: spbootins, spmirrorvg, spmkvgobj, sprmvgobj, spunmirrorvg

Examples
1. To specify node 1 as the boot/install server for the volume group "rootvg" on nodes 2-16, enter:
 spchvgobj -r rootvg -n 1 1 2 15
2. To enable mirroring with 2 copies, no quorum and 2 SSA physical volumes for the volume group "rootvg" on nodes 2 and 3, enter:
 spchvgobj -r rootvg -c 2 -q false -h \
 ssar//567464736372821:ssar//67464736372821 -l 2,3
spcustomize_syspar

Purpose

spcustomize_syspar – Enters or verifies customization information to be used in creating a system partition.

Syntax

```
spcustomize_syspar [-h] [-n syspar_name | IP_address]
[-l PSSP_code_level]
[-d default_install_image | default]
[-e primary_node | default]
[-b backup_primary_node | default]
[-i [dce],[ k4] | none]
[-r [dce],[ k4],[std]]
[-m {[k5],[ k4],[std]}]
[-t [dce],[ compat] | none]
config_dir/layout_dir/syspar_dir | fully_qualified_path_name
```

Flags

- **-h**
 Displays usage information.

- **-n syspar_name | IP_address**
 Specifies the system partition name (the control workstation host name or host name alias) or IP address (which corresponds to the system partition name) associated with this system partition.

- **-l PSSP_code_level**
 Specifies the IBM Parallel System Support Programs for AIX (PSSP) code level for the system partition. For mixed system partitions, partitions that have multiple supported levels of PSSP coexisting in the same partition, should be set to the minimum (earliest) level of PSSP in this system partition.

- **-d default_install_image | default**
 Specifies the default install image for the system partition or default to direct the system to use the system-wide default install image. Refer to PSSP: Installation and Migration Guide for additional information on the default install image.

- **-e primary_node | default**
 Specifies the primary node number for switch operations or default to direct the system to automatically set the default which is the first node in the node list.

- **-b backup_primary_node | default**
 Specifies the primary backup node number for switch operations or default to direct the system to automatically set the default which is the last node in the node list. This flag is valid only on SP Switch systems.

- **-i**
 Sets security capabilities for the nodes in the specified partition.

- **-r**
 Authentication Methods for AIX Remote Commands.
spcustomize_syspar

- Enables Authentication Methods for AIX Remote Commands.
- Enables Authentication Methods for SP Trusted Services.

Operands

config_dir Specifies the directory name for a configuration directory.
layout_dir Specifies the directory name for a layout directory within the configuration directory.
syspar_dir Specifies the directory name for a system partition directory within the layout directory.
fully_qualified_path_name Specifies the fully qualified path name to a system partition directory.

Description

The spcustomize_syspar command is valid only on systems with no switch or with an SP switch. The command is not valid on a system with an SP Switch2 switch, or on clustered enterprise servers.

Use this command to customize a system partition customization file (custom) or to display the previously-entered customization information.

For a specified system partition, the customization data can be entered with the optional parameters. If the custom file does not exist, you can create one by specifying the -n and -I flags. The -d and -e flags are optional when creating a custom file. If -d and -e are not specified, the system automatically specifies default to set the default install image and primary node in the newly-created custom file. Once the custom file is created, any combination of the optional parameters can be used to update the contents of the file.

If none of the optional parameters are specified with the spcustomize_syspar command, the contents of the customization file for the specified system partition are displayed to standard output as in the spdisplay_config command with the -c flag.

Exit Values

0 Indicates the successful completion of the command.
-1 Indicates that the command was unsuccessful.

Security

You must have root privilege to run this command.

Location

/usr/lpp/ssp/bin/spcustomize_syspar
Related Information

Commands: spapply_config, spdisplay_config, spverify_config

Files: nodelist, topology

Examples

1. To display the customization information for the specified system partition, enter:

 spcustomize_syspar config.4_12/layout.1/syspar.1

 syspar-name: my-partition-1
 IP-address: 9.102.55.301
 PSSP-code-level: PSSP-2.2
 default-install-image: bos.4.1.5
 primary-node: 9
 backup-primary-node: 16

2. To modify the system partition name, PSSP code level, and primary node information for the specified system partition, enter:

 spcustomize_syspar -n my-new-partition-name -l PSSP-2.2 -e 7 config.4_12/layout.1/syspar.1

3. To use the default primary node information for the specified system partition, enter:

 spcustomize_syspar -e default config.4_12/layout.1/syspar.1
Purpose

spcw_addevents – Identifies the High Availability Cluster Multiprocessing (HACMP) event scripts supplied by the High Availability Control Workstation (HACWS) to the AIX High Availability Cluster Multi-Processing (HACMP) software.

Syntax

spcw_addevents

Flags

None.

Operands

None.

Description

HACWS customizes the recovery of control workstation services by providing HACMP event scripts, which get executed by the HACMP software. The spcw_addevents command is a shell script which identifies the HACMP event scripts to HACMP, without requiring the system administrator to go through all the equivalent HACMP SMIT panels.

Exit Values

0 Indicates the successful completion of the command.

nonzero Indicates that an error occurred.

Security

You must have root privilege to run this command.

Prerequisite Information

Refer to PSSP: Administration Guide for additional information on the HACWS option.

Location

/usr/sbin/hacws/spcw_addevents
spcw_apps

Purpose

spcw_apps – Starts or stops control workstation applications in a High Availability Control Workstation (HACWS) configuration.

Syntax

spcw_apps {-u | -d} [-i | -a]

Flags

- **u** Starts control workstation applications on the local host.
- **d** Stops control workstation applications on the local host.
- **i** Sets the local host to be the inactive control workstation before starting or after stopping control workstation applications.
- **a** Sets the local host to be the active control workstation before starting or after stopping control workstation applications.

Operands

None.

Description

The control workstation services are started at boot time on a regular control workstation via entries in /etc/inittab. An HACWS configuration requires the capability to stop control workstation services on one control workstation and restart them on the other. The install_hacws command removes most of the control workstation entries from /etc/inittab, and the spcw_apps command is provided as a means to stop and start control workstation services in the HACWS configuration. In addition, the spcw_apps command can be used to make the inactive control workstation act as a client of the active control workstation to keep the two control workstations synchronized.

Note: The High Availability Cluster Multiprocessing (HACMP) event scripts and installation scripts supplied with the High Availability Control Workstation (HACWS) option of the IBM Parallel System Support Programs for AIX (PSSP) will start or stop the control workstation applications during a fail over or reintegration. The administrator should not normally have to start or stop the control workstation applications.

Exit Values

0 Indicates the successful completion of the command.

nonzero Indicates that an error occurred.
Prerequisite Information

Refer to *PSSP: Administration Guide* for additional information on the HACWS option.

Location

```
/usr/sbin/hacws/spcw_apps
```

Related Information

Command: `install_hacws`

Examples

In the following example, assume that the primary control workstation is currently the active control workstation. This means that the primary control workstation is providing control workstation services to the SP system. When a control workstation failover occurs, the AIX High Availability Cluster Multi-Processing (HACMP) software moves the control workstation network and file system resources from the primary to the backup control workstation. In addition, control workstation applications must be stopped on the primary and restarted on the backup. HACWS provides the `spcw_apps` command to HACMP as the method to accomplish this. The HACMP software issues the following command on the primary:

```
spcw_apps -di
```

This command stops control workstation services on the active primary and then sets the primary to be the inactive control workstation. Next, the HACMP software issues the following command on the backup:

```
spcw_apps -ua
```

This command sets the backup to be the active control workstation and then starts the control workstation services on the backup. Finally, the HACMP software issues the following command on the primary:

```
spcw_apps -u
```

This command configures the primary to be a client of the backup (which is active) control workstation.
spdeladap

Purpose

spdeladap – Removes configuration data for adapters for a node or series of nodes from the System Data Repository (SDR).

Syntax

spdeladap {start_frame start_slot node_count | -N node_group | -l node_list}
adapter_name

Flags

-N node_group Specifies a node group to be used for this operation. This node group must be bound to the current system partition.

-l node_list Specifies a list of nodes to be used for this operation. Either specify a comma-delimited list of node numbers, or a file containing one line of data which is a comma-delimited list of node numbers. The file can also contain comment lines (preceded by a #) and lines that are all white space. If you use the node_list field, do not use the start_frame, start_slot, or node_count fields. (This is lowercase l, as in list.)

Operands

start_frame Frame number of first node to be used for this operation. Specify a value between 1 and 128 inclusive.

start_slot Slot number of first node to be used for this operation. Specify a value between 1 and 16 inclusive.

Note: The start_frame and start_slot must resolve to a node in the current system partition.

node_count Number of nodes to be used for this operation. The adapter information is deleted for successive nodes within a frame and, when the count of nodes causes the nodes in a frame to be exhausted, for nodes in the next sequential frame. Specify a value between 1 and 1024 inclusive.

Note: The node_count is considered to be within the current system partition.

adapter_name Specifies the name of the adapter. Valid adapter types are: ethernet (en), fddi (fi), token ring (tr), and switch (css).

Description

Use this command to remove configuration data for adapters for a node or series of nodes from the SDR. You cannot use this command to delete data for the en0 adapter. If you want to remove configuration data for the en0 adapter, you should use the spdelinode command.

You can use the System Management Interface Tool (SMIT) to run the spdeladap command. To use SMIT, enter:
spdeladap

smit delete_data

and select the Delete Adapter Information option.

Notes:
1. This command should be run only on the control workstation. You must be logged into the control workstation as root to execute this command.
2. After running this command, you must issue the `syspar_ctrl -r` command to refresh system partition-sensitive subsystems in each system partition where node customization was performed. Subsystems like `hats`, `hb`, and `hr` need to be refreshed whenever nodes or adapters are added or deleted.
3. Any changes made will not take effect on the nodes until they are customized.

Security
You must have root privilege and write access to the SDR to run this command.

Location
/usr/lpp/ssp/bin/spdeladap

Related Information
Commands: `syspar_ctrl`

Examples
This example deletes `tr0` adapter information for the first two nodes in frame 2:
spdeladap 2 1 2 tr0
spdelexp

Purpose

spdelexp -- Removes configuration data for node expansion units from the System Data Repository (SDR).

Syntax

spdelexp {start_frame start_slot expansion_count | -x expansion_list | -l associated_node_list | -N node_group}

Flags

-x expansion_list Specifies a list of node expansion units to be used for this operation. Either specify a comma-delimited list of expansion numbers, or a file containing one line of data which is a comma-delimited list of expansion numbers. The file can also contain comment lines (preceded by a #) and lines that are all white space. If you use the expansion_list field, do not use the start_frame, start_slot, or expansion_count fields, the -l flag or the -N flag.

-l associated_node_list Specifies a list of nodes whose attached node expansion units are to be used for this operation. Either specify a comma-delimited list of node numbers, or a file containing one line of data which is a comma-delimited list of node numbers. The file can also contain comment lines (preceded by a #) and lines that are all white space. If you use the associated_node_list field, do not use the start_frame, start_slot, or expansion_count fields, the -x flag or the -N flag.

-N node_group Specifies a node group containing nodes whose attached node expansion units are to be used for this operation. If you use the node_group field, do not use the start_frame, start_slot, or expansion_count fields, the -x flag or the -l flag.

Operands

start_frame Specifies the frame number of the first expansion unit to be used for this operation. Specify a value between 1 and 128 inclusive.

start_slot Specifies the slot number of the first expansion unit to be used for this operation. Specify a value between 1 and 16 inclusive.

expansion_count Specifies the number of expansion units to be used for this operation. The expansion information is removed for successive node expansion units within a frame and, when the count of expansion units exceeds those in a frame, processing continues with the next sequential frame. Specify a value between 1 and 1024 inclusive.

Note: The start_frame and start_slot must resolve to an expansion unit in the current system partition.
spdelexp

Note: The *expansion_count* is considered to be within the current system partition.

Description

Execute this command to remove configuration data for a node expansion unit or series of units from the SDR. All the nodes to be deleted must be shut down. The *expansion_number* is also removed from the *expansion_list* of the node that it is connected to.

This command can be used to delete node expansion units in the current system partition. To delete expansion units in another system partition, you must make it your current system partition. Node expansion units reside in the system partition that their associated node resides in, or in the default system partition if the node expansion unit is not connected to a node.

You can use the System Management Interface Tool (SMIT) to run the spdelexp command. To use SMIT, enter:

```
smit delete_data
```

and select the Delete Node Expansion Information option.

Note: This command should be run only on the control workstation.

Security

You must have root privilege and write access to the SDR to run this command.

Location

```
/usr/lpp/ssp/bin/spdelexp
```

Related Information

Commands: *syspar_ctrl*

Examples

1. This example removes configuration data for node expansion unit 2 from the SDR:

   ```
   spdelexp -x 2
   ```

2. This example deletes the first two node expansion units in frame 2:

   ```
   spdelexp 2 1 2
   ```

3. To delete the node expansion units connected to node 5, enter

   ```
   spdelexp -l 5
   ```
Purpose

spdelfram – Removes configuration data for a frame or series of frames from the System Data Repository (SDR).

Syntax

```
spdelfram [-c] {start_frame frame_count | -l frame_list}
```

Flags

- `-c` Specifies that switch port number verification should be bypassed. Use this flag when reconfiguring your existing SP system to a system of Clustered enterprise servers.

- `-l frame_list` Specifies a list of frames to be used for this operation. `frame_list` is a comma-delimited list of frame numbers. If you use this flag, do not use the `start_frame` and `frame_count` operands.

Operands

- `start_frame` Specifies the frame number to be used for this operation. Specify a value between 1 and 128 inclusive.

- `frame_count` Specifies the number of frames to be used for this operation. Specify a value between 1 and 128 inclusive.

Description

Execute this command to remove configuration data for a frame or series of frames from the SDR. Any node information for nodes on the frames is also removed, as well as adapter information for any of the nodes on the frames. All the nodes on all the frames to be deleted must be shut down. A frame containing a node acting as a server for another node on a frame not being removed with this operation cannot be removed with this command. To remove a frame containing such a node, you must configure a different `boot/install` or `/usr` server for the client nodes on the other frames. If a definition for a node being removed exists in `/etc/switch.info`, this definition will be removed from that file. If a non-SP frame is using a switch port number within an SP frame, that SP frame may not be deleted.

All node expansion information is removed from the SDR for expansion units that reside on frames being deleted, or that reside on other frames and are connected to nodes residing on frames being deleted. These node expansion units must be shut down before invoking this command.

The **spdelfram** command removes all extension node and extension node adapter information for extension nodes whose node numbers are within the range of node numbers represented by a frame being deleted.

You can use the System Management Interface Tool (SMIT) to run the **spdelfram** command. To use SMIT, enter:

```
smit delete_data
```
and select the Delete Frame Information option.

Notes:

1. This command should be run only on the control workstation. You must be logged into the control workstation as root to execute this command.

2. You should stop the Resource Manager before the command and start it again afterward.

3. There must be only one system partition defined when deleting a frame. This is to aid in the configuration of the system once the frame is deleted.

4. Use the \(-c\) flag only when you are reconfiguring your system to a system of Clustered enterprise servers. Using this flag for any other `spdelfram` operation causes configuration errors to occur.

When a frame is deleted (if DCE is configured on the control workstation), the `hmdceobj` command will run to remove a Hardware Monitor DCE objects, if defined for this frame or slots in the frame.

Security

You must be logged onto the control workstation and have root privilege to run this command. You must also have Hardware Monitor VFOP authority and SDR write access to run this command.

Location

`/usr/lpp/ssp/bin/spdelfram`

Examples

To delete frames 2, 3, and 4, enter:

```
spdelfram 2 3
```
spdelnode

Purpose

`spdelnode` – Removes configuration data for a node or nodes from the System Data Repository (SDR).

Syntax

```
spdelnode {start_frame start_slot node_count | -N node_group | -l node_list}
```

Flags

- `-N node_group` Specifies a node group to be used for this operation. This node group must be bound to the current system partition.

- `-l node_list` Specifies a list of nodes to be used for this operation. Either specify a comma-delimited list of node numbers, or a file containing one line of data which is a comma-delimited list of node numbers. The file can also contain comment lines (preceded by a #) and lines that are all white space. If you use the `node_list` field, do not use the `start_frame`, `start_slot`, or `node_count` fields. (This is lowercase l, as in list.)

Operands

- `start_frame` Specifies the frame number of the first node to be used for this operation. Specify a value between 1 and 128 inclusive.

- `start_slot` Specifies the slot number of the first node to be used for this operation. Specify a value between 1 and 16 inclusive.

 Note: The `start_frame` and `start_slot` must resolve to a node in the current system partition.

- `node_count` Specifies the number of nodes to be used for this operation. The node information is added for successive nodes within a frame and, when the count of nodes causes the nodes in a frame to be exhausted, for nodes in the next sequential frame. Specify a value between 1 and 1024 inclusive.

 Note: The `node_count` is considered to be within the current system partition.

Description

Execute this command to remove configuration data for a node or series of nodes from the SDR. Any adapter information associated with the node is also removed. All the nodes to be deleted must be powered off. A node acting as a server for another node cannot be removed with this command. To remove a node which is a server, you must configure a different boot/install server for the client nodes.

All node expansion information is removed from the SDR for expansion units that are connected to nodes being deleted. These node expansion units must be shut down before invoking this command.
This command can be used to delete nodes in the current system partition. To delete nodes in another system partition, you must make it your current system partition.

You can use the System Management Interface Tool (SMIT) to run the `spdelnode` command. To use SMIT, enter: `smit delete_data` and select the Delete Node Information option.

Notes:
1. This command should be run only on the control workstation.
2. After running this command, you must issue the `syspar_ctrl -r` command to refresh system partition-sensitive subsystems in each system partition where node customization was performed. Subsystems like `hats`, `hb`, and `hr` need to be refreshed whenever nodes or adapters are added or deleted.

When a node is deleted (if DCE is configured on the control workstation), the `hmdeobj` command will run to remove a Hardware Monitor DCE object if it is defined for this node.

Security

You must be logged onto the control workstation and have root privilege to run this command. You must also have Hardware Monitor VFOP authority and SDR write access to run this command.

Related Information

Commands: `syspar_ctrl`

Location

`/usr/lpp/ssp/bin/spdelnode`

Examples

1. This example deletes the first two nodes in frame 2:
   ```
   spdelnode 2 1 2
   ```

2. To delete the nodes in the node group `temp_nodes`, enter:
   ```
   spdelnode -N temp_nodes
   ```
spdisplay_config

Purpose

spdisplay_config – Displays system partition configuration information which can be used to partition an SP system.

Syntax

spdisplay_config [-h] [-R] [-d] [-c] [-n] [config_dir /layout_dir
[syspar_dir]] | fully_qualified_path_name]

Flags

-h Displays usage information. If this command is issued with the -h flag, the syntax description is displayed to standard output and no other action is taken (even if other valid options are entered with the -h flag).

-R Recursively displays information for all levels below the specified directory level.

d Displays the description file (layout.desc) for the specified layout. This flag is valid only if the specified directory (or any subdirectories below it if -R is specified) is a layout directory.

c Displays the customization file (custom) for the specified system partition. This flag is valid only if the specified directory (or any subdirectories below it if -R is specified) is a system partition directory.

-n Displays the node list file (nodelist) for the specified system partition. This flag is valid only if the specified directory (or any subdirectories below it if -R is specified) is a system partition directory.

Operands

config_dir Specifies the directory name for a configuration directory.

layout_dir Specifies the directory name for a layout directory.

syspar_dir Specifies the directory name for a system partition directory.

fully_qualified_path_name Specifies the fully qualified directory path for a configuration directory, layout directory, or system partition directory.

Description

The spdisplay_config command is valid only on systems with no switch or with an SP switch. The command is not valid on a system with an SP Switch2 switch.

This command displays system partition information stored in the system partition information directory structure. Depending on the option and operand specified, the information displayed is at the configuration, layout, or system partition level. The output of this command is normally restricted to the SP on which it is executed. To display information for configurations applicable to SP systems other than the one on which it is executed, a fully qualified path name must be provided. This command does not display current system partition information (that function is provided with the splstdata command). If the command is issued without specifying a directory path name, the list of all valid configuration directories for the SP on
which the command is running is displayed. If none of the file option flags (-c, -d, -n) are entered, the names of the files and subdirectories located on (and all levels below if -R is specified) the specified directory are displayed. If any of the file option flags are entered, the contents of the requested files are displayed instead.

Files

<table>
<thead>
<tr>
<th>File</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>custom</td>
<td>Contains customization information for a partition (such as, partition name, IP address, code level, and so on).</td>
</tr>
<tr>
<td>layout.desc</td>
<td>Describes the node slot breakdown for a partitioning configuration (which nodes in which partition).</td>
</tr>
<tr>
<td>nodelist</td>
<td>Contains a list of switch node numbers contained in a system partition (used internally, not by end users).</td>
</tr>
<tr>
<td>topology</td>
<td>Contains the wiring configuration information for switch-to-switch and node-to-switch cabling in a switch network. This information is used during switch initialization.</td>
</tr>
</tbody>
</table>

Security

You must have root privilege to run this command.

Related Information

Commands: `spapply_config`, `spcustomize_syspar`, `splstdata`, `spverify_config`

Files: `nodelist`, `topology`

Location

`/usr/lpp/ssp/bin/spdisplay_config`

Examples

1. To display all valid configurations for this SP, enter:

   ```
   spdisplay_config
   ```

 `config.2_14`

 `config.4_12`

 `config.8_8`

2. To display the list of layout directory names for a specific configuration directory to standard output, enter:

   ```
   spdisplay_config config.4_12
   ```

 `layout.1`

 `layout.2`

 `layout.3`

3. To display the name of the file describing the layout and the list of system partition directory names for a specific layout directory to standard output, enter:
4. To display the list of files located in a specific system partition directory to standard output, enter:

```
spdisplay_config config.4_12/layout.2/syspar.1
```

custom
	nodelist

topology

If the -c flag is also supplied, only the customization information is displayed for that system partition. For example:

```
spdisplay_config -c config.4_12/layout.2/syspar.1
```

custom:

```
syspar-name: my-partition-1
IP-address: 9.102.55.301
primary-node: 9
default-install-image: bos.4.1.5
PSSP-code-level: PSSP-2.2
```

If the -n flag is supplied, only the list of nodes is displayed for that system partition. For example:

```
spdisplay_config -n config.4_12/layout.2/syspar.1
```

nodelist:

```
switch node numbers: 4 5 6 7 8 9 10 11 12 13 14 15
node numbers: 5 6 7 8 9 10 11 12 13 14 15 16
```

All of the commands can be issued with the -R flag to recursively display the information on the specified directory and all the levels below it.

To display the entire system partition information directory structure for the configuration on this SP, enter:
Another example to recursively display all of the customization information for the \texttt{config.4_12} on this SP follows:
spdisplay_config -R -c config.4_12
layout.1/syspar.1/custom:
 syspar-name: my-partition-1
 IP-address: 9.102.55.301
 primary-node: 9
 default-install-image: bos.4.1.5
 PSSP-code-level: PSSP-2.2

layout.1/syspar.2/custom:
 syspar-name: my-partition-2
 IP-address: 9.102.55.302
 primary-node: 9
 default-install-image: bos.4.1.5
 PSSP-code-level: PSSP-2.2

layout.2/syspar.1/custom:
 syspar-name: my-partition-1
 IP-address: 9.102.55.501
 primary-node: 9
 default-install-image: bos.4.1.5
 PSSP-code-level: PSSP-2.2

layout.2/syspar.2/custom:
 syspar-name: my-partition-2
 IP-address: 9.102.55.502
 primary-node: 9
 default-install-image: bos.4.1.5
 PSSP-code-level: PSSP-2.2

5. To display all valid configurations for an SP, specify the fully qualified path name to its system partition information directory. For example:
spdisplay_config

spdisplay_config /spdata/sys1/syspar_configs/lnsb0isb
config.16
config.4_12
config.4_4_4
config.4_4_8
config.8_8
spethernt

Purpose

spethernt – Enters configuration data for a node or series of nodes in the System Data Repository (SDR).

Syntax

```
spethernt [-s {yes | no}] [-t {bnc | dix | tp}]
   [-d {full | half | auto}] [-f {10 | 100 | auto}]
   {start_frame start_slot | node_count | rest} [-N node_group]
   [-l node_list] starting_IP_address netmask default_route
```

Flags

- `-s yes | no` Indicates whether IP addresses should be skipped, as needed, when assigning IP addresses. If `-s no` is specified, no skipping occurs; each IP address assigned is equal to the previous address assigned plus one. If `-s yes` is specified, each IP address assigned is equal to the previous address assigned plus the difference in their respective node numbers.

- `-t bnc | dix | tp` Designates the Ethernet type. Use `dix` to designate a thick Ethernet (also called a twisted pair). Use `bnc` to designate a thin Ethernet. Use `tp` to designate a twisted pair. The default is `bnc`.

- `-d full | half | auto` Specifies the communication transfer as one way (`half`) or two way (`full`). The default is `auto`.

- `-f 10 | 100 | auto` Specifies ethernet speed in megabits (Mb/s). Specify `10` for 10Mb per second or `100` for 100Mb per second. The default is `auto`.

- `-N node_group` Specifies a node group to be used for this operation. This node group must be bound to the current system partition.

- `-l node_list` Specifies a list of nodes to be used for this operation. Either specify a comma-delimited list of node numbers, or a file containing one line of data which is a comma-delimited list of node numbers. The file can also contain comment lines (preceded by a `#`) and lines that are all white space. If you use the `node_list` field, do not use the `start_frame`, `start_slot`, or `node_count` fields. (This is lowercase `l`, as in `list`.)

Operands

- `start_frame` Specifies the frame number of the first node to be used for this operation. Specify a value between 1 and 128 inclusive.

- `start_slot` Specifies the slot number of the first node to be used for this operation. Specify a value between 1 and 16 inclusive.

Note: The `start_frame` and `start_slot` must resolve to a node in the current system partition.
spethernt

node_count

Specifies the number of nodes to be used for this operation. The node information is added for successive nodes within a frame and, when the count of nodes causes the nodes in a frame to be exhausted, for nodes in the next sequential frame. Specify a value between 1 and 1024 inclusive. If `rest` is specified, all the nodes from `start_frame start_slot` to the end of your system are used.

Note: The `node_count` is considered to be within the current system partition.

starting_IP_address

Specifies the IP address or host name of the first node in this operation. IP addresses of subsequent nodes are created by incrementing the IP address for each node, depending on how the `-s` flag is set. Specify a valid IP address or host name.

Ensure that the combination of the starting IP address, the node count operand, and the `-s` flag do not result in the incrementing of the IP address to an IP address that is not valid.

Each IP address used in the operation must be resolved by the `host` command on the control workstation.

netmask

Specifies the netmask for the en0 network. Specify a valid IP netmask.

default_route

The default route that you enter is not the same as the default route on the node. The route that you enter goes in the SDR Node Class. It is the route over which the node communicates with its boot/install server (for example, install, customize, and so on). The default route must be a valid Ethernet en0 path to the node’s boot/install server and the control workstation.

The default route on the node is the route it will use for its network communications if there is no specific route to the destination. During the boot process, this is set to the default route in the SDR. It can be changed later on in the boot process or after the node is running, but should not be changed permanently in the SDR. For FDDI, token ring, or other Ethernet adapters, create the route in `script.cust`. For the switch, set the route up in `/etc/inittab` after the line that runs `rc.switch`.

Description

Execute this command during installation of the SP to identify the IP addresses, netmask, and default route associated with the en0 adapters of the nodes. If all your IP addresses are in the same block, run this command once. If you have “holes” in your IP addressing scheme, run this command once for each block of addresses you want to assign.

You can use the System Management Interface Tool (SMIT) to run the `spethernt` command. To use SMIT, enter:

```
smit node_data
```
and select the SP Ethernet Information option.

Notes:

1. This command should be run only on the control workstation. You must be logged into the control workstation as root to execute this command.

2. After running this command, you must issue the `syspar_ctrl -r` command to refresh system partition-sensitive subsystems in each system partition where node customization was performed. Subsystems like `hats`, `hb`, and `hr` need to be refreshed whenever nodes or adapters are added or deleted.

3. Any changes made will not take effect on the nodes until they are customized.

4. This command automatically resets the initial hostname back to the reliable hostname in the SDR.

Security

You must have root privilege and write access to the SDR to run this command.

Location

`/usr/lpp/ssp/bin/spethernt`

Related Information

Commands: `syspar_ctrl`

Examples

The following example adds SDR information for an en0 network of 15 nodes (frame 1 slot 1 to frame 1 slot 16 with the first node being a wide node and the rest of the nodes thin nodes all in a single system partition) with IP addresses from 129.33.32.1 to 129.33.32.15, a netmask of 255.255.255.0, and a default route of 129.33.32.200. The addresses are to be assigned to correspond with the nodes in the frame; for example, they do not increment the IP address of a wide node by 2 before assigning the IP address of the next node.

```
spethernt -s no 1 1 15 129.33.32.1 255.255.255.0 129.33.32.200
```
Purpose

`spevent` – Directly invokes the Event Perspective graphical user interface (GUI).

Syntax

```
spevent [-userProfile name] [-systemProfile name] [-noProfile]
   [-backgroundColor colorName]
   [-foregroundColor colorName] [-fontFamily name]
```

Flags

- **-userProfile name**
 Upon initialization, loads the specified user profile. If a user profile named "Profile" exists in the user's home directory, it will be loaded by default if the `-userProfile` flag is not specified.

- **-systemProfile name**
 Upon initialization, loads the specified system profile instead of the default system profile. The default system profile is named "Profile."

- **-noProfile**
 Upon initialization, does not read either profile.

- **-backgroundColor colorName**
 Overrides the background color specified by any profile or default with the specified color. Refer to Appendix A, "Perspectives Colors and Fonts" in PSSP: Command and Technical Reference for a list of valid color names.

- **-foregroundColor colorName**
 Overrides the foreground color specified by any profile or default with the specified color. Refer to Appendix A, "Perspectives Colors and Fonts" in PSSP: Command and Technical Reference for a list of valid color names.

- **-fontFamily name**
 Overrides any font family with the specified font. The list of valid family names is dependent on the X server. Refer to Appendix A, "Perspectives Colors and Fonts" in PSSP: Command and Technical Reference for a list of valid fonts.

- **-fontSize Size**
 Overrides any font point size with the specified size. Valid values are 6–30 points.

- **-fontBold**
 Sets the font to bold.

- **-fontItalic**
 Sets the font to italics.

- **-nosplash**
 Does not display the splash screen before the Perspectives main window is displayed.

- **-h**
 Displays usage information on the options available for the command.

Note: Most flags accepted by X will also be recognized. For example, `-display displayname`.

134 Command and Technical Reference, Volume 2
Operands

None.

Description

Use this command to launch the Event Perspective. The Event Perspective is a graphic vehicle for managing events and event definitions in the system.

This Perspective allows the user to interact with the Event Manager and the Problem Manager. The user can create event definitions, register or unregister event definitions, and delete event definitions. A properties dialog box is provided for viewing and editing the condition, the resource identifier, and other attributes of an event definition. The properties dialog box also provides users with the capability for creating new conditions. Event definitions are viewed and manipulated within system partition boundaries.

By default, the Event Definition pane displays all the event definitions in the current system partition. The user will be able to operate on the event definitions that have the same principal (Kerberos V4 or DCE) as the user.

When the command is invoked, preferences which define the look and layout of the spevent window are prioritized in the following order:

- Command line options
- User preferences profile
- System preferences profile
- Default values

Files

The Users Preferences are read from and saved to $HOME/.spevent(User Profile Name).

The System Preferences are read from and saved to /usr/lpp/ssp/perspectives/profiles/.spevent(System Profile name).

The spevent application resource file:

/usr/lpp/ssp/perspectives/app-defaults/$LANG/Spevent

Security

Any user can run the spevent command, although many actions in the Event perspective require specific access to SP subsystems. The access depends on the type of security mechanism your SP system is using.

The minimum user requirements is Event Manager access in at least one partition. If these criteria are not met, the Event perspective displays a message and exits. See the chapter on security in PSSP: Administration Guide for more information.

The following access is required to have complete use of the Event perspective:

SDR write To use Create and Delete Conditions.

Event Management

Event Management access is required to create or delete event definitions, view the event notification log, or create or modify conditions.
Problem Management
Problem Management access is required when you create or delete an event definition that contains an action.

Implementation Specifics
This command is part of the IBM Parallel System Support Programs (PSSP) Licensed Program Product (LPP).

Prerequisite Information
For information on using the Event Perspective, see the online help and the “Using SP Perspectives” chapter in the PSSP: Administration Guide.

For information on the Event Management services, refer to “The Event Management Subsystem” and “Using the Problem Management Subsystem” chapters in PSSP: Administration Guide.

Location
/usr/lpp/ssp/bin/spevent

Related Information
You can also access the Event Perspective by using the SP Perspectives Launch Pad. The perspectives command invokes the Launch Pad. Other Perspectives may be launched by invoking the following commands: sphardware, spsyspar, spvsd, and spperfmon.

Examples
1. To invoke the spevent window, enter:
 spevent
2. To bring up the Event Perspective using a specific user profile, enter:
 spevent -userProfile myProfile
spframe

Purpose

spframe – Enters configuration data for a frame or series of frames and, optionally, set up the initial System Data Repository (SDR).

Syntax

```
spframe [-p SP] [-r yes | no] start_frame frame_count starting tty_port
spframe -p SAMI [-n starting_switch_port] [-s (s1tty)] [-r yes | no]
start_frame frame_count starting tty_port
spframe
```

For use with SP-controlled Netfinity servers;
```
-p SLIM [-r yes | no] start_frame frame_count starting tty_port
```

Flags

- **-r no | yes**
 Indicates whether you want to initialize the System Data Repository. If this is the last or only time you are invoking this command during installation, specify `-r yes`. If `-r yes` is specified, the `/spdata/sys1/spmon/hmacls` file has the default entries created.

 The default is `-r no`.

- **-n starting_switch_port**
 Indicates the switch port number which connects the node that is in a non-SP frame. If a frame count greater than one has been specified, this field indicates the starting switch port number in a range of contiguous switch port numbers. This flag is required for SP-attached servers in systems with no switch or with an SP Switch. It cannot be used on systems with an SP Switch2 because that switch only supports nodes in an SP frame. It is not required for clustered enterprise servers. (Note: "switch port number" is also known as "switch node number.")

- **-s s1tty**
 Indicates the s1 tty port for the single non-SP frame. If an s1 tty is specified, the frame count must be one. If a hardware protocol (`-p`) of SAMI is specified, the `-s` flag must be specified. The `s1tty` must be specified as a fully qualified special device file name (such as `/dev/tty2`).

- **-p hardware_protocol**
 Indicates the hardware protocol of the node(s) within the frame. For example, the hardware protocol of the SP-attached server or Clustered enterprise server is SAMI. The hardware protocol for the SP-controlled Netfinity server is SLIM. The default is `-p SP`.

Chapter 1. Commands 137
Operands

- **start_frame** Specifies the frame number to be used for this operation. Specify a value between 1 and 128 inclusive.
- **frame_count** Specifies the number of frames to be used for this operation. Specify a value between 1 and 128 inclusive.
- **starting_tty_port** Specifies the device special file name of the tty port to be assigned to the first frame on this operation. Tty ports for subsequent frames are assigned by incrementing the tty number for each frame. Specify the full path of a valid tty device special file.

Description

Execute this command during installation of the SP to identify the tty ports to which your frames are connected. If the tty special files for your frames are consecutively numbered, run this command once during installation, specifying `-r yes`. If you have “holes” in your tty special file numbering scheme, run this command once for each block of ttys you want to assign, specifying `-r yes` only on the last invocation of the command.

You can use the System Management Interface Tool (SMIT) to run the `spframe` command. To use SMIT, enter:

```
smitt enter_data
```

and select the SP Frame Information or non-SP Frame Information options.

Note: This command should be run only on the control workstation. You must be logged into the control workstation as root to execute this command.

Security

You must have root privilege and write access to the SDR to run this command.

Location

```
/usr/lpp/ssp/bin/spframe
```

Examples

1. The following example enters information for four frames (frame 1 to frame 4) and indicates that frame 1 is connected to `/dev/tty1`, frame 2 to `/dev/tty2`, and so on. The System Data Repository is to be initialized with this invocation of `spframe`.

   ```
   spframe -r yes 1 4 /dev/tty1
   ```

2. For SP-controlled Netfinity servers the following example enters information for 1 frame connected to `/dev/tty5` and reinitializes the SDR.

   ```
   spframe -r yes -p SLIM 5 1 /dev/tty5
   ```

3. The following example enters non-SP information for two S70 servers (frames 5 and 6). The first server has the following characteristics:
The second server has the following characteristics:

Frame Number: 6

tty port for operator panel connection: /dev/tty6

tty port for serial terminal connection: /dev/tty7

switch port number: 15

To define these servers to PSSP and reinitialize the SDR, enter:

spframe -r no -p SAMI -n 14 -s /dev/tty5 5 1 /dev/tty4

spframe -r yes -p SAMI -n 15 -s /dev/tty7 6 1 /dev/tty6
spget_syspar

Purpose

spget_syspar – Returns the IP address or name of the current system partition.

Syntax

spget_syspar [-n] [-d]

Flags

-\(n\) Returns a host name instead of an address.
-\(d\) Returns the name or IP address of the default system partition rather than the current system partition.

Operands

None.

Description

Use this command to display to standard output the IP address (in dotted decimal format) of the current or default system partition. The current system partition indicates the system partition to which System Data Repository (SDR) client requests are directed. The result is displayed in dotted decimal format unless \(-n\) is specified.

Restrictions

The \(-d\) flag will not work if the command is not issued on a control workstation or SP node.

Location

/usr/lpp/ssp/bin/spget_syspar

Examples

1. To display the IP address associated with the current system partition, enter:

 spget_syspar

 You should receive output similar to the following:

 129.4!zerodot.127.122

2. To display the name (host name alias of the control workstation) of the current system partition, enter:

 spget_syspar -n

 You should receive output similar to the following:

 k47sp1
spgetdesc

Purpose

spgetdesc – Obtains the description information from the nodes specified and, optionally, enters it into the SDR.

Syntax

spgetdesc [-h] [-u] [-c] [-f] {-a | -l node_list}

Flags

-
- h Displays help information for this command (syntax message). If the command is issued with the -h flag then the syntax description is displayed to standard output and no other action is taken (even if other valid flags are entered along with the -h flag).
- u Updates the description attribute in the SDR with the description information found.
- c Outputs the description information in a colon delimited format. The output will be of the form:
 "node_number:hostname:description"
 for all nodes that successfully obtained the description information.
- f Forces the command to obtain description information from the specified nodes regardless of the host responds value.

One of the following flags must be specified:

- a Obtains description information from all nodes found in the SDR.
- l node_list Indicates by node_list the SP nodes to obtain the description information from. The node_list is a comma-separated list of node numbers.

Operands

None.

Description

This command will obtain the description information from the nodes specified and, optionally, update the description attribute in the SDR Node class. Unless the -f flag is specified, the node's host_responds will be checked before it will attempt to dsh to the nodes and obtain their description information. This command requires that the user be authenticated to Kerberos using the k4init command. This command is primarily intended as a migration tool for obtaining description information from existing nodes. The description information will be obtained from new nodes when they are installed or customized.
spgetdesc

Standard Output
The model information that is obtained will be printed to standard output as well as placed in the SDR.

Standard Error
This command writes error messages (as necessary) to standard error. Errors will be printed if any attempt to get the description information on a node is unsuccessful.

If the command does not run successfully it terminates with an error message and a nonzero return code. Messages will inform the user of the cause of the error. For a terminal error, no description information will be obtained. For a nonterminal error, no description information will be obtained for the node that had the error.

Exit Values
0 Successful completion
1 A nonterminal error occurred for 1 or more nodes. Processing continued for any remaining nodes.
2 A terminal error occurred and all processing was stopped.

Security
You must have root privilege and write access to the SDR to run this command.

You must have access to the AIX Secure Remote Commands to run this command.

Implementation Specifics
This command is part of the IBM Parallel System Support Program (PSSP) Licensed Program Product (LPP).

Location
/usr/lpp/ssp/bin/spgetdesc

Related Information
SP Commands: dsh, k4init, SDRChangeAttrValues, SDRGetObjects
AIX Commands: uname

Examples
To obtain description information for all existing nodes enter:
spgetdesc -a

To obtain description information for nodes 3 & 4 and update the SDR, enter:
spgetdesc -ul 3,4

To obtain description information from all nodes in a colon delimited format, enter:
spgetdesc -ac
spgrpname

Purpose

spgrpname – Displays the DCE group name for an SP Security Services group.

Syntax

spgrpname {−h | default−group−name}

Flags

−h Specifies that the command syntax is to be listed. If you specify this flag, any operand is ignored.

Operands

default−group−name

The predefined name of a service listed in the security services configuration file.

Description

The spgrpname command displays the actual DCE group name that corresponds to the specified default−group−name, that is predefined in the security services configuration files.

Standard Output

Output consists of one line containing the DCE group name, when successful.

Standard Error

Output consists of error messages, when the command cannot complete successfully.

There are no unique consequences of command errors.

Exit Values

0 Indicates successful completion of the command.

1 Indicates that an error occurred.

Implementation Specifics

This command is part of the IBM Parallel System Support Programs (PSSP) Licensed Program Product (LPP) (fileset ssp.clients).

Prerequisite Information

The chapters on security in PSSP: Administration Guide.
Location

```
/usr/lpp/ssp/bin/spgrpname
```

Examples

1. Displaying the DCE group name corresponding to the predefined default name `sysctl-master`, which the administrator has overridden:
   ```
   spgrpname sysctl-master
   root/sysctl
   ```

2. Displaying the DCE group name corresponding to the predefined default name `hm-admin`, which the administrator has not overridden:
   ```
   spgrpname hm-admin
   hm-admin
   ```
sphardware

Purpose

sphardware – Directly launches the Hardware Perspective graphical user interface (GUI).

Syntax

sphardware [-UserProfile name] [-systemProfile name] [-noProfile]
[-backgroundColor colorName]
[-foregroundColor colorName] [-fontFamily name]

Flags

-UserProfile name
 Upon initialization, loads the specified user profile. If a user profile named "Profile" exists in the user's home directory, it will be loaded by default if the -UserProfile flag is not specified.

-systemProfile name
 Upon initialization, loads the specified system profile instead of the default system profile. The default system profile is named "Profile."

-noProfile
 Upon initialization, does not read either profile.

-backgroundColor colorName
 Overrides the background color specified by any profile or default with the specified color. Refer to Appendix A, “Perspectives Colors and Fonts” in PSSP: Command and Technical Reference for a list of valid color names.

-foregroundColor colorName
 Overrides the foreground color specified by any profile or default with the specified color. Refer to Appendix A, “Perspectives Colors and Fonts” in PSSP: Command and Technical Reference for a list of valid color names.

-fontFamily name
 Overrides any font family with the specified font. The list of valid family names is dependent on the X server. Refer to Appendix A, “Perspectives Colors and Fonts” in PSSP: Command and Technical Reference for a list of valid fonts.

-fontSize size
 Overrides any font point size with the specified size. Valid values are 6–30 points.

-fontBold
 Sets the font to bold.

-fontItalic
 Sets the font to italics.

-nosplash
 Does not display the splash screen before the Perspectives main window is displayed.

-h
 Displays usage information on the options available for the command.

Note: Most flags accepted by X will also be recognized. For example, -display displayname.
sphardware

Operands

None.

Description

Use this command to launch the Hardware Perspective. From the Hardware Perspective, the user can monitor and manipulate objects within the SP system. The SP objects included in this Perspective are the control workstation, SP system and system partitions, nodes, Netfinity nodes, dependent nodes, SP expansion I/O units, node groups, and frames and switches.

By default, the Hardware Perspective will display the CWS, System and Syspars pane and the Nodes pane. The CWS, System and Syspars pane contains all system partitions and indicates the current system partition. The Node pane contains all the nodes, dependent nodes and SP expansion I/O units in the current system partition.

The Node Groups, Netfinity nodes, and Frame and Switches panes can be added to the Hardware Perspective by using the Add Pane tool bar icon. Panes can be deleted from the window by using the Delete Pane tool bar icon.

When the command is invoked, preferences which define the look and layout of the sphardware window are prioritized in the following order:

- Command line options
- User preferences profile
- System preferences profile
- Default values

Files

The Users Preferences are read from and saved to $HOME/.sphardware(User Profile Name).

The System Preferences are read from and saved to /usr/lpp/ssp/perspectives/profiles/$LANG/.sphardware(System Profile name).

The sphardware application resource file:
/usr/lpp/ssp/perspectives/app-defaults/$LANG/Sphardware

Security

Any user can run the sphardware command, although many actions in the Hardware Perspective require specific access to SP subsystems. The access depends on the type of security mechanism your SP system is using.

See the chapter on security in PSSP: Administration Guide for more information.

The following access is required to have complete use of the Hardware perspective:

- **SDR write** To create, modify and delete node groups.
- **Hardware Monitor "VFOP"** To power on, power off and reset hardware objects (node, frames and switches).
sphardware

Hardmon Monitor serial
To network boot nodes and open a tty window to a node.

Hardmon Monitor monitor
To display node LCD and LED.

Event Management
To monitor objects in a pane and display dynamic attributes in object notebooks.

PSSP cshutdown and cstartup commands access
To shutdown or start-up nodes using the **cshutdown** or cluster power on options.

CWS root commands
To fence or unfence nodes and to **Estart** the switch.

AIX Secure Remote Commands
To run commands on nodes.

Implementation Specifics
This command is part of the IBM Parallel System Support Programs (PSSP) Licensed Program Product (LPP).

Prerequisite Information
For information on using the Hardware Perspective, see the online help and the “Using SP Perspectives” chapter in the PSSP: Administration Guide.

Location
/usr/lpp/ssp/bin/sphardware

Related Information
The Hardware Perspective can also be accessed by using the SP Perspectives Launch Pad. The **perspectives** command invokes the Launch Pad. Other Perspectives windows can be launched by invoking the following commands: **spevent**, **spperfmon**, **spsyspar**, and **spvsd**.

Examples

1. To invoke the **sphardware** window, enter:
 sphardware

2. To force **sphardware** to display text in chartreuse, regardless of what is set in the preference files, enter:
 sphardware -foregroundColor chartreuse

3. To start the **sphardware** window in the background, enter:
 sphardware &
sphostnam

Purpose

`sphostnam` – Enters host name configuration data for a node or series of nodes in the System Data Repository.

Syntax

```
sphostnam [-a adapter_name] [-f {long | short}]
  {start_frame start_slot {node_count | rest} |}
  -N node_group | -l node_list
```

Flags

- `-a` Indicates the adapter to be used to derive the host name for the nodes specified. If `-a` is not specified, the default is `en0`.

- `-f` Specifies which form of the host name is to be used. Specify `long` if you want the host name to be the fully qualified host name and `short` if you want to use the short form of the host name. If `-f` is not specified, the default is `long`.

- `-N node_group` Specifies a node group to be used for this operation. This node group must be bound to the current system partition.

- `-l node_list` Specifies a list of nodes to be used for this operation. Either specify a comma-delimited list of node numbers, or a file containing one line of data which is a comma-delimited list of node numbers. The file can also contain comment lines (preceded by a #) and lines that are all white space. If you use the `node_list` field, do not use the `start_frame`, `start_slot`, or `node_count` fields. (This is lowercase `l`, as in list.)

Operands

- `start_frame` Specifies the frame number of the first node to be used for this operation. Specify a value between 1 and 128 inclusive.

- `start_slot` Specifies the slot number of the first node to be used for this operation. Specify a value between 1 and 16 inclusive.

 Note: The `start_frame` and `start_slot` must resolve to a node in the current system partition.

- `node_count` Specifies the number of nodes to be used for this operation. The node information is added for successive nodes within a frame. If the count of nodes causes the nodes in a frame to be exhausted the operation continues in the next sequential frame. Specify a value between 1 and 1024 inclusive. If `rest` is specified, all the nodes from `start_frame start_slot` to the end of your system are used.

 Note: The `node_count` is considered to be within the current system partition.
Description

Execute this command during SP installation to specify which adapter type will determine the initial host name for your nodes. You can also use this command to indicate whether you want the long (fully qualified) or short form of a host name to be used.

You can use the System Management Interface Tool (SMIT) to run the `sphostnam` command. To use SMIT, enter:

```
smit node_data
```

and select the Hostname Information option.

Notes:

1. This command should be run only on the control workstation. You must be logged into the control workstation as root to execute this command.
2. Any changes made will not take effect on the nodes until they are customized.

Security

You must have root privilege and write access to the SDR to run this command.

Location

`/usr/lpp/ssp/bin/sphostnam`

Examples

The following example selects the `css0` adapter for the host name for a system with two frames and 32 nodes. The long form of the host name is to be used.

```
sphostnam -a css0 1 1 32
```
Purpose

sphrdwrad – Obtains hardware Ethernet addresses for SP nodes so they can be written to the System Data Repository.

Syntax

sphrdwrad {start_frame start_slot (node_count | rest) | −N node_group | −l node_list}

Flags

rest Indicates that, beginning with the node determined by start_frame and start_slot, all the rest of the nodes should be used for this operation.

−N node_group Specifies a node group to be used for this operation. This node group must be bound to the current system partition.

−l node_list Specifies a list of nodes to be used for this operation. Either specify a comma-delimited list of node numbers, or a file containing one line of data which is a comma-delimited list of node numbers. The file can also contain comment lines (preceded by a #) and lines that are all white space. If you use the node_list field, do not use the start_frame, start_slot, or node_count fields. (This is lowercase l, as in list.)

Operands

start_frame Specifies the frame number of the first node to be used for this operation. Specify a value between 1 and 128 inclusive.

start_slot Specifies the slot number of the first node to be used for this operation. Specify a value between 1 and 16 inclusive.

Note: The start_frame and start_slot must resolve to a node in the current system partition.

node_count Specifies the number of nodes to be used for this operation. The node information is added for successive nodes within a frame. If the count of nodes causes the nodes in a frame to be exhausted the operation continues in the next sequential frame. Specify a value between 1 and 1024 inclusive.

Note: The node_count is considered to be within the current system partition.

Description

Execute this command only at installation or when adding new frames or nodes. The spframe command must be run before this command so that frame information is already in the System Data Repository.

If you know your hardware Ethernet addresses, you can speed this process by putting the addresses in /etc/bootptab.info, as follows:
Create a file named /etc/bootptab.info (if it does not already exist), listing your SP nodes by node number (or frame, slot) followed by a blank and the hardware Ethernet address. The first token represents the node and the second token represents the hardware address. The file should look similar to this:

17 02608C2E48D9
19 02608C2D6712
21 02608C2E49A4
23 02608C2E48E2

If you do not know your hardware Ethernet addresses, use the sphrdwrad command to find them.

Notes:

1. The nodes should be physically powered on (but logically powered off) when you run this command.
2. The LEDs change values while this command is running.
3. You should not have a tty open to any of the nodes to be used for this command.
4. If the addresses are not found in /etc/bootptab.info, the sphrdwrad command takes a few minutes to run, and the addresses are obtained from the nodes in parallel.
5. Any nodes specified will be powered off to acquire the Ethernet addresses. The nodes remain in the powered off state, even after the addresses are received.
6. If you are adding a node, only the new node needs to be specified because any selected nodes will be powered off.
7. To avoid possible file system damage, you should always shut down a node cleanly before powering it off. You can do this by using the cshutdown command or by using the SHUTDOWN/POWER OFF option in the System Monitor Graphical User Interface.

You can use the System Management Interface Tool (SMIT) to run the sphrdwrad command. To use SMIT, enter:

```
smitt enter_data
```

and select the Get Hardware Ethernet Addresses option.

Note: This command should be run only on the control workstation. You must be logged into the control workstation as root to execute this command.

Note: If you are using a bootptab.info file, you must only place nodes in the current partition in the file. If you have multiple partitions, you must update the bootptab.info file and run sphrdwrad for each partition.
sphrdwrad

Security

You must have root privilege and write access to the SDR to run this command.

Note: If there is no hardware addressess file, then you must also have hardmon monitor, VFOP, and serial access to run this command.

Location

/usr/lpp/ssp/bin/sphrdwrad

Examples

To obtain Ethernet addresses for a new frame containing 8 nodes (4 wide nodes and 4 thin nodes), enter:
sphrdwrad 2 1 8

You should receive output similar to the following:
Acquiring hardware Ethernet address for node 17
Acquiring hardware Ethernet address for node 19
Acquiring hardware Ethernet address for node 21
Acquiring hardware Ethernet address for node 23
Acquiring hardware Ethernet address for node 25
Acquiring hardware Ethernet address for node 26
Acquiring hardware Ethernet address for node 27
Acquiring hardware Ethernet address for node 28
Hardware ethernet address for node 17 is 02608C2D481C
Hardware ethernet address for node 19 is 02608C2D78DF
Hardware ethernet address for node 21 is 02608C2D93B3
Hardware ethernet address for node 23 is 02608C2D8C3C
Hardware ethernet address for node 25 is 10005AFA22B9
Hardware ethernet address for node 26 is 10005AFA230A
Hardware ethernet address for node 27 is 10005AFA2229
Hardware ethernet address for node 28 is 10005AFA2210
spled

Purpose

spled – Displays SP node LCD or LED information in a graphical user interface.

Syntax

```
spled [-G] [-n title] [-p] [-r pollrate]
     [-b background color] [-I] [-h]
```

Flags

- **-G** Displays LED or LCD information for SP nodes in all system partitions.
- **-n title** Sets the window title.
- **-p** Output the process id to stdout.
- **-r pollrate** Sets the time increment to poll for LCD or LED updates. The default is to poll every 5 seconds. IBM suggests that you not change this value.
- **-b background color** Sets the background color.
- **-l** Changes the "Window" menu bar item labeled "Exit" to "Close."
- **-h** Displays usage information on the options available for the command.

Operands

None.

Description

spled is an X Windows based application that displays the three digit seven segment light emitting diode (LED) or the two line by 16 character liquid crystal display (LCD) information found on the front of an SP node.

The spled application contains a menubar at the top of the window which contains one button, "Window." This button has one menu item which by default is labeled "Exit." Selecting this button will close the spled application.

Below the menubar is an area which by default contains a graphical representation of the frames and the SP nodes in those frames for the current system partition. If the -G flag is specified then all of the SP nodes in the system will be shown in their respective frames.

The size of each node is represented by the number of slots it uses in the frame. A thin node occupies one slot; a wide node occupies two slots; and a high node occupies four slots.

Pressing mouse button one inside a frame will display the slot number of each node in that frame. Pressing mouse button two inside a frame will display the node number of each node in that frame.

For nodes that have an LCD:
spled

- For high nodes, all 2 lines by 16 characters will be shown.
- For wide nodes, the first line of 16 characters will be shown.
- For thin nodes, up to the first 8 characters of the first line will be shown.

Thin and wide nodes that contain an LCD may display "..." after some characters in the LCD. This indicates there is more LCD data available than can be shown. Pressing mouse button three in a frame containing nodes with an LCD displaying "..." will open a window displaying all of the LCD information available for those nodes.

Note: A node in the process of having the microcode on its supervisor card updated will not be displayed in the window.

Files

The *spled* application resource file:

```
/usr/lpp/ssp/perspectives/app-defaults/$LANG/Spled.
```

Security

You must have Hardware Monitor "monitor" access to display the *spled* application.

Location

```
/usr/lpp/ssp/bin/spled
```

Examples

1. To start *spled* and set the window title to "My System" enter:

```
spled -n "My System"
```

2. To start *spled* and display all of the nodes in a multiple partition system, enter:

```
spled -G
```
splm

Purpose

splm – Views, gathers, archives, or collects log and system data.

Syntax

splm [-a check] [-h] [-n] [-t table]
splm [-a gather] [-d dir] [-f fanout] [-h] [-k type] [-l cfs]
splm [-o loc] [-r] [-s] [-t table] [-y]
splm [-a view] [-h] [-n] [-t table]

Flags

The splm command requires the -a flag and an argument to select a function to execute. It also requires a log table that contains records specifying target nodes and files or commands.

-a action Specifies the function to perform: archive, check, gather, service, or view.
-c Creates a compressed tar file. For the archive function, this will be a tar starting the -d dir flag. For service collections, /usr/sbin/snap -c -d dir will be called to create the tar file. The tar file will be named node.tar.Z.
-d dir Specifies the path where the archive or service collection will be stored on each node. The archive default is /var/adm/archives. The service default is /tmp.
-f fanout Sets the maximum fanout value which determines how many nodes will execute in parallel. The default is 32. Any number between 1–32 can be used.
-h Displays usage information.
-k type For the gather function only, this flag indicates whether a service collection or archive is being collected.
-l cfs Specifies the path on the local node where the archive or service collections should be gathered.
-n Ignores the node designation in the input table and executes all entries on the local node only.
-o loc Specifies the device or mail location where to direct tar files.
-p opts Accepts a string of characters representing option parameters for calling snap collection. Each character relates to a category of system data to be collected. Valid characters are: a, A, D, f, g, G, k, I, n, p, s, S, t.
splm

-\texttt{r} Removes \texttt{archive} or \texttt{service} on each node. Exclusive with \texttt{-s} flag.
-\texttt{s} Staggers collection to a mail location or device.
-\texttt{t} Specifies the input table of nodes and commands.
-\texttt{y} Appends the \texttt{yyymmdd} timestamp subdirectory to the per node directory.

\section*{Operands}
None.

\section*{Description}
Use this command to execute a number of log management functions on a single host or a set of hosts in parallel. The \texttt{splm} functions are driven by a log table file that contains the target node designations and associated files, and the commands to execute. The table format follows:

\begin{verbatim}
Comment line

target nodes: file or command
\end{verbatim}

The target node portion of a table stanza is a comma-delimited list with no blanks. The values in the list are interpreted as:

1. If the value begins with a slash (/), it is a file containing a list of node names, one per line.
2. If the value is an exclamation point (!), it refers to the local host.
3. Any string not matching 1 or 2, is interpreted as a node name.

The \texttt{-n} flag ignores the target node portion of the table and only executes on the local node. The file or command portion of the stanza specifies either a command to execute that displays information to standard output, or a file that will be archived, collected, or viewed. File specification can take advantage of Tcl file globbing (similar to csh file globbing). If the file or command portion of the stanza refers to a command to be executed, it must be followed by a redirection and a path or file name. The information generated by the command will be redirected to the path or file name under the \texttt{-d} top level directory. Use > or >> following the command to redirect the output. The view option ignores the file or command destinations and displays the file contents or command output to the executing node.

1. To specify the local node, nodes listed in the \texttt{/tmp/nodelist} file and node \texttt{k47n10}, and archive or collect errpt output from those nodes to the \texttt{errpt.output} file under the top level directory, enter:

\begin{verbatim}
!,/tmp/nodelist,k47n10: /bin/errpt -a > errpt.output
\end{verbatim}

2. To archive or collect \texttt{/etc/filesystems} file to a subdirectory on nodes \texttt{k47n10} and \texttt{k47n15}, enter:

\begin{verbatim}
k47n10,k47n15: /etc/filesystems etc/filesystems
\end{verbatim}

This copies the file to the \texttt{/etc} subdirectory under the \texttt{-d} top level directory.
Note: The −d top level directory is always appended with a subdirectory named arch_table_name for archives, or srvc_table_name for service collections.

splm Functions

Archive: The archive function copies files and redirects command output as specified in the input table to the top level directory on each node. The −c flag then creates a compressed tar file of the data named /topdirectory/ node_name.tar.Z. The −r flag removes an archive by removing all files starting from the top level directory down.

Check: The check function can be used to check a table for errors.

Gather: The gather function moves archive or service tar files to a central location on the executing node. The −r option removes the archive or service collection on each remote node only after the tar file was successfully copied to the central location. If the node.tar.Z file is not found, the gather function will attempt to create one. Gathered tar files can be mailed or copied to a tape or disk device using the −o flag. If mailed, the files are first uuencoded. The −l flag specifies the file system on the local node where the tar files are to be gathered. The −l flag must be specified if the −s stagger flag is not used. The gather function makes two passes, if necessary. On the first pass, it allows each node to take up an equal amount of the central file system. If any nodes encounter errors, the gather function retries those nodes, one at a time, until the file system is full or all the nodes are copied. If gather is unsuccessful on any node, but a node.tar.Z file exists for that node in the central location, it is moved to node.tar.Z.old, and not sent to the output location. The −s stagger flag forces the fanout to 1, gathers the tar files one at a time, attempts to send the tar to the output location, then removes it from the local node. The −r flag cannot be used with −s. The default central location directory for stagger is /tmp.

Service: The service function first calls the AIX snap command to gather system data to the top level directory if the −p flag is used. The snap command creates a set of subdirectories based on the −p arguments. The additional data defined in the table data is then collected under the “other” subdirectory created by snap. If the −p flag is not used, the data will still be collected under the “other” subdirectory. If the −c flag is used, splm uses the snap −c command to create the tar.Z file. The −r flag can be used to remove service collections. splm calls snap −r which removes the tar file and all files under each snap subdirectory.

View: The view function displays the output of the command or contents of file entries in the input table to the local host.

Files

/etc/splm.allow
Restricts table commands that can be executed.

/etc/logmgt.acl
Acl file for archive, gather, and service functions.

/spdata/sys1/logtables/*
Contains sample tables for service collections.
The `splm` command consists of a client script and a server procedure which is executed by the Sysctl facility. Sysctl performs access authorization according to the configuration of security services on the server nodes.

To invoke the `splm` view function, the caller must be an authenticated user. The Sysctl AUTH callback is used to grant access. The `splm` server switches IDs from root to the authenticated user ID before executing the view function on the target node or nodes.

The archive, gather and service functions additionally require that the caller have a principal entry in the log management ACL: `/etc/logmgt.acl`. These functions use the Sysctl aclcheck procedure for granting access, and the `splm` server will execute as root on the target node or nodes. The principal needs to have logged in to the appropriate authentication service before running this command.

The command always generates output in English using the default C locale. It ignores the current operating locale.

Location

`/usr/lpp/ssp/bin/splm`

Related Information

AIX commands: `compress`, `snap`, `tar`, `uuencode`

The *PSSP: Administration Guide*

Examples

1. To create an archive based on the entries in the `/etc/tables/logs.tab` table and to create a compressed tar file and have the archive under directory `/var/adm/archives/arch_logs.tab`, enter:

   ```
   splm -a archive -c -d /var/adm/archives -t /etc/tables/archive.tab
   ```

2. To create a service collection of entries in the `/spdata/sys1/logtables/amd.tab` table and have `snap` include general system information, enter:

   ```
   splm -a service -c -t /spdata/sys1/logtables/amd.tab -p g
   ```

3. To gather the service collections in Example 2, remove the collection on each node, and copy the gathered data to tape device rmt0, enter:

   ```
   splm -a gather -k service -t /spdata/sys1/logtables/amd.tab \
   -l /tmp/amdproblem -o /dev/rmt0 -r
   ```
splogd Daemon

Purpose

splogd – Reports error logging, writes state changes, and calls user exits.

Syntax

splogd [-d] [-b] [-f file_name]

Flags

-\textit{d} \hspace{1cm} \text{Turns debugging on.}
-\textit{b} \hspace{1cm} \text{Starts the daemon in the background from the command line.}
-\textit{f file_name} \hspace{1cm} \text{Names an input file to use to define what logging is to be done and what user exits should be called. The default file is /spdata/sys1/spmon/hwevents.}

Operands

None.

Description

The SP logging daemon has the following functions:

\textbf{error logging} \hspace{1cm} \text{Reports SP hardware errors to both the syslog and the AIX error log.}

\textbf{state change logging} \hspace{1cm} \text{Writes SP hardware state changes to a file.}

\textbf{user exits} \hspace{1cm} \text{Calls a user exit when a state change occurs.}

The \textit{hwevents} file contains state change actions that are to be performed by the \textit{splogd} logging daemon. The fields are:

- \textbf{frame} \hspace{1cm} \text{Specifies a frame number (1–n) or} \ast \text{\ for all frames.}
- \textbf{slot} \hspace{1cm} \text{Specifies the following:}
 \begin{itemize}
 \item A number from 0–17
 \item One of:
 \begin{itemize}
 \item NODES_ONLY (addresses 1 through 16)
 \item SWITCH (address 17)
 \item FRAME (address 0)
 \item \ast \ (all addresses)
 \item NODES_AND_SWITCH (addresses 1–17)
 \item FRAME_AND_NODES (addresses 0–16)
 \item FRAME_AND_SWITCH (addresses 0 and 17)
 \end{itemize}
 \end{itemize}
- \textbf{variable} \hspace{1cm} \text{Specifies a hardware variable (for example, nodePower, temp, LED7SegA).}
- \textbf{operator} \hspace{1cm} \text{Specifies how to compare the value. Acceptable values are:} =, <, >, \text{and} \neq.
splogd Daemon

value Specifies the value of the variable to match with the operator wildcard (*), or a partial match with the wildcard at the end (23*).

time Specifies if the function should be called at startup, when the state changes, or both times. Valid options are **startup**, **change**, or **both**.

function Specifies the program to call when an event occurs.

There are two special keywords for function. If function is **SP_ERROR_LOG**, error logging is performed provided that syslog is set up and AIX error logging is set up to perform SP logging. Refer to the **setup_logd** command for details.

If function is **SP_STATE_LOG**, these state changes that meet the statement's criteria are logged to `/var/adm/SPlogs/spmon/splogd.state_changes.timestamp`.

Note: To close the current **state_changes.timestamp** and open a new one, send a SIGHUP signal to **splogd**. For example,

```bash
top -HUP \{splogd pid\}
```

User Exit Arguments

When a user exit is called by **splogd**, the following arguments are passed:

1. A **c** or **s** depending on whether this call is for a change of state or to provide the startup values for the variables being monitored.

2. For each variable being reported, the following arguments are passed:
 a. Frame number.
 b. Node number.
 c. Variable name. Refer to the “System Monitor Variables, Display Types, and Attributes Appendix” of **PSSP: Administration Guide** for a list of variables.
 d. Value of the variables. Boolean variables are expressed as TRUE or FALSE, integers as decimal strings, and floating-point values as floating-point strings.

Starting and Stopping the splogd Daemon

The **splogd** daemon is under System Resource Controller (SRC) control. It uses the signal method of communication in SRC. The **splogd** daemon is a single subsystem and not associated with any SRC group. The subsystem name is **splogd**. To start the **splogd** daemon, use the **startsrc** − **s** **splogd** command. This starts the daemon with the default arguments and SRC options. The **splogd** daemon is setup to be respawnable and be the only instance of the **splogd** daemon running on a particular node or control workstation. Do **not** start the **splogd** daemon from the command line without using the **startsrc** command to start it.

To stop the **splogd** daemon, use the **stopsrc** − **s** **splogd** command. This stops the daemon and does not allow it to respawn.

To display the status of the **splogd** daemon, use the **lssrc** − **s** **splogd** command.
If the default startup arguments need to be changed, use the `chssys` command to change the startup arguments or the SRC options. Refer to AIX Version 4 Commands Reference and AIX Version 4 General Programming Concepts: Writing and Debugging Programs for more information about daemons under SRC control and how to modify daemon arguments when under SRC.

To view the current SRC options and daemon arguments, use the `odmget -q 'subsysname=splogd' SRCsubsys` command.

Files

- `/spdata/sys1/spmon/hwevents`
 File that describes what logging is performed and what user exits are called.

- `/var/adm/SPlogs/spmon/splogd.state_changes.timestamp`
 File where state changes are recorded.

Location

- `/usr/lpp/ssp/bin/splogd`

Related Information

Command: `setup_logd`

The “System Monitor Variables, Display Types, and Attributes Appendix” in *PSSP: Administration Guide*

Examples

1. To start the `splogd` daemon, enter:
   ```
   startsrc -s splogd
   ```

2. To stop the `splogd` daemon, enter:
   ```
   stopsrc -s splogd
   ```

3. To display the status of the `splogd` daemon, enter:
   ```
   lssrc -s splogd
   ```

4. To display the status of all the daemons under SRC control, enter:
   ```
   lssrc -a
   ```

5. To display the current SRC options and daemon arguments for the `splogd` daemon, enter:
   ```
   odmget -q 'subsysname=splogd' SRCsubsys
   ```
Purpose

`splst_syspars` – Returns the list of defined system partitions.

Syntax

`splst_syspars [-n]`

Flags

`-n` Returns a list of host names instead of addresses.

Operands

None.

Description

This command returns the list of the system partitions. The system partition names are in dotted decimal format unless `-n` is specified.

Location

`/usr/lpp/ssp/bin/splst_syspars`

Examples

1. To display the IP addresses associated with all the defined system partitions on the SP, enter:

 `splst_syspars`

 You should receive output similar to the following:

 `129.40.127.122`

 `129.40.127.47`

2. To display the names of all the defined system partitions on the SP, enter:

 `splst_syspars -n`

 You should receive output similar to the following:

 `k47sp1`

 `k47s`
splist_versions

Purpose

splist_versions – Returns information about the PSSP code version installed on nodes in the SP system.

Syntax

Flags

-G Causes the command to look at all system partitions rather than just the current system partition (but not the control workstation).
-l Returns the latest PSSP version for the nodes that are the target of the command.
-e Returns the earliest PSSP version for the nodes that are the target of the command.
-n node_num Returns the PSSP code version for node_num. Use node_num 0 to specify the control workstation.
-N node_group Returns a list of PSSP versions for node_group. If -G is supplied, a global node group is used. Otherwise, a partitioned-bound node group is used.
-t Returns the node number and PSSP version in two columns.
-h Displays usage information.

Operands

None.

Description

Use this command to return a list of PSSP code versions that are installed on the nodes in the current system partition. The PSSP version and release numbers, and modification level are included in the output. The fix level is not returned in the output. Node number 0 (zero) is considered the control workstation and is not evaluated as part of any system partition. The output is sorted in ascending order by version.

If the -t flag is omitted, there will be only one record for each version present. If the -t flag is used, there will be a record for each node.

Location

/usr/lpp/ssp/bin/splist_versions
splist_versions

Examples

1. To list each PSSP version represented in the current system partition, enter:

   ```
   prompt> splst_versions
   PSSP-2.4
   PSSP-3.1
   ```

2. To list each node in the system partition and its PSSP code version, enter:

   ```
   prompt> splst_versions -t
   1 PSSP-2.4
   5 PSSP-2.4
   6 PSSP-2.4
   9 PSSP-3.1
   ```

3. To list the earliest and latest PSSP code versions in a system partition, enter:

   ```
   prompt> splst_versions -l -e
   PSSP-2.4     /* this case has mixed partitions */
   PSSP-3.1
   ```

 The following will be the output if only PSSP-2.4 exists in the system partition:

   ```
   prompt> splst_versions -l -e
   PSSP-2.4     /* this case has only 2.4 in partition */
   ```
splstadapters

Purpose

splstadapters – Use this command to list information about adapters to standard output.

Syntax

```
```

Flags

- **-h**
 Displays usage information.

- **-G**
 Removes system partition boundaries for this invocation. This flag causes the command to consider all nodes regardless of system partition.

- **-x**
 Inhibits the output of the header record.

- **-d delimiter**
 Forces the delimiter between tokens to be `delimiter`, where `delimiter` is any string value. If this flag is used, only one copy of the delimiter is used between tokens, even if the delimiter is a blank.

- **-p str**
 Prints the `str` string in place of an attribute that does not apply to the object being output. The default is to print two double quotes ("").

- **-s attr**
 Sorts the output by the value of the attribute `attr`.

- **-t**
 Restricts the query to a specific node type. The node type can be one of the following:

 - **standard**
 Indicates that only adapters relating to SP nodes (nodes in a frame/slot) will be considered for output.

 If the `-t` flag is not specified, the default is to consider adapters relating to both `standard` and `dependent` nodes for output.

 - **dependent**
 Indicates that only adapters on dependent nodes will be considered for output.

Operands

- **attr==value**
 Specifies certain adapter objects to be returned. The `attr` token must be a valid attribute of one of the adapter classes in the System Data Repository (SDR) (Adapter or DependentAdapter). If `attr` exists in both adapter classes, objects from each class will be considered unless that class is excluded with the `-t` flag. The token `value` is the value of `attr` that objects must have to be returned by this invocation of the command.

- **attr**
 Specifies the attributes to be returned as output of the command. It does not limit the adapter objects that are considered for output. If an `attr` argument is not specified, the `node_number` and `adapter_type` attributes are returned.
splstadapters

Description

Use this command to get configuration information about any adapter from the SDR. For a complete list of adapter attributes, see the Adapter and DependentAdapter classes in "The System Data Repository" appendix in PSSP: Administration Guide.

Not all of the attributes are applicable to each type of adapter.

You can use the System Management Interface Tool (SMIT) to run this command. To use SMIT, enter:

```
smi list_extadapters
```

Environment Variables

The environment variable SP_NAME is used (if set) to direct this command to a system partition. The default is to use the default system partition when on the control workstation and the partition of the node when on a node.

Standard Output

This command writes informational messages to standard output.

Standard Error

This command writes all error messages to standard error.

Exit Values

0 Indicates the successful completion of the command.

nonzero Indicates that an error occurred.

Implementation Specifics

You must specify an attribute in order for it to be displayed in the output. The attribute in the sort option (−s flag) and the attributes in the form attr==value must be repeated in order for them to be displayed.

Location

/usr/lpp/ssp/bin/splstadapters

Examples

1. To list the node_number and adapter_type attributes for all adapter objects in the current system partition, enter:

```
splstadapters
```

You should receive output similar to the following:
node_number adapter_type
1 en0
1 css0
5 en0
5 css0
2. To list the netmask attribute of SP adapters along with their node numbers and have the output sorted by node number, enter:

 `splstadapters -t standard -s node_number node_number netmask`

 You should receive output similar to the following:
 1 255.255.255.192
 3 255.255.255.192

3. To list the "css0" adapters in the system, regardless of system partition, enter:

 `splstadapters -G adapter_type==css0`

 You should receive output similar to the following:

 node_number adapter_type
 1 css0
 5 css0
 7 css0
 9 css0
 19 css0
 23 css0
splstdata

Purpose

splstdata – Displays configuration data from the System Data Repository (SDR) or system information for each node.

Syntax

```
splstdata {-A | -n | -s | -t | -b | -a | -u | -v | -h | -i | -d | -x} [ -G]

{[start_frame start_slot [node_count | rest] |}
-N node_group | -l node_list]
```

OR

```
splstdata {-e | -f | -p | -X}
```

Flags

One of the following flags must be specified with each invocation of **splstdata**:

- **-A** Displays the following SDR accounting data:
 - node_number
 - host_name
 - acct_class_id
 - acct_enable
 - acct_excluse_enable
 - acct_job_charge

- **-n** Displays the following SDR node data:
 - node_number
 - frame_number
 - slot_number
 - slots_used
 - host_name
 - rel_host
 - default_route
 - processor_type
 - processors_installed

- **-s** Displays the following SDR node and dependent node switch data in three lists:
 - node_number
 - host_name
 - switch_node_number
 - switch_protocol
 - switch_number
 - switch_chip_number
 - switch_port_number
 - switch_number (common field)
 - frame_number
 - slot_number
 - switch_partition_number
switch_type
clock_input

switch_partition_number (common field)
topology_filename
primary_name
arp_enabled
switch_node_nos_used

-t Displays the following data from the ProcessorExtensionNode class.
node_number
frame_number
slot_number
host_name
short_comment
long_comment

-b Displays the following SDR boot/install data:
node_number
host_name
hdw.enet.addr
boot_server
bootp_response
install_disk
last_inst_image
last_inst_time
next_inst_image
lppsource_name
pssp_version
selected_vg

-a Displays the following SDR LAN data only for nodes in the current system partition:
node_number
adapter_type
netaddr
netmask
host_name
type
rate

-u Displays the following SDR /usr data:
node_number
host_name
usr_server_id
usr_gateway_id
usr_client_adapter
has_usr_clients

-v Displays the following volume group information:
node_number
volume group name
boot server
quorum
copies
code_version
lppsource_name
last_install_image
last_install_time
last_bootdisk
pv_list

-h Displays hardware data for each node, as provided by the \texttt{lscfg}
command.

-i Displays network adapter data for each node, as provided by the \texttt{netstat}
\texttt{-n} command.

-d Displays file system data for each node, as provided by the \texttt{df}
command.

-x Displays node expansion data for node expansion units connected to the
node(s) specified by this command. If no nodes are specified, the
command displays data for all node expansion units in the current system
partition. Node expansion units reside in the system partition that their
associated node resides in, or in the default system partition if the node
expansion unit is not connected to a node. The data is displayed in two
lists:

- expansion_number
- frame_number
- slot_number
- slots
- associated_node_number
- node_port
- node_cables
- expansion_interconnect
- node_number
- expansion_list

The following flags are optional:

-\texttt{G} Allows the specification of nodes to include one or more nodes
outside of the current system partition.

-\texttt{N node_group}

- Specifies a node group to be used for this operation. If \texttt{\texttt{-G}} is
supplied, a global node group is used. Otherwise, a
partitioned-bound node group is used.

-\texttt{I node_list}

- Specifies a list of nodes to be used for this operation. Either specify
a comma-delimited list of node numbers, or a file containing one line
of data which is a comma-delimited list of node numbers. The file
can also contain comment lines (preceded by a \\#) and lines that are
all white space. If you use the \texttt{node_list} field, do not use the
start_frame, start_slot, or node_count fields. (This is lowercase \texttt{I}, as
in list.)

-\texttt{e}

- Displays SP object attributes and their values from the SDR.
splstdata

- f Displays the following SDR frame data:
 - frame_number
 - tty
 - s1_tty
 - frame_type
 - hardware_protocol

- p Lists all information for the currently-applied system partition configuration (all active system partitions on the system). This includes the list of system partitions, plus information about each system partition.

- X Displays node expansion information for node expansion units that are not connected to any node. When using -X you cannot specify the start_frame, start_slot, and node_count fields, or the -I or -N flags.

Operands

- start_frame Frame number of first node to be used for this operation. Specify a value between 1 and 128 inclusive. If start_frame, start_slot and node_count are not specified, the default is 1 1 rest. If start_frame is specified, start_slot and node_count must also be specified.

- start_slot Slot number of first node to be used for this operation. Specify a value between 1 and 16 inclusive.

 Note: The start_frame and start_slot must resolve to a node in the current system partition.

- node_count Number of nodes to be used for this operation. Node information is provided for successive nodes within a frame. If the count of nodes causes the nodes in a frame to be exhausted, the operation continues for nodes in the next sequential frame. Specify a value between 1 and 1024 inclusive. If rest is specified, all the nodes from start_frame start_slot to the end of your system are used.

 Note: The node_count is considered to be within the current system partition.

Description

You can use the System Management Interface Tool (SMIT) to run the splstdata command. To use SMIT, enter:

smit list_data

and select the System Data Repository option for the information you want to see. To see system information for each node, enter:

smit config_data

and select the option for the information you want.
Security

Use of the -x flag requires the user to have monitor permission to access information about hardware objects.

Note: This command should be run only on the control workstation. You must be logged into the control workstation as root to execute this command.

Location

`/usr/lpp/ssp/bin/splstdata`

Examples

1. To display SDR node data for all the nodes in the current SP system partition, enter:

   ```
   splstdata -n
   ```

 You should receive output similar to the following:
List Node Configuration Information

<table>
<thead>
<tr>
<th>node</th>
<th>frame</th>
<th>slot</th>
<th>processor_type</th>
<th>processors_installed</th>
<th>description</th>
<th>default_route</th>
<th>initial_hostname</th>
<th>reliable_hostname</th>
<th>status</th>
<th>current_speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>UP</td>
<td>1</td>
<td>129.40.85.126</td>
<td>UP</td>
<td>135_MHz_P2SC_Wide</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>UP</td>
<td>1</td>
<td>129.40.85.126</td>
<td>UP</td>
<td>77_MHz_PWR2_Wide-2</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>UP</td>
<td>1</td>
<td>129.40.85.126</td>
<td>UP</td>
<td>160_MHz_P2SC_Thin</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>UP</td>
<td>1</td>
<td>129.40.85.126</td>
<td>UP</td>
<td>120_MHz_P2SC_Thin</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td>UP</td>
<td>1</td>
<td>129.40.85.126</td>
<td>UP</td>
<td>66_MHz_PWR2_Thin-2</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td>UP</td>
<td>1</td>
<td>129.40.85.126</td>
<td>UP</td>
<td>66_MHz_PWR2_Thin</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td>MP</td>
<td>1</td>
<td>129.40.85.126</td>
<td>MP</td>
<td>112_MHz_SMP_High</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td>MP</td>
<td>1</td>
<td>129.40.85.126</td>
<td>MP</td>
<td>200_MHz_SMP_High</td>
</tr>
</tbody>
</table>

2. To display SDR boot/install data for the first four nodes in the first frame, enter:
 splstdata -b 1 1 4
 You should receive output similar to the following:
List Node Boot/Install Information

<table>
<thead>
<tr>
<th>node#</th>
<th>hostname</th>
<th>hdw_enet_addr</th>
<th>srvr</th>
<th>response</th>
<th>install_disk</th>
<th>last_install_image</th>
<th>last_install_time</th>
<th>next_install_image</th>
<th>lppsource_name</th>
<th>pssp_ver</th>
<th>selected_vg</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>k55n!zerodot1.ppd.pok.i</td>
<td>0004AC493851</td>
<td>0</td>
<td>disk</td>
<td>hdisk0</td>
<td>default</td>
<td>Sun_Jul_12_14:05:19</td>
<td>default</td>
<td>aix43k</td>
<td>PSSP-3.1</td>
<td>rootvg</td>
</tr>
<tr>
<td>3</td>
<td>k55n05.ppd.pok.i</td>
<td>0004AC4944FE</td>
<td>0</td>
<td>disk</td>
<td>hdisk0</td>
<td>default</td>
<td>Sun_Jul_12_14:06:38</td>
<td>default</td>
<td>aix43k</td>
<td>PSSP-3.1</td>
<td>rootvg</td>
</tr>
<tr>
<td>5</td>
<td>k55n09.ppd.pok.i</td>
<td>0004AC493FA1</td>
<td>0</td>
<td>disk</td>
<td>hdisk0</td>
<td>default</td>
<td>Sun_Jul_12_14:05:38</td>
<td>default</td>
<td>aix43k</td>
<td>PSSP-3.1</td>
<td>rootvg</td>
</tr>
<tr>
<td>6</td>
<td>k55n13.ppd.pok.i</td>
<td>0004AC493B66</td>
<td>0</td>
<td>disk</td>
<td>hdisk0</td>
<td>default</td>
<td>Sun_Jul_12_14:05:27</td>
<td>default</td>
<td>aix43k</td>
<td>PSSP-3.1</td>
<td>rootvg</td>
</tr>
</tbody>
</table>

3. To list system partition information, enter:

```
splstdata -p
```

You should receive output similar to the following:
List System Partition Information

System Partitions:

k55sp1

Syspar: k55sp1

```
syspar_name        k55sp1
ip_address         129.40.62.179
install_image      default
syspar_dir         /spdata/sys1/syspar_configs/2nsb0isb/config.4_28/
                   layout.8/syspar.1
code_version       PSSP-2.2
haem_cdb_version   852558375,501538560,0
```

Syspar: k55s

```
syspar_name        k55s
ip_address         129.40.62.55
install_image      default
syspar_dir         /spdata/sys1/syspar_configs/2nsb0isb/config.4_28/
                   layout.8/syspar.2
code_version       PSSP-2.2
haem_cdb_version   852558451,833611264,0
auth_install       k4:std
auth_root_rcmd     k4:std
auth_methods       k4:std
```
4. To display node expansion data for all node expansion units, enter:
 splstdata -G -x
 You should receive output similar to the following:
 List Node Expansion Information

 expansion# frame# slot# slots associated_ node_ node_ expansion_
 node port cables interconnect
 ---------- ------ ----- ----- ------------ --------- -------- -----------
 31 2 15 1 25 Q2 1 0
 32 2 16 1 25 data not available

 node# expansion_list
 ------ --------------
 25 31,32

5. To display node expansion information for node expansion units not connected
to any node, enter:
 splstdata -X
 You should receive output similar to the following:
 List Information for Unconnected Node Expansion Units

 expansion# frame# slot# slots
 -------------- ------ ------ -----
 29 2 13 1
 30 2 14 1
splstnodes

Purpose

splstnodes – Lists to standard output information about nodes.

Syntax

[-t {standard | dependent}] [-N node_group]
[attr==value ...] [attr ...]

Flags

-h Displays usage information.
-G Removes system partition boundaries for this invocation. This causes the command to consider all nodes regardless of system partition.
-x Inhibits the output of the header record.
-d delimiter Forces the delimiter between tokens to be delimiter, where delimiter is any string value. If this flag is used, only one copy of the delimiter is used between tokens, even if the delimiter is a blank.
-p str Prints the str string in place of an attribute that does not apply to the object being output. The default is to print two double quotes ("').
-s attr Sorts the output by the value of the attr attribute.
-t Restricts the query to a specific node type. The node type can be one of the following:
 standard Only SP nodes (nodes in a frame/slot) are considered for output.
 dependent Only dependent nodes are considered for output.
If the -t flag is not specified, the default is to consider both standard and dependent nodes for output.
-N node_group
Restricts the query to only the nodes in the node group specified by node_group. If node_group is a system node group, the -G flag is implied.

Operands

attr==value Used to specify certain node objects to be returned. The attr token must be a valid attribute of one of the node classes in the System Data Repository (SDR) (Node or DependentNode). If attr exists in both node classes, the objects from each class will be considered, unless that class is excluded with the -t flag. The token value is the value of attr that objects must have to be returned by this invocation of the command.

attr Used to specify the attributes to be returned as output of the command. It does not limit the node objects that are considered for output. If an attr argument is not specified, the node_number attribute is returned.
Description
Use this command to get configuration information about any node from the SDR. For a complete list of node attributes, see the Node and DependentNode classes in “The System Data Repository” appendix in PSSP: Administration Guide.

Not all of the attributes are applicable to each type of node.

You can use the System Management Interface Tool (SMIT) to run this command. To use SMIT, enter:
smit list_extnodes

Environment Variables
The environment variable SP_NAME is used (if set) to direct this command to a system partition. The default is to use the default system partition when on the control workstation and the system partition of the node when on a node.

Standard Output
This command writes informational messages to standard output.

Standard Error
This command writes all error messages to standard error.

Exit Values
0 Indicates the successful completion of the command.
nonzero Indicates that an error occurred.

Implementation Specifics
You must specify an attribute in order for it to be displayed in the output. The attribute in the sort option (-s flag) and the attributes in the form attr==value must be repeated in order for them to be displayed.

Location
/usr/lpp/ssp/bin/splstnodes

Examples
1. To list the node number of all wide node objects in the current system partition, enter:
splstnodes slots_used==2
You should receive results in the following output, if four wide nodes are in the system partition in slots 1, 3, 5, and 7:
2. To list the **reliable_hostname** attribute of SP nodes along with their node numbers and have the output sorted by node number, enter:

```
splstnodes -t standard -s node_number node_number reliable_hostname
```

You should receive results in the following output:

```
node_number reliable_hostname
1 k22n1.ppd.pok.ibm.com
3 k22n3.ppd.pok.ibm.com
5 k22n5.ppd.pok.ibm.com
7 k22n7.ppd.pok.ibm.com
```

3. To list the “wide nodes” in the system, regardless of system partition, enter:

```
splstnodes -G slots_used==2
```

You should receive results in output similar to the following:

```
node_number
1
3
5
7
19
21
23
```

4. To list the **snmp_community_name** attribute of any SP dependent nodes along with their node numbers, enter:

```
splstnodes -t dependent node_number snmp_community_name
```

If you have dependent nodes, you should receive output similar to the following:

```
node_number snmp_community_name
8 mycomm
2 yourcomm
```
splsuser

Purpose

splsuser – Lists the attributes of an SP user account.

Syntax

splsuser [-c | -f] name

Flags

- c Displays the attributes for the user in colon-separated records.
- f Displays the attributes for the user in stanza format.

Operands

name Name of the user account you want to view.

Description

You can only list the information for one SP user at a time. Unlike the AIX lsuser command, the ALL option and the -a flag are not supported for this command.

If you specify this command with no flags, the information of the user appears in a sequential display of attribute and values.

You can use the System Management Interface Tool (SMIT) to run the splsuser command. To use SMIT, enter:

smit spusers

and select the Change/Show Characteristics of a User option.

Location

/usr/lpp/ssp/bin/splsuser

Examples

1. To display the attributes of the user account rob in a colon-separated list, enter:
 splsuser -c rob
 You should receive output similar to the following:
 #name:id:pgrp:groups:home:shell:gecos:login
 rob:16416:1::/u/rob on k46s.hpssl.kgn.ibm.com:/bin/ksh::true

2. To display the attributes of the user account rob in stanza format, enter:
 splsuser -f rob
 You should receive output similar to the following:
splsuser

rob:

id=16416
pgrp=1
groups=
home=/u/rob on k46s.hpssl.kgn.ibm.com
shell=/bin/ksh
gecos=
login=true
spmgrd Daemon

Purpose

spmgrd – Automates management and configuration required for extension nodes.

Syntax

spmgrd [-s | -l] -f filename -m [size | 0]

Flags

- s Specifies that short tracing is to be turned on as part of initialization processing. This is used to capture trace events that occur during bring-up. The trace file is located in /var/adm/SPlogs/spmgr/spmgrd.log unless overridden. Short tracing does not include informational messages nor the content of messages exchanged with Simple Network Management Protocol (SNMP) agents. The default is for tracing to be turned off.

- l Specifies that long tracing is to be turned on as part of initialization processing. This is used to capture trace events that occur during bring-up. The trace file is located in /var/adm/SPlogs/spmgr/spmgrd.log unless overridden. Long tracing includes informational messages and the content of messages exchanged with SNMP agents in addition to error messages. The default is for tracing to be turned off.

- f Specifies the name of a trace file. The default trace file name is /var/adm/SPlogs/spmgr/spmgrd.log.

- m Specifies the maximum trace file size in bytes. When 0 is specified, there is no maximum size. The default is 0.

Operands

None.

Description

The spmgrd daemon is part of the spmgr subsystem and can only be controlled using the System Resource Controller (SRC). This daemon acts as an SNMP Manager monitoring SNMP trap messages received from SNMP agents supporting dependent nodes. A trap message may contain state information about an attached dependent node or may request the transfer of configuration data for a dependent node supported by the sending SNMP agent. When requested by a trap message, spmgrd transfers configuration data to the requesting SNMP agent. The data transfer is in the form of an SNMP set-request message containing the SNMP object instantiations representing configuration aspects of the dependent node and the values to which the aspects are to be set. When a trap message indicates that a dependent node previously fenced from the switch network with the “automatic rejoin” option is now active, spmgrd will automatically issue an Eunfence command to trigger the appropriate unfence processing.

The spmgrd daemon keeps log messages in a default file or in a file specified by the filename variable if the –f flag is specified. When the size of the log file exceeds an optional user-specified maximum log file size, the spmgrd daemon rotates the log file by moving the old log file to another file as follows:
The `spmgrd` daemon only runs on the control workstation.

The `spmgrd` daemon is controlled using the SRC. The `spmgrd` daemon is known to the SRC as the `spmgr` subsystem. Use the following SRC commands to manipulate the `spmgr` subsystem:

- **startsrc** Starts a subsystem, group of subsystems, or a subserver. Issuing the `startsrc -s spmgr` command causes the `spmgrd` daemon to be started. Any `spmgrd` switches must be set using the `startsrc` command with `-a` switch and must be enclosed within double quotes ("").

- **stopsrc** Stops a subsystem, group of subsystems, or a subserver.

- **traceson** Enables tracing of a subsystem, group of subsystems, or a subserver. Long tracing is specified by using the `-l` switch.

- **tracesoff** Disables tracing of a subsystem, group of subsystems, or a subserver.

- **lssrc** Gets the status of a subsystem, group of subsystems, or a subserver. When the long form of the subsystem's status is requested, information provided by the `spmgr` subsystem includes:

 - Trace information:
 - Whether tracing is on or off
 - The name of the trace file
 - The mode of tracing (long or short)
 - The trace file size limit (if any)

 - Summary information about the traps received

 - The content and the completion status of the `snmpinfo` commands issued by the `spmgrd` daemon. The `snmpinfo` commands are issued internally to request the SNMP agent managing a dependent node to change the dependent node's administrative state (this occurs whenever an `enadmin` command is entered by a user). The `snmpinfo` command is also issued internally to send configuration data for a dependent node to the SNMP agent.
managing it (the request for configuration data is received in the form of a trap message).

Files

/var/adm/SPlogs/spmgr/spmgrd.log
Is the spmgrd trace file.

/usr/lpp/spp/config/spmgrd/ibmSPDepNode.my
Is the Management Information Base (MIB) file containing the ibmSPDepNode object group that defines dependent node configuration objects.

/usr/lpp/ssp/config/spmgrd/ibmSPDepNode.defs
Is the compiled ibmSPDepNode.my object file.

/etc/services
Contains a line, spmgrd-trap, that defines the User Datagram Protocol (UDP) port number over which trap messages are received from an SNMP agent supporting dependent nodes.

Implementation Specifics

This command is part of the IBM Parallel System Support Programs (PSSP) Licensed Program Product (LPP) ssp.spmgr file set.

Location

/usr/lpp/ssp/bin/spmgrd

Related Information

Commands: enadmin, lssrc, startsrc, stopsrc, tracesoff, traceson

Examples

1. To start the spmgr subsystem (for example, the spmgrd daemon with short tracing on), enter:

 startsrc -s spmgr -a'-s'

2. Use the traceson and tracesoff commands to control tracing after the spmgrd daemon is started.

 traceson -ls spmgr (to turn on long tracing)

 tracesoff -s spmgr (to stop tracing)

3. To stop the spmgr subsystem, enter:

 stopsrc -s spmgr

4. To obtain the trace status and a list of snmpinfo commands issued by the spmgr subsystem since it was last activated, enter:

 lssrc -ls spmgr
spmirrorvg

Purpose

spmirrorvg – Initiates mirroring on a node or set of nodes.

Syntax

spmirrorvg [-f] {start_frame start_slot (node_count | rest) | -I node_list}

Flags

-f Forces the physical volume to be added to the specified volume group unless it is a member of another volume group in the Device Configuration Database or of a volume group that is active. If the volume group is varied off, and -f is specified, the physical volume will be added to the volume group.

-I node_list Specifies a list of nodes for this operation. This list can be a single numeric node number, or a list of numeric node numbers separated by commas.

Operands

start_frame Specifies the frame number of the first node to be used for this operation.

start_slot Specifies the slot number of the first node to be used for this operation.

Note: The start_frame and start_slot must resolve to a node in the current system partition.

node_count Specifies the number of nodes to be used for this operation. The node information is added for successive nodes within a frame. If the count of nodes causes the nodes in a frame to be exhausted, the operation continues for nodes in the next sequential frame.

Specify a value between 1 and 1024 inclusive. If rest is specified, all the nodes from start_frame start_slot to the end of your system are used.

Note: The node_count is considered to be within the current system partition.

Description

The spmirrorvg command uses information found in the Volume_Group object to initiate mirroring on a node. If the number of requested copies is already achieved on the node, spmirrorvg exits. If the number of copies has not been achieved, the spmirrorvg command uses the pv_list attribute to extend the named volume group. After extending the volume group, spmirrorvg calls the AIX mirrorvg command to make two or three copies of the volume group. If not enough disks are specified in the pv_list to maintain strictness this command will exit. Quorum will be set according to the quorum attribute in the Volume_Group object. If the state of quorum changes as a result of running the spmirrorvg command, a message will be displayed that the node needs to be rebooted. The AIX commands bosboot and
spmirrorvg

bootslist are run by spmirrorvg. **bosboot** updates the bootable image and **bootslist** sets the node bootlist to reflect multiple bootable logical volumes.

Exit Values

<table>
<thead>
<tr>
<th>Exit Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Indicates the successful completion of the command.</td>
</tr>
<tr>
<td>1</td>
<td>Indicates that a recoverable error occurred, some changes may have succeeded.</td>
</tr>
<tr>
<td>2</td>
<td>Indicates that an irrecoverable error occurred and no changes were made.</td>
</tr>
</tbody>
</table>

Security

You must have root privilege to run this command.

Files

Log file created on node which contains AIX error messages if an error occurs during mirroring: `/var/adm/SPlogs/sysman/mirror.out`

Implementation Specifics

This command is part of the IBM Parallel System Support Programs (PSSP) Licensed Program Product (LPP).

Location

`/usr/lpp/ssp/bin/spmirrorvg`

Related Information

Commands: *spchvgobj, spunmirrorvg*

Examples

1. To initiate mirroring on node 1 for the rootvg volume group enter:
   ```
   spmirrorvg -l 1
   ```

2. To initiate mirroring on a list of nodes enter:
   ```
   spmirrorvg -l 1,2,3
   ```
spmkuser

Purpose

spmkuser – Adds a new user account to the SP system.

Syntax

spmkuser [attribute =value ...] name

Flags

None.

Operands

attribute=value Pairs of the supported attributes and values as follows.

name User login name. This name must follow the same rules enforced by the AIX mkuser command.

Supported Attributes and Values

id ID of the user specified by the name operand.

pgrp Principle group of the user specified by the name operand.

gcos General information about the user.

groups The secondary groups to which the user specified by the name operand belongs.

home Host name of the file server where the home directory resides and the full path name of the directory. You can:

- Specify a host and directory in the format host:path, just specify the directory and have the host default to a value set in the SMIT site environment panel or the spsitenv command. If this value has not been set, then the host will default instead to the local machine name, if you do not specify host explicitly.

login Indicates whether the user specified by the name operand can log in to the system with the login command. This option does not change the /etc/security/user file. Instead, it alters the user password field in /etc/security/passwd.

shell Program run for the user specified by the name operand at the session initiation.

Description

The -a flag is not supported. Except for home, the rules for the supported attributes and values correspond to those enforced by the AIX mkuser command.

All other attribute and value pairs are not supported.

The standard administrative AIX privileges do not apply to the SP users.

This command generates a random password for the user and stores it in /usr/lpp/ssp/config/admin/newpass.log. The root user has read and write
permission to this file. It is the administrators responsibility to communicate this password to the new user and periodically delete the contents of this file.

You can use the System Management Interface Tool (SMIT) to run the `spmkuser` command. To use SMIT, enter:

```
smit spusers
```

and select the Add a User option.

Note: The home directory must be in an exported file system before you can run this command.

Security

You must have root privilege to run this command. This command is run from the control workstation only.

Location

```
/usr/lpp/ssp/bin/spmkuser
```

Examples

\[
\text{Note}
\]

The following examples assume that the SP automounter function is configured and the following defaults are specified:

- `spsitenv` command or SMIT panel `HOMEDIR_SERVER="svr1"`

 `HOMEDIR_PATH="/home/filesvr1"`

- `spmkuser.default` file

 In the `user` stanza:

  ```
  group=staff
  groups=staff
  prog=/bin/ksh
  ```

1. To create a user account for `baker` using the defaults specified in the `spmkuser.default` file and the home directory specified in the SMIT site environment panel or `spsitenv` command:

   ```
   spmkuser baker
   ```

2. To create a user account for `charlie` with a UID of 1234, a home directory of `/u/charlie` that is physically located at `/home/charlie` on `hostx`, the `staff` primary group and the `dev`, the `test` secondary groups, and the `/bin/ksh` default shell:

   ```
   spmkuser id=1234 groups=dev,test home=hostx:/home/charlie
   ```
Purpose

spmkvgobj – Creates a new root volume group for a node or series of nodes in the System Data Repository (SDR).

Syntax

```
spmkvgobj -r volume_group_name [-h pv_list] [-i install_image]
[-p code_version] [-v lppsource_name] [-n boot_server]
[-c { 1 | 2 | 3 }] [-q {true | false}]
{start_frame start_slot {node_count | rest} | -l node_list}
```

Flags

- **-r volume_group**
 Specifies the root volume group name to create.

- **-h pv_list**
 Indicates the physical volumes to be used for installation for the volume group specified. The root volume group is defined on the disks indicated, and all data on the disks is destroyed. The physical volumes may be specified as logical names (for example, `hdisk0`), hardware location (for example, `00-00-00-0,0`), or connwhere (for example, `ssar//012345678912345`). If multiple physical volumes are specified, separate them by commas for logical names and by colons for hardware location and connwhere. The default value is `hdisk0`.

 Note: IBM strongly suggests that you use the hardware location or connwhere format. It ensures that you install on the intended disk by targeting a specific disk at a specific location. The logical naming of physical volumes may change depending on hardware installed or possible hardware errors. This is especially true when there are external drives present, as the manner in which the device names are defined may not be obvious.

- **-i install_image**
 Specifies the name of the install image to be used for the volume group when they are next network-installed. Specify a file in the `/spdata/sys1/install/images` directory on the control workstation. At installation, the value for each volume group's install image name is default, which means that the default install image name for the system partition or the system is used for each node. The default install image name is found in the Syspar or the SP object in that order. The default value is "default".

- **-p code_version**
 Sets the volume group's code version. Use this to indicate the PSSP level to install on the node. The `code_version` value you choose must match the directory name that the PSSP installation files are placed under in the `/spdata/sys1/install/pssplpp` directory during installation. See the `PSSP: Installation and Migration Guide` for more details. The default value is "PSSP-3.1".

- **-v lppsource_name**
 Sets the volume group's lppsource name. Use this to indicate the AIX level to install on the node. The `lppsource_name` value you choose must
match the directory name you choose to place the lppsource files under in the `/spdata/sys1/install` directory during installation. See the PSSP: *Installation and Migration Guide* for more details. The default value is "default".

--n boot_server

Identifies the boot/install server for the volume groups you have specified. The boot/install server is identified by a node number. Node number 0 represents the control workstation. The value of the boot/install server at installation depends on how many frames are in your system. In a single frame system, the control workstation (node 0) is the default server for each node. In a multiple frame system, the default server for the first node in each frame is the control workstation, and the default server for the rest of the nodes in a frame is the first node in that frame. The default value for a new root volume group is "0".

--c copies

Specifies the number of mirrors to create for the volume group. To enable mirroring, set this to 2 or 3. Setting this to 1 disables mirroring. When enabling mirroring, be sure that there are enough physical volumes to contain all the copies of the volume group. Each copy must have at least 1 physical volume. The default value is "1".

-q true | false

Specifies whether quorum should be enabled. If quorum is enabled, a voting scheme will be used to determine if the number of physical volumes that are up is enough to maintain quorum. If quorum is lost, the entire volume group will be taken off line to preserve data integrity. If quorum is disabled, the volume group will remain on line as long as there is at least 1 running physical volume. The default value is "true".

-l node_list

Specifies a list of nodes to be used for this operation. Specify a comma-delimited list of node numbers. If you use the -l flag, do not use the `start_frame`, `start_slot`, or `node_count` operands.

Operands

start_frame

Specifies the frame number of the first node to be used for this operation.

start_slot

Specifies the slot number of the first node to be used for this operation.

Note: The `node_count` is considered to be within the current system partition.

node_count

Specifies the number of nodes to be used for this operation. The node information is added for successive nodes within a frame. If the count of nodes causes the nodes in a frame to be exhausted, the operation continues for nodes in the next sequential frame.

Specify a value between 1 and 1024 inclusive. If `rest` is specified, all the nodes from `start_frame` `start_slot` to the end of your system are used.

Note: The `node_count` is considered to be within the current system partition.
spmkvobj

Description
Use the spmkvobj command to create a new root volume group on a node or group of nodes in the System Data Repository (SDR). When this command is run and the SDR is changed, setup_server must be run on the affected boot/install servers and affected nodes may need to be customized or installed to apply the changes. Certain volume group information such as mirroring and the pv_list may be updated using the spmirrorvg or spunmirrorvg commands.

Exit Values
0 Indicates the command has run successfully.
1 A non-critical error occurred, some creations may have succeeded.
2 Indicates an irrecoverable error occurred and no changes were made.

Security
You must have root privilege and write access to the SDR to run this command.

Implementation Specifics
This command is part of the IBM Parallel System Support Programs (PSSP) Licensed Program Product (LPP).

Location
/usr/lpp/ssp/bin/spmkvobj

Related Information
Commands: spbootins, spchvgobj, spmirrorvg, sprmvgobj, spunmirrorvg

Examples
1. To create a new root volume group using 2 SSA physical volumes and taking all other default values on nodes 2 and 3, enter:
 spmkvobj -r rootvg2 -h \\ssar//567464736372821:ssar//67464736372821 -l 2,3

2. To create a new root volume group using 3 SCSI physical volumes, enabling mirroring and specifying a mksysb image on node 7, enter:
 spmkvobj -r rootvg2 -h 00-00-00-0,0:00-00-00-1,0:00-00-00-2,0
 -c 2 -q false -i bos.obj.ssp.432 -l 7
spmon

Purpose

spmon – Operates the system controls and monitors system activity.

Syntax

spmon [-query [−Monitor] [−long] | -connect host_name |
−Global | −help | −key {normal | secure | service} | −Key |
−Led | −power {on | off} | −reset | −mux {1 | 2 | 3} | −open | −diagnostics |
[[-target] target_value...]

Flags

All spmon commands require a −target parameter except those with
−diagnostics, and −help parameters.

−query Queries the hardware variable specified as the target and returns the
requested value. query is the default. If no other parameter is entered, a
query is performed.

−Monitor Monitors the variables specified in the targets. If any of the specified
variables change the state, the new state is written to standard output.

−long Applies only to −query and −Monitor. Returns the requested variables
in fully qualified hierarchical format rather than the default format which
is just the variable value.

−connect Connects to control workstation specified in host_name variable. Use
this parameter with the −key, −Key, −Led, −open, −power, −reset, and
−mux parameters.

−Global Allows targets that are outside of the current system partition. This
parameter must be used for any query or command if specifying frames
or switches.

−help Displays the usage information for the spmon command.

−key Choice of normal | secure | service. Changes the key mode switch
position for the node specified as the target.

−Key Returns status of the key mode switch position for the node specified as
the target.

−Led Displays the 3-digit display value.

−power Choice of on | off.

Turns the power on or off for the node, frame, or switch specified as the
target. For example:

spmon -G -p off frame1

spmon -p off node16

spmon -G -p off frame2/switch

spmon -G -p off frame11/switch2
spmon

−reset Resets the node specified as the target.
−mux Choice of i 1 2 3. Sets multiplexors that control the clocking of a switch to the value indicated. These values mean:

 i Use internal oscillator (make this switch the master)
 1 Use input 1
 2 Use input 2
 3 Use input 3

The mux setting must match the physical wiring of the switch clocks and requires a frame as its target. For a switch in node 17, use a frame as the target or frame/switch N for a switch in a switch-only frame.

−open Opens a tty connection to the node specified in the target flag. Press Enter to begin the session. Type Ctrl-x to close the connection. Refer to the s1term command for details.

−diagnostics

Performs the following diagnostics tests:
1. Checks if the server process is running
2. Tries to open a connection to the server
3. Queries the number of frames in system
4. If the −G parameter is specified, for each frame checks:
 • If the frame controller responding
 • If a switch is attached
 • The mux value
 • If the frame power supplies are ON or OFF
5. For each node in each frame, checks:
 • Node type
 • If power is on or off
 • hostResponds
 • switchResponds
 • The position of key switch
 • Environment problems
 • The values of the front panel LEDs.

For each switch, checks:
• Frame, slot
• Node type
• If power is on or off
• Clock input
• Environment problems

The tests are in dependent order. If any of these are unsuccessful, the subsequent tests do not run.

[-target] target_value

Specifies the target node, frame, variable, or attribute for the command as target_value

The −target flag is optional. Any parameter without a flag is assumed to be the target. You can also have multiple target-flags (−t), which are optional.
Operands

None.

Description

Any unique abbreviation of flags and keywords is acceptable.

Specify `target_value` with the hierarchical format (or tree structure). The format is:

```
/SP/frame/frameN[/nodeM|switchM]/variableX/value
```

- `SP` is literally the string “SP”.
- `frame` is the string `frame`.
- `frameN` is `frame1...frameN` where `N` is the frame number in the SP system.
- `nodeM` or `switchM` is the node number or switch number within the specified frame. `M` is the slot number of that node or switch. When switch is specified without a number, it means switch 17.
- `variableX` is a variable known to the SP System Monitor. Refer to the “System Monitor Variables, Display Types, and Attributes Appendix” of PSSP: Administration Guide for a list of variables.
- `value` is literally the string “value.”

You can use wildcards (*) to specify more than one target node or frame for the `query` command.

Note: Though they are not hardware variables, for compatibility with older systems, the variables `hostResponds` and `switchResponds` can be used as specific targets of the `spmon` command for both `−query` and `−Monitor` commands. However, the variable names must be entered explicitly. These two variables are not returned if the variable specified is a wildcard (*).

You can use aliases in place of fully qualified hierarchical target values. Aliases require less typing and may be more intuitive than the fully qualified targets. Leaving the leading slash (/) off the target indicates that it is an alias.

There are two formats for aliases:

- **Format 1:** `frameN/nodeM`

 - `frameN` is the target frame, where `N` is the frame number.
 - `nodeM` is node1 to node16 within the specified frame.

 You can include a variable and attribute after the alias.

- **Format 2:** `nodeM`

 - `nodeM` is node1 to nodeM where `M` is the node number of the node in the SDR node class.

The `spmon` command fails if any of the hardware targeted is not supported by the version of PSSP on the machine where the command was issued.
spmon

Security

System Control Mode: To execute the spmon command in System Control Mode you must be authorized to access the Hardware Monitor subsystem and must be granted “VFOP” permission for the hardware objects (frames, slots) specified in the command. Commands sent to hardware objects for which the user does not have “VFOP” permission are ignored.

Monitor Mode: To execute the spmon command in Monitor Mode you must be authorized to access the Hardware Monitor subsystem and must be granted Monitor permission for the hardware objects (frames, slots) specified in the command. State information is not returned for hardware objects for which the user does not have Monitor permission.

Location

/usr/lpp/ssp/bin/spmon

Related Information

The sphardware command launches a graphical user interface for monitoring and controlling an SP system.

Commands: hmcmds, hmmon

Examples

1. To query the key setting of node1 on frame1, enter:
 spmon -q -t /SP/frame/frame1/node1/keyModeSwitch/value
 0

2. To perform the same query using an alias (uses query flag default), enter:
 spmon node1/keyModeSwitch/value
 0

3. To query the LED settings of node1 on frame1, enter:
 spmon -L frame1/node1

 You should receive output similar to the following:

 | _ _ _ _ |
 | |_ |_ |_ | Frame 1, Node 1
 | |_ |_ |_ |
 |___________|

4. To query the mux value on all switches in the system, enter:
 spmon -G -q -l frame*/switch*/mux/value
 /SP/frame/frame1/switch17/mux/value/0

5. To monitor the power LEDs on the nodes on frame1, enter:
To query the power LEDs on the nodes on frame 1 and then monitor them and print the values in fully qualified hierarchical form, enter:

```
spmon -M -q -l frame1/node*/powerLED/value
```

```
/SP/frame/frame1/node1/powerLED/value/1
/SP/frame/frame1/node3/powerLED/value/1
/SP/frame/frame1/node5/powerLED/value/1
/SP/frame/frame1/node7/powerLED/value/1
/SP/frame/frame1/node9/powerLED/value/1
/SP/frame/frame1/node10/powerLED/value/1
/SP/frame/frame1/node11/powerLED/value/1
/SP/frame/frame1/node12/powerLED/value/1
/SP/frame/frame1/node13/powerLED/value/1
/SP/frame/frame1/node14/powerLED/value/1
/SP/frame/frame1/node15/powerLED/value/1
/SP/frame/frame1/node16/powerLED/value/2
/SP/frame/frame1/node1/powerLED/value/1
```

Note: “node*” returns powerLED values on switches in slots 1—16 also.

7. To switch power off node 3 on frame 2, enter:

```
spmon -p off frame2/node3
```

If node3 on frame 2 is outside the current system partition, enter:

```
spmon -G -p off frame2/node3
```

8. To switch power off node 3 on frame 2 using alias format, enter:

```
spmon -p off node19
```

9. To change key setting on node 1 on frame 1 to service, enter:

```
spmon -k service node1
```

10. To switch power off frame 1, (type 17 frame supervisor only), enter:

```
spmon -G -p off frame1
```

11. To switch power off frame 1, (SEPBU - type 18 frame supervisor), enter:
spmon

12. To set the frame1 switch to be the master switch (use internal oscillator), enter:
 `spmon -G -m i frame1`
 or
 `spmon -G -m i frame1/switch`

13. To set frame 10, switch4 in a switch-only frame to be the master switch, enter:
 `spmon -G -m i frame10/switch4`
spmon_ctest

Purpose

spmon_ctest – Verifies that the System Monitor component is configured correctly.

Syntax

spmon_ctest [-l log_file] [-q]

Flags

-1 log_file Specifies the path name of the log file to which error messages are written. (This is lowercase l, as in list.)

-q Specifies quiet mode; suppresses output to standard error.

Operands

None.

Description

This command is designed to be run after installing the SP system to verify that the System Monitor is configured correctly. The test checks to make sure that the hardware is running, that it can be queried, and determines whether any node objects were created in the System Data Repository (SDR). The test also indicates whether the RS232 lines are connected properly.

A return code of zero indicates that the test completed as expected; otherwise it returns the number of errors. If you do not specify the -q flag, a message is displayed on standard output that indicates if the test was successful or not. In either case, the command returns 0 if successful, 1 if unsuccessful. If errors are detected, more detailed information is recorded in the log file. If you do not specify the -l flag, error messages are recorded in /var/adm/SPlogs/spmon_ctest.log.

You can use the System Management Interface Tool (SMIT) to run this command. To use SMIT, enter:

smit SP_verify

and select the System Monitor Configuration option.

You must run this test from a user who has monitor authority in /spdata/sys1/spmon/hmacls. The user must also have a nonexpired authentication ticket.

Refer to the "RS/6000 SP Files and Other Technical Information" section of PSSP: Command and Technical Reference for additional Kerberos information.

Files

/var/adm/SPlogs/spmon_ctest.log
Default log file.
spmon_ctest

Security

You must root privilege to run this command.

Location

/usr/lpp/ssp/bin/spmon_ctest

Related Information

Commands: CSS_test, jm_install_verify, jm_verify, SDR_test, SYSMAN_test, spmon_itest

Examples

To verify installation of the SP System Monitor, saving error messages in spmon.err in the current working directory, enter:

spmon_ctest -l spmon.err
spmon_itest

Purpose

spmon_itest – Verifies that the System Monitor is installed and operational.

Syntax

spmon_itest [−l log_file] [−q]

Flags

−l log_file Specifies the path name of the log file to which error messages are written. (This is lowercase l, as in list.)
−q Specifies quiet mode; suppresses output to standard error.

Operands

None.

Description

This command is designed to be run after installing the SP system to verify that the System Monitor is installed correctly.

A return code of zero indicates that the test completed as expected; otherwise it returns the number of errors. If you do not specify the −q flag, a message is displayed on standard output that indicates if the tests were successful or not. In either case, the command returns 0 if successful, 1 if unsuccessful. If errors are detected, more detailed information is recorded in the log file. If you do not specify the −l flag, error messages are recorded in /var/adm/SPlogs/spmon_itest.log.

You can use the System Management Interface Tool (SMIT) to run this command. To use SMIT, enter:

\[\text{smit SP_verify}\]

and select the System Monitor Installation option.

Files

/var/adm/SPlogs/spmon_itest.log
Default log file.

Security

You must have root privilege to run this command.

Location

/usr/lpp/ssp/bin/spmon_itest
spmon_itest

Related Information

Commands: CSS_test, jm_install_verify, jm_verify, SDR_test, SYSMAN_test, spmon_ctest

Examples

To verify installation of the SP System Monitor, saving error messages in spmon.err in the current working directory, enter:

spmon_itest -l spmon.err
spnkeyman_start

Purpose

spnkeyman_start – Conditionally starts the SP Per Node Key Management daemon on the control workstation, node, or stand-alone workstation. The command runs locally on the host where the daemon is to be started.

Syntax

spnkeyman_start

Flags

None.

Operands

None.

Description

The spnkeyman_start command is used to conditionally start the key management daemon on a specific machine. When this command is executed the key management daemon spnkeymand is started.

The daemon will not be started if DCE has not been installed on the workstation. On the SP, the script will generally be run from rc.sp during re-boot. On a stand-alone workstation, the script can be started with an inittab entry:

nkeyman:2:once:/usr/lpp/ssp/bin/spnkeyman_start.

If DCE is configured on the control workstation after installation, it is necessary for the system administrator to start the daemon manually after the SP has been configured to use DCE.

The daemon requires:

1. DCE is installed and configured on the host where the daemon is running.
2. Principals (SP or non-SP workstation) must be in the DCE registry and the keyfiles created on the host (control workstation, node or non-SP workstation) before the daemon will run.

If you need to stop the spnkeymand daemon, enter:

stopsrc -s spnkeyman

Standard Error

This command issues error messages to alert a system administrator to a problem.
spnkeyman_start

- **Exit Values**
 - 0: The command has run successfully.
 - 3: DCE is not installed.
 - 4: There was an error calling `startsrc`.
 - 5: An error occurred.

Errors result in the SP Key Management daemon not running, and consequently the services that rely on SP Key Management to provide key files will ultimately be unsuccessful.

- **Security**
 - You must have root privilege to run this command.

- **Implementation Specifics**
 - This command is part of the IBM Parallel System Support Programs (PSSP) Licensed Program Product (LPP).

- **Prerequisite Information**
 - The section on SP system security in *PSSP: Administration Guide* and *IBM Distributed Computing Environment* 3.1 manuals set.

- **Location**
 - `/usr/lpp/ssp/bin/spnkeyman_start`

- **Related Information**
 - Commands: `startsrc`

- **Examples**
 - 1. To start the key management daemon, enter:
 - `spnkeyman_start`
sppenode

Purpose

sppenode – Enters configuration data for a processor extension node in the System Data Repository (SDR).

Syntax

```
sppenode [−h]  
OR  
sppenode [−n hostname] [−s short comment] [−l long comment] node_number  
```

Flags

- **−h** Displays usage information.
- **−n hostname** Hostname.
- **−s short comment** Allows you to enter a short description of the node.
- **−l long comment** Allows you to enter a long description of the node.

Operands

`node_number` Specifies the node number for this processor extension node.

Description

Execute this command during installation of the Netfinity server to add node specific data to the SDR for the ProcessorExtensionNode class. The `node_number` operand is required when entering this information.

Standard Output

This command writes informational messages to standard out.

Standard Error

This command writes all error messages to standard error.

Errors can result from causes that include:

- SDR access errors
- Insufficient user authorization for the command

Exit Values

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Indicates the successful completion of the command.</td>
</tr>
<tr>
<td>1</td>
<td>Indicates that an error occurred. The Netfinity node information was not updated. It is accompanied by one or more error messages that indicate the cause of the error.</td>
</tr>
</tbody>
</table>
sppenode

Security

You must have root privilege, or be a member of the system group to run this command.

You must have write access to the SDR to run this command.

Restrictions

This command may only be issued on the control workstation.

Location

/usr/lpp/ssp/bin/sppenode

Examples

Command for a processor extension node with a node number of 17:
sppenode-n SAPserver -s SAPserver -l Rack1FirstNode 17
Purpose

`spperfmon` – Directly launches the Performance Monitor Perspective graphical user interface (GUI).

Syntax

```
spperfmon [-userProfile name] [-systemProfile name] [-noProfile]
            [-backgroundColor colorName]
            [-foregroundColor colorName]
            [-fontFamily name]
```

Flags

- **-userProfile name**
 Upon initialization, loads the specified user profile. If a user profile named "Profile" exists in the user's home directory, it will be loaded by default if the `-userProfile` flag is not specified.

- **-systemProfile name**
 Upon initialization, loads the specified system profile instead of the default system profile. The default system profile is named "Profile."

- **-noProfile**
 Upon initialization, does not read either profile.

- **-backgroundColor colorName**
 Overrides the background color specified by any profile or default with the specified color. Refer to Appendix A, "Perspectives Colors and Fonts" in `PSSP: Command and Technical Reference` for a list of valid color names.

- **-foregroundColor colorName**
 Overrides the foreground color specified by any profile or default with the specified color. Refer to Appendix A, "Perspectives Colors and Fonts" in `PSSP: Command and Technical Reference` for a list of valid color names.

- **-fontFamily name**
 Overrides any font family with the specified font. The list of valid family names is dependent on the X server. Refer to Appendix A, "Perspectives Colors and Fonts" in `PSSP: Command and Technical Reference` for a list of valid fonts.

- **-fontSize size**
 Overrides any font point size with the specified size. Valid values are 6—30 points.

- **-fontBold**
 Sets the font to bold.

- **-fontItalic**
 Sets the font to italics.

- **-nosplash**
 Does not display the splash screen before the Perspectives main window is displayed.

- **-h**
 Displays usage information on the options available for the command.

Note: Most flags accepted by X will also be recognized. For example, `-display displayname`.

Chapter 1. Commands 207
Operands

None.

Description

Use this command to launch the SP Performance Monitor Perspective. This tool enables the user to monitor the performance of the SP in conjunction with other licensed products: Performance Toolbox for AIX (PTX), 5765-654.

From the Performance Monitor Perspective, you can perform most of the PTPE command set functions through point and click operations. For example, you can easily manipulate the PTPE monitoring hierarchy and save it to the System Data Repository (SDR).

The Performance Monitor Perspective window uses three panes to display SP system information:

1. **Hierarchy pane**: This shows the current monitoring hierarchy, displaying the central coordinator at the top, with data manager nodes below and reporter nodes at the bottom. By default, the monitoring hierarchy from the System Data Repository (SDR) is displayed when this Perspective is initialized.

2. **Syspar pane**: This shows how the SP is partitioned. The system partition selected in this pane is the one displayed in the Hierarchy and Nodes panes. If other partitions are defined by the SP, you can use this pane to select them.

3. **Nodes pane**: This shows the nodes in the SP system, organized by frame in the default display, but you can sort and filter them to suit your purposes.

When the command is invoked, preferences that define the look and layout of the SP Performance window are prioritized in the following order:

- Command line options
- User preferences profile
- System preferences profile
- Default values

Files

The Users Preferences are read from and saved to $HOME/.spperfmon(User Profile Name).

The System Preferences are read from and saved to /usr/lpp/ssp/perspectives/profiles/$LANG/.spperfmon(System Profile name).

The spperfmon application resource file: /usr/lpp/ssp/perspectives/app-defaults/$LANG/Spperfmon.

Security

The Performance Monitoring Perspective is not supported if DCE is your SP system security mechanism, in which case the spperfmon command will display a message and exit.

Only root users with SDR write access can use the spperfmon to its full capability.
Implementation Specifics

This command is part of the IBM Parallel System Support Programs (PSSP) Licensed Program Product (LPP) and the IBM Performance Toolbox Parallel Extensions for AIX separately priced feature.

Prerequisite Information

For information on using spperfmon and SP Perspectives, see the online help and the "Using SP Perspectives" chapter in PSSP: Administration Guide.

Location

/usr/lpp/ssp/bin/spperfmon

Related Information

You can also access the Performance Monitor Perspective by using the SP Perspectives Launch Pad. The perspectives command invokes the Launch Pad. Other Perspectives can be launched by invoking the following commands: spevent, sphardware, spsyspar, and spvsd.

IBM Performance Toolbox Parallel Extensions for AIX: Guide and Reference

IBM Performance Toolbox 1.2 and 2.1 for AIX: Guide and Reference

Examples

1. To invoke the spperfmon window, enter:
 spperfmon

2. To launch the SP Performance Monitor Perspective ignoring the preferences found in the system and user profile files, enter:
 spperfmon -noProfile
sprestore_config

Purpose

sprestore_config – Restores the system to a given system partitioning configuration as specified in the System Data Repository (SDR) which was previously archived.

Syntax

sprestore_config archive_file [-h]

Flags

-h Displays usage information.

Operands

archive_file Specifies the name of the archived SDR file to be restored.

Description

The sprestore_config command is valid only on systems with no switch or with an SP switch. The command is not valid on a system with an SP Switch2 switch.

Use this command to restore the SDR from an archive file that was previously created with the SDRArchive command. In addition to restoring the SDR (using the SDRRestore command), the sprestore_config command also restores system partition-sensitive subsystems (for example, hats, hb, and hr) to their previous state. This command is most useful when recovering from an attempt to partition the SP (see the spapply_config command).

You can use the System Management Interface Tool (SMIT) to run the sprestore_config command. To use SMIT, enter:

```
smitty syspar_restore
```

and enter (or select from a generated list) the name of the SDR archive from which to restore.

Notes:

1. This command should be run only on the control workstation.

2. Due to system partitioning changes, your SP_NAME environment variable may no longer be set to a valid system partition name. To get a list of valid system partition names, enter the splist_syspars -n command. Then verify that your SP_NAME environment variable is either unset or set to one of the system partition names in the list.

Exit Values

0 Indicates success.

1 Indicates that an error occurred while trying to restore the specified system partitioning configuration.

2 Indicates a usage error.
Security
You must have root privilege to run this command. You must also have SDR write access for each partition you are restoring.

Related Information
Commands: SDRArchive, SDRRestore, spapply_config, spcustomize_syspar, spdisplay_syspar, spverify_config, syspar_ctrl

Files: nodelist, topology

Examples
To restore the SDR and the system-partition sensitive subsystems (for example, hats, hb, and hr) from the archive ‘backup.95110.1620’ which was previously created using the SDRArchive command, enter:

sprestore_config backup.95110.1620
sprmuser

Purpose

`sprmuser` – Removes a user account from the SP system.

Syntax

```
sprmuser [-i] [-p] [-r] name
```

Flags

- `-i` Displays the current user information and enables interactive control. This allows you to quit before deleting the user account.
- `-p` Removes user password information from the `/etc/security/passwd` file.
- `-r` Removes the user's home directory specified in the `home` attribute.
- `name` Name of the user account you want to delete.

Operands

None.

Description

The `-i` and `-r` options are unique to the SP system.

You can use the System Management Interface Tool (SMIT) to run the `sprmuser` command. To use SMIT, enter:

```
smit spusers
```

and select the Remove a User option.

Security

You must have root privilege to run this command.

This command runs from the control workstation only.

Location

`/usr/lpp/ssp/bin/sprmuser`

Examples

1. To remove user account `charlie` without destroying the home directory, enter:

 `sprmuser charlie`

2. To remove user account `charlie`, remove any information about this user in the `/etc/security/passwd` file, and remove the home directory, enter:

 `sprmuser -pr charlie`
sprmvgobj

Purpose

sprmvgobj – Removes a root volume group for a node or series of nodes from the System Data Repository (SDR).

Syntax

```
sprmvgobj [ -r volume_group_name ]
   { start_frame start_slot ( node_count | rest ) | -l node_list }
```

Flags

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-r volume_group</td>
<td>Specifies the root volume group name to remove.</td>
</tr>
<tr>
<td>-l node_list</td>
<td>Specifies a list of nodes to be used for this operation. Specify a comma-delimited list of node numbers. If you use the -l flag, do not use the start_frame, start_slot, or node_count operands.</td>
</tr>
</tbody>
</table>

Operands

<table>
<thead>
<tr>
<th>Operand</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>start_frame</td>
<td>Specifies the frame number of the first node to be used for this operation.</td>
</tr>
<tr>
<td>start_slot</td>
<td>Specifies the slot number of the first node to be used for this operation.</td>
</tr>
<tr>
<td>node_count</td>
<td>Specifies the number of nodes to be used for this operation. The node information is added for successive nodes within a frame. If the count of nodes causes the nodes in a frame to be exhausted, the operation continues for nodes in the next sequential frame. Specify a value between 1 and 1024 inclusive. If rest is specified, all the nodes from start_frame start_slot to the end of your system are used.</td>
</tr>
</tbody>
</table>

Note: The start_frame and start_slot must resolve to a node in the current system partition.

Note: The node_count is considered to be within the current system partition.

Description

The **sprmvgobj** command is used to remove a root volume group on a node or group of nodes from the System Data Repository (SDR).

Exit Values

<table>
<thead>
<tr>
<th>Exit Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Indicates the command has run successfully.</td>
</tr>
<tr>
<td>2</td>
<td>Indicates an irrecoverable error occurred and no changes were made.</td>
</tr>
</tbody>
</table>
sprmgobj

Security
You must have root privilege and write access to the SDR to run this command.

Implementation Specifics
This command is part of the IBM Parallel System Support Programs (PSSP) Licensed Program Product (LPP).

Location
/usr/lpp/ssp/bin/sprmgobj

Related Information
Commands: spbootins, spchvgobj, sprmgobj

Examples
1. To remove a root volume group on nodes 2 and 3, enter:
sprmgobj -r rootvg2 -l 2,3
spseccfg

Purpose

spseccfg – Displays host configuration information related to Security Services.

Syntax

spseccfg

[−h | target_host]

Flags

−h Specifies that the command syntax is to be listed.

Operands

target_host The hostname or IP address of the host whose host configuration data is requested. When target_host is omitted, the information displayed is for the local host.

Description

The spseccfg command obtains the DCE-hostname that was assigned when DCE was configured on the target host and the system partition name. It prints each name to STDOUT as a separate line.

Standard Output

The first line of output is the DCE-hostname, if DCE is installed and configured, otherwise an empty line.

If the host is an SP node, the second line of output is the system partition name. If the host is the control workstation, it is the default system partition name. Otherwise, for an independent workstation, it is the (short) local hostname.

Standard Error

Output consists of error messages, when the command cannot complete successfully.

Exit Values

0 Indicates the successful completion of the command.

1 Indicates that an error occurred.

Implementation Specifics

This command is part of the IBM Parallel System Support Programs (PSSP) Licensed Program Product (LPP) (fileset ssp.clients).
spseccfg

Prerequisite Information
The chapters on security in the *PSSP: Administration Guide.*

Location
/usr/lpp/ssp/bin/spseccfg

Examples
1. To display the configuration information for the local host, enter:
 $spseccfg
 hosts/sp3.xyz.com
 sp3

2. To display the configuration information for the host at address 120.14.89.10, enter:
 $spseccfg 120.14.89.10
 hosts/pl6n9
 pl6part3
spsetauth

Purpose

spsetauth – Sets the authentication methods to be installed on the control workstation and in the partition.

Syntax

```
spsetauth   -p  partition name  [-h]  [-i | -d]  [dce]  [k4]  [std]
```

Flags

- **-p partition name**
 Specifies the partition name for a Syspar object.

- **-h**
 Presents syntax to stdout.

- **-i**
 Specifies install setup.

- **-d**
 Specifies authentication setup.

Operands

Set of Authentication methods to be set in the Syspar object in the SDR.

Description

This command only runs on the control workstation and is used per partition. The
flag updates or sets the `auth_install` attribute in the SDR. This defines the set of authentication capabilities for the node. Standard AIX is assumed since this is part of base AIX.

The **-d** flag updates or sets the `auth_root.rcmd` attribute in the SDR. This defines which authentication methods are used for root access to remote commands. Both the **-i** and **-d** flags check that the appropriate methods set do not conflict with authentication methods enabled or used in the system. Once the values are verified, checked, and updated in the SDR, the appropriate authentication files are created or copied via `updauthfiles`.

If **std** is selected, it is set last as an authentication or authorization method. If **dce** is selected, it is set first to ensure a proper priority of methods.

Standard Output

Log file created in `/var/adm/SPlogs/auth_install/log`

Exit Values

0 Indicates the command completed successfully.

1 Indicates the command was unsuccessful. Errors are printed to `/var/adm/SPlogs/auth_install/log` and standard out.

Errors must be corrected and the command executed again before proceeding to any further configuration or installation steps.
spsetauth

Security
You must have root privilege and write access to the SDR to run this command.

Location
/usr/lpp/ssp/bin/spsetauth

Related Information
SP Commands: updauthfiles

Examples
1. To set partition "par_1" to have Kerberos IV as an installed Authentication method, enter:
/usr/lpp/ssp/bin/spsetauth -i -p par_1 k4

2. To set partition "par_2" to have DCE, Kerberos V4, and Standard AIX as the set of Authentication methods, enter:
/usr/lpp/ssp/bin/spsetauth -d -p par_2 dce k4 std
spsitenv

Purpose

spsitenv – Enters configuration parameters used by SP installation and system management scripts into the System Data Repository (SDR).

Syntax

spsitenv

[acct_master = accounting_master]
[admin_locale = SP_administrative_locale]
[amd_config = true | false]
[cw_lppsource_name = lppsource_name]
[filecoll_config = true | false]
[homedir_path = home_directory_path]
[homedir_server = home_directory_server_host_name]
[install_image = default_network_install_image_name]
[ntp_config = consensus | internet | none | timemaster]
[ntp_server = ntp_server_host_name ...]
[ntp_version = 3 | 1]
[passwd_file_loc = passwd_file_server_host_name]
[passwd_file = passwd_file_path]
[print_config = false | open | secure]
[print_id = secure_print_login_name]
[remove_image = true | false]
[SDR_ASCII_only = true | false]
[spacct_enable = false | true]
[spacct_actnode_thresh = sp_accounting_active_node_threshold]
[spacct_excluse_enable = false | true]
[supfilesrv_port = port]
[supman_uid = supman_uid]
[usermgmt_config = false | true]

Flags

acct_master Indicates which node is the accounting master, where crunacct runs. The initial value is accounting_master=0, specifying the control workstation.

admin_locale Indicates the administrative locale for your SP system. If the SP_administrative_locale is not installed on your control workstation, the command will not be successful. The administrative locale is used to determine valid SDR data when SDR_ASCII_only is false. It may also be used by SP products that must restrict locale operations to a specific locale. See
your specific SP product documentation for such uses. The
initial value of **admin_locale** is the value stored in the LANG
stanza in the `/etc/environment` file at the time PSSP is
installed on your control workstation.

amd_config
Indicates whether the automounter function should be
configured and supported by the SP. Specify **true** if you want
to have the automounter configured and the automounter
daemon started on your SP. Automounter entries are created
for your home directories if **usermgmt_config** is also **true**.
Specify **false** if you do not want to have the SP manage the
automounter. The initial value of **amd_config** is **true**.

cw_lppsource_name
Indicates the LPP source name to use when installing the NIM
file sets on the control workstation. The name you specify must
correspond to an LPP source directory on the control
workstation. The directory must be named
`/spdata/sys1/install/LPP_source_name/lppsource`, where
LPP_source_name is the name that you have assigned to the
LPP source. The default value is **default**.

You must ensure that the AIX level on the LPP source
(indicated by the **cw_lppsource_name**) matches the AIX level
installed on your control workstation.

filecoll_config
Indicates whether the SP file collection management code
should be installed.
Specify **true** if the code is to be installed. Specify **false** if the
code is not to be installed. The initial value is **true**.

homedir_path
Specify an absolute path name for **home_directory_path** if you
want to use a path other than the initial value of the control
workstation path. The initial value is `/home/cw`, where **cw** is
the host name of the control workstation.

homedir_server
Indicates where user home directories physically reside.
Specify a valid host name or IP address for
home_directory_server_host_name if you want to use a server
other than the initial value of the control workstation host name.

The initial value is the host name of the control workstation.

install_image
Indicates the location of the default network install image for
your SP system. **default_network_install_image_name** should
point to the install image which is used for a node if that node's
install image field is not set. This should be a file in
`/spdata/sys1/install/images`.

ntp_config
See **ntp_server**.

ntp_server
Indicates your choice for running NTP in your SP. To use your
site's NTP time server, specify **ntp_config=timemaster** and
specify the host name of your NTP time server with the
ntp_server parameter.

To use an Internet NTP time server, your control workstation
must be connected to the Internet. Specify
ntp_config=internet and specify the full host name of an Internet time server with the ntp_server parameter.

To cause the control workstation and file servers to generate a consensus time based on their own date settings, specify ntp_config=consensus and specify ntp_server="".

If you do not want to run NTP on the SP, specify ntp_config=none and ntp_server="".

The initial value of ntp_config is consensus and the initial value of ntp_server is ". If ntp_config is specified as either timemaster or internet, the ntp_server value must be a valid host name.

ntp_version Indicates which version of NTP you are running. The initial value is 3.

passwd_file Indicates the path of the password file where new user entries are placed. The initial value is /etc/passwd. If you change the value of passwd_file from /etc/passwd and are using NIS, be sure to modify your NIS Makefile to build the password map from the new password file.

This field is meaningful only if usermgmt_config=true.

passwd_file_loc Specifies the host name of the machine where your password file resides. The initial value of passwd_file_loc is the control workstation. The value of the passwd_file_loc cannot be one of the nodes in the SP system.

print_config Indicates how SP print management should be integrated into your system.

Specify print_config = false if you do not want to have the existing AIX print commands saved and have the file names linked to the SP print functions.

If you want to have the print management system integrated, specify secure if you do not want users to not have rsh privileges on the print host. Specify open if the users are to have rsh privileges on the print host.

The initial value of print_config is false.

print_id Specify the login name to be used for rsh for secure mode printing. This field is meaningful only if print_config=secure is specified.

The initial value is ". If the value remains at " and the value of print_config is secure, the installation script uses a print management ID of prtid as a default.

The SP Print Management System was removed from PSSP 2.3. That is, the SP Print Management System cannot be configured on nodes running PSSP 2.3 or later. We suggest the use of Printing Systems Manager (PSM) for AIX as a more general solution to managing printing on the SP system.

However, if you are running earlier versions of PSSP on some of your nodes, the SP Print Management System is still supported on those nodes. The print_config routine running on
the control workstation will configure the SP Print Management System on nodes running versions of PSSP earlier than PSSP 2.3.

If you are running mixed levels of PSSP in a system partition, be sure to maintain and refer to the appropriate documentation for whatever versions of PSSP you are running.

remove_image

Indicates whether install images are to be removed from the boot servers after an install has been completed.

Specify **remove_image=true** if the images are to be removed.

Specify **remove_image=false** if the images are not to be removed.

The initial value is **false**.

SDR_ASCII_only

Indicates whether ASCII data only may be written to the SDR. ASCII data is defined as all characters within the range '00'x to '7F'x. Specify **true** if you want the SDR to contain only ASCII data. If you specify **true** and the SDR currently contains non-ASCII data, a warning message will be displayed, but the action will still be performed. Specify **false** if you want to allow non-ASCII data to be written to the SDR. If you specify **false** and the SP system contains nodes that have PSSP 3.1 or older releases installed, the command will not be successful. If you have successfully set **SDR_ASCII_only** to **false**, all data written to the SDR adheres to the following rules:

- All ASCII data is written to the SDR.
- Non-ASCII data will only be written to the SDR if the process issuing the write request is executing in the SP administrative locale. More specifically, the process's LC_CTYPE environment variable must resolve to the value stored in the SP admin_locale.

The initial value of **SDR_ASCII_only** is **true**.

spacct_actnode_thresh

Indicates the percentage of nodes for which accounting data must be present in order for **crunacct** to continue processing that day. The initial value is **80**.

spacct_enable

Indicates whether accounting is enabled or disabled on all nodes that have an accounting enabled attribute set to default. The initial value is **false**, disabling accounting.

spacct_excluse_enable

Indicates if accounting start and end job records are generated for jobs having exclusive use of the node. A value of **true** indicates that exclusive use accounting is enabled and start and end job records are generated. A value of **false** indicates that exclusive use accounting is not enabled and start and end job records are not generated.

The initial value is **false**.
supfilesrv_port Specifies the file collection daemon port. This is used in `/etc/services` for the file collection daemon. Pick a value that does not conflict with any other ports in use. It is meaningful only if `filecoll_config=true` is specified. The initial value is 8431.

supman_uid Specifies the uid for the file collection daemon. It is meaningful only if `filecoll_config=true` is specified. The initial value is ''. If you are using login control, make this uid lower than the threshold ID you set in the `block_usr_sample` script.

usermgmt_config Indicates whether SP user management scripts should be integrated into your system.

Specify `usermgmt=true` if you want to have the SP User Management scripts in the Security & Users SMIT menu.

Specify `usermgmt=false` to remove the scripts from the SMIT menu.

The initial value is `true`.

Operands
None.

Description
Use this command during installation of the SP or at a later time to identify SP configuration parameters in use at your location.

You can use the System Management Interface Tool (SMIT) to run the `spsitenv` command. To use SMIT, enter:

```
smit enter_data
```

and select the Site Environment Information option.

You cannot use SMIT if you are using AFS authentication services.

Notes:
1. This command should be run only on the control workstation. You must be logged into the control workstation as root to execute this command.
2. Any changes made will not take effect on the nodes until they are customized.

Security
You must have root privilege and write access to the SDR to run this command.

Location
`/usr/lpp/ssp/bin/spsitenv`
Examples

The following example enters site environment parameters into the System Data Repository. The NTP configuration is **consensus** and the file collection management code is to be installed:

```
spsitenv ntp_config=consensus filecoll_config=true
```
spsvrmgr

Purpose

spsvrmgr – Controls software level and state of the supervisor applications.

Syntax

spsvrmgr [-G] [-f file_name]
 [[-q rc | msg] | [-r status | action] | [-m status | action] | [-u] [slot_spec | all]]

Flags

-G Specifies Global mode. With this flag, commands can be sent to any hardware.

-f Uses file_name as the source of slot ID specifications.

-q rc | msg Checks the supervisor hardware configuration for supervisors that support microcode download, and that also require an action.

Action checks include:

Install Indicates that the Supervisor card has no supervisor installed. An install is required.

Upgrade Indicates that the Supervisor card has a supervisor installed, but it is not at the most current level. An upgrade is required.

Reboot Indicates that the Supervisor card has a supervisor installed and it is at the most current level, but it is not active. A reboot is required.

Update Media Indicates that the Supervisor card has a supervisor installed, but the media that is the repository for microcode files does not contain the version that is installed on the card. A media update is required.

If rc is specified with the -q flag, the command will issue a return code indicating whether any of the hardware requires action. A return code of 0 indicates that no action is required. A return code of 2 indicates that at least one supervisor was found that required action.

If msg is specified with the -q flag, the command will issue a message indicating whether any of the hardware requires action. In this case, a return code of 0 is issued unless an error condition occurs.

-r status | action

Checks the supervisor hardware configuration for supervisors that support microcode download and displays status for those supervisors in “report” form.

If status is specified with the -r flag, the status is listed for all of the installed supervisors that support microcode download.
If `action` is specified with the `-r` flag, the status is listed for all of the installed supervisors that support microcode download and that also require an action.

In both cases, Status includes:

- **Frame Number**: Indicates the number of the frame.
- **Slot Number**: Indicates a number in the range of 0—17.
- **Supervisor State**: Indicates either Active (supervisor is executing) or Inactive (supervisor is not executing).
- **Media Versions**: Indicates the microcode files that are compatible with the supervisor installed in this frame/slot.
- **Installed Version**: Indicates the microcode file installed as the supervisor.
- **Required Action**: Can be one of the following: None, Install, Upgrade, Reboot, or Update Media.

`−m status | action`
Checks the supervisor hardware configuration for supervisors that support microcode download and displays status for those supervisors in “matrix” form.

If `status` is specified with the `-m` flag, the status is listed for all of the installed supervisors that support microcode download.

If `action` is specified with the `-m` flag, the status is listed for all of the installed supervisors that support microcode download and that also require an action.

In both cases, Status includes:

- **Frame Number**: Indicates the number of the frame.
- **Slot Number**: Indicates a number in the range of 0 – 17.
- **Action Required**: Can be either Required or Not Required.

`−u`
Installs, upgrades, or reboots the hardware supervisors specified by the `slot_spec` option that support microcode download and that also requires an action.

Note: This flag starts an `hmcmds` process to perform the actual update. Refer to the `hmcmds` command specifically the `basecode`, `microcode`, and the `boot_supervisor` command options.

Attention

In most cases, the `-u` flag started processes powers off the target slots during the duration of the update.
Operands

[slot_spec | all]

Specifies the addresses of the hardware components.

Description

The design of the SP supervisor control system divides the microcode used in the frame supervisor, node supervisor, and switch supervisor into the following two types:

- **basecode**: Microcode that is loaded at the time of manufacture and gives the card the ability to load application microcode during system operation.
- **application microcode**: Microcode that is loaded via basecode and contains the instruction that is the supervisor application.

The `spsvrmgr` command controls the software level and state of the supervisor applications that reside on the SP supervisor hardware.

Normally, commands are only sent to the hardware components in the current system partition. A system partition contains only processing nodes. The switches and the frames themselves are not contained in any system partition. To access hardware components not in the current system partition or to any frame or switch, use the `-G` flag.

The `slot_spec` option is interpreted as slot ID specifications. A slot ID specification names one or more slots in one or more SP frames and has either of two forms:

- `fidlist:sidlist` or `nodlist`

where:

- `fidlist` = `fval[,fval,...]`
- `sidlist` = `sval[,sval,...]`
- `nodlist` = `nval[,nval,...]`

The first form specifies frame numbers and slot numbers. The second form specifies node numbers. An `fval` is a frame number or a range of frame numbers of the form `a–b`. An `sval` is a slot number from the set 0 through 17 or a range of slot numbers of the form `a–b`. An `nval` is a node number or a range of node numbers of the form `a–b`.

The relationship of node numbers to frame and slot numbers is shown in the following formula:

```
node_number = ((frame_number − 1) × 16) + slot_number
```

Note: Node numbers can only be used to specify slots 1 through 16 of any frame.

Refer to the `hmcmds` command for examples of the `slot_spec`.

Optionally, slot ID specifications can be provided in a file rather than as command flags. The file must contain one specification per line. The command requires that slot ID specifications be provided. If the command is to be sent to all SP hardware, the keyword `all` must be provided in lieu of the `slot_spec` option. However, the `all` keyword can only be specified if the `-G` flag is specified.
Files

The media that is the repository for the application microcode files is the
/spdata/sys1/ucode directory structure.

Exit Values

0 Indicates the successful completion of the command.

1 Indicates that the command was unsuccessful. This return value is
always accompanied with an error message.

2 Returned only in conjunction with the \(-q\) rc flag to indicate that at least
one supervisor was found that required action.

Security

Microcode Download Mode: To execute the spsvrmgr command, you must be
authorized to access the Hardware Monitor subsystem and must be granted
Microcode Update permission, or VFOP permission depending on the SP Trusted
Service in use, for the hardware objects (frames, slots) specified in the command.
Commands sent to hardware objects for which the user does not have Microcode
Update permission are ignored.

Microcode Query Mode: To execute the spsvrmgr command, you must be
authorized to access the Hardware Monitor subsystem and must be granted
Monitor permission for the hardware objects (frames, slots) specified in the
command. State information is not returned for hardware objects for which the user
does not have Monitor permission.

Restrictions

IBM suggests that you use this command through the RS/6000 SP Supervisor
Manager option of the System Management Interface Tool (SMIT).

To access this command using SMIT, enter:

 smit

and select the RS/6000 SP System Management option, then the RS/6000 SP
Supervisor Manager option.

A list of options that correspond to the spsvrmgr command flags will be presented
for selection.

You can also directly access this list of options using the following SMIT fast-path
command:

 smit supervisor

Implementation Specifics

The spsvrmgr command only interacts with SP supervisor hardware that supports
the ability to download application microcode. Commands sent to slots that do not
support this ability are ignored.
Location

/usr/lpp/ssp/bin/spsvrmgr

Related Information

Files: /spdata/sys1/spmon/hmdceacs, /spdata/sys1/spmon/hmacls

Commands: hmcmds, hmdceobj, hmmon

Refer to the “Installing and Configuring a New RS/6000 System” chapter in PSSP: Installation and Migration Guide.

Examples

1. To perform a “quick check” of your configuration for supervisor hardware that requires action and to have a message issued, enter:

spsvrmgr -G -q msg all

 You should receive output similar to the following:

spsvrmgr: At least one occurrence of supervisor hardware was found to require attention.

 Enter "smit supervisor" for installation options.

2. To perform a “quick check” of your configuration for supervisor hardware that requires action and to have a status code returned, enter:

 spsvrmgr -G -q rc all
 echo $?

 Example usage in a script:

spsvrmgr -G -q rc all
 if [[$? = 2]]
 then
 echo "*** Attention*** One or more supervisors require action."
 echo "Enter \"smit supervisor\" for installation options."
 fi

3. To display status information in report form of all hardware that supports microcode download for frame 2, enter:

 spsvrmgr -G -r status 2:0-17

 You should receive report output similar to the following:
<table>
<thead>
<tr>
<th>State</th>
<th>Versions</th>
<th>Version</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td><code>u_10.3a.0609</code></td>
<td><code>u_10.3a.060b</code></td>
<td>None</td>
</tr>
<tr>
<td></td>
<td><code>u_10.3a.060a</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>u_10.3a.060b</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td><code>u_10.3a.0609</code></td>
<td><code>u_10.3a.060b</code></td>
<td>None</td>
</tr>
<tr>
<td></td>
<td><code>u_10.3a.060a</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>u_10.3a.060b</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td><code>u_10.1a.0609</code></td>
<td><code>u_10.1a.060b</code></td>
<td>None</td>
</tr>
<tr>
<td></td>
<td><code>u_10.1a.060a</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>u_10.1a.060b</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td><code>u_10.3a.0609</code></td>
<td><code>u_10.3a.060b</code></td>
<td>None</td>
</tr>
<tr>
<td></td>
<td><code>u_10.3a.060a</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>u_10.3a.060b</code></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4. To display status information in matrix form of all hardware that supports microcode download for in your configuration, enter:

 spsvrmgr -G -r status all

 You should receive matrix output similar to the following:

 spsvrmgr: Frame Slots

 1 00 01 05 09 13 17
 (Action) - - - - - -

 2 01 05 09 13
 (Action) + + + -

 Action Codes:

 + -- Required
 - -- Not Required

5. To display status information in report form of all hardware that supports microcode download and requires an action for frame 1, enter:

 spsvrmgr -G -r action 1:0-17

 You should receive report output similar to the following:
<table>
<thead>
<tr>
<th>State</th>
<th>Version</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>u_10.3a.060a</td>
<td>Upgrade</td>
</tr>
<tr>
<td>5</td>
<td>u_10.3a.060a</td>
<td>Reboot</td>
</tr>
<tr>
<td>9</td>
<td>u_10.1a.060a</td>
<td>Reboot</td>
</tr>
</tbody>
</table>

6. To update the hardware that supports microcode download in frame 1 slot 1, enter:

 `spsvrmgr -u 1:1`

 You should receive installation output similar to the following:

 spsvrmgr: Dispatched "microcode" process [24831] for frame 1 slot 1.

 Process will take approximately 12 minutes to complete.

 spsvrmgr: Process [24831] for frame 1 slot 1 completed successfully.

7. To update the hardware that supports microcode download in frame 1 slots 5 and 9, enter:

 `spsvrmgr -u 1:5,9`

 You should receive installation output similar to the following:
spsvrmgr: Dispatched "boot_supervisor" process [27956]
 for frame 1 slot 5.
 Process will take less than a minute to complete.

spsvrmgr: Dispatched "boot_supervisor" process [23606]
 for frame 1 slot 9.
 Process will take less than a minute to complete.

spsvrmgr: Process [27956] for frame 1 slot 5 completed successfully.
spsvrmgr: Process [23606] for frame 1 slot 9 completed successfully.
The `spswplane` command specifies the number of switch planes in the SP system. The command is executed during installation of the SP, and records the requested switch planes number in the SDR. A check is made of this input value against existing SDR information to verify its validity. The command can also be used after installation to change the number of switch planes in the system, and to display the existing number of switch planes.

All informational messages generated are written to standard output (stdout). All error messages are written to standard output.

Output consists of error messages, when the command cannot complete successfully.

You must have root privilege or be a member of the AIX system group to run this command.

You must have write access to the SDR to run this command.
Restrictions
This command can only be executed on the control workstation.

Implementation Specifics
This command is part of the IBM Parallel System Support Programs (PSSP) Licensed Program Product (LPP) *ssp.basic* file set.

Location
/​usr/​lpp/​ssp/​bin/​spswplane

Examples
1. To configure 4 switch planes on your SP system, enter:
 `/​usr/​lpp/​ssp/​bin/​spswplane -p 4`

2. To query the number of configured switch planes on your SP system, enter:
 `/​usr/​lpp/​ssp/​bin/​spswplane -d`
Purpose

`spsyspar` – Directly invokes the System Partitioning Aid Perspective graphical user interface (GUI).

Syntax

```
spsyspar [-userProfile name] [-systemProfile name] [-noProfile]
[-backgroundColor colorName]
[-foregroundColor colorName] [-fontFamily name]
```

Flags

- **-userProfile** `name`
 Upon initialization, loads the specified user profile. If a user profile named "Profile" exists in the user's home directory, it will be loaded by default if the `-userProfile` flag is not specified.

- **-systemProfile** `name`
 Upon initialization, loads the specified system profile instead of the default system profile. The default system profile is named "Profile."

- **-noProfile**
 Upon initialization, does not read either profile.

- **-backgroundColor** `colorName`
 Overrides the background color specified by any profile or default with the specified color. Refer to Appendix A, "Perspectives Colors and Fonts" in *PSSP: Command and Technical Reference* for a list of valid color names.

- **-foregroundColor** `colorName`
 Overrides the foreground color specified by any profile or default with the specified color. Refer to Appendix A, "Perspectives Colors and Fonts" in *PSSP: Command and Technical Reference* for a list of valid color names.

- **-fontFamily** `name`
 Overrides any font family with the specified font. The list of valid family names is dependent on the X server. Refer to Appendix A, "Perspectives Colors and Fonts" in *PSSP: Command and Technical Reference* for a list of valid fonts.

- **-fontSize** `size`
 Overrides any font point size with the specified size. Valid values are 6–30 points.

- **-fontBold**
 Sets the font to bold.

- **-fontItalic**
 Sets the font to italics.

- **-nosplash**
 Does not display the splash screen before the Perspectives main window is displayed.

- **-h**
 Displays usage information on the options available for the command.

Note: Most flags accepted by X will also be recognized. For example, `-display displayname`.
spsyspar

Operands

None.

Description

Use this command to launch the System Partitioning Aid window of the SP Perspectives GUI. The command is not valid on a system with an SP Switch2 switch, or on clustered enterprise servers.

The System Partitioning Aid Perspective is used to view and manage the current system partitioning configuration. This tool can also be used to generate new configurations.

When the command is invoked, preferences which define the look and layout of the System Partitioning Aid window are prioritized in the following order:

- Command line options
- User preferences profile
- System preferences profile
- Default values

Files

The users preferences are read from and saved to $HOME/.spsyspar(User Profile Name). The System Preferences are read from and saved to /usr/lpp/ssp/perspectives/profiles/$LANG/spsyspar(System Profile name). If a new system partitioning configuration is created, the following files are created under the layout directory: layout.desc, nodes.syspar and a system partition directory for each system partition in the layout. For each system partition directory, a node list file and topology file are created.

The spperfmon application resource file: /usr/lpp/ssp/perspectives/app-defaults/$LANG/Spsyspar.

Security

You must have write access to the SDR to run this command.

Implementation Specifics

This command is part of the IBM Parallel System Support Programs (PSSP) Licensed Program Product (LPP).

Prerequisite Information

For information on using the System Partitioning Aid Perspective and SP Perspectives, see the online help and the “Using SP Perspectives” chapter in the PSSP: Administration Guide.

Refer to the “Managing System Partitions” chapter in PSSP: Administration Guide for additional information on the System Partitioning Aid.

See also Appendix A, "The System Partitioning Aid – A Brief Tutorial" in IBM RS/6000 SP: Planning, Volume 2, Control Workstation and Software Environment.
spsyspar

Location

/usr/lpp/ssp/bin/spsyspar

Related Information

You can also access the System Partitioning Aid Perspective by using the SP Perspectives Launch Pad. The **perspectives** command invokes the Launch Pad. Other Perspectives windows may be launched by invoking the following commands: **spevent**, **sphardware**, **spperfmon**, and **spvsd**. The **sysparaid** command provides a command line interface into the System Partitioning Aid.

Examples

1. To launch the Partitioning Aid Perspective, enter:

   ```
spsyspar
   ```

2. To launch the Partitioning Aid Perspective with a pink background regardless of what is provided in the preference files, enter:

   ```
spsyspar -backgroundColor pink
   ```
Purpose

sptg – Launches an SP TaskGuide.

Syntax

sptg [−h | name]

Flags

-h Displays usage.

Operands

name The name of the TaskGuide. The values allowed are setsitenv (Set Site Environment Information TaskGuide), addframe (Add Frames TaskGuide), confnode (Configure New Nodes TaskGuide), and createim (Create Node Image TaskGuide).

Description

The sptg command launches a specific SP TaskGuide. If no flags or operands are specified, the command launches a GUI that lists available TaskGuides and allows one to be selected and started.

Restrictions

The sptg command can be run on the Control Workstation only.

Location

/usr/lpp/ssp/bin/sptg

Examples

1. To launch the Configure New Nodes TaskGuide, enter:

 sptg confnode
sptgtprin

Purpose

sptgtprin – Displays the target principal name for a service on an SP host.

Syntax

```
sptgtprin [-h | default-service-name [ target-host]]
```

Flags

- **-h** Specifies that the command syntax is to be listed. If you specify this flag, all operands are ignored.

Operands

- **default-service-name**
 Specifies the predefined name of a service listed in the security services configuration file.

- **target-host**
 Specifies the hostname or IP address of the host for which the principal is required.

Description

The **sptgtprin** command displays the DCE principal name of the instance of the specified service that runs on a particular SP host. The operand **target-host** must be a network interface on an SP node or the control workstation. If no host is specified, the principal name is that used by the service on the local host.

Principal names have the form **product/DCE-hostname/service**, where **DCE-hostname** is the qualifier that distinguishes the particular instance of the service that runs on the target host.

For services that have multiple instances on the same host, each serving a single system partition, the name displayed by this command is not the true principal name. These service principals are qualified by partition name rather than DCE-hostname. For such services (that have the "p" attribute in the **spsec_defaults** file), you can construct the true principal name by replacing the DCE-hostname qualifier with the applicable Syspar name.

Standard Output

Output consists of one line containing the DCE principal name, when successful.

Standard Error

Output consists of error messages, when the command cannot complete successfully.
<table>
<thead>
<tr>
<th>Exit Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Indicates successful completion of the command.</td>
</tr>
<tr>
<td>1 Indicates that an error occurred.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Implementation Specifics</th>
</tr>
</thead>
<tbody>
<tr>
<td>This command is part of the IBM Parallel System Support Programs (PSSP)</td>
</tr>
<tr>
<td>Licensed Program Product (LPP) (fileset ssp.clients).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prerequisite Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>The chapters on security in PSSP: Administration Guide.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>/usr/lpp/ssp/bin/sptgtprin</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Displaying the DCE principal name used by the Hardware Monitor daemon that runs on the control workstation, whose hostname is spcw.xyz.com, and whose DCE_hostname is spcw:</td>
</tr>
<tr>
<td>$sptgtprin ssp/hardmon spcw.xyz.com</td>
</tr>
<tr>
<td>ssp/spcw/hardmon</td>
</tr>
</tbody>
</table>
spunmirrorvg

Purpose

spunmirrorvg – Initiates unmirroring on a node or a set of nodes.

Syntax

spunmirrorvg {start_frame start_slot {node_count | rest} | -I node_list}

Flags

-I node_list Specifies a list of nodes for this operation. This list can be a single numeric node number, or a list of numeric node numbers separated by commas.

Operands

start_frame Specifies the frame number of the first node to be used for this operation.

start_slot Specifies the slot number of the first node to be used for this operation.

Note: The start_frame and start_slot must resolve to a node in the current system partition.

node_count Specifies the number of nodes to be used for this operation. The node information is added for successive nodes within a frame. If the count of nodes causes the nodes in a frame to be exhausted, the operation continues for nodes in the next sequential frame. Specify a value between 1 and 1024 inclusive. If rest is specified, all the nodes from start_frame start_slot to the end of your system are used.

Note: The node_count is considered to be within the current system partition.

Description

The spunmirrorvg command uses information found in the Volume_Group object to initiate unmirroring on a node or a list of nodes. If the number of desired copies is already achieved (the number of copies of a volume group equals the "copies" attribute in the Volume_Group object) the command exits. If the number is not yet achieved, spunmirrorvg will invoke the AIX unmirror command to reduce the number of copies. If unmirrorvg is successful, the volume group is reduced by any physical volumes that are part of the volume group, that are not listed in the pv_list attribute. If there are non-empty logical volumes on the physical volumes, the volume group will not be reduced by the physical volume. If reducing the volume group is unsuccessful, the command exits with an error. Quorum is set based on the value of the "quorum" attribute for the volume group in the Volume_Group object. If the state of quorum changes, a message is sent that the node requires rebooting. spunmirrorvg also issues the bosboot command to rebuild the bootable image, and the bootlist command, to remove any physical volumes from the bootlist that no longer contain bootable logical volumes.
Exit Values

0 Indicates the successful completion of the command.
1 Indicates that a recoverable error occurred, some changes may have succeeded.
2 Indicates that an irrecoverable error occurred and no changes were made.

Security

You must have root privilege to run this command.
You must have access to the AIX Secure Remote Commands to run this command.

Files

Log file created on node which contains AIX error messages if an error occurs during unmirroring: /var/adm/SPlogs/sysman/unmirror.out

Implementation Specifics

This command is part of the IBM Parallel System Support Programs (PSSP) Licensed Program Product (LPP).

Location

/usr/lpp/ssp/bin/spunmirrorvg

Related Information

Commands: spchvgobj, spmirrorvg

Examples

1. To initiate unmirroring on a node, enter:

 spunmirrorvg -l 1

2. To initiate unmirroring on a list of nodes, enter:

 spunmirrorvg -l 1,2,3
spverify_config

Purpose

`spverify_config` – Verifies the active system partition configuration information for the SP system.

Syntax

`spverify_config`

Flags

None.

Operands

None.

Description

The `spverify_config` command is valid only on systems with no switch or with an SP switch. The command is not valid on a system with an SP Switch2 switch.

This command is run by the `spapply_config` command after the System Data Repository (SDR) is updated. It can also be run by an administrator to verify that the SDR information is consistent (such as, after a system outage or a problem with the SDR). (This verification is only performed on a system which was partitioned beyond the initial single partition created at initial installation.)

Exit Values

- **0** Indicates that the SDR and corresponding layout directory are in agreement.
- **1** Indicates differences were found.
- **2** Indicates a usage error.

Security

You must have root privilege to run this command.

Location

`/usr/lpp/ssp/bin/spverify_config`

Related Information

Commands: `spapply_config`, `spcustomize_syspar`, `spdisplay_config`

Files: `nodelist`, `topology`
Examples

To verify that the information in the SDR matches the customization information previously supplied by the user, enter:

spverify_config
spvsd

Purpose

spvsd – Directly launches the IBM Virtual Shared Disk Perspective graphical user interface (GUI).

Syntax

spvsd [-userProfile name] [-systemProfile name] [-noProfile]
[-backgroundColor colorName]
[-foregroundColor colorName] [-fontFamily name]
[-fontSize size] [-fontBold] [-fontItalic] [-nosplash] [-h]

Flags

-userProfile name
Upon initialization, loads the specified user profile. If a user profile named "Profile" exists in the user's home directory, it will be loaded by default if the -userProfile flag is not specified.

-systemProfile name
Upon initialization, loads the specified system profile instead of the default system profile. The default system profile is named "Profile."

-noProfile
Upon initialization, does not read either profile.

-backgroundColor colorName
Overrides the background color specified by any profile or default with the specified color. Refer to Appendix A, "Perspectives Colors and Fonts" in PSSP: Command and Technical Reference for a list of valid color names.

-foregroundColor colorName
Overrides the foreground color specified by any profile or default with the specified color. Refer to Appendix A, "Perspectives Colors and Fonts" in PSSP: Command and Technical Reference for a list of valid color names.

-fontFamily name
Overrides any font family with the specified font. The list of valid family names is dependent on the X server. Refer to Appendix A, "Perspectives Colors and Fonts" in PSSP: Command and Technical Reference for a list of valid fonts.

-fontSize size
Overrides any font point size with the specified size. Valid values are 6–30 points.

-fontBold Sets the font to bold.

-fontItalic Sets the font to italics.

-nosplash Does not display the splash screen before the Perspectives main window is displayed.

-h Displays usage information on the options available for the command.
Note: Most flags accepted by X will also be recognized. For example, –display displayname.

Operands

None.

Description

Use this command to launch the IBM Virtual Shared Disk Perspective. This Perspective allows the user to view and control the IBM Virtual Shared Disk subsystem.

By default, when the window is brought up, it displays:

- The Control Workstation, System and Syspars panes
- The Nodes pane

The IBM VSDs or IBM HSDs pane must be added for viewing.

The current system partition is indicated by a lightning bolt in the control workstation and system partitions pane. The Nodes pane displays all nodes in the current system partition. Other panes display virtual shared disks and hashed shared disks. You can control which panes are displayed by using the Add Pane and Delete Pane tool bar icons.

When the command is invoked, preferences that define the look and layout of the spvsd window are prioritized in the following order:

- Command line options
- User preferences profile
- System preferences profile
- Default values

Files

The Users Preferences are read from and saved to $HOME/.spvsd(User Profile Name). The System Preferences are read from and saved to /usr/lpp/ssp/perspectives/profiles/$LANG/.spvsd(System Profile name).

The spvsd application resource file:
/usr/lpp/ssp/perspectives/app-defaults/$LANG/Spvsd.

Security

Any user can run the spvsd command, although many actions in the VSD perspective require specific access to SP subsystems. The access depends on the type of security mechanism your SP system is using.

The minimum user requirements is Event Manager access in at least one partition. If this criteria is not met, the VSD perspective displays a message and exits. See the chapter on security in PSSP: Administration Guide for more information.

The following access is required to have complete use of the VSD perspective:

SDR write To designate a node as VSD node, and to remove VSD node designation.
spvsd

Hardware Monitor “VFOP”
To power on, power off and reset nodes.

Hardware Monitor serial
To network boot nodes and open a tty window to a node.

Hardware Monitor monitor
To display the LCD and LED of nodes.

Event Management
To monitor objects in a pane, display dynamic attributes in object notebooks, and track SDR and VSD subsystem changes.

PSSP cshutdown and cstartup command access
To shutdown or start-up nodes using the `cshutdown` or cluster power on options.

CWS root commands
To fence or unfence nodes.

AIX Secure Remote Commands
To run commands on nodes.

VSD access
To create and remove VSDs and HSDs; and to configure HSDs and remove configuration for HSDs.

Root Privilege
To define and remove VSDs and HSDs; and to configure VSDs and remove configuration for VSDs.

Implementation Specifics
This command is part of the IBM Parallel System Support Programs (PSSP) Licensed Program Product (LPP).

Prerequisite Information
For information on using the IBM Virtual Shared Disk Perspective and SP Perspectives, see the online help and the “Using SP Perspectives” chapter in *PSSP: Administration Guide*. For information about the IBM Virtual Shared Disk subsystem, see *PSSP: Managing Shared Disks*.

Location
/usr/lpp/ssp/bin/spvsd

Related Information
You can access the IBM Virtual Shared Disk Perspective by using the SP Perspectives Launch Pad. The `perspectives` command invokes the Launch Pad. Other Perspectives windows may be launched by invoking the following commands: `spevent`, `sphardware`, `spperfmon`, and `spsyspar`.

PSSP: Managing Shared Disks
Examples

1. To invoke the `spvsd` window, enter:
 `spvsd`

2. To force `spvsd` to display bold text regardless of what is set in the preference files, enter:
 `spvsd -fontBold`
st_clean_table

Purpose

st_clean_table – Forces the unload of the job switch resource table for a specified window on the specified node.

Syntax

st_clean_table { -h | -? | node_name} [-w window_id] [-a adapter] [-k]

Flags

- h Prints out a short description of all of the flags.
- ? Prints out the usage statement.
- a Specifies the adapter upon which the window to be cleaned resides. The default is css0.
- w window_id Specifies the window ID for which the unload and cleanup will be done. If no window ID or -1 is specified, then the default window will be unloaded.
- k Stops any job that is currently using the switch table on that node_name and unloads the table. The -k flag has the same function as the ST_ALWAYS_KILL option of the swtbl_clean_table API.

Operands

node_name Specifies the name of the node upon which the switch table window will be unloaded.

Description

Use this command to override user ID (uid) checking and to unload the job switch resource table window on the node specified. The JSRT Services should be used for non-reserved windows.

Normal unloading of the job switch resource table by the swtbl_unload_table API checks that the user ID (uid) of the unload matches the uid specified during the load. The st_clean_table command ignores this check and allows the administrator to unload the window from a node. It is intended to be used for error recovery and not for normal unloading. Use this command when a parallel job has left a process in use and the window did not unload with the swtbl_unload_table API. If -k is not specified and a job is using the switch table, the unload will not be performed. The default window is defined within the st_client.h file. A single job switch resource table may contain more than one window. This command needs to be issued for every window within the table. Use the st_status command to obtain the current state of the windows. Additional error and information may be found in the /var/adm/SPlogs/st/st_log file. Additional debug information will be recorded in the log by setting the SWTBLAPIERRORMSGS environment variable to yes.
Files

/usr/lpp/ssp/include/st_client.h Path name of the client header file.
/usr/lpp/ssp/lib/libswitchtbl.a Path name of the shared library containing APIs.

Standard Output

After the job switch resource table window is successfully unloaded, the status should be **ST_SWITCH_NOT_LOADED**.

Exit Values

0 Indicates the successful completion of the command.
nonzero Indicates that an error occurred.

Security

You must have appropriate access to the switch table to run this command.

If DCE security checking is being used, you must have the DCE credentials of the **switchtbl-clean** group in order to run this command. If DCE security checking is not being used, you must have root privilege to run this command.

Location

/usr/lpp/ssp/bin/st_clean_table

Related Information

See the **chgcss** command for information about RESERVED windows.

Commands: **st_status**

Examples

To stop the process currently using window 1 on adapter css0, and unload the window from k10n10, enter:

```
st_clean_table -w 1 -a css0 -k k10n10
```

This produces the result:

```
Node k10N10 adapter css0 window 1 has been unloaded
```
st_status

Purpose

st_status – Displays the status of all job switch resource table windows upon a node.

Syntax

st_status [-h | -? | -n node_group | nodelist]

Flags

- h Prints out a short description of all of the flags.
- ? Prints out the usage statement.
- n node_group
 Reports status for all nodes within the specified node_group. This "node_group" is defined and managed by the "Node Grouping" commands.

Operands

nodelist Specifies a list of nodes separated by spaces for which status will be reported. If node names are not specified, all nodes defined within the current system partition will be reported.

Description

Use this command to report the current status of every window within all job switch resource tables. Status will be reported for reserved windows and non-reserved windows. This command reports whether each window is loaded or unloaded but not whether it is currently in use.

The LIBPATH environment variable defaults to /usr/lpp/ssp/lib:/usr/lib:/lib for this command.

Files

/usr/lpp/ssp/include/st_client.h Path name of the header file containing return codes.
/usr/lpp/ssp/lib/libswitchtbl.a Path name of the shared library containing the API interfaces.

Standard Output

The output of this command reports the following data when a window is loaded:

Status from node: Node for which the following data is reported.
User: User name corresponding to the uid specified by the swtbl_load_table API.
Load request from: Node upon which the load request was made.
Pid: Pid of the process who issued the load, most likely a job management application.
Uid: Uid specified by the `swtbl_load_table` API request.

Job Description: String specified upon load request for the job who will be using the job switch resource table.

Time of request: Timestamp of when load request was processed.

Window id: Window for which the data is being reported.

Adapter: Adapter for which the status is being reported.

Memory Allocated: Window memory requested during the `swtbl_load_table` call for use by the task.

The output of this command reports the following data when a window is in some other state:

- **ST_SWITCH_NOT_LOADED**: Indicates that the switch table window is not currently loaded.
- **ST_LOADED_BYOTHER**: Indicates that the switch table window is currently loaded but was not loaded via the Job Switch Resource Table Services.
- **ST_RESERVED**: Indicates that the switch table window is reserved by a reserving component. The reserving component ID is displayed.

The output of this command reports the following data when an error occurs:

- **ST_SYSTEM_ERROR**: Indicates a system error occurred. The `/var/adm/SPlogs/st/st_log` file will have further details. Use the `st_clean_table` command to clean windows in this state.
- **ST_CANT_CONNECT**: Indicates that the connect request was unsuccessful.
- **ST_NO_SWITCH**: The open call of `/dev/css0` was unsuccessful.
- **ST_NOT_AUTHOR**: Indicates that DCE security authorization was unsuccessful.
- **ST_NOT_AUTHEN**: Indicates that DCE security authentication was unsuccessful.
- **ST_SECURITY_ERROR**: Indicates that a general DCE security services error occurred (not authorization or authentication).
- **ST_TCP_ERROR**: Indicates that a read, write, or select error occurred on a TCP/IP socket.
- **ST_CANT_ALLOC**: Indicates that storage could not be allocated for the function.

Exit Values

- **0**: Indicates the successful completion of the command.
- **nonzero**: Indicates that an error occurred.
st_status

Security
You must have appropriate access to the switch table to run this command.
If DCE security checking is being used, you must have the DCE credentials of the
\texttt{switchtbld-status} group in order to run this command. If DCE security checking is
not being used, you must have root privilege to run this command.

Location
\texttt{/usr/lpp/ssp/bin/st_status}

Related Information
See the \texttt{chgcss} command for information about \texttt{RESERVED} windows.

Commands: \texttt{ngcreate}, \texttt{ngfind}, \texttt{st_clean_table}, \texttt{st_verify}

Examples
To show the status of all windows on \texttt{k10n15}, enter:
\texttt{st_status k10n15}

You should receive output similar to the following:

\begin{verbatim}

Status from node:k10n15 User: root
Load request from:k10n15 Pid: 12494 Uid:0
Job Description: No_job_description_given
Adapter: /dev/css0 Memory Allocated: 10000 Window id: 0

Node k10n15 adapter /dev/css0 window 1 returned ST_RESERVED.
Window 0 is RESERVED by VSD.

Node k10n15 Window 2 ST_SWITCH_NOT_LOADED

Node k10n15 Window 3 ST_SWITCH_NOT_LOADED
\end{verbatim}
Purpose

`st_verify` – Verifies that the installation of the Job Switch Resource Table Services component of the SP system completed successfully.

Syntax

`st_verify [-h] [-q] [-l logfile]`

Flags

- `-h` Displays usage information.
- `-q` Specifies quiet mode and suppresses output to `stdout`.
- `-l logfile` Specifies the pathname of the logfile to which error messages are written.

Description

Use this command to perform various tests to determine whether the Job Switch Resource Table Services component of the SP system is completely installed. It checks that the necessary commands and files are installed correctly and checks for switchtbld entries in `/etc/services` and `/etc/inetd.conf` file. If this is executed on the control workstation and tests are successful, it will also check on each node within that system partition.

You can use the System Management Interface Tool (SMIT) to run this command. To use SMIT, enter:

```
smit SP_verify
```

and select the Job Switch Resource Table Services Installation option.

Files

`/var/adm/SPlogs/st/st_verify.log` Default log file.

Exit Values

- `0` Indicates that the test completed as expected.
- `nonzero` Returns the number of errors.

If you do not specify the `-q` flag, a message is displayed on stdout that indicates whether the tests were successful or not. In either case, the command returns 0 if successful, 1 if not. If errors are detected, more detailed information is recorded in the log file. If you do not specify the `-l` flag, error messages are recorded in `/var/adm/SPlogs/st/st_verify.log`.

Security

You must have root privilege to run this command.
st_verify

Location

/usr/lpp/ssp/bin/st_verify

Related Information

Commands: CSS_test, SDR_test, spmon_cctest, spmon_itest, SYSMAN_test

Examples

To verify the installation of the Job Switch Resource Table Services, saving error messages in st_install.out in the current working directory, enter:

st_verify -l st_install.out
startvsd

Purpose

`startvsd` – Makes a virtual shared disk available and activates it.

Syntax

```
startvsd [-p | -b] [-a | vsd_name ...]
```

Flags

- `-p` Specifies that the primary server node defined for the global volume group is to be the active server.

 This option is only used by the Recoverable Virtual Shared Disk subsystem. See the *PSSP: Managing Shared Disks*.

- `-b` Specifies that the secondary server node defined for the global volume group is to be the active server.

 Note: This flag is used only by the Recoverable Virtual Shared Disk subsystem.

- `-a` Specifies that all virtual shared disks that have been defined are to be started.

Operands

`vsd_name` Specifies a virtual shared disk.

Description

The `startvsd` command makes the specified virtual shared disks available and activates them. It is equivalent to running the `preparevsd` command followed by the `resumevsd` command on the specified virtual shared disk.

You can use the System Management Interface Tool (SMIT) to run this command. To use SMIT, enter:

```
smit vsd_mgmt
```

and select the Start a Virtual Shared Disk option.

Security

You must be in the AIX `bin` group to run this command.

Restrictions

1. If you have the Recoverable Virtual Shared Disk software installed and operational, do not use this command. The results may be unpredictable.

 See *PSSP: Managing Shared Disks*

2. The `-b` flag is used only by the Recoverable Shared Disk subsystem.
Prerequisite Information

PSSP: Managing Shared Disks

Location

/usr/lpp/csd/bin/startvsd

Related Information

Commands: cfgvsd, ctlvsd, lsvsd, preparevsd, resumevsd, stopvsd, suspendvsd, ucfgvsd

Examples

To make available and activate the virtual shared disk vsd1vg1n1, enter:

startvsd vsd1vg1n1
Purpose

statvsd – Displays IBM Virtual Shared Disk device driver statistics of a node.

Syntax

statvsd

Flags

None.

Operands

None.

Description

The statvsd command displays the level of IBM Virtual Shared Disk parallelism, several IBM Virtual Shared Disk IP device driver counters, nonzero sequence numbers and the nodes they are for, the node outcast status, and the max_IP_msg_size. If either the expected or outgoing sequence number for a node is nonzero, both are displayed along with the node number. If both the expected and outgoing sequence numbers are zero, no sequence numbers are displayed for that node.

The level of IBM Virtual Shared Disk parallelism defaults to 9 and is set via the ctlvsd −p command.

Sequence numbers are initially all zero at the first cfgvsd. They are incremented as requests are sent (outgoing) and received (expected), and reset via ctlvsd −R | −r.

The counters all start at zero at the first cfgvsd, then are incremented as the events they count occur. Use suspendvsd and stopvsd to ensure that there is no virtual shared disk activity; then use ctlvsd to reset the counters.

The requests queued waiting for a request block, pbuf, cache block, and buddy buffer counters indicate shortages of these resources. All four are tunable values on the vsdnode command. If a significant increase in these counters occurs during the running of a critical application, see PSSP: Managing Shared Disks for information about tuning virtual shared disk performance and how to respond to resource shortages.

When a user buffer address is not on a page boundary, two virtual shared disks can share a page in I/O requests. Typically, when a local virtual shared disk server is copying data to the user buffer, the DMA hides the page. If the client receives the data from a remote virtual shared disk server, network protocol interrupts the local I/O; however, the page is still hidden by the DMA. Therefore, the virtual shared disk places the remote request on a Rework_Q, swaps control to the local I/O, and later performs rework by copying data from the network protocol mbuf to the user buffer.
A request, or its corresponding response, may be lost due to transmission error or an error in allocating an mbuf. The current virtual shared disk communication protocol implements an exponential back-off retransmission strategy. A request is retransmitted to the server a fixed number of times. The IBM Virtual Shared Disk IP device driver waits about 2 seconds for a response after initially sending the request before retransmission. Thereafter, it waits about twice as long as the last time as it cycles through the fixed number of retries. If a response is not received after the timeout expires on the last retransmission attempt, the request returns an error with the ETIMEOUT errno value. Currently, the sum total of retransmission time is about 15 minutes. If a request is not responded to after about 10 transmissions of the request over a 15 minute period, the request is unsuccessful. statvsd displays the number of requests that were unsuccessful due to timeouts in the timeouts counter. The retries counters display the number of requests that have been retransmitted for each retry bucket value. The number of numbers on the retries line of statvsd output indicates the fixed number of times a request is retransmitted. The total retries is the sum of the retries bucket values, which is the total number of request retransmissions.

There is no tuning that can be performed to affect these values; the values are provided for information only. If a request to a virtual shared disk is being retransmitted, and the virtual shared disk is suspended and subsequently resumed, the request starts over with a fresh 15 minute retry period.

If a server gets heavily loaded, it may not be able to respond to a request fast enough to prevent the client from retransmitting the request. If the server responds after the client has retransmitted the request, the client rejects the response since its sequence number no longer matches the current sequence number of the request. The client records this event in the rejected response counter that statvsd displays.

If a server receives a request with an unexpected sequence number, a rejected request event is recorded in a counter that statvsd displays.

Prerequisite Information

PSSP: Managing Shared Disks

Related Information

Commands:

- netstat -m for mbuf usage information.
- /etc/no -o thewall=16,384 to dynamically add more mbufs.
- /etc/no -a | grep thewall to show your current mbuf setting.
- cfgvsd, statvsd, ucfgvsd, vsnode.
- ctlvsd to cast nodes in and out, resetting sequence numbers and setting the max_IP_msg_size.

Refer to PSSP: Managing Shared Disks for information on tuning IBM Virtual Shared Disk performance and sequence numbers.
Examples

The following examples display IBM Virtual Shared Disk device driver statistics.

1. The `statvsd` output when KLAPI is enabled is:

<table>
<thead>
<tr>
<th>vsd parallelism</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>max IP message size</th>
</tr>
</thead>
<tbody>
<tr>
<td>61440</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>requests queued waiting for a request block</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>requests queued waiting for a pbuf</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>requests queued waiting for a cache block</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>requests queued waiting for a buddy buffer</th>
</tr>
</thead>
<tbody>
<tr>
<td>2689</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>average buddy buffer wait queue size</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>rejected requests</th>
</tr>
</thead>
<tbody>
<tr>
<td>554</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>rejected responses</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>rejected no buddy buffer</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>rejected merge timeout.</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>requests rework</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>indirect I/O</th>
</tr>
</thead>
<tbody>
<tr>
<td>453</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>64byte unaligned reads.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>comm. buf pool shortage</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DMA space shortage</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>timeouts</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>retries: 0 0 0 0 0 0 0 0 0 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 total retries</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Non-zero Sequence numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>---------------------------</td>
</tr>
<tr>
<td>node# expected outgoing outcast? Incarnation: 0</td>
</tr>
<tr>
<td>--------------------------</td>
</tr>
<tr>
<td>--------------------------</td>
</tr>
<tr>
<td>11 125092 0</td>
</tr>
</tbody>
</table>

 11 Nodes Up with zero sequence numbers: 1 3 5 7 9 10 12 13 14 15 16

2. The `statvsd` output when KLAPI is not enabled is:
statvsd

9 vsd parallelism

61440 vsd max IP message size

0 requests queued waiting for a request block
0 requests queued waiting for a pbuf
0 requests queued waiting for a cache block

2689 requests queued waiting for a buddy buffer

0.0 average buddy buffer wait_queue size

554 rejected requests
0 rejected responses
0 rejected no buddy buffer

11 rejected merge timeout.
0 requests rework

453 indirect I/O
0 64byte unaligned reads.
0 comm. buf pool shortage
0 DMA space shortage
0 timeouts

retries: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 total retries

Non-zero Sequence numbers

<table>
<thead>
<tr>
<th>node#</th>
<th>expected</th>
<th>outgoing</th>
<th>outcast?</th>
<th>Incarnation: 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>125092</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

11 Nodes Up with zero sequence numbers: 1 3 5 7 9 10 12 13 14 15 16
stopvsd

Purpose

stopvsd – Makes a virtual shared disk unavailable.

Syntax

stopvsd {-a | vsd_name ...}

Flags

-a Specifies that all virtual shared disks in the suspended state are to be stopped.

Operands

vsd_name Specifies a virtual shared disk. If the virtual shared disk is not in the suspended state, you get an error message.

Description

The stopvsd command brings the specified virtual shared disks from the suspended state to the stopped state. They become unavailable. All applications that have outstanding requests for the virtual shared disk see these requests terminate with error. Read and write requests return errors with errno set to ENODEV. If the virtual shared disk is in the stopped state, this command leaves it in the stopped state.

You can use the System Management Interface Tool (SMIT) to run this command. To use SMIT, enter:

smit vsd_mgmt

and select the Stop a Virtual Shared Disk option.

Security

You must be in the AIX bin group to run this command.

Restrictions

If you have the Recoverable Virtual Shared Disk software installed and operational, do not use this command. The results may be unpredictable.

See PSSP: Managing Shared Disks.

Prerequisite Information

PSSP: Managing Shared Disks

Location

/usr/lpp/csd/bin/stopvsd
stopvsd

Related Information
Commands: cfgvsd, ctlvsd, lsvsd, preparevsd, resumevsd, startvsd, suspendvsd, ucfgvsd

Examples
To bring the virtual shared disk vsd1vg1n1 from the suspended state to the stopped state, enter:

stopvsd vsd1vg1n1
supfilesrv Daemon

Purpose

supfilesrv – The daemon that serves the file collections on the SP system.

Syntax

startsrc --s supfilesrv
stopsrc --s supfilesrv
supfilesrv [-p pid_file_path] [-l] [-s dce_service_principal] [-k keyfile]
 [-g dce_group_principal]

Flags

-p Specifies the path name of the supfilesrv PID file. The PID of the
 supfilesrv process will be written into this file.
-l Specifies no forking; the server will listen for a network connection, handle it
 and exit. This is useful for debugging the servers in live mode.
-s Specifies the DCE service principal used for file collections. The clients have
 to request for the service providing this dce_service_principal. This option is
 required in an environment where the current authentication mechanism is
 DCE. This option is ignored if the DCE authentication mechanism is not
 enabled.
-k Specifies the keyfile which contains the key for the file collection service
 DCE principal. This option is required when DCE authentication is in use;
 otherwise is it ignored.
-g Specifies the DCE group principal which defines the group of client principals
 allowed to connect to this server. Only those clients whose DCE principals
 are defined as the member of this DCE group principal are allowed by the
 server. This option must be specified in environments where current
 authentication mechanism is DCE; otherwise is it ignored.

Operands

pid_file_path The path name of the file which contains the PID of the running
 supfilesrv process.

dce_service_principal All file collection servers in the SP acquire DCE identity using
 this principal.

keyfile The DCE keyfile is the file that holds a service principal's key, which
 is the password. This keyfile is located on all file
 collection servers.

dce_group_principal The DCE group principal name whose members are the file
 collection client DCE principals.
Description

This daemon executes on the control workstation and the boot install servers. It responds to requests executed on the nodes to update collections of files configured for file collections. The supfilesrv daemon is under control of the System Resource Controller (SRC). It is normally started as part of the SP initialization scripts. The `startsrc -s supfilesrv` command invokes the supfilesrv daemon. The `stopsrc -s supfilesrv` command terminates the supfilesrv daemon. The `startsrc` command invokes `supfilesrv`, passing the arguments as defined by the SRC which is as following:

If the file collection server is not configured for DCE, `supfilesrv` is invoked as:

```
supfilesrv -p /var/sysman/sup-supfilesrv.pid
```

If the file collection server is configured for DCE, `supfilesrv` is invoked as:

```
supfilesrv -p /var/sysman/sup-supfilesrv.pid -s dce_service_principal
   -g dce_group_principal
```

The DCE configured server does not necessarily have DCE enabled. At run time it determines if DCE is enabled. If not, the DCE specific arguments will be ignored without any errors or warning messages.

The supfilesrv daemon ignores SIGINT, SIGHUP and SIGPIPE.

In case of errors, the server may terminate, the clients will not be able to connect to the server, and the changes in the collections may not be reflected at the client. In case of error conditions, the server prints error messages to stderr and may possibly terminate.

No security information is directly modified in the server.

Files

/var/sysman/* The files in the /var/sysman directory and its subdirectories are used by the server.

/etc/services Contains the entry for the supfilesrv tcp port to be used.

/etc/passwd Should contain an entry for the user supman. The server executes a setuid to supman.

The key file passed as command line argument.

The PID of the supfilesrv process is written into the PID file passed as a command line argument.

Standard Output

The command initially prints the startup message with the protocol version.
Standard Error
The command prints all error messages to stderr.

Exit Values
0 Indicates successful completion of the command.
1 Indicates that an error occurred.

Security
You must have root privilege to run this command.

Restrictions
This command should be invoked only from the file collection server hosts.

Implementation Specifics
This command is part of the IBM Parallel System Support Programs (PSSP) Licensed Program Product (LPP).

Prerequisite Information
PSSP: Administration Guide

Location
/usr/lpp/ssp/bin/supfilesrv

Related Information
Commands: chauthent chauthpar lsauthent supper

Examples
1. To start the supfilesrv daemon, enter:

 startsrc -s supfilesrv

2. To stop the supfilesrv daemon, enter:

 stopsrc -s supfilesrv
supper

Purpose
Manages the SP file collections.

Syntax
`supper [-d] [-v] subcommands`

Flags
- `-d` Turns on debug mode.
- `-v` Turns on verbose mode and echoes print of SUP messages.

Operands
Subcommands
- `activate volume` Sets the active volume group. The active volume group must be set before installing a collection that requires a file system.
- `debug` Turns debug messages on or off. Choose `on | off`.
- `diskinfo` Show available disk space and active volume.
- `files collection` Shows all files associated with a resident collection.
- `install collection` Installs a collection.
- `log` Shows summary of last/current supper session.
- `offline collection` Disables updates of a collection.
- `online collection` Enables updates of a collection (this is the default).
- `quit` Exits the program.
- `remove collection` Removes a collection.
- `reset collection` Sets the last update time of a collection to the epoch.
- `rlog` Shows raw output of last/current supper session.
- `scan collection` Runs a scan for a collection.
- `serve` Lists all collections this machine is able to serve.
- `status` Shows the current status of all available collections. The status information includes the names of all collections, whether they are resident on the local machine, and the name and size of the file system associated with each collection.
- `update collection` Updates a collection.
- `verbose` Turns SUP output messages on or off. Choose `on | off`.
- `when` Prints the last update time of all resident collections.
- `where` Shows current servers for collections.
- `! command` Shell escape.
supper

Description

This command is a perl script that provides various file collection management capabilities. The supper update subcommand invokes the sup client program to upgrade file collections from the file collection server. The supper scan subcommand is used at the file collection server to create the scan file /var/sysman/sup/-<filecollection>/scan.

This file contains the last modification time of the files in the collection and used for efficient file collection transactions. If this file is present, it is important to either delete this file or rerun the scan subcommand when files in the collection are modified. However, if this file is not present (which is the default), it is not necessary to create this file using supper scan subcommand when new files are created in the file collection or when existing files are modified.

The supper command identifies the boot/install server of the node as the file collection server. In a DCE environment, the DCE authentication will be required between file collection server and client. In that case, the servers will establish DCE identity with a single file collection service principal. The sup client will acquire DCE identity with the self host machine principal before requesting the service. The self host machine principal is the default DCE identity of the root user.

This is typically invoked from crontab to periodically update the file collections from the server. You can invoke supper as an interactive session by entering the command without any parameters or subcommands. This allows you to enter the subcommands in an interactive dialog.

The supper command captures SIGINT, SIGHUP, and SIGALRM and ignores these signals. However, if the sup or supscan child process is active, on receiving SIGINT, supper sends SIGKILL signal to the child process.

When an update is in progress, if supper receives SIGINT, it stops the sup child process. If the updates are not done properly, either no files or only some files in the collection may be updated at the client. It will have different effects depending on what file collection is being updated. The log files generated can be used to trace the errors.

Files

/etc/ssp/server_name
This file contains the name of boot/install server.

/var/sysman/file.collections
This file contains the definitions of the file collections configured with SP.

/var/sysman/sup/lists
This directory contains the set of links to lists files of the file collections.

/var/sysman/sup/.resident
Specifies the resident file collections.

/var/sysman/sup/.active
Specifies the active file collections.

/usr/lpp/ssp/bin/sup
The sup client program invoked by supper for update subcommand.
supper

/usr/lpp/ssp/bin/supscan
This is invoked by supper for scan subcommand.

/var/sysman/sup/lists/file_collection
The supper update file_collection command upgrades all the files in the
file collection.

/var/sysman/sup/file_collection/scan file
This file is created by the supper scan file_collection command.

/var/adm/SPlogs/filec
This directory contains the log files generated.

Standard Input
When invoked without any parameters, provides interactive shell which accepts all
the subcommands listed above.

Standard Output
When invoked without any command line arguments, the command provides an
interactive shell displaying the prompt. The results are displayed to stdout in
response to the subcommands typed at the prompt. When invoked with the −v
option, messages output by the sup client program are displayed. The −d option
prints debugging information.

Exit Values
0 Indicates successful completion of the command.
1 Indicates that an error occurred.

Security
You must have root privilege to run this command.

If the user.admin file collection is used for user management, the change in the
user management files in the server will be reflected at the client after the supper
update.

Restrictions
There is no file collection server for SP control workstation, so the supper update
subcommand is not applicable to control workstation.

Implementation Specifics
This command is part of the IBM Parallel System Support Programs (PSSP)
Licensed Program Product (LPP).

Prerequisite Information
PSSP: Administration Guide
Location

/var/sysman/supper

Related Information

Commands: sup, supfilesrv

Examples

/var/sysman/supper rlog
/var/sysman/supper status
/var/sysman/supper scan user.admin
/var/sysman/supper update power_system
suspendvsd

Purpose

suspendvsd – Deactivates an available virtual shared disk.

Syntax

suspendvsd {−a | vsd_name...}

Flags

−a

Specifies that all the virtual shared disks in the active state are to be suspended.

Operands

vsd_name

Specifies a virtual shared disk. If the virtual shared disk is not in the active state, you get an error message.

Description

The suspendvsd command brings the specified virtual shared disks from the active state to the suspended state. They remain available. Read and write requests which were active while the virtual shared disk was active are suspended and held. Subsequent read and write operations are also held. If the virtual shared disk is in the suspended state, this command leaves it in the suspended state.

If you issue this command for the server node and not the client, retries occur unsuccessfully. An error occurs within 15 minutes.

You can use the System Management Interface Tool (SMIT) to run this command. To use SMIT, enter:

smit vsd_mgmt

and select the Suspend a Virtual Shared Disk option.

Security

You must be in the AIX bin group to run this command.

Restrictions

If you have the Recoverable Virtual Shared Disk software installed and operational, do not use this command. The results may be unpredictable.

See PSSP: Managing Shared Disks.

Prerequisite Information

PSSP: Managing Shared Disks

272 Command and Technical Reference, Volume 2
Location

/usr/lpp/csd/bin/suspendvsd

Related Information

Commands: cfgvsd, ctlvsd, lsvsd, preparevsd, resumevsd, startvsd, stopvsd, ucfgvsd

Examples

To bring the virtual shared disk **vsd1vg1n1** from the active state to the suspended state, enter:

```
suspendvsd vsd1vg1n1
```
switch_stress

Purpose

switch_stress – Tests the functionality of a specific switch chip.

Attention

ATTENTION – READ THIS FIRST: Do not activate the SP Switch advanced diagnostic facility until you have read this section completely, and understand this material. If you are not certain how to properly use this facility, or if you are not under the guidance of IBM Service, do not activate this facility.

Activating this facility may result in degraded performance of your system. Activating this facility may also result in longer response times, higher processor loads, and the consumption of system disk resources. Activating this facility may also obscure or modify the symptoms of timing-related problems.

Syntax

switch_stress -s switch_chip_id [-a allowed_nodes_list]
 [-A allowed_nodes_file] [-f forbidden_nodes_list]
 [-F forbidden_nodes_file] [-m model] [-z data_size]
 [-p pattern_files_list] [-P pattern_files_file] [-g] [-h]

Flags

-s switch_chip_id
 Specifies the switch chip id of a suspicious switch chip.

-a allowed_nodes_list
 Specifies a list of nodes that the test can use. allowed_nodes_list is a blank-separated list of node identifiers. A node identifier can be a host name, IP address, frame, slot pair, or node number.

-A allowed_nodes_file
 Specifies a file containing a list of nodes that the test can use. allowed_nodes_file is a path to a file that contains a list of node identifiers.

-f forbidden_nodes_list
 Specifies a list of nodes that the test cannot use. forbidden_nodes_list is a blank-separated list of node identifiers.

-F forbidden_nodes_file
 Specifies a file containing a list of nodes that the test cannot use. forbidden_nodes_file is a path to a file that contains a list of node identifiers.

-m model
 Specifies a test model that will be used for testing. model is a name of the model to be used.

-z data_size
 Specifies amount of data in MB to be sent on every test iteration.
-p pattern_files_list
 Specifies a list of paths to the pattern files. pattern_files_list is a
 blank-separated list of paths. Each pattern file path is a full path to a file
 accessible from each participating node.

-P pattern_files_file
 Specifies the file containing a list of paths to the pattern files.

-g Requests to use SPD GUI.

-h Requests that usage information be displayed.

Operands
None.

Description
This command starts the switch chip stress test, which determines whether the
specified switch chip is malfunctioning under stress. You are required to specify the
switch chip ID that appeared in the primary node error reports.

The model argument lets you select a single test model. By default, all models will
be executed.

You can specify the nodes that are allowed to participate in the test, or nodes that
are not allowed to participate in the test. If the same node is present in both lists, it
is not allowed to participate in the test. You must be aware that the selected nodes
will not be able to run any application that uses a switch network during the test
execution. By default all nodes are allowed to participate in the test. These nodes
could be specified as a list of nodes or as a file that contains the list. The data_size
argument allows you to control the amount of data that will be sent by every sender
on every test iteration. By default this value is set to 360MB.

You can provide a path to a file that contains the data pattern to be used during the
test. By default the output of the test is displayed on the command line. You can
request to display the output on the SPD GUI.

Location
/usr/lpp/ssp/bin/spd/switch_stress

Examples
1. To test switch chip 16 using default settings, enter:
 switch_stress -s 16

2. To test switch chip 20 displaying the output on GUI, enter:
 switch_stress -s 20 -g

3. To test switch chip 25 specifying allowed nodes by host name, enter:
 switch_stress -s 25 -a n05 n06 n11

4. To test switch chip 25 specifying a forbidden node by frame,slot, enter:
 switch_stress -s 25 -f 2,9
5. To execute model A for switch chip 25, enter:
 `switch_stress -s 25 -m ModelA`

6. To increase the amount of data sent through the switch chip under test, enter:
 `switch_stress -s 25 -z 1000`

7. To use a different data pattern, create a data file, make it accessible to nodes
 (copy to every node or mount using the same name), and enter:
 `switch_stress -s 25 -p /tmp/spd/pattern1.dat`
sysctl

Purpose

sysctl – The command interface to the Sysctl remote command execution server

Syntax

```bash
sysctl [-c {filepath | -}] [-f num] [-h host] [-L] [-l] [-m]
[-n] [-P port] [-q] [-r {file | -}] [-s] [-t sec] [-T sec]
[-v] [-x] [procedure ...]
```

Flags

```
[-c filepath | -]  Runs the procedure on the specified collection of nodes. The list of
hostnames in the collection is read from the file whose pathname is
specified. More than one collection can be specified with multiple -c
flags. To enter hostnames from standard input, specify a dash (-) instead
of a pathname; and press <Ctrl-D> to complete the entry of
hostnames. The -c flag and the -h flag may be entered on the same
command. Hosts may be identified by IP address or hostname, and
must be resolvable or the command is rejected.

[-f num]  Controls maximum fan-out, when multiple hosts are specified. By
default, a maximum of eight concurrent connections are used. The
most allowed is 128. You may want to increase num to allow for
greater parallelism, when running procedures that place low demand
on system resources. If you specify a value that is not an integer
between 1 and 128, the default value is used. The fan-out value is
not used unless it is less than the number of target hosts.

[-h host]  Specifies a server host on which to execute the procedure. More than
one host can be specified using multiple -h flags. If neither -h nor -c
is specified, the server is assumed to be the local host. The -h flag
and the -c option may be entered on the same command. Hosts may
be identified by IP address or hostname, and must be resolvable or
the command is rejected.

[-L]  Provides an alternate way to delimit output from multiple servers. The
server hostname is prefixed to each output line. This type of output is
easier for programs and scripts to parse than the default output
format, in which each host's output is in a separate block of output
lines preceded by a line containing the server hostname. This default
format is the same as that produced by the **dshbak** output filter.

[-m]  Specifies safe communication, to ensure the integrity of messages
between client and server.

[-n]  Specifies that no authentication information should be sent. When this
option is not specified, authentication information is sent to each
server using whichever authentication methods are currently active on
the local host.
```
sysctl

[-P port] Connects to the server using the specified port number. If this option is not specified, or if you specify a value that is not a valid positive integer, the port used is that assigned to the sysctl/tcp service in /etc/services.

[-q] Specifies quick mode – to not wait for the result from the server, which will return no output. This option is not valid in interactive mode, when neither the -r option or a procedure operand is specified.

[-r file | -] Replays (drops) this file on the servers. Use this flag to pass scripts to Sysctl servers for execution without reconfiguring the server, for example, to test a new procedure. You can enter scripts from standard input by specifying a dash (-) instead of a file name; press <Ctrl-D> to complete entry of a script. Only one script can be executed; if you specify this option more than once, the last file specified is used. When this flag is used, any procedure operand is ignored.

[-s] Tells the server to send results back via a TCP socket. The output from the server is demultiplexed into standard output and standard error, allowing you to separate the two types of output. Using a socket also enables two-way between the client and a procedure. Any procedures that start a dialogue requiring input from the client must be run with this option. Only one server host connection is allowed when operating in this mode.

[-t sec] Specifies the maximum time in seconds to wait for server connections. The default is 10 seconds. The value must be an integer from 1 to 60; otherwise the default value is used.

[-T sec] Specifies the maximum time in seconds to wait for the result from a sysctl procedure. The default is 30 minutes. If you specify a value that is not a positive integer, the default value is used.

[-v] Prints the version number of sysctl, then exits. All other options and operands are ignored. When you specify this flag, no authentication or authorization check is made, and no connection is made to any server.

[-x] Sends a NULL RPC (like a ping) to the servers. You can use this to check whether the servers are up before you try to run a procedure on them. This request does not perform any authentication nor is any authorization check performed by the servers.

Operands

`procedure ...`

The procedures to be executed by the servers. It can be a Tcl command, a Sysctl built-in procedure, or a locally provided Sysctl procedure that a system administrator has previously added to the Sysctl configuration. If you do not enter a procedure, and do not specify the -r option, Sysctl runs in interactive mode. Only one server host connection is allowed when operating interactively.
Description

The **sysctl** program provides a simple command line interface for communicating with the Sysctl server, **sysctld**. Together the Sysctl client and server provide remote execution capability needed to manage the SP system from a single point of control. The client connects to servers using TCP/IP, passes options and procedures to the server, and writes output that the server returns to standard output. The client does not interpret (as a shell) the procedures it passes.

The Sysctl server uses the Tcl imbeddable command language as the foundation for its built in interpreter. The server is augmented with application specific procedures. You may tailor the Sysctl configuration to make different procedures available on different servers. The Sysctl (Tcl) expressions that are passed to the servers for execution can be anything from a single procedure invocation to an entire script. A simple Tcl wrapper can be used to invoke executables on the server that are C language programs, Perl programs, or shell scripts.

The server uses SP authentication services for reliable third party authentication. Sysctl requests from the client to servers contain authentication information using DCE or Kerberos Version 4 credentials, depending on the trusted services authentication method chosen when the system was configured. The authentication information reliably identifies the user that initiated the request. No authentication information is passed when the `−n` or `−x` option is specified, when the system administrator has not configured either trusted services authentication method, or when the user does not have credentials. Permission to access the resources of the servers is granted based on the identification of the client as an unauthenticated or authenticated user, in conjunction with authorization mechanisms on the server that implement local access control policies. A description of those mechanisms can be found in the **sysctld** daemon and in the Sysctl chapter in *PSSP: Administration Guide*.

Environment Variables

The LC_ALL locale settings are passed to the Sysctl server to be used, if possible, when running the command. When "Compatibility" authentication is being used on the client host (where this command is invoked), the KRBTKFILE environment variable, if set, is assumed to name a Kerberos Version 4 ticket cache file owned by the user issuing the command.

Files

This command reads all cluster files specified by the `−c` option, and a replay file if specified by the `−r` option.

Standard Input

This command only reads standard input when it is specified as the source of a replay file or a cluster file. See the descriptions of the `−r` and `−c` flags.

Standard Output

All output produced by this command is copied directly from the server.
Standard Error

Output consists of error messages from this command plus error messages
produced by the servers and text returned as Tcl errors by Sysctl procedures.
When this command directs requests to servers running version 1.1 of Sysctl
(included in PSSP releases prior to 3.1), error messages returned by those servers
may differ from those produced by Sysctl version 2.1 servers. This command will
report some errors and continue to complete the request. These errors result from
entry of values that are not valid for some command options, where default values
were applied.

Exit Values

0 Indicates successful completion of the command.
1 Indicates the command did not complete successfully.

Security

Use of the Sysctl built in procedures for ACL management may alter the
authorization characteristics of the affected objects on the targeted servers. Such
changes take effect immediately.

Implementation Specifics

This command is part of the IBM Parallel System Support Programs (PSSP)
Licensed Program Product (LPP) (fileset ssp.clients).

Prerequisite Information

The chapters on Security and Sysctl in PSSP: Administration Guide.

Location

/usr/lpp/ssp/bin/sysctl

Related Information

Commands: dshbak, hostlist, sysctld

Examples

These examples show procedures invoked from the shell prompt. Unless noted
otherwise, the syntax is the same (minus the word sysctl) when invoking the
procedure from within an interactive Sysctl session.

1. To list the local file systems on server ceti-alpha5, enter:
 sysctl -h ceti-alpha5 listfs

2. To add Kerberos Version 4 principal arielle to the default ACL on ceti-alpha5,
 enter:
 sysctl -h ceti-alpha5 acladd -p arielle

 The server returns the full entry that it inserted into the ACL file, for example:
 _PRINCIPAL arielle.@ABC.COM

3. To check whether Kerberos Version 4 principal frank is granted access by an
 entry in ACL /etc/sysctl.pman.acl on the local host, enter:
sysctl aclcheck \-f /etc/sysctl.pman.acl frank

The server returns 1 if frank is granted access, 0 if not.

4. To check whether you are authorized to run the **test:mount_if** procedure on host ceti-alpha5, enter:

```bash
sysctl \-h ceti-alpha5 checkauth \-cmd test:mount_if
```
sysctld Daemon

Purpose
sysctld – The Sysctl remote command execution server.

Syntax

Flags
-d Runs in debug mode. This causes debugging information to be written to the log file as the server executes requests.
-s Runs in security audit mode. While running in security audit mode, each line written to the log file is tagged with a Connection ID field which filters the audit trail for a particular connection when multiple connections are processed simultaneously. This mode also generates more detailed information about the execution of authorization callbacks.
-a acl Specifies the server's default Access Control List. If not specified, /etc/sysctl.acl is used. The acl variable is the name to be assigned to the $ACL variable, used to provide the default filename for the built in ACL management procedures and for ACL checking. This value overrides any set during Sysctl configuration (see sysctl.conf).

On a host which has DCE authentication configured, acl is appended to the CDS name of the Sysctl service's RPC entry to form the full object name with which the ACL is associated. The full object name used to refer to ACL /etc/sysctl.acl when using the dcecp command to manage its entries on host xyz.abc.com has the form /./subsys/ssp/host1/syctxl/host1/etc/sysctl.acl.

On a host which does not have DCE configured or which also has Kerberos Version 4 configured, acl is the fully qualified pathname of the Sysctl ACL file used to specify access controls. If acl is not a valid pathname or the file does not exist, the default value is used. No verification of the content of the file takes place until an ACL check is attempted to authorize a user.

-f file Specifies the master configuration file pathname. If you specify this option, you must specify the IBM–supplied default file, /etc/sysctl.conf.

-k keyfile Specifies the server's Kerberos Version 4 keytab file. The keyfile variable is the name to be assigned to the $KEY variable. IBM does not recommend using this flag, because PSSP Installation and Configuration support maintains the service keys in the default keytab, /etc/krb-srvtab. If a different file is specified, you must insure that it always contains a copy of the keys in the default file. If keyfile is not a valid pathname or the file does not exist, the default value is used. Verification of the content of the file does not occur until the server attempts to authenticate a client using Kerberos Version 4. If the file is not a properly constructed Kerberos Version 4 srvtab file containing an entry for the Kerberos Version 4 principal used by the server, any
such authentication will be unsuccessful. This flag does not apply to a DCE-only environment.

-\l logfile Specifies the server log file pathname. The logfile variable is the name to be assigned to the $LOG variable. The default file is /var/adm/SPlogs/sysctl/sysctld.log. If logfile is not a valid pathname, the default value is used.

-\P port Specifies the server port number. If this flag is not specified, or if you specify a value that is not a valid positive integer, the port used is that assigned to the sysctl/tcp service in /etc/services.

Operands

None.

Description

The sysctld daemon is the server component of the Sysctl remote command execution facility. Security and performance characteristics of sysctld make it an ideal mechanism for managing a large, distributed computing environment. An instance of sysctld runs on every SP node and the control workstation. Procedures are sent to the sysctld daemon by the sysctl client program. The client and server use a PSSP authentication mechanism that both have configured to validate the identity of the user. If the user is authenticated, the credentials obtained by that process are used to check the authorization of the user to use the requested Sysctl resources. Sysctl servers can also be configured to support requests by unauthenticated clients.

Security and Access Control

When a request is received, sysctld establishes the client's identity using the authentication protocol information passed by the client. If the information contains valid DCE credentials and DCE authentication was configured on the local system, the requestor is authenticated as a DCE principal. If the information contains valid Kerberos Version 4 credentials and "Compatibility" authentication was configured on the local system, the requestor is authenticated as a Kerberos Version 4 principal. If the request contains no credentials or credentials that are not valid, the client is identified as an unauthenticated user.

Determining Connection Authorization Policy

Whenever a client connects to a server, the svcconnect Sysctl procedure is invoked. If the user is not authorized to run this procedure or if the procedure returns a Tcl error, the result of the procedure is returned to the user and the connection is broken. Therefore, svcconnect determines the connection policy for the server. The default svcconnect access control policy is to allow connection by any authenticated client on hosts that support authentication, and to allow connection by any client on systems that do not. This policy can be altered in the Sysctl configuration file by redefining the svcconnect procedure itself via the create proc or rename Sysctl procedures, or by changing its authorization callback using the setauth procedure.

Access Control using Authorization Callbacks
Once a client connection is blessed by the `svcconnect` callback, access to Sysctl procedures and variables is determined dynamically by the execution of authorization callbacks that are assigned at configuration time to each procedure and variable. In a typical command language, a procedure has a name, a set of arguments, a set of procedures which form the body of the procedure, and a return value. With Sysctl procedures, an additional attribute is added; a policy for determining who is able to run the procedure. These policies are implemented using callbacks that are pieces of Tcl code logically attached to all procedures and variables when they are defined to the Tcl interpreter during server initialization. Each authorization callback returns either a normal Tcl result, allowing access to the resource, or a Tcl error, preventing access. The text "Authorization Denied" is returned to the client as the Tcl result.

A procedure’s callback is executed just prior to execution of the body of the procedure to which it is attached. If it returns a normal result, the procedure is executed.

For Sysctl variables, the callback is executed prior to resolving a reference to a read-only variable. Access is allowed if a normal result is returned. It is possible to create a "private" variable whose value is available to only a certain set of clients.

The sysctl server has a set of predefined procedures designed to be used as authorization callbacks. These procedures provide a simple authorization policy. If a more complex authorization policy is required, you may write your own authorization callback procedures. These procedures are:

- **NONE**: Always returns a normal result; access is always granted. You should assign this callback only to objects which you want to make accessible to all users, including unauthenticated users.
- **AUTH**: Returns a normal result if the client is successfully authenticated (using any available authentication mechanism).
- **ACL name**: Returns a normal result if the client is successfully authenticated as the local host principal or is authenticated as any other principal and is granted access in the ACL. On server hosts that have no authentication methods enabled, a normal result is returned, if the unauthenticated AIX identity is granted access in the ACL. If no name is specified, the default ACL (defined by the $ACL variable) is used. See `sysctl.acl` for more details about Sysctl ACLs.
- **SYSTEM**: Always returns a Tcl error; access is denied to all users. Any object to which this callback is attached can never be directly referenced by a user. It is accessible only when referenced from within a Sysctl procedure configured at server initialization.

Bypassing Authorization Callbacks

Under certain circumstances, the authorization callbacks are bypassed by the server. At these times, all procedures and variables are accessible. This occurs when:

- Reading configuration files (to initialize the server's Tcl interpreter)
- Executing an authorization callback
- Executing the body of a procedure which the user is authorized to run.
Authorization Variables

Several variables are set by the server prior to executing the client request. These variables provide a mechanism for external procedures to perform their own authorization checking independent of the server's standard authorization checks. They cannot be changed using the Tcl set command (are read-only). They are:

- **SCHOST**: Specifies the name of the host from which the request was issued.
- **SCDCEPRIN**: When the client is authenticated using DCE, this variable is set to the principal name in the form: */.../cell_name/principal_name. Otherwise, it is set to an empty string.
- **SCPRINCIPAL**: When the client is authenticated using Kerberos Version 4, it is set to the principal name in the form: user.instance@realm. Otherwise it is set to an empty string.
- **SCUSER**: This variable contains the user's AIX login name, when the user is on a system running Sysctl version 3.1 or later. When the client is running an earlier version of Sysctl, this variable contains the name part of the Kerberos Version 4 principal if the client is authenticated; otherwise it is set to an empty string.
- **SCINSTANCE**: When a client is authenticated using Kerberos Version 4, this variable contains the instance part of the Kerberos Version 4 principal name. Otherwise, it is set to an empty string.
- **SCCELL**: When the client is authenticated using DCE, this variable is set to the client's DCE cell name. Otherwise, it is set to an empty string.
- **SCREALM**: When the server is using Kerberos Version 4, this variable is set to the server's Kerberos Version 4 realm. Otherwise, it is set to an empty string.
- **SCLHOST**: Specifies the host name of the local server.
- **SCLREALM**: When the server is using Kerberos Version 4, this variable is set to the server's Kerberos Version 4 realm. Otherwise, it is set to an empty string.
- **SCLCELL**: When the server is using DCE, this variable is set to the server's DCE cell name. Otherwise, it is set to an empty string.
- **SCLDCEPRIN**: When the server is using DCE, this variable is set to the server's principal name in the form: */.../cell_name/ssp/dcehostname/sysctl. Otherwise, it is set to an empty string.
- **SCLPRINCIPAL**: When the server is using Kerberos Version 4, this variable is set to the principal name in the form: user.instance@realm. Otherwise, it is set to an empty string.
sysctld Daemon

SCMODE Specifies the communication mode between client and server; either
WAIT, NOWAIT, or SOCKET. NOWAIT indicates that the client is not
waiting for the results of the request, which will be discarded by the
server. SOCKET indicates that the result of the request is returned to
the client via a TCP/IP socket rather than as a synchronous result.
WAIT indicates the normal synchronous mode of operation.

Server Configuration

At server initialization, the sysctld daemon reads a configuration file. By default this
file is named /etc/sysctl.conf. The server interprets the contents of the file as Tcl
procedures. Typically, additional procedures and variables are defined in this file.
Also, procedures are available that instruct the server to process additional
configuration files or dynamically load shared libraries. In this way the set of
procedures available to a sysctld server is extensible. Refer to the information on
the sysctl_conf file for more details.

Starting, Stopping, and Querying the sysctld Daemon

The sysctld daemon is under System Resource Controller (SRC) control. It uses
the signal method of communication in SRC. The sysctld daemon is a separate
subsystem, named sysctld, not associated with any SRC group. It is started using
the startsrc command, normally automatically by init, as set up during PSSP
installation. It starts the daemon with default arguments and SRC options. It is set
up to respawn on termination, and there is only one instance of sysctld on a
particular node or control workstation. Do not start the sysctld daemon, except by
using the startsrc command.

To stop the sysctld daemon, use the stopsrc command. It stops the daemon,
without allowing it to respawn.

To display the status of the sysctld daemon, use the lssrc command.

To override the daemon's default arguments, specify the -a flag on the startsrc
command. To change them permanently or to change other subsystem attributes,
use the chssys command. Refer to AIX Version 4.1 Commands Reference and
AIX Version 4.1 General Programming Concepts: Writing and Debugging
Programs for more information about daemons under SRC control and how to
modify their arguments. To view the current SRC options and daemon arguments,
use the odmget command.

Environment Variables

Though the server is started in the default locale for the system it runs on, it will
use the client's locale information (only available for clients running Sysctl version
3.1 or higher) in the child process that runs the client command. If the client's
locale is not available on the local system, the server will use the default locale,
except when the client request includes the flag that disallows that option.
Files

/etc/sysctl.acl The pre-defined default ACL file used by the ACL authorization callback.

/etc/sysctl.conf The default configuration file read during server initialization.

/etc/krb-srvtab The root server key file used by Kerberos Version 4.

/var/sysctl/db_name, /var/sysctl/db_object, /var/sysctl/db_acl The DCE ACL database files.

/var/adm/SPlogs/sysctl/sysctld.log The default log file. This default can be overridden with the -l command line flag, or by setting the LOG variable in the Sysctl configuration file. Each time a request is received, the svclogevent Sysctl procedure is invoked. By default, it writes a record to the log file giving the identity of the user who sent the request. A different logging policy can be achieved by redefining the svclogevent procedure in the server's configuration file.

Standard Error

Standard error is used only when the daemon fails to start, prior to opening the log file.

Exit Values

0 Indicates the successful completion of the command.
1 Indicates that the command was unsuccessful.

Security

You must have root privilege to run this command.

Implementation Specifics

This command is part of the IBM Parallel System Support Programs (PSSP) Licensed Program Product (LPP) (fileset ssp.sysctl).

Prerequisite Information

The chapters on Security and Sysctl in PSSP: Administration Guide.

Location

/usr/lpp/ssp/bin/sysctld

Related Information

Command: sysctl

Files: sysctl_acl, sysctl_conf
sysctld Daemon

Examples

1. To start the `sysctld` daemon, enter:
   ```
   startsrc -s sysctld
   ```

2. To stop the `sysctld` daemon, enter:
   ```
   stopsrc -s sysctld
   ```

3. To display the status of the `sysctld` daemon, enter:
   ```
   lssrc -s sysctld
   ```

4. To display the SRC options and command line options for the `sysctld` daemon, enter:
   ```
   odmget -q subsysname=sysctld SRCsubsys
   ```
SYSMAN_test

Purpose

SYSMAN_test – Verifies that the installation and customization of the Systems Management components of the SP system completed successfully.

Syntax

SYSMAN_test [-q | -v] [-l log_file]

Flags

-q Specifies quiet mode; suppresses all but summary output to standard output.
-v Specifies verbose mode, includes informational messages to standard output.
-l log_file Specifies the path name of the log file to which error messages are written. (This is lowercase l, as in list.)

Operands

None.

Description

The SYSMAN_test command performs various tests to determine whether the systems management components of the SP system are completely installed and customized properly.

A return code of 0 indicates that the test completed as expected; otherwise it returns the number of errors. If you do not specify the -q flag, a message is displayed on standard output that indicates whether the tests were successful or not. In either case, the command returns 0 if successful, 1 if unsuccessful. If errors are detected, more detailed information is recorded in the log file. If you do not specify the -l flag, error messages are recorded in /var/adm/SPlogs/SYSMAN_test.log.

You can use the System Management Interface Tool (SMIT) to run this command. To use SMIT, enter:

smit SP_verify

and select the RS/6000 SP System Management option.

Files

/var/adm/SPlogs/SYSMAN_test.log
Default log file.
SYSMAN_test

Related Information

Commands: CSS_test, jm_install_verify, jm_verify, SDR_test, spmon_ctest, spmon_itest

Location

/usr/lpp/ssp/bin/SYSMAN_test

Examples

To verify systems management following customization, saving error messages in sm.errors in the current working directory, enter:

SYSMAN_test -l sm.errors
Purpose

syspar_ctrl – Starts, stops, adds, deletes, and refreshes the system partition-sensitive subsystems installed on your SP system.

Syntax

syspar_ctrl [-G] [-V] \{-a | -d | -s | -k | -t | -o | -c | -r | -h | -A | -D | -E | -R\} [subsystem_name]

Flags

-h (help) Displays usage information. If a subsystem_name is specified, help is provided only for the specified subsystem's control script. Help is displayed as a syntax description and is written to standard output. Once help is displayed, no other action is taken even if other valid options are entered with the -h flag.

-a (add) Adds all subsystems. If a subsystem_name is specified, only the specified subsystem is added. The -a flag invokes each subsystem's control script. Typically, this causes each subsystem's control script to add itself to the System Resource Controller (SRC) subsystem, /etc/inittab and /etc/services. The actual function that is performed depends on whether the underlying control script runs on the control workstation or on a node.

-A (add and start) Adds and starts all subsystems. If a subsystem_name is specified, only the specified subsystem is added and started. Each subsystem's control script is invoked with the -a flag followed by the -s flag. This is a convenience option that provides the same function as first calling syspar_ctrl with the -a flag followed by the -s flag.

-c (clean) Cleans up after all of the subsystems. If a subsystem_name is specified, only the specified subsystem is cleaned up. Each subsystem's control script is invoked with the -c flag. Typically, this causes each subsystem's control script to stop any subsystem daemons that may be running and clean or remove all entries for this subsystem from the SRC, /etc/inittab, /etc/services. This flag is similar to the -d (delete) flag, but independent of system partitions. Cleaning up the subsystems is done in the reverse order of how the subsystems are listed in the Syspar Controller subsystems file. You can use this option to clean up subsystem information while trying to get back to some preexisting state, such as when an old System Data Repository (SDR) is restored and the old system partitioning needs to be restored.

-d (delete) Deletes all subsystems. If a subsystem_name is specified, the specified subsystem is deleted. Each subsystem's control script is invoked with the -d flag. Typically, this causes each subsystem's control script to delete itself from the SRC subsystem, /etc/inittab and /etc/services. Deleting subsystems is done in the reverse order of how the subsystems are listed in the Syspar Controller subsystems file. The actual function that is performed depends on whether the underlying control script runs on the control workstation or on a node.
syspar_ctrl

-D (stop and delete) Stops and deletes all subsystems. If a `subsystem_name` is specified, that subsystem is stopped and deleted. Each subsystem's control script is invoked with the `-k` flag followed by the `-d` flag. This is a convenience option that provides the same function as first calling `syspar_ctrl` with the `-k` flag followed by the `-d` flag.

-E (examine) Examines all subsystems. If a `subsystem_name` is specified, the specified subsystem is examined in the Syspar Controller subsystems file. Each subsystem name - control script pair in the subsystems file is examined and displayed. Entries that are not valid are noted. An entry is not valid when the control script for a particular subsystem does not exist at the specified location or does not have the correct read and execute permissions.

-G (global) Invokes the appropriate underlying subsystem's control scripts for each system partition. If the `-G` flag is not specified, the appropriate underlying subsystem's control script is run only in the current system partition (SP_NAME).

-k Stops all subsystems. If a `subsystem_name` is specified, only the specified subsystem is stopped. Each subsystem's control script is invoked with the `-k` flag. Typically, this causes each subsystem's control script to stop any daemons associated with this particular subsystem. Stopping subsystems is done in the reverse order of how the subsystems are listed in the Syspar Controller's subsystem file. The actual function that is performed depends on whether the underlying control script runs on the control workstation or on a node.

-r (refresh) Refreshes all subsystems. If a `subsystem_name` is provided, only the specified subsystem is refreshed. Each subsystem's control script is invoked with the `-r` flag. Typically, this causes each subsystem's control script to rebuild configuration data and refresh any daemons associated with this particular subsystem. Subsystems may need to be refreshed when nodes are added to an existing system or the nodes PSSP version changes. The actual function that is performed depends on the subsystem. This option is only meaningful when run on the control workstation.

-R (restore) Restores all subsystems. If a `subsystem_name` is specified, only the specified subsystem is restored. All subsystems are stopped and deleted before they are added and started. Each subsystem's control script is invoked with the `-k` flag followed by the `-d` flag, then the `-a` flag followed by the `-s` flag. This is a convenience option that provides the same function as first calling `syspar_ctrl` with the `-D` flag followed by the `-A` flag.

-s (start) Starts all subsystems. If a `subsystem_name` is specified, only the specified subsystem is started. Each subsystem's control script is invoked with the `-s` flag. Typically, this causes each subsystem's control script to start any daemons associated with this particular subsystem. The actual function that is performed depends on whether the underlying control script runs on the control workstation or on a node.
−t (trace on) Turns the trace option on for all subsystems. If a
subsystem_name is specified, the trace option is turned on only for the
specified subsystem. Each subsystem's control script is invoked with the
−t flag.

Note: IBM suggests only turning on a particular subsystem's trace by
providing a subsystem name. If the trace is turned on for all
subsystems, the volume of data produced may quickly fill up
/var.

−o (trace off) Turns the trace option off for all subsystems. If a
subsystem_name is specified, the trace option is turned off only for the
specified subsystem. Each subsystem's control script is invoked with the
−o flag.

−V (verbose) Turns verbose mode on in the syspar_ctrl script which then
prints out the actual calls it makes to the underlying subsystem control
scripts. It also prints out additional information that is useful for
debugging.

Operands

subsystem_name

Specifies the subsystem name that you want the command to act on.
If a subsystem_name is not provided, this command is run for all
subsystems that are listed in the Syspar Controller subsystems file
(syspar_subsystems). For example, if you only want this command to
work with the Event Management subsystem, enter:

syspar_ctrl option haem

Description

This command acts as an interface to the system partition-sensitive subsystems
supporting the functions that are shared by all subsystems. This command is also
referred to as the Syspar Controller. It can be used to add or delete, start or stop,
refresh or restore the subsystems, and various other functions. When used on the
control workstation, it works with the subsystems on the control workstation. When
used on the nodes, it works with the subsystems on the nodes. The refresh option
is an exception. To refresh some subsystems, the subsystem must be refreshed on
both the control workstation and on the nodes. In this case, the refresh on the
control workstation will dsh an appropriate refresh command from the control
workstation to the appropriate nodes.

This command supports two types of options: primitive options and macro options.
Primitive options are passed directly to the underlying control scripts, for example,
−a (add), −d (delete), −r (refresh). Macro options conveniently group a commonly
used set of primitive options into one option, for example, −R (restore). All of the
subsystems and each subsystem's control script that are managed by the Syspar
Controller are listed in the Syspar Controller subsystems file. By default, all of the
control scripts listed in the Syspar Controller subsystems file will be called unless a
subsystem_name is provided. In that case, the control script for just the specified
subsystem will be called.

This command is automatically called when the system is partitioned
(spapply_config) to first stop and delete the system partition-sensitive subsystems
syspar_ctrl

from system partitions that are being removed, and then to add and start the system partition-sensitive subsystems (for example, hats, hb, and hr) in new system partitions.

The Syspar Controller is also called when restoring the SDR with sprestore_config to first clean up and then add and start the system partition-sensitive subsystems (for example, hats, hb and hr) in each system partition.

The Syspar Controller also needs to be called with refresh flag (−r) by the System Administrator using the command line whenever a node is added or deleted from the system, or a node is migrated to a new level of PSSP.

Files

syspar_subsystems
Lists all of the system partition sensitive subsystems and their control scripts that are controlled by the Syspar Controller. Only the syspar_ctrl command should read this file. This file is located in the directory /usr/lpp/ssp/config/cmi.

Security

You must have root privilege to run this command.

Environment Variables

SP_NAME syspar_ctrl sets the SP_NAME environment variable prior to calling the underlying subsystems. Typically, SP_NAME is set to the value returned from the spget_syspar -n command. However, when syspar_ctrl is called with the −G flag, syspar_ctrl sets SP_NAME in turn to each value returned by the splst_syspars -n command. The −c flag ignores system partition boundaries while all other options respect system partition boundaries.

Exit Values

0 Indicates the successful completion of the command.
1 Indicates that the command was unsuccessful. Most likely a subsystem's control script returned a problem return code.

Implementation Specifics

This command is part of the IBM Parallel System Support Programs (PSSP) Licensed Program Product (LPP).

Location

/usr/lpp/ssp/bin/syspar_ctrl

Related Information

Commands: emonctrl, hatsctrl, hbctrl, hrctrl, haemctrl, hagsctrl, pmanctrl, sp_configdctrl, spapply_config, spcw_apps, sprestore_config
Examples

1. To add and start all of the system partitions subsystems in each of the system partitions, enter:
   ```bash
   syspar_ctl -G -A
   ```

2. To stop and delete all of the system partition subsystems in each of the system partitions, enter:
   ```bash
   syspar_ctl -G -D
   ```

3. To refresh all of the system partition subsystems in the current system partition, enter:
   ```bash
   syspar_ctl -r
   ```

4. To restore all of the system partition subsystems running in the current system partition, enter:
   ```bash
   syspar_ctl -R
   ```

5. To stop all of the system partition subsystems running in the current system partition, enter:
   ```bash
   syspar_ctl -k
   ```

6. To get help for the event manager subsystem (haem) control script, enter:
   ```bash
   syspar_ctl -h haem
   ```

7. To display a list of all subsystems managed by the Syspar Controller, enter:
   ```bash
   syspar_ctl -E
   ```

8. To see the state of the system partition subsystems controlled by the Syspar Controller for system partition spp1, enter the commands:
   ```bash
   lssrc -a | grep spp1
   lssrc -a | grep sp_configd
   ```

 Note: The SDR is not managed by the System Controller.
sysparaid

Purpose

sysparaid – Creates a layout for a new system partition configuration of an SP system.

Syntax

sysparaid [-h] [-i] [-s layout_name | a_fully_qualified_path]
[-t tmpdir] input_file [topology_file]

Flags

-h Displays usage information. If the command is issued with the -h flag, the syntax description of the command and the startup guidelines are displayed to standard output and no other action is taken (even if other valid flags are entered along with the -h flag).

-i Creates a switch-map file (spa.sysinfo) for the current SP system if a System Data Repository (SDR) is present. If an SDR is not available, it will generate the file for the system described by the topology_file. If the -s flag is entered along with the -i flag, it will be ignored.

-s Saves the newly generated layout in the system partition directory tree (/spdata/sys1/syspar_configs/...) if a layout_name is specified; otherwise, it will be saved under the directory specified by the fully qualified path given.

-t Saves the snapshot, performance, and intermediate files under tmpdir.

Operands

input_file Specifies the file containing the system partition configuration requirement.

 topology_file Specifies the topology file for the system to be partitioned. This operand is required only when the topology file for the system to be partitioned is not under /spdata/sys1/syspar_configs/topologies. It is also required with the -i flag when there is no SDR or when the switch-map file for a system not represented by the SDR is desired.

Description

Use this command to invoke the System Partitioning Aid, a tool for generating new system partition configuration layouts. The command is not valid on a system with an SP Switch2 switch, or on clustered enterprise servers.

When invoked with the -i flag, it creates a switch-map file that will help the user to generate the input_file for creating a layout for a desired system partition configuration. When invoked with no flags or with the -s or -t flags, it attempts to partition the system according to the input requirement. If the attempt is unsuccessful, it will output appropriate error messages to the log and exit. If the attempt is successful and the -s flag is specified, the newly created layout will be saved at the desired location specified by the flag argument.
The `sysparaid` command uses a set of built-in rules to create a layout for a desired system partition configuration. The following startup guidelines will help to generate an acceptable input to the command:

1. The nodes can be identified by either using `node_numbers` or `switch_port_numbers`. While both schemes are permitted for partitioning a system defined by an SDR, `switch_port_numbers` is the only allowed choice when running the tool without an SDR. Also, the numbering schemes cannot be mixed when both schemes are allowed.

2. Identify the four nodes linked to any switch chip to place them in the same system partition. If an SDR is present, the identity of the switch chips linked to the nodes in the system can be obtained by issuing the following command:
   ```
   sysparaid -i -t spa_dir
   ```
 This command places a `spa.sysinfo` file in the `spa_dir` if the `-t` flag is used; otherwise, it places it in the current directory. If an SDR is not present, issue the following command:
   ```
   sysparaid -i -t spa_dir topology_file
   ```
 where `topology_file` is the name of the topology file for the system to be partitioned.
 Note: In this case, only the `switch_port_numbers` are provided. No `node_numbers` are available.

3. The keyword “remaining_nodes” can be used for the last system partition provided all nodes or switch ports not in the last system partition were placed in other system partitions. Therefore, the keyword cannot be used with the `node_number` numbering scheme for systems with empty input switch ports.

4. Nodes on a switch board can be part of a maximum of two multichip system partitions.

5. The input file must be formatted according the the template provided in `/spdata/sys1/syspar_configs/bin/inpfile_template`.

Standard Input
This command requires an input file when invoked with no flag or the `-s` flag. The template for the input file can be found in `/spdata/sys1/syspar_configs/bin`.

Standard Output
Informational messages are written to standard output.

Standard Error
Error messages are written to standard error.
sysparaid

Output Files

This command creates `spa.snapshot` and `spa.metrics` under `tmpdir` (if specified) or under the current working directory. If the `-s` flag is specified and the attempt is successful, it creates the following under the layout directory:

- `layout.desc`
- `spa.snapshot`
- `nodes.syspar` and a system partition directory for each system partition in the layout. Under each system partition directory, it creates the following:
 - `node list`
 - `topology`
 - `spa.snapshot`
 - `spa.metrics`

When invoked with the `-i` flag, the command creates `spa.sysinfo` under `tmpdir` (if specified), or under the current working directory.

Security

Any user can run this command. Only users authorized to write to the system partitioning directory can save a generated layout under it.

Location

`/usr/lpp/ssp/bin/sysparaid`

Related Information

The `spsyspar` command provides the graphical user interface (GUI) for the System Partitioning Aid.

Examples

1. The following is an example of an input file with the switch port number option (all switch ports linked to nodes):
Number of Nodes in System: 32
Number of Frames in System: 2
Frame Type: tall
Switch Type: HiPS
Number of Switches in Node Frames: 2
Number of Switches in Switch Only Frames: 0
Node Numbering Scheme: switch_port_number
Number of Partitions: 3
Partition Name: part1
Number of Nodes in Partition: 8
0 - 7
Partition Name: part2
Number of Nodes in Partition: 8
8 - 15
Partition Name: part3
Number of Nodes in Partition: 16
remaining_nodes
To use /tmp as the working directory, enter:
sysparaid -t /tmp inpfile
You should receive a message similar to the following:
A layout, for the desired system partition configuration or an
equivalent, can be created.
To save this layout, invoke the command again with -s option.
To save the layout for this configuration under
/spdata/sys1/syspar_configs/2nsb0isb/config.8_8_16/layout.myconfig,
enter:
sysparaid -s myconfig inpfile
To save the layout for this configuration under /tmp/custom/config1, enter:
sysparaid -s /tmp/custom/config1 inpfile
2. The following is an example of an input file with the switch port number option
(not all switch ports in the system are linked to nodes):
Number of Nodes in System: 87
Number of Frames in System: 6
Frame Type: tall
Switch Type: SP
Number of Switches in Node Frames: 6
Number of Switches in Switch Only Frames: 4
Node Numbering Scheme: switch_port_number
Number of Partitions: 2
Partition Name: ProductionPartition
Number of Nodes in Partition: 82
0
4
16 - 95
Partition Name: TestPartition
Number of Nodes in Partition: 5
2
6
8
10
12
If you enter the `sysparaid -s myconfig inpfile` command, this configuration will be saved under `/spdata/sys1/syspar_configs/6nsb4isb/config.12_84/layout.myconfig`. Note that the nine unspecified switch port numbers have been allocated to one of the two system partitions.

3. The following is an example of an input file with the node number option (not all switch ports are linked to nodes):
Number of Nodes in System: 8
Number of Frames in System: 2
Frame Type: tall
Switch Type: SP
Number of Switches in Node Frames: 1
Number of Switches in Switch Only Frames: 0
Node Numbering Scheme: node_number
Number of Partitions: 3
Partition Name: part1
Number of Nodes in Partition: 2
25
29
Partition Name: part2
Number of Nodes in Partition: 4
1
5
17
21
Partition Name: part3
Number of Nodes in Partition: 2
3
7
This input file for a particular SP system returned the location of an existing layout:
The layout for the desired/equivalent system partition configuration is under /spdata/sys1/syspar_configs/1nsbisb/config.4_4_8/layout.2
4. The spa.sysinfo file for the system in Example 3 that was generated using the sysparaid -i command follows:
sysparaid

<table>
<thead>
<tr>
<th>switch_number</th>
<th>switch_chip</th>
<th>switch_port_number</th>
<th>node_number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>9</td>
<td>25</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>13</td>
<td>29</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>1</td>
<td>17</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>5</td>
<td>21</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

5. The following is an example of an input file for a switchless system:
Number of Nodes in System: 32

Number of Frames in System: 2

Frame Type: tall

Switch Type: NA

Number of Switches in Node Frames: 0

Number of Switches in Switch Only Frames: 0

Node Numbering Scheme: switch_port_number

Number of Partitions: 2

Partition Name: part1

Number of Nodes in Partition: 14

2 - 5

10

11

13

15

19

24 - 25

29 - 31

Partition Name: partition2

Number of Nodes in Partition: 18

remaining_nodes

To save the layout for this configuration under
/spdata/sys1/syspar_configs/2nsb0isb/config.14_18/layout.myconfig, enter:

sysparaid -s myconfig inpfile
s1term

Purpose

s1term – Opens a connection to an SP node's S1 serial port.

Syntax

s1term [-G] [-w] frame_ID slot_ID

Flags

- G Allows specification of nodes outside the current system partition.
- w Opens the connection in read/write mode.

Operands

frame_ID Specifies the number of the frame containing the node.
slot_ID Specifies the number of the slot containing the node.

Description

Use this command to open a connection to the S1 serial port of the SP node contained in the slot specified by the frame_ID and slot_ID operands. The specified node must be in the current system partition unless the -G flag is also specified. By default, the connection is read only. As data arrives from the serial port, it is written to standard output. When the connection is read/write and standard input is a terminal, the terminal is placed in raw mode, that is, canonical processing is turned off in the terminal driver. As data is read from standard input, it is sent to the S1 serial port. Standard input and output can be files or pipes.

When the connection is read only, the command terminates upon receipt of a signal, usually generated by the terminal Interrupt key. When in read/write mode, the command terminates when either the termination character or End-of-File is read from standard input. The termination character is Ctrl-x by default. Another termination character can be used by setting the S1TERMESC environment variable to the octal (denoted by leading 0), decimal or hexadecimal (denoted by leading 0x) value of the desired termination character.

Note: The termination character must only be one byte.

To execute this command, the user must be authorized to access the Hardware Monitor subsystem and, for the frame specified to the command, must be granted S1 permission. Since the Hardware Monitor subsystem uses SP authentication services, the user must execute the k4init command prior to executing this command. Alternatively, site-specific procedures can be used to obtain the tokens that are otherwise obtained by k4init.

Security

To execute the s1term command, you must be authorized to access the Hardware Monitor subsystem and must be granted "S1" permission for the hardware objects (frames, slots) specified in the command. Commands sent to hardware objects for which the user does not have "S1" permission are ignored.
Location

/usr/lpp/ssp/bin/s1term

Related Information

Commands: hmcmds, hmmon

Examples

1. To open an interactive connection to the S1 serial port of the node in slot 8 in frame 12, enter:

 `s1term -w 12 8`

2. To write the output of the S1 serial port of the node in slot 2 in frame 9 to a file, enter:

 `s1term 9 2 > s1term.output`
tecad_pssp

Purpose

`tecad_pssp` – Forwards PSSP events.

Syntax

```
teacad_pssp [-I path/filename] [-Cc]
[-m text] [-a tiv_admin_name]
[-s severity] [-p port]
```

Flags

- `-I path/filename` Specifies the path/filename of the configuration file. The default value is `/usr/lpp/ssp/donfig/tecad_pssp.cfg`. The only required value in this file is the `ServerLocation` parameter, which should be one of the following:
 - `ServerLocation = hostname.domain`, for secure communications
 - `ServerLocation = @ServerName`, for a managed node over a TME channel
 - `ServerLocation = @ServerName#RegionName`, for secure transport in connected TMRs

 Consult the TME 10 EIF User's Guide for the correct values of the other configuration parameters.

- `-C` Specifies the connection-oriented protocol.

- `-c` Specifies a connectionless protocol (the default).

- `-m text` Adds text to the message field of the event.

- `-a tiv_admin_name` Adds admin in the T/EC_administrator field of the event.

- `-s severity` Sets the severity of the event to severity. The following strings are the legal values for severity:
 - FATAL
 - CRITICAL
 - WARNING
 - MINOR
 - HARMLESS
 - INDETERMINATE

 If an incorrect value is used, the default UNKNOWN is used.

- `-p port` Sets the communication port number to port. Note that you can also set the port number in the configuration file.
Operands

None.

Description

The tecad_pssp command was designed to be executed by the PSSP Problem Management subsystem. It should not be executed by any other subsystem, since it depends on environment variables that are exported by the Problem Management daemon, pmand. Therefore, to forward PSSP events using the tecad_pssp command, you need to make a Problem Management subscription using either the SP Event Perspective, or using Problem Management directly. In either case, you should select tecad_pssp as the command to run for that subscription, and provide the appropriate parameters.

Prerequisite Information

Integrating TME 10 on the RS/6000 SP

Location

/usr/lpp/ssp/tecad_pssp

Related Information

Commands: pmandef, wtdumprl

Examples

1. This example creates event subscriptions using the pmandef command:

 pmandef -s example1
 -e "AnyResourceVariable;Any_InstanceVector;AnyPredicate"
 -c "$/AGENT_PATH/tecad_pssp -l $CONF_PATH/tecad_pssp.cfg"
 -r "AnyRearmPredicate"
 -C "$/AGENT_PATH/tecad_pssp -l $CONF_PATH/tecad_pssp.cfg"
 -n 0
ucfgghsd

Purpose

ucfgghsd – Makes a hashed shared disk unavailable.

Syntax

ucfgghsd {−a | hsd_name...}

Flags

−a Specifies that all the hashed shared disks defined are to be unconfigured.

Operands

hsd_name Specifies the name of a specific hashed shared disk that is unconfigured.

Description

This command unconfigures the already defined hashed shared disks. This command does not change the definition of the hashed shared disks; it makes the hashed shared disks unavailable on one node.

Security

You must be in the AIX bin group to run this command.

Prerequisite Information

PSSP: Managing Shared Disks

Location

/usr/lpp/csd/bin/ucfgghsd

Related Information

Commands: cfgghsd, defhsp, hsdatalst, lshsp, undefvsp

Examples

To unconfigure the hashed shared disk hsd1, enter:
ucfgghsd hsd1
ucfghsdvds

Purpose

ucfghsdvsd – Stops the virtual shared disks that comprise a hashed shared disk and makes the hashed shared disk and the virtual shared disks unavailable.

Syntax

ucfghsdvsd -a {hsd_name...}

Flags

-a Specifies that all the hashed shared disks defined on this system or system partition are to be unconfigured.

hsd_name Specifies the names of defined hashed shared disks that are to be unconfigured. This command unconfigures the underlying virtual shared disks as well.

Operands

None.

Description

Use this command to unconfigure hashed shared disks and their underlying virtual shared disks. This command does not change the definition of the hashed shared disks and virtual shared disks; it just makes them unavailable to the node on which this command is run. The underlying virtual shared disks do not have to be in the stopped state for this command to work. The virtual shared disks will be stopped and then unconfigured.

You can use the System Management Interface Tool (SMIT) to run this command. To use SMIT, enter:

smit hsd_mgmt

and select the Unconfigure an HSD and its Underlying Virtual Shared Disks option.

Security

You must have access to the virtual shared disk subsystem via the sysctl service to run this command.

Prerequisite Information

PSSP: Managing Shared Disks

Location

/usr/lpp/csd/bin/ucfghsdvsd
ucfghsdvsd

Related Information

Commands: cfghsdvsd, ucfghsd, ucfgvsd

Examples

To unconfigure the hashed shared disk hsd1 and the virtual shared disks that comprise it, enter:

ucfghsdvsd hsd1
ucfgvsd

Purpose

ucfgvsd – Makes a virtual shared disk unavailable.

Syntax

ucfgvsd {−a | vsd_name ...}

Flags

−a Specifies that all virtual shared disks in the stopped state are to be unconfigured.

Operands

vsd_name Specifies a virtual shared disk.

Description

The ucfgvsd command unconfigures the specified virtual shared disks. This command does not change any virtual shared disk definitions. It moves virtual shared disks from the stopped state to the defined state.

If a configured hashed shared disk is using this virtual shared disk, you must first unconfigure the hashed shared disk before you unconfigure the virtual shared disk.

You can use the System Management Interface Tool (SMIT) to run this command. To use SMIT, enter:

smit vsd_mgmt

and select the Unconfigure a Virtual Shared Disk option.

Security

You must be in the AIX bin group to run this command.

Restrictions

If you have the Recoverable Virtual Shared Disk software installed and operational, do not use this command. The results may be unpredictable.

See PSSP: Managing Shared Disks.

Prerequisite Information

PSSP: Managing Shared Disks

Location

/usr/lpp/csd/bin/ucfgvsd
ucfgvsd

Related Information

Commands: cfgvsd, ctlvsd, lsvsd, preparevsd, resumevsd, startvsd, stopvsd, suspendvsd

Examples

To unconfigure the virtual shared disk vsd1vg1n1 in the stopped state, enter:
ucfgvsd vsd1vg1n1
unallnimres

Purpose

unallnimres – Deallocates Network Installation Management (NIM) resources from a NIM master to one or more NIM clients.

Syntax

unallnimres -h | -l node_list

Flags

-h Displays usage information. If the command is issued with the -h flag, the syntax description is displayed to standard output and no other action is taken (even if other valid flags are entered along with the -h flag).

-l node_list Indicates by node_list the SP nodes to which to unallocate installation resources. The node_list is a comma-separated list of node numbers.

Operands

None.

Description

Use this command to unallocate all NIM resources from a NIM client.

Standard Error

This command writes error messages (as necessary) to standard error.

Exit Values

0 Indicates the successful completion of the command.

-1 Indicates that an error occurred.

Security

You must have root privilege to run this command.

Implementation Specifics

This command is part of the IBM Parallel System Support Programs (PSSP) Licensed Program Product (LPP).

Location

/usr/lpp/ssp/bin/unallnimres
unallnimres

Related Information
Commands: allnimres, setup_server

Examples
To unallocate boot/installation resources to boot/install client nodes 1, 3, and 5 from their respective boot/install servers, enter:
unallnimres -l 1,3,5
undefhsd

Purpose

`undefhsd` – Undefines a hashed shared disk.

Syntax

`undefhsd` `hsh_name`...

Flags

None.

Operands

`hsh_name` Specifies the unique name defined in the SDR names that you want to delete.

Description

This command is used to remove a hashed shared disk by removing its definition from the system, including the special device files in `/dev`. The hashed shared disks must be unconfigured and in the defined state on all nodes in the system partition.

You can use the System Management Interface Tool (SMIT) to run this command. To use SMIT, enter:

`smit delete_vsd`

and select the Undefine a Hashed Shared Disk option.

Security

You must be in the AIX `bin` group and have write access to the SDR to run this command.

Prerequisite Information

PSSP: Managing Shared Disks

Location

`/usr/lpp/csd/bin/undefhsd`

Related Information

Commands: `defhsd`, `hsdatalst`

Examples

To delete the information associated with the hashed shared disk `hsh1` from the SDR, enter:

`undefhsd hsh1`
Purpose

`undefvsd` – Undefines a virtual shared disk.

Syntax

```
undefvsd vsd_name ...
```

Flags

None.

Operands

```
vsd_name
```

Specifies the virtual shared disk whose underlying logical volume you no longer want to be globally accessed by any virtual shared disk nodes.

Description

This command is used to remove virtual shared disk definition data from the System Data Repository (SDR) and any special device files from `/dev` for the given `vsd_names` on all the virtual shared disk nodes. The virtual shared disks must be unconfigured and in the defined state on all the virtual shared disk nodes.

You can use the System Management Interface Tool (SMIT) to run the `undefvsd` command. To use SMIT, enter:

```
smit delete_vsd
```

and select the Undefine a Virtual Shared Disk option.

Security

You must be in the AIX `bin` group to run this command.

You must have write access to the SDR to run this command.

Prerequisite Information

`PSSP: Managing Shared Disks`

Location

```
/usr/lpp/csd/bin/undefvsd
```

Related Information

Command: `defvsd`
Examples

To delete the information associated with the virtual shared disk `vsd1vg2n1` from the SDR, enter:

```
undefvsd vsd1vg2n1
```
unfencevsd

Purpose

unfencevsd – Gives applications running on a node or group of nodes access to a virtual shared disk or group of virtual shared disks that were previously fenced from applications running on those nodes.

Syntax

unfencevsd [-v] vsd_name_list {−n node_list [−f] | −r}

Flags

−v Specifies one or more virtual shared disk names, separated by commas.
−n Specifies one or more node numbers separated by commas.
−f Allows a fenced node to unfence itself.
−r Removes records associated with virtual shared disks listed in vsd_name_list from the SDR.

Note: Use unfencevsd −v −n to unfence nodes. Only use −r to remove an IBM Virtual Shared Disk fence record from the SDR while no IBM Virtual Shared Disk is configured on any node.

Operands

None.

Description

Under some circumstances, the system may believe a node has become inoperable and may begin recovery procedures when the node is actually operational, but is cut off from communication with other nodes running the same application. In this case, the problem node must not be allowed to serve requests for the virtual shared disks it normally manages until recovery is complete and the other nodes running the application recognize the problem node as operational. The fencevsd command prevents the problem node from filling requests for its virtual shared disks. The unfencevsd command allows fenced nodes to regain access to the virtual shared disks.

This command can be run from any node.

Note: This command will be unsuccessful if you do not specify a current server (primary or backup) to a virtual shared disk with the −v flag.

Note: This command changes SDR attributes when issued with the −r flag. Specify −r only when disks have already been removed from a fenced virtual shared disk.
Security

You must be in the AIX bin group to run this command.

Prerequisite Information

PSSP: Managing Shared Disks

Location

/usr/lpp/csd/bin/unfencevsd

Related Information

Commands: fencevsd, lsfencevsd, lsvsd, updatevsdtab, vsdchgserver

Refer to *PSSP: Managing Shared Disks* for information on how to use this command in writing applications.

Examples

1. To unfence node 5 from the virtual shared disks vsd1 and vsd2, enter:

   ```
   unfencevsd -v vsd1,vsd2 -n 5
   ```

2. To unfence node 7 from the virtual shared disks vsd1 and vsd2 when the `unfencevsd` command must be entered from node 7, enter:

   ```
   unfencevsd -v vsd1,vsd2 -n 7 -f
   ```
updatehsd

Purpose

updatehsd – Lets you change the option in the System Data Repository (SDR) that prevents overwriting the Logical Volume Control Block (LVCB) for specified hashed shared disks.

Syntax

```bash
updatehsd {−d hsd_names | −a} [−f]
−o {protect_lvcb | not_protect_lvcb}
```

Flags

−d Specifies the names of the hashed shared disks that are the targets of this command.

−a Updates the option on all hashed shared disks defined in the system or system partition.

−o protect_lvcb | not_protect_lvcb
 Specifies whether to skip the first stripe (the LVCB) up to a maximum of 128KB of every virtual shared disk that constitutes the hashed shared disk. `protect_lvcb` specifies skipping the LVCB; `not_protect_lvcb` specifies not skipping it.

−f Forces the SDR changes by reconfiguring one or more virtual shared disks on all nodes in the current partition on which those virtual shared disks are currently configured.

Operands

None.

Description

Use this command only on the control workstation.

Note: This utility is very powerful. Misuse can destroy the contents of a database. Only the superuser should be allowed to run it. If a database has been loaded on a configured hashed shared disk, modifying the `protect_lvcb` or `not_protect_lvcb` option will destroy the database.

The hashed shared disk name must be specified. You must choose either `protect_lvcb` or `not_protect_lvcb`. The hashed shared disk must be defined in the System Data Repository (SDR).

You can use the System Management Interface Tool (SMIT) to run this command. To use SMIT, enter:

```
smitt set_HSDdd_parms
```

and select the Update Hashed Shared Disk Options. option or

```
smitt hsd_mgmtd_parms
```

and select the Set/Show HSD Device Driver Operational Parameters. option or the Update Hashed Shared Disk Options option.
Security

You must have access to the virtual shared disk subsystem via the sysctl service to run this command.

Prerequisite Information

PSSP: Managing Shared Disks

Location

/usr/lpp/csd/bin/updatehsd

Related Information

Commands: defhsd, lshsd, hsdatalst

Examples

To set the protect_lvcb option for hsdcont01 and hsdcont02, enter:

updatehsd -d hsdcont01,hsdcont02 -o protect_lvcb
updatevsdnode

Purpose

updatevsdnode – Changes IBM Virtual Shared Disk subsystem options in the System Data Repository (SDR).

Syntax

```
updatevsdnode  -n {ALL | node_number [,node_number ...]}  
\{[-a {VSD_adapter | none}]  
[-i init_cache_buffer_count]  
[-m max_cache_buffer_count] [-r vsd_request_count]  
[-p rw_request_count] [-b min_buddy_buffer_size]  
[-x max_buddy_buffer_size] [-s max_buddy_buffers]  
[-M vsd_max_ip_packet_size]  
[-f] [-c cluster_name | NONE]
```

Flags

- **-n** Specifies the node numbers of the nodes whose SDR information you want this command to update, or ALL nodes in the system or system partition. You can issue the command `/usr/lpp/ssp/install/bin/node_number` to find out the node number of the node you are running on.

- **-a** Specifies the adapter name to be used for IBM Virtual Shared Disk communications with this node or nodes. IBM suggests using the switch (adapter name css0) for the virtual shared disk for best performance.

- **-i** The IBM Virtual Shared Disk device driver implements an optional write-through cache of pinned kernel memory with a block size of 4KB. When the first cached virtual shared disk is configured on a node, the cache is created, and it contains the number of blocks specified in this field of the SDR. The minimum value is 1. IBM suggests using a value of 64, which results in a 256K cache. If you use the switch as the virtual shared disk adapter, no cache buffer is allocated.

- **-m** The number of buffers in the cache can be increased up to `max_cache_buffer_count`. You cannot decrease the number; you must unconfigure all the virtual shared disks and start over. IBM suggests using the value of 256, which results in a 1MB cache. If you use the switch as the virtual shared disk adapter, no cache buffer is allocated.

- **-r** This value will be ignored, but a value must be specified for coexistence. The device driver will dynamically allocate the structures that it needs to manage. The previous recommended value was 256.

- **-p** This value will be ignored, but a value must be specified for coexistence. The device driver will dynamically allocate the structures that it needs to manage. The previous recommended value was 256.

- **-b** Specifies the smallest buddy buffer a server uses to satisfy a remote request to a virtual shared disk. This value must be a power of 2 and greater than or equal to 4096. IBM suggests using the value of 4096 (4KB).
The largest buddy buffer a server will use to satisfy a remote request. This value must be a power of 2 and greater than or equal to the min_buddy_buffer_size. The recommended value is 262144 (256KB). This value must be the same on all nodes within a system partition.

This is the number of max_buddy_buffer_size buffers to allocate. The buddy buffer is pinned kernel memory allocated when the IBM Virtual Disk device driver is loaded the first time and is freed when the device driver is unconfigured from the kernel. The recommended value is in the range of 32 to 96 buddy buffers where the max_buddy_buffer_size has been set to 256KB.

Buddy buffers are only used on the servers. On client nodes you may want to set max_buddy_buffers to 1.

Note: The statvsd command will indicate if remote requests are queing waiting for buddy buffers.

Specifies the maximum IP message size for virtual shared disks, in bytes. The recommended value for the switch is 61440 (61KB).

Specifies that this command will force the SDR changes by reconfiguring one or more virtual shared disks on all nodes in the current partition on which those virtual shared disks are currently configured.

Changes the cluster the node belongs to. NONE removes the node from the cluster.

Operands

None.

Description

Use updatevsdnode to change the specified values in the SDR for all nodes in node_list.

Note: This command only changes the information in the SDR. To effectively configure the virtual shared disks, you must first unconfigure all the virtual shared disks and then reconfigure them.

You can use the System Management Interface Tool (SMIT) to run this command. To use SMIT, enter:

smit vsd_mgmt

and select the Set/Show Virtual Shared Disk Device Driver Operational Parameters option or the Update IBM Virtual Shared Disk Device Driver Node Parameters option.

Security

You must have access to the virtual shared disk subsystem via the sysctl service to run this command.
updatevsdnode

Prerequisite Information

PSSP: Managing Shared Disks

Location

`/usr/lpp/csd/bin/updatevsdnode`

Related Information

Commands: `lsvd`, `vsdatalst`, `vsdnode`

Examples

To increase the buddy buffer size to 48 maximum sized buddy buffers on node 3, enter:

```
updatevsdnode -n 3 -s 48
```

Note: The device driver must be unconfigured from the kernel and reloaded to have this change go into effect.
updatevsdtab

Purpose

updatevsdtab – Changes the IBM Virtual Shared Disk subsystem option to set cache or nocache in the System Data Repository (SDR).

Syntax

updatevsdtab {−v vsd_names | −a} {[[−o {cache | nocache}]] [−s]} [−f]

Flags

−v vsd_names
 Specifies a list of virtual shared disk names to be updated.

−a
 Specifies that the option is to be changed on all nodes of the system or system partition.

−o cache | nocache
 Specifies either the cache or the nocache option. The default is cache.

−s
 Updates the virtual shared disk size after the associated logical volume size is changed.

−f
 Forces SDR changes by reconfiguring a virtual shared disk on all nodes in the current system partition on which the virtual shared disk is configured.

Operands

None.

Description

Use this command to update the SDR, if necessary. When a feature of the virtual shared disk in the SDR (such as cache/nocache option or the virtual shared disk size), is changed using the updatevsdtab command, the change will not take effect until the virtual shared disk is unconfigured and configured again.

If the −f flag is specified, the virtual shared disks involved will be reconfigured (using sysctl) on all nodes that are up and initially had these virtual shared disks configured.

You can use the System Management Interface Tool (SMIT) to run this command. To use SMIT, enter:

smit vsd_mgmt

and select the Set/Show IBM Virtual Shared Disk Device Driver Operational Parameters option or the Update IBM Virtual Shared Disk Options option.

Security

You must have access to the virtual shared disk subsystem via the sysctl service to run this command.
Prerequisite Information

PSSP: Managing Shared Disks

Location

/usr/lpp/csd/bin/updatevsdtab

Related Information

Commands: defvsd, updatevsdnode

Examples

1. To change the cache default for all virtual shared disks on a system or system partition, enter:

 updatevsdtab -a -o nocache

2. To reset the size of the virtual shared disk named USER1n3, enter:

 updatevsdtab -v USER1n3 -s
updauthfiles

Purpose

updauthfiles – Updates or creates (if necessary) the .k5login, .klogin, and .rhosts files on the control workstation and on all nodes in the system for which DCE or Standard AIX, or both, are defined as Authentication Methods.

Syntax

updauthfiles [-h] [-I]

Flags

-h Presents syntax message.
-I Specifies that updauthfiles was called during install, when name resolution is not available.

Operands

None.

Description

The command determines the authorization methods for the local host (control workstation or node) by reading the auth_root_rcmd attribute in the System Data Repository (SDR) Syspar object. If the specified authentication method has been correctly configured and is running, it creates or updates the appropriate authorization file for Standard AIX and Kerberos 5 (using DCE principals). The updauthfiles command copies the .klogin file from the /spdata/sys1/spsec directory to root's home directory when run on the control workstation. It issues a remote copy command (rcp) to the control workstation, if running on a node, to retrieve a copy of the .klogin file. The control workstation's authorization files are updated according to the union of all authentication methods in the system.

An error message is generated and logged for any authorization file unable to be created or updated.

Standard Input

The command reads the .k5login, .klogin and .rhosts files.

Standard Output

The command updates the .k5login, .klogin and .rhosts files.

The command issues rcp from a node to the control workstation to copy the .klogin file.

A Log file is created in /var/adm/SPlogs/auth_install/log.
Exit Values

0 Indicates successful completion of the command.
1 Indicates a problem running the command. Review the log file for the specific problem. One or more nodes does not have correct authorization files. This could cause problems when remote commands are issued, causing some PSSP administrative tasks to be unsuccessful.

Correction of errors is necessary to complete the process. Problems relating to the creation of .rhost and .k5login files should be corrected on the node, and the command should be rerun. Problems due to copying the .klogin file may need to be corrected on the control workstation; then the command should be rerun on the node.

Security

You must have root privilege to run this command.

Related Information

Commands: rcp

Files: .rhost, .klogin and .k5login

Location

/usr/lpp/ssp/bin/updauthfiles

Examples

1. To create the appropriate authorization file (.rhost) on the control workstation, enter:

/usr/lpp/ssp/bin/updauthfiles
verparvsd

Purpose

verparvsd – Verifies IBM Virtual Shared Disk system partitioning.

Syntax

verparvsd [-F] [-o output_file] layout_directory [new_partition ...]

Flags

-F Returns success if correctable virtual shared disk errors are found in
 the system partitioning operation. This flag is the same as
 spapply_config –F and is used only when spapply_config invokes
 verparvsd when it is invoked with –F.

-o Specifies the file where the System Data Repository (SDR)
 commands are placed to load the IBM Virtual Shared Disk data in
 the new system partitions. If –o is not specified, the output is placed in
 the /spdata/sys1/vsd/partitionVSDdata file.

Operands

layout_directory

Specifies the layout_directory that describes the new system partitions
that the user wants to apply, and wants verparvsd to verify for IBM
Virtual Shared Disk system partitioning. This operand is used as the
first argument in the invocation of the spdisplay_config command.
Refer to the spdisplay_config command for more details.

new_partition ...

Specifies the list of new system partitions to be processed. If some
system partitions are going to be unaffected by the system partitioning
operation implied by the layout_directory, and you do not want
verparvsd to look at them, do not list them here, but list only the
system partitions being affected. The verparvsd command only
verifies and processes the system partitions passed as arguments. If
no new system partitions are given as arguments, all system
partitions in layout_directory are processed and analyzed. The
spapply_config command invokes verparvsd listing only the new,
changing system partitions.

Description

Use this command to verify that the system partition proposed in the
layout_directory will work for all the existing IBM Virtual Shared Disk data. The
spapply_config command invokes this command to partition the IBM Virtual
Shared Disk data during a system partition operation. The verparvsd command
extracts all IBM Virtual Shared Disk data from nodes involved in the system
partitioning and writes SDR commands to the output file that will reload the IBM
Virtual Shared Disk SDR data into the correct new system partitions. This file is
executed during the system partitioning process to partition the IBM Virtual Shared
Disk data.
The `spapply_config` command invokes this command and its output to effect IBM Virtual Shared Disk system partitioning. You can also invoke the command prior to invoking the `spapply_config` command to see how well suited the desired layout is for the existing IBM Virtual Shared Disk configuration as defined in the SDR.

This command only checks and processes the new system partitions listed on the command line. If some existing system partitions are to be unchanged in the system partitioning operation, do not list those system partition names on the command line. If no new system partitions are listed, the default is to process all system partitions in the layout directory.

This command checks to see if the IBM Virtual Shared Disk data can be partitioned as specified by the layout directory without any problems. The command reports any problems it identifies, as well as reports how it would fix the problem.

The `verparvsd` command places global volume groups (GVGs) in the system partition containing their primary server node. Virtual shared disks are placed in the system partition of their GVG. HSDs are placed in the system partition containing their first virtual shared disk.

The `verparvsd` command looks for the following types of errors in each new system partition:

1. Inconsistent VSD_adapter Node attributes. If any are found, the VSD_adapter field is set to en0 for all virtual shared disk nodes in the system partition.

2. Inconsistent VSD_max_buddy_buffer_size Node attributes. The `verparvsd` command sets the VSD_max_buddy_buffer_size field for all virtual shared disk nodes in the system partition to the largest value of any node in the system partition, and adjusts the VSD_max_buddy_buffers so that the buddy buffer is still the same size, or just minimally larger than it was before on each node.

3. A twin-tailed GVG with primary and secondary server nodes in different system partitions. GVGs are placed in the system partition of the primary server. If the secondary is in a different system partition, the `verparvsd` command will set the secondary server to NULL, making the GVG have only one server, the primary.

4. An HSD with virtual shared disks in more than one system partition. The `verparvsd` command appends .BAD to the HSD's name. These HSDs would be unusable if the new system partition were applied and the VSD_adapter was css0.

As a corollary, if an HSD with .BAD at the end of its name is found in the new system partition to have all its virtual shared disks in the system partition, the .BAD will be removed from its name.

5. Any duplicate GVG, virtual shared disk, or HSD name. The `verparvsd` command keeps the original name for the first name it encounters, but makes up unique names for any subsequent duplicate names encountered. New names follow the following suggested naming conventions:

- **GVG**

 vg01n01 for single tailed GVG on node 1.

 vg01p0ss02 for twin tailed GVGs, primary server node 1, secondary server node 2.

- **VSD**

 vsd01vg01n01 (for example, vsdnnGVG name)

 css0

- **HSD**

 hsd01 (for example, hsdnn)
Files

/spdata/sys1/vsd/partitionVSDdata
 The default location of the output file containing all the SDR commands to correctly system partition the IBM Virtual Shared Disk data.

Exit Values

The `verparvsd` command looks for error types (described previously) in each new system partition and corrects them as specified:

- Without `-F`, any single error of the preceding type for even a single system partition causes `verparvsd` to return an error code upon completion.
- With `-F`, all errors of all of the types described previously are corrected as described, and `verparvsd` returns a zero (successful) return code.

In either case, `verparvsd` processes all the IBM Virtual Shared Disk data, and generates a complete list of errors on standard error, and a complete SDR command list to the output file.

Security

You must have write access to the SDR to run this command.

Prerequisite Information

PSSP: Managing Shared Disks

Related Information

Commands: `defhsd`, `defvsd`, `spapply_config`, `spdisplay_config`, `vsdnode`, `vsdvg`

Examples

To see how well suited the configuration specified in the `config.4_4_8/layout.6` layout directory is to your IBM Virtual Shared Disk configuration, enter:

```
verparvsd config.4_4_8/layout.6
```
vhostname

Purpose

`vhostname` – Sets or displays the virtual host name of the local host.

Syntax

```
vhostname [-s] [ host_name]
```

Flags

- `-s` Trims any domain information from the printed name.

Operands

`host_name` Sets the virtual host name to `host_name`.

Description

Use this command to display or set the virtual host name of the local host. Only users with root authority can set the virtual host name. The `host_name` is stored in the `/etc/vhostname` file.

If displaying the virtual host name and the virtual host name has not been set and the `/etc/vhostname` file does not exist, `vhostname` will return the real host name from the kernel variable.

When setting the virtual host name, if the `/etc/vhostname` file does not exist, it will be created. If it does exist, the file contents will be overwritten by the new virtual host name.

To clear the virtual host name so that the virtual host name no longer exists, remove the `/etc/vhostname` file.

Note: You must have root authority to remove the `/etc/vhostname` file.

The virtual host name is used in fail over situations when an application has associated the host name in the kernel of a particular machine to the service it is providing. When the application is restarted on the fail over node that has a different host name, the application may not work or work incorrectly. If the application needs to associate a host name with a particular service and it cannot handle having multiple host names, a virtual host name can be provided. The application can call `vhostname` instead of `hostname` and get the host name of the node it normally runs on. This eliminates the need to change the real host name in the kernel on the fail over node. It should be noted that changing the real host name in the kernel can cause problems with other applications that rely on the real host name in the kernel to identify the physical machine.

Note: The High Availability Cluster Multiprocessing (HACMP) event scripts provided with the High Availability Control Workstation (HACWS) option of the IBM Parallel System Support Programs for AIX (PSSP) set and clear the virtual host name in the HACMP pre- and post-event scripts. The administrator normally should not have to set or clear the virtual host name.
Files

/etc/vhostname
Contains the virtual host name.

Exit Values

0 Indicates that if a parameter was used, a virtual host name was successfully set. If a parameter was not used, either a virtual or real host name was printed out.

1 Indicates that an error occurred.

Security

You must have root authority to use the host_name operand.

Related Information

Subroutines: getvhostname, setvhostname

AIX command: hostname

AIX Subroutines: gethostname, sethostname

Examples

1. To display the virtual host name, enter:
 vhostname

2. To set the virtual host name to spcw_prim, enter:
 vhostname spcw_prim

3. To display the virtual host name and trim domain information for host donald.ibm.com, enter:
 vhostname -s
 A vhostname of donald prints out.

4. To clear the virtual host name so it no longer exists, enter:
 rm /etc/vhostname

 Note: You must have root authority to remove the /etc/vhostname file.
vsdatalst

Purpose

vsdatalst – Displays IBM Virtual Shared Disk subsystem definition data from the System Data Repository (SDR).

Syntax

vsdatalst [-G] [-g | -n | -v] [-c]

Flags

-G Displays information for all system partitions on the SP, not only the current system partition.

Only one of the following flags can be specified with each invocation of vsdatalst:

-g Displays the following SDR virtual shared disk global volume group data:

 global_group_name,
 local_group_name,
 primary_server_node,
 secondary_server_node. (This is only enabled with the Recoverable Virtual Shared Disk subsystem.)
 eio_recovery
 recovery
 CVSD server_list

-n Displays the following SDR virtual shared disk Node data:

 node_number,
 host_name,
 adapter_name,
 init_cache_buffer_count,
 max_cache_buffer_count,
 rw_request_count,
 vsd_request_count,
 min_buddy_buffer_size,
 max_buddy_buffer_size,
 max_buddy_buffers.

-v Displays the following SDR virtual shared disk definition data:

 vsd_name,
 logical_volume_name,
 global_group_name,
 minor_number,
 option (cachelnocache).

-c Displays the following cluster information:

 node_number
 cluster_name
Operands

None.

Description

Use this command to display one of several kinds of information to standard output.

You can use the System Management Interface Tool (SMIT) to run the `vsdatalst` command. To use SMIT, enter:

```
smit list_vsd
```

and select the option for the kind of IBM Virtual Shared Disk SDR information you want to see.

Security

You must be in the AIX `bin` group to run this command.

Prerequisite Information

`PSSP: Managing Shared Disks`

Related Information

Commands: `lsvsd`, `updatevsdnode`, `vsdnode`

Examples

1. To display SDR virtual shared disk global volume group data, enter:

```
vsdatalst -g
```

The system displays a message similar to the following:

Note: `backup` or `secondary_server_node` is only enabled with the Recoverable Virtual Shared Disk subsystem.

VSD Global Volume Group Information

<table>
<thead>
<tr>
<th>Group name</th>
<th>VG name</th>
<th>primary</th>
<th>backup</th>
<th>recovery</th>
<th>Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>hunter-rileysvg</td>
<td>rileysvg</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ppstest1-rootvg</td>
<td>rootvg</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>tattooine-rootvg</td>
<td>rootvg</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

2. To display SDR virtual shared disk node data, enter:

```
vsdatalst -n
```

The system displays a message similar to the following:
VSD Node Information

<table>
<thead>
<tr>
<th>node</th>
<th>VSD cache</th>
<th>cache req.</th>
<th>rw req. min. max. size:</th>
<th># host_name adapt. buffers buffers count count size size maxbufs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>hunter</td>
<td>tr0</td>
<td>64 256 256 48 4096 65536 4</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>tattooine</td>
<td>tr0</td>
<td>64 256 256 48 4096 65536 4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>ppstest1</td>
<td>tr0</td>
<td>64 256 256 48 4096 65536 4</td>
<td></td>
</tr>
</tbody>
</table>

3. To display SDR virtual shared disk definition data, enter:
```
vsdatalst -v
```

The system displays a message similar to the following:

VSD Table

<table>
<thead>
<tr>
<th>VSD name</th>
<th>logical volume</th>
<th>Global Volume Group</th>
<th>minor# option</th>
</tr>
</thead>
<tbody>
<tr>
<td>vsd.rlv01</td>
<td>rlv01</td>
<td>hunter-rileysvg</td>
<td>2 cache</td>
</tr>
<tr>
<td>vsd.rlv02</td>
<td>rlv02</td>
<td>hunter-rileysvg</td>
<td>3 cache</td>
</tr>
<tr>
<td>vsd.vsd1</td>
<td>vsd1</td>
<td>tattooine-rootvg</td>
<td>1 nocache</td>
</tr>
<tr>
<td>vsd.vsdpl</td>
<td>vsd1</td>
<td>ppstest1-rootvg</td>
<td>4 nocache</td>
</tr>
</tbody>
</table>
vsdchgserver

Purpose

vsdchgserver – Switches the server function for one or more virtual shared disks from the node that is currently acting as the server node to the other.

Syntax

vsdchgserver -g vsd_global_volume_group_name -p primary_node
[-b secondary_node] [-o EIO_recovery]

Flags

-g Specifies the Global Volume Group name for the volume group that represents all the virtual shared disks defined on a particular node.

-p Specifies the node number defined as the primary server node for the global volume group specified with the -g flag. The value of the -p option must be the same as the current acting server of the global volume group.

-b Specifies the node number defined as the secondary server node for the global volume group specified with the -g flag. If the -b flag is not specified, it will set the secondary_node to undefined in the System Data Repository (SDR). If the current secondary_node in the SDR is not defined and the -b flag is specified, the vsdchgserver command will set the secondary_node for the global volume group specified in the -g flag.

-o Specified as 0, for no recovery on an EIO error, or 1, for recovery on an EIO error. The default is the current value defined in the SDR.

Operands

None.

Description

The vsdchgserver command allows the serving function for a global volume group defined on a primary node to be taken over by the secondary node, or to be taken over by the primary node from the secondary node. This allows an application to continue to use virtual shared disks in situations where the cable or adapter between the physical disks and one of the attached nodes is not working.

The Recoverable Virtual Shared Disk subsystem automatically updates the virtual shared disk devices if, and only if, the vsdchgserver command is used to flip the currently-defined primary node and secondary node in the global volume group specified in the -g flag.

Security

You must be in the AIX bin group and have write access to the SDR to run this command.
vsdchgserver

Prerequisite Information

PSSP: Managing Shared Disks

Related Information

Refer to *PSSP: Managing Shared Disks* for information on how to use this command in writing applications.

Location

/usr/lpp/csd/bin/vsdchgserver

Examples

To change the primary server node for the global volume group node12vg to node 1 and the secondary node to node 2, with EIO recovery, enter:

```
vsdchgserver -g node12vg -p 1 -b 2 -o 1
```
vsddiag

Purpose

vsddiag – Displays information about the status of virtual shared disks.

Syntax

vsddiag

Flags

None.

Operands

None.

Description

This command displays information about virtual shared disks that can help you determine their status and collect information that helps IBM service representatives diagnose system problems.

Note: The vsddiag command can only be used when no virtual shared disk I/O is in progress.

Security

You must have access to the virtual shared disk subsystem via the sysctl service to run this command.

Prerequisite Information

PSSP: Managing Shared Disks

Location

/usr/lpp/csd/bin/vsddiag

Related Information

Commands: vsdatalst, vsdsklst

Examples

To display information about the virtual shared disks in your system or system partition, enter:

vsddiag

If all virtual shared disks are created and configured correctly, the output is:

Checking server vsds

Checking VSD request sequence number.

Checking device drivers.

end of vsdlldiag:checkvsdll program.
If there are no virtual shared disks defined, the output is:

k5n02.ppd.pok.ibm.com

VSD_ERROR:3: No IBM Virtual Shared Disks are configured on this node.

k5n01.ppd.pok.ibm.com

VSD_ERROR:3: No IBM Virtual Shared Disks are configured on this node.

Checking server vsds
Checking VSD request sequence number.
Checking device drivers.
end of vsdl1diag:checkvsdl1 program.

If there is something wrong with the virtual shared disks, the output is:

k5n02.ppd.pok.ibm.com

VSD_ERROR:3: No IBM Virtual Shared Disks are configured on this node.

k5n01.ppd.pok.ibm.com

VSD_ERROR:3: No IBM Virtual Shared Disks are configured on this node.

Checking server vsds
Checking VSD request sequence number.
Checking device drivers.

vsdl1diag:checkvsdl1: 0034-6219 Device driver on node 14 is not at the same level as others on this SP system or system partition.

vsdl1diag:checkvsdl1: 0034-620 VSD Maximum IP Message Size on node 14 is not at the same level as others on this SP system or system partition.
vsdelnode

Purpose

vsdelnode – Removes IBM Virtual Shared Disk information for a node or series of nodes from the System Data Repository (SDR).

Syntax

vsdelnode node_number ...

Flags

None.

Operands

node_number Specifies the number attribute assigned to a node in the SDR.

Description

This command is used to remove IBM Virtual Shared Disk data for a node or series of nodes from the SDR.

The vsdelnode command makes the listed nodes no longer virtual shared disk nodes so that no virtual shared disks can be accessed from them. This command is unsuccessful for any nodes that are servers for any global volume groups.

You can use the System Management Interface Tool (SMIT) to run the vsdelnode command. To use SMIT, enter:

smit delete_vsd

and select the Delete Virtual Shared Disk Node Information option.

Security

You must be in the AIX bin group and have write access to the SDR to run this command.

Restrictions

If you have the Recoverable Virtual Shared Disk software installed and operational, do not use this command. The results may be unpredictable.

See PSSP: Managing Shared Disks.

Prerequisite Information

PSSP: Managing Shared Disks
Related Information

Commands: vsdatalst, vsdnode

Examples

To delete virtual shared disk node information for nodes 3 and 6, enter:

vsdelnode 3 6
vsdelvg

Purpose

vsdelvg – Removes virtual shared disk global volume group information from the System Data Repository (SDR).

Syntax

vsdelvg [-f] global_group_name ...

Flags

-f Forces the removal of any virtual shared disks defined on this global volume group.

Operands

global_group_name Specifies the volume group that you no longer want to be global to the system.

Description

Use this command to remove virtual shared disk global volume group information from the SDR. If any virtual shared disks are defined on a global volume group, the vsdelvg command is unsuccessful unless -f is specified. If -f is specified, any such virtual shared disks must be unconfigured and in the defined state on all the virtual shared disk nodes to be deleted.

You can use the System Management Interface Tool (SMIT) to run the vsdelvg command. To use SMIT, enter:

smit delete_vsd

and select the Delete Virtual Shared Disk Global Volume Group Information option.

Security

You must be in the AIX bin group and have write access to the SDR to run this command.

Prerequisite Information

PSSP: Managing Shared Disks

Location

/usr/lpp/csd/bin/vsdelvg

Related Information

Commands: undefvsd, vsdatast, vsdvg
Examples

To delete the virtual shared disk information associated with global volume group
\texttt{vg1n1} from the SDR, enter:

\texttt{vsdelvg vg1n1}
Purpose

vsdnode – Enters IBM Virtual Shared Disk information for a node or series of nodes into the System Data Repository (SDR).

Syntax

```
vsdnode node_number... adapter_name init_cache_buffer_count max_cache_buffer_count vsd_request_count rw_request_count min_buddy_buffer_size max_buddy_buffer_size max_buddy_buffers vsd_max_ip_msg_size [cluster_name]
```

Flags

None.

Operands

- `node_number` Specifies the node or nodes whose virtual shared disk information is to be set as identified by the `node_number` attribute of the SDR node class.

- `adapter_name` Specifies the adapter name to be used for virtual shared disk communications for the nodes specified. The adapter name must already be defined to the nodes. Note that the nodes involved in IBM Virtual Shared Disk support must be fully connected so that proper communications can take place. Use `css0` to specify that the IBM Virtual Shared Disk device driver transmits data requests over the SP Switch. The `css0` adapter will be used the next time the IBM Virtual Shared Disk device driver is loaded.

- `init_cache_buffer_count` Specifies the number of 4KB blocks you want to assign to an optional cache if you do not use the switch as your adapter. The recommended value is 256.

- `max_cache_buffer_count` Specifies the maximum number of buffers to be used for virtual shared disk caching for the nodes specified. The recommended initial value is 256. If you use the switch as your adapter, no cache buffer is allocated.

- `vsd_request_count` This value will be ignored, but a value must be specified for coexistence. The device driver will dynamically allocate the structures that it needs to manage. The previous recommended value was 256.

- `rw_request_count` This value will be ignored, but a value must be specified for coexistence. The device driver will dynamically allocate the structures that it needs to manage. The previous recommended value was 48.

- `min_buddy_buffer_size` Specifies the smallest buddy buffer a server uses to satisfy a remote request to a virtual shared disk. This value must be a power of 2 and greater than or equal to 4096. IBM suggests using a value of 4096 (4KB). For a
max_buddy_buffer_size

Specifies the largest buddy buffer a server uses to satisfy a remote noncached request. This value must be a power of 2 and greater than or equal to the min_buddy_buffer_size. IBM suggests using a value of 262144 (256KB). This value depends on the I/O request size of applications using the virtual shared disks and the network used by the IBM Virtual Shared Disk software.

max_buddy_buffers

Specifies the number of max_buddy_buffer_size buffers to allocate. The buddy buffer is pinned kernel memory allocated when the IBM Virtual Disk device driver is loaded the first time and is freed when the device driver is unconfigured from the kernel. The recommended value is in the range of 32 to 96 buddy buffers where the max_buddy_buffer_size has been set to 256KB.

Buddy buffers are only used on the servers. On client nodes you may want to set max_buddy_buffers to 1.

Note: The statvsd command will indicate if remote requests are queing waiting for buddy buffers.

vsd_max_ip_msg_size

Specifies the maximum message size in bytes for virtual shared disks. If you use SMIT to define the virtual shared disk node the default is 61440 (61KB), which is the recommended value for the switch.

cluster_name

A cluster name must be specified for server nodes that will be serving concurrently accessed shared disks (CVSD). The cluster name can be any user provided name. A node can only belong to one cluster. For example, when you have a concurrent access environment, the two servers for the CVSD must both specify the same cluster name.

Description

Use this command to make the specified nodes virtual shared disk nodes and to assign their IBM Virtual Shared Disk operational parameters. The operational parameters are: adapter name, initial cache buffer count, maximum cache buffer count, read/write request count, virtual shared disk request count, and buddy buffer parameters. If this information is the same for all nodes, run this command once. If the information is different for the nodes, run this command once for each block of nodes that should have the same virtual shared disk information.

You can use the System Management Interface Tool (SMIT) to run the vsdnode command. To use SMIT, enter:

smit vsd_data

and select the IBM Virtual Shared Disk Node Information option.
Security
You must be in the AIX bin group and have write access to the SDR to run this command.

Prerequisite Information
PSSP: Managing Shared Disks

Location
/usr/lpp/csd/bin/vsdnode

Related Information
Commands: updatevsdnode, vsdatalst, vsdelnode

Refer to PSSP: Managing Shared Disks for defining virtual shared disk information in the SDR.

Examples
The following example adds SDR information for a css0 network and nodes 1 through 8.

vsdnode 1 2 3 4 5 6 7 8 css0 64 256 256 48 4096 262144 32 61440
vsdsklst

Purpose

`vsdsklst` – Produces output that shows you the disk resources used by the IBM Virtual Shared Disk subsystem across a system or system partition.

Syntax

```
vsdsklst [-v] [-d] {-a | -n node_number[, node_number2, ...]} [-G]
```

Flags

- `-v` Displays only disk utilization information about volume groups and the virtual shared disks associated with them.
- `-d` Displays only disk utilization information about volume groups and the physical disks associated with them.
- `-a` Displays specified information for all nodes in the system or system partition.
- `-n node_number` Lists one or more node numbers for which information is to be displayed.
- `-G` Displays global disk information (across system partitions).

Operands

None.

Description

Use this command to check disk utilization across a system or system partition.

Security

You must have access to the virtual shared disk subsystem via the `sysctl` service to run this command.

Prerequisite Information

`PSSP: Managing Shared Disks`

Location

```
/usr/lpp/csd/bin/vsdisklist
```

Related Information

Command: `vsdatalst`
Examples

This command:
vsdsklst -dv -a

displays the following information on a system that has volume groups and virtual
shared disks defined on nodes 1, 3, 5, 7, 10, and 12. Node 5 is temporarily
inactive.

k7n12.ppd.pok.ibm.com

Node Number: 12; Node Name: k7n12.ppd.pok.ibm.com

Volume group: rootvg; Partition Size: 4; Total: 537; Free: 315
Physical Disk: hdisk0; Total: 537; Free: 315
Volume group: vsdvg; Partition Size: 4; Total: 537; Free: 533
Physical Disk: hdisk1; Total: 537; Free: 533
VSD Name: 1HsD8n12{lv1HsD8n12}; Size: 2
VSD Name: 1HsD20n12{lv1HsD20n12}; Size: 2

k7n01.ppd.pok.ibm.com

Node Number: 1; Node Name: k7n01.ppd.pok.ibm.com

Volume group: rootvg; Partition Size: 4; Total: 537; Free: 210
Physical Disk: hdisk0; Total: 537; Free: 210
Volume group: vsdvg; Partition Size: 4; Total: 537; Free: 533
Physical Disk: hdisk1; Total: 537; Free: 533
VSD Name: 1HsD1n1{lv1HsD1n1}; Size: 2
VSD Name: 1HsD13n1{lv1HsD13n1}; Size: 2

k7n05.ppd.pok.ibm.com

No response
vsdsklst

k7n10.ppd.pok.ibm.com

Node Number: 10; Node Name: k7n10.ppd.pok.ibm.com

Volume group: rootvg; Partition Size: 4; Total: 537; Free: 303
 Physical Disk: hdisk0; Total: 537; Free: 303
 VSD Name: vsdn10v1{lvn10v1}; Size: 4
 VSD Name: vsdn10v2{lvn10v2}; Size: 4
 VSD Name: vsdn10v3{lvn10v3}; Size: 4

Volume group: vsdvg; Partition Size: 4; Total: 537; Free: 533
 Physical Disk: hdisk1; Total: 537; Free: 533
 VSD Name: vsd06n10{lv1HsD6n10}; Size: 2
 VSD Name: vsd08n10{lv1HsD8n10}; Size: 2

k7n103.ppd.pok.ibm.com

Node Number: 3; Node Name: k7n03.ppd.pok.ibm.com

Volume group: rootvg; Partition Size: 4; Total: 537; Free: 269
 Physical Disk: hdisk0; Total: 537; Free: 269
 VSD Name: vsdn03v1{lvn03v1}; Size: 4
 VSD Name: vsdn03v2{lvn03v2}; Size: 4
 VSD Name: vsdn03v3{lvn03v3}; Size: 4

Volume group: vsdvg; Partition Size: 4; Total: 537; Free: 533
 Physical Disk: hdisk1; Total: 537; Free: 533
 VSD Name: vsd02n3{lv1HsD2n3}; Size: 2
 VSD Name: vsd04n3{lv1HsD4n3}; Size: 2
To view the output for a specific node, type:

vsdsklst -n 12

The output is:

k7n07.ppd.pok.ibm.com

Node Number:7; Node Name:k7n07.ppd.pok.ibm.com

Volume group:rootvg; Partition Size:4; Total:537; Free:300

Physical Disk:hdisk0; Total:537; Free:300
VSD Name:vsdn07v1{lvn07v1}; Size:4
VSD Name:vsdn07v2{lvn07v2}; Size:4
VSD Name:vsdn07v3{lvn07v3}; Size:4

Volume group:vsdvg; Partition Size:4; Total:537; Free:533

Physical Disk:hdisk1; Total:537; Free:533
VSD Name:1HsD4n7{lv1HsD4n7}; Size:2
VSD Name:1HsD16n7{lv1HsD16n7}; Size:2

If both the rootvg and testvg volume groups are varied on, the system displays output similar to the following:
Node Number:12; Node Name:k21n12.ppd.pok.ibm.com

Volume group:rootvg; Partition Size:4; Total:537; Free:47

Physical Disk:hdisk0; Total:537; Free:47
VSD Name:1HsD1n12[1v1HsD1n12]; Size:5
VSD Name:1HsD2n12[1v1HsD2n12]; Size:5
VSD Name:vsd4n12[1vvsd4n12]; Size:4
VSD Name:vsd5n12[1vvsd5n12]; Size:4
VSD Name:vsd6n12[1vvsd6n12]; Size:4

Volume group:testvg; Partition Size:4; Total:537; Free:313

Physical Disk:hdisk1; Total:537; Free:313
VSD Name:vsd14n12[1vvsd14n12]; Size:4

If the testvg volume group is not varied on, the system displays output similar to the following:
Node Number:12; Node Name:k21n12.ppd.pok.ibm.com

Volume group:rootvg; Partition Size:4; Total:537; Free:47

Physical Disk:hdisk0; Total:537; Free:47
VSD Name:1HsD1n12[1v1HsD1n12]; Size:5
VSD Name:1HsD2n12[1v1HsD2n12]; Size:5
VSD Name:vsd4n12[1vvsd4n12]; Size:4
VSD Name:vsd5n12[1vvsd5n12]; Size:4
VSD Name:vsd6n12[1vvsd6n12]; Size:4

Volume group:testvg is not varied on.

Physical Disk:hdisk1;

Instead of issuing this command directly, you should use the appropriate SMIT panels to view it in the best format. To view information about volume groups, type:
smit lsvg

To view information about logical volumes, type:
smit ls1v

To view information about physical volumes, type:
smit lspv
vsdvg

Purpose

vsdvg – Defines a virtual shared disk global volume group.

Syntax

vsdvg [-g global_volume_group] [-I server_list local_group_name]

local_group_name primary_node [secondary node]

[secondary_server_node] [eio_recovery]

Flags

-g global_volume_group Specifies a unique name for the new global volume group. This name must be unique across the system partition. It should be unique across the SP, to avoid any naming conflicts during future system partitioning operations. The suggested naming convention is vgxxn, where yy is the node number, and xx uniquely numbers the volume groups on that node. If this is not specified, the local group name is used for the global name. The length of the name must be less than or equal to 31 characters.

-l server_list Define the list of servers for CVSD. More than one server indicates the global_volume_group is a concurrent volume group.

Operands

local_group_name Specifies the name of a volume group that you want to indicate as being used for virtual shared disks. This name is local to the host upon which it resides. The length of the name must be less than or equal to 15 characters.

primary_node Specifies the primary server node on which the volume group resides. The length of the name must be less than or equal to 31 characters. This can be specified in four different ways:

• frame,slot
• node number
• host name
• IP address

secondary_node Specifies the secondary server node on which the volume group resides. The length of the name must be less than or equal to 31 characters.

This can be specified in four different ways:

• frame,slot
• node number
• host name
• IP address
vsdvg

Note: This operand is used only by the Recoverable Virtual Shared Disk subsystem.

Description
Use this command to define volume groups for use by the IBM Virtual Shared Disk subsystem. This is done by specifying the local volume group name, the node on which it resides, and the name by which the volume group will be known throughout the cluster.

If eio_recovery is set (to a value of 1) due to disk error (EIO error), the IBM Recoverable Virtual Shared Disk system will perform a full recovery by flipping the current primary node and the secondary node and doing one more retry on the new primary node.

You can use the System Management Interface Tool (SMIT) to run the vsdvg command. To use SMIT, enter:

smit vsd_data

and select the Virtual Shared Disk Global Volume Group Information option.

Security
You must be in the AIX bin group and have write access to the SDR to run this command.

Restrictions
The secondary_server_node operand is used only by the Recoverable Shared Disk subsystem.

Prerequisite Information
PSSP: Managing Shared Disks

Location
/usr/lpp/csd/bin/vsdvg

Related Information
Command: vsdelvg

Examples
1. The following example adds SDR information indicating that the volume group known as vg2n17 on node 17 is available for global access and is known to the cluster as vg2n17. Node 17 is the primary and only server.

 vsdvg vg2n17 17

2. The following example with the Recoverable Virtual Shared Disk subsystem adds SDR information indicating that the volume group known as vg1p3s15 on nodes 3 and 15 is available for global access and is known to the cluster as vg1p3s15. 3 is the primary server node and 15 is the secondary server node.

 vsdvg vg1p3s15 3 15
vsvgts

Purpose

vsvgts – Reads the timestamp from the volume group descriptor area (VGDA) of the physical disks and sets the value in the System Data Repository (SDR).

Syntax

vsvgts [-a] [volgrp]

Flags

-a Specifies that the timestamps for this volume group for both primary and secondary nodes should be updated. If this flag is not specified, the timestamp is updated on the local node only.

Operands

volgrp Specifies a volume group. If this operand is not specified, the timestamps for all the volume groups on this node are updated.

Description

Use this command to update the timestamp that the Recoverable Virtual Shared Disk subsystem uses to determine if a twin-tailed volume group has changed. When the subsystem detects a change, the recovery scripts export the volume group and then import the volume group.

This command can be used to avoid exporting the volume group and then importing the volume group during recovery in situations where the export and import operations are not really necessary. This command should be used very carefully.

Exit Values

0 Indicates the successful completion of the command.
1 Indicates that the program was unable to read one or more timestamps.

Security

You must be in the AIX bin group and have write access to the SDR to run this command.

Implementation Specifics

This command is part of the Recoverable Virtual Shared Disk optional component of PSSP.

Prerequisite Information

See PSSP: Managing Shared Disks.
vsdvgts

Location

/usr/lpp/csd/bin/vsdvgts

Examples

To update the timestamp associated with the virtual shared disk volume group vsdvg1 for just this node, enter:

vsdvgts vsdvg1
vsdvts

Purpose

vsdvts – Verifies that the IBM Virtual Shared Disk component works.

Syntax

```
vsdvts [-b block_size] [-n number_of_blocks] vsd_name [file]
```

Flags

- `[-b block_size]` Specifies the block size used on the read and write calls to the virtual shared disk. Because the virtual shared disk raw device is used, the block size must be a multiple of 512. The default block size is 4096.
- `[-n number_of_blocks]` Specifies the number of blocks of the file to read. The default is to read 1MB of data from the file, so 1MB divided by block size is the default number of blocks. Specifying 0 means to read as many full blocks of data as there are in the file. If more blocks are specified than are in the file, only the number of full blocks that exist will be used.

Operands

- `vsd_name` Specifies the virtual shared disk to be verified (for example, that will be written and read with the data from the file). The virtual shared disk should be in the active state. Ensure that the virtual shared disk is large enough to hold all the data you plan to write to it. A virtual shared disk on a logical volume with one physical system partition is large enough if all the vsdvts defaults are taken.
- `file` Specifies the file to be written to the virtual shared disk to verify its operation. The data is then read from the virtual shared disk and compared to this file to ensure the virtual shared disk read and write operations are successful. The default file is `/unix`.

Description

Attention

Data on vsd_name and its underlying logical volume is overwritten and, therefore, destroyed. Use this command after you have defined a virtual shared disk (including its underlying logical volume), but before placing application data on it.

Use this command to verify that the vsd_name is in the active state and then to write the specified part of file to the raw vsd_name device, `/dev/rvsd_name`. This command reads the data back from the virtual shared disk, then compares it to file. If the data is the same, the test is successful and vsdvts succeeds. Otherwise, vsdvts is unsuccessful. The dd command is used for all I/O operations.

Try vsdvts on both a server and client node (for example, on both the node with a logical volume and one without it).
Security

You must be in the AIX bin group and have write access to the SDR to run this command.

Prerequisite Information

PSSP: Managing Shared Disks

Related Information

Commands: vsdnode, vsdvg, defvsd, cfgvsd, startvsd, dd

The preceding commands are listed in their order of use.

Examples

To verify that the IBM Virtual Shared Disk component works, choose a newly created vsd that has no application data on it, say vsd1, and enter:

vsdvts vsd1
wrap_test

Purpose

wrap_test – Checks the functionality of a link.

Attention

ATTENTION – READ THIS FIRST: Do not activate the SP Switch advanced diagnostic facility until you have read this section completely, and understand this material. If you are not certain how to properly use this facility, or if you are not under the guidance of IBM Service, do not activate this facility.

Activating this facility may result in degraded performance of your system. Activating this facility may also result in longer response times, higher processor loads, and the consumption of system disk resources. Activating this facility may also obscure or modify the symptoms of timing-related problems.

Syntax

wrap_test [-j jack] [-s switch_chip_id] [-p switch_chip_port]
[-c cable_length] [-h]

Flags

-j jack Specifies the Frame-Switch-BulkHead-Jack connected to the suspected link.
-s switch_chip_id Specifies the ID of a switch chip connected to the suspected link.
-p switch_chip_port Specifies the number of the switch chip port connected to the suspected link.
-c cable_length Specifies the length of the cable in meters. The flag is applicable only to the links connecting two switches. The default value is 10 m.
-h Displays usage information.

Operands

None.

Description

The wrap_test command checks the functionality of a suspected link, and points to the faulty part of the link that should be replaced. You must specify either the Frame-Switch-BulkHead-Jack, or the switch_chip_id and switch_chip_port number that identify the switch chip port connected to the link. If the suspected link connects two switches, you might also specify the cable_length parameter. This will help the wrap test to choose the correct technique for the cable testing.

If the link under test connects a switch to a node, you are required to fence the node before running the test. If the link under test connects two switches, the link will be disabled during the test.
wrap_test

Location

/usr/lpp/ssp/bin/spd/wrap_test

Examples

1. To test the link connected to jack 6 of switch 17 of frame 1 with a 15 m cable (switch - switch link), enter:

 wrap_test -j E01-S17-BH-J6 -c 15

2. To test the link connected to port 3 of switch chip 23 enter:

 wrap_test -s 23 -p 3
Part 2. Technical Reference

This part of the book contains RS/6000 SP Files and Other Technical Information and SP Subroutines.
auto.master File

Purpose

auto.master – Specifies the master input file to the AIX **automount** daemon defining the file systems to be controlled and their associated map files.

Description

The **auto.master** file is the master map file for the AIX **automount** daemon. It identifies the file systems that are to be controlled by the automounter and the directory map file associated with each file system. It may also contain default mount information for specific file systems. The **auto.master** file may reference a Network Information Service (NIS) configuration map that is to be used by the automounter. Entries in the master map file use one of the following formats:

```
+NIS_map
```

Directory_path Automount_map_name [default_mount_options]

The first form specifies an NIS configuration map that contains mount point and automounter map information. The second form directly identifies the directory path of the file system that is to be controlled by the automounter, along with the map file containing entries for the supported directories within that file system. Default options to be used when the file system is mounted can be optionally specified.

Files

```
/etc/auto.master
```

Specifies map files for the AIX **automount** daemon.

Related Information

AIX Daemons: **automount**

The “Managing the Automounter” chapter in *PSSP: Administration Guide*

The “Network File System (NFS)” and “Network Information Service (NIS)” chapters in *AIX Version 4 System Management Guide: Communications and Networks*

Examples

The following example is a copy of the default **auto.master** file shipped with the SP modified to support an NIS configuration map:
The following entry will use the NIS configuration map if NIS is
defined for this system and the database exists

+auto_master

The following entry provides automount support for users' home directories

/u /etc/auto/maps/auto.u -rw,hard,retry=3,timeo=40,rsize=4096, \\
wsize=4096
bootptab.info File

Purpose

/etc/bootptab.info – Specifies the hardware ethernet addresses of SP nodes.

Description

The /etc/bootptab.info file contains a list of nodes with their hardware ethernet addresses. It is used by the sphrdwrad command during node conditioning to save time in obtaining the hardware ethernet addresses. Each line of the bootptab.info file contains two tokens. The first token represents the node, and the second token represents the hardware ethernet address. This information may be input in one of two formats:

node_number hardware_ethernet_address
or
frame,slot hardware_ethernet_address

Related Information

Commands: sphrdwrad

Examples

The following is an example of a bootptab.info file for a single framed system that contains four high nodes:

1 02608CE8764D
5 02608CE87174
1,9 02608CE87180
13 02608CE86188
haemloadlist File

Purpose

haemloadlist File – Event Management configuration data that is to be loaded into the System Data Repository (SDR).

Description

RS/6000 Cluster Technology (RSCT), which is included with the IBM Parallel System Support Programs (PSSP) Licensed Program Product (LPP), contains a number of resource monitors that use the Resource Monitor Application Programming Interface (RMAPI) to supply information about system resources to the Event Management subsystem. Information about the monitors and the resources is defined in the haemloadlist file and includes:

- The resource variables from which events may be generated
- The resource IDs for each resource variable
- The classes in which the resource variables are grouped
- The resource monitors that supply the variables.

Before the Event Management subsystem can use this information, it must first be loaded into the System Data Repository (SDR) and then compiled into a binary Event Management Configuration Database (EMCDB) file. The haemloadcfg command is used to load the data from the haemloadlist file into the SDR. The haemcfg command is then used to compile the data from the SDR into the binary EMCDB file. Both of these commands are issued automatically by the haemctrl command when it is used to start the Event Management subsystem on the control workstation.

For resource monitors other than those supplied by RSCT, you must create one or more separate files in load list format to contain their Event Management configuration data. You can specify the name of any file in load list format on the haemloadcfg command.

You can use SDR commands to work with objects in the Event Management classes directly. However, IBM suggests that you use load list files and the haemloadcfg command to work with objects in these classes. The haemloadcfg command provides validation, unique to the Event Management configuration data, not available in the SDR commands.

You cannot use System Management Interface Tool (SMIT) panels to work with objects in these classes.

The Format of an Event Management Load List File

Source information for the EMCDB is kept in the several partitioned classes in the SDR, each of which has a set of associated attributes. The format of an Event Management load list file, which can be used as input to the haemloadcfg command, follows the structure of the Event Management data in the SDR.

This man page describes the format of the Event Management load list file. For detailed information about its content (the Event Management SDR classes,
attributes, and their values), see the description of the EMCDB in *PSSP: Event Management Programming Guide and Reference*.

The **haemloadlist** file consists of stanzas, each of which describes an object in one of the Event Management SDR classes. The stanzas may appear in any order in the file.

Each stanza begins with the SDR class name to which the object belongs, followed by one or more lines that define the attributes of the object. The SDR class name must begin in column 1.

An attribute line consists of leading whitespace (blanks or tabs) followed by the attribute name followed by an = (equal sign) followed by a data field. The = (equal sign) may not be surrounded by blank spaces. The data field consists of a single value for the attribute. If the field contains blanks, it must be surrounded by double quotes ("), If the field contains a double quote character, it should be preceded by a backslash (\). If the field contains a backslash character, it should be preceded by a second backslash (\\).

The data field must be on the same line as the attribute. The attribute lines for a stanza stop at either the start of a new stanza or at the end of the file.

Comments may be present in the file. Any line in which the first nonwhite space character is a pound sign (#) is a comment. Blank lines are also considered comment lines and are ignored.

The EM_Resource_Variable Stanza

The **EM_Resource_Variable** SDR class contains one object for each resource variable defined in the database. Accordingly, there is one **EM_Resource_Variable** stanza for each resource variable that is defined.

Here is an example of a stanza that defines a resource variable of type Quantity:

```
EM_Resource_Variable

rvName="IBM.PSSP.aixos.PagSp.totalsize"
rvDescription="99"
rvValue_type="Quantity"
rvData_type="long"
rvInitial_value="!zerodot"
rvClass="IBM.PSSP.aixos.PagSp"
rvPTX_name="PagSp/totalsize"
rvLocator="NodeNum"
rvDynamic_instance="!zerodot"
```

Here is an example of a stanza that defines a resource variable of type State:
EM_Resource_Variable

rvName="IBM.PSSP.Prog.pcount"
rvDescription="1009"
rvValue_type="State"
rvData_type="SBS"
rvClass="IBM.PSSP.Prog"
rvLocator="NodeNum"
rvDynamic_instance="1"

The EM_Structured_Byte_String Stanza

The EM_Structured_Byte_String SDR class contains one object for each structured field that is defined in a structured byte string. Accordingly, there is one EM_Structured_Byte_String stanza for each structured field that is defined.

The IBM.PSSP.Prog.pcount resource variable is an SBS that has three structured fields. Here is an example of the stanzas that define the fields:

EM_Structured_Byte_String

sbsVariable_name="IBM.PSSP.Prog.pcount"
sbsField_name="CurPIDCount"
sbsField_type="long"
sbsField_SN="0"

EM_Structured_Byte_String

sbsVariable_name="IBM.PSSP.Prog.pcount"
sbsField_name="PrevPIDCount"
sbsField_type="long"
sbsField_SN="1"

EM_Structured_Byte_String

sbsVariable_name="IBM.PSSP.Prog.pcount"
sbsField_name="CurPIDList"
sbsField_type="cstring"
sbsField_SN="2"
The EM_Resource_ID Stanza

The EM_Resource_ID SDR class contains one object for each resource ID element that is defined for a resource and all of its resource variables. Accordingly, there is one EM_Resource_ID stanza for each resource ID element that is defined.

Here are some examples of stanzas that define resource IDs. The resource ID for the resource named IBM.PSSP.aixos.PagSp contains only one resource ID element. The resource ID for the resource named IBM.PSSP.Prog contains three elements.

EM_Resource_ID

riResource_name="IBM.PSSP.aixos.PagSp"
riElement_name="NodeNum"
riElement_description="701"

EM_Resource_ID

riResource_name="IBM.PSSP.Prog"
riElement_name="UserName"
riElement_description="701"

EM_Resource_ID

riResource_name="IBM.PSSP.Prog"
riElement_name="ProgName"
riElement_description="701"

EM_Resource_ID

riResource_name="IBM.PSSP.Prog"
riElement_name="NodeNum"
riElement_description="701"

The EM_Resource_Class Stanza

The EM_Resource_Class SDR class contains one object for each resource variable class that is defined in the database. Accordingly, there is one EM_Resource_Class stanza for each resource variable class that is defined.

Here are two examples of stanzas that define resource classes:
The **EM_Resource_Monitor** Stanza

The **EM_Resource_Monitor** SDR class contains one object for each resource monitor that is defined in the database. Accordingly, there is one **EM_Resource_Monitor** stanza for each resource monitor that is defined.

Here are some examples of stanzas that define resource monitors:

```plaintext
EM_Resource_Monitor
rmName="IBM.PSSP.harmpd"
rmPath="/usr/lpp/ssp/bin/haemRM/harmpd"
rmMessage_file="PEM.cat"
rmMessage_set="2"
rmConnect_type="server"
rmPTX_prefix="0"
rmPTX_description="0"
rmPTX_asnno="0"
EM_Resource_Monitor
rmName="IBM.PSSP.harmld"
rmPath="/usr/lpp/ssp/bin/haemRM/harmld"
rmMessage_file="harm_des.cat"
rmMessage_set="1"
rmConnect_type="server"
rmPTX_prefix="IBM/PSSP.harmld"
```
haemloadlist File

```
rmPTX_description="1,2"
rmPTX_asnno="2"
```

Location

```
/usr/sbin/rsct/install/config/haemloadlist
```

Related Information

Commands: haemcfg, haemloadcfg

For a general overview of configuring Event Management, see “The Event Management Subsystem” chapter of *PSSP: Administration Guide*.

For a description of the SDR classes and attributes that are related to the EMCDB, see *PSSP: Event Management Programming Guide and Reference*.
hmacls File

Purpose

/spdata/sys1/spmon/hmacls – Defines the Access Control Lists (ACLs) used by the Hardware Monitor daemon.

Description

The /spdata/sys1/spmon/hmacls file contains permission specifications for users to execute the various Hardware Monitor operations. Each line in the file consists of three white-space separated tokens in the following format:

```
obj user_name permissions
```

The `obj` token is either a frame ID or the host name of the control workstation (known as the Monitor and Control Node (MACN) by the Hardware Monitor). The `user_name` token is the user's principal name or principal name and instance.

The `permissions` token specifies which operations the user specified by the `user_name` token can execute against the object specified by the `obj` token.

If the `obj` token is a frame ID, the `permissions` token is one or more characters taken from the set `v`, `s`, and `m`. A definition of each follows:

- `v` Specifies Virtual Front Operator Panel (VFOP) permission
- `s` Specifies S1 permission
- `m` Specifies Monitor permission

The VFOP permission implies the monitor permission. These permissions are described in the various commands. If the `obj` token is the MACN host name, the `permissions` token must be the character `a`. The character `a` is the administrative permission required to use the hmadm command.

Users are authorized to use the Hardware Monitor by virtue of having their names in the /spdata/sys1/spmon/hmacls file and have issued the k4init command with that name.

Files

/spdata/sys1/spmon/hmacls

Specifies ACLs for the Hardware Monitor daemon.

Related Information

Commands: hadm, hmcmds, hmmon, nodecond, s1term

Examples

The following is an example of a hmacls file:
hmacls File

workstn3.kgn.ibm.com john.admin a

1 john.admin vsm
2 john.admin vsm
3 john.admin vsm

1 mary m
2 mary m
3 mary m
hmthresholds File

Purpose

hmthresholds – provides a software mechanism for applying threshold values to SP Frame, Node, and Switch environmental conditions such as voltage, amperage, and temperature. The Hardware Monitor (hardmon), with the aid of the Logging Daemon (splogd), provides notification to the ERRPT when an applied threshold value is crossed. This software checking, if enabled, is done in parallel with the internal self-checking done by the hardware itself.

Description

The /spdata/sys1/spmon/hmthresholds file contains threshold values in the form of low/high warning conditions, and low/high shutdown conditions. Each line in the file, excluding comment lines, which begin with a # (pound sign) in column one, consists of at least three white-space separated tokens in the following format:

node_type low_value high_value [[low_value high_value] [... ...]]

The node_type token is the value of the Hardware Monitor variable "type" which is the definitive identifier for the SP Supervisor card that is installed in the hardware for any given slot. Use the hmmon command to obtain the value of the variable "type" for a given node.

For example, using an SP2 wide node with 4.0 volt power:

$ hmmon -G -Q -v type 1:1

frame 001, slot 01:

supervisor type 0x0051

low_value and high_value are token pairs that are the low/high values for the environmental condition you want to threshold.

For example, examine the following excerpt from the /spdata/sys1/spmon/hmthresholds file.
The node type is 0x51. It is an SP2 wide node with 4.0 volt power. There are three sets of token pairs defined (only one is uncommented). Each of the three sets contain six token pairs. The six token pairs are the low/high threshold values for, in order from left to right, +5 volts memory, +12 volts, -12 volts, +5 volts I/O, temperature, and +4 volts. The first set establishes warning thresholds, the second establishes shutdown thresholds. The last set, which is the one used by the Hardware Monitor since it's the one that's uncommented, effectively disables environmental checking since the low/high value pairs are set to maximum low and maximum high.

For hardware that does not report environmental conditions there is a dummy entry in the /spdata/sys1/spmon/hmthresholds file. Recall that at least three white-space separated tokens are required for each SP hardware type supported by the Hardware Monitor.

For example, examine the following excerpt from the /spdata/sys1/spmon/hmthresholds file for an SP Switch and Twin-Tail Frame hardware in basecode, or non-active, mode:
Enabling Software Thresholding

Software thresholding can be enabled in one of following ways:

- **Use the Released Values**: Since the `/spdata/sys1/spmon/hmthresholds` file is released with nominal warning and shutdown values you would need to simply decide which environmental condition you wish to monitor (warning or shutdown) and uncomment the appropriate line for that hardware type. The released values coincide with the values that the hardware itself uses to perform hardware out-of-spec thresholding, or said another way, internal self-checking.

- **Make Up Your Own**: You could code your own low/high values. If you code your own values, it’s recommended that, instead of modifying the warning or shutdown line itself, you add a new line thereby preserving the released values. Low/high threshold values (token pairs) are coded as either decimal (base 10), or hex. Temperatures are in Celsius. Volts are volts. Amps are amps. You can enable any number of threshold low/high pairs. In other words, you need not enable all of the value pairs if it is only a subset of them that you are interested in.

For example, assume that you suspect the room temperature is causing SP2 wide nodes w/4.0 volt power to overheat and you want to be notified in advance of the released warning threshold.
hmthresholds File

SP2 wide node w/4.0 volt power:
VOLTP5M VOLTP12 VOLTN12 VOLTP5I TEMP VOLTP4
low high low high low high low high low high low high

Warning thresholds
0x51 4.75 5.4 11.0 13.0 4.75 5.4 0x00 45.0 3.46 4.2

Shutdown thresholds
0x51 4.5 5.75 10.2 13.8 4.5 5.75 0x00 60.0 3.28 4.4

Software thresholding disabled
0x51 0x00 0xff 0x00 0xff 0x00 0xff 0x00 0xff 0x00 0xff

Software thresholding enabled
0x51 0x00 0xff 0x00 0xff 0x00 0xff 0x00 0xff 0x00 35.0 0x00 0xff

In the example, note that a temperature limit of 35 degrees Celsius has been
coded (it's the uncommented line and again the only one that the Hardware
Monitor will read). All other threshold values on that same line remain disabled.
This does not mean that the node will never get hotter than 35 degrees. It
means that you will be notified when this temperature is reached.

Deciding What Threshold Value To Use

Using the `hmmon` command you can query the Hardware Monitor for the
nodes' environmental values. If you query more than once, with a 5 second
lapse between queries (the Hardware Monitor refreshes itself with hardware
state data every 5 seconds), you should begin to see a pattern develop. The
information returned will provide insight into what values to use when coding
your own low/high threshold pairs.

For example, using an SP2 wide node with 4.0 volt power:

```
$ hmmon -Q -s -v temp 1:1
1 1 temp 36.48 0x9034 temperature
$ hmmon -Q -s -v temp 1:1
1 1 temp 38.91 0x9034 temperature
$ hmmon -Q -s -v temp 1:1
1 1 temp 39.21 0x9034 temperature
$ hmmon -Q -s -v temp 1:1
1 1 temp 38.88 0x9034 temperature
```

In the example, you can see that the nodes' temperature seems to be hovering
around 38-39 degrees. This is only 6 or 7 degrees below the established
nominal warning condition. You may choose to establish a high warning threshold value of approximately 40 degrees.

Note: When using the `hmmon` command to obtain environmental values be sure to use the "-s (symbolic)" flag. This flag causes `hmmon` to apply a scalar to the environmental value before displaying it. With the scalar applied, the values can be interpreted as "real-life" values. Again, with temperatures in Celsius, volts as volts, and amps as amps.

`hmmon "-r (raw)" and "default" formats do not cause `hmmon` to apply the scalar value. These two formats display information exactly as it's obtained from the Hardware Monitor - to be more specific, from the hardware itself which holds the values in a "normalized" format.

Environmental Condition Notification

Environmental condition checking and notification comes in two flavors, **Hardware Out-Of-Spec Notification** and **Software Out-Of-Range Notification**.

- **Hardware Out-Of-Spec Notification:** A hardware out-of-spec condition occurs when the Frame, Node, or Switch Supervisor determines that the hardware is operating outside the scope of its established warning or shutdown limits. These established limits are kept internal to the hardware and cannot be modified through `/spdata/sys1/spmon/hmthresholds`.

 If a hardware out-of-spec environmental condition occurs the Frame, Node, or Switch Supervisor will alert the Hardware Monitor. `hardmon` will in turn report the out-of-spec state to interested parties, such as the Logging Daemon. `splogd` will cut an ERRPT entry. This all happens regardless of whether software thresholding is enabled or disabled. That is, it is a function of the hardware itself.

 The following is an example of the hardware out-of-spec environmental states for an SP2 wide node w/4.0 volt power:
$ hmmon -G -Q -s 1:1

1 1 warningN12Low FALSE 0x9073 -12 volt low warning
1 1 shutdownN12Low FALSE 0x9074 -12 volt low shutdown
1 1 warningN12High FALSE 0x9075 -12 volt high warning
1 1 shutdownN12High FALSE 0x9076 -12 volt high shutdown
1 1 warningP12Low FALSE 0x9064 +12 volt low warning
1 1 shutdownP12Low FALSE 0x9065 +12 volt low shutdown
1 1 warningP12High FALSE 0x9062 +12 volt high warning
1 1 shutdownP12High FALSE 0x9063 +12 volt high shutdown
1 1 warningP5mLow FALSE 0x907b +5m volt low warning
1 1 shutdownP5mLow FALSE 0x907c +5m volt low shutdown
1 1 warningP5mHigh FALSE 0x907d +5m volt high warning
1 1 shutdownP5mHigh FALSE 0x907e +5m volt high shutdown
1 1 warningP5iLow FALSE 0x907f +5i volt low warning
1 1 shutdownP5iLow FALSE 0x9080 +5i volt low shutdown
1 1 warningP5iHigh FALSE 0x9081 +5i volt high warning
1 1 shutdownP5iHigh FALSE 0x9082 +5i volt high shutdown
1 1 fanwarning5 FALSE 0x9055 fan 5 warning
1 1 fanfail15d FALSE 0x9070 fan 5 delayed shutdown
1 1 warningTemp FALSE 0x9058 temperature warning
1 1 shutdownTemp FALSE 0x9059 temperature shutdown
1 1 warningP4Low FALSE 0x9087 +4 volt low warning
1 1 shutdownP4Low FALSE 0x9088 +4 volt low shutdown
1 1 warningP4High FALSE 0x9089 +4 volt high warning
1 1 shutdownP4High FALSE 0x908a +4 volt high shutdown
1 1 fanwarning1 FALSE 0x904d fan 1 warning
1 1 fanfailld FALSE 0x906b fan 1 delayed shutdown
In the example, there are no hardware out-of-spec conditions since the environmental states are not asserted. That is, they are all FALSE.

- **Software Out-Of-Range Notification:** A software out-of-range assertion occurs when the Hardware Monitor detects that the nodes' environmental condition has either fallen below the low threshold value coded in `/spdata/sys1/spmon/hmthresholds`, or has risen higher than the high threshold value coded in `/spdata/sys1/spmon/hmthresholds`. For both of these cases the Hardware Monitor will transition the software out-of-range environmental state to TRUE.

The software out-of-range environmental state will transition to FALSE when the Hardware Monitor detects that the nodes' environmental condition has settled between the low/high threshold value coded in `/spdata/sys1/spmon/hmthresholds`. That is, has either crossed the low or high value toward the norm, or average value.

The following is an example of the software out-of-range environmental states for an SP2 wide node w/4.0 volt power.

```bash
$ hmmon -G -Q -s 1:1

1 1 voltP5mRange FALSE 0x9092 +5 mem volts out of range
1 1 voltP12Range FALSE 0x908e +12 voltage out of range
1 1 voltN12Range FALSE 0x9091 -12 voltage out of range
1 1 voltP5iRange FALSE 0x9090 +5 I/O volts out of range
1 1 tempRange FALSE 0x9084 temperature out of range
1 1 voltP4Range FALSE 0x9093 +4 voltage out of range
```

In the example, there are no software out-of-range conditions since the environmental states are not asserted. That is, they are all FALSE. Note that the environmental states end with the suffix “Range”. This is true of all software out-of-range environmental state variables.

If a software out-of-range environmental condition were to occur the Hardware Monitor would report the out-of-range state to interested parties, such as the Logging Daemon, by transitioning the state to TRUE. `splogd` will cut an ERRPT entry.
The following is an example of an ERRPT entry for a temperature out-of-range condition:

LABEL: SPMON_INFO0103_TR

IDENTIFIER: 0D1620A8

Date/Time: Thu Jul 9 12:15:04

Sequence Number: 47977

Machine Id: 000044587000

Node Id: k4s

Class: H

Type: UNKN

Resource Name: sphwlog

Resource Class: NONE

Resource Type: NONE

Location: NONE

Description

THRESHOLD HAS BEEN EXCEEDED

Probable Causes

POWER SUBSYSTEM

COOLING FAN
THERMAL DETECTOR

Failure Causes
POWER SUBSYSTEM
COOLING FAN
THERMAL DETECTOR

Recommended Actions
NONE

Detail Data
DETECTING MODULE
LPP=PSSP,Fn=splogd.c,SID=1.16.1.16,L#=925,

DIAGNOSTIC EXPLANATION
Information; Node 1:1; tempRange; Value out of range.

If the software out-of-range environmental condition was to transition toward the norm, or average value, the Hardware Monitor would transition the state to FALSE and notify interested parties such as the Logging Daemon. splogd will cut an ERRPT entry.
The following is an example of an ERRPT entry for a temperature out-of-range condition that transitioned to FALSE:

LABEL: SPMON_INFO14_TR

IDENTIFIER: E91A5929

Date/Time: Thu Jul 9 12:15:09
Sequence Number: 47978
Machine Id: 00004458000
Node Id: k4s
Class: H
Type: TEMP
Resource Name: sphwlog
Resource Class: NONE
Resource Type: NONE
Location: NONE

Description

PROBLEM RESOLVED

Probable Causes

POWER SUBSYSTEM
COOLING FAN
THERMAL DETECTOR
UNDETERMINED

Failure Causes
POWER SUBSYSTEM
COOLING FAN
THERMAL DETECTOR

Recommended Actions
NONE

Detail Data
DETECTING MODULE
LPP=PSSP,Fn=splogd.c,SID=1.16.1.16,L#=925,

DIAGNOSTIC EXPLANATION
Information; Node 1:1; tempRange; Condition cleared.

Implementation Specifics
This file is part of the PSSP ssp.basic fileset.

Location
/spdata/sys1/spmon/hmthresholds

Related Information
Commands: hmmon
Subsystems: Hardware Monitor (hardmon), Logging Daemon (splogd)

Examples
The following is an example of the software out-of-range environmental states for an SP2 wide node w/4.0 volt power.
$ hmmon -G -Q -s 1:1

1 1 voltP5mRange FALSE 0x9092 +5 mem volts out of range
1 1 voltP12Range FALSE 0x908e +12 voltage out of range
1 1 voltN12Range FALSE 0x9091 -12 voltage out of range
1 1 voltP5iRange FALSE 0x9090 +5 I/O volts out of range
1 1 tempRange FALSE 0x9084 temperature out of range
1 1 voltP4Range FALSE 0x9093 +4 voltage out of range
host File

Purpose

host – Contains all hostnames of the nodes within the SP.

Description

This file is used by file collection servers to restrict only the clients whose hostnames are listed in this host file. This file is used by non-DCE file collection servers. It is also used by DCE enabled control workstation file collection servers when the client is a non-DCE SP node. The lines starting from # characters are ignored and used to enter comments. The special comments delimiter #END_SP_NODES is used by some scripts to update this file. This delimiter separates the non-SP node entries from SP node entries. The format of the file is:

spnode_hostname1

spnode_hostname2

This is a comment line...

#END_SP_NODES

non_spnode_host1

non_spnode_host2

Files

All /var/sysman/sup/*/host files:

- /var/sysman/sup/sup.admin/host
- /var/sysman/sup/user.admin/host
- /var/sysman/sup/node.root/host
- /var/sysman/sup/power_system/host

Location

/var/sysman/sup/*/host

Related Information

Commands: supfilesrv, supper

Examples

An example host file:
This file is generated by filec_host script on Jan 7, 1998.
This contains the hostnames of all the nodes in the SP.

spnode1

spnode2

#END_SP_NODES

workstation1

workstation2
hwevents File

Purpose

hwevents – Contains state change actions that are to be performed by the logging daemon (splogd). The Hardware Monitor (hardmon) detects these state changes, and notifies the logging daemon. The Logging Daemon (splogd) can perform three different operations, based on information in hwevents. It can 1) write state changes to the ERRPT, 2) write state changes to a log file, 3) run user exits when specified state changes occur.

Description

The /spdata/sys1/spmon/hwevents file contains lines that specify one of the three operations described in the Purpose section. Each line in the file, excluding comment lines, which begin with a # (pound sign) in column one, consists of at least seven white-space separated tokens in the following format:

frame slot variable operator value time function [argument[...]]

Following is a description of these tokens:

frame Specifies a frame number (1–n) or * for all frames.

slot Specifies the following:

- A number from 0–17
- One of:
 - NODES_ONLY (addresses 1 through 16)
 - SWITCH (address 17)
 - FRAME (address 0)
 - * (all addresses)
 - NODES_AND_SWITCH (addresses 1–17)
 - FRAME_AND_NODES (addresses 0–16)
 - FRAME_AND_SWITCH (addresses 0 and 17)

variable Specifies a hardware variable, as returned from the Hardware Monitor (for example, nodePower, temp, LED7SegA). For a list of all variables, issue the command hmmon –V.

operator Specifies how to compare the value. Acceptable values are: =, <, >, and !=.

value Specifies the value of the variable to match with the operator wildcard (*), or a partial match with the wildcard at the end (23*).

time Specifies if the function should be called at startup, when the state changes, or at both times. Valid options are startup, change, or both.

function Specifies the program to call when an event occurs. Any 'argument' tokens will be passed as arguments to the program.

There are two special keywords for function. If function is SP_ERROR_LOG, error logging is performed provided that syslog is set up and AIX error logging is set up to perform SP logging. Refer to the setup_logd command for details.
hwevents File

If function is SP_STATE_LOG, these state changes that meet the statement's criteria are logged to /var/adm/SPlogs/spmon/splogd.state_changes.timestamp.

Files

/spdata/sys1/spmon/hwevents
/var/adm/SPlogs/spmon/splogd.state_changes.timestamp

Related Information

SP Commands: hmon

Subsystems: Logging Daemon (splogd), Hardware Monitor (hardmon)

Examples

The following is an example of an hwevents file:
hwevents File

<table>
<thead>
<tr>
<th># frame slot</th>
<th>variable</th>
<th>operator</th>
<th>value</th>
<th>time</th>
<th>function</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>*</td>
<td>=</td>
<td>*</td>
<td>b</td>
<td>SP_ERROR_LOG</td>
</tr>
<tr>
<td>*</td>
<td>*</td>
<td>type</td>
<td>=</td>
<td>*</td>
<td>b /usr/lpp/ssp/install/bin/SDR_config -l</td>
</tr>
<tr>
<td>*</td>
<td>*</td>
<td>hostHWFrameID</td>
<td>!=</td>
<td>0</td>
<td>c /usr/lpp/ssp/install/bin/SDR_config -l</td>
</tr>
<tr>
<td>*</td>
<td>*</td>
<td>hostHWSlotID</td>
<td>!=</td>
<td>0</td>
<td>c /usr/lpp/ssp/install/bin/SDR_config -l</td>
</tr>
<tr>
<td>*</td>
<td>*</td>
<td>mux</td>
<td>=</td>
<td>*</td>
<td>c /usr/lpp/ssp/bin/Eclock.state_change -s</td>
</tr>
<tr>
<td>*</td>
<td>*</td>
<td>portClkMissing</td>
<td>=</td>
<td>1</td>
<td>c /usr/lpp/ssp/bin/Eclock.state_change -s</td>
</tr>
<tr>
<td>*</td>
<td>*</td>
<td>chipClkMissing</td>
<td>=</td>
<td>1</td>
<td>c /usr/lpp/ssp/bin/Eclock.state_change -s</td>
</tr>
<tr>
<td>17</td>
<td>nodePower</td>
<td>=</td>
<td>*</td>
<td>c</td>
<td>/usr/lpp/ssp/bin/Eclock.state_change -p</td>
</tr>
<tr>
<td>*</td>
<td>NODES_ONLY</td>
<td>PowerOnRequest</td>
<td>=</td>
<td>1</td>
<td>b /usr/lpp/ssp/install/bin/spexpon</td>
</tr>
</tbody>
</table>

#

Uncomment the SP_STATE_LOG line to turn state change logging on.

If you run with state change logging on, be sure you have a large enough /var.

The state change logs will be closed each night on the control workstation

if they exist and any that are older than a week will be removed by

cleanup.logs.ws.

#

* | * | = | * | c | SP_STATE_LOG |
.klogin File

Purpose

.klogin – Specifies remote principals that can use a local user account.

Description

The $HOME/.klogin file defines which users and services on any remote hosts (computers in a network) within an authentication realm are allowed to invoke commands on the local user account.

The format of the $HOME/.klogin file is:
principal.instance@realm

A typical .klogin file, if present, looks similar to the following:
harry@KGN.IBM.COM
beverly.root@KGN.IBM.COM
root.admin@KGN.IBM.COM
user.wkst3@KGN.IBM.COM
user1@KGN.IBM.COM
rcmd.wkst3@KGN.IBM.COM

The principal name is the name of the remote user using SP authentication to execute remote commands on a local user account.

The instance is used to distinguish among variations on the principal name and may be used to indicate special privileges such as root authorization. In many environments, the instance is used with a service to indicate the workstation the service is running on. The service entries are usually found only in the root directory .klogin file.

The realm is the authentication realm. This may be different if there are several authentication realms, each with a different realm name, in your environment.

If the originating remote user is authenticated to one of the principals named in the .klogin file, access is granted to the account. The owner of the account is granted access if there is no .klogin file. If a .klogin file is present, the owner must also be listed to gain access to his or her account from a remote host.

For security reasons, any $HOME/.klogin file must be owned by either the local user or root, and only the owner should have read and write access.
Files

$HOME/.klogin

Specifies remote users that can use a local user account.

Prerequisite Information

- Refer to *AIX Version 4 System Management Guide: Communications and Networks* for a network overview.
- Refer to the chapter on security in *PSSP: Administration Guide* for an overview and for additional *Kerberos* information.

Related Information

| SP Commands: k4init |

Examples

The following examples assume both Jeff and Anna have principal names in the authentication database (anna@KGN.IBM.COM, jeff@KGN.IBM.COM) and have issued a k4init to be authenticated on their local host. In addition, there is one authentication realm signified by KGN.IBM.COM.

1. To allow only user Anna on host wkst3 to rsh into her own account on host wkst7, a .klogin file is not required.

2. To allow user Jeff on host wkst3 to rsh into Anna's account on host wkst7, the .klogin file in Anna's account on wkst7 must have the following entries:

 anna@KGN.IBM.COM
 jeff@KGN.IBM.COM

Anna's entry must be present in the .klogin file since the .klogin file exists. Jeff can now use the -I flag on the rsh or rcp to access Anna's account.
Kerberos

Purpose

Kerberos – Contains an introduction to SP authentication services.

Description

Kerberos authenticates individual users in a network environment. After authenticating your identity, you can use facilities such as Sysctl, the SP System Monitor, and the authenticated versions of network utilities `rsh` and `rcp`, without having to present passwords to remote hosts and without having to use `.rhosts` files.

Before you can use the SP authenticated commands, you must make sure that you are added to the authentication database. You can use the `k4init` command to find out. This command tries to authenticate your identity in the system. The `k4init` command prompts you for a principal name and password. Enter your principal name and password. If the command accepts your authentication information without sending you a message, you are already registered. If you enter your user name and `k4init` responds with the following message:

Kerberos principal unknown

contact your system administrator.

A principal identifier contains three parts. The first is the user or service name. The second is the instance, which in the case of a user is usually null. Some users can have privileged instances, however, such as root or admin. In the case of a service, the instance is the name of the machine on which it runs (for example, there can be a `rcmd` (`sysctld` daemon) service running on the machine abc, which is different from the kshd service running on the machine xyz). The third part of the name is the realm. The realm corresponds to the service providing authentication for the principal. For example, computing resources within an enterprise can be partitioned into multiple administrative units for convenience or other business reasons.

When writing a principal identifier, the user or service name is separated from the instance (if not null) by a period, and the realm (if not the local realm) follows, preceded by an at sign (@).

When you authenticate your identity using the `k4init` command, you are given an initial ticket (which is an encrypted protocol message that provides authentication). This ticket is used to request other tickets from the authentication service for SP authenticated services such as SP `sysct1`. The ticket transactions are done transparently, so you do not have to worry about their management.

Be aware that tickets expire. Some tickets, such as admin instance tickets, may expire in a few minutes, while other tickets may be good for hours, days, or weeks depending on the installation's policy. If your login session extends beyond the time limit, you have to reauthenticate your identity using the `k4init` command to get new tickets.
For more information about the `k4init` and `k4destroy` commands, see the `k4init` and `k4destroy` command.

Related Information

Commands: `kadmin`, `k4destroy`, `k4init`, `k4list`, `kpasswd`
krb.conf File

Purpose

krb.conf – Contains the SP authentication configuration file.

Description

The krb.conf file contains configuration information describing the local authentication realm and the location of authentication servers for known realms.

The first line of the krb.conf file contains the name of the local authentication realm. Each additional line specifies the location (hostname) of a Kerberos V4 authentication server for a realm. The krb.conf file must contain at least one entry for each realm used by the local system. The krb.conf file must contain at least one entry for each realm that is accessible from the local system. Each line specifying the location of an authentication server must be of the form:

REALM_NAME host_name

or

REALM_NAME host_name admin server

An entry containing "admin server" identifies the primary Kerberos V4 authentication server for a realm. Only one system can be the primary server for a realm. Any number of systems can be secondary servers. For example, the following is a krb.conf file describing a realm named XYZ.ORG, with a primary server named host2, and a secondary server on host1:

| XYZ.ORG
| XYZ.ORG host1.xyz.org
| XYZ.ORG host2.xyz.org admin server

The file may contain multiple entries for a system, each containing a different network interface name for the server system. This is useful in improving availability in case a particular interface is down or in case not all systems in the realm can access the server on the same network. The example shown above might have the additional entries:

| XYZ.ORG host1a.xyz.org
| XYZ.ORG host2a.abc.xyz.org admin server
| XYZ.ORG host2b.xyz.org admin server

Note that all entries for any given system must include "admin server" or not, since a system cannot be the primary Kerberos V4 server and a secondary server at the same time.

All lines after the first can be in any order. When there are multiple server entries for a realm, Kerberos V4 authentication requests are directed to each listed interface in the order listed. When a connection request times out, the next entry for the realm is used.
The `setup_authent` command uses the `krb.conf` file to decide how to configure an RS/6000 workstation for Kerberos V4 authentication. You may or may not have to create this file, depending on the Kerberos V4 configuration choices you have made about the types and location of servers:

- If the local system is a secondary server, a file must be supplied that contains at least one entry naming a network interface on the local system (without "admin server") and at least one entry for the primary server (with "admin server").
- If the local system is not a Kerberos V4 server, a file must be supplied that contains at least one entry for the primary server (with "admin server").
- If you are going to use AFS authentication servers, `setup_authent` will derive the file automatically from the AFS configuration files.
- If the local system is to be the only server for the realm, you do not have to create the file. One will be created automatically containing the realm name and a single entry containing the primary hostname.

Location

`/etc/krb.conf`

Related Information

SP File: `krb.realms`

Refer to the chapter on security in *PSSP: Administration Guide* for additional Kerberos information.

Examples

The following example of an `/etc/krb.conf` shows a simple configuration consisting a single realm with two servers, the primary and one secondary:

```
EAST.COAST
EAST.COAST master.authent.abc.com admin server
EAST.COAST backup.authent.abc.com
```

Here, “admin server” identifies the system whose full host name is “master.authent.abc.com” as the primary server, responsible for administration of the master database. Note that, in this case, there would have to be information in the `/etc/krb.realms` file to map the two host names or the domain name `authent.abc.com` to the local realm name, “EAST.COAST”. See the Example section of the `krb.realms` file.
krb.realms File

Purpose

krb.realms – Specifies the translations from host names to authentication realms.

Description

The **krb.realms** file provides a translation from a host name or a network domain name to the authentication realm name for the services provided by that host. Each line of the translation file is in one of the following forms (domain names should begin with a period (.)):

- `host_name realm_name`
- `domain_name realm_name`

If a host name exactly matches the `host_name` field in a line of the first form, the corresponding realm is the realm of the host. If a host name does not match any `host_name` in the file but its domain exactly matches a domain name, the corresponding realm is the realm of the host.

If no translation entry applies, the host's realm is considered to be the host name's domain portion converted to uppercase. If the host name does not contain a domain name, the host's realm is considered to be the host name converted to uppercase.

Location

`/etc/krb.realms`

Related Information

SP File: **krb.conf**

Refer to the chapter on security in *PSSP: Administration Guide* for additional Kerberos information.

Examples

The following example of an `/etc/krb.realms` shows the entries that could be used to map a host name or a domain name to a realm. These names correspond to those used in the **krb.conf** file example.

```
master.authent.abc.com EAST.COAST
.authent.abc.com EAST.COAST
```

The first line maps a specific host name to the realm “EAST.COAST”. If the host name were “master.east.coast”, no entry would have been required. The second entry maps all host names whose domain portion is “authent.abc.com” to the same domain. The default mapping for this realm is:

```
.east.coast EAST.COAST
```

This type of mapping is always assumed, even if the `/etc/krb.realms` file is empty.
P3_PCI.addrs File

Purpose

P3_PCI.addrs – Contains the mapping of the Power3 SMP High Node ports to PCI adapter addresses. It is used to determine the physical SP Expansion I/O unit that an adapter resides in.

Description

To determine the physical SP Expansion I/O unit an adapter resides in, perform the following steps:

1. Find the entry in the following table for the adapter address in question (you may have obtained this through the AIX `lscfg` command, an error report, or some other means).

2. Note the corresponding PCI slot number (this is a PCI slot in an SP Expansion I/O unit).

3. Note the corresponding node port value. This is the port on the Power3 SMP High Node that the SP Expansion I/O Unit is connected to.

4. Run the command:

   ```shell
   splstdata -x -l <node_number>
   ```

5. Search the "node_port" column for the node port value obtained in step 3. Use this entry to determine the SP Expansion I/O Unit that contains the adapter in question.

<table>
<thead>
<tr>
<th>node_port</th>
<th>PCI_1</th>
<th>PCI_2</th>
<th>PCI_3</th>
<th>PCI_4</th>
<th>PCI_5</th>
<th>PCI_6</th>
<th>PCI_7</th>
<th>PCI_8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>E0-58</td>
<td>E0-60</td>
<td>D0-58</td>
<td>D0-60</td>
<td>G0-58</td>
<td>G0-60</td>
<td>F0-58</td>
<td>F0-60</td>
</tr>
<tr>
<td>Q2</td>
<td>A0-58</td>
<td>A0-60</td>
<td>90-58</td>
<td>90-60</td>
<td>C0-58</td>
<td>C0-60</td>
<td>B0-58</td>
<td>B0-60</td>
</tr>
<tr>
<td>Q3</td>
<td>W0-58</td>
<td>W0-60</td>
<td>V0-58</td>
<td>V0-60</td>
<td>Y0-58</td>
<td>Y0-60</td>
<td>X0-58</td>
<td>X0-60</td>
</tr>
<tr>
<td>Q4</td>
<td>S0-58</td>
<td>S0-60</td>
<td>R0-58</td>
<td>R0-60</td>
<td>U0-58</td>
<td>U0-60</td>
<td>T0-58</td>
<td>T0-60</td>
</tr>
<tr>
<td>Q5</td>
<td>N0-58</td>
<td>N0-60</td>
<td>M0-58</td>
<td>M0-60</td>
<td>Q0-58</td>
<td>Q0-60</td>
<td>P0-58</td>
<td>P0-60</td>
</tr>
<tr>
<td>Q6</td>
<td>J0-58</td>
<td>J0-60</td>
<td>H0-58</td>
<td>H0-60</td>
<td>L0-58</td>
<td>L0-60</td>
<td>K0-58</td>
<td>K0-60</td>
</tr>
<tr>
<td>Q7</td>
<td>60-58</td>
<td>60-60</td>
<td>50-58</td>
<td>50-60</td>
<td>80-58</td>
<td>80-60</td>
<td>70-58</td>
<td>70-60</td>
</tr>
</tbody>
</table>

Location

```
/usr/lpp/ssp/config/hardware/P3_PCI.addrs
```
Examples

See the Description section.
SDR_dest_info File

Purpose

SDR_dest_info – Provides connection addresses for System Data Repository (SDR) clients.

Description

The **SDR_dest_info** file provides connection addresses for System Data Repository (SDR) clients. It contains the following fields:

- **primary**: Specifies the IP address of the system partition to which the node belongs. On the control workstation, this is the IP address of the default system partition.
- **default**: Specifies the IP address of the default system partition.
- **nameofprimary**: Specifies the host name of the system partition to which the node belongs.
- **nameofdefault**: Specifies the host name of the default system partition.

Related Information

Refer to the *PSSP: Administration Guide* for additional information on the **SDR_dest_info** file.

Examples

This example shows the contents of an **SDR_dest_info** file for a node. The node is a member of system partition 129.40.127.46. The default system partition on this system is 129.40.127.47. The host name of the node's system partition is k99sp1. The host name of the default system partition is k99s.

```
default:129.40.127.47
primary:129.40.127.46
nameofprimary:k99sp1
nameofdefault:k99s
```
spsec_overrides File

Purpose

spsec_overrides – Specifies the format for the SP Security Services customization file.

Description

The spsec_overrides file is used by a system administrator to override the default names and attributes of DCE entities created when SP trusted services are configured to use DCE authentication. The default names and attributes are defined in the /usr/lpp/ssp/config/spsec_defaults file. Refer to this defaults file when customizing your spsec_overrides file.

The overrides must be defined and applied to the file on the control workstation prior to the configuration of DCE for SP trusted services using the config_spsec command or its SMIT interface. The same file is automatically propagated to each node when DCE is configured on it. For independent workstations, you must insure that the same overrides file is copied to each prior to running config_spsec there.

Possible reasons for changing one or more names could be:

- To avoid a conflict between a default name and the name of an entity that already exists in the DCE cell to which you are adding the SP system.
- To specify group names that are more meaningful than the default names or are based on a language other than English.
- To allow a DCE group you have previously defined in your cell to perform tasks permitted to one or more groups defined in this file.
- To provide separate groups, one per system partition, for access to a partitioned service (the default is to allow a single group to access the service across all partitions).
- To specify an alternate AIX user and group as the owner of a service (and its keytab file), for services where this is permitted.

Each entry consists of one line of ASCII text. Fields are separated by colons. An entry containing a pound sign (#) as the first character is considered a comment with all characters between the pound sign and the new−line character part of the comment. All comment entries and empty lines are ignored.

Entries have the general format: entry−type:default−name:override−information.

SVC−GRP entry: to override the name of the DCE group to which the principals used by SP trusted services belong, add a line with the following format:
SVC−GRP:spsec−services:override−name where override−name a DCE group name to be used in place of “spsec−services.”

SVC−ORG entry: to override the name of the DCE organization to which the principals used by SP trusted services belong, add a line with the following format:
SVC−ORG:spsec−services:override−name where: override−name a DCE organization name to be used in place of “spsec−services.”
ADM–GRP entry: to override the name of the DCE group which will have "control" access to all ACLs created by SP trusted services, add a line with the following format: **ADM–GRP:** override–name where: override–name a DCE group name to be used in place of "spsec–admin."

SERVICE entry: to override the default name of a trusted service (used as the constant part of its service principal name) and/or the user and group that owns the keytab file, add a line with the following format: **SERVICE:** default–name: override–name*: new–owner:new–group* where:

- default–name
 Specifies the name assigned to the service in its entry in the security services defaults file /usr/lpp/ssp/config/spsec_defaults. This name has the form product/service, for example, ppe/dpcl.

- override–name
 Specifies a service name to be used in place of the service portion of the default–name. (The leading product portion of the name may not be overridden.)

- new–owner
 Specifies the AIX user under whose UID the service runs and the owner of the keytab file used by the service.

- new–group
 Specifies the primary AIX group for new–owner.

ACC–GRP entry: to override the name of the DCE group which will have access to some resources managed by an SP trusted service, add a line with the following format: **ACC–GRP:** default–name: [override–name][:p] where:

- default–name
 Specifies the name assigned to the group in its default entry in the security services defaults file /usr/lpp/ssp/config/spsec_defaults.

- override–name
 Specifies a DCE group name to be used in place of default–name.

- :p
 This is an optional attribute that the system administrator can specify to configure separate access groups for each System Partition (for groups used by partitioned services (those with the "p" attribute in the defaults file). Use this to allow different groups of users to access a service in each partition. Omit it to allow a single group to have access to a service in all partitions. If you specify :p, each partition's access group will be named group–name.syspar_name, where group–name is the override–name, if any, else the default–name, and syspar is the name of the system partition.

Location

/spdata/sys1/spsec/spsec_overrides
spsec_overrides File

Related Information

Commands: `sptgprin`, `spgrpname`

Examples

1. When you have no overrides to apply, the `spsec_overrides` file contains no entries (but may contain comments and empty lines). All security configuration information is obtained from the file `/usr/lpp/ssp/config/spsec_defaults`.

2. To override the service name used by POE, the administrative group name and use separate groups for access to event management services in each system partition, you could create a `spsec_overrides` file containing:

 # Local overrides for security services information

 # Rename a service from ppe/pmdv2 to ppe/psched

 SERVICE:ppe/pmdv2:psched

 # Rename group 'haem-users' to 'operators' and partition it

 ACC–GRP:haem-users:operators:p

 # Rename the control group for ACLs

 ADM–GRP:spsec–admin:system–admin
sysctl_acl File

Purpose

sysctl_acl – Contains the format for the ACL files used by Sysctl.

Description

The *sysctl_acl* file is used to specify the authority that various individual clients or types of clients are to be granted with respect to accessing objects associated with it. These objects represent resources controlled by Sysctl when DCE is not being used.

The ACLs used by Sysctl have a format that is upwardly compatible with those used by the Sysctl service in prior PSSP releases. They are ASCII text files and may be edited directly by the root user or managed using the Sysctl built-in commands provided for that purpose.

An ACL consists of a set of one or more ACL entries. ACL entries are separated by the new-line character. Each ACL file is identified by a first line containing #acl#.

ACL Entries

Each entry is a single line of ASCII text composed of three fields in the following format: `entry_type [name] [–]` where:

- `entry_type` Determines the type of subject referred to by name.
- `name` Specifies the name of the subject to which access is to be granted or denied.
- `–` Indicates that permission is denied to the subject.

ACL entry fields are separated by white space characters. White space characters are allowed within an ACL entry:

- at the beginning of the entry
- after `entry_type`
- after `name`
- after `–`

White space characters are not allowed within a subject's name.

An ACL entry containing a pound sign (#) as the first character of the entry is considered a comment, with all characters between the pound sign and the new–line character part of the comment. All comment entries will be ignored during the access check algorithm and will not affect the access granted (or denied) by the ACL. (This includes the #acl# line that was required to be the first line in the file in prior releases; it is no longer required.)

ACL Entry Types

The ACL entry _type_ specifies the type of client to which the entry applies or indicates another ACL file. The following ACL entry types are supported:
_principal The entry specifies that access is to be granted or denied to the Kerberos V4 principal or AIX user specified by the name field.

_acl_file The name field specifies the path for a file which contains additional ACL entries.

_any_other The entry specifies that access is to be granted to all users whose identity can be authenticated but whose principal name does not match the name field of any _principal entry in the file.

_other_unauth The entry specifies that access is to be granted to all users whose identity cannot be authenticated and whose identity does not match any other entry in the ACL and to users for whom no identity is provided. If a client is explicitly denied access, the ACL is not checked for this entry.

ACL entry_type keywords are not case sensitive, and can be lowercase characters, uppercase characters, or mixed upper and lowercase characters. Unique abbreviations containing a minimum of two characters may be used.

Note: When ACL entries are created on hosts running PSSP Version 3.2 or later using the Sysctl ACL management commands, the entry type fields will be lowercase. (Earlier versions used only uppercase.)

ACL Entry Name

The ACL entry name field is required for entries of type _principal and _acl_file. A name may not be specified for entries of type _any_other and _other_unauth.

For ACL entries of type _principal, the name field should contain a Kerberos V4 principal name, when the Sysctl server host uses Kerberos V4 authentication. The name may be specified in any of the following forms:

- principal
- principal.
- principal.instance
- principal@realm
- principal.@realm
- principal.instance@realm

If you want to authorize unauthenticated users, the name field should contain an AIX user name, which may be specified in either of the following forms:

- user
- user@client-hostname

Note that unauthenticated AIX names are checked for authorization only if the client has no authenticated identity. If an authenticated client is denied access, the ACL is not checked for an entry containing the client's AIX user name.

The access rights granted to a client by the ACL file are determined by the following algorithm:

- If the Kerberos V4 principal name from the user's authenticated credentials matches the principal name contained in a _principal entry, then
If the matching entry has a '-', access is denied; otherwise, access is granted.

- If there is no matching _principal entry, but the client is an authenticated Kerberos V4 principal, and an _any_other entry exists, then access is granted.

- If the client is not an authenticated Kerberos V4 principal, and the client's AIX username and hostname match the name contained in a _principal entry, then

 - If the matching entry has a '-', access is denied; otherwise, access is granted.

- If the client is not an authenticated Kerberos V4 principal and an _other_unauth entry exists, then access is granted.

- Otherwise, access is denied.

For ACL entries of type _acl_file, the name field should contain a fully qualified pathname.

Denial of permission

The character '-' may be specified as a third field of _principal entry to indicate that access is to be denied to a user.

Access Checking

The ordering of types of entries within an ACL is not relevant in the granting or denying of access based on an ACL.

Only one entry for any subject is recognized by the access checking algorithm; the first one encountered when reading the file. Others will be ignored without notification. If you create or update your ACL files using an editor, you should avoid entering multiple entries for the same subject. When you use the Sysctl ACL management procedures, you will be prevented from doing so.

Prior to processing other entry types, all _acl_file entries are resolved. All ACL entries contained in files referenced by _acl_file entries are merged with the initial set of entries to produce a single set of ACL entries. If any ACL file cannot be read or if an _acl_file entry names an already processed ACL file (a circular chain is detected), access is denied because access control policy may be compromised by using an incomplete set of ACL entries. When such an error occurs, the fact is logged in the **sysctld** daemon log file. You should inspect the log file if users experience unexplained denial of access.

The access rights granted to a client by the ACL file are determined by the following algorithm: if the Kerberos V4 principal name from the user's authenticated credentials matches the principal name contained in a _principal entry, then:

- if the matching entry has a '-', access is denied; otherwise, access is granted.

- if there is no matching _principal entry, but the client is an authenticated Kerberos V4 principal, and an _any_other entry exists, then access is granted.

- if the client is not an authenticated Kerberos V4 principal and an _other_unauth entry exists, then access is granted.

- otherwise, access is denied.
sysctl_acl File

Related Information

SP Daemon: sysctld

Examples

1. This example shows the various entry types as they might appear. A useful ACL would not contain all entry types:

 #acl#

 #Sample SP ACL file

 _principal herbie

 _principal suzanne –

 _any_other

 _other_unauth

 _acl_file /u/jan/my_acl

2. This example shows ACL entries that grant access to a number of Kerberos V4 principals. These principals might be a group of people with similar administrative roles in the organization. Since Kerberos V4 does not have any concept of a group, each principal must be listed individually:

 #acl#

 # ACL for xyz Sysctl procedure

 _p frank

 _p lucinda

 _p paula

 _p gerry.admin

3. This example shows ACL entries that grant access to two unauthenticated AIX users:

 #acl#

 _principal operator@sp3cws.abc.org

 _principal operator@node5.sp3.abc.org
sysctl.conf File

Purpose

sysctl.conf – Configures the Sysctl server (sysctld) running on the local SP node.

Description

The sysctl.conf file configures the local Sysctl server daemon by optionally creating variables, procedures and classes, setting variables, loading shared libraries, and executing Sysctl commands. These items are used by the server in the processing of requests from local and remote Sysctl clients.

The default location of this file is /etc/sysctl.conf. An alternate configuration file location can be specified by using the -f flag when starting the server (see the sysctld command).

The /etc/sysctl.conf file contains Sysctl commands which are read and executed by the Sysctl server during its initialization. The following commands are supported:

create var var_name var_value [auth_callback]
The create var statement creates a variable, assigns it a value, and assigns it an authorization callback. This variable can then be referenced from within other Sysctl procedures and commands. If the auth_callback parameter is not supplied, a value of NONE is assumed. For example:
create var buildTop /usr/lpp/ssp AUTH
creates the variable buildTop, assigns it a value of /usr/lpp/ssp, and assigns it an authorization callback of AUTH. The variable buildTop can be referenced within Sysctl commands and procedures.

Another example:
create var STARTTIME [exec /bin/date] NONE
creates the variable STARTTIME, assigns it the value returned from the execution of the /bin/date command at server initialization, and assigns it an authorization callback of NONE. This variable contains the date and time at which the server was started on the node.

create proc proc_name { parameters} auth_callback {procedure}
The create proc statement creates a new procedure in the Sysctl server. This new procedure can be invoked from a client by supplying its name along with any defined parameters. For example:
create proc mydate {} AUTH {exec /bin/date}
creates the procedure mydate which has no parameters. This procedure has an authorization callback of AUTH. The procedure is comprised of a single statement (exec /bin/date).

create class class_name class_file_name [auth_callback]
The create class statement creates a class of commands in the Sysctl server. An optional authorization callback can be supplied. The authorization callback assigned to each object in the class is the logical OR of the class' callback (if supplied) and the object's callback. Thus, access to a class'
object is granted if either the object's or the class' authorization callback allows access. For example:

```
create class sys $buildTop/samples/sysctl/sys.cmds
```

creates the class **sys**. If **$buildTop** is defined as **/usr/lpp/ssp**, the file **/usr/lpp/ssp/samples/sysctl/sys.cmds** contains the definition of the **sys** class.

include

The **include** statement includes the contents of another file in the configuration file. This provides a way of organizing the Server configuration statements into manageable groupings. For example:

```
include $buildTop/samples/sysctl/pdfpfck.cmds
```

causes the Sysctl server to read the contents of the specified file at initialization time.

set

The **set** statement sets the value of the server variables ACL, LOG, or KEY, or sets values in the **env**() array. The default values for the Sysctl server's ACL file, log file, and service key file can be overridden by assigning values to the ACL, LOG, and KEY variables in the configuration file. For example, the following line overrides the default value for the log file name:

```
set LOG /var/sysctl.log_file
```

The values assigned to the ACL, LOG, and KEY variables are overridden by the optional command line arguments **−a**, **−l**, and **−k**.

Environment variables (such as the default PATH) can also be set within the configuration file by assigning values to the **env**() array. For example:

```
set env(PATH) /usr/bin:/bin:/usr/etc:/etc
```

sets the PATH for the Sysctl server. The **env**() array is assigned an authorization callback of **SYSTEM** which prevents its modification from outside the Sysctl server by a request sent by a Sysctl client.

load lib_path [init_proc]

The **load** command dynamically loads the shared library at **lib_path** into memory. If the **init_proc** parameter is given, it is used as the library's initialization procedure. Otherwise, the name of the initialization function is derived from the library name as follows:

```
library name init function
------------- --------------
libxxx.sl xxx_Init()
libxxx.a xxx_Init()
```

The Sysctl server exports an API which the library uses to define commands, variables, authorization callbacks, and interpreter deletion callbacks. See the **load**() help page for details.

Other Sysctl Commands

The configuration file can also contain other Sysctl commands to modify the behavior of the server. For example, the following command in the configuration file causes the authorization callback for the **svccconnect**
command to be changed from the default value of AUTH to NONE. This
would allow nonauthenticated clients to connect to the server.
setauth -cmd svcconnect NONE

Prerequisite Information
See the description of Sysctl in *PSSP: Administration Guide*.

Related Information
SP Command: **sysctl**

SP Daemon: **sysctld**
tuning.commercial File

Purpose

tuning.commercial – Contains initial performance tuning parameters for a typical commercial SP environment.

Description

This file is a Korn shell script file containing commands to set network performance tuning parameters. It can be copied to the /tftpboot/tuning.cust file on the control workstation for propagation to the nodes.

Related Information

SP Commands: cptuning

AIX Commands: This file contains invocations of the no command.

SP Files: tuning.default, tuning.development, tuning.scientific

PSSP: Installation and Migration Guide
tuning.default File

Purpose

tuning.default – Contains initial (default) performance tuning parameters for an SP environment.

Description

This file is a Korn shell script file containing commands to set network performance tuning parameters. In the absence of explicit administrator action, this file is copied to the /tftpboot/tuning.cust file on the control workstation for propagation to the nodes.

Related Information

SP Commands: cptuning

AIX Commands: This file contains invocations of the no command.

SP Files: tuning.commercial, tuning.development, tuning.scientific

PSSP: Installation and Migration Guide
Tuning.development File

Purpose

`tuning.development` – Contains initial performance tuning parameters for a typical software development/interactive SP environment.

Description

This file is a Korn shell script file containing commands to set network performance tuning parameters. It can be copied to the `/tftpboot/tuning.cust` file on the control workstation for propagation to the nodes.

Related Information

- SP Commands: `cptuning`
- AIX Commands: This file contains invocations of the `no` command.
- SP Files: `tuning.commercial`, `tuning.default`, `tuning.scientific`

P SSP: Installation and Migration Guide
tuning.scientific File

Purpose
tuning.scientific – Contains initial performance tuning parameters for a typical engineering or scientific SP environment.

Description
This file is a Korn shell script file containing commands to set network performance tuning parameters. It can be copied to the /tftpboot/tuning.cust file on the control workstation for propagation to the nodes.

Related Information
Commands: cptuning

AIX Commands: This file contains invocations of the no command.

SP Files: tuning.commercial, tuning.default, tuning.development

PSSP: Installation and Migration Guide
Chapter 3. SP Subroutines
getvhostname Subroutine

Purpose

getvhostname – Gets the virtual host name of the local host.

Library

Availability Library (libavail.a)

Syntax

#include <vhost.h>

int getvhostname (name, name_length);

char *name;

int name_length;

name Specifies the address of an array of bytes where the virtual host name is to be stored.

name_length Specifies the length of the name array.

Description

Use this subroutine to retrieve the virtual host name of a host machine. This routine is similar to the gethostname system call with the exception that it retrieves the virtual host name from the /etc/vhostname file instead of using a kernel variable. The getvhostname subroutine is a library call and gethostname is a system call.

The name is retrieved from the /etc/vhostname file. If the file does not exist, the gethostname system call is used and the real host name is returned. If excess space is provided, the returned name parameter is null terminated. If insufficient space is provided, the returned name parameter is truncated to fit in the given space. Virtual host names are limited to MAX_VHOSTNAME_LEN bytes (255), not including the terminating null character. The MAX_VHOSTNAME_LEN macro is defined in the vhost.h header file. To guarantee sufficient buffer space to hold the virtual host name, the name_length parameter should be MAX_VHOSTNAME_LEN + 1 or 256.

To clear the virtual host name so that the virtual host name no longer exists, remove the /etc/vhostname file.

Note: You must have root authority to remove the /etc/vhostname file.

The virtual host name is used in fail over situations when an application has associated the host name in the kernel of a particular machine to the service it is providing. When the application is restarted on the fail over node that has a different host name, the application may not work or work incorrectly. If the application needs to associate a host name with a particular service and it cannot handle having multiple host names, a virtual host name can be provided. The application can call getvhostname instead of gethostname and get the host name of the node it normally runs on. This eliminates the need to change the real host
name in the kernel on the backup node. It should be noted that changing the real
host name in the kernel can cause problems with other applications that rely on the
real host name to identify the physical machine.

Note: The High Availability Cluster Multiprocessing (HACMP) event scripts
supplied with the High Availability Control Workstation (HACWS) option of
the IBM Parallel System Support Programs for AIX (PSSP), set and clear
the virtual host name in the supplied HACMP pre- and post-event scripts.
The administrator should not normally have to set the virtual host name.

Return Values

Upon successful completion, the `gethostname` subroutine returns a value of 0.
Otherwise, a value of -1 is returned, the global variable `errno` is set to identify the
error, and the contents of the buffer pointed to by the `name` parameter are
indeterminate.

The `gethostname` subroutine is unsuccessful if the following error occurs:

- **EFAULT** Indicates that either the `name` or `name_length` parameter gave an
 address that is not valid.
- **EINVAL** Indicates that the `name_length` parameter is less than 0.

If one of the system calls used to retrieve the virtual host name from the
`/etc/vhostname` file encounters and error(for example, open or read), `errno` is set
by the system call that encountered an error.

Related Information

Commands: `vhostname`

Subroutines: `sethostname`

AIX Commands: `hostname`

AIX Subroutines: `gethostname`, `sethostname`

Header Files: `vhost.h`

Examples

1. To clear the virtual host name so that it no longer exists, enter:

   ```
   rm /etc/vhostname
   ```

 Note: You must have root authority to remove the `/etc/vhostname` file.

2. To get the virtual host name from the `/etc/vhostname` file, enter:
#include <vhost.h>

main ()
{
 char name [MAX_VHOSTNAME_LEN + 1];
 getvhostname (name, (MAX_VHOSTNAME_LEN + 1));
}
hacws_set Subroutine

Purpose

hacws_set – Sets the HACWS state of the control workstation.

Library

Availability Library (libavail.a)

Location

/usr/lib/libavail.a

Syntax

#include <hacws.h>

int hacws_set (state);

int state;

Parameters

state Specifies the state of the control workstation. Valid values are: 0, 1, 2, 16, 32.

Description

Use this subroutine to set the current HACWS state of the control workstation. It is valid only when issued on the control workstation. When the subroutine is called and the calling process is not on a control workstation, an error occurs.

Note: The High Availability Cluster Multiprocessing (HACMP) event scripts and installation scripts supplied with the High Availability Control Workstation (HACWS) option of the IBM Parallel System Support Programs for AIX (PSSP), set the control workstation state. The state is changed during fail over or reintegration in the HACWS supplied pre- and post-event scripts for HACMP. The administrator should not normally have to set the control workstation state.

Return Values

Upon successful completion, the hacws_set subroutine returns a value of 0. Otherwise, a value of -1 is returned and the global variable errno is set to identify the error.

The hacws_set subroutine is unsuccessful if any of the following errors occur:

EINVAL Indicates that the value of the state parameter is not one of the valid values contained in hacws.h.

ENODEV Indicates that the calling process is not on a control workstation.

ENOENT Indicates that the hacws_set subroutine could not determine whether the calling process is on a control workstation.

EPERM Indicates that the calling process did not have root's effective user ID.
hacws_set Subroutine

If one of the system calls used to store the HACWS state value into the /etc/hacws.state file encounters an error (for example, open, write, rename), errno is set by the system call that encountered the error.

Macros

The /usr/include/hacws.h header file defines the following macros as valid input values for the hacws_set subroutine:

0 or HACWS_NOT_AN_HACWS
 Indicates that this control workstation is not in an HACWS configuration.

1 or HACWS_PRIM_INACT_CWS
 Indicates that this control workstation is the primary control workstation, but not the currently active control workstation.

2 or HACWS_PRIM_ACT_CWS
 Indicates that this control workstation is the primary control workstation and is the currently active control workstation.

16 or HACWS_BACK_INACT_CWS
 Indicates that this control workstation is the backup control workstation, but not the currently active control workstation.

32 or HACWS_BACK_ACT_CWS
 Indicates that this control workstation is the backup control workstation and is the currently active control workstation.

Prerequisite Information

Refer to PSSP: Administration Guide for information on the HACWS option.

Related Information

Commands: lshacws, sethacws
Subroutines: hacws_stat
Header Files: hacws.h
hacws_stat Subroutine

Purpose

The `hacws_stat` subroutine – Gets the state of the control workstation.

Library

Availability Library (libavail.a)

Location

/usr/lib/libavail.a

Syntax

```c
#include <hacws.h>

int hacws_stat (void);
```

Description

Use this subroutine to return the current state of the control workstation. It returns an integer that indicates the state of the primary or backup control workstation and specifies whether the control workstation is a high availability configuration. This subroutine is valid only when issued on the control workstation. When the subroutine is called and the calling process is not on a control workstation, an error occurs.

Note: The High Availability Cluster Multiprocessing (HACMP) event scripts and installation scripts supplied with the High Availability Control Workstation (HACWS) option of the IBM Parallel System Support Programs for AIX (PSSP), set the control workstation state. The state is changed during fail over or reintegration in the HACWS supplied pre- and post-event scripts for HACMP. The administrator should not normally have to set the control workstation state.

Return Values

Upon successful completion, the `hacws_stat` subroutine returns a nonnegative value. If the `hacws_stat` subroutine is unsuccessful, a value of -1 is returned and the global variable `errno` is set to identify the error.

The `hacws_stat` subroutine is unsuccessful if any of the following errors occur:

- **ENODEV** Indicates that the calling process is not on a control workstation.
- **ENOENT** Indicates that the `hacws_stat` subroutine could not determine whether the calling process is on a control workstation.
- **ERANGE** Indicates that the `/etc/hacws.state` file does not contain a valid HACWS state.

If one of the system calls used to retrieve the HACWS state value from the `/etc/hacws.state` file encounters an error (for example, open or read), `errno` is set by the system call that encountered an error.
hacws_stat Subroutine

Macros

The /usr/include/hacws.h header file defines the following macros for the nonnegative return values for the hacws_stat subroutine:

0 or HACWS_NOT_AN_HACWS
Indicates that this control workstation is not in an HACWS configuration.

1 or HACWS_PRIM_INACT_CWS
Indicates that this control workstation is the primary control workstation, but not the currently active control workstation.

2 or HACWS_PRIM_ACT_CWS
Indicates that this control workstation is the primary control workstation and is the currently active control workstation.

16 or HACWS_BACK_INACT_CWS
Indicates that this control workstation is the backup control workstation, but not the currently active control workstation.

32 or HACWS_BACK_ACT_CWS
Indicates that this control workstation is the backup control workstation and is the currently active control workstation.

Prerequisite Information
Refer to PSSP: Administration Guide for information on the HACWS option.

Related Information

Commands: lshacws, sethacws

Subroutines: hacws_set

Header Files: hacws.h
LAPI_Addr_get Subroutine

Purpose

LAPI_Addr_get – Enquires a LAPI instance regarding the address of a user function.

Library

Availability Library (liblapi_r.a)

C Syntax

```
#include <lapi.h>

int LAPI_Addr_get (hndl, addr, addr_hndl)

lapi_handle_t hndl;

void **addr;

int *addr_hndl;
```

Fortran Syntax

```
include 'lapif.h'

LAPI_ADDR_GET (hndl, addr, addr_hndl, ierr)

INTEGER hndl;

type addr(*);

INTEGER addr_hndl(*), ierr;
```

Parameters

- **hndl** IN Specifies the LAPI context.
- **addr** OUT Returns a function address the user registered with LAPI.
- **addr_hndl** IN A user function address used in LAPI messages for the header handler. This parameter has to be in the range [0..MAX_FTBL_SZ-1].
- **ierror** OUT Specifies a FORTRAN return code. It is always the last argument.
LAPI_Addr_get Subroutine

Description	This function is used to obtain the pointer previously registered with LAPI associated with the handle addr_hndl. The value of addr_hndl has to lie in the range [0..MAX_FTBL_SZ−1]. The value of MAX_FTBL_SZ can be obtained from LAPI_Qenv using LOC_ADDRTBL_SZ as the query value.
Return Values	LAPI_SUCCESS Indicates successful completion.
	LAPI_ERR_BAD_PARAMETER Indicates that a parameter was passed in that was not valid. This can mean that either the addr_hndl parameter being passed is not in the range of [0..MAX_FTBL_SZ−1], or that a LAPI hndl which is not valid is being used.
Location	/usr/lib/liblapi_r.a
Related Information	Subroutines: LAPI_Addr_set, LAPI_Qenv
LAPI_Addr_set Subroutine

Purpose

LAPI_Addr_set – Maps indices to addresses of functions in the user's address space.

Library

Availability Library (liblapi_r.a)

C Syntax

```
#include <lapi.h>

int LAPI_Addr_set (hndl, addr, addr_hndl)

lapi_handle_t hndl;
void *addr;
int addr_hndl;
```

Fortran Syntax

```
include 'lapif.h'

LAPI_ADDR_SET (hndl, addr, addr_hndl, ierror)

INTEGER hndl;
type addr(*);
INTEGER addr_hndl, ierror;
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>hndl</td>
<td>IN Specifies the LAPI context.</td>
</tr>
<tr>
<td>addr</td>
<td>IN Specifies an address of the function handler, that the user wants to register with LAPI.</td>
</tr>
<tr>
<td>addr_hndl</td>
<td>IN A user function address used in LAPI messages for the header handler. This parameter has to be in the range [0..MAX_FTBL_SZ–1].</td>
</tr>
</tbody>
</table>
LAPI_Addr_set Subroutine

Description
This function is used to obtain the pointer previously registered user function with
LAPI associated with the handle addr_hndl. The value of addr_hndl has to lie in the
range [0..MAX_FTBL_SZ−1]. The value of MAX_FTBL_SZ can be obtained from
LAPI_Qenv using LOC_ADDRTBL_SZ as the query value.

Return Values

- LAPI_SUCCESS Indicates successful completion.
- LAPI_ERR_BAD_PARAMETER Indicates that a parameter was passed in that was not valid.
 This can mean that either the addr_hndl parameter being
 passed is not in the range of [0..MAX_FTBL_SZ−1], or that a
 LAPI hndl which is not valid is being used.

Location
/usr/lib/liblapi_r.a

Related Information
Subroutines: LAPI_Addr_get, LAPI_Qenv
LAPI_Address Subroutine

Purpose

LAPI_Address – Gets an unsigned integer value for a specified user address.

Library

Availability Library (liblapi_r.a)

C Syntax

#include <lapi.h>

int LAPI_Address(my_addr, ret_addr)

void *my_addr;

uint *ret_addr;

FORTRAN Syntax

#include 'lapif.h'

LAPI_ADDRESS(my_addr, ret_addr, ierror)

INTEGER my_addr;

INTEGER ret_addr;

INTEGER ierror;

Parameters

my_addr IN Specifies the address to save. This parameter cannot be NULL.

ret_addr OUT Stores the my_addr address for later use. This is especially useful in FORTRAN programs. This parameter cannot be NULL.

ierror OUT Specifies a FORTRAN return code. It is always the last argument.

Description

Use this subroutine in FORTRAN programs when specified addresses need to be stored in an array. In FORTRAN, the concept of address (‘&’) does not exist as it does in C. This function provides that ability to FORTRAN programmers.

Return Values

LAPI_SUCCESS Indicates successful completion.

LAPI_ERR_BAD_PARAMETER Indicates that a parameter was passed in that was not valid.
LAPI_Address Subroutine

Location

/usr/lib/liblapi_r.a

Prerequisite Information

Refer to the “Understanding and Using the Communications Low-Level Application Programming Interface” chapter in PSSP: Administration Guide for additional LAPI information.
LAPI_Address_init Subroutine

Purpose

LAPI_Address_init – Exchanges virtual addresses to be used for target addresses in message passing calls for non SPMD programs and dynamically allocated data.

Library

Availability Library (liblapi_r.a)

C Syntax

#include <lapi.h>

int LAPI_Address_init(hndl, my_addr, add_tab)

lapi_handle_t hndl;

void *my_addr;

void *add_tab[];

FORTRAN Syntax

#include 'lapif.h'

LAPI_ADDRESS_INIT(hndl, my_addr, add_tab, ierror)

INTEGER hndl;

INTEGER my_addr;

$type> add_tab(*);

INTEGER ierror;

Parameters

hndl IN The handle specifying the LAPI context.

my_addr IN The entry supplied by each process/(task). This parameter can be NULL.

add_tab IN/OUT The address table containing the addresses supplied by all process/(tasks). This parameter cannot be NULL.

ierror OUT Specifies a FORTRAN return code. It is always the last argument.
Description
This function is used to exchange virtual addresses among tasks of a parallel application. `add_tab` is an array of pointers of size greater than or equal to `LAPI_Qenv(NUM_TASKS)`. This function is a collective call over the LAPI context `hndl` which fills the table `add_tab` with the virtual address entries supplied by each task. Upon completion of this call, `add_tab[i]` will contain the virtual address entry provided by task `i`.

Return Values
- **LAPI_SUCCESS** Indicates successful completion.
- **LAPI_ERR_BAD_PARAMETER** Indicates that a parameter was passed in that was not valid.

Location
`/usr/lib/liblapi_r.a`
LAPI_Amsend Subroutine

Purpose

LAPI_Amsend – Invokes a user-provided Active Message (AM) handler to run on a remote (target) process along with transferring a user message.

Library

Availability Library (liblapi_r.a)

C Syntax
#include <lapi.h>

typedef void (compl_hndlr_t)(hdl, user_info);

lapi_handle_t *hdl; /* pointer to LAPI context passed in from
LAPI_Amsend. */

void *user_info; /* Buffer (user_info) pointer passed in from
header handler (void * (hnd_hndlr_t)). */

typedef void *(hdr_hndlr_t)(hdl, uhdr, uhdr_len,
msg_len, comp_h, user_info);

lapi_handle_t *hdl; /* pointer to LAPI context passed in from
LAPI_Amsend. */

void *uhdr; /* uhdr passed in from LAPI_Amsend. */

uint *uhdr_len; /* uhdr_len passed in from LAPI_Amsend. */

uint *msg_len; /* udata_len passed in from LAPI_Amsend. */

compl_hndlr_t **comp_h; /* Function address of completion handler
(void (compl_hndlr_t)) that needs to be filled out
by this header handler function. */

void **user_info; /* Buffer pointer (user_info) that is provided by
this header handler function to pass to the
completion handler. */

int LAPI_Amsend(hndl, tgt, hdr_hdl, uhdr, uhdr_len, udata, udata_len,
tgt_cntr, org_cntr, compl_cntr)
lapi_handle_t hndl;
uint *tgt;
void *hdr_hdl;
void *uhdr;
uint *uhdr_len;
void *udata;
uint *udata_len;
lapi_cntr_t *tgt_cntr;
lapi_cntr_t *org_cntr;
lapi_cntr_t *cmpl_cntr;
LAPI_Amsend Subroutine

FORTRAN Syntax

include 'lapif.h'

COMPL_H(hndl, user_info);
INTEGER hndl;
INTEGER user_info;

INTEGER FUNCTION HDR_HDL(hndl, uhdr, uhdr_len, msg_len, comp_h, user_info)
INTEGER hndl;
INTEGER uhdr;
INTEGER uhdr_len;
INTEGER msg_len;
INTEGER comp_h;
INTEGER user_info;

LAPI_AMSEND(hndl, tgt, hdr_hdl, uhdr, uhdr_len, udata, udata_len, tgt_cntr, org_cntr, cmpl_cntr, ierror)
INTEGER hndl;
INTEGER tgt;
<type> hdr_hdl(*);
INTEGER uhdr;
INTEGER uhdr_len;
INTEGER udata;
INTEGER udata_len;
<type> tgt_cntr(*);
INTEGER org_cntr;
INTEGER cmpl_cntr;
INTEGER ierror;
Parameters

hndl
IN A handle that specifies a particular Low-Level Application Programming Interface (LAPI) context.

tgt
IN Specifies the target task number. This parameter is valid from 0 <= tgt < LAPI_Qenv(NUM_TASKS).

hdr_hdl
IN Specifies the pointer to the remote header handler function to be invoked at the target. This parameter cannot be NULL.

uhdr
IN Specifies the pointer to the local header (parameter list) that is passed to the handler function when invoked at the target side. This parameter can be NULL if uhdr_len is equivalent to 0.

uhdr_len
IN This parameter is valid from 0 <= uhdr_len <= LAPI_Qenv(MAX_UHDR_SZ).

udata
IN Specifies the pointer to the user data. This parameter can be NULL if udata_len is equivalent to 0.

udata_len
IN Specifies the length of the user data in bytes. This parameter is valid from 0 <= udata_len <= LAPI_Qenv(MAX_DATA_SZ).

tgt_cntr
IN Specifies the target counter address. The target counter is incremented after data arrives at the target and after the completion handler completes. If the parameter is NULL, this counter will not be updated.

org_cntr
IN/OUT Specifies the origin counter address. The origin counter is incremented after data is copied out of the origin address. If the parameter is NULL, this counter will not be updated.

cmpl_cntr
IN/OUT Specifies the counter at the origin that signifies completion of the completion handler. It is updated once the completion handler completes. If the parameter is NULL, the counter will not be updated.

ierror
OUT Specifies a FORTRAN return code. It is always the last argument.

Description

Use this subroutine to transfer the **hdr_hdl** function pointer along with the contents of **uhdr** and **udata** from the origin to the **tgt** target process. When the message arrives at the target process, the **hdr_hdl** header handler is invoked at the **tgt** task with the pointer to **uhdr** as one of the parameters.

The user-supplied header handler is expected to return a buffer pointer as the return value in which **udata** is to be copied. The header handler is also expected to save any information that will be required later by the completion handler. The header handler returns (through reference parameters) the completion handler and a pointer to the saved information (**user_info**).

Note: The header handler should be nonblocking because no progress on the messages associated with **hndl** can be made until control is returned to the communications library from the header handler.

After the header handler returns, the **udata** (if any) is copied into the user-specified buffer. When all of the **udata** is copied into the user buffer, the completion handler specified through the header handler is enqueued for execution.
After the parameters (including the contents of uhdr and udata) are copied out of the memory at the origin, the org_cntr is incremented. After the completion handler finishes running at the tgt, the tgt_cntr is incremented. If the completion handler specified is NULL, the tgt_cntr is incremented after all of the udata is copied into the user-specified buffers. If the user-specified buffer is NULL and the completion handler is also NULL, the tgt_cntr will be incremented in some implementation-specific manner. Either counter addresses may be NULL.

This is a nonblocking call. The calling process cannot change the uhdr (origin header) and udata data until completion at the origin is signaled by the org_cntr being incremented. Similarly, it can be assumed that the specified AM completion handler has run at the tgt only after the tgt_cntr target counter is incremented. The cmpl_cntr and tgt_cntr counters are incremented after the AM completion handler has completed execution at the target. When the AM handler has both a hdr_hdl header handler and a comp_h completion handler, the cmpl_cntr and tgt_cntr counters are incremented after the completion handler has completed execution. If the AM handler has only a hdr_hdl header handler, the cmpl_cntr and tgt_cntr counters will be incremented after the entire message has reached the target buffer specified by the header handler. This call can be made synchronous if the origin waits for the cmpl_cntr update to complete.

The length (uhdr_len) of the user-specified header is constrained by an implementation specified maximum value (LAPI_Qenv(MAX_UHDR_SZ,)). In the current implementation, the amount of udata sent per packet is LAPI_Qenv(MAX_UHDR_SZ, - uhdr_len). To get the best bandwidth, uhdr_len should be as small as possible.

Return Values

LAPI_SUCCESS Indicates successful completion.

LAPI_ERR_PURGED_TASK Returned early due to LAPI_Purge_totask() being called.

LAPI_ERR_BAD_PARAMETER Indicates that a parameter was passed in that was not valid.

Location

/usr/lib/liblapi_r.a

Prerequisite Information

Refer to the “Understanding and Using the Communications Low-Level Application Programming Interface” chapter in PSSP: Administration Guide for additional LAPI information.

Related Information

Subroutines: LAPI_Fence, LAPI_Getcntr, LAPI_Nopoll_wait, LAPI_Qenv, LAPI_Waitcntr
LAPI_Amsendv Subroutine

Purpose

LAPI_Amsendv – Invokes a user provided Active Message (AM) handler to run on a remote (target) process while transferring vectors of data.

C Syntax

```c
#include <lapi.h>

typedef void (compl_hndlr_t)(hndl, user_info);

lapi_handle_t hndl; /* LAPI context passed in from LAPI_Amsendv. */
void *user_info; /* Buffer (user_info) pointer passed in from
header_handler (void (*)(vhdr_hndlr_t)). */

typedef lapi_vec_t *(vhdr_hndlr_t)(hndl, uhdr, uhdr_len,
len_vec, comp_h, uinfo);

lapi_handle_t *hndl; /* pointer to LAPI context passed in from
LAPI_Amsendv.*/
void *uhdr; /* uhdr passed in from LAPI_Amsendv. */
uint uhdr_len; /* uhdr_len passed in from LAPI_Amsendv. */
uint *len_vec []; /* vector of lengths passed in LAPI_Amsendv. */
compl_hndlr_t **comp_h; /* Function address of completion handler
(void (compl_hndlr_t)) that needs to be filled
out by this header handler function. */

void **user_info; /* Buffer pointer (user_info) that is provided
by this header handler function to pass to the
completion handler.*/

int LAPI_Amsendv(hndl, tgt, hdr_hdl, uhdr, uhdr_len, org_vec,
tcntr, ocntr, ccntr);
```
LAPI_Amsendv Subroutine

```c
lapi_handle_t *hdl;
uint tgt;
void *hdr_hdl;
void *uhdr;
uint uhdr_len;
lapi_vec_t *org_vec;
lapi_cntr_t *tcntr;
lapi_cntr_t *ocntr;
lapi_cntr_t *ccntr;
```
FORTRAN Syntax

```fortran
include 'lapif.h'

COMPL_H (hndl, user_info);

INTEGER hndl;

INTEGER completion param;

INTEGER FUNCTION VHDR_HDL(hndl, uhdr, uhdr_len, len_vec,
    comp_h, user_info);

INTEGER hndl;

INTEGER uhdr;

INTEGER uhdr_len;

INTEGER len_vec;

INTEGER comp_h;

INTEGER user_info;

LAPI_AMSENDV (hndl, tgt, hdr_hdl, uhdr, uhdr_len, org_vec, tcntr,
    ocntr, ccntr, ierror)

INTEGER hndl;

INTEGER tgt;

<type> hdr_hdl(*);

INTEGER uhdr;

INTEGER uhdr_len;

<type> org_vec(*);

<type> tcntr(*);

INTEGER ocntr;

INTEGER ccntr;

INTEGER ierror;
```
LAPI_Amsendv Subroutine

Parameters

- **hndl** IN Specifies the LAPI context.
- **tgt** IN Specifies the target task number. This parameter is valid from 0 < tgt < LAPI_Qenv(NUM TASKS,).
- **hdr_hdl** IN Points to the remote header handler function to be invoked at the target. This parameter cannot be NULL.
- **uhdr** IN Points to the local header (parameter list) which is passed to the handler function. This parameter can be NULL if uhdr_len = 0.
- **uhdr_len** IN This parameter is valid from 0 < uhdr_len < LAPI_Qenv(MAX_UHDR_SZ,).
- **org_vec** IN Points to the origin i/o vector.
- **tcntr** IN Specifies the address of the target counter.
- **ocntr** IN/OUT Specifies the address of the origin counter.
- **ccntr** IN/OUT Specifies the address of the completion counter.
- **ierror** OUT Specifies the FORTRAN return code. It is always the last parameter.

Description

This function transfers **hdr_hdl** function pointer along with the contents of **uhdr** and data described in **org_vec** from the origin to the target process **tgt**. When the message arrives at the target process, the header–handler **hdr_hdl** is invoked at the **tgt** with the pointer to **uhdr** as one of the parameters.

The user–supplied header–handler must return a pointer to a structure of type **lapi_vec_t** specifying the fields depending on the vec_type. For example, if the vec_type specified is LAPI_GEN_IOVECTOR, then it must contain:

1. the number of vectors (**num_vec**)
2. a vector of the length **num_vec** containing buffer pointers
3. **num_vec** vector of lengths as the return value.

This description provides the information of where the message data is to be copied by LAPI. The header–handler is also expected to save any information that will be required later by the completion–handler. The header–handler returns (through reference parameters) a pointer to the completion–handler and a pointer to a structure to be passed to the completion–handler (referred to by the variable **user_info**).

Note: The header–handler should be non–blocking because no progress on the messages associated with the context **hndl** can be made until control is returned to the communications library from the header–handler.

After the header–handler returns, data described by **org_vec** (if any) is copied into the user–returned buffers in the structure returned by the header handler. When all of the data described by **org_vec** has been copied into the user buffers, the completion–handler specified by the user through the header–handler is enqueued for execution.

After the parameters (including contents of **uhdr** and data described by **org_vec**) are copied out of the memory at the origin, the **ocntr** is incremented. After the
completion–handler has completed execution at the \textit{tgt}, the \textit{tcntr} is incremented. If the completion handler specified is a NULL, then \textit{tcntr} is incremented after all data described by \textit{org_vec} has been copied into the user specified buffers. If the user returned buffer is NULL and the completion handler is also NULL, the results of the data transfer are undefined and the counters will be incremented in some implementation specific manner. Any of the counter addresses may be NULL.

This is a non-blocking call. The calling process cannot change the \textit{uhdr} (origin header) and \textit{org_vec} data until completion at the origin is signaled by the \textit{ocntr} being incremented. Further, the calling process cannot assume that the \textit{org_vec} structure can be changed before the origin counter is incremented. Also, the structure (of type \texttt{lapi_vec_t}) returned by the header–handler cannot be modified before the target and completion counters have been incremented. Similarly, it can be assumed that the specified completion handler has run at \textit{tgt} only after the target counter \textit{tcntr} has been incremented. When the \textit{hdr_hdl} header handler specifies a \textit{comp_h} completion handler, the \textit{ccntr} at the origin and \textit{tcntr} counter at the target will be incremented after the completion handler has completed execution.

The length (\textit{uhdr_len}) of the user specified header is constrained by an implementation specified maximum value (\texttt{LAPI_Qenv(MAX_UHDR_SZ)}). To get the best bandwidth \textit{uhdr_len} should be as small as possible.

If a strided vector is being transferred, the size of each block must not be greater than the stride size in bytes. The number of vectors to be transferred must be greater than zero. The vector lengths specified in \texttt{org_vec->len}, or \texttt{org_vec->info} in the strided transfer case, must be multiples of the \texttt{machine word size in bytes}. If any of these requirements are not satisfied, an error condition occurs.

LAPI does not check for any overlapping regions among vectors either at the origin or the target. If such overlapping regions exist on the origin side, there may be a degradation in performance. If the overlapping regions exist on the target side, the contents of target buffer are undefined.

\textbf{Return Values}

\begin{itemize}
 \item \texttt{LAPI_SUCCESS} Indicates successful completion.
 \item \texttt{LAPI_ERR_PURGED_TASK} Returned early due to \texttt{LAPI_Purge_totask()} being called.
 \item \texttt{LAPI_ERR_BAD_PARAMETER} A parameter passed in was not valid.
\end{itemize}

\textbf{Location}

\texttt{/usr/lib/liblapi_r.a}

\textbf{Prerequisite Information}

Refer to the “Understanding and Using the Communications Low-Level Application Programming Interface” chapters in \textit{PSSP: Administration Guide} for additional LAPI information.
Related Information

Subroutines: LAPI_Fence, LAPI_Getv, LAPI_Nopoll_wait, LAPI_Putv, LAPI_Qenv, LAPI_Waitcntr
LAPI_Fence Subroutine

Purpose

LAPI_Fence – Enforces order on Low-Level Application Programming Interface (LAPI) calls.

C Syntax

```c
#include <lapi.h>

int LAPI_Fence(hndl)
    lapi_handle_t hndl;
```

Fortran Syntax

```fortran
include 'lapif.h'

LAPI_FENCE (hndl, ierror)

INTEGER hndl;
INTEGER ierror;
```

Parameters

- **hndl** IN Contains a handle that specifies a particular LAPI context.
- **ierror** OUT Specifies the FORTRAN return code. It is always the last parameter.

Description

Use this subroutine to enforce order on LAPI calls. If a process calls LAPI_Fence, all the LAPI operations that were initiated by that process, before the fence using the LAPI context `hndl`, are guaranteed to complete at the target processes. This occurs before any of its communication operations using `hndl`, initiated after the LAPI_Fence, start transmission of data. This is a data fence which means that the data movement is complete. This is not an operation fence which would need to include Active Message completion handlers completing on the target.

Return Values

- **LAPI_SUCCESS** Indicates successful completion.
- **LAPI_ERR_BAD_PARAMETER** Indicates that a parameter was passed in that was not valid.
LAPI_Fence Subroutine

Location

/usr/lib/liblapi_r.a

Related Information

- Subroutines: LAPI_Amsend, LAPI_Amsendv, LAPI_Get, LAPI_Getv, LAPI_Put, LAPI_Putv
LAPI_Get Subroutine

Purpose

LAPI_Get – Copies data from a remote process to the local address on a local process.

Library

Availability Library (liblapi_r.a)

C Syntax

#include <lapi.h>

int LAPI_Get(hndl, tgt, len, tgt_addr, org_addr, tgt_cntr, org_cntr)

lapi_handle_t hndl;
uint tgt;
uint len;
void *tgt_addr;
void *org_addr;
lapi_cntr_t *tgt_cntr;
lapi_cntr_t *org_cntr;

FORTRAN Syntax
include 'lapif.h'

LAPI_GET(hndl, tgt, len, tgt_addr, org_addr, tgt_cntr, org_cntr, ierror)

INTEGER hndl;
INTEGER tgt;
INTEGER len;
$type> tgt_addr(*);
INTEGER org_addr;
$type> tgt_cntr(*);
INTEGER org_cntr;
INTEGER ierror;

Parameters

hndl IN Contains a handle that specifies a particular Low-level Applications Programming Interface (LAPI) context.
tgt IN Specifies the target task that is the source of the data. This parameter is valid from $0 \leq tgt < \text{LAPI}_\text{Qenv}(,\text{NUM}_\text{TASKS},)$.
len IN Specifies the number of bytes of data to be copied. This parameter is valid from $0 \leq len \leq \text{LAPI}_\text{Qenv}(,\text{MAX}_\text{DATA}_\text{SZ},)$.
tgt_addr IN Specifies the target buffer address of the data source. This parameter can be NULL only if len is equivalent to 0.
orAddr IN/OUT Specifies the local buffer address that the received data is copied into. This parameter can be NULL only if len is equivalent to 0.
tgt_cntr IN Specifies the target counter address. The target counter is incremented after data arrives at the target. If the parameter is NULL, this counter will not be updated.
org_cntr IN/OUT Specifies the origin counter address. The origin counter is incremented after data arrives at the origin. If the parameter is NULL, the counter will not be updated.
ierror OUT Specifies a FORTRAN return code. It is always the last argument.

Description

Use this subroutine to transfer the len number of bytes from the tgt_addr address at the target process to the org_addr virtual address at the origin process over the context identified by hndl. After the data is copied out of the memory at the tgt_addr, the tgt_cntr is incremented. After the data arrives at the origin, the org_cntr is incremented. If either counter address is NULL, the data transfer occurs, but the corresponding counter increment does not take place.
This is a nonblocking call in that the calling program cannot assume that the target buffer can be changed, nor that the contents of the memory pointed to by the org_addr on the origin is ready for use. However, after the origin waits for the org_cntr update to complete, the origin can use the org_addr data. Similarly, the target can reuse the target buffer tgt_addr only after it has waited for the tgt_cntr update to complete at the target.

Return Values

- **LAPI_SUCCESS**
 Indicates successful completion.

- **LAPI_ERR_PURGED_TASK**
 Returned early due to LAPI_Purge_totask() being called.

- **LAPI_ERR_BAD_PARAMETER**
 Indicates that a parameter was passed in that was not valid.

Location

/usr/lib/liblapi_r.a

Prerequisite Information

Refer to the “Understanding and Using the Communications Low-Level Application Programming Interface” chapter in PSSP: Administration Guide for additional LAPI information.

Related Information

Subroutines: LAPI_Fence, LAPI_Getcntr, LAPI_Getv, LAPI_Nopoll_wait, LAPI_Put, LAPI_Qenv, LAPI_Waitcntr
LAPI_Getcntr Subroutine

Purpose

LAPI_Getcntr – Gets the integer value of counter.

Library

Availability Library (liblapi_r.a)

C Syntax

#include <lapi.h>

int LAPI_Getcntr(hndl, cntr, val)

lapi handle t hndl;

lapi cntr t *cntr;

int *val;

Fortran Syntax

| include 'lapif.h'

| LAPI_GETCNTR (hndl, cntr, val,ierror)

| INTEGER hndl;

| INTEGER cntr;

| INTEGER val;

| INTEGER ierror;

Parameters

hndl IN Specifies the LAPI context.

cntr IN Specifies the address of the counter. This parameter cannot be NULL.

val OUT Returns the integer value of counter. This parameter cannot be NULL.
Description

Gets the integer value of \textit{cntr}. This can be used to see how much progress is being made in LAPI context \textit{hnndl}.

Return Values

\textbf{LAPI_SUCCESS} Indicates successful completion.

\textbf{LAPI_ERR_BAD_PARAMETER} A parameter passed in was not valid.

Location

\texttt{/usr/lib/liblapi_r.a}

Related Information

Subroutines: \texttt{LAPI_Amsend, LAPI_Amsendv, LAPI_Get, LAPI_Getv, LAPI_Put, LAPI_Putv, LAPI_Rmw, LAPI_Setcntr, LAPI_Waitcntr}
LAPI_Getv Subroutine

Purpose

LAPI_Getv – Copies vectors of data from a remote process to the address space of the local process.

Library

Availability Library (liblapi_r.a)

C Syntax

#include <lapi.h>

int LAPI_Getv(hndl, tgt, tgt_vec, org_vec, tcntr, ocntr)

lapi_handle_t hndl;

uint tgt;

lapi_vec_t *tgtz_vec;

lapi_vec_t *org_vec;

lapi_cntr_t *tcntr;

lapi_cntr_t *ocntr;

FORTRAN Syntax

include 'lapif.h'

LAPI_GETV(hndl, tgt, tgt_vec, org_vec, tcntr, ocntr, ierr)

INTEGER hndl;

INTEGER tgt;

&type> tgt_vec(*);

&type> org_vec(*);

INTEGER tcntr;

INTEGER ocntr;

INTEGER ierr;
Parameters

- **hndl** **IN** Specifies the LAPI context.
- **tgt** **IN** Specifies the target process.
- **tgt_vec** **IN** Points to the target i/o vector description.
- **org_vec** **IN** Points to the origin i/o vector description.
- **tcntr** **IN** Specifies the address of the target counter. This parameter can be NULL.
- **ocntr** **IN/OUT** Specifies the address of the origin counter. This parameter can be NULL.
- **ccntr** **IN/OUT** Specifies the address of the completion counter. This parameter can be NULL.
- **ierror** **OUT** Specifies the FORTRAN return code. It is always the last parameter.

Description

This function transfers data from the target process address space from locations and lengths described in the **tgt_vec** to the origin process address space in locations and lengths described in the **org_vec**. Both structures, **org_vec** and **tgt_vec**, are located in the origin process address space, but the addresses of the actual vector locations in **tgt_vec** refer to addresses in the target address space.

This is a non-blocking call in that the calling program may not assume that the origin buffer can be changed, nor that contents of origin buffers (described in **org_vec**) on the origin process is ready for use. Further, the user may not assume that the structures, **org_vec** and **tgt_vec**, can be changed before the origin counter and target counter, respectively, are incremented. After the origin counter **ocntr** is incremented the origin buffers (described in **org_vec**) and **org_vec** can be reused by the origin process. After the target counter **tcntr** is incremented the target buffers (described in **tgt_vec**) and **tgt_vec** can be reused by the target process. If the any of the counters are NULL, the data transfer happens, but the corresponding counter increments do not take place.

The vector types **org_vec->vec_type** and **tgt_vec->vec_type** must be the same. The number of vectors specified in the **num_vecs** member must be the same on both the origin and target. If a strided vector is being transferred, the size of each block must not be greater than the stride size in bytes. The number of vectors to be transferred must be greater than zero. The length of any vector pointed to by **tgt_vec** must not be greater than the length of the corresponding vector pointed to by **org_vec**. The vector lengths specified in **org_vec->len**, or **org_vec->info** in the strided transfer case, must be multiples of the machine word size in bytes. If any of these requirements are not satisfied, an error condition occurs.

LAPI does not check for any overlapping regions among vectors either at the origin or the target. If such overlapping regions exist on the target side, there may be a degradation in performance. If the overlapping regions exist on the origin side, the contents of origin buffer are undefined.
LAPI_Getv Subroutine

Return Values

- **LAPI_SUCCESS**: Indicates successful completion.
- **LAPI_ERR_PURGED_TASK**: Returned early due to LAPI_Purge_totask() being called.
- **LAPI_ERR_BAD_PARAMETER**: A parameter passed in was not valid.

Location

/usr/lib/liblapi_r.a

Prerequisite Information

Refer to the “Understanding and Using the Communications Low-Level Application Programming Interface” section in *PSSP: Administration Guide* for additional LAPI information.

Related Information

Subroutines: LAPI_Amsendv, LAPI_Fence, LAPI_Generic amsendv, LAPI_Get, LAPI_Getcntr, LAPI_Putv, LAPI_Qenv, LAPI_Waitcntr
LAPI_Init Subroutine

Purpose

LAPI_Init – Initializes the Low-Level Application Programming Interface (LAPI) subsystem.

Library

Availability Library (liblapi_r.a)

C Syntax

```c
#include <lapi.h>

int LAPI_Init(hndl, lapi_info)
    lapi_handle_t *hndl;
    lapi_info_t *lapi_info;
```

FORTRAN Syntax

```fortran
include 'lapif.h'

LAPI_INIT(hndl, lapi_info, ierror)
    INTEGER hndl;
    INTEGER lapi_info(size=10);
    INTEGER ierror;
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>hndl</td>
<td>OUT</td>
<td>Specifies a particular LAPI context. This parameter cannot be NULL.</td>
</tr>
<tr>
<td>lapi_info</td>
<td>IN/OUT</td>
<td>Specifies a structure that provides the parallel job information that this LAPI context is associated with. This parameter cannot be NULL.</td>
</tr>
<tr>
<td>ierror</td>
<td>OUT</td>
<td>FORTRAN return code. It is always the last argument.</td>
</tr>
</tbody>
</table>

Description

Use this subroutine to instantiate a new context of the LAPI subsystem and to initialize it. A handle to the newly created LAPI context is returned in `hndl`. All subsequent LAPI calls can use `hndl` to specify the context of the LAPI operation. The `lapi_info` structure (lapi_info_t) needs to be zeroed out prior to filling in fields;
LAPI_Init Subroutine

bzero (lapi_info, size of (lapi_info_t)). "Future support" fields should not be used since names of those fields may change.

typedef struct {
 lapi_dev_t protocol; /* OUT - Which protocol is initialized */
 lapi_lib_t lib_vers; /* IN – LAPI library version - user supplied */
 uint epoch_num; /* IN/ - first 15 bits used to solve trickle traffic problems in comm group */
 int info4; /* IN – Future support*/
 int info5; /* Future support */
 int info6; /* Future support */
 LAPI_err_hndlr *err_hndlr; /* IN - User registered error handler */
 comm_thread_info_t *lapi_thread_attr; /* support thread attr and init function */
 void *info_info3; /* Future support */
 void *info_info4; /* Future support */
} lapi_info_t;

void (User func name) (lapi handle t *hndl, /* LAPI handle */
 int *error code, /* Error code */
 lapi err t *err type, /* GET/PUT/RMW/AM/INTERNAL*/
 int *task id, /* Current node */
 int *src); /* Source node */

Error code (*error_code) of LAPI_ERR_TIMEOUT is a recoverable error if the user chooses to ignore it in the user's error handler. All other error codes are currently terminal and the user should do clean up processing of user's process and terminate the process (exit()).

Note: For PSSP 3.2 set lib_vers to L2_LIB. Prior versions of PSSP assume that lib_vers is L1_LIB. The user must register an error handler through the lapi_info structure. You need to create a function with the parameters defined for LAPI_err_hndlr. The epoch_num variable is used by LAPI to...
LAPI_Init Subroutine

distinguish a packet of one session from another to avoid possible trickle traffic problem if the same epoch number is used during back to back runs. It should be no greater than size of SHORT (16bits). To set this during the run use the LAPI_Senv() (EPOCH_NUM) function call. To retrieve the current epoch number use the LAPI_Qenv() (EPOCH_NUM) function call. The lapi_thread_att variable enables the user to pass to the communication threads their own pthread attribute and also have the communication thread. Except for LAPI_Address() and LAPI_Msg_string(), the user cannot make any LAPI calls before calling LAPI_Init().

Return Values

LAPI_SUCCESS Indicates successful completion.
EBUSY System error; the previous job is still running.
EINVAL System error; an argument is not valid.
EPERM System error; the caller is not authorized to perform the action.
ETIMEOUT System error; the switch network is not up.
ENODEV System error; the adapter type and library do not match.
ENOSPC System error; cannot attach to bus memory; out of memory or segment register.

CSS KE INTERNAL_ERROR System error; kernel extension internal memory management encountered an error.

CSS KE UCODE ERROR System error; adapter microcode is not responding.

LAPI_ERR_UNKNOWN DEVICE The device is not supported.

LAPI_ERR_NOMORE_PORTS There are no more communication ports available.

LAPI_ERR_INIT_FAILED Initialization was unsuccessful.

LAPI_ERR_OPEN_FAILED Opening of a communication device was unsuccessful.

LAPI_ERR_BAD_PARAMETER A parameter passed in is not valid.

LAPI_ERR_NONZERO_INFO Future support fields in lapi_info_t need to be set to zero.

LAPI_ERR_INVALID_OPTIONS Was unsuccessful at getting network connections.

Location

/usr/lib/liblapi_r.a
LAPI_Init Subroutine

Related Information

Subroutines: LAPI_Term
LAPI_Msg_string Subroutine

Purpose

LAPI_Msg_string – Gets the Low-Level Application Programming Interface (LAPI) and system message string.

Library

Availability Library (liblapi_r.a)

C Syntax

#include <lapi.h>

LAPI_Msg_string(error_code, buf)

int error_code;
void * buf;

FORTRAN Syntax

#include 'lapif.h'

LAPI_MSG_STRING(error_code, buf, ierror)

INTEGER error_code;
INTEGER buf(40);
INTEGER ierror;

Parameters

error_code IN Specifies the return value of a previous LAPI call.
buf OUT Specifies the buffer to store the message string.
ierror OUT Specifies a FORTRAN return code. It is always the last argument.

Description

Use this subroutine to return the message string representation of the return value for a specific LAPI call.

Return Values

LAPI_SUCCESS Indicates successful completion.
LAPI_ERR_BAD_PARAMETER
Indicates that a parameter was passed in that was not valid.
LAPI_Msg_string Subroutine

Location
/usr/lib/liblapi_r.a

Prerequisite Information
Refer to the “Understanding and Using the Communications Low-Level Application Programming Interface” chapters in PSSP: Administration Guide for additional LAPI information.

Related Information
Subroutines: LAPI_Init, LAPI_Term
LAPI_Nopoll_wait Subroutine

Purpose

LAPI_Nopoll_wait – Provides a counter value and a list of threads and state to be updated once the counter value is reached.

Library

Availability Library (liblapi_r.a)

C Syntax

#include <lapi.h>

void LAPI_Nopoll_wait(hndl, cntr_ptr, val, cur_cntr_val)

lapi_handle_t hndl;

lapi_cntr_t *cntr_ptr;

int val;

int *cur_cntr_val;

FORTRAN Syntax

include 'lapif.h'

int LAPI_NOPOLL_WAIT(HNDL, CNTR_PTR, VAL, CUR_CNTR_VAL, IERROR)

INTEGER hndl;

INTEGER cntr_ptr;

INTEGER val;

INTEGER cur_cntr_val;

INTEGER ierror;

Parameters

hndl IN Handle to the LAPI instance.

*cntr_ptr IN/OUT Pointer to the lapi_cntr_t structure.

val IN The relative counter value starting from 1 to be reached before returning.

*cur_cntr_val IN Returns the current integer value of counter if not NULL.
LAPI_Nopoll_wait Subroutine

ierror

OUT Specifies a FORTRAN return code. It is always the last argument.

Description

This function first checks if the state of counter is WAIT. It returns immediately with a return error of LAPI_ERR_MULTIPLE_WAITERS if it is already in a WAIT state. Then it checks if the counter values for `val` and `*cntr_ptr` are the same and returns immediately if the value has been reached. Otherwise, it records in the `lapi_cntr_t (*cntr_ptr)` structure the value to be reached. There are two fields associated with the counter; `*dest_list` and `*dest_status array of size val or NULL`. `*dest_list` and `*dest_status` arrays record task IDs from which the calling thread is waiting for a response. These fields should only be set using `LAPI_Setcntr_wstatus`. This function will immediately return with a return value of LAPI_ERR_PURGED_TASK if the destinations are purged. If `*dest_list` is NULL then the behavior of `LAPI_Purge_totask` is to wake up all the threads that were sleeping in the LAPI_Nopoll_wait.

Note: To use this function you must have the `lib_vers` field of `lapi_info_t` in `LAPI_Init` set to L2_LIB.

Return Values

- **LAPI_SUCCESS** Indicates the state was successfully reset.
- **LAPI_ERR_PURGED_TASK** Returned early due to `LAPI_Purge_totask` being called.
- **LAPI_ERR_MULTIPLE_WAITERS** More than one thread is waiting for the counter.
- **LAPI_ERR_BAD_PARAMETER** A parameter passed in was not valid.

Location

/usr/lib/liblapi_r.a

Related Information

Subroutines: `LAPI_Purge_totask`, `LAPI_Resume_totask`, `LAPI_Setcntr_wstatus`
LAPI_Probe Subroutine

Purpose

LAPI_Probe – Transfers control to the communications subsystem to check for arriving messages and to make progress in polling mode.

Library

Availability Library (liblapi_r.a)

C Syntax

```c
#include <lapi.h>

int LAPI_Probe(hndl)
    lapi_handle_t hndl;
```

FORTRAN Syntax

```fortran
include 'lapix.h'

int LAPI_PROBE(HNDL, IERROR)
    INTEGER hndl;
    INTEGER ierror;
```

Parameters

- **hndl**
 IN Specifies the LAPI context.
- **ierror**
 OUT Specifies a FORTRAN return code. It is always the last argument.

Description

Use this subroutine to transfer control to the communications subsystem to make progress on messages associated with the context *hndl*.

Note: There is no guarantee about receipt of messages on the return from this function.

Return Values

- **LAPI_SUCCESS** Indicates successful completion.
- **LAPI_ERR_BAD_PARAMETER** A parameter passed in was not valid.
LAPI_Probe Subroutine

Prerequisite Information
Refer to the “Understanding and Using the Communications Low-Level Application Programming Interface” chapter in PSSP: Administration Guide for additional LAPI information.

Location
/usr/lib/liblapi_r.a

Related Information
Subroutines: LAPI_Getcntr, LAPI_Setcntr, LAPI_Waitcntr
LAPI_Purge_totask Subroutine

Purpose

LAPI_Purge_totask – Allows a process to cancel messages to a given destination.

Library

Availability Library (liblapi_r.a)

C Syntax

#include <lapi.h>

int LAPI_Purge_totask(hndl, dest)

lapi_handle_t hndl;

task_t dest;

FORTRAN Syntax

include 'lapif.h'

int LAPI_PURGE_TOTASK(HNDL, DEST, IERROR)

INTEGER hndl;

INTEGER dest;

INTEGER ierror;

Parameters

hndl IN Specifies the LAPI context.

dest IN Specifies the destination instance ID to which pending messages
 need to be cancelled.

ierror OUT Specifies a FORTRAN return code. It is always the last argument.

Description

This function cancels messages and resets the state corresponding to messages in
flight or submitted to be sent to a particular target task. This is an entirely local
operation. For correct behavior a similar invocation is expected on the destination
(if it exists). This function cleans up all the state associated with pending messages
to the indicated target task. It is assumed that before the indicated task starts
communicating with this task again, it also purges this instance (or that it was
terminated and initialized again). It will also wake up all threads that are in
LAPI_Nopoll_wait depending on how the arguments are passed to the
LAPI_Nopoll_wait function. The behavior of LAPI_Purge_totask is undefined if
LAPI Global functions are utilized.
If you want to avoid any possible trickle traffic that may exist in the network, you should also call `LAPI_Senv(hndl,EPOCH_NUM,new epoch_num)` function to ensure LAPI does not receive any old message that may exist from the purged task. This resets the global state so all nodes that are still up need to make the same call, otherwise communication packets will be dropped. Also the node coming up must utilize the new `epoch_num` as part of initializing the `lapi_info_t` structure for the `LAPI_Init` call. If `LAPI_Purge_totask` is used, then once the purged task comes up the user must call `LAPI_Resume_totask` to be able to send messages to the re-initialized task. Also, if `LAPI_Purge_totask` was called and subsequent LAPI communication calls were made to the task that was purged, those calls will return with the following error code: `LAPI_ERR_PURGED_TASK`.

Note: This function should not be used when the parallel application is running under the POE/LL environment. The library level must be L2_LIB to call this function.

Return Values
- **LAPI_SUCCESS** Indicates the state was successfully reset.
- **LAPI_ERR_BAD_PARAMETER** A parameter passed in was not valid.

Location
/usr/lib/liblapi_r.a

Related Information
Subroutines: `LAPI_Init`, `LAPI_Nopoll_wait`, `LAPI_Resume_totask`, `LAPI_Setcntr_wstatus`
LAPI_Put Subroutine

Purpose

LAPI_Put – Puts data into the target address on a target process.

Library

Availability Library (liblapi_r.a)

C Syntax

```c
#include <lapi.h>

int LAPI_Put(hndl, tgt, len, tgt_addr, org_addr, tgt_cntr, org_cntr, cmpl_cntr)

lapi_handle_t hndl;
uint tgt;
uint len;
void *tgt_addr;
void *org_addr;
lapi_cntr_t *tgt_cntr;
lapi_cntr_t *org_cntr;
lapi_cntr_t *cmpl_cntr;
```

FORTRAN Syntax
LAPI_Put Subroutine

include 'lapif.h'

int LAPI_PUT(hndl, tgt, len, tgt_addr, org_addr, tgt_cntr,
 org_cntr, cmpl_cntr, ierror)

INTEGER hndl;
INTEGER tgt;
INTEGER len;
<type> tgt_addr(*);
INTEGER org_addr;
<type> tgt_cntr(*);
INTEGER org_cntr;
INTEGER cmpl_cntr;
INTEGER ierror;

Parameters

hndl
IN Contains a handle that specifies a particular Low-Level Application Programming Interface (LAPI) context.

tgt
IN Specifies the target task number. This parameter is valid from 0 <= tgt < LAPI_Qenv(NUM_TASKS).

len
IN Specifies the number of bytes to be transferred. This parameter is valid from 0 <= len <= LAPI_Qenv(MAX_DATA_SZ).

tgt_addr
IN Specifies the address on the target process where data is to be copied into. This parameter can be NULL only if len is equivalent to 0.

org_addr
IN Specifies the address on the origin process where data is to be copied from. This parameter can be NULL only if len is equivalent to 0.

tgt_cntr
IN Specifies the target counter address. The target counter is incremented after data arrives at the target. If the parameter is NULL, this counter will not be updated.

org_cntr
IN/OUT Specifies the origin counter address. The origin counter is incremented after data is copied out of the origin address. If the parameter is NULL, this counter will not be updated.

cmpl_cntr
IN/OUT Specifies the address of the completion counter that is a reflection of the tgt_cntr. This counter is incremented at the origin after the tgt_cntr is incremented. If the parameter is NULL, the counter will not be updated.

ierror
OUT Specifies a FORTRAN return code. It is always the last argument.
LAPI_Put Subroutine

Description

Use this subroutine to transfer the \textit{len} number of bytes from the \textit{org_addr} virtual address on the origin to the \textit{tgt} target process at the \textit{tgt_address} address over the port identified by \textit{hndl}. After the data is copied out of the memory at \textit{org_addr}, the \textit{org_cntr} is incremented. After the data arrives at the \textit{tgt}, the \textit{tgt_cntr} is incremented. If either counter address is NULL, the data transfer occurs, but the corresponding counter increment does not take place.

This is a nonblocking call in that the calling program cannot assume that the origin buffer can be changed, nor that the contents of the memory pointed to by \textit{tgt_addr} on \textit{tgt} is ready for use. However, after the origin waits for the \textit{org_cntr} update to complete, the origin can modify the \textit{org_addr} origin buffer. Similarly, the target can modify the data in the \textit{tgt_addr} target buffer after it has waited for the \textit{tgt_cntr} update to complete on the target. This call can be made synchronous if the origin waits for the \textit{cmpl_cntr} update to complete.

Return Values

- **LAPI_SUCCESS**: Indicates successful completion.
- **LAPI_ERR_BAD_PARAMETER**: Indicates that a parameter was passed in that was not valid.
- **LAPI_ERR_PURGED_TASK**: Returned early due to \texttt{LAPI_Purge_totask} being called.

Location

\texttt{/usr/lib/liblapi_r.a}

Prerequisite Information

Refer to the “Understanding and Using the Communications Low-Level Application Programming Interface” chapter in \textit{PSSP: Administration Guide} for additional LAPI information.

Related Information

Subroutines: \texttt{LAPI_Fence}, \texttt{LAPI_Get}, \texttt{LAPI_Getcntr}, \texttt{LAPI_Getv}, \texttt{LAPI_Putv}, \texttt{LAPI_Qenv}, \texttt{LAPI_Waitcntr}
LAPI_Putv Subroutine

Purpose
LAPI_Putv – Puts vectors of data from the origin process address space into the target process address space.

Library
Availability Library (liblapi_r.a)

C Syntax
```
#include <lapi.h>

int LAPI_Putv(hndl, tgt, tgt_vec, org_vec, tcntr, ocntr, ccntr)
```

```
lapi handle t hndl;
uint tgt;
lapi_vec_t *tgt_vec;
lapi_vec_t *org_vec;
lapi_cntr_t *tcntr;
lapi_cntr_t *ocntr;
lapi_cntr_t *ccntr;
```

FORTRAN Syntax
include 'lapif.h'

LAPI_PUTV(hndl, tgt, tgt_vec, org_vec, tcntr, ocntr, ccntr, ierror)
org_cntr, cmpl_cntr, ierror)

INTEGER
INTEGER

<type> tgt_vec(*);
<type> org_vec(*);
INTEGER tcntr;
INTEGER ocntr;
INTEGER ccntr;
INTEGER ierror;

Parameters

\textit{hndl} \quad \textbf{IN} \quad \text{Specifies the LAPI context.}
\textit{tgt} \quad \textbf{IN} \quad \text{Specifies the task ID of the target process.}
\textit{tgt_vec} \quad \textbf{IN} \quad \text{Points to the target i/o vector description.}
\textit{org_vec} \quad \textbf{IN} \quad \text{Points to the origin i/o vector description.}
\textit{tcntr} \quad \textbf{IN} \quad \text{Specifies the address of the target counter. This parameter can be NULL.}
\textit{ocntr} \quad \textbf{IN/OUT} \quad \text{Specifies the address of the origin counter. This parameter can be NULL.}
\textit{ccntr} \quad \textbf{IN/OUT} \quad \text{Specifies the address of the completion counter. This parameter can be NULL.}
\textit{ierror} \quad \textbf{OUT} \quad \text{Specifies the FORTRAN return code. It is always the last parameter.}

Description

This function transfers data from the origin process address space from locations and lengths described in the \textit{org_vec} to the target process address space in locations and lengths described in the \textit{tgt_vec}. Both structures, \textit{org_vec} and \textit{tgt_vec}, are located in the origin process address space, but the addresses of the actual vector locations in \textit{tgt_vec} refer to addresses in the target address space.

This is a non-blocking call in that the calling program may not assume that the origin buffer can be changed, nor that contents of target buffers (described in \textit{tgt_vec}) on the target process is ready for use. Further, you may not assume that the structures \textit{org_vec} and \textit{tgt_vec} can be changed before the origin counter and target counter, respectively, are incremented. After the origin counter \textit{ocntr} is incremented the origin buffers (described in \textit{org_vec}) and \textit{org_vec} can be reused
LAPI_Putv Subroutine

by the origin process. After the target counter is incremented the target buffers (described in tgt_vec) and tgt_vec can be reused by the target process. If a completion counter ccntr is provided the ccntr is incremented at the origin, after the tcntr has been incremented at the target. If the any of the counter addresses are NULL, the data transfer happens, but the corresponding counter increments do not take place.

The vector types org_vec->vec_type and tgt_vec->vec_type must be the same. The number of vectors specified in the num_vecs member must be the same on both the origin and target. If a strided vector is being transferred, the size of each block must not be greater than the stride size in bytes. The number of vectors to be transferred must be greater than zero. The length of any vector pointed to by org_vec must not be greater than the length of the corresponding vector pointed to by tgt_vec. The vector lengths specified in org_vec-> len, or org_vec->info in the strided transfer case, must be multiples of the machine word size in bytes. If any of these requirements are not satisfied, an error condition occurs.

LAPI does not check for any overlapping regions among vectors either at the origin or the target. If such overlapping regions exist on the origin side, there may be a degradation in performance. If the overlapping regions exist on the target side, the contents of target buffer are undefined.

Return Values

LAPI_SUCCESS Indicates successful completion.

LAPI_ERR_PURGED_TASK Returned early due to LAPI_Purge_totask being called.

LAPI_ERR_BAD_PARAMETER A parameter passed in was not valid.

Location

/usr/lib/liblapi_r.a

Prerequisite Information

Refer to the “Understanding and Using the Communications Low-Level Application Programming Interface” chapters in PSSP: Administration Guide for additional LAPI information.

Related Information

Subroutines: LAPI_Amsendv, LAPI_Fence, LAPI_Generic amsendv, LAPI_Get, LAPI_Getcntr, LAPI_Getv, LAPI_Qenv, LAPI_Waitcntr
LAPI_Qenv Subroutine

Purpose

LAPI_Qenv – Queries the Low-Level Application Programming Interface (LAPI) interface for parallel job information.

Library

Availability Library (liblapi_r.a)

C Syntax

```c
#include <lapif.h>

int LAPI_Qenv(hndl, query, ret_val)

lapi_handle_t hndl;

lapi_query_t query;

int *ret_val;
```

FORTRAN Syntax

```fortran
include 'lapif.h'

LAPI_QENV(hndl, query, ret_val, ierror)

org_cntr, cmpl_cntr, ierror)

INTEGER hndl;

INTEGER query;

INTEGER ret_val;

INTEGER ierror;
```

Parameters

- **hndl**
 IN Specifies the LAPI context.

- **query**
 IN Specifies the type of query requested as defined by `lapi_query_t` in `lapif.h`.

- **ret_val**
 OUT Specifies the integer value of the query request. This parameter cannot be NULL.

- **ierror**
 OUT Specifies the FORTRAN return code. It is always the last parameter.
LAPI_Qenv Subroutine

Description

Use this subroutine to query the LAPI interface for information about a specific LAPI instance. `lapi_query_t` defines the types of LAPI queries available.

```c
typedef enum {
    TASK_ID=0, /* Query task id of current task in job */
    NUM_TASKS, /* Query number of tasks in job */
    MAX_UHDR_SZ, /* Query max. user header size for AM */
    MAX_DATA_SZ, /* Query max. data length that can be sent */
    ERROR_CHK, /* Query & Set parameter checking on(nonzero)/off(0) */
    TIMEOUT, /* Query & Set current comm. timeout setting in seconds */
    MIN_TIMEOUT, /* Query minimum comm. timeout setting */
    MAX_TIMEOUT, /* Query maximum comm. timeout setting */
    INTERRUPT_SET, /* Query & Set interrupt on(nonzero)/off(0) */
    MAX_PORTS, /* Query max. available comm. ports */
    MAX_PKT_SZ, /* Query the payload size of 1 packet */
    NUM_REX_BUFS, /* Query number of retransmission buffers */
    REX_BUF_SZ, /* Query size of each retransmission buffer in bytes */
    LOC_ADDRTBL_SZ, /* Query size of (number of entries in) address */
    EPOCH_NUM, /* Query & Set epoch number set by user */
    LAST_QUERY
} lapi_query_t;
```
Return Values

LAPI_SUCCESS Indicates successful completion.

LAPI_ERR_BAD_PARAMETER Indicates that a parameter was passed in that was not valid.

Location

/usr/lib/liblapi_r.a

Related Information

Subroutines: LAPI_Amsend, LAPI_Get, LAPI_Put
LAPI_Resume_totask Subroutine

Purpose

LAPI_Resume_totask – Re-enables sending messages to the task.

Library

Availability Library (liblapi_r.a)

C Syntax

```c
#include <lapi.h>

int LAPI_Resume_totask(hndl, dest)

lapi_handle_t hndl;

task_t dest;
```

FORTRAN Syntax

```fortran
include 'lapif.h'

int LAPI_RESUME_TOTASK(hndl, dest, ierror)

INTEGER hndl;

INTEGER dest;

INTEGER ierror;
```

Parameters

- `hndl` **IN** Specifies the LAPI context.
- `dest` **IN** Specifies the destination instance ID with which to resume communication.
- `ierror` **OUT** Specifies the FORTRAN return code. It is always the last parameter.

Description

This function re-enables messages to be sent to the purged task. If a task goes down and this task calls LAPI_Purged_totask() it must call LAPI_Resume_totask() to resume communication with that task. The purged node must also either restart LAPI or run a corresponding purge/resume sequence for communication to resume.

Note: This function should not be used when the parallel application is running under the POE/LL environment. The library level must be set to L2_LIB to call this function.
LAPI.Resume_totask Subroutine

Return Values

- **LAPI_SUCCESS**: Indicates the state was successfully reset.
- **LAPI_ERR_BAD_PARAMETER**: A parameter passed in was not valid.

Location

- `/usr/lib/liblapi_r.a`

Related Information

- Subroutines: `LAPI_Init`, `LAPI_Nopoll_wait`, `LAPI_Purge_totask`
LAPI_Rmw Subroutine

Purpose

LAPI_Rmw – Provides the synchronization primitives.

Library

Availability Library (liblapi_r.a)

C Syntax

#include <lapi.h>

int LAPI_Rmw(hndl, op, tgt, tgt_var, in_val, prev_tgt_val, org_cntr)

lapi_handle_t hndl;
RMW_ops_t op;
uint tgt;
int *tgt_var;
int *in_val;
int *prev_tgt_val;
lapi_cntr_t *org_cntr;

FORTRAN Syntax

include 'lapif.h'

LAPI_RMW(hndl, op, tgt, tgt_var, in_val, prev_tgt_val, org_cntr,
ierror)

INTEGER hndl;
INTEGER op;
INTEGER tgt;
&type> tgt_var(*);
INTEGER in_val;
INTEGER prev_tgt_val;
INTEGER org_cntr;
INTEGER ierror;
LAPI_Rmw Subroutine

Parameters

* `hndl` **IN** Contains a handle that specifies a particular Low-Level Application Programming Interface (LAPI) context.

* `op` **IN** Specifies the operation to be performed.

* `tgt` **IN** Specifies the target task where the Read-Modify-Write (RMW) variable resides. This parameter is valid from \(0 \leq tgt < \text{LAPI_Qenv}(\text{NUM_TASKS}) \).

* `tgt_var` **IN** Specifies the target RMW variable address. This parameter cannot be NULL.

* `in_val` **IN** Specifies the value input to the `op`. This parameter cannot be NULL.

* `prev_tgt_val` **IN/OUT** Specifies the location at the origin in which the previous `tgt_var` on the target process is stored before the RMW `op` is executed. This parameter can be NULL.

* `org_cntr` **IN/OUT** Specifies the origin counter address. The origin counter is incremented after data is copied out of the origin address. If the parameter is NULL, this counter will not be updated.

* `ierror` **OUT** Specifies a FORTRAN return code. It is always the last argument.

Description

Use this subroutine to synchronize two independent operations, such as two processes sharing a common data structure. The operation is performed at the `tgt` target process and is atomic. The operation takes an `in_val` from the origin and performs one of four selected `op` operations on a `tgt_var` variable at the `tgt` target, and then replaces the `tgt_var` target variable with the results of the `op` operation. The `prev_tgt_val` original value of the `tgt_var` target variable is returned to the origin.

The valid operations for `op` are:

- `COMPARE_AND_SWAP`
- `FETCH_AND_ADD`
- `FETCH_AND_OR`
- `SWAP`

The operations are performed over the context referred to by `hndl`. The outcome of the execution of these calls is as if the following code was executed atomically:

\[
\text{*prev_tgt_val} = \text{*tgt_var};
\]

\[
\text{*tgt_var} = \text{f(}*\text{tgt_var, *in_val});
\]

where:

\[
f(a,b) = a + b \text{ for } \text{FETCH_AND_ADD}
\]

\[
f(a,b) = a | b \text{ for } \text{FETCH_AND_OR} \text{ (bitwise or)}
\]

\[
f(a,b) = b \text{ for } \text{SWAP}
\]

For `COMPARE_AND_SWAP`, `in_val` is treated as a pointer to an array of two integers, and the `op` is the following atomic operation:
LAPI_Rmw Subroutine

```c
if(*tgt_var == in_val[0]) {
    *prev_tgt_val = TRUE;
*tgt_var = in_val[1];
} else {
    *prev_tgt_val = FALSE;
}
```

All the calls are nonblocking. To test for completion, use the `LAPI_Getcntr` and `LAPI_Waitcntr` functions. There is no `tgt_cntr` on RMW calls and they do not provide any indication of completion on the `tgt` process.

Return Values

- **LAPI_SUCCESS** Indicates successful completion.
- **LAPI_ERR_PURGED_TASK** Returned early due to `LAPI_Purge_totask` being called.
- **LAPI_ERR_BAD_PARAMETER** Indicates that addresses were passed in that were not valid.

Location

`/usr/lib/liblapi_r.a`

Prerequisite Information

Refer to the “Understanding and Using the Communications Low-Level Application Programming Interface” chapter in `PSSP: Administration Guide` for additional LAPI information.

Related Information

Subroutines: `LAPI_Getcntr`, `LAPI_Qenv`, `LAPI_Setcntr`, `LAPI_Waitcntr`
LAPI_Senv Subroutine

Purpose

LAPI_Senv – Sets the Low-level Application Programming Interface (LAPI) environment for the specified context.

Library

Availability Library (liblapi_r.a)

C Syntax

#include <lapif.h>

int LAPI_Senv(hndl, query, set_val)

lapi_handle_t hndl;

lapi_query_t query;

int set_val;

FORTRAN Syntax

include 'lapif.h'

LAPI_SENV(hndl, query, set_val, ierror)

INTEGER hndl;;

INTEGER query;

INTEGER set_val;

INTEGER ierror;

Parameters

hndl IN Specifies the LAPI context.
query IN Specifies the type of query requested as defined by lapi_query_t in lapif.h.
set_val IN Specifies the integer value of the query request.
ierror OUT Specifies a FORTRAN return code. It is always the last argument.
LAPI_Senv Subroutine

Description
Use this subroutine to set the LAPI environment for a specific LAPI instance. `lapi_query_t` defines the types of LAPI set environment variables, as prescribed in the `LAPI_Qenv()` call. Only the subset INTERRUPT_SET, TIMEOUT, ERROR_CHK and EPOCH_NUM may be set.

Return Values
- **LAPI_SUCCESS** Indicates successful completion.
- **LAPI_ERR_BAD_PARAMETER** Indicates that a parameter was passed in that was not valid.

Location
```
/usr/lib/liblapi_r.a
```

Related Information
Subroutines: **LAPI_Qenv**
LAPI_Setcntr Subroutine

Purpose

LAPI_Setcntr – Sets a counter to a specified value.

Library

Availability Library (liblapi_r.a)

C Syntax

#include <lapi.h>

int LAPI_Setcntr(hndl, cntr, val)

lapi_handle_t hndl;

lapi_cntr_t *cntr;

int val;

FORTRAN Syntax

include 'lapif.h'

LAPI_SETCNTR(hndl, cntr, val, ierror)

INTEGER hndl;

INTEGER cntr;

INTEGER val;

INTEGER ierror;

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>hndl</td>
<td>IN</td>
<td>Contains a handle that specifies a particular Low-Level Application Programming Interface (LAPI) context.</td>
</tr>
<tr>
<td>cntr</td>
<td>IN/OUT</td>
<td>Specifies the address of the counter to be set. This parameter cannot be NULL.</td>
</tr>
<tr>
<td>val</td>
<td>IN</td>
<td>Specifies the value the counter needs to be set to.</td>
</tr>
<tr>
<td>ierror</td>
<td>OUT</td>
<td>Specifies a FORTRAN return code. It is always the last argument.</td>
</tr>
</tbody>
</table>
LAPI_Setcntr Subroutine

Description
Use this subroutine to set the cntr to the appropriate value. The LAPI context associated with hndl may or may not be polled for incoming messages.

Return Values
- **LAPI_SUCCESS** Indicates successful completion.
- **LAPI_ERR_BAD_PARAMETER** Indicates that a parameter was passed in that was not valid.

Location
/usr/lib/liblapi_r.a

Prerequisite Information
Refer to the “Understanding and Using the Communications Low-Level Application Programming Interface” chapter in *PSSP: Administration Guide* for additional LAPI information.

Related Information
Subroutines: **LAPI_Getcntr**, **LAPI_Waitcntr**
LAPI_Setcntr_wstatus Subroutine

Purpose

LAPI_Setcntr_wstatus – Sets a counter to a specified value and sets the associate destination list array and destination status array to the counter.

Library

Availability Library (liblapi_r.a)

C Syntax

```c
#include <lapi.h>

int LAPI_Setcntr_wstatus(lapi_handle_t hndl, lapi_cntr_t cntr, int val, uint dest_list, int dest_status)
```

FORTRAN Syntax

```fortran
include 'lapif.h'

LAPI_SETCNTR_WSTATUS(hndl, cntr, val, dest_list, dest_status, ierror)
```

Chapter 3. SP Subroutines 485
LAPI_Setcntr_wstatus Subroutine

Parameters

- **hndl**
 IN The handle that specifies the LAPI context.

- **cntr**
 IN/OUT Specifies the address of the counter to be set. This parameter cannot be NULL.

- **val**
 IN Specifies the value the counter needs to be set to.

- **dest_list**
 IN Specifies an array of destinations waiting for this counter update or NULL.

- **dest_status**
 IN/OUT Specifies an array of status (or NULL) corresponding to dest_list.

- **ierror**
 OUT Specifies a FORTRAN return code. It is always the last argument.

Description

This function sets the cntr to the appropriate value. It returns with LAPI_ERR_BAD_PARAMETER if dest_list is not NULL and *dest_status is.

dest_list and *dest_status record the status of a task from where the thread calling LAPI_Nopoll_wait() is waiting for a response. Status has the following format:

- **LAPI_MSG_AWAIT_RESP**
 Not received or purged.

- **LAPI_MSG_RECVD**
 Received.

- **LAPI_MSG_PURGED**
 Purged and not received.

- **LAPI_MSG_PURGED_RECVD**
 Purged and received.

- **LAPI_MSG_INVALID**
 Not valid; the task is already purged.

Note: This function should not be used when the parallel application is running under the POE/LL environment.

Return Values

- **LAPI_SUCCESS** Indicates successful completion.

- **LAPI_ERR_BAD_PARAMETER** Indicates that a parameter was passed in that was not valid.

Location

/usr/lib/liblapi_r.a

Related Information

Subroutines: LAPI_Getcntr, LAPI_Nopoll_wait, LAPI_Purge_totask, LAPI_Setcntr
LAPI_Term Subroutine

Purpose

LAPI_Term – Terminates and cleans up the Low-Level Application Programming Interface (LAPI) subsystem.

Library

Availability Library (liblapi_r.a)

C Syntax

```c
#include <lapi.h>

int LAPI_Term(hndl)
    lapi_handle_t hndl;
```

FORTRAN Syntax

```fortran
include 'lapif.h'

LAPI_TERM(hndl, ierror)
    INTEGER hndl;
    INTEGER ierror;
```

Parameters

- **hndl** OUT Specifies the LAPI context.
- **ierror** OUT Specifies a FORTRAN return code. It is always the last argument.

Description

Use this subroutine to terminate the LAPI context specified by `hndl`. Any LAPI notification threads associated with this context are terminated. An error occurs when any LAPI calls are made using `hndl` after `LAPI_Term` is called.

Return Values

- **LAPI_SUCCESS** Indicates successful completion.
- **LAPI_ERR_BAD_PARAMETER** Indicates that a parameter was passed in that was not valid.
LAPI_Term Subroutine

Location

/usr/lib/liblapi_r.a

Related Information

Subroutines: LAPI_Init
LAPI_Waitcntr Subroutine

Purpose

LAPI_Waitcntr – Waits until a specified counter reaches the value specified.

Library

Availability Library (liblapi_r.a)

C Syntax

```
#include <lapi.h>

int LAPI_Waitcntr(hndl, cntr, val, cur_cntr_val)

lapi_handle_t hndl;

lapi_cntr_t *cntr;

int val;

int *cur_cntr_val;
```

FORTRAN Syntax

```
include 'lapif.h'

LAPI_WAITCNTR(hndl, cntr, val, cur_cntr_val, ierror)

INTEGER hndl;

INTEGER cntr;

INTEGER val;

INTEGER cur_cntr_val;

INTEGER ierror;
```

Parameters

- **hndl**
 IN Contains a handle that specifies a particular Low-Level Application Programming Interface (LAPI) context.

- **cntr**
 IN Specifies the address of the counter to be waited on. This parameter cannot be NULL.

- **val**
 IN Specifies the value the counter needs to reach.

- **cur_cntr_val**
 OUT Specifies the integer value of the current counter. This parameter can be NULL.

- **ierror**
 OUT Specifies a FORTRAN return code. It is always the last argument.
LAPI_Waitcntr Subroutine

Description
Use this subroutine to wait until the cntr reaches or exceeds the specified val. Once the cntr reaches the val, the cntr is decremented by that value. (We say decremented rather than set to zero since the cntr could have had a value greater than the specified val when the call was made.) This call may or may not check for message arrivals over the LAPI context hndl. The cur_cntr_val variable is set to the current counter value.

Return Values
LAPI_SUCCESS Indicates successful completion.
LAPI_ERR_BAD_PARAMETER Indicates that a parameter was passed in that was not valid.

Location
/usr/lib/liblapi_r.a

Prerequisite Information
Refer to the “Understanding and Using the Communications Low-Level Application Programming Interface” chapter in PSSP: Administration Guide for additional LAPI information.

Related Information
Subroutines: LAPI_Amsend, LAPI_Get, LAPI_Getcntr, LAPI_Put, LAPI_Rmw, LAPI_Setcntr
setvhostname Subroutine

Purpose

setvhostname – Sets the virtual host name of the local host.

Library

Availability Library (libavail.a)

Syntax

```c
#include <vhost.h>

int setvhostname (name, name_length);

char *name;

int name_length;
```

Parameters

- **name**: Specifies the virtual host name.
- **name_length**: Specifies the length of the name array.

Description

Use this subroutine to set the virtual host name of a host machine. Only programs with a root user ID can use this subroutine. This routine is similar to the **sethostname** system call with the exception that it stores the virtual host name in the `/etc/vhostname` file instead of using a kernel variable. The **setvhostname** subroutine is a library call and **sethostname** is a system call.

The **name** is stored in the `/etc/vhostname` file. If the file does not exist, it will be created. If it does exist, the file contents will be overwritten by the new virtual host name. Virtual host names are limited to MAX_VHOSTNAME_LEN bytes (255), not including the terminating null character. The MAX_VHOSTNAME_LEN macro is defined in the `vhost.h` header file. The **name_length** parameter does not have to allow for the terminating null character, therefore, the largest allowable value for **name_length** is MAX_VHOSTNAME_LEN.

To clear the virtual host name so that the virtual host name no longer exists, remove the `/etc/vhostname` file.

Note: You must have root authority to remove the `/etc/vhostname` file.

The virtual host name is used in failover situations when an application has associated the host name in the kernel of a particular machine to the service it is providing. When the application is restarted on the failover node that has a different host name, the application may not work or work incorrectly. If the application needs to associate a host name with a particular service and it cannot handle having multiple host names, a virtual host name can be provided. The application can call **getvhostname** instead of **gethostname** and get the host name of the node it normally runs on. This eliminates the need to change the real host name in the kernel on the backup node. It should be noted that changing the real
setvhostname Subroutine

host name in the kernel can cause problems with other applications that rely on the real host name to identify the physical machine.

Note: The High Availability Cluster Multiprocessing (HACMP) event scripts supplied with the High Availability Control Workstation (HACWS) option of the IBM Parallel System Support Programs for AIX (PSSP), set and clear the virtual host name in the HACMP pre- and post-event scripts. The administrator should not normally have to set the virtual host name.

Return Values

Upon successful completion, the setvhostname subroutine returns a value of 0. Otherwise, a value of -1 is returned and the global variable errno is set to identify the error.

The setvhostname subroutine is unsuccessful if the following error occurs:

EINVAL Indicates that the name_length parameter is greater than MAX_VHOSTNAME_LEN or less than 0.

EPERM Indicates that the calling process does not have an effective root user ID.

If one of the system calls used to store the virtual host name into the /etc/vhostname file encounters an error (for example, open, write, rename), errno is set by the system call that encountered an error.

Related Information

Commands: vhostname

Subroutines: getvhostname

AIX Commands: hostname

AIX Subroutines: gethostname, sethostname

Examples

1. To clear the virtual host name so that it no longer exists, enter:
 rm /etc/vhostname

 Note: You must have root authority to remove the /etc/vhostname file.

2. To set the virtual host name to spcw_prim, enter:

 #include <string.h>

 #include <vhost.h>

 main ()
 {

 char name[]="spcw_prim";

 setvhostname(name, strlen(name));

 }
swclockGetIncrement Subroutine

Purpose

swclockGetIncrement – Returns the hertz frequency at which the switch clock operates.

Library

Switch Clock Library (libswclock.a)

Location

/usr/lib/libswclock.a

Syntax

#include <swclock.h>

int swclockGetIncrement(swclock_handle_t swclock_handle);

Parameters

swclock_handle Specifies the handle returned by the swclockInit subroutine.

Description

Use this thread-safe subroutine to obtain the hertz frequency at which the switch clock operates. Switch clock frequency can be used to convert the switch clock value returned by the swclockRead subroutine.

Return Values

Upon successful completion, the swclockGetIncrement subroutine returns the hertz frequency at which the switch clock operates. Otherwise, a value of -1 is returned and the global variable errno is set to identify the error.

Error Values

EINVAL Indicates that the switch clock read interface was not initialized by the current thread.

EPERM Indicates that a handle that was not valid was passed to the swclockGetIncrement subroutine.

Related Information

Subroutines: swclockInit, swclockRead, swclockReadSec, swclockTerm

Header File: swclock.h
swclockInit Subroutine

Purpose

swclockInit – Initializes the switch clock read interface for a thread.

Library

Switch Clock Library (libswclock.a)

Location

/usr/lib/libswclock.a

Syntax

```c
#include <swclock.h>

swclock_handle_t swclockInit(void);
```

Description

Use this thread-safe subroutine to initialize the switch clock read interface for the current thread. It returns a handle which must be passed as an input parameter to all other switch clock library subroutines.

Usage Notes:

1. This subroutine **must** be called on a per-thread basis.
2. This subroutine allocates a segment register (one per process) that might otherwise be used by shared memory, memory-mapped files or the extended heap.

Return Values

Upon successful completion, the **swclockInit** subroutine returns a handle that must be passed as input to all other switch clock library subroutines. Otherwise, a value of 0 is returned and the global variable **errno** is set to identify the error.

Error Values

EAGAIN Indicates that the node is not active on the switch. Since this may be a temporary condition, the **swclockInit** subroutine should be retried; IBM suggests a number of retry attempts of **SWCLOCK_RETRY**. If retry attempts are unsuccessful, refer to the “Using a Switch” chapter in the **PSSP: Administration Guide** for information on determining switch connectivity.

EBUSY Indicates that the switch clock lock for the process could not be obtained. The **swclockInit** subroutine should be retried; IBM suggests a number of retry attempts of **SWCLOCK_RETRY**.

ENOENT, ENXIO Indicates that either the switch adapter does not exist or the adapter did not configure successfully.
ENOMEM Indicates that the `swclockInit` subroutine could not obtain sufficient system resources to satisfy the request. The `swclockInit` subroutine should be retried; IBM suggests a number of retry attempts of `SWCLOCK_RETRY`.

ETXTBSY Indicates that diagnostics is running on the switch adapter. The `swclockInit` subroutine should be retried after adapter diagnostics have completed.

Related Information

PSSP: Administration Guide

Subroutines: `swclockGetIncrement`, `swclockRead`, `swclockReadSec`, `swclockTerm`

Header File: `swclock.h`
swclockRead Subroutine

Purpose

swclockRead – Returns the current switch clock value.

Library

Switch Clock Library (libswclock.a)

Location

/usr/lib/libswclock.a

Syntax

#include <swclock.h>

long64_t swclockRead(swclock_handle_t swclock_handle);

Parameters

swclock_handle – Specifies the handle returned by the swclockInit subroutine.

Description

Use this thread-safe subroutine to read the switch clock. The switch clock value can be converted using the frequency returned by the swclockGetIncrement subroutine. The swclockRead subroutine can be called as many times as needed once the switch clock read interface is initialized for the current thread.

The switch clock is synchronous across all nodes active on a switch. Its value is set to zero when the primary node powers on, and can be reset during switch operation and management.

Usage Notes:

1. IBM suggests that a SIGBUS signal handler be established before this subroutine is called since adapter problems can result in a bus error when the switch clock is accessed. The SIGBUS signal handler should regard such an error as permanent. For information on diagnosing adapter problems, refer to the “Diagnosing Switch Problems” chapter in the PSSP: Diagnosis Guide.

2. Callers of this subroutine may want to check for a switch clock value that has regressed since the previous call due to a wrap or resetting condition. The High Performance Switch communications adapter wraps after approximately 81 days, while the SP Switch communications adapter effectively has no wrap. For events that can reset the switch clock, refer to the “Using a Switch” chapter in the PSSP: Administration Guide.

Return Values

Upon successful completion, the swclockRead subroutine returns the current value of the switch clock. Otherwise, a value of -1 is returned and the global variable errno is set to identify the error.
Error Values

EAGAIN Indicates that the node is not active on the switch. Since this may be a temporary condition, the `swclockRead` subroutine should be retried; IBM suggests a number of retry attempts of `SWCLOCK_RETRY`. If retry attempts are unsuccessful, refer to the “Using a Switch” chapter in the *PSSP: Administration Guide* for information on determining switch connectivity.

EINVAL Indicates that the switch clock read interface was not initialized by the current thread.

EPERM Indicates that a handle that was not valid was passed to the `swclockRead` subroutine.

Related Information

PSSP: Diagnosis Guide

PSSP: Administration Guide

Subroutines: `swclockGetIncrement`, `swclockInit`, `swclockReadSec`, `swclockTerm`

Header File: `swclock.h`
swclockReadSec Subroutine

Purpose

swclockReadSec – Returns the current switch clock value in seconds.

Library

Switch Clock Library (libswclock.a)

Location

/usr/lib/libswclock.a

Syntax

#include <swclock.h>

double swclockReadSec(swclock_handle_t swclock_handle);

Parameters

swclock_handle – Specifies the handle returned by the swclockInit subroutine.

Description

Use this thread-safe subroutine to read the switch clock. The swclockReadSec subroutine returns switch clock value converted to seconds. It can be called as many times as needed to read the switch clock once the switch clock read interface is initialized for the current thread.

The switch clock is synchronous across all nodes active on a switch. Its value is set to zero when the primary node powers on, and can be reset during switch operation and management.

Usage Notes:

1. IBM suggests that a SIGBUS signal handler be established before this subroutine is called since adapter problems can result in a bus error when the switch clock is accessed. The SIGBUS signal handler should regard such an error as permanent. For information on diagnosing adapter problems, refer to the “Diagnosing Switch Problems” chapter in the PSSP: Diagnosis Guide.

2. Callers of this subroutine may want to check for a switch clock value that has regressed since the previous call due to a wrap or resetting condition. The High Performance Switch communications adapter wraps after approximately 81 days, while the SP Switch communications adapter effectively has no wrap. For events that can reset the switch clock, refer to the “Using a Switch” chapter in the PSSP: Administration Guide.

Return Values

Upon successful completion, the swclockReadSec subroutine returns the current value of the switch clock converted to seconds. Otherwise, a value of -1 is returned and the global variable errno is set to identify the error.
Error Values

EAGAIN Indicates that the node is not active on the switch. Since this may be a temporary condition, the `swclockReadSec` subroutine should be retried; IBM suggests a number of retry attempts of `SWCLOCK_RETRY`. If retry attempts are unsuccessful, refer to the “Using a Switch” chapter in the *PSSP: Administration Guide* for information on determining switch connectivity.

EINVAL Indicates that the switch clock read interface was not initialized by the current thread.

EPERM Indicates that a handle that was not valid was passed to the `swclockReadSec` subroutine.

Related Information

PSSP: Diagnosis Guide

PSSP: Administration Guide

Subroutines: `swclockGetIncrement`, `swclockInit`, `swclockRead`, `swclockTerm`

Header File: `swclock.h`
swclockTerm Subroutine

Purpose

swclockTerm – Terminates the switch clock read interface for a thread.

Library

Switch Clock Library (libswclock.a)

Location

/usr/lib/libswclock.a

Syntax

#include <swclock.h>

int swclockTerm(swclock_handle_t swclock_handle);

Parameters

swclock_handle Specifies the handle returned by the swclockInit subroutine.

Description

Use this thread-safe subroutine to terminate the switch clock read interface for the current thread. Switch clock library subroutines called subsequent to the swclockTerm subroutine will encounter an error unless the thread reinitializes the interface. If the swclockTerm subroutine is not called, the switch clock read interface will be terminated when the thread itself terminates.

Return Values

Upon successful completion, the swclockTerm subroutine returns a value of 0. Otherwise, a value of -1 is returned and the global variable errno is set to identify the error.

Error Values

EBUSY Indicates that the switch clock lock for the process could not be obtained. The swclockTerm subroutine should be retried; IBM suggests a number of retry attempts of SWCLOCK_RETRY.

EINVAL Indicates that the switch clock read interface was not initialized by the current thread.

EPERM Indicates that a handle that was not valid was passed to the swclockTerm subroutine.

Related Information

Subroutines: swclockGetIncrement, swclockInit, swclockRead, swclockReadSec

Header File: swclock.h
swtbl_adapter_connectivity Subroutine

Purpose

swtbl_adapter_connectivity – Returns the current state of connectivity for the specified adapter on the node from which it is invoked.

Library

Job Switch Resource Table Services library (libswitchtbl.a)

Syntax

#include <st_client.h>

int swtbl_adapter_connectivity(int version, char *adapter,
unsigned int *connectivity, int *ports)

Parameters

version Specifies the version of header file used. Should be ST_VERSION defined in st_client.h.

adapter Specifies the adapter to obtain status for.

connectivity Specifies the address of the unsigned integer to contain the connectivity state bitmap.

ports Specifies the address of the integer to contain the number of ports the bitmap represents.

Description

Use this subroutine to obtain the current state of connectivity for the specified adapter on the node from which it is invoked. The connectivity parameter will return a right justified bitmap representing the connectivity of the ports available on the specified adapter. The number of relevant bits in the bitmap is represented by the ports parameter.

A 1 bit indicates that the port has connectivity over the switch for sending and receiving data. A 0 bit indicates that the port is not connected to other ports over the switch.

The effective user ID of the calling process must be the root user ID.

Any information or error messages are recorded in the /var/adm/SPlogs/st/st_log file. Additional debug information is recorded in the log by setting the SWTBLAPIERRORMSGS environment variable to yes.

Return Values

Upon successful completion, the swtbl_adapter_connectivity subroutine returns a value of ST_SUCCESS. Otherwise, it returns an error value defined by the ST_RETURN_CODE enumerator found in st_client.h.
swtbl_adapter_connectivity Subroutine

Error Values

- **ST_INVALID_PARAM** Indicates that a specified parameter was not valid. The /var/adm/SPlogs/st/st_log file will have further details.
- **ST_NOT_AUTHOR** Indicates that the caller did not have effective root user ID.
- **ST_NO_SWITCH** An invalid adapter name was specified or the API call is not supported on this node’s Switch type. The /var/adm/SPlogs/st/st_log file will have further details.
- **ST_SWITCH_NOT_LOADED** Indicates that the switch table is not currently loaded.
- **ST_SYSTEM_ERROR** Indicates a system error occurred. The /var/adm/SPlogs/st/st_log file will have further details.

Related Information

- **Commands:** st_clean_table, st_status
- **Subroutines:** swtbl_adapter_resources, swtbl_clean_table, swtbl_load_job, swtbl_load_table, swtbl_status, swtbl_status_node, swtbl_unload_job
- **Files:** /usr/lpp/ssp/include/st_client.h, /var/adm/SPlogs/st/st_log

Examples

Code fragment to obtain the connectivity of css0 on the current node:
```c
#include <st_client.h>

main() {
    int rc;
    unsigned int connectivity;
    int ports;

    rc = swtbl_adapter_connectivity(ST_VERSION,"css0", &connectivity,&ports);
    fprintf(stdout,"swtbl_adapter_connectivity returned %d\n",rc);
    if (rc == ST_SUCCESS) {
        fprintf(stdout,"adapter %s:\n","css0");
        if ((ports == 1) || (ports == 2 )) {
            fprintf(stdout,"\tport 1: ");
            if (connectivity == 0)
                fprintf(stdout," 0\n");
            else if (connectivity == 1)
                fprintf(stdout," 1\n");
        }
        if (ports == 2) {
            fprintf(stdout,"\tport 2: ");
            if (connectivity == 2 || connectivity == 3)
                fprintf(stdout," 1\n");
            else
                fprintf(stdout," !zerodot\n");
        }
    }
}
```
swtbl_adapter_resources Subroutine

Purpose

swtbl_adapter_resources – Returns the configured resources of the specified adapter on the node from which it is invoked.

Library

Job Switch Resource Table Services library (libswitchtbl.a)

Syntax

```c
#include <st_client.h>

int swtbl_adapter_resources(int version, char *adapter,\
                          struct ST_ADAPTER_RESOURCES *resources)
```

Parameters

- **version** Specifies the version of header file used. Should be `ST_VERSION` defined in `st_client.h`.
- **adapter** Specifies the adapter to obtain configured resources for.
- **resources** Specifies the address of the ST_ADAPTER_RESOURCES struct to contain the configured resources.

Description

Use this subroutine to obtain the configured resources of the adapter specified on the node from which it is invoked. The ST_ADAPTER_RESOURCES structure will contain information about the number of logical windows available on the adapter; the maximum and minimum DMA memory available for request per window; the aggregate amount of device memory available for unreserved windows to request; a list of unreserved windows; and a count of the unreserved windows. All memory data is represented in bytes. This information should be used in conjunction with the `swtbl_load_table` or `swtbl_load_job` APIs.

The effective user ID of the calling process must be the root user ID.

Any information or error messages are recorded in the `/var/adm/SPlogs/st/st_log` file. Additional debug information will be recorded in the log by setting the SWTBLAPIERRORMSGS environment variable to yes.

Return Values

Upon successful completion, the `swtbl_adapter_resources` subroutine returns a value of `ST_SUCCESS`. Otherwise, it returns an error value defined by the `ST_RETURN_CODE` enumerator found in `st_client.h`.

The following data members are returned when the st_return_code returns `ST_SUCCESS`:

- **st_max_windows** The maximum number of logical windows on the adapter. Could be reserved or not reserved.
swtbl_adapter_resources Subroutine

- **st_max_window_memory**
 The maximum memory allowed per window.

- **st_min_window_memory**
 The guaranteed minimum memory per window.

- **st_avail_adapter_memory**
 The aggregate amount of DMA device memory available for unreserved windows.

- **st_window_list**
 List of unreserved window IDs available for use.

- **st_window_count**
 Count of unreserved windows. Size of st_window_list array.

Error Values

- **ST_INVALID_PARAM** Indicates that a specified parameter was not valid. The
 /var/adm/SPlogs/st/st_log file will have further details.

- **ST_NOT_AUTHOR** Indicates that the caller did not have effective root user ID.

- **ST_NO_SWITCH** The open call of the specified adapter was unsuccessful.

- **ST_SYSTEM_ERROR** Indicates a system error occurred. The
 /var/adm/SPlogs/st/st_log file will have further details.

Related Information

For more information about reserved windows and window memory, see the
chgcss command.

Commands: st_clean_table, st_status

Subroutines: swtbl_adapter_connectivity, swtbl_clean_table, swtbl_load_job,
swtbl_load_table, swtbl_status, swtbl_status_node, swtbl_unload_job

Files: /usr/lpp/ssp/include/st_client.h, /var/adm/SPlogs/st/st_log

Examples

Code fragment to report the configured resources for css0 on the current node:
/* include <st_client.h> */

main() {
 int rc;
 struct ST_ADAPTER_RESOURCES resources;

 rc = swtbl_adapter_resources(ST_VERSION, "css0", &resources);
 fprintf(stdout, "swtbl_adapter_resources returned %d\n", rc);
 if (rc == ST_SUCCESS) {
 fprintf(stdout, "\tconfigured schedulable windows = %d\n",
 resources.st_max_windows);
 fprintf(stdout, "\tconfigured adapter memory = %d\n",
 resources.st_avail_adapter_memory);
 fprintf(stdout, "\tconfigured max adapter window memory = \n%
 %d\n", resources.st_max_window_memory);
 fprintf(stdout, "\tconfigured min adapter window memory = \n%
 %d\n", resources.st_min_window_memory);
 fprintf(stdout, "\tconfigured window count = %d\n",
 resources.st_window_count);
 fprintf(stdout, "\tconfigured window list= ");
 for (i=0; i<resources.st_window_count; i++)
 fprintf(stdout, "\t%d", resources.st_window_list[i]);
 fprintf(stdout, "\t\n");
 }
}
swtbl_clean_table Subroutine

Purpose

swtbl_clean_table – Forces the unload of the job switch resource table window on the node from which it is invoked.

Library

Job Switch Resource Table Services library (libswitchtbl.a)

Syntax

```c
#include <st_client.h>

int swtbl_clean_table(int version, char *adapter, int option, int window_id);
```

Parameters

- `version` Specifies the version of header file used. Should be `ST_VERSION` defined in `st_client.h`.
- `adapter` Specifies the adapter to be opened upon which the window resides.
- `option ST_OPTION` enumeration value which indicates the following action:
 - `ST_LEAVE_INUSE`: If a process is currently using the switch table then don't force the unload.
 - `ST_ALWAYS_KILL`: If a process is currently using the switch table, stop the process and unload the table.
- `window_id` Specifies the window ID for which the unload and cleanup will be done. If `window_id` equals -1, then the default window will be unloaded.

Description

Use this subroutine to override user ID (uid) checking and to unload the job switch resource table window on the node from which it is invoked.

Normal unloading of the job switch resource table window by the `swtbl_unload_table` API verifies that the uid of the unload matches the uid specified during the load. The `swtbl_clean_table` API ignores this verification and allows the caller to unload the window from a node.

This subroutine should be used for error recovery and not for normal switch table unloading. For example, when a parallel job has left a process in use and the window did not unload by the `swtbl_unload_table` API, the caller can use `swtbl_clean_table` to clean up that node.

If the `ST_LEAVE_INUSE` option is specified and a process is using the switch, the `swtbl_clean_table` will not unload the window.
swtbl_clean_table Subroutine

If the **ST_ALWAYS_KILL** option is specified, and a process is using the switch then the process will be stopped by a **SIGKILL** signal.

To invoke this interface, the effective userid of the calling process must be the root userid.

The default window is specified within the **st_client.h** file.

Any information or error messages are recorded in the `/var/adm/SPlogs/st/st_log` file.

Additional debug information will be recorded in the log by setting the
SWTBLAPIERRORMSGS environment variable to yes.

Return Values

Upon successful completion, the `swtbl_clean_table` subroutine returns a value of **ST_SUCCESS**. Otherwise, it returns an error value defined by the **ST_RETURN_CODE** enumerator found in **st_client.h**.

Error Values

- **ST_INVALID_PARAM** Indicates that a specified parameter was not valid. The `/var/adm/SPlogs/st/st_log` file will have further details.
- **ST_NOT_AUTHOR** Caller did not have effective root user ID.
- **ST_NO_SWITCH** The open call of the specified adapter was unsuccessful.
- **ST_SWITCH_NOT_LOADED** Indicates that the **window_id** is not currently loaded.
- **ST_SWITCH_IN_USE** Indicates that the **window_id** is currently in use and the **ST_LEAVE_INUSE** option was specified.
- **ST_SYSTEM_ERROR** Indicates a system error occurred. The `/var/adm/SPlogs/st/st_log` file will have further details.
- **ST_RESERVED** Indicates the **window_id** specified has been reserved by a reserving component and cannot be unloaded.

Related Information

For more information about reserved windows, see the **chgcss** command.

Commands: **st_clean_table**, **st_status**

Subroutines: `swtbl_adapter_connectivity`, `swtbl_adapter_resources`, `swtbl_load_job`, `swtbl_load_table`, `swtbl_unload_job`, `swtbl_unload_table`, `swtbl_status`, `swtbl_status_node`

Files: `/usr/lpp/ssp/include/st_client.h`, `/var/adm/SPlogs/st/st_log`
Examples

To clean up a running process and unload the table from this node:
#include <st_client.h>

main() {
 int rc;
 enum ST_OPTION option = ST_ALWAYS_KILL;
 int window_id = 1;

 rc = swtbl_clean_table(ST_VERSION,"css0",option,window_id);
 fprintf(stdout,"swtbl_clean_table returned %d\n");
}
swtbl_load_job Subroutine

Purpose

swtbl_load_job – Loads the job switch resource table on the indicated nodes for a single job.

Library

Job Switch Resource Table Services library (libswitchtbl.a)

Syntax

```
#include <st_client.h>

int swtbl_load_job(int version, uid_t uid, int job_key, int num_tasks, char *job_desc, char *cws, ST_NODE_INFO *nodeinfo);
```

Parameters

- **version**: Specifies the version of header file used. Should be ST_VERSION defined in st_client.h.
- **uid**: Specifies the real user ID of the user for whom the tables are being loaded and who will be authenticated to run the user space job.
- **job_key**: Specifies a globally unique job key. This job key is then used later by the user space job to access the table. Must be greater than 0.
- **num_tasks**: Specifies the number of tasks that will be accessing the job switch resource table during user space execution.
- **job_desc**: Specifies the string describing the job that will be using the job switch resource table. Maximum length of 50 characters, truncated after maximum. Defaults to "no_job_description_given".
- **cws**: Specifies the string representing the control workstation or system partition where the specified nodes reside. It is used to determine the switch node numbers defined within the System Data Repository (SDR). The default is the SP_NAME environment variable.
- **nodeinfo**: Specifies the pointer to the ST_NODE_INFO structure array that was allocated and defined by the caller. A nodeinfo structure must exist for every num_tasks defined. ST_NODE_INFO members:
 - **char st_node_name**: Indicates the name or dotted decimal IP string of the node for which this data pertains. It works in combination with st_addr, if st_node_name is NULL, the st_addr must contain the struct in_addr address of the node. The st_node_name is checked first and if non-NULL, the st_addr is ignored. The maximum length is 256 characters.
swtbl_load_job Subroutine

struct in_addr st_addr
 Indicates the network address of the node for which this data pertains. It works in combination with st_node_name, the st_node_name must be NULL to use this.

int st_virtual_task_id
 Specifies an integer between 0 and (num_tasks-1), which represents this task.

int st_window_id
 Specifies the window id to be loaded and used by the corresponding task id. Each window is dedicated to a task and cannot be shared. If -1 is specified, then the default window will be used.

int st_adapter
 Specifies the adapter where the window resides. It must be the same for all entries in the ST_NODE_INFO array. It needs to be a value from the ST_ADAPTER enumerator defined in st_client.h.

int st_window_memory
 Specifies the maximum device memory allocation for the window. The value represents bytes.

Description

Use this subroutine to load all of the job switch resource tables needed for a single parallel job. A switch table needs to be loaded upon every node used by the job for communication in user space mode over the switch. The JSRT Services should be used by non-reserving components.

An ST_NODE_INFO structure needs to be defined for every task in the parallel job. Each structure defines the task, window, and node relationship, and the array of structures defines how the tasks of the parallel job will communicate. The swtbl_load_job subroutine interfaces with the switchtbld daemon over the network to call the local swtbl_load_table API which loads the table on that node.

The first st_adapter specified in the nodeinfo array is used to open the device and load the job switch resource table.

Valid st_window_memory ranges can be obtained from the swtbl_adapter_resources API. This data member can be optional. A 0 value indicates that the device driver will determine the window size. It will be the smaller value of the following two: available memory or win_maxsize set by the administrator using the chgcss command.

If DCE security checking is being used, the userid of the calling process must have the DCE credentials of the switchtbld-load group to use this function. If DCE security checking is not being used, the effective user ID of the calling process must be the root user ID.

Any information or error messages are recorded in the /var/adm/SPlogs/st/st_log file on the calling node and for all of the nodes within the request. Additional debug information will be recorded in the log by setting the SWTBLAPIERRORMSGS environment variable to yes.
swtbl_load_job Subroutine

The default window is defined within the `st_client.h` header file.

Return Values

Upon successful completion, the `swtbl_load_job` subroutine returns a value of `ST_SUCCESS`. Otherwise, it returns an integer value defined by the `ST_RETURN_CODE` enumerator found in `st_client.h`.

The `ST_NODE_INFO` member `st_return_code` is updated to reflect any errors that may have occurred on the individual nodes. This return code corresponds to the return code of the `swtbl_load_table` API called on that node.

The `ST_ALREADY_CONNECTED` return code does not indicate an error. It means that the load request was already sent to that node because the `st_node_name` was defined within a previous nodeinfo structure.

The `ST_UNLOADED` return code indicates that the switch table was unloaded upon that node after another node within the same request encountered an error.

Error Values

- **ST_CANT_CONNECT** Indicates that the connect request was unsuccessful.
- **ST_INVALID_ADDR** Indicates the node name or node address specified could not be resolved.
- **ST_INVALID_PARAM** Indicates that a specified parameter was not valid. The `/var/adm/SPlogs/st/st_log` file will have further details.
- **ST_INVALID_TASK_ID** The virtual task ID was negative, greater than the number of tasks requested, or not all task IDs were specified for the `num_tasks` parameter.
- **ST_NOT_AUTHOR** Indicates that DCE security authorization was unsuccessful or the caller did not have effective root user ID.
- **ST_NOT_AUTHEN** Indicates that DCE security authentication was unsuccessful.
- **ST_SDR_ERROR** Indicates an error occurred during interaction with the SDR.
- **ST_SWITCH_NOT_LOADED** Indicates that the load request was not issued due to another error.
- **ST_SYSTEM_ERROR** Indicates a system error occurred. The `/var/adm/SPlogs/st/st_log` file will have further details.
- **ST_NO_SWITCH** Indicates that the specified `st_adapter` parameter was not valid.
- **ST_RESERVED** Indicates the `st_window_id` specified has been reserved by a reserving component and cannot be used. Use `swtbl_adapter_resources` to obtain a valid list of window IDs.
- **ST_SECURITY_ERROR** Indicates that a general DCE security services error occurred (not authorization or authentication).
ST_TCP_ERROR
Indicates that a read, write or select encountered an error on a TCP/IP socket.

ST_CANT_ALLOC
Indicates that storage could not be allocated.

Related Information

For more information about reserved windows and window memory, see the `chgcss` command.

Commands: `st_clean_table`, `st_status`

Subroutines: `swtbl_adapter_resources`, `swtbl_adapter_connectivity`, `swtbl_clean_table`, `swtbl_load_table`, `swtbl_status`, `swtbl_status_node`, `swtbl_unload_job`, `swtbl_unload_table`

Files: `/usr/lpp/ssp/include/st_client.h`, `/var/adm/SPlogs/st/st_log`
swtbl_load_job Subroutine

Examples

Code fragment to load the job switch resource table for a job that will be executing on two nodes:
#include <st_client.h>

main() {
 int rc;
 int job_key;
 int num_tasks = 2;
 struct ST_NODE_INFO node[num_tasks];
 struct hostent *hp;
 uid_t uid;

 uid = set_user_id(); /* User defined routine to get uid */
 job_key = set_unique_key(); /* User defined routine to get job_key */

 strcpy(node[0].st_node_name,"Node1");
 node[0].st_window_id = 0;
 node[0].st_virtual_task_id = 0;
 node[0].st_window_memory = get_valid_window_memory();
 node[0].st_adapter = CSS0;

 hp = gethostbyname("Node2");
 bcopy(hp->h_addr_list[0],&node[1].swtbl_addr,hp->h_length);
 node[1].st_window_id = 1;
 node[1].st_virtual_task_id = 1;
 node[1].st_window_memory = get_valid_window_memory();
 node[1].st_adapter = CSS0;

 rc = swtbl_load_job(ST_VERSION,uid,job_key,num_tasks,"User1_job",NULL,node);
 fprintf(stdout,"swtbl_load_job returned %d\n",rc);
}

Chapter 3. SP Subroutines 515
swtbl_load_table Subroutine

Purpose

```
swtbl_load_table – Loads a job switch resource table on the node from which it is
invoked.
```

Library

```
Job Switch Resource Table Services library (libswitchtbl.a)
```

Syntax

```
#include <st_client.h>

int swtbl_load_table(int version,uid_t uid,pid_t pid,int job_key, \
char requester_node, int num_tasks,char *job_desc,\
ST_NODE_INFO *nodeinfo);
```

Parameters

```
version Specifies the version of header file used. Should be
ST_VERSION defined in st_client.h.

uid Specifies the real user ID of the user for whom the table is being
loaded and who will be authenticated to run the user space job.

pid Specifies the process ID (pid) of the calling process, typically a
job scheduler.

job_key Specifies a globally unique job key. This job key is then used
later by the user space job to access the table. Must be greater
than 0.

requester_node Specifies the name of the node from which the request is being
made. It is used in conjunction with swtbl_load_job API to
determine where the load was made from. The default is
"no_request_node_given"

num_tasks Specifies the number of tasks that are accessing the job switch
resource table during user space execution.

job_desc Specifies the string that describes the job that is using the job
switch resource table. Maximum length of 50 characters,
truncated after maximum. Defaults to "no_job_description_given".

nodeinfo Specifies the pointer to the ST_NODE_INFO structure array that
was allocated and defined by the caller. A nodeinfo structure
must exist for every num_tasks defined-ST_NODE_INFO
members:

  int st_virtual_task_id
    Specifies an integer between 0 and (num_tasks-1),
    which represents this task.
```
swtbl_load_table Subroutine

'int st_switch_node_num
Specifies the switch node number from the System Data Repository (SDR) for the node defined by this structure.

'int st_window_id
Specifies the window ID to be loaded and used by the corresponding task ID. Each window is dedicated to task and cannot be shared. If -1 is specified, then the default window will be used.

'int st_adapter
Specifies the adapter where the window resides. It must be the same for all entries in the ST_NODE_INFO array. It needs to be a value from the ST_ADAPTER enumerator defined in st_client.h.

'int st_window_memory
Specifies the maximum device memory allocation for the window. The value represents bytes.

Description
Use this subroutine to load the job switch resource table on the node from which it is invoked. This switch table is used by parallel jobs running user space over the switch. The JSRT Services should be used by non-reserving components.

An ST_NODE_INFO structure needs to be defined for every task in the parallel job. Each structure defines the task, window, and node relationship, and the array of structures defines how the parallel job tasks will communicate.

The first st_adapter specified in the nodeinfo array is used to open the device and load the job switch resource table.

Valid st_window_memory ranges can be obtained from the swtbl_adapter_resources API. This data member can be optional. A 0 value indicates that the device driver will determine the window size. It will be the smaller value of the following two: available memory or win_maxsize set by the administrator using the chgcss command.

The effective userid of the calling process must be the root userid.

Any information or error messages are recorded in the /var/adm/SPlogs/st/st_log file. Additional debug information can be recorded in the log by setting the SWTBLAPIERRORMSGS environment variable to yes.

The default window is defined within the st_client.h header file.

Return Values
Upon successful completion, the swtbl_load_table subroutine returns a value of ST_SUCCESS. Otherwise, it returns an integer value defined by the ST_RETURN_CODE enumerator found in st_client.h.

The ST_NODE_INFO member st_return_code is not updated by this subroutine.
Error Values

ST_DOWNON_SWITCH
Indicates that one or more nodes in switch table list are down on the switch or outside the switch boundaries.

ST_INVALID_PARAM
Indicates that a specified parameter was not valid. The `/var/adm/SPlogs/st/st_log` file will have further details.

ST_INVALID_TASK_ID
The virtual task ID was negative or greater than the number of tasks requested. Not all task IDs were specified for the `num_tasks` parameter.

ST_NO_SWITCH
Indicates that the specified `st_adapter` parameter was not valid.

ST_NOT_AUTHOR
Caller did not have effective root user ID.

ST_INVALID_ADDR
Indicates the node name or node address specified could not be resolved.

ST_SWITCH_IN_USE
Indicates a switch table is already loaded or the switch table is loaded and in use.

ST_SYSTEM_ERROR
Indicates a system error occurred. The `/var/adm/SPlogs/st/st_log` file will have further details.

ST_SWNODENUM_ERROR
Indicates that the `/spdata/sys1/st/switch_node_number` value was not valid.

ST_RESERVED
Indicates the `st_window_id` specified has been reserved by a reserving component and cannot be used. Use `swtbl_adapter_resources` to obtain a valid list of window IDs.

Related Information

For more information about reserved windows and window memory, see the `chgcss` command.

Commands: `st_clean_table`, `st_status`

Subroutines: `swtbl_adapter_resources`, `swtbl_adapter_connectivity`, `swtbl_clean_table`, `swtbl_load_job`, `swtbl_status`, `swtbl_status_node`, `swtbl_unload_job`, `swtbl_unload_table`

Files: `/usr/lpp/ssp/include/st_client.h`, `/var/adm/SPlogs/st/st_log`

Examples

Code fragment to load the job switch resource table for a job that will be running on 2 nodes:
```c
#include <st_client.h>

main() {
    int i, rc;

    struct ST_NODE_INFO node[2];
    uid_t uid;
    pid_t pid;
    int job_key;
    int num_tasks = 2;
    char hostname[MAXHOSTNAMELEN];

    uid = set_user_id();    /* User defined routine to get uid */
    pid = getpid();
    gethostname(hostname, MAXHOSTNAMELEN);
    job_key = set_unique_key(); /* User defined routine to get job_key */

    node[0].st_virtual_task_id = 0;
    node[0].st_window_id = 0;
    node[0].st_switch_node_num = get_num_from_SDR(); /* get switch num */
    node[0].st_adapter = CSSO;
    node[0].st_window_memory = get_valid_window_range();

    node[1].st_virtual_task_id = 1;
    node[1].st_window_id = 1;
    node[1].st_switch_node_num = get_num_from_SDR(); /* get switch num */
    node[1].st_adapter = CSSO;
    node[1].st_window_memory = get_valid_window_range();
```
swtbl_load_table Subroutine

 rc = swtbl_load_table(ST_VERSION, uid, pid, job_key, hostname, num_tasks,
 "User1_job", node);

 fprintf(stdout, "swtbl_load_table returned %d\n", rc);
 }

 Command and Technical Reference, Volume 2
swtbl_query_adapter Subroutine

Purpose

swtbl_query_adapter – Returns the status of the adapter specified on the node from which it is invoked.

Library

Job Switch Resource Table Services library (libswitchtbl.a)

Syntax

#include <st_client.h>

int swtbl_query_adapter(int version, char *adapter, \
enum ST_ADAPTER_STATUS *status)

Parameters

version Specifies the version of header file used. Should be ST_VERSION defined in st_client.h.

adapter Specifies the adapter to obtain status for.

status Specifies the address of the ST_ADAPTER_STATUS enum to contain the status.

Description

Use this subroutine to obtain the current status of the adapter specified on the node from which it is invoked. The ST_ADAPTER_STATUS variable will contain ADAPTER_READY or ADAPTER_NOTREADY. ADAPTER_READY indicates that the node has connectivity over the switch for sending and receiving data. ADAPTER_NOTREADY indicates that the node is not connected to other nodes over the switch.

The effective userid of the calling process must be the root userid.

Any information or error messages are recorded in the /var/adm/SPlogs/st/st_log file. Additional debug information can be recorded in the log by setting the SWTBLAPIERRORMSGS environment variable to yes.

Return Values

Upon successful completion, the swtbl_query_adapter subroutine returns a value of ST_SUCCESS. Otherwise, it returns an integer value defined by the ST_RETURN_CODE enumerator found in st_client.h.

Error Values

ST_INVALID_PARAM Indicates that a specified parameter was not valid. The /var/adm/SPlogs/st/st_log file will have further details.

ST_NO_SWITCH The open call of the specified adapter was unsuccessful.
swtbl_query_adapter Subroutine

ST_NOT_AUTHOR Indicates that the caller did not have an effective root user ID.

ST_SYSTEM_ERROR Indicates a system error occurred. The `/var/adm/SPlogs/st/st_log` file will have further details.

Related Information

Commands: `st_clean_table`, `st_status`

Subroutines: `swtbl_clean_table`, `swtbl_load_job`, `swtbl_load_table`, `swtbl_status`, `swtbl_status_node`, `swtbl_unload_job`

Files: `/usr/lpp/ssp/include/st_client.h`, `/var/adm/SPlogs/st/st_log`

Examples

Code fragment to query `css0` on the current node:

```c
#include <st_client.h>

main() {
    int rc;
    enum ST_ADAPTER_STATUS status;

    rc = swtbl_query_adapter(ST_VERSION,"css0",&status);
    fprintf(stdout,"swtbl_query_adapter returned %d\n",rc);
    fprintf(stdout,"status = %d\n",status);
}
```
swtbl_status Subroutine

Purpose

swtbl_status – Returns the status of all job switch resource table windows upon a node.

Library

Job Switch Resource Table Services library (libswitchtbl.a)

Syntax

```c
#include <st_client.h>

int swtbl_status(int version, int num_nodes, ST_STATUS *status_info);
```

Parameters

- **version**
 Specifies the version of header file used. Should be `ST_VERSION` defined in `st_client.h`.

- **num_nodes**
 Specifies the number of nodes on which status is reported.

- **status_info**
 Specifies the pointer to the array of `ST_STATUS` structures that was allocated by the caller. A `status_info` structure must exist for every `num_nodes` defined. `ST_STATUS` members include:

 - **char st_node_name**
 Indicates the name or dotted decimal IP string of the node for which this data pertains. It works in combination with `st_addr`, if `st_node_name` is NULL, then `st_addr` must contain the struct `in_addr` address of the node. The `st_node_name` is checked first and if non-NULL, the `st_addr` is ignored. The maximum length is 256 characters.

 - **struct in_addr st_addr**
 Indicates the network address of the node for which this data pertains. Works in combination with `st_node_name`, the `st_node_name` must be NULL to use this.

Description

Use this subroutine to return the status of all job switch resource table windows on the nodes specified within each `ST_STATUS` structure. This subroutine interfaces with the `switchtbld` daemon to call the local `swtbl_status_node` API on each node. Each node returns a linked list of `ST_STATUS` structures representing the windows defined upon that node. Status will be reported for reserved and non-reserved windows. The caller is responsible for freeing the memory allocated for the linked list. A `NULL` *next pointer indicates the end.

If a window is loaded, the corresponding `ST_STATUS` structure will contain information about who made the load request, which user was designated to use the table and when the request was made. If a window is not loaded or an error occurred, the `st_return_code` contains the corresponding error value. If an error occurs that is related to a node and not a window, for example
ST_CANT_CONNECT, the ST_STATUS structure will not contain window or adapter information.

If DCE security checking is being used, the calling process must have the DCE credentials of the switchtbld-status group to use this function.

The swtbl_status API gives no information about whether the switch table is in use or not.

Any information or error messages are recorded in the /var/adm/SPlogs/st/st_log file on the calling node and for all of the nodes within the request. Additional debug information can be recorded in the log by setting the SWTBLAPIERRORMSGS environment variable to yes.

Return Values

The swtbl_status subroutine returns a value of ST_SUCCESS when status has been obtained from all of the nodes requested. An error value indicates that an error occurred getting the status. The status of each individual node's windows are represented by the st_return_code data member of the ST_STATUS linked list.

This return code corresponds to the return code of the swtbl_status_node API called on that node.

All return codes are defined by the ST_RETURN_CODE enumerator found in st_client.h.

The following data members are returned when the st_return_code returns ST_SUCCESS. This indicates that the switch table window is loaded:

- st_user_name: The name corresponding to the userid given during the load request.
- st_node_name: Node for which this status is reported.
- st_req_node: Node from which the load request was issued.
- st_description: String given during load request describing the job using the switch table.
- st_time_loaded: Timestamp of when the load request was processed.
- st_client_pid: Pid of the process who made the load request.
- st_uid: The userid given during the load request for the user who will be using the switch table.
- st_window_id: Window for which the data is being reported.
- st_adapter: Adapter for which the status is being reported.
- st_window_memory: Window memory requested during the swtbl_load_table call for use by the task.

The following data members are returned when the st_return_code returns ST_RESERVED. This return code does not indicate an error. It indicates that the window is reserved by a reserving component.

- st_window_id: Window for which the data is being reported.
- st_adapter: Adapter for which the status is being reported.
swtbl_status Subroutine

st_description String indicating the reserving component ID.

Error Values

ST_CANT_CONNECT Indicates that the connect request was unsuccessful.

ST_INVALID_PARAM Indicates that a specified parameter was not valid. The /var/adm/SPlogs/st/st_log file will have further details.

ST_SWITCH_NOT_LOADED Indicates that the switch table is not currently loaded. The st_window and st_adapter fields will contain the relevant information.

ST_LOADED_BYOTHER Indicates that the switch table is currently loaded but was not loaded via the Job Switch Resource Table Services.

ST_SYSTEM_ERROR Indicates a system error occurred. The /var/adm/SPlogs/st/st_log file will have further details.

ST_NO_SWITCH The open call of /dev/css0 was unsuccessful.

ST_NOT_AUTHOR Indicates that DCE security authorization was unsuccessful

ST_NOT_AUTHEN Indicates that DCE security authentication was unsuccessful

ST_SECURITY_ERROR Indicates that a general DCE security services error occurred (not authorization or authentication).

ST_TCP_ERROR Indicates that a read, write or select was unsuccessful on a TCP/IP socket.

ST_CANT_ALLOC Indicates that storage could not be allocated for the function.

Related Information

For more information about reserved windows, see the chgcss command.

Commands: st_clean_table, st_status

Subroutines: swtbl_adapter_connectivity, swtbl_adapter_resources, swtbl_clean_table, swtbl_load_job, swtbl_load_table, swtbl_status_node, swtbl_unload_job, swtbl_unload_table

Files: /usr/lpp/ssp/include/st_client.h, /var/adm/SPlogs/st/st_log

Examples

Code fragment to get the status for three nodes:
#include <st_client.h>

main() {
 int i, rc;
 int num_nodes = 3;
 struct ST_STATUS status[num_nodes];

 strcpy(status_info[0].st_node_name,"k10n09");
 strcpy(status_info[1].st_node_name,"129.40.161.74");
 strcpy(status_info[2].st_node_name,"k10n11");

 rc = swtbl_status(ST_VERSION,num_nodes,status_info);
 printf(stdout,"swtbl_status returned %d\n",rc);
 print_header();
 for (i=0; i<num_tasks; i++) {
 /* Print out each member of the struct */
 print_status(status_info[i]);
 }
}
swtbl_status_node Subroutine

Purpose

swtbl_status_node – Returns the status of all job switch resource table windows on the node from which it is invoked.

Library

Job Switch Resource Table Services library (libswitchtbl.a)

Syntax

```c
#include <st_client.h>

swtbl_status_node(int version, ST_STATUS *status_info);
```

Parameters

- **version**: Specifies the version of header file used. Should be `ST_VERSION` defined in `st_client.h`.
- **status_info**: Specifies the pointer to the `ST_STATUS` structure that was allocated by the caller.

Description

Use this subroutine to return the status of all job switch resource table windows on the node from which it is invoked. The caller must supply the first `ST_STATUS` structure but the API will allocate any remaining structures depending on the number of windows defined for that node. These structures will be linked to the first `ST_STATUS` by the next pointer. The caller is responsible for freeing all allocated memory. If a window is loaded, the corresponding `ST_STATUS` structure will contain information about who made the load request, which user was designated to use the table and when the request was made. If a window is not loaded or an error occurred, the `st_return_code` contains the corresponding error value.

The `swtbl_status_node` API gives no information about whether the switch table is in use or not.

The effective userid of the calling process must be the root userid.

Any information or error messages are recorded in the `/var/adm/SPlogs/st/st_log` file. Additional debug information can be recorded in the log by setting the `SWTBLAPIERRORMSGS` environment variable to yes.

Return Values

Upon successful completion, the `swtbl_status_node` subroutine returns a value of `ST_SUCCESS`. Otherwise, it returns an integer value defined by the `ST_RETURN_CODE` enumerator found in `st_client.h`.

The following data members are returned when the switch table is loaded:

- **st_user_name**: The name corresponding to the uid given during the load request.
swtbl_status_node Subroutine

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>st_node_name Node for which this status is reported.</td>
</tr>
<tr>
<td>st_req_node Node from which the load request was issued.</td>
</tr>
<tr>
<td>st_description String given during load request describing the job using the switch table.</td>
</tr>
<tr>
<td>st_time_loaded Timestamp of when the load request was processed.</td>
</tr>
<tr>
<td>st_client_pid Pid of the process who made the load request.</td>
</tr>
<tr>
<td>st_uid The userid given during the load request for the user who will be using the switch table.</td>
</tr>
<tr>
<td>st_window_id Window for which the data is being reported.</td>
</tr>
<tr>
<td>st_adapter Adapter for which the status is being reported.</td>
</tr>
<tr>
<td>st_window_memory Window memory requested during the swtbl_load_table call for use by the task.</td>
</tr>
</tbody>
</table>

The following data members are returned when the st_return_code returns ST_RESERVED. This return code does not indicate an error. It indicates that the window is reserved by a reserving component.

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>st_window_id Window for which the data is being reported.</td>
</tr>
<tr>
<td>st_adapter Adapter for which the status is being reported.</td>
</tr>
<tr>
<td>st_description String indicating the reserving component ID.</td>
</tr>
</tbody>
</table>

Error Values

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST_NOT_AUTHOR</td>
<td>Indicates that the caller did not have an effective root user ID.</td>
</tr>
<tr>
<td>ST_INVALID_PARAM</td>
<td>Indicates that a specified parameter was not valid. The /var/adm/SPlogs/st/st_log file will have further details.</td>
</tr>
<tr>
<td>ST_NO_SWITCH</td>
<td>The open call of /dev/css0 was unsuccessful.</td>
</tr>
<tr>
<td>ST_SWITCH_NOT_LOADED</td>
<td>Indicates that the switch table is not currently loaded.</td>
</tr>
<tr>
<td>ST_LOADED_BYOTHER</td>
<td>Indicates that the switch table is currently loaded but was not loaded via the Job Switch Resource Table Services.</td>
</tr>
<tr>
<td>ST_SYSTEM_ERROR</td>
<td>Indicates a system error occurred. The /var/adm/SPlogs/st/st_log file will have further details.</td>
</tr>
</tbody>
</table>

Related Information

For more information about reserved windows, see the chgcss command.

Commands: st_clean_table, st_status

Subroutines: swtbl_adapter_connectivity, swtbl_adapter_resources, swtbl_clean_table, swtbl_load_job, swtbl_load_table, swtbl_status, swtbl_unload_job, swtbl_unload_table

Files: /usr/lpp/ssp/include/st_client.h, /var/adm/SPlogs/st/st_log
Examples

Code fragment to get the status for this node:

```c
#include <st_client.h>

main() {
    int rc;
    struct ST_STATUS status[1];

    rc = swtbl_status_node(ST_VERSION, status_info);
    fprintf(stdout, "swtbl_status_node returned %d\n", rc);
    print_header();
    print_status(status_info); /* Print out each member of the struct */
}
```
Purpose

swtbl_unload_job – Unloads the job switch resource tables on the indicated nodes for a single job.

Library

Job Switch Resource Table Services library (libswitchtbl.a)

Syntax

```c
#include <st_client.h>

int swtbl_unload_job(int version, uid_t uid, int num_tasks, \n                    ST_NODE_INFO *nodeinfo);
```

Parameters

- **version**: Specifies the version of header file used. Should be `ST_VERSION` defined in `st_client.h`
- **uid**: Specifies the real user ID of the user for whom the unload is done. This uid must match the uid provided during the `swtbl_load_job` API.
- **num_tasks**: Specifies the number of tasks that accessed the job switch resource table during execution. Represents the size of the nodeinfo structure list.
- **nodeinfo**: Specifies the pointer to the `ST_NODE_INFO` structure array that was allocated and defined by the caller. A nodeinfo structure must exist for every `num_tasks` defined. `ST_NODE_INFO` members include:
 - **char st_node_name**: Indicates the name or dotted decimal IP string of the node for which this data pertains. It works in combination with `st_addr`, if `st_node_name` is NULL, then `st_addr` must contain the `struct in_addr` address of the node. The `st_node_name` is checked first and if non-NULL, the `st_addr` is ignored. The maximum length is 256 characters.
 - **struct in_addr st_addr**: Indicates the network address of the node for which this data pertains. It works in combination with `st_node_name`, the `st_node_name` must be NULL to use this.
 - **int st_window_id**: Specifies the window ID to be unloaded. The window ID must be between 0 and 3 inclusive. If -1 is specified, then the default window will be used.
swtbl_unload_job Subroutine

```c
int st_adapter

Specifies the adapter where the window resides. It
needs to be a value from the ST_ADAPTER
enumerator defined in st_client.h.
```

Description

Use this subroutine to unload all of the job switch resource tables needed for a single parallel job. This switch table is used by parallel jobs running user space over the switch. The JSRT Services should be used by non-reserving components.

An **ST_NODE_INFO** structure needs to be defined for every task that needs to have the switch table unloaded. The **swtbl_unload_job** subroutine interfaces with the **switchbld** daemon over the network to call the local **swtbl_unload_table** API and unload every window within the table on that node.

If DCE security checking is being used, the calling process must have the DCE credentials of the **switchbld-load** group to use this function. If DCE security checking is not being used, the effective user ID of the calling process must be the root user ID.

The default window is defined within the **st_client.h** header file.

Any information or error messages are recorded in the `/var/adm/SPlogs/st/st_log` file on the calling node and for all of the nodes within the request. Additional debug information will be recorded in the log by setting the **SWTBLAPIERRORMSGS** environment variable to yes.

Return Values

Upon successful completion, the **swtbl_unload_job** subroutine returns a value of **ST_SUCCESS**. Otherwise, it returns an integer value defined by the **ST_RETURN_CODE** enumerator found in **st_client.h**. The **ST_NODE_INFO** member **st_return_code** is updated to reflect any errors that may have occurred on the individual nodes. This return code corresponds to the return code of the **swtbl_unload_table** API called on that node.

Error Values

- **ST_CANT_CONNECT** Indicates that the connect request was unsuccessful.
- **ST_INVALID_ADDR** Indicates the node name or node address specified could not be resolved.
- **ST_INVALID_PARAM** Indicates that a specified parameter was not valid. The `/var/adm/SPlogs/st/st_log` file will have further details.
- **ST_NOT_AUTHOR** Indicates that DCE security authorization was unsuccessful or the caller did not have a root user ID.
- **ST_NOT_AUTHEN** Indicates that DCE security authentication was unsuccessful.
- **ST_NOT_UNLOADED** Indicates the unload request was not issued due to another error.
swtbl_unload_job Subroutine

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST_SYSTEM_ERROR</td>
<td>Indicates a system error occurred. The /var/adm/SPlogs/st/st_log file will have further details.</td>
</tr>
<tr>
<td>ST_NO_SWITCH</td>
<td>Indicates that the specified st_adapter parameter was not valid.</td>
</tr>
<tr>
<td>ST_RESERVED</td>
<td>Indicates the st_window_id specified has been reserved by a reserving component and cannot be unloaded.</td>
</tr>
<tr>
<td>ST_SECURITY_ERROR</td>
<td>Indicates that a general DCE security services error occurred (not authorization or authentication).</td>
</tr>
<tr>
<td>ST_TCP_ERROR</td>
<td>Indicates that a read, write or select encountered an error on a TCP/IP socket.</td>
</tr>
<tr>
<td>ST_CANT_ALLOC</td>
<td>Indicates that storage could not be allocated.</td>
</tr>
</tbody>
</table>

Related Information

For more information about reserved windows, see the `chgcmm` command.

Commands: `st_clean_table, st_status`

Subroutines: `swtbl_adapter_connectivity, swtbl_adapter_resources, swtbl_clean_table, swtbl_load_job, swtbl_load_table, swtbl_status, swtbl_status_node, swtbl_unload_table`

Files: `/usr/lpp/ssp/include/st_client.h, /var/adm/SPlogs/st/st_log`

Examples

Code fragment to unload the job switch resource table windows for a job that was previously loaded for two nodes:
#include <st_client.h>

main() {
 int rc;
 int num_tasks = 2;
 struct ST_NODE_INFO node[num_tasks];
 uid_t uid;

 uid = set_user_id(); /* User defined routine to get uid */

 strcpy(node[0].st_node_name,"Node1");
 node[0].st_window_id = 1;
 node[0].st_adapter = CSS0;

 strcpy(node[1].st_node_name,"129.40.161.74");
 node[1].st_window_id = 2;
 node[1].st_adapter = CSS0;

 rc = swtbl_unload_job(ST_VERSION,uid,num_tasks,node);
 fprintf(stdout,"swtbl_unload_job returned %d\n",rc);
}

Chapter 3. SP Subroutines

swtbl_unload_job Subroutine
swtbl_unload_table Subroutine

Purpose

swtbl_unload_table – Unloads the job switch resource table window on the node from which it is invoked.

Library

Job Switch Resource Table Services library (libswitchtbl.a)

Syntax

```c
#include <st_client.h>

int swtbl_unload_table(int version, char *adapter, \\
uid_t uid, int window_id);
```

Parameters

- `version` Specifies the version of header file used. Should be `ST_VERSION` defined in `st_client.h`
- `adapter` Specifies the adapter to be opened upon which the window resides.
- `uid` Specifies the real user ID of the user for whom the unload is done. This userid must match the userid provided during the `swtbl_load_table` API.
- `int st_window_id` Specifies the window ID to be unloaded. If -1 is specified, then the default window will be used.

Description

Use this subroutine to unload the job switch resource table window on the node from which it is invoked. This switch table is used by parallel jobs running user space over the switch. This subroutine checks that the uid provided matches the one that is stored during the `swtbl_load_table` call. Each window within the job switch resource table must be unloaded individually. The JSRT Services should be used by non-reserving components.

The effective user ID of the calling process must be the root user ID.

The default window is defined within the `st_client.h` header file.

Any information or error messages are recorded in the `/var/adm/SPlogs/st/st_log` file. Additional debug information will be recorded in the log by setting the SWTBLAPIERRORMSGS environment variable to yes.
Return Values

Upon successful completion, the `swtbl_unload_table` subroutine returns a value of `ST_SUCCESS`. Otherwise, it returns an integer value defined by the `ST_RETURN_CODE` enumerator found in `st_client.h`.

Error Values

- **ST_INVALID_PARAM**: Indicates that a specified parameter was not valid. The `/var/adm/SPlogs/st/st_log` file will have further details.
- **ST_NO_SWITCH**: The open call of the specified adapter was unsuccessful.
- **ST_NOT_AUTHOR**: Indicates that the caller did not have an effective root user ID or the input uid does not match the uid of the corresponding `st_datafile`.
- **ST_SWITCH_IN_USE**: Indicates that the currently loaded switch table window is in use by a process.
- **ST_SWITCH_NOT_LOADED**: Indicates that the switch table window is not currently loaded.
- **ST_SYSTEM_ERROR**: Indicates a system error occurred. The `/var/adm/SPlogs/st/st_log` file will have further details.
- **ST_RESERVED**: Indicates the `st_window_id` specified has been reserved by a reserving component and cannot be unloaded.

Related Information

For more information about reserved windows, see the `chgcss` command.

Commands: `st_clean_table`, `st_status`

Subroutines: `swtbl_adapter_connectivity`, `swtbl_adapter_resources`, `swtbl_clean_table`, `swtbl_load_job`, `swtbl_load_table`, `swtbl_status`, `swtbl_status_node`, `swtbl_unload_job`

Files: `/usr/lpp/ssp/include/st_client.h`, `/var/adm/SPlogs/st/st_log`

Examples

Code fragment to unload window 1 on the current node:
swtbl_unload_table Subroutine

#include <st_client.h>

main() {
 int i,rc;
 uid_t uid;
 int window = 1;

 uid = set_user_id(); /* User defined routine to get uid */

 rc = swtbl_unload_table(ST_VERSION,"css0",uid,window);
 fprintf(stdout,"swtbl_unload_table returned %d\n",rc);
}

Appendix A. Perspectives Colors and Fonts

Perspectives Colors with Red, Green, and Blue (RGB) Triplets

The following list contains valid color names that can be supplied as optional arguments to the `backgroundColor` and `foregroundColor` flags. Colors may vary depending on the type of display you are using.

<table>
<thead>
<tr>
<th>Color</th>
<th>Red</th>
<th>Green</th>
<th>Blue</th>
</tr>
</thead>
<tbody>
<tr>
<td>aquamarine</td>
<td>127</td>
<td>255</td>
<td>212</td>
</tr>
<tr>
<td>azure</td>
<td>240</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>beige</td>
<td>245</td>
<td>245</td>
<td>220</td>
</tr>
<tr>
<td>bisque</td>
<td>255</td>
<td>228</td>
<td>196</td>
</tr>
<tr>
<td>black</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>blue</td>
<td>0</td>
<td>0</td>
<td>255</td>
</tr>
<tr>
<td>brown</td>
<td>165</td>
<td>42</td>
<td>42</td>
</tr>
<tr>
<td>burlwood</td>
<td>222</td>
<td>184</td>
<td>135</td>
</tr>
<tr>
<td>chartreuse</td>
<td>127</td>
<td>255</td>
<td>0</td>
</tr>
<tr>
<td>chocolate</td>
<td>210</td>
<td>105</td>
<td>30</td>
</tr>
<tr>
<td>coral</td>
<td>255</td>
<td>127</td>
<td>80</td>
</tr>
<tr>
<td>cornsilk</td>
<td>255</td>
<td>248</td>
<td>220</td>
</tr>
<tr>
<td>cyan</td>
<td>0</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>firebrick</td>
<td>178</td>
<td>34</td>
<td>34</td>
</tr>
<tr>
<td>gold</td>
<td>255</td>
<td>215</td>
<td>0</td>
</tr>
<tr>
<td>goldenrod</td>
<td>218</td>
<td>165</td>
<td>32</td>
</tr>
<tr>
<td>gray</td>
<td>190</td>
<td>190</td>
<td>190</td>
</tr>
<tr>
<td>green</td>
<td>0</td>
<td>255</td>
<td>0</td>
</tr>
<tr>
<td>honeydew</td>
<td>240</td>
<td>255</td>
<td>240</td>
</tr>
<tr>
<td>ivory</td>
<td>255</td>
<td>255</td>
<td>240</td>
</tr>
<tr>
<td>khaki</td>
<td>240</td>
<td>230</td>
<td>140</td>
</tr>
<tr>
<td>lavender</td>
<td>230</td>
<td>230</td>
<td>250</td>
</tr>
<tr>
<td>linen</td>
<td>250</td>
<td>240</td>
<td>230</td>
</tr>
<tr>
<td>magenta</td>
<td>255</td>
<td>0</td>
<td>255</td>
</tr>
<tr>
<td>maroon</td>
<td>176</td>
<td>48</td>
<td>96</td>
</tr>
<tr>
<td>moccasin</td>
<td>255</td>
<td>228</td>
<td>181</td>
</tr>
<tr>
<td>oldlace</td>
<td>253</td>
<td>245</td>
<td>230</td>
</tr>
<tr>
<td>orange</td>
<td>255</td>
<td>165</td>
<td>0</td>
</tr>
<tr>
<td>orchid</td>
<td>218</td>
<td>112</td>
<td>214</td>
</tr>
<tr>
<td>peru</td>
<td>205</td>
<td>133</td>
<td>63</td>
</tr>
<tr>
<td>pink</td>
<td>255</td>
<td>192</td>
<td>203</td>
</tr>
<tr>
<td>plum</td>
<td>221</td>
<td>160</td>
<td>221</td>
</tr>
<tr>
<td>purple</td>
<td>160</td>
<td>32</td>
<td>240</td>
</tr>
<tr>
<td>red</td>
<td>255</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>salmon</td>
<td>250</td>
<td>128</td>
<td>114</td>
</tr>
<tr>
<td>seashell</td>
<td>255</td>
<td>245</td>
<td>238</td>
</tr>
<tr>
<td>sienna</td>
<td>160</td>
<td>82</td>
<td>45</td>
</tr>
<tr>
<td>snow</td>
<td>255</td>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td>tan</td>
<td>210</td>
<td>180</td>
<td>140</td>
</tr>
<tr>
<td>thistle</td>
<td>216</td>
<td>191</td>
<td>216</td>
</tr>
<tr>
<td>tomato</td>
<td>255</td>
<td>99</td>
<td>71</td>
</tr>
<tr>
<td>turquoise</td>
<td>64</td>
<td>224</td>
<td>208</td>
</tr>
<tr>
<td>violet</td>
<td>238</td>
<td>130</td>
<td>238</td>
</tr>
<tr>
<td>wheat</td>
<td>245</td>
<td>222</td>
<td>179</td>
</tr>
<tr>
<td>white</td>
<td>255</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>yellow</td>
<td>255</td>
<td>255</td>
<td>0</td>
</tr>
</tbody>
</table>
Perspectives Fonts

Note: Fonts will vary depending on the type of Xmachine or Xstation you are using.

The following list contains font names that can be supplied as optional arguments to the \texttt{fontFamily} flag:

- application
- block
- charter
- clean
- courier
- ergonomic
- fixed
- helvetica
- lucida
- lucida bright
- lucida typewriter
- new century schoolbook
- roman
- sans serif
- serif
- special
- terminal
- times
- times new roman
- type
- typewriter
- utopia
Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not give you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of information between independently created programs and other programs (including this one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Department LJEB/P905
2455 South Road
Poughkeepsie, NY 12601-5400
U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any equivalent agreement between us.

This information contains examples of data and reports used in daily business operations. To illustrate them as completely as possible, the examples include the names of individuals, companies, brands, and products. All of these names are fictitious and any similarity to the names and addresses used by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrates programming techniques on various operating platforms. You may copy, modify, and distribute these sample programs in any form without payment to IBM, for the purposes of developing, using, marketing or distributing application programs conforming to the application programming interface for the operating platform for which the sample programs are written. These examples have not been
thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy, modify, and distribute these sample programs in any form without payment to IBM for the purposes of developing, using, marketing, or distributing application programs conforming to IBM’s application programming interfaces.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Trademarks

The following terms are trademarks of the International Business Machines Corporation in the United States or other countries or both:

- AIX
- AIX/6000
- DATABASE 2
- DB2
- ES/9000
- ESCON
- HACMP/6000
- IBM
- IBMLink
- LoadLeveler
- Micro Channel
- Netfinity
- Netfinity Manager
- POWERparallel
- POWERserver
- RS/6000
- RS/6000 Scalable POWERparallel Systems
- Scalable POWERparallel Systems
- SP
- System/370
- System/390
- TURBOWAYS

| Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both. |
| Microsoft, Windows, Windows NT, BackOffice, MS-DOS, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both. |

Tivoli Enterprise Console is a trademark of Tivoli Systems Inc. in the United States, other countries, or both.

UNIX is a registered trademark in the United States and other countries licensed exclusively through The Open Group.

Other company, product, and service names may be the trademarks or service marks of others.

Publicly Available Software

PSSP includes software that is publicly available:

- **expect**
 - Programmed dialogue with interactive programs
- **Perl**
 - Practical Extraction and Report Language
- **SUP**
 - Software Update Protocol
- **Tcl**
 - Tool Command Language
- **TclX**
 - Tool Command Language Extended
- **Tk**
 - Tcl-based Tool Kit for X-windows

This book discusses the use of these products only as they apply specifically to the RS/6000 SP system. The distribution for these products includes the source code and associated documentation. `/usr/lpp/ssp/public` contains the compressed `tar` files of the publicly available software. (IBM has made minor modifications to the versions of Tcl and Tk used in the SP system to improve their security characteristics. Therefore, the IBM-supplied versions do not match exactly the versions you may build from the compressed `tar` files.) All copyright notices in the documentation must be respected. You can find version and distribution information for each of these products that are part of your selected install options in the `/usr/lpp/ssp/READMES/ssp.public.README` file.

Software Update Protocol

IBM has provided modifications to this software. The resulting software is provided to you on an “AS IS” basis and WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
Glossary of Terms and Abbreviations

A

ACL. Access Control List. A list that defines who has permission to access certain services; that is, for whom a server may perform certain tasks. This is usually a list of principals with the type of access assigned to each.

adapter. An adapter is a mechanism for attaching parts. For example, an adapter could be a part that electrically or physically connects a device to a computer or to another device. In the SP system, network connectivity is supplied by various adapters, some optional, that can provide connection to I/O devices, networks of workstations, and mainframe networks. Ethernet, FDDI, token-ring, HIPPI, SCSI, FCS, and ATM are examples of adapters that can be used as part of an SP system.

address. A character or group of characters that identifies a register, a device, a particular part of storage, or some other data source or destination.

AFS. A distributed file system that provides authentication services as part of its file system creation.

AIX. Abbreviation for Advanced Interactive Executive, IBM's licensed version of the UNIX operating system. AIX is particularly suited to support technical computing applications, including high function graphics and floating point computations.

API. Application Programming Interface. A set of programming functions and routines that provide access between the Application layer of the OSI seven-layer model and applications that want to use the network. It is a software interface.

application. The use to which a data processing system is put; for example, a payroll application, an airline reservation application.

application data. The data that is produced using an application program.

ARP. Address Resolution Protocol.

ATM. Asynchronous Transfer Mode. (See TURBOWAYS 100 ATM Adapter.)

authentication. The process of validating the identity of either a user or the service itself. The process of a principal proving the authenticity of its identity.

authorization. The process of obtaining permission to access resources or perform tasks. In SP security services, authorization is based on the principal identifier. The granting of access rights to a principal.

authorization file. A type of ACL (access control list) used by the IBM AIX remote commands and the IBM PSSP Sysctl and Hardmon components.

B

batch processing. * (1) The processing of data or the accomplishment of jobs accumulated in advance in such a manner that each accumulation thus formed is processed or accomplished in the same run. * (2) The processing of data accumulating over a period of time. * (3) Loosely, the execution of computer programs serially. (4) Computer programs executed in the background.

BMCA. Block Multiplexer Channel Adapter. The block multiplexer channel connection allows the RS/6000 to communicate directly with a host System/370 or System/390; the host operating system views the system unit as a control unit.

BOS. The AIX Base Operating System.

call home function. The ability of a system to call the IBM support center and open a PMR to have a repair scheduled.

CDE. Common Desktop Environment. A graphical user interface for UNIX.

charge feature. An optional feature for either software or hardware for which there is a charge.

CLI. Command Line Interface.

client. * (1) A function that requests services from a server and makes them available to the user. * (2) A term used in an environment to identify a machine that uses the resources of the network.

Client Input/Output Sockets (CLIO/S). A software package that enables high-speed data and tape access between SP systems, AIX systems, and ES/9000 mainframes.
CLIO/S. Client Input/Output Sockets.

CMI. Centralized Management Interface provides a series of SMIT menus and dialogues used for defining and querying the SP system configuration.

Concurrent Virtual Shared Disk. A virtual shared disk that can be concurrently accessed by more than one server.

connectionless. A communication process that takes place without first establishing a connection.

credentials. A protocol message, or part thereof, containing a ticket and an authenticator supplied by a client and used by a server to verify the client's identity.

css. Communication subsystem.

D

daemon. A process, not associated with a particular user, that performs system-wide functions such as administration and control of networks, execution of time-dependent activities, line printer spooling and so forth.

DASD. Direct Access Storage Device. Storage for input/output data.

DCE. Distributed Computing Environment.

DFS. distributed file system. A subset of the IBM Distributed Computing Environment.

DNS. Domain Name Service. A hierarchical name service which maps high level machine names to IP addresses.

E

Error Notification Object. An object in the SDR that is matched with an error log entry. When an error log entry occurs that matches the Notification Object, a user-specified action is taken.

ESCON. Enterprise Systems Connection. The ESCON channel connection allows the RS/6000 to communicate directly with a host System/390; the host operating system views the system unit as a control unit.

Ethernet. (1) Ethernet is the standard hardware for TCP/IP local area networks in the UNIX marketplace. It is a 10-megabit per second baseband type LAN that allows multiple stations to access the transmission medium at will without prior coordination, avoids contention by using carrier sense and deference, and resolves contention by collision detection (CSMA/CD).

Ethernet network. A baseband LAN with a bus topology in which messages are broadcast on a coaxial cabling using the carrier sense multiple access/collision detection (CSMA/CD) transmission method.

event. In Event Management, the notification that an expression evaluated to true. This evaluation occurs each time an instance of a resource variable is observed.

expect. Programmed dialogue with interactive programs.

expression. In Event Management, the relational expression between a resource variable and other elements (such as constants or the previous value of an instance of the variable) that, when true, generates an event. An example of an expression is \(X < 10 \) where \(X \) represents the resource variable \(\text{IBM.PSSP.aixos.PagSp.%totalfree} \) (the percentage of total free paging space). When the expression is true, that is, when the total free paging space is observed to be less than 10%, the Event Management subsystem generates an event to notify the appropriate application.

F

failover. Also called failover, the sequence of events when a primary or server machine fails and a secondary or backup machine assumes the primary workload. This is a disruptive failure with a short recovery time.
fall back. Also called fallback, the sequence of events when a primary or server machine takes back control of its workload from a secondary or backup machine.

FDDI. Fiber Distributed Data Interface.

FFDC. First Failure Data Capture.

Fiber Distributed Data Interface (FDDI). An American National Standards Institute (ANSI) standard for 100-megabit-per-second LAN using optical fiber cables. An FDDI local area network (LAN) can be up to 100 km (62 miles) and can include up to 500 system units. There can be up to 2 km (1.24 miles) between system units and concentrators.

file. * A set of related records treated as a unit, for example, in stock control, a file could consist of a set of invoices.

file name. A CMS file identifier in the form of 'filename filetype filemode' (like: TEXT DATA A).

file server. A centrally located computer that acts as a storehouse of data and applications for numerous users of a local area network.

File Transfer Protocol (FTP). The Internet protocol (and program) used to transfer files between hosts. It is an application layer protocol in TCP/IP that uses TELNET and TCP protocols to transfer bulk-data files between machines or hosts.

First Failure Data Capture (FFDC). A set of utilities used for recording persistent records of failures and significant software incidents. It provides a means of associating failures to one another, thus allowing software to link effects of a failure to their causes and thereby facilitating discovery of the root cause of a failure.

foreign host. Any host on the network other than the local host.

FTP. File transfer protocol.

gateway. An intelligent electronic device interconnecting dissimilar networks and providing protocol conversion for network compatibility. A gateway provides transparent access to dissimilar networks for nodes on either network. It operates at the session presentation and application layers.

H

HACMP. High Availability Cluster Multi-Processing for AIX.

HACWS. High Availability Control Workstation function, based on HACMP, provides for a backup control workstation for the SP system.

HAL. Hardware Abstraction Layer, a communication device interface that provides communication channels for processes.

Hashed Shared Disk (HSD). The data striping device for the IBM Virtual Shared Disk. The device driver lets application programs stripe data across physical disks in multiple IBM Virtual Shared Disks, thus reducing I/O bottlenecks.

help key. In the SP graphical interface, the key that gives you access to the SP graphical interface help facility.

High Availability Cluster Multi-Processing. An IBM facility to cluster nodes or components to provide high availability by eliminating single points of failure.

HiPPI. High Performance Parallel Interface. RS/6000 units can attach to a HiPPI network as defined by the ANSI specifications. The HiPPI channel supports burst rates of 100 Mbps over dual simplex cables; connections can be up to 25 km in length as defined by the standard and can be extended using third-party HiPPI switches and fiber optic extenders.

home directory. The directory associated with an individual user.

host. A computer connected to a network, and providing an access method to that network. A host provides end-user services.

I

instance vector. Obsolete term for resource identifier.

Intermediate Switch Board. Switches mounted in the switch expansion frame.

Internet. A specific inter-network consisting of large national backbone networks such as APARANET, MILNET, and NSFnet, and a myriad of regional and campus networks all over the world. The network uses the TCP/IP protocol suite.

Internet Protocol (IP). (1) A protocol that routes data through a network or interconnected networks. IP acts as an interface between the higher logical layers and the physical network. This protocol, however, does not
provide error recovery, flow control, or guarantee the reliability of the physical network. IP is a connectionless protocol. (2) A protocol used to route data from its source to its destination in an Internet environment.

IP address. A 32-bit address assigned to devices or hosts in an IP internet that maps to a physical address. The IP address is composed of a network and host portion.

ISB. Intermediate Switch Board.

K

Kerberos. A service for authenticating users in a network environment.

kernel. The core portion of the UNIX operating system which controls the resources of the CPU and allocates them to the users. The kernel is memory-resident, is said to run in “kernel mode” and is protected from user tampering by the hardware.

Kernel Low-Level Application Programming Interface (KLAPI). KLAPI provides transport service for communication using the SP Switch.

L

LAN. (1) Acronym for Local Area Network, a data network located on the user’s premises in which serial transmission is used for direct data communication among data stations. (2) Physical network technology that transfers data at a high speed over short distances. (3) A network in which a set of devices is connected to another for communication and that can be connected to a larger network.

local host. The computer to which a user’s terminal is directly connected.

log database. A persistent storage location for the logged information.

log event. The recording of an event.

log event type. A particular kind of log event that has a hierarchy associated with it.

logging. The writing of information to persistent storage for subsequent analysis by humans or programs.

M

mask. To use a pattern of characters to control retention or elimination of portions of another pattern of characters.

menu. A display of a list of available functions for selection by the user.

Motif. The graphical user interface for OSF, incorporating the X Window System. Also called OSF/Motif.

MTBF. Mean time between failure. This is a measure of reliability.

MTTR. Mean time to repair. This is a measure of serviceability.

N

naive application. An application with no knowledge of a server that fails over to another server. Client to server retry methods are used to reconnect.

network. An interconnected group of nodes, lines, and terminals. A network provides the ability to transmit data to and receive data from other systems and users.

NFS. Network File System. NFS allows different systems (UNIX or non-UNIX), different architectures, or vendors connected to the same network, to access remote files in a LAN environment as though they were local files.

NIM. Network Installation Management is provided with AIX to install AIX on the nodes.

NIM client. An AIX system installed and managed by a NIM master. NIM supports three types of clients:

- Standalone
- Diskless
- Dataless

NIM master. An AIX system that can install one or more NIM clients. An AIX system must be defined as a NIM master before defining any NIM clients on that system. A NIM master manages the configuration database containing the information for the NIM clients.

NIM object. A representation of information about the NIM environment. NIM stores this information as objects in the NIM database. The types of objects are:

- Network
- Machine
- Resource

NIS. Network Information System.
node. In a network, the point where one or more functional units interconnect transmission lines. A computer location defined in a network. The SP system can house several different types of nodes for both serial and parallel processing. These node types can include thin nodes, wide nodes, 604 high nodes, as well as other types of nodes both internal and external to the SP frame.

Node Switch Board. Switches mounted on frames that contain nodes.

NSB. Node Switch Board.

NTP. Network Time Protocol.

O

ODM. Object Data Manager. In AIX, a hierarchical object-oriented database for configuration data.

P

parallel environment. A system environment where message passing or SP resource manager services are used by the application.

Parallel Environment. A licensed IBM program used for message passing applications on the SP or RS/6000 platforms.

parallel processing. A multiprocessor architecture which allows processes to be allocated to tightly coupled multiple processors in a cooperative processing environment, allowing concurrent execution of tasks.

parameter. * (1) A variable that is given a constant value for a specified application and that may denote the application. * (2) An item in a menu for which the operator specifies a value or for which the system provides a value when the menu is interpreted. * (3) A name in a procedure that is used to refer to an argument that is passed to the procedure. * (4) A particular piece of information that a system or application program needs to process a request.

partition. See system partition.

Perl. Practical Extraction and Report Language.

perspective. The primary window for each SP Perspectives application, so called because it provides a unique view of an SP system.

pipe. A UNIX utility allowing the output of one command to be the input of another. Represented by the | symbol. It is also referred to as filtering output.

PMR. Problem Management Report.

POE. Formerly Parallel Operating Environment, now Parallel Environment for AIX.

port. (1) An end point for communication between devices, generally referring to physical connection. (2) A 16-bit number identifying a particular TCP or UDP resource within a given TCP/IP node.

predicate. Obsolete term for expression.

Primary node or machine. (1) A device that runs a workload and has a standby device ready to assume the primary workload if that primary node fails or is taken out of service. (2) A node on the switch that initializes, provides diagnosis and recovery services, and performs other operations to the switch network. (3) In IBM Virtual Shared Disk function, when physical disks are connected to two nodes (twin-tailed), one node is designated as the primary node for each disk and the other is designated the secondary, or backup, node. The primary node is the server node for IBM Virtual Shared Disks defined on the physical disks under normal conditions. The secondary node can become the server node for the disks if the primary node is unavailable (off-line or down).

Problem Management Report. The number in the IBM support mechanism that represents a service incident with a customer.

process. * (1) A unique, finite course of events defined by its purpose or by its effect, achieved under defined conditions. * (2) Any operation or combination of operations on data. * (3) A function being performed or waiting to be performed. * (4) A program in operation. For example, a daemon is a system process that is always running on the system.

protocol. A set of semantic and syntactic rules that defines the behavior of functional units in achieving communication.

R

RAID. Redundant array of independent disks.

rearm expression. In Event Management, an expression used to generate an event that alternates with an original event expression in the following way: the event expression is used until it is true, then the rearm expression is used until it is true, then the event expression is used, and so on. The rearm expression is commonly the inverse of the event expression (for example, a resource variable is on or off). It can also be used with the event expression to define an upper and lower boundary for a condition of interest.

rearm predicate. Obsolete term for rearm expression.
remote host. See foreign host.

resource. In Event Management, an entity in the system that provides a set of services. Examples of resources include hardware entities such as processors, disk drives, memory, and adapters, and software entities such as database applications, processes, and file systems. Each resource in the system has one or more attributes that define the state of the resource.

resource identifier. In Event Management, a set of elements, where each element is a name/value pair of the form name=value, whose values uniquely identify the copy of the resource (and by extension, the copy of the resource variable) in the system.

resource monitor. A program that supplies information about resources in the system. It can be a command, a daemon, or part of an application or subsystem that manages any type of system resource.

resource variable. In Event Management, the representation of an attribute of a resource. An example of a resource variable is IBM.AIX.PagSp.%totalfree, which represents the percentage of total free paging space. IBM.AIX.PagSp specifies the resource name and %totalfree specifies the resource attribute.

RISC. Reduced Instruction Set Computing (RISC), the technology for today's high performance personal computers and workstations, was invented in 1975. Uses a small simplified set of frequently used instructions for rapid execution.

rlogin (remote LOGIN). A service offered by Berkeley UNIX systems that allows authorized users of one machine to connect to other UNIX systems across a network and interact as if their terminals were connected directly. The rlogin software passes information about the user's environment (for example, terminal type) to the remote machine.

RPC. Acronym for Remote Procedure Call, a facility that a client uses to have a server execute a procedure call. This facility is composed of a library of procedures plus an XDR.

RSH. A variant of RLOGIN command that invokes a command interpreter on a remote UNIX machine and passes the command line arguments to the command interpreter, skipping the LOGIN step completely. See also rlogin.

S

SCSI. Small Computer System Interface.

Secondary node. In IBM Virtual Shared Disk function, when physical disks are connected to two nodes (twin-tailed), one node is designated as the primary node for each disk and the other is designated as the secondary, or backup, node. The secondary node acts as the server node for the IBM Virtual Shared disks defined on the physical disks if the primary node is unavailable (off-line or down).

server. (1) A function that provides services for users. A machine may run client and server processes at the same time. (2) A machine that provides resources to the network. It provides a network service, such as disk storage and file transfer, or a program that uses such a service. (3) A device, program, or code module on a network dedicated to providing a specific service to a network. (4) On a LAN, a data station that provides facilities to other data stations. Examples are file server, print server, and mail server.

shell. The shell is the primary user interface for the UNIX operating system. It serves as command language interpreter, programming language, and allows foreground and background processing. There are three different implementations of the shell concept: Bourne, C and Korn.

Small Computer System Interface (SCSI). An input and output bus that provides a standard interface for the attachment of various direct access storage devices (DASD) and tape drives to the RS/6000.

Small Computer Systems Interface Adapter (SCSI Adapter). An adapter that supports the attachment of various direct-access storage devices (DASD) and tape drives to the RS/6000.

Smit. The System Management Interface Toolkit is a set of menu driven utilities for AIX that provides functions such as transaction login, shell script creation, automatic updates of object database, and so forth.

SNMP. Simple Network Management Protocol. (1) An IP network management protocol that is used to monitor attached networks and routers. (2) A TCP/IP-based protocol for exchanging network management information and outlining the structure for communications among network devices.

socket. (1) An abstraction used by Berkeley UNIX that allows an application to access TCP/IP protocol functions. (2) An IP address and port number pairing. (3) In TCP/IP, the Internet address of the host computer on which the application runs, and the port number it uses. A TCP/IP application is identified by its socket.
standby node or machine. A device that waits for a failure of a primary node in order to assume the identity of the primary node. The standby machine then runs the primary's workload until the primary is back in service.

subnet. Shortened form of subnetwork.

subnet mask. A bit template that identifies to the TCP/IP protocol code the bits of the host address that are to be used for routing for specific subnetworks.

subnetwork. Any group of nodes that have a set of common characteristics, such as the same network ID.

subsystem. A software component that is not usually associated with a user command. It is usually a daemon process. A subsystem will perform work or provide services on behalf of a user request or operating system request.

SUP. Software Update Protocol.

switch capsule. A group of SP frames consisting of a switched frame and its companion non-switched frames.

Sysctl. Secure System Command Execution Tool. An authenticated client/server system for running commands remotely and in parallel.

syslog. A BSD logging system used to collect and manage other subsystem’s logging data.

System Administrator. The user who is responsible for setting up, modifying, and maintaining the SP system.

system partition. A group of nonoverlapping nodes on a switch chip boundary that act as a logical SP system.

TCP. Acronym for Transmission Control Protocol, a stream communication protocol that includes error recovery and flow control.

TCP/IP. Acronym for Transmission Control Protocol/Internet Protocol, a suite of protocols designed to allow communication between networks regardless of the technologies implemented in each network. TCP provides a reliable host-to-host protocol between hosts in packet-switched communications networks and in interconnected systems of such networks. It assumes that the underlying protocol is the Internet Protocol.

Telnet. Terminal Emulation Protocol, a TCP/IP application protocol that allows interactive access to foreign hosts.

ticket. An encrypted protocol message used to securely pass the identity of a user from a client to a server.

Tk. Tcl-based Tool Kit for X Windows.

TMPCP. Tape Management Program Control Point.

token-ring. (1) Network technology that controls media access by passing a token (special packet or frame) between media-attached machines. (2) A network with a ring topology that passes tokens from one attaching device (node) to another. (3) The IBM Token-Ring LAN connection allows the RS/6000 system unit to participate in a LAN adhering to the IEEE 802.5 Token-Passing Ring standard or the ECMA standard 89 for Token-Ring, baseband LANs.

transaction. An exchange between the user and the system. Each activity the system performs for the user is considered a transaction.

transceiver (transmitter-receiver). A physical device that connects a host interface to a local area network, such as Ethernet. Ethernet transceivers contain electronics that apply signals to the cable and sense collisions.

transfer. To send data from one place and to receive the data at another place. Synonymous with move.

transmission. The sending of data from one place for reception elsewhere.

TURBOWAYS 100 ATM Adapter. An IBM high-performance, high-function intelligent adapter that provides dedicated 100 Mbps ATM (asynchronous transfer mode) connection for high-performance servers and workstations.
U

UDP. User Datagram Protocol.

UNIX operating system. An operating system developed by Bell Laboratories that features multiprogramming in a multiuser environment. The UNIX operating system was originally developed for use on minicomputers, but has been adapted for mainframes and microcomputers. **Note:** The AIX operating system is IBM's implementation of the UNIX operating system.

user. Anyone who requires the services of a computing system.

User Datagram Protocol (UDP). (1) In TCP/IP, a packet-level protocol built directly on the Internet Protocol layer. UDP is used for application-to-application programs between TCP/IP host systems. (2) A transport protocol in the Internet suite of protocols that provides unreliable, connectionless datagram service. (3) The Internet Protocol that enables an application programmer on one machine or process to send a datagram to an application program on another machine or process.

user ID. A nonnegative integer, contained in an object of type `uid_t`, that is used to uniquely identify a system user.

V

Virtual Shared Disk, IBM. The function that allows application programs executing at different nodes of a system partition to access a raw logical volume as if it were local at each of the nodes. In actuality, the logical volume is local at only one of the nodes (the server node).

W

workstation. * (1) A configuration of input/output equipment at which an operator works. * (2) A terminal or microcomputer, usually one that is connected to a mainframe or to a network, at which a user can perform applications.

X

X Window System. A graphical user interface product.
Bibliography

This bibliography helps you find product documentation related to the RS/6000 SP hardware and software products.

You can find most of the IBM product information for RS/6000 SP products on the World Wide Web. Formats for both viewing and downloading are available.

PSSP documentation is shipped with the PSSP product in a variety of formats and can be installed on your system. The man pages for public code that PSSP includes are also available online.

You can order hard copies of the product documentation from IBM. This bibliography lists the titles that are available and their order numbers.

Finally, this bibliography contains a list of non-IBM publications that discuss parallel computing and other topics related to the RS/6000 SP.

Information Formats

Documentation supporting RS/6000 SP software licensed programs is no longer available from IBM in hardcopy format. However, you can view, search, and print documentation in the following ways:

- On the World Wide Web
- Online (from the product media or the SP Resource Center)

Finding Documentation on the World Wide Web

Most of the RS/6000 SP hardware and software books are available from the IBM RS/6000 Web site at:

http://www.rs6000.ibm.com

You can view a book or download a Portable Document Format (PDF) version of it. At the time this manual was published, the Web address of the "RS/6000 SP Product Documentation Library" page was:

http://www.rs6000.ibm.com/resource/aix_resource/sp_books

However, the structure of the RS/6000 Web site can change over time.

Accessing PSSP Documentation Online

On the same medium as the PSSP product code, IBM ships PSSP man pages, HTML files, and PDF files. In order to use these publications, you must first install the ssp.docs file set.

To view the PSSP HTML publications, you need access to an HTML document browser such as Netscape. The HTML files and an index that links to them are installed in the /usr/lpp/ssp/html directory. Once installed, you can also view the HTML files from the RS/6000 SP Resource Center.

If you have installed the SP Resource Center on your SP system, you can access it by entering the /usr/lpp/ssp/bin/resource_center command. If you have the SP Resource Center on CD-ROM, see the readme.txt file for information about how to run it.
To view the PSSP PDF publications, you need access to the Adobe Acrobat Reader. The Acrobat Reader is shipped with the AIX Version 4.3 Bonus Pack and is also freely available for downloading from the Adobe Web site at:

http://www.adobe.com

To successfully print a large PDF file (approximately 300 or more pages) from the Adobe Acrobat reader, you may need to select the “Download Fonts Once” button on the Print window.

Manual Pages for Public Code

The following manual pages for public code are available in this product:

SUP

```
/usr/lpp/ssp/man/man1/sup.1
```

Perl (Version 4.036)

```
/usr/lpp/ssp/perl/man/perl.man
```
```
/usr/lpp/ssp/perl/man/h2ph.man
```
```
/usr/lpp/ssp/perl/man/s2p.man
```
```
/usr/lpp/ssp/perl/man/a2p.man
```

Manual pages and other documentation for **Tcl**, **TclX**, **Tk**, and **expect** can be found in the compressed **tar** files located in the `/usr/lpp/ssp/public` directory.

RS/6000 SP Planning Publications

This section lists the IBM product documentation for planning for the IBM RS/6000 SP hardware and software.

IBM RS/6000 SP:

- *Planning, Volume 1, Hardware and Physical Environment*, GA22-7280
- *Planning, Volume 2, Control Workstation and Software Environment*, GA22-7281

RS/6000 SP Hardware Publications

This section lists the IBM product documentation for the IBM RS/6000 SP hardware.

IBM RS/6000 SP:

- *Planning, Volume 1, Hardware and Physical Environment*, GA22-7280
- *Planning, Volume 2, Control Workstation and Software Environment*, GA22-7281
- *Installation and Relocation*, GA22-7441
- *System Service Guide*, GA22-7442
- *SP Switch Service*
RS/6000 SP Switch Router Publications

The RS/6000 SP Switch Router is based on the Ascend GRF switched IP router product from Lucent Technologies. You can order the SP Switch Router as the IBM 9077.

The following publications are shipped with the SP Switch Router. You can also order these publications from IBM using the order numbers shown.

- Ascend GRF GateD
 - Manual, GA22-7327
- Ascend GRF 400/1600
 - Getting Started, GA22-7368
- Ascend GRF Configuration
 - and Management, GA22-7366
- Ascend GRF Reference Guide, GA22-7367
- SP Switch Router
 - Adapter Guide, GA22-7310

RS/6000 SP Software Publications

This section lists the IBM product documentation for software products related to the IBM RS/6000 SP. These products include:

- IBM Parallel System Support Programs for AIX (PSSP)
- IBM LoadLeveler for AIX (LoadLeveler)
- IBM Parallel Environment for AIX (Parallel Environment)
- IBM General Parallel File System for AIX (GPFS)
- IBM Engineering and Scientific Subroutine Library (ESSL) for AIX
- IBM Parallel ESSL for AIX
- IBM High Availability Cluster Multi-Processing for AIX (HACMP)
- IBM Client Input Output/Sockets (CLIO/S)
• IBM Network Tape Access and Control System for AIX (NetTAPE)

PSSP Publications

IBM RS/6000 SP:
• Planning, Volume 2, Control

 Workstation and Software Environment, GA22-7281

PSSP:
• Installation and Migration

 Guide, GA22-7347
• Administration Guide, SA22-7348
• Managing Shared Disks, SA22-7349
• Performance Monitoring Guide

 and Reference, SA22-7353
• Diagnosis Guide, GA22-7350
• Command and Technical Reference, SA22-7351
• Messages Reference, GA22-7352

RS/6000 Cluster Technology (RSCT):
• Event Management Programming

 Guide and Reference, SA22-7354
• Group Services Programming

 Guide and Reference, SA22-7355
• First Failure Data

 Capture Programming Guide and Reference, SA22-7454

LoadLeveler Publications

LoadLeveler:
• Using and Administering, SA22-7311
• Diagnosis and Messages Guide, GA22-7277

GPFS Publications

GPFS:
• Problem Determination

 Guide, GA22-7434
• Data Management

 API Guide, GA22-7435
• Guide and Reference, GA22-7452
• Installation and
Parallel Environment Publications

Parallel Environment:
- Installation Guide, GA22-7418
- Messages, GA22-7419
- DPCL Programming Guide, SA22-7420
- DPCL Class Reference, SA22-7421
- MPI Programming Guide, SA22-7422
- MPI Subroutine Reference, SA22-7423
- Hitchhiker's Guide, SA22-7424
- Operation and Use, Volume
 - 1, SA22-7425
- Operation and Use, Volume
 - 2, SA22-7426
- MPL Programming
 and Subroutine Reference, GC23-3893

Parallel ESSL and ESSL Publications
- ESSL Products: General Information, GC23-0529
- Parallel ESSL: Guide and Reference, SA22-7273
- ESSL: Guide and Reference, SA22-7272

HACMP Publications

HACMP:
- Concepts and Facilities, SC23-4276
- Planning Guide, SC23-4277
- Installation Guide, SC23-4278
- Administration Guide, SC23-4279
- Troubleshooting Guide, SC23-4280
- Programming Locking Applications, SC23-4281
- Programming Client Applications, SC23-4282
- Master Index and Glossary, SC23-4285
- HANFS for AIX Installation
 and Administration Guide, SC23-4283
- Enhanced Scalability Installation
 and Administration Guide, SC23-4284

CLIO/S Publications

CLIO/S:
- General Information, GC23-3879
- User's Guide and Reference, GC28-1676

NetTAPE Publications

NetTAPE:
- General Information, GC23-3990
- User's Guide and Reference, available from your IBM representative

AIX and Related Product Publications

For the latest information on AIX and related products, including RS/6000 hardware products, see AIX and Related Products Documentation Overview, SC23-2456. You can order a hard copy of the book from IBM. You can also view it online from the “AIX Online Publications and Books” page of the RS/6000 Web site at:

http://www.rs6000.ibm.com/resource/aix_resource/Pubs

DCE Publications

The DCE library consists of the following books:

- IBM DCE 3.1 for AIX: Administration
 - Commands Reference
- IBM DCE 3.1 for
 - AIX: Administration Guide—Introduction
- IBM DCE 3.1 for
 - AIX: Administration Guide—Core Components
- IBM DCE 3.1 for AIX: DFS
 - Administration Guide and Reference
- IBM DCE 3.1 for
- IBM DCE 3.1 for
 - AIX: Application Development Guide—Core Components
- IBM DCE 3.1 for
 - AIX: Application Development Guide—Directory Services
- IBM DCE 3.1 for AIX: Application
 - Development Reference
- IBM DCE 3.1 for AIX: Problem
 - Determination Guide
- IBM DCE 3.1 for AIX: Release
Notes

You can view a DCE book or download a Portable Document Format (PDF) version of it from the IBM DCE Web site at:

Red Books

IBM's International Technical Support Organization (ITSO) has published a number of redbooks related to the RS/6000 SP. For a current list, see the ITSO Web site at:

http://www.redbooks.ibm.com

Non-IBM Publications

Here are some non-IBM publications that you may find helpful.

- Foster, I., *Designing and Building Parallel Programs*, Addison-Wesley, 1995.
Index

Special Characters
.klogin file 392

A
auto.master file 364

B
bootptab.info file 366

C
colors 539
commands (continued)
 Kerberos 394
 s1term 304
 SDR_config 9
 SDR_init 12
 SDR_test 14
 SDRAddSyspar 16
 SDRArchive 17
 SDRChangeAttrValues 19
 SDRClearLock 21
 SDRCreateAttrs 22
 SDRCreateClass 23
 SDRCreateFile 24
 SDRCreateObjects 26
 SDRCreateSystemClass 27
 SDRCreateSystemFile 28
 SDRDeleteFile 30
 SDRDeleteObjects 31
 SDRGetObjects 33
 SDRLListClasses 37
 SDRLListFiles 39
 SDRMoveObjects 40
 SDRRemoveSyspar 42
 SDRReplaceFile 43
 SDRRestore 45
 SDRRetrieveFile 47
 SDRScan 48
 SDRSetTsAuth 50
 SDRVValidateString 52
 SDRWhoHasLock 54
 seqfile 55
 services_config 57
 sethacws 58
 setup_authent 60
 setup_CWS 63
 setup_logd 65
 setup_server 68
 setupdce 70
commands (continued)
spsvrmgr 225
spswplane 234
spsyspar 236
sptg 239
sptgtpn 240
spunmirrorvg 242
spverify_config 244
spvsd 246
st_clean_table 250
st_status 252
st_verify 255
startvsd 257
statvsd 259
stopvsd 263
upper 268
suspendvsd 272
switch_stress 274
sysctl 277
sysctld 282
SYSMAN_test 289
syspar_ctrl 291
sysparaid 296
tecad_pssp 306
ucfgbsd 308
ucfgbsdvdsvd 309
ucfgvsd 311
unallnimres 313
undehsd 315
undefvsd 316
unfencevsd 318
updatehsd 320
updatevsvdsnode 322
updatevsdtab 325
updauthfiles 327
verparvsd 329
vhostname 332
vsdatalst 334
vsdchgservserver 337
vsddiag 339
vsetlnode 341
vsdelvds 343
vsdnode 345
vsetklst 348
vsdv6 353
vsdvgts 355
vsdvtts 357
wrap_test 359
configuration, Event Management
haemloadlist file 367

daemons (continued)
sp_configd 73
splogd 159
LAPI_Addr_set subroutine 427
LAPI_Address subroutine 429
LAPI_Address_init subroutine 431
LAPI_Amsend subroutine 433
LAPI_Amsendv subroutine 439
LAPI_Fence subroutine 445
LAPI_Get subroutine 447
LAPI_Getcnt subroutine 450
LAPI_Getv subroutine 452
LAPI_Init subroutine 455
LAPI_Msg_string subroutine 459
LAPI_Nopoll_wait subroutine 461
LAPI_Probe subroutine 463
LAPI_Purge_totask subroutine 465
LAPI_Put subroutine 467
LAPI_Putv subroutine 470
LAPI_Qenv subroutine 473
LAPI_Resumetotask subroutine 476
LAPI_Rmw subroutine 478
LAPI_Senv subroutine 481
LAPI_Setcnt subroutine 483
LAPI_Setcnt_wstatus subroutine 485
LAPI.Term subroutine 487
LAPI.Waitcnt subroutine 489

M
manual pages for public code 552

P
P3_PCI.addrs 399

R
RS/6000 SP files 363
RS/6000 SP technical information 363

S
s1term command 304
scripts
 sp_configdctrl 76
SDR_config 9
SDR_dest_info file 401
SDR_init 12
SDR_test command 14
SDRAddSyspar command 16
SDRarchive command 17
SDRChangeAttrValues command 19
SDRClearLock command 21
SDRCreateAttr command 22
SDRCreateClass command 23
SDRCreateFile command 24
SDRCreateObjects command 26
SDRCreateSystemClass command 27
SDRCreateSystemFile command 28
SDRDeleteFile command 30
SDRDeleteObjects command 31
SDRGetObjects command 33
SDRLListClasses command 37
SDRLListFiles command 39
SDRMoveObjects command 40
SDRRemoveSyspar command 42
SDRReplaceFile command 43
SDRRestore command 45
SDRRetrieveFile command 47
SDRScan command 48
SDRSetTsAuth command 50
SDRValidateString command 52
SDRWhoHasLock command 54
seqfile command 55
services_config command 57
sethacws command 58
setup_authent command 60
setup_CWS command 63
setup_logd command 65
setup_server command 68
setupdce command 70
setvhostname subroutine 491
SP SNMP Proxy Agent subsystem
 control script 76
SP subroutines 417
sp_configd daemon 73
sp_configdctrl script 76
spacctnd command 81
spacl command 84
spacs_cntl command 90
spadaptrs command 93
spapply_config command 96
spauthconfig command 99
spbootins command 101
spbootlist command 104
spchuser command 106
spcmergobj command 108
spcustomize_syspar command 111
spcw_addevents command 114
spcw_apps command 115
spdeladap command 117
spdelexp command 119
spdelfram command 121
spdelnode command 123
spdisplay_config command 125
spevent command 134
spframe command 137
spget_syspar command 140
spgetdesc command 141
spgrpname command 143
sphardware command 145
sphostnam command 148

Index 561
sphrdwrad command 150
spled command 153
splm command 155
splogd daemon 159
splst_syspars command 162
splst_versions command 163
splstadapters command 165
splstdata command 169
splstnodes command 178
spsluser command 181
spmgrd daemon 183
spmirrorvg command 186
spmkuser command 188
spmkvgoobj command 190
spmon command 193
spmon_ctest command 199
spmon_itest command 201
spnkeyman_start command 203
sppenode 205
sppenode command 205
spperfmon command 207
sprestore_config command 210
sprmuser command 212
sprmvgoobj command 213
spsec_overrides file 402
spsecconf command 215
spsetauth command 217
spssitenv command 219
spsvrmgr command 225
spswplane command 234
spSYSpar command 236
sptg command 239
sptgtprin command 240
spunmirrorvg command 242
spverify_config command 244
spvsd command 246
st_clean_table command 250
st_status command 252
st_verify command 255
startvsd command 257
statvsd command 259
stopvsd command 263
subroutines
 getvhostname 418
 hacws_set 421
 hacws_stat 423
 LAPI_Addr_get 425
 LAPI_Addr_set 427
 LAPI_Address 429
 LAPI_Address_limit 431
 LAPI_Amsend 433
 LAPI_Amsendv 439
 LAPI_Fence 445
 LAPI_Get 447
 LAPI_Getcntr 450
 LAPI_Getv 452
subroutines (continued)
 LAPI_Init 455
 LAPI_Msg_string 459
 LAPI_Nopoll_wait 461
 LAPI_Probe 463
 LAPI_Purge_totask 465
 LAPI_Put 467
 LAPI_Putv 470
 LAPI_Qenv 473
 LAPI_Resume_totask 476
 LAPI_Rmw 478
 LAPI_Serv 481
 LAPI_Setcntr 483
 LAPI_Setcntr_wstatus 485
 LAPI_Term 487
 LAPI_Waitcntr 489
 setvhostname 491
 swclockGetIncrement 493
 swclockInit 494
 swclockRead 496
 swclockReadSec 498
 swclockTerm 500
 swtbl_adapter_connectivity subroutine 501
 swtbl_adapter_resources subroutine 504
 swtbl_clean_table subroutine 507
 swtbl_load_job subroutine 510
 swtbl_load_table subroutine 516
 swtbl_query_adapter subroutine 521
 swtbl_status subroutine 523
 swtbl_status_node subroutine 527
 swtbl_unload_job subroutine 530
 swtbl_unload_table subroutine 534
subsystem control scripts
 sp_configdctrl 76
 supfilesrv daemon 265
 supper command 268
 suspendvsd command 272
 swclockGetIncrement subroutine 493
 swclockInit subroutine 494
 swclockRead subroutine 496
 swclockReadSec subroutine 498
 swclockTerm subroutine 500
 switch_stress command 274
 swtbl_adapter_connectivity subroutine 501
 swtbl_adapter_resources subroutine 504
 swtbl_clean_table subroutine 507
 swtbl_load_job subroutine 510
 swtbl_load_table subroutine 516
 swtbl_query_adapter subroutine 521
 swtbl_status subroutine 523
 swtbl_status_node subroutine 527
 swtbl_unload_job subroutine 530
 swtbl_unload_table subroutine 534
 sysctl command 277
 sysctl_acl file 405
<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>sysctl.conf file</td>
<td>409</td>
</tr>
<tr>
<td>sysctld command</td>
<td>282</td>
</tr>
<tr>
<td>SYSMAN_test command</td>
<td>289</td>
</tr>
<tr>
<td>syspar_ctrl command</td>
<td>291</td>
</tr>
<tr>
<td>sysparaid command</td>
<td>296</td>
</tr>
<tr>
<td>tecad_pssp</td>
<td>306</td>
</tr>
<tr>
<td>trademarks</td>
<td>542</td>
</tr>
<tr>
<td>tuning.commercial file</td>
<td>412</td>
</tr>
<tr>
<td>tuning.default file</td>
<td>413</td>
</tr>
<tr>
<td>tuning.development file</td>
<td>414</td>
</tr>
<tr>
<td>tuning.scientific file</td>
<td>415</td>
</tr>
<tr>
<td>ucfghsd command</td>
<td>308</td>
</tr>
<tr>
<td>ucfghsdvsd command</td>
<td>309</td>
</tr>
<tr>
<td>ucfgvsd command</td>
<td>311</td>
</tr>
<tr>
<td>unallnimres command</td>
<td>313</td>
</tr>
<tr>
<td>undefhsd command</td>
<td>315</td>
</tr>
<tr>
<td>undefvsd command</td>
<td>316</td>
</tr>
<tr>
<td>unfencevsd command</td>
<td>318</td>
</tr>
<tr>
<td>updatehsd command</td>
<td>320</td>
</tr>
<tr>
<td>updatevsdnode command</td>
<td>322</td>
</tr>
<tr>
<td>updatevsdtab command</td>
<td>325</td>
</tr>
<tr>
<td>updauthfiles command</td>
<td>327</td>
</tr>
<tr>
<td>verparvsd command</td>
<td>329</td>
</tr>
<tr>
<td>vhostname command</td>
<td>332</td>
</tr>
<tr>
<td>vsdatalst command</td>
<td>334</td>
</tr>
<tr>
<td>vsdchgserver command</td>
<td>337</td>
</tr>
<tr>
<td>vsddiag command</td>
<td>339</td>
</tr>
<tr>
<td>vsdelnode command</td>
<td>341</td>
</tr>
<tr>
<td>vsdelvg command</td>
<td>343</td>
</tr>
<tr>
<td>vsdnode command</td>
<td>345</td>
</tr>
<tr>
<td>vsdskilst command</td>
<td>348</td>
</tr>
<tr>
<td>vsdvg command</td>
<td>353</td>
</tr>
<tr>
<td>vsdvgs command</td>
<td>355</td>
</tr>
<tr>
<td>vsdvts command</td>
<td>357</td>
</tr>
<tr>
<td>wrap_test command</td>
<td>359</td>
</tr>
</tbody>
</table>
If you especially like or dislike anything about this book, please use one of the methods listed below to send your comments to IBM. Whichever method you choose, make sure you send your name, address, and telephone number if you would like a reply.

Feel free to comment on specific errors or omissions, accuracy, organization, subject matter, or completeness of this book. However, the comments you send should pertain to only the information in this manual and the way in which the information is presented. To request additional publications, or to ask questions or make comments about the functions of IBM products or systems, you should talk to your IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any way it believes appropriate without incurring any obligation to you.

If you are mailing a reader's comment form (RCF) from a country other than the United States, you can give the RCF to the local IBM branch office or IBM representative for postage-paid mailing.

- If you prefer to send comments by mail, use the RCF at the back of this book.
- If you prefer to send comments by FAX, use this number:
 - FAX: (International Access Code)+1+914+432-9405
- If you prefer to send comments electronically, use one of these network IDs:
 - IBM Mail Exchange: USIB6TC9 at IBMMAIL
 - Internet e-mail: mhvrdfs@us.ibm.com

Make sure to include the following in your note:

- Title and publication number of this book
- Page number or topic to which your comment applies

Optionally, if you include your telephone number, we will be able to respond to your comments by phone.
Reader's Comments — We'd Like to Hear from You

Parallel System Support Programs for AIX
Command and Technical
Reference, Volume 2
Version 3 Release 2
Publication No. SA22-7351-02

You may use this form to communicate your comments about this publication, its organization, or subject matter, with the understanding that IBM may use or distribute whatever information you supply in any way it believes appropriate without incurring any obligation to you. Your comments will be sent to the author's department for whatever review and action, if any, are deemed appropriate.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please direct any requests for copies of publications, or for assistance in using your IBM system, to your IBM representative or to the IBM branch office serving your locality.

Today's date: ________________________________

What is your occupation?

Newsletter number of latest Technical Newsletter (if any) concerning this publication:

How did you use this publication?

[] As an introduction [] As a text (student)
[] As a reference manual [] As a text (instructor)
[] For another purpose (explain)

Is there anything you especially like or dislike about the organization, presentation, or writing in this manual? Helpful comments include general usefulness of the book; possible additions, deletions, and clarifications; specific errors and omissions.

Page Number: Comment:

Name ____________________________________ Address ____________________________________

Company or Organization ____________________________________

Phone No. ____________________________________
Reader's Comments — We'd Like to Hear from You
SA22-7351-02

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Department 55JA, Mail Station P384
2455 South Road
Poughkeepsie NY 12601-5400