RS/6000

IBM Fibre Channel Planning and Integration: User's Guide and Service Information

- Note -

Before using this information and the product it supports, be sure to read the general information under "Product Warranties and Notices" included with your system unit.

Second Edition (November 2000)

Before using this information and the product it supports, read the information in "Safety Notices" on page ix and Appendix A, "Notices" on page 65.

© International Business Machines Corporation 2000. All rights reserved. Note to U.S. Government Users Restricted Rights--Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

Contents

Safety Notices					
Handling Static Sensitive Devices				 	xi
About This Book					
How to Use This Book					
Highlighting					
ISO 9000					
Online Publications					
Related Information					
Ordering Publications					
Trademarks	٠.	٠	 •	 	XVII
Chapter 1. Introduction					1
Fibre Channel Overview					
Computer I/O Interface History					
Computer I/O Interface Strategies					
What is Fibre Channel?					
Fibre Channel Connection Topology					
Fibre Channel Port Types					
Fibre Channel Classes of Service					
Introduction to the Gigabit Fibre Channel PCI Adapter				 	6
Chapter 2. Planning Information					7
Planning Your Fibre Channel Configuration					
Planning Your Configuration					
Preparing a Site Plan					
Plan and Diagram All Cable Routing					
Preparing for Installation of the Gigabit Fibre Channel PCI Adapt					
Preparing for Installation of the Other Fibre Channel Devices					
Chapter 3. Fibre Channel Installation					
Installing the Gigabit Fibre Channel PCI Adapter					
Installing the Device Driver Software on an RS/6000 System					
Installing the Device Driver on an RS/6000 SP System					
Setting up and Checking System Prerequisites					
Creating an Installable Image on the Control Workstation					
Finalizing Preparations for Device Driver Installation					
Installing Device Drivers on the RS/6000 SP System Nodes Installing the Adapter Hardware					
motaming the Adapter Hardwald		•		 	

Verifying the Installation Verifying the Hardware Installation Verifying the Software Installation Installing Other Fibre Channel Devices	21 21 22 22
Chapter 4. Fibre Channel Operation Operating the Gigabit Fibre Channel PCI Adapter Operating Other Fibre Channel Devices	23 23 23
Chapter 5. Problem Determination Complexity of the Fibre Channel Environment Nature of Fibre Channel Environment Problems Fibre Channel Environment Problem Determination Procedures Requirements Before Starting Problem Determination Start of PDP PD0010 - Start of Call Start of PDP PD0020 - Fibre Channel Adapter not Available Start of PDP PD0030 - Fibre Channel SCSI I/O Controller Protocol Device not Available	25 25 26 27 28 29 37
Start of PDP PD0040 - Logical Hard Disks Not Available Start of PDP PD0050 - Logical Tape Drives Not Available Start of PDP PD0060 - Fiber Path Failures Start of PDP PD0070 - Other Failures	41 45 48 56
Chapter 6. Service Information Gigabit Fibre Channel PCI Adapter Adapter LEDs AIX Diagnostics for the Gigabit Fibre Channel Adapter Service Request Numbers Source of SRN Failing Function Codes Tracing the Gigabit Fibre Channel Adapter Generating an Error Report for the Gigabit Fibre Channel Adapter 2109 SAN Fibre Channel Switch Service Aid Other Fibre Channel Devices	57 57 58 59 60 61 61 63 63 64
Appendix A. Notices	65
Appendix B. Communications Statements Federal Communications Commission (FCC) Statement European Union (EU) Statement International Electrotechnical Commission (IEC) Statement United Kingdom Telecommunications Safety Requirements Avis de conformité aux normes du ministère des Communications du Canada Canadian Department of Communications Compliance Statement	67 68 68 68 69 69

VCCI Statement	
Appendix C. Error Messages Error Log Information for the Gigabit Fibre Channel PCI Adapter PCI Fibre Channel Adapter Error Log Sense Information PCI Fibre Channel Adapter, SCSI Protocol, Error Log Sense Information PCI Fibre Channel Adapter, SCSI-3 Protocol (Disk, CD-ROM, Read/Write	. 71 . 73 . 79
Optical Device) Error Log Sense Information	
Appendix D. Fibre Channel Devices and Configurations Fibre Channel Devices Fibre Channel Configurations Point-to-Point Configurations Hub Configurations Switch Configurations SAN Data Gateway Configurations	. 95 . 97 . 97 . 98 . 99
Appendix E. McDATA ED-5000 Enterprise Fibre Channel Director McDATA ED-5000 Enterprise Fibre Channel Director Description Functional Features Reliability, Availability, and Serviceability (RAS) Features ED-5000 Limitations Publications and Other Sources of Information	. 105 . 105 . 107 . 107
Appendix F. IBM 2109-S08/S16 SAN Fibre Channel Switch IBM 2109-S08/S16 SAN Fibre Channel Switch Description High-performance, Scalable Switch Fabric Intelligent Self-management Multiple Configuration Options IBM StorWatch SAN Fibre Channel Switch Specialist General Information Product Information Feature Codes for SAN Fibre Channel Switch Products Publications and Other Sources of Information	. 109 . 109 . 109 . 110 . 110 . 110
Appendix G. IBM 2103-H07 Fibre Channel Storage Hub IBM 2103-H07 Fibre Channel Storage Hub Description Configuration Flexibility Standard and Extended Distances The 2103-H07 IBM Fibre Channel Storage Hub Hardware Fibre Channel Storage Hub Reliability and Availability General Information	. 113 . 113 . 114 . 114 . 114

Publications and Other Sources of Information	. 115
Appendix H. IBM 2108-G07 SAN Data Gateway	. 117
Using Fibre Channel to Overcome SCSI Channel Limitations	. 118
Multiple Configuration Options	
General Information	
Product Information	
Publications and Other Sources of Information	. 119
Appendix I. IBM 2102-F10 Fibre Channel RAID Storage Server	
IBM 2102-F10 Fibre Channel RAID Storage Server Description	
Multihost Attachment	
High-availability design	
Extended Distances	
High Performance	
General Information	
Product Information	
Configuration Information	
•	
Publications and Other Sources of Information	. 127
Appendix J. EMC Symmetrix 3000 and 5000 Enterprise Storage Systems	. 125
Appendix J. EMC Symmetrix 3000 and 5000 Enterprise Storage Systems Symmetrix 3000 and 5000 Enterprise Storage Systems Description	. 125 . 125
Appendix J. EMC Symmetrix 3000 and 5000 Enterprise Storage Systems	. 125 . 125
Appendix J. EMC Symmetrix 3000 and 5000 Enterprise Storage Systems Symmetrix 3000 and 5000 Enterprise Storage Systems Description Publications and Other Sources of Information Appendix K. IBM 2105-E10/E20/F10/F20 Enterprise Storage Server	. 125 . 125 . 126 . 127
Appendix J. EMC Symmetrix 3000 and 5000 Enterprise Storage Systems Symmetrix 3000 and 5000 Enterprise Storage Systems Description Publications and Other Sources of Information	. 125 . 125 . 126 . 127
Appendix J. EMC Symmetrix 3000 and 5000 Enterprise Storage Systems Symmetrix 3000 and 5000 Enterprise Storage Systems Description Publications and Other Sources of Information Appendix K. IBM 2105-E10/E20/F10/F20 Enterprise Storage Server IBM Enterprise Storage Server Description Enterprise Storage Server Features	. 125 . 125 . 126 . 127 . 127 . 128
Appendix J. EMC Symmetrix 3000 and 5000 Enterprise Storage Systems Symmetrix 3000 and 5000 Enterprise Storage Systems Description Publications and Other Sources of Information Appendix K. IBM 2105-E10/E20/F10/F20 Enterprise Storage Server IBM Enterprise Storage Server Description Enterprise Storage Server Features Enterprise Storage System Web Interfaces	. 125 . 125 . 126 . 127 . 127 . 128 . 129
Appendix J. EMC Symmetrix 3000 and 5000 Enterprise Storage Systems Symmetrix 3000 and 5000 Enterprise Storage Systems Description Publications and Other Sources of Information Appendix K. IBM 2105-E10/E20/F10/F20 Enterprise Storage Server IBM Enterprise Storage Server Description Enterprise Storage Server Features Enterprise Storage System Web Interfaces Enterprise Storage Server Network	. 125 . 125 . 126 . 127 . 127 . 128 . 129 . 129
Appendix J. EMC Symmetrix 3000 and 5000 Enterprise Storage Systems Symmetrix 3000 and 5000 Enterprise Storage Systems Description Publications and Other Sources of Information Appendix K. IBM 2105-E10/E20/F10/F20 Enterprise Storage Server IBM Enterprise Storage Server Description Enterprise Storage Server Features Enterprise Storage System Web Interfaces Enterprise Storage Server Network Accessing ESS Specialist and ESS Copy Services	. 125 . 125 . 126 . 127 . 127 . 128 . 129 . 129
Appendix J. EMC Symmetrix 3000 and 5000 Enterprise Storage Systems Symmetrix 3000 and 5000 Enterprise Storage Systems Description Publications and Other Sources of Information Appendix K. IBM 2105-E10/E20/F10/F20 Enterprise Storage Server IBM Enterprise Storage Server Description Enterprise Storage Server Features Enterprise Storage System Web Interfaces Enterprise Storage Server Network Accessing ESS Specialist and ESS Copy Services ESS Specialist	. 125 . 125 . 126 . 127 . 127 . 128 . 129 . 129 . 130
Appendix J. EMC Symmetrix 3000 and 5000 Enterprise Storage Systems Symmetrix 3000 and 5000 Enterprise Storage Systems Description Publications and Other Sources of Information Appendix K. IBM 2105-E10/E20/F10/F20 Enterprise Storage Server IBM Enterprise Storage Server Description Enterprise Storage Server Features Enterprise Storage System Web Interfaces Enterprise Storage Server Network Accessing ESS Specialist and ESS Copy Services ESS Specialist ESS Copy Services	. 125 . 125 . 126 . 127 . 127 . 128 . 129 . 129 . 129 . 130 . 130
Appendix J. EMC Symmetrix 3000 and 5000 Enterprise Storage Systems Symmetrix 3000 and 5000 Enterprise Storage Systems Description Publications and Other Sources of Information Appendix K. IBM 2105-E10/E20/F10/F20 Enterprise Storage Server IBM Enterprise Storage Server Description Enterprise Storage Server Features Enterprise Storage System Web Interfaces Enterprise Storage Server Network Accessing ESS Specialist and ESS Copy Services ESS Specialist ESS Copy Services ESS Expert	. 125 . 125 . 126 . 127 . 127 . 128 . 129 . 129 . 130 . 130 . 131
Appendix J. EMC Symmetrix 3000 and 5000 Enterprise Storage Systems Symmetrix 3000 and 5000 Enterprise Storage Systems Description Publications and Other Sources of Information Appendix K. IBM 2105-E10/E20/F10/F20 Enterprise Storage Server IBM Enterprise Storage Server Description Enterprise Storage Server Features Enterprise Storage System Web Interfaces Enterprise Storage Server Network Accessing ESS Specialist and ESS Copy Services ESS Specialist ESS Copy Services ESS Expert The ESS Service Interface	. 125 . 125 . 126 . 127 . 127 . 128 . 129 . 129 . 130 . 130 . 131
Appendix J. EMC Symmetrix 3000 and 5000 Enterprise Storage Systems Symmetrix 3000 and 5000 Enterprise Storage Systems Description Publications and Other Sources of Information Appendix K. IBM 2105-E10/E20/F10/F20 Enterprise Storage Server IBM Enterprise Storage Server Description Enterprise Storage Server Features Enterprise Storage System Web Interfaces Enterprise Storage Server Network Accessing ESS Specialist and ESS Copy Services ESS Specialist ESS Copy Services ESS Expert The ESS Service Interface General Information	. 125 . 125 . 126 . 127 . 127 . 128 . 129 . 129 . 130 . 131 . 131
Appendix J. EMC Symmetrix 3000 and 5000 Enterprise Storage Systems Symmetrix 3000 and 5000 Enterprise Storage Systems Description Publications and Other Sources of Information Appendix K. IBM 2105-E10/E20/F10/F20 Enterprise Storage Server IBM Enterprise Storage Server Description Enterprise Storage Server Features Enterprise Storage System Web Interfaces Enterprise Storage Server Network Accessing ESS Specialist and ESS Copy Services ESS Specialist ESS Copy Services ESS Expert The ESS Service Interface General Information Enterprise Storage Server 2105	. 125 . 125 . 126 . 127 . 127 . 128 . 129 . 129 . 130 . 130 . 131 . 131 . 132 . 132
Appendix J. EMC Symmetrix 3000 and 5000 Enterprise Storage Systems Symmetrix 3000 and 5000 Enterprise Storage Systems Description Publications and Other Sources of Information Appendix K. IBM 2105-E10/E20/F10/F20 Enterprise Storage Server IBM Enterprise Storage Server Description Enterprise Storage Server Features Enterprise Storage System Web Interfaces Enterprise Storage Server Network Accessing ESS Specialist and ESS Copy Services ESS Specialist ESS Copy Services ESS Expert The ESS Service Interface General Information	. 125 . 125 . 126 . 127 . 127 . 128 . 129 . 129 . 130 . 130 . 131 . 131 . 132 . 132
Appendix J. EMC Symmetrix 3000 and 5000 Enterprise Storage Systems Symmetrix 3000 and 5000 Enterprise Storage Systems Description Publications and Other Sources of Information Appendix K. IBM 2105-E10/E20/F10/F20 Enterprise Storage Server IBM Enterprise Storage Server Description Enterprise Storage Server Features Enterprise Storage System Web Interfaces Enterprise Storage Server Network Accessing ESS Specialist and ESS Copy Services ESS Specialist ESS Copy Services ESS Expert The ESS Service Interface General Information Enterprise Storage Server 2105 Publications and Other Sources of Information Appendix L. IBM Magstar and Ultrium Tape Subsystems	. 125 . 125 . 126 . 127 . 127 . 128 . 129 . 129 . 130 . 131 . 131 . 132 . 133
Appendix J. EMC Symmetrix 3000 and 5000 Enterprise Storage Systems Symmetrix 3000 and 5000 Enterprise Storage Systems Description Publications and Other Sources of Information Appendix K. IBM 2105-E10/E20/F10/F20 Enterprise Storage Server IBM Enterprise Storage Server Description Enterprise Storage Server Features Enterprise Storage System Web Interfaces Enterprise Storage Server Network Accessing ESS Specialist and ESS Copy Services ESS Specialist ESS Copy Services ESS Expert The ESS Service Interface General Information Enterprise Storage Server 2105 Publications and Other Sources of Information Appendix L. IBM Magstar and Ultrium Tape Subsystems IBM Magstar MP (Multi-Purpose) 3570 Tape Subsystem	. 125 . 125 . 126 . 127 . 127 . 128 . 129 . 129 . 130 . 131 . 131 . 132 . 132 . 133 . 135 . 135
Appendix J. EMC Symmetrix 3000 and 5000 Enterprise Storage Systems Symmetrix 3000 and 5000 Enterprise Storage Systems Description Publications and Other Sources of Information Appendix K. IBM 2105-E10/E20/F10/F20 Enterprise Storage Server IBM Enterprise Storage Server Description Enterprise Storage Server Features Enterprise Storage System Web Interfaces Enterprise Storage Server Network Accessing ESS Specialist and ESS Copy Services ESS Specialist ESS Copy Services ESS Expert The ESS Service Interface General Information Enterprise Storage Server 2105 Publications and Other Sources of Information Appendix L. IBM Magstar and Ultrium Tape Subsystems	. 125 . 125 . 126 . 127 . 127 . 128 . 129 . 129 . 130 . 131 . 131 . 132 . 132 . 133 . 135 . 135

IBM Magstar 3590-B11/B1A/E11/E1A Tape Subsystem
Magstar 3590 Performance and Capacity
Servicability, Reliability and Data Integrity
Usability
General Information
The Ultrium 3850 Tape Family
General Information
Publications and Other Sources of Information
Glossary
Index
Reader's Comments — We'd Like to Hear From You

Safety Notices

A *danger* notice indicates the presence of a hazard that has the potential of causing death or serious personal injury.

A *caution* notice indicates the presence of a hazard that has the potential of causing moderate or minor personal injury.

For a translation of the safety notices contained in this book, see the *System Unit Safety Information manual*, order number SA23-2652.

Electrical Safety

Observe the following safety instructions any time you are connecting or disconnecting devices attached to the workstation.

DANGER

An electrical outlet that is not correctly wired could place hazardous voltage on metal parts of the system or the devices that attach to the system. It is the responsibility of the customer to ensure that the outlet is correctly wired and grounded to prevent an electrical shock.

Before installing or removing signal cables, ensure that the power cables for the system unit and all attached devices are unplugged.

When adding or removing any additional devices to or from the system, ensure that the power cables for those devices are unplugged before the signal cables are connected. If possible, disconnect all power cables from the existing system before you add a device.

Use one hand, when possible, to connect or disconnect signal cables to prevent a possible shock from touching two surfaces with different electrical potentials.

During an electrical storm, do not connect cables for display stations, printers, telephones, or station protectors for communication lines.

CAUTION:

This product is equipped with a three—wire power cable and plug for the user's safety. Use this power cable with a properly grounded electrical outlet to avoid electrical shock.

DANGER

To prevent electrical shock hazard, disconnect the power cable from the electrical outlet before relocating the system.

CAUTION:

This unit has more than one power supply cord. To reduce the risk of electrical shock, disconnect two power supply cords before servicing.

Handling Static Sensitive Devices

Attention: Static electricity can damage this device and your system unit. To avoid damage, keep this device in its static protective bag until you are ready to install it. To reduce the possibility of electrostatic discharge, follow the precautions listed below:

- · Limit your movement. Movement can cause static electricity to build up around
- Handle the device carefully, holding it by its edges or its frame.
- Do not touch solder joints, pins, or exposed printed circuitry.
- Do not leave the device where others can handle and possibly damage the device.
- While the device is still in its anti-static package, touch it to an unpainted metal part of the system unit for at least two seconds. (This drains static electricity from the package and from your body.)
- Remove the device from its package and install it directly into your system unit without setting it down. If it is necessary to set the device down, place it on its static-protective package. (If your device is an adapter, place it component-side up.) Do not place the device on your system unit cover or on a metal table.
- Take additional care when handling devices during cold weather, as heating reduces indoor humidity and increases static electricity.

About This Book

This book, *IBM Fibre Channel Planning and Integration: User's Guide and Service Information*, provides information on the following:

- · General concepts of Fibre Channel connectivity
- · Available Fibre Channel Devices
- How to integrate the various Fibre Channel components into an efficient Fibre Channel network

Details of the Fibre Channel protocol will not be addressed, but general information regarding switched fabric connections and arbitrated loops will be discussed. In addition, specifics on various Storage Area Network (SAN) configurations, particularly involving Fibre Channel Switches and hubs will be presented.

Programmers, system administrators, service representatives and operators should use this guide when installing, configuring, or performing problem determination on Fibre Channel networks.

In this publication, AIX® system, SP system, and AIX SP system are used. These terms all refer to the AIX system.

How to Use This Book

This guide is intended for operators, programmers, system administrators, and service representatives responsible for the following:

- · Fibre Channel planning and installation
- Fibre Channel component integration
- Fibre Channel Network maintenance
- Fibre Channel SAN administration
- Fibre Channel Network operation and its considerations
- · Fibre Channel problem determination and service considerations

This book supplements the other books shipped with the system unit, Fibre Channel Director, Hubs, and Storage Devices. Be sure to observe all the safety precautions outlined in the system unit books when installing, cabling, and servicing the Fibre Channel Network or any of its components.

Highlighting

The following highlighting conventions are used in this book.

Bold Identifies commands, key words, files, directories, and other items

whose names are predefined by the system.

Identifies parameters whose actual names or values are to be

supplied by the user.

Monospace Identifies examples of specific data values, examples of text similar to

what you might see displayed, examples of portions of program code similar to what you might write as a programmer, messages from the

system, or information you should actually type.

ISO 9000

ISO 9000 registered quality systems were used in the development and manufacturing of this product.

Online Publications

RS/6000 publications are available online. To access the online books, visit our Web site at: http://www.rs6000.ibm.com/resource/hardware docs/

Related Information

The following publications provide related information for Fibre Channel configurations and products.

- IBM RS/6000 SP Planning Volume 1, Hardware and Physical Envronment, GA22-7280
- PCI Adapter Placement Reference, SA38-0538
- Diagnostic Information for Multiple Bus Systems, SA38-0509
- System Unit Safety Information manual SA23-2652.
- PSSP: Administration Guide, GC23-3897
- Link Fault Isolation, SY22-9533
- S/390 Fiber Optic Links (ESCON, FICON, Coupling Links, and Open system Adapters), SY27-2597
- PSSP: Command and Technical Reference, GC23-3900

- ED-5000 Enterprise Fibre Channel Director Product Planning Manual, 620-005000 (McDATA Corporation)
- ED-5000 Enterprise Fibre Channel Director Product User Manual, 620-005002 (McDATA Corporation)
- ED-5000 Enterprise Fibre Channel Director Product Installation Manual, 620-005003 (McDATA Corporation)
- ED-5000 Enterprise Fibre Channel Director Product Service Manual, 620-005004 (McDATA Corporation)
- ED-5000 Enterprise Fibre Channel Director Product Manager User Reference Guide, 620-005006 (McDATA Corporation)
- IBM SAN Fibre Channel Switch 2109 Model S08 User's Guide, SC26-7349
- IBM SAN Fibre Channel Switch 2109 Model S16 User's Guide, SC26-7351
- IBM SAN Fibre Channel Switch 2109 Model S08 Installation and Service Guide, SC26-7350
- IBM SAN Fibre Channel Switch 2109 Model S16 Installation and Service Guide, SG26-7352
- IBM Fibre Channel Storage Hub: 2103 Model H07 Installation, Service, and User's Guide, SC26-7289
- IBM SAN Data Gateway Installation and User's Guide, SC26-7304
- IBM SAN Data Gateway Service Guide, SC26-7307
- IBM Fibre Channel RAID Storage Server, 2102 Introduction and Planning Guide, GC26-7281
- IBM Fibre Channel RAID Storage Server, 2102 Installation and User's Guide for AIX Operating System, SC26-7290
- IBM Fibre Channel RAID Storage Server and Expandable Storage Unit, 2102
 Model F10 and Model D00: User's Guide, GC26-7288
- IBM Fibre Channel RAID Storage Server and Expandable Storage Unit, 2102
 Model F10 and Model D00: Service Guide, SY27-7604
- Configuring and Implementing the IBM Fibre Channel RAID Storage Server, SC24-5414
- Symmetrix Open System Environment Product Guide Volume I, P/N 200-999-563 (EMC Corporation)
- IBM ESS Introduction and Planning Guide 2105 Models E10 and E20, GC26-7294
- IBM ESS Host System Attachment Guide 2105 Models E10 and E20, SC26-7296

- IBM ESS Configuration Guide 2105 Models E10 and E20, SC26-7353
- IBM ESS User's Guide 2105 Models E10 and E20, SC26-7295
- IBM ESS SCSI Command Reference 2105 Models E10 and E20, SC26-7297
- IBM Magstar 3590 Tape Subsystem: Introduction and Planning Guide, GA32-0329
- IBM Magstar 3590 Tape Subsystem: Technical Guide, SG24-2506
- IBM Magstar 3590 Tape Subsystem: Multiplatform Implementation, SG24-2594
- IBM Magstar 3590 Tape Subsystem: Operator's Guide, GA32-0330
- IBM Magstar 3590 Tape Subsystem: Hardware Reference, GA32-0331
- IBM Magstar MP 3570 Tape Subsystem: Introduction and Planning Guide C-Series Models, GA32-0392
- IBM Magstar MP 3575 Tape Library Dataserver: Introduction and Planning Guide, GA32-0380
- IBM Magstar MP 3570 Tape Subsystem: Operator's Guide C-Series Models, GA32-0393
- IBM Magstar MP 3575 Tape Library Dataserver: Operator's Guide, GA32-0381
- IBM Magstar MP 3570 Tape Subsystem: Hardware Reference C-Series Models, GA32-0394
- IBM Magstar MP 3575 Tape Library Dataserver: Hardware Reference, GA32-0382
- IBM Fibre Channel Storage Manager, and StorWatch for Fiber Channel Expert, SC26-7285
- IBM 3580 Ultrium Tape Drive Setup, Operator, and Service Guide, GA32-0415

Ordering Publications

You can order publications from your sales representative or from your point of sale.

To order additional copies of this publication, contact your sales representative and use order number SC23-4329.

Trademarks

The following are trademarks of the International Business Machines Corporation in the United States, other countries, or both.

ADSTAR RS/6000 AIX RS/6000 SP Enterprise Storage Server S/390 **Enterprise Systems Connection** Seascape **ESCON** SP **FICON** StorWatch System/360 IBM System/390 Magstar UltraStar

Linear Tape-Open and Ultrium are trademarks of International Business Machines Corporation, Hewlett-Packard, and Seagate.

Tivoli is a registered trademark of Tivoli Systems Inc. in the United States, other countries, or both.

Intel is a registered trademark of the Intel Corporation in the United States, other countries, or both.

Microsoft, Windows and Windows NT are trademarks of Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark in the United States and other countries licensed exclusively through The Open Group.

Other company, product, and service names may be trademarks or service marks of others.

Chapter 1. Introduction

Fibre Channel (FC) is an approach introduced during the late 1990's to solve the many problems associated with existing computer input/output (I/O) interfaces and system connections.

Fibre Channel Overview

This section provides an overview of Fibre Channel, and discusses computer interfacing techniques which led to the development of the Fibre Channel.

Computer I/O Interface History

Prior to 1964, computers attached their I/O using a variety of methods, each computer type using its own interface design. In fact, even computer models from the same manufacturer rarely employed I/O interfacing techniques with any degree of commonality.

In 1964, IBM® introduced the IBM System/360™ which incorporated a Channel I/O subsystem using a standard parallel I/O interface. Over the next few years, this interface became a defacto industry standard, and the idea of a common I/O interface for computers became the norm.

In the late 1980's, IBM introduced the Enterprise System Connection™ (ESCON)® interface to overcome the distance, bandwidth, and cable bulk deficiencies associated with the parallel I/O interface. However, ESCON, like the parallel interface, was oriented strictly toward S/390® I/O subsystems.

By the mid 1980's, a variety of desk-top computers had been introduced. Originally, these computers were not interconnected, but as their usage proliferated, peer-to-peer networks became common. These networks employ technologies such as Ethernet and Token Ring. As this segment of the industry has matured, a need for high speed, dependable, versatile connectivity has developed. Moreover, the need to connect large networks of small computers, mainframes, and storage devices has become a pressing need which has not been satisfied by Token Ring, Ethernet, ESCON, or SCSI. Fibre Channel was conceived to meet this requirement.

Computer I/O Interface Strategies

Historically there have been two diverse computer interface strategies. The first, known as a Channel, usually refers to the input/output (I/O) subsystems employed in the mainframe environment, and is typified by the parallel and ESCON channels previously mentioned. Channel design provides high bandwidth, security, and

delivery reliability. However, its protocol methodology has restricted it to master/slave configurations, such that the mainframe is the master and initiates all communications. The I/O devices are relegated to slaves whose only function is to respond by executing the commands from the mainframe.

With the proliferation of the desk-top computer, and its introduction into the business and industrial environment, it became immediately apparent that peer-to-peer communications were required. Thus the second of the two interface strategies was conceived; namely, the Network. Networks, such as Ethernet and Token Ring, fill the need for peer-to-peer communication, but tend to fall short in the areas of bandwidth, security, and delivery reliability.

Fibre Channel is designed to bring together these two diverse strategies and create a high-bandwidth, secure, reliable-delivery medium that lends itself well to both master/slave and peer-to-peer communication configurations.

What is Fibre Channel?

Fibre Channel is the name applied to a set of standards developed by the American National Standards Institute (ANSI) which defines protocols for information transfer. While the term "Fibre" implies optical fiber, the ANSI definition allows a variety of both copper and optical transmission media including 9-Micron Single Mode Fiber, 50-Micron Multimode Fiber, 62.5-Micron Multimode Fiber, Video Coax, and Shielded Twisted Pair. In all cases, the transmission of data is bit-by-bit serial, thus eliminating the skew problems inherent in parallel-wire technologies.

Fibre Channel was designed to possess the following characteristics:

- Good price/performance
- · Connection versatility with scalable performance
- Scalability
- Reliability
- Very large bandwidth (one Gigabit/Second)
- · Ability to handle a variety of protocols
- High efficiency

Fibre Channel Connection Topology

In a Fibre Channel environment, the terms *node*, *port*, and *link* are used to describe components of the system. Fibre Channel devices are referred to as *nodes*. A node may be a workstation, disk drive, or other device capable of Fibre Channel connectivity. Each node must have at least one port. The port provides the actual connection to the outside world. The port may, for example, be an adapter in the

workstation. The link is the actual transmission medium used to carry the information from one node to another. Each port connects to the link with a pair of fibers. One fiber connects to the port's receiver and carries information into the port, while the other fiber connects to the port's transmitter and carries information out of the port. Most cables contain both fibers, thus the pair appears as a single entity to a casual observer.

Fibre Channel nodes are interconnected in three general topologies. The simplest is known as point-to-point, and consists of two nodes connected exclusively to each other (see Figure 1).

Figure 1. Point-to-Point Topology

Another common configuration is known as the arbitrated loop. In the loop topology, three or more nodes, up to a maximum of 127, are connected such that the transmitter/receiver cabling forms a closed loop (see Figure 2).

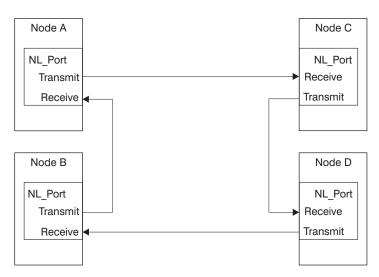


Figure 2. Arbitrated Loop with Four Nodes

A variation of the loop uses a hub. The hub is located in the center of the loop and allows the transmit and receive lines from each port to be run in a single cable. The result looks like a star configuration (see Figure 3 on page 4), but operates exactly like the arbitrated loop topology previously described.

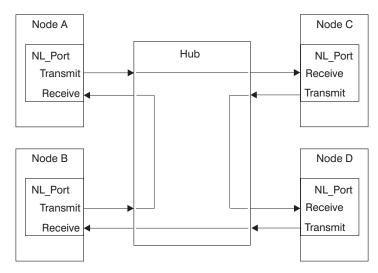


Figure 3. Arbitrated Loop Using a Hub

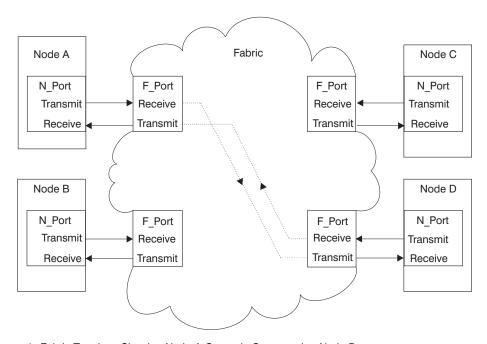


Figure 4. Fabric Topology Showing Node A Currently Connected to Node D

The most versatile configuration is called Fabric or Switched topology. In this topology, nodes are cabled to ports on a Fibre Channel Switch (see Figure 4).

The characteristics of the switch permit any-to-any port connection, thus any of the connected nodes may be connected to any other connected node. This connection is maintained only for the duration of a given transmission and then dropped, allowing each of the nodes to connect with other nodes to engage in other transactions. The node starting a given transaction is called the initiator, and the other node is called the target node. The architecture defining the Fabric topology permits the attachment of more than 16 million active ports.

It is quite common to find installations that incorporate multiple types of topologies. For example, in Storage Area Networks (SANs), the disk drives are often configured in groups of arbitrated loops with the whole SAN interconnected in a fabric topology. The host computers would also be connected within the fabric, taking full advantage of the any-to-any connectivity afforded by the topology.

Fibre Channel Port Types

There are several different types of ports, differentiated according to function. The more common types are:

Port Type	Description
N_Port	Used in point-to-point configurations
NL_Port	Used in Arbitrated Loops
F_Port	Used in switched topologies
FL_Port	Used in switched topologies intersecting with loops
E_Port	Used in switched topologies to interconnect multiple cascaded switches
G_Port	A port that can be used as either an F_port or an E_Port

Fibre Channel Classes of Service

Fibre Channel Standards define four strategies for communication within the fabric. These strategies are known as *classes of service* and are listed below:

Class	Description
Class 1	Used in point-to-point configurations. A dedicated connection between two ports is established and remains in effect throughout the transaction. Confirmation of receipt of frames is required of the recipient.

- Class 2 No dedicated connection is set up, but frame switching is used to route the data between nodes. Confirmation of receipt of frames is required of the recipient.
- Class 3 As in Class 2, frame switching is used rather than a dedicated connection; however, no confirmation is required.
- Class 4 Similar to Class 1 in that a connection is established; however, the total bandwidth of a port is distributed among several destinations to create virtual connections.

Introduction to the Gigabit Fibre Channel PCI Adapter

Fibre Channel lends itself particularly well to Storage Area Networks (SANs). In this environment, the host computers, by the nature of their role, move to the forefront of importance. The Gigabit Fibre Channel PCI Adapter (Feature 6227) is an RS/6000 I/O adapter which provides Fibre Channel connectivity for AIX system hosts. Each adapter, generally known as a Host Bus Adapter (HBA), provides one port for connection into the configuration.

The Gigabit Fibre Channel PCI Adapter Feature is available for certain RS/6000 models which enables them to perform as initiators in Fibre Channel environments such as SANs and allows users to establish a network of high-speed local and remote storage. This adapter plugs into a 32-bit PCI slot and provides single initiator capability over an optical fiber link running up to 100 MB/second.

The Gigabit Fibre Channel PCI Adapter can be connected using either 50 micron or 62.5 micron multi-mode optical fiber. The adapter's features include:

- 1062 Mbits/sec Fibre Channel Interface
- PCI Master and Slave DMA capabilities
- 32-bit slot PCI compatibility
- Short Wave Optics (non-OFC)* support
- · Upgradable Microcode

Note: * OFC - Open Fiber Control

The Gigabit Fibre Channel PCI Adapter supports connectivity with a number of Fibre Channel Storage Devices, Switches, Hubs, and other devices in a number of topologies and configurations. For a complete list of available devices and example configurations, refer to Appendix D, "Fibre Channel Devices and Configurations" on page 95. For more details on the various devices, refer to the appropriate appendix for that device.

Chapter 2. Planning Information

Use the information in this chapter to plan for your Fibre Channel installation.

Planning Your Fibre Channel Configuration

Plan your Fiber Channel configuration, site plan, and cabling.

Planning Your Configuration

- · Referring to Appendix D, "Fibre Channel Devices and Configurations" on page 95, layout your configuration.
- · Ensure that the Optical Fiber Cabling is properly planned or is complete and correct.
- Ensure that all Hosts, Fibre Channel Adapters, Fibre Channel Disk Subsystems, Tapes Subsystems, Hubs, Converters, and Switches are on order or have been delivered, and are featured correctly.

Preparing a Site Plan

Prepare a site plan, addressing the following considerations:

- Location and relationship of the physical facilities such as walls, doors, windows, partitions, furniture, and telephones.
- Location of any telephone lines required for Call-Home or remote dial-in support for the various hosts and devices being installed.
- Available Ethernet LAN connections and cabling which might be required for control of devices such as Fibre Channel Switches.
- Power requirements for the various devices, including any optional uninterruptable power supplies (UPS) being considered.
- Length of power cables and the location of electrical outlets having the proper voltage, amperage capacity, and phase.
- Security necessary to protect the installation's physical integrity.
- Proximity of the various hosts and devices.
- Accessibility to a telephone to aid in installation and service.

- Service clearances, weights, and heat dissipation of the various hosts and devices.
- Temperature and humidity requirements of the various hosts and devices.

Plan and Diagram All Cable Routing

Draw a diagram showing all cables, host systems, Fibre Channel devices, and patch panels. This diagram should schematically depict all cabling and should include host, device, and patch panel locations.

This diagram will aid installation and be very useful for any future problem determination which might be required.

Preparing for Installation of the Gigabit Fibre Channel PCI Adapter

This section outlines the steps to be taken in preparation for installing the Gigabit Fibre Channel PCI Adapter and its required software components.

Note: The device drivers are included on the AIX® Installation Media.

- If the AIX Operating System has not yet been installed, you will be installing the
 adapter hardware first. In this way, the device drivers will be installed
 automatically with AIX. Follow the instructions in Chapter 3, "Fibre Channel
 Installation" on page 11 to install the adapter.
- If the AIX Operating System is already installed, you will be installing the device drivers prior to installing the adapter hardware.
- The Gigabit Fibre Channel PCI Adapter requires the AIX operating system to be at level AIX 4.3.2 or higher. The Parallel System Support Program (PSSP) must be at level 2.4 or higher.
 - To check the level of AIX on your system, run the following command: oslevel
 - 2. To check the level of PSSP on your system, perform step 4 on page 16.

Then return here and continue.

 Inventory the items received with the hardware feature to ensure all required items are present.

Preparing for Installation of the Other Fibre Channel Devices

To prepare for installation of each of the Fibre Channel devices in the configuration, refer to the appropriate appendix for each device. Each device's appendix contains a section called "Publications and other Sources of Information." This section contains a list of publications and Web sites which provide device-specific instructions and information needed for installing, configuring, operating, and servicing of that device.

Chapter 3. Fibre Channel Installation

This section provides information on how to install Fibre Channel adapters and devices. Before proceeding, ensure that you read and understand the information in Chapter 2, "Planning Information" on page 7.

When you are installing components in the Fibre Channel environment, install them in a logical sequence. In general, the logical sequence is to install components progressively outward from the host. In this way, facilities are available to test the next sequential component being installed, thus providing a building-block approach to the installation effort. It is normally the best approach to install the fiber cabling first. At a minimum, the cabling must be installed as each new device is added. The recommended Fibre Channel installation sequence is as follows:

- 1. Install patch panels, trunks, and jumper cables.
- 2. Install any new AIX Systems that are to be added.
- 3. Install any Gigabit Fibre Channel PCI Adapters required in the RS/6000 Systems.
- 4. Install Fibre Channel Switches, Hubs, and SAN Data Gateways, as applicable.
- 5. Install Disk Storage Subsystems and Tape Subsystems as applicable.

The remainder of this chapter provides instructions for installing the Gigabit Fibre Channel PCI Adapter and other Fibre Channel devices.

Installing the Gigabit Fibre Channel PCI Adapter

The sequence of steps in the installation depends on whether or not your system already has the AIX operating system installed. If AIX is already installed, install the device driver software first and then install the hardware adapter. If AIX is not yet installed, you need only install the hardware adapter. The device driver software will be installed automatically during the installation of the AIX operating system when the adapter hardware is detected.

To proceed with the installation of the Gigabit Fibre Channel PCI Adapter, select the *one* procedure from the following list which describes the particulars of this installation:

- If you are installing the Gigabit Fibre Channel PCI Adapter in a system on which the AIX operating system is *not* yet installed, proceed directly to the section "Installing the Adapter Hardware" on page 20.
- If you are installing the Gigabit Fibre Channel PCI Adapter in an RS/6000 SP system on which AIX is already installed, proceed directly to the section "Installing the Device Driver on an RS/6000 SP System" on page 13.

 If you are installing the Gigabit Fibre Channel PCI Adapter in a non-SP AIX system on which AIX is already installed, proceed directly to the section "Installing the Device Driver Software on an RS/6000 System" on page 12.

Installing the Device Driver Software on an RS/6000 System

This section explains how to install device driver software on a RS/6000 (not an RS/6000 SP) system unit.

Note: If the adapter was installed prior to the installation of the AIX operating system, you will not need to continue with this section. The device driver software was automatically installed with AIX. Proceed to the section "Verifying the Installation" on page 21.

If the adapter is to be installed in a system which already has AIX installed, proceed with the software installation and perform the following steps:

	Ensure that the system unit power is on.
	2. Log in as root user.
	Insert the media containing the device driver software (for example, CD-ROM) into the appropriate media device.
	4. Type the following:
	smitty devinst
	5. Press Enter.
	The Install Additional Device Software menu is displayed and the INPUT device/directory for software option is highlighted.
	7. Select or type your input device:
	 Press F4 for a list of devices and select the correct device. Press Enter OR
	 Type the name of the input device you are using in the entry field and press Enter (for example, CD-ROM).
_	The Install Additional Device Software menu is expanded and the SOFTWARE to install option is highlighted.
	9. Press F4 to display the SOFTWARE to install menu.

_	10.	Type the following to display the Find window:
		/
	11.	Type the following:
		devices.pci.df1000f7
		Press Enter. The system will find and highlight the device driver software, for example:
		4.2.1.0 devices.pci.df1000f7 ALL
	12.	Press F7 to select the highlighted device driver software.
	13.	Type the following to display the <i>Find</i> window: /
	14.	Type the following:
		devices.fcp.disk.array
		Press Enter. The system will find and highlight this device driver software, for example:
		4.2.1.0 devices.fcp.disk.array ALL
	15.	Press F7 to select the highlighted device driver software.
	16.	Press Enter. The Install Additional Device Software menu displays again. The entry data fields are automatically updated. Press Enter to accept the values.
	17.	The ARE YOU SURE pop-up window displays. Press Enter to continue with the installation.
	18.	The COMMAND STATUS is displayed. After the installation process has completed, OK will be displayed. Scroll to the bottom to view the results to ensure that the installation was successful.
	19.	Remove the installation media from the drive.
	20.	Press F10 to exit SMIT.
_	21.	Proceed to "Installing the Adapter Hardware" on page 20.

Installing the Device Driver on an RS/6000 SP System

This section explains how to install the device driver on an AIX SP System on which AIX is already installed. Installing device drivers in an SP system is complicated by two factors. First, the SP nodes normally do not have CD-ROM or diskette devices. Secondly, it is often necessary, or at least desirable, to install the device drivers on multiple nodes.

To overcome the first problem, place the installable images on the SP System's Control Workstation, and then install them on the target nodes from there. To overcome the second problem, use the dsh (distributed shell) command which enables the execution of commands on multiple nodes simultaneously. This provides significant advantage over using telnet or rlogin to install the device drivers on a node-by-node basis. Refer to the Parallel System Support Program for AIX, order number GC23-3897 or PSSP: Administration Guide, order number GC23-3900 for details on using the **dsh** command.

Note: To use the dsh command, the Kerberos ticket for the SP system must be current. If there is any doubt as to the currency of the Kerberos ticket, consult the system administrator for the system on which the installation is to occur.

To complete the installation of the device drivers on the node(s) of an SP system, perform the following steps:

- 1. Set up for the **dsh** command, that is, set up the working collective file in the Control Workstation.
- 2. Check prerequisites on the system nodes using the **dsh** command.
- 3. Create an installable device driver image on the Control Workstation.
- 4. Install the device drivers on the system nodes using the **dsh** command.

If the site setup precludes the use of the dsh command, install the device drivers on each node individually. To do so, telnet to each node and perform the steps in the various procedure sections below, omitting the dsh prefix. If only a few nodes are involved, the **dsh** command can be used without using the working collective file. Use the -w option to include the node names within the command. For example, to determine the AIX level on three nodes, run the following command:

dsh -w [nodename1,nodename2,nodename3] oslevel

where the actual node names are substituted for [nodename1], [nodename2], and [nodename3].

Note: In the instructions that follow, brackets are used to indicate that the user must supply actual values for input, or that the system will supply actual values for output.

Proceed with the device driver installation starting with section "Setting up and Checking System Prerequisites" on page 15 and perform the following tasks on the Control Workstation.

Setting up and Checking System Prerequisites

Do the following to check system prerequisites:

- ___ 1. Log in to the Control Workstation as root user.
- 2. If there are several nodes involved, and you are going to use the dsh command with a working collective file, perform the following steps:
 - __ a. Go to a temporary directory by typing:

cd /tmp

Press Enter.

b. Create the working collective file containing a list of the relevant nodes on which to perform the update in preparation for the dsh command.

Type the following commands on the AIX command line (substituting actual node names for each [nodenameN]). Press Enter after each line:

```
cat >group1
[nodename1]
[nodename2]
[nodename3]
    .
[nodenameN]
CTRL-D
export WCOLL=/tmp/group1
```

__ c. Test the working collective file by typing:

dsh date

Press Enter. The results should include a line for each node in the list, where [nodename1 - N] will be the actual node names, and should be similar to:

```
[nodename1]: Wed Nov 10 10:37:46 EST 1999
[nodename2]: Wed Nov 10 10:37:46 EST 1999
[nodename3]: Wed Nov 10 10:37:47 EST 1999
...
[nodenameN]: Wed Nov 10 10:37:48 EST 1999
```

If the list does not include all (and only) the required system nodes, examine the **group1** file you created in step 2b to ensure that it contains the correct and complete list.

3. Determine if the AIX operating system on each relevant node is at the required level by typing:

dsh oslevel

0R

without the working collective file

dsh -w [nodename1,nodename2,nodename3] oslevel

where the actual node names are substituted for [nodename1, 2, and 3]. Press Enter.

The required AIX level is 4.3.2 and higher. If the nodes are not at a supported AIX level, upgrade the AIX level on the nodes. Contact the system administrator for assistance.

4. Determine if the PSSP level on the system is at the required level by typing:

/usr/lpp/ssp/bin/splstdata -G -b

Press Enter. The results are in a form similar to the following:

node# hostname	hdw_enet_addr srvr	response	install_disk
last_install_image	last_install_time	next_install_image	lppsource_name
			pssp_ver
<pre>1 eion01.ppd.pok.i default</pre>	08005A75A6D4 0 Fri Mar 12 10:41:23	disk default	hdisk0 [lppsource]
derdurt	Fri_Mar_12_10:41:23	derdurt	[nssn level]

Perform the following steps:

- a. Examine the value of [pssp level]. This is the PSSP level installed on the system. If the system is not at the required level of 2.4 and higher, it must be upgraded before proceeding. Contact the System Administrator for assistance.
- b. Record the value of [1ppsource] for the system. This value is the name of the LPP source directory for device driver installation. You will need this name for later steps.
- 5. Determine if the installable image for the device driver is already present in the LPP source directory by typing the following command:

cd /spdata/sys1/install/[lppsource]

substituting the directory name which was recorded in step 4b for [1ppsource]. Once in this directory, type the following commands, one line at a time, at the AIX command prompt. Press Enter after each line:

```
ls devices.pci.df1000f7.usr.4.3.2.1
ls devices.common.IBM.fc.usr.4.3.2.2
ls devices.fcp.disk.usr.4.3.2.1
ls devices.fcp.disk.array.usr.4.3.2.1
ls bos.diag.com.usr.4.3.2.3
ls bos.diag.rte.usr.4.3.2.3
```

If the device driver image is *not* in the LPP source directory, proceed to section "Creating an Installable Image on the Control Workstation" to create the image.

If the device driver image is already in the LPP source directory, proceed to section "Finalizing Preparations for Device Driver Installation" on page 18 to finalize preparations for installation.

Creating an Installable Image on the Control Workstation

Note: If your system is "partitioned" (that is, there is more than one operating system among the nodes), you may only install this adapter in nodes that have 4.3.2 and higher.

1. If you are not already logged in to the Control Workstation as root user, do so now. You may also need to export the working collective. Refer to section "Setting up and Checking System Prerequisites" on page 15. 2. Insert the installation media into the Control Workstation's drive. 3. Transfer the files to the Control Workstation's LPP source, as follows: a. Type the following: smitty bffcreate Press Enter. b. Select INPUT device/directory for software and press F4. Then move the cursor to the appropriate input device. Press Enter. c. Move the cursor to the **SOFTWARE package to copy** option and press F4 to select the software to be installed. Use the F7 key to select the following device drivers: devices.pci.df1000f7 devices.pci.common.IBM.fc

Press Enter.

devices.fcp.disk devices.fcp.disk.array

bos.diag.com bos.diag.rte

d. Move the cursor down to **DIRECTORY for storing the software** package and enter the appropriate LPP source destination directory: /spdata/sys1/install/[lppsource] substituting the directory name which was recorded in step 4b on page 16 for [lppsource]. Press Enter to begin copying the files. Note: This step may take several minutes while the directory table of contents is updated. Continue to the next section, "Finalizing Preparations for Device Driver Installation."

Finalizing Preparations for Device Driver Installation

 ~	9		oparations for Dorito Direct motamation
 1.	Upd	ate	the SPOT (Shared Product Object Tree).
		a.	Type the following:
			smitty nim_res_op
			The Resource Name panel displays with
			boot resources boot
			highlighted.
	_	b.	Move the cursor down until the SPOT resource is highlighted. The SPOT resource should look similar to:
			<pre>spot_AIX432 resources spot_[lppsource]</pre>
			where [1ppsource] is the directory name recorded in step 4b on page 16.
		C.	When the SPOT resource is highlighted, press Enter to select this option. The Network Install Operation to Perform panel displays with the reset option highlighted for selection.
	_	d.	Move the cursor until the cust option is highlighted. Press Enter to select this option. The Customize a SPOT panel displays with the Source of Install Images highlighted for selection.
	—	e.	Press F4 to display the list of install images and select the appropriate LPP source directory.
			Move the cursor until the appropriate LPP source directory is displayed. For example:
			lppsource_AIX432 resources [lppsource]
			where [1ppsource] is the name of the directory recorded in step 4b on page 16. Press Enter.

__ f. Move the cursor to **fileset names** and type:

```
devices.pci.df1000f7
```

Press Enter to start the SPOT update. This operation can take up to 15 minutes.

___ g. Repeat step 1f for each device you want to install, for example:

```
devices.common.ibm.fc
devices.fcp.disk
devices.fcp.disk.array
bos.diag.com
bos.diag.rte
```

2. Determine if the software is already installed on the node(s). Type the following commands one line at a time, including the quote marks, at the AIX command prompt. Press Enter after each line:

```
dsh "lslpp -l devices.pci.df1000f7* 2>&1" |more dsh "lslpp -l devices.common.IBM.fc* 2>&1" |more dsh "lslpp -l devices.fc.disk* 2>&1" |more dsh "lslpp -l devices.fc.disk.array* 2>&1" |more dsh "lslpp -l bos.diag.com* 2>&1" |more dsh "lslpp -l bos.diag.rte* 2>&1" |more
```

If the device driver *is* already installed on the node(s), contact your service provider to have the adapter(s) installed. There is no need to continue with the device driver installation.

__ 3. If the device driver is *not* installed on the node(s), proceed to section "Installing Device Drivers on the RS/6000 SP System Nodes."

Installing Device Drivers on the RS/6000 SP System Nodes

Do the following to install device drivers on the SP system nodes.

1. Ensure that the LPP source directory is exported to the Nodes by typing the following:

```
showmount -e
```

The result should be similar to the following:

```
/spdata/sys1/install/[lppsource] (everyone)
```

where [lppsource] is the name of the directory recorded in step 4b on page 16.

2. If the directory is not exported, you may temporarily export the directory by typing:

```
exportfs -i /spdata/sys1/install/[lppsource]
```

substituting the directory name which was recorded in step 4b on page 16 for [lppsource].

3. Perform an NFS mount of the LPP source directory by typing:

```
dsh mount [controlwks]:/spdata/sys1/install/[lppsource] /mnt
```

substituting the directory name which was recorded in step 4b on page 16 for [lppsource], and substituting the name of the Control Workstation for [controlwks].

4. Perform a preview of the files to be installed on the nodes. Type the following commands one line at a time, including the quote marks, at the AIX command prompt. Press Enter after each line:

```
dsh "installp -p acgqXd /mnt devices.pci.df1000f7 2>"| more dsh "installp -p acgqXd /mnt devices.common.IBM.fc 2>"| more dsh "installp -p acgqXd /mnt devices.fcp.disk 2>"| more dsh "installp -p acgqXd /mnt devices.fcp.disk.array 2>"| more dsh "installp -p acgqXd /mnt bos.diag.com 2>"| more dsh "installp -p acgqXd /mnt bos.diag.rte 2>"| more
```

5. Perform the device driver installation. Type the following commands one line at a time, including the quote marks, at an AIX command prompt. Press Enter after each line:

```
dsh "installp -p acgqXd /mnt devices.pci.df1000f7 2>&1"| more dsh "installp -p acgqXd /mnt devices.common.IBM.fc 2>&1"| more dsh "installp -p acgqXd /mnt devices.fcp.disk 2>"&1| more dsh "installp -p acgqXd /mnt devices.fcp.disk.array 2>&1"| more dsh "installp -p acgqXd /mnt bos.diag.com 2>&1"| more dsh "installp -p acgqXd /mnt bos.diag.rte 2>&1"| more
```

___ 6. When device driver installation is complete on the node(s), contact your service provider to have the adapter(s) installed.

Installing the Adapter Hardware

To install the Gigabit Fibre Channel PCI Adapter, perform the procedure detailed in this section.

Note: If this system already has the AIX operating system installed, you should have previously installed the device driver software. If this is the case, proceed with the hardware installation. Otherwise, follow the instructions in "Installing the Device Driver Software on an RS/6000 System" on page 12.

Attention: Do not remove the Gigabit Fibre Channel PCI Adapter from its anti-static package at this time. Be sure you have read "Handling Static Sensitive Devices" on page xi.

- 1. Refer to the Documentation that shipped with your system unit to perform the following:
 - Shut down your system unit.

Attention: Before you begin, be sure you have read "Safety Notices" on page ix in the front of this publication or in the documentation that shipped with your system unit.

• Install the adapter into your system unit in a primary PCI bus slot.

Attention: The following publications contain important information regarding adapter placement in your system unit:

- For AIX systems, see PCI Adapter Placement Reference, SA38-0538.
- For SP AIX systems, see IBM RS/6000 SP Planning Volume 1, Hardware and Physical Environment, GA22-7280.
- 2. After the installation is complete, connect the cable to the adapter.
- 3. Turn on your system unit.

If the AIX operating system has not yet been installed, you must to do so before verifying the hardware and software installation for this product.

To verify that the adapter hardware and device driver software are correctly installed, follow the procedures outlined in the next section "Verifying the Installation."

Verifying the Installation

The installation can be verified, following installation or during problem determination, by performing one or both of the following procedures:

- Verifying the Hardware Installation (Isdev)
- Verifying the Software Installation (IsIpp)

Verifying the Hardware Installation

Verify your system hardware is properly installed as follows:

- 1. If necessary, log in as root user.
- 2. Type:

```
1sdev -C | grep fcs
```

Press Enter.

If the Gigabit Fibre Channel PCI Adapter is properly installed and configured, the resulting output of the above command will show it to be Available. The following is an example of the data that should display on your screen:

```
fcs0 Available 20-60
```

If no adapter information is displayed, or if it is shown as Defined, refer to Chapter 5, "Problem Determination" on page 25, to determine the cause of the problem.

Verifying the Software Installation

Verify the device driver for the Gigabit Fibre Channel PCI Adapter is properly installed as follows:

- 1. If necessary, log in as root user.
- 2. Type:

```
lslpp -h | grep -p df1000f7
```

Press Enter.

If the Gigabit Fibre Channel PCI Adapter Device driver software is properly installed, the resulting output of the above command will show a list of the applicable images. The following is an example of the data that should display on your screen:

devices.pci.df1000f7.rte				
4.3.x.x	COMMIT	COMPLETE	11/10/99	11:59:10
devices.pci.df1000f7.com				
4.3.x.x	COMMIT	COMPLETE	11/10/99	11:59:10
devices.fcp.disk.array.rte				
4.3.x.x	COMMIT	COMPLETE	11/10/99	11:59:21
devices.pci.df1000f7.diag				
4.3.x.x	COMMIT	COMPLETE	11/10/99	11:59:11
devices.fcp.disk.array.diag				
4.3.x.x	COMMIT	COMPLETE	11/10/99	11:59:22

If no device driver information is displayed, or some information is missing, refer to Chapter 5, "Problem Determination" on page 25, to determine the cause of the problem.

Installing Other Fibre Channel Devices

To install each of the Fibre Channel devices in the configuration, refer to the appropriate appendix for each device. Each device's appendix contains a section called "Publications and other Sources of Information." This section contains a list of publications and Web sites which provide device-specific instructions and information needed for installing, configuring, operating, and servicing of that device.

Chapter 4. Fibre Channel Operation

This chapter provides information on the operation of the Fibre Channel devices.

Operating the Gigabit Fibre Channel PCI Adapter

The operation of the Gigabit Fibre Channel PCI Adapter is transparent to the system operator. The adapter merely acts as a data path between the AIX system and the device to which it is connected. As noted in previous chapters, the actual I/O device may be connected directly to the adapter, or it may be connected through a hub, switch, or SAN Data Gateway.

Data transfer requests by an AIX application to or from an I/O device cause the adapter, by way of its device drivers and microcode, to perform data and protocol operations on that Fibre Channel path. While the AIX system operator may be required to perform specific actions to activate and manage the application, no operator actions are required specifically for the Gigabit Fibre Channel PCI Adapter itself.

Operating Other Fibre Channel Devices

To learn more about how to operate each of the Fibre Channel devices in the configuration, refer to the appropriate appendix for each device. Each device's appendix contains a section called "Publications and other Sources of Information." This section contains a list of publications and Web sites which provide device-specific instructions and information needed for installing, configuring, operating, and servicing of that device.

Chapter 5. Problem Determination

If a problem occurs in the Fibre Channel environment, you will need a number of pieces of information to successfully correct the problem. This chapter discusses Fibre Channel environment-specific problems. If problems are experienced with the AIX system, see your AIX documentation.

The Fibre Channel environment can be complex, and because of the potential distances between components of the system, and the diverse nature of these components, additional information will be required to aid in problem determination. The information is available from several sources:

- Gigabit Fibre Channel PCI Adapter Service LEDs
 - The Gigabit Fibre Channel PCI Adapter has two LEDs located near the connectors. These can be used to determine the state of the adapter. For details on these LEDs, see Chapter 6, "Service Information" on page 57.
- AIX System Problem Determination Information
 - The AIX system provides problem determination information from its operator display codes, error logging facilities, and application messages. For more information on AIX error logs, see Appendix C, "Error Messages" on page 71.
- Fibre Channel Director Problem Determination Information
 - The Fibre Channel Director provides problem determination information from its Operator Panel, LED indicators on the Port Cards, and the Enterprise Fabric Connectivity Management Terminal.
- · Problem Determination Information from other devices
 - Other Fibre Channel devices, including disk storage subsystems, provide problem determination information in various ways, such as status LEDs, operator panels, and logout information.

Complexity of the Fibre Channel Environment

The Fibre Channel environment can be difficult to troubleshoot. A typical Fibre Channel configuration, such as a Storage Area Network (SAN), may contain some or all of the following:

- One or more Hosts, perhaps running any of several different operating systems.
- One or more Disk Storage Subsystems with a number (perhaps a very large number) of Disk Devices in RAID or non-RAID configurations.
- One or more Tape Subsystems connected by their native Fibre Channel interfaces.

- One or more Hubs connecting Hosts and Disk Storage Subsystems in loop configurations.
- One or more Fibre Channel Switches connecting the various devices and Hosts in a fabric environment.
- One or more SAN Data Gateways allowing the introduction of SCSI attachable Disk Storage Subsystems or Magnetic Tape Subsystems into the Fibre Channel environment.
- A large number of Fibre Channel jumper cables interconnecting the various hosts and devices.
- Fiber trunks carrying data between floors and between buildings.
- Patch panels connecting the various jumper cables and trunk cables.

Troubleshooting the Fibre Channel environment is further complicated by the fact that the various hosts and devices may be physically separated by considerable distance, and located in different rooms, on different floors, and even in different buildings.

Nature of Fibre Channel Environment Problems

In the complex and diverse Fibre Channel environment, a wide variety of problems can be encountered. These problems may include, but are by no means limited to:

- A Gigabit Fibre Channel PCI Adapter in an AIX system has a hardware defect.
- A Gigabit Fibre Channel PCI Adapter has been incorrectly configured.
- The device driver for a Gigabit Fibre Channel PCI Adapter has been incorrectly installed or is exhibiting incorrect behavior.
- A Fibre Channel SCSI I/O Controller Protocol Device is not properly configured.
- A logical hard disk in the AIX system is not properly configured.
- A port adapter in a Fibre Channel switch has a hardware defect.
- A port in a Fibre Channel switch is incorrectly zoned or blocked.
- Ports in a Fibre Channel switch have been soft rezoned or reblocked and the **cfgmgr** command has not been run to set up the new configuration parameters.
- Host-to-switch cabling has been changed or swapped and the cfgmgr AIX
 command has not been run to update the configuration attributes. In this case,
 results of commands such as Isattr -EI will not yield the correct information for
 attributes such as the scsi_id field.
- A port adapter in a Fibre Channel hub has a hardware defect.
- A Fibre Channel port adapter in a SAN Data Gateway has a hardware defect.

- A SCSI port adapter in a SAN Data Gateway has a hardware defect.
- A port adapter in a Disk Storage Subsystem has a hardware defect.
- A Disk Drive in a Disk Storage Subsystem has a hardware defect.
- A Fibre Channel jumper cable is defective.
- A Fibre Channel cable connector is not properly seated, or is dirty.
- A Fibre Channel trunk has a defective fiber.
- A patch panel connection is defective or incorrectly plugged.
- A host or device has defective logic, memory, or control circuitry, or a defective power or cooling system.
- Optical components somewhere in the environment are defective and are causing intermittent failures.

As can be seen in the above list, problems can be encountered anywhere throughout the Fibre Channel configuration. Sometimes the problem is distinctly reported by, and at the failing component. Often however, the AIX system host, as the initiator, will detect and report the error condition. As a result, Fibre Channel errors reported by the AIX system must be analyzed carefully to determine the true origin of the failure.

Note: You must not pursue problem determination by Field Replaceable Unit (FRU) replacement in the AIX system unless the problem is actually isolated to this host component.

Fibre Channel Environment Problem Determination Procedures

This section provides some basic problem determination procedures for the Fibre Channel environment. As demonstrated above, the Fibre Channel environment is very complex and no procedure can provide 100% problem determination coverage, but these procedures are intended to help isolate the problem and provide information needed to resolve it.

It should be noted that because of the complexity of the environment, a single Fibre Channel problem can result in a large volume of error logouts in the AIX system. In such a case, it is necessary to carefully analyze these logged errors to find the one which represents the original, root cause.

In addition, while Fibre Channel environment problems are often reported by the AIX system, indiscriminate replacement of the Gigabit Fibre Channel PCI Adapter is not the recommended problem determination procedure.

Requirements Before Starting Problem Determination

A knowledgeable person is needed to perform the problem determination procedures. Someone with skills in Fibre Channel basics, AIX operations and RS/6000 hardware, Storage Area Network (SAN) basics, Disk Storage Subsystems, Tape Subsystems, and Fibre Channel Switch basics is required. In addition, for some configurations, a knowledge of SCSI interfaces and the SAN Data Gateway is required.

Also, the following skills and information will likely be required and must be available as required:

- · An AIX system administrator
- An AIX system operator with root user authority.
- A chart showing the Fibre Channel cabling scheme, including location of patch panels and trunk cables.
- A list of hardware, microcode, and device driver levels for the Gigabit Fibre Channel PCI Adapter and all devices in the Fibre Channel configuration.
- Service manuals for all Fibre Channel devices in the environment. For
 information on these manuals, refer to the appropriate appendix for each device.
 Each device's appendix contains a section called "Publications and Other
 Sources of Information." This section contains a list of publications and Web
 sites which provide device-specific instructions and information needed for
 servicing that device.
- In addition, two other publications will be helpful in isolating link failures. They
 are:
 - Link Fault Isolation, SY22-9533
 - S/390 Fiber Optic Links (ESCON, FICON, Coupling Links, and Open system Adapters), SY27-2597

Start of PDP PD0010 - Start of Call

Start here to troubleshoot the Fibre Channel environment.

Step 0010-1

Determine if the Fibre Channel adapter is available in the AIX System. Run the following AIX command:

• 1sdev -C | grep fcs

The result should be similar to the following (assuming the adapter under test is adapter zero, and in slot 20-70):

fcs0 Available 20-70 FC Adapter

Is the adapter available?

NO Go to "Step 0020-1."
YES Go to "Step 0010-2."

Step 0010-2

Determine if the Fibre Channel SCSI I/O Controller Protocol Device is available in the AIX System. Run the following AIX command:

• 1sdev -C | grep fscsi

The result should be similar to the following (assuming the adapter under test is adapter zero, and in slot 20-70):

fscsi0 Available 20-70-01 FC SCSI I/O Controller Protocol Device

Is the SCSI I/O Controller Protocol Device available?

NO Go to "Step 0030-1."
YES Go to "Step 0010-3."

Determine if the Logical Hard Disks (hdisks) associated with the Fibre Channel adapter are available in the AIX System.

Note: If there are no Disk Devices in the configuration, skip this step.

Run the following AIX command:

• 1sdev -C | grep hdisk | pg

The result should be similar to the following (assuming the adapter under test is adapter zero in slot 20-70, hdisk4 is one of the hard disks that has been configured, and the Disk Subsystem is an EMC Symmetrix Storage System):

hdisk4 Available 20-70-01 EMC Symmetrix FCP Disk

There should be a line in the above output for each hdisk defined for this adapter.

Note: See the AIX system administrator for this installation for assistance in identifying which hdisks have been assigned to this adapter.

Are the appropriate Logical Hard Disks available?

NO Go to "Step 0040-1."

YES Go to "Step 0010-4."

Determine if the Logical Tape Drives associated with the Fibre Channel adapter are available in the AIX system.

Note: If there are no tape drives in the configuration, skip this step.

Run the following AIX command:

• 1sdev -Cc tape | pg

The result should be similar to the following (assuming the adapter under test is adapter zero in slot 20-70, rmt1 is one of the tape drives that has been defined, and the tape drive is a 3590).

rmt1 Available 20-70-01 3590 Tape Drive

There should be a line in the above output for each tape drive defined for this adapter.

Note: See the AIX System Administrator for this installation for assistance in identifying which tape drives have been defined for this adapter.

Are the appropriate Logical Tape Drives available?

NO Go to "Step 0050-1."
YES Go to "Step 0010-5."

Determine if there are errors reported by or associated with a Disk Storage Subsystem.

There are a number of possible indications that a problem may exist in a Disk Storage subsystem. These indications include:

- The AIX application reports data or other errors associated with a specific Disk Device.
- The Disk Storage Subsystem displays error LEDs for one or more Disk Devices associated with this adapter.
- The Disk Storage Subsystem displays error LEDs for one or more Fibre Channel ports connected in the Fibre Channel path for this adapter.
- The Disk Storage Subsystem displays error LEDs that indicate power or cooling faults.
- The AIX error log has entries associated with this adapter or Fibre Channel SCSI I/O Controller Protocol Device whose Probable Causes list includes the Device.
- Configuration attributes do not reflect the current configuration. For example, the
 Isattr -EI command yields an incorrect scsid_id field. Run the cfgmgr AIX
 command to update configuration attributes. This will likely resolve the problem.

Are there errors reported by or associated with a Disk Storage Subsystem?

NO Go to "Step 0010-6."

YES Refer to the Service Manual for the Disk Storage Subsystem and continue problem determination procedures using the information provided therein. After the problem is resolved, you might need to run the **cfgmgr** AIX command to restore the Fibre Channel environment to a functional state.

Done

Determine if there are errors reported by or associated with a Tape Subsystem.

There are a number of possible indications that a problem may exist in a Tape Subsystem. These indications include:

- The AIX application reports data or other errors associated with a specific Tape Device.
- The Tape Device displays error messages on its LCD Display.
- The AIX error log has entries associated with this adapter or Fibre Channel SCSI I/O Controller Protocol Device whose Probable Causes list includes the Device.

Are there errors reported by or associated with a Tape Subsystem?

NO Go to "Step 0010-7."

YES Refer to the Service Manual for the Tape Subsystem and continue problem determination procedures using the information provided therein. After the problem is resolved, you might need to run the **cfgmgr** AIX command to restore the Fibre Channel environment to a functional state.

Done

Determine if there are errors reported by or associated with a Fibre Channel Switch.

Note: If there is no Fibre Channel Switch in the configuration, skip this step.

There are a number of possible indications that a problem may exist in the Fibre Channel Switch. These indications include:

- The AIX application reports link or protocol errors associated with the path which includes the Fibre Channel Switch.
- The Fibre Channel Switch displays error LEDs for one or more Fibre Channel ports connected in the Fibre Channel path for this adapter.
- The Fibre Channel Switch displays error conditions through its Enterprise Fabric Connectivity Management Terminal.
- The Fibre Channel Switch indicates power or cooling faults.
- The AIX error log has entries associated with this adapter or Fibre Channel SCSI I/O Controller Protocol Device whose Probable Causes list includes the Fibre Channel Switch.
- Soft rezoning or reblocking has not yielded the expected results. Run the cfgmgr AIX command to set up the new configuration parameters. This will likely resolve the problem.
- Configuration attributes do not reflect the current configuration. For example, the
 Isattr -EI command yields an incorrect scsid_id field. Run the cfgmgr AIX
 command to update configuration attributes. This will likely resolve the problem.

Are there errors reported by or associated with a Fibre Channel Switch?

NO Go to "Step 0010-8."

YESRefer to the Service Manual for the Fibre Channel Switch and continue problem determination procedures using the information provided therein. After the problem is resolved, you might need to run the **cfgmgr** AIX command to restore the Fibre Channel environment to a functional state.

Done

Determine if there are errors reported by or associated with a SAN Data Gateway.

Note: If there is no SAN Data Gateway in the configuration, skip this step.

There are a number of possible indications that a problem may exist in a SAN Data Gateway. These indications include:

- The AIX application reports data or other errors associated with a SCSI Tape
 Device or SCSI Disk Storage Subsystem connected to the Fibre Channel
 configuration through a SAN Data Gateway, and you have already eliminated the
 Tape or Disk device as the point of failure.
- The AIX error log has entries associated with this adapter or Fibre Channel SCSI I/O Controller Protocol Device whose Probable Causes list includes a device connected through a SAN Data Gateway, and the device has been eliminated as the point of failure.
- The SAN Data Gateway's Fibre Channel Port, SCSI Port, or Power Status LEDs indicate a error.

Are there errors reported by or associated with a SAN Data Gateway?

NO Go to "Step 0010-9."

YES Refer to the Service Manual for the SAN Data Gateway and continue problem determination procedures using the information provided therein. After the problem is resolved, you might need to run the **cfgmgr** AIX command to restore the Fibre Channel environment to a functional state.

Done

Determine if there are errors reported by or associated with a Fibre Channel Storage Hub.

Note: If there is no Fibre Channel Storage Hub in the configuration, skip this step. Go to "Step 0060-1"

There are a number of possible indications that a problem may exist in a Fibre Channel Storage Hub. These indications include:

- The AIX application reports data or other errors associated with a Disk Storage Subsystem connected to the Fibre Channel configuration through a Fibre Channel Storage Hub, and you have already eliminated the Disk Storage Subsystem and its devices as the point of failure.
- The AIX error log has entries associated with this adapter or Fibre Channel SCSI I/O Controller Protocol Device whose Probable Causes list includes a device connected through a Fibre Channel Storage Hub, and the device has already been eliminated as the point of failure.
- The Fibre Channel Storage Hub's Port Status LEDs indicate an error.

Are there errors reported by or associated with a Fibre Channel Storage Hub?

NO Go to "Step 0060-1."

YES Refer to the Service Manual for the Fibre Channel Storage Hub and continue Problem Determination Procedures using the information provided therein. After the problem is resolved, you might need to run the cfgmgr AIX command to restore the Fibre Channel environment to a functional state.

Done

Start of PDP PD0020 - Fibre Channel Adapter not Available

Step 0020-1

Determine if the Fibre Channel adapter is defined (recognized) in the AIX system. Run the following AIX command:

• 1sdev -C | grep fcs

Note: If the Gigabit Fibre Channel PCI Adapter is a vendor-solution adapter, the 1sdev command might not recognize the adapter.

The result should be similar to the following (assuming the adapter under test is adapter zero, and in slot 20-70):

fcs0 Defined 20-70 FC Adapter

Is the adapter defined?

NO Go to "Step 0020-2." **YES** Go to "Step 0020-3."

Step 0020-2

Verify that the Fibre Channel adapter is physically installed and properly seated in the AIX system.

Is the Fibre Channel adapter installed in the AIX System?

NO Follow the proper procedures for your system to have the Gigabit Fibre Channel PCI Adapter installed.

Done

YES Go to "Step 0020-3."

Step 0020-3

Attempt to configure the Channel adapter by running Config Manager. Run the following AIX command:

• cfgmgr

After the **cfgmgr** command has completed, run the following AIX command:

• 1sdev -C | grep fcs

Is the adapter defined or available now?

NO Go to "Step 0020-4."

YES Done

Step 0020-4

Determine if the device drivers for the Fibre Channel adapter are properly installed on the AIX system. Run the following AIX command:

• lslpp -1 | grep df1000f7

The result should be similar to the following:

```
devices.pci.df1000f7.com 4.3.x.x COMMITTED Common PCI FC Adapter Device devices.pci.df1000f7.diag 4.3.x.x COMMITTED PCI FC Adapter Device devices.pci.df1000f7.rte 4.3.x.x COMMITTED PCI FC Adapter Device Software devices.pci.df1000f7.com 4.3.x.x COMMITTED Common PCI FC Adapter Device
```

Note: If no data displays on the screen, or if some of the above components are missing, the device drivers are not properly installed.

Are the device drivers properly installed?

NO Refer to Chapter 3, "Fibre Channel Installation" on page 11, and reinstall the device drivers.

Done

YES Go to "Step 0020-5."

Step 0020-5

Refer to Chapter 6, "Service Information" on page 57, and run diagnostics on the Fibre Channel adapter.

Did the diagnostics fail?

NO Go to "Step 0070-1."

YES Follow the correct procedure to have the Gigabit Fibre Channel Adapter

replaced.

Done

Start of PDP PD0030 - Fibre Channel SCSI I/O Controller Protocol Device not Available

Step 0030-1

Determine if the device drivers for the Fibre Channel adapter are properly installed on the AIX System. Run the following AIX Command:

• lslpp -1 | grep df1000f7

The result should be similar to the following:

```
devices.pci.df1000f7.com 4.3.x.x COMMITTED Common PCI FC Adapter Device devices.pci.df1000f7.diag 4.3.x.x COMMITTED PCI FC Adapter Device devices.pci.df1000f7.rte 4.3.x.x COMMITTED PCI FC Adapter Device Software devices.pci.df1000f7.com 4.3.x.x COMMITTED Common PCI FC Adapter Device
```

Note: If no data displays on the screen, or if some of the above components are missing, the device drivers are not properly installed.

Are the device drivers properly installed?

NO Refer to Chapter 3, "Fibre Channel Installation" on page 11, and reinstall the device drivers.

Done

YES Go to "Step 0070-1."

Start of PDP PD0040 - Logical Hard Disks Not Available

Step 0040-1

Determine that the Disk Storage Subsystem is operational, online and correctly set up.

Perform the following steps:

- 1. Ensure that the applicable Disk Storage Subsystem is powered on.
- 2. Ensure that its appropriate Fibre Channel (or SCSI, if connected through a SAN Data Gateway) port(s) are correctly cabled and enabled.
- 3. Ensure that the disk Storage Subsystem is properly configured, that is, the correct number of LUNs are assigned to the applicable port(s).
- 4. Examine the AIX system's Error Log for entries associated with this failure whose Probable Causes list includes the Disk Storage Subsystem.
- 5. Using the Service Manual for the Disk Storage Subsystem, verify (run diagnostics, and so on) that the Subsystem is fully operational.

Is the Disk Storage Subsystem operational, online and correctly set up?

NO Refer to the Service Manual for the Disk Storage Subsystem and continue problem determination procedures using the information provided therein. After the problem is resolved, you might need run the **cfgmgr** AIX command to restore the Fibre Channel environment to a functional state.

Done

Note: If the problem is not resolved using the Service Manual information for this device, return to this problem determination procedure and continue with the next step.

YES Go to "Step 0040-2."

Step 0040-2

Determine that the SAN Data Gateway is operational, online, and correctly set up.

Note: If there is no SAN Data Gateway in the configuration, skip this step.

Perform the following steps:

- 1. Ensure that the SAN Data Gateway is powered on.
- 2. Ensure that its appropriate Fibre Channel port(s) are cabled correctly.
- 3. Ensure that its appropriate SCSI port(s) are cabled correctly.
- 4. Using the Service Manual for the SAN Data Gateway, verify that the SAN Data Gateway is fully operational.

Is the SAN Data Gateway operational, online, and correctly set up?

NO Refer to the Service Manual for the SAN Data Gateway and continue problem determination procedures using the information provided therein. After the problem is resolved, you might need to run the cfgmgr AIX command to restore the Fibre Channel environment to a functional state.

Done

Note: If the problem is not resolved using the Service Manual information for this device, return to this problem determination procedure and continue with the next step.

YES Go to "Step 0040-3."

Step 0040-3

Determine that the Fibre Channel Switch is operational, online, and correctly set up.

Note: If there is no Fibre Channel Switch in the configuration, skip this step. Go to "Step 0060-1."

Perform the following steps:

- 1. Ensure that the Fibre Channel Switch is Powered on.
- 2. Ensure that its appropriate Fibre Channel port(s) are cabled.
- 3. Ensure that its appropriate Fibre Channel port(s) are enabled.
- 4. Ensure that the Fibre Channel Switch is properly configured, that is, it is correctly zoned and the applicable ports are not blocked.
- 5. Examine the AIX System's Error Log for entries associated with this failure whose Probable Causes list includes the Fibre Channel Switch.
- 6. Using the Service Manual for the Fibre Channel Switch, verify (run diagnostics, and so on) that the Switch is fully operational.
- 7. Determine if ports on the switch have been soft rezoned or reblocked recently. If so, run the **cfgmgr** AIX command to set up the new configuration parameters. This will likely resolve the problem.
- 8. Determine if host-to-switch cabling has been changed or swapped recently. If so, run the cfgmgr AIX command to update the configuration attributes. If these attributes are not updated, results of commands such as the lsattr -EI will not yield the correct information for attributes such as the scsi_id field. Running the cfgmgr AIX command will likely resolve the problem.

Is the Fibre Channel Switch operational, online, and correctly set up?

NO Refer to the Service Manual for the Fibre Channel Switch and continue Problem Determination Procedures using the information provided therein. After the problem is resolved, you might have to run the **cfgmgr** AIX command to restore the Fibre Channel environment to a functional state.

Done

Note: If the problem is not resolved using the Service Manual information for this device, return to this problem determination

procedure and continue with "Step 0060-1."

YES Go to "Step 0060-1."

Start of PDP PD0050 - Logical Tape Drives Not Available

Step 0050-1

Determine if the Logical Tape Drives associated with the Fibre Channel adapter are defined (recognized) in the AIX system. Run the following AIX command:

• 1sdev -Cc tape | pg

The result should be similar to the following (assuming the adapter under test is adapter zero in slot 20-70, rmt1 is one of the tape drives that has been configured, and the tape drive is a 3590).

rmt1 Defined 20-70-01 3590 Tape Drive

There should be a line in the above output for each tape drive defined for this adapter.

Are the appropriate Logical Tape Drives Defined?

NO Refer to the Installation Manual for the Tape Drives and, using SMIT, define the appropriate tape drive(s) to be associated with the Fibre Channel Adapter. After the problem is resolved, you might need to run the **cfgmgr** AIX command to restore the Fibre Channel environment to a functional state.

Done

YES Go to "Step 0050-2."

Step 0050-2

Determine that the Tape Drive(s) are operational, online and correctly set up. Perform the following steps:

- 1. Ensure that the applicable Tape Drive(s) are Powered on.
- 2. Ensure that the appropriate SCSI interfaces from the SAN Data Gateway, if present, are correctly cabled and enabled.
- Ensure that the Fibre Channel interfaces, if applicable, are correctly cabled and enabled.
- 4. Ensure that the Tape Drive(s) are properly configured, that is, the correct port and device addresses are set up.
- 5. Examine the AIX System's Error Log for entries associated with this failure whose Probable Causes list includes the Tape Drives(s).
- 6. Using the Service Manual for the Tape Drives, verify that the Tape Drive(s) are fully operational.

Are the Tape Drives operational, online and correctly set up?

NO Refer to the Service Manual for the Tape Drives and continue problem determination procedures using the information provided therein. After the problem is resolved, you might need to run the **cfgmgr** AIX command to restore the Fibre Channel environment to a functional state.

Done

Note: If the problem is not resolved using the Service Manual information for this device, return to this problem determination procedure and continue with the next step.

YES Go to "Step 0050-3."

Step 0050-3

Determine that the SAN Data Gateway is operational, online, and correctly set up.

Note: If there is no SAN Data Gateway in the configuration, skip this step. Go to "Step 0060-1."

Perform the following steps:

- 1. Ensure that the SAN Data Gateway is Powered on.
- 2. Ensure that its appropriate Fibre Channel port(s) are cabled correctly.
- 3. Ensure that its appropriate SCSI port(s) are cabled correctly.
- 4. Using the Service Manual for the SAN Data Gateway, verify that the SAN Data Gateway is fully operational.

Is the SAN Data Gateway Operational, Online, and correctly set up?

NO Refer to the Service Manual for the SAN Data Gateway and continue problem determination procedures using the information provided therein. After the problem is resolved, you might need to run the cfgmgr AIX command to restore the Fibre Channel environment to a functional state.

Done

Note: If the problem is not resolved using the Service Manual information for this device, return to this problem determination procedure and continue with "Step 0060-1"

YES Go to "Step 0060-1."

Start of PDP PD0060 - Fiber Path Failures

Step 0060-1

Determine that the fiber jumpers, trucks, patch panels, and any other devices (such as hubs) in this configuration provide a complete signal path from the AIX System Fibre Channel Adapter to the Disk Storage Subsystem or Tape Drive.

There are a number of possible indications that a problem may exist in the signal path to the Disk Storage Subsystem or Tape Drive. These indications include:

- The AIX error log has entries associated with this adapter or Fibre Channel device whose Probable Causes list includes Cables and Connectors.
- The Hard Disks cannot be configured (made Available) and the Disk Storage Subsystem and intervening switches or SAN Data Gateway have been eliminated as the cause of failure.
- The AIX application reports link or protocol errors associated with the path which
 includes a specific device, and that device and intervening switches or SAN Data
 Gateway have been eliminated as the cause of failure.
- A Fibre Channel device displays error LEDs for one or more Fibre Channel ports indicating a link problem.
- A Fibre Channel Switch displays link error conditions through its Enterprise Fabric Connectivity Management Terminal.
- The AIX application reports data or other errors associated with a specific Fibre Channel device, and that device has been eliminated as the cause of failure.
- The AIX error log has entries associated with this failure whose Probable Causes list includes a Fibre Channel device, and that device has been eliminated as the cause of failure.
- You were sent to this step from anywhere else in the Problem Determination Procedures, or there are other reasons to suspect fiber cabling or connector problems.

Is there any reason to suspect problems associated with fiber jumpers, trucks, patch panels, or any other devices (such as hubs) in this configuration?

NO Go to "Step 0070-1."

YES Go to "Step 0060-2."

Determine that the fiber jumper from the AIX System Fibre Channel Adapter provides a complete signal path to the Disk Storage Subsystem, Tape Drive, patch panel, or other device (such as a hub) to which it is connected.

Using an accurate fiber cabling chart, perform the following steps:

- 1. Ensure that the fiber Jumper connector is clean and properly plugged into the Fibre Adapter in the AIX system.
- 2. Ensure that the connector at the other end of this Fiber Jumper is clean and properly plugged into the patch panel, Switch, SAN Data Gateway, Hub, Disk Storage Subsystem, or Tape Drive as intended.
- 3. Ensure that the fiber jumper is not defective.

Does the fiber jumper from the AIX System Fibre Channel Adapter provide a complete signal path to the Disk Storage Subsystem, Tape Drive, patch panel, or other device (such as a hub, etc) to which it is connected?

NO Correct the fault. After the problem is resolved, you might need to run the **cfgmgr** AIX command to restore the Fibre Channel environment to a functional state.

Done

YES Go to "Step 0060-3."

Determine that the patch panels and interconnecting trunk or jumpers in this configuration provide a complete end-to-end signal path.

Note:

- If this path does not include a patch panel, skip this step.
- If this configuration contains more than one patch panel/trunk set, all of them, wherever they exist in the configuration, should be checked using the following procedure:

Using an accurate fiber cabling chart, perform the following steps:

- 1. Ensure that the correct truck fibers or interconnecting jumper is plugged into the correct, clean patch panel connection.
- 2. Ensure that the trunk fibers or interconnecting jumpers deliver the light properly to the patch panel at the other end.
- 3. Ensure that these truck fibers or interconnecting jumper is plugged into the correct, clean patch panel connection at the other end.
- 4. Ensure that the fiber jumper connector at this patch panel is clean and correctly connected.

Do the patch panels and interconnecting trunk or jumper in this configuration provide a complete end-to-end signal path?

NO Correct the fault. After the problem is resolved, you might need to run the **cfgmgr** AIX command to restore the Fibre Channel environment to a functional state.

Done

YES Go to "Step 0060-4."

Determine that the fiber jumpers plugged into the Fibre Channel Switch in this configuration provide a complete signal path through the switch.

Note: If this path does not include a Fibre Channel Switch, skip this step.

Using an accurate fiber cabling chart, perform the following steps:

- 1. Ensure that the connectors in both the inbound and outbound ports are clean and properly plugged into the correct ports.
- 2. Ensure that both the inbound and outbound fiber jumpers are not defective.
- 3. Ensure that the Fibre Channel Switch is properly configured and does not indicate any port failures.
- 4. Determine if host-to-switch cabling has been changed or swapped recently. If so, run the cfgmgr AIX command to update the configuration attributes. If these attributes are not updated, results of commands such as the lsattr -EI will not yield the correct information for attributes such as the scsi_id field. Running the cfgmgr AIX command will likely resolve the problem.

Do the fiber jumpers plugged into the Fibre Channel Switch in this configuration provide a complete signal path through the switch?

NO Correct the fault. After the problem is resolved, you might need to run the **cfgmgr** AIX command to restore the Fibre Channel environment to a functional state.

Done

YES Go to "Step 0060-5."

Determine that the fiber jumper and SCSI interface cables plugged into the SAN Data Gateway in this configuration provide a complete signal path through the gateway.

Note: If this path does not include a SAN Data Gateway, skip this step.

Using an accurate fiber cabling chart, perform the following steps:

- Ensure that the fiber jumper connector is clean and properly plugged into the correct Fibre Channel port.
- 2. Ensure that the SCSI interface is correctly cabled.
- 3. Ensure that the fiber jumper is not defective.
- 4. Ensure that the SCSI interface cables are not defective.
- 5. Ensure that the SAN Data Gateway does not indicate a port or interface failure.

Do the fiber jumper and SCSI interface cables plugged into the SAN Data Gateway in this configuration provide a complete signal path through the gateway?

NO Correct the fault. After the problem is resolved, you might need to run the **cfgmgr** AIX command to restore the Fibre Channel environment to a functional state.

Done

YES Go to "Step 0060-6."

Determine that the fiber jumpers plugged into the Hub in this configuration provide a complete signal path through the Hub.

Note: If this path does not include a Hub, skip this step.

Using an accurate fiber cabling chart, perform the following steps:

- 1. Ensure that the inbound fiber jumper connector is clean and properly plugged into the correct hub port.
- 2. Ensure that the outbound fiber jumper connector is clean and properly plugged into the correct hub port.
- 3. Ensure that the both inbound and outbound fiber jumpers are not defective.
- 4. Ensure that all other fiber jumpers plugged into ports on this hub have good connections, and are not defective.
- 5. Ensure that all open (unplugged) ports are correctly bypassing the signal.

Do the fiber jumpers plugged into the Hub in this configuration provide a complete signal path through the Hub?

NO Correct the fault. After the problem is resolved, you may need to run the **cfgmgr** AIX command to restore the Fibre Channel environment to a functional state.

Done

YES Go to "Step 0060-7."

Determine that the fiber jumpers plugged into any other Fibre Channel device in this configuration provide a complete signal path through the device.

Note:

- If this path has no other devices prior to the Disk Storage Subsystem or Tape Drive, skip this step.
- If this configuration contains more than one device not covered in previous steps, all of them, wherever they exist in the configuration, should be checked using the following procedure:

Using an accurate fiber cabling chart, perform the following steps:

- 1. Ensure that the inbound fiber jumper connector is clean and properly plugged into the correct port.
- Ensure that the outbound fiber jumper connector is clean and properly plugged into the correct port.
- 3. Ensure that the both inbound and outbound fiber jumpers are not defective.

Do the fiber jumpers plugged into this device provide a complete signal path through this device?

NO Correct the fault. After the problem is resolved, you might need to run the **cfgmgr** AIX command to restore the Fibre Channel environment to a functional state.

Done

YES Go to "Step 0060-8."

Step 0060-8

Determine that the fiber jumper plugged into the Disk Storage Subsystem or Tape Drive provides a complete signal path to it.

Using an accurate fiber cabling chart, perform the following steps:

- 1. Ensure that the fiber jumper connector is clean and properly plugged into the correct port.
- 2. Ensure that the fiber jumper is not defective.

Does the fiber jumper plugged into this device provide a complete signal path to it?

NO Correct the fault. After the problem is resolved, you might need to run the **cfgmgr** AIX command to restore the Fibre Channel environment to a functional state.

Done

YES Go to "Step 0070-1."

Start of PDP PD0070 - Other Failures

Step 0070-1

Perform the following steps:

- 1. Refer to Chapter 6, "Service Information" on page 57 and start the Device Driver Trace on the AIX system.
- If the problem you are investigating involves an application, refer to the documentation for the application and start the application trace, if available, on the AIX system.
- 3. Reproduce the failing scenario.
- 4. Stop all traces.
- 5. Have the following information available:
 - a. All trace data gathered above.
 - b. Any errpt data in the AIX Error Log.
 - c. Any errors reported by the application.
 - d. Any error data present in any of the Fibre Channel Devices, including LED indicators.
 - e. A detailed description of the Fibre Channel cabling scheme.
 - f. Hardware, microcode, and device driver levels for the Fibre Channel PCI Adapter and all Fibre Channel devices in the failing configuration.
 - g. A detailed description of the error, failure, or problem.
- 6. Call AIX Support.

Done

Chapter 6. Service Information

This chapter has information on servicing the Fibre Channel environment.

Gigabit Fibre Channel PCI Adapter

This section has information on servicing your Gigabit Fibre Channel PCI Adapter. Figure 5 shows the Gigabit Fibre Channel PCI Adapter.

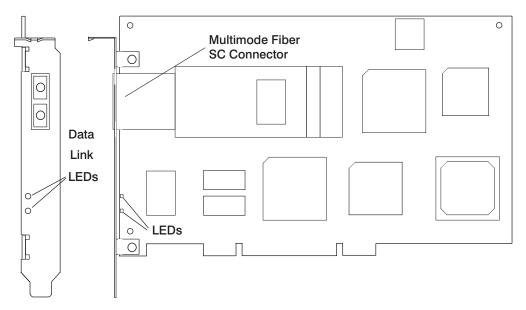


Figure 5. Gigabit Fibre Channel PCI Adapter

Adapter LEDs

The adapter has two LEDs, green and yellow, located near the connectors, that can be used to determine the state of the adapter. Table 1 on page 58 describes the various states of the LEDs. See Figure 5 for the location of the two LEDs.

Table 1. LED Status Information		
Green LED	Yellow LED	State
OFF	OFF	Wake up failure (dead board)
OFF	ON	POST failure (dead board)
OFF	Slow blink (1HZ)	Wake up failure
OFF	Fast blink (4HZ)	Failure in POST
OFF	Flashing (irregularly)	POST processing in progress
ON	OFF	Failure while functioning
ON	ON	Failure while functioning
ON	Slow blink (1HZ)	Normal - inactive
ON	Flashing (irregularly)	Normal - active
ON	Fast blink (4HZ)	Normal - busy
Slow blink	OFF	Normal - link down or not yet started
Slow blink	Slow blink (1HZ)	Offline for download
Slow blink	Fast blink (4HZ)	Restricted offline mode (waiting for restart)

AIX Diagnostics for the Gigabit Fibre Channel Adapter

The Gigabit Fibre Channel Diagnostics are contained on the AIX Diagnostic CD-ROM. These diagnostics can be run in either standalone mode or under AIX run-time diagnostics.

Attention: All applications using a Gigabit Fibre Channel adapter must be halted before running diagnostics against that adapter.

There are two versions, (or levels) of diagnostics; namely standard and advanced. Standard diagnostics can be run while the Gigabit Fibre Channel Adapter is cabled into the Fibre channel configuration. Advanced diagnostics, however, require that the wrap plug be used. Therefore, the fiber cable must be unplugged from the Gigabit Fibre Channel Adapter before you can run advanced diagnostics. More information is available in the *Diagnostic Information for Multiple Bus Systems*, order number SA23-2769. Use Version 4.3 or later.

If the Gigabit Fibre Channel Adapter diagnostics detect a problem, an error code displays either on the screen or on the three-digit display on the front of the system unit. Table 2 lists the error codes that may be displayed while running diagnostics on the Gigabit Fibre Channel Adapter. The 677 function code indicates a Gigabit Fibre Channel Adapter problem.

Service Request Numbers

If Diagnostics fail, the error message will contain one of the following Service Request Numbers (SRNs). FRU parts should be replaced in the order listed in Table 2.

Table 2 (F	Table 2 (Page 1 of 2). Service Request Numbers for Fibre Channel Adapter			
Service Request Number	SRN Src.	Failing Function Codes	Description and Action	
677-101	D	677	Description: The Fibre Channel Adapter configuration failed Action: Use MAP 0210.	
677-102	D	677	Description: The Reset test failed. Action: Use MAP 0210.	
677-103	D	677	Description: The Register test failed. Action: Use MAP 0210.	
677-104	D	677	Description: The SRAM test failed. Action: Use MAP 0210.	
677-105	D	677	Description: The Internal Wrap test failed. Action: Use MAP 0210.	
677-106	D	677	Description: The Gigabaud Link Module (GLM) failed. Action: Use MAP 0210.	
677-107	D	677	Description: The External Wrap test failed. Action: Use MAP 0210.	
677-201	D	677 221	Description: The Configuration Register test failed. Action: Use MAP 0210.	
677-202	D	677 221	Description: The Interrupt test failed. Action: Use MAP 0210.	
677-203	D	677 221	Description: The PCI Wrap test failed. Action: Use MAP 0210.	
677-204	D	677 221	Description: The DMA test failed. Action: Use MAP 0210.	

Table 2 (F	Table 2 (Page 2 of 2). Service Request Numbers for Fibre Channel Adapter			
Service Request Number	SRN Src.	Failing Function Codes	Description and Action	
677-205	D	677 221	Description: I/O error on a read/write operation. Action: Use MAP 0210.	
677-701	G	677 221	Description: Error log analysis indicates that an error has occurred with the adapter. Action: Use MAP 0210.	
677-702	G	Microcode 677	Description: Error log analysis indicates that an adapter microcode error has occurred. Action: Use MAP 0210.	
677-703	G	677	Description: Error log analysis indicates that an unknown adapter error has occurred. Action: Use MAP 0210.	

Note: References to MAP 0210 in Table 2 on page 59 refer to the Maintenance Analysis Procedures (MAPs) in *Diagnostic Information for Multiple Bus Systems*, order number SA38-0509.

Source of SRN

SRN Src (source) codes indicate the program or procedure that produced the SRN. The source codes are described as follows:

SRC Description

- A The SRN is from a steady number in the operator panel display.
- B The SRN is from a MAP callout.
- C The SRN was due to a missing resource at configuration time.
- D The SRN is from a diagnostic test after complete isolation testing.
- E The SRN is from a POST Failure.
- F The SRN is from a diagnostic test after partial isolation testing.
- G The SRN is from the Error Log Analysis program.
- H The SRN is from a diagnostic message after a flashing 888.
- J The SRN is from built-in ROM diagnostics.
- K The SRN is from offline diagnostics.

Failing Function Codes

The failing function codes are described as follows:

SRN **Description**

677 The Gigabit Fibre Channel Adapter

221 The System or I/O Board

Microcode Microcode failure

Tracing the Gigabit Fibre Channel Adapter

You can use the trace facility to obtain problem determination information. Data obtained by tracing the Gigabit Fibre Channel Adapter device driver provides information about which code paths were used during the failing sequence of Fibre Channel operations. This information often enables trained personnel to determine which individual component of the overall Fibre Channel environment was being exercised at the moment of failure, thus pinpointing the area for concentrated problem determination procedures.

The trace facility can be invoked by either of two ways. It may be started as a bottom-line AIX command, or it may be started using the Fibre Channel Adapter SMIT panels. In either case, the trace hooks for the Gigabit Fibre Channel Adapter device driver are 3B9 and 3C4.

To start the trace from the AIX command line, run the following command:

```
trace -j 3B9,3C4 -a
```

To stop the trace from the AIX command line, run the following command: trcstop

To format the trace from the AIX command line, run the following command: trcrpt

This causes the formatted trace information to be displayed on the screen. To format the trace from the AIX command line and store it in a file called trace in the /tmp directory, run the following command:

trcrpt > /tmp/trace

To start the trace facility from the Gigabit Fibre Channel Adapter's SMIT panels, perform the following steps:

1. Type the following:

smitty fcsa

- 2. Select FC Adapter.
- 3. Select Trace a FC Adapter.
- 4. Select Start Trace.
- 5. Select ADDITIONAL event IDs to Trace.
- 6. In the input field, type

3B9 3C4

7. Press Enter to start the trace.

Note: It may be necessary at times to add other event IDs (hooks) to the trace. However, it is always best to trace the smallest number of event IDs required for problem determination.

To stop the trace from the Gigabit Fibre Channel Adapter's SMIT panels after the failure has been reproduced, perform the following steps:

- 1. Navigate to the **Trace a FC Adapter** menu as in steps 1 3 above.
- 2. Select Stop Trace.
- 3. Press Enter to stop the trace.

To generate a trace report from the Gigabit Fibre Channel Adapter's SMIT panels, after the trace has been stopped, perform the following steps:

1. Type the following:

smitty fcsa

- 2. Select FC Adapter.
- 3. Select Trace a FC Adapter.
- 4. Select Generate a Trace Report.
- 5. Press Enter.
- 6. Select 1 filename (unless you want to print the report) on the pop-up window.
- 7. Fill in fields, as desired, to control the way the report is generated. If you want to save the report to a file, put a file name in the FILE NAME for Trace report input field. Otherwise, the default is stdout.
- 8. Press Enter to generate the report.

Generating an Error Report for the Gigabit Fibre Channel Adapter

When you are analyzing a problem in the Fibre Channel environment, it is often necessary to examine the AIX Error Log. The quickest method to do so is to run the following AIX command:

The will display the error log in its entirety, one page at a time. However, the Gigabit Fibre Channel SMIT panels provide a means of generating an error report whose output can be customized and limited in a number of very useful ways. This facility also allows the report to be written to a file for future reference. To generate an error report using the Gigabit Fibre Channel Adapter SMIT facility, perform the following steps:

- 1. Type the following:
 - smitty fcsa
- 2. Select FC Adapter.
- 3. Select Generate Error Report.
- 4. Select 1 filename (unless you want to print the report) on the pop-up window.
- 5. Select 1 no on the CONCURRENT error reporting? pop-up window, unless you want to perform concurrent error reporting. Concurrent error reporting causes errors to be displayed in real time as they are entered into the system error log.
- 6. Fill in fields, as desired, to control the way the report is generated. Refer to Figure 6 on page 72 for an example of an error report, and to help you make choices.
 - a. You can choose SUMMARY or DETAILED error reporting.
 - b. You can select specific Error CLASSES, TYPES, LABELS, and IDs.
 - c. You can select specific Resource CLASSES, TYPES, and NAMES.
 - d. You can select specific SEQUENCE numbers, as well as STARTING and ENDING time intervals.
 - e. You can enter a FILENAME in which to write the error report.
- 7. After you have set all fields to the desired values, press Enter to generate the error report.

2109 SAN Fibre Channel Switch Service Aid

When you are investigating problems associated with the 2109 Switch, you can obtain some useful information by logging into its controller using TelNet. If you do

not know the user ID and password, request assistance from the System Operator or Administrator. Table 3 on page 64 provides some useful commands.

Table 3. Useful 21	109 Commands
Command	What it Does
aliasShow	Print Alias Server Information
configShow	Print Switch Config Parameters
errShow	Print Error Log
fabricShow	Print Fabric Membership Information
fanShow	Print Fan Status
ifmodeShow	Print Network Link Operating Mode
ifShow	Print Network Interface Information
login	Login as a New User
logout	Logout from Remote Session
portErrShow	Print Port Error Summary
portLogShow	Print Port Activity Log
portShow	Print State of specified Port
portStatShow	Print Hardware Statistics
psShow	Print Power Supply Status
switchShow	Print Switch and Port Status
tempShow	Print Temperature Readings
version	Print Firmware Version
diagHelp	Print Diagnostic Help

Other Fibre Channel Devices

For service information for each of the Fibre Channel devices in the configuration, refer to the appropriate appendix for each device. Each device's appendix contains a section called "Publications and Other Sources of Information." This section contains a list of publications and Web sites which provide device-specific instructions and information needed for installing, configuring, operating, and servicing of that device.

Appendix A. Notices

This information was developed for products and services offered in the U.S.A.

The manufacturer may not offer the products, services, or features discussed in this document in other countries. Consult the manufacturer's representative for information on the products and services currently available in your area. Any reference to the manufacturer's product, program, or service is not intended to state or imply that only that product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any intellectual property right of the manufacturer may be used instead. However, it is the user's responsibility to evaluate and verify the operation of any product, program, or service.

The manufacturer may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not give you any license to these patents. You can send license inquiries, in writing, to the manufacturer.

The following paragraph does not apply to the United Kingdom or any country where such provisions are inconsistent with local law: THIS MANUAL IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions; therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. The manufacturer may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

Information concerning products made by other than the manufacturer was obtained from the suppliers of those products, their published announcements or other publicly available sources. The manufacturer has not tested those products and cannot confirm the accuracy of performance, compatibility or any other claims related to products made by other than the manufacturer. Questions on the capabilities of products made by other than the manufacturer should be addressed to the suppliers of those products.

Appendix B. Communications Statements

The following statement applies to this product. The statement for other products intended for use with this product appears in their accompanying documentation.

Federal Communications Commission (FCC) Statement

Note: The Gigabit Fibre Channel PCI Adapter has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- · Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult an authorized dealer or service representative for help.

Properly shielded and grounded cables and connectors must be used in order to meet FCC emission limits. Proper cables and connectors are available from authorized dealers. Neither the provider nor the manufacturer are responsible for any radio or television interference caused by using other than recommended cables and connectors or by unauthorized changes or modifications to this equipment. Unauthorized changes or modifications could void the user's authority to operate the equipment.

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Responsible Party:

International Business Machines Corporation New Orchard Road Armonk, New York 10504 Telephone: (919) 543-2193

European Union (EU) Statement

This product is in conformity with the protection requirements of EU Council Directive 89/336/EEC on the approximation of the laws of the Member States relating to electromagnetic compatibility. The manufacturer cannot accept responsibility for any failure to satisfy the protection requirements resulting from a non-recommended modification of the product, including the fitting of option cards supplied by third parties. Consult with your dealer or sales representative for details on your specific hardware.

This product has been tested and found to comply with the limits for Class B Information Technology Equipment according to CISPR 22 / European Standard EN 55022. The limits for Class B equipment were derived for typical residential environments to provide reasonable protection against interference with licensed communication devices.

International Electrotechnical Commission (IEC) Statement

This product has been designed and built to comply with IEC Standard 950.

United Kingdom Telecommunications Safety Requirements

This equipment is manufactured to the International Safety Standard EN60950 and as such is approved in the UK under the General Approval Number NS/G/1234/J/100003 for indirect connection to the public telecommunication network.

The network adapter interfaces housed within this equipment are approved separately, each one having its own independent approval number. These interface adapters, supplied by the manufacturer, do not use or contain excessive voltages. An excessive voltage is one which exceeds 70.7 V peak ac or 120 V dc. They interface with this equipment using Safe Extra Low Voltages only. In order to

maintain the separate (independent) approval of the manufacturer's adapters, it is essential that other optional cards, not supplied by the manufacturer, do not use main voltages or any other excessive voltages. Seek advice from a competent engineer before installing other adapters not supplied by the manufacturer.

Avis de conformité aux normes du ministère des Communications du Canada

Cet appareil numérique de la classe B est conform à la norme NMB-003 du Canada.

Canadian Department of Communications Compliance Statement

This Class B digital apparatus complies with Canadian ICES-003.

VCCI Statement

この装置は、情報処理装置等電波障害自主規制協議会(VCCI)の基準に基づくクラスB情報技術装置です。この装置は、家庭環境で使用することを目的としていますが、この装置がラジオやテレビジョン受信機に近接して使用されると、受信障害を引き起こすことがあります。 取扱説明書に従って正しい取り扱いをして下さい。

The following is a summary of the VCCI Japanese statement in the box above.

This product is a Class B Information Technology Equipment and conforms to the standards set by the Voluntary Control Council for Interference by Information Technology Equipment (VCCI). This product is aimed to be used in a domestic environment. When used near a radio or TV receiver, it may become the cause of radio interference. Read the instructions for correct handling.

Radio Protection for Germany

Dieses Gerät ist berechtigt in Übereinstimmung mit dem deutschen EMVG vom 9.Nov.92 das EG-Konformitätszeichen zu führen.

Der Aussteller der Konformitätserklärung ist die IBM Germany.

Dieses Gerät erfüllt die Bedingungen der EN 55022 Klasse B.

Appendix C. Error Messages

This appendix describes error messages encountered in the Fibre Channel environment.

Error Log Information for the Gigabit Fibre Channel PCI Adapter

An error log for the Gigabit Fibre Channel PCI Adapter contains one of two possible types of information. The log will either contain information about an error associated with the Fibre Channel Adapter itself, or it will contain information about an error encountered with the Fibre Channel SCSI protocol. Both error logs are described in this appendix. An example of the structure of the error log is shown in Figure 6 on page 72.

```
LABEL: FCS_ERR4
IDENTIFIER: B8113DD1
Date/Time: Thu Dec 9 1
Sequence Number: 1147199
Machine Id: 000023284C00
                                  9 18:37:27
                       sp09
H
Node Id:
Class:
Type:
Resource Name:
Resource Class:
Resource Type:
                        ..
TEMP
                        fcs0
                       adapter
df1000f7
10-78
Location: VPD:
          Description
LINK ERROR
 Probable Causes
BUSY
ADAPTER HARDWARE OR CABLE
DEVICE
FIBRE CHANNEL SWITCH OR FC-AL HUB
Failure Causes
CABLES AND CONNECTIONS
DEVICE
FC-AL HUB
FIBRE CHANNEL SWITCH
  Recommended Actions
NO FURTHER ACTION REQUIRED UNLESS PROBLEM PERSISTS
CHECK CABLES AND THEIR CONNECTIONS
0000 000A 0000 012C
                                                                                               0000 0000
                                                                                 0000 0000
```

Figure 6. Example of a Fibre Channel Adapter Error Log

PCI Fibre Channel Adapter Error Log Sense Information

The detail sense data log in the FCS_ERR template for PCI FC adapters uses the structure error_log_def defined in:

src/rspc/kernext/pci/fcs/efcdd.h

Sense Data Layout

The above fields are interpreted as follows:

Field Interpretation

- E Error number. The error numbers are described in Table 4 on page 75.
- T Type. Possible values are:
 - 0 Neither mailbox nor IOCB included
 - 1 Mailbox included in data field
 - 2 IOCB included in data field
 - 3 Adapter register contents included
 - 4 Adapter driver data
 - 5 Command structure data
- C How this adapter is connected. Possible values are:
 - 0 Unknown how it is connected
 - 1 This adapter is connected point to point
 - 2 This adapter is connected to a switch
 - 3 This adapter is connected to an arbitrated loop
- N N Port ID of the adapter.
- R Reserved for future use.
- I Number of IOCBs issued by the adapter driver since it was configured.

- M Number of mailboxes issued by the adapter driver since it was configured.
- L How often (in seconds) the adapter driver issues a READ_LNK_STAT mailbox (opcode 0x12).
- A Number of times the link has failed.
- B Number of times the loss of synchronization has occurred.
- D Number of times the loss of signal has occurred.
- F Number of times a primitive sequence error has occurred.
- G Number of times an invalid transmission character has been seen.
- H Number of times a CRC error occurred from a receive frame.
- J Number of times a Primitive Sequence Event Time-out has occurred.
- K Number of times an Elastic Buffer overrun has occurred.
- P Number of times a time-out has occurred during FC-AL arbitration.
- R Reserved.
- S Adapter driver's current init_link_flags setting. 6 is old port mode, 0 is arbitrated loop mode.
- U Start sequence status.
- V Adapter driver state.
- W Abort IOCB retries without success.
- X Number of times the adapter driver has tried to get the link up without success.
- Y R_A_TOV (Resource Allocation time-out Delay Value) currently used by the adapter driver. This value is in milliseconds.
- Z E_D_TOV (FC Error Detect Time-out Value) currently used by the adapter driver. This value is in milliseconds.
- 2 ARB_TOV (FC-AL Arbitration Time-out Value) currently used by the adapter driver. This value is in milliseconds.
- 3 R_T_TOV (FC Receiver Transmitter Time-out Value) currently used by the adapter driver. This value is in milliseconds.
- 4 AL_TOV (FC-AL Time-out value) currently used by the adapter driver. This value is in milliseconds.
- Q The contents of this field depends on the type field as follows:
 - If the type field equals 1 (Mailbox included), this field will contain the failing mailbox.

- If the type field equals 2 (IOCB included), this field will contain the failing IOCB.
- If the type field equals 3 (Adapter register contents included), the first four bytes will be the adapter's status registers followed by four bytes displaying the PCI command status register.
- If the type field equals 5 (command included), this will contain the efc_cmd structure defined in efc.h.

Detailed information for the sense data error numbers is shown in Table 4.

Table 4 (Page	Table 4 (Page 1 of 5). Error Number Information for the Fibre Channel Adapter		
Error No.	Error Template	Description of Error	
0000 0000	FCS_ERR6	A mailbox completed and the SLIMs in use flag was not set. The mailbox is included.	
0000 0001	FCS_ERR4	A mailbox failed with a link type of error. The failed mailbox is included.	
0000 0002	FCS_ERR2	A mailbox failed with an error indicating problems with IOCB rings. The failed mailbox is included.	
0000 0003	FCS_ERR2	A mailbox failed due to bad responder/originator. The failed mailbox is included.	
0000 0004	FCS_ERR2	A mailbox was failed by the adapter indicating no resources are available. This will cause the adapter driver to reset the adapter to try to resolve this.	
0000 0005	FCS_ERR2	A mailbox failed due to one of the remaining defined mailbox errors. The failed mailbox is included.	
0000 0006	FCS_ERR2	A mailbox failed with an undocumented error code.	
0000 0007	FCS_ERR4	A config port mailbox failed. Mailbox is included.	
8000 0008	FCS_ERR4	A READ_LA64 mailbox completed, but indicated the link is down. The READ_LA64 mailbox is included.	
0000 0009	FCS_ERR4	A READ_LA64 completed, indicating that an N_Port has done a LIP reset. The READ_LA mailbox is included.	
0000 000A	FCS_ERR4	An IMPLICIT Logout via a READ_LA64 mailbox was received. The READ_LA64 mailbox is included.	
0000 000B	FCS_ERR6	An unknown mailbox type was received by the interrupt handler.	
0000 000C	FCS_ERR6	An unsupported unsolicited IOCB command was received. This IOCB is included.	

Error No.	Error Template	Description of Error
0000 000D	FCS_ERR2	An IOCB for which there is no detailed error recovery (that is XMIT_ELS_REQ64_CX) has failed. The IOCB is included.
0000 000E	FCS_ERR6	Intermediate response IOCB entry.
0000 000F	FCS_ERR4	This IOCB failed with either a N_Port Reject or Fabric Reject indicating invalid class and the retry count has been exceeded (with different classes attempted) on it. The failing IOCB is included.
0000 0010	FC_ERR4	The IOCB failed with a N_Port Reject or Fabric Reject indicating the destination N_Port is temporarily unavailable, and the retry count has been exceeded on this.
0000 0011	FCS_ERR4	The IOCB failed with an error indicating the need to be logged in, and the retry count has been exceeded (and PLOGI attempts) on this. The failing IOCB is included.
0000 0012	FCS_ERR4	The IOCB failed with an error indicating the need to do a FLOGI. However the failing IOCB was not originated by the adapter driver's startup sequence. The failing IOCB is included.
0000 0013	FCS_ERR4	The IOCB failed with an error indicating the need to do a FLOGI and the retry count has been exceeded on issuing a FLOGI. The failing IOCB is included.
0000 0014	FCS_ERR4	The IOCB failed with an error indicating Fabric path not available. The failing IOCB is included.
0000 0015	FCS_ERR5	The IOCB failed with an exchange or sequence error. The failing IOCB is included.
0000 0016	FCS_ERR6	An IOCB failed with a N_Port/Fabric Reject, but with an unknown reason code.
0000 0017	FCS_ERR4	An IOCB failed with an LS_RJT and the retry count has been exceeded, including trying a different class when the IOCB was FLOGI. The failed IOCB is included.
0000 0018	FCS_ERR4	An IOCB failed with a BA_RJT. The failed IOCB is included.
0000 0019	FCS_ERR4	An IOCB failed with "remote stop" (that is ABTS/ABTX from another N_Port). The failing IOCB is included.
0000 001A	FCS_ERR2	A DMA error was detected by the adapter on an IOCB. The failing IOCB is included.

Table 4 (Page 3 of 5). Error Number Information for the Fibre Channel Adapter		
Error No.	Error Template	Description of Error
0000 001B	FCS_ERR4	An IOCB failed with an error indicating Invalid RPI, and the retry and relogin/re-register count has been exceeded. The failing IOCB is included.
0000 001C	FCS_ERR4	A device refused connection.
0000 001D	FCS_ERR6	An IOCB failed with an data/frame/sequence corruption reported. The failed IOCB is included.
0000 001F	FCS_ERR4	An IOCB failed with an error indicating link down. The failed IOCB is included.
0000 0020	FCS_ERR4	This IOCB has been aborted too many times.
0000 0021	FCS_ERR6	An IOCB failed with a local reject, with an undocumented parameter error. The failed IOCB is included.
0000 0022	FCS_ERR4	An IOCB failed with an F_BSY or P_BSY and the retry count has been exceeded. The failed IOCB is included.
0000 0023	FCS_ERR6	An IOCB failed with a status that is not documented in the adapter specification. The failed IOCB is included.
0000 0024	FCS_ERR4	The open sequence has failed due to an IOCB failing. The failed IOCB is included.
0000 0026	FCS_ERR2	A mailbox has timed out. The mailbox is included.
0000 0027	FCS_ERR2	An IOCB has timed out. The IOCB is included.
0000 0028	FCS_ERR2	An unknown event has timed out.
0000 0029	FCS_ERR6	A DMA error occurred when doing a D_MAP_LIST.
0000 002A	FCS_ERR1	Adapter POST failed after reset.
0000 002C	FCS_ERR1	Adapter POST failed on open.
0000 002D	FCS_ERR6	A Queue Ring Buffer command has failed. The failing IOCB is included.
0000 002E	FCS_ERR2	An ABORT_MXRI64_CN has timed out.
0000 002F	FCS_ERR6	An unsolicited IOCB was received on the SCSI response IOCB ring. The IOCB is included.
0000 0030	FCS_ERR2	An Error Attention has occurred. The status register and the PCI command status register are included.
0000 0031	FCS_ERR6	A command with an unknown adap_opcode was received through the command entry point.
0000 0032	FCS_ERR6	A command with an unknown opcode was received through the command entry point.

Error No.	Error Template	Description of Error
0000 0033	FCS_ERR6	A command with an unknown adap_opcode was received by the start routine.
0000 0034	FCS_ERR6	A command with an unknown opcode was received by the start routine.
0000 0035	FCS_ERR6	The device Driver ELS command is currently is use.
0000 0036	FCS_ERR6	Someone has called the stub function. This function is used when a function pointer is not set to any useful function.
0000 0037	FCS_ERR6	The adapter driver failed to open the adapter.
0000 0038	FCS_ERR6	The adapter driver failed to find a free command to issues reply to an ELS command.
0000 0039	FCS_ERR6	The adapter driver could not find an async IOCB command to issue an ELS command for some received event. These commands are typically used for sending LOGOs.
0000 003A	FCS_ERR6	A RECEIVE SEQUENCE IOCB was received, but it does not reference a valid host buffer.
0000 003B	FCS_ERR4	The allowable number of attempts to bring the link up on an open has been exceeded. The current link down status indicates Port bypass.
0000 003C	FCS_ERR4	The allowable number of attempts to bring the link up on an open has been exceeded.
0000 003D	FCS_ERR4	A link error has been encountered.
0000 003E	FCS_ERR4	In old Port mode and not allowed to be switched to FC-AL mode, but a FLOGI has been self-initiated.
0000 0040	FCS_ERR4	A link error has been encountered.
0000 0041	FCS_ERR4	A READ_LA64 completed, indicating that the link is down for this particular READ_LA64. All previous READ_LA64s also failed and this was the last attempt to get link up. The link will now be considered down and no further attempts to do a link up will occur until new I/O requests are issued to the adapter driver. The READ_LA mailbox is included.
0000 005B	FCS_ERR6	A PDISC (Port Discover Extended Link Services Command) has been received from a device which is no logged in.

Table 4 (Page	Table 4 (Page 5 of 5). Error Number Information for the Fibre Channel Adapter		
Error No.	Error Template	Description of Error	
0000 005D	FCS_ERR6	An unknown unsolicited IOCB was received. The IOCB is included in the detail data.	
0000 005E	FCS_ERR6	A XMIT Sequence IOCB operation failed. This is most likely a Name Server operation.	
0000 005F	FCS_ERR4	A microcode error has been encountered.	
0000 0060	FCS_ERR6	Index beyond end qbuf_free_list. IOCB and index is included.	
0000 0061	FCS_ERR6	Index beyond end els_free_list. Command is included.	
0000 0062	FCS_ERR6	Index beyond end qbuf_free_list. IOCB and index is included.	
0000 0063	FCS_ERR6	Index beyond end qiocb_free_list. Command is included.	
0000 0064	FCS_ERR6	Index beyond end qiocb_free_list. Command is included.	

PCI Fibre Channel Adapter, SCSI Protocol, Error Log Sense Information

The detail sense data for the Fibre Channel SCSI Protocol is interpreted as follows:

Sense Data Layout

Where:

Field Interpretation

- A Error number determined by the SCSI protocol driver. The error numbers are described in Table 5 on page 82.
- B Return code from either the adapter driver output routine, control function or command entry point. The possible values for this are defined in the errno.h file.

- C How this adapter is connected. Possible values are:
 - 0 Unknown how it is connected
 - 1 This adapter is connected point to point
 - 2 This adapter is connected to a switch
 - 3 This adapter is connected to an arbitrated loop
- Y Status value of the control element returned by the adapter driver. This field is used to by the adapter driver to report errors to the protocol driver. The valid values are defined in efc.h and are:

Value Description

- 0x1 The adapter driver is indicating a host I/O bus error.
- 0x10 The adapter driver is indicating an adapter hardware failure.
- 0x20 The adapter driver is indicating an adapter microcode failure.
- 0xa0 The adapter has flushed this command. This is normally associated with an ABORT_MXRI64_CN IOCB issued by the adapter driver. It can also be associated with a RESET_RING mailbox operation done by the adapter driver to flush all IOCBs for a given IOCB ring.
- L LUN ID to which the command was sent.
- F FCP payload control field, which has the following bit flag definitions:
 - Bit 0 indicates the FCP command is a write.
 - Bit 1 indicates the FCP command is a read.
 - · Bit 9 indicates this is an Abort Task Set.
 - · Bit 10 indicates this is a Clear Task Set.
 - Bit 13 indicates this is a Target Reset.
 - · Bit 14 indicates this is a Clear ACA.
- Q The SCSI command payload that failed or command payload at the head of the active queue.
- G Data length of SCSI command.
- O N Port ID of this adapter.
- E N Port ID of the device to which this command was sent.
- R Reserved for future use.

V Failed command IOCB if valid. Otherwise, it is the following:

Word Description of Contents

- 0 Dev_info (ID/LUN) cancel_retry count
- 1 Dev_info (ID/LUN) qstate
- 2 Dev_info (ID/LUN) stop_pending flag
- 3 Dev_info (ID/LUN) dev_queuing flag
- 4 Dev_info (ID/LUN) need_relogin flag
- 5 Dev_info (ID/LUN) need_reseme_set flag
- 6 Dev_info (ID/LUN) aca_error_state flag
- 7 Dev_info (ID/LUN) number of active commands for this ID/LUN
- T Reply IOCB if valid. Otherwise, it is the following:

Word Description of Contents

- 0 Abort Task Set command's state for this ID/LUN
- 1 Clear ACA command's state for this ID/LUN
- 2 Cancel element (ABORT_MXRI_CN) state for this ID/LUN
- 3 ABORT MXRI KEY for this ID/LUN
- 4 Cancel element's (ABORT MXRI CN) parameter field for this ID/LUN
- 5 Cancel element's (ABORT_MXRI_CN) status field of the IOCB for this ID/LUN
- 6-7 Virtual address of this device's head_pending queue
- H Main BDE list for this IOCB if valid. Otherwise, it is the following:

Byte Description of Contents

- 0 Target_info (ID) state
- 1 Target_info (ID) flags
- 2 Target_info (ID) cancel retry count
- 3 Target info (ID) process login retry count
- 4 Target_info (ID) relogin retry count
- 5 Target_info (ID) device_flags field from PRLI
- 6 Target_info (ID) stop pending flag
- 7 FC class used for this Target_info (ID)

- 8 Target Reset Command State
- 9 PDISC command state
- 10 PLOGI command state
- 11 PRLI command state
- 12 Cancel (ABORT_MXRI_CN) command state
- 13 Target Cancel (ABORT_MXRI_CN) command state
- D Used for the first 40 bytes of the FCP response IU if valid (that is, the reply IOCB status field equals 1 or the fcp_status field of the FCP response IU is nonzero). Otherwise, if this is for a valid command, it is the following:

Byte Description of Contents

- 0-7 Virtual address of command payload
- 8-15 Virtual address of response buffer
- 16-23 Virtual address of BDE's
- 24-25 Command's preempt count
- 26 Command's pending_retries count
- I Used for the address of the failing scsi_info structure.

Detailed information for the sense data error numbers is shown in Table 5.

Table 5 (Page 1	Table 5 (Page 1 of 7). Error Number Information for the Fibre Channel SCSI Protocol		
Error No.	Error Template	Description of Error	
0000 0001	FSCSI_ERR8	Command Timeout in SCIOLINQU. dev_info information is included.	
0000 0002	FSCSI_ERR8	Command Timeout in SCIOLSTUNIT. dev_info information is included.	
0000 0003	FSCSI_ERR8	Command Timeout in Test Unit Ready IOCTL. dev_info information is included.	
0000 0004	FSCSI_ERR8	Command Timeout in Read Block loctl. dev_info information is included.	
0000 0005	FSCSI_ERR6	An unexpected SC_Q_CLR buf with no SCSI command was received in strategy. dev_info information is included.	
0000 0006	FSCSI_ERR6	An unknown IOCB type was received in our interrupt handler.	

Table 5 (Page 2	Table 5 (Page 2 of 7). Error Number Information for the Fibre Channel SCSI Protocol		
Error No.	Error Template	Description of Error	
0000 0007	FSCSI_ERR2	A cancel command failed. The cancel command is included in the error log.	
0000 0008	FSCSI_ERR4	Invalid cmd type for cancel completed. Neither device nor target cancel. target_info information is included.	
0000 0009	FSCSI_ERR4	Name Server request for all FCP N_Port IDs (SCIOLNMSERV ioctl) was rejected by Name Server. The Name Server's reason code is included.	
0000 000A	FSCSI_ERR4	Name Server request for the N_Port ID of a World Wide Name (SCIOLQWWN ioctl) was rejected by Name Server. The Name Server's reason code is included.	
0000 000B	FSCSI_ERR4	Name Server request for a query of the valid FC classes of an N_Port ID was rejected by Name Server. The Name Server's reason code is included.	
0000 000C	FSCSI_ERR4	FC Classes returned for an N_Port ID are not valid with this adapter. The class mask of this device is returned.	
0000 0014	FSCSI_ERR8	Error on either a SCIOHALT or SCIORESET. Commamd element is included The error is the due to non-zero status returned by FCS adapter driver.	
0000 0015	FSCSI_ERR8	Error on either a SCIOHALT or SCIORESET. Command element is included The error is the due to an error reported by the FCS adapter.	
0000 0016	FSCSI_ERR8	Error on an interrupt level task management. Command element is included The error is the due to non-zero status returned by FCS adapter driver.	
0000 0017	FSCSI_ERR4	Error on an interrupt level task management. Command element is included. The error is due to an error reported by the FCS adapter or FCP device.	
0000 0018	FSCSI_ERR6	Error on issuing a device cancel to the FC adapter driver when trying to retry a SCSI Abort Task Set to a device. dev_info information is included.	
0000 0019	FSCSI_ERR6	Output routine failed to accept a SCSI Abort Task that is being retried from the interrupt level. The return code is included. dev_info information is included.	
0000 001A	FSCSI_ERR6	Error on issuing a device cancel when trying to retry a Clear ACA to a device. dev_info information is included.	
0000 001B	FSCSI_ERR6	Output routine failed to accept a SCSI Clear ACA that is being retried from the interrupt level. The return code is included dev_info information is included.	

Error No.	Error Template	Description of Error
0000 001C	FSCSI_ERR6	This is an unknown task management request (that is, not a target reset, abort, or clear ACA) received by the interrupt handler. Command is included.
0000 001D	FSCSI_ERR6	A Target reset command that timed out has just been flushed to the FC SCSI Protocol driver. However, either an Abort Task Set or Clear ACA is still pending, and the cancel command to flush them back has failed. dev_info information is included.
0000 001E	FSCSI_ERR6	This is a timeout for unknown task management request (that is, not a target reset, abort, no clear ACA). Command is included.
0000 001F	FSCSI_ERR8	Data overrun reported in FCP response information unit from FCP device. Command element is included.
0000 0020	FSCSI_ERR6	Timeout for an unopened device. N_Port ID is not valid.
0000 0021	FSCSI_ERR6	Timeout for an unopened device. N_Port ID/LUN is not valid. target_info information is included.
0000 0022	FSCSI_ERR6	Timeout for a device with no active commands. dev_info information is included.
0000 0023	FSCSI_ERR6	Timeout for command that is not active. dev_info information is included.
0000 0024	FSCSI_ERR6	The cancel for the SCSI abort (due to normal I/O timeout) failed to be issued. dev_info information is included.
0000 0025	FSCSI_ERR6	The adapter driver's output routine failed when the protocol driver issue a SCSI abort (due to normal I/O timeout)to it. The return code and dev_info information are included.
0000 0026	FSCSI_ERR4	A device cancel timed-out. There are still commands active at the adapter which were not flushed back. dev_info information is included.
0000 0027	FSCSI_ERR6	A device cancel timed-out, and the retry of the cancel failed. dev_info information is included.
0000 0028	FSCSI_ERR4	A target cancel timed-out. target_info information is included.
0000 0029	FSCSI_ERR4	A relogin issued to the adapter driver's command entry point timed out. target_info information is included.

Table 5 (Page 4 of 7). Error Number Information for the Fibre Channel SCSI Protocol				
Error No.	Error Template	Description of Error		
0000 002A	FSCSI_ERR4	A process login (PRLI) or a Port Discover (PDISC) timed-out. target_info information is included.		
0000 002B	FSCSI_ERR8	Proc level task management function (SCIORESET) timed-out. Command is included.		
0000 002C	FSCSI_ERR4	Interrupt level task management function (Target Reset) timed-out. Command is included.		
0000 002D	FSCSI_ERR6	Unknown time out ID.		
0000 002E	FSCSI_ERR4	Data underrun detected by adapter. The command is included.		
0000 0030	FSCSI_ERR2	Async status received from adapter indicating a complete adapter failure.		
0000 0031	FSCSI_ERR2	Async status received from adapter driver indicating link is down.		
0000 0032	FSCSI_ERR2	Async status received from adapter driver indicating link is up.		
0000 0036	FSCSI_ERR6	Unknown async status returned from adapter driver.		
0000 0037	FSCSI_ERR4	Async status received from adapter driver indicating a state change notification was received.		
0000 0038	FSCSI_ERR2	Unknown async status returned from adapter driver.		
0000 0040	FSCSI_ERR2	Adapter device driver detected error that indicates HOST IO BUS ERROR. Command element included.		
0000 0041	FSCSI_ERR2	Adapter device driver detected error that indicates adapter hardware failure. Command element included.		
0000 0042	FSCSI_ERR4	Adapter device driver detected error that indicates adapter software failure. Command element included.		
0000 0043	FSCSI_ERR4	Adapter device driver detected error that indicates system failure. Command element included.		
0000 0044	FSCSI_ERR4	Adapter device driver detected an unknown error status from the adapter driver. Command element included.		
0000 0045	FSCSI_ERR4	Adapter detected an Intermediate Response IOCB entry. Command element included.		
0000 0046	FSCSI_ERR4	Adapter reporting an invalid IOCB. Command element included.		
0000 0047	FSCSI_ERR4	Adapter reporting either a LS_RJT or BA_RJT from the device for this IOCB. Command element included.		

Error No.	Error Template	Description of Error
0000 0048	FSCSI_ERR2	Adapter reporting a DMA error. Command element included.
0000 0049	FSCSI_ERR4	Adapter reporting an invalid IOCB local status. Command element included.
0000 004B	FSCSI_ERR4	Adapter reporting an unknown IOCB status (status field in IOCB is invalid). Command element included.
0000 0050	FSCSI_ERR6	Interrupt not received for the failing command. The Command and command element are included.
0000 0051	FSCSI_ERR6	Could not issue Cancel for a failing command which has not received an interrupt. dev_info information is included.
0000 0060	FSCSI_ERR6	Call to adapter driver's control entry point failed to accept N_Port Login for a device. The return code and command element are included.
0000 0061	FSCSI_ERR6	The device and SCSI protocol adapter do not support the same FC class. The device's FC class mask is included in the rc field. target_info information is also included.
0000 0062	FSCSI_ERR6	Output routine failed to accept PRLI IOCB for a device during an SCIOLSTART. The return code and dev_info information are included.
0000 0065	FSCSI_ERR6	Output routine failed to accept SCIOLHALT IOCB for a device. The return code and dev_info information are included.
0000 0066	FSCSI_ERR6	Output routine failed to accept SCIOLRESET IOCB for a device. The return code and dev_info information are included.
0000 0067	FSCSI_ERR6	Output routine failed to accept Clear ACA IOCB (SC_CLEAR_ACA in strategy) for a device. The return code and dev_info information are included.
0000 0068	FSCSI_ERR6	Output routine failed to accept Abort IOCB (SC_Q_CLR in strategy)for a device. The return code and dev_info information are included.
0000 0069	FSCSI_ERR6	Output routine failed to accept Clear ACA IOCB (SC_Q_RESUME SC_CLEAR_ACA in strategy) for a device. The return code and dev_info information are included.

Table 5 (Page 6 of 7). Error Number Information for the Fibre Channel SCSI Protocol				
Error No.	Error Template	Description of Error		
0000 006A	FSCSI_ERR6	Output routine failed to accept normal I/O SCSI IOCB for a device. The return code and command are included.		
0000 006B	FSCSI_ERR6	Output routine failed to accept device Cancel IOCB for a device. The return code and dev_info information are included.		
0000 006C	FSCSI_ERR6	Output routine failed to accept target Cancel IOCB for a device. The return code and target_info information are included.		
0000 006D	FSCSI_ERR6	Output routine failed to accept process login IOCB for a device. The return code and command are included.		
0000 006E	FSCSI_ERR6	Output routine failed to accept target reset IOCB for a device. The return code and target_info are included.		
0000 0070	FSCSI_ERR2	A timeout occurred waiting for link to come up.		
0000 00A0	FSCSI_ERR4	A command entry point command was returned from the adapter with an error. This command was for an IOCTL N_Port Login. target_info is included.		
0000 00A1	FSCSI_ERR4	A command entry point relogin command failed. This relogin was issued from the interrupt level as part of error recovery. target_info is included.		
0000 00A2	FSCSI_ERR8	A command entry point relogin command returned successfully, but the device at this N_Port ID is different (i.e a different port name or node name) target_info is included.		
0000 00A3	FSCSI_ERR4	A Reset Ring on the SCSI IOCB ring failed.		
0000 00A4	FSCSI_ERR6	Unknown command was sent from the adapter driver to protocol driver.		
0000 00A5	FSCSI_ERR6	Send Sequence failed. The command is included.		
0000 00B0	FSCSI_ERR6	Adapter driver's command entry point rejected a reset ring.		
0000 00B1	FSCSI_ERR4	Adapter driver's command entry point rejected a relogin operation. target_info is included.		
0000 00C0	FSCSI_ERR2	PRLI failed. Command is included.		
0000 00D0	FSCSI_ERR6	Strategy received a scsi_buf with no scsi command length and it is not a queue error recovery command.		

Table 5 (Page 7 of 7). Error Number Information for the Fibre Channel SCSI Protocol				
Error No.	Error Template	Description of Error		
0000 00D1	FSCSI_ERR6	Interrupt handler received an interrupt for an inactive command. The command is logged.		
0000 00F0	FSCSI_ERR6	Strategy received an unsupported scsi_buf. dev_info information is included.		

PCI Fibre Channel Adapter, SCSI-3 Protocol (Disk, CD-ROM, Read/Write Optical Device) Error Log Sense Information

The detail sense data log in the SC_DISK_ERR template for SCSI devices uses the structure scsi_error_log_def defined in:

/usr/include/sys/scsi buf.h

Sense Data Layout

Where:

Field Interpretation

- LL The length of the failing SCSI command
- C The failing SCSI command. The first two digits of this field indicate the SCSI opcode. A list of SCSI opcodes and their meanings can be found at the top of the file /usr/include/sys/scsi buf.h.
- VV The Status Validity field. It has four possible values:

Value Description

- On Indicates that no status validity was set by the adapter driver. For details of this condition, see the section "Status Validity of 0" on page 90.
- 01 Indicates that the SCSI Status field (SS) is valid
- 02 Indicates that the Adapter Status field (AA) is valid

- O3 Indicates that driver status is valid. This is used when the device driver detects special errors not directly related with hardware errors. For details of these conditions see the section "Status Validity of 3" on page 91.
- SS The SCSI Status field. It has the following possible values (defined in the scsi_buf structure in the file /usr/include/sys/scsi_buf.h):

Value Description

- O2 Check condition. This indicates the device had an error and additional information is included in the Sense Data fields D, PP, and QQ.
- The SCSI device is busy for some reason. This can happen when a device being shared between multiple hosts is involved in an error recovery operation.
- 18 Indicates that the SCSI device is reserved by another host.
- AA The Adapter Status field. It has the following possible values (defined in the scsi_buf (Adapter Status) structure in the file /usr/include/sys/scsi_buf.h):

Value Description

- 01* Host IO Bus Error. This indicates a hardware problem with either the SCSI adapter or the Micro Channel/PCI bus.
- 02* Transport Fault. This indicates a hardware problem which is probably due to problems with the SCSI transport layer (connection cables).
- O3 Command Timeout. This indicates that the SCSI command did not complete within the allowed time. This usually indicates a hardware problem related to the SCSI transport layer.
- No Device Response. This indicates that the SCSI device did not reply to the SCSI command issued. This is a hardware problem that can be caused be several things such as a bad SCSI device, a SCSI device power supply problem, or SCSI cabling or termination problems.
- 07* World Wide Name Change. This indicates that the SCSI device at this ID has a different world wide name.
- **Note:** * If any of these conditions are true and if the PP field equals 5D and the QQ field equals 00, then the drive is about to fail and should be replaced as soon as possible.
- R Reserved for future use and should be 0.

- D SCSI Request Sense data. These fields will only be valid when the SCSI Status field (SS) has a value of 02.
- KK SCSI Request Sense Key. Some common values are:

Value Description

- 01 Indicates that the device was able to do the IO after completion of error recovery.
- 02* Indicates the device is not ready. This is a hardware problem.
- 03* Indicates a media error. This is a hardware problem.
- 04* Indicates a hardware error at the device.
- **Note:** * If any of these conditions are true and if the PP field equals 5D and the QQ field equals 00, then the drive is about to fail and should be replaced as soon as possible.
- PP SCSI Request Additional Sense Code (ASC).
- QQ SCSI Request Additional Sense Code Qualifier (ASCQ).
- N The Open Count field. This 32 bit field indicates the number of times the device has been opened from the closed state. This is useful for determining if all the errors are associated with a specific removable media unit.

Status Validity of 0: A status validity of 0 indicates that the adapter driver returned an error to the disk driver, but did not set the status validity. Additional information has been added to this error log to assist in determining the cause of failure.

Sense Data Layout

Where:

Field Interpretation

LL The length of the failing SCSI command

- C The failing SCSI command. The first two digits of this field indicate the SCSI opcode. A list of SCSI opcodes and their meanings can be found at the top of the file /usr/include/sys/scsi_buf.h.
- R Reserved for future use and should be 0.
- VV The Status Validity field. In this case, it will be 00 (No status valid).
- B The residual byte count of the data, that is, the number of data bytes that did not get transferred.
- D The original byte count of data that was specified to be transferred by the disk driver. If this value equals the residual value, then none of the data was transferred.
- The errno returned by the adapter driver. See /usr/include/sys/errno.h for a definition of errno values.
- X These fields are ignored. Normally they are set to 0.
- N The Open Count field. This 32 bit field indicates the number of times the device has been opened from the closed state. This is useful for determining if all the errors are associated with a specific removable media unit.

Status Validity of 3: There are two kinds of errors that may be reported with a Status Validity of 3. The difference between these two errors is determined by the value of the Adapter Status.

Status Validity of 3 with Adapter Status of 0: When a Status Validity of 3 is accompanied by an Adapter Status of 0, an SC_DISK_ERR1 is being reported. This indicates that the block size of the device does not match the block size the device driver is using. This error is detected on the open sequence from the SCSI read capacity data.

Sense Data Layout

Where:

Field Interpretation

- LL The length of the failing SCSI command
- C The failing SCSI command. The first two digits of this field indicate the SCSI opcode. A list of SCSI opcodes and their meanings can be found at the top of the file /usr/include/sys/scsi_buf.h.
- R Reserved for future use and should be 0.
- VV The Status Validity field. In this case, it will be 03 (driver status).
- B The Logical Block Address (LBA) of the last block returned by the **read capacity** command for this device.
- F The block size of the device returned by the **read capacity** command.
- D The current block size the device driver is using for this device.
- E The block size specified by the configuration method the last time the device was configured.
- X These fields are ignored. Normally they are set to 0.
- N The Open Count field. This 32 bit field indicates the number of times the device has been opened from the closed state. This is useful for determining if all the errors are associated with a specific removable media unit.

Status Validity of 3 with Adapter Status of 1: When a Status Validity of 3 is accompanied by an Adapter Status of 1, an SC_DISK_ERR2 is being reported indicating that the mode data is corrupted. When this error occurs, the device will be unusable by AIX. If the mode data passed to the device driver at configuration time is corrupted, the device will fail to configure (remain defined) and this error will be logged. If the device's mode data is corrupted (either current or changeable), the open will fail and this error will be logged.

The device driver determines that the mode data is corrupted if one of the following is true:

- A mode page length is greater then 254
- The current page length plus the current offset in the mode data is greater than the total length of mode data.

Sense Data Layout

Where:

Field Interpretation

- LL The length of the failing SCSI command
- C The failing SCSI command. The first two digits of this field indicate the SCSI opcode. A list of SCSI opcodes and their meanings can be found at the top of the file /usr/include/sys/scsi_buf.h.
- R Reserved for future use and should be 0.
- VV The Status Validity field. In this case, it will be 03 (driver status).
- AA The Adapter Status field. When Status Validity is 03 and Adapter Status is 01, this indicates mode data corruption.
- X These fields are ignored. Normally they are set to 0.
- N The Open Count field. This 32 bit field indicates the number of times the device has been opened from the closed state. This is useful for determining if all the errors are associated with a specific removable media unit.

Error Log Information for Other Fibre Channel Devices

For error log information for each of the other Fibre Channel devices, refer to the appropriate appendix for each device. Each device's appendix contains a section called "Publications and Other Sources of Information." This section contains a list of publications and Web sites which provide device-specific instructions and information needed for installing, configuring, operating, and servicing of that device.

Appendix D. Fibre Channel Devices and Configurations

This appendix discusses Fibre Channel devices and configurations.

Fibre Channel Devices

The following Fibre Channel devices are available for direct connection to a Gigabit Fibre Channel PCI Adapter (F/C 6227) Port in a Fibre Channel Storage Area Network (SAN) configuration:

- McDATA ED-5000 Enterprise Fibre Channel Director
- 2109-S08 and S16 SAN Fibre Channel Switch
- 2103-H07 Fibre Channel Hub
- 2108-G07 SAN Data Gateway
- 2102-F10 Fibre Channel RAID Storage Subsystem
- 2105-E10, E20, F10, and F20 Enterprise Storage Server with Fibre Channel Ports
- EMC Symmetrix, Version 4.8, 3000 and 5000 Enterprise Storage Systems
- Magstar 3590 Models E11 and E1A Tape Subsystems

The following SCSI devices are available for connection to a 2108-G07 SAN Data Gateway SCSI interface in a Fibre Channel SAN configuration:

- 2105-E10, E20, F10, and F20 Enterprise Storage Server with SCSI interfaces
- Magstar MP (Multi-purpose) 3570 Tape Subsystem Models C00 C22
- Magstar MP (Multi-purpose) 3575 Tape Library DataServer Models L06 L32
- Magstar 3590 Tape Subsystem
- Ultrium 3580 Tape Subsystem

The following Fibre Channel devices are available for connection to a 2103-H07 Fibre Channel Hub Port in a SAN configuration:

- 2103-H07 Hub (both long and short wave port connections)
- 2102-F10 Fibre Channel RAID Storage Subsystem
- 2105-E10, E20, F10, and F20 Enterprise Storage Server with Fibre Channel Ports

- EMC Symmetrix, version 4.8, 3000 and 5000 Enterprise Storage Systems
- Magstar 3590 Models E11 and E1A Tape Subsystems

The following Fibre Channel devices are available for connection to a McDATA ED-5000 Enterprise Fibre Channel Director port, or a 2109-S08 or S16 SAN Fibre Channel Switch in a SAN configuration:

- 2105-E10, E20, F10, and F20 Enterprise Storage Server with Fibre Channel Ports
- EMC Symmetrix, version 4.8, 3000 and 5000 Enterprise Storage Systems
- Magstar 3590 Model E11 and E1A Tape Subsystem (non-cascaded switch).
 Attachment to the McData ED-5000 also requires a McData ED-1000 between the ED-5000 and the 3590.
- 2108-G07 SAN Data Gateway
- A port of a 2109-S08 or S16 connected in cascade to another 2109-S08 or S16 only
- A port of a McData ED-5000 connected in cascade to another McData ED-5000 only

Cascading is a configuration method in which the fabric can be greatly enlarged by interconnecting Fibre Channel switches. Links within the fabric, that is links between two cascaded switches, are called hops. Both switch ports involved in a cascaded connection must be of the E_Port type. While cascading enables much larger fabrics, it can reduce performance. Therefore, cascading must be carefully planned. It is recommended that the fabric be configured such that no Host/Device path include more than four cascaded switches (three hops). Also, a host/device path should not contain more than one long-wave link.

When cascading 2109 switches, the following 2109 parameters must be set:

- In-Order-Delivery (IOD) set to ON
- · Dynamic-Load-Shering (DLS) set to OFF

For detailed information on each of the Fibre Channel devices available, refer to the appropriate appendix for each device. Each device's appendix contains a section called "Publications and other Sources of Information". This section contains a list of publications and Web sites which provide device-specific instructions and information needed for installing, configuring, operating, and servicing of that device.

Fibre Channel Configurations

This section discusses Fibre Channel configurations in SAN environments. Representative configurations are shown as examples of the wide variety of configurations possible. Refer to "Fibre Channel Connection Topology" on page 2 through page 5 for descriptions of the basic Fibre Channel topologies employed in these configurations.

In the following configurations, HBA (Host Bus Adapter) is the Fibre Channel (FC) adapter in the host system. The number of adapters that can be installed in an AIX System is dependent upon the type and model of that system. Refer to the *PCI Adapter Placement Reference*, SA38-0538, to determine the maximum number of adapters allowed in your AIX system.

In configurations where multiple HBAs in the same RS/6000 have access to the same Fibre Channel Disk Storage Subsystem, each HBA must be assigned its own drive groups, or Logical Units (LUNs). Refer to the publications for your Disk Storage Subsystem for information on how to assign LUNs.

Point-to-Point Configurations

Fibre Channel devices, such as Disk Storage Subsystems, can be directly attached to an AIX System host. An example of this type of configuration is shown in the following illustration (Figure 7). The host system on the left is shown here with four HBAs connected to a Fibre Channel disk array. The host system can have one or more HBAs connecting to ports on the same, or different Fibre Channel disk arrays.

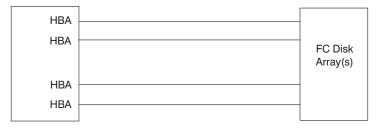


Figure 7. Example of a Point-to-Point Configuration

Hub Configurations

One or more hubs can be included in a Fibre Channel configuration allowing a host system HBA and one or more Fibre Channel devices to be connected in a Fibre Channel Arbitrated Loop (FC-AL) topology. Hubs can be cascaded, that is, a port of one hub can be connected to a port of another hub.

Hub Configuration With One Host System: The following illustration (Figure 8) shows an example of a single host system connected through hubs to a Fibre Channel disk array. The host system can have one, and only one HBA connected to each hub. Each Fibre Channel device can have from one to four ports also connected to the hubs.

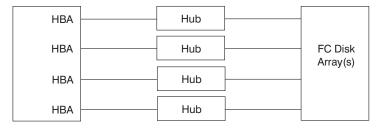


Figure 8. Example of a Hub Configuration With One Host System and Four Hubs

Hub Configuration With Two Host Systems: The following illustration (Figure 9) shows an example of two host systems connected through hubs to a Fibre Channel disk array. In this example, each system is connected to both hubs.

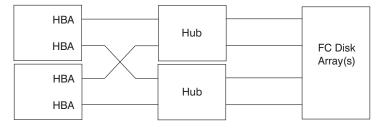


Figure 9. Example of a Hub Configuration With Two Host Systems and Two Hubs

Hub Configuration With Four Host Systems: The following illustration (Figure 10) shows an example of four host systems connected through a single hub to a Fibre Channel disk array. This example also illustrates the maximum of seven connections available on a hub.

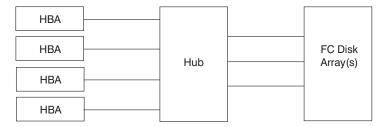


Figure 10. Example of a Hub configuration With four Host Systems and One Hub

Switch Configurations

Switches can be included in a Fibre Channel configuration allowing multiple host system HBAs and multiple Fibre Channel devices to be connected in a Fibre Channel fabric topology.

Switches allow you to set zones of permitted and non-permitted port-to-port connections. You can block certain ports from connecting to each other. You can use zoning to prevent multiple HBAs in the same RS/6000 from accessing the same LUNs in a Disk Storage Subsystem. Refer to the publications for your switch for information on how to configure zones.

Note: Anytime a switch configuration is changed by soft rezoning or reblocking ports, or by host-to-switch cabling changes, the **cfgmgr** AIX Command must be run to set up the new configuration parameters.

Switches can also be interconnected, or cascaded, in order to create a much larger and complex configuration.

Switch Configuration with One Host System: The following illustration (Figure 11) shows an example of a single host system connected through a switch to a Fibre Channel disk array. The host system can have one or more HBAs, each connected to the switch. Each Fibre Channel device can have from one to four ports also connected to the switch.

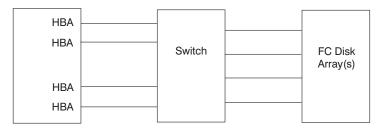


Figure 11. Example of a Switch Configuration With One Host System Attached

Switch Configuration with Two Host Systems: The following illustration (Figure 12) shows an example of two host systems connected through a switch to a Fibre Channel disk array.

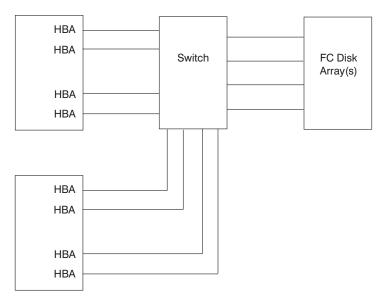


Figure 12. Example of a Switch Configuration With Two Host Systems Attached

Switch Configuration with Four Host Systems: The following illustration (Figure 13) shows an example of four host systems connected through a switch to a Fibre Channel disk array.

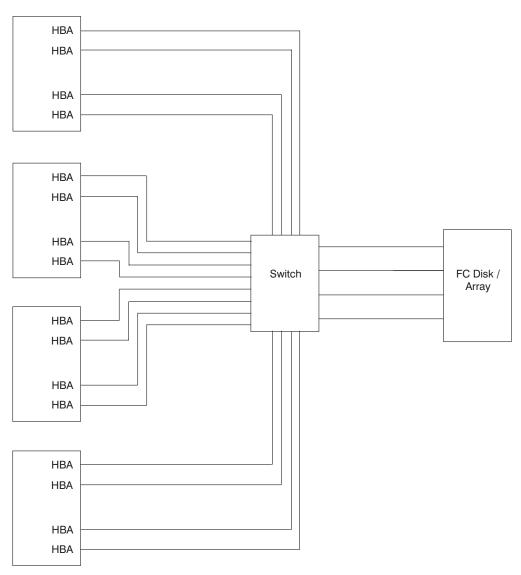


Figure 13. Example of a Switch Configuration With Four Host Systems Attached

Cascaded Switch Configuration: The following illustration (Figure 14). shows an example of switch cascading. In this example, one HBA and one FC Disk port are shown connected through four cascaded switches.

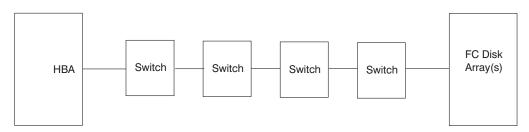


Figure 14. Example of a Configuration With Four Cascaded Switches

Switches in a High Availability Configuration: Due to its nature, Fibre Channel lends itself well to High Availability Cluster Multi-Processing (HACMP) environments. Switch configurations employing two or more host systems and two or more switches provide high availability capabilities such that in the event of failure of any one component, access to the data remains intact through an alternate path.

The following illustration (Figure 15) shows an example of a High Availability switch configuration. Here, the second host provides backup for the primary host. The failure of the primary host results in a transfer of the task (failover) to the second host without loss of access to the data. The second switch performs a similar function in providing an alternate path to the data in case of complete failure of one of the switches. In addition, each host system has two HBAs allowing a single port failure to occur at the host or switch without loss of the path.

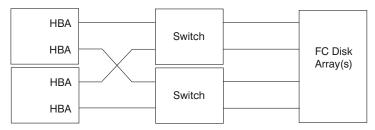


Figure 15. Example of a High Availability Configuration With Two Systems and Two Switches

The following illustration (Figure 16). shows an example of a high-availability cascaded switch configuration. In this example, four switches are cascaded in such a way that if any one switch port (or even one whole switch) fails, the remaining three switches still form a fully functional fabric.

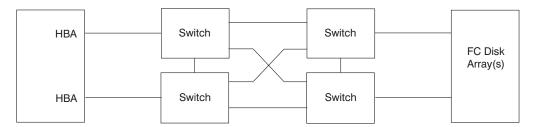


Figure 16. Example of a High Availability Configuration With a Single System and Four Cascaded Switches

SAN Data Gateway Configurations

SAN Data Gateways can be included in a Fibre Channel configuration allowing SCSI devices to be connected into the Fibre Channel Environment. The following illustration (Figure 17 on page 104) shows a single host system with three HBAs

connected to a SAN Data Gateway. On the right, a Tape and Disk Subsystem are shown connected through two SCSI interfaces each. The SAN Data Gateway can have up to three Fibre Channel ports, each connected to an HBA in one or more hosts. It provides four SCSI interfaces for attaching SCSI Tape and Disk Subsystems.

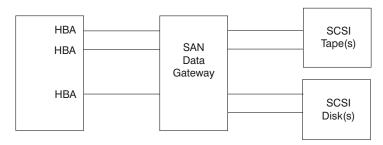


Figure 17. Example of a SAN Data Gateway Configuration With One Host System Attached

Appendix E. McDATA ED-5000 Enterprise Fibre Channel Director

This appendix describes the McDATA ED-5000 Enterprise Fibre Channel Director.

McDATA ED-5000 Enterprise Fibre Channel Director Description

The ED-5000 is a 32-port Fibre Channel Director that provides high availability and enterprise-class management for computing environments that require one Gigabit bandwidth performance. The ED-5000 is completely applicable to AIX system environments and is particularly suited for AIX system Storage Area Networks (SANs).

Functional Features

The ED-5000 supports from 4 to 32 F_Ports that are dynamically configurable and concurrently maintainable in groups of 4 F_Ports. The ports are designed to accept Fiber Optic cable connectors. The ED-5000 has control processors which provide setup and error recovery support, message path controllers to manage the routing of frames through the switch, and central memory modules where buffers are managed. Additional features of the ED-5000 include an operator panel, one or two Ethernet interfaces, and a maintenance port.

The ED-5000 supports a large number of features normally associated with Fibre Channel switches. Table 6 on page 106 lists the supported features.

Table 6. Features of Fibre Channel Director	
Fibre Channel Director Feature	9042-001 Capability
Class of Service	2, 3
Fabric Login	Explicit Login
Data Field Sizes	Up to 2112
Buffer-to-Buffer Credit	1 to 16
Time out Values	E_D_TOV R_A_TOV
Broadcast	Yes
SNMP Management	Out-of-Band via UDP/IP
Name Server	Simple Name Server
Port Blocking	Yes
Zoning	Yes
Shortwave Laser (non-OFC) 62.5 um Fiber	Yes
Shortwave Laser (non-OFC) 50 um Fiber	Yes
Long wave Laser Single Mode Fiber	No
State Change Notification	Yes

The ED-5000 supports connectivity with AIX system adapters and a number of storage devices. For a complete list, as well as configuration examples, refer to Appendix D, "Fibre Channel Devices and Configurations" on page 95.

Director management functions of the ED-5000 are accomplished via a Microsoft® Windows NT®-based server connected to the director's Ethernet port. Operations such as zoning and port blocking are handled by a Windows NT-based utility product called Enterprise Fabric Connectivity (EFC).

Reliability, Availability, and Serviceability (RAS) Features

The ED-5000 supports redundancy of most of its functional units such that the failure of any one unit will not result in loss of the availability of the director. Its control processors are redundant, dynamically upgradable, and designed for concurrent maintenance. The ED-5000 has redundant power supplies and a fan assembly with two fans. Each fan can be replaced separately. The power supply and fan assembly are concurrently maintainable. In addition, the ED-5000 can accept firmware updates and most configuration commands in the online state, thus these operations are not disruptive. A single failure on the ED-5000 will, at most, result in the loss of a path to the fabric of a connected N_Port. This can be alleviated by ensuring that each attached node has at least two N_Port connections to the director.

ED-5000 Limitations

The ED-5000 does not support interconnection with arbitrated loops. As a result, when attaching devices requiring Loop attachment, such as the Magstar 3590 Model E11 and E1A Tape Subsystem, the McData ED-1000 Switch must also be included in the configuration. The ED-1000 contains eight Switching Hub Ports for attachment of FC-AL devices, and one Bridge Port for attachment to a port on the ED-5000. The ED-1000 Switch operates at the full Fibre Channel speed of 1,063 Mb/second. To attach an FC-AL device to the ED-5000, the ED-1000 should be connected to the ED-5000 port, and the device should then be connected to a port on the ED-1000.

In addition, the ED-5000 does not support connection to S/390 Fibre Channel Connection (FICON®) Channels. However, because many storage subsystems support multi-pathing, this limitation does not preclude the sharing of these storage devices between AIX systems and S/390s with FICON Channels. It should also be noted that the characteristics of a given storage subsystem will limit the number of active initiator systems that can concurrently access the same logical unit in the storage subsystem. Refer to Appendix D, "Fibre Channel Devices and Configurations" on page 95 for a list of configuration examples.

Publications and Other Sources of Information

For further information about this product, refer to the following:

General Information and Operation

- ED-5000 Enterprise Fibre Channel Director Product User Manual, 620-005002 (McDATA Corporation)
- ED-5000 Enterprise Fibre Channel Director Product Manager User Reference Guide, 620-005006 (McDATA Corporation)

Planning, Installation and Configuration

- ED-5000 Enterprise Fibre Channel Director Product Planning Manual, 620-005000 (McDATA Corporation)
- ED-5000 Enterprise Fibre Channel Director Product Installation Manual, 620-005003 (McDATA Corporation)

Servicing

 ED-5000 Enterprise Fibre Channel Director Product Service Manual, 620-005004 (McDATA Corporation)

For more information on the ED-5000 Enterprise Fibre Channel Director, visit the following Web address:

http://www.mcdata.com/Products/datasheets/5000web.html

Note that all the above manuals are available in softcopy on CD-ROM. The Service and Installation Manuals are available in hardcopy.

Appendix F. IBM 2109-S08/S16 SAN Fibre Channel Switch

This appendix describes the Storage Area Network Fibre Channel Switch.

IBM 2109-S08/S16 SAN Fibre Channel Switch Description

The 2109-S08/S16 SAN Fibre Channel Switch provides Fibre Channel connectivity to AIX systems, as well as other X/Open UNIX® and Windows NT® servers. It enables connectivity to Fibre Channel-attached disk storage systems and is intended to be used in Storage Area Network (SAN) environments. The 2109 SAN Fibre Channel Switch provides enterprise-level scalability and a fault-tolerant switch fabric capable of containing a large number of Fibre Channel ports.

The 2109 SAN Fibre Channel Switch is available in two models. The S08 provides 8 Fibre Channel ports, while the S16 provides 16 ports. The 2109 allows any-to-any connectivity; that is, any of its ports may be cabled to a Fibre Channel system adapter or to a Fibre Channel device. In general, the SAN Fibre Channel Switch provides Fibre Channel connectivity to:

- RS/6000 (AIX) systems, as well as other UNIX-based servers, and Intel®-based servers running Windows NT®.
- Fibre Channel-attached disk storage, including Fibre Channel RAID Storage Servers.

Refer to Appendix D, "Fibre Channel Devices and Configurations" on page 95 for a specific list of available attachments.

High-performance, Scalable Switch Fabric

Each port delivers up to 100 MB/sec, full-duplex data transfer.

Intelligent Self-management

The fabric intelligently manages the SAN and solves problems. For example, it automatically identifies and registers hosts and storage devices. In addition, the fabric isolates problem ports and reroutes traffic onto alternate paths. Security and integrity are provided by hardware-enforced zoning that controls data access among ports. Automatic traffic rerouting occurs as traffic and network conditions change.

Multiple Configuration Options

Rack-mounted installation is standard, and desktop installation is available as an option. Four short-wave laser (500 m) universal ports are standard for both models. In addition, a mixture of short-wave and long-wave (10 km) ports can be configured by adding more Gigabit Interface Converters (GBICs). Universal ports automatically determine the port type when connected to a fabric port (F_port), fabric loop port (FL_port), or expansion port (E_port). A second power supply can be added if redundant power is required.

IBM StorWatch SAN Fibre Channel Switch Specialist

The StorWatch SAN Fibre Channel Switch Specialist provides a comprehensive set of management tools that support a Web browser interface for flexible, easy-to-use integration into existing enterprise storage management structures. The Specialist provides security and data integrity by limiting (zoning) host system attachment to specific storage systems and devices.

General Information

This section provides general information pertaining to the 2109-S08/S16 SAN Fibre Channel Switch.

Product Information

This information describes the SAN Fibre Channel Switch models.

Item	Description
2109 Model S08 (PN 2109S08)	SAN Fibre Channel Switch with four short-wave GBICs and one to four additional short-wave or long-wave GBICs
2109 Model S16 (PN 2109S16)	SAN Fibre Channel Switch with four short-wave GBICs standard and one to twelve additional short-wave or long-wave GBICs

Feature Codes for SAN Fibre Channel Switch Products

This information describes the features codes available for the SAN Fibre Channel Switch models.

- FC 2010 (PN 03K9308)-One short-wave GBIC
- FC 2020 (PN 03K9307)-One long-wave GBIC
- FC 6103 (PN 09L5403)-Additional power supply

Publications and Other Sources of Information

For further information about these products, refer to the following:

Related General Information and Operation

- IBM SAN Fibre Channel Switch 2109 Model S08 User's Guide, SC26-7349
- IBM SAN Fibre Channel Switch 2109 Model S16 User's Guide, SC26-7351

Planning, Installation, Configuration, and Servicing

- IBM SAN Fibre Channel Switch 2109 Model S08 Installation and Service Guide, SC26-7350
- IBM SAN Fibre Channel Switch 2109 Model S16 Installation and Service Guide, SG26-7352

For more information on the 2109-S08/S16 SAN Fibre Channel Switch, visit the following Web address:

http://www.storage.ibm.com/hardsoft/products/fcswitch/fcswitch.htm

Appendix G. IBM 2103-H07 Fibre Channel Storage Hub

This appendix describes the 2103-H07 Fibre Channel Storage Hub.

IBM 2103-H07 Fibre Channel Storage Hub Description

The 2103-H07 Fibre Channel Storage Hub provides Fibre Channel Arbitrated Loop (FC-AL) connectivity in Fibre Channel environments. It permits up to seven Fibre Channel host or device ports, per hub, to be configured in an Arbitrated Loop configuration, while providing the following advantages over non-hub loops:

- Provides seven hot-pluggable gigabit FC-AL ports with automatic bypass of unused ports.
- Optional long-wave ports enable extended distance configurations of up to 10 kilometers between servers and storage systems.
- Supports scalable FC-AL loop expansion with cascading hubs.

The 2103-H07 Fibre Channel Storage Hub supports data transfer speeds of up to 100 MB per second.

Configuration Flexibility

The Fibre Channel Storage Hub provides flexible connectivity options for configuring multiple Fibre Channel host and storage server attachments. This unmanaged 7-port hub provides a cost-effective, single-point solution for Fibre Channel Arbitrated Loop (FC-AL) topologies and supports up to 100 MB per second data transmission speeds between servers and storage systems.

Hot-pluggable ports enable the attachment of new systems without requiring server downtime. As a result, the Fibre Channel Storage Hub can provide flexible solutions to help expand storage networks with minimal impact to daily operations.

Standard and Extended Distances

Server and storage system connections with distances of up to 10 kilometers can be achieved with the Fibre Channel Storage Hub. With four standard, short-wave gigabit interface converter (GBIC) ports, the Fibre Channel Storage Hub provides flexible attachments of up to 500 meters, over fiber optic cables, to host system adapters or to another Fibre Channel Storage Hub short-wave GBIC port.

Each hot-pluggable GBIC port on the Fibre Channel Storage Hub has one FC-AL connection (port). The Fibre Channel Storage Hub also provides the option of adding up to three short-wave or long-wave optical GBIC ports. Long-wave GBIC ports are required for distances over 500 meters, up to a maximum distance of 10 kilometers.

The 2103-H07 IBM Fibre Channel Storage Hub Hardware

The standard Fibre Channel Storage Hub configuration is a rack-mounted tray that requires 1 "U" of rack space. A single "U" (rack unit) is 1.75" or 44.45 mm high. Two Fibre Channel Storage Hubs can be housed side-by-side in an industry-standard 19" rack or in an IBM Seascape® rack. An optional stand-alone table-top configuration is also available.

Fibre Channel Storage Hub Reliability and Availability

The Fibre Channel Storage Hub is designed for implementing multi-node server clusters and storage systems for high-availability and disaster recovery solutions. In the event of a failure or natural disaster, work can be transferred immediately, with the appropriate software, to a failover location, without interruption of operations or loss of data.

General Information

Information pertaining to the SAN Fibre Channel Switches gigabit interface connectors (GBIC).

Fibre Channel Arbitrated Loop Hub:

Item Description

Ports

Media type Optical GBIC

Standard 4 short-wave GBICs

Optional 3 short-wave or long-wave GBICs

Short-wave GBIC:

Item Description

Cable type 50/125 micron meter (µm) multimode fiber

Maximum distance500 meters with 50/125 μmCable type62.5/125 μm multimode fiberMaximum distance175 meters with 62.5/125 μm

Long-wave GBIC:

Item Description

Cable type 9/125 μ m singlemode fiber Maximum distance Up to 10 km with 9/125 μ m

Publications and Other Sources of Information

For further information about this product, refer to the following:

General Information, Planning and Installation, Configuration, Operation, and Servicing

• IBM Fibre Channel Storage Hub: 2103 Model H07 Installation, Service, and User's Guide, SC26-7289

For more information about the Fibre Channel Storage Hub, visit the following Web address:

http://www.storage.ibm.com/hardsoft/products/fchub/fchub.htm

Appendix H. IBM 2108-G07 SAN Data Gateway

This appendix describes the Storage Area Network (SAN) Data Gateway.

IBM SAN Data Gateway Description

The 2108-G07 Storage Area Network (SAN) Data Gateway is a hardware solution that enables the attachment of SCSI storage systems into AIX System Fibre Channel configurations to form Storage Area Networks (SANs).

Since the late 1990's, Fibre Channel technology has been rapidly replacing parallel SCSI channel attachment between open system servers and disk and tape storage systems. However, many disk and tape storage systems do not provide Fibre Channel attachment. IBM has developed the Storage Area Network Data Gateway to bridge the gap between Fibre Channel server adapters and SCSI-attached disk and tape storage.

Fibre Channel SANs can:

- Interconnect RS/6000 Systems and other servers with the Enterprise Storage Server[™] and the Magstar® tape storage systems.
- Simplify enterprise storage consolidation
- Improve access to data
- Enhance disaster recovery

The IBM 2108-G07 SAN Data Gateway:

- Provides industry-standard Fibre Channel attachment to servers.
- Extends distances between the server and SCSI-attached storage systems up to 500 meters.
- Provides a full-function model for disk and tape storage and a low-cost model for tape storage.
- Uses IBM StorWatch[™] SAN Data Gateway Specialist, which simplifies the management of SAN Data Gateways across the enterprise.

Using Fibre Channel to Overcome SCSI Channel Limitations

The experience and expertise in serial loop, with Serial Storage Architecture (SSA), and switched fabric, with Enterprise System Connection (ESCON), fiber technologies can greatly simplify the introduction of SAN Fibre Channel solutions that use open systems Fibre Channel protocols. Because Fibre Channel technology offers many performance advantages over parallel SCSI channel technology, it is ideal for server and storage consolidation.

Extended SCSI Channel Distance

The SAN Data Gateway can provide Fibre Channel distance extension up to 500 meters between an open system server and a storage system. This extended distance capability is ideally suited for disaster recovery implementations such as remote tape vaulting and remote disk mirroring.

Multiple Configuration Options

The SAN Data Gateway is available as a rack-mounted unit or as a stand-alone tabletop unit. The full-function Model G07 provides one to three Fibre Channel ports and four Ultra SCSI Differential ports for attachment of disk and tape storage.

The SAN Data Gateway utilizes Ultra SCSI channel and Fibre Channel bandwidth for attachment of the IBM Enterprise Storage Server and the IBM Magstar 3590 Tape Subsystem.

General Information

This section provides general information pertaining to the 2108-G07 SAN Data Gateway.

Product Information

The following feature codes are used with the SAN Data Gateway.

Feature Code	Description
FC 2204	One Fibre Channel port (short wave, optical interface)
FC 2205	Two Fibre Channel ports
FC 2303	One additional Fibre Channel port

Publications and Other Sources of Information

For further information about this product, refer to the following:

General Information, Planning and Installation, Configuration, and Operation

• IBM SAN Data Gateway Installation and User's Guide, SC26-7304

Servicing

• IBM SAN Data Gateway Service Guide, SC26-7307

For further information, visit the following Web address:

http://www.storage.ibm.com/hardsoft/products/sangateway/sangateway.htm

Appendix I. IBM 2102-F10 Fibre Channel RAID Storage Server

This appendix describes the Fibre Channel RAID Storage Server.

IBM 2102-F10 Fibre Channel RAID Storage Server Description

The 2102-F10 Fibre Channel RAID Storage Server (FC-RSS) is a complete storage subsystem that is housed in one storage rack. It offers concurrent multihost system attachment, through a Fibre Channel interface, supporting AIX systems, as well as Windows NT® and other open system servers. The FC-RSS can share the storage and data, up to six drawers of disks, among multiple servers simultaneously.

The 2102-F10 Fibre Channel RAID Storage Server has two independent controllers. Normally, each controller manages approximately half of the attached storage; however, in the event of most controller failures, the FC-RSS routes all transactions through the remaining controller.

The controller module provides management functions for the FC-RSS. It manages interfaces to host system devices as well as the service interface, for example, a remote support modem. The controller cache acts as an intermediate storage for data being transferred between the host servers and the disk driver module (DDM) array. The controller cache includes battery backup to prevent data loss during power failures.

The 2102-F10 Fibre Channel RAID Storage Server offers the following:

- Broad range of RAID options: RAID 0, 1, 3, 5, and 0+1 (also known as RAID-10)
- High performance via 200 MB/sec bandwidth with two Fibre Channel ports
- Flexibility to configure distances up to 10 km
- Scalability to accommodate growth, starting from 36 GB to over 2 TB
- · High availability through automatic I/O path failover
- Concurrent maintenance with hot-pluggable components
- Easier, centralized management of distributed storage with the IBM StorWatch®
 Fibre Channel RAID Specialist

Multihost Attachment

The Fibre Channel RAID Storage Server is a storage solution for Fibre Channel and Fibre Channel SAN environments. This storage system can be attached to AIX systems, as well as other open system servers running UNIX, Windows NT, or Novell NetWare. It can be shared simultaneously by two operating systems. Multiple server attachments can be implemented through the attachment of the Fibre Channel Storage Hub. The Fibre Channel RAID Storage Server supports heterogeneous environments by enabling each RAID controller to work independently.

High-availability design

The Fibre Channel RAID Storage Server has dual-active RAID controllers that provide high throughput and redundancy. Both controllers can be simultaneously active to provide seamless failover capability in case of emergency. To increase availability, each RAID controller supports up to 256 MB of battery-backed cache and can mirror write operations. Dual fans and power supplies further support 24x7 operations.

Extended Distances

The SAN Fibre Channel Switch and the Fibre Channel Storage Hub provide greater flexibility and extended distances across Fibre Channel SAN topologies enabling the Fibre Channel RAID Storage Server to be configured at distances of up to 500 meters through short-wave fiber connections or up to 10 km through long-wave fiber connections.

High Performance

The Fibre Channel RAID Storage Server has dual Fibre Channel ports that provide an aggregate bandwidth of 200 MB/sec.

Dynamic Management

The IBM StorWatch Fibre Channel RAID Specialist is a network-based integrated storage management tool that helps storage administrators configure, monitor, dynamically change, and manage multiple Fibre Channel RAID Storage Servers from a single Microsoft® Windows® 95 or Windows NT workstation. High availability and full redundancy are provided with the host-specific Fibre Channel Storage Manager software, which resides on the host system and provides automatic I/O path failover when a host adapter or a storage controller fails.

General Information

This section provides general information pertaining to the 2102-F10 Fibre Channel RAID Storage Server.

Product Information

Item	Description
2101-100	IBM Seascape [™] Solutions Rack (or equivalent 19-inch rack) is required.
2102-F10	Fibre Channel RAID Storage Server (required): Dual-active RAID controllers with up to 512 MB cache; redundant power and cooling units are standard.
2102-D00	Expandable Storage Unit (required, 1 to 6): Each unit supports up to 10 Ultrastar [™] hard drives; redundant power and cooling units are standard.
2103-H07	Fibre Channel Storage Hub (optional): 7-port FC-AL hub with short-wave or long-wave GBICs included.

Configuration Information

Item	Description
RAID options	RAID 0, 1, 0+1, 3, 5
Cache options	Up to 512 MB read/write cache
Host interface	Two Fibre Channel channels (100 MB/sec)
Drive interface	Six Ultra2 SCSI LVD channels (80 MB/sec)
Drives	9.1, 18.2 GB (10,000 RPM); 9.1, 18.2, 34.6 GB (7200 RPM) Ultra 2 SCSI LVD
Capacity	36.4 GB min.; 2.2 TB (4.4 TB cascaded) maximum

Publications and Other Sources of Information

For further information about this product, refer to the following:

General Information

• IBM Fibre Channel RAID Storage Server, 2102 Introduction and Planning Guide, GC26-7281

Planning, Installation, and Configuration

 IBM Fibre Channel RAID Storage Server, 2102 Installation and User's Guide for AIX Operating System, SC26-7290

Operation

• IBM Fibre Channel RAID Storage Server and Expandable Storage Unit, 2102 Model F10 and Model D00: User's Guide, GC26-7288

Servicing

• IBM Fibre Channel RAID Storage Server and Expandable Storage Unit, 2102 Model F10 and Model D00: Service Guide, SY27-7604

For more information on the Fibre Channel RAID Storage Server, visit the following Web address:

http://www.storage.ibm.com/hardsoft/products/fcss.htm

Appendix J. EMC Symmetrix 3000 and 5000 Enterprise Storage Systems

This appendix describes the EMC Symmetrix 3000 and 5000 Enterprise Storage Systems.

Symmetrix 3000 and 5000 Enterprise Storage Systems Description

The EMC Symmetrix 3000 and 5000 Enterprise Storage Systems are members of a product family of storage servers and attached storage devices. The Symmetrix 3000 family consists of the 3630, 3830, and 3930, and is intended for open system connectivity. In addition to Fibre Channel, the EMC Symmetrix Enterprise Storage Systems can also attach through Fast-Wide-Differential (FWD) SCSI, and Ultra SCSI. With optional Symmetrix software, they also support mainframe connectivity using ESCON and Block Multiplexer channels.

The Symmetrix 5000 family consists of the 5630, 5830, and 5930, and is intended for mainframe connectivity through ESCON and Block Multiplxer channels. However, by adding optional Symmetrix software, they can also support open system connectivity through Fibre Channel, FWD SCSI, and Ultra SCSI.

The Symmetrix Family provides heterogeneous server connectivity using Fibre Channel, as well as Ultra SCSI, FWD SCSI channels, and ESCON and Block Multiplexer mainframe channels. Depending on the Symmetrix model and interface used, up to 32 channels are available (16 for Fibre Channel), with each channel supporting simultaneous peak transfer rates for maximum connectivity and performance. Symmetrix supports channel connections to all supported servers concurrently, providing maximum information throughput.

Fibre Channel, with its fast 100MB per second bandwidth, supports the development of cost-effective, high availability, scalable storage systems for bandwidth-intensive applications. Fibre Channel goes well beyond being just an interconnect system. It offers a significant impact on distance and connectivity limitations. It increases the distance limit between host and I/O subsystems, and increases connectivity and performance capabilities.

In addition to extensive connectivity, the Symmetrix 3000 and 5000 Enterprise Storage Systems offer a number of features, including:

- Up to 16GB of non-volatile cache employing Least-Recently-Used (LRU), sequential prefetch, and cache searching algorithms
- Channel Directors which handle I/O requests from the hosts
- The Disk Director which handles access to the disk drives
- A Dynamic Mirror Service Policy for mirrored (RAID 1) volumes
- · Remote mirroring
- Industry-standard SCSI Head Disk Assemblies (HDAs)
- · Non-volatile power system
- · Dynamic disk sparing and hardware redundancy
- Concurrent maintenence capabilities such as nondisruptive component replacement and nondisruptive microcode upgrades

Publications and Other Sources of Information

For further information about this product regarding general information, planning and installation, configuration, operation, and servicing, refer to the following:

• Symmetrix Open System Environment Product Guide Volume I, 200-999-563 (EMC Corporation)

For more information on the EMC symmetrix enterprise storage systems, visit the following Web address:

http://www.emc.com/products/enterprise_systems/systems.htm

Appendix K. IBM 2105-E10/E20/F10/F20 Enterprise Storage Server

This appendix describes the Enterprise Storage Server® (ESS).

IBM Enterprise Storage Server Description

The 2105-E10/E20/F10/F20 Enterprise Storage Server (ESS) is a member of the Seascape ™ product family of storage servers and attached storage devices (disk drive modules). The ESS provides integrated caching and RAID support for the disk drive modules (DDMs). While the DDMs themselves are attached through a serial storage architecture (SSA) interface, the ESS attaches to its host(s) through Fibre Channel, FICON, ESCON, and SCSI-3 Interfaces. The ESS can be connected into a Fibre Channel Storage Area Network (SAN) directly using its Fibre Channel interfaces, or by using its SCSI-3 interfaces through the IBM 2108-G07 Storage Area Network Data Gateway.

The 2105 Models E20 and F20, with the expansion enclosures, can provide up to 11 terabytes (TB) of storage capacity, with a choice of 9.1, 18.2, or 36.4 gigabyte (GB) DDMs. The E20 and F20 can contain from 16 to 128 (384 w/expansion enclosure) DDMs in increments of 8. The 2105 Models E10 and F10 support a maximum of 64 DDMs, and do not support an expansion enclosure.

The ESS provides up to 16 Fibre Channel ports for directly connecting into a Fibre Channel SAN, or from 2 to 16 SCSI-3 adapters, each with 2 interfaces, for attachment to hosts or to a 2108-G07 Gateway. Each SCSI attachment provides 1 to 15 targets with up to 64 logical units per target. The host system can assign Logical Unit Numbers (LUNs) from 0 to 31 per target. With SCSI adapters, up to 128 host systems (four per SCSI interface) can be connected.

The ESS provides heterogeneous data storage that AIX Systems can share with Windows NT, System/390®, and other UNIX work loads.

Enterprise Storage Server Features

The ESS provides the following characteristics and features:

- FlashCopy provides a fast data duplication capability which helps eliminate the need to stop applications for extended periods of time in order to perform backups and restores.
- Peer-to-Peer Remote Copy maintains a synchronous copy (always up-to-date with the primary copy) of data in a remote location. This backup copy of data can be used to quickly recover from a failure in the primary system without losing any transactions.
- Redundant Array of Independent Disks (RAID) support is provided. The ESS attaches the DDMs in RAID-5 configurations, which distributes parity across all DDMs.
- Non-RAID disk group support is also provided. Arrays may be formatted such that the array is a single DDM.
- The ESS cache provides several features which contribute to performance and reliability, including fast read from cache, asynchronous write, least-recently-used (LRU) replacement, and internal error recovery.
- The ESS architecture provides data sharing between AIX systems, Windows NT[™] based systems and S/390 hosts.
- In addition, data availability can be enhanced with the Data Path Optimizer product. The product number is 5648-B58.

Enterprise Storage System Web Interfaces

This section describes the Enterprise Storage System Web Interfaces.

Enterprise Storage Server Network

The Enterprise Storage Server Network (ESSNet) is a private network resident on a workstation, and is a required feature. The ESSNet is concurrently installed with the Enterprise Storage Server. ESSNet hardware includes a workstation (PC) and monitor, an external Ethernet hub for cable connections from the ESSNet to the Enterprise Storage Server, and a modem with modem expander which allows the ESS to communicate with Remote System Support. The ESSNet software on the workstation includes Windows NT 4.0, Browser software (Microsoft® Internet Explorer), and the ESSNet application

The ESSNet provides:

- Support for multiple ESSs. A hub with 16 ports will support 7 ESSs
- · Connectivity between the ESS and the ESS Specialist Web interface
- Improvements in Web performance compared to other Web browser connections
- Faster network connectivity and the elimination of network setup problems
- Ethernet connectivity through an Ethernet hub to the ESSNet
- · An independent platform that facilitates installation and configuration of the ESS
- Software for maintenance and configuration

All data that is sent between the ESS and the Web browser through the ESSNet is encrypted to avoid unauthorized modification of configuration commands. Access to the interface is protected by passwords and authorization levels.

Accessing ESS Specialist and ESS Copy Services

The IBM StorWatch Enterprise Storage Server Specialist (ESS Specialist) and StorWatch Enterprise Storage Server Copy Services (ESS Copy Services) are accessed from the ESSNet using the browser software. ESS Copy Services are accessed from ESS Specialist.

ESS Specialist

The ESS Specialist is a Web-based interface that provides the means to configure the ESS. From the Web interface, the following tasks can be performed:

- · Monitor error logs
- View and modify the configuration, including:
 - Add or delete host systems
 - Configure host ports on the ESS
 - Define disk groups
 - Add volumes
 - Assign volumes to be accessible to more than one host system
 - Modify volume assignments
- Modify and view communication resource settings, such as e-mail addresses and telephone numbers
- · Authorize user access

With the ESS Specialist, the following information can be viewed:

- The external connection between a host system and an ESS port
- The internal connection of ports to cluster 1 or cluster 2
- · How storage space is allocated to volumes

ESS Copy Services

The Copy Services feature provides a Web-based interface for managing Peer-to-Peer Remote Copy (PPRC) and FlashCopy functions. Copy Services collects information from the storage servers on a single Copy Services server.

Copy Services is part of the StorWatch Web interface and is accessed from the ESS Specialist main menu. The Copy Services panels can be used to view and define Volumes, Control Units, Paths, Tasks, and Configurations.

ESS Expert

The StorWatch Enterprise Storage Server Expert (ESS Expert) is an optional software product that can be purchased to use with the ESS. The ESS Expert Web interface provides storage resource management functions for the storage servers, such as asset management, capacity management, and performance management.

ESS Expert allows the scheduling of information collection. With this information, informed decisions can be made regarding volume placement and capacity planning, as well as isolating I/O performance bottlenecks.

The ESS Service Interface

The ESS provides service interface ports for external connection of a service terminal. This enables the service provider to perform service on the ESS using a mobile service terminal (MoST) or equivalent equipment.

The ESS service interface also provides remote service support with call-home capability for directed maintenance for service personnel. An analog telephone line must be provided to enable this support. The service interface provides an RS232 connection via a modem switch and modem to the analog telephone line. This modem and modem switch are required by the first ESS ordered, and support up to seven ESSs. The cable length from the ESS to the modem switch should be no more than 15 meters (50 feet).

The ESS provides the following service functions:

- Continuous self-monitoring and initiation of a call (call home) to service personnel upon occurrence of a failure
- Remote access to error and problem logs for analysis by service personnel
- · Remote application of problem fixes by service personnel

The ESS is logically configured during installation. After the ESS is installed, additional configuration can be performed using the ESS Web interfaces. This includes modifying the remote service functions.

General Information

This section provides general information pertaining to the 2105 Enterprise Storage Servers.

Enterprise Storage Server 2105

The Host server attachment can have up to 16 Fibre Channel ports, or up to 32 SCSI ports (connecting to Fibre Channel SANs through the SAN Data Gateway).

Enterprise Storage Server 2105-E10

Item	Description		
Disk storage capacity	420 GB to 1.68 TB		
Maximum storage system capacity	7.28 TB		
Cache size	6 GB		

Enterprise Storage Server 2105-E20

Item	Description		
Disk storage capacity	420 GB to 3.36 TB		
Maximum storage system capacity	11.2 TB		
Cache size	6 GB		

Enterprise Storage Server 2105-F10

item	Description		
Disk storage capacity	420 GB to 1.68 TB		
Cache size	8 to 16 GB		

Enterprise Storage Server 2105-F20

Item	Description		
Disk storage capacity	420 GB to 11.2 TB		
Cache size	8 to 16 GB		

Publications and Other Sources of Information

For further information about this product, refer to the following:

General Information, Planning and Installation

 IBM ESS Introduction and Planning Guide 2105 Models E10, E20, F10 and F20, GC26-7294

Configuration

- IBM ESS Host System Attachment Guide 2105 Models E10, E20, F10 and F20, SC26-7296
- IBM ESS Configuration Planner, SC26-7353

Operation

• IBM ESS User's Guide 2105 Models E10, E20, F10 and F20, SC26-7295

Servicing

• IBM ESS SCSI Command Reference 2105 Models E10, and E20, SC26-7297

For additional information on supported interfaces and host systems, visit the following Web address:

http://www.storage.ibm.com/hardsoft/products/ess/refinfo.htm

Appendix L. IBM Magstar and Ultrium Tape Subsystems

This appendix describes the Magstar and Ultrium Tape Subsystems.

IBM Magstar MP (Multi-Purpose) 3570 Tape Subsystem

The Magstar MP 3570 Tape Subsystem is intended for mid-sized storage applications and provides high performance for traditional backup and fast access to mass data. Its drives can operate as stand-alone systems or can be installed in rack-mounted libraries.

The C00 - C22 Models of the Magstar MP 3570 Tape Subsystem are supported for attachment to the IBM 2108-G07 SAN Data Gateway through their SCSI-II differential interfaces, and thus are easily integrated into a Fibre Channel SAN environment.

Note: For Fibre Channel connection via the 2108-G07 SAN Data Gateway, the Magstar MP 3570 C00 - C22 must be at drive EC C70654 and microcode level D015_024 or higher.

Models C00 - C22 can use C format and C-XL format cartridges, and are downward compatible for reading and writing B format cartridges. Model C00 - C22 features and specifications include:

- · High-speed search speed: 5 meters/sec
- Cartridge load/ready: 6.7 sec
- Average search to first byte of data: 14 sec. (C-XL); 11 sec. (B & C)
- Tape speed of 3.5 meters/sec
- 7MB/sec 15 MB/sec. (maximum compressed) transfer rates
- Backup performance of 25 GB/hour uncompressed to over 50 GB/hour with maximum compression
- 7 GB up to 21 GB (3:1 compression) capacity with C-XL cartridge, or 7 GB up to 15 GB (3:1 compression) with C cartridge
- 8 track heads
- · 5 MB Cache memory buffer

IBM Magstar MP (Multi-Purpose) 3575 Tape Library Dataserver

The Magstar MP (Multi Purpose) 3575 family of tape libraries provide unattended storage for mid-range systems and network servers. When equipped with Magstar MP 3570 Model C00 - C22 Tape Drives, the 3575 Library is supported in a Fibre Channel SAN through the 2108-G07 SAN Data Gateway.

Magstar MP 3575s provide the following features:

- Multi-host sharing of homogeneous or heterogeneous systems in user defined, logical libraries
- Magstar MP model C drives are standard on all Magstar MP 3575's
- Near online data access of up to 6.8 TB (3:1 compression)
- · Robot with a dual-gripper
- · A bar code reader is standard
- Support for up to three user-defined logical libraries available
- Two to six drives

The Magstar MP 3575 Tape Library Dataserver is available in five models, two with expansion capabilities. All models come standard with two Magstar MP Model C drives. Table 7 contains information for the five models.

Table 7. Model Information for the Magstar MP 3575 Tape Library Dataserver					
Model Number	L06	L12	L18	L24	L32
Cartridge Storage Slots	60	120	180	240	324
Storage Capacity	0.42 - 1.2	0.84 - 2.5	1.2 - 3.7	1.6 - 5.0	2.2 - 6.8
Additional Drives	0	2	4	4	4
User-defined Logical Libraries	1	1 or 2	1 to 3	1 to 3	1 to 3
Field Upgradable	No	To L18	No	To L32	No
Note: Storage Capacity is in TB and 3:1 compression is assumed					

IBM Magstar 3590-B11/B1A/E11/E1A Tape Subsystem

The Magstar 3590 Tape Subsystem is a family of magnetic tape drives and controllers representing the latest magnetic tape technology. This family replaces the 3490 and 3490E Magnetic Tape Subsystems. The Magstar 3590 attaches to its own S/390 Control Unit and the 2108-G07 SAN Data Gateway through SCSI, and Ultra SCSI interfaces. It attaches to host servers through these interfaces, as well as through native Fibre Channel interfaces. Attachment to AIX systems, as well as other UNIX, Windows NT, and S/390-class mainframes is supported. The Magstar 3590 can be connected into a Fibre Channel Storage Area Network (SAN) through the IBM 2108-G07 SAN Data Gateway, or directly through its native Fibre Channel adapters.

The Magstar 3590 is available in five models for SCSI and Ultra SCSI attachment. Models E11 and E1A also provide Fibre Channel attachment:

- The Magstar 3590 Models B11 and E11 are rack-mounted and incorporate a 10-cartridge Automatic Tape Loader (ATL) for high-capacity unattended operation. The Models B11 and E11 can be modified to Models B1A or E1A.
- The Magstar 3590 Models B1A and E1A have no ATL and are designed to be incorporated into the Magstar 3494 tape library.
- The Magstar Model C12 frame with one to four Model B1A or E1A tape drives provides attachment to the StorageTek 4410 and 9310 ACS.

Existing Magstar Model B11 and B1A Tape Drives (B Models) can be field-upgraded to the new E Models, and the new E Model drives can both read (128 track) and write (256 track) to existing cartridges.

Magstar 3590 Performance and Capacity

Magstar 3590 has leading-edge streaming and start/stop performance. This is important because most applications operate in start/stop mode. Magstar 3590 provides a maximum uncompressed data transfer rate of up to 14 MB/sec. The maximum instantaneous data rate is 40 MB/sec on an Ultra SCSI interface.

The Magstar models E11 and E1A can be attached at up to 500 meters using their native Fibre Channel ports. This can be increased up to 10 kilometers when attached to the IBM 2109 Switch or the IBM 2103 Hub.

Magstar 3590 cartridges have a capacity of up to 20 GB. Up to 60 GB can be stored by using the 3590 compression technique (called LZ1). Magstar 3590 metal particle tape media is housed in a cartridge of the same physical size as 3490 cartridges, enabling coexistence in a Magstar 3494 Tape Library together with current media. The Magstar 3494 Tape Library with Magstar 3590 drives provides access to as much as 374 TB (compressed at 3:1).

Servicability, Reliability and Data Integrity

Magstar 3590 does not require scheduled preventive maintenance. Customer service representatives use a built-in subsystem panel to perform service functions. Resident diagnostics monitor operations to detect potential problems and aid in fast resolution.

The Magstar 3590 employs several techniques to ensure data integrity including an improved Error Correction Code (ECC), servo tracks written on tape, a bidirectional longitudinal serpentine recording technique, and a fourth-generation magnetoresistive head that reads and writes 16 data tracks at a time.

Usability

The Magstar 3590 Tape Subsystem incorporates a standard 10-slot Automatic Tape Loader (ATL) for high-capacity, stand-alone unattended operation. The ATL can be used in random access mode as a mini-library. Cartridges are loaded into and unloaded from the ATL in a convenient, portable 10-cartridge magazine.

The Magstar 3590 Tape Subsystem is supported by the Tivoli® Storage Manager, formally IBM ADSTAR Distributed Storage Manager (ADSM), client/server storage management product. The Tivoli Storage Manager (TSM) uses the full capacity of the Magstar 3590 and supports its ATL in random access mode.

Magstar 3590 also features an operator/service display showing device status, activities, error conditions, and messages.

General Information

Information pertaining to the 3590 Magstar Tape Subsystems.

Table 8. General Information for the 3590 Magstar Tape Subsystems					
Model Number	B11	B1A	C12	E11	E1A
LZ1 Compression	Standard	Standard	Standard	Standard	Standard
Recording technique (interleaved serpentine longitudinal)	Standard	Standard	Standard	Standard	Standard
Number of Tracks ¹	128	128	256	128 or 256	256
Cartridge capacity (with compression)	10GB (30GB) ²	10GB (30GB) ²	Up to 60GB	20GB (60GB) ²	20GB (60GB) ²
10-cartridge magazine (with compression)	100GB (300GB) ²	N/A	N/A	200GB (600GB) ²	N/A
Total Capacity	Up to 300GB	N/A	N/A	Up to 600GB	N/A
Native drive data rate	9 MB/sec	9 MB/sec	9 or 14 MB/sec	14 MB/sec	14 MB/sec
Maximum sustained data rate	27 MB/sec	27 MB/sec	27 or 34 MB/sec	34 MB/sec	34 MB/sec
Burst with Ultra SCSI data rate	40 MB/sec	40 MB/sec	40 MB/sec	40 MB/sec	40 MB/sec
Burst with Fibre Channel data rate	N/A	N/A	N/A	100 MB/sec	100 MB/sec
High-speed search	5m/sec	5m/sec	5m/sec	5m/sec	5m/sec

Notes:

- 1. B models use eight sets of 16 tracks; E models use 16 sets of 16 tracks
- 2. Depending on data content; with 3:1 LZ1 data compression

The Ultrium 3850 Tape Family

This section describes the Ultrium Tape Subsystems.

The IBM Ultrium Tape Family was introduced in 2000 as an addition to IBM's tape storage product line. The Ultrium products adhere to the Linear Tape-Open (LTO) design specifications. LTO is an open tape architecture developed by a consortium of three major storage producers, including IBM.

The family consists of the IBM 3580 Ultrium Tape Drive, the IBM 3581 Ultrium Tape Autoloader, the IBM 3583 Scalable Tape Library, and the IBM 3584 Ultrascalable Tape Library. The Ultruim Tape Family is intended to provide scalable and flexible tape solutions.

The building block of the Utrium Tape Family is the IBM 3580 Tape Drive. It has a capacity of up to 200 GB with compression. When combined with the 3581 Tape Autoloader, a compressed data capacity of up to 1.4 TB is realized. As storage requirements grow, you can choose the IBM 3583 Ultrium Scalable Tape Library (compressed data capacity of up to 14.4 TB) or the IBM 3584 UltraScalable Tape Library (compressed data capacity of up to 496.2 TB). The tape media is interchangeable among all four devices. With its higher capacity and performance, the IBM 3580 is an excellent alternative to DLT, 1/4-inch, 4 mm, or 8 mm tape drives.

The IBM 3580 features Ultra2/Wide SCSI Low Voltage Differential (LVD) or Ultra/Wide SCSI High Voltage Differential (HVD) interfaces and can attach to IBM and non-IBM servers, workstations, and personal computers that support these interfaces. As a SCSI-attached tape solution, the IBM 3580 connects to fibre channel server adapters through selected IBM Storage Area Network Data Gateway products. It has a sustained data transfer rate of up to 30 MB/sec (compressed).

Two models of the 3580 Tape Drive are available and vary according to the type of Small Computer Systems Interface (SCSI) each uses to communicate with the host:

- Model L11 uses the Ultra2, Low Voltage Differential/Single Ended (LVD/SE) interface
- Model H11 uses the Ultra, High Voltage Differential (HVD/DIFF) interface

IBM Ultrium drives share best-of-breed technology with advanced multi-track recording capabilities, magneto-resistive (MR) head and servo technologies, and high recording densities. Error correction code (ECC) function helps provide data integrity.

The IBM 3580 has an LCD display and indicators for write protection, tape in use, drive cleaning, and data compression.

You can maximize the power of the IBM 3580 by managing it with industry-leading tape management solutions such as Tivoli Storage Manager or other industry-recognized storage software. These solutions offer highly automated, centrally scheduled, policy-managed backup and archive facilities to protect data in distributed enterprises.

General Information

This section provides information pertaining to the IBM 3580 Ultrium Tape Drives.

Table 9. General Information for the 3580 Ultrium Tape Subsystem				
Model Number	L11	H11		
Tape drive type	Ultrium	Ultrium		
Capacity per cartridge ¹	Up to 200 GB per cartridge compressed	100 GB native		
Sustained data transfer rate ¹	Up to 30 MB/sec compressed	15 MB/sec native		
Aggregate sustained data rate ¹	Up to 108 GB/hour (compressed)	Up to 108 GB/hour (compressed)		
Media type	IBM Ultrium	IBM Ultrium		
Data Cartridge	P/N 08L9120	P/N 08L9120		
Cleaning Cartridge	P/N 08L9124	P/N 08L9124		
Dimensions 5.75in H x 6.74in W x 13.11in D (146mm x 170mm x 333mm)				
Weight	14.3 lb (6.6 kg)			
Note: Based on 2:1 compression				

Publications and Other Sources of Information

For further information about this product, refer to the following;

General Information, Planning and Installation

- IBM Magstar 3590 Tape Subsystem: Introduction and Planning Guide, GA32-0329
- IBM Magstar 3590 Tape Subsystem: Technical Guide, SG24-2506
- IBM Magstar MP 3570 Tape Subsystem: Introduction and Planning Guide C-Series Models, GA32-0392
- IBM Magstar MP 3575 Tape Library Dataserver: Introduction and Planning Guide, GA32-0380
- IBM 3580 Ultrium Tape Drive Setup, Operator, and Service Guide, GA32-0415

Configuration

IBM Magstar 3590 Tape Subsystem: Multiplatform Implementation, SG24-2594

Operation

- IBM Magstar 3590 Tape Subsystem: Operator's Guide, GA32-0330
- IBM Magstar MP 3570 Tape Subsystem: Operator's Guide C-Series Models, GA32-0393
- IBM Magstar MP 3575 Tape Library Dataserver: Operator's Guide, GA32-0381
- IBM 3580 Ultrium Tape Drive Setup, Operator, and Service Guide, GA32-0415

Servicing

- IBM Magstar 3590 Tape Subsystem: Hardware Reference, GA32-0331
- IBM Magstar MP 3570 Tape Subsystem: Hardware Reference C-Series Models, GA32-0394
- IBM Magstar MP 3575 Tape Library Dataserver: Hardware Reference, GA32-0382
- IBM 3580 Ultrium Tape Drive Setup, Operator, and Service Guide, GA32-0415

These and other Magstar 3590 Publications can be viewed at the following Web address:

```
http://www.storage.ibm.com/hardsoft/tape/pubs/pubs3590.html
```

For an introduction to the Magstar 3590 Tape Subsystem, visit the following Web address:

```
http://www.storage.ibm.com/hardsoft/tape/3590/index.html
```

For more information on the Magstar MP 3570 Multi-Purpose Tape Subsystem, visit the following Web address:

```
http://www.storage.ibm.com/hardsoft/tape/3570/index.html
```

For more information on the Magstar MP 3575 Multi-Purpose Tape Library Dataserver, visit the following Web address:

```
http://www.storage.ibm.com/hardsoft/tape/3575/index.html
```

For more information on the 3580 Ultrium Tape Drive, visit the following Web address:

http://www.storage.ibm.com/hardsoft/tape/3580/index.html

Glossary

ACS. Automatic Cartridge Stacker

Additional Sence Code. ASC

Additional Sence Code Qualifier. ASCQ

ADSM. ADSTAR Distributed Storage Manager

AIX. Advanced Interactive Executive

ASC. Additional Sence Code

ASCQ. Additional Sence Code Qualifier

ANSI. American National Standards Institute

ASCII. American National Standard Code for Information Interchange. The code developed for ANSI for information interchange among data processing systems, data communications systems and associated equipment. The ASCII character set consists of 7 bit or 8 bit control characters and symbolic characters.

ATL. Automatic Tape Loader

CD-ROM. Compact Disk - Read Only Memory

channel. (1) A functional unit, controlled by a host computer, that handles the transfer of data between processor storage and local peripheral equipment. (2) The system element that controls a single channel path,

whose mode of operation depends on the type of hardware to which it is attached.

DASD. Direct Access Storage Device. See *disk drive*.

DDM. Disk Drive Modules

disk drive. Direct access storage device, such as a disk or hard drive.

DLS. Dynamic-Load-Sharing

DMA. Direct Memory Access

duplex connector. In an Fiber Channel Link Environment, the component that terminates both jumper cable fibers in one housing and provides physical keying for attachment to a duplex receptacle.

dynamic connection. (1) A connection that is established when needed rather than being predetermined or fixed. (2) In an Enterprise Systems Connection Director, a connection between two ports, established or removed by the ESCD and that, when active, appears as one continuous link. The duration of the connection depends on the protocol defined for the frames transmitted through the ports and on the state of the ports.

Dynamic-Load-Sharing. DLS

ECC. Error Correction Code

EFC. Enterprise Fabric Connectivity

Enterprise Systems Connection. An I/O architecture that uses both laser and LED fiber optic technology and the concept of dynamic connectivity, which allows for path sharing.

ESCON. Enterprise Systems Connection

ESS. Enterprise Storage Server

ESS Expert. Enterprise Storage Server Expert

ESSnet. Enterprise Storage Server Network

Ethernet. An industry standard, nonproprietary communication protocol that allows connectivity between equipment from different manufacturers.

FC. Fibre Channel

FC-AL. Fibre Channel - Arbitrated Loop

FCC. Federal Communications Commission

FFC. Failing Function Code

fiber. See optical fiber.

fiber optics. The branch of optical technology concerned with the transmission of radiant power through fibers made of transparent materials such as glass, fused silica, and plastic.

FC-RSS. Fibre Channel RAID Storage Server

FICON. Fibre Channel Connection

FWD. Fast Wide Differential

FRU. Field Replaceable Unit

gateway. A device and its associated software that interconnect networks or systems of different architectures. The connection is usually made above the reference model network layer. For example, a gateway allows LANs access to System/390 host computers. Contrast with bridge and router.

GB. Gigabyte - This is 10⁹ when associated with storage devices.

GBIC. Gigabit Interface Connector

hard drive. Direct access storage device, such as a disk drive, hard drive or DASD

HBA. Host Bus Adapter

HDA. Head Disk Assembly

High Voltage Differential. HVD

Hub. The hub provides Fibre Channel connectivity in an arbitrated loop topology and allows the transmit and receive fibers from each port to be run in a single cable.

HVD. High Voltage Differential

IEC. International Electrotechnical Commission

I/O. Input/Output

IOCB. Input Output Control Block

IOD. In-Order-Delivery

LAN. Local Area Network. A network that services a facility without the use of common carrier facilities. Local area networks may, however, be interconnected using common carriers.

LCD. Liquid Crystal Display

LRU. Least-Recently-Used

LED. Light Emitting Diode

Light Emitting Diode. LED

Linear Tape-Open. LTO

Local Area Network. LAN

Link. A link is the actual transmission medium used to carry the information from one node to another.

Low Voltage Differential. LVD

LRU. Least-Recently-Used

LTO. Linear Tape-Open

LUN. Logical Unit Number

LVD. Low Voltage Differential

LVD/SE. Low Voltage Differential/Single Ended

Magneto-Resistive. MR

MB. Megabyte. This is 10⁶ for storage applications.

Multimode optical fiber. A graded index or step index optical fiber that allows more than one mode to propagate. Contrast with single mode optical fiber.

Node. A node may be a workstation, disk drive, or other device capable of Fiber Channel connectivity. Each node must have at least one port.

OFC. Open Fiber Control

Optical Fiber. A cable made of a glass strand designed to transmit light effectively. Optical fibers are used to transmit digital data.

path. In a network, a route between any two nodes.

PC. Personal Computer

PCI. Peripheral Component Interconnect. This is the name of the bus that the Gigabit Fibre Channel PCI Adapter plugs into on the system board.

port. (1) A port provides the actual connection to the outside world. Each port connects to the link with a pair of fibers. (2) A connector on a device to which a cable or other device is attached.

PDP. Problem Determination Procedure

PPRC. Peer-to-Peer Remote Copy

PTF. Program Temporary Fix.

RAID. Redundant Array of Independent Drives

real storage. Storage directly accessible to the processor from which instructions may be run and from which instructions may fetch data.

RAS. Reliability, Availability and Serviceability

S/390. System/390

SAN. Storage Area Network

SCSI. Small Computer System Interface

Single Mode Fiber. An optical fiber with a very narrow transmission core which restricts light propogation to a single path.

SRN. Service Reference Number

SMIT. System Management Interface Tool

SP. Scaleable Processor

SSA. Serial Storage Architecture

Switch. Switch as in SAN Fibre Channel Switch

TB. Terabyte. This is 10¹² for storage applications.

TCP/IP. Transmission Control Protocol/Internet Protocol. An industry standard, nonproprietary communication protocol that allows connectivity between equipment from different manufacturers.

token ring. A type of local area network that was developed by a group of companies under the auspices of the IEEE 802.5 Subcommittee.

UDP. User Datagram Protocol

UNIX. UNIX is a computer operating system.

UPS. Uninterruptible Power Supply

Index

Numerics 2101 Seascape solutions rack 123 check system prerequisites 15 2102-F10 fibre channel RAID storage complexity of the fibre channel server 121 environment 25 2103-H07 fibre channel storage hub computer I/O interface history 1 description 113 computer I/O interface strategies 1 hardware 114 configurations 2105-E10/E20/F10/F20 enterprise fibre channel 97 storage server 127 hub 98 2108-G07 SAN data gateway 117 hub, with four host systems 99 2109 SAN fibre channel switch service hub, with one host system 98 aid 63 hub, with two host systems 98 2109-S08/S16 SAN fibre channel point-to-point 97 switch description 109 SAN Data Gateway 103 3570 tape subsystem, Magstar 135 switch 99 3575 tape library dataserver, switches in a high availability 103 Magstar 136 connection topology, fibre channel 2 3580 tape subsystem, Ultrium 140 control workstation 3590 tape subsystem, Magstar 137 creating an installable image 17 Α D data gateway, SAN 117 about this book highlighting xiv description how to use xiii EMC symmetrix enterprise storage ordering publications xvi systems 125 related information xiv enterprise storage server 127 trademarks xvii fibre channel RAID storage adapter hardware, installing 20 server 121 AIX diagnostics for the gigabit fibre fibre channel storage hub 113 channel adapter 58 functional features 105 Magstar 3590 tape subsystem 137 Magstar MP 3570 tape subsystem 135 before starting problem determination Magstar MP 3575 family of tape procedures 28

libraries 136

SAN data gateway 117

description (continued)	feature code
SAN fibre channel switch 109	adapter feature 6227 6
Ultrium 3580 tape subsystem 140	fiber channel
devices and configurations 95	32-port director 105
devices, fibre channel 95	before starting problem determination
director, fibre channel 105	procedures 28
	cable routing 8
E	classes of service 5
	connection topology 2
EFC, enterprise fabric	McDATA ED-5000
connectivity 106	description 105
EMC symmetrix 3000 and 5000	director 105
enterprise storage systems 125	functional features 105
enterprise fabric connectivity	supports redundancy 107
(EFC) 106	operating other fibre channel
enterprise storage server	devices 23
copy services 129	operation 23
description 127	overview 1
expert 131	planning information 7
features 128 interfaces 129	port types 5
	preparing a site plan 7
error log information for for other fibre channel devices 93	preparing for installation of other
gigabit fibre channel PCI	fibre channel devices 9
	problem determination
adapter 71 error log information for the gigabit fibre	procedures 27
channel PCI adapter 71	strategies 5
error log sense information	what is 2
fibre channel adapter 73	fiber channel adapter
SCSI protocol 79	error messages 71
error log sense information, SCSI-3	introduction to 6
protocol 88	preparing for installation 8
error messages 71	fiber channel introduction 1
error report for the gigabit fibre channel	fibre channel classes of service 5
adapter, generating 63	fibre channel configurations
extended SCSI channel distance 118	high availability 103
CALCINGCO GOOT GHATHIEL GISTAILGE 110	hub 98
_	point-to-point 97
F	SAN Data Gateway 103
failing function codes 61	switch 99

fibre channel devices 95	1
fibre channel installation 11	information convice 57
fibre channel operation 23	information, service 57 install
fibre channel overview 1	
fibre channel port types 5	adapter hardware 20
fibre channel switch	device driver software on an AIX
description 109	System 12
installation 11	device driver software on an SP
multiple configuration options 110	System 13
publications and other	device drivers on the SP system
information 111	nodes 18, 19
fibre channel topology	fibre channel 11
arbitrated loop 3	gigabit fibre channel PCI
arbitrated loop with hub 3	adapter 11
fabric or switched topology 5	installable image on the Control Workstation 17
point-to-point 3	
finalizing preparations for device driver	setting up and checking system
installation 18	prerequisites 15
	verify adapter hardware 21
G	verify device driver 22
	verify software 22 installation of other fibre channel
gigabit fibre channel adapter feature 6227 6	
introduction to 6	devices 9
servicing 57	installation of the gigabit fibre channel
•	PCI adapter 8
glossary 145	installing device drivers on the SP
	system nodes 19
Н	installing other fibre channel
high availability configuration 103	devices 22
history, computer I/O interface 1	installing the adapter hardware 20
hub	installing the gigabit fibre channel PCI
configuration with four host	adapter 11 introduction
systems 99	fiber channel 1
configuration with one host	
system 98	to problem determination 25 iso 9000 statement xiv
configuration with two host	iso 9000 statement xiv
systems 98	
configurations 98	M
fibre channel storage 113	machine type
	2101 123

machine type <i>(continued)</i> 2102 121	PCI fibre channel adapter, SCSI protocol, error log sense
2103 113, 123	information 79
2105 127	plan and diagram all cable routing 8
2108 117	planning
2109 109	configuration 7
3570 135	fibre channel configuration 7
3575 136	information 7
3580 140	planning information 7
3590 137	planning your configuration 7
Magstar 3590 tape subsystem 137	planning your fibre channel
Magstar MP (Multi-Purpose) 3570 tape	configuration 7
subsystem 135	port types, fibre channel 5
Magstar MP (Multi-Purpose) 3575 tape	preparing a site plan 7
library dataserver 136	preparing for installation of other fibre
McDATA ED-5000	channel devices 9
(RAS) Features 107	preparing for installation of the gigabit
fibre channel director 105	fibre channel PCI adapter 8
publications 108	prerequisites, check system 15
	problem determination 25
N	problem determination procedures 27
nature of fibre channel environment	problem determination, start of call 29
problems 26	publications and other sources of
probleme 20	information
^	EMC symmetrix enterprise storage
0	systems 126
online publications xiv	enterprise storage server 133
operating other fibre channel	fibre channel RAID storage
devices 23	server 124
other fibre channel devices,	fibre channel storage hub 115
service 64	Magstar MP 3570 - 3590 tape subsystems 142
Р	Magstar MP 3570/3590 tape
PCI fibre channel adapter error log	subsystems 119
sense information 73	McDATA ED-5000 108
PCI fibre channel adapter SCSI-3	SAN fibre channel switch 111
protocol error log sense	publications, online xiv
information 88	
ii ii Oi i ii ali Oi O	

R	software (continuea)
RAID storage server 121	preparing for installation 8
reliability, availability, and serviceability	PSSP level 8
(RAS) features 107	software on the Control
(i.i.i.e) iodidi.ee	Workstation 17
c	source of SRN 60
S	start of call, problem determination
safety	procedure 29
electrical ix	storage area network, SAN 117
safety notices ix	storage server, enterprise 127
san data gateway	switch
configurations 103	configuration with four host
description 117	systems 101
feature codes	configuration with one host
2203 118	system 100
2204 118	configuration with two host
2205 118	systems 100
Storage Area Network Data	configurations 99
Gateway 118	
SAN, storage area network 117	T
service	tracing the gigabit fibre channel
2109 SAN fibre channel switch	adapter 61
service aid 63	trademarks xvii
AIX diagnostics for the gigabit fibre	
channel adapter 58	U
failing function codes 61	•
generating an error report for the	Ultrium 3580 tape subsystem 140
gigabit fibre channel adapter 63	using fibre channel to overcome SCSI
gigabit fibre channel adapter 57	channel limitations 118
information 57	
other fibre channel devices 64	V
service request numbers 59	verifying
source of SRN 60	device driver installation 22
tracing the gigabit fibre channel	hardware installation 21
adapter 61	software installation 22
service request numbers 59	the installation 21
software	
AIX level 8	
check system prerequisites 15	
device drivers 8	

Reader's Comments — We'd Like to Hear From You IBM Fibre Channel Planning and Integration: User's Guide and Service Information Order Number: SC23-4329-01 Overall how satisfied are you with the information in this book? Very Very Satisfied Satisfied Neutral Dissatisfied Dissatisfied Overall Satisfaction How satisfied are you that the information in this book is: Very Very Satisfied Satisfied Neutral **Dissatisfied Dissatisfied** Accurate Complete Easy to find Easy to understand Well organized Applicable to your tasks Please tell us how we can improve this book: Thank you for your response. May we contact you? ☐ Yes ☐ No When you send comments to us, you grant us a nonexclusive right to use or distribute your comments in any way we believe appropriate without incurring any obligation to you. Name Address

Company or Organization

Phone Number

Cut or Fold Along Line

Fold and Tape

POSTAGE WILL BE PAID BY ADDRESSEE

Information Development
Department H6DS-9561
11400 Burnet Road
Austin, TX 78758-3493

Fold and Tape

Please do not Staple

NO POSTAGE
NECESSARY
IF MAIL
NITED STATES

NO POSTAGE
NECESSARY
IF MAIL
NITED STATES

Postage NECESSARY
IF MAIL
NITED STATES

NO POSTAGE
NECESSARY
IF MAIL
NITED STATES

Please do not Staple
Fold and Tape

Please do not Staple

Cut or Fold Along Line

Fold and Tape

Part Number: 09P2722

Printed in the United States of America on recycled paper containing 10% recovered post-consumer fiber.

SC23-4329-01

Spine information:

IRM

RS/6000

IBM Fibre Channel Planning and Integration: User's Guide and Service Information