
ibm.com/redbooks

The Complete Partitioning
Guide for IBMM Eserver

pSeries Servers

Keigo Matsubara
Nicolas Guérin

Stefan Reimbold
Tomoyuki Niijima

Detailed information about logical
partitioning and implementation

How to configure partitions and
manage DLPAR operations

Comprehensive AIX
installation and migration
tasks

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

The Complete Partitioning Guide for IBM Eserver
pSeries Servers

October 2003

International Technical Support Organization

SG24-7039-01

© Copyright International Business Machines Corporation 2003. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

Second Edition (October 2003)

This edition applies to currently available partitioning-capable IBM Eserver pSeries servers for
use with AIX 5L Version 5.1 (product number 5765-E61) and AIX 5L Version 5.2 (product number
5765-E62).

This document created or updated on December 18, 2003.

Note: Before using this information and the product it supports, read the information in
“Notices” on page xvii.

Contents

Figures . xi

Tables . xv

Notices . xvii
Trademarks . xviii

Preface . xix
The team that wrote this redbook. xix
Become a published author . xx
Comments welcome. xx

Summary of changes . xxiii
October 2003, Second Edition . xxiii
January 2003, First Edition. xxiv

Part 1. Implementations . 1

Chapter 1. Logical partitioning overview . 3
1.1 Several partitioning implementations . 4
1.2 Partitioning support on pSeries servers . 5

1.2.1 Supported models . 6
1.2.2 IBM Hardware Management Console for pSeries (HMC) 8

1.3 Terminology used in partitioning . 11
1.3.1 Logical partitioned environment . 11
1.3.2 Partition isolation and security . 12

1.4 Four terms regarding memory. 13

Chapter 2. Partitioning implementation on pSeries servers 17
2.1 Partitioning implementation . 18

2.1.1 Hardware. 18
2.1.2 Firmware . 20
2.1.3 Operating system: AIX 5L Version 5.1 . 24
2.1.4 Operating system: AIX 5L Version 5.2 . 29

2.2 Partition resources . 31
2.2.1 Partition and system profiles . 31
2.2.2 Three assignable resource types . 33
2.2.3 Three kinds of values for resource assignment 35
2.2.4 Reserved memory regions in a partitioned environment. 35
© Copyright IBM Corp. 2003. All rights reserved. iii

2.2.5 Physical memory allocation to partitions . 38
2.3 I/O device assignment considerations. 43

2.3.1 Media devices . 44
2.3.2 Boot devices . 45
2.3.3 Network devices . 47
2.3.4 Native Industry Standard Architecture (ISA) devices 48
2.3.5 Console devices . 50
2.3.6 High availability . 50

2.4 Service authority . 51

Chapter 3. Dynamic logical partitioning . 53
3.1 Dynamic logical partitioning overview . 54
3.2 The process flow of a DLPAR operation . 56
3.3 Internal activity in a DLPAR event. 60

3.3.1 Internal activity for CPUs and memory in a DLPAR event 61
3.3.2 Internal activity for I/O slots in a DLPAR event 63

3.4 DLPAR-safe and DLPAR-aware applications . 64
3.4.1 DLPAR-safe . 64
3.4.2 DLPAR-aware . 64

3.5 Integrating a DLPAR operation into the application 66
3.5.1 Three phases in a DLPAR event. 67
3.5.2 Event phase summary . 69

3.6 Script-based DLPAR event handling. 70
3.6.1 Script execution environment . 71
3.6.2 DLPAR script naming convention . 75

3.7 DLPAR script subcommands . 76
3.7.1 The scriptinfo subcommand . 77
3.7.2 The register subcommand . 80
3.7.3 The usage subcommand. 82
3.7.4 The checkrelease subcommand . 83
3.7.5 The prerelease subcommand . 84
3.7.6 The postrelease subcommand . 86
3.7.7 The undoprerelease subcommand . 87
3.7.8 The checkacquire subcommand . 88
3.7.9 The preacquire subcommand . 89
3.7.10 The postacquire subcommand . 91
3.7.11 The undopreacquire subcommand . 92

3.8 How to manage DLPAR scripts. 93
3.8.1 List registered DLPAR scripts . 94
3.8.2 Register a DLPAR script . 94
3.8.3 Uninstall a registered DLPAR script . 95
3.8.4 Change the script install path . 96
3.8.5 The drmgr command line options . 96
iv The Complete Partitioning Guide for IBM Eserver pSeries Servers

3.8.6 Sample output examples from a DLPAR script 98
3.9 API-based DLPAR event handling . 103

3.9.1 The dr_reconfig system call . 103
3.9.2 A sample code using the dr_reconfig system call 108
3.9.3 Sample output examples from a DLPAR-aware application 110
3.9.4 DLPAR-aware kernel extensions . 115

3.10 Error handling of DLPAR operations . 115
3.10.1 Possible causes of DLPAR operation failures. 115
3.10.2 Error analysis facilities . 117
3.10.3 AIX error log messages when DLPAR operations fail. 123

Part 2. Systems Management . 127

Chapter 4. HMC graphical user interface . 129
4.1 Login and logout . 130
4.2 HMC graphical user interface at a glance . 130

4.2.1 Navigation area . 132
4.2.2 Contents area . 133
4.2.3 Menu bar . 133
4.2.4 Tool bar . 134
4.2.5 Status bar . 136

4.3 HMC application overview. 138
4.4 Server and Partition. 139

4.4.1 Connect and disconnect managed systems 143
4.4.2 Server Management . 143
4.4.3 Server Management menus . 144

4.5 Virtual terminal window . 146
4.5.1 Virtual terminal window concept . 146
4.5.2 Virtual terminal window in the Full System Partition 149
4.5.3 Partition virtual terminal windows . 149

4.6 Open xterm to access remote system using telnet 149

Chapter 5. Basic managed system operation tasks 151
5.1 Viewing properties of the managed system . 152

5.1.1 Machine property . 153
5.1.2 Processor property . 154
5.1.3 Policy property . 155
5.1.4 I/O Slot property . 156
5.1.5 Memory property . 157

5.2 Power on the managed system. 157
5.2.1 Operation states of a managed system . 160
5.2.2 Rebuild the managed system in the HMC. 160

5.3 Power off the managed system. 161
5.4 Operating the managed system with the HMC . 161
 Contents v

5.4.1 Operator panel . 161
5.4.2 Power button . 162
5.4.3 Reset button . 163

Chapter 6. Creating and managing partitions . 165
6.1 Partition and system profile tasks . 166

6.1.1 Create logical partitions and partition profiles 166
6.1.2 Create additional partition profiles. 177
6.1.3 View and modify partition profile properties 177
6.1.4 Copy a partition profile . 178
6.1.5 Change default partition profiles . 178
6.1.6 Understand partition boot errors . 179
6.1.7 Delete partition profiles . 179
6.1.8 Create system profiles . 179
6.1.9 View and modify system profile properties 181
6.1.10 Copy a system profile . 182
6.1.11 Delete a system profile . 182
6.1.12 Activate a system profile . 182
6.1.13 Power on using a system profile . 182

6.2 Affinity logical partitions. 183
6.2.1 Create affinity logical partitions . 183
6.2.2 Manage resources in affinity logical partitions 189
6.2.3 Delete all affinity logical partitions . 190

6.3 Activate partitions . 192
6.3.1 Change the default partition profile . 192
6.3.2 Activate a specific partition profile. 193
6.3.3 Activate partitions without selecting a specific partition profile 193
6.3.4 Reactivating a partition with a different partition profile. 194
6.3.5 Partition operating states . 194

6.4 Shut down the operating system in a partition . 196
6.5 Reset the operating system in a partition . 198

Chapter 7. Installing and migrating AIX in a partitioned environment . . 201
7.1 Installing AIX on partioning-capable pSeries servers 202

7.1.1 Install AIX in the Full System Partition . 204
7.1.2 Create a partition-ready AIX mksysb image 204

7.2 Installing AIX using removable media devices . 207
7.2.1 Boot AIX from removable media devices . 207

7.3 Installing AIX using Network Installation Manager (NIM) 218
7.3.1 NIM overview . 218
7.3.2 Configure NIM resources . 218
7.3.3 Boot partitions over the network . 224

7.4 Installing AIX using alternate disk install . 231
vi The Complete Partitioning Guide for IBM Eserver pSeries Servers

7.4.1 Alternate disk install overview . 231
7.4.2 Install AIX 5L Version 5.1 using alternate disk install 233
7.4.3 Install AIX 5L Version 5.2 using alternate disk install 236

7.5 Migrating AIX using alternate disk migration . 242
7.5.1 Alternate disk migration overview . 242
7.5.2 Requirements . 243
7.5.3 Limitations . 244
7.5.4 Operation examples . 245
7.5.5 Use alternate disk migration to migrate AIX 247

Chapter 8. DLPAR operation using graphical user interface 255
8.1 Dynamic logical partitioning. 256

8.1.1 Dynamically adding resources to a partition 256
8.1.2 Dynamically moving resources between partitions 263
8.1.3 Dynamically removing resources from a partition 269

Chapter 9. DLPAR operation using a command line interface 277
9.1 Secure remote connection to the HMC . 278

9.1.1 Connection to the HMC for command line operations 278
9.1.2 Connection to the HMC for automated operations 279

9.2 Command line interface . 279
9.2.1 Get system information using lssyscfg . 280
9.2.2 Get hardware resource information using lshwres 281
9.2.3 Change system state using chsysstate. 283
9.2.4 Change hardware resources using chhwres. 284

9.3 Dynamic logical partitioning operations using chhwres. 285
9.3.1 DLPAR operation to add a processor . 285
9.3.2 DLPAR operation to remove a processor . 286
9.3.3 DLPAR operation to add memory . 287
9.3.4 DLPAR operation to remove memory . 287
9.3.5 DLPAR operation to add an I/O slot . 292
9.3.6 DLPAR operation to remove an I/O slot . 295
9.3.7 DLPAR operation to move a CD/DVD device 300

9.4 Dynamic logical partitioning resources reassignment scheduling 302
9.4.1 Partition configuration . 304
9.4.2 Script example to move the resources . 305
9.4.3 Reassignment tests using the script . 306
9.4.4 Scheduling example to move the resources using cron 308
9.4.5 Scheduling example to move resources using IBM Tivoli Workload

Scheduler . 309
9.5 Dynamic logical partitioning integration with HACMP 313

9.5.1 Resource assignment . 315
9.5.2 Integration with HACMP . 320
 Contents vii

9.5.3 Application server scripts . 320

Part 3. Advanced programming examples . 327

Chapter 10. Dynamic reconfiguration using DLPAR scripts 329
10.1 Type of applications that benefit from DLPAR 330
10.2 A sample script to reconfigure the IBM HTTP Server 330

10.2.1 Installation of the IBM HTTP Server . 331
10.2.2 Configuration of the httpd processes . 332
10.2.3 Scripts to reconfigure the IHS . 333
10.2.4 Add one CPU and reconfigure the IHS . 334
10.2.5 Remove one CPU and reconfigure the IHS 337

Chapter 11. Resource sets . 341
11.1 rset commands . 342

11.1.1 lsrset . 342
11.1.2 mkrset . 344
11.1.3 rmrset . 346

11.2 The rset API . 346
11.2.1 The rset subroutines . 347
11.2.2 Working with the rset API . 352
11.2.3 A DLPAR-aware application that is using the rset API 362

Chapter 12. Autonomic applications . 375
12.1 Design considerations . 376
12.2 Possible autonomic applications . 376
12.3 A sample autonomic application . 378

12.3.1 Tasks. 378
12.3.2 Task scheduler . 379
12.3.3 Pseudo program algorithm . 379

Part 4. Appendixes . 387

Appendix A. Test environment . 389
Hardware configuration . 390

Media drawer SCSI connection. 390
Network configuration. 391

Name resolution . 391
Partition configuration. 392
The relationship between physical and AIX location codes 395

Using AIX commands . 395
Using the physloc field identifier of lsdev (AIX 5L Version 5.2). 396
Using the service guide. 396

pSeries 670- and pSeries 690-dependent information. 396
viii The Complete Partitioning Guide for IBM Eserver pSeries Servers

AIX location codes . 404
Non-SCSI devices. 404
SCSI devices. 405

Appendix B. Dynamic logical partitioning program templates 407
General information . 408
Perl template . 409
Korn shell template. 421
B.1 Sample DLPAR-aware application using a signal handler 433

B.1.1 How to compile and run the application . 434

Appendix C. Dynamic logical partitioning output samples. 449
Using the syslog facility . 450

CPU addition . 450
CPU removal . 451
Memory addition . 452
Memory removal . 453

Using the AIX system trace facility . 454
CPU addition trace output . 454
CPU removal trace output. 457
Memory addition trace output . 461
Memory removal trace output . 464

Using the AIX error log facility . 467

Appendix D. Using the Job Scheduling Console 471
Using the Job Scheduling Console . 472
Create a new job . 472
Create a new job stream . 474

Appendix E. Advanced DLPAR script examples 483
E.1 Changing StartServers . 484
E.2 Changing MaxClients . 486

Appendix F. Autonomic application example . 489
F.1 Autonomic C program example. 490

Appendix G. Additional material . 503
Locating the Web material . 503
Using the Web material . 504

System requirements for downloading the Web material 505
How to use the Web material . 505

Abbreviations and acronyms . 507

Related publications . 511
 Contents ix

IBM Redbooks . 511
IBM Redpapers . 511

pSeries hardware publications . 511
AIX official publications . 513
CSM for AIX official publications . 513
CSM for Linux official publications . 514
Other publications . 514
Online resources . 514
How to get IBM Redbooks . 515

Index . 517
x The Complete Partitioning Guide for IBM Eserver pSeries Servers

Figures

1-1 Communication between the HMC and the service processor 11
1-2 Virtual and physical memory relationship . 14
1-3 Non-contiguous mapping . 16
2-1 Interaction of AIX and firmware in a partition . 25
2-2 Partitions, partition profiles, and system profiles 33
2-3 Real and logical mode regions. 39
3-1 Process flow of a DLPAR operation. 57
3-2 Three DLPAR phases of a DLPAR event . 67
3-3 A DLPAR script invoked by the drmgr command. 71
3-4 DLPAR operation failed message . 116
3-5 DLPAR operation failure detailed information 117
4-1 HMC graphical user interface . 131
4-2 Reload button. 134
4-3 Details, Tree, Tree-Details buttons . 135
4-4 Detailed view . 135
4-5 Tree view . 135
4-6 Tree-Details view . 136
4-7 Status bar. 136
4-8 HMC application folders in the Navigation area. 138
4-9 Object hierarchy for the Server Management application 139
4-10 Server Management (one managed system). 141
4-11 Server Management (three pSeries 655 servers) 142
4-12 Server Management (four managed systems). 142
4-13 Server Management options . 144
4-14 Virtual terminal window on the HMC . 147
4-15 Virtual terminal window on the remote WebSM client 148
5-1 System properties: Machine . 153
5-2 System properties: Processor . 154
5-3 System properties: Policy . 155
5-4 System properties: I/O Slot . 156
5-5 System properties: Memory . 157
5-6 Power On Modes panel . 158
5-7 Hardware Management Console operator panel codes 162
6-1 Create a logical partition . 166
6-2 Panel 1: Partition name . 167
6-3 Panel 2: Profile name. 168
6-4 Panel 3: Number of processors . 169
6-5 Panel 4: Amount of memory . 170
© Copyright IBM Corp. 2003. All rights reserved. xi

6-6 Panel 5: I/O components . 172
6-7 Panel 6: Set service authority and boot mode 175
6-8 Panel 7: Partition attributes . 176
6-9 Property of a partition profile . 177
6-10 Creating system profiles . 180
6-11 Setting up the system profiles menu . 181
6-12 Affinity logical partitions setup . 184
6-13 Selecting 4-processor or 8-processor ALPAR configuration 185
6-14 Four 4-processor ALPAR configuration . 186
6-15 ALPAR partition and profile name . 187
6-16 ALPAR assigning I/O slots. 188
6-17 Created ALPAR . 189
6-18 Remove all affinity logical partitions. 191
6-19 Confirm the removal of all the affinity logical partitions 192
6-20 Activate a partition . 193
6-21 Partition activation failure. 196
6-22 Read Boot Error Values . 196
6-23 Operating System shutdown or reset. 197
6-24 Operating System shutdown . 198
6-25 Operating system reset options . 199
7-1 Set the boot mode to SMS. 208
7-2 System Management Services: Main menu . 209
7-3 System Management Services: Select boot options 210
7-4 System Management Services: Configure boot device 211
7-5 System Management Services: Select device type 212
7-6 System Management Services: Select media type 213
7-7 System Management Services: Select media adapter 214
7-8 System Management Services: Select device. 215
7-9 System Management Services: Select task. 216
7-10 SMS: Exit confirmation. 217
7-11 System Management Services: Select Device screen (Network) 225
7-12 System Management Services: Network Parameters screen 226
7-13 System Management Services: IP Parameters screen 227
7-14 System Management Services: Adapter Parameters screen 228
7-15 System Management Services: Adapter Parameters with ping test . . 229
7-16 System Management Services: Ping Test screen 230
7-17 The alternate disk install concept. 232
7-18 Installing AIX using alternate disk install . 233
7-19 The alternate disk migration concept . 243
8-1 Dynamic logical partitioning . 257
8-2 Dynamic CPU addition to a partition . 258
8-3 Dynamic memory addition to a partition. 260
8-4 Dynamic I/O slot addition to a partition . 262
xii The Complete Partitioning Guide for IBM Eserver pSeries Servers

8-5 Dynamic CPU reconfiguration between partitions 264
8-6 Dynamic memory reconfiguration between partitions 266
8-7 Dynamic adapter reconfiguration between partitions. 268
8-8 Dynamic CPU removal from a partition . 270
8-9 Dynamic memory removal from a partition . 272
8-10 Dynamic removal of an I/O slot from a partition. 274
9-1 1 fixed sized RMO and 2 LMBs are allocated to an AIX 5L Version 5.2 par-
tition 289
9-2 Working environment . 304
9-3 Cluster network topology . 315
A-1 Media drawer SCSI connection . 390
A-2 Physical network configuration in the test environment 391
D-1 Job Scheduling Console . 472
D-2 Properties - Job Definition: General . 473
D-3 Properties - Job Definition: Task . 474
D-4 Jobs List . 474
D-5 Properties - Job Stream . 475
D-6 Job Stream Editor . 476
D-7 Properties - Job . 476
D-8 Find Job . 477
D-9 Find Job with job list. 477
D-10 Properties - Job: General . 478
D-11 Job Stream Editor with a job . 478
D-12 Properties - Job Stream: Time Restriction . 479
D-13 Job Stream Editor: Run Cycle . 480
D-14 Weekly Run Cycle . 480
D-15 Weekly Run Cycle: Rule . 481
D-16 Job Stream Editor: Run Cycle . 481
D-17 Job Streams List . 482
 Figures xiii

xiv The Complete Partitioning Guide for IBM Eserver pSeries Servers

Tables

1-1 Supported partioning-capable pSeries servers . 6
1-2 Maximum number of processors, memory size, and partitions 6
1-3 Required Hardware Management Console feature code or M/T-MDL. . . 8
2-1 Partition page table size. 36
2-2 TCE table sizes . 38
2-3 Logical and associated real memory sizes in scaled RMO 40
2-4 Physical memory size and number of allocatable partitions 42
3-1 Applications that should be DLPAR-aware . 65
3-2 Considerations during each event phase. 69
3-3 General DLPAR environment variables . 73
3-4 CPU-specific DLPAR environment variables . 74
3-5 Memory-specific DLPAR environment variables 74
3-6 General DLPAR output variables . 75
3-7 DLPAR script subcommands . 76
3-8 Required output name-value pairs for the scriptinfo subcommand 78
3-9 Optional output name-value pairs for the scriptinfo subcommand. 79
3-10 Required output name-value pair for the register subcommand 81
3-11 Required output name-value pair for the usage subcommand 82
3-12 The drmgr command line options . 97
3-13 The dr_reconfig flag parameters . 104
3-14 Virtual operator panel DLPAR operation indicators 118
3-15 Virtual operator panel phase indicators . 118
3-16 AIX error logs generated by DLPAR operations 122
3-17 General AIX error messages . 123
3-18 drmgr-specific AIX error messages . 123
3-19 DLPAR operation-specific AIX error messages 124
3-20 DLPAR resource-specific AIX error messages 125
4-1 Elements in the HMC graphical user interface. 131
4-2 HMC application folders . 138
5-1 Properties of the managed system . 152
5-2 Operating states of managed systems . 160
6-1 Activation order example using the system profile. 182
6-2 Operating states of partitions . 194
7-1 Command line interface options of the alt_disk_install command 239
7-2 Command line interface options of the nimadm command 250
9-1 Commands list . 279
A-1 Partition configuration: I/O drawer 1 . 393
A-2 Partition configuration: I/O drawer 2 . 394
© Copyright IBM Corp. 2003. All rights reserved. xv

A-3 Physical and AIX location codes: I/O drawer 1 396
A-4 Physical and AIX location codes: I/O drawer 2 400
xvi The Complete Partitioning Guide for IBM Eserver pSeries Servers

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions
are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.
© Copyright IBM Corp. 2003. All rights reserved. xvii

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AFS®
AIX 5L™
AIX®
AS/400®

™
ibm.com®

IBM®
iSeries™
Notes®
POWER4™
PowerPC®
pSeries®

Redbooks (logo) ™
Redbooks™
RS/6000®
S/370™
zSeries®

The following terms are trademarks of other companies:

Intel, Intel Inside (logos), MMX, and Pentium are trademarks of Intel Corporation in the United States, other
countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks owned by SET Secure
Electronic Transaction LLC.

Other company, product, and service names may be trademarks or service marks of others.
xviii The Complete Partitioning Guide for IBM Eserver pSeries Servers

Preface

This IBM Redbook provides a broad understanding of the logical partitioning on
the IBM Eserver partitioning-capable pSeries® servers. This is the most
outstanding feature of these servers, because it enables the servers to run
multiple operating system instances concurrently on a single system. We focus
on the following topics:

� Logical partitioning overview

� Partitioning implementation on pSeries servers

� Dynamic logical partitioning

� Creating and managing partitions

� Installing and migrating AIX in a partitioned environment

This redbook is a single-source handbook for IBM and IBM Business Partner
technical specialists who support the partitioning-capable pSeries servers and
for application developers who need to develop or modify DLPAR-aware
applications.

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Austin Center.

Keigo Matsubara is an advisory IT Specialist at the International Technical
Support Organization (ITSO), Austin Center. Before joining the ITSO, he worked
in the System and Web Solution Center in Japan as a Field Technical Support
Specialist (FTSS) for pSeries. He has been working for IBM for 11 years.

Nicolas Guérin is an IT Specialist in IBM La Gaude, France. He has seven years
of experience in the Information Technology field. His areas of expertise include
AIX®, system performance tuning, HACMP, pSeries, SP, ESS, and SAN. He has
been working for IBM for nine years.

Stefan Reimbold is a staff engineer at the IBM development lab in Boeblingen,
Germany. He has seven years of experience in the UNIX® field. He has been
working for IBM for two years. He holds a Ph.D. in Physics from the University of
Heidelberg. His areas of expertise include IT-Security, RS/6000®, AIX, and
AFS®.
© Copyright IBM Corp. 2003. All rights reserved. xix

Tomoyuki Niijima is an advisory IT architect in ERM service/BIS/IGS in IBM
Japan. He has more than 10 years experience in AIX. This is his third redbook.

Thanks to the following people for their contributions to this project:

International Technical Support Organization, Austin Center
Scott Vetter, Vasfi Gucer

International Technical Support Organization, Poughkeepsie Center
Alfred Schwab, editor

IBM Austin
Andy McLaughlin, Bob Foster, Carolyn Scherrer, Dave Willoughby, John Bissell,
Luke Browning, Mark D. Rogers, Randy Swanberg, Richard Cutler, Stephanie
Jensen

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You'll team with IBM technical professionals,
Business Partners and/or customers.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks™ to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an Internet note to:

redbook@us.ibm.com
xx The Complete Partitioning Guide for IBM Eserver pSeries Servers

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.redbooks.ibm.com/contacts.html

� Mail your comments to:

IBM® Corporation, International Technical Support Organization
Dept. JN9B Building 003 Internal Zip 2834
11400 Burnet Road
Austin, Texas 78758-3493
 Preface xxi

xxii The Complete Partitioning Guide for IBM Eserver pSeries Servers

Summary of changes

This section describes the technical changes made in this edition of the book and
in previous editions. This edition may also include minor corrections and editorial
changes that are not identified.

Summary of Changes
for SG24-7039-01
for The Complete Partitioning Guide for IBM Eserver pSeries Servers
as created or updated on December 19, 2003.

October 2003, Second Edition
This revision reflects the addition, deletion, or modification of new and changed
information described below.

New information
The following chapters are new:

� Chapter 10, “Dynamic reconfiguration using DLPAR scripts” on page 329
� Chapter 11, “Resource sets” on page 341
� Chapter 12, “Autonomic applications” on page 375
� Appendix D, “Using the Job Scheduling Console” on page 471
� Appendix E, “Advanced DLPAR script examples” on page 483
� Appendix F, “Autonomic application example” on page 489

Changed information
The following chapters were rewritten in order to cover new features,
enhancements, and usage examples provided by the latest products:

� Chapter 4, “HMC graphical user interface” on page 129
� Chapter 9, “DLPAR operation using a command line interface” on page 277

Unchanged information
The following chapters and appendixes are unchanged but reviewed again:

� Chapter 1, “Logical partitioning overview” on page 3
� Chapter 2, “Partitioning implementation on pSeries servers” on page 17
� Chapter 3, “Dynamic logical partitioning” on page 53
� Chapter 5, “Basic managed system operation tasks” on page 151
� Chapter 6, “Creating and managing partitions” on page 165
© Copyright IBM Corp. 2003. All rights reserved. xxiii

� Chapter 7, “Installing and migrating AIX in a partitioned environment” on
page 201

� Chapter 8, “DLPAR operation using graphical user interface” on page 255
� Appendix A, “Test environment” on page 389
� Appendix B, “Dynamic logical partitioning program templates” on page 407
� Appendix C, “Dynamic logical partitioning output samples” on page 449

January 2003, First Edition
The first version of this book was written by the following authors:

Keigo Matsubara, Akichika Ozeki, Erlander Lo, Deniz S. Erguvan, Jennifer Davis,
Theeraphong Thitayanun, Viraf Patel

The following list shows contributors for the first version of this book:

IBM Austin

Andy McLaughlin, Ann Wigginton, Bob Foster, Bob Minns, Carolyn Scherrer,
Christopher Chan, David Sheffield, Dave Willoughby, Duke Paulsen, Edward
Shvartsman, Jane Chilton, John O'Quin, John Purcell, Julie Craft, Kanisha Patel,
Larry Amy, Luke Browning, Mark Rogers, Michael Mall, Michael S. Williams,
Minh Nguyen, Paul B. Finley, Randy Swanberg, Richard Cutler, Steven Molis,
Susan Caunt, Trish Pierce, Truc Nguyen, and Walter Lipp

IBM Philadelphia

Rob Jackard

IBM Poughkeepsie

Michael Schmidt and Ron Goering
xxiv The Complete Partitioning Guide for IBM Eserver pSeries Servers

Part 1 Implementations

Part 1
© Copyright IBM Corp. 2003. All rights reserved. 1

2 The Complete Partitioning Guide for IBM Eserver pSeries Servers

Chapter 1. Logical partitioning
overview

In this chapter, we first introduce necessary concepts and terminology to
understand the logical partitioning implementation on the IBM ̂
partioning-capable pSeries servers. We discuss the following topics:

� Several partitioning implementations

� Partitioning support on pSeries servers

� Terminology used in partitioning

� Four terms regarding memory

As a system administrator who has responsibility for managing the
partioning-capable pSeries servers, it is imperative that you become familiar with
the aspects described in this chapter before you run the system in a logical
partitioned environment.

1

© Copyright IBM Corp. 2003. All rights reserved. 3

1.1 Several partitioning implementations
There is a strong demand for high-end systems to provide greater flexibility, in
particular the ability to subdivide them into smaller partitions that are capable of
running a version of an operating system or a specific set of application
workloads.

IBM initially started work on partitioning S/370™ mainframe systems in the
1970s. Since then, logical partitioning (LPAR) on IBM mainframes (now called
IBM Eserver zSeries®) has evolved from a predominantly physical partitioning
scheme, based on hardware boundaries, to one that allows for virtual and shared
resources with dynamic load balancing. In 1999, IBM implemented LPAR support
on the AS/400® (now called IBM Eserver iSeries™) platform. In 2000, IBM
announced the ability to run the Linux operating system in an LPAR on a zSeries
server.

Throughout this publication, we refer to the various partitioning mechanisms
available on the market. Therefore, it is appropriate to clarify the following terms
and definitions by which we classify these mechanisms:

Building block A collection of system resources, such as CPUs, memory,
and I/O connections. These may be physically packaged
as a self-contained symmetric multiprocessing (SMP)
system (rack-mounted or stand-alone) or as boards within
a larger multiprocessor system. There is no requirement
for the CPUs, memory, and I/O slots to occupy the same
physical board within the system, although they often do.
Other vendors use the terms system board, cell, and
Quad Building Block (QBB) to refer to their building
blocks.

Physical partition One or more building blocks linked together by a
high-speed interconnect. Generally, the interconnect is
used to form a single, coherent memory address space.
In a system that is only capable of physical partitioning, a
partition is a group of one or more building blocks
configured to support an operating system image. Other
vendors may refer to physical partitions as domains or
nPartitions.

Logical partition A subset of logical resources that are capable of
supporting an operating system. A logical partition
consists of CPUs, memory, and I/O slots that are a subset
of the pool of available resources within a system.
4 The Complete Partitioning Guide for IBM Eserver pSeries Servers

It should be noted that the zSeries LPAR implementation is unique in comparison
to the other partitioning implementations available from IBM and other hardware
vendors. It is a mature and dynamic partitioning technology. The experience of
IBM with physical and logical partitioning over the last 25 years has greatly
influenced the design and implementation of logical partitioning on pSeries.

The pSeries 690 server is the first pSeries server to incorporate the ability of
being partitioned. Its architectural design brings logical partitioning to the UNIX
world, capable of multiple partitions inside a single server, with great flexibility in
resource selection. The partitioning implementation on pSeries 690 differs from
those of other UNIX system vendors in that the physical resources that can be
assigned to a partition are not limited by internal physical system board
boundaries. Now, IBM is expanding the partioning-capable pSeries server lineup,
as explained in 1.2, “Partitioning support on pSeries servers” on page 5.

Processors, memory, and I/O slots can be allocated to any partition, regardless
of their locality. For example, two processors on the same POWER4™ silicon
chip can be in different partitions. Peripheral component interconnect (PCI) slots
are assigned individually to partitions, and memory can be allocated in fixed-size
increments. The fine granularity of the resources that can be assigned to
partitions provides flexibility to create systems with the desired resources.

The partioning-capable pSeries servers are also capable of running both AIX 5L
Version 5.1 or later and Linux inside a partition on the single system
simultaneously.

Many of the features described in this document are operating
system-dependant and may not be available on Linux. For more information, see:

http://www.ibm.com/servers/eserver/pseries/linux/whitepapers/linux_pseries.html

1.2 Partitioning support on pSeries servers
In addition to the first partioning-capable pSeries server, pSeries 690, IBM now is
expanding the partioning-capable pSeries server lineup, as explained in this
section.

Note: The major difference between logical partitioning and physical
partitioning is the granularity and flexibility available for allocating resources to
an operating system image. Logical partitions have finer granularities than
physical partitions.

Note: Hereafter, we refer to logical partitions as partitions.
 Chapter 1. Logical partitioning overview 5

http://www.ibm.com/servers/eserver/pseries/linux/whitepapers/linux_pseries.html

1.2.1 Supported models
At the time of writing, the pSeries servers shown in Table 1-1 support
partitioning.

Table 1-1 Supported partioning-capable pSeries servers

Depending on the supported number of processors, the maximum number of
partitions are shown in Table 1-2.

Table 1-2 Maximum number of processors, memory size, and partitions

Official product model name Short product name M/T-MDL

IBM Eserver pSeries 690 Model 681 pSeries 690 7040-681

IBM Eserver pSeries 670 Model 671 pSeries 670 7040-671

IBM Eserver pSeries 655 pSeries 655 7039-651

IBM Eserver pSeries 650 Model 6M2 pSeries 650 Model 6M2 7038-6M2

IBM Eserver pSeries 630 Model 6C4 pSeries 630 Model 6C4 7028-6C4

IBM Eserver pSeries 630 Model 6E4 pSeries 630 Model 6E4 7028-6E4

Short product
name

Maximum
number of
processors

Maximum
memory size
in GB

Maximum
number of I/O
drawers

Maximum
number of
partitions

pSeries 690 32a

a. The High Performance Computing (HPC) feature of pSeries 690 is equipped
with up to 16 processors.

512 8 16

pSeries 670 16 128 3 16

pSeries 655 8 32 1 2

pSeries 650
Model 6M2

8 64 8 8b

b. Needs external disk subsystems for the boot disk.

pSeries 630
Model 6C4

4 32 2 4c

c. When equipped with I/O drawers.

pSeries 630
Model 6E4

4 32 0 2

Note: Hereafter, we use the short product names throughout this redbook.
6 The Complete Partitioning Guide for IBM Eserver pSeries Servers

The logical partitioning concept and required tasks are basically similar on these
partioning-capable pSeries server models. However, assigning I/O resources to
partitions depends on the models, and there are substantial differences. For the
hardware model-specific information about the I/O resource assignments, see
2.3, “I/O device assignment considerations” on page 43.

Logical partitioning support on pSeries 630 and pSeries 650
Due to the I/O structure on these pSeries models, some resources may have to
be assigned (and moved) as a group.

On the pSeries 650 systems, the internal disks and the CD/DVD devices that are
on the same SCSI controller must be assigned together and moved together with
dynamic logical partitioning (DLPAR) operations.

On the pSeries 630 systems, PCI slot 1, PCI slot 2, internal Ethernet 2 (physical
location code: U0.1-P1/E2), the internal SCSI disk subsystem (U0.1-P2/Z1), and
ISA-based I/O (serial, keyboard, mouse) must be assigned to a single partition
as a group and cannot be assigned separately to different partitions. These
resources cannot be moved with DLPAR operations because they share a PCI
host bridge with the Industry Standard Architecture (ISA) subsystem.

For further information, see 2.3, “I/O device assignment considerations” on
page 43.

Note: Throughout this redbook, we use the term CD/DVD devices to refer to
CD-ROM, DVD-RAM, and DVD-ROM devices.

Note: The parallel ports on pSeries 630 are not supported in a partitioned
environment.
 Chapter 1. Logical partitioning overview 7

1.2.2 IBM Hardware Management Console for pSeries (HMC)
In order to configure and administer a partioning-capable pSeries server, you
must attach at least one IBM Hardware Management Console for pSeries (HMC)
to the system. Depending on the partioning-capable pSeries server models, the
HMC can be ordered as a feature code or a separate orderable product, as
shown in Table 1-3.

Table 1-3 Required Hardware Management Console feature code or M/T-MDL

Short product name HMC FC or M/T-MDL Note

pSeries 690 FC 7316 1

pSeries 670 FC 7316 1

pSeries 655 M/T-MDL 7315-C01 1

pSeries 650 Model 6M2 M/T-MDL 7315-C01 2

pSeries 630 Model 6C4 M/T-MDL 7315-C01 2

pSeries 630 Model 6E4 M/T-MDL 7315-C01 2

1. The HMC is required regardless of whether the system is partitioned or running in
the Full System Partition.

2. The HMC is required if the system is partitioned. If the system is running in the Full
System Partition, the HMC is not required.
8 The Complete Partitioning Guide for IBM Eserver pSeries Servers

The HMC is a dedicated desktop workstation that provides a graphical user
interface for configuring and operating pSeries servers functioning either
non-partitioned or in the Full System Partition. It is configured with a set of
hardware management applications for configuring and partitioning the server.
One HMC is capable of controlling multiple pSeries servers. At the time of
writing, a maximum of 16 non-clustered pSeries servers and a maximum of 64
partitions are supported by one HMC.

The HMC provides two native serial ports. One serial port should be used to
attach a modem for the Service Agent. The second port can be used to attach a
server. If multiple servers are attached to the HMC, additional serial ports are
necessary. The ports can be provided by adding a maximum of two of the
following features to the HMC:

� 8-Port Async Adapter (FC 2943)

� 128-Port Async Controller (FC 2944)

The HMC is connected with special attachment cables to the HMC ports of the
partioning-capable pSeries server models. Only one serial connection to a server
is necessary despite the number of partitions.

The following cables are available:

� Attachment Cable, HMC to host, 15 meters (FC 8121)

� Attachment Cable, HMC to host, 6 meters (FC 8120)

With these cables, the maximum length from any server to the HMC is 15 meters.

To extend this distance, a number of possibilities are available:

� Another HMC can be used for remote access. This remote HMC must have a
network connection to the HMC, which is connected to the servers.

� AIX 5L™ Web-based System Manager client can be used to connect to the
HMC over the network, or the Web-based System Manager PC client can be
used, which runs on a Windows® or Linux operating system-based system.

Note: To ensure that the Async adapter is installed in the HMC and not in the
server, make sure that the adapter is configured as a feature of the HMC at
the time of order.
 Chapter 1. Logical partitioning overview 9

� When a 128-Port Async Controller is used, the RS-422 cables connect to a
remote asynchronous node (RAN) breakout box, which can be up to 330
meters. The breakout box is connected to the HMC port on the server using
the attachment cable. When the 15-meter cable is used, the maximum
distance the HMC can be is 345 meters, providing the entire cable length can
be used.

The HMC provides a set of functions that are necessary to manage partition
configurations by communicating with the service processor, as shown in
Figure 1-1 on page 11. These functions include:

� Creating and storing partition profiles that define the processor, memory, and
I/O resources allocated to an individual partition

� Starting, stopping, and resetting a system partition

� Booting a partition or system by selecting a profile

� Displaying system and partition status

In a non-partitionable system, the LED codes are displayed in the operator
panel. In a partitioned system, the operator panel shows the word LPAR
instead of any partition LED codes. Therefore, all LED codes for system
partitions are displayed over the HMC.

� Using a virtual console for each partition or controlled system

With this feature, every partition can be accessed over the serial HMC
connection to the server. This is a convenient feature when the partition is not
reachable across the network.
10 The Complete Partitioning Guide for IBM Eserver pSeries Servers

Figure 1-1 Communication between the HMC and the service processor

The HMC also provides a Service Focal Point for the systems it controls. It is
connected to the service processor of the system using the dedicated serial link
and must be connected to each partition using an Ethernet LAN for Service Focal
Point and to coordinate dynamic logical partitioning operations. The HMC
provides tools for problem determination and service support, such as call-home
and error log notification through an analog phone line.

1.3 Terminology used in partitioning
In this section, we explain the concepts and terminology used in logical
partitioning on partioning-capable pSeries servers.

1.3.1 Logical partitioned environment
The partioning-capable pSeries servers support a logical partitioned
environment that enables you to run multiple logical partitions concurrently. The
maximum number of partitions that can concurrently run depends on the specific
partitioning-capable pSeries server model. For example, both the pSeries 670
and pSeries 690 support up to 16 partitions running concurrently.

Note: A partioning-capable pSeries server managed by HMC is also referred
to as a managed system.

N
on

-V
ol

at
ile

 R
AM

Boot Firmware / RTAS / Hypervisor

Partition 1

Unassigned
Resources

LPAR
Allocation
Tables

HMCHMC

AIX 5.1

Service
Processor

Processors

Mem Regions

I/O Slots

Partition 2

Managed SystemManaged System

AIX 5.2

RS/232C
 Chapter 1. Logical partitioning overview 11

In a logical partition, an operating system instance runs with dedicated
resources: processors, memory, and I/O slots. These resources are statically
assigned to the logical partition. The total amount of assignable resources is
limited by the physically installed resources in the system.

Because the first implementation of logical partitioning provided by AIX 5L
Version 5.1 is static, you have to shut down every operating system instance in
the targeted logical partitions to change between these two modes or to change
the resource assignment of running logical partitions. Logical partitions that are
not changed are unaffected.

With the release of AIX 5L Version 5.2, dynamic logical partitioning (also called
DLPAR) extends the capabilities of static logical partitioning by allowing the
dynamic reassignment of resources across partitions. Dynamic logical
partitioning provides an improved solution by allowing users to dynamically move
hardware resources between partitions without requiring a reboot of partitions.

All the partioning-capable pSeries servers also support a special type of logical
partition, called the Full System Partition. In a Full System Partition, only one
operating system instance runs in the system. This instance has access to all the
resources installed in the system. In Full System Partition, a partioning-capable
pSeries server acts as a conventional pSeries SMP server, except for the
performance and enhanced reliability, availability, and serviceability (RAS)
feature.

1.3.2 Partition isolation and security
From a functional point of view, applications are running inside partitions in the
same way they run on a stand-alone pSeries machine. There are no issues when
moving an application from a stand-alone server to a partition. The design of
partioning-capable pSeries servers is such that one partition is isolated from
software running in the other partitions, including protection against natural
software defects and even deliberate software attempts to break the partition
barriers. It has the following security features:

� Protection against inter-partition data access

The design of partioning-capable pSeries servers prevents any data access
between partitions, other than using regular networks. This isolates the
partitions against unauthorized access across partition boundaries.

� Unexpected partition crash

A software crash within a partition should not cause any disruption to the
other partitions. Neither an application failure nor an operating system failure
inside a partition interferes with the operation of other partitions.
12 The Complete Partitioning Guide for IBM Eserver pSeries Servers

� Denial of service across shared resources

The design of partioning-capable pSeries servers prevents partitions from
making extensive use of a shared resource so that other partitions using that
resource become starved. This means that partitions sharing the same PCI
bridge chips, for example, cannot occupy the bus indefinitely.

In this way, applications can be safely consolidated in partitions in a
partioning-capable pSeries server without compromising overall system security.

1.4 Four terms regarding memory
Because the word memory is overused in various contexts, we have to provide
precise definitions of the four terms regarding memory, that is, virtual, physical,
real, and logical memory, before explaining the partitioning implementation
details.

First, we introduce Figure 1-2 on page 14 to explain the relationship between
virtual and physical memory.

The term virtual memory is used in many operating system environments to
express the function that enables the operating system to act as if it were
equipped with a larger memory size than it physically has.

For example, there are two user processes, 1 and 2, in Figure 1-2 on page 14.
Because each process should be isolated from the other processes, each has its
own virtual memory address range, called the process address space. Each
process address space is classified into several memory chunks called segments
(shown as hatched rectangles in the figure). Each segment is again divided into
small size memory chunks, called pages (not shown in the figure). The page is
the minimal allocation unit size of virtual memory. As shown in Figure 1-2 on
page 14, the process address space is partially filled, but is mostly vacant space.
 Chapter 1. Logical partitioning overview 13

Figure 1-2 Virtual and physical memory relationship

The term physical memory is also used in many operating system environments
to express the virtual memory function. Because not all of the virtual memory can
sit in the physical memory in the system, only some portions of virtual memory
are mapped to physical memory. The rest of the virtual memory is divided by
page size, and each page can be mapped to a disk block in paging spaces, or
still reside in a block of files in the file systems. This address translation is
managed by the virtual memory manager (VMM) of the operating system using
hardware components, such as the hardware page frame table (PFT) and
translation look-aside buffer (TLB).

Kernel
User Text

Private Data

Shared Memory

Shared Library Data

Shared Library Text

0
256 MB

512 MB

768 MB

4 GB
Process 1

Kernel
User Text

Private Data

Shared Memory

Shared Library Data

Shared Library Text

0
256 MB

512 MB

768 MB

4 GB
Process 2

Paging Device

Vi
rtu

al
 m

em
or

y
ad

dr
es

s
of

 p
ro

ce
ss

 1
Vi

rtu
al

 m
em

or
y

ad
dr

es
s

of
 p

ro
ce

ss
 2

0

Maximum memory

Ph
ys

ic
al

 M
em

or
y

Ad
dr

es
s

Physical Memory

Unused address range (not mapped)
14 The Complete Partitioning Guide for IBM Eserver pSeries Servers

The term real memory is often used to represent the physical memory, especially
when discussing the VMM functionality in the kernel. The modifier “real” comes
from the real addressing mode defined in some processor architectures
(including PowerPC®), where address translation is turned off. In a
non-partitioned environment, because there is a one-to-one relationship between
the real and physical memory, we can ignore the difference between these two
terms in most cases.

The physical address space must encompass all addressable hardware
components, such as memory cards, I/O ports, bus memory, and so on.
Depending on the hardware implementation and restrictions, address ranges
might need to be dispersed throughout the physical address space, which could
result in a discontinuous physical memory address space. For example, if a PCI
adapter device requires direct memory access (DMA), the device’s DMA address
is mapped on the specific physical memory address range by a PCI host bridge
(PHB). Most VMMs of modern operating systems are designed to deal with
non-contiguous physical memory addresses.

However, operating systems require a certain amount of contiguous physical
memory that can be addressed translate-off, typically for bootstrapping, in a
non-partitioned environment.

In a partitioned environment, real and physical memories have to be
distinguished, because the physical memory address, which previously meant
the real memory address, is no longer being used in that way because there is an
extra level of addressing in a partitioned environment.

To support any operating system, including AIX and Linux, which require real
mode code execution and the ability to present a real address space starting at 0
to each partition in the system, the logical memory concept is adopted. Logical
memory is an abstract representation that provides a contiguous memory
address to a partition (see Figure 1-3 on page 16). Multiple non-contiguous
physical memory blocks are mapped to provide a contiguous logical memory
address space. The logical address space provides the isolation and security of
the partition operating system from direct access to physical memory, allowing
the hypervisor (see “Hypervisor” on page 21) to police valid logical address
ranges assigned to the partition. The contiguous nature of the logical address
space is geared more to simplifying the hypervisor’s per-partition policing than it
is due to an operating system requirement. The operating system’s VMM handles
the logical memory as if it were physical memory in a non-partitioned
environment.
 Chapter 1. Logical partitioning overview 15

Figure 1-3 Non-contiguous mapping

We also use the following terms throughout this redbook:

Physical memory block (PMB) The physically contiguous memory block unit
size of 256 MB manipulated inside the global
firmware. A PMB ID is unique throughout the
system.

Logical memory block (LMB) The memory block unit size of 256 MB seen
from the partitions. An LMB ID is unique inside
a partition. An LMB is associated to a PMB.
Therefore, a partition can have the same LMB
IDs as other partitions. However, the same
LMB IDs for different partitions are associated
to different PMBs.

Partition 1
24 GB

0

24 GB

R
ea

l m
em

or
y

ad
dr

es
s

of
 P

ar
tit

io
n

1

0

MAX

Ph
ys

ic
al

 m
em

or
y

ad
dr

es
s

0

24 GB

Logical memory
address of Partition 1
16 The Complete Partitioning Guide for IBM Eserver pSeries Servers

Chapter 2. Partitioning implementation
on pSeries servers

This chapter explains the partitioning implementation on pSeries servers in the
following sections:

� Partitioning implementation

� Partition resources

� I/O device assignment considerations

� Service authority

2

© Copyright IBM Corp. 2003. All rights reserved. 17

2.1 Partitioning implementation
In a partitioned environment, each partition must have exclusive access to its
assigned resources, but these resources also have to be strictly isolated from the
other partitions. To implement these two demands, several system components
have to work together to support the partitioning on partioning-capable pSeries
servers. We categorize these components into the four groups explained in the
following sections:

� 2.1.1, “Hardware” on page 18

� 2.1.2, “Firmware” on page 20

� 2.1.3, “Operating system: AIX 5L Version 5.1” on page 24

� 2.1.4, “Operating system: AIX 5L Version 5.2” on page 29

2.1.1 Hardware
To support partitioning on partioning-capable pSeries servers, in addition to the
HMC explained in 1.2.2, “IBM Hardware Management Console for pSeries
(HMC)” on page 8, the following hardware components have been newly
developed or enhanced.

POWER4 processor
The POWER4 processor is a highly reliable and high-performance processor.
Besides these characteristics, it also provides the following new functions to
support a partitioned environment:

� Hypervisor call

The POWER4 processor supports a special form of instructions. These
instructions are exclusively used by a new controlling firmware named
hypervisor. If an operating system instance in a partition requires access to
hardware, it first invokes the hypervisor using hypervisor calls. Hypervisor
allows privileged access to an operating system instance for dedicated
hardware facilities and includes protection for those facilities in the processor.
We discuss the hypervisor functions in 2.1.2, “Firmware” on page 20.
18 The Complete Partitioning Guide for IBM Eserver pSeries Servers

� Real mode offset (RMO) register

The POWER4 processor supports a real mode offset register (RMO). By
utilizing the RMO, the processor enables a mapping between the logical
memory of a partition and the physical memory. A logical memory address of
zero in a partition is registered at a fixed offset in the physical memory
address space. The RMO is the physical address that corresponds to the
beginning of a partition’s memory. This is the partition’s logical address 0.
This address offset is set in the RMO register when this partition is activated.
The processor adds the value stored in the RMO to each logical address fetch
and store made by code running in a partition.

The RMO address space only applies to Supervisor Real Mode Execution
(MSR.DR/MSR.IR = 0). The RMO defines the low logical memory (starting at
0) that the operating system (Supervisor) can directly address in
translation-off mode. Other logical address ranges (beyond the RMO) have no
interaction or dependency on the real mode offset register, because they
cannot be addressed in the translate-off mode.

� Real mode limit register (RML)

The POWER4 processor supports a real mode limit register (RML). By
utilizing the RML, the processor enables you to limit the range of real mode
addressing. The RML is the size of a partition’s memory region that is
accessed in real mode.

For further information about the POWER4 processor, refer to the following
publications:

� IBM Eserver pSeries 670 and pSeries 690 System Handbook, SG24-7040

� POWER4 Processor Introduction and Tuning Guide, SG24-7041

Interrupt controller
In a Full System Partition, the interrupt controller that manages the peripheral
interrupt requests to the processors works in a fashion similar to other pSeries
SMP servers. In a partitioned environment, the interrupt controller supports
multiple global interrupt queues, which can be individually programmed to send
external interrupts only to the set of processors allocated to a specific partition.
Therefore, the processors in a partition can only receive interrupt requests from
devices inside their partition.

PCI host bridges
In a Full System Partition, the PCI host bridges (PHBs) control the PCI slots in
the I/O drawers, as in conventional pSeries servers. The PHBs use translation
control entry (TCE) tables for the I/O address to memory address translation in
order to perform direct memory access (DMA) transfers between memory and
PCI adapters. The TCE tables are allocated in the physical memory.
 Chapter 2. Partitioning implementation on pSeries servers 19

In a partitioned environment, the hypervisor controls the DMA addressing to the
partition memory for all I/O devices in all partitions. The hypervisor uses central
TCE tables for all I/O devices, which are located outside of the memory of the
partitions (see Table 2-2 on page 38). The hypervisor can manage as many TCE
tables as it needs to. For example, each PCI host bridge could have its own TCE
table. The number of TCEs needed, and thus the number of TCE tables, is a
function of the number of PCI host bridges and slots. The address mapping is
protected on a per-adapter basis. The PCI host bridges used in
partioning-capable pSeries servers support the control of the PCI adapter DMA
by the hypervisor.

The key point is that a logical partition is only given a window of TCEs per I/O
slot necessary to establish DMA mappings for the device in that slot. The
hypervisor polices TCE accesses by the operating system to ensure they are to a
window owned by the partition.

Error handling
Various system components have the ability to limit the impact of hardware errors
on a single partition. Generally, this is achieved by turning most hardware error
reporting into bad data packets that flow back to the requesting processor. In
many cases, this causes a machine check interrupt, which may or may not be
recoverable within the partition. However, no other partitions are affected.

The enhancement includes the enhanced error handling (EEH) on the PCI bus.
For further explanation about EEH, refer to IBM Eserver pSeries 670 and
pSeries 690 System Handbook, SG24-7040.

Service processor
All the partioning-capable pSeries server models have an enhanced service
processor (compared to existing pSeries models). The major enhancement of
the service processor is a communication function with the IBM Hardware
Management Console for pSeries (see Figure 1-1 on page 11).

2.1.2 Firmware
Support of partitioning on partioning-capable pSeries servers requires a new
firmware named hypervisor, partition Open Firmware, and Run-Time Abstraction
Service (RTAS).
20 The Complete Partitioning Guide for IBM Eserver pSeries Servers

Hypervisor
The hypervisor firmware provides major additions to firmware functionality. It
implements the following three major categories of service calls:

� Virtual memory management

Hypervisor becomes the only function that can update the address translation
page tables in memory or the TCEs of the PHBs. In this way, hypervisor
controls the physical memory locations that can be accessed from within a
partition.

� Debug register and memory access

For the debug and dump environments, hypervisor provides controlled access
to protected facilities and memory locations.

� Virtual TTY support

Hypervisor provides input/output streams for a virtual TTY device that can be
used on the HMC.

Hypervisor is a passive object loaded into the first PMB in a partitioned
environment. It is loaded only when the system is running in a partitioned
environment and does not reserve a processor resource for itself. Hypervisor
only runs when a partition needs a service executed on its behalf, such as
creating a page table entry.

Hypervisor can be thought of as a call-back library used as any partition requires.
Care has been taken to minimize the number of instructions required to
implement the call-backs, so in most cases, AIX performance is identical for AIX
in a non-partitioned environment where call-backs are not made, versus AIX in a
partitioned environment where call-backs are required.

Hypervisor resides outside of the partition system memory in the first PMB at the
physical address zero. This first PMB is not usable by any of the partition
operating systems in a partitioned environment.

Open Firmware
A partioning-capable pSeries server has one instance of Open Firmware both in
the partitioned environment and the Full System Partition. Open Firmware has
access to all devices and data in the system. Open Firmware is started when the
system goes through a power-on reset. Open Firmware, which runs in addition to
the hypervisor in a partitioned environment, runs in two modes: global and
partition. Global and partition Open Firmware share the same firmware binary
stored in the flash memory.
 Chapter 2. Partitioning implementation on pSeries servers 21

In a partitioned environment, the partition Open Firmware runs on top of the
global Open Firmware instance. The partition Open Firmware is started when a
partition is activated. Each partition has its own instance of the partition Open
Firmware, and it has access to all the devices assigned to that partition, but has
no access to devices outside the partition in which it runs. Partition firmware
resides within the partition memory, but is replaced when AIX takes control; it is
just needed for the time necessary to load AIX into the partition system memory.
The global firmware resides with the hypervisor firmware in the first 256 MB of
the physical memory.

The global Open Firmware includes the partition manager component, which is
an application in the global Open Firmware that establishes partitions and their
corresponding resources (such as CPU, memory, and I/O slots), which are
defined in partition profiles. The partition manager manages the operational
partitioning transactions. It responds to commands from the service processor
external command interface that originate in the application running on the HMC.

The partition profiles are stored in and retrieved from nonvolatile random access
memory (NVRAM) by system firmware upon requests sent from the HMC. After
the profiles are set up, the system automatically returns to this configured state
on a power-on, even if the HMC is unavailable. The NVRAM also provides
separate address spaces, called slots, to store up to several partitions. These
slots, or partition IDs, are numbered from 1 to the supported maximum partition
number.

One non-virtual, hardware password (PAP) controls access to systems
management services (SMS), per system, which is generally presented on the
virtual terminal window. This is consistent with the system administrator having
access to the HMC.

To confirm the current firmware level, you can use the lscfg command as
follows:

lscfg -vp | grep -p 'Platform Firmware:'
 Platform Firmware:
 ROM Level.(alterable).......RH020930
 Version.....................RS6K
 System Info Specific.(YL)...U1.18-P1-H2/Y1
 Physical Location: U1.18-P1-H2/Y1

This example shows firmware level RH020930.

Note: The firmware level shown in this example is taken from our system,
which is using the internal firmware release.
22 The Complete Partitioning Guide for IBM Eserver pSeries Servers

Run-Time Abstraction Services (RTAS)
RTAS presents the same platform service calls (with a few exceptions) that are
presented in a non-partitioned environment, but have some underlying
implementation changes to properly handle multiple AIX images, including:

� RTAS calls are only serialized within a partition.

In general, RTAS operations are restricted to only those resources dedicated
to that partition, with an error code return for invalid requests.

� Multiple virtual operator panels for all partitions.

The information provided by operator panels in a traditional pSeries server
are represented on the HMC on a per-partition basis.

� Per-partition time-of-day clock values.

Time-of-day (TOD) is virtualized for each partition (including Full System
Partition). Each partition can set its own time and date using of the AIX date
mmddhhMMYYyy command.

� Restricted access to the per-partition NVRAM areas.

Each partition has its own segment of NVRAM for the storage of its
configuration variables, including a unique boot list for every partition. There is
also a unique segment of NVRAM for when the system is in Full System
Partition, with its own boot list. For example, there are up to 16 partition boot
lists and a 17th Full System Partition boot list on the pSeries 670 equipped
with 7040-61D I/O drawers.

� Partition reset capabilities.

Previous pSeries servers had a service processor-based serial port snoop
function that allowed remote reset of an unresponsive AIX image. The service
processor would snoop the serial port data stream (which is the AIX console),
but when AIX is not longer reachable through the keystrokes, and when a
certain special command sequence was seen, the service processor would
reset the system.

On partioning-capable pSeries servers, with the HMC, each partition has its
own, very powerful, reset capabilities: A soft reset that causes the partition
operating system to get a PowerPC reset interrupt, and a hard reset that is
the equivalent of a virtual power off of a partition (see 6.5, “Reset the
operating system in a partition” on page 198). For the hard reset, no matter
how disabled the partition operating system is, the hard reset will bring all the
processors out of the partition and back to the global firmware partition
manager so that the partition is ready to be reactivated.
 Chapter 2. Partitioning implementation on pSeries servers 23

To confirm the current Open Firmware RTAS version, you can use the lsattr
command as follows:

lsattr -El sys0 | grep rtasversion
rtasversion 1 Open Firmware RTAS version False

This example shows RTAS Version 1.

2.1.3 Operating system: AIX 5L Version 5.1
The operating system in a partition must use the hypervisor calls in place of
direct access to the hardware and address mapping facilities in conventional
pSeries machines. An operating system without partition-enabled functions does
not work in a partition.

If you are going to use AIX as a partition-enabled operating system, you will need
to use AIX 5L Version 5.1 with the 5100-01 Recommended Maintenance Level
plus APAR IY39794. From the operational point of view, there are a few
noticeable differences in AIX when running inside a partition, as shown in
Figure 2-1 on page 25:

� There is no physical console on the partition, unless you assign it explicitly.
The built-in native serial ports1 on the partioning-capable pSeries server can
be assigned together only to one partition at the same time. To provide an
output for console messages, and also for diagnostic purposes, the firmware
implements a virtual TTY, called virtual terminal (see “Virtual terminal device
support” on page 26), that is seen by AIX as a standard TTY device. Its output
is streamed to the HMC. The AIX diagnostics subsystem uses this virtual TTY
as a system console.

� Certain platform operations are constrained in partitions. For example, in a
non-partitioned environment, platform firmware updates can be performed
from AIX by the root user. Because firmware updates may affect all partitions
in a partitioned environment, the administrator has the ability to specify that a
particular partition has this authority. Within that partition, firmware updates
will work the same way they do for a non-partitioned environment. See 2.4,
“Service authority” on page 51 for more information.

Besides these considerations, AIX runs inside a partition the same way it runs on
a stand-alone pSeries server. No difference is observed either from the
application or the administrator’s point of view.

1 The pSeries 655 has no built-in native serial port.

Note: The 32-bit AIX kernel supports up to 96 GB of physical memory size
and 32-way processors, regardless of whether it is in a partition or in a Full
System Partition.
24 The Complete Partitioning Guide for IBM Eserver pSeries Servers

Partitions are very transparent to AIX applications. In fact, third-party applications
only need to be certified for a level of AIX that runs in a partition, and not for the
partitioned environment itself. In this way, a partition on a partioning-capable
pSeries server can be viewed as just another pSeries hardware platform
environment.

Figure 2-1 Interaction of AIX and firmware in a partition

Beginning with AIX 5L Version 5.1 with the 5100-01 Recommended Maintenance
Level plus APAR IY39794, which is required for the support of partitioning on the
pSeries 690, the following two filesets are provided:

lslpp -qcl | grep LPAR | awk -F: '{print $2, "\t", $3, "\t", $7}' | uniq
devices.chrp_lpar.base.ras 5.1.0.15 CHRP LPAR RAS Support
devices.chrp_lpar.base.rte 5.1.0.15 Base CHRP LPAR Devices

These two filesets support the following functions, which are also shown in
Figure 2-1:

� devices.chrp_lpar.base.ras

Kernel debugger and dump function.

� devices.chrp_lpar.base.rte

Virtual TTY device driver. We explain this fileset in the following section.
 Chapter 2. Partitioning implementation on pSeries servers 25

Please note that the Virtual Memory Manager (VMM) enhancement to support
the partitioning is provided as an update to the AIX kernel fileset (bos.mp for the
32-bit SMP kernel and bos.mp64 for the 64-bit kernel); therefore, no separate
fileset is provided for this function.

Virtual terminal device support
Example 2-1 shows the virtual terminal and its parent device. When configured in
a partition, the virtual terminal is configured with a normal asynchronous device
port tty0. The parent device sa0 is shown as LPAR Virtual Serial Adapter.

Example 2-1 Virtual terminal and its parent device

lsdev -Cc tty
tty0 Available -00 Asynchronous Terminal
lsdev -Cl tty0 -F parent
sa0
lsdev -Cl sa0
sa0 Available LPAR Virtual Serial Adapter

The virtual serial adapter sa0 is defined in the CuDv ODM class, as shown in
Example 2-2.

Example 2-2 Customized device definition for the virtual serial adapter

odmget -q name=sa0 CuDv

CuDv:
 name = "sa0"
 status = 1
 chgstatus = 1
 ddins = "vconsdd"
 location = ""
 parent = ""
 connwhere = ""
 PdDvLn = "adapter/lpar/vcon"
26 The Complete Partitioning Guide for IBM Eserver pSeries Servers

This definition is taken from the PdDv ODM class and then customized. The
predefined device definitions for this device are shown in Example 2-3.

Example 2-3 Predefined device definition for the virtual serial adapter

odmget PdDv | grep -i lpar
 subclass = "lpar"
 uniquetype = "adapter/lpar/vcon"
odmget -q subclass=lpar PdDv

PdDv:
 type = "vcon"
 class = "adapter"
 subclass = "lpar"
 prefix = "sa"
 devid = ""
 base = 0
 has_vpd = 0
 detectable = 0
 chgstatus = 1
 bus_ext = 0
 fru = 0
 led = 1262
 setno = 158
 msgno = 1
 catalog = "devices.cat"
 DvDr = "vconsdd"
 Define = "/etc/methods/define -n"
 Configure = "/etc/methods/cfgvcon"
 Change = "/etc/methods/chgvcon"
 Unconfigure = "/etc/methods/ucfgvcon"
 Undefine = "/etc/methods/undefine"
 Start = ""
 Stop = ""
 inventory_only = 0
 uniquetype = "adapter/lpar/vcon"
 Chapter 2. Partitioning implementation on pSeries servers 27

The configuration method of this device is /etc/methods/cfgvcon, which is a
symbolic link to /usr/lib/methods/cfgvcon. This file is included in the
devices.chrp_lpar.base.rte fileset, as shown in Example 2-4. The fileset level has
to be 5.1.0.15 or later.

Example 2-4 Device support fileset for virtual serial adapter

ls -l /etc/methods/cfgvcon
-r-x------ 1 root system 9860 Aug 05 2001 /etc/methods/cfgvcon
ls -ld /etc/methods
lrwxrwxrwx 1 root system 16 Mar 26 10:08 /etc/methods ->
/usr/lib/methods
ls -l /usr/lib/methods/cfgvcon
-r-x------ 1 root system 9860 Aug 05 2001
/usr/lib/methods/cfgvcon
lslpp -w /usr/lib/methods/cfgvcon
File Fileset Type
--
/usr/lib/methods/cfgvcon

 devices.chrp_lpar.base.rte File
lslpp -L devices.chrp_lpar.base.rte
Fileset Level State Type Description (Uninstaller)
--
devices.chrp_lpar.base.rte

 5.1.0.15 C F Base CHRP LPAR Devices

For usage and functionality of the virtual terminal, see 4.5, “Virtual terminal
window” on page 146.

Paging performance in a partitioned environment
An operating system in a partition has slightly degraded page table management
performance, because it must use hypervisor services for page table
management. An operating system in a Full System Partition has full use of all
the system memory and native virtual memory management performance. In
high volume paging environments, system performance is slightly less than
native performance. In normal paging environments, there is no observable
difference in performance.

Fast reboot in a partitioned environment
Rebooting an operating system instance in a partition is much faster than a full
system reboot of a comparable conventional pSeries system because less
hardware initialization is required.

Partition reboots are merely a re-establishment of the pSeries Open Firmware
OS boot loader environment and, by nature, are very quick. A Full System
Partition reboot repeats all the hardware initialization phases of the processors,
28 The Complete Partitioning Guide for IBM Eserver pSeries Servers

caches, and memory. These phases are done by the service processor, and the
I/O drawers and I/O adapters are done by the system firmware. When
configuring all system resources in a single partition, hypervisor remains resident
in memory. This enables the extremely rapid re-establishment of the boot
environment, but requires the reservation of the first PMB by the hypervisor (see
2.2.4, “Reserved memory regions in a partitioned environment” on page 35).

Full System Partition reboots still have full system initialization phases and are
almost comparable to traditional pSeries reboot times.

Affinity logical partitions
On the pSeries 670 and pSeries 690, another type of partition, called affinity
logical partition, has been supported with the following configuration:

� AIX 5L Version 5.1 with 5100-02 Recommended Maintenance Level or later

� HMC software Release 2, Version 1 or later

� April 2002 system microcode update or later

Affinity logical partitions are useful for running CPU and memory-intensive
applications, typically found in the High Performance Computing (HPC) area, on
these server models. For further information about affinity logical partitions, see
6.2, “Affinity logical partitions” on page 183.

Large page support
Although AIX uses a fixed-size 4 KB page regardless of the release, an
enhancement, called large page, was introduced in AIX 5L POWER for Version
5.1 with 5100-02 Recommended Maintenance Level. Exploiting the large page
function, memory intensive applications, such as HPC and relational database
management system (RDBMS) applications, can realize performance benefits,
because less overhead is required by the hardware and VMM. For further
information about large pages, refer to the AIX Support for Large Pages white
paper found at:

http://www.ibm.com/servers/aix/whitepapers/large_page.html

2.1.4 Operating system: AIX 5L Version 5.2
In addition to all the enhancements and components provided in the former
releases, AIX 5L Version 5.2 provides many enhancements, which are explained
in AIX 5L Differences Guide, SG24-5765.

In this section, we briefly introduce some of enhancements that are covered in
this redbook.
 Chapter 2. Partitioning implementation on pSeries servers 29

http://www.ibm.com/servers/aix/whitepapers/large_page.html
http://www.ibm.com/servers/aix/whitepapers/large_page.html

Dynamic logical partitioning
Starting with Version 5.2, AIX supports dynamic logical partitioning, which is a
function to allow a partition whose resources are dynamically added and
removed without requiring a partition reboot. Both 32- and 64-bit kernels running
in a partition (except for the Full System Partition) support the dynamic logical
partitioning function.

The support of dynamic logical partitioning also provides the following features:

� Dynamic processor deallocation with a minimum of two processors

AIX supports the dynamic processor deallocation2 function starting with
Version 4.3.3, which can dynamically take a processor off-line when an
internal threshold of recoverable errors on the processor is exceeded. Before
AIX 5L Version 5.2, an SMP system or a partition had to have at least three
processors, while an SMP system or a partition installed with AIX 5L Version
5.2 requires only two processors, in order to support dynamic processor
deallocation.

� Capacity Upgrade on Demand (CUoD)

CUoD is a feature that allows customers to dynamically activate pre-installed
but inactive processors by purchasing the license key without requiring a
system reboot.

For further information about CUoD, refer to IBM Eserver pSeries 670 and
pSeries 690 System Handbook, SG24-7040.

We provide a detailed explanation of dynamic logical partitioning in Chapter 3,
“Dynamic logical partitioning” on page 53.

Partition on Demand
The system microcode Version 3.0 provides the ability to plug adapters into
empty slots, define a new partition at the HMC, and activate and boot a
previously nonexistent partition, while other partitions are running, without a
power recycle of the system. This functionality, called Partition on Demand,
obviously needs empty PCI slots.

Previously, you could not do this because the partition boot did not change the
power state of PCI slots. However, you could power on PCI slots on existing
partitions with AIX PCI Hot Plug, but not spontaneously create a new partition,
including a new boot device, and activate that new partition with all the other
partitions running. One limitation is that when you define your partition, you will
not see the type of PCI cards (SCSI, network, and so on) present on the HMC,
because the PCI slots are still powered off. You can also do a DLPAR I/O slot
remove and then build a new partition.

2 The dynamic processor deallocation function is also known as CPU Guard.
30 The Complete Partitioning Guide for IBM Eserver pSeries Servers

You can always power off the central electronics complex (CEC) or halt partitions,
change I/O assignments, and restart, but this is quite severe on the running
systems and not as common. With DLPAR in the system microcode Version 3.0
and AIX 5L Version 5.2, you can drop processors, memory, and I/O from an
existing partition or set of partitions using DLPAR remove, and then spawn one or
more new partitions that did not exist before. Spontaneous partitions up to a
memory size of 16 GB are supported. With a memory size greater than 16 GB,
two contiguous LMBs are required for the spontaneous partition's page table,
and all the LMBs shed by the partition or partitions could all be discontiguous.
Although it is possible to create a spontaneous partition with a memory size
greater than 16 GB, Partition on Demand does not guarantee that it is always
possible.

2.2 Partition resources
The logical partitioning function on partioning-capable pSeries servers allows
you to assign processors, physical memory, and I/O devices to partitions. In the
following section, we explain the rules of resource assignment.

2.2.1 Partition and system profiles
The information about resources assigned to a partition is stored in a partition
profile. Each partition can have multiple partition profiles. By switching from one
partition profile to another, you can change how resources are assigned. For
example, you can assign relatively small resources to small online transactions
on weekdays, and large resources to high-volume batch transactions on
weekends.

In a static environment, to switch partition profiles, you have to shut down the
operating system instance that is running in the partition and stop the partition
(deactivate). You can also define a system profile (for administrative purposes)
as an optional task. By using a system profile, you can power on multiple
partitions in a specific order in one operation.

A description of the two profiles follows.

Partition profile
A partition profile stores the information about the assigned resources for a
specific partition, such as processor, memory, and I/O devices. Each partition
must have a unique name and at least one partition profile. A partition can have
several partition profiles, but it reads only one partition profile when it is started
(activated). You select a partition profile when you activate the partition;
 Chapter 2. Partitioning implementation on pSeries servers 31

otherwise, the default partition profile3 is used. You can designate any partition
profile as the default partition profile.

System profile
A system profile provides a collection of partition profiles that should be started
at the same time. The partition profiles are activated in the order of the list
defined in the system profile. You can also use system profiles to start the Full
System Partition.

Both types of profiles are stored in the NVRAM of the partioning-capable pSeries
server. Although you can create many partition profiles and system partition
profiles, the actual number you can create depends on your profile configuration
because both types of profiles share the same memory area in the NVRAM.

We summarize the relationship among partitions, partition profiles, and system
profiles in Figure 2-2 on page 33. In this figure, partitions A, B, and C have three,
one, and two partition profiles, respectively. Each partition has the default
partition profile represented with a check mark. The system profile X is
associated with partition profiles A1, B1, and C2; also, the system profile Y is
associated with partition profiles A1 and C1. Keep in mind the following points:

� You do not have to associate all the partition profiles with system profiles. In
this example, the partition profiles A2 and A3 are not associated with any
system profile.

� It is possible to associate a partition profile to multiple system profiles. In this
example, the partition profile A1 is associated with system profile X and Y.

3 If you have only one partition profile for a partition, it is always the default partition profile.
32 The Complete Partitioning Guide for IBM Eserver pSeries Servers

Figure 2-2 Partitions, partition profiles, and system profiles

To create partition profiles and system profiles, use the IBM Hardware
Management Console (HMC) for pSeries, explained in 6.1, “Partition and system
profile tasks” on page 166.

2.2.2 Three assignable resource types
A partition profile stores the information of the three types of resources: CPU,
memory, and I/O slots. Partition profiles store the information of the specific PCI
slots assigned in the I/O drawers where the I/O devices are possibly plugged in.

Processors
Each installed and configured processor in the partioning-capable pSeries server
can be assigned to a partition. You do not have to specify the precise location of
the assigned processors in the partition profile, because the system selects the
resources automatically. At least one processor must be assigned to each
partition. Sharing processors between multiple active partitions is not possible.

Partition profile A1

Partition profile A2

Partition profile A3

Partition profile B1

Partition profile C1

Partition profile C2

Partition A

Partition B

Partition C

FullSystemPartition

System profile X

Partition profile A1

Partition profile B1

Partition profile C2

System profile Y

Partition profile A1

Partition profile C1

Default partition profile

Note: Partition profiles do not store the information about specific I/O devices
and PCI adapters.
 Chapter 2. Partitioning implementation on pSeries servers 33

Memory
In a partitioned environment, some of the physical memory areas are reserved
by several system functions to enable partitioning in the partioning-capable
pSeries server (see 2.2.4, “Reserved memory regions in a partitioned
environment” on page 35). You can assign unused physical memory to a
partition. You do not have to specify the precise address of the assigned physical
memory in the partition profile, because the system selects the resources
automatically.

The minimum amount of physical memory for each partition is 256 MB4. You can
assign further physical memory to partitions in increments of 256 MB.

The AIX Virtual Memory Manager (VMM) manages the logical memory within a
partition as it does the real memory in a stand-alone pSeries server. The
hypervisor and the POWER4 processor manage access to the physical memory.

The physical memory allocation is not a simple concept. For further information
about it, see 2.2.5, “Physical memory allocation to partitions” on page 38.

I/O slots
I/O devices are assignable to partitions on a PCI slot (physical PCI connector)
basis. This means that it is not the PCI adapters in the PCI slots that are
assigned as partition resources, but the PCI slots into which the PCI adapters
are plugged.

To install an operating system, you have to assign at least one device adapter,
typically an SCSI adapter, that is able to boot the operating system, and an
adapter to access the install media (see “Boot devices” on page 45).

Once installed, you need at least one device adapter5 connected to the boot disk
or disks. For application use and system management purposes, you also have
to assign at least one network adapter.

You can allocate slots in any I/O drawer on the system. We recommend that you
assign more PCI slots than required for the number of adapters in the partition,
even if these PCI slots are not populated with PCI adapters. This provides you
with the flexibility to add PCI adapters into the empty slots of an active partition,
using the PCI Hot Plug insertion/removal capability.

For detailed information about the I/O slots assignment, see 2.3, “I/O device
assignment considerations” on page 43.

4 On pSeries 670 and pSeries 690 with a firmware level earlier than system microcode Version 3.0,
the minimum amount of physical memory for each partition is 1 GB.
5 AIX installed in a partition can boot from SCSI, SSA, and Fibre Channel attached disks.
34 The Complete Partitioning Guide for IBM Eserver pSeries Servers

2.2.3 Three kinds of values for resource assignment
In a partition profile, you need to specify three kinds of values for each resource.
For CPU and memory, specify minimum, desired, and maximum values. For I/O
slots, specify the required and desired values.

If any of the three types of resources cannot satisfy the specified minimum and
required values, the activation of a partition will fail. If the available resources
satisfy all the minimum and required values, but do not satisfy desired values, the
activated partition will get as many of the resources as are available.

The maximum value6 is used to limit the maximum CPU and memory resources
when dynamic logical partitioning operations are performed on the partition.

For a detailed operation example for the resource assignment, see 6.1, “Partition
and system profile tasks” on page 166.

2.2.4 Reserved memory regions in a partitioned environment
In a partitioned environment, some of the physical memory regions are reserved
by several system functions to enable partitioning on partioning-capable pSeries
servers. Before understanding the mapping between the logical memory address
of a partition and the physical memory address, you have to consider the
following memory regions:

� Hypervisor

� Partition page tables

� Translation control entry (TCE) tables

These three memory regions are not usable for the physical memory allocation of
the partition.

Hypervisor
In a partitioned environment, hypervisor is loaded into the first PMB at the
physical address zero and reserves the PMB. Although hypervisor does not
occupy the whole memory block, this first PMB is reserved and cannot be used
for any other purpose.

6 The maximum value is not shown and is unavailable if the HMC software level is earlier than
Release 3, Version 1.

Note: If you are going to install operating systems that do not support dynamic
logical partitioning, you should specify the same values for both the desired
and maximum values.
 Chapter 2. Partitioning implementation on pSeries servers 35

Partition page tables
The AIX Virtual Memory Manager (VMM) uses hypervisor services to manage
the partition page table. The AIX VMM communicates the desired
virtual-to-logical mapping, and hypervisor translates that into the
virtual-to-physical mapping within the page table.

The partition table resides outside of the physical address range mapped to the
logical address of the partition. Partition page tables are additional memory that
is required for a partition to operate, in addition to the total logical memory size of
a partition. The partition page table size is determined to be four page table
entries per 4096 bytes real page. Each page table entry has a size of 16 bytes.
Therefore, the partition page table is an amount of contiguous physical memory
blocks equal to 1/64 of the logical memory address range of the partition,
rounded up to the nearest power of two, and it must be on an address alignment
equal to its size. This relationship is shown in Table 2-1.

Table 2-1 Partition page table size

Note: This memory region is not allocatable to any partitions.

Partition memory
size in GB

Partition page
table size

Alignment Number of
PMBs

0.25 4 MB 4 MB 1

0.5 8 MB 8 MB 1

0.75 - 1 16 MB 16 MB 1

1.25 - 2 32 MB 32 MB 1

2.25 - 4 64 MB 64 MB 1

4.25 - 8 128 MB 128 MB 1

8.25 - 16 256 MB 256 MB 1

16.25 - 32 512 MB 512 MB 2

32.25 - 64 1 GB 1 GB 4

64.25 - 128 2 GB 2 GB 8

128.25 - 256 4 GB 4 GB 16

Note: Partition memory size less than 1 GB requires system microcode
Version 3.0 or later on pSeries 670 and pSeries 690.
36 The Complete Partitioning Guide for IBM Eserver pSeries Servers

For example, a 2.5 GB partition would have a page table space of 39 MB, but
when rounded up, it would consume 64 MB of space, even if only 39 MB were
used. The partition page table has to be allocated in contiguous physical
memory, and the address alignment would have to be equal to its size. For
example, the 64 MB page table needs to be aligned on an address that is an
integer multiple of 64 MB.

Partition page tables are placed in the first available PMB that can house the
table. If there is enough space to hold the partition page table in that PMB, it will
be placed there. Otherwise, the next available PMB is used.

Translation control entry (TCE) tables
In a Full System Partition, TCE tables are controlled by the operating system, as
in conventional pSeries systems. In a partitioned environment, the operating
system uses hypervisor services to manage the TCE tables. The operating
system communicates the desired I/O bus address to logical mapping, and the
hypervisor translates that into the I/O bus address to physical mapping within the
specific TCE table. The hypervisor needs a dedicated memory region for the
TCE tables in order for the I/O address to partition memory address translation to
perform direct memory access (DMA) transfers to PCI adapters. Each PCI slot
that can be assigned to a partition is isolated underneath a PCI-to-PCI bridge.
This PCI-to-PCI bridge is programmed with the window of allowable DMA
addresses from this slot. This window corresponds to a window of TCEs
allocated from the parent PCI host bridge (PHB) TCE table. Therefore, TCE
tables can be shared across partitions when slots under the same PHB are
assigned to different partitions.

An individual TCE table cannot be larger than 8 MB, which contains 220 8-byte
entries capable of mapping 4 K entries each, which results in a 4 GB physical
address range that can be mapped by a single TCE table. An individual PHB is
programmed to index a single TCE table.

In a partitioned environment, TCE tables are allocated at the top of the physical
memory and extend downward. The total size of TCE tables is based on the
number of PHBs; therefore, it depends on the configured I/O on the server (see
Table 2-2 on page 38).

Note: This memory region is allocated to a partition, but is not usable by an
operating system.

Note: On the other partioning-capable pSeries server models, TCE tables
always occupy one PMB located at the top of the physical memory.
 Chapter 2. Partitioning implementation on pSeries servers 37

Table 2-2 TCE table sizes

The followin points summarize this information:

� The first PMB located at physical address 0 is always occupied by hypervisor.

� Because of the dynamic nature of partition tables, the actual allocation
address for the page tables may vary.

� The number of configured I/O drawer enablement cards and the number of
processors affects the total memory requirement.

2.2.5 Physical memory allocation to partitions
As explained in 1.4, “Four terms regarding memory” on page 13, a partition
references contiguous logical memory, and the logical memory is mapped by
multiple non-contiguous physical memory blocks. These physical memory blocks
are composed of a real mode offset (RMO) region and possibly multiple logical
mode regions, as shown in Figure 1-3 on page 16.

Besides the reserved memory regions described in 2.2.4, “Reserved memory
regions in a partitioned environment” on page 35, the rest of the physical
memory is available to be allocated to your partitions, as shown in Figure 2-3.

The RMO region is actually required by any operating system in the partition that
has any real mode execution dependency on low memory, such as the PowerPC

Server type Number of SCM or
MCMs

Total size of TCE
tables in MB

Number of I/O
features

p630 All configs 256 All configs

p650 1-4 256 1 primary with or
without daughter
card

p650 3-4 512 2 primary with 1 or 2
daughter cards

p690 1-4 256 1 I/O book or up to 2
in 2 MCM
configuration

p690 3-4 512 2 I/O books

p690 3-4 768 3 I/O books

p690 4 1024 4 I/O books

Note: This memory region is not allocatable to any partitions.
38 The Complete Partitioning Guide for IBM Eserver pSeries Servers

interrupt vector real memory addresses. The required RMO region size is where
things become more operating system-specific. The VMM in AIX 5L Version 5.1
requires an RMO region large enough to hold all of its real mode data structures
whose size scaled with the amount of total real memory.

In AIX 5L Version 5.2, this dependency is removed. AIX 5L Version 5.2 (as with
other operating systems that implement virtual memory) only requires an RMO
region large enough to satisfy the remaining real mode execution dependencies.
The largest of these for AIX is now the boot strapping of the partition, because
the AIX boot loader runs in real mode and manipulates the boot image contents
(kernel, RAM file system, and ODM) in real mode, which must then all fit within
the RMO region.

Mapping information between a logical and a physical memory address in a
logical memory region is stored in a partition page table. The rest of the logical
memory is mapped by possible multiple logical regions. Multiple logical mode
regions do not have to be contiguous.

Figure 2-3 Real and logical mode regions

Partition 1
18 GB

Real mode
region

TCE

0

18 GB

Lo
gi

ca
l m

em
or

y
ad

dr
es

s
of

 P
ar

tit
io

n
1

0

16 GB

32 GB

MAX

Ph
ys

ic
al

 m
em

or
y

ad
dr

es
s

Logical mode
regions

Hypervisor

16 GB

256 MB

256 MB

Occupied for other
partitions or page tables
 Chapter 2. Partitioning implementation on pSeries servers 39

The following two algorithms are for the RMO region size allocation and
alignment:

� Scaled RMO region size allocation

� Fixed RMO region size allocation

Scaled RMO region size allocation
The scaled RMO region size allocation algorithm uses different sizes depending
on the maximum logical memory size of the partition, as shown in Table 2-3.

Table 2-3 Logical and associated real memory sizes in scaled RMO

The following points summarize scaled RMO region size allocation:

� There is only one RMO region mapped to logical memory.

� An RMO region has to be contiguous.

� An RMO region is always mapped to logical memory, starting from address 0
of the logical memory address space.

Note: The fixed RMO region size allocation algorithm is used only when:

� A partition is installed with AIX 5L Version 5.2 or later, or Linux.

� The partition is activated with the partition profile that is selected with the
Small Real Mode Address Region check box (see Figure 6-5 on
page 170).

If the partition does not satisfy this requirement, it always uses the scaled
RMO region size allocation algorithm. The two algorithms can coexist on a
partioning-capable pSeries server.

Maximum logical
memory size

RMO region size Assigned PMBs

256 MB - 4 GBa

a. The maximum partition size of less than 1 GB is only support-
ed on the pSeries 670 and pSeries 690 with the post system mi-
crocode Version 3.0.

256 MB 1

4.25 GB - 16 GB 1 GB 4

16 GB - 256 GB 16 GB 64

More than 256 GB 256 GB 1024
40 The Complete Partitioning Guide for IBM Eserver pSeries Servers

� The RMO region size is 1 GB or 16 GB, as follows:

– If the partition logical memory size is smaller than or equal to 16 GB, a 1
GB size RMO region is used.

– If the partition logical memory size is greater than 16 GB, a 16 GB size
RMO region is used.

� The RMO region must be aligned in the physical memory address space
using the following rules:

– If a 1 GB size RMO region is used, it has to be aligned at the address in
multiplies of 1 GB (1 GB, 2 GB, 3 GB, and so on).

– If a 16 GB size RMO region is used, it has to be aligned at the address in
multiples of 16 GB (16 GB, 32 GB, 48 GB, and so on).

The RMO region is required by AIX VMM. AIX 5L Version 5.1 requires processor
real mode memory relocation to be at least 1/16 of the total partition logical
memory size as an RMO region. Upon activation of a partition, the offset starting
address is set in the RMO register. The RMO region range is set in the RML
register (see “POWER4 processor” on page 18). The RMO region must be one
contiguous memory space, aligned on a 1 GB or 16 GB boundary.

Fixed RMO region size allocation
The fixed RMO region size allocation algorithm uses a fixed size of 256 MB (a
PMB) regardless of the maximum logical memory size. It can be aligned at any
physical memory address in multiplies of 256 MB.

Summary
In Figure 2-3 on page 39, partition 1 installed with AIX 5L Version 5.1 is assigned
18 GB memory; therefore, the logical address ranges from 0 to 18 GB. A 16 GB
RMO region is mapped at the logical address 0 from the physical address of 16
GB. The rest of logical memory (18 GB - 16 GB = 2 GB) is mapped by eight
logical memory regions. These eight logical memory regions are scattered in
several physical memory address ranges. Note that we assume that the physical
memory areas shown as black rectangles are already occupied by other
partitions or page tables. If these memory areas are not used before partition
activation, multiple logical memory regions can be allocated contiguously.

We summarize the maximum possible number of partitions less or greater than
16 GB with the total memory size in Table 2-4 on page 42. It also provides the
reserved and allocatable memory to partitions.

Note: For partitions running AIX 5L Version 5.1, do not select the Small Real
Mode Memory Region check box (see Figure 6-5 on page 170).
 Chapter 2. Partitioning implementation on pSeries servers 41

Table 2-4 Physical memory size and number of allocatable partitions

The following notes apply to Table 2-4:

1. In column 4 and 5, a difference is made between partitions with memory less
or equal to 16 GB and greater than 16 GB, respectively.

2. All partition maximums are subject to availability of sufficient processor,
memory, and I/O resources to support that number of partitions. For example,
a system with only eight processors can only support a maximum of eight
partitions.

Total
memory

Approximate
memory
overhead

Approximate
usable partition
memory

Maximum
number of
partitions

� AIX 5L
Versions
5.1, 5.2

� Pre-10/2002
 firmware

(Notes® 1, 2, and
3)

Maximum
number of
partitions

� AIX 5L
Version 5.1

� Post-10/2002
firmware

(Notes 1, 2, and 4)

Maximum
number of
partitions

� AIX5L
Version 5.2

� Post-10/2002
firmware

(Notes 2 and 5)

4 GB .75 - 1 GB 3 - 3.25 GB 2 and 0 13 and 0 13

8 GB .75 - 1 GB 7 - 7.25 GB 6 and 0 16 and 0 16

16 GB .75 - 1 GB 15 - 15.25 GB 14 and 0 16 and 0 16

24 GB 1 - 1.25 GB 22.75 - 23 GB 16 and 0 16 and 0 16

32 GB 1 - 1.25 GB 30.75 - 31 GB 16 and 0 16 and 0 16

40 GB 1.25 - 1.75 46.25 - 46.75 GB 16 and 1 16 and 1 16

48 GB 1.25 - 1.75 GB 46.25 - 46.75 GB 16 and 1 16 and 1 16

64 GB 1.5 - 2 GB 62 - 62.5 GB 16 and 2 16 and 2 16

80 GB 2G - 2.5 GB 93.5 - 94 GB 16 and 3 16 and 3 16

96 GB 2 - 2.5 GB 93.5 - 94 GB 16 and 4 16 and 4 16

128 GB 2.5 - 3.5 GB 124.5 - 125.5 GB 16 and 6 16 and 6 16

160 GB 3.5 - 4.5 GB 187.5 to 188.5 GB 16 and 8 16 and 8 16

192 GB 3.5 - 4.5 GB 187.5 to 188.5 GB 16 and 10 16 and 10 16

224 GB 5 - 6 GB 250 to 251 GB 16 and 12 16 and 12 16

256 GB 5 - 6 GB 250 to 251 GB 16 and 14 16 and 14 16
42 The Complete Partitioning Guide for IBM Eserver pSeries Servers

3. These rules apply to systems running partitions with any version of AIX or
Linux, if the firmware and HMC release levels are earlier than the 10/2002
release level.

4. These rules apply to systems running partitions with AIX 5L Version 5.1, if the
firmware and HMC release levels are at the 10/2002 release level or later.
The HMC partition profile option for Small Real Mode Address Region should
not be selected for AIX 5L Version 5.1 partitions. These numbers reflect the
maximum when running only AIX 5L Version 5.1 partitions, but AIX 5L Version
5.1 and AIX 5L Version 5.2 partitions can be mixed, and may allow for
additional partitions to be run (up to the maximum of 16).

5. These rules apply to systems running partitions with AIX 5L Version 5.2 (or
later) or Linux, if the firmware and HMC release levels are at the 10/2002
release level or later. The HMC partition profile option for the Small Real
Mode Address Region check box should be selected for these partitions.

The following two points summarize the physical memory allocation:

� For systems with 16 GB or less of physical memory installed, this rule is valid:

The maximum number of partitions = Total memory (in GB) - 2.

� You have to install more than 32 GB of physical memory on the
partioning-capable pSeries server to activate AIX 5L Version 5.1 partitions
greater than 16 GB. Because the 16 GB real mode region should be aligned
on physical address 16 GB, 32 GB, 48 GB, and so on, in 32 GB memory
configuration, the physical memory addresses 16 GB to 32 GB is partially
used by TCE and cannot be used to allocate the 16 GB real mode region.

2.3 I/O device assignment considerations
Assignment of I/O slots to partitions is a relatively easy task once you understand
the following considerations. The hardware architecture of each
partioning-capable pSeries server model also influences some aspects of it.

For detailed information about each of the partioning-capable pSeries server
models, refer to the following publications:

� pSeries 630 Model 6C4 and pSeries 630 Model 6E4

pSeries630 Models 6C4 and 6E4 Technical Overview and Introduction

Available at:

http://techsupport.services.ibm.com/server/library

� pSeries 650 Model 6M2

pSeries650 Model 6M2 Technical Overview and Introduction
 Chapter 2. Partitioning implementation on pSeries servers 43

http://techsupport.services.ibm.com/server/library
http://techsupport.services.ibm.com/server/library

Available at:

http://techsupport.services.ibm.com/server/library

� pSeries 670 and pSeries 690

IBM Eserver pSeries 670 and pSeries 690 System Handbook, SG24-7040

2.3.1 Media devices
If your installation media is removable media (CD-ROM, DVD-RAM, 4 mm tape,
and so on), the corresponding devices should be configured. However, the way
of configuring removable media devices depends on the hardware architecture of
partioning-capable pSeries servers as described here:

� pSeries 630 Model 6C4 and pSeries 630 Model 6E4

An internal IDE CD-ROM (FC 2633) or DVD-ROM (FC 6634) device can be
configured on these models. However, there are several device-reassignment
operations required on the HMC in order to use these devices as the
installation media device on these models if you run multiple partitions. You
can also configure the following SCSI-attached removable media devices on
these models7:

– FC 2623: DVD-RAM drive (4.7 GB per surface)
– FC 6120: 8 mm 80/160 GB tape drive
– FC 6134: 8 mm 60/150 GB tape drive
– FC 6158: 4 mm 20/40 GB tape drive

� pSeries 650 Model 6M2

The pSeries 650 Model 6M2 supports the following SCSI-attached removable
media devices:

– FC 2635: 16/48X DVD-ROM auto-docking module
– FC 2629: 4.7 GB R/W DVD-RAM auto-docking module
– FC 2628: 40X CD-ROM auto-docking module
– FC 6169: 8 mm 80/160 GB auto-docking module
– FC 6131: 8 mm 60/150 GB auto-docking module
– FC 6185: 4 mm 20/40 GB auto-docking module

However, there are several device-reassignment operations required on the
HMC in order to use these devices as the installation media device on the
pSeries 650 Model 6M2. Because the SCSI controller connected to devices in
the auto-docking media bays is shared with disk drives in the internal four
hot-swappable disk drive bays, if a partition is using these disk drives as its
boot device, you must shut down and power off that partition before
reassigning the SCSI controller to another partition.

7 These features require a single SCSI adapter, FC 6203 with 4260 (2-drop connector cable) inserted
in a PCI slot within the machine.
44 The Complete Partitioning Guide for IBM Eserver pSeries Servers

http://techsupport.services.ibm.com/server/library
http://techsupport.services.ibm.com/server/library

� pSeries 655

The pSeries 655 does not support any removable media devices. You can
install AIX 5L Version 5.1 using PSSP8 (requires control workstation) on this
model.

� pSeries 670 and pSeries 690

Configure devices in the media drawer and assign the SCSI adapter
connected to the media drawer to the partition.

In 7.2, “Installing AIX using removable media devices” on page 207, we
provide detailed information about the installation from CD-ROM on the
pSeries 670 and pSeries 690.

If your installation media is on the network, one of the following network adapters
must be assigned to the partition:

� Ethernet

� Token ring

For detailed information about the installation from the network, see 7.3,
“Installing AIX using Network Installation Manager (NIM)” on page 218.

2.3.2 Boot devices
Each partition requires its own separate boot device. Therefore, you must assign
at least one boot device and a corresponding adapter per partition. The
partioning-capable pSeries server models support boot devices connected with
SCSI, SSA, and Fibre Channel adapters.

The following describes boot device considerations:

� pSeries 630 Model 6C4

The pSeries 630 Model 6C4 can have up to four internal SCSI disk drives in
the 4-pack disk bay. However, these disks are connected to one internal SCSI
controller, so they only can be assigned to a partition. The other partitions
must be assigned the boot adapter and disk drive from the following options:

– A boot adapter inserted in one of four PCI-X slots in the system. A
bootable external disk subsystem is connected to this adapter.

– A bootable SCSI adapter (which can have various features) is inserted in
the PCI-X slot 7 in a 7311-D20 I/O drawer connected to the system. The
adapter is connected to one of 6-pack disk bays of drawer that houses the
boot disk drive.

8 Parallel System Support Program
 Chapter 2. Partitioning implementation on pSeries servers 45

– A boot adapter inserted in one of seven PCI-X slots in a 7311-D20 I/O
drawer connected to the system. A bootable external disk subsystem is
connected to this adapter.

� pSeries 630 Model 6E4

The pSeries 630 Model 6C4 can have up to four internal SCSI disk drives in
the 4-pack disk bay. However, these disks are connected to one internal SCSI
controller, so they can only be assigned to a partition. The other partitions
must be assigned the boot adapter and disk drive by the following:

– A boot adapter inserted in one of four PCI-X slots in the system. A
bootable external disk subsystem is connected to this adapter.

� pSeries 650 Model 6M2

The pSeries 650 Model 6M2 can have up to four internal SCSI disk drives in
the 4-pack disk bay. However, these disks are connected to one internal SCSI
controller, so they can only be assigned to a partition. The other partitions
must be assigned the boot adapter and disk drive from the following options:

– A boot adapter inserted in one of seven PCI-X slots in the system. A
bootable external disk subsystem is connected to this adapter.

– A boot adapter inserted in one of six PCI-X slots in a 7311-D10 I/O drawer
connected to the system. A bootable external disk subsystem is
connected to this adapter.

� pSeries 655

The pSeries 655 can have up to two hot-swappable internal SCSI disk drives.
However, these disks are connected to one internal SCSI controller, so they
can only be assigned to a partition. Another partition must be assigned the
boot adapter and disk drive from the following options:

– A boot adapter inserted in one of three PCI slots in the system. A bootable
external disk subsystem is connected to this adapter.

Note: The pSeries 630 Model 6C4 supports up to two 7311-D20 I/O
drawers.

Note: The pSeries 630 Model 6E4 does not support any I/O drawers.

Note: The pSeries 650 Model 6M2 supports up to eight 7311-D10 I/O
drawers. The 7311-D10 I/O drawer does not have any internal disk drives.
Therefore, bootable external disk subsystems are mandatory in order to
configure and run multiple partitions on the pSeries 650 Model 6M2.
46 The Complete Partitioning Guide for IBM Eserver pSeries Servers

– An internal disk drive inserted in one of the 4-pack disk bays on a
7040-61D I/O drawer and the SCSI controller on the drawer.

The 7040-61D I/O drawer can have up to 16 internal SCSI disk drives in
the four 4-pack disk bays. Each of disk bays is connected to a separate
internal SCSI controller on the drawer.

– A boot adapter inserted in one of 20 PCI slots in a 7040-D61 I/O drawer
connected to the system. A bootable external disk subsystem is
connected to this adapter.

� pSeries 670 and pSeries 690

Partitions must be assigned the boot adapter and disk drive from the following
options:

– An internal disk drive inserted in one of the 4-pack disk bays on I/O drawer
and the SCSI controller on the drawer.

The 7040-61D I/O drawer can have up to 16 internal SCSI disk drives in
the four 4-pack disk bays. Each of the disk bays is connected to a separate
internal SCSI controller on the drawer.

– A boot adapter inserted in one of 20 PCI slots in a 7040-61D I/O drawer
connected to the system. A bootable external disk subsystem is
connected to this adapter.

You should select the adapter of the boot device from the PCI slot of the system
or the first I/O drawer (on pSeries 670 and pSeries 690) if the system is running
in a Full System Partition, because the system can quickly find the boot device.
In a partitioned environment, the placement of the boot adapter does not affect
the speed of partitions’ boot.

2.3.3 Network devices
It is mandatory to assign a network adapter to each partition. In addition to
providing network access to client systems of a partition, the connection is also
needed to provide the capability to manage the operating system and the
applications in the partition remotely, either with a Telnet session or a graphical
user interface, such as the Web-based System Manager. An Ethernet network

Note: The pSeries 655 supports one 7040-61D I/O drawer.

Note: The pSeries 670 supports up to three 7040-61D I/O drawers, and
the pSeries 690 supports up to eight. The minimum hardware
configurations of these models require at least one I/O drawer.
 Chapter 2. Partitioning implementation on pSeries servers 47

connection between partitions and the HMC must be available if you want to use
one of the following services:

� Service Agent

� Service Focal Point

� Inventory Scout

� Dynamic logical partitioning

These services communicate over the TCP/IP network between the partitions
and the HMC.

2.3.4 Native Industry Standard Architecture (ISA) devices
All pSeries server models are equipped with several natively equipped ISA
devices, such as native serial ports, a diskette drive, and keyboard and mouse
ports, in order to support minimum hardware startup and diagnostics
requirement. These ISA devices have the following characteristics when
assigning resources to a partition:

� ISA devices are typically equipped on the system planner of the system
(except for the pSeries 670 and pSeries 690) and they are connected by a
single PCI bus through the PCI-ISA bridge chip. Therefore, these ISA devices
can be assigned to only one partition as a group.

� ISA devices are not supported by dynamic logical partitioning.
48 The Complete Partitioning Guide for IBM Eserver pSeries Servers

The following list shows ISA devices on the partioning-capable pSeries servers:

� pSeries 630 Model 6C4 and pSeries 630 Model 6C4

These models have the following ISA devices:

– A diskette drive (if configured)

– An IDE CD-ROM or DVD-ROM drive (if configured)

– Three native serial ports (S1R, S2, and S3)

– Keyboard and mouse ports

� pSeries 650 Model 6M2

The pSeries 650 Model 6M2 has the following ISA devices:

– A diskette drive

– Four native serial ports (S1, S2, S3, and S4)

– Keyboard and mouse ports

� pSeries 655

The pSeries 655 has no assignable ISA devices.

� pSeries 670 and pSeries 690

These models have the following ISA devices:

– Two native serial ports (S1 and S2) in the primary I/O book

– A diskette drive in the media drawer

These devices are shown as Group_XXX in the I/O selection when creating a
partition profile (see Figure 5-4 on page 156 and the corresponding
explanation).

Note: The parallel ports on these models are not supported in a partitioned
environment.
 Chapter 2. Partitioning implementation on pSeries servers 49

2.3.5 Console devices
The HMC provides one virtual TTY console, called virtual terminal, for each
partition, which removes most of the need for partition access to native serial
ports. However, this virtual terminal was designed for limited purposes, such as
installation of AIX and running diagnostics (see 4.5, “Virtual terminal window” on
page 146 for detailed information about virtual terminal). If you need direct
console access without using the network, the partition must be assgined a
graphics console.

A graphics console is available on a partition by configuring the following features
on the partition:

� A graphics adapter (FC 2848) with a graphics display

� A USB keyboard and mouse adapter (FC 2737) with a USB keyboard and a
USB mouse attached.

Only one graphics console is supported per partition9. The graphics console is
functional only when AIX is running. For any installation or service processor
support functions, you have to use the virtual terminal function on the HMC.

In case of connecting serial devices (modems, serial printers, or terminal
servers) to a partition as a serial console, you have to assign an 8-port (FC 2943)
or 128-port (FC 2944) serial adapter to the partition.

2.3.6 High availability
You should place redundant devices of a partition in separate I/O drawers for
highest availability. For example, if two Fibre Channel adapters support multipath
I/O to one logical unit number (LUN), and if one path fails, another path using
another adapter in another I/O drawer is automatically chosen by the device
driver.

Some PCI adapters do not have enhanced error handling (EEH) capabilities built
in to their device drivers. If these devices fail, the PCI host bridge (PHB) they are
placed in and the other adapters in this PHB will be affected. Therefore, it is
strongly recommended that you place all adapters without EEH capabilities on
their own PHB, and not assign non-EEH adapters on the same PHB to different
partitions.

For detailed information about EEH and supported PCI adapters on the pSeries
servers, please refer to PCI Adapter Placement References, SA38-0538.

9 Up to eight partitions can have graphics consoles on the pSeries 670 and pSeries 690.
50 The Complete Partitioning Guide for IBM Eserver pSeries Servers

2.4 Service authority
You can give one of the partitions in a partioning-capable pSeries server the
service authority attribute. Service authority enables this partition, if running the
AIX operating system, to perform system firmware updates or to set system
policy parameters. Firmware updates also can be done from the service
processor menus. Firmware updates are done at the system level, not on a
per-partition basis.

A partition with service authority can perform firmware updates without having to
power off the managed system. All other partitions must be shut down before the
firmware update is initiated. The partition that has service authority must also
have access to the firmware update image. If the firmware update image is
provided on diskette, the diskette drive must belong to the partition that has
service authority. If you are downloading the firmware update from the network,
download it to the partition with service authority.

In the Full System Partition, you do not have to take additional steps to prepare
for firmware updates.

See Figure 5-3 on page 155 and the related information for an explanation about
how to set service authority on a partition.
 Chapter 2. Partitioning implementation on pSeries servers 51

52 The Complete Partitioning Guide for IBM Eserver pSeries Servers

Chapter 3. Dynamic logical partitioning

Starting from AIX 5L Version 5.2, AIX supports dynamic logical partitioning
(DLPAR). DLPAR is a function to allow a partition whose resources are
dynamically added and removed without requiring a partition reboot.

The function enables the partioning-capable pSeries server models to be used in
the strategic autonomic computing infrastructure by dynamically shifting
resources among partitions on a single system.

This chapter contains the following sections:

� Dynamic logical partitioning overview

� The process flow of a DLPAR operation

� Internal activity in a DLPAR event

� DLPAR-safe and DLPAR-aware applications

� Integrating a DLPAR operation into the application

� Script-based DLPAR event handling

� DLPAR script subcommands

� How to manage DLPAR scripts

� API-based DLPAR event handling

� Error handling of DLPAR operations

3

© Copyright IBM Corp. 2003. All rights reserved. 53

3.1 Dynamic logical partitioning overview
DLPAR supports the following dynamic resource change in a partition without
requiring a partition reboot:

� Resource addition

� Resource removal

By achieving the resource changes sequentially in the following order on two
partitions in a system, the specified resource can be moved from a partition to
another partition:

1. Resource removal from a partition

2. Resource addition to another partition

This resource movement is implemented as single task on the HMC although it is
actually composed of two separate tasks on two partitions internally.

A resource is either of the following types:

� CPU

The granularity of a CPU resource of a DLPAR operation is one CPU. More
than one CPU can be specified as a resource of a DLPAR operation.

A partition must be assigned at least the minimum number of processors
specified in the partition profile, and it can be assigned up to the maximum
number of processors specified in the partition profile (see 2.2.3, “Three kinds
of values for resource assignment” on page 35).

Therefore, you can dynamically add or remove processors for that partition
within the range of the minimum and maximum values.

� Memory

The granularity of a memory resource of a DLPAR operation is 256 MB1.
Multiplies of 256 MB memory can be specified as a resource of a DLPAR
operation.

A partition must be assigned at least the minimum size of memory specified in
the partition profile, and it can be assigned up to the maximum size of
memory specified in the partition profile (see 2.2.3, “Three kinds of values for
resource assignment” on page 35).

Therefore, you can dynamically add or remove memory for that partition
within the range of the minimum and maximum values.

1 This memory chunk is referred to as a logical memory block (LMB).
54 The Complete Partitioning Guide for IBM Eserver pSeries Servers

� I/O resource

The granularity of an I/O resource of a DLPAR operation is a PCI slot with a
PCI adapter. Multiple I/O slots can be specified as a resource of a DLPAR
operation. If a PCI adapter has multiple ports, all the ports and devices
configured beneath the ports are treated as a resource.

For example, if a 10/100 4-Port Ethernet adapter (FC 4961) is selected, all
Ethernet devices (entX0) and interfaces (enX) configured on this adapter are
treated as a single resource.

A partition must be assigned all the adapters specified as required in the
partition profile, and it can be assigned adapters specified as desired in the
partition profile (see 2.2.3, “Three kinds of values for resource assignment” on
page 35).

You cannot remove I/O slots listed as required; however, you can remove I/O
slots listed as desired, or those that were added as a result of a DLPAR
operation. In other words, a partition can currently contain an I/O slot that is
not listed as either desired or required in the active partition profile.

Resources removed from a partition are marked free (free resources) and owned
by the global firmware of system; you can consider these resources as kept in
the “free resource pool.” Free resources can be added to any partition in a
system as long as the system has enough free resources.

It is imperative to understand that the DLPAR function is not solely provided by
AIX 5L Version 5.2, but it is supported by the integration of following components:

� Hardware

A partioning-capable pSeries server model is required (see 1.2.1, “Supported
models” on page 6).

� Firmware

Depending on the models you have selected, a firmware update might be
required (see 1.2.1, “Supported models” on page 6).

� HMC

HMC software Release 3, Version 1 or later is required (see 1.2.2, “IBM
Hardware Management Console for pSeries (HMC)” on page 8).

Note: A DLPAR operation can perform only one type of resource change. You
cannot add and remove memory to and from the same partition in a single
DLPAR operation. Also, you cannot move CPU and memory from a partition to
another partition in a single DLPAR operation.
 Chapter 3. Dynamic logical partitioning 55

� Operating system

AIX 5L Version 5.2 or later is required.

If one of these components does not satisfy the requirement to support DLPAR,
the function is not available. For example, if a partition is installed with AIX 5L
Version 5.1, that partition does not support DLPAR, although the other partitions
installed with AIX 5L Version 5.2 support DLPAR.

3.2 The process flow of a DLPAR operation
A DLPAR operation initiated on the HMC is transferred to the target partition
through Resource Monitoring and Control (RMC). The request produces a
DLPAR event on the partition. After the event has completed, regardless of the
result from the event, a notification will be returned to the HMC in order to mark
the completion of the DLPAR operation. This means that a DLPAR operation is
considered as a single transactional unit, thus only one DLPAR operation is
performed at a time.

A DLPAR operation is executed in the process flow is illustrated in Figure 3-1 on
page 57.
56 The Complete Partitioning Guide for IBM Eserver pSeries Servers

Figure 3-1 Process flow of a DLPAR operation

The following steps explain the process flow of a DPLAR operation:

1. The system administrator initiates a DLPAR operation request on the HMC
using either the graphical user interface or command line interface. For
information about the use of these interfaces, see 8.1, “Dynamic logical
partitioning” on page 256 or 9.3, “Dynamic logical partitioning operations
using chhwres” on page 285.

2. The requested DLPAR operation is verified on the HMC with the current
resource assignment to the partition and free resources on the managed
system before being transferred to the target partition. In other words, the
HMC provides the policy that determines whether or not a DLPAR operation
request is actually performed on the managed system. The policy is
determined by the partition profile, explained in 2.2.3, “Three kinds of values
for resource assignment” on page 35.

B: DLPAR operation request via RMC from the HMC

IBM.DRM

RMC

Platform-dependent
device driver Kernel

RTAS

Global firmware / Hypervisor

CSP

Ethernet

AIX 5L Version

Managed system

HMC

Serial Line

drmgr

Platform-dependent
commands

C: DLPAR operation result from the partition

GUI or command

A: Resource query and allocate
requests to the CSP before
the DLPAR operation over
the serial line

D: Resource reclaim request
to the CSP after the DLPAR
operation over the serial line

5.2 Partition
 Chapter 3. Dynamic logical partitioning 57

3. If the request is a resource addition, the HMC communicates with the global
firmware in order to allocate free resources to the target partition through the
service processor indicated as arrow A in Figure 3-1 on page 57.

If enough free resources exist on the system, the HMC assigns the requested
resource to the specified partition and updates the partition’s object to reflect
this addition, and then creates associations between the partition and the
resource to be added.

4. After the requested DLPAR operation has been verified on the HMC, it will be
transferred to the target partition using Resource Monitoring and Controlling
(RMC), which is an infrastructure implemented on both the HMC and AIX
partitions, as indicated as arrow B in Figure 3-1 on page 57. The RMC is used
to provide a secure and reliable connection channel between the HMC and
the partitions.

5. The request is delivered to the IBM.DRM resource manager running on the
partition, which is in charge of the dynamic logical partitioning function in the
RMC infrastructure in AIX. As shown in the following example, it is running as
the IBM.DRMd daemon process and included in the devices.chrp.base.rte
fileset on AIX 5L Version 5.2 or later:

lssrc -ls IBM.DRM
Subsystem : IBM.DRM
PID : 18758
Cluster Name : IW
Node Number : 1
Daemon start time : Wed Aug 21 16:44:12 CDT 2002

Information from malloc about memory use:
 Total Space : 0x003502c0 (3474112)
 Allocated Space: 0x0030b168 (3191144)
 Unused Space : 0x00043e40 (278080)
 Freeable Space : 0x00000000 (0)

Class Name(Id) : IBM.DRM(0x2b) Bound
ps -ef | head -1 ; ps -ef | grep DRMd | grep -v grep
 UID PID PPID C STIME TTY TIME CMD
 root 18758 10444 0 Aug 21 - 0:22 /usr/sbin/rsct/bin/IBM.DRMd
lslpp -w /usr/sbin/rsct/bin/IBM.DRMd
 File Fileset Type

 /usr/sbin/rsct/bin/IBM.DRMd
 devices.chrp.base.rte File

Note: The connection channel established by RMC only exists between
the HMC and the partition where the DLPAR operation is targeted to. There
are no connection paths required between partitions for DLPAR operation
purposes.
58 The Complete Partitioning Guide for IBM Eserver pSeries Servers

Resource managers are sub-systems used in the RMC infrastructure. For
further information about RMC and its sub-components, please refer to the
following publications:

– A Practical Guide for Resource Monitoring and Control, SG24-6615

– IBM Reliable Scalable Cluster Technology for AIX 5L: RSCT Guide and
Reference, SA22-7889

6. The IBM.DRM resource manager invokes the drmgr command, which is an
platform-independent command designed as the focal point of the dynamic
logical partitioning support on AIX.

As shown in the following example, the drmgr command is installed in the
/usr/sbin directory provided by the bos.rte.methods fileset:

whence drmgr
/usr/sbin/drmgr
lslpp -w /usr/sbin/drmgr
 File Fileset Type

 /usr/sbin/drmgr bos.rte.methods File

7. The drmgr command invokes several platform-dependent commands2
depending on the resource type (CPU, memory, or I/O resource) and request
(resource addition or removal) in order to instruct the kernel to process the
actual resource change with necessary information.

8. The kernel does many tasks, as described in 3.3, “Internal activity in a DLPAR
event” on page 60.

Note: The absence of the IBM.DRM resource manager in the lssrc -a
output does not always mean that the partition has not been configured
appropriately for the dynamic logical partitioning. The resource manager
will be automatically configured and started by RMC after the first partition
reboot if the network configuration is correctly set up on the partition and
the HMC.

Note: The drmgr command should not be invoked by the system
administrator in order to directly perform resource changes in a partition. It
must be invoked in the context explained here to do so. In 3.8, “How to
manage DLPAR scripts” on page 93, we provide another usage of the
drmgr command.

2 On the current partitioning-capable pSeries server models, the platform-dependent commands are
included in the devices.chrp.base.rte fileset and installed in the /usr/lib/boot/bin directory.
 Chapter 3. Dynamic logical partitioning 59

9. After the DLPAR event has completed, regardless of the result, a notification
will be returned to the HMC in order to mark the completion of the DLPAR
operation, indicated as arrow C in Figure 3-1 on page 57. The notification also
includes the exit code, standard out, and standard error from the drmgr
command. The system administrator who has initiated the DLPAR operation
will see the exit code and outputs on the HMC.

10.If the request is a resource removal, the HMC communicates with the global
firmware in order to reclaim resources to the free resource pool from the
source partition through the service processor indicated as arrow D in
Figure 3-1 on page 57.

The HMC unassigns the resource from the partition and updates the
partition’s object to reflect this removal, and then removes associations
between the partition and the resource that was just removed.

A DLPAR operation can take noticeable time depending on the availability and
the capability to configure or deconfigure a specific resource.

3.3 Internal activity in a DLPAR event
The AIX kernel communicates with the partition firmware through Run-Time
Abstraction Services (RTAS). For more information about RTAS, see “Run-Time
Abstraction Services (RTAS)” on page 23. The partition firmware manages
resources in the partition (see “Open Firmware” on page 21). The resources are
represented in the Open Firmware device tree that serves as a common
reference point for the operating system and firmware. The RTAS operate on
objects represented in this database.

Each AIX partition has a private copy of the Open Firmware device tree that
reflects the resources that are actually assigned to the partition and those that
might be in the future. Structurally, it is organized like a file system with
directories and files, where the files represent configured instances of resources,
and the directories provide the list of potential assignments. Each installed
resource is represented in this list and are individually called dynamic
reconfiguration connectors.
60 The Complete Partitioning Guide for IBM Eserver pSeries Servers

3.3.1 Internal activity for CPUs and memory in a DLPAR event
As described previously, the drmgr command handles all DLPAR operations by
calling the appropriate commands and controls the process of the reconfiguration
of resources. We provide detailed information about the three phases, check,
pre, and post, in 3.5.1, “Three phases in a DLPAR event” on page 67.

The following briefly describes the kernel internal activity for CPUs and memory
in a DLPAR event.

1. The Object Data Manager (ODM) lock is taken to guarantee that the ODM,
Open Firmware device tree, and the kernel are automatically updated. This
step can fail if the ODM lock is held for a long time and the user indicates that
the DLPAR operation should have a time limit.

2. The platform-dependent command reads the Open Firmware device tree.

3. The platform-dependent command invokes the kernel to start the DLPAR
event. The following steps are taken:

a. Requesting validation.

b. Locking DLPAR event. Only one event can proceed at a time.

c. Saving request in global kernel DR structure that is used to pass
information to signal handlers, which runs asynchronously to the
platform-dependent command.

d. Starting check phase.

4. The check phase scripts are invoked.

5. The check phase signals are sent, conditional wait if signals were posted.

6. The check phase kernel extension callout. Callback routines of registered
kernel extensions are called.

The event may fail in steps 4, 5, or 6 if any check phase handler signals an
error. After the check phase has passed without an error, and the DLPAR
event is in the pre phase, all pre phase application handlers will be called,
even if they fail, and the actual resource change is attempted.

7. The kernel marks the start of the pre phase.

8. Pre phase scripts are invoked.

9. Pre phase signals are sent–conditional wait, if signals were posted.

10.The kernel marks the doit phase start3. This is an internal phase where the
resource is either added to or removed from the kernel.

3 The doit phase is shown as Resource change in Figure 3-2 on page 67.
 Chapter 3. Dynamic logical partitioning 61

Steps 11-13 may be repeated depending on the request. Processor-based
requests never loop; only one processor can be added or removed at a time in
one DLPAR operation. If more than one processor needs to be added or
removed, the HMC invokes AIX once for each processor.

Memory-based requests loop at the LMB level, which represent contiguous
256 MB segments of logical memory, until the entire user request has been
satisfied. The HMC remotely invokes AIX once for the complete memory
request.

11.This step is only taken if adding a resource. The Open Firmware device tree is
updated. The resource allocated, un-isolated, and the connector configured.
When un-isolating the resource, it is assigned to the partition, and ownership
is transferred from Open Firmware to AIX:

– For processors, the identity of the global and local interrupt service is
discovered.

– For memory, the logical address and size is discovered.

12.Invoke kernel to add or remove resource:

a. The callback functions of registered kernel extensions are called. Kernel
extensions are told the specific resource that is being removed or added.

b. The resources in the kernel are removed or added.

c. The kernel extension in post or posterror phase are invoked.

If steps a or b fail, the operation fails.

13.This step is only taken if removing a resource.

The Open Firmware device tree is updated. Resources are isolated and
unallocated for removal. The Open Firmware device tree must be kept
updated so that the configuration methods can determine the set of resources
that are actually configured and owned by the operating system.

14.Kernel marks post (or posterror) phase start depending on the success of the
previous steps.

15.Invoke configuration methods so that DLPAR-aware applications and
registered DLPAR scripts will see state change in the ODM.

16.The post scripts are invoked.

17.The post signals are sent to registered processes, conditional wait if signals
were posted.

18.The kernel clears the DLPAR event.

19.ODM locks are released.
62 The Complete Partitioning Guide for IBM Eserver pSeries Servers

3.3.2 Internal activity for I/O slots in a DLPAR event
Dynamic removal and addition of I/O adapters has been provided by AIX prior to
DLPAR support, utilizing the PCI adapter Hot Plug capability on the IBM RS/6000
and IBM ̂pSeries models. To allow for the dynamic addition and
removal of PCI I/O slots, enhancements to the lsslot command have been
made.

PCI slots and integrated I/O devices can be listed using the new connector type
slot in the lsslot command, as shown in the following example:

lsslot -c slot

The output of this command looks similar to the following:

#Slot Description Device(s)
U1.5-P1-I1 DLPAR slot pci13 ent0
U1.5-P1-I2 DLPAR slot pci14 ent1
U1.5-P1-I3 DLPAR slot pci15
U1.5-P1-I4 DLPAR slot pci16
U1.5-P1-I5 DLPAR slot pci17 ent2
U1.5-P1/Z1 DLPAR slot pci18 scsi0

Before the I/O slot removal, you must delete the PCI adapter device and all its
children devices from AIX. Given that ent2 in the slot U1.5-P1-I5 in the previous
example is not used, the devices could be removed using the following command
as the root user on the partition4:

rmdev -l pci17 -d -R

After the devices have been removed from AIX, the I/O slot can be removed from
the partition using the graphical user interface or command line interface on the
HMC (see 8.1, “Dynamic logical partitioning” on page 256 and 9.3, “Dynamic
logical partitioning operations using chhwres” on page 285, respectively).

In order to let AIX recognize the dynamically added I/O slot and its children
devices to a partition, you must invoke the cfgmgr command as the root user on
the partition. To add the previously removed I/O slot from a partition, it first needs
to be reassigned to the partition using the HMC.

4 The -R option instructs the rmdev command to delete all children devices recursively.

Note: Any PCI slots defined as required are not eligible for the DLPAR
operation (see 2.2.3, “Three kinds of values for resource assignment” on
page 35).
 Chapter 3. Dynamic logical partitioning 63

3.4 DLPAR-safe and DLPAR-aware applications
The dynamic logical partitioning function on AIX 5L Version 5.2 is designed and
implemented to not impact the existing applications. In fact, most applications are
not affected by any DLPAR operations results. Therefore, those applications are
called DLPAR-safe applications.

There are two types of application classifications regarding DLPAR operations:

DLPAR-safe Applications that do not fail as a result of DLPAR operations.
The application’s performance may suffer when resources are
removed, or it may not scale as resources are added.

DLPAR-aware Applications that incorporate DLPAR operations that allow the
application to adjust its use of the system resources equal to
the actual capacity of the system. DLPAR-aware applications
are always DLPAR-safe.

3.4.1 DLPAR-safe
Although, most applications are DLPAR-safe without requiring any modification,
there are certain instances where programs may not be inherently DLPAR-safe.

There are two cases where DLPAR operations may introduce undesirable effects
in the application:

� Programs that are optimized for uni-processor may have problems when a
processor is added to the system resources.

� On programs that are indexed by CPU numbers, the increased processor
number may cause the code to go down an unexpected code path during its
run-time checks.

In addition, applications that use uni-processor serialization techniques may
experience unexpected problems. In order to resolve these concerns, system
administrators and application developers need to be aware of how their
applications get the number of processors.

3.4.2 DLPAR-aware
DLPAR-aware applications adapt to system resource changes caused by DLPAR
operations. When these operations occur, the application will recognize the
resource change and accommodate accordingly.
64 The Complete Partitioning Guide for IBM Eserver pSeries Servers

Two techniques can be used to make applications DLPAR-aware:

� The first method is to consistently poll for system resource changes. Polling is
not the recommended way to accommodate for DLPAR operations, but it is
valid for systems that do not need to be tightly integrated with DLPAR.
Because the resource changes may not be immediately discovered, an
application that uses polling may have limited performance. Polling is not
suitable for applications that deploy processor bindings, because they
represent hard dependencies.

� Applications have other methods to react to the resource change caused by
DLPAR operations. See 3.5, “Integrating a DLPAR operation into the
application” on page 66.

Several applications should be made DLPAR-aware, because, they need to scale
with the system resources. These types of applications can increase their
performance by becoming DLPAR-aware. Table 3-1 lists some examples of
applications that should be made DLPAR-aware.

Table 3-1 Applications that should be DLPAR-aware

Note: These are only a few types of common applications affected by DLPAR
operations. The system administrator and application developer should be
sensitive to other types of programs that may need to scale with resource
changes.

Application type Reason

Database
applications

The application needs to scale with the system. For example,
the number of threads may need to scale with the number of
available processors, or the number of large pinned buffers
may need to scale with the available system memory.

Licence Managers Licenses are distributed based on the number of available
processors or the memory capacity.

Workload Managers Jobs are scheduled based on system resources, such as
available processors and memory.

Tools Certain tools may report processor and memory statistics or
rely on available resources.
 Chapter 3. Dynamic logical partitioning 65

3.5 Integrating a DLPAR operation into the application
The DLPAR operation can be integrated into the application using the following
two methods:

� Script-based DLPAR event handling

If the application is externally controlled to use a specific number of threads or
to size its buffers, use this method. In order to facilitate this method, a new
command, drmgr, is provided. The drmgr command is the central focal point of
the dynamic logical partitioning function of AIX. The following several sections
discuss the drmgr command, and typical usage examples are provided in 3.8,
“How to manage DLPAR scripts” on page 93.

We explain this method in 3.6, “Script-based DLPAR event handling” on
page 70.

� API-based DLPAR event handling

If the application is directly aware of the system configuration, and the
application source code is available, use this method.

We explain this method in 3.9, “API-based DLPAR event handling” on
page 103.

Applications can monitor and respond to various DLPAR events, such as a
memory addition or processor removal, by utilizing these two methods. Although,
at the high-level, both methods share the same DLPAR events flow explained in
the following section, several key differences exist between these two methods.

One difference is that the script-based method externally reconfigures the
application once a DLPAR event takes place, while the API-based method can be
directly integrated into the application by registering a signal handler so that the
process can be notified with the SIGRECONFIG signal when the DLPAR event
occurs.

Note: The DLPAR events of I/O resources do not notify applications in AIX 5L
Version 5.2.
66 The Complete Partitioning Guide for IBM Eserver pSeries Servers

3.5.1 Three phases in a DLPAR event
A DLPAR event executes in three phases: check, pre, and post. Each phase is an
automatic execution unit and will be executed in its entirety before the next phase
is started. This prevents partial updates to the system. In the pre and post
phases, the state of the application is permitted to change. The operating system
will only act upon DLPAR requests between the pre and post phases to perform
the actual resource change.

Figure 3-2 illustrates the three phases and the order in which they occur for a
DLPAR event.

Figure 3-2 Three DLPAR phases of a DLPAR event

Note: If a dynamic processor deallocation occurs in a partition running AIX 5L
Version 5.2 or later, it is also treated as a CPU removal DLPAR event, and thus
invokes these three phases.

No

Yes

Resource change

Post phase

Pre phase

Check phase

Success?

Force?
Yes

No

Only when DLPAR
operation is a
removal request
 Chapter 3. Dynamic logical partitioning 67

Check phase
The check phase usually occurs first. It is used to examine the resource’s state
and to determine if the application can tolerate a DLPAR event. It gives the script
or API a chance to fail the current DLPAR operation request without changing
any system state.

The check phase can be used in several situations, including the following:

� The check phase can determine if a processor cannot be removed because it
still has threads bound to it.

� The check phase can be used by a licence manager to fail the integration of a
new processor to the partition because it does not have a valid licence to
support the addition of a processor.

� The check phase can even be used to maintain an application’s DLPAR
safeness by restricting the effects of DLPAR operations. For instance, if the
application is optimized for a uniprocessor environment, the check phase
could prevent the application from recognizing the addition of a processor,
which could prevent the application from executing an unexpected code path
with the presence of additional processors.

Pre phase
Before the actual resource change is made, the application is notified that a
resource change (addition or removal) is about to occur. The application is given
a chance to prepare for the DLPAR request in the pre phase.

When the application is expecting a resource removal, the DLPAR script or API
needs to carefully utilize this phase. This phase handles such things as
unbinding processors, detaching pinned shared memory segments, removing
plocks, and terminating the application if it does not support DLPAR or will be
broken by DLPAR requests.

Note: In a resource removal DLPAR event, the check phase will be skipped if
the force option is specified. In a resource addition DLPAR event, the check
phase will not be skipped regardless of the force option value.

Note: If a DLPAR script exits with failure from the check phase, the DLPAR
event will not continue. Therefore, the resource change will not be performed,
and the DLPAR script will not be invoked in the pre and post phases.

Note: The actual resource change takes place between the pre and post
phases.
68 The Complete Partitioning Guide for IBM Eserver pSeries Servers

Post phase
After a resource change has occurred, the application will have a chance to
respond to the DLPAR operation. The application can reconfigure itself in the
post phase in order to take advantage of the resource addition or to compensate
for the resource removal.

If resources are added, the DLPAR script or API could create new threads or
attach to pinned shared memory segments. On the other hand, if resources are
removed, the DLPAR scripts or API calls might delete threads for scalability.

3.5.2 Event phase summary
When a DLPAR request is made to change resource configurations in a partition,
the drmgr command will notify applications of the pending resource change.
Table 3-2 summarizes the phases of a DLPAR event and some important
considerations of what needs to be accomplished in each phase.

Table 3-2 Considerations during each event phase

Phase Considerations

Check
phase

� Can the application support the request?

� Are there licence restrictions?

� Can the system withstand this application failing?

Pre
phase

� Is it best to stop the application and then restart it after the DLPAR
operation?

� How can the application help facilitate a DLPAR removal or addition?

� What can the application eliminate or reduce when a resource is
removed? (that is, kill threads)

Post
phase

� Does the application need to be restarted after the DLPAR operation?

� How can the application take advantage of added resource? (that is, start
new threads)

� Did the operation complete? Was there a partial success?
 Chapter 3. Dynamic logical partitioning 69

3.6 Script-based DLPAR event handling
The script-based DLPAR event handling method is performed by several
components, as explained in the following (see Figure 3-3 on page 71):

1. A DLPAR operation request is initiated using either the graphical user
interface or command line interface on the HMC.

2. The request is transferred to the target partition through RMC. The IBM.DRM
resource manager on the partition receives this request.

3. The IBM.DRM resource manager invokes the drmgr command with the
necessary information that represents a DLPAR event.

4. The drmgr command invokes registered DLPAR scripts depending on the
resource type, CPU, or memory that is specified by the DLPAR event. The
information about the registered DLPAR scripts is kept in the DLPAR script
database and fetched by the drmgr command.

5. The invoked DLPAR scripts perform necessary tasks that integrate the
DLPAR operation into the application.

The DLPAR scripts should satisfy the application’s demands when a DLPAR
event takes place so that the application can take the appropriate actions.
Therefore, DLPAR scripts are carefully developed and tested in order for the
applications’ DLPAR-awareness.

The DLPAR script can use the following commands in order to resolve the
application processes’ resource dependency:

ps To display bindprocessor attachments and plock system call
status at the process level.

bindprocessor To display online processors and make new attachments.

kill To send signals to processes.

ipcs To display pinned shared memory segments at the process
level.

lsrset To display processor sets.

lsclass To display WLM classes, which might include processor sets.

chclass To change WLM class difinitions.
70 The Complete Partitioning Guide for IBM Eserver pSeries Servers

Figure 3-3 A DLPAR script invoked by the drmgr command

3.6.1 Script execution environment
When DLPAR scripts are invoked by the drmgr command, it sets up the following
script execution environment. The required information to set up this environment
is taken from the DLPAR script database and the DLPAR event.

� The UID and GID of the execution process are set to the ones of the DLPAR
script.

� The current working directory is changed to /tmp.

� The PATH environment variable is set to /usr/bin:/etc:/usr/sbin.

� Two pipes are established between drmgr and the executing process so that
the process reads using the standard in from the drmgr command and writes
using the standard out to the drmgr command.

As illustrated in Figure 3-3, the execution environment defines the input and
output for the DLPAR script process.

DLPAR operation request through the
RMC from the HMC

dr_script database

Fetch registered
DLPAR script
information

Spawn

Spawn

Interact with

DLPAR script

drmgr

IBM.DRMd

Application

- additional cmd args

(environment values)

Output:

- name-value pairs (stdout)
- exit value

Input:

- name-value pairs

syslog facility

Debug information
 Chapter 3. Dynamic logical partitioning 71

When the DLPAR script is invoked, the DLPAR script process receives its input
using the following two ways:

� Additional command line arguments

When a DLPAR script is called, the drmgr command will invoke it as follows:

dr_application_script <sub-command> <additional_cmd_arg>

In addition to the subcommands, which are explained in 3.7, “DLPAR script
subcommands” on page 76, additional command arguments can be passed
to the script.

� Environment variables with specified format

When a DLPAR script is called, the drmgr command passes several
environmental variables using a name-value pair format.

Environmental variables that start with DR_ are primarily used to send input
data to DLPAR scripts; therefore, they should be exclusively set aside for the
drmgr command.

There are three types of environment values:

– General environment values (see Table 3-3 on page 73)

– CPU-specific environment values (Table 3-4 on page 74)

– Memory-specific environment values (Table 3-5 on page 74)

The DLPAR script process produces its output using the following two ways:

� Exit values

The script must return an exit value, either 0 (success) or 1 (failure). If the exit
value is 1, then the DR_ERROR name-value pair must be set to describe the
reason for failure, and the script must print it to the standard out.

� Standard out with specified format

The DLPAR scripts can write strings using a name-value pair format to the
standard out. The drmgr command will read them from the scripts. Strings that
start with DR_ are primarily used to send output data to the drmgr command
from the DLPAR scripts.

Note: These environment variables only exist during DLPAR events. If you
want to view these variable values, the script needs to be coded to write
these variables to the standard out using DR_LOG_* variables so that the
drmgr command can forward these output to the syslog facility (see
Table 3-6 on page 75).
72 The Complete Partitioning Guide for IBM Eserver pSeries Servers

Input (environment variables)
Table 3-3 shows general environment variables.

Table 3-3 General DLPAR environment variables

Table 3-4 on page 74 shows CPU-specific environment variables.

Note: The script should not print the following to the standard out:

� A string whose length is larger than 1024 characters.

� A string that contains new line characters.

� Any strings that are undefined in Table 3-6 on page 75, Table 3-9 on
page 79, Table 3-10 on page 81, and Table 3-11 on page 82.

Environment variable Description

DR_DETAIL_LEVEL=N This name-value pair instructs the script to produce the
specified level of detailed debug information sent to the
standard out. The value of N must be one of the following:

� 0 - None

� 1 - Min

� 2 - Medium/more

� 3 - Max

� 4 - Debug

DR_FORCE=emergency This name-value pair gives the emergency processing
request to the script. The value of emergency must be one
of the following:

� FALSE - Emergency processing is required.

� TRUE - Emergency processing is not required
(default).

Note: The DR_DETAIL_LEVEL=N environment value will be set on the HMC.
If you use the graphical user interface, select the Detail level field in the
DLPAR operation panel (Figure 8-2 on page 258 can be referenced as an
example). If you use the command line interface, use the -d option of the
chhwres command to set the value (9.3, “Dynamic logical partitioning
operations using chhwres” on page 285).
 Chapter 3. Dynamic logical partitioning 73

Table 3-4 CPU-specific DLPAR environment variables

Table 3-5 shows the memory-specific environment variables.

Table 3-5 Memory-specific DLPAR environment variables

CPU environment variables Description

DR_LCPUID=N The logical CPU ID of the processor that is being
added or removed. N is a decimal number.

DR_BCPUID=N The bind CPU ID of the processor that is being added
or removed. N is a decimal number.

Memory environment variables Description

DR_MEM_SIZE_REQUEST=N Size of memory requested in megabytes.
N is a decimal value.

DR_MEM_SIZE_COMPLETED=N Number of megabytes that were
successfully added or removed. N is a
decimal value.

DR_FREE_FRAMES=N Number of free frames currently in the
system. Each frame is a 4 KB page. N is a
32-bit hexadecimal value.

DR_PINNABLE_FRAMES=N Total number of pinnable frames currently
in the system. Each frame is a 4 KB page.
N is a 32-bit hexadecimal value.

DR_TOTAL_FRAMES=N Total number of frames in the system.
Each frame is a 4 KB page. N is a 32-bit
hexadecimal value.
74 The Complete Partitioning Guide for IBM Eserver pSeries Servers

Output (standard out)
Table 3-6 shows general output variables. The DR_ERROR=failure_cause
name=variable pair is a mandatory output when the script exits with 1 (failure).

Table 3-6 General DLPAR output variables

3.6.2 DLPAR script naming convention
When developing a DLPAR script, you should follow a few simple naming
conventions. We suggest naming the script using prefixes that describe the
vendor name and the subsystem that it controls.

For example, dr_ibm_wlm.pl would be a good name for a DLPAR Perl script that
was written by IBM to control the WLM assignments. WLM stands for Workload
Manager, which is a standard function of AIX to prioritize multiple processes
depending on the predefined attributes.

Another example is dr_sysadmin_wlm.pl. This could be a DLPAR Perl script
provided by system administrator to control the WLM assignments.

Variable Description

DR_ERROR=failure_cause
(only if the script exits with 1)

This name-value pair describes the reason for
failure.

DR_LOG_ERR=message This name-value pair describes the information
message to be sent to the syslog facility with the err
(LOG_ERR) priority.

DR_LOG_WARNING=message This name-value pair describes the information
message to be sent to the syslog facility with the
warning (LOG_WARNING) priority.

DR_LOG_INFO=message This name-value pair describes the information
message to be sent to the syslog facility with the info
(LOG_INFO) priority.

DR_LOG_EMERG=message This name-value pair describes the information
message to be sent to the syslog facility with the
emerg (LOG_EMERG) priority.

DR_LOG_DEBUG=message This name-value pair describes the information
message to be sent to the syslog facility with the
debug (LOG_DEBUG) priority.

Note: Except for the DR_ERROR variable, the other variables are used to
send messages to the syslog facility.
 Chapter 3. Dynamic logical partitioning 75

3.7 DLPAR script subcommands
Every DLPAR script is required to accept all the subcommands found in Table 3-7
on page 76. This section provides detailed information for each subcommand.

Table 3-7 DLPAR script subcommands

Note: The prefix names for these subcommands (check, pre, and post)
coincide with the DLPAR phases explained in 3.6, “Script-based DLPAR event
handling” on page 70.

Subcommand name Description

scriptinfo Identifies script-specific information. It must provide
the version, date, and vendor information. This
command is called when the script is installed.

register Identifies the resources managed by the script,
such as cpu or mem.

usage resource_name Returns a description of how the script plans to use
the named resources. It contains pertinent
information so that the user can determine whether
or not to install the script. Further, the command
describes the software capabilities of the
applications that are impacted.

checkrelease resource_name This subcommand is invoked when the drmgr
command initiates the release of the specified
resource. The script checks the resource
dependencies of the application and evaluate the
effects of resource removal on the application the
script is monitoring. The script can indicate that the
resource should not be removed if the application is
not DLPAR-aware or if the resource is critical for the
subsystem.

prerelease resource_name Before the removal of the specified resource, this
subcommand is invoked. The script uses this time
to remove any dependencies the application may
have on the resource. This command can
reconfigure, suspend, or terminate the application
such that the named resource can be released.

postrelease resource_name After the resource is removed successfully, this
subcommand is invoked. The script can perform
any necessary cleaning up, or it may restart the
application if it stopped the application in the
prerelease phase.
76 The Complete Partitioning Guide for IBM Eserver pSeries Servers

3.7.1 The scriptinfo subcommand
When a script is fist installed, the script is invoked with the scriptinfo
subcommand by the drmgr command. The scriptinfo subcommand displays
useful information to identify the script, such as the developed date and the
vendor name for it, in order to let the drmgr command record appropriate
information in the DLPAR script database about the script. The scriptinfo
subcommand is also called by the drmgr command in the very early stage of a
DLPAR operation request.

When the script is invoked with the scriptinfo subcommand, it takes the
following syntax:

dr_application_script scriptinfo

undoprerelease resource_name This subcommand is invoked if an error occurs
while the resource is being released. The script
takes the necessary steps to undo its prerelease
operations on the resource and the application. In
the case of a partial resource release, this
command reads the environment variables to
determine the level of success before the fail.

checkaquire resource_name This subcommand is invoked to determine if the
drmgr command can proceed with a resource
addition to the application.

preacquire resource_name This subcommand tells the application that a
resource will be available for use.

postacquire resource_name This subcommand informs the drmgr command that
the resource addition completed, and the script
allows the application to use the new resources. If
the application was stopped in the preacquire
phase, the application is restarted in this command.

undopreacquire resource_name This subcommand notifies the drmgr command that
the resource addition aborted or partially
completed. The script then makes the necessary
changes to undo anything it did in the preacquire
phase, or the script determines the level of success
of the DLPAR addition request by reading the
environment variables.

Subcommand name Description
 Chapter 3. Dynamic logical partitioning 77

Input to the scriptinfo subcommand
The scriptinfo subcommand takes the following input data:

� Additional command line arguments

None.

� Name-value pairs from environment variables

See Table 3-3 on page 73.

Output from the scriptinfo subcommand
The scriptinfo subcommand produces the following output data.

� Exit value

The script must return an exit value, either 0 (success) or 1 (failure). If the exit
value is 1, the DR_ERROR name-value pair must be set to describe the
reason for failure, and the script must print it to the standard out.

� Name-value pairs to the standard output stream

Table 3-8 lists the name-value pairs that must be returned by the script when
it is invoked with the scriptinfo subcommand.

Table 3-8 Required output name-value pairs for the scriptinfo subcommand

Required output pair Description

DR_VERSION=1 This name-value pair indicates the version level
of the script that specifies the compatibility level
of the DLPAR script with respect to the DLPAR
implementation version of AIX. On AIX 5L
Version 5.2, the version must be set to 1, which
indicates that the script is compatible with
DLPAR implementation Version 1.

DR_DATE=DDMMYYYY This name-value pair is the publication date of
the script. The format should be DDMMYYYY,
where DD=days, MM=months, and YYYY=year.
For example, a valid date would be 08102002,
which is October 8, 2002.

DR_SCRIPTINFO=description This name-value pair contains a description of
the script’s functionality. This string should be a
brief human-readable message.

DR_VENDOR=vendor_information This name-value pair indicates the vendor name
and related information. This string can also be
used to highlight the application represented by
the script.
78 The Complete Partitioning Guide for IBM Eserver pSeries Servers

In addition to Table 3-6 on page 75, Table 3-9 on page 79 lists the optional
name-value pair that can be returned by the script when it is invoked with the
scriptinfo subcommand. If the script needs to have more processing time
for its execution, it prints the timeout value to the standard out explained in
Table 3-9 on page 79 so that the drmgr command can read the appropriate
timeout value for this script.

Table 3-9 Optional output name-value pairs for the scriptinfo subcommand

Example
In Example 3-1,two sample DLPAR scripts are registered, dr_test.sh and
dr_test.pl. The emphasized lines in this example show the information recorded
in the DLPAR script database. The information was derived from the script output
with the scriptinfo subcommand upon the script registration (see Table 3-8 on
page 78).

Also, the two fields, Script Timeout and Admin Override Timeout correspond to
the values specified by the DR_TIMEOUT value and the -w option, respectively
(see Table 3-9).

Optional output pair Description

DR_TIMEOUT=timeout_in_seconds This name-value pair indicates the timeout
value in seconds of all DLPAR operations done
in this script. The default timeout is 10 seconds.
This timeout can be overridden by the -w flag of
the drmgr command.
The drmgr command waits for the timeout
before it sends a SIGABRT to the script. After
waiting 1 more second for the script to
gracefully end, it will send a SIGKILL.
A value of zero (0) disables the timer.

Note: Do not confuse the timeout value specified by DR_TIMEOUT with the
timeout value selected in the DLPAR operation dialog panel on the HMC (see
the Timeout setting (in mins) value in Figure 8-2 on page 258).
 Chapter 3. Dynamic logical partitioning 79

Example 3-1 Registered sample DLPAR scripts

drmgr -l
DR Install Root Directory: /usr/lib/dr/scripts/all
Syslog ID: DRMGR
--
/usr/lib/dr/scripts/all/dr_test.sh DLPAR ksh example script
 Vendor:IBM, Version:1, Date:10182002
 Script Timeout:10, Admin Override Timeout:0
 Resources Supported:
 Resource Name: cpu Resource Usage: cpu binding for performance
 Resource Name: mem Resource Usage: Shared(Pinned) memory for app XYZ
--
/usr/lib/dr/scripts/all/dr_test.pl DLPAR Perl example script
 Vendor:IBM Corp., Version:1, Date:04192002
 Script Timeout:5, Admin Override Timeout:0
 Resources Supported:
 Resource Name: cpu Resource Usage: Testing DLPAR on CPU removal
 Resource Name: mem Resource Usage: Testing DLPAR on MEM removal
--

3.7.2 The register subcommand
When the script is invoked with the register subcommand by the drmgr
command, the script is registered into the DLPAR script database. The register
subcommand also informs the drmgr command about the resource type (CPU or
memory) that the script is designed to handle.

When the script is invoked with the register subcommand, it takes the following
syntax:

dr_application_script register

Input to the register subcommand
The register subcommand takes the following input data:

� Additional command line arguments

None.

� Name-value pairs from environment variables

See Table 3-3 on page 73.
80 The Complete Partitioning Guide for IBM Eserver pSeries Servers

Output from the register subcommand
The register subcommand produces the following output data:

� Exit value

The script must return an exit value, either 0 (success) or 1 (failure). If the exit
value is 1, the DR_ERROR name-value pair must be set to describe the
reason for failure, and the script must print it to the standard out.

� Name-value pairs to the standard output stream

Table 3-10 on page 81 lists the name-value pair that must be returned by the
script when it is invoked with the register subcommand.

Table 3-10 Required output name-value pair for the register subcommand

Optionally, the script can return the name-value pairs listed in Table 3-6 on
page 75.

Example
The emphasized fields in the following example are extracted from Example 3-1
on page 80. The fields show the information recorded in the DLPAR script
database. The information was derived from the script output with the register
subcommand upon the script registration (see Table 3-10).

Resources Supported:
 Resource Name: cpu Resource Usage: Testing DLPAR on CPU
removal
 Resource Name: mem Resource Usage: Testing DLPAR on MEM
removal

Required output pair Description

DR_RESOURCE=resource_name This string identifies the resource type that the
DLPAR script is designed to handle. The valid
resource type names are:
� cpu
� mem
If a script needs to handle both CPU and memory
resource types, the script prints the following two
lines:
DR_RESOURCE=cpu
DR_RESOURCE=mem
 Chapter 3. Dynamic logical partitioning 81

3.7.3 The usage subcommand
The main purpose of the usage subcommand is to tell you which resource type
(CPU or memory) the script is designed to handle. The usage subcommand is
also called by the drmgr command in the very early stage of a DLPAR operation
request for information purposes only.

When the script is invoked with the usage subcommand, it takes the following
syntax:

dr_application_script usage <resource_type>

Input to the usage subcommand
The usage subcommand takes the following input data:

� Additional command line arguments

The usage subcommand requires one additional command line argument that
tells the drmgr command which resource type (CPU or memory) the script is
designed to handle. The valid values are cpu or mem.

� Name-value pairs from environment variables

See Table 3-3 on page 73.

Output from the usage subcommand
The usage subcommand produces the following output data:

� Exit value

The script must return an exit value, either 0 (success) or 1 (failure). If the exit
value is 1, the DR_ERROR name-value pair must be set to describe the
reason for failure, and the script must print it to the standard out.

� Name-value pairs to the standard output stream

Table 3-11 lists the name-value pair that must be returned by the script when
it is invoked with the usage subcommand.

Table 3-11 Required output name-value pair for the usage subcommand

Optionally, the script can return the name-value pairs listed in Table 3-6 on
page 75.

Required output pair Description

DR_USAGE=usage_description This name-value pair contains a human-readable
string describing how the resource is used by the
associated application. This description should
indicate the impact on the application if that
resource is removed or added.
82 The Complete Partitioning Guide for IBM Eserver pSeries Servers

Example
The emphasized fields in the following example are extracted from Example 3-1
on page 80. The fields show the information recorded in the DLPAR script
database. The information was derived from the script output with the usage
subcommand upon the script registration (see Table 3-10 on page 81).

Resources Supported:
 Resource Name: cpu Resource Usage: Testing DLPAR on CPU
removal
 Resource Name: mem Resource Usage: Testing DLPAR on MEM
removal

3.7.4 The checkrelease subcommand
Before the specified resource type is removed, the script is invoked with the
checkrelease subcommand by the drmgr command. The resource is not actually
changed with this subcommand.

When the drmgr command invokes the script with the checkrelease
subcommand, the script determines the resource dependencies of the
application, evaluate the effects of resource removal on the application, and
indicate whether the resource can be successfully removed. If the resource
removal request affects the application, the script returns with an exit status of 1
to let the drmgr command know to not release the resource.

When the script is invoked with the checkrelease subcommand, it takes the
following syntax:

dr_application_script checkrelease <resource_type>

Input for the checkrelease subcommand
The checkrelease subcommand takes the following input data:

� Additional command line arguments

The checkrelease subcommand requires one additional command line
argument that tells the drmgr command which resource type (CPU or
memory) the script is designed to handle. The valid values are cpu or mem.

� Name-value pairs from environment variables

The checkrelease subcommand takes several required input name-value
pairs from environment values depending on the resource type that the script
is designed to handle:

– If the script is registered to handle CPU, see Table 3-4 on page 74.

– If the script is registered to handle memory, see Table 3-5 on page 74.
 Chapter 3. Dynamic logical partitioning 83

The checkrelease subcommand can also take an optional input name-value
pair from the environment value shown in Table 3-3 on page 73.

Output for the checkrelease subcommand
The checkrelease subcommand produces the following output data:

� Exit value

The script must return an exit value, either 0 (success) or 1 (failure). If the exit
value is 1, the DR_ERROR name-value pair must be set to describe the
reason for failure, and the script must print it to the standard out.

� Name-value pairs to the standard output stream

Optionally, the script can return the name-value pairs listed in Table 3-6 on
page 75.

3.7.5 The prerelease subcommand
Before the specified resource type is actually released, the script is invoked with
the prerelease subcommand by the drmgr command. This is called after the
checkrelease subcommand.

When the drmgr command invokes the script with the prerelease subcommand,
the script interacts with the application, as briefly summarized in the following:

1. Informs the application about the resource removal event and lets the
application release the specified resource, for example, reconfigure, suspend,
or terminate the application process that uses the specified resource.

2. If the application has successfully released the specified resource, the script
exits with an exit status of 0 (success).

Note: If the DR_FORCE=TRUE environment value is passed to a script
with prerelease, the script interprets the force option as an order, so it
returns as soon as possible.

Note: When invoking scripts in the prerelease phase, the failure of a script
does not prevent the drmgr command from attempting to remove the
resource. The theory is that resource removal is safe. It may fail, but the
kernel is coded to cleanly remove resources, so there is no harm in trying.
The return code from each script is stored so that the drmgr command can
determine whether it needs to call it back. If a script fails in the prerelease
phase, it will not be called in the postrelease or undorelease phases.
84 The Complete Partitioning Guide for IBM Eserver pSeries Servers

3. Otherwise, there are two options:

– The script exits with an exit status of 0 (success) regardless of the
response from the application.

– The script exits with an exit status of 1 (failure).

When the script is invoked with the prerelease subcommand, it takes the
following syntax:

dr_application_script prerelease <resource_type>

Input for the prerelease subcommand
The prerelease subcommand takes the following input data:

� Additional command line arguments

The prerelease subcommand requires one additional command line
argument that tells the drmgr command which resource type (CPU or
memory) the script is designed to handle. The valid values are cpu or mem.

� Name-value pairs from environment variables

The prerelease subcommand takes several required input name-value pairs
from environment values depending on the resource type that the script is
designed to handle:

– If the script is registered to handle CPU, see Table 3-4 on page 74.

– If the script is registered to handle memory, see Table 3-5 on page 74.

The prerelease subcommand can also take an optional input name-value
pair from the environment value shown in Table 3-3 on page 73.

Output for the prerelease subcommand
The prerelease subcommand produces the following output data:

� Exit value

The script must return an exit value, either 0 (success) or 1 (failure). If the exit
value is 1, the DR_ERROR name-value pair must be set to describe the
reason for failure, and the script must print it to the standard out.

Note: If the DR_FORCE=TRUE environment value is passed to a script
with the prerelease subcommand, the script returns as soon as possible.

Note: If the script exits with 1 (failure), the drmgr command will not perform
actual resource removal; however, it will invoke subsequent events
(postrelease and undoprerelease) against the specified resource.
 Chapter 3. Dynamic logical partitioning 85

� Name-value pairs to the standard output stream

Optionally, the script can return the name-value pairs listed in Table 3-6 on
page 75.

3.7.6 The postrelease subcommand
After the specified resource type has been released from the partition, the script
is invoked with the postrelease subcommand by the drmgr command. This is
called after the prerelease subcommand.

When the drmgr command invokes the script with the postrelease subcommand,
the script interacts with the application, including any necessary cleanup, for
example, restarting or resuming the application if it was quiesced in the
prerelease subcommand.

The script also takes appropriate actions if a partial success occurs. A partial
success occurs when a subset of the requested number of resources was
successfully removed. For example, the memory-related environment variables
are checked to determine if all the requested memory frames were removed.

When the script is invoked with the postrelease subcommand, it takes the
following syntax:

dr_application_script postrelease <resource_type>

Input for the postrelease subcommand
The postrelease subcommand takes the following input data:

� Additional command line arguments

The postrelease subcommand requires one additional command line
argument that tells the drmgr command which resource type (CPU or
memory) the script is designed to handle. The valid values are cpu or mem.

� Name-value pairs from environment variables

The postrelease subcommand takes several required input name-value pairs
from environment values depending on the resource type that the script is
designed to handle:

– If the script is registered to handle CPU, see Table 3-4 on page 74.

– If the script is registered to handle memory, see Table 3-5 on page 74.

The postrelease subcommand also can take an optional input name-value
pair from the environment value shown in Table 3-3 on page 73.

Note: The force option should be ignored.
86 The Complete Partitioning Guide for IBM Eserver pSeries Servers

Output for the postrelease subcommand
The postrelease subcommand produces the following output data:

� Exit value

The script must return an exit value, either 0 (success) or 1 (failure). If the exit
value is 1, the DR_ERROR name-value pair must be set to describe the
reason for failure, and the script must print it to the standard out.

� Name-value pairs to the standard output stream

Optionally, the script can return the name-value pairs listed in Table 3-6 on
page 75.

3.7.7 The undoprerelease subcommand
If the drmgr command fails to release the specified resource, it invokes the script
with the undoprerelease subcommand to recover any necessary clean-up tasks
that were done by the prerelease subcommand. The script undoes any actions
that were taken by the script in the prerelease subcommand.

When the script is invoked with the undoprerelease subcommand, it takes the
following syntax:

dr_application_script undoprerelease <resource_type>

Input for the undoprerelease subcommand
The undoprerelease subcommand takes the following input data:

� Additional command line arguments

The undoprerelease subcommand requires one additional command line
argument that tells the drmgr command which resource type (CPU or
memory) the script is designed to handle. The valid values are cpu or mem.

� Name-value pairs from environment variables

The undoprerelease subcommand takes several required input name-value
pairs from environment values depending on the resource type that the script
is designed to handle:

– If the script is registered to handle CPU, see Table 3-4 on page 74.

– If the script is registered to handle memory, see Table 3-5 on page 74.

The undoprerelease subcommand also can take an optional input
name-value pair from the environment value shown in Table 3-3 on page 73.

Note: If the specified resource has been removed successfully, the drmgr
command will not invoke the script with the undoprerelease subcommand.
 Chapter 3. Dynamic logical partitioning 87

Output for the undoprerelease subcommand
The undoprerelease subcommand produces the following output data:

� Exit value

The script must return an exit value, either 0 (success) or 1 (failure). If the exit
value is 1, the DR_ERROR name-value pair must be set to describe the
reason for failure, and the script must print it to the standard out.

� Name-value pairs to the standard output stream

Optionally, the script can return the name-value pairs listed in Table 3-6 on
page 75.

3.7.8 The checkacquire subcommand
Before the specified resource type is added, the script is invoked with the
checkacquire subcommand by the drmgr command. The resource is not actually
changed with this subcommand.

When the drmgr command invokes the script with the checkacquire
subcommand, the script determines the resource dependencies of the
application, evaluates the effects of resource addition on the application, and
indicates whether the resource can be successfully added. For example, there
are some MP-unsafe applications. MP-unsafe applications5 are not tolerative
with multiple processors. If the resource addition request affects the application,
the script returns with an exit status of 1 to let the drmgr command know to not
add the resource.

When the script is invoked with the checkrelease subcommand, it takes the
following syntax:

dr_application_script checkacquire <resource_type>

Input for the checkacquire subcommand
The checkaquire subcommand takes the following input data:

� Additional command line arguments

The checkacquire subcommand requires one additional command line
argument that tells the drmgr command which resource type (CPU or
memory) the script is designed to handle. The valid values are cpu or mem.

Note: The force option should be ignored.

5 The MP-unsafeness of application is independent of the DLPAR implementation of AIX. It is an
application design issue.
88 The Complete Partitioning Guide for IBM Eserver pSeries Servers

� Name-value pairs from environment variables

The checkacquire subcommand takes several required input name-value
pairs from environment values depending on the resource type that the script
is designed to handle:

– If the script is registered to handle CPU, see Table 3-4 on page 74.

– If the script is registered to handle memory, see Table 3-5 on page 74.

The checkacquire subcommand also can take an optional input name-value
pair from the environment value shown in Table 3-3 on page 73.

Output for the checkacquire subcommand
The checkacquire subcommand produces the following output data:

� Exit value

The script must return an exit value, either 0 (success) or 1 (failure). If the exit
value is 1, the DR_ERROR name-value pair must be set to describe the
reason for failure, and the script must print it to the standard out.

� Name-value pairs to the standard output stream

Optionally, the script can return the name-value pairs listed in Table 3-6 on
page 75.

3.7.9 The preacquire subcommand
Before the specified resource type is actually acquired, the script is invoked with
the preacquire subcommand by the drmgr command. This is called after the
checkacquire subcommand.

When the drmgr command invokes the script with the preacquire subcommand,
the script interacts with the application, for example, it informs the application
about the resource addition and lets the application acquire the specified
resource if it is DLPAR-aware.

Note: The force option should be ignored.

Note: If the script exits with 1 (failure), the drmgr command will not add the
specified resource and will not invoke subsequent events (preacquire,
postacquire, and undopreacquire) against the specified resource (see
Figure 3-2 on page 67).
 Chapter 3. Dynamic logical partitioning 89

When the script is invoked with the preacquire subcommand, it takes the
following syntax:

dr_application_script preacquire <resource_type>

Input for the preacquire subcommand
The preacquire subcommand takes the following input data:

� Additional command line arguments

The preacquire subcommand requires one additional command line
argument that tells the drmgr command which resource type (CPU or
memory) the script is designed to handle. The valid values are cpu or mem.

� Name-value pairs from environment variables

The preacquire subcommand takes several required input name-value pairs
from environment values depending on the resource type that the script is
designed to handle:

– If the script is registered to handle CPU, see Table 3-4 on page 74.

– If the script is registered to handle memory, see Table 3-5 on page 74.

The preacquire subcommand also can take an optional input name-value
pair from the environment value shown in Table 3-3 on page 73.

Output for the preacquire subcommand
The preacquire subcommand produces the following output data:

� Exit value

The script must return an exit value, either 0 (success) or 1 (failure). If the exit
value is 1, the DR_ERROR name-value pair must be set to describe the
reason for failure, and the script must print it to the standard out.

Note: Most applications are DLPAR-safe. If your application is DLPAR-safe,
but not DLPAR-aware, the script with the preacquire subcommand does not
have to do any processing.

Note: When invoking scripts in the preacquire phase, the failure of a script
does not prevent the drmgr command from attempting to add the resource.
The theory is that resource addition is safe. It may fail, but the kernel is
coded to cleanly add resources, so there is no harm in trying. The return
code from each script is remembered so that the drmgr command can
determine whether it needs to call it back. If a script fails in the preacquire
phase, it will not be called in the postacquire or undoacquire phases.
90 The Complete Partitioning Guide for IBM Eserver pSeries Servers

� Name-value pairs to the standard output stream

Optionally, the script can return the name-value pairs listed in Table 3-6 on
page 75.

3.7.10 The postacquire subcommand
After the specified resource type has been added to the partition, the script is
invoked with the postacquire subcommand by the drmgr command. This is
called after the preacquire subcommand.

When the drmgr command invokes the script with the postacquire subcommand,
the script interacts with the application, including any necessary cleanup, for
example, restarting or resuming the application if it was quiesced in the
preacquire subcommand.

The script also takes the appropriate actions if a partial success occurs. A partial
success occurs when a subset of the requested number of resources was
successfully added. For example, the memory-related environment variables
should be checked to determine if all of the requested memory frames were
added.

When the script is invoked with the postacquire subcommand, it takes the
following syntax:

dr_application_script postacquire <resource_type>

Input for the postacquire subcommand
The postacquire subcommand takes the following input data:

� Additional command line arguments

The postacquire subcommand requires one additional command line
argument that tells the drmgr command which resource type (CPU or
memory) the script is designed to handle. The valid values are cpu or mem.

� Name-value pairs from environment variables

The postacquire subcommand takes several required input name-value pairs
from environment values depending on the resource type that the script is
designed to handle:

– If the script is registered to handle CPU, see Table 3-4 on page 74.

Note: If the script exits with 1 (failure), the drmgr command will not perform
actual resource removal; however, it will invoke subsequent events
(postacquire and undopreacquire) against the specified resource.
 Chapter 3. Dynamic logical partitioning 91

– If the script is registered to handle memory, see Table 3-5 on page 74.

The postacquire subcommand also can take an optional input name-value
pair from the environment value shown in Table 3-3 on page 73.

Output for the postacquire subcommand
The postacquire subcommand produces the following output data:

� Exit value

The script must return an exit value, either 0 (success) or 1 (failure). If the exit
value is 1, the DR_ERROR name-value pair must be set to describe the
reason for failure, and the script must print it to the standard out.

� Name-value pairs to the standard output stream

Optionally, the script can return the name-value pairs listed in Table 3-6 on
page 75.

3.7.11 The undopreacquire subcommand
If the drmgr command fails to add the specified resource to the partition, it
invokes the script with the undopreacquire subcommand to recover any
necessary cleanup tasks that were done by the preacquire subcommand. The
script undoes any actions that were taken by the script in the preacquire
subcommand.

When the script is invoked with the undopreacquire subcommand, it takes the
following syntax:

dr_application_script undopreacquire <resource_type>

Input for the undopreacquire subcommand
The undopreacquire subcommand takes the following input data:

� Additional command line arguments

The undopreacquire subcommand requires one additional command line
argument that tells the drmgr command which resource type (CPU or
memory) the script is designed to handle. The valid values are cpu or mem.

Note: The force option should be ignored.

Note: If the specified resource has been added successfully, the drmgr
command will not invoke the script with the undopreacquire subcommand.
92 The Complete Partitioning Guide for IBM Eserver pSeries Servers

� Name-value pairs from environment variables

The undopreacquire subcommand takes several required input name-value
pairs from environment values depending on the resource type that the script
is designed to handle:

– If the script is registered to handle CPU, see Table 3-4 on page 74.

– If the script is registered to handle memory, see Table 3-5 on page 74.

The undopreacquire subcommand also can take an optional input
name-value pair from the environment value shown in Table 3-3 on page 73.

Output for the undopreacquire subcommand
The undopreacquire subcommand produces the following output data:

� Exit value

The script must return an exit value, either 0 (success) or 1 (failure). If the exit
value is 1, the DR_ERROR name-value pair must be set to describe the
reason for failure, and the script must print it to the standard out.

� Name-value pairs to the standard output stream

Optionally, the script can return the name-value pairs listed in Table 3-6 on
page 75.

3.8 How to manage DLPAR scripts
The drmgr command must be used to manage DLPAR scripts. The function
provided by the drmgr command does the following:

� Lists the registered DLPAR scripts and shows their information.

� Registers or uninstalls DLPAR scripts in the DLPAR script database.

� Changes the script install directory path. The default directory is
/usr/lib/dr/scripts/all.

In the following sections, typical drmgr command usage examples are provided.

Note: The force option should be ignored.

Note: The drmgr command is the only interface to manipulate the DLPAR
script database. To use the drmgr command, you need the root authority.
 Chapter 3. Dynamic logical partitioning 93

3.8.1 List registered DLPAR scripts
To list registered DLPAR scripts and their information, type drmgr -l. If no scripts
are registered, it returns the following output:

drmgr -l
DR Install Root Directory: /usr/lib/dr/scripts/
Syslog ID: DRMGR

Example 3-1 on page 80 shows the example output of drmgr -l when DLPAR
scripts are already registered.

3.8.2 Register a DLPAR script
To register a DLPAR script, type drmgr -i script_file_name. The script is
copied into the script install path (the default value is /usr/lib/dr/scripts/all) and
registered in the DLPAR script database, as shown in the following example:

drmgr -l
DR Install Root Directory: /usr/lib/dr/scripts
Syslog ID: DRMGR
ls /usr/samples/dr/scripts/IBM_template.sh
/usr/samples/dr/scripts/IBM_template.sh
drmgr -i /usr/samples/dr/scripts/IBM_template.sh

DR script file /usr/samples/dr/scripts/IBM_template.sh installed successfully

drmgr -l
DR Install Root Directory: /usr/lib/dr/scripts
Syslog ID: DRMGR
--
/usr/lib/dr/scripts/all/IBM_template.sh AIX DR ksh example script
 Vendor:IBM, Version:1, Date:10182002
 Script Timeout:10, Admin Override Timeout:0
 Resources Supported:
 Resource Name: cpu Resource Usage: cpu binding for
performance
 Resource Name: mem Resource Usage: Shared(Pinned) memory
for app XYZ
--
ls /usr/lib/dr/scripts/all
total 32
-rwxr-xr-x 1 bin bin 13609 Aug 28 22:30 IBM_template.sh
94 The Complete Partitioning Guide for IBM Eserver pSeries Servers

If the permission mode of the registered script is not appropriate, for example, no
executable bits are set, then drmgr -l will not list the registered script name,
even if the registration has been successfully completed. In this case, set the
appropriate permission mode on the script and register it with the overwrite
option -f, as shown in the following example:

ls -l dr_IBM_template.sh
-rw-r--r-- 1 root system 14109 Nov 12 16:31 dr_IBM_template.sh
drmgr -i dr_IBM_template.sh

DR script file dr_IBM_template.sh installed successfully
root@lpar01:/tmp [652] # drmgr -l
DR Install Root Directory: /usr/lib/dr/scripts
Syslog ID: DRMGR
chmod a+x dr_IBM_template.sh
drmgr -i dr_IBM_template.sh -f

DR script file dr_IBM_template.sh installed successfully

drmgr -l
DR Install Root Directory: /usr/lib/dr/scripts
Syslog ID: DRMGR
--
/usr/lib/dr/scripts/all/dr_IBM_template.sh AIX DR ksh example
script
 Vendor:IBM, Version:1, Date:18102002
 Script Timeout:10, Admin Override Timeout:0
 Resources Supported:
 Resource Name: cpu Resource Usage: cpu binding for
performance
 Resource Name: mem Resource Usage: Shared(Pinned) memory
for app XYZ
--

3.8.3 Uninstall a registered DLPAR script
To uninstall a registered DLPAR script, type drmgr -u script_file_name. The
script is unregistered from the DLPAR script database, as shown in the following
example:

drmgr -u IBM_template.sh

DR script file IBM_template.sh uninstalled successfully

drmgr -l
DR Install Root Directory: /usr/lib/dr/scripts
Syslog ID: DRMGR
 Chapter 3. Dynamic logical partitioning 95

The uninstalled script file name is renamed in the script install path, as shown in
the following example:

ls -l /usr/lib/dr/scripts/all
total 32
-rw-r--r-- 1 bin bin 13609 Aug 28 22:30 .IBM_template.sh

Please note that a dot character is added in front of the original file name.

3.8.4 Change the script install path
To change the script install path, type drmgr -R new_dir. In the following
example, the script install path is changed to the newly created directory
/local/lpar01.itsc.austin.ibm.com®6 from the default path /usr/lib/dr/scripts:

drmgr -l
DR Install Root Directory: /usr/lib/dr/scripts
Syslog ID: DRMGR
mkdir -p /local/`hostname`
drmgr -R /local/`hostname`

0930-022 DR script ROOT directory set to:/local/lpar01.itsc.austin.ibm.com
successfully

drmgr -l
DR Install Root Directory: /local/lpar01.itsc.austin.ibm.com
Syslog ID: DRMGR

3.8.5 The drmgr command line options
Table 3-12 on page 97 lists the drmgr command line options and their purpose.
For further information about the drmgr command, type man drmgr on the
command line prompt or refer to AIX 5L Version 5.2 Reference Documentation:
Commands Reference, available at:

http://techsupport.services.ibm.com/server/library

6 In this example, the hostname command returns the fully qualified host name (FQDN),
lpar01.itsc.austin.ibm.com on one of our test partitions.

Note: If you have changed the script install path, scripts that are already
registered will not be referenced by the drmgr command.
96 The Complete Partitioning Guide for IBM Eserver pSeries Servers

http://techsupport.services.ibm.com/server/library

Table 3-12 The drmgr command line options

Command option Brief description Detailed description

-i script_name

Other associated options:
[-D install_directory]
[-w timeout]
[-f]

Installs a DLPAR script
to the default or
specified directory.

The system administrator should use the -i flag
to install a DLPAR script. The script’s file name
is used as input.

Unless the -D flag is used, the scripts are
installed into the /usr/lib/dr/scripts/all/ directory
under the root install directory (see -R flag).

Permissions for the DLPAR script are the same
as the script_name file.

If a script with the same name is already
registered, the install will fail with a warning
unless the force option is used.

-w timeout Timeout value in
minutes.

This option is used in conjunction with the -i
option. The drmgr command will override the
timeout value specified by the LPAR script with
the new-user defined timeout value.

-f Forces an override. During the installation of a script, the -f option
can be set to force an override of a duplicate
DLPAR script name.

-u script_name

Other associated options:
[-D host_name]

Uninstalls a DLPAR
script.

The system administrator invokes this
command to uninstall a DLPAR script. The
script file name is provided as an input.
The user can specify the directory from where
the script should be removed by using the -D
option. If no directory is specified, the command
will try to remove the script from the all directory
under the root directory (see the -R option).
If the script is registered using the -D option, it
will only be invoked on a system with that host
name.
If no file is found, the command will return with
an error.

-R base_directory_path Sets the root directory
where the DLPAR
scripts are installed.

The default value is /usr/lib/dr/scripts/.
The installer looks at the all or hosts directory
under this root directory. (/usr/lib/dr/scripts/all/).

-d debug_level Sets the debug level. This option sets the DR_DEBUG environment
variable, which controls the level of debug
messages from the DLPAR scripts.
 Chapter 3. Dynamic logical partitioning 97

3.8.6 Sample output examples from a DLPAR script
Although, the syslog facility can be used to record debug information, we decided
to write our example DLPAR script to send the debug information to
/tmp/dr_api_template.pl.dbg for readability reasons.

After registering the DLPAR script written in Perl (see Example B-2 on
page 409), we initiated the following DLPAR operations on the HMC:

� 2 GB memory addition

� 1 GB memory removal

� 1 CPU addition

� 2 CPU removal

To perform a DLPAR operation using the graphical user interface on the HMC,
refer to 8.1, “Dynamic logical partitioning” on page 256. If you use the command
line interface on the HMC, refer to 9.3, “Dynamic logical partitioning operations
using chhwres” on page 285.

-l Lists DLPAR scripts. This option lists the details of all DLPARR
scripts currently active on the system.

-b Rebuilds DLPAR script
database.

This option rebuilds the DLPAR script database
by parsing through the entire list of DLPAR
script install directories.

-S syslog_chan_id_str Specifies a syslog
channel.

This option enables the user to specify a
particular channel to which the syslog
messages have to be logged from the DLPAR
script by the drmgr command (see “The syslog
facility” on page 118).

Command option Brief description Detailed description
98 The Complete Partitioning Guide for IBM Eserver pSeries Servers

Sample output: 2 GB memory addition
Example 3-2 shows the sample output of a 2 GB memory addition DLPAR event.
You will notice that there are three line blocks for the check, pre, and post
phases.

Example 3-2 Sample output: 2 GB memory addition

-- start checkacquire phase --
DR_DRMGR_INFO=DRAF architecture Version 1
DR_FORCE=FALSE
DR_FREE_FRAMES=0x30a
DR_MEM_SIZE_COMPLETED=0x0
DR_MEM_SIZE_REQUEST=0x80000000
DR_PINNABLE_FRAMES=0x54a55
DR_TOTAL_FRAMES=0x80000
mem resources: 0x80000000
-- end checkacquire phase --
-- start preacquire phase --
DR_DRMGR_INFO=DRAF architecture Version 1
DR_FORCE=FALSE
DR_FREE_FRAMES=0x30a
DR_MEM_SIZE_COMPLETED=0x0
DR_MEM_SIZE_REQUEST=0x80000000
DR_PINNABLE_FRAMES=0x54a55
DR_TOTAL_FRAMES=0x80000
-- end preacquire phase --
-- start undopreacquire phase --
DR_DRMGR_INFO=DRAF architecture Version 1
DR_FORCE=FALSE
DR_FREE_FRAMES=0x30a
DR_MEM_SIZE_COMPLETED=0x800
DR_MEM_SIZE_REQUEST=0x80000000
DR_PINNABLE_FRAMES=0x54a55
DR_TOTAL_FRAMES=0x80000
-- end undopreacquire phase --

Before the DLPAR operation, the partition had 2 GB memory assigned, as shown
in the following example:

lsattr -El mem0
size 2048 Total amount of physical memory in Mbytes False
goodsize 2048 Amount of usable physical memory in Mbytes False

After the completion of the DLPAR operation, the memory size has been
increased to 4 GB, as shown in the following example:

lsattr -El mem0
size 4096 Total amount of physical memory in Mbytes False
goodsize 4096 Amount of usable physical memory in Mbytes False
 Chapter 3. Dynamic logical partitioning 99

Sample output: 1 GB memory removal
Example 3-3 shows the sample output of a 1 GB memory removal DLPAR event.
You will see there are three line blocks for the check, pre, and post phases.

Example 3-3 Sample output: 1 GB memory removal

-- start checkrelease phase --
DR_DRMGR_INFO=DRAF architecture Version 1
DR_FORCE=FALSE
DR_FREE_FRAMES=0x7e2f5
DR_MEM_SIZE_COMPLETED=0x0
DR_MEM_SIZE_REQUEST=0x40000000
DR_PINNABLE_FRAMES=0xac3f3
DR_TOTAL_FRAMES=0x100000
-- end checkrelease phase --
-- start prerelease phase --
DR_DRMGR_INFO=DRAF architecture Version 1
DR_FORCE=FALSE
DR_FREE_FRAMES=0x7e2f5
DR_MEM_SIZE_COMPLETED=0x0
DR_MEM_SIZE_REQUEST=0x40000000
DR_PINNABLE_FRAMES=0xac3f3
DR_TOTAL_FRAMES=0x100000
-- end prerelease phase --
-- start postrelease phase --
DR_DRMGR_INFO=DRAF architecture Version 1
DR_FORCE=FALSE
DR_FREE_FRAMES=0x7e2f5
DR_MEM_SIZE_COMPLETED=0x400
DR_MEM_SIZE_REQUEST=0x40000000
DR_PINNABLE_FRAMES=0xac3f3
DR_TOTAL_FRAMES=0x100000
-- end postrelease phase --

Before the DLPAR operation, the partition had 4 GB memory assigned, as shown
in the following example:

lsattr -El mem0
size 4096 Total amount of physical memory in Mbytes False
goodsize 4096 Amount of usable physical memory in Mbytes False

After the completion of the DLPAR operation, the memory size has been
increased to 3 GB, as shown in the following example:

lsattr -El mem0
size 3072 Total amount of physical memory in Mbytes False
goodsize 3072 Amount of usable physical memory in Mbytes False
100 The Complete Partitioning Guide for IBM Eserver pSeries Servers

Sample output: 1 CPU addition
Example 3-4 shows the sample output of a 1 CPU addition DLPAR event. You will
see there are three line blocks for the check, pre, and post phases for the CPU ID
2.

Example 3-4 Sample output: 1 CPU addition

-- start checkacquire phase --
DR_BCPUID=2
DR_DRMGR_INFO=DRAF architecture Version 1
DR_FORCE=FALSE
DR_LCPUID=2
cpu resources: logical 2, bind 2
-- end checkacquire phase --
-- start preacquire phase --
DR_BCPUID=2
DR_DRMGR_INFO=DRAF architecture Version 1
DR_FORCE=FALSE
DR_LCPUID=2
-- end preacquire phase --
-- start undopreacquire phase --
DR_BCPUID=2
DR_DRMGR_INFO=DRAF architecture Version 1
DR_FORCE=FALSE
DR_LCPUID=2
-- end undopreacquire phase --

Before the DLPAR operation, the partition had two processors assigned, as
shown in the following example:

lsdev -Cc processor -S Available
proc6 Available 00-06 Processor
proc7 Available 00-07 Processor

After the completion of the DLPAR operation, the number of active processors
has been increased to three, as shown in the following example:

lsdev -Cc processor -S Available
proc6 Available 00-06 Processor
proc20 Available 00-20 Processor
proc7 Available 00-07 Processor
 Chapter 3. Dynamic logical partitioning 101

Sample output: 2 CPU removal
Example 3-5 shows the sample output of a 2 CPU removal DLPAR event. You will
see there are three line blocks for the check, pre, and post phases for each CPU
(ID 2 and 3).

Example 3-5 Sample output: 2 CPU removal

-- start checkrelease phase --
DR_BCPUID=3
DR_DRMGR_INFO=DRAF architecture Version 1
DR_FORCE=FALSE
DR_LCPUID=3
-- end checkrelease phase --
-- start prerelease phase --
DR_BCPUID=3
DR_DRMGR_INFO=DRAF architecture Version 1
DR_FORCE=FALSE
DR_LCPUID=3
-- end prerelease phase --
-- start postrelease phase --
DR_BCPUID=3
DR_DRMGR_INFO=DRAF architecture Version 1
DR_FORCE=FALSE
DR_LCPUID=3
-- end postrelease phase --
-- start checkrelease phase --
DR_BCPUID=2
DR_DRMGR_INFO=DRAF architecture Version 1
DR_FORCE=FALSE
DR_LCPUID=2
-- end checkrelease phase --
-- start prerelease phase --
DR_BCPUID=2
DR_DRMGR_INFO=DRAF architecture Version 1
DR_FORCE=FALSE
DR_LCPUID=2
-- end prerelease phase --
-- start postrelease phase --
DR_BCPUID=2
DR_DRMGR_INFO=DRAF architecture Version 1
DR_FORCE=FALSE
DR_LCPUID=2
-- end postrelease phase --
102 The Complete Partitioning Guide for IBM Eserver pSeries Servers

Before the DLPAR operation, the partition had four processors assigned, as
shown in the following example:

lsdev -Cc processor -S Available
proc6 Available 00-06 Processor
proc20 Available 00-20 Processor
proc7 Available 00-07 Processor
proc21 Available 00-21 Processor

After the completion of the DLPAR operation, the number of active processes has
been decreased to two, as shown in the following example:

lsdev -Cc processor -S Available
proc6 Available 00-06 Processor
proc7 Available 00-07 Processor

3.9 API-based DLPAR event handling
AIX 5L Version 5.2 has introduced a new system call, dr_reconfig(), and a new
signal, SIGRECONFIG. The applications modified to adequately use the new
system call and signal are considered DLPAR-safe.

A properly written DLPAR-aware application registers a signal handler that calls
dr_reconfig(). When a DLPAR event occurs, the application receives
SIGRECONFIG signals from the kernel in order to notify the DLPAR event.

Note that the SIGRECONFIG signal is also sent (along with the SIGCPUFAIL
signal for backward compatibility) in the case of a CPU Guard7 event. Therefore,
this API-based method can also be utilized by CPU Guard-aware applications.

The signal is sent twice (check and pre phases) before the actual resource
change (addition or removal), and sent once (post phase) after the resource
change.

In the first release of DLPAR support, DLPAR events for I/O slots do not notify
applications using the dr_config() system call.

3.9.1 The dr_reconfig system call
The dr_reconfig() system call is provided to query the information of the current
DLPAR event. The system call must be called from a registered signal handler in
order for the application be notified from the kernel when a DLAR event occurs.
The sigaction() system call is used to register a signal handler.

7 CPU Guard is also known as dynamic processor deallocation.
 Chapter 3. Dynamic logical partitioning 103

To use dr_reconfig() in your C language application, you need to add the
following compiler directive line that instructs the preprocessor to include the
/usr/include/sys/dr.h file:

#include <sys/dr.h>

Example 3-6 shows the prototype definition of dr_reconfig.

Example 3-6 The dr_reconfig system call usage

int dr_reconfig(int flags, dr_info_t *info);

0 is returned for success; otherwise,
-1 is returned, and the errno is set to the appropriate value.

The dr_reconfig() system call takes two parameters. The flags determine what
the system call does. The info parameter is a structure that contains
DLPAR-specific data that the signal handler uses to process DLPAR events
accordingly. Table 3-13 shows the supported flags.

Table 3-13 The dr_reconfig flag parameters8

The other parameter is a pointer to a structure that hold DLPAR-specific
information. The signal handler must allocate space for the dr_info_t data
structure. The AIX kernel will populate this data structure and return it to the
signal handler.

Flags Description

DR_QUERY This flag identifies the current DLPAR event. It also
identifies any actions, if any, that the application should
take to comply with the current DLPAR event.
Any pertinent information is returned in the second
parameter.

DR_EVENT_FAIL This flag fails the current DLPAR event. It requires root
authority.

DR_RECONFIG_DONE This flag is used in conjunction with the DR_QUERY flag.
The application notifies the kernel that the actions it took
to comply with the current DLPAR request are now
complete. The dr_info structure identifying the DLPAR
request that was returned earlier is passed as an input
parameter.

8 The DR_RECONFIG_DONE flag is available on AIX 5L Version 5.2 plus 5200-01 Recommended
Maintenance Level and later.
104 The Complete Partitioning Guide for IBM Eserver pSeries Servers

Example 3-7 shows the definition of the dr_info structure.

Example 3-7 The dr_reconfig info parameter

typedef struct dr_info {
 unsigned int add : 1; /* add operation */
 unsigned int rem : 1; /* remove operation */
 unsigned int cpu : 1; /* target resource is a cpu */
 unsigned int mem : 1; /* target resource is memory */
 unsigned int check : 1; /* check phase in effect */
 unsigned int pre : 1; /* pre phase in effect */
 unsigned int doit : 1; /* doit phase in effect */
 unsigned int post : 1; /* post phase in effect */
 unsigned int posterror : 1; /* post error phase in effect */
 unsigned int force : 1; /* force option in effect */
 unsigned int bindproc : 1; /* process has bindprocess dependency*/
 unsigned int softpset : 1; /* process has soft processor set

dependency */
 unsigned int hardpset : 1; /* process has hard processor set

dependency */
 unsigned int plock : 1; /* process has plock'd memory */
 unsigned int pshm : 1; /* process has pinned shared memory */

 /* The following fields are filled out for cpu based requests */

 int lcpu; /* logical id of target cpu */
 int bcpu; /* bind-id of target cpu */

 /* The following fields are filled out for memory based requests */

 size64_t req_memsz_change; /* Request size in bytes */
 size64_t sys_memsz; /* System Memory size */
 rpn64_t sys_free_frames; /* Number of free frames in the

system */
 rpn64_t sys_pinnable_frames; /* Number of pinnable frames in

system */
 rpn64_t sys_total_frames; /* Total number of frames in system */

 int reserved[12];
} dr_info_t;

The bindproc and bindpset bits are only set if the request is to remove a CPU. If
the bindproc is set, then the process has a bindprocessor() attachment that must
be resolved before the operation is allowed. If the bindpset bit is set, the
application has processor set attachment, which can be lifted by calling the
appropriate processor set interface.
 Chapter 3. Dynamic logical partitioning 105

The plock and pshm bits are only set if the DLPAR request is to remove memory
and the process has plock() memory or is attached to a pinned shared memory
segment. If the plock bit is set, the application calls plock() to unpin itself. If the
pshm bit is set, the application detaches its pinned memory segments. The
memory remove request may succeed, even if the pshm bit is set, as long as
there is enough pinnable memory in the partition. Therefore, an action may not
be required for the pshm bit to be set, but it is strongly recommended. The
sys_pinnable_frames field provides the necessary information if the system has
enough excess pinnable memory.

For further detailed information about the dr_reconfig system call, please refer to
AIX 5L Version 5.2 Technical Reference: Base Operating System and
Extensions, available at:

http://techsupport.services.ibm.com/server/library

Programming implications of CPU DLPAR events
At boot time, CPUs are configured in the kernel. In AIX 5L Version 5.2, a
processor is identified by three different identifications, namely:

� The physical CPU ID, which is derived from the Open Firmware device tree
and used to communicate with RTAS.

� The logical CPU ID, which is a ppda9-based index of online and offline CPUs.

� The bind CPU ID, which is the index of online CPUs.

The logical and bind CPU IDs are consecutive and have no holes in the
numbering. No guarantee is given across boots that the CPUs will be configured
in the same order, or even that the same CPUs will be used in a partitioned
environment at all.

At system startup, the logical and bind CPU IDs are both consecutive and have
no holes in the numbering; however, DLPAR operations can remove a processor
from the middle of the logical CPU list. The bind CPU IDs remain consecutive
because they refer only to online CPUs, so the kernel has to explicitly map these
IDs to logical CPU IDs (containing online and offline CPU IDs).

The range of logical CPU IDs is defined to be 0 to M-1, where M is the maximum
number of CPUs that can be activated within the partition. M is derived from the
Open Firmware device tree. The logical CPU IDs name both online and offline
CPUs. The rset10 APIs are predicated on the use of logical CPU IDs.

9 Per processor description area.
10 Resource set.
106 The Complete Partitioning Guide for IBM Eserver pSeries Servers

http://techsupport.services.ibm.com/server/library

The range of bind CPU IDs is defined to be 0 to N-1; however, N is the current
number of online CPUs. The value of N changes as processors are added and
removed from the system by either DLPAR or CPU Guard. In general, new
processors are always added to the Nth position. Bind CPU IDs are used by the
system call bindprocessor and by the kernel service switch_cpu.

The number of potential CPUs can be determined by:

� _system_configuration.max_ncpus

� _system_configuration.original_ncpus

� var.v_ncpus_cfg

� sysconf(_SC_NPROCESSORS_CONF)

The number of online CPUs can be determined by:

� _system_configuration.ncpus

� var.v_ncpus

� sysconf(_SC_NPROCESSORS_ONLN)

The _system_configuration structure is defined in the
/usr/include/sys/systemcfg.h header file, and those members can be accessed
from your application, as shown in the following code fraction example:

#include <sys/systemcfg.h>
printf("_system_configuration.original_ncpus=%d\n"

, _system_configuration.original_ncpus);

The var structure is defined in the /usr/include/sys/var.h header file and
populated by the sysconfig system call. The following code fraction example
demonstrates how to retrieve var.v_ncpus:

#include <sys/types.h>
#include <sys/sysconfig.h>
#include <sys/var.h>
struct var myvar;
rc = sysconfig(SYS_GETPARMS, &myvar, sizeof(struct var));
if (rc == 0)

printf(“var.v_ncpus = %d\n”, myvar.v_ncpus);

The number of online CPUs can also be determined from the command line. The
following commands are provided by AIX:

� bindprocessor -q

� lsrset -a
 Chapter 3. Dynamic logical partitioning 107

As previoulsy mentioned, AIX supports two programming models for CPUs: the
bindprocessor model that is based on bind CPU IDs and the rset API model that
is based on logical CPU IDs. Whenever a program implements any of these
programming models, it should be DLPAR-aware.

A detailed description of these kernel subroutines is given in AIX 5L Version 5.2
Technical Reference: Kernel and Subsystems, available at:

http://techsupport.services.ibm.com/server/library

Also several programming examples using the rset API are shown in Chapter 11,
“Resource sets” on page 341.

The following new interfaces (system calls and kernel services) are provided to
query bind and logical CPU IDs and the mapping between them:

� mycpu(): Returns bind CPU ID of the process

� my_lcpu(): Returns bind CPU ID of the process

� b2lcpu(): Returns the bind to logical CPU ID mapping

� l2bcpu(): Returns the logical to bind CPU ID mapping

3.9.2 A sample code using the dr_reconfig system call
We have developed a sample application written in the C language using the
dr_reconfig() system call (see Example B-4 on page 434). Because the source
code is long, we excerpt the important part with annotations from the example.

Basically, this application does nothing voluntary, except for the signal handler
registration. It just does the busy loop in the while loop in main and waits until the
SIGRECONFIG signal is delivered. You must implement your application logic in
the while loop, specified by the comment Your application logic goes here.

The behavior of the application is briefly explained in the following:

1. Register a signal handler, dr_func(), in main (indicated as #A in the
comment). The signal handler is registered in order to react to the
SIGRECONFIG signal when it is delivered to the application process.

if ((rc = sigaction(SIGRECONFIG, &sigact, &sigact_save)) != 0) { /* #A */

2. Wait in the busy loop in main (#B) until the SIGRECONFIG signal is sent:

while (1) { /* #B */
;
/* your application logic goes here. */

}

3. After the SIGRECONFIG signal is delivered by the kernel, the signal handler,
dr_func(), is invoked.
108 The Complete Partitioning Guide for IBM Eserver pSeries Servers

http://techsupport.services.ibm.com/server/library

4. The handler calls dr_reconfig() in order to query the dr_info structure data.
The dr_info structure is used to determine what DLPAR operation triggers this
signal (#C).

l_rc = dr_reconfig(DR_QUERY, &dr_info); /* #C */

5. The handler parses the dr_info structure to determine the DLPAR operation
type:

– If the dr_info.add member is set, this signal is triggered by a DLPAR
resource addition request (#D):

if (dr_info.add) { /* #D */

– If the dr_info.rem member is set, this signal is triggered by a DLPAR
resource removal request (#E):

if (dr_info.rem) { /* #E */

6. The handler again parses the dr_info structure to determine the DLPAR
resource type:

– If the dr_info.cpu member is set, this signal is triggered by a DLPAR CPU
resource addition or removal request (#F):

if (dr_info.cpu) { /* #F */

– If the dr_info.mem member is set, this signal is triggered by a DLPAR
memory resource addition or removal request (#G):

} else if (dr_info.mem) { /* #G */

7. Invoke the corresponding function based on the information determined:

– If the requested DLPAR resource type is CPU, call the function pointer
stored in the l_currentPhase->cpu_ptr array (#H):

l_rc = l_currentPhase->cpu_ptr(); /* #H */

– If the requested DLPAR resource type is memory, call the function pointer
stored in the l_currentPhase->mem_ptr array (#I):

l_rc = l_currentPhase->mem_ptr(); /* #I */

Note: You must include the following preprocessor directive line to use the
dr_reconfig() system call:

#include <sys/dr.h>

Note: You must modify the functions included in the definedPhase array
(#J) by adding your own logic in order to react against DLPAR operation
phases. The comment Perform actions here specifies the location where
you will modify the functions.
 Chapter 3. Dynamic logical partitioning 109

3.9.3 Sample output examples from a DLPAR-aware application
Although, the syslog facility can be used to record debug information, we decided
to write our example application to send the debug information to
/tmp/dr_api_template.C.dbg for readability reasons.

After compiling the C source code (see “Sample DLPAR-aware application using
a signal handler” on page 433), we ran the application and initiated several
DLPAR operations on the HMC.

The following several examples exhibit the internal behaviors of the following
DLPAR operations:

� 1 GB memory addition

� 1 GB memory removal

� 2 CPU addition

� 1 CPU removal
110 The Complete Partitioning Guide for IBM Eserver pSeries Servers

To perform a DLPAR operation using the graphical user interface on the HMC,
refer to 8.1, “Dynamic logical partitioning” on page 256. If you use the command
line interface on the HMC, refer to 9.3, “Dynamic logical partitioning operations
using chhwres” on page 285.

Sample output: 1 GB memory addition
Example 3-8 shows the sample output of a 1 GB memory addition DLPAR event.
You will notice that there are three line blocks for the check, pre, and post
phases.

Example 3-8 Sample output: 1 GB memory addition

---Start of Signal Handler---
An add request for

** check phase **
Resource is Memory.

requested memory size (in bytes) = 1073741824
system memory size = 2147483648
number of free frames in system = 29434
number of pinnable frams in system = 339916
total number of frames in system = 524288

*****Entered CheckedAcquire_mem*****
---end of signal handler---

---Start of Signal Handler---
An add request for

** pre phase **
Resource is Memory.

requested memory size (in bytes) = 1073741824
system memory size = 2147483648
number of free frames in system = 29434
number of pinnable frams in system = 339916
total number of frames in system = 524288

*****Entered PreeAcquire_mem*****
---end of signal handler---

---Start of Signal Handler---
An add request for

** post phase **
Resource is Memory.

requested memory size (in bytes) = 1073741824
system memory size = 2147483648
number of free frames in system = 284761
number of pinnable frams in system = 516763
total number of frames in system = 786432

*****Entered PostAcquire_mem*****
---end of signal handler---
 Chapter 3. Dynamic logical partitioning 111

Sample output: 1 GB memory removal
Example 3-9 shows the sample output of a 1 GB memory removal DLPAR event.
You will see there are three line blocks for the check, pre, and post phases.

Example 3-9 Sample output: 1 GB memory removal

---Start of Signal Handler---
A remove request for

** check phase **
Resource is Memory.

requested memory size (in bytes) = 1073741824
system memory size = 3221225472
number of free frames in system = 284771
number of pinnable frams in system = 516763
total number of frames in system = 786432

*****Entered CheckeRelease_mem*****
---end of signal handler---

---Start of Signal Handler---
A remove request for

** pre phase **
Resource is Memory.

requested memory size (in bytes) = 1073741824
system memory size = 3221225472
number of free frames in system = 284770
number of pinnable frams in system = 516763
total number of frames in system = 786432

*****Entered PreRelease_mem*****
---end of signal handler---

---Start of Signal Handler---
A remove request for

** post phase **
Resource is Memory.

requested memory size (in bytes) = 1073741824
system memory size = 3221225472
number of free frames in system = 29043
number of pinnable frams in system = 339916
total number of frames in system = 524288

*****Entered PostReleasee_mem*****
---end of signal handler---
112 The Complete Partitioning Guide for IBM Eserver pSeries Servers

Sample output: 2 CPU addition
Example 3-10 shows the sample output of a 2 CPU addition DLPAR event. You
will see there are three line blocks for the check, pre, and post phases for each
CPU (CPU ID 2 or 3).

Example 3-10 Sample output: 2 CPU addition

---Start of Signal Handler---
An add request for

** check phase **
Resource is CPU .

logical CPU ID = 2
Bind CPU ID = 2

*****Entered CheckedAcquire_cpu*****
---end of signal handler---

---Start of Signal Handler---
An add request for

** pre phase **
Resource is CPU .

logical CPU ID = 2
Bind CPU ID = 2

*****Entered PreAcquire_cpu*****
---end of signal handler---

---Start of Signal Handler---
An add request for

** post phase **
Resource is CPU .

logical CPU ID = 2
Bind CPU ID = 2

*****Entered PostAcquire_cpu*****
---end of signal handler---

---Start of Signal Handler---
An add request for

** check phase **
Resource is CPU .

logical CPU ID = 3
Bind CPU ID = 3

*****Entered CheckedAcquire_cpu*****
---end of signal handler---

---Start of Signal Handler---
An add request for

** pre phase **
Resource is CPU .

logical CPU ID = 3
Bind CPU ID = 3
 Chapter 3. Dynamic logical partitioning 113

*****Entered PreAcquire_cpu*****
---end of signal handler---

---Start of Signal Handler---
An add request for

** post phase **
Resource is CPU .

logical CPU ID = 3
Bind CPU ID = 3

*****Entered PostAcquire_cpu*****
---end of signal handler---

Sample output: 1 CPU removal
Example 3-11 shows the sample output of a 1 CPU removal DLPAR event. You
will see there are line three blocks for the check, pre, and post phases for the
CPU ID 3.

Example 3-11 Sample output: 1 CPU removal

---Start of Signal Handler---
A remove request for

** check phase **
Resource is CPU .

logical CPU ID = 3
Bind CPU ID = 3

*****Entered CheckRelease_cpu*****
---end of signal handler---

---Start of Signal Handler---
A remove request for

** pre phase **
Resource is CPU .

logical CPU ID = 3
Bind CPU ID = 3

*****Entered PreRelease_cpu*****
---end of signal handler---

---Start of Signal Handler---
A remove request for

** post phase **
Resource is CPU .

logical CPU ID = 3
Bind CPU ID = 3

*****Entered PostRelease_cpu*****
---end of signal handler---
114 The Complete Partitioning Guide for IBM Eserver pSeries Servers

3.9.4 DLPAR-aware kernel extensions
Like applications, most kernel extensions are DLPAR-safe by default. However,
some are sensitive to the system configuration and might need to be registered
with the kernel in order to be notified of DLPAR events.

To register and unregister from the kernel to be notified in the case of DLPAR
events, the following kernel services are available:

� reconfig_register

� reconfig_unregister

� reconfig_complete

For further information about these kernel services, please refer to the following
publications, available at:

http://techsupport.services.ibm.com/server/library

� AIX 5L Version 5.2 General Programming Concepts: Writing and Debugging
Programs

� AIX 5L Version 5.2 Technical Reference: Kernel and Subsystems

3.10 Error handling of DLPAR operations
Knowing what errors the drmgr command may return is fundamental to creating a
comprehensive DLPAR script or DLPAR-aware application. This section covers
the methods AIX provides to help perform error analysis on failed DLPAR
operations. We also discuss some actions that should be taken when an error
occurs.

3.10.1 Possible causes of DLPAR operation failures
A DLPAR operation request can fail for various reasons. The most common of
these is that the resource is busy, or that there are not enough system resources
currently available to complete the request. In these cases, the resource is left in
a normal state as if the DLPAR event never happened.
 Chapter 3. Dynamic logical partitioning 115

http://techsupport.services.ibm.com/server/library

The following are possible causes of DLPAR operation failures:

� The primary cause of processor removal failure is processor bindings. The
operating system cannot ignore processor bindings and carry on DLPAR
operations or applications might not continue to operate properly. To ensure
that this does not occur, release the binding, establish a new one, or
terminate the application. The CPUs that are impacted is a function of the
type of binding that is used.

� The primary cause of memory removal failure is that there is not enough
pinned memory available in the system to complete the request. This is a
system-level issue and is not necessarily the result of a specific application. If
a page in the memory region to be removed has a pinned page, its contents
must be migrated to another pinned page, while automatically maintaining its
virtual to physical mappings. The failure occurs when there is not enough
pinnable memory in the system to accommodate the migration of the pinned
data in the region that is being removed. To ensure that this does not occur,
lower the level of pinned memory in the system. This can be accomplished by
destroying pinned shared memory segments, terminating programs that
implement the plock system call, or removing the plock on the program.

� The primary cause of PCI slot removal failure is that the adapters in the slot
are busy. Note that device dependencies are not tracked. For example, the
device dependency might extend from a slot to one of the following: an
adapter, a device, a volume group, a logical volume, a file system, or a file. In
this case, resolve the dependencies manually by stopping the relevant
applications, unmounting file systems, varying off volume groups, and
unconfiguring the device drivers associated with the adapters in the target
slot.

If an error occurs in a DLPAR operation, you will see the error message dialog
box on the HMC, as shown in Figure 3-4.

Figure 3-4 DLPAR operation failed message

The HMC also displays the information message dialog box, as shown in
Figure 3-5 on page 117.
116 The Complete Partitioning Guide for IBM Eserver pSeries Servers

Figure 3-5 DLPAR operation failure detailed information

3.10.2 Error analysis facilities
AIX provides the user the following facilities to help isolate DLPAR operation
failures:

� Virtual operator panel

� The syslog facility

� AIX system trace facility

� AIX error log facility

� Kernel debugger (KDB)

These facilities can be also used in the event that a script or DLPAR-aware
application fails. Moreover, by learning how to use these, you can modify your
programs to automatically handle some of the possible errors.

Virtual operator panel
The virtual operator panel displayed on the HMC is used by AIX to display LED
codes and character string messages (see Figure 5-7 on page 162). The values
displayed on the virtual operator panel indicate several important actions that the
kernel is performing while a DLPAR event is in progress. Table 3-14 on page 118
shows the possible values on the virtual operator panel.

Note: If the registered DLPAR scripts have bugs, they are also the cause of
failure. You must carefully code the scripts and test them on a test partition
before the deployment on the production partition.
 Chapter 3. Dynamic logical partitioning 117

Table 3-14 Virtual operator panel DLPAR operation indicators

While a DLPAR operation is taking place, the appropriate code is displayed.
These indicators are on the virtual operator panel for the duration of the
operation. The virtual operator panel also indicates which phase it is in by
appending the appropriate phase identifier, as shown in Table 3-15.

Table 3-15 Virtual operator panel phase indicators

For example, if you see the following text string on the virtual operator panel, the
partition is performing the post phase of a memory removal DLPAR event:

2003 MEMR:POST

In the case of DLPAR operations that use a large amount of memory, which could
take a long time, this tells you that the operation is still in progress. Another
useful instance is when a system failure occurs. Because the progress indicator
is left on the panel when a system failure occurs, you can easily see that a
DLPAR operation was in progress when the machine failed.

The syslog facility
The syslog facility is another useful tool to help isolate DLPAR-related errors. It
can be used to keep a record of the progress of DLPAR events. The syslog
entries come with a time stamp to indicate when all the DLPAR events occurred.

On AIX, the syslog facility is not enabled by default. To enable recording DLPAR
events using syslog, do the following:

1. Edit the /etc/syslog.conf file as the root user.

Progress indicator code Text string Description

2000 CPUA DLPAR CPU addition

2001 CPUR DLPAR CPU removal

2002 MEMA DLPAR memory addition

2003 MEMR DLPAR memory removal

Identifier Description

:CHECK The check phase

:PRE The pre phase

:POST The post phase
118 The Complete Partitioning Guide for IBM Eserver pSeries Servers

2. Add the required syslog entries to the end of the file.

For example, add the following:

*.debug /var/adm/syslog.log rotate size 10k

This directive line instructs the syslog facility to log all messages of priority
debug (LOG_DEBUG) and above to the /var/adm/syslog.log file. The
/var/adm/syslog.log file is automatically rotated to limit the maximum file size
to 10 KB.

3. Create the file explicitly:

touch /var/adm/syslog.log

4. Restart the syslogd subsystem:

stopsrc -s syslogd
startsrc -s syslogd

In “Using the syslog facility” on page 450, we include the following syslog output
examples:

� “CPU addition” on page 450

� “CPU removal” on page 451

� “Memory addition” on page 452

� “Memory removal” on page 453

When you register your DLPAR scripts, if you explicitly specify a channel ID string
other than the default value DRMGR by using drmgr -S, you can quickly search
the corresponding information that is produced by your DLPAR scripts. The
default channel ID, DRMGR, is shown in several syslog output examples in
“Using the syslog facility” on page 450.

AIX system trace facility
The AIX system trace facility is a tool that can trace many kernel internal
activities by specifying trace hook IDs. In case of CPU- and memory-related
DLPAR events, the trace hook ID is 38F. After capturing the trace of DLPAR
events, you can generate a trace report in order to examine the results.

To use AIX system trace facility in order to capture DLPAR events, do the
following as the root user:

1. Start the trace:

trace -a -j 38f

2. Perform the desired DLPAR operations.

3. Stop the trace:

trcstop
 Chapter 3. Dynamic logical partitioning 119

4. Analyze the trace:

trcrpt

You can also use SMIT to do the same activities (you need the root authority):

1. Invoke smit and select the following panels, and then press Enter:

Problem Determination
Trace

START Trace

2. Type 38F in the ADDITIONAL event IDs to trace field, as shown in
Example 3-12, and then press Enter.

Example 3-12 START Trace panel

START Trace

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

 [Entry Fields]
 EVENT GROUPS to trace [] +
 ADDITIONAL event IDs to trace [38F] +
 Event Groups to EXCLUDE from trace [] +
 Event IDs to EXCLUDE from trace [] +
 Trace MODE [alternate] +
 STOP when log file full? [no] +
 LOG FILE [/var/adm/ras/trcfile]
 SAVE PREVIOUS log file? [no] +
 Omit PS/NM/LOCK HEADER to log file? [yes] +
 Omit DATE-SYSTEM HEADER to log file? [no] +
 Run in INTERACTIVE mode? [no] +
 Trace BUFFER SIZE in bytes [131072] #
 LOG FILE SIZE in bytes [1310720] #
 Buffer Allocation [automatic] +

3. Perform the desired DLPAR operations.

4. Invoke smit and select the following panels, and then press Enter:

Problem Determination
Trace

STOP Trace

5. Invoke smit, select the following panels, select 1 filename (defaults stdout),
and then press Enter:

Problem Determination
Trace

Generate a Trace Report
120 The Complete Partitioning Guide for IBM Eserver pSeries Servers

6. Select the following values in the SMIT panel shown in Example 3-13, and
then press Enter:

Show PROCESS IDs for each event? yes
Show THREAD IDs for each event? yes

Example 3-13 Generate a Trace Report panel

Generate a Trace Report

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

 [Entry Fields]
 Show exec PATHNAMES for each event? [yes] +
 Show PROCESS IDs for each event? [yes] +
 Show THREAD IDs for each event? [yes] +
 Show CURRENT SYSTEM CALL for each event? [yes] +
 Time CALCULATIONS for report [elapsed only] +
 Event Groups to INCLUDE in report [] +
 IDs of events to INCLUDE in report [] +X
 Event Groups to EXCLUDE from report [] +
 ID's of events to EXCLUDE from report [] +X
 STARTING time []
 ENDING time []
 LOG FILE to create report from [/var/adm/ras/trcfile]
 FILE NAME for trace report (default is stdout) []

In “Using the AIX system trace facility” on page 454, we include the following
trace output examples:

� “CPU addition trace output” on page 454

� “CPU removal trace output” on page 457

� “Memory addition trace output” on page 461

� “Memory removal trace output” on page 464

AIX error log facility
The drmgr command can generate error log messages in the few cases involving
kernel, kernel extensions, or platform failures that have been caused by a DLPAR
event. Table 3-16 on page 122 shows a list of the possible errors that could be
found in the system error log.
 Chapter 3. Dynamic logical partitioning 121

Table 3-16 AIX error logs generated by DLPAR operations

Error log entry Description

DR_SCRIPT_MSG Application script error or related messages, or
both.
Entry incudes failing script name and DLPAR
phase where the error occurred.

DR_RECONFIG_HANDLER_MSG Kernel extension reconfiguration handler error.
Entry includes failing handler’s registration
name.

DR_MEM_UNSAFE_USE Non-DLPAR aware kernel extension’s use of
physical memory is not valid. The result is that
the affected memory is not available for DLPAR
removal.
Entry includes:

� The affected logical memory address

� An address corresponding to the kernel
extension’s load module

� The kernel extension load module’s path
name

DR_DMA_MEM_MIGRATE_FAIL Memory removal failure due to DMA activity. The
affected LMB had active DMA mappings that
could not be migrated by the platform.
The entry includes:

� The logical memory address within the LMB

� Hypervisor migration return code

� Logical bus number of the slot owning the
DMA mapping

� The DMA address

DR_DMA_MEM_MAPPER_FAIL Memory removal failure due to a kernel
extension responsible for controlling DMA
mappings error.
The entry includes:

� DMA mapper handler return code

� An address corresponding to the DMA
mapper’s kernel extension load module

� The DMA mapper’s kernel extension load
module’s path name
122 The Complete Partitioning Guide for IBM Eserver pSeries Servers

Kernel debugger (KDB)
The AIX kernel debugger (KDB) helps isolate DLPAR operation errors. KDB can
be especially useful to diagnose errors found in the kernel extensions. For further
information about the use of KDB, please refer to AIX 5L Version 5.2 Technical
Reference: Kernel and Subsystems, available at:

http://techsupport.services.ibm.com/server/library

3.10.3 AIX error log messages when DLPAR operations fail
Several different AIX error messages may be generated when a DLPAR event
failure occurs. We list these error messages and the action that should be taken.
The following tables show all the AIX error messages in relation to DLPAR
operations.

Table 3-17 indicates general error messages that may be displayed when a
DLPAR event failure occurs and the recommended actions to take.

Table 3-17 General AIX error messages

Table 3-18 describes the possible errors that can be generated by the drmgr
command.

Table 3-18 drmgr-specific AIX error messages

Error message Recommended action

You must have root authority to run
this command.

Log in as the root user.

Failed to set the ODM data. Contact an IBM service representative.

Consult AIX error log for more
information.

Open the AIX error log and look for error
log entries with the DR_ prefix.

Resource identifier out of range. Consult AIX syslog and HMC logs.

Error message Recommended action

Error building the DLPAR script
information.

Check system resources, such as free
space in the /var file system. If the problem
persists, contact an IBM service
representative.

Aborting DLPAR operation due to Check
Phase failure.

Examine the AIX syslog. Contact the
script/application owner.
 Chapter 3. Dynamic logical partitioning 123

http://techsupport.services.ibm.com/server/library
http://techsupport.services.ibm.com/server/library

While a DLPAR operation is taking place, an error may occur. Table 3-19
indicates some of these error messages caused by AIX during a DLPAR
operation.

Table 3-19 DLPAR operation-specific AIX error messages

Finally, there are several DLPAR errors resulting from resource events.
Table 3-20 on page 125 displays these types of errors.

Error: Specified DLPAR script file
already exists in the destination
directory.

Examine the AIX syslog. Contact the
script/application owner to change the
script name. Use the force flag (drmgr -f)
to overwrite the pre-existing script.

Error: Specified DLPAR script file
does not exist in directory.

File could not be found for uninstallation.
Check the file name specified.

The DLPAR operation is not supported. The machine or configuration does not
support that operation. Upgrade the
system firmware or operating system
software, or both.

Invalid parameter. Contact an IBM service representative.

Error message Recommended action

DLPAR operation failed because of
timeout.

Increase the timeout value, or try again later.
Also, try the DLPAR operation without a
timeout specified.

DLPAR operation failed. Kernel busy
with another DLPAR operation.

Only perform one DLPAR operation at a time.
Try again later.

DLPAR operation failed due to
kernel error.

Examine the AIX syslog or contact an IBM
service representative, or both.

The DLPAR operation could not be
supported by one or more kernel
extensions.

Find the corresponding AIX error log entry
DR_RECONFIG_HANDLER_MSG and
contact the kernel extension owner.

DLPAR operation failed since
resource is already online.

Examine the AIX syslog and HMC log.

DLPAR operation timed out. Increase the timeout, or try again later. Also,
try initiating the DLPAR operation without a
timeout specified.

Error message Recommended action
124 The Complete Partitioning Guide for IBM Eserver pSeries Servers

Table 3-20 DLPAR resource-specific AIX error messages

In “Using the AIX error log facility” on page 467, we provided several AIX error
log output examples.

Error message Recommended action

The specified connector type is
invalid, or there is no dynamic
reconfiguration support for connectors
of this type on this system.

Examine the AIX syslog and HMC log.
Valid connector types are listed in
Table 3-10 on page 81.

Insufficient resource to complete
operation.

Try again later. Free up resources and try
again.

CPU could not be started. Examine the AIX syslog and HMC log.

Memory could not be released. DLPAR
operation failed since a kernel
extension controlling DMA mappings
could not support the operation.

Examine the AIX error log and look for the
DR_DMA_MAPPER_FAIL entry. The
logical memory block or address of the
message should correspond to the logical
memory address in the error log entry. The
LR value in the error log is an address
within the failing kernel extension. The
Module Name in the error log is the path
name of the kernel extension load module.
Unconfigure the kernel extension and
retry. Contact the kernel extension owner.

Resource could not be found for the
DLPAR operation.

Examine the AIX syslog and HMC log.

Resource is busy and cannot be
released.

Examine the AIX syslog. Quiesce activity
using the resource and try again.

Memory in use by a non DLPAR-safe
kernel extension and hence cannot be
released.

Examine the AIX error log and look for the
DR_MEM_UNSAFE_USE entry. The
logical memory block or address in the
message should correspond to the logical
memory address in the error log. The LR
value in the error log is an address within
the owning kernel extension. The Module
Name in the error log is the path name of
the kernel extension load module.
Unconfigure the kernel extension and
retry. Contact the kernel extension owner.

Memory could not be released because
system does not contain enough
resources for optimal pinned memory
and large page memory ratios.

Reduce pinned or large page memory
requirements, or both, and try again.
 Chapter 3. Dynamic logical partitioning 125

126 The Complete Partitioning Guide for IBM Eserver pSeries Servers

Part 2 Systems
Management

Part 2
© Copyright IBM Corp. 2003. All rights reserved. 127

128 The Complete Partitioning Guide for IBM Eserver pSeries Servers

Chapter 4. HMC graphical user
interface

This chapter describes the HMC graphical user interface in the following
sections:

� “Login and logout” on page 130
� “HMC graphical user interface at a glance” on page 130
� “HMC application overview” on page 138
� “Server and Partition” on page 139
� “Virtual terminal window” on page 146
� “Open xterm to access remote system using telnet” on page 149

Before proceeding to later chapters, you should be familiar with the terms and
concepts used in the HMC graphical user interface, as explained in this chapter.

4

© Copyright IBM Corp. 2003. All rights reserved. 129

4.1 Login and logout
After power-on, the HMC shows the graphical login panel prompting for the user
ID and the password. The HMC is supplied with a predefined user ID hscroot
and the default password abc123. Both the user ID and password are case
sensitive and must be typed exactly as shown. After the successful login, the
HMC graphical user interface opens, as shown in Figure 4-1 on page 131.

To log out from the HMC graphical user interface, do the following:

1. From the menu bar, select Console → Exit.

At this point, you can choose to save the state of the console for the next
session by selecting the check box next to the option.

2. Select Exit Now.

3. When you exit from your HMC session, you have to choose from the following
three logout modes:1

Shutdown Console Powers off the HMC system.

Reboot Console Shuts down the HMC system and then reboots it to the
login prompt.

Logout Returns the user to the login prompt without shutting
down the HMC system.

In either mode, the managed systems are not affected by these operations.

4.2 HMC graphical user interface at a glance
The HMC graphical user interface has the same appearance, key concepts, and
basic tasks and tools as the AIX 5L Version 5.2 Web-based System Manager.
For further information about the Web-based System Manager, refer to AIX 5L
Version 5.2 System Management Guide: AIX 5L Version 5.2 Web-based System
Manager Administration Guide, available at:

http://techsupport.services.ibm.com/server/library

1 You can also use the hmcshutdown command to shut down or reboot your HMC.
130 The Complete Partitioning Guide for IBM Eserver pSeries Servers

http://techsupport.services.ibm.com/server/library
http://techsupport.services.ibm.com/server/library

The HMC graphical user interface is composed of several elements, as shown in
Figure 4-1.

Figure 4-1 HMC graphical user interface

Table 4-1 shows the relevant section number for each element indicated in
Figure 4-1.

Table 4-1 Elements in the HMC graphical user interface

Element Relevant section number

Navigation area 4.2.1

Contents area 4.2.2

Menu bar 4.2.3

Tool bar 4.2.4

Status bar 4.2.5

Menu bar Tool bar

Navigation area Contents area (Management Environment)

Status bar
 Chapter 4. HMC graphical user interface 131

4.2.1 Navigation area
The left side of the HMC graphical user interface is the Navigation area. It
displays a hierarchy of items ordered in a tree structure. The root of the tree is
the Management Environment. It contains the name of the HMC that you are
currently logged in to. For example, you can see the icon with the host name
itsohmc.itsc.austin.ibm.com in the Navigation area in Figure 4-1 on page 131. It
is the host name of the HMC from which this panel image has been taken. In this
example, there is only one host system, the HMC itsohmc.itsc.austin.ibm.com.

The Management Environment is a set of host systems that can be managed
from the HMC. The host systems can be the HMC into which you are currently
logged, the other remote HMCs, and also AIX systems managed by their
Web-based System Manager interface.

To add a host system under the Management Environment, do the following:

1. From the menu bar, select Console → Add → Hosts.

You have two options here: you can add a single host or multiple hosts. For a
single host, add the host name of the system that you want to add; for multiple
hosts, provide the path name of the file that contains the hosts to be added.

You also have the option to verify whether the hosts added are on the network
by selecting the option provided to you.

To remove a host system under the Management Environment, do the following2:

1. From the menu bar, select Console → Remove.

2. Select the host name from the displayed list that you want to remove, and
then confirm in the next panel that you want to remove the designated host.

Every folder contains different HMC applications used in the specific
management task, such as Server and Partition or Software Maintenance, as
shown in the Navigation area in Figure 4-1 on page 131. If you choose one of
these HMC applications, it provides its own submenus and objects in the
Contents area determined by the application context.

2 This remove operation does not affect the managed system deleted from the HMC application.

Note: The managed system itself never appears in the Navigation area unless
you manage AIX instances running in partitions managed by the Web-based
System Manager.
132 The Complete Partitioning Guide for IBM Eserver pSeries Servers

4.2.2 Contents area
The right side of the panel is the Contents area. It displays managed objects and
related tasks. You can choose different views in the Contents area: large icons,
small icons, or details in the form of a list.

4.2.3 Menu bar
The following six menu items are provided in the menu bar:

Console The Console menu contains choices that control the console. It
enables you to add and remove managed systems, other HMCs, or
other AIX systems managed by Web-based System Manager from
the management environment. It also enables you to change
themes on the desktop, change font sizes, open an outbound
Telnet terminal session using an IP address or a host name, and
exit the console.

Object The title of the Object menu changes to indicate the type of
resource managed by the current HMC application. For example,
when the Server Management application is selected, the Object
menu title becomes Server Management. The Object menu
contains general choices and actions for a HMC application that do
not require the selection of specific objects to act on. The find
function is also located in the Object menu. The contents of the
Object menu are updated when a new HMC application is selected.
In the case where you are managing an AIX system remotely, the
AIX 5L Version 5.2 Web-based System Manager applications
appear here.

Selected The Selected menu contains the set of actions that are applicable
to the object selected in the Contents pane. The contents of the
Selected menu are updated based on which object you select. It is
disabled when Overview and Launch applications are loaded. The
open tab in the Selected menu expands the view of a managed
system in the Navigation area.

View The View menu contains choices for navigating, such as Back,
Forward, and Up One Level. It also includes choices for
customizing the console in the Show submenu. For example, you
can select to show or hide the tool bar and status bar. This menu

Note: The label of the Contents area is changed depending on the application
context. For example, if you select Management Environment in the
Navigation area, the label is changed to Management Environment, as shown
in Figure 4-1 on page 131.
 Chapter 4. HMC graphical user interface 133

also includes options that control how objects are presented. For
example, if the Contents area content provides a choice of views,
such as Large Icon, Small Icon, Details, and Tree, these choices
are listed here. If the content has only a single view, no view
choices are listed. When the content displays an icon or Details
view, the View menu includes choices for sorting and filtering the
container.

Window The Window menu contains actions for managing subpanels in the
console workspace. The new virtual terminal creates a new
console subpanel in the workspace. Other choices control how all
console subpanels are placed. For example, you can choose to
have the panels completely cover the workspace-like tiles, or have
them stacked in a cascade style.

Help The Help menu lists user assistance choices. Different options
enable you to view help contents, search for help on a particular
topic, and view help information about shortcut keys.

4.2.4 Tool bar
The tool bar lists commonly used actions that are available when the current
plug-in application is loaded. It includes navigation controls, Find and View
choices (if available), and a refresh option of the HMC graphical user interface.
The tool bar also provides tool tip help when the pointer remains over a tool bar
icon for a few seconds.

Reload button
The HMC graphical user interface provides the Reload button in the tool bar
shown in Figure 4-2.3 If the HMC does not display the operation task result
correctly, you can click this button to reload the latest information.

Figure 4-2 Reload button

Details, Tree, Tree-Details buttons
The HMC graphical user interface provides the Details, Tree, and Tree-Details
buttons in the tool bar, shown in Figure 4-3.4 Once one of these buttons is
selected, the selected view is preserved across the power recycle of HMC.

3 The function can be also be selected from View → Reload or pressing the F5 key.
4 Same functions are available in the View menu.
134 The Complete Partitioning Guide for IBM Eserver pSeries Servers

Figure 4-3 Details, Tree, Tree-Details buttons

For example, if you click the Details button while a managed system is selected
in the Server Management application, the Contents area will show the detailed
information about the selected managed system itself, as shown in Figure 4-4.

Figure 4-4 Detailed view

If you click the Tree button, the Contents area will show a tree that represents
objects belonging to the managed system, as shown in Figure 4-5.

Figure 4-5 Tree view

If you click the Tree-Details button, the Contents area will show a tree that
represents objects belonging to the managed system as well as the detailed
information for each object as shown in Figure 4-6 on page 136.
 Chapter 4. HMC graphical user interface 135

Figure 4-6 Tree-Details view

4.2.5 Status bar
The status bar displays at the lower edge of a console panel (see Figure 4-7).

Figure 4-7 Status bar

It has the following five fields ordered from left to right for displaying status
information:

1. Padlock icon

The padlock icon is open when secure communications are not active. When
locked, the padlock icon indicates that the Web-based System Manager client
on the HMC is running in secure mode. In this case, the communication
between the Web-based System Manager client on the HMC and the
connected Web-based System Manager server on the other system is
encrypted using Secure Sockets Layer (SSL). A Web-based System Manager
server is always running on the HMC itself, and can be running on the
following remote systems:

– The other remote HMCs
– AIX systems (including on partitions)

Note: We recommend that you select this view while you are managing
partitions.

1 2 3 4 5
136 The Complete Partitioning Guide for IBM Eserver pSeries Servers

The padlock icon indicates whether the Web-based System Manager client
on the HMC is running in secure mode. It does not indicate whether the
Web-based System Manager server on the HMC is running in secure mode.
Therefore, while you are logging in to your HMC from its local console, the
padlock icon is locked only when:

– You are accessing to other manageable systems, including the other
HMCs.

– A public key ring file that was generated on the remote system has been
already copied onto the local HMC.5

2. Plug-in loading status

When a plug-in application is loaded, the text Ready is present. When an
application is in the process of loading, a graphic bounce bar is displayed.

3. Number of objects visible in the Contents area

Objects can be present on the managed system but hidden from the view by
the view filter.

4. Number of objects selected in the Contents area

5. Security context (user name and host name)

This displays the administrator user name and the HMC host name for the
currently active HMC.

The status bar can be hidden or shown by clearing or checking the Status Bar
option in the Show submenu under View.

The HMC also provides a pop-up menu (it is also called context menu) for quick
access to menu choices. To use pop-up menus with a mouse, point to an object,
and then right-click. The pop-up menu lists the actions found in the Selected and
Object menus for the current object or objects.

Reset the current HMC graphical user interface session
If your HMC graphical user interface session hangs, it means that even if you wait
10 minutes after an operation, and the pointer is still a clock-shaped icon, you
can restart the X server to reset the session. You can reset your hung session by
pressing the Ctrl+Alt+Backspace key combination. The X server restarts and
displays the HMC login prompt. All messages and panels regarding the hung
session will be lost.

5 This operation is performed by the “Copy another Certificate Authority’s Public Key Ring File from
diskette” task.
 Chapter 4. HMC graphical user interface 137

4.3 HMC application overview
As shown in Figure 4-8, seven application folders are provided in the Navigation
area in the HMC graphical user interface.

Figure 4-8 HMC application folders in the Navigation area

These folders contain several applications to be used for different system
management tasks on the HMC and managed systems as shown in Table 4-2.

Table 4-2 HMC application folders

Folder name Description

System Manager Security This folder contains several applications that enable a secure network
connection from other Web-based System Manager clients for the remote
control of an HMC in client/server mode.

Server and Partition This folder contains only one application, Server Management, which
provides all partition-related tasks. It is used to create, maintain, activate,
and delete logical partitions and affinity partitions.

Software Maintenance This folder contains three applications (Frame, HMC, and Software
Maintenance) that enable you to perform software level management tasks
on a frame as well as on an HMC. The available tasks for the HMC are: save
and back up important HMC-related information, format removable media,
save upgrade data, and install corrective fixes.

HMC Management This folder contains only one application, Users, which controls user access
to the HMC and enables the user to perform different tasks in the HMC
environment depending on the different roles assigned to each user you
create.

HMC Maintenance This folder contains several applications that enable you to set the console’s
date and time, modify and view HMC network information, view console
events, and schedule routine backups. It is also used to enable and disable
remote command execution and secure shell access, change the language
locale, and configure the serial adapter.
138 The Complete Partitioning Guide for IBM Eserver pSeries Servers

In this redbook, we focus on the Server and Partition folder and the Server
Management application under the folder. The following section explains how the
objects are represented in the application. See Chapter 6, “Creating and
managing partitions” on page 165 for the application usage.

4.4 Server and Partition
The Server and Partition folder contains only the Server Management
application, which provides all partition-related tasks.

It is important to understand how to select the managed system that you are
going to manage using the Server Management application. If this application is
selected, you will see the object hierarchy illustrated in Figure 4-9 in the content
area.

Figure 4-9 Object hierarchy for the Server Management application

Service Applications This folder contains several applications to be used for service-related tasks,
such as Inventory Scout, Service Agent, and Service Focal Point.

Folder name Description

Frame A

Frame B

Frame C

Managed system A1

Managed system A2

Managed system A3

Managed system B1

Managed system B2

Managed system C1

System Profiles

Partitions

System Profiles

Partitions

Partition A1_p1

Partition A1_p2

Partition A1_p3

Partition profile A1_p1_a

Partition profile A1_p1_b

Partition profile A1_p1_c

PartitionB2_p1

PartitionB2_p2

Partition profile B2_p1_a

Partition profile B2_p1_b

System profile A1_s1

Default profile for the partition

System profile A1_s2
 Chapter 4. HMC graphical user interface 139

The object hierarchy is summarized as follows:

� Multiple frames can exist in the content area.

� A frame can contain multiple managed systems.

� A partitioning-capable managed system always has two branch nodes:

– System Profiles

– Partitions

� The System Profiles branch node can contain multiple system profiles.

� The Partitions branch node can contain multiple partitions.

� A partition can contain multiple partition profiles.

� One of the partition profiles is designated as the default profile for the
partition; if a partition has only one partition profile, that profile is always
treated as the default partition profile.

For example, a frame icon (7040-61R*021767A) is shown in the content area in
Figure 4-10 on page 141, where 7040-61R is the machine type and model for the
24” system frame for pSeries 690, pSeries 670, and pSeries 655. In this frame,
there is only one managed system ITSO_p690 is shown, which has two branch
nodes: System Profiles and Partitions.

Under the Partitions branch node, nine partitions are shown, including the Full
System Partition. While the lpar02 partition has two partition profiles, lpar01 has
only one; therefore aix51_64 is the default profile for lpar01.
140 The Complete Partitioning Guide for IBM Eserver pSeries Servers

Figure 4-10 Server Management (one managed system)

We show somewhat more complex examples for the graphical user interface on
the HMC that manages multiple managed systems:

� Figure 4-11 on page 142 shows a frame (7040-61R*1234567) in the Content
area that contains three managed systems (three pSeries 655 servers).

� Figure 4-12 on page 142 shows four frames in the Content area. The first
frame contains a pSeries 670, whereas the other frames contain a pSeries
630 Model 6C4 each.
 Chapter 4. HMC graphical user interface 141

Figure 4-11 Server Management (three pSeries 655 servers)6

Figure 4-12 Server Management (four managed systems)7

6 This screen shot is taken from an HMC that manages three pSeries 655 nodes being used for the
internal test purpose. Therefore, the HMC host name is purposely hidden.
7 The frame icon descriptions start with F, not from MT-MDL, in Figure 4-12, since those systems are
installed with V3.0 system firmware.

IH_hmc

1234567

hmcdallas
142 The Complete Partitioning Guide for IBM Eserver pSeries Servers

4.4.1 Connect and disconnect managed systems
You can connect or disconnect managed systems on the HMC using the
following procedures.

Connect to the managed systems
The first time you connect a managed system to the HMC, a predefined name of
the managed system appears in the Contents area of Partition Management. You
can change this name by selecting the managed system in the Contents area,
selecting the Select option in the menu bar, and clicking the Properties menu
option (see Figure 5-1 on page 153).

Disconnect from the managed systems
You can delete managed systems from the HMC graphical user interface if you
no longer want to manage a particular system.

To delete the managed system from the Contents area, do the following:

1. In the Contents area, select the managed system.
2. From the menu bar, choose Selected → Delete.
3. Click Yes to delete the managed system from the Contents area.
4. Disconnect the serial cable from the managed system.

4.4.2 Server Management
The Server Management application is used to create, maintain, activate, and
delete logical partitions and affinity partitions. It is also used to power on and
power off the managed system and partitions, open and close virtual terminal

Note:

� A single 7040-61R frame can accommodate only one pSeries 670 or
pSeries 690 server.

� A single 7040-61R frame can accommodate multiple pSeries 655 servers.
� Although multiple pSeries 650 Model 6M2 servers, and pSeries 630

Models 6C4 and 6E4 servers can be physically accommodated in a single
19-inch rack, those servers always appear in separate frames in the
Content area of Server Management.

Note: Do not physically disconnect the serial connection before performing
the procedures explained here.
 Chapter 4. HMC graphical user interface 143

windows for the partitions, view properties of the managed system, perform
backups, restore profile data, and rebuild the managed system.

Note: You can create, view, and remove partitions (including affinity partitions),
system profiles, and partition profiles using the mksyscfg, lssyscfg, and
rmsyscfg commands. The chsyscfg command can also be used to modify the
already created objects.

4.4.3 Server Management menus
As shown in Figure 4-13, the following 10 menus are available in this application
if you select a managed system.

Figure 4-13 Server Management options

Properties
This menu enables you to see the properties of the managed system. The
application queries several attributes and capabilities and displays them in the
machine, processors, memory, I/O slot, and policy attributes in the property
window (see 5.1, “Viewing properties of the managed system” on page 152).
144 The Complete Partitioning Guide for IBM Eserver pSeries Servers

Delete
This menu enables a user with System Administrator role, such as hscroot, to
delete a selected managed system that is controlled from this HMC.

Create
This menu enables a user with System Administrator role, for example hscroot, to
create logical partitions or system profiles. The system profile option is dimmed
on a system that has no logical partition profiles defined.

Affinity Logical Partitions
This menu is used to set up partitions that have a predefined affinity for
processors and memory. You can set up these affinity logical partitions with
either a four-way processor MCM configuration or with an eight-way processor
MCM configuration. The application setup wizard automatically defines the
number of affinity partitions that can be defined based on the systems processor
configuration. Affinity partitions cannot run with normal partitions on a single
managed system at the same time.

Power On and Off
This menu enables the user to toggle the power states of the managed system.
Only one option is available based on the state of the managed system. If the
state is powered on, the Power Off option is available, and if the state is powered
off, the Power On option is available.

We explain this menu in 5.2, “Power on the managed system” on page 157 and
5.3, “Power off the managed system” on page 161.

Release Console Lock
This menu provides a way to manually override the HMC operations lock held in
the service processor on a managed system, which coordinates activities
between two HMCs.

To release an HMC lock, do the following:8

1. In the Contents area, select the managed system.
2. From the menu bar, choose Selected → Release Console Lock.

Note: This menu is only available on the pSeries 670 and pSeries 690.

8 The rmsplock command can also be used to remove leftover locks.

Note: This menu should normally only be needed if there have been HMC
failures that left the lock on.
 Chapter 4. HMC graphical user interface 145

Profile Data
This menu enables the hscroot user to restore, initialize, back up, and remove
profile data.

Open Terminal Window
This menu enables the opening of a virtual terminal window to the partition. This
connection is necessary to define the default console and the network interface
for the partition when it is created.

Close Terminal Connection
This menu enables the closing of the virtual terminal window to the partition.

Rebuild managed system
This menu instructs the HMC to retrieve the information from the NVRAM in the
managed system and then refresh the graphical user interface using the
retrieved information (the chsysstate command can also be used to rebuild the
managed system.

4.5 Virtual terminal window
AIX needs a console for installation and some service activities. The native serial
ports on the managed system are only assignable together to one partition. The
virtual terminal window provides virtual terminal console access to every partition
without a physical device assigned.

4.5.1 Virtual terminal window concept
A virtual terminal window is available for each partition or Full System Partition of
the managed system. Some functions are limited, and the performance cannot
be guaranteed because of the limited bandwidth of the serial connection
between the HMC and the managed system.

To open the virtual terminal window, do the following (the mkvterm and rmvterm
commands can also be used to open and close a virtual terminal to the specified
partition):

1. Expand the System and Partition folder in the navigation area.
2. Select the Server Management application.

Note: Clicking the X at the top-right of the opened virtual terminal window is
not enough to close the terminal connection. You must explicitly select this
menu in order to close the opened virtual terminal connection.
146 The Complete Partitioning Guide for IBM Eserver pSeries Servers

3. Select the frame in which the target managed system resides.
4. Select the managed system on which the target partition is running.
5. Expand the Partitions tree.
6. Select the target partition and right-click on it.
7. Select the Open Terminal menu.

If you have done this operation on the HMC local console, you will see the virtual
terminal window shown in Figure 4-14.

Figure 4-14 Virtual terminal window on the HMC

If you have done this operation on the remote Web-based System Manager
client, you will see the virtual terminal window shown in Figure 4-15 on page 148.
 Chapter 4. HMC graphical user interface 147

Figure 4-15 Virtual terminal window on the remote WebSM client

The virtual terminal window should only be used for installation and service
purposes. For AIX configuration and management, we recommend you use a
network adapter assigned to the partition exclusively. The virtual terminal window
does not support the following:

� Printing to a virtual terminal
� Transparent print services
� Modem connection for the virtual console port
� Real-time applications

The virtual terminal window supports the AIX smitty and other curses-driven
applications. The virtual terminal window emulates a VT320 terminal. To set the
terminal type on a virtual terminal window session, you can use the AIX export
TERM=vt320 command on the Korn shell prompt.

Note: In Figure 4-14 on page 147 and Figure 4-15, the title bar displays the
machine type and model name (7040-681), the serial number of the pSeries
690 (021768A), and the partition name (lpar02) to which the virtual terminal
window is connected.
148 The Complete Partitioning Guide for IBM Eserver pSeries Servers

The following operations are available for the virtual terminal window:

� Open a virtual terminal window

From the HMC graphical user interface, select a partition or the Full System
Partition in the Contents area using Partition Management, right-click it, and
select Open Terminal Window.

� Close a virtual terminal window

To close a virtual terminal window, click the X in the top-right corner of the
panel. To force a virtual terminal window to close, select the partition,
right-click it, and then select Close Terminal Connection.

4.5.2 Virtual terminal window in the Full System Partition
When you open a virtual terminal window to the Full System Partition, the output
of the native S1 serial port is redirected to the virtual terminal window. Then, the
output of any command is directed from the serial port S1 to the virtual terminal
window. After closing the virtual terminal window, the serial port S1 is normally
accessible.

In the No Power state, you can access the service processor of a managed
system with a virtual terminal window.

4.5.3 Partition virtual terminal windows
You can open a virtual terminal window at any time, regardless of the state of a
partition, but only one per partition. The virtual terminal window is blank until the
partition is activated. After you activate one of partitions, you cannot connect a
virtual terminal window to the service processor of the managed system. In a
partitioned environment, the native serial port S1 is not redirected to the virtual
terminal of that partition.

4.6 Open xterm to access remote system using telnet
You can open xterm windows to connect to the other hosts (except for the HMC
itself) using telnet over the network in order to access the other hosts, including
partitions.

To use this function, do the following from the HMC graphical user interface:

1. From the menu bar, select Console → Open Terminal.
2. Enter the host name or the IP address, then click OK.
 Chapter 4. HMC graphical user interface 149

To access a partition using this function, the partition has to be assigned at least
one network adapter, and the adapter has to be configured with an IP address
that can be accessible from the HMC.

Note: The Open Terminal menu is available only on the local HMC console.
150 The Complete Partitioning Guide for IBM Eserver pSeries Servers

Chapter 5. Basic managed system
operation tasks

This chapter explains in the following sections how to start, stop, and reset an
operating system on a managed system in both a partitioned environment and
Full System Partition using the Server Management application:

� “Viewing properties of the managed system” on page 152
� “Power on the managed system” on page 157
� “Power off the managed system” on page 161
� “Operating the managed system with the HMC” on page 161

In addition, the Contents area of the Server Management application provides
status information about the managed system and the partitions and displays the
operator panel value of the managed system and the partitions.

5

© Copyright IBM Corp. 2003. All rights reserved. 151

5.1 Viewing properties of the managed system
To view the properties of your managed system, select the managed system in
the Contents area, and from the menu bar choose Selected → Properties. Or
select the managed system in the Contents area, right-click, and select
Properties. The property panel shown in Figure 5-1 on page 153 opens.

The properties panel includes the five property tabs of the managed system
shown in Table 5-1.

Table 5-1 Properties of the managed system

Property name Figure number

Machine Figure 5-1 on page 153

Processor Figure 5-2 on page 154

Policy Figure 5-3 on page 155

I/O Slot Figure 5-4 on page 156

Memory Figure 5-5 on page 157
152 The Complete Partitioning Guide for IBM Eserver pSeries Servers

5.1.1 Machine property
The Machine property tab displays the following information, as shown in
Figure 5-1:

� Capability
� Runtime Capability
� State
� Serial Number
� Model/Type
� Service Processor Version

Figure 5-1 System properties: Machine1

1 The same information can be obtained using the lssyscfg command.

Note: The Service Processor Version field (highlighted in Figure 5-1) shows
the system firmware version on your managed system.
 Chapter 5. Basic managed system operation tasks 153

5.1.2 Processor property
The Processor property tab displays information about the installed processors,
identified by their processor ID2 and their assignment to partitions, as shown in
Figure 5-2.

Figure 5-2 System properties: Processor3

Processor 21 is not assigned to any partitions in Figure 5-2.

2 This is the physical processor ID.
3 The same information can be obtained using the lshwres command.
154 The Complete Partitioning Guide for IBM Eserver pSeries Servers

5.1.3 Policy property
In the Policy tab, you can choose to switch these two options on or off, as shown
in Figure 5-3:

� Power off the system after all the logical partitions are powered off.
� Service Processor Surveillance Policy.

The Service Processor Surveillance Policy is a program that monitors the
managed system. If the managed system is not responding, and the Service
Processor Surveillance Policy is set, the state of the managed system changes
from Ready to No Connection on the HMC graphical user interface.

Figure 5-3 System properties: Policy4

4 Figure 5-3 shows the default setting.
 Chapter 5. Basic managed system operation tasks 155

5.1.4 I/O Slot property
The I/O Slot property tab displays the assignment of I/O slots to partitions and
the adapter-type information grouped by drawers, as shown in Figure 5-4.

Figure 5-4 System properties: I/O Slot5

5 The same information can be obtained using the lshwres command.

Note: ISA devices are not supported by DLPAR operations. The I/O slot
Slot_1/U1.18-P1-H2 in Figure 5-4 represents a group of ISA devices, such as
the diskette drive and native serial ports, on the pSeries 670 and pSeries 690.
156 The Complete Partitioning Guide for IBM Eserver pSeries Servers

5.1.5 Memory property
The Memory property tab displays the assigned memory amount to partitions
and the page table usage information, as shown in Figure 5-5. It also shows the
total installed physical memory size.

Figure 5-5 System properties: Memory6

5.2 Power on the managed system
To power on the managed system, open the Server Management application
from the Server Management folder and select the managed system in the
Contents area. From the menu bar choose Selected → Power On. A panel
opens that offers the four power-on modes shown in Figure 5-6 on page 158:
System Profile, Full System Partition, Partition Standby, and Auto Start
Partitions.7

6 The same information can be obtained using the lshwres command.
7 The chsysstate command can be also used to power on and off the managed systems.
 Chapter 5. Basic managed system operation tasks 157

Figure 5-6 Power On Modes panel

The following modes are available:

System Profile The managed system activates partition profiles in the
order listed in the given system profiles.

Full System Partition Only one AIX operating system image is activated that
has access to all resources of the managed system. The
operator panel on the media drawer displays all progress
codes during the boot process. The Full System Partition
has predefined profiles, as shown in Figure 5-6. You
cannot change, add, or delete them. The predefined
profiles are as follows:

Power On Normal

Boots an operating system from the designated boot
device.

Power On Diagnostic Stored Boot List

Causes the system to perform a service mode boot
using the service mode boot list saved on the managed
system. If the system boots AIX from the disk drive, and
AIX diagnostics are loaded on the disk drive, AIX boots
to the diagnostics menu. Using this option to boot the
system is the preferred way to run online diagnostics.

Power On SMS

Boots to the System Management Services (SMS)
menus. The SMS menus include Password Utilities,
158 The Complete Partitioning Guide for IBM Eserver pSeries Servers

Display Error Log, Remote Initial Program Load Setup,
SCSI Utilities, Select Console, MultiBoot, Select
Language, and the OK Prompt.

Power On Diagnostic Default Boot List

Similar to Power On Diagnostic Stored Boot List Profile,
except the system boots using the Default Boot List that
is stored in the system firmware. This is normally used to
try to boot diagnostics from the CD-ROM drive. Using
this option to boot the system is the preferred way to run
stand-alone diagnostics.

Power On Open Firmware OK Prompt

Used only by service personnel to obtain additional
debug information. When this selection is enabled, the
system boots to the Open Firmware prompt.

Partition Standby This power-on mode provides two actions:

– Creating partitions

– Activation of individual partitions

When the Partition Standby power-on is completed, the
operator panel on the managed system displays LPAR…,
indicating that the managed system is ready for you to
use the HMC to partition its resources or to activate
configured partitions.

In Partition Standby power-on mode, the state of the Full
System Partition is shown as Not Available.

Auto Start Partitions8 Powers on the managed system to partition standby
mode and then activates all partitions that have been
powered on by the HMC at least once. For example, if
you create a partition with four processors, use DLPAR
operation to remove one processor, then shut down the
system, the Auto Start Partitions power-on mode
activates this partition with three processors. This is
because the three-processor configuration was the last
configuration used, and the HMC ignores whatever you
have specified in the partition’s profile. Using this option,
the activated partitions boot the operating system using a
normal mode boot, even if the default profile for the
partition specifies the other modes, such as boot to SMS.

8 This power-on mode is available on the HMC software release beginning with Release 3, Version 2.
 Chapter 5. Basic managed system operation tasks 159

5.2.1 Operation states of a managed system
This attribute of the managed system is displayed in the content area of the HMC
window under the State label (see Table 5-2).

Table 5-2 Operating states of managed systems

5.2.2 Rebuild the managed system in the HMC
The Rebuild managed system function downloads the data stored in the NVRAM
of the managed system to the HMC. The NVRAM contains the properties of the
managed system, the partition, system profile information, and the current
states. Rebuilding the managed system is useful when the operating state
indicator of a managed system in the Contents area is shown as Incomplete.
This operation is different from performing a reload of the local HMC panel. In
this operation, the HMC reloads from the information that is stored on the local
database on the HMC.

State Description

Initializing The managed system is powered on and is initializing. The
initialization time may vary depending on the hardware and
partition configuration of the managed system.

Ready The managed system is powered on and is operating
normally.

No Power The managed system is powered off.

Error The operating system or the hardware of the managed
system is experiencing errors.

Incomplete The HMC cannot gather complete partition, profile, or
resource information from the managed system. To rebuild
the managed system, see 5.2.2, “Rebuild the managed
system in the HMC” on page 160.

No Connection The HMC cannot contact the managed system. Check the
serial cable or delete and configure the managed system
again.

Recovery The partition and profile data stored in the managed system
must be refreshed.

Version Mismatch The managed system’s service processor level is later than
the code level of the HMC.

CUOD CTA You must accept the CUoD license.
160 The Complete Partitioning Guide for IBM Eserver pSeries Servers

To rebuild the managed system, select the managed system in the Contents
area, and from the menu bar choose Selected → Rebuild managed system.
When the operation finishes, the current system information of the managed
system appears.

5.3 Power off the managed system
Before powering off the managed system, ensure that all partitions or the Full
System Partition have been shut down and their states have changed from
Running to Ready. To shut down a partition, you can use a virtual terminal window
to run the shutdown command or Telnet into the partition and issue the shutdown
command.

To power off the managed system, select the managed system in the Contents
area, and from the menu bar choose Selected → Power Off. If you attempt to
power off a system that has active partitions, you will receive a warning to that
effect, but you will still be able to power off the managed system.

5.4 Operating the managed system with the HMC
Although the managed system is designed not to put any dependency on the
HMC, except the specific system management operation, you should not plan to
run the managed system without an HMC. The HMC is required for the
operations, such as to set up or change the partition configurations, and is also a
key element in configuring the Service Applications. Without an HMC, the
Service Applications will not be able to provide the extended RAS capabilities
that are available on the partioning-capable pSeries servers. The call home
feature available with Service Focal Point provides this function through the
HMC.

Without an HMC, it is still possible to bring up a managed system in its last
configured partition state, including a boot of defined partitions, by pressing the
power button on the operator panel. However, running partitions can be rebooted
and restarted using the shutdown command, even if the HMC is not present.

5.4.1 Operator panel
The operator panel9 is used to track the progress of the system unit’s self tests
and configuration program, to display codes when the operating system comes to
an abnormal end, and to display system messages. In a logical partitioned
environment, the operator panel displays an error code for most hardware or

9 The operator panel is physically located in the media drawer in the pSeries 670 and pSeries 690.
 Chapter 5. Basic managed system operation tasks 161

firmware problems, but you need the HMC to display any error information written
to a partition’s virtual operator panel. The operator panel values of the partitions
are displayed in the HMC main menu for every partition, as shown in Figure 5-7
on page 162.

Figure 5-7 Hardware Management Console operator panel codes

5.4.2 Power button
The white power button in the operator panel acts in a logical partitioned
environment and in Full System Partition, such as in a conventional pSeries
machine. The managed system will come back up in the same mode in which it
was previously booted. If the managed system was previously booted in a
Partition Standby mode, all partitions will automatically start and run. To power
off the whole system, press the button twice: once to indicate action, the second
time to confirm. We recommend you shut down the operating system instances
in the partitions before powering off the system.

Note: AIX 5L Version 5.2 displays a detailed description and a four-digit LED
value at the operating system boot phase, as highlighted in Figure 5-7.
162 The Complete Partitioning Guide for IBM Eserver pSeries Servers

5.4.3 Reset button
The reset button functions only in the Full System Partition mode. In Partition
Standby mode, the reset button is not active. To reset a partition, use the
operating system reset function of the HMC.
 Chapter 5. Basic managed system operation tasks 163

164 The Complete Partitioning Guide for IBM Eserver pSeries Servers

Chapter 6. Creating and managing
partitions

This chapter explains how to create, modify, and manage partitions on
partioning-capable pSeries servers by providing the following sections:

� 6.1, “Partition and system profile tasks” on page 166

� 6.2, “Affinity logical partitions” on page 183

� 6.3, “Activate partitions” on page 192

� 6.5, “Reset the operating system in a partition” on page 198

� 6.3, “Activate partitions” on page 192

For more information about the concept of partition and system profiles, see
2.2.1, “Partition and system profiles” on page 31. We also provide detailed
information about resource assignment to partitions in 2.2, “Partition resources”
on page 31.

We recommend you accurately plan the partitions before starting your
configuration work on the system.

6

© Copyright IBM Corp. 2003. All rights reserved. 165

6.1 Partition and system profile tasks
In this section, we explain how to create, change, and delete partition and system
profiles.

6.1.1 Create logical partitions and partition profiles
To create a new partition or partition profiles, the managed system is required to
be powered on in the Partition Standby mode (see 5.2, “Power on the managed
system” on page 157).

To create logical partitions and partition profiles, do the following:

1. To create a partition, select the managed system. From the menu bar, select
Selected → Create. Or select the managed system, right-click, and select
Create → Logical Partition, as shown in Figure 6-1 on page 166.

Figure 6-1 Create a logical partition

2. After you select Logical Partition, the Create Logical Partition and Profile
wizard opens (it is shown from Figure 6-2 on page 167 to Figure 6-6 on
page 172). It enables you to create a new partition with at least one default
partition profile.
166 The Complete Partitioning Guide for IBM Eserver pSeries Servers

3. First, you have to enter a name for the partition that you are creating. In
Figure 6-2, we typed lpar09 for the partition name. The partition name has a
limit of 31 characters and must be a unique name within the managed
system. Click Next.

Figure 6-2 Panel 1: Partition name
 Chapter 6. Creating and managing partitions 167

4. You have to enter a name for the partition profile that you are creating for this
partition. In Figure 6-3, we typed aix52_64 for the partition profile name. The
partition profile name has a limit of 31 characters and must be unique within
the partition.

Click Next.

Figure 6-3 Panel 2: Profile name

Note: We strongly suggest you name the profile name in accordance with
the purpose of partition usage.
168 The Complete Partitioning Guide for IBM Eserver pSeries Servers

5. The wizard prompts you to enter the desired, minimum, and maximum
number of processors that can be associated with this profile. We chose 2, 1,
and 4 for desired, minimum, and maximum processors, as shown in
Figure 6-4.

Figure 6-4 Panel 3: Number of processors

The number of processors installed in the managed system is also displayed
on this panel. In Figure 6-4, you can see the number 16 shown in the Total
number of processors in machine field.

Click Next.

Note: You do not see the Maximum number of processors in partition field
on the HMC if the HMC software level is earlier than Release 3, Version 1.
 Chapter 6. Creating and managing partitions 169

6. The wizard prompts you to enter your desired, minimum, and maximum
memory amounts for this partition profile, as shown in Figure 6-5. Enter the
amount of minimum, desired, and required memory in 1 gigabyte (GB)
increments and 256 megabyte (MB) increments. In Figure 6-5 on page 170,
we entered 2.5 GB for Desired amount of memory, 1 GB for Minimum amount
of memory, and 8 GB for Maximum amount of memory. You must have a
minimum of 256 MB memory for each partition. The rules and limitations of
the memory assignment to partitions are provided in 2.2, “Partition resources”
on page 31.

Figure 6-5 Panel 4: Amount of memory

Note:

� The minimum amount of memory should be no less than 1/64 of the
maximum amount of memory. Otherwise, AIX will not boot.

� Select the Small Real Mode Address Region check box only when
you will run AIX 5L Version 5.2 or Linux in this partition. See 2.2.5,
“Physical memory allocation to partitions” on page 38 for the further
detailed information.
170 The Complete Partitioning Guide for IBM Eserver pSeries Servers

You will see the Maximum amount of memory field if the system microcode
Version 3.0 or later is loaded on your pSeries 670 or pSeries 690 and the
HMC software level is Release 3, Version 1 or later. Otherwise, you will not
see the Maximum amount of memory field. If the HMC software level is earlier
than Release 3, Version 1, either both values have to be 16 GB or less, or
both values have to be 16.25 GB or greater. This means that you cannot set
17 GB for the desired amount of memory and 14 GB for the minimum amount
of memory size.

The wizard also shows the total amount of memory configured for use by the
system in the Total usable machine memory field. In Figure 6-5 on page 170,
it shows 65536 MB (64 GB) in total.

Click Next.
 Chapter 6. Creating and managing partitions 171

7. The wizard shows you the I/O components assignment panel, shown in
Figure 6-6. The left side of the panel displays the I/O drawers available and
configured for use. You can expand the I/O tree to show the individual slots in
each drawer by clicking the icon next to each drawer.

Figure 6-6 Panel 5: I/O components

Note: The information shown in Figure 6-6 is highly dependant on our test
environment explained in Appendix A, “Test environment” on page 389. If
your managed system is other than pSeries 670 or pSeries 690, please
consult with the appropriate publications shipped with the system.
172 The Complete Partitioning Guide for IBM Eserver pSeries Servers

Because some I/O slots are grouped by default, if you attempt to assign a
member of one of these grouped slots to a partition profile, the entire group
will be assigned. If your managed system is pSeries 670 or pSeries 690, you
will see the special group, Group_128, in the U1.18 physical location code.
This is composed of ISA devices available on the pSeries 670 or pSeries 690,
such as the diskette drive and native serial ports.

If you click the slot, it displays the details about the physical location code of
the slot. If an adapter is installed in that slot, it also shows the type of the
adapter (you can see the text Class Code: SCSI bus controller, Vendor ID :
4112) Please note that the slots in the I/O drawers field are not listed in
sequential order.

You might be curious why you see 12 slots in the 7040-61D I/O drawer in
Figure 6-6 on page 172 even though there are 20 PCI slots available for each
I/O drawer. To better understand why, you have to understand the following
points:

– An I/O drawer (7040-61D) is composed of two physically symmetrical
planar boards. Each planar board has 10 PCI slots available. Therefore,
an I/O drawer has 20 PCI slots available in total.

– Each planar board is displayed as a separate entity in Figure 6-6 on
page 172. In this example, the left side of the planar board of the second
I/O drawer (viewed from the rear side of the CEC) is represented as
U1.5-P1. The right side is represented as U1.5-P2.

– Each planar has two built-in SCSI controllers, in addition to having 10 PCI
slots available. These controllers are also displayed as I/O slots in
Figure 6-6 on page 172. Therefore, 12 I/O slots in total are displayed
under the tree.

– Each built-in SCSI controller is connected to the different 4-disk pack
placed in the front of the I/O drawer. The first built-in SCSI controller is
displayed as Slot_11 (physical location code is P1/Z1 or P2/Z1); the
second controller is displayed as Slot_12 (physical location code P1/Z2 or
P2/Z2).

See “pSeries 670- and pSeries 690-dependent information” on page 396 for
the hardware-specific information about the pSeries 670 and pSeries 690.

Select the slot you want to assign to this partition profile and click Add. If you
want to add another slot, repeat this process. Slots are added individually to
the profile; you cannot add more than one slot at a time.

Note: ISA devices are not supported by dynamic logical partitioning
operations.
 Chapter 6. Creating and managing partitions 173

There are also desired and required I/O slots fields in this panel. In Figure 6-6
on page 172, you can see two slots are assigned as required I/O slots, and
one slot is assigned as desired.

The real allocation of assigned I/O slots will occur when the partition is
activated. The I/O slot is allocated to any partition on a “first-come,
first-served” basis. The partition profile defines the assigned I/O slots for the
partition, but it does not reserve any physical I/O slot in its definition until that
partition profile is activated.

For example, if you assigned an I/O slot to two partitions as a required I/O
slot, then only the partition you activated first will be activated, and the second
partition will fail to activate due to the unavailability of a required resource.
However, if you assigned this I/O slot to two partitions as a desired I/O slot,
then one partition will be activated with the I/O slot assigned, and the other
will be activated without the I/O slot assigned.

Click Next.

8. The next step, shown in Figure 6-7 on page 175, enables you to set service
authority and boot mode policies for this partition profile. Select the Set
Service Authority check box if you want this partition to be used by IBM
customer support personnel to perform system firmware updates and set
other system policy parameters (in this example, the service authority is not
selected). Although it is technically possible to set the service authority to
several partitions, only one partition will acquire the capability by “first-come,
first-served” basis. If a partition with the service authority is activated when
another service partition with the authority is already active, the activation of
the partition would fail.1

1 See Figure 6-21 on page 196.
174 The Complete Partitioning Guide for IBM Eserver pSeries Servers

Figure 6-7 Panel 6: Set service authority and boot mode

You can also select the boot mode for this partition profile by selecting a value
in the Boot mode for this partition field. For more information about the boot
mode for the partition, see 5.2, “Power on the managed system” on page 157.

Click Next.
 Chapter 6. Creating and managing partitions 175

9. The last panel of this wizard is shown in Figure 6-8. It shows summary
information for the partition profile you are creating. Review the information to
ensure that you have the appropriate resources assigned to this partition.

If you want to change the configuration, click Back. Otherwise, click Finish to
create the partition and the partition profile.

Figure 6-8 Panel 7: Partition attributes

The new partition, along with the default profile you just created, appears
underneath the managed system tree in the Contents area.

After you have created a partition, you can install an operating system on the
partition. To install AIX on the partition, see Chapter 7, “Installing and migrating
AIX in a partitioned environment” on page 201.
176 The Complete Partitioning Guide for IBM Eserver pSeries Servers

6.1.2 Create additional partition profiles
You can create new partition profiles for an existing partition that has a default
partition profile defined. To create an additional partition profile, do the following:

1. In the Contents area, select the partition for which you want to create an
additional profile. If you select the managed system, you will create a new
partition, not an additional partition profile.

2. From the menu bar, select Selected → Create → Profile.

The Create Logical Partition and Profile wizard opens, and you now can begin to
assign resources to the new partition profile. You can also create additional
profiles by copying the default profile to another profile and editing the resources
that are assigned to it.

6.1.3 View and modify partition profile properties
You can view or modify the properties of a partition profile using the following
steps:

1. In the Contents area, select the profile.

2. From the menu bar, select Selected → Properties.

A window similar to the one shown in Figure 6-9 opens.

Figure 6-9 Property of a partition profile
 Chapter 6. Creating and managing partitions 177

The window contains five tabs. Each tab has a panel very similar to the one
shown in the partition creation process:

General Shown in Figure 6-9 on page 177

Processor Very similar to Figure 6-4 on page 169

Memory Very similar to Figure 6-5 on page 170

I/O Very similar to Figure 6-6 on page 172

Other A panel very similar to Figure 6-7 on page 175

You can modify the partition profile while the partition is active. However, the
modification takes effect after the reactivation of the partition.

6.1.4 Copy a partition profile
You can copy the contents of a partition profile you have already created to
another partition profile. For example, you might decide that you need a partition
profile that is similar to one that you have already created, but with a small
change in resource allocation.

To copy a partition profile, do the following:

1. In the Contents area, select the existing partition profile you want to copy.

2. From the menu bar, select Selected → Copy.

3. Type a unique name for the new copy.

4. Click OK.

6.1.5 Change default partition profiles
When you create a partition, the HMC requires that you create at least one profile
called the default profile. In the Contents area, the default profile is marked in the
list of the partition profiles with an icon. For example, you can distinguish the
default partition profile aix51_64 from the other partition profiles for the lpar02
partition in Figure 4-10 on page 141, because the default partition profile has the
following small icon with the character c (current).

Note: You can copy partition profiles inside the partition only. You cannot copy
a partition profile from a partition to other partitions.
178 The Complete Partitioning Guide for IBM Eserver pSeries Servers

You can choose a partition that is not the default partition when activating a
partition using the following steps:

1. In the Contents area, select the partition.

2. From the menu bar, select Selected → Change Default Profile.

3. Select the profile that you want to make the default profile from the list.

6.1.6 Understand partition boot errors
You can use the following steps to determine the boot error value. This task is
only available if a partition is in an error state after you attempted to activate it.

To determine the boot error value, do the following:

1. In the Contents area, right-click the partition that is in the Error state.

2. Select Read Boot Error Value. A panel opens that gives you more
information about why the boot failed.

For more information about boot error values, please refer to IBM Hardware
Management Console for pSeries Installation and Operations Guide,
SA38-0590.

6.1.7 Delete partition profiles
You can delete a partition profile using the following steps:

1. In the Contents area, select the profile.

2. From the menu bar, select Selected → Delete.

6.1.8 Create system profiles
We provide detailed information about the concept of system profiles in 2.2.1,
“Partition and system profiles” on page 31. By using system profiles, you can
activate some partitions in one operation or power on the managed system.

Note: This step does not change the designation of a default profile.

Note: You should not select the partition itself to avoid deleting an entire
partition.
 Chapter 6. Creating and managing partitions 179

To create a system profile, do the following:

1. Select the managed system and select the Selected menu, or right-click and
select Create → System Profile, as shown in Figure 6-10.

Figure 6-10 Creating system profiles

2. The System Profile panel opens, as shown in Figure 6-11 on page 181. In this
example, we named a system profile itso_sysprofile and included three
partition profiles.

Click OK.
180 The Complete Partitioning Guide for IBM Eserver pSeries Servers

Figure 6-11 Setting up the system profiles menu

Once created, the system profile itso_sysprofile appears under the System
Profile of the managed system (see Figure 5-7 on page 162).

6.1.9 View and modify system profile properties
You can view the properties of the system profile using the following steps:

1. In the Contents area, select the system profile.

2. From the menu bar, select Selected → Properties.

You can also modify the properties of the system profile by changing the system
profile information as appropriate.
 Chapter 6. Creating and managing partitions 181

6.1.10 Copy a system profile
You can copy the contents of a system profile you have already created to a new
system profile using the following steps:

1. In the Contents area, select the existing system profile that you want to copy.

2. From the menu bar, select Selected → Copy.

3. In the Copy Profile panel, type the new system profile name. Click OK.

6.1.11 Delete a system profile
You can delete a system profile using the following steps:

1. In the Contents area, select the system profile.

2. From the menu bar, select Selected → Delete.

3. The Delete System Profile panel opens. Click Yes to delete the system
profile.

6.1.12 Activate a system profile
In order to activate a system profile, be sure to shut down the operating system
for any participating active partition. The state has to show Ready, not Running.
You can activate a system profile using the following steps:

1. In the Contents area, select the system profile.

2. From the menu bar, select Selected → Activate.

For example, if you activate the system profile itso_sysprofile in Figure 6-11 on
page 181, the following three partitions shown in Table 6-1 will be activated in
this order.

Table 6-1 Activation order example using the system profile

6.1.13 Power on using a system profile
You can power on your managed system using a predefined system profile. To
learn more about powering on using a system profile you have already created,
see 5.2, “Power on the managed system” on page 157.

Activation order Partition name Partition profile name

1 lpar07 aix52_64

2 lpar01 aix52_32

3 lpar03 aix52_64
182 The Complete Partitioning Guide for IBM Eserver pSeries Servers

6.2 Affinity logical partitions
Affinity logical partitions are a special group of partitions that can be created on
the pSeries 670 and pSeries 690 depending on the configuration. The process of
creating a group of affinity logical partitions is similar to the process of creating
logical partitions. The only difference is that the system does the processor and
memory assignment for you.

To determine if your managed system is capable of running affinity logical
partitions, check your managed system’s properties (see Figure 5-1 on
page 153).

6.2.1 Create affinity logical partitions
To create affinity logical partitions, do the following:

1. In the Contents area, select the managed system.

Note: A managed system can run only regular or affinity logical partitions at a
time. The first activated partition type (regular or affinity) will determine
whether the managed system runs regular or affinity logical partitions.
 Chapter 6. Creating and managing partitions 183

2. From the Selected menu, select Affinity Logical Partitions, and then select
Setup, as shown in Figure 6-12.

Figure 6-12 Affinity logical partitions setup
184 The Complete Partitioning Guide for IBM Eserver pSeries Servers

3. The Affinity Logical Partition Setup wizard opens, as shown in Figure 6-13.

Figure 6-13 Selecting 4-processor or 8-processor ALPAR configuration

4. Select the type of affinity partition you want to create. You can select either of
the following configurations:

– 4-processor Affinity Logical Partition configuration

– 8-processor Affinity Logical Partition configuration

Note: You cannot configure a combination of 4- and 8-processor affinity
logical partitions on a managed system.
 Chapter 6. Creating and managing partitions 185

In this example, we selected 4-processor Affinity Logical Partition
configuration. This selection creates four 4-processor affinity logical
partitions, as shown in Figure 6-14 (see Appendix A, “Test environment” on
page 389).

Figure 6-14 Four 4-processor ALPAR configuration

P
P

P
P

P
P

P
P

P
P

P
P

P
P

P
P M

em
or

y

Processor
Bus Pass
Through
Module

Processor
Bus Pass
Through
Module

ALPAR01 ALPAR02

ALPAR03 ALPAR04

M
em

or
y

M
em

or
y

M
em

or
y

M
em

or
y

186 The Complete Partitioning Guide for IBM Eserver pSeries Servers

5. Specify the partition and partition profile names for all affinity logical
partitions, as shown in Figure 6-15. Then, click Next.

Figure 6-15 ALPAR partition and profile name
 Chapter 6. Creating and managing partitions 187

6. Assign I/O slots (adapters) to all affinity logical partitions, as shown in
Figure 6-16. Click Finish.

Figure 6-16 ALPAR assigning I/O slots

Note: There is no memory assignment step when creating affinity logical
partitions.
188 The Complete Partitioning Guide for IBM Eserver pSeries Servers

Four affinity logical partitions, alpar01 to alpar04, are created, as shown in
Figure 6-17. The AffinityPartitions system profile, which includes all the created
affinity logical partitions, is also created.

Figure 6-17 Created ALPAR

6.2.2 Manage resources in affinity logical partitions
To update affinity logical partitions after a service representative has added or
removed resources on the managed system, do the following:

1. Log in to the HMC using either the System Administrator or Advanced
Operator role.

Note: The newly created affinity logical partitions cannot be activated until you
reboot the managed system with the AffinityPartition system profile. If you
boot the managed system with the AffinityPartition system profile, the regular
partitions and the Full System Partition cannot be activated. In other words,
activation of affinity logical partitions and regular partitions are mutually
exclusive.
 Chapter 6. Creating and managing partitions 189

2. In the Contents area, select the managed system.

3. From the Selected menu, select Affinity Logical Partition → Update.

The HMC then assesses what resources have been added or removed and asks
you if you would like to add or remove affinity partitions, as appropriate.

6.2.3 Delete all affinity logical partitions
To remove all the affinity logical partitions, do the following:

1. In the Contents area, select the partition icon under the managed system.
Right-click the partition icon.

Note: You cannot remove affinity logical partitions individually.
190 The Complete Partitioning Guide for IBM Eserver pSeries Servers

2. Select Affinity Logical Partitions, and then Remove All, as shown in
Figure 6-18.

Figure 6-18 Remove all affinity logical partitions
 Chapter 6. Creating and managing partitions 191

3. Click Yes in the Remove Affinity Logical Partition window, as shown in
Figure 6-19.

Figure 6-19 Confirm the removal of all the affinity logical partitions

This operation removes the AffinityPartition system profile and all the affinity
logical partitions.

6.3 Activate partitions
If you activate a partition, you are virtually powering on the partition. To activate a
partition, select the partition name and select activate by right-clicking. This
opens a window that enables you to choose the profile that you want to activate
for this partition. If the minimum and required resources you specified when you
created the partition profile exceeds the amount of available resources, this
partition will not be activated with the selected profile. Available resources are all
resources currently not being used by other active partitions. It is important that
you keep track of your system’s resources at all times.

6.3.1 Change the default partition profile
When a partition is created, a profile also has to be created by default to define
the resources associated with this partition. The application requires that you
create at least one profile when a partition is created. The first profile created is
the default profile. Additionally, the default partition profile is marked with an icon.
The default partition profile can be changed at any time. To change the default
partition profile, select the partition profile name in the Contents area, from the
menu bar choose Selected → Change Default Profile, and select the profile
name from the list that you want to make the default. This operation can also be
completed by selecting the profile name, right-clicking, and following the menus.
192 The Complete Partitioning Guide for IBM Eserver pSeries Servers

The default profile can be changed even when the partition is in the active state
with the profile running.

6.3.2 Activate a specific partition profile
To activate a partition profile, select one of the partition profiles you created, and
from the menu bar choose Selected → Activate. The profile name is highlighted.
Click OK to activate the partition using this partition profile. If you want to activate
using the other partition profiles, select another profile in the list and then click
OK. This operation can also be accomplished by selecting the desired profile
name, right-clicking, and selecting the Activate option.

6.3.3 Activate partitions without selecting a specific partition profile
To activate a partition without selecting a specific partition profile, select the
partition in the Contents area, and from the menu bar choose Selected →
Activate. The default profile name is highlighted as shown in Figure 6-20. Then,
click OK.

Figure 6-20 Activate a partition

If you select the Open terminal check box (highlighted in Figure 6-20), a virtual
terminal window opens upon activation of the partition.
 Chapter 6. Creating and managing partitions 193

6.3.4 Reactivating a partition with a different partition profile
To reactivate a partition with a different profile, select the partition for which you
want to change profiles in the Contents area. Open a virtual terminal window for
that partition to log in to the operating system, and then issue an appropriate
operating system shutdown command.2 The system shuts down the operating
system, and the partition’s state changes from Running to Ready in the Contents
area. In the Contents area, select the new partition profile you want to activate for
that partition. From the menu bar choose Selected → Activate, or select the
profile that you want to activate, right-click, and then select the Activate option.

6.3.5 Partition operating states
In the column to the right of the names of the partitions in the Contents area, the
HMC indicates the operating status of the partitions. Table 6-2 lists all possible
partition operating states.

Table 6-2 Operating states of partitions

2 As we will explain in 6.4, “Shut down the operating system in a partition” on page 196, the HMC
software level Release 3, Version 2 provides the operating system shutdown menu, if the target
partition is installed with AIX 5L Version 5.2 and 5200-01 Recommended Maintenance Level and
later.

Operating state Description

Ready The partition is not active, but is ready to be activated.

Starting The partition is activated and is undergoing booting routines.

Running The partition has finished its booting routines. The operating
system can be performing its booting routines or is in its normal
running state.

Error Activation of this partition failed due to a hardware or operating
system error.
194 The Complete Partitioning Guide for IBM Eserver pSeries Servers

If the partition operation state is Error after you attempt to activate it, you can
select Read Boot Error Value to understand why the partition gets an error
during the boot.

For example, if you have set the service authority to more than one partition and
tried to activate the second partition with the authority, then the activation would
fail with the Error state as shown in Figure 6-21 on page 196.

Not available This partition is not available for use. Reasons can include:

� The managed system is powered off.

� The Full System Partition is not available when the managed
system is powered on with the Partition Standby power-on
option.

� Partitions are not available when the managed system is
powered on with the Full System Partition power-on option.

� Affinity partitions are not available when the managed
system is powered on and the non-affinity partitions are
activated first.

� Non-affinity partitions are not available when the managed
system is powered on and affinity partitions are powered on
first.

Open Firmware The partition was activated by a profile that specified an
OPEN_FIRMWARE boot mode.

Operating state Description
 Chapter 6. Creating and managing partitions 195

Figure 6-21 Partition activation failure

In this case, the boot error message shown in Figure 6-22 explains the reason for
the failure of this partition activation.

Figure 6-22 Read Boot Error Values

6.4 Shut down the operating system in a partition
To shut down the operating system in a partition, do the following:

1. In the Contents area, select the partition you want to shut down.

2. From the menu bar choose Selected → Operating System → Shutdown.

This function is available when the following requirements are met:

� HMC is installed with software Release 3, Version 2 and later.3

3 The menu does not exist on the HMC installed with software Release 3, Version 1 and before.
196 The Complete Partitioning Guide for IBM Eserver pSeries Servers

� The target partition is installed with AIX 5L Version 5.2 plus 5200-01
Recommended Maintenance Level and later.4

You can also perform this operation by selecting the partition name and
right-clicking to display the window shown Figure 6-23.

Figure 6-23 Operating System shutdown or reset

A dialog box shown in Figure 6-24 on page 198 will appear. Select the partition
name and click OK to shut down the operating system in the selected partition.
You may select the following options in the dialog box before clicking OK:

� Restart the operating system after shutting it down via reboot.
� Bring the operating system down as quickly as possible.

4 If the partition is not installed with AIX 5L Version 5.2 plus 5200-01 Recommended Maintenance
Level and later, the Shutdown menu selection is grayed out and unselectable.
 Chapter 6. Creating and managing partitions 197

Figure 6-24 Operating System shutdown

6.5 Reset the operating system in a partition
When an operating system in a partition stalls, you can use the HMC to restart
the operating system.

In the Contents area, select the partition you want to reset. From the menu bar
choose Selected → Operating System → Reset. You can also perform this
operation by selecting the partition name and right-clicking to display the window
shown in Figure 6-23 on page 197.

A dialog box opens that offers two reset options, as shown in Figure 6-25 on
page 199.

Important: This operation may corrupt data on the resetting partition. Perform
this procedure only after you have attempted to restart the operating system
manually.
198 The Complete Partitioning Guide for IBM Eserver pSeries Servers

Figure 6-25 Operating system reset options

The following operating system reset options are available:

Soft Reset The actions of the operating system after a soft reset are
determined by its policy settings. Depending on how you have
configured these settings, the operating system may perform a
dump of system information or will restart automatically. For more
information about configuring your operating system’s policy
settings, refer to its supporting documentation.

Hard Reset A hard reset acts as a virtual powering off of the partition, not the
managed system. Issuing a hard reset forces termination and can
corrupt information. Use this option only if the operating system is
disrupted and cannot send or receive commands.

If the “Power off the system after all the logical partitions are powered off” policy
is set shown in Figure 5-3 on page 155, and if you deactivate the last partition in
the system (no partition is activated in the system), the managed system is
powered off. The status of the managed system is changed from LPAR… to No
Power.
 Chapter 6. Creating and managing partitions 199

200 The Complete Partitioning Guide for IBM Eserver pSeries Servers

Chapter 7. Installing and migrating AIX
in a partitioned environment

This chapter explains several AIX installation and migration methods in a
partitioned environment in the following sections:

� Installing AIX on partioning-capable pSeries servers

� Installing AIX using removable media devices

� Installing AIX using Network Installation Manager (NIM)

� Installing AIX using alternate disk install

� Migrating AIX using alternate disk migration

For further information about AIX installation, please refer to the following
publications, available at:

http://techsupport.services.ibm.com/server/library

� AIX 5L Version 5.2 Installation Guide and Reference

� AIX 5L Version 5.2 Installation in a Partitioned Environment.

7

Note: Throughout this redbook, we use the term CD/DVD devices to refer to
CD-ROM, DVD-RAM, and DVD-ROM devices.
© Copyright IBM Corp. 2003. All rights reserved. 201

http://techsupport.services.ibm.com/server/library
http://techsupport.services.ibm.com/server/library

7.1 Installing AIX on partioning-capable pSeries servers
Installing AIX on partioning-capable pSeries servers is not a difficult task
although you must understand the following considerations when installing AIX in
partitions:

� Activating partitions

In order to activate (virtually power on) partitions, you must use the HMC (see
6.3, “Activate partitions” on page 192).

� Console of partition upon installation

In most cases, you have to use the virtual terminal window on the HMC for the
console of the partition upon operating system install (see 4.5, “Virtual
terminal window” on page 146).

� Install source device

Although AIX supports various media as install source devices, such as
CD/DVD, tape, over the network (see 7.3, “Installing AIX using Network
Installation Manager (NIM)” on page 218), and disk file on file systems (see
7.4, “Installing AIX using alternate disk install” on page 231), you need to
assign at least one removable media device to the partition for the first
operating system installation to the system. Because a partioning-capable
pSeries server is usually equipped with one or two removable media devices,
you need to carefully plan the assignment of these devices to partitions.

In fact, if you are going to newly install AIX on partitions on a partioning-capable
pSeries server from scratch (this means that you do not have to worry about the
existing data on the install disks), you can simply complete the following steps:

1. Boot up the managed system with the Full System Partition (see 5.2, “Power
on the managed system” on page 157).

2. Install AIX from CD/DVD or tape (if you have an already customized install
image bootable tape for the installation purpose) onto the Full System
Partition (see 7.1.1, “Install AIX in the Full System Partition” on page 204).

3. Perform common customization on AIX, for example, installing common
software components.

Note: The dynamic logical partitioning function in conjunction with AIX 5L
Version 5.2 gives you greater flexibility in the assignment of these devices
to partitions. We explain how to exploit the dynamic logical partitioning
function for the AIX installation in 9.3, “Dynamic logical partitioning
operations using chhwres” on page 285.
202 The Complete Partitioning Guide for IBM Eserver pSeries Servers

4. Clone the AIX image using the alternate disk install facility (see 7.4, “Installing
AIX using alternate disk install” on page 231).

5. Shut down AIX and power off the managed system (see 5.3, “Power off the
managed system” on page 161).

6. Boot up the managed system in the Partition Standby mode (see 5.2, “Power
on the managed system” on page 157).

7. Configure the partitions (see 6.1, “Partition and system profile tasks” on
page 166).

8. Activate (boot up) partitions (see 6.3, “Activate partitions” on page 192).

9. Perform any necessary additional configurations on partitions, such as host
name, and TCP/IP address.

Comparison of AIX installation methods
Each AIX installation method discussed in this chapter has its own merits and
limitations:

� Installing AIX using removable media devices

This is probably the easiest method, but may not be so convenient if you have
to install more than two or three partitions.

� Installing AIX using Network Installation Manager (NIM)

This is the most powerful and flexible method. It used to be difficult to
configure and maintain NIM, but now it is quite easy to configure NIM in the
recent AIX releases. Even though you need a machine or a partition to act as
a NIM master, it is worthwhile to do if you have to administer several
partitions.

� Installing AIX using alternate disk install

This is probably the most suitable method if you want to clone the partitions,
having partitions with similar configurations and filesets installed, for example,
creating partitions for Web server clusters.

The strength of this method is that it can be fully automated. There is almost
no manual steps to do as long as the partition is loaded with AIX 5L Version
5.2 or later.

It would not be uncommon to find that in certain situations, you may need to use
more than one method. For example, using CD-ROM to install the first partition,

Note: These steps are the fastest way to newly install AIX onto all the
partitions as the initial operating system loading task, regardless of the version
of AIX.
 Chapter 7. Installing and migrating AIX in a partitioned environment 203

and then using alternate disk install to clone it to the other partitions that
compose Web server clusters.

7.1.1 Install AIX in the Full System Partition
The installation of AIX in the Full System Partition is quite straightforward. It is
performed as if on an existing pSeries system, except for the powering on and
console explained previously.

After booting up the managed system with the Full System Partition (see 5.2,
“Power on the managed system” on page 157), you can install AIX using the
methods explained in the following sections:

� 7.2.1, “Boot AIX from removable media devices” on page 207

� 7.3.3, “Boot partitions over the network” on page 224

There is no difference between installing AIX in the Full System Partition and
partitions except for the fact that the Full System Partition accesses all the
hardware resources on the managed system.

7.1.2 Create a partition-ready AIX mksysb image
AIX can create the operating system install image (mksysb image) on the
following media:

� CD/DVD

� Tape (4 mm or 8 mm)

� Disk file on file systems

AIX 5L Version 5.2 supports the creation of a bootable mksysb image on the
DVD-RAM media formatted by Universal Disk Format (UDF), in addition to the
ISO 9660 format supported by AIX 5L Version 5.1. For further information about
how to create the bootable UDF DVD-RAM media, please refer to AIX 5L
Differences Guide, SG24-5765. For further information about how to create the
bootable ISO 9660 CD-R or DVD-RAM media, please refer to Managing AIX
Server Farms, SG24-6606.

If you have to use a partitioning-incapable pSeries server to create a valid
mksysb image (called a partition-ready mksysb image) that can be used for
installing to a partition, you must do the following:

Note: Depending on the partioning-capable pSeries server models, you may
need to apply additional APARs before creating a partition-ready mksysb (see
1.2, “Partitioning support on pSeries servers” on page 5).
204 The Complete Partitioning Guide for IBM Eserver pSeries Servers

1. If you are using AIX Version 4.3.3 or earlier, you have to migrate it to AIX 5L
Version 5.1 first on a separate pSeries server, because the minimum
supported software level in a partitioned environment is AIX 5L Version 5.1
with 5100-01 Recommended Maintenance Level plus APAR IY39794. We
strongly recommend you test your applications on that environment.

2. If you are using AIX 5L Version 5.2, the mksysb will be always partition-ready
unless you have explicitly uninstalled the following filesets from the system:

– devices.chrp.base.rte
– devices.chrp.base.ServiceRM
– devices.chrp_lpar.base.ras
– devices.chrp_lpar.base.rte

Skip to step 4.

3. If you are using AIX 5L Version 5.1 without the 5100-01 Recommended
Maintenance Level plus APAR IY39794, you have to apply this package using
the following steps:

a. Insert the CD-ROM media that contains the 5100-01 Recommended
Maintenance Level plus APAR IY39794 into the CD/DVD device.

b. Type the following command:

installp -acX -d /dev/cd0 bos.rte.install

It brings the bos.rte.install fileset level to 5.1.0.15:

lslpp -L bos.rte.install
Fileset Level State Type Description (Uninstaller)

--
bos.rte.install 5.1.0.15 C F LPP Install Commands

c. Confirm that the APAR IY39794 was applied correctly:

instfix -ik IY22854

Note: If you create a mksysb on a partition, it is always partition-ready.

Note: On AIX 5L Version 5.2, all device filesets are installed by default.
Therefore, all AIX 5L Version 5.2 partitions should have the necessary
device support for any adapters that can be added by DLPAR operations.

Note: We strongly recommend you install the latest Recommended
Maintenance Level (RML). At the time of writing of this redbook, the latest
RML for AIX 5L Version 5.1is 5100-03.
 Chapter 7. Installing and migrating AIX in a partitioned environment 205

It should print the following output:

All filesets for IY22854 were found.

d. Issue the partition_ready command.

This command looks for update images in the first available CD/DVD
device (usually /dev/cd0). If it does not find an update CD-ROM medium in
the device, it prompts the user to insert one. After the partition_ready
command verifies that the update images are valid, it updates all filesets if
needed. This command also installs any new device drivers on the update
media at the latest level. After the update, the partition_ready command
verifies that all filesets were installed at the appropriate levels. If any
filesets are still down a level, it specifies the names of these filesets, the
levels at which they are actually installed, and the required levels. All
partition_ready command activities are logged in the
/var/adm/ras/partition_ready.log log.

For detailed information about this command, please refer to
/usr/lpp/bos/README.PARTITION_INSTALL, which is installed with AIX
5L Version 5.1 with 5100-01 Recommended Maintenance Level plus
APAR IY39794.

4. Create a partition-ready mksysb image.

– If you create a mksysb file, you can use the SMIT shortcut smitty mksysb,
specifying a file name as a target file. This mksysb file can be used for
NIM, alternate disk install, or creating a bootable CD/DVD media.

– If you use a tape device to create a bootable mksysb image tape media,
you can use the SMIT shortcut smitty mksysb with a tape drive as a target
device.

– If you use a CD/DVD device to create a bootable mksysb image CD/DVD
media, select the following SMIT panels:

smitty
System Storage Management (Physical & Logical Storage)

System Backup Manager
Back Up the System

Then select either of the following, depending on the device type:

CD-R/CD-RW Back up this system to CD.

DVD-RAM Back up this system to DVD1.

1 You can select the UDF option on AIX 5L Version 5.2.

Note: The DVD-ROM cannot be used for creating the mksysb media.
206 The Complete Partitioning Guide for IBM Eserver pSeries Servers

7.2 Installing AIX using removable media devices
In a partitioned environment, you can use a removable media device to install
AIX in partitions, but the removable media device can be used by only one
partition at a time, because it is controlled by one SCSI adapter, which is
assignable to only one partition at a time.

If the partition that currently holds the removable media device supports dynamic
logical partitioning, then whenever you need a removable media device, you can
remove the device by using either the graphical user interface (see 8.1, “Dynamic
logical partitioning” on page 256) or command line interface (see 9.3, “Dynamic
logical partitioning operations using chhwres” on page 285) on the HMC.

If the partition that currently holds the removable media device does not support
dynamic logical partitioning, then whenever you need a removable media device,
shut down and deactivate the partition that has the removable media device
currently. Then, activate and start another partition that requires the removable
media device for software installation purposes. Assigning the I/O slots that
contain the SCSI adapter connected to the removable media device to a partition
as a desired resource is helpful for software installation purposes.

We use the DVD-RAM drive equipped in the media drawer of pSeries 690 as an
example configuration of an installation scenario from removable media devices
(see Appendix A, “Test environment” on page 389). However, the method
explained here should be applicable for all removable media device types on any
partioning-capable pSeries servers as long as the removable media device is
controlled by a SCSI adapter. The IDE DVD-ROM drive (FC 2634) for the pSeries
670 and pSeries 690 is also applicable for this method, because it is connected
to a SCSI adapter using the IDE media to LVD SCSI interface bridge card (FC
4253) in the media drawer.

7.2.1 Boot AIX from removable media devices
To install AIX in a partition using the removable media device, do the following:

1. Verify if another partition uses the removable media device.

If the device is used by another partition, do either of the following depending
the partition’s capability:

– If this partition does not support dynamic logical partitioning, shut down
the partition that uses the removable media device when possible. You
might have to wait before the partition can be shut down.

– If this partition supports dynamic logical partitioning, remove the
removable media device by performing a DLPAR operation (see 8.1.3,
“Dynamically removing resources from a partition” on page 269).
 Chapter 7. Installing and migrating AIX in a partitioned environment 207

2. Create a partition and partition profile on the HMC. Assign the SCSI adapter
attached to the removable media device.

3. Set the boot mode for this partition to Server Management Services (SMS).

To set the boot mode to SMS, select the partition profile, right-click, select
Properties. Select the Others tab in the properties panel of the partition
profile, and then select SMS, as shown in Figure 7-1.

Figure 7-1 Set the boot mode to SMS

4. After you have successfully created the partition or changed the partition
profile, leave the partition in the Ready state.

5. Place the bootable AIX installation media2 in the removable media device in
the media drawer.

6. Right-click the partition on which you are going to install AIX.

7. Select Activate. The Activate Partition menu opens with a selection of
partition profiles. Be sure the correct profile is highlighted.

8. Select the Open Terminal check box at the bottom of the Activate Partition
panel to open a virtual terminal window (see Figure 6-20 on page 193), and
then click OK. A virtual terminal window panel opens for the partition. After
several seconds, the SMS main menu opens in the virtual terminal window.

9. In the SMS menu, press the 7 key to select 7. Select Boot Options, as
shown in Figure 7-2.

2 If you are using the AIX product media, insert the CD-ROM media volume 1.
208 The Complete Partitioning Guide for IBM Eserver pSeries Servers

Figure 7-2 System Management Services: Main menu
 Chapter 7. Installing and migrating AIX in a partitioned environment 209

10.Press 2 to select 2. Select Boot Device, as shown in Figure 7-3.

Figure 7-3 System Management Services: Select boot options
210 The Complete Partitioning Guide for IBM Eserver pSeries Servers

11.Press 1 to select 1. Select 1st Boot Devices, as shown in Figure 7-4.

Figure 7-4 System Management Services: Configure boot device
 Chapter 7. Installing and migrating AIX in a partitioned environment 211

12.Press 3 to select 3. CD/DVD, as shown in Figure 7-5.

Figure 7-5 System Management Services: Select device type
212 The Complete Partitioning Guide for IBM Eserver pSeries Servers

13.Type 1 to select 1. SCSI, as shown in Figure 7-6.

Figure 7-6 System Management Services: Select media type
 Chapter 7. Installing and migrating AIX in a partitioned environment 213

14.Press the appropriate key to select the SCSI adapter to which the CD/DVD
device is connected. In this example, we selected 1, as shown in Figure 7-7.

Figure 7-7 System Management Services: Select media adapter

Note: As explained in Appendix A, “Test environment” on page 389, the
DVD-RAM drive in the media drawer is connected to the SCSI adapter that is
inserted into the tenth I/O slot in the left-half (planar 1) of the first I/O drawer.
Because FC 6204, which is used to connect to the media drawer, has two
separate SCSI ports, the first port (on lower one in the I/O drawer) is
represented as /pci@3fffde0800/pci@b,6/scsi@1, and the second one is
represented as /pci@3fffde0800/pci@b.6/scsi@1,1. You must understand
which SCSI port is used to connect to the media drawer before selecting the
option in Figure 7-7.
214 The Complete Partitioning Guide for IBM Eserver pSeries Servers

15.Press the appropriate key to select the CD/DVD device. In this example, we
selected 1, as shown in Figure 7-8.

Figure 7-8 System Management Services: Select device

Note: The CD/DVD device is shown as CD-ROM regardless of the actual
media type (CD-ROM, DVD-RAM, or DVD-ROM) in this menu.
 Chapter 7. Installing and migrating AIX in a partitioned environment 215

16.Type X to exit the SMS menu, as shown in Figure 7-9.

Figure 7-9 System Management Services: Select task
216 The Complete Partitioning Guide for IBM Eserver pSeries Servers

17.Press 2 to confirm the exit from the SMS menu, as shown in Figure 7-10.
After you exit from the SMS menu, the partition boots off from the CD/DVD
device, and the standard AIX installation process starts.

Figure 7-10 SMS: Exit confirmation

18.After the installation finishes, the partition automatically reboots. Log in to the
partition to verify that the system is working properly.

19.Now, you should change the boot mode to Normal for the partition in the
partition profile (see Figure 7-1 on page 208). Otherwise, it will show the SMS
panel for every reboot.

20.Log in to the partition as the root user and perform initial customization, such
as setting the date and time, host name, IP address, subnet mask, and default
route.

21.Reboot the partition once in order for the RMC configuration change to take
effect. Wait at least five minutes before attempting any DLPAR operations.

22.If the installed partition supports the dynamic logical partitioning function, you
can remove the removable media device from this partition now. For further
information about how to remove the device, see 8.1.3, “Dynamically
removing resources from a partition” on page 269 and 9.3, “Dynamic logical
partitioning operations using chhwres” on page 285.
 Chapter 7. Installing and migrating AIX in a partitioned environment 217

7.3 Installing AIX using Network Installation Manager
(NIM)

This section introduces the concept of the AIX Network Installation Manager
(NIM) and its usage to install AIX in a partitioned environment.

7.3.1 NIM overview
NIM is a facility that enables you to install AIX over the network. NIM provides the
ability to install AIX on a pSeries sever, called the NIM client, from a server,
called the NIM master, over the network. NIM is able to not only install and
maintain the AIX operating system, but also any additional software and fixes.
NIM also enables you to customize the configuration of machines both during
and after installation, such as a host name and TCP/IP addresses. NIM
eliminates the need for access to physical media, such as tapes and CD-ROMs,
because the installation images are stored on the NIM server and provided to
NIM clients through the Network File System (NFS).

You can also create system backups using the mksysb command, with the
appropriate customization for installation purposes. The mksysb image can be
stored on any server in the NIM environment, including the NIM master. You can
use NIM to restore a system backup to the same partition or to another partition.
If you use a mksysb image to install AIX to some partitions, you can duplicate a
customized3 operating system image.

7.3.2 Configure NIM resources
Before installing AIX using NIM in a logical partitioned environment, you have to
set up a NIM master either on another pSeries server or in one of the partitions.
In this example, we use the lpar04 partition as the NIM master, which is installed
with AIX 5L Version 5.2.

NIM master requirements
The NIM master must meet the following requirements:

� The NIM master must always be at the highest level of the AIX release that
you are going to install. Therefore, if you are going to install AIX 5L Version
5.2, the NIM master also must be AIX 5L Version 5.2.

� You need a network connection between the NIM master and clients. This
network can be either Ethernet or token ring.

� A minimum of 8 MB free space in the /tmp directory.

3 To customize the system upon NIM installation, you can create and customize a nim_script
resource on a NIM server.
218 The Complete Partitioning Guide for IBM Eserver pSeries Servers

� We recommend you create a separate volume group to be used for NIM
operations on the NIM master. The initial free space needed for this setup is
about 1.2 GB (usually one release of AIX requires approximately 4.5 GB).

The NIM master and NIM client host names must be consistently resolvable
regardless on the NIM master or clients.

Configure a NIM master quickly
To configure a NIM master, you can use the nim_master_setup command, which
is provided by AIX starting with the 5100-02 Recommended Maintenance Level.
It is actually a script that greatly eases the task of setting up a NIM master. The
following tasks, which used to be done separately, are all now automated in this
command:

� Check and automatically install all necessary filesets required for the NIM
master, for example, bos.sysmgt.sysbr and bos.sysmgt.nim.master.

� Define the NIM master.

� Create a generic mksysb resource.

� Create a resolv_conf resource.

� Create a bosinst_data resource.

� Copy filesets from the specified device and create a lpp_source resource.

� Create a Shared Product Object Tree (SPOT) resource.

The following example demonstrates how to invoke the nim_master_setup
command. In this example, we have defined a volume group, nimvg, for storage
of the NIM resources.

root@lpar04: # nim_master_setup -a volume_group=nimvg
############################## NIM master setup ##############################
#
During script execution, lpp_source and spot resource creation times
may vary. To view the install log at any time during nim_master_setup,
run the command: tail -f /var/adm/ras/nim.setup in a separate screen.
#
##
Creating image.data file...done
Device location is /dev/cd0.
Resources will be defined on volume group nimvg.
Resources will exist in filesystem /export/nim.
Checking for backup software...already installed.
Checking /tmp space requirement...done
Installing NIM master fileset....
+---+
 Pre-installation Verification...
+---+
 Chapter 7. Installing and migrating AIX in a partitioned environment 219

Verifying selections...done
Verifying requisites...done
Results...

SUCCESSES

 Filesets listed in this section passed pre-installation verification
 and will be installed.

Selected Filesets

 bos.sysmgt.nim.master 5.2.0.0 # Network Install Manager - Ma...
<< End of Success Section >>

FILESET STATISTICS

 1 Selected to be installed, of which:
 1 Passed pre-installation verification

 1 Total to be installed
+---+
Installing Software...
+---+
installp: APPLYING software for:
 bos.sysmgt.nim.master 5.2.0.0
. << Copyright notice for bos.sysmgt >>
 Licensed Materials - Property of IBM
5765E6200
 (C) Copyright International Business Machines Corp. 1993, 2002.
All rights reserved.
 US Government Users Restricted Rights - Use, duplication or disclosure
 restricted by GSA ADP Schedule Contract with IBM Corp.
. << End of copyright notice for bos.sysmgt >>. . . .

Finished processing all filesets. (Total time: 15 secs).
+---+
 Summaries:
+---+
Installation Summary

Name Level Part Event Result

bos.sysmgt.nim.master 5.2.0.0 USR APPLY SUCCESS
Defining NIM master...0513-071 The nimesis Subsystem has been added.
0513-071 The nimd Subsystem has been added.
0513-059 The nimesis Subsystem has been started. Subsystem PID is 327768.
Located volume group nimvg.
Creating /export/nim filesystem...done
Creating /tftpboot filesystem...done
220 The Complete Partitioning Guide for IBM Eserver pSeries Servers

Checking /export/nim space requirement...done

Creating list of files to back up.
Backing up 27406 files......................
27406 of 27406 files (100%)
0512-038 mksysb: Backup Completed Successfully.
Creating mksysb resource master_sysb...done
Creating resolv_conf resource master_net_conf...done
Creating bosinst_data resource (tty) bid_tty_ow...done
Creating bosinst_data resource (lft) bid_lft_ow...done
Creating 520lpp_source resource lpp_res...done
Creating 520spot resource spot_res...done
Creating resource group basic_res_grp...done
The following resources now exist:
boot resources boot
nim_script resources nim_script
master_sysb resources mksysb
master_net_conf resources resolv_conf
bid_tty_ow resources bosinst_data
bid_lft_ow resources bosinst_data
520lpp_res resources lpp_source
520spot_res resources spot
NIM master setup is complete - enjoy!

The log file, /var/adm/ras/nim.setup, provides more detailed information that can
be used for debugging purposes. Because this file is replaced every time the
command runs, make sure you save a copy before rerunning the
nim_master_setup command next time.

The nim_master_setup command can be run several times with no ill-effect,
because if the file system or resource already exists and is in proper condition,
the command will not recreate it.

Note: We recommend you verify the state of NIM resources before continuing
with the next step. Make sure the resource state is Ready for NIM operation by
issuing lsnim -l resource_name.
 Chapter 7. Installing and migrating AIX in a partitioned environment 221

To configure a NIM master, do the following:

1. Verify that the NIM client host name can be resolved on the NIM master and
vice versa.

2. Define the NIM clients on the NIM master by selecting the following SMIT
panels4:

smitty
Software Installation and Maintenance

EZ NIM (Easy NIM Tool)
Configure as a NIM Master

Add client to the NIM environment

Specify the NIM client host name in the Host Name of Machine field, and then
press Enter (in this example, we specified lpar06). The Define a Machine
SMIT panel opens, as shown in Example 7-1. Verify values in the panel, and
then press Enter.

Example 7-1 Define a Machine screen

Define a Machine

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[TOP] [Entry Fie]
* NIM Machine Name [lpar06]
* Machine Type [standalone]
* Hardware Platform Type [chrp]
 Kernel to use for Network Boot [mp]
 Primary Network Install Interface
* Cable Type tp
 Network Speed Setting []
 Network Duplex Setting []
* NIM Network master_net
* Host Name lpar06
 Network Adapter hardware address 0

Network Adapter Logical Device Name []
 IPL ROM Emulation Device []
 CPU Id []
 Machine Group []
 Comments []

4 You can access the EZ NIM SMIT panel using the shortcut smitty eznim, which is available on AIX
5L Version 5.1 with 5100-03 Recommended Maintenance Level and AIX 5L Version 5.2 or later.
222 The Complete Partitioning Guide for IBM Eserver pSeries Servers

Verify that lpar06 has been defined correctly to the NIM master, as shown in
the following example:

root@lpar04:/ # lsnim -l lpar06
lpar06:
 class = machines
 type = standalone
 platform = chrp
 netboot_kernel = mp
 if1 = master_net lpar06 0
 cable_type1 = tp
 Cstate = ready for a NIM operation
 prev_state = ready for a NIM operation
 Mstate = not running

3. Allocate resources for installation to the NIM clients:

root@dpar04:/ # nim_clients_setup
NSORDER=local,bind

Generating list of client objects in NIM environment...
Locating lpar06...done

Checking for resource group basic_res_grp...done

This command allocates the necessary resources that are used in the NIM
installation, as shown in the following example:

root@lpar04:/ # lsnim -l lpar06
lpar06:
 class = machines
 type = standalone
 default_res = basic_res_grp
 platform = chrp
 netboot_kernel = mp
 if1 = master_net lpar06 0
 cable_type1 = tp
 Cstate = BOS installation has been enabled
 prev_state = ready for a NIM operation
 Mstate = not running

boot = boot
 bosinst_data = bid_ow
 lpp_source = 520lpp_res
 mksysb = master_sysb
 nim_script = nim_script
 resolv_conf = master_net_conf
 spot = 520spot_res
 control = master
 Chapter 7. Installing and migrating AIX in a partitioned environment 223

7.3.3 Boot partitions over the network
Select the partition profile that boots to SMS mode and activate the NIM client
partition to be installed.

When SMS main menu opens, complete the following steps:

1. Press 7 to select 7. Select Boot Options, as shown in Figure 7-2 on
page 209.

2. Press 2 to select 2. Select Boot Devices, as shown in Figure 7-3 on
page 210.

3. Press 1 to select 1. Select 1st Boot Device, as shown in Figure 7-4 on
page 211).

4. Press 6 to select 6. Network, as shown in Figure 7-5 on page 212.

Note: You can use the -m flag of the nim_client_setup command to specify
the mksysb file that you want to install. If not specified, the default mksysb file
is specified by the master_sysb object created by the nim_master_setup
command.
224 The Complete Partitioning Guide for IBM Eserver pSeries Servers

5. Press the appropriate key to select the network adapter that you are going to
use as the boot network adapter. In this example, we pressed 1 to select 1.
Ethernet (loc=U1.5-P2/I2/E1), as shown in Figure 7-11.

Figure 7-11 System Management Services: Select Device screen (Network)

6. Press 2. Set Boot Sequence: Configure as 1st Boot Device.

7. Press M to return to SMS main menu.

8. Press 4 to select 4. Setup Remote IPL (Initial Program Load).

9. Select an appropriate adapter to be used for the network installation for the
partition.

Note: In this example, the lpar07 partition is assigned only one Ethernet
adapter. However, it is most likely that a partition is assigned several network
adapters. Make sure to select the correct network adapter that is connected to
the NIM master server.
 Chapter 7. Installing and migrating AIX in a partitioned environment 225

10.The Network Parameters screen opens, as shown in Figure 7-12.

Figure 7-12 System Management Services: Network Parameters screen
226 The Complete Partitioning Guide for IBM Eserver pSeries Servers

11.Press 1 to select 1. IP Parameters. Specify the appropriate IP address of the
partition to be installed, NIM master, default gateway, and subnet mask in the
screen, as shown in Figure 7-13.

Figure 7-13 System Management Services: IP Parameters screen

Press the Esc key.
 Chapter 7. Installing and migrating AIX in a partitioned environment 227

12.Select 2. Adapter Parameters as shown in Figure 7-12.

Figure 7-14 System Management Services: Adapter Parameters screen

Depending on the network media type between the partition and the NIM
master server, specify the appropriate parameters for this adapter. Then,
press the Esc key to go back to the Network Parameter screen, as shown in
Figure 7-12 on page 226.
228 The Complete Partitioning Guide for IBM Eserver pSeries Servers

13.Press 3 to select 3. Ping Test. Press 1. Execute Ping Test

Figure 7-15 System Management Services: Adapter Parameters with ping test
 Chapter 7. Installing and migrating AIX in a partitioned environment 229

14.After verifying the IP addresses, press 5 to select 5. Execute Ping Test.

Figure 7-16 System Management Services: Ping Test screen

If the ping test succeeds, you will see the message Ping Success. If you see
this message, proceed to the next step. Otherwise, verify the following
information:

– Whether or not you are using the correct network adapter. If you have
several adapters with the same network media type, you might have
selected the wrong one.

– The physical network cable connection status between the adapter and
the network media, such as an Ethernet switch.

– Whether you have specified correct IP addresses in Figure 7-13 on
page 227.
230 The Complete Partitioning Guide for IBM Eserver pSeries Servers

15.Type X to exit the SMS menu.

16.Type 2 to confirm to exit from the SMS menu, as shown in Figure 7-10 on
page 217. After exiting from the SMS menu, the partition boots off from the
network as you defined. The NIM master then responds to the boot request
from the client, and the installation process begins.

17.After the installation finishes, the client reboots. Log in to the client to verify
that the system is working properly.

7.4 Installing AIX using alternate disk install
This section introduces the concept of alternate disk install and its usage to
install AIX in a partitioned environment.

7.4.1 Alternate disk install overview
The AIX alternate disk installation is a system management function used in the
environment that requires severe control of system availability and software level
tracking. By using this function, the system administrator, who has to manage the
system under limited system maintenance time, can reduce the software
maintenance time using an additional disk drive for system maintenance.

In alternate disk installation, you have basically two ways to select the installation
image source (see Figure 7-17 on page 232). The first way is called cloning. This
clones the rootvg that is currently running. The second way is called mksysb
image install, where you specify the mksysb image file location and instal it to
the target disk. In both cases, the new volume group name will be altinst_rootvg.
When a system or a partition is booted from that disk, its name is modified to
rootvg. If you want to create more alternate install disks, you can use the -v
option of the alt_disk_install command to avoid conflicting volume group
names.

Note: If you use a 10/100 Mbps Ethernet adapter for NIM installation
purposes, we do not recommend leaving the adapter parameters at auto
detect. You can confirm the actual Ethernet adapter configuration using the
entstat command (for example, entstat -d ent0) on the NIM server. You
should set the same parameter on the NIM client and NIM server. If you still
fail ping to the NIM server from the NIM client, you should use the setting
10 Mbps and half-duplex on NIM client, even if the NIM server is 100 Mbps
and full-duplex.
 Chapter 7. Installing and migrating AIX in a partitioned environment 231

In both cases, the operating system that is currently running does not have to be
shut down while installing the image. You can also customize the target volume
group before you reboot from the target disk. After the alternate disk installation
is finished, you can switch the boot disk. As a result, you can reduce the system
maintenance time for system customization and software level updates.

For further information about alternate disk install, please refer to AIX 5L Version
5.2 Reference Documentation: Commands Reference, available at:

http://techsupport.services.ibm.com/server/library

Figure 7-17 The alternate disk install concept

You can select multiple5 mksysb images to install and customize the target disk
before the operation finishes. For example, you can change the host name and
IP address using the customization script.

If the disk drives used in this method are assigned to SCSI controllers other than
the ones for the rootvg, you can reassign that SCSI controllers to the target
partition. However, in this case, you have to shut down the source partition if the
partition does not support dynamic logical partitioning.

5 Only one alt_disk_install command can be invoked at a time.

PV: hdisk0 PV: hdisk1

VG: rootvg

Cloning

VG: altinst_rootvg

PV: hdisk0

PV: hdisk1

VG: rootvg

mksysb image install

VG: altinst_rootvg1

PV: hdisk2
mksysb 1

mksysb 2

VG: altinst_rootvg2
232 The Complete Partitioning Guide for IBM Eserver pSeries Servers

http://techsupport.services.ibm.com/server/library
http://techsupport.services.ibm.com/server/library

7.4.2 Install AIX 5L Version 5.1 using alternate disk install
The following example shows how to install AIX 5L Version 5.1 to a partition
using alternate disk install (cloning method) in detail. We assume the following
points in this example:

� You have a partition (source partition) AIX 5L Version 5.1 installed.

� The source partition has two disks. The rootvg contains only one disk drive
(hdisk0), and it is not mirrored yet. Run the lspv command to check these
disks:

lspv
hdisk0 000030029158b447 rootvg
hdisk1 00003002490a45b7 None

The SCSI controller, which is connected with hdisk0, is assigned to the
source partition as Required, and the other SCSI controller, which is
connected with hdisk1, is assigned as Desired, as shown in Figure 7-18.

Figure 7-18 Installing AIX using alternate disk install

� The target partition has not been activated (started). The SCSI controller,
which is assigned to the source partition as Desired, is assigned to the target
partition as Required, as shown in Figure 7-18.

Source partition Target partition

SCSI controller SCSI controller

Desired

Required Required
 Chapter 7. Installing and migrating AIX in a partitioned environment 233

� The following filesets are installed on the source partition:

– bos.alt_disk_install.boot_images6

– bos.alt_disk_install.rte

– bos.msg.en_US.alt_disk_install.rte

If these points are all met, do the following:

1. Run the alt_disk_install command on the source partition. The -C option
causes the current rootvg to be cloned to the target disk hdisk1.

This command creates the alternate rootvg volume group on hdisk1 as a
cloned image from the rootvg on hdisk0. The produced alternate rootvg has
the name altinst_rootvg. The file system and logical volume names of the
altinst_rootvg have the prefix alt_.

Here is an example output of the alt_disk_install command:

alt_disk_install -C -O hdisk1
Calling mkszfile to create new /image.data file.
Checking disk sizes.
Creating cloned rootvg volume group and associated logical volumes.
Creating logical volume alt_hd5.
Creating logical volume alt_hd6.
Creating logical volume alt_hd8.
Creating logical volume alt_hd4.
Creating logical volume alt_hd2.
Creating logical volume alt_hd9var.
Creating logical volume alt_hd3.
Creating logical volume alt_hd10opt.
Creating /alt_inst/ file system.
Creating /alt_inst/opt file system.
Creating /alt_inst/tmp file system.
Creating /alt_inst/usr file system.
Creating /alt_inst/var file system.
Generating a list of files
for backup and restore into the alternate file system...
Backing-up the rootvg files and restoring them to the alternate file
system...

6 The fileset, bos.alt_disk_install.boot_images, is not required for cloning, but required for the mksysb
install.

Note: The -O option wipes out the device definition from the ODM in
altinst_rootvg. Using this option, the phantom devices will not appear on
the target partition. The phantom devices are those that currently do not
exist in the system and appear as Defined in the lsdev -C command
output.
234 The Complete Partitioning Guide for IBM Eserver pSeries Servers

Modifying ODM on cloned disk.
Building boot image on cloned disk.
Resetting all device attributes.
NOTE: The first boot from altinst_rootvg will prompt to define the new
system console.
forced unmount of /alt_inst/var
forced unmount of /alt_inst/usr
forced unmount of /alt_inst/tmp
forced unmount of /alt_inst/opt
forced unmount of /alt_inst
forced unmount of /alt_inst
Changing logical volume names in volume group descriptor area.
Fixing LV control blocks...
Fixing file system superblocks...
Bootlist is set to the boot disk: hdisk1

After this command completes, the volume group altinst_rootvg is
automatically created as a clone of rootvg:

lpsv
hdisk0 000030029158b447 rootvg
hdisk1 00003002490a45b7 altinst_rootvg

At this point, the volume group altinst_rootvg is varied off. If you want to
customize them, for example, to modify /etc/resolv.conf, then you can wake up
altinst_rootvg using the -W option of the alt_disk_install command:

alt_disk_install -W hdisk1

The volume group altinst_rootvg is varied on, and all the file systems
contained in this volume group are mounted under the /alt_inst directory. You
can access /etc/resolv.conf in this volume group using the full path name
/alt_inst/etc/resolv.conf.

By issuing the alt_disk_install -S command, the volume group
altinst_rootvg is suspended; therefore, all the file systems under /alt_inst
(including itself) are unmounted, and the volume group is varied off:

alt_disk_install -S

2. Remove the information created by the alt_disk_install command from the
ODM on the source partition. This command also puts the boot device back to
hdisk0:

alt_disk_install -X
Bootlist is set to the boot disk: hdisk0

3. Delete the hdisk1 definition from the ODM on the source partition:

rmdev -l hdisk1 -d

Note: Never issue exportvg altinst_rootvg.
 Chapter 7. Installing and migrating AIX in a partitioned environment 235

4. Shut down the source partition and deactivate it:

shutdown -F now

5. Activate (start) the target partition by setting the boot mode to SMS (see
Figure 7-1 on page 208). Then, set the boot device to the newly assigned
disk. After the boot process, the alternate rootvg becomes rootvg, and all file
system and logical volume names automatically lose the alt_ prefix.

6. Configure the appropriate TCP/IP settings, such as new host name, IP
address, and subnet mask, and then issue the following command to
reconfigure RMC configuration on the target partition7:

/usr/sbin/rsct/install/bin/recfgct

If the source partition is installed with 5100-03 Recommended Maintenance
Level, you can create a shell script and specify it with the -x option of the
alt_disk_install command to automate this step, as explained in 7.4.3,
“Install AIX 5L Version 5.2 using alternate disk install” on page 236.

7. Now, you can restart the source partition.

If you are not familiar with the alt_disk_install command options, please refer
to AIX 5L Version 5.2 Reference Documentation: Commands Reference,
available at:

http://techsupport.services.ibm.com/server/library

7.4.3 Install AIX 5L Version 5.2 using alternate disk install
The following example shows how to install AIX 5L Version 5.2 to a partition
using alternate disk install (cloning method) in detail. In addition to the points
assumed in the previous section, we assume the following in this example:

� All device filesets have been installed on the source partition.

You can ensure this by selecting YES for the Enable System Backups to
install any system option when you first install AIX 5L Version 5.2 on the
source partition.

Note: You have to define the system console upon first reboot, because
you wiped out the device definition from the ODM using the -O option of the
alt_disk_install command.

7 If APAR IY35312 is applied on the source partition, this command is not necessary.
236 The Complete Partitioning Guide for IBM Eserver pSeries Servers

http://techsupport.services.ibm.com/server/library
http://techsupport.services.ibm.com/server/library

� To ensure a more automated operation, verify that the install_assist entry is
not in /etc/inittab or it is commented out, as shown in the following example:

grep install_assist /etc/inittab
:install_assist:2:wait:/usr/sbin/install_assist </dev/console >/dev/console
2>&1

If it is not commented out when the partition is activated, install_assist runs,
and you need to do some manual interaction with it, such as set the terminal
type and configure the date and time.

� The SCSI controller, which is highlighted in Figure 7-18 on page 233, is
identified with the physical location code U1.9-P2/Z2.

If these points are all met, do the following:

1. Perform a DLPAR operation to dynamically add the SCSI controller, which is
identified with the physical location code U1.9-P2/Z2, to the source partition
by using either the graphical user interface or command line interface on the
HMC. For further information about this DLPAR operation, see 8.1.1,
“Dynamically adding resources to a partition” on page 256 or 9.3, “Dynamic
logical partitioning operations using chhwres” on page 285.

2. On the source partition, run cfgmgr to configure the devices that have just
been added. In the following example, the scsi1, hdisk2, hdisk3, and hdisk4
devices are newly configured after the cfgmgr invocation:

lsdev -Cc adapter
ent0 Available 3F-08 10/100 Mbps Ethernet PCI Adapter II (1410ff01)
ent1 Available 3J-08 10/100 Mbps Ethernet PCI Adapter II (1410ff01)
scsi0 Available 3b-08 Wide/Ultra-3 SCSI I/O Controller
sa0 Available LPAR Virtual Serial Adapter
root@lpar03:/ # lspv
hdisk0 0021768a20eb2b9d None
hdisk1 0021768aa445b99d rootvg active
cfgmgr
lsdev -Cc adapter
ent0 Available 3F-08 10/100 Mbps Ethernet PCI Adapter II (1410ff01)
ent1 Available 3J-08 10/100 Mbps Ethernet PCI Adapter II (1410ff01)
scsi0 Available 3b-08 Wide/Ultra-3 SCSI I/O Controller
sa0 Available LPAR Virtual Serial Adapter
scsi1 Available 60-08 Wide/Ultra-3 SCSI I/O Controller
lspv
hdisk0 0021768a20eb2b9d None
hdisk1 0021768aa445b99d rootvg active

Note: It is possible to automate this step by issuing the chhwres command
from the remote ssh session. However, we recommend you test this
operation extensively.
 Chapter 7. Installing and migrating AIX in a partitioned environment 237

hdisk2 0021768a217bcf86 None
hdisk3 0021768a9c8a895e None
hdisk4 none None

3. Create a shell script in order to customize the host name, IP address, default
gateway, and DNS information on the target partition. This script is specified
with the -x option of the alt_disk_install command in the next step, and
then it executes on the target partition after alternate disk install:

vi /var/customize.lpar05
/usr/sbin/mktcpip -h'lpar05.itsc.austin.ibm.com' \
 -a'9.3.4.69' \
 -m'255.255.254.0' \
 -i'en0' \
 -g'9.3.4.41' \
 -n'9.3.4.2' \
 -d'itsc.austin.ibm.com'
/usr/sbin/rsct/install/bin/recfgct8

chmod a+rx /var/customize.lpar05

If you are not familiar with the mktcpip command syntax, please refer to AIX
5L Version 5.2 Reference Documentation: Commands Reference, available
at:

http://techsupport.services.ibm.com/server/library

4. Execute the alt_disk_install command to clone rootvg to hdisk4 on the
source partition. We summarize the options we have specified in this example
in Table 7-1 on page 239.

8 If APAR IY35456 is applied on the source partition, this line is not necessary.

Note: The uname -L command returns the partition ID and node name, as
shown in the following example:

uname -L
3 lpar03

You may find it is useful to write your own customization script.
238 The Complete Partitioning Guide for IBM Eserver pSeries Servers

http://techsupport.services.ibm.com/server/library
http://techsupport.services.ibm.com/server/library

Table 7-1 Command line interface options of the alt_disk_install command

If you do not specify the -g flag, you will get the following warning message,
and the command will abort:

alt_disk_install -C -B -O -x /var/customize.lpar05 -c /dev/tty0 hdisk4
0505-212 alt_disk_install: System checks indicate that hdisk4 may not be
bootable. This may be because the disk's parent adapter does not support
boot, or it does support boot but was dynamically added (in which case the
disk should still be bootable). If you believe this disk is bootable,
re-execute this command with the "-g" (ignore boot check) flag.

The following example shows an example output of the alt_disk_install
command with the -g option:

alt_disk_install -C -B -O -x /var/customize.lpar05 -c /dev/tty0 -g hdisk4
Calling mkszfile to create new /image.data file.
Checking disk sizes.

Specified command line
options

Explanation

-C Specifies the cloning of rootvg

-B Specifies not to set the bootlist to the target disk

-O Specifies not to retain the device configurations

-x /var/customize.lpar05 Specifies the customization script
(/var/customize.lpar05) that runs once when the target
partition boots up

-c /dev/tty0 Specifies the console (/dev/tty0)

-g Specifies not to check whether or not the target disk
(hdisk4) is bootable

Note: The following new options are added to the alt_disk_install command to
facilitate the task of cloning rootvg in a partitioned environment:

� The -x option specifies the customization script to be run once when the node
boots up. This can be used to set up each node’s unique attributes, such as host
name and IP address. The specified script is called from /etc/firstboot upon the first
boot. Therefore, it runs only once.

� The -c option specifies the console for the system. This helps eliminate the manual
task of having to reply 1 to the prompt to define the console on the virtual terminal
when the partition is activated the first time.

� The alt_disk_install command always checks first whether or not the disk is
bootable by using the bootinfo -B command. However, the bootinfo -B command
returns that the disk is not bootable if it was added after the partition boot, for
example, the disk configured by the cfgmgr command after the DLPAR operation.
The -g option instructs the alt_disk_install command to bypass this check. You
should only specify this when the target disk has been verified as bootable.
 Chapter 7. Installing and migrating AIX in a partitioned environment 239

Creating cloned rootvg volume group and associated logical volumes.
Creating logical volume alt_hd5
Creating logical volume alt_hd6
Creating logical volume alt_hd8
Creating logical volume alt_hd4
Creating logical volume alt_hd2
Creating logical volume alt_hd9var
Creating logical volume alt_hd3
Creating logical volume alt_hd1
Creating logical volume alt_hd10opt
Creating logical volume alt_lg_dumplv
Creating /alt_inst/ file system.
Creating /alt_inst/home file system.
Creating /alt_inst/opt file system.
Creating /alt_inst/tmp file system.
Creating /alt_inst/usr file system.
Creating /alt_inst/var file system.
Generating a list of files
for backup and restore into the alternate file system...
Backing-up the rootvg files and restoring them to the alternate file
system...
Modifying ODM on cloned disk.
Building boot image on cloned disk.
Resetting all device attributes.
forced unmount of /alt_inst/var
forced unmount of /alt_inst/usr
forced unmount of /alt_inst/tmp
forced unmount of /alt_inst/opt
forced unmount of /alt_inst/home
forced unmount of /alt_inst
forced unmount of /alt_inst
Changing logical volume names in volume group descriptor area.
Fixing LV control blocks...
Fixing file system superblocks...

After the successful completion of the alt_disk_install command, hdisk4
belongs the altinst_rootvg volume group, which is copied from the rootvg, as
shown in the following example:

lspv
hdisk0 0021768a20eb2b9d None
hdisk1 0021768aa445b99d rootvg active
hdisk2 0021768a217bcf86 None
hdisk3 0021768a9c8a895e None
hdisk4 0021768a39eec2ff altinst_rootvg

Note: The alt_disk_install command generates the log file,
/var/adm/ras/alt_disk_inst.log, that can be useful for debugging purposes.
240 The Complete Partitioning Guide for IBM Eserver pSeries Servers

5. Remove all definitions of altinst_rootvg from the ODM on the source partition
by issuing the alt_disk_install -X command:

alt_disk_install -X
Bootlist is set to the boot disk: hdisk1

This cleans up unnecessary definitions in the ODM in order to ensure that
there are no conflicts when executing another alternate disk install task later.

6. Remove the definition of the target disk and its parent devices before
dynamically removing them from the source partition:

lsdev -Cc disk
hdisk0 Available 3b-08-00-8,0 16 Bit LVD SCSI Disk Drive
hdisk1 Available 3b-08-00-10,0 16 Bit LVD SCSI Disk Drive
hdisk2 Available 60-08-00-8,0 16 Bit LVD SCSI Disk Drive
hdisk3 Available 60-08-00-9,0 16 Bit LVD SCSI Disk Drive
hdisk4 Available 60-08-00-10,0 16 Bit LVD SCSI Disk Drive
lsdev -Cl hdisk4 -F parent
scsi1
lsslot -c slot
Slot Description Device(s)
U1.9-P2-I1 DLPAR slot pci13 ent0
U1.9-P2-I2 DLPAR slot pci14 ent1
U1.9-P2-I3 DLPAR slot pci15
U1.9-P2-I4 DLPAR slot pci16
U1.9-P2-I5 DLPAR slot pci17
U1.9-P2/Z1 DLPAR slot pci18 scsi0
U1.9-P2/Z2 DLPAR slot pci19 scsi1
rmdev -d -l pci19 -R9

hdisk2 deleted
hdisk3 deleted
hdisk4 deleted
ses1 deleted
scsi1 deleted
pci19 deleted

7. Perform a DLPAR operation to dynamically remove the SCSI controller, which
is identified with the physical location code U1.9-P2/Z2, from the source
partition by using either the graphical user interface or command line interface
on the HMC. For further information about this DLPAR operation, see 8.1.1,
“Dynamically adding resources to a partition” on page 256 or 9.3, “Dynamic
logical partitioning operations using chhwres” on page 285.

9 The -R option instructs the rmdev command to delete all children devices recursively.

Note: It is possible to automate this step by issuing the chhwres command
from the remote ssh session. However, we recommend you test this
operation extensively.
 Chapter 7. Installing and migrating AIX in a partitioned environment 241

8. Activate (start) the target partition by setting the boot mode to SMS (see
Figure 7-1 on page 208). Then, set the boot device to the newly assigned
disk. After the boot process, the alternate rootvg becomes rootvg, and all file
system and logical volume names automatically lose the alt_ prefix.

9. Verify the following on the target partition:

– The boot disk device

– TCP/IP configuration (host name, IP address, and subnet mask)

7.5 Migrating AIX using alternate disk migration
This section introduces the concept of alternate disk migration and its usage to
migrate AIX in a partition.

7.5.1 Alternate disk migration overview
In the past, when migrating AIX, some scheduled downtime was required,
because of the need to shut down the machine and boot it from CD-ROM and
then select the migration option to start the AIX migration. The downtime
required depends on the number of filesets installed on the machine.

However, more and more machines are now being used in mission-critical
applications, and thus, it is getting more and more difficult to find a long period of
downtime.

The alternate disk migration is a facility that enables the system administrator to
quickly migrate a live production system. This is achieved with the close
co-operation between alternate disk install and NIM. Figure 7-19 on page 243
illustrates the concept of alternate disk migration, which is summarized in the
following:

1. Use alternate disk install to clone rootvg of the system or partition to the
target disk.

2. Export the /alt_inst/* file systems created in the alternate rootvg, and then
mount them on the NIM master10 through NFS.

3. Migrate the AIX release in the alternate rootvg using NIM resources on the
NIM master.

Note: You should also confirm that you can perform DLPAR operations on
the target partition.

10 The NIM master can be configured on another partition or a stand-alone pSeries server.
242 The Complete Partitioning Guide for IBM Eserver pSeries Servers

4. After the migration successfully completes, unmount the NFS mounted file
systems, and reboot the system or partition.

Figure 7-19 The alternate disk migration concept

The nimadm command, which stands for Network Installation Manager Alternate
Disk Migration, is provided to perform alternate disk migration. This was
introduced in AIX 5L Version 5.1 with 5100-03 Recommended Maintenance
Level and AIX 5L Version 5.2.

For further information about alternate disk migration, please refer to AIX 5L
Version 5.2 Reference Documentation: Commands Reference, available at:

http://techsupport.services.ibm.com/server/library

7.5.2 Requirements
The following requirements must be met in order to perform an alternate disk
migration:

1. Configure a NIM master running AIX 5L Version 5.1 or later with at least
5100-03 Recommended Maintenance Level.

2. The NIM master must have the same level of bos.alt_disk_install.rte installed
in the rootvg and SPOT.

Migrating partition
(NIM client) NIM master

(AIX 5.1)

rootvg altinst_rootvg
/alt_inst/ /

/usr

/var

/alt_inst/ /

/usr

/var
NIM resources

- SPOT
- lppsource

AIX 5.1 AIX 5.2

2. NFS mount
1. rootvg cloning

(alternate disk install)
3. migration

(AIX 5.2)
 Chapter 7. Installing and migrating AIX in a partitioned environment 243

http://techsupport.services.ibm.com/server/library
http://techsupport.services.ibm.com/server/library

3. The selected lpp_source and SPOT must match the AIX level that you are
migrating to.

4. The NIM master should be at the same or later AIX level as the level being
migrated to.

5. The client (the system to be migrated) must be at AIX Version 4.3.3 or later.

6. The client must have a disk (or disks) large enough to clone its rootvg and an
additional 500 MB of free space for the migration.

This free space is used by the nimadm command to automatically expand the
size of any /alt_inst file system that needs to be increased so that it can
satisfy the free space requirement needed by the migration.

7. The client must be registered with the master as a stand-alone NIM client.

8. The NIM master must be able to execute remote commands on the clients
using the rshd protocol.

9. The NIM master and client must have a minimum of 128 MB memory.

Because there are a lot of NFS read/write activities going on, if the machine
does not have enough memory, NFS performance may be degraded to the
point that a time-out begins.

This requirement makes it less likely that an NFS time-out will happen.

10.A reliable network, which can facilitate large amounts of NFS traffic between
the NIM master and the clients. The NIM master and the clients must be able
to perform NFS mounts and read/write operations.

7.5.3 Limitations
The following are limitations of alternate disk migration:

1. All NIM resources used by alternate disk migration must be local to the NIM
master.

Using NIM resources that are not served by the master can introduce
complications to the environment and is, therefore, not supported.

2. If the client uses trusted computing base (TCB), you will either need to disable
it permanently or perform a conventional migration.

This limitation exists because TCB needs to access file metadata that is not
available over NFS.

Note: Please be aware that the migration is not possible if the client hardware
and software do not support the level of AIX being migrated to.
244 The Complete Partitioning Guide for IBM Eserver pSeries Servers

7.5.4 Operation examples
The nimadm command can be used to perform a migration, cleanup, wakeup, and
sleep.

Migration
The nimadm command performs migration in the following 12 phases. Each phase
can be executed individually with the -P flag.

1. The NIM master issues a remote command to the client to perform rootvg
cloning to the target disk.

2. The NIM master issues a remote command to the client to export all of the
/alt_inst/* file systems to the master. They are exported in read/write mode
with root access.

3. The NIM master mounts the /alt_inst/* file systems.

4. The NIM master runs a premigration script if specified.

5. The NIM master prepares for the migration by saving the configuration files,
calculating the free space needed, and expanding them. The bos fileset is
restored, and the device configuration is merged.

6. The NIM master performs the migration of all system filesets. Any required
RPM images are also installed.

7. The NIM master runs a post-migration script if specified.

8. The NIM master runs bosboot to create a client boot image.

9. The NIM master unmounts the /alt_inst/* file systems.

Note:

� Although no changes are done to the client’s rootvg, the client might
experience some performance degradation during the migration due to the
increased disk and network I/O and some CPU usage.

� NFS performance tuning may be required to increase nimadm performance.

Note: In phase 2, the nimadm command creates entries for the /alt_inst/* file
systems in the /etc/exports file on the client. These entries allow only the
root user from the NIM master a read/write access to the /alt_inst/* file
systems. Therefore, for security reasons, phase 2 fails if there are already
any entries in /etc/exports for the /alt_inst/* file systems.
 Chapter 7. Installing and migrating AIX in a partitioned environment 245

10.The NIM master issues a remote command to the client to unexport all of the
/alt_inst/* file systems.

11.The NIM master issues a remote command to the client for some final
adjustments and puts the alternate rootvg to sleep. The bootlist is set to the
target disk unless the -B flag is specified.

12.The NIM master runs cleanup to end the migration. The client is rebooted if
the -r flag is specified.

Cleanup
This is used to clean up after a failed migration that somehow did not perform a
cleanup itself. It can also be used to clear a previous migration in order to
perform a new one.

When the nimadm command fails, it tries to clean up everything that it has done.
Suppose that the migration fails at phase 2, exporting /alt_inst/* file systems from
the client, the clean up process will undo things that have been done in all the
previous phases. This means that if you want to run it again, you have to begin
from phase 1, cloning the rootvg.

If you want the cleanup process not to undo everything it did, set the environment
variable ALT_PARTIAL_CLEANUP to yes before issuing the nimadm command.

If you set this variable to yes in the previous example, the cleanup process will
not undo phase 1. So, you can resume your operation from phase 2 by specifying
the phases you would like to run with the -P flag, for example:

nimadm -c lpar02 -l 520lpp_res -s 520spot_res -d hdisk2 -Y -r -P 2 3 4 5 6

Wakeup
This performs an alternate disk install wakeup. NFS exports of the /alt_inst/* file
systems and mounts them on the NIM master.

The alt_disk_install command also provides a wakeup option. However, with
alternate disk install, if your rootvg is AIX Version 4.3.3 and alternate rootvg is
AIX 5L Version 5.1, you cannot use the wakeup option because you can only
wakeup a lower or equal level of AIX. In this case, you need to reboot the system
to AIX 5L Version 5.1, and then wakeup the AIX Version 4.3.3 volume group.

Note: The premigration and post-migration scripts have to be defined as NIM
resources of type script. These scripts must be executable. By default, these
scripts are executed on the NIM master in the client environment (using the
chroot command).
246 The Complete Partitioning Guide for IBM Eserver pSeries Servers

There is no such limitation in the wakeup option of the nimadm command due to
the fact that the client uses the command in the SPOT provided from the NIM
master that is always at the same level as the alternate rootvg.

Sleep
This performs a reverse of the alternate disk install wakeup by unmounting the
/alt_inst/* file systems on the NIM master, unexporting /alt_inst/* file systems,
and running alternate disk install sleep on the client.

7.5.5 Use alternate disk migration to migrate AIX
In this example, we migrate the lpar02 partition to AIX 5L Version 5.2 from AIX 5L
Version 5.1 with 5100-02 Recommended Maintenance Level. The lpar04
partition is used as the NIM master server installed with AIX 5L Version 5.2.

To use alternate disk migration:

1. Set up the NIM master (see 7.3.2, “Configure NIM resources” on page 218).

2. Prepare the SPOT to support alternate disk migration by installing the fileset
bos.alt_disk_install.rte to SPOT. Because the nim_master_setup command
does not copy the bos.alt_disk_install package to the lppsource and install it
to the SPOT, you need to explicitly do it.

a. Find out the directory of the lppsource resource, 520lpp_res, created by
the nim_master_setup command:

root@lpar04:/ # lsnim -l 520lpp_res
520lpp_res:
 class = resources
 type = lpp_source
 arch = power
 Rstate = ready for use
 prev_state = unavailable for use
 location = /export/nim/lpp_source/520lpp_res
 simages = yes
 alloc_count = 1
 server = master

In this example, the 520lpp_res lppsource resource is located in the
/export/nim/lpp_source/520lpp_res directory.
 Chapter 7. Installing and migrating AIX in a partitioned environment 247

b. Copy the bos.alt_disk_install package to the lppsource 520lpp_res:

root@lpar04:/ # smitty
Software Installation and Maintenance

Software Maintenance and Utilities
Copy Software to Hard Disk for Future Installation

• Select /dev/cd0 for Input device.

• Select bos.alt_disk_install for Software package to copy.

• Specify /export/nim/lpp_source/520lpp_res for Directory for storing
software package.

Press Enter.

c. Install the bos.alt_disk_install package to the SPOT 520spot_res:

root@lpar04:/ # smitty
Software Installation and Maintenance

Network Installation Management
Perform NIM Software Installation and Maintenance Tasks

Install and Update Software
Install Software

• Select 520spot_res as target for the operation.

• Select 520lpp_res as lppsource.

• Press F4 to list Software to Install and select bos.alt_disk_install.

Press Enter twice.

After the installation, boot images (for example, 520spot_res.chrp.mp.ent)
are recreated in the /tftpboot directory.

3. On the migration target partition (lpar02), define the partition as a NIM client:

root@lpar02:/ # smitty
Software Installation and Maintenance

Network Installation Management
Configure Network Installation Management Client Fileset

The Configure Network Installation Management Client Fileset panel opens.
Select and specify fields, as shown in Example 7-2 on page 249, and then
press Enter. This panel defines lpar02 as a NIM client for the NIM master
lpar04.

Note: To install software packages in the SPOT, it must not be allocated
to any NIM client. Use the following command to deallocate SPOT from
the clients:

nim -o deallocate -a spot=520spot_res <client_name>
248 The Complete Partitioning Guide for IBM Eserver pSeries Servers

Example 7-2 Configure Network Installation Management Client Fileset panel

Configure Network Installation Management Client Fileset

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* Machine Name [lpar02]
* Primary Network Install Interface [en0]
* Host Name of Network Install Master [lpar04]

 Hardware Platform Type [chrp]
 Kernel to use for Network Boot [mp]
 IPL ROM Emulation Device []
 Comments []

 Alternate Port Numbers for Network Communications
 (reserved values will be used if left blank)
 Client Registration []
 Client Communications []

It also creates the following on the NIM client:

– A NIM configuration file, /etc/niminfo

– The /.rhosts file, which allows the NIM master remote command execution
on the client

If the client is installed with AIX 5L Version 5.1 with 5100-03 Recommended
Maintenance Level or later, you can select the following SMIT panels in order
to do the same task: smitty eznim → Configure as a NIM Client → Add this
system to a NIM environment.

4. Verify that the following requirements are met:

– The migration target disk is enough large to clone the rootvg and has an
additional space of 500 MB.

– The network between NIM master and NIM client is reliable and can
facilitate a large amount of NFS traffic.

5. Verify that the limitations are not violated.

See 7.5.2, “Requirements” on page 243 and 7.5.3, “Limitations” on page 244.

6. Execute the nimadm command on the NIM master. We summarize the options
we have specified in this example in Table 7-2 on page 250.
 Chapter 7. Installing and migrating AIX in a partitioned environment 249

Table 7-2 Command line interface options of the nimadm command

The following example shows an example output of the nimadm command:

root@lpar04:/ # nimadm -c lpar02 -l 520lpp_res -s 520spot_res -d hdisk2 -Y
-r
Initializing the NIM master.
Initializing NIM client lpar02.itsc.austin.ibm.com.
Verifying alt_disk_migration eligibility.
Initializing log: /var/adm/ras/alt_mig/lpar02_alt_mig.log
Starting Alternate Disk Migration.

+---+
Executing nimadm phase 1.
+---+
Cloning altinst_rootvg on client, Phase 1.
Client alt_disk_install command: alt_disk_install -M 5.2 -C -P1 hdisk2
Calling mkszfile to create new /image.data file.
Checking disk sizes.
Creating cloned rootvg volume group and associated logical volumes.
Creating logical volume alt_hd5
Creating logical volume alt_hd6
Creating logical volume alt_hd8
Creating logical volume alt_hd4

Specified
command line
options

Explanation

-c lpar02 Specifies the client to do the alternate disk migration. Only one client
can be specified with one command at execution time, but you can
have multiple nimadm commands running at the same time to migrate
several clients.

-l 520_lppres Specifies the lppsource resource to be used. We recommend
copying all software packages in the AIX BOS installation CD-ROM
media to lppsource in order to ensure that the NIM master can find
all necessary filesets during the migration process. Otherwise, you
need to manually migrate the filesets that were missing in the
lppsource resource when the nimadm command was executed.

-s 520spot_res Specifies the SPOT resource to be used. This is mandatory.

-d hdisk2 Specifies the target disk on the client to be used for the migration.

-Y Specifies that the required software license agreements for the
software to be installed are accepted. The nimadm command will not
run unless you specify the -Y flag. You can also set the shell
environment variable ADM_ACCEPT_LICENSES to yes to achieve the
same result.

-r Specifies that the client is rebooted after the migration completes.
250 The Complete Partitioning Guide for IBM Eserver pSeries Servers

Creating logical volume alt_hd2
Creating logical volume alt_hd9var
Creating logical volume alt_hd3
Creating logical volume alt_hd1
Creating logical volume alt_hd10opt
Creating /alt_inst/ file system.
Creating /alt_inst/home file system.
Creating /alt_inst/opt file system.
Creating /alt_inst/tmp file system.
Creating /alt_inst/usr file system.
Creating /alt_inst/var file system.
Generating a list of files
for backup and restore into the alternate file system...
Backing-up the rootvg files and restoring them to the
alternate file system...
Phase 1 complete.

+---+
Executing nimadm phase 2.
+---+
Exporting alt_inst filesystems from client lpar02.itsc.austin.ibm.com
to NIM master lpar04.itsc.austin.ibm.com:
Exporting /alt_inst from client.
Exporting /alt_inst/home from client.
Exporting /alt_inst/opt from client.
Exporting /alt_inst/tmp from client.
Exporting /alt_inst/usr from client.
Exporting /alt_inst/var from client.

+---+
Executing nimadm phase 3.
+---+
NFS mounting client's alt_inst filesystems on the NIM master:
Mounting lpar02.itsc.austin.ibm.com:/alt_inst.
Mounting lpar02.itsc.austin.ibm.com:/alt_inst/home.
Mounting lpar02.itsc.austin.ibm.com:/alt_inst/opt.
Mounting lpar02.itsc.austin.ibm.com:/alt_inst/tmp.
Mounting lpar02.itsc.austin.ibm.com:/alt_inst/usr.
Mounting lpar02.itsc.austin.ibm.com:/alt_inst/var.

+---+
Executing nimadm phase 4.
+---+
nimadm: There is no user customization script specified for this phase.

+---+
Executing nimadm phase 5.
+---+
Saving system configuration files.
 Chapter 7. Installing and migrating AIX in a partitioned environment 251

Checking for initial required migration space.
Expanding /alt_inst/ client filesystem.
Filesystem size changed to 131072
Setting up for base operating system restore.
Restoring base operating system.
Restoring device ODM database.
Merging system configuration files.
Running migration merge method: ODM_merge SWservAt.
Running migration merge method: convert_errnotify.
Running migration merge method: passwd_mig.
Running migration merge method: login_mrg.
Running migration merge method: user_mrg.
Running migration merge method: secur_mig.
Running migration merge method: mkusr_mig.
Running migration merge method: group_mig.
Running migration merge method: ldapcfg_mig.
Running migration merge method: convert_errlog.
Running migration merge method: merge_smit_db.
Running migration merge method: ODM_merge fix.
Running migration merge method: merge_swvpds.

+---+
Executing nimadm phase 6.
+---+
Installing and migrating software.
Checking space requirements for installp install.
Expanding /alt_inst/usr client filesystem.
Filesystem size changed to 2097152
Installing software with the installp installer.
+---+
 Pre-installation Verification...
+---+
Verifying selections...done
Verifying requisites...done
Results...
...
... omitted lines ...
...
csm.msg.en_US.dsh 1.3.0.0 USR APPLY SUCCESS
csm.msg.en_US.client 1.3.0.0 USR APPLY SUCCESS

Checking space requirements for rpm install.
Installing software with the rpm installer.
package cdrecord-1.9-4 is already installed
package mkisofs-1.13-4 is already installed

+---+
Executing nimadm phase 7.
+---+
252 The Complete Partitioning Guide for IBM Eserver pSeries Servers

nimadm: There is no user customization script specified for this phase.

+---+
Executing nimadm phase 8.
+---+
Creating client boot image.
bosboot: Boot image is 16758 512 byte blocks.
Writing boot image to client's alternate boot disk hdisk2.

+---+
Executing nimadm phase 9.
+---+
Unmounting client NFS mounts on the NIM master:
forced unmount of /lpar02_alt/alt_inst/var
forced unmount of /lpar02_alt/alt_inst/usr
forced unmount of /lpar02_alt/alt_inst/tmp
forced unmount of /lpar02_alt/alt_inst/opt
forced unmount of /lpar02_alt/alt_inst/home
forced unmount of /lpar02_alt/alt_inst

+---+

+---+
Executing nimadm phase 10.
+---+
Unexporting alt_inst filesystems on client lpar02.itsc.austin.ibm.com:
exportfs: 1831-184 unexported /alt_inst
exportfs: 1831-184 unexported /alt_inst/home
exportfs: 1831-184 unexported /alt_inst/opt
exportfs: 1831-184 unexported /alt_inst/tmp
exportfs: 1831-184 unexported /alt_inst/usr
exportfs: 1831-184 unexported /alt_inst/var

+---+
Executing nimadm phase 11.
+---+
Cloning altinst_rootvg on client, Phase 3.
Client alt_disk_install command: alt_disk_install -M 5.2 -C -P3 hdisk2
Phase 3
Verifying altinst_rootvg...
Modifying ODM on cloned disk.
forced unmount of /alt_inst/var
forced unmount of /alt_inst/usr
forced unmount of /alt_inst/tmp
forced unmount of /alt_inst/opt
forced unmount of /alt_inst/home
forced unmount of /alt_inst
forced unmount of /alt_inst
Changing logical volume names in volume group descriptor area.
 Chapter 7. Installing and migrating AIX in a partitioned environment 253

Fixing LV control blocks...
Fixing file system superblocks...
Bootlist is set to the boot disk: hdisk2

+---+
Executing nimadm phase 12.
+---+
Cleaning up alt_disk_migration on the NIM master.
Cleaning up alt_disk_migration on client lpar02.
Rebooting NIM client.

7. After lpar02 reboots, verify that it has been successfully migrated to AIX 5L
Version 5.2:

root@lpar02:/ [301] # oslevel
5.2.0.0

Even though the oslevel command might show that we are already at level
5.2.0.0, we recommend you look at the nimadm log file,
/var/adm/ras/alt_mig/<host_name>_alt_mig.log, on the NIM master to find out
whether or not there are any filesets that failed the migration. For example, fileset
migration can fail if the newer version of the fileset itself, or the prerequisite
filesets, cannot be found in the lppsource.

Therefore, the safest way is to make sure that all filesets in the AIX BOS
installation CD-ROM media are in the lppsource resource.
254 The Complete Partitioning Guide for IBM Eserver pSeries Servers

Chapter 8. DLPAR operation using
graphical user interface

This chapter describes how to use the IBM Hardware Management Console for
pSeries (HMC) to perform DLPAR operations against to AIX partitions on
partioning-capable pSeries servers.

For further information about the HMC and its usage, please refer to IBM
Hardware Management Console for pSeries Installation and Operations Guide,
SA38-0590.

8

© Copyright IBM Corp. 2003. All rights reserved. 255

8.1 Dynamic logical partitioning
Dynamic logical partition provides the ability to logically attach and detach a
managed system’s resources to and from a partition’s operating system without
rebooting.

8.1.1 Dynamically adding resources to a partition
This task enables you to add resources, such as processors, memory, and I/O
slots, to a partition without rebooting the partition’s operating system.

Processors
You can add up to the amount of free system processors (processors that are not
assigned to a running partition) to a partition. You cannot exceed the maximum
number specified in the partition’s active profile. To view profile properties, see
Figure 6-4 on page 169.

To add available processor resources without rebooting the partition, do the
following:

1. Log in to the HMC using either the System Administrator or Advanced
Operator role.

2. In the Navigation area, click the console icon to expand the tree.

3. In the Navigation area, click the Server and Partition folder.

4. In the Contents area, click the Server Management icon.

5. In the Contents area, click the managed system icon to expand the tree.

6. Select the partition to which you want to add the processors.

Note: You can dynamically reassign I/O resources between affinity logical
partitions, but not processor or memory resources.
256 The Complete Partitioning Guide for IBM Eserver pSeries Servers

7. From the menu bar, select Selected → Dynamic Logical Partitioning →
Processors, as shown Figure 8-1.

Figure 8-1 Dynamic logical partitioning
 Chapter 8. DLPAR operation using graphical user interface 257

8. The Dynamic CPU Reconfiguration window opens. Select Add resource to
this partition, as shown in Figure 8-2.

Figure 8-2 Dynamic CPU addition to a partition

9. Select the number of processors you want to add to this partition in the
Number of CPUs to add field.

In this example, we have been able to select only 1 in this field, because the
Maximum CPU usage of this partition field is set to 2.

Note: If the Processor Information button appears underneath the Number
of CPUs to add field, the HMC has discovered disabled processors that
you might be able to deconfigure and free for system use. For more
information about restoring these processors, see Appendix C, “Error
Messages and Recovery Information,” in IBM Hardware Management
Console for pSeries Installation and Operations Guide, SA38-0590.
258 The Complete Partitioning Guide for IBM Eserver pSeries Servers

10.In the Timeout setting field, select the number of minutes you want the system
to wait before it stops the processor dynamic logical partitioning task.

11.In the Detail level field, select the level of feedback you would like to see while
the HMC performs the task. Details shown include the operating system’s
standard output and standard error information.

12.When you are finished, click OK.

Memory
This task enables you to add memory to a partition without rebooting the
partition’s operating system. You can only add up to the amount of free memory,
or memory that is not assigned to a running partition. You also cannot exceed the
maximum number specified in the partition’s active profile. To view profile
properties, see Figure 6-5 on page 170.

To add available memory resources without rebooting the partition, do the
following:

1. Log in to the HMC using either the System Administrator or Advanced
Operator role.

2. In the Navigation area, click the console icon to expand the tree.

3. In the Navigation area, click the Server and Partition folder.

4. In the Contents area, click the Server Management icon.

5. In the Contents area, click the managed system icon to expand the tree.

6. Select the partition to which you want to add the memory.

7. From the menu bar, select Selected → Dynamic Logical Partitioning →
Memory (see Figure 8-1 on page 257).
 Chapter 8. DLPAR operation using graphical user interface 259

8. The Dynamic Memory Reconfiguration window opens. Select Add resource
to this partition, as shown in Figure 8-3.

Figure 8-3 Dynamic memory addition to a partition

9. Select the amount of memory you want to add to this partition. The window
shows you how much free memory the system has for this partition’s use.

In this example, we are able to select up to 2 GB in this field, because the
Maximum memory usage allowed field is set to 4 GB.

10.In the Timeout setting field, select the number of minutes you want the system
to wait before it stops the memory dynamic logical partitioning task.

11.In the Detail level field, select the level of feedback you would like to see while
the HMC performs the task. Details shown include the operating system’s
standard output and standard error information.

12.When you are finished, click OK.
260 The Complete Partitioning Guide for IBM Eserver pSeries Servers

Adapters
This task enables you to add I/O slots to a partition without rebooting the
partition’s operating system. The following is a task description of adding an I/O
slot containing a PCI adapter to a partition dynamically without rebooting the
partition. You can dynamically add any free adapters to the partition.

To add I/O slots to a partition without rebooting the partition, do the following:

1. Log in to the HMC using either the System Administrator or Advanced
Operator role.

2. In the Navigation area, click the console icon to expand the tree.

3. In the Navigation area, click the Server and Partition folder.

4. In the Contents area, click the Server Management icon.

5. In the Contents area, click the managed system icon to expand the tree.

6. Select the partition to which you want to add the adapters.

7. From the menu bar, select Selected → Dynamic Logical Partitioning →
Adapters, as shown in Figure 8-1 on page 257.
 Chapter 8. DLPAR operation using graphical user interface 261

8. The Dynamic I/O Adapter Reconfiguration window opens. Select Add
resource to this partition, as shown in Figure 8-4.

Figure 8-4 Dynamic I/O slot addition to a partition

9. Select the free system adapters that you want to add to this partition.

The adapters shown in the Free system adapters field are the ones not
assigned to the other running partitions.

Note: If the Adapter Information button appears underneath the Free
system adapters field, the HMC has discovered disabled adapters that you
might be able to deconfigure and free for system use. For more information
about restoring these adapters, see Appendix C, “Error Messages and
Recovery Information,” in IBM Hardware Management Console for pSeries
Installation and Operations Guide, SA38-0590.
262 The Complete Partitioning Guide for IBM Eserver pSeries Servers

10.In the Timeout setting field, select the number of minutes you want the system
to wait before it stops the adapter dynamic logical partitioning task.

11.In the Detail level field, select the level of feedback you would like to see while
the HMC performs the task. Details shown include the operating system’s
standard output and standard error information.

12.When you are finished, click OK.

8.1.2 Dynamically moving resources between partitions
This task enables you to move resources, such as processors, memory, and I/O
slots, from one partition to another without rebooting either partition’s operating
system.

Processors
You can move processors from one partition to another partition. You have to
select appropriate values so that these two partitions satisfy the following
conditions:

� The partition whose processors will be removed must be assigned more than
or equal to the number of processors that is defined in the partition profile as
the minimum value after the operation.

� The partition whose processors will be added must be assigned less than or
equal to the number of processors that is defined in the partition profile as the
maximum value after the operation.

To view profile properties, see Figure 6-4 on page 169.

To move processors from one active partition to another without rebooting either
partition, do the following:

1. Log in to the HMC using either the System Administrator or Advanced
Operator role.

2. In the Navigation area, click the console icon to expand the tree.

3. In the Navigation area, click the Server and Partition folder.

4. In the Contents area, click the Server Management icon.

5. In the Contents area, click the managed system icon to expand the tree.

6. Select the partition from which you want to move the processors.

Note: After adding the I/O slot, you need manual interaction on the partition.
See 3.3.2, “Internal activity for I/O slots in a DLPAR event” on page 63.
 Chapter 8. DLPAR operation using graphical user interface 263

7. From the menu bar, select Selected → Dynamic Logical Partitioning →
Processors, as shown in Figure 8-1 on page 257.

8. The Dynamic CPU Reconfiguration window opens. Select Move resource to
a partition, as shown in Figure 8-5.

Figure 8-5 Dynamic CPU reconfiguration between partitions

9. Select the number of processors you want to move from this partition.

10.Select name of the partition to which you want to move the processors.

Note: The number of processors you remove from the source partition
cannot make the remaining number of processors be less than the
minimum number specified in this partition’s active profile. Likewise, the
number you are adding to the target partition cannot exceed the
destination partition’s maximums.
264 The Complete Partitioning Guide for IBM Eserver pSeries Servers

11.In the Timeout setting field, select the number of minutes you want the system
to wait before it stops the move processor dynamic logical partitioning task.

12.In the Detail level field, select the level of feedback you would like to see while
the HMC performs the task. Details shown include the operating system’s
standard output and standard error information.

13.When you are finished, click OK. The processors are moved from this
partition to the partition you selected.

Memory
You can move memory from one partition to another partition. You have to select
appropriate values so that these two partitions satisfy the following conditions:

� The partition whose memory will be removed must be assigned more than or
equal to the memory size that is defined in the partition profile as the
minimum value after the operation.

� The partition whose memory will be added must be assigned less than or
equal to the memory size that is defined in the partition profile as the
maximum value after the operation.

To view profile properties, see Figure 6-5 on page 170.

To move memory from one active partition to another without rebooting either
partition, do the following:

1. Log in to the HMC using either the System Administrator or Advanced
Operator role.

2. In the Navigation area, click the console icon to expand the tree.

3. In the Navigation area, click the Server and Partition folder.

4. In the Contents area, click the Server Management icon.

5. In the Contents area, click the managed system icon to expand the tree.

6. Select the partition from which you want to move the memory.

7. From the menu bar, select Selected → Dynamic Logical Partitioning →
Memory, as shown in Figure 8-1 on page 257.
 Chapter 8. DLPAR operation using graphical user interface 265

8. The Dynamic Memory Reconfiguration window opens. Select Move resource
to a partition, as shown in Figure 8-6.

Figure 8-6 Dynamic memory reconfiguration between partitions

9. Select the memory size you want to move from this partition.

10.Select the name of the partition to which you want to move the memory.

Note: The memory you are removing from the source partition cannot
make the remaining memory amount be less than the minimum number
specified in this partition’s active profile. Likewise, the memory you are
adding to the target partition cannot exceed the destination partition’s
maximums.
266 The Complete Partitioning Guide for IBM Eserver pSeries Servers

11.In the Timeout setting field, select the number of minutes you want the system
to wait before it stops the memory dynamic logical partitioning task.

12.In the Detail level field, select the level of feedback you would like to see while
the HMC performs the task. Details shown include the operating system’s
standard output and standard error information.

13.When you are finished, click OK.

Adapters
This task enables you to move a PCI I/O slot containing a PCI adapter from one
partition to another without rebooting the partition’s operating system. Before
moving an I/O slot, you must to log in to the OS on the source partition and
unconfigure the adapter and the I/O slot (see 3.3.2, “Internal activity for I/O slots
in a DLPAR event” on page 63). The adapter that you are going to move must not
be defined as Required in the current active partition profile on the source
partition.

To move adapter resources from one active partition to another without rebooting
either partition, do the following:

1. Log in to the HMC using either the System Administrator or Advanced
Operator role.

2. In the Navigation area, click the console icon to expand the tree.

3. In the Navigation area, click the Server and Partition folder.

4. In the Contents area, click the Server Management icon.

5. In the Contents area, click the managed system icon to expand the tree.

6. Select the partition from which you want to move the adapters.

Note: If the Memory Information button appears in this window, the HMC
has discovered an inconsistency between a partition’s Allocated and
Requested memory amounts. Click this button to correct the requested
memory value and free memory resources to the system.

Note: To ensure that Service Focal Point and DLPAR operations continue to
function correctly, do not dynamically move the Ethernet adapter, which is
used to communicate with the HMC.

Note: Before moving the I/O slot, you need manual interaction on the source
partition. See 3.3.2, “Internal activity for I/O slots in a DLPAR event” on
page 63.
 Chapter 8. DLPAR operation using graphical user interface 267

7. From the menu bar, select Selected → Dynamic Logical Partitioning →
Adapters, as shown in Figure 8-1 on page 257.

8. The Dynamic I/O Reconfiguration window opens. Select Move resource to a
partition, as shown in Figure 8-7.

Figure 8-7 Dynamic adapter reconfiguration between partitions

9. Select the I/O adapters you want to move from the list. Adapters designated
as Required in this partition’s active profile are not included in this list and
cannot be removed (see Figure 6-6 on page 172).

10.Select the partition to which you would like move the adapters.

11.In the Timeout setting field, select the number of minutes you want the system
to wait before it stops the adapter dynamic logical partitioning task.

12.In the Detail level field, select the level of feedback you would like to see while
the HMC performs the task. Details shown include the operating system’s
standard output and standard error information.
268 The Complete Partitioning Guide for IBM Eserver pSeries Servers

13.When you are finished, click OK. Adapters are then moved from this partition
to the partition you selected. Now, you must log in to the other partition’s
operating system and configure the adapter.

8.1.3 Dynamically removing resources from a partition
This task allows you to remove resources, such as processors, memory, and I/O
slots, from a partition without rebooting the partition’s operating system.

Processors
You can remove processors from a partition without rebooting the partition’s
operating system. When you remove a processor, it is freed by the partition and
available for use by other partitions.

To remove processor from a partition without rebooting, do the following:

1. Log in to the HMC using either the System Administrator or Advanced
Operator role.

2. In the Navigation area, click the console icon to expand the tree.

3. In the Navigation area, click the Server and Partition folder.

4. In the Contents area, click the Server Management icon.

5. In the Contents area, click the managed system icon to expand the tree.

6. Select the partition from which you want to remove the processors.

7. From the menu bar, select Selected → Dynamic Logical Partitioning →
Processors (see Figure 8-1 on page 257).

Note: After moving the I/O slot, you need manual interaction on the target
partition. See 3.3.2, “Internal activity for I/O slots in a DLPAR event” on
page 63.

Note: The number of processors remaining after the removal operation cannot
be less than the minimum value specified in this partition’s active profile (see
Figure 6-4 on page 169).
 Chapter 8. DLPAR operation using graphical user interface 269

8. The Dynamic CPU Reconfiguration window opens. Select Remove resource
from this partition, as shown in Figure 8-8.

Figure 8-8 Dynamic CPU removal from a partition

9. Select the number of processors you want to remove from this partition.

10.In the Timeout setting field, select the number of minutes you want the system
to wait before it stops the processor dynamic logical partitioning task.

11.In the Detail level field, select the level of feedback you would like to see while
the HMC performs the task. Details shown include the operating system’s
standard output and standard error information.

12.When you are finished, click OK.
270 The Complete Partitioning Guide for IBM Eserver pSeries Servers

Memory
You can remove memory from a partition without rebooting the partition’s
operating system. When you remove memory, it is freed by the partition and
available for use by other partitions.

To remove memory from a partition without rebooting, do the following:

1. Log in to the HMC using either the System Administrator or Advanced
Operator role.

2. In the Navigation area, click the console icon to expand the tree.

3. In the Navigation area, click the Server and Partition folder.

4. In the Contents area, click the Server Management icon.

5. In the Contents area, click the managed system icon to expand the tree.

6. Select the partition from which you want to remove the memory.

7. From the menu bar, select Selected → Dynamic Logical Partitioning →
Memory (see Figure 8-1 on page 257).

Note: The size of memory remaining after the removal operation cannot be
less than the minimum value specified in this partition’s active profile (see
Figure 6-5 on page 170).
 Chapter 8. DLPAR operation using graphical user interface 271

8. The Dynamic Memory Reconfiguration window opens. Select Remove
resource from this partition, as shown in Figure 8-9.

Figure 8-9 Dynamic memory removal from a partition

9. Select the amount of memory you want to remove from this partition.

If the Memory Information button is available in this window, the HMC has
discovered an inconsistency between a partition’s Allocated and Requested
memory amounts. Click this button to correct the requested memory value
and free memory resources to the system. For more information about
restoring memory, see Appendix C, “Error Messages and Recovery
Information,” in the IBM Hardware Management Console for pSeries
Installation and Operations Guide, SA38-0590.

10.In the Timeout setting field, select the number of minutes you want the system
to wait before it stops the memory dynamic logical partitioning task.
272 The Complete Partitioning Guide for IBM Eserver pSeries Servers

11.In the Detail level field, select the level of feedback you would like to see while
the HMC performs the task. Details shown include the operating system’s
standard output and standard error information.

12.When you are finished, click OK.

Adapters
This task enables you to remove I/O slots, which can contain an adapter, from a
partition without rebooting the partition’s operating system. Before continuing
with this task, you must use the partition’s operating system to manually
deconfigure each adapter that you want to remove. You cannot remove an
adapter defined as Required in the current active partition profile.

To learn more about this partition’s active profile, view the activated profile’s
properties. To view profile properties, see Chapter 15, “User Management
Tasks,” in the IBM Hardware Management Console for pSeries Installation and
Operations Guide, SA38-0590.

To remove adapter resources from one active partition to another without
rebooting either partition, do the following:

1. Log in to the HMC using either the System Administrator or Advanced
Operator role.

2. In the Navigation area, click the console icon to expand the tree.

3. In the Navigation area, click the Server and Partition folder.

4. In the Contents area, click the Server Management icon.

5. In the Contents area, click the managed system icon to expand the tree.

6. Select the partition from which you want to remove the adapters.

7. From the menu bar, select Selected → Dynamic Logical Partitioning →
Adapters, as shown in Figure 8-1 on page 257.

Note: If many virtual memory pages are used by application on the target
partition, the operating system might crash after the dynamic memory removal
operation because of the low paging space. In order to avoid this situation,
keep the at least following amount of paging space on the partition:

(paging space required in worst case) + (memory max) - (memory min)

Note: Before removing the I/O slot, you need manual interaction on the
partition. See 3.3.2, “Internal activity for I/O slots in a DLPAR event” on
page 63.
 Chapter 8. DLPAR operation using graphical user interface 273

8. The Dynamic I/O Adapter Reconfiguration window opens. Select Remove
resource from a partition, as shown in Figure 8-10.

Figure 8-10 Dynamic removal of an I/O slot from a partition

9. Select the adapters that you want to remove from the partition.

10.In the Timeout setting field, select the number of minutes you want the system
to wait before it stops the adapter dynamic logical partitioning task.

11.In the Detail level field, select the level of feedback you would like to see while
the HMC performs the task. Details shown include the operating system’s
standard output and standard error information.

12.When you are finished, click OK.

Note: Adapters designated as Required in this partition’s active profile are not
included in this list and cannot be removed.
274 The Complete Partitioning Guide for IBM Eserver pSeries Servers

 Chapter 8. DLPAR operation using graphical user interface 275

276 The Complete Partitioning Guide for IBM Eserver pSeries Servers

Chapter 9. DLPAR operation using a
command line interface

This chapter provides information on how to use the command line interface on
the IBM Hardware Management Console for pSeries (HMC) to be used for
DLPAR operations. The command line interface is sometimes quite useful,
especially in the following two situations:

� Consistent results are required.

If you have to administer several managed systems, you can achieve
consistent results by using the command line interface. The command
sequence can be stored in scripts and executed remotely.

� Automated operations are required.

After you have developed a consistent way to manage your managed
systems, you can automate the operations by invoking the scripts from batch
processing applications, such as the cron daemon, from other systems.

For further information about the command line interface on the HMC, refer to
IBM Hardware Management Console for pSeries Installation and Operations
Guide, SA38-0590.

9

© Copyright IBM Corp. 2003. All rights reserved. 277

9.1 Secure remote connection to the HMC
The HMCs are typically placed inside the machine room where managed
systems are located. Therefore, you might not be allowed to physically access
the HMC. In this case, you have to remotely access the HMC to use the
command line interface. The HMC supports two commands to be remotely
accessed: ssh and rexec. Throughout this redbook, we assume that you use
OpenSSH to securely connect between AIX systems (including partitions) and
the HMC.

9.1.1 Connection to the HMC for command line operations
You have two ways to remotely execute the command line interface on the HMC
using OpenSSH:

� Execute commands remotely.

Example 9-1 shows that the df -k command is remotely executed using the
ssh command. In this example, the remote user (user) on the remote host
(host1) is executing the command as hscroot user on the HMC (itsohmc). You
will be prompted to enter the password of the hscroot user, and then the
command will be executed.

Example 9-1 Remote command execution

user@host1:/ # ssh -l hscroot itsohmc df -k
hscroot@itsohmc's password:
Filesystem 1k-blocks Used Available Use% Mounted on
/dev/hda5 10130580 241632 9580260 3% /
/dev/hda9 2015440 24 1994936 1% /console
none 256544 0 256544 0% /dev/shm
/dev/hda6 4031836 884464 3024476 23% /usr
/dev/hda7 4031836 113488 3795452 3% /var

� Execute commands after logging in to the HMC.

Example 9-2 shows that the df -k command is executed on the HMC after
logging to the HMC.

Example 9-2 Local command execution

user@host1:/ # ssh -l hscroot itsohmc
hscroot@itsohmc's password:
Last login: Thu Jul 24 19:47:37 2003 from host1
[hscroot@itsohmc hscroot]$ df -k
Filesystem 1k-blocks Used Available Use% Mounted on
/dev/hda5 10130580 241632 9580260 3% /
/dev/hda9 2015440 24 1994936 1% /console
278 The Complete Partitioning Guide for IBM Eserver pSeries Servers

none 256544 0 256544 0% /dev/shm
/dev/hda6 4031836 884464 3024476 23% /usr
/dev/hda7 4031836 113488 3795452 3% /var

9.1.2 Connection to the HMC for automated operations
In case we want to automate remote commands execution, by a scheduler for
example, we need a remote connection to the HMC without being prompted for a
password. ssh uses a pair of key files, private and public, to authenticate remote
users.

After the public key file is copied over to the HMC, you will be prompted to enter a
passphrase when you attempt to remotely log in to the HMC. Although it is
desirable that a passphrase should be entered while creating the public key, it
can be created with a null passphrase. If a null passphrase is used, you will not
be prompted to remotely log in to the HMC after copying the public key file.

If a non-null passphrase is used, ssh-agent can be used in order to automate the
connection. The agent is invoked with the passphrase and stores it in memory.
For further information about how to use the ssh-agent in the automated
connection environment on AIX, refer to Managing AIX Server Farms,
SG24-6606.

9.2 Command line interface
In this section, we explain some useful commands to understand the DLPAR
operations of section 9.3, “Dynamic logical partitioning operations using
chhwres” on page 285.

Table 9-1 lists the commands to get information and modify a managed system.

Table 9-1 Commands list

Note: Copying any files onto the HMC not documented in any IBM
publications should be avoided as it can cause complexity in problem
determination by IBM support personnel. Therefore, all the supported
commands should be executed via either the rexec or ssh facility from remote
systems. If you need to have some administrative scripts, we suggest you
store them on other systems besides the HMC.

Command Function

lssyscfg Get managed system information
 Chapter 9. DLPAR operation using a command line interface 279

The commands listed in Table 9-1 are located in the /opt/hsc/bin directory and
are issued by the hscroot user on the HMC.

For further information about commands available on HMC, refer to Effective
System Management using the IBM Hardware Management Console for
pSeries, SG24-7038.

9.2.1 Get system information using lssyscfg
This section explains how to use the command line interface to get information
such as system status and partition name from the managed system.

Get information from the CEC
Example 9-3 shows how to use the lssyscfg command to get the managed
system name, machine type and model, serial number, CEC version, state, and
operator panel string.

Example 9-3 Get information from the CEC

[hscroot@itsohmc]$ lssyscfg -r sys --all
Name CageNum LMBSize Mode State CSPVersion Model OpPanel S/N
ITSO_p690 256 255 Ready V4.0 7040-681 LPAR... 021768A

Get defined partition list
Example 9-4 shows how to use the lssyscfg command to get the names of all
defined partitions and the state of each partition on the managed system.
Managed system ITSO_p690 has nine partitions defined: lpar06, lpar03,
FullSystemPartition, lpar07, lpar04, lpar01, lpar08, lpar05, and lpar02. Partition
lpar08 is running with profile SMS.

Example 9-4 Get defined partition list1

[hscroot@itsohmc]$ lssyscfg -r lpar -m ITSO_p690 --all
Name id DLPAR State Profile OpPanel
lpar06 006 15 Running aix52_64
lpar03 003 15 Running aix52_64

lshwres Get partition resources information

chsysstate Change the state of the managed system

chhwres Modify hardware resources of a partition

Command Function

1 The values shown in the DLPAR column are anticipated to be changed to YES (DLPAR-capable)
and NO (DLPAR-incapable) in the future HMC software release.
280 The Complete Partitioning Guide for IBM Eserver pSeries Servers

FullSystemPartition 000 0 Not Available PowerOnNormalProfile
lpar07 007 15 Running aix52_32
lpar04 004 15 Running aix52_64
lpar01 001 0 Ready aix51_64
lpar08 008 15 Running SMS
lpar05 005 15 Running aix52_64
lpar02 002 0 Ready aix51_64

Get informations from a partition
Example 9-5 shows how to use the lssyscfg command to get the profile list of a
partition. It also gets information for each profile of the given partition. Profile
aix52_64 requires 1 CPU and 512 MB of memory to start.

Example 9-5 Get partition informations

[hscroot@itsohmc]$ lssyscfg -r prof -m ITSO_p690 -p lpar05 --all
Name BootMode DesiredCPU DesiredMEM MaxCPU MaxMEM MinCPU MinMEM
SMS 3 2 2048 6 8192 1 2048
aix52_64 1 2 1280 6 8192 1 512
OpenFirmware 4 2 2048 6 8192 1 2048

9.2.2 Get hardware resource information using lshwres
This section explains how to use the command line interface to get hardware
resource information from a managed system.

The lshwres command lists a hardware resource configuration. The command
takes the following options:

� -m managed_system

Specify the managed system name.

� -p partition_name

Specify the partition name.

� -r [ALL | slot | cpu | mem | led]

Specify the hardware resource type to view:

ALL All resources

slot I/O slot

cpu CPU

mem Memory

led LED
 Chapter 9. DLPAR operation using a command line interface 281

� -f format

Specify the formatted fields to be listed.

To get a list of all processors, use lshwres with the -r cpu flag as shown in
Example 9-6. Partition lpar05 has two processors, one with id 1 and the other
with id 0. Processors with id 7, 19, 20, and 21 do not belong to any partition.

Example 9-6 lshwres for processors

[hscroot@itsohmc]$ lshwres -r cpu -m ITSO_p690
id Status partition assigned_to
22 Configured by System 003*7040-681*021768A lpar03
23 Configured by System 002*7040-681*021768A lpar02
3 Configured by System 008*7040-681*021768A lpar08
2 Configured by System 007*7040-681*021768A lpar07
1 Configured by System 005*7040-681*021768A lpar05
16 Configured by System 004*7040-681*021768A lpar04
17 Configured by System 003*7040-681*021768A lpar03
5 Configured by System 004*7040-681*021768A lpar04
0 Configured by System 005*7040-681*021768A lpar05
20 Configured by System
21 Configured by System
6 Configured by System 006*7040-681*021768A lpar06
7 Configured by System
18 Configured by System 007*7040-681*021768A lpar07
19 Configured by System
4 Configured by System 008*7040-681*021768A lpar08

Example 9-7 shows memory information for each running partition. The allocated
column shows all the memory allocated to a partition including the page table.
The size of the page table is determined by the maximum memory given in the
partition profile. For example, partition lpar05 has 2176 MB of memory allocated
and a 128 MB page table, which means the available memory size for partition
lpar05 is 2176 - 128 = 2048 MB (2 GB).

Example 9-7 lshwres for memory

[hscroot@itsohmc]$ lshwres -r mem -m ITSO_p690
allocated page_table partition assigned_to
2112 64 006*7040-681*021768A lpar06
3584 512 003*7040-681*021768A lpar03
2112 64 007*7040-681*021768A lpar07
1088 64 004*7040-681*021768A lpar04
2176 128 008*7040-681*021768A lpar08
2176 128 005*7040-681*021768A lpar05
282 The Complete Partitioning Guide for IBM Eserver pSeries Servers

9.2.3 Change system state using chsysstate
This section explains how to use the command line interface to start and stop the
managed system and its partitions.

Power on the system
Example 9-8 shows how to use the chsysstate command to power on the
system in partition standby mode.

Example 9-8 System power on

[hscroot@itsohmc]$ chsysstate -o on -r sys -n ITSO_p690 -c lpar

Power off the system
Example 9-9 shows how to use the chsysstate command to power off the
system.

Example 9-9 System power off

[hscroot@itsohmc]$ chsysstate -o off -r sys -n ITSO_p690

Start a partition
Example 9-10 shows how to use the chsysstate command to start a partition
using the default profile.

Example 9-10 Start a partition

[hscroot@itsohmc]$ chsysstate -m ITSO_p690 -o on -r lpar -n lpar05

Reset a partition
There are multiple types of reset available:

� Soft

AIX will force a kernel dump and reboot. The option is: -o reset

� Hard

Power off the partition. The option is: -o off

� Shut down

Shut down and power off the partition. The option is: -o osshutdown

� Shut down and reboot

Shut down and reboot the partition. The option is: -o osreset

Note: The managed system is powered off even if partitions are still active.
 Chapter 9. DLPAR operation using a command line interface 283

Example 9-11 shows the options of the chsysstate command to reset a partition.

Example 9-11 Reset a partition

[hscroot@itsohmc]$ chsysstate -m ITSO_p690 -o reset -r lpar -n lpar05

[hscroot@itsohmc]$ chsysstate -m ITSO_p690 -o off -r lpar -n lpar05

[hscroot@itsohmc]$ chsysstate -m ITSO_p690 -o osshutdown -r lpar -n lpar05

[hscroot@itsohmc]$ chsysstate -m ITSO_p690 -o osreset -r lpar -n lpar05

9.2.4 Change hardware resources using chhwres
This section explains how to use the command line interface to modify the
hardware resources of a managed system.

The chhwres command instructs the managed system to initiate the specified
dynamic logical partitioning operation.

The command takes the following options:

� -r [mem | cpu | slot | led]

Specify the resource type to change:

mem Memory

cpu CPU

slot I/O slots

led LED

� -o [a | r | m]

Specify the operation to be performed:

a Add resources

r Remove resources

m Move resources

s set LED status

� -m managed_system

The managed system name.

� -p source_partition_name

The source partition name.
284 The Complete Partitioning Guide for IBM Eserver pSeries Servers

� -t target_partition_name

The target partition name if the operation is to move resources between
partitions.

� -i drawer_id

The drawer ID. This option needs to be specified for the I/O slot resource
operation only.

� -s slot_id

The I/O slot ID. This option needs to be specified for the I/O slot resource
operation only.

� -q quantity

The quantity of hardware resources to change. For the processor, this value
specifies the number of processors to add, remove, or move. For the memory,
this value specifies the number of logical memory blocks (LMBs). This option
is not used for the I/O slot operation.

� -w timeout

The time-out value to be used by the drmgr command running on the partition.
The default value is five minutes.

� -d detail_level

The detail level to be used by the drmgr command running on the partition.
Valid values are 0 through 5.

The next section is dedicated to several examples using the chhwres command,
such as CPU and memory operations.

9.3 Dynamic logical partitioning operations using
chhwres

Although dynamic logical partitioning (DLPAR) operations can easily be done
using the HMC graphical user interface, you can also use the chhwres command
on the HMC to achieve the following two objectives during a DLPAR operation:

� Consistent results

� Automated operations

9.3.1 DLPAR operation to add a processor
Example 9-12 on page 286 shows the output of a two-processor-addition DLPAR
operation using the chhwres command on partition lpar05 in managed system
 Chapter 9. DLPAR operation using a command line interface 285

ITSO_p690. The lshwres command outputs show the difference before and after
the chhwres command execution (the lpar05 partition was allocated two CPUs
before the DLPAR operation and four after the operation).

Example 9-12 chhwres CPU addition

[hscroot@itsohmc]$ lshwres -m ITSO_p690 -r cpu -p lpar05
allocated free max min partition partition_name assigned_to system
2 5 6 1 005*7040-681*021768A lpar05 lpar05 ITSO_p690

[hscroot@itsohmc]$ chhwres -m ITSO_p690 -p lpar05 -r cpu -o a -q 2 -w 4

[hscroot@itsohmc]$ lshwres -m ITSO_p690 -r cpu -p lpar05
allocated free max min partition partition_name assigned_to system
4 3 6 1 005*7040-681*021768A lpar05 lpar05 ITSO_p690

In Example 9-13 we try to add seven processors. The operation fails because
only five processors are available.

Example 9-13 CPU addition failure

[hscroot@itsohmc]$ lshwres -m ITSO_p690 -r cpu -p lpar05
allocated free max min partition partition_name assigned_to system
2 5 6 1 005*7040-681*021768A lpar05 lpar05 ITSO_p690

[hscroot@itsohmc]$ chhwres -m ITSO_p690 -p lpar05 -r cpu -o a -q 7 -w 4
The quantity to be added exceeds the available resources. There are 5 resources currently
available. Please retry command.

9.3.2 DLPAR operation to remove a processor
Example 9-14 shows the output of a processor-removal DLPAR operation using
the chhwres command. Before removal, partition lpar05 has four processors;
three after the operation.

Example 9-14 chhwres CPU removal

[hscroot@itsohmc]$ lshwres -m ITSO_p690 -r cpu -p lpar05
allocated free max min partition partition_name assigned_to system
4 3 6 1 005*7040-681*021768A lpar05 lpar05 ITSO_p690

[hscroot@itsohmc]$ chhwres -m ITSO_p690 -p lpar05 -r cpu -o r -q 1 -w 4

[hscroot@itsohmc]$ lshwres -m ITSO_p690 -r cpu -p lpar05
allocated free max min partition partition_name assigned_to system
3 4 6 1 005*7040-681*021768A lpar05 lpar05 ITSO_p690
286 The Complete Partitioning Guide for IBM Eserver pSeries Servers

In Example 9-15 we try to remove five processors from partition lpar05, which
has only two. The profile policy prevents removing processors below the
minimum number of processors specified in the partition profile.

Example 9-15 CPU removal failure

[hscroot@itsohmc]$ lshwres -m ITSO_p690 -r cpu -p lpar05
allocated free max min partition partition_name assigned_to system
2 5 6 1 005*7040-681*021768A lpar05 lpar05 ITSO_p690

[hscroot@itsohmc]$ chhwres -m ITSO_p690 -p lpar05 -r cpu -o r -q 5 -w 4
Your processor request goes below the profile's Required processor limit. You can remove or
move 1 or fewer processors. Retry the operation.

9.3.3 DLPAR operation to add memory
Example 9-16 shows the output of a 5 GB memory-addition DLPAR operation
using the chhwres command. Before the operation, partition lpar05 has 8 LMBs
allocated, that is to say 2 GB of memory (8 x 256 MB). The difference between
before and after the chhwres command execution is also shown by the lshwres
command outputs (the partition lpar05 was allocated 2 GB of memory before the
DLPAR operation and 7 GB after).

Example 9-16 chhwres memory addition

[hscroot@itsohmc]$ lshwres -m ITSO_p690 -r mem -p lpar05
allocated free lmb_size max min partition system partition_name
8 202 256 32 8 005*7040-681*021768A ITSO_p690 lpar05

[hscroot@itsohmc]$ chhwres -m ITSO_p690 -p lpar05 -r mem -o a -q 20 -w 4

[hscroot@itsohmc]$ lshwres -m ITSO_p690 -r mem -p lpar05
allocated free lmb_size max min partition system partition_name
28 181 256 32 8 005*7040-681*021768A ITSO_p690 lpar05

9.3.4 DLPAR operation to remove memory
Example 9-17 shows the output of a 4 GB memory-removal DLPAR operation
using the chhwres command. Before removal, partition lpar05 has 7 GB of
memory, 3 GB after removal.

Example 9-17 chhwres memory removal

[hscroot@itsohmc]$ lshwres -m ITSO_p690 -r mem -p lpar05
allocated free lmb_size max min partition system partition_name
28 181 256 32 8 005*7040-681*021768A ITSO_p690 lpar05
 Chapter 9. DLPAR operation using a command line interface 287

[hscroot@itsohmc]$ chhwres -m ITSO_p690 -p lpar05 -r mem -o r -q 16 -w 4

[hscroot@itsohmc]$ lshwres -m ITSO_p690 -r mem -p lpar05
allocated free lmb_size max min partition system partition_name
12 196 256 32 8 005*7040-681*021768A ITSO_p690 lpar05

Unfortunately, memory cannot always be removed correctly, as shown in
Example 9-19 on page 289. In this example, we try to remove one LMB from
partition lpar06, which has only three LMBs allocated, one of which is reserved
for the RMO region.

Example 9-20 on page 291 shows syslog output on the lpar06 partition. We can
see that drmgr tries to remove LMB 0x2 and receives error 27. This means that
removing this LMB would not leave enough free memory pages in the system.
Then drmgr tries to remove LMB 0x1 and receives error 16, which means that
this LMB contains non-removable memory. There are no other available LMBs to
be freed, so the operation fails.

To understand what happens, we examine the partition, as in Example 9-18.

Example 9-18 Memory information

root@lpar06:/ # lsattr -El mem0
goodsize 768 Amount of usable physical memory in Mbytes False
size 768 Total amount of physical memory in Mbytes False

root@lpar06:/ # svmon -G
 size inuse free pin virtual
memory 196608 151100 45508 120126 144364
pg space 131072 1405

 work pers clnt lpage
pin 38206 0 0 81920
in use 59132 0 10048 0

 pgsize size free
lpage pool 16 MB 20 20

root@lpar06:/ # vmo -o maxpin%
maxpin% = 80

The partition has 768 MB of memory. We try to remove 1 LMB (that is, 256 MB),
which would leave 512 MB (131072 frames of 4KB), if the removal were
successful. The svmon command shows that the partition is using 120126 4KB
page frames of pinned memory. If we do the ratio of pinned and available
memory pages, the result is about 92%, which is greater than the permitted value
shown by the vmo command (that is, 80%). This explains error 27.
288 The Complete Partitioning Guide for IBM Eserver pSeries Servers

The reason why there are so many pinned pages is that large memory pages has
been enabled and configured on partition lpar06. The output of the svmon
command in Example 9-18 on page 288 shows a large page memory pool of 320
MB (16 MB x 20). This explains error 16—an LMB with large pages in it cannot
be removed.

Figure 9-1 illustrates what can happen to a memory removal operation.

Figure 9-1 1 fixed sized RMO and 2 LMBs are allocated to an AIX 5L Version 5.2 partition

If a DLPAR memory-remove operation is requested, the VMM first finds an LMB,
then tries to migrate pinned memory frames in this LMB to the other LMBs,
wherever a 256 MB segment can accommodate those pages. However, the
migration does not always succeed (for large pages, for example).

Example 9-19 Memory removal failure

[hscroot@itsohmc]$ /opt/hsc/bin/chhwres -m ITSO_p690 -p lpar06 -r mem -o r -q 1 -d 5
aixErr: true
HMCERRV3DLPAR020: r operation for mem has completed, but only 0 out of 1 were successful.
The AIX command is:
drmgr -r -c mem -q 1 -w 5 -d 5

The AIX standard output is:
 Checksum for the file is: 0x9552ec7b9269d2ac
Setting LED: 0x2003, MEMR:FW UPD
collect_drc_info:pid for '/' root path:4

RMO

LMB #1

LMB #2

Pinned memory frames

VMM attempts to migrate pinned memory frames
 Chapter 9. DLPAR operation using a command line interface 289

collect_drc_info:id for lpar-capable prop:1
collect_drc_info: total_LMBs:11
collect_drc_info: s_ptr:LMB 1
collect_mem_nodes: collecting all memory nodes
collect_mem_nodes: last_unmarked_node:0x2000fb6820008600
collect_mem_nodes: total_m_nodes:2
remove_mem: total amount:0x10000000
remove_mem: starting script processing CHECK and PRE phases
Setting up scripts library interface for pre ops
Setting LED: 0x2003, MEMR:CHECK
To wait on applications/signals for 10 seconds
Issuing checkrelease command to the scripts
DR Timeout value:300, Current time: 0x3f214da2, DR start time: 0x3f214da2, Remaining Time:300
To wait on applications/signals for 10 seconds
DR Timeout value:300, Current time: 0x3f214da2, DR start time: 0x3f214da2, Remaining Time:300
Setting LED: 0x2003, MEMR:PRE
To wait on applications/signals for 10 seconds
DR Timeout value:300, Current time: 0x3f214da2, DR start time: 0x3f214da2, Remaining Time:300
Issuing prerelease command to the scripts
DR Timeout value:300, Current time: 0x3f214da2, DR start time: 0x3f214da2, Remaining Time:300
To wait on applications/signals for 10 seconds
DR Timeout value:300, Current time: 0x3f214da2, DR start time: 0x3f214da2, Remaining Time:300
remove_mem: last_mem_node=0x2000fb68, last_unmarked_node=0x2000fb38
DR Timeout value:300, Current time: 0x3f214da2, DR start time: 0x3f214da2, Remaining Time:300
Setting LED: 0x2003, MEMR: 1 of 1
remove_mem: kernel update addr:0x20000000 size:0x10000000
 timeout:300 sec flag:0
remove_mem: dr_resource_identifier:2
remove_mem: kernel rm_mem: Error: notify kernel errno:27
mark_diff_LMB_for_rem: choosing a different LMB to remove...
mark_diff_LMB_for_rem: choosing index: 0x1
DR Timeout value:300, Current time: 0x3f214da2, DR start time: 0x3f214da2, Remaining Time:300
Setting LED: 0x2003, MEMR: 2 of 1
remove_mem: kernel update addr:0x10000000 size:0x10000000
 timeout:300 sec flag:0
remove_mem: dr_resource_identifier:1
remove_mem: kernel rm_mem: Error: notify kernel errno:16
mark_diff_LMB_for_rem: choosing a different LMB to remove...
remove_mem: invoking convert_and_write to write to iplcb
Setting LED: 0x2003, MEMR:ODM UPD
remove_mem: Successfully configured 'sys0'..
remove_mem: Successfully configured 'mem0'..
update_post_mem_data: after kinfo.req_memsz_change=0x10000000
remove_mem: after s_mem_dets.free_frames=0xc7a1
remove_mem: after s_mem_dets.pinnable_frames=0xb006
remove_mem: after s_mem_dets.total_frames=0x30000
remove_mem: starting script processing POSTERROR phase
Setting LED: 0x2003, MEMR:POST
Setting up scripts library for post ops
290 The Complete Partitioning Guide for IBM Eserver pSeries Servers

To wait on applications/signals for 10 seconds
To wait on applications/signals for 10 seconds
Issuing undoprerelease command to the scripts
Setting LED: 0x2003, MEMR:FAIL
mem_error_exit: Exiting with msgid:14 msg=''
Setting LED: 0xffff,

The AIX standard error is:

0931-012 Unable to unallocate the resource from the partition.

The return code is 0. The AIX return code is 1.

Option -d 5 is used in Example 9-19 to display the maximum debug information.
Since we use a debug level greater than 0, the AIX standard output is redirected
to the HMC. That leads to many error messages in the output:

� DRMGR returns two error messages (errno 16 and 27).

� AIX returns error 0931-012 Unable to unallocate the resource from the
partition.

� HMC has a return code 1.

In case of problems during a DLPAR operation, it is a good idea to have a look at
the syslog daemon log shown in Example 9-20. It shows the error messages for
the LMB removal.

Example 9-20 syslogd daemon log

Jul 25 11:56:00 lpar06 DRMGR: ==== Start: MEM Removal operation ====
Jul 25 11:56:00 lpar06 DRMGR: Starting CHECK phase for mem Remove operation.
Jul 25 11:56:00 lpar06 DRMGR: Phase CHECK started for scripts,kernel extensions and
applications.
Jul 25 11:56:00 lpar06 DRMGR: Starting CHECK phase for Scripts.
Jul 25 11:56:00 lpar06 DRMGR: Completed the phase for Scripts.
Jul 25 11:56:00 lpar06 DRMGR: Starting the phase for kernel extensions.
Jul 25 11:56:00 lpar06 DRMGR: Completed the phase for kernel extensions.
Jul 25 11:56:00 lpar06 DRMGR: Starting the phase for application signal handlers.
Jul 25 11:56:00 lpar06 DRMGR: Completed the phase for kernel extensions.
Jul 25 11:56:00 lpar06 DRMGR: Starting PRE phase.
Jul 25 11:56:00 lpar06 DRMGR: Phase PRE started for scripts,kernel extensions and applications.
Jul 25 11:56:00 lpar06 DRMGR: Starting PRE phase for scripts.
Jul 25 11:56:00 lpar06 DRMGR: Completed the phase for Scripts.
Jul 25 11:56:00 lpar06 DRMGR: Starting the phase for application signal handlers.
Jul 25 11:56:00 lpar06 DRMGR: Completed the phase for kernel extensions.
Jul 25 11:56:00 lpar06 DRMGR: Error: dr_notify to remove LMB:0x2 failed with errno value=27
Jul 25 11:56:00 lpar06 DRMGR: Error: dr_notify to remove LMB:0x1 failed with errno value=16
Jul 25 11:56:00 lpar06 DRMGR: Firmware operations complete
 Chapter 9. DLPAR operation using a command line interface 291

Jul 25 11:56:00 lpar06 DRMGR: ODM operations complete
Jul 25 11:56:00 lpar06 DRMGR: Starting POST phase.
Jul 25 11:56:00 lpar06 DRMGR: Phase POST_ERROR started for scripts,kernel extensions and
applications.
Jul 25 11:56:00 lpar06 DRMGR: Starting the phase for application signal handlers.
Jul 25 11:56:00 lpar06 DRMGR: Completed the phase for kernel extensions.
Jul 25 11:56:00 lpar06 DRMGR: Starting UNDOPRE phase for scripts.
Jul 25 11:56:00 lpar06 DRMGR: Completed the phase for Scripts.
Jul 25 11:56:01 lpar06 DRMGR: ~~~~ End: DR operation ~~~~

9.3.5 DLPAR operation to add an I/O slot
In this section we show how to add an I/O slot with an adapter in it. We first add
the resource using the chhwres command on the HMC, then we configure the
adapter on the partition.

Since many adapters can be added to an I/O drawer, the following section
focuses on only two adapter types:

� Network adapter

� Storage adapter

DLPAR operation on a network adapter addition
This section describes how to add a network adapter. For example, we want to
add the network adapter in drawer U1.5 slot 6 to partition lpar06.

Operation on HMC
We the chhwres command to add the slot needed; lshwres shows that the slot is
correctly added.

Example 9-21 I/O slot addition

[hscroot@itsohmc]$ lshwres -m ITSO_p690 -r slot -p lpar06 -F
phys_loc:slot_id:slot_type
U1.5-P1-I10:10:SCSI bus controller
U1.5-P1-I5:5:Ethernet controller
U1.5-P1/Z2:12:SCSI bus controller

[hscroot@itsohmc]$ chhwres -m ITSO_p690 -p lpar06 -r slot -o a -l U1.5-P1-I6
DrawerId[0]: 7040-61D*02445BA-P1
SlotId[0]: 6
PCIBus[0]: 1

[hscroot@itsohmc]$ lshwres -m ITSO_p690 -r slot -p lpar06 -F
phys_loc:slot_id:slot_type
U1.5-P1-I10:10:SCSI bus controller
292 The Complete Partitioning Guide for IBM Eserver pSeries Servers

U1.5-P1-I5:5:Ethernet controller
U1.5-P1-I6:6:Ethernet controller
U1.5-P1/Z2:12:SCSI bus controller

Operation on partition
Run the cfgmgr command to instruct AIX to configure the newly added hardware
resources and verify with the lsdev command. A new Ethernet adapter, ent1, is
now available and can be configured using the ifconfig command. The netstat
command shows the new en1 Ethernet interface with address 10.0.0.11.

Example 9-22 New network adapter

root@lpar06:/ # lsdev -Cc adapter
ent0 Available 4F-08 10/100 Mbps Ethernet PCI Adapter II (1410ff01)
sa0 Available LPAR Virtual Serial Adapter
scsi0 Available 4b-08 Wide/Ultra-3 SCSI I/O Controller
scsi1 Available 4e-08 Wide/Ultra-3 SCSI I/O Controller
scsi2 Available 4e-09 Wide/Ultra-3 SCSI I/O Controller

root@lpar06:/ # cfgmgr

root@lpar06:/ # lsdev -Cc adapter
ent0 Available 4F-08 10/100 Mbps Ethernet PCI Adapter II (1410ff01)
ent1 Available 4J-08 10/100 Mbps Ethernet PCI Adapter II (1410ff01)
sa0 Available LPAR Virtual Serial Adapter
scsi0 Available 4b-08 Wide/Ultra-3 SCSI I/O Controller
scsi1 Available 4e-08 Wide/Ultra-3 SCSI I/O Controller
scsi2 Available 4e-09 Wide/Ultra-3 SCSI I/O Controller

root@lpar06:/ # ifconfig en1 inet 10.0.0.11 netmask 255.255.255.192

root@lpar06:/ # netstat -in
Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll
en0 1500 link#2 0.2.55.af.17.e8 2381877 0 69774 0 0
en0 1500 9.3.4 9.3.4.70 2381877 0 69774 0 0
en1 1500 link#3 0.2.55.af.19.5 3 0 0 0 0
en1 1500 10.0.0 10.0.0.11 3 0 0 0 0
lo0 16896 link#1 31949 0 32017 0 0
lo0 16896 127 127.0.0.1 31949 0 32017 0 0
lo0 16896 ::1 31949 0 32017 0 0

DLPAR operation on a storage adapter addition

This section describes how to add a storage adapter. For example, we want to
add the SSA adapter in drawer U1.5 slot 7 to partition lpar06.
 Chapter 9. DLPAR operation using a command line interface 293

Operation on HMC
The only thing to do on the HMC is to use the chhwres command to add the slot
needed; lshwres shows that the slot is correctly added.

Example 9-23 I/O slot addition

[hscroot@itsohmc hscroot]$ lshwres -m ITSO_p690 -r slot -p lpar06 -F
phys_loc:slot_id:slot_type
U1.5-P1-I10:10:SCSI bus controller
U1.5-P1-I5:5:Ethernet controller
U1.5-P1-I6:6:Ethernet controller
U1.5-P1/Z2:12:SCSI bus controller

[hscroot@itsohmc hscroot]$ chhwres -m ITSO_p690 -p lpar06 -r slot -o a -l
U1.5-P1-I7 -d 5
DrawerId[0]: 7040-61D*02445BA-P1
SlotId[0]: 7
PCIBus[0]: 1

[hscroot@itsohmc hscroot]$ lshwres -m ITSO_p690 -r slot -p lpar06 -F
phys_loc:slot_id:slot_type
U1.5-P1-I10:10:SCSI bus controller
U1.5-P1-I5:5:Ethernet controller
U1.5-P1-I6:6:Ethernet controller
U1.5-P1-I7:7:SSA Serial Bus
U1.5-P1/Z2:12:SCSI bus controller

Operation on partition
Run the cfgmgr command to instruct AIX to configure the newly added hardware
resources. In Example 9-24, the SSA adapter we added to lpar06 is configured
as ssa0, and its children disk drive devices (physical volumes) are configured as
hdisk 2, 3, 4, and 5.

Example 9-24 New SSA adapter

root@lpar06:/ # lsdev -Cc adapter
ent0 Available 4F-08 10/100 Mbps Ethernet PCI Adapter II (1410ff01)
ent1 Available 4J-08 10/100 Mbps Ethernet PCI Adapter II (1410ff01)
sa0 Available LPAR Virtual Serial Adapter
scsi0 Available 4b-08 Wide/Ultra-3 SCSI I/O Controller
scsi1 Available 4e-08 Wide/Ultra-3 SCSI I/O Controller
scsi2 Available 4e-09 Wide/Ultra-3 SCSI I/O Controller

root@lpar06:/ # lsdev -Ccdisk
hdisk0 Available 4b-08-00-8,0 16 Bit LVD SCSI Disk Drive
hdisk1 Available 4b-08-00-10,0 16 Bit LVD SCSI Disk Drive

root@lpar06:/ # cfgmgr
294 The Complete Partitioning Guide for IBM Eserver pSeries Servers

root@lpar06:/ # lsdev -Cc adapter
ent0 Available 4F-08 10/100 Mbps Ethernet PCI Adapter II (1410ff01)
ent1 Available 4J-08 10/100 Mbps Ethernet PCI Adapter II (1410ff01)
sa0 Available LPAR Virtual Serial Adapter
scsi0 Available 4b-08 Wide/Ultra-3 SCSI I/O Controller
scsi1 Available 4e-08 Wide/Ultra-3 SCSI I/O Controller
scsi2 Available 4e-09 Wide/Ultra-3 SCSI I/O Controller
ssa0 Available 4Q-08 IBM SSA 160 SerialRAID Adapter (14109100)

root@lpar06:/ # lsdev -Ccdisk
hdisk0 Available 4b-08-00-8,0 16 Bit LVD SCSI Disk Drive
hdisk1 Available 4b-08-00-10,0 16 Bit LVD SCSI Disk Drive
hdisk2 Available 4Q-08-L SSA Logical Disk Drive
hdisk3 Available 4Q-08-L SSA Logical Disk Drive
hdisk4 Available 4Q-08-L SSA Logical Disk Drive
hdisk5 Available 4Q-08-L SSA Logical Disk Drive

9.3.6 DLPAR operation to remove an I/O slot
In this section we show how to remove an I/O slot with an adapter in it. We first
remove its definition in the partition and then remove the resource using the
chhwres command on the HMC.

Since many adapters can be added to an I/O drawer, the following section
focuses on only two adapter types:

� Network adapter

� Storage adapter

DLPAR operation on removal of a network adapter
The following steps describe how to remove a network adapter from a partition:

1. Identify the adapter to remove.

2. Un-configure the adapter.

3. Remove the AIX definition of the adapter.

4. Remove the adapter from the partition using the HMC.

Operation on partition
In Example 9-25 on page 296, we want to remove the network adapter with the
following IP address: 10.0.0.10. In order to do that, we follow these steps:

� Identify the adapter.

First we have to identify the network adapter name to remove with the
netstat command, then find the PCI slot in witch the adapter is connected
 Chapter 9. DLPAR operation using a command line interface 295

using the lsdev command, and finally find the location code of the slot using
the lsslot command.

� Un-configure the adapter.

We down and detach the interface using the ifconfig command.

� Remove the AIX definition of the adapter.

We un-configure the adapter and remove the adapter definition and any of its
children with the rmdev command.

Example 9-25 Remove a network adapter

root@lpar06:/ # netstat -in
Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll
en0 1500 link#2 0.2.55.af.17.e8 250769 0 114379 0 0
en0 1500 9.3.4 9.3.4.70 250769 0 114379 0 0
en1 1500 link#3 0.2.55.af.19.5 304 0 4 0 0
en1 1500 10 10.0.0.10 304 0 4 0 0
lo0 16896 link#1 59357 0 59462 0 0
lo0 16896 127 127.0.0.1 59357 0 59462 0 0
lo0 16896 ::1 59357 0 59462 0 0

root@lpar06:/ # lsdev -Cl ent1 -F parent
pci14

root@lpar06:/ # lsslot -c slot -l pci14
Slot Description Device(s)
U1.5-P1-I6 DLPAR slot pci14 ent1

root@lpar06:/ # ifconfig en1 down

root@lpar06:/ # ifconfig en1 detach

root@lpar06:/ # rmdev -dRl pci14
ent1 deleted
pci14 deleted

Operation on HMC
Now that the adapter definition has been removed from the partition, we can
remove the adapter from the partition using the chhwres command, as shown in
Example 9-26.

Example 9-26 Adapter removal on HMC

[hscroot@itsohmc]$ chhwres -m ITSO_p690 -p lpar06 -r slot -o r -l U1.5-P1-I6
DrawerId[0]: 7040-61D*02445BA-P1
SlotId[0]: 6
PCIBus[0]: 1
296 The Complete Partitioning Guide for IBM Eserver pSeries Servers

[hscroot@itsohmc]$ lshwres -m ITSO_p690 -r slot -p lpar06 -F
phys_loc:slot_id:slot_type
U1.5-P1-I10:10:SCSI bus controller
U1.5-P1-I5:5:Ethernet controller
U1.5-P1/Z2:12:SCSI bus controller

DLPAR operation on the removal of a storage adapter

The following steps describe how to remove a storage adapter from a partition:

1. Identify the adapter to remove.

2. Identify resources related to the adapter.

3. Remove file systems and volume groups.

4. Remove physical volumes.

5. Remove the AIX definition of the adapter.

6. Remove the adapter from the partition using the HMC.

Operation on partition
In Example 9-27 on page 298, we want to remove the storage adapter ssa0. In
order to do that, we follow these steps:

� Identify the adapter.

First we have to identify the storage adapter to remove with the lsdev
command, then find the PCI slot in which the adapter is connected using the
lsdev command, and finally find the location code of the slot using the lsslot
command.

� Identify the resources connected to this adapter.

The lsdev -Ccdisk command shows each disk address, in this case hdisk2 to
hdisk7, is connected to the ssa0 adapter (address 4Q-08). To free those
disks, we have to know if there is some data on it. The lspv command shows
that two disks are part of a volume group named testvg. Using lsvg -l
testvg, we see that two file systems exist in this volume group.

� Remove resources related to the adapter.

We have all the information needed to free all the resources that belong to the
adapter in the following two steps:

– Free volume groups.

Unmount all the file systems using the umount command.
 Chapter 9. DLPAR operation using a command line interface 297

– Free disks.

Remove the volume group definition using the exportvg command. This
command does not destroy any data on the disk, so it can be used again
for another partition if needed.

� Remove the AIX definition of the adapter.

We un-configure and un-define the device and any of its children with the
rmdev command. In the SSA device structure, each hdisk is associated with a
pdisk. We use the ssaxlate command to do the translation. We first have to
remove all pdisks and hdisks, then the pci15 adapter.

Example 9-27 Remove a storage adapter

root@lpar06:/ # lsdev -Cc adapter
ent0 Available 4F-08 10/100 Mbps Ethernet PCI Adapter II (1410ff01)
sa0 Available LPAR Virtual Serial Adapter
scsi0 Available 4b-08 Wide/Ultra-3 SCSI I/O Controller
scsi1 Available 4e-08 Wide/Ultra-3 SCSI I/O Controller
scsi2 Available 4e-09 Wide/Ultra-3 SCSI I/O Controller
ssa0 Available 4Q-08 IBM SSA 160 SerialRAID Adapter (14109100)

root@lpar06:/ # lsdev -Cl ssa0 -F parent
pci15

root@lpar06:/ # lsslot -c slot -l pci15
Slot Description Device(s)
U1.5-P1-I7 DLPAR slot pci15 ssa0

root@lpar06:/ # lsdev -Ccdisk
hdisk0 Available 4b-08-00-8,0 16 Bit LVD SCSI Disk Drive
hdisk1 Available 4b-08-00-10,0 16 Bit LVD SCSI Disk Drive
hdisk2 Available 4Q-08-L SSA Logical Disk Drive
hdisk3 Available 4Q-08-L SSA Logical Disk Drive
hdisk4 Available 4Q-08-L SSA Logical Disk Drive

root@lpar06:/ # ssaxlate -l hdisk2
pdisk0
root@lpar06:/ # ssaxlate -l hdisk3
pdisk1
root@lpar06:/ # ssaxlate -l hdisk4
pdisk2

root@lpar06:/ # lspv
hdisk0 0021768a3b1655ee rootvg active
hdisk1 0021768a21525a2a None
hdisk2 00050592247553da testvg active
hdisk3 00000000035d72e7 testvg active
hdisk4 0021768a9378cb88 None
298 The Complete Partitioning Guide for IBM Eserver pSeries Servers

root@lpar06:/ # lsvg -l testvg
testvg:
LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT
fslv01 jfs2 64 64 1 open/syncd /tst
loglv02 jfslog 1 1 1 open/syncd N/A
lv06 jfs 64 64 1 open/syncd /work

root@lpar06:/ # umount /tst
root@lpar06:/ # umount /work

root@lpar06:/ # varyoffvg testvg
root@lpar06:/ # exportvg testvg

root@lpar06:/ # rmdev -dl pdisk0
pdisk0 deleted
root@lpar06:/ # rmdev -dl hdisk2
hdisk2 deleted
root@lpar06:/ # rmdev -dl pdisk1
pdisk1 deleted
root@lpar06:/ # rmdev -dl hdisk3
hdisk3 deleted
root@lpar06:/ # rmdev -dl pdisk2
pdisk2 deleted
root@lpar06:/ # rmdev -dl hdisk4
hdisk4 deleted

root@lpar06:/ # rmdev -dRl pci15
ssa0 deleted
pci15 deleted

Operation on HMC
After the AIX adapter definition is removed from the partition, we can remove the
adapter definition from the partition using the chhwres command and verify that
lpar06 has no more adapters with location code U1.5-P1-I7, as shown in
Example 9-28.

Example 9-28 Adapter removal on HMC

[hscroot@itsohmc hscroot]$ chhwres -m ITSO_p690 -p lpar06 -r slot -o r -l
U1.5-P1-I7 -d 5
DrawerId[0]: 7040-61D*02445BA-P1
SlotId[0]: 7
PCIBus[0]: 1

[hscroot@itsohmc hscroot]$ lshwres -m ITSO_p690 -r slot -p lpar06 -F
phys_loc:slot_id:slot_type
U1.5-P1-I10:10:SCSI bus controller
 Chapter 9. DLPAR operation using a command line interface 299

U1.5-P1-I5:5:Ethernet controller
U1.5-P1-I6:6:Ethernet controller
U1.5-P1/Z2:12:SCSI bus controller

9.3.7 DLPAR operation to move a CD/DVD device
A managed system is equipped with at least one CD/DVD device (CD/DVD here
refers to any CD-ROM, DVD-ROM, or DVD-RAM device). This device is used for
all the partitions. Therefore, we need to be able to move it from one partition to
another easily. In this section we create a script to move the CD/DVD using
DLPAR operations. This script is executed on a third machine, which should have
remote connections enabled to all the partitions and should be able to connect to
the HMC using SSH.

The following steps describe how to move the CD/DVD from partition A to
partition B:

1. Get the managed system name.

2. Get the partition name to which the CD/DVD is assigned.

3. Get the CD/DVD device name on partition A.

4. Unmount the CD/DVD.

5. Get the SCSI adapter name.

6. Get the PCI slot.

7. Remove the CD/DVD definitions.

8. Remove the CD/DVD from partition A.

9. Add the CD/DVD to partition B.

10.Configure the new CD/DVD on partition B.

In order to move the CD/DVD, we create the shell script shown in Example 9-29,
called MoveCD. It has one option: the name of the partition to which we want to
assign the CD/DVD. It finds whether the CD/DVD is allocated to a partition or not.
Then, if necessary, it removes all resources related to the CD/DVD and moves
the CD/DVD using DLPAR operations. We use rsh to issue commands from the
third machine to partitions. In order to use another connection method, you just
need to modify the RSHCmd variable.

Example 9-29 MoveCD shell script

#!/bin/ksh
This script moves the CD/DVD from the partition which using it to the
partition given in parameter
300 The Complete Partitioning Guide for IBM Eserver pSeries Servers

if [[$# != 1]]
then
 print "Syntax : $0 partition_name"
 exit 1
fi

TargetPartitionName=$1 # the partition to move the CD to

User="hscroot" # the user to connect to HMC
HMC="itsohmc" # the HMC name
SSHCmd="ssh $User@$HMC" # the SSH command to connect to HMC
CmdPath="/opt/hsc/bin" # the path for the command on HMC
RSHCmd="rsh" # the remote command to connect to the lpar
CDROMPhysLoc="U1.9-P1-I10" # Default CD-ROM physical location

Get the first manage system name
ManagedSystem=$($SSHCmd $CmdPath/lssyscfg -r sys --all -Fname | head -1)

Get the partition name to which the CD-ROM is assigned to
Partition=$($SSHCmd $CmdPath/lshwres -m $ManagedSystem -r slot -Fphys_loc:assigned_to | grep
$CDROMPhysLoc | cut -f2 -d ":")

check if source and target are the same
if [[$TargetPartitionName = $Partition]]
then
 print "CD-ROM is already on $Partition"
 exit
fi

if [[$Partition = "null"]]
then
 # CD-ROM is not allacted
 print "CD-ROM is not allacted"
 print "Adding CD-ROM to $TargetPartitionName"
 $SSHCmd $CmdPath/chhwres -m $ManagedSystem -r slot -p $TargetPartitionName -o a -l

$CDROMPhysLoc
 $RSHCmd $TargetPartitionName cfgmgr
else
 # CD-ROM is allocated to a partition
print "CD-ROM is on $Partition"

 # returns the only CD-ROM connected to "U1.9-P1-I10"
 CDROM=$($RSHCmd $Partition lscfg | grep "cd.*$CDROMPhysLoc" | cut -f2 -d " ")
if (($? != 0))

 then
 print "Cannot connect to partition $Partition"
 exit 1
 fi
 Chapter 9. DLPAR operation using a command line interface 301

if [[! -z $CDROM]]
 then
 # Check if CDROM is mounted
 MountPoint=$($RSHCmd $Partition mount | grep $CDROM | awk '{print $2}')
 if [[! -z $MountPoint]]
 then
 # Unmount CD-ROM
 $RSHCmd $Partition umount $MountPoint

 # Check if CD-ROM has been correctly unmounted
 MountPoint=$($RSHCmd $Partition mount | grep $CDROM | awk '{print $2}')
 if [[! -z $MountPoint]]
 then
 print "CD-ROM is busy, can't unmount $MountPoint "
 exit 1
 fi
 fi

 SCSIadapt=$($RSHCmd $Partition lsdev -Cl $CDROM -F parent)
retunrs the PCI slot related to the CD-ROM

 PCISlot=$($RSHCmd $Partition lsdev -Cl $SCSIadapt -F parent)
 $RSHCmd $Partition rmdev -dRl $PCISlot > /dev/null

PCISlot=$($RSHCmd $Partition lsdev -Cl $SCSIadapt -F parent)
 if [[! -z $PCISlot]]

then
 print "PCI slot $PCISlot is busy"
 exit 1
 fi
 fi
 print "Removing CD-ROM from $Partition"
 $SSHCmd $CmdPath/chhwres -m $ManagedSystem -r slot -p $Partition -o r -l $CDROMPhysLoc
 print "Adding CD-ROM to $TargetPartitionName"
 $SSHCmd $CmdPath/chhwres -m $ManagedSystem -r slot -p $TargetPartitionName -o a -l

$CDROMPhysLoc
 $RSHCmd $TargetPartitionName cfgmgr
fi

exit 0

9.4 Dynamic logical partitioning resources
reassignment scheduling

In this section we show how to schedule resource reassignments using DLPAR
operations.
302 The Complete Partitioning Guide for IBM Eserver pSeries Servers

In some cases, the workload can change during the day. A partition may need
more resources for some hours. Let’s consider an example with two partitions
running two applications, both partitions having the same resources during the
day. Partition A needs more resources during the night and partition B does not
use those resources during the night. It could be very useful to move those
resources using DLPAR operations at a defined time of the day.

We use the chhwres command to reassign the resources between the two
partitions. We move a defined quantity of processors and memory from partition
A to partition B for a part of the day, and then we move the resources back to
partition A for the rest of the day.

A scheduler triggers the resource reassignment twice a day.

Figure 9-2 on page 304 shows the relationships between the machines. The
scheduler issues commands to the HMC using SSH. The HMC issues DLPAR
operations to the partitions. The resources are moved between partition A and
partition B.

In this section, to give some simple examples. We use an ssh key generated with
a null passphase. For more information on the remote connection between the
scheduler and the HMC, refer to 9.1.2, “Connection to the HMC for automated
operations” on page 279.
 Chapter 9. DLPAR operation using a command line interface 303

Figure 9-2 Working environment

9.4.1 Partition configuration
We use partition lpar05, which has seven processors and 20 GB of memory, and
partition lpar06, which has 1 processor and 4 GB of memory. Example 9-30
shows the profile of each partition.

Example 9-30 CPU and memory for each partition

[hscroot@itsohmc]$ lssyscfg -r prof -m ITSO_p690 -p lpar05 -n AIX52
Name BootMode DesiredCPU DesiredMEM MaxCPU MaxMEM MinCPU MinMEM
AIX52 1 7 20480 8 22528 1 4096

[hscroot@itsohmc]$ lssyscfg -r prof -m ITSO_p690 -p lpar06 -n AIX52
Name BootMode DesiredCPU DesiredMEM MaxCPU MaxMEM MinCPU MinMEM
AIX52 1 1 4096 8 22528 1 4096

Scheduler

HMC

Partition A Partition B

ssh command

DLPAR commands

Resource reassignment
304 The Complete Partitioning Guide for IBM Eserver pSeries Servers

9.4.2 Script example to move the resources
In this paragraph we give a simple Korn shell script for the resource
reassignment. There is no checking for the available resources. The profile of
each partition provides the necessary limits.

The script has only one option, with two values:

� day - This moves the resources from partition lpar06 to partition lpar05.

� night - This moves the resources from partition lpar05 to partition lpar06.

The script exits with return code 0 if every reassignment has been successful.

Example 9-31 shows the source code of the script MoveRes. It first checks the
syntax, then selects the source and target partitions, defines every variable
needed, and moves the memory and CPU resources.

Example 9-31 ksh reassignment script (MoveRes)

#!/bin/ksh
This script moves resources between two partitions

print "Starting at : $(date)"

Verify the syntax, only one option
if [[$# != 1]]
then
 print "Syntax : $0 day|night"
 exit 1
fi

Mode=$1

Select source and target partition depending on the mode
case $Mode in
 day)
 SourcePartitionName="lpar06"
 TargetPartitionName="lpar05" ;;
 night)
 SourcePartitionName="lpar05"
 TargetPartitionName="lpar06" ;;
 *)
print "Syntax : $0 day|night"
 exit 1 ;;
esac

memToMove=64 # the number of LMB to move
cpuToMove=6 # the number of CPU to move
ManagedSystem="ITSO_p690" # the managed system name
 Chapter 9. DLPAR operation using a command line interface 305

User="hscroot" # the user to connect to HMC
HMC="itsohmc" # the HMC name
SSHCmd="ssh $User@$HMC" # the SSH command to connect to HMC
CmdPath="/opt/hsc/bin" # the path for the command on HMC
((RC=0))

Move each resources for one partition to another
for resource in mem cpu
do
 ((QtyToMove=$resource"ToMove"))
print "Moving $resource ($QtyToMove) from $SourcePartitionName to

$TargetPartitionName"
$SSHCmd $CmdPath/chhwres -m $ManagedSystem -r $resource -p

$SourcePartitionName -o m -q $QtyToMove -t $TargetPartitionName -d 5
 ((RC=RC + $?))
done

print "Return code is : $RC"
print "=="

exit $RC

In order to make that script more generic, we may replace some variables by
parameters—for example, the name of partitions and the quantity of resources to
move. For simplicity reasons, we use the script as it is in the following sections.

9.4.3 Reassignment tests using the script
We move six processors and 16 GB of memory from lpar05 to lpar06 for the
night, as shown in Example 9-32.

Example 9-32 Resources reassignment for the night

user@host1:/ # MoveRes night
Starting at : Fri Aug 1 19:21:03 CDT 2003
Moving resources for the night
Moving mem (64) from lpar05 to lpar06
Moving cpu (6) from lpar05 to lpar06
Return code is : 0

Example 9-33 shows the resources after the reassignment for the night; partition
lpar06 has seven processors and 20 GB of memory.

Example 9-33 Night resource list for each partition

[hscroot@itsohmc]$ lshwres -m ITSO_p690 -r mem | grep lpar0[56]
20992 512 006*7040-681*021768A lpar06
4608 512 005*7040-681*021768A lpar05
306 The Complete Partitioning Guide for IBM Eserver pSeries Servers

[hscroot@itsohmc]$ lshwres -m ITSO_p690 -r cpu | grep lpar0[56]
23 Configured by System 006*7040-681*021768A lpar06
1 Configured by System 005*7040-681*021768A lpar05
0 Configured by System 006*7040-681*021768A lpar06
20 Configured by System 006*7040-681*021768A lpar06
21 Configured by System 006*7040-681*021768A lpar06
6 Configured by System 006*7040-681*021768A lpar06
19 Configured by System 006*7040-681*021768A lpar06
4 Configured by System 006*7040-681*021768A lpar06

Example 9-34 shows the resources from the partition point of view. This output
confirms the HMC output.

Example 9-34 Resources in partition lpar06

root@lpar05:/ # lsattr -El mem0
goodsize 20480 Amount of usable physical memory in Mbytes False
size 20480 Total amount of physical memory in Mbytes False

root@lpar06:/ # lsdev -Cc processor
proc0 Available 00-00 Processor
proc4 Available 00-04 Processor
proc19 Available 00-19 Processor
proc20 Available 00-20 Processor
proc21 Available 00-21 Processor
proc23 Available 00-23 Processor
proc6 Available 00-06 Processor

We move the resources back to partition lpar05 for the day in Example 9-35

Example 9-35 Resources reassignment for the day

root@lpar05:/ # MoveRes day
Starting at : Fri Aug 2 08:16:00 CDT 2003
Moving resources for the day
Moving mem (64) from lpar06 to lpar05
Moving cpu (6) from lpar06 to lpar05
Return code is : 0

Example 9-36 shows the resources after the reassignment for the day; partition
lpar06 now has one processor and 4 GB of memory.

Example 9-36 Day resource list for each partition

[hscroot@itsohmc]$ lshwres -m ITSO_p690 -r mem | grep lpar0[56]
4608 512 006*7040-681*021768A lpar06
20992 512 005*7040-681*021768A lpar05
 Chapter 9. DLPAR operation using a command line interface 307

[hscroot@itsohmc]$ lshwres -m ITSO_p690 -r cpu | grep lpar0[56]
23 Configured by System 005*7040-681*021768A lpar05
1 Configured by System 005*7040-681*021768A lpar05
0 Configured by System 005*7040-681*021768A lpar05
20 Configured by System 005*7040-681*021768A lpar05
21 Configured by System 005*7040-681*021768A lpar05
6 Configured by System 005*7040-681*021768A lpar05
19 Configured by System 005*7040-681*021768A lpar05
4 Configured by System 006*7040-681*021768A lpar06

9.4.4 Scheduling example to move the resources using cron
In this section we use the cron daemon as scheduler to activate the resource
reassignments. We use the script created in 9.4.2, “Script example to move the
resources” on page 305.

Example 9-37 shows the crontab file. The MoveRes script is executed twice a
day, first at 21h30 to move resources for the night, and again at 5h45 to move the
resources for the day.

The script output is redirected to the log file /home/guest/MoveRes.log.

Example 9-37 crontab

resources reassignment test
30 21 * * * /home/guest/MoveRes night >> /home/guest/MoveRes.log 2>&1
45 05 * * * /home/guest/MoveRes day >> /home/guest/MoveRes.log 2>&1

Example 9-38 shows the content of the log file MoveRes.log. Every night at
21h30 the resources are reassigned for the night (from lpar05 to lpar06), and
every morning at 5h45 the resources are reassigned for the day (back to lpar05).

Example 9-38 Log file output

Starting at : Sat Aug 2 21:30:00 CDT 2003
Moving resources for the night
Moving mem (8) from lpar05 to lpar06
Moving cpu (3) from lpar05 to lpar06
Return code is : 0
==
Starting at : Sun Aug 3 05:45:00 CDT 2003
Moving resources for the day
Moving mem (8) from lpar06 to lpar05
Moving cpu (3) from lpar06 to lpar05
Return code is : 0
==
308 The Complete Partitioning Guide for IBM Eserver pSeries Servers

Starting at : Sun Aug 3 21:30:00 CDT 2003
Moving resources for the night
Moving mem (8) from lpar05 to lpar06
Moving cpu (3) from lpar05 to lpar06
Return code is : 0
==
Starting at : Mon Aug 4 05:45:00 CDT 2003
Moving resources for the day
Moving mem (8) from lpar06 to lpar05
Moving cpu (3) from lpar06 to lpar05
Return code is : 0
==

9.4.5 Scheduling example to move resources using IBM Tivoli
Workload Scheduler

In this section we use IBM Tivoli Workload Scheduler to activate the resource
reassignment. We define jobs and job streams, and update the production plan.
We assume there is already a configured IBM Tivoli Workload Scheduler master.

IBM Tivoli Workload Scheduler helps you to automate activities by planning
every phase of production, resolving dependencies, and controlling the execution
of every job. A production plan is created every day using objects, schedules,
and dependencies (jobs or job streams). IBM Tivoli Workload Scheduler
launches the production plan by default at 6:00 a.m.

For further information about IBM Tivoli Workload Scheduler, refer to What is
New with IBM Tivoli Workload Scheduler 8.2?, SG24-6628.

Job definitions
A job is a script or command run and controlled by IBM Tivoli Workload
Scheduler.

We have to create two jobs, one for the day (DLPARDAY) and one for the night
(DLPARNIGHT). Example 9-39 shows the file used to define IBM Tivoli Workload
Scheduler jobs. In this example, the script /home/guest/MoveRes shown in
Example 9-31 on page 305 is launched by user IBM Tivoli Workload Scheduler.

Example 9-39 Jobs file example (DLPARJobs.txt)

$JOBS
MASTER#DLPARNIGHT SCRIPTNAME "/home/guest/MoveRes night >>
/home/guest/MoveRes.log"
 STREAMLOGON tws
 DESCRIPTION "DLPAR operation for night"
 Chapter 9. DLPAR operation using a command line interface 309

 RECOVERY STOP

MASTER#DLPARDAY SCRIPTNAME "/home/guest/MoveRes day >> /home/guest/MoveRes.log"
 STREAMLOGON tws
 DESCRIPTION "DLPAR operation for day"
 RECOVERY STOP

Job stream definitions
A job stream is an object that groups a list of jobs for the same function or
application on a defined date and time. Those jobs may have relationships.

In our example, we create one job for one job stream, but you can add more jobs
in the same job stream. For example, you can add a job that starts an application
to the job that makes the resources for that job available.

We create two job streams, one for the day beginning at 6h30, starting job
DLPARDAY, and another beginning at 21h45, starting the job DLPARNIGHT.
Example 9-40 shows the text file used to define IBM Tivoli Workload Scheduler
job streams.

Example 9-40 Job streams file example (DLPARJobStreams.txt)

SCHEDULE DLDAY ON EVERYDAY
 AT 0630
:
 DLPARDAY
END

SCHEDULE DLNIGHT ON EVERYDAY
 AT 2145
:
 DLPARNIGHT
END

Job and job stream creation
The following steps describe how to create jobs and job streams, shown in
Example 9-41 on page 311:

1. Create jobs.

We first add the new jobs with the composer add DLPARJobs.txt command. A
job list beginning with DL, located on the master server, is displayed with the
composer display job=MASTER#DL@ command.

2. Create job streams.
310 The Complete Partitioning Guide for IBM Eserver pSeries Servers

We add the new job stream with the composer add DLPARSJobStreams.txt
command. A job stream list beginning with DL, located on the master server,
is displayed with composer display sched=MASTER#DL@.

Example 9-41 New job and job stream addition

$ composer add DLPARJobs.txt
TWS for UNIX (AIX)/COMPOSER 8.2 (1.18.2.1)
AWSBIA013I Job MASTER#DLPARNIGHT added.
AWSBIA013I Job MASTER#DLPARDAY added.
AWSBIA090E Total errors in DLPARJobs.txt: 0, warnings 0.

$ composer display job=MASTER#DL@
TWS for UNIX (AIX)/COMPOSER 8.2 (1.18.2.1)
CPU id. Job logon LastRunDate
---------------- -- -------- -----------
MASTER DLPARDAY tws
MASTER#DLPARDAY SCRIPTNAME "/home/guest/MoveRes day >> /home/guest/MoveRes.log"
 STREAMLOGON "tws"
 DESCRIPTION "DLPAR operation for day"
 RECOVERY STOP

CPU id. Job logon LastRunDate
---------------- -- -------- -----------
MASTER DLPARNIGHT tws
MASTER#DLPARNIGHT SCRIPTNAME "/home/guest/MoveRes night >>
/home/guest/MoveRes.log"
 STREAMLOGON "tws"
 DESCRIPTION "DLPAR operation for night"
 RECOVERY STOP
AWSBIA202I Found 2 jobs for MASTER#DL@

$ composer add DLPARSJobStreams.txt
TWS for UNIX (AIX)/COMPOSER 8.2 (1.18.2.1)
AWSBIA019E For MASTER#DLDAY Errors 0, warnings 0.
AWSBIA015I Schedule MASTER#DLDAY added.
AWSBIA019E For MASTER#DLNIGHT Errors 0, warnings 0.
AWSBIA015I Schedule MASTER#DLNIGHT added.
AWSBIA090E Total errors in /usr/TWS/tmp/TWSkj497a: 0, warnings 0.

$ composer display sched=MASTER#DL@
TWS for UNIX (AIX)/COMPOSER 8.2 (1.18.2.1)
CPU id. Schedule Creator Last Updated
---------------- ---------------- -------------------------- ------------
MASTER DLDAY tws 08/05/03
SCHEDULE MASTER#DLDAY ON EVERYDAY
 AT 0630
:
 DLPARDAY
 Chapter 9. DLPAR operation using a command line interface 311

END

CPU id. Schedule Creator Last Updated
---------------- ---------------- -------------------------- ------------
MASTER DLNIGHT tws 08/05/03

SCHEDULE MASTER#DLNIGHT ON EVERYDAY
 AT 2145
:
 DLPARNIGHT
END
AWSBIA035I Found 2 schedules in MASTER#DL@

Production plan update
The new job streams have to be added now to the next production plan. This is
done with the Jnextday command, as shown in Example 9-42. To verify that the
jobs are correctly scheduled, use conman sj.

Example 9-42 Next production plan creation

$ Jnextday
TWS for UNIX/JNEXTDAY 8.2
* Start of schedules for CPU MASTER
Schedule DLDAY selected
Schedule DLNIGHT selected
Schedule FINAL selected
*2 schedules selected for CPU MASTER

AWSBHZ028I 2 schedules were selected for all cpus.

$ conman sj MASTER#DL@
TWS for UNIX (AIX)/CONMAN 8.2 (1.36.1.7)

(Est) (Est)
CPU Schedule Job State Pr Start Elapse Dependencies Return Code

MASTER #DLDAY ******** ABEND 10 17:48 00:01
 DLPARDAY ABEND 10 17:48 00:01 #J30824 2

MASTER #DLNIGHT ******** HOLD 10(21:45)
 DLPARNI+ HOLD 10

Note: We recommend special care when using the Jnextday command. This
command reruns all scheduled jobs in the production plan that have a starting
time between the beginning of the processing day and the new Jnextday
execution.
312 The Complete Partitioning Guide for IBM Eserver pSeries Servers

Example 9-43 shows the results for each scheduled job. The DLPARDAY job has
started at 6h30, took 4 minutes to complete, and has a return code of 0. The
DLPARNIGHT job is in the HOLD state, because it hasn’t been executed yet.

Example 9-43 Job status

$ conman sj MASTER#DL@
TWS for UNIX (AIX)/CONMAN 8.2 (1.36.1.7)

(Est) (Est)
CPU Schedule Job State Pr Start Elapse Dependencies Return Code

MASTER #DLDAY ******** SUCC 10 06:30 00:04
DLPARDAY SUCC 10 06:30 00:04 #J30844 0

MASTER #DLNIGHT ******** HOLD 10(21:45)
DLPARNI+ HOLD 10

IBM Tivoli Workload Scheduler also provides a graphical user interface called
Job Scheduling Console (JCS). Examples are provided to define and register
jobs and job streams using JCS in Appendix D, “Using the Job Scheduling
Console” on page 471.

9.5 Dynamic logical partitioning integration with
HACMP

This section explains how to use DLPAR commands in an HACMP environment
to move resources during a takeover. We assume that you have some knowledge
of HACMP clustering.

High Availability Cluster Multi-Processing (HACMP) ensures that critical
resources are available for processing. A cluster is a group of nodes, shared
disks, and networks. A cluster node is an AIX machine (a partition in our case),
running HACMP software, which is able to acquire resource groups.

A resource group defines relationships among cluster nodes. It is a set of
hardware and software resources. An application server is a component of a
resource group. The application server is a cluster resource that associates a
name and user-provided scripts to start and stop an application.

In this section we use cluster node for things related to HACMP clusters and
partition for things related to the managed system.

We have a two-sided takeover cluster using cascading resource groups. Each
node of the cluster runs on a different partition and has different amounts of
 Chapter 9. DLPAR operation using a command line interface 313

resources allocated. We want to move the resources (processors and memory)
from one partition to the other if a cluster node fails.

There are many possibilities in HACMP to configure events or add some scripts
to move the resources. We chose to use application servers to move resources
of partitions because they run at each start or stop of applications. It’s a good
solution to update the resources of the partition at the same time that the
application is started or stopped.

During the start or stop of an application server, the cluster node sends requests
to the HMC to get a quantity of processors and memory. Each partition issues
commands to the HMC using SSH, which means that the partitions have to be
able to connect to the HMC automatically (no password prompted). In this
section, for simplicity, we use an SSH key generated with a null passphrase. For
more information on the remote connection to the HMC, refer to 9.1.2,
“Connection to the HMC for automated operations” on page 279.

A prerequisite is to have a dedicated network for DLPAR operations between
partitions and HMC, for the following reasons:

� In an HACMP cluster, each cluster node has at least two network adapters,
one for boot and service addresses, the other for standby addresses. A
service address may move to any network adapters in the cluster.

� DLPAR operations are issued from the HMC to partitions through the network.
A partition and the HMC establish a path for communication, and will use only
that path. Therefore, in a DLPAR environment, each partition of a managed
system must have a stable network connectivity with the HMC.

Since a service address of a cluster node may be anywhere in the cluster, the
HMC might not be able to issue DLPAR operations to a partition. The solution is
to separate the network used by HACMP from the network used by the HMC.

Figure 9-3 on page 315 shows the network topology we use for an HACMP
cluster. Cluster nodes A and B have three network adapters each—one for
communication between partitions and HMC, the two others for HACMP (boot,
service, and standby).

Note: Since HACMP mostly covers hardware problems, it may not be a good
idea to create each cluster node in the same managed system.
314 The Complete Partitioning Guide for IBM Eserver pSeries Servers

Figure 9-3 Cluster network topology

The HMC needs to communicate with all partitions, so we have to add the
administrative network IP addresses of the partitions to the HMC /etc/hosts file.
We don’t need to add all other IP addresses of the HACMP cluster to that file.

We have to add every IP address of the HACMP cluster to the /etc/hosts file of
each partition.

9.5.1 Resource assignment
The amount of resources is different for each partition and has to be updated
when a resource group moves to another cluster node.

We develop a Perl script to automate the partition configuration update. It makes
requests to the HMC, using the ssh command, to add or remove processors and
memory for partitions. The script is given a configuration file name as input. This
configuration file describes the quantity of processors and memory needed for
partitions. It has one line per partition. The syntax of a line is as follow:

� Partition name

� Number of CPUs

Node A Node B

HMC

Boot
Standby

Admin

Service
Boot

Standby

Admin

Service

Application

Administrative

Network

Network
 Chapter 9. DLPAR operation using a command line interface 315

� Keyword: CPU

� Number of LMBs

� Keyword: LMB

Example 9-44 shows an example of a configuration file. Partition lpar05 has three
processors and 6 GB of memory, and partition lpar06 has two processors and 8
GB of memory.

Example 9-44 Configuration file (test.cfg)

lpar05 3 CPU 24 LMB
lpar06 2 CPU 32 LMB

The following steps explain what the script does:

1. Check for allocated resources.

It uses lshwres to get processor and memory information from each partition.

2. Evaluate the quantity of resources to add or remove.

3. Check if there are enough available resources.

4. Update the resources.

It uses chhwres to add or remove resources (processors or memory) to/from
each partition.

Example 9-45 shows the Perl script listing; the script name is ChangeResConfig.

Example 9-45 Perl script file (ChangeResConfig)

#!/usr/bin/perl
#
A program to generate "chhwres" command to run on a machine, which
issue remote command to the HMC using ssh.
#
Usage: ChangeResConfig <configfile>
#
Return code - 88 if config file format is not correct:
Lparname n1 CPU n2 LMB
Return code - 77 if CPU configuration is not possible
Return code - 66 if MEM configuration is not possible
However, if target CPU/MEM config is more/less than max/min,
that line will be ignored
#

$system="ITSO_p690"; # the managed system name
@part=();

$configfile=$ARGV[0];
316 The Complete Partitioning Guide for IBM Eserver pSeries Servers

$User="hscroot"; # the user to connect to HMC
$HMC="itsohmc"; # the HMC name
$SSHCmd="ssh $User\@$HMC"; # the SSH command to connect to HMC
$CmdPath="/opt/hsc/bin"; # the path for the command on HMC

Open and check the config file
open (IN,$configfile) || die "Cannot open $configfile - $!";
while (<IN>) {
 exit 88 unless /(\w+)\s+(\d+)\s+CPU\s+(\d+)\s+LMB/;
 $part=ucfirst($1);
 $part=$1;
 push(@part,$part);
 $target_cpu{$part}=$2;
 $target_mem{$part}=$3;
}

Get informations from each partition for CPU
foreach $part (@part) {
 print "\tPlease wait.... Listing CPU resource for $part....\n";
 chomp($cpustat=`$SSHCmd $CmdPath/lshwres -m $system -p $part -r cpu
-Fmin:allocated:max:free`);

($min_cpu{$part},$current_cpu{$part},$max_cpu{$part},$freecpu)=split(/:
/,$cpustat);

Get informations from each partition for memory
 print "\tPlease wait.... Listing MEM resource for $part....\n";
 chomp($memstat=`$SSHCmd $CmdPath/lshwres -m $system -p $part -r mem
-Fmin:allocated:max:free:lmb_size`);

($min_mem{$part},$current_mem{$part},$max_mem{$part},$freemem)=split(/:
/,$memstat);
}

Display collected informations
foreach $part (@part) {
 write;
}

format STDOUT_TOP =
==
 CPU MEM
Current Target Min Max Free Current Target Min Max Free LMB
==
.
format STDOUT =
@<<<< @<<<< @<<<< @<<<< @<<<< @>>>>> @>>>>> @>>> @>>> @>>> @>>>
$current_cpu{$part},$target_cpu{$part},$min_cpu{$part},$max_cpu{$part},$freecpu
,$current_mem{$part},$target_mem{$part},$min_mem{$part},$max_mem{$part},$freeme
m,$lmb_size
 Chapter 9. DLPAR operation using a command line interface 317

.

$cpusum=0;
$memsum=0;

Evaluate the quantity of CPU needed
foreach $part (@part) {
 $needed_cpu{$part}=$target_cpu{$part}-$current_cpu{$part};
 $cpusum += $needed_cpu{$part};
}
if ($cpusum > $freecpu) {
 print "\tThere is not enough CPU to satisfy the request\n\n";
 exit 77;
}

Evaluate the quantity of memory needed
foreach $part (@part) {
 $needed_mem{$part}=$target_mem{$part}-$current_mem{$part};
 $memsum += $needed_mem{$part};
}
if ($memsum > $freemem) {
 print "\tThere is not enough MEM to satisfy the request\n\n";
 exit 66;
}

Check if resources are available, create the command to be executed
foreach $part (@part) {
 $CPUCMD{$part}="";
 next if $target_cpu{$part} > $max_cpu{$part};
 next if $target_cpu{$part} < $min_cpu{$part};
 next if $needed_cpu{$part} == 0;
 print "\t***NEEDED CPU for $part is $needed_cpu{$part}***\n";
 ($needed_cpu{$part} > 0) ? ($op = "a") : ($op = "r");
 $needed_cpu{$part} = abs($needed_cpu{$part});
 $CPUCMD{$part}="$SSHCmd $CmdPath/chhwres -m $system -o $op -r cpu -q
$needed_cpu{$part} -p $part";
}

Check if resources are available, create the command to be executed
foreach $part (@part) {
 $MEMCMD{$part}="";
 next if $target_mem{$part} > $max_mem{$part};
 next if $target_mem{$part} < $min_mem{$part};
 next if $needed_mem{$part} == 0;
 print "\t***NEEDED MEM for $part is $needed_mem{$part}***\n";
 ($needed_mem{$part} > 0) ? ($op = "a") : ($op = "r");
 $needed_mem{$part} = abs($needed_mem{$part});
 $MEMCMD{$part}="$SSHCmd $CmdPath/chhwres -m $system -o $op -r mem -q
$needed_mem{$part} -p $part";
318 The Complete Partitioning Guide for IBM Eserver pSeries Servers

}

Run commands for CPU
Reverse sort will rearrange "-o r" command to be run before "-o a" command!
foreach $cpucmd (reverse sort values %CPUCMD) {
 if (length($cpucmd) != 0) {
 print "Running $cpucmd...\n";
 system "$cpucmd";
 }
}

Run commands for memory
Reverse sort will rearrange "-o r" command to be run before "-o a" command!
foreach $memcmd (reverse sort values %MEMCMD) {
 if (length($memcmd) != 0) {
 print "Running $memcmd...\n";
 system "$memcmd";
 }
}

The output of the Perl script execution is shown in Example 9-46. Partition lpar06
has one processor allocated. The configuration file requests two, so one
processor has to be added. Partition lpar06 has 9 GB of memory and the
configuration file request is for 8 GB, so 1 GB has to be removed.

Example 9-46 Script execution output

root@lpar05:/ # ChangeResConfig test.cfg
 Please wait.... Listing CPU resource for lpar05....
 Please wait.... Listing MEM resource for lpar05....
 Please wait.... Listing CPU resource for lpar06....
 Please wait.... Listing MEM resource for lpar06....
==
 CPU MEM
Current Target Min Max Free Current Target Min Max Free LMB
==
3 3 1 8 4 20 24 12 88 158
1 2 1 8 4 36 32 8 88 158
 NEEDED CPU for lpar06 is 1
 NEEDED MEM for lpar05 is 4
 NEEDED MEM for lpar06 is -4
Running ssh hscroot@itsohmc /opt/hsc/bin/chhwres -m ITSO_p690 -o a -r cpu -q 1
-p lpar06 -d 5...
Running ssh hscroot@itsohmc /opt/hsc/bin/chhwres -m ITSO_p690 -o r -r mem -q 4
-p lpar06 -d 5...
Running ssh hscroot@itsohmc /opt/hsc/bin/chhwres -m ITSO_p690 -o a -r mem -q 4
-p lpar05 -d 5...
 Chapter 9. DLPAR operation using a command line interface 319

9.5.2 Integration with HACMP
We want to update resources for each start and stop of an application server. We
call the ChangeResConfig script in every start and stop script.

Steps an application server follows when starting:

1. Select the configuration file, depending on the cluster node and the
application.

2. Add resources to the partition.

3. Start all the applications.

Steps an application server follows when stopping:

1. Stop all the applications running on the cluster node.

2. Select the configuration file, depending on the cluster node and the
application.

3. Remove resources from the partition.

The DLPAR operations may take a long time, which may lead to timeouts in
HACMP. There are two ways to avoid this:

� Use the at command to launch the ChangeResConfig script. The application
should be able to start even if all resources are not available yet.

� Change the timeout delay for the event config_too_long in the HACMP
configuration.

9.5.3 Application server scripts
In this section we create start and stop scripts, using DLPAR operations, for an
application server. We have two application servers: app1 and app2. Each has a
start and a stop script and each of those scripts loads a configuration file,
depending on the situation. Application server app1 is started by default on
partition lpar05, application server app2 on partition lpar06. Application server
app1 starts application 1 and application server app2 starts application 2.

Configuration files
The configuration files define the amount of processors and memory to allocate
to partitions. We use the following configuration files in our cluster:

� app1.cfg: resources to run application 1

� app2.cfg: resources to run application 2

� app1app2lpar05.cfg: resources to run application 1 and 2 on lpar05

� app1app2lpar06.cfg: resources to run application 1 and 2 on lpar06
320 The Complete Partitioning Guide for IBM Eserver pSeries Servers

� app1_stby.cfg: resources to run AIX with no application

� app2_stby.cfg: resources to run AIX with no application

Example 9-47 shows configuration files on lpar05. For example, lpar05 needs
three processors and 5 GB of memory in configuration file app1.cfg.

Example 9-47 Configuration files on lpar05

root@lpar05:/ # cat app1.cfg
lpar05 3 CPU 20 LMB
root@lpar05:/ # cat app1_stby.cfg
lpar05 1 CPU 8 LMB
root@lpar05:/ # cat app1app2lpar05.cfg
lpar05 4 CPU 30 LMB

Example 9-48 shows configuration files on lpar06.

Example 9-48 Configuration files on lpar06

root@lpar06: # cat app2.cfg
lpar06 1 CPU 12 LMB
root@lpar06: # cat app2_stby.cfg
lpar06 1 CPU 8 LMB
root@lpar06: # cat app1app2lpar06.cfg
lpar06 4 CPU 30 LMB

Application server start script
Example 9-49 shows an application server start script. It adds resources before
beginning the application. If the start script is executed on the original cluster
node (the cluster node to which the resource group belongs), it loads the
configuration file app1.cfg. Otherwise (a fallover has occurred), it loads the
app1app2NodeB.cfg configuration file.

Example 9-49 Application server start script

#!/bin/ksh
Start application server app1
#

NodeName="lpar05"
LocalNodeName=$(/usr/es/sbin/cluster/utilities/get_local_nodename)
HACMPScript="/exploit"

banner "Begin"

print "Start app1"
 Chapter 9. DLPAR operation using a command line interface 321

Select the right config file
if [[$NodeName = $LocalNodeName]]
then
 $HACMPScript/ChangeResConfig $HACMPScript/app1.cfg
else
 $HACMPScript/ChangeResConfig $HACMPScript/app1app2NodeB.cfg
fi

##
#
Add the start scripts for your application here
#
##

print "Starting application 1"
print "..."
print "Application 1 started"

banner "End"

Application server stop script
Example 9-50 shows an application server stop script. It removes resources just
after the stop of the application. If the stop script is executed on the original
cluster node, it loads the configuration file app1_stby.cfg. Otherwise, it loads the
app2.cfg configuration file.

Example 9-50 Application server stop script

#!/bin/ksh
Stop application server app1
#

NodeName="lpar05"
LocalNodeName=$(/usr/es/sbin/cluster/utilities/get_local_nodename)
HACMPScript="/exploit"

banner "Begin"
print "Stop app1\n"

##
#
Add the stop scripts for your application here
#
##

print "Stopping application 1"
322 The Complete Partitioning Guide for IBM Eserver pSeries Servers

print "..."
print "Application 1 stopped"

Select the right config file
if [[$NodeName = $LocalNodeName]]
then
 $HACMPScript/ChangeResConfig $HACMPScript/app1_stby.cfg
else
 $HACMPScript/ChangeResConfig $HACMPScript/app2.cfg
fi

banner "End"

Some improvements to the scripts can be made, such as:

� Verify that all resources have been allocated to the partition before starting
applications.

� Check whether another application is running, to select the right configuration
file. For example, if app1 is running on lpar06 (after a fallover) and we want to
stop app2, the stop script will not leave the needed resources for app1.

� Add configuration files to start only app2 on lpar05.

HACMP and DLPAR operation tests
In order to test DLPAR operations in an HACMP cluster, we do the following:

� Start HACMP on partition lpar05.

� Force a fallover from partition lpar05 to partition lpar06.

This stops application server app1 on partition lpar05 and starts it on partition
lpar06.

Example 9-51 shows the hacmp.out file when starting application server app1 on
lpar05. The partition lpar05 needs two processors to meet the configuration file
requirements, which will be added to the partition.

Example 9-51 hacmp.out file

Aug 13 16:32:23 EVENT START: start_server app1

RG1:start_server[50] [[high = high]]
RG1:start_server[50] version=1.4.1.9
RG1:start_server[51] RG1:start_server[51] cl_get_path
...
... omitted lines ...
...
######
#
 Chapter 9. DLPAR operation using a command line interface 323

#
#
#
##
#

Start app1
 Please wait.... Listing CPU resource for lpar05....

Please wait.... Listing MEM resource for lpar05....
==
 CPU MEM
Current Target Min Max Free Current Target Min Max Free LMB
==
1 3 1 8 6 20 20 12 88 182
 NEEDED CPU for lpar05 is 2
Running ssh hscroot@itsohmc /opt/hsc/bin/chhwres -m ITSO_p690 -o a -r cpu -q 2
-p lpar05...
Starting application 1
...
Application 1 started
#######
#####
#
#
#
#
####### # # #####
...
... omitted lines ...
...
RG1:start_server[140] exit 0
Aug 13 16:32:25 EVENT COMPLETED: start_server app1
...
... omitted lines ...
...
RG1:process_resources[1520] [0 -ne 0]
RG1:process_resources[1760] break
RG1:process_resources[1771] [[FALSE = TRUE]]
RG1:process_resources[1778] exit 0
:node_up_complete[278] [0 -ne 0]
:node_up_complete[286] exit 0
Aug 13 16:32:28 EVENT COMPLETED: node_up_complete lpar05

In Example 9-52, we can verify that on partition lpar05, three processors and 5
GB of memory are allocated.

Example 9-52 Resources on lpar05 after starting application server

root@lpar05:/ # lsdev -Ccprocessor
324 The Complete Partitioning Guide for IBM Eserver pSeries Servers

proc0 Available 00-00 Processor
proc5 Available 00-05 Processor
proc6 Available 00-06 Processor

root@lpar05:/ # lsattr -El mem0
goodsize 5120 Amount of usable physical memory in Mbytes False
size 5120 Total amount of physical memory in Mbytes False

We stop cluster services on lpar05 using takeover mode. This moves the
resource group that was on lpar05 to lpar06, exactly as if a problem had occurred
on lpar05. This is the fallover of lpar05 to lpar06.

Example 9-53 shows part of the hacmp.out log file on lpar05. The application
server app1 is requested to stop. The resources of lpar05 have to be reduced to
meet the configuration file requirement, which is to have only one processor and
2 GB of memory.

Example 9-53 hacmp.out for lpar05

Stop app1
Stopping application 1
...
Application 1 stopped
 Please wait.... Listing CPU resource for lpar05....
 Please wait.... Listing MEM resource for lpar05....
==
 CPU MEM
Current Target Min Max Free Current Target Min Max Free LMB
==
3 1 1 8 4 20 8 8 88 182
 NEEDED CPU for lpar05 is -2
 NEEDED MEM for lpar05 is -12
Running ssh hscroot@itsohmc /opt/hsc/bin/chhwres -m ITSO_p690 -o r -r cpu -q 2
-p lpar05...
Running ssh hscroot@itsohmc /opt/hsc/bin/chhwres -m ITSO_p690 -o r -r mem -q 12
-p lpar05...

We can verify in Example 9-54 that on partition lpar05, only one processor and 2
GB of memory are now allocated.

Example 9-54 Resource on lpar05 after stopping application server

root@lpar05:/ # lsdev -Ccprocessor
proc5 Available 00-05 Processor

root@lpar05:/ # lsattr -El mem0
goodsize 2048 Amount of usable physical memory in Mbytes False
 Chapter 9. DLPAR operation using a command line interface 325

size 2048 Total amount of physical memory in Mbytes False

Example 9-55 shows part of the hacmp.out log file on lpar06. The application
server starts on lpar06 after the failure of lpar05. The start script increases the
resources as defined in the configuration file so that partition lpar06 can run
application 1 while application 2 is already running.

Example 9-55 hacmp.out for lpar06

Start app1
 Please wait.... Listing CPU resource for lpar06....

Please wait.... Listing MEM resource for lpar06....
==
 CPU MEM
Current Target Min Max Free Current Target Min Max Free LMB
==
1 4 1 8 6 12 30 8 88 182
 NEEDED CPU for lpar06 is 3
 NEEDED MEM for lpar06 is 18
Running ssh hscroot@itsohmc /opt/hsc/bin/chhwres -m ITSO_p690 -o a -r cpu -q 3
-
p lpar06...
Running ssh hscroot@itsohmc /opt/hsc/bin/chhwres -m ITSO_p690 -o a -r mem -q 18
-p lpar06...
Starting application 1
...
Application 1 started

The backup node not only takes the HACMP resources (resource group) from
the failed node, but also takes the partition resources (processors and memory).
326 The Complete Partitioning Guide for IBM Eserver pSeries Servers

Part 3 Advanced
programming rogramming
examples

Part 3
© Copyright IBM Corp. 2003. All rights reserved. 327

328 The Complete Partitioning Guide for IBM Eserver pSeries Servers

Chapter 10. Dynamic reconfiguration
using DLPAR scripts

In this chapter, we offer a sample program that shows how an application can
autonomically adjust its resource sets to dynamic reconfiguration of a partition.

First we discuss the benefits of dynamically reconfiguring applications when a
DLPAR event occurs. We discuss briefly the type of application that is suited for
this. Then we introduce the script dr_httpd_reconfig.sh, which is developed from
the IBM_template.sh script that you can find in the appendix.

We explain the necessary changes to the template script so that the script
autonomically changes the configuration of the IBM HTTP Server whenever the
number of processors in a partition is changed.

10
© Copyright IBM Corp. 2003. All rights reserved. 329

10.1 Type of applications that benefit from DLPAR
There is quite a number of applications which will benefit from an automatic
reconfiguration whenever a change in resources occurs. We do not want show
you a complete list of applications here, but we will give you a brief overview
which type of application will take advantage of a dynamic reconfiguration.

Software licences are sometimes bound to the number of processors or even to
the CPU IDs. Therefor you might have to change the configuration of your
licences when a processor is removed from or added to a partition.

Another example would be a http proxy server running in a partition. Using
paging space for caching in a proxy server has severe impact on the
performance. For preventing the server from paging and therefor keeping all the
cached data in memory you might have to reduce the cache size whenever the
memory size is reduced in a partition. For benefitting from an enlarged memory
size you might want to enlarge the cache size when a DLPAR event occurs.

10.2 A sample script to reconfigure the IBM HTTP
Server

For this example we need the IBM HTTP Server (IHS) installed in the partition.
First we show how to install the IHS in the partition. Then we explain four scripts
that we use to modify the configuration of the IHS. Finally we show how to modify
the sample drmgr script that comes with AIX 5L Version 5.2 so the IHS is
reconfigured dynamically.

Before beginning with the examples, make sure that the IBM HTTP Server is
installed. Use the following command:

lslpp -l http_server.*
lslpp: 0504-132 Fileset http_server.* not installed.

If the IHS is not installed on the system, refer to 10.2.1, “Installation of the IBM
HTTP Server” on page 331. If it is installed in the partition, skip the following
section and proceed to 10.2.2, “Configuration of the httpd processes” on
page 332.

Note: If you see this message, the IHS has not been installed using the AIX
installation procedure, but it could still have been installed manually.
330 The Complete Partitioning Guide for IBM Eserver pSeries Servers

10.2.1 Installation of the IBM HTTP Server
This section explains how to install the IBM HTTP Server on an AIX partition.

Product contents
The IBM HTTP Server is shipped as part of the AIX expansion pack CD-ROM or
can be downloaded from:

http://www.software.ibm.com/webservers/httpservers

The IBM HTTP Server comes in several file packages that contain the IBM HTTP
Server and SSL filesets, as follows:

� Base package, without SSL security:

– http_server.base - Contains the IBM HTTP Server base and source
filesets

� SSL module and SSL library packages (required for SSL):

– http_server.ssl - Contains the IBM HTTP Server SSL module fileset

Pre-installation setup
Before starting the installation of the IBM HTTP Server, you should make sure
that the following are in place:

� Have the install packages available. These either come as a CD-ROM or as
separate files.

� You must have root privileges on the server where you want to install the IHS.

� You should meet the minimum hardware and software requirements for the
IHS.

� Determine the filesets you need.

Installation
For installation of the IHS only, you need the http_server.base.core fileset. To
install the IHS, change to the directory where the fileset is located and use the
following command:

installp -aYd . http_server.base

To make sure the installation is complete and the package is installed properly,
use the following command:

lslpp -l http_server.base.*
Fileset Level State Description
 --
Path: /usr/lib/objrepos
 http_server.base.license 1.3.19.3 COMMITTED HTTP Server Licenses
 Chapter 10. Dynamic reconfiguration using DLPAR scripts 331

 http_server.base.rte 1.3.19.3 COMMITTED HTTP Server Base Run-Time
 http_server.base.source 1.3.19.3 COMMITTED HTTP Server Source Code

Path: /etc/objrepos
 http_server.base.rte 1.3.19.3 COMMITTED HTTP Server Base Run-Time

Your output may differ depending on the version of the IHS you have installed.

Starting the IHS
We want to make sure the IHS is running. The following command restarts the
IHS if it is already running and starts it if it is not running:

/usr/HTTPServer/bin/apachectl restart

10.2.2 Configuration of the httpd processes
The settings of the IHS are configured in the /usr/HTTPServer/conf/http.conf file.

We identify two parameters in the configuration file that will change the
performance of the IHS. In case of a DLPAR event, these parameters will be
changed in the configuration file and the IHS will be restarted. We use these
parameters just as example, and of course you can use this technique to change
other parameters as needed.

To define the number of httpd processes started by the IHS at startup, you can
change the value of StartServers. The default value in httpd.conf is:

StartServers 5

This number defines the minimum number of httpd processes that the IHS
spawns at startup.

You can define the maximum number of connections by changing the following
variable in the configuration file:

MaxClients 150

As the load on the IHS increases with the number of requests it receives, it will
start more httpd processes to serve the incoming requests. This number defines
the maximum number of httpd processes running.

The values shown are the default values you will find in the configuration file after
you install the IHS.

Reloading the configuration file
You can tell the IHS to reload its configuration file in two ways.
332 The Complete Partitioning Guide for IBM Eserver pSeries Servers

HUP Signal: restart now
If you send the HUP signal to the IHS, it will cause the httpd parent to kill all its
child processes. The parent rereads the configuration file, reopens the log files,
and starts a new set of child processes.

USR1 signal: graceful restart
The USR1 signal causes the httpd parent process to advise its children to exit
after their current request. The parent rereads its configuration files and reopens
its log files. As each child dies, the parent starts a new process with the new
configuration parameters.

The graceful restart method is designed to minimize the time in which the server
is unable to serve requests. We will use this method for reconfiguring the IHS
server in the following examples.

10.2.3 Scripts to reconfigure the IHS
For each value we want to modify, we have two scripts—one for reading the
current value from the configuration file, and one for changing the value in the
configuration file.

Reading values from the configuration file
We first explain the scripts we use for reading the values from the configuration
file. The Perl script lsStartServers.pl shown in Example E-1 on page 484 reads
the httpd.conf file and finds the StartServers stanza with a regular expression.
The value of this regular expression is printed to standard out.

The following example shows how you can check the value for StartServers in
the httpd.conf file:

lsStartServers.pl
5

The lsMaxClients.pl script in Example E-2 on page 485 is an almost identical Perl
script that reads the value in the MaxClients stanza from the httpd.conf file. In the
following example we present an analog example for the value of MaxClients:

lsMaxClients.pl
150

Set values
For setting the values for StartServers and MaxClients we have two scripts that
open the configuration file and write the changed value to the file. For setting the
value for StartServers we use chStartServers.pl. You can find the source code in
Example E-1 on page 484.
 Chapter 10. Dynamic reconfiguration using DLPAR scripts 333

For changing the MaxClients value we use chMaxClients.pl. The source code for
this script is in Example E-3 on page 486.

The following examples show how to use these two scripts:

chStartServers.pl 10
chMaxClients.pl 100

In the following examples we define 10 processes per CPU and a maximum
number of 100 connections per CPU for the IHS.

10.2.4 Add one CPU and reconfigure the IHS
In this example we start with one processor in the partition and then add another
one with an DLPAR operation.

We use the IBM_template.sh file (see Appendix B-3, “DLPAR script template:
Korn shell” on page 422) and modify it so that it reconfigures and restarts the IHS
in case of a dynamic reconfiguration of the partition. We only show the
subroutines changed from the IBM_template.sh file. We call our modified Korn
shell script dr_httpd_reconfig.sh.

We introduce two variables that define the values of StartServers per CPU and
MaxClients per CPU. We use these two variables in our sample Perl scripts:

dStartServers=10
dMaxClients=100

These are the values we decrease or increase StartServers or MaxClients by if a
processor is taken out or added to the partition.

When we increase the number of processors in the partition, we change the
configuration of the IHS after the processor is actually taken out of the system.
Therefore, the change has to be made in the post acquire phase. The subroutine
we change in the script is process_postacquire().

The steps the script has to do are as follows:

1. Enlarge StartServers by dStartServers in the httpd.conf file.

– Get the current number for StartServers.

– Add dStartServers to the current StartServers.

– Set the new value for StartServers in httpd.conf.

2. Enlarge MaxClients by dMaxClients in the httpd.conf.

– Get the current number for MaxClients.

– Add dMaxClients to the current MaxClients.
334 The Complete Partitioning Guide for IBM Eserver pSeries Servers

– Set the new value for MaxClients in httpd.conf.

3. Restart the IHS.

– Do a graceful restart of httpd.

Example Example 10-1 shows the code for the process_postacquire() subroutine
in the dr_httpd_reconfig.sh script. To simplify the code, we use the Perl scripts
we introduced before for reading and writing the httpd.conf file.

Example 10-1 Example code for the process_postacquire() subroutine

process_postacquire()
{
 dStartServers=10
 dMaxClients=100

 case"$1" in
 "cpu")
 # get current configuration for StartServers
 nStartServers=`/tmp/lsStartServers.pl`
 # get new number for StartServers
 newStartServers=$(($nStartServers + $dStartServers))
 # change configuration for StartServers in httpd.conf
 /tmp/chStartServers.pl $newStartServers

 # get current configuration for MaxClients
 nMaxClients=`/tmp/lsMaxClients.pl`
 # get new number for MaxClients"
 newMaxClients=$(($nMaxClients + $dMaxClients))
 # change configuration for MaxClients in httpd.conf"
 /tmp/chMaxClients.pl $newMaxClients

 # reload apache config with graceful restart
 /usr/HTTPServer/bin/apachectl graceful

 ;;
 "mem")
 dbg "Resource : mem"
 ;;
 *)
 echo "DR_ERROR=Script does not support Resource $1"
 ;;
 esac

 return 0
}

 Chapter 10. Dynamic reconfiguration using DLPAR scripts 335

Registering the script
Change to the directory where the dr_httpd_reconfig.sh script is located and
issue the following command:

lpar06# drmgr -i dr_http_reconfig.sh

You can check if the script is properly registered with:

lpar06# drmgr -l
DR Install Root Directory: /usr/lib/dr/scripts
Syslog ID: DRMGR
--
/usr/lib/dr/scripts/all/dr_httpd_reconfig.sh AIX DR ksh example
script
 Vendor:IBM, Version:1, Date:10182002
 Script Timeout:10, Admin Override Timeout:0
 Resources Supported:
 Resource Name: cpu Resource Usage: cpu binding for
performance
 Resource Name: mem Resource Usage: Shared(Pinned) memory
for app XYZ
--

Sample DLPAR action
The following shows the output when we add one processor to the partition.

Before we start the DLPAR operation, we check the status of the processor and
the configuration of the IHS:

lpar06 # lsdev -Cc processor
proc20 Available 00-20 Processor
lpar06 # lsStartServers.pl
10
lpar06 # lsMaxClients.pl
100

Then we initiate the DLPAR operation with the following command on the HMC:

hmc $ chhwres -m ITSO_p690 -m lpar07 -r cpu -o a -q 1 -W 4 -d 4

After the DLPAR operation has completed, we again check the number of CPUs
and the configuration of the IHS to verify the changes:

lpar06# lsdev -Cc processor
proc20 Available 00-20 Processor
proc4 Available 00-04 Processor
lpar06# lsStartServers.pl
20
lpar06# lsMaxClients.pl
200
336 The Complete Partitioning Guide for IBM Eserver pSeries Servers

We can see that the drmgr has autonomously reconfigured the IHS. The new
configuration is adjusted to the available resources.

10.2.5 Remove one CPU and reconfigure the IHS
In the next example we start with two processors in the partition and then remove
one processor with a DLPAR operation.

Again we use the two variables that define the values of StartServers per CPU
and MaxClients per CPU:

dStartServers=10
dMaxClients=100

When we reduce the number of processors in the partition, we change the
configuration of the IHS before the processor is actually taken out of the system.
Therefore, the change has to be made in the prerelease phase. The subroutine
we change from the template script is the process_prerelease().

The steps the script has to do are as follows:

1. Decrease StartServers by dStartServers in the httpd.conf file.

– Get the current number for StartServers.

– Subtract dStartServers from the current StartServers.

– Set the new value for StartServers in httpd.conf.

2. Decrease MaxClients by dMaxClients in the httpd.conf.

– Get the current number for MaxClients.

– Subtract dMaxClients from the current MaxClients.

– Set the new value for MaxClients in httpd.conf.

3. Restart the IHS.

– Do a graceful restart of httpd.

Example 10-2 shows the code for the process_prerelease() subroutine in the
dr_httpd_reconfig.sh script. Again, we use our Perl scripts for reading and writing
the httpd.conf file.

Example 10-2 Example code for the process_prerelease() subroutine

process_prerelease()
{
 dStartServers=10
 dMaxClients=100

 case"$1" in
 Chapter 10. Dynamic reconfiguration using DLPAR scripts 337

 "cpu")
 # get current configuration for StartServers
 nStartServers=`/tmp/lsStartServers.pl`
 # get new number for StartServers
 newStartServers=$(($nStartServers - $dStartServers))
 # change configuration for StartServers in httpd.conf
 /tmp/chStartServers.pl $newStartServers

 # get current configuration for MaxClients
 nMaxClients=`/tmp/lsMaxClients.pl`
 # get new number for MaxClients"
 newMaxClients=$(($nMaxClients - $dMaxClients))
 # change configuration for MaxClients in httpd.conf"
 /tmp/chMaxClients.pl $newMaxClients

 # reload apache config with graceful restart
 /usr/HTTPServer/bin/apachectl graceful

 ;;
 "mem")
 dbg "Resource : mem"
 ;;
 *)
 echo "DR_ERROR=Script does not support Resource $1"
 ;;
 esac

 return 0
}

Registering the script
Change to the directory where the dr_httpd_reconfig.sh script is located and
issue the following command:

lpar06 # drmgr -i dr_http_reconfig.sh

With the following command you can check that the script is properly registered:

lpar06 # drmgr -l
DR Install Root Directory: /usr/lib/dr/scripts
Syslog ID: DRMGR
--
/usr/lib/dr/scripts/all/dr_httpd_reconfig.sh AIX DR ksh example
script
 Vendor:IBM, Version:1, Date:10182002
 Script Timeout:10, Admin Override Timeout:0
 Resources Supported:
338 The Complete Partitioning Guide for IBM Eserver pSeries Servers

 Resource Name: cpu Resource Usage: cpu binding for
performance
 Resource Name: mem Resource Usage: Shared(Pinned) memory
for app XYZ
--

Sample DLPAR action
As an example, we show the output when we remove one processor from the
partition.

First we check the status of the processors and the configuration of the IHS
before we start the DLPAR operation:

lpar06 # lsdev -Cc processor
proc20 Available 00-20 Processor
proc4 Available 00-04 Processor

lpar06 # lsStartServers.pl
20
lpar06 # lsMaxClients.pl
200

Then we initiate the DLPAR operation with the following command on the HMC:

hmc$ chhwres -m ITSO_p690 -p lpar07 -r cpu -o r -q 1 -W 4 -d 4

After the DLPAR operation has completed, we again check the number of
processors and the configuration of the IHS to verify the changes:

lpar06 # lsdev -Cc processor
proc4 Available 00-04 Processor
lpar06 # lsStartServers.pl
10
lpar06 # lsMaxClients.pl
100

We can see that the drmgr has autonomously reconfigured the IHS. The new
configuration is adjusted to the available resources.
 Chapter 10. Dynamic reconfiguration using DLPAR scripts 339

340 The Complete Partitioning Guide for IBM Eserver pSeries Servers

Chapter 11. Resource sets

A resource set is a bundle of system resources. It can consist of one or more
processors, one or more memory pools, or a mixture of memory pools and
processors.

In this chapter we describe how to work with resource sets. First we show how to
use the system commands lsrset, mkrset, and rmrset to list, create, and delete
resource sets, respectively. Then we show how to use the rset API to manipulate
resource sets from C source files.

Finally we give a sample program that shows how an application can
autonomously adjust its resource sets to dynamic reconfiguration of the partition.

11
© Copyright IBM Corp. 2003. All rights reserved. 341

11.1 rset commands
In this section we explain how you can work with resource sets using the rset
commands lsrset, mkrset, and rmrset.

11.1.1 lsrset
Now we explain how you can use the lsrset command to display the resource
sets registered in the system global repository. If you issue the command with
the -a option without having any resource sets created, it will give you the default
resource sets, as follows:

lsrset -a
sys/sys0
sys/node.01.00000
sys/node.02.00000
sys/node.03.00000
sys/node.04.00000
sys/node.05.00000
sys/node.05.00001
sys/mem.00000
sys/cpu.00000
sys/cpu.00001

These predefined resource sets show basically the various system detail levels.
In this system we have 7 System Detail Levels (SDL). The first line represents
the whole system on SDL 0. Then follow 5 lines for the SDLs 1 to 5 where the
MCM, for example, is on SDL 3. The CPU is on the lowest level SDL 6, which is
represented by the sys/cpu.00000 and sys/cpu.00001 resource sets. These two
resource sets contain the two processors in our partition.

With the -r option you can view a particular resource set, and the -v option gives
you a more detailed output:

lsrset -vr sys/sys0
T Name Owner Group Mode CPU Memory
r sys/sys0 root system r-r-r- 2 2048
 CPU: 0-1
 MEM: 0

The -o option on the lsrset command is used to show only the resources that
are active in the partition. If we use that command on the sys/sys0 resource set,
we see the same result as without the -o option:

lsrset -vor sys/sys0
T Name Owner Group Mode CPU Memory
r sys/sys0 root system r-r-r- 2 2048
 CPU: 0-1
342 The Complete Partitioning Guide for IBM Eserver pSeries Servers

 MEM: 0

This is because our partition can have a maximum of two processors and both
processors are available.

lsdev -Cc processor
proc3 Available 00-03 Processor
proc4 Available 00-04 Processor

We can configure one of the processors out of the partition and remain with only
one available processor.

hmc $ chhwres -m ITSO_p690 -p lpar08 -r cpu -o r -q 1 -W 4 -d 4

lsdev -Cc processor
proc3 Available 00-03 Processor

The output shows that we have only one processor left in our partition. Now we
see a difference between the output with and without the -o option on the lsrset
command:

lsrset -vr sys/sys0
T Name Owner Group Mode CPU Memory
r sys/sys0 root system r-r-r- 2 2048
 CPU: 0-1
 MEM: 0

lsrset -vor sys/sys0
T Name Owner Group Mode CPU Memory
r sys/sys0 root system r-r-r- 1 2048
 CPU: 0
 MEM: 0

Without the -o option we see all the processors in the resource set but when we
issue the lsrset command with the -o option, we only see the available
resources. Only the processor with the logical CPU number 0 is shown because
the other one has been deconfigured by the DLPAR operation.

This can be used to get the logical CPU numbers of the processors available in
the partition. Since the logical CPU numbers are not necessarily in consecutive
order, this can be a useful command.

You can create a resource set with all possible processors in it, even if not all of
these processors are available in the partition:

lsrset -vr test/rset
T Name Owner Group Mode CPU Memory
a test/rset root system rwr-r- 256 0
 CPU: 0-255
 MEM: <empty>
 Chapter 11. Resource sets 343

The lsrset command with the -o option shows all available processors with their
logical CPU numbers:

lsrset -ovr test/rset
T Name Owner Group Mode CPU Memory
a test/rset root system rwr-r- 2 0
 CPU: 0-1
 MEM: <empty>

In the next section the lsrset command is used to display the resource sets we
create with the mkrset command.

11.1.2 mkrset
The mkrset command is used to create resource sets. In the following example,
we create a resource set named rset in the namespace test with one processor
in it. The processor in the resource set is the one that has the logical CPU
number 0.

mkrset -c 0 test/rset
1480-353 rset test/rset created.

We see our resource set listed together with the default resource sets in the
system global repository:

lsrset -a
sys/sys0
sys/node.01.00000
sys/node.02.00000
sys/node.03.00000
sys/node.04.00000
sys/node.05.00000
sys/node.05.00001
sys/mem.00000
sys/cpu.00000
sys/cpu.00001
test/rset

We can view the configuration of the newly created resource set with the lsrset
command. The output shows our resource set with logical CPU 0:

lsrset -vr test/rset
T Name Owner Group Mode CPU Memory
a test/rset root system rwr-r- 1 0
 CPU: 0
 MEM: <empty>

Note: You cannot call mkrset to modify an existing resource set. You have to
delete the existing resource set first.
344 The Complete Partitioning Guide for IBM Eserver pSeries Servers

Processors contained in the resource sets you create don’t have to be available
in a partition. In the next example we create a resource set with ten processors
while there are only two processors available in the partition:

mkrset -c 0-9 test/rset
1480-353 rset test/rset created.

The lsrset command shows the resource set we have created. We can see that
the resource set contains ten processors and there are two processors available.

lsrset -vr test/rset
T Name Owner Group Mode CPU Memory
a test/rset root system rwr-r- 10 0
 CPU: 0-9
 MEM: <empty>

lsrset -vor test/rset
T Name Owner Group Mode CPU Memory
a test/rset root system rwr-r- 2 0
 CPU: 0-1
 MEM: <empty>

The next example shows you how to create a resource set containing memory:

mkrset -c 0 -m 0 test/rset
1480-353 rset test/rset created.

lsrset -vr test/rset
T Name Owner Group Mode CPU Memory
a test/rset root system rwr-r- 1 2048
 CPU: 0
 MEM: 0

With the mkrset command you can only create resource sets that have at least
one processor in it. The creation of a resource set without any processors in the
resource set will fail.

mkrset -m 0 test/rset
1480-352 Specify the -c option.
1480-350 Usage: mkrset -c cpuNum [cpuNum] [-m memNum [memNum]] rsetname

You have to specify a processor even if the logical CPU you specify is not
available in the partition:

mkrset -c 255 -m 0 test/rset
1480-353 rset test/rset created.

lsrset -vr test/rset
T Name Owner Group Mode CPU Memory
a test/rset root system rwr-r- 1 2048
 CPU: 255
 Chapter 11. Resource sets 345

 MEM: 0

Even if the syntax of the mkrset command allows you to create resource sets
with one or more memory regions in AIX 5L Version 5.2, you can only create
resource sets with either all the available memory or no memory at all. It is not
possible to create a resource set specifying one or more regions with the -m
option even if the mkrset command will not fail.

11.1.3 rmrset
The rmset command is used to remove a resource set from the system global
repository:

rmrset test/rset
1480-401 rset 'test/rset' deleted.

rmrset sys/sys0
1480-407 The requested operation is not permitted.

11.2 The rset API
The rset API is used to manipulate resource sets from within C source code.

In AIX 5L Version 5.2 the rset API allows us to restrict an application to the
resources contained in a resource set (this can also be done with the attachrset
and detachrset system commands). In a partitioned environment you can run
applications on separate partitions and therefore assign separate system
resources to different applications. But even in a partitioned environment the use
of resource sets might be useful. It can be used to isolate compatible workloads
inside a single partition.

It can also be used to create overlapping resource sets, and therefore you can
run applications with only partly common resources.

If a processor that is part of a resource set is removed, it is necessary to take that
processor first out of the resource set before it can be removed from the partition.
Otherwise, the processor will be busy and can’t be removed from the partition.

Note: For creating a resource set containing memory with mkrset, there must
be at least one processor in the resource set.

Note: You cannot remove one of the predefined resource sets from the
system global repository.
346 The Complete Partitioning Guide for IBM Eserver pSeries Servers

11.2.1 The rset subroutines
In this section we describe the syntax of the rset subroutines.

ra_attachrset()
This subroutine is used to attach a process to a resource set. It attaches a
process specified by the rstype and rsid parameters to a resource set that is
specified by the rset parameter.

The process is identified by the process ID. A process ID value of RS_MYSELF
indicates the attachment applies to the current process.

The following conditions must be met to successfully attach a process to a
resource set:

� The resource set must contain processors that are available in the system.

� The calling process must either have root authority or have
CAP_NUMA_ATTACH capability.

� The calling process must either have root authority or the same effective user
ID as the target process.

� The target process must not contain any threads that have bindprocessor
bindings to a processor.

� The resource set must be contained in (be a subset of) the target process'
partition resource set.

If any of these conditions are not met, the attachment fails.

Once a process is attached to a resource set, the threads in the process will only
run on processors contained in the resource set.

int ra_attachrset (rstype, rsid, rset, flags)
rstype_t rstype;
rsid_t rsid;
rsethandle_t rset;
unsigned int flags;

ra_detachrset
The ra_detachrset() subroutine is used to detach a work process specified by
rstype and rsid from a resource set. The process is identified by the process ID.
A process ID value of RS_MYSELF indicates the detach command applies to the
current process.

int ra_detachrset (rstype, rsid, flags)
rstype_t rstype;
rsid_t rsid;
unsigned int flags;
 Chapter 11. Resource sets 347

ra_getrset
The ra_getrset() subroutine returns the resource set to which a specified process
is attached. The process is identified by the process ID. A process ID value of
RS_MYSELF indicates the resource set attached to the current process is
requested.

int ra_getrset (rstype, rsid, flags, rset)
rstype_t rstype;
rsid_t rsid;
unsigned int flags;
rsethandle_t rset;

rs_alloc
The rs_alloc() subroutine allocates a resource set and initializes it according to
the information specified by the flags parameter. The value of the flags
parameter determines how the new resource set is initialized.

The handle for the new resource set is returned by the subroutine.

rsethandle_t rs_alloc (flags)
unsigned int flags;

The flags parameter specifies how the new resource set is initialized. It takes
one of the following values, defined in rset.h:

RS_EMPTY (or 0 value)
The resource set is initialized to contain no resources.

RS_SYSTEM The resource set is initialized to contain all available system
resources.

RS_ALL The resource set is initialized to contain all resources.

RS_PARTITION The resource set is initialized to contain the resources in the
caller's process partition resource set.

rs_discardname
The rs_discardname() subroutine removes the definition of the resource set from
the system global repository. The resource set is identified by the namespace
and rsname parameters. The specified resource set is removed from the registry,
and can no longer be shared with other applications.

In order to be able to discard a name from the global repository, the calling
process must have root authority or attachment privilege, and an effective user
ID equal to that of the rsname parameter's creator.

int rs_discardname(namespace, rsname)
char *namespace, *rsname;
348 The Complete Partitioning Guide for IBM Eserver pSeries Servers

rs_free
The rs_free() subroutine frees a resource set identified by the rset parameter.
The resource set must have been allocated by the rs_alloc() subroutine.

void rs_free(rset)
rsethandle_t rset;

rs_getinfo
The rs_getinfo() subroutine retrieves information about the resource set
identified by the rset parameter. Depending on the value of the info_type
parameter, the rs_getinfo() subroutine returns information about the number of
available processors, the number of available memory pools, or the amount of
available memory contained in the resource rset. The subroutine can also return
global system information such as the maximum system detail level, the
symmetric multiprocessor (SMP) and multiple chip module (MCM) system detail
levels, and the maximum number of processor or memory pool resources in a
resource set.

int rs_getinfo(rset, info_type, flags)
rsethandle_t rset;
rsinfo_t info_type;
unsigned int flags;

The info_type parameter specifies the type of information being requested. One
of the following values (defined in rset.h) can be used:

R_NUMPROCS The number of available processors in the resource set is
returned.

R_NUMMEMPS The number of available memory pools in the resource
set is returned.

R_MEMSIZE The amount of available memory (in MB) contained in the
resource set is returned.

R_MAXSDL The maximum system detail level of the system is
returned.

R_MAXPROCS The maximum number of processors that may be
contained in a resource set is returned.

R_MAXMEMPS The maximum number of memory pools that may be
contained in a resource set is returned.

R_SMPSDL The system detail level that corresponds to the traditional
notion of an SMP is returned. A system detail level of 0 is
returned if the hardware system does not provide system
topology data.

R_MCMSDL The system detail level that corresponds to resources
packaged in an MCM is returned. A system detail level of
 Chapter 11. Resource sets 349

0 is returned if the hardware system does not have MCMs
or does not provide system topology data.

rs_getnamedrset
The rs_getnamedrset() subroutine retrieves a resource set definition from the
system registry. The namespace and rsname parameters identify the resource
set to be retrieved. The rset parameter identifies where the retrieved resource set
should be returned. The namespace and rsname parameters identify a
previously registered resource set definition.

The calling process must have root authority or read access rights to the
resource set definition in order to retrieve it.

The rset parameter must be allocated (using the rs_alloc() subroutine) prior to
calling the rs_getnamedrset() subroutine.

int rs_getnamedrset (namespace, rsname, rset)
char *namespace, *rsname;

rs_op
The rs_op() subroutine performs the operation specified by the command
parameter on resource set rset1, or both resource sets rset1 and rset2.

int rs_op (command, rset1, rset2, flags, id)
unsigned int command;
rsethandle_t rset1, rset2;
unsigned int flags;
unsigned int id;

The command parameter specifies the operation to apply to the resource sets
identified by rset1 and rset2. One of the following values, defined in rset.h, can
be used:

RS_UNION The resources contained in either rset1 or rset2 are
stored in rset2.

RS_INTERSECTION The resources that are contained in both rset1 and
rset2 are stored in rset2.

RS_EXCLUSION The resources in rset1 that are also in rset2 are
removed from rset2. On completion, rset2 contains all
the resources that were contained in rset2 but were
not contained in rset1.

RS_COPY All resources in rset1 whose type is flags are stored in
rset2. If rset1 contains no resources of this type, rset2
will be empty. The previous content of rset2 is lost,
while the content of rset1 is unchanged.
350 The Complete Partitioning Guide for IBM Eserver pSeries Servers

RS_FIRST The first resource whose type is flags is retrieved from
rset1 and stored in rset2. If rset1 contains no
resources of this type, rset2 will be empty.

RS_NEXT The resource from rset1 whose type is flags and that
follows the resource contained in rset2 is retrieved and
stored in rset2. If no resource of the appropriate type
follows the resource specified in rset2, rset2 will be
empty.

RS_NEXT_WRAP The resource from rset1 whose type is flags and that
follows the resource contained in rset2 is retrieved and
stored in rset2. If no resource of the appropriate type
follows the resource specified in rset2, rset2 will
contain the first resource of this type in rset1.

RS_ISEMPTY Test if resource set rset1 is empty.

RS_ISEQUAL Test if resource sets rset1 and rset2 are equal.

RS_ISCONTAINED Test if all resources in resource set rset1 are also
contained in resource set rset2.

RS_TESTRESOURCE Test if the resource whose type is flags and index is id
is contained in resource set rset1.

RS_ADDRESOURCE Add the resource whose type is flags and index is id to
resource set rset1.

RS_DELRESOURCE Delete the resource whose type is flags and index is id
from resource set rset1.

The flags parameter specifies the type of the resource that will be retrieved from
rset1 or rset2. This parameter is constructed by logically ORing one or more of
the following values, defined in rset.h:

R_PROCS Processors

R_MEMPS Memory pools

R_ALL_RESOURCES Processors and memory pools

rs_registername
The rs_registername() subroutine registers, in the system resource registry
(within the name space identified by namespace), the definition of the resource
set identified by the rset handle. It does this by associating with it the name
specified by the null-terminated string structure pointed to by rsname.

If rsname does not exist, the owner and group IDs of rsname are set to the
caller's owner and group IDs, and the access control information for rsname is
set according to the mode parameter.
 Chapter 11. Resource sets 351

If rsname already exists, its owner and group IDs and its access control
information are left unchanged, and the mode parameter is ignored. This name
can be shared with any applications to identify a dedicated resource set.

Using the command parameter, you can ask to overwrite or not to overwrite the
rsname parameter's registration if it already exists in the global repository within
the name space identified by namespace. If rsname already exists within the
specified name space and the command parameter is set to not overwrite, an
error is reported to the calling process.

int rs_registername(rset, namespace, rsname, mode, command)
rsethandle_t rset;
char *namespace, *rsname;
unsigned int mode, command;

The command parameter specifies whether the rsname parameter's registration
should be overwritten if it already exists in the global repository. This parameter
takes one of the following values, defined in rset.h:

RS_REDEFINE The rsname parameter should be redefined if it already
exists in the name space identified by namespace. In
such a case, the calling process must have write access
to rsname.

RS_DEFINE The rsname parameter should not be redefined if it
already exists in the name space identified by
namespace. If this happens, an error is reported to the
calling process

11.2.2 Working with the rset API
In this section we explain how to work with the rset API and give sample code for
adding resources to or removing them from a resource set named test/rset.

We first create the resource set and then add or remove resources. Then we give
examples of how you can delete a resource set with the rset API. We show how
to compile1 and run the examples and how to verify the results with the lsrset
command.

Creating a resource set
The resource set is named rset and we create a new namespace test for it. We
allocate an empty resource set and register it in the system global repository.

1 Compiling these examples requires that the C compiler is installed and available on your AIX
system.
352 The Complete Partitioning Guide for IBM Eserver pSeries Servers

Example 11-1 Creating an empty resource set

#include <sys/rset.h>

int main(int argc, char **argv) {
 rsethandle_t rset;
 int rc;

 /* allocate new rset */
 rset = rs_alloc(RS_EMPTY);

 /* register resource set in global system repository */
 rc = rs_registername(rset, "test", "rset", RS_IRUSR | RS_IWUSR, RS_DEFINE);
 if (rc != 0) perror("rs_registername()");

 return 0;
}

The following example shows how to compile and run the example. With the
lsrset command we verify that we have created a resource set with no
processors and no memory contained.

cc -o rset_create rset_create.c
rset_create
lsrset -vr test/rset
T Name Owner Group Mode CPU Memory
a test/rset root system rw---- 0 0
 CPU: <empty>
 MEM: <empty>

In this example we created an empty resource set. It is not possible to create an
empty resource set using the mkrset command.

Adding a CPU to a resource set
In this example we create a resource set with one processor in it. We first
allocate a new resource set that is empty. Then we add one processor to that
resource set. Finally we register the resource set.

Example 11-2 Adding a processor to an new resource set

#include <sys/rset.h>

int main(int argc, char **argv) {
 rsethandle_t rset;

Note: Before you can use another example to create a resource, you either
have to choose a different name for the resource set or delete it from the
system global repository.
 Chapter 11. Resource sets 353

 int rc;

 /* allocate new rset */
 rset = rs_alloc(RS_EMPTY);

 /* add a CPU to the resource set */
 rc = rs_op(RS_ADDRESOURCE, rset, 0, R_PROCS, 0);
 if (rc != 0) perror("rs_op()");

 /* register resource set */
 rc = rs_registername(rset, "test", "rset", RS_IRUSR | RS_IWUSR, RS_DEFINE);
 if (rc != 0) perror("rs_registername()");

 return 0;
}

The following example shows how to compile and run the code. We use the
lsrset command to verify the result:

cc -o rset_create_cpu rset_create_cpu.c
rset_create_cpu
lsrset -vr test/rset
T Name Owner Group Mode CPU Memory
a test/rset root system rw---- 1 0
 CPU: 0
 MEM: <empty>

We don’t necessarily have to register a new resource set. We can also modify an
existing one. Example 11-3 shows how you can add a second processor to an
existing resource set. We first read the resource set named test/rset. Then we
add one processor and register the resource set again using the
rs_registername() subroutine. For an existing resource set you have to give the
RS_REDEFINE command to the rs_registername() subroutine.

Example 11-3 Adding a processor to an existing resource set

#include <sys/rset.h>

int main(int argc, char **argv) {
 rsethandle_t rset;
 int rc;

 /* allocate new rset */
 rset = rs_alloc(RS_EMPTY);

 /* read rset */
 rc = rs_getnamedrset("test", "rset", rset);
 if (rc != 0) perror("rs_getnamedrset()");
354 The Complete Partitioning Guide for IBM Eserver pSeries Servers

 /* add a CPU to the resource set */
 rc = rs_op(RS_ADDRESOURCE, rset, 0, R_PROCS, 1);
 if (rc != 0) perror("rs_op()");

 /* register resource set */
 rc = rs_registername(rset, "test", "rset", RS_IRUSR | RS_IWUSR,
RS_REDEFINE);
 if (rc != 0) perror("rs_registername()");

 return 0;
}

We first create a resource set with one processor using the mkrset command:

mkrset -c 0 test/rset
1480-353 rset test/rset created.
lsrset -vr test/rset
T Name Owner Group Mode CPU Memory
a test/rset root system rwr-r- 1 0
 CPU: 0
 MEM: <empty>

Then we compile the example and run it. With the lsrset command we can
verify that our code has added a second processor to the resource set:

cc -o rset_addcpu rset_addcpu.c
rset_addcpu
lsrset -vr test/rset
T Name Owner Group Mode CPU Memory
a test/rset root system rwr-r- 2 0
 CPU: 0-1
 MEM: <empty>

Removing a CPU from a resource set
Example 11-4 shows how you can remove a processor from the resource set
using the rset API subroutines.

We read the resource set test/rset and remove one processor from the resource
set with the rs_op() subroutine. Then we register the resource set in the system
global repository using the rs_registername() subroutine with the RS_REDEFINE
command.

Example 11-4 Removing a processor from a resource set

#include <sys/rset.h>

int main(int argc, char **argv) {
 rsethandle_t rset;
 int rc;
 Chapter 11. Resource sets 355

 /* allocate new rset */
 rset = rs_alloc(RS_EMPTY);

 /* read rset */
 rc = rs_getnamedrset("test", "rset", rset);
 if (rc != 0) perror("rs_getnamedrset()");

 /* remove a CPU from the resource set */
 rc = rs_op(RS_DELRESOURCE, rset, 0, R_PROCS, 0);
 if (rc != 0) perror("rs_op()");

 /* register resource set */
 rc = rs_registername(rset, "test", "rset", RS_IRUSR | RS_IWUSR,
RS_REDEFINE);
 if (rc != 0) perror("rs_registername()");

 return 0;
}

With the mkrset command we create a resource set with one processor and
memory in it:

mkrset -c 0 -m 0 test/rset
1480-353 rset test/rset created.
lsrset -vr test/rset
T Name Owner Group Mode CPU Memory
a test/rset root system rwr-r- 1 2048
 CPU: 0
 MEM: 0

Then we compile our program and remove the processor from the resource set.
With the lsrset command you can verify that there are no processors left and
only the memory remains in the resource set:

cc -o rset_remcpu rset_remcpu.c
rset_remcpu
lsrset -vr test/rset
T Name Owner Group Mode CPU Memory
a test/rset root system rwr-r- 0 2048
 CPU: <empty>
 MEM: 0

Adding memory to a resource set
Example 11-5 adds memory to a resource set. The memory can only be added
in total, not in chunks.
356 The Complete Partitioning Guide for IBM Eserver pSeries Servers

We create a new resource set and add memory with the rs_op() subroutine.
Then we register the resource set in the system global repository.

Example 11-5 Adding memory to a new resource set

#include <sys/rset.h>

int main(int argc, char **argv) {
 rsethandle_t rset;
 int rc;

 /* allocate new rset */
 rset = rs_alloc(RS_EMPTY);

 /* add memory to the resource set */
 rc = rs_op(RS_ADDRESOURCE, rset, 0, R_MEMPS, 0);
 if (rc != 0) perror("rs_op()");

 /* register resource set */
 rc = rs_registername(rset, "test", "rset", RS_IRUSR | RS_IWUSR, RS_DEFINE);
 if (rc != 0) perror("rs_registername()");

 return 0;
}

We first compile the code and run it:

cc -o rset_create_mem rset_create_mem.c
rset_create_mem

Then we verify the results with the lsrset command:

lsrset -vr test/rset
T Name Owner Group Mode CPU Memory
a test/rset root system rw---- 0 2048
 CPU: <empty>
 MEM: 0

We see a resource set with all the available memory and no processors
contained.

We can also add memory to an existing resource set. The following code adds
memory to a resource set we created before. We first read the resource set
named test/rset and add memory with the rs_op() subroutine. Then we register
the resource set in the system global repository. For an existing resource set you
have to give the RS_REDEFINE command to the rs_registername() subroutine.

Example 11-6 Adding memory to an existing resource set

#include <sys/rset.h>
 Chapter 11. Resource sets 357

int main(int argc, char **argv) {
 rsethandle_t rset;
 int rc;

 /* allocate new rset */
 rset = rs_alloc(RS_EMPTY);

 /* read rset */
 rc = rs_getnamedrset("test", "rset", rset);
 if (rc != 0) perror("rs_getnamedrset()");

 /* add memory to the resource set */
 rc = rs_op(RS_ADDRESOURCE, rset, 0, R_MEMPS, 0);
 if (rc != 0) perror("rs_op()");

 /* register resource set */
 rc = rs_registername(rset, "test", "rset", RS_IRUSR | RS_IWUSR,
RS_REDEFINE);
 if (rc != 0) perror("rs_registername()");

 return 0;
}

We first create a resource set with the mkrset command. This resource set
contains one processor.

cc -o rset_addmem rset_addmem.c
mkrset -c 0 test/rset
1480-353 rset test/rset created.
lsrset -vr test/rset
T Name Owner Group Mode CPU Memory
a test/rset root system rwr-r- 1 0
 CPU: 0
 MEM: <empty>

Then we compile the example code and run it:

cc -o rset_addmem rset_addmem.c
rset_addmem

With the lsrset command we can verify that the resource set contains the
processor and the available system memory:

lsrset -vr test/rset
T Name Owner Group Mode CPU Memory
a test/rset root system rwr-r- 1 2048
 CPU: 0
 MEM: 0
358 The Complete Partitioning Guide for IBM Eserver pSeries Servers

Removing memory from a resource set
Example 11-7 shows how to remove memory from a resource set with the rset
API.

We first read the resource set test/rset. Then we remove the memory from the
resource set with the rs_op() subroutine. With the rs_registername() subroutine
we register the resource set in the global repository. Again you have to use the
RS_REDEFINE command with the rs_registername() subroutine.

Example 11-7 Removing memory from a resource set

#include <sys/rset.h>

int main(int argc, char **argv) {
 rsethandle_t rset;
 int rc;

 /* allocate new rset */
 rset = rs_alloc(RS_EMPTY);

 /* read rset */
 rc = rs_getnamedrset("test", "rset", rset);
 if (rc != 0) perror("rs_getnamedrset()");

 /* remove memory from the resource set */
 rc = rs_op(RS_DELRESOURCE, rset, 0, R_MEMPS, 0);
 if (rc != 0) perror("rs_op()");

 /* register resource set */
 rc = rs_registername(rset, "test", "rset", RS_IRUSR | RS_IWUSR,
RS_REDEFINE);
 if (rc != 0) perror("rs_registername()");

 return 0;
}

With the mkrset command we create a resource set with one processor and
memory in it:

mkrset -c 0 -m 0 test/rset
1480-353 rset test/rset created.
lsrset -vr test/rset
T Name Owner Group Mode CPU Memory
a test/rset root system rwr-r- 1 2048
 CPU: 0
 MEM: 0
 Chapter 11. Resource sets 359

Then we compile our program and remove the memory from the resource set.
With the lsrset command you can verify that only the processor is left in the
resource set:

cc -o rset_remmem rset_remmem.c
rset_remmem
lsrset -vr test/rset
T Name Owner Group Mode CPU Memory
a test/rset root system rwr-r- 1 0
 CPU: 0
 MEM: <empty>

Deleting a resource set
Finally we delete the resource set named test/rset from the system global
repository. This can only be done if the resource set has been registered in the
global repository with the rs_registername() subroutine.

The resource set can be removed from the global repository by calling the
rs_discardname() subroutine and giving the name and namespace of the
resource set as arguments.

Example 11-8 Deleting a resource set from the system global repository

#include <sys/rset.h>

int main(int argc, char **argv) {
 int rc;

 rc = rs_discardname("test", "rset");
 if (rc != 0) perror("rs_discardname()");

 return 0;
}

With the mkrset command we create a resource set:

mkrset -c 0 test/rset
1480-353 rset test/rset created.
lsrset -vr test/rset
T Name Owner Group Mode CPU Memory
a test/rset root system rwr-r- 1 0
 CPU: 0
 MEM: <empty>

Then we compile our program and delete the resource set with it:

cc -o rset_delete rset_delete.c
rset_delete
lsrset -vr test/rset
360 The Complete Partitioning Guide for IBM Eserver pSeries Servers

1480-157 'test/rset': No such rset
T Name Owner Group Mode CPU Memory

Listing all available CPU numbers
Example 11-9 shows how you can list all available logical CPUs using the rset
API.

Example 11-9 Listing all available logical CPU numbers

#include <stdio.h>
#include <sys/rset.h>

int main(int argc, char **argv) {
 rsethandle_t rset;
 int rc, maxprocs;
 unsigned int i;

 /* allocate new rset with all system resources */
 rset = rs_alloc(RS_SYSTEM);

 /* get maximum number of cpus */
 maxprocs = rs_getinfo(NULL, R_MAXPROCS, 0);
 if (maxprocs < 0) perror("rs_getinfo()");

 /* step through all possible cpu numbers and check if it is in system */
 for(i = 0; i < maxprocs; i++) {
 rc = rs_op(RS_TESTRESOURCE, rset, 0, R_PROCS, i);
 if (rc < 0) perror("rs_op()");
 if (rc == 1) printf("cpu id: %u\n", i);
 }

 return 0;
}

If you compile this example and run it in a partition with two processors available,
it will give you the following output:

cc -O block_cpu.c -o block_cpu
rset_list_cpu
cpu id: 0
cpu id: 1

You see that we have two processors available in our partition and that they have
the logical CPU numbers 0 and 1.
 Chapter 11. Resource sets 361

11.2.3 A DLPAR-aware application that is using the rset API
In this section we describe an example of a DLPAR-aware application. For
creating this application we use the sample application shown in B.1, “Sample
DLPAR-aware application using a signal handler” on page 433. We modify the
code so it will create a resource set at startup. When the partition is reconfigured,
the application will receive the SIGRECONFIG and start the signal handler. The
signal handler is able to detect whether the modified resource is part of the
resource set it is attached to.

If a processor that is taken out of the partition is contained in the resource set,
the signal handler removes that processor from the resource set and adds a
different processor to it. The application hereby is moved to another processor.

If an additional processor is added to the system, the signal handler removes the
current processor from the resource set and puts the newly added processor into
the resource set.

Reconfiguration application example
We create an application that reconfigures its resource set in case of a dynamic
reconfiguration. We start with the example in Example B-4 on page 434 and
modify the necessary parts.

First we have to modify the main program so it creates a resource set and
attaches its process ID to it.

The include statement is best located near the other include statements.

Example 11-10 Modified main program

#include <sys/rset.h>

/*===*/
/* Main application */
/*===*/

/*===*/
/* Some Application that is registered for DR signals */
/* */
/* Detailed Description: */
/* This is a sample program that registers the signal handler */
/* function that will response to the SIGRECONFIG signal. */
/* */
/* Output: None */
/* Inputs: None */
/*===*/
int
362 The Complete Partitioning Guide for IBM Eserver pSeries Servers

main(int argc, char *argv[], char *envp[])
{
 int rc;
 struct sigaction sigact_save, sigact;

 rsethandle_t rset;
 rsid_t rsid;
 unsigned int cpu_id;

/* Start: register this application for a DR signal. */
 if ((rc = sigemptyset(&sigact.sa_mask)) != 0) {
 perror_msg("sigemptyset()", errno, __LINE__);
 exit(1);
 }
 if ((rc = sigemptyset(&sigact_save.sa_mask)) != 0) {
 perror_msg("sigemptyset()", errno, __LINE__);
 exit(1);
 }

 /* register the signal handler function dr_func. */
 sigact.sa_handler = dr_func;
 sigact.sa_flags |= SA_SIGINFO;

 if ((rc = sigaction(SIGRECONFIG, &sigact, &sigact_save)) != 0) { /* #A */
 perror_msg("sigaction()", errno, __LINE__);
 exit(1);
 }

/* define and register resource set */
 /* allocate empty resource set */
 if ((rset = rs_alloc(RS_EMPTY)) == 0) {;
 perror_msg("rs_alloc()", errno, __LINE__);
 exit(1);
 }

 /* get logical cpu id in partition */
 cpu_id = next_cpu(0);

 /* add cpu to resource set */
 if ((rc = rs_op(RS_ADDRESOURCE, rset, 0, R_PROCS, cpu_id)) != 0) {
 perror_msg("rs_op()", errno, __LINE__);
 exit(1);
 }

 /* attach process to resource set */
 rsid.at_pid = RS_MYSELF;
 if ((rc = ra_attachrset(R_PROCESS, rsid, rset , 0)) != 0) {
 perror_msg("rs_attachrset()", errno, __LINE__);
 Chapter 11. Resource sets 363

 exit(1);
 }

/* Finish: registered the signal handler. */
 while (1) { /* #B */
 ;
 /* your application logic goes here. */
 }

 exit(0);

}

As we have already seen, the logical CPU numbers are not always consecutive.
For creating a resource set with one processor in it we must find a logical CPU
that is in the system. We do that with our own subroutine, shown in
Example 11-11.

This subroutine is also used for finding a new logical CPU ID. It takes a logical
CPU ID as argument and tries to find another logical CPU ID. If it can’t find one, it
returns the current logical CPU number as output, which means there is only one
processor in the partition.

The subroutine allocates a resource set with all available system resources in it.
Then it steps through all possible logical CPU IDs until it finds a CPU ID that is
available and is different from the old one.

Example 11-11 New subroutine for finding the logical CPU number

/*===*/
/* Description: get new logical cpu number */
/* This function searches for a new logical cpu number in the */
/* partition. If there is no other cpu the old number is */
/* returned as output. */
/* */
/* Output: new logical cpu number */
/* Inputs: current logical cpu number */
/*===*/
unsigned int next_cpu(unsigned int old_id) {
 rsethandle_t rset;
 rsid_t rsid;

 unsigned int new_id, i;
 int rc, maxprocs;

 /* return old logical cpu number if no new cpu is found*/
 new_id = old_id;
364 The Complete Partitioning Guide for IBM Eserver pSeries Servers

 /* allocate resource set with all system resources */
 rset = rs_alloc(RS_SYSTEM);

 /* get maximum number of cpus */
 if ((maxprocs = rs_getinfo(NULL, R_MAXPROCS, 0)) < 0) {
 perror_msg("rs_getinfo()", errno, __LINE__);
 exit(1);
 }

 /* choose new cpu */
 i = 0;
 while ((new_id == old_id) && (i < maxprocs)) {
 if ((rc = rs_op(RS_TESTRESOURCE, rset, 0, R_PROCS, i)) < 0) {
 perror_msg("rs_op()", errno, __LINE__);
 exit(1);
 }
 if (rc == 1) {
 new_id = i;
 }
 i++;
 }

 return new_id;
}

The modified preRelease_cpu() subroutine detects when a processor in the
resource set is removed from the partition. It then modifies the resource set, so
the removed logical CPU is taken out of the resource set and another logical
CPU in the partition is added to the resource set.

Example 11-12 The modified preRelease_cpu() subroutine

/*===*/
/* Cpu pre release phase */
/* */
/* Detailed Description: */
/* This should prepare the application for cpu resources being */
/* removed. */
/* */
/* Output: integer value indicating status of DR operation */
/* Values: DR_API_SUCCESS */
/* DR_API_FAIL */
/* Inputs: None */
/*===*/
int preRelease_cpu(void)
{
 int l_rc = DR_API_SUCCESS;
 Chapter 11. Resource sets 365

 rsethandle_t rset;
 rsid_t rsid;
 unsigned int old_id, new_id;
 int rc;

 fprintf(l_dbgFd, "*****Entered PreRelease_cpu*****\n");

 /* Perform actions here */

 /* get current logical cpu number */
 old_id = dr_info.lcpu;
 printf("logical CPU %d is removed\n", old_id);

 /* get resource set our pid is attached to */
 rset = rs_alloc(RS_EMPTY);
 rsid.at_pid = RS_MYSELF;
 if ((rc = ra_getrset(R_PROCESS, rsid, 0, rset)) < 0) {
 perror_msg("rs_getrset()", errno, __LINE__);
 exit(1);
 }

 /* test if cpu is in our resource set*/
 if ((rc = rs_op(RS_TESTRESOURCE, rset, 0, R_PROCS, old_id)) < 0) {
 perror_msg("rs_op()", errno, __LINE__);
 exit(1);
 }
 /* cpu is in resource set and we have to move it */
 if (rc == 1) {
 /* change cpu in resource set */
 new_id = next_cpu(old_id);
 /* remove old cpu from resource set */
 if ((rc = rs_op(RS_DELRESOURCE, rset, 0, R_PROCS, old_id)) != 0) {
 perror_msg("rs_op()", errno, __LINE__);
 exit(1);
 }
 /* put new cpu in resource set */
 if ((rc = rs_op(RS_ADDRESOURCE, rset, 0, R_PROCS, new_id)) != 0) {
 perror_msg("rs_op()", errno, __LINE__);
 exit(1);
 }
 /* reattach resource set to our pid */
 rsid.at_pid = RS_MYSELF;
 if ((rc = ra_attachrset(R_PROCESS, rsid, rset , 0)) != 0) {
 perror_msg("rs_attachrset()", errno, __LINE__);
 exit(1);
 }
 }

 return l_rc;
366 The Complete Partitioning Guide for IBM Eserver pSeries Servers

}

The changes we need when we add a processor to the partition go into the
postAcquire_cpu() subroutine.

The process modifies the resource set each time a processor is added, so that
the process runs on the newly added logical CPU.

Example 11-13 The modified postAcquire_cpu() subroutine

/*===*/
/* CPU post acquire phase */
/* */
/* Detailed Description: */
/* After a cpu addition, this function allows the application */
/* access to the new resources. If the application was stopped, */
/* iy should be restarted here. */
/* */
/* Output: integer value indicating status of DR operation */
/* Values: DR_API_SUCCESS */
/* DR_API_FAIL */
/* Inputs: None */
/*===*/
int postAcquire_cpu(void)
{
 int l_rc = DR_API_SUCCESS;

 rsethandle_t rset;
 rsid_t rsid;
 unsigned int old_id, new_id;
 int rc, maxprocs, i;

 fprintf(l_dbgFd, "*****Entered PostAcquire_cpu*****\n");

 /* Perform actions here */

 /* get logical cpu number to be added */
 new_id = dr_info.lcpu;
 printf("logical CPU %d is added\n", new_id);

 /* get resource set our pid is attached to */
 rset = rs_alloc(RS_EMPTY);
 rsid.at_pid = RS_MYSELF;
 if ((rc = ra_getrset(R_PROCESS, rsid, 0, rset)) < 0) {
 perror_msg("rs_getrset()", errno, __LINE__);
 exit(1);
 }

 /* get logical cpu number of current cpu in resource set */
 Chapter 11. Resource sets 367

 /* get maximum number of cpus */
 if ((maxprocs = rs_getinfo(NULL, R_MAXPROCS, 0)) < 0) {
 perror_msg("rs_getinfo()", errno, __LINE__);
 exit(1);
 }
 /* find current cpu */
 for (i = 0; i < maxprocs; i++) {
 if ((rc = rs_op(RS_TESTRESOURCE, rset, 0, R_PROCS, i)) < 0) {
 perror_msg("rs_op()", errno, __LINE__);
 exit(1);
 }
 if (rc == 1) {
 old_id = i;
 }
 }

 /* remove current cpu from our resource set */
 if ((rc = rs_op(RS_DELRESOURCE, rset, 0, R_PROCS, old_id)) != 0) {
 perror_msg("rs_op()", errno, __LINE__);
 exit(1);
 }
 /* add new cpu to our resource set */
 if ((rc = rs_op(RS_ADDRESOURCE, rset, 0, R_PROCS, new_id)) != 0) {
 perror_msg("rs_op()", errno, __LINE__);
 exit(1);
 }
 /* reattach resource set to our pid */
 rsid.at_pid = RS_MYSELF;
 if ((rc = ra_attachrset(R_PROCESS, rsid, rset , 0)) != 0) {
 perror_msg("rs_attachrset()", errno, __LINE__);
 exit(1);
 }

 return l_rc;
}

The sample code in Example B-4 on page 434 checks for CPU bindings and fails
the dynamic reconfiguration in the check phase. Therefore, we have to modify
the code so that the checkRelease_cpu() subroutine will return successfully,
even if it detects a soft or hard pset dependency. Nevertheless, we keep the
debug messages.

Example 11-14 The modified checkRelease_cpu() subroutine

/*===*/
/* Handles post release Error phase for cpu */
/* */
/* Detailed Description: */
368 The Complete Partitioning Guide for IBM Eserver pSeries Servers

/* If an error should occur, this phase should handle undoing the */
/* prerelease actions taken for cpu rmovals. */
/* */
/* Output: integer value indicating status of DR operation */
/* Values: DR_API_SUCCESS */
/* l DR_API_FAIL */
/* Inputs: None */
/*===*/
int checkRelease_cpu(void)
{
 int l_rc = DR_API_SUCCESS;

 fprintf(l_dbgFd, "*****Entered CheckRelease_cpu*****\n");

 /* Check for processor dependencies */
 if (dr_info.bindproc) {
 fprintf(l_dbgFd, "\t-- process has bindprocessor() dependency --\n");
 l_rc = DR_API_FAIL;
 }

 /* these to checks will not fail anymore because dependency is */
 /* resolved by changing resource set */
 if (dr_info.softpset) {
 /* print debug info but will not fail anymore */
 fprintf(l_dbgFd, "\t-- process has soft pset() dependency --\n");
 l_rc = DR_API_SUCCESS;
 }
 if (dr_info.hardpset) {
 /* print debug info but will not fail anymore */
 fprintf(l_dbgFd, "\t-- process has hard pset() dependency --\n");
 l_rc = DR_API_SUCCESS;
 }

 return l_rc;
}

After you have made the modifications, you can compile the code as described in
B.1.1, “How to compile and run the application” on page 434.

cc DLPAR_appl_autonomic.c -o DLPAR_appl_autonomic

A not DLPAR-aware example
We now show an example with an application that is not DLPAR-aware. We
show how the DLPAR operation fails if the application does not adjust its
resource sets when a dynamic reconfiguration is requested.

We modify the code in Example 11-2 on page 353 so that it is running an endless
loop. It takes the logical CPU number that will be put in the resource set as a
 Chapter 11. Resource sets 369

command line argument. The program does not terminate and thereby blocks
the CPU contained in the resource set.

We do not register the resource set in the system global repository. Instead we
use the process ID and the -p option with the lsrset command to verify that the
resource set is properly attached to our process.

Example 11-15 Sample program that blocks a CPU

#include <sys/rset.h>

int main(int argc, char **argv) {
 rsethandle_t rset;
 rsid_t rsid;
 int rc;
 unsigned int cpu_id;

 /* get command line argument, terminate if not present */
 if (argc == 2) {
 cpu_id = atoi(argv[1]);
 } else {
 return 1;
 }

 /* allocate new rset */
 rset = rs_alloc(RS_EMPTY);

 /* add a CPU to the resource set */
 rc = rs_op(RS_ADDRESOURCE, rset, 0, R_PROCS, cpu_id);
 if (rc != 0) perror("rs_op()");

 /* attach process to resource set */
 rsid.at_pid = RS_MYSELF;
 rc = ra_attachrset(R_PROCESS, rsid, rset , 0);
 if (rc != 0) perror("rs_attachrset()");

 /* endless loop */
 while (1);

 return 0;
}

First we compile the program and then we start two instances of it. We attach
one instance to logical CPU 0 and the other process to logical CPU 1.

lpar08# cc block_cpu.c -o block_cpu
lpar08# block_cpu 0 &
lpar08# block_cpu 1 &
370 The Complete Partitioning Guide for IBM Eserver pSeries Servers

You can either start the program with the ampersand (&) to start it in the
background, as we do, or you can start it in a separate terminal window.

We get the process IDs of our processes with the ps command:

lpar08# ps -ef | grep block_cpu
 root 204988 319670 112 14:30:13 pts/1 0:24 ./block_cpu 1
 root 233712 360634 115 14:28:13 pts/2 2:24 ./block_cpu 0

We check the configuration of the attached resource sets with the lsrset
command:

lpar08# lsrset -vp 233712
Effective rset: 1 CPU, 0 Memory
 CPU: 0
 MEM: <empty>

lpar08# lsrset -vp 204988
Effective rset: 1 CPU, 0 Memory
 CPU: 1
 MEM: <empty>

Now we initiate a DLPAR operation to take one processor out of the partition:

hmc$ chhwres -m ITSO_p690 -p lpar08 -r cpu -o r -q 1 -W 4 -d 4
aixErr: true
HMCERRV3DLPAR020: r operation for cpu has completed, but only 0 out of 1 were
successful.
The AIX command is:
drmgr -r -c cpu -w 5 -d 4

The AIX standard output is:
...
... omitted lines ...
...
The AIX standard error is:

0930-047 Detected DR Unsafe application. DR operation failed.

 Consult AIX error log for more information

The return code is 0. The AIX return code is 1.
 Chapter 11. Resource sets 371

We can also take a look at the information in the system error log:

lpar08# errpt -a

LABEL: CPU_DEALLOC_ABORTED
IDENTIFIER: 4056F04C

Date/Time: Wed Aug 13 14:32:54 CDT
Sequence Number: 232
Machine Id: 0021768A4C00
Node Id: lpar08
Class: S
Type: TEMP
Resource Name: proc4

Description
CPU DEALLOCATION ABORTED

Probable Causes
SOFTWARE PROGRAM

Detail Data
DEALLOCATION ABORTED CAUSE
0000 0002
DEALLOCATION ABORTED DATA
0000 0000 0003 20BC
Duplicates
Number of duplicates
 1
Time of first duplicate
Wed Aug 13 14:32:53 CDT
Time of last duplicate
Wed Aug 13 14:32:54 CDT

This operation fails because both available processors are blocked by our
running programs. The system cannot free one processor for removal, and so
the requested dynamic reconfiguration fails.

DLPAR-aware example
This example shows how the DLPAR-aware application autonomically
reconfigures the resource set it is attached to. The application detects that a
processor, which is contained in its resource set, is about to be removed from the
system. The application reconfigures the resource set so that it contains another
processor. The processor is freed and the requested DLPAR operation
succeeds.
372 The Complete Partitioning Guide for IBM Eserver pSeries Servers

We also show how the DLPAR-aware application reconfigures the resource set
when a processor is added to the system. We designed the application so that it
changes the processor in its resource set to the newly added processor.

lpar08# rset_list_cpu
cpu id: 0
cpu id: 1

We start the CPU blocking process from Example 11-15 on page 370 again. We
start the process on logical CPU 0:

lpar08# block_cpu 0
lpar08# ps -ef | grep block_cpu
 root 245858 319670 62 16:29:07 pts/1 0:08 block_cpu 0

We verify that the resource set contains logical CPU 0 using the lsrset
command with the -p option:

lpar08# lsrset -vp 245858
Effective rset: 1 CPU, 0 Memory
 CPU: 0
 MEM: <empty>

Then we start the DPLAR-aware application and get the process ID using the ps
command:

lpar08# DLPAR_appl_autonomic
lpar08# ps -ef | grep DLPAR_appl_autonomic
 root 311444 360634 120 16:32:20 pts/2 0:06 DLPAR_appl_autonomic

The DLPAR-aware application always uses the lowest available logical CPU
number that is greater than 0. That means the process is running on logical CPU
1. We can verify this using the lsrset command with the -p option:

lpar08# lsrset -vp 311444
Effective rset: 1 CPU, 0 Memory
 CPU: 1
 MEM: <empty>

We now initiate a DLPAR operation on the HMC to take one processor out of the
partition.

hmc$ chhwres -m ITSO_p690 -p lpar08 -r cpu -o r -q 1 -W 4 -d 4

The requested operation completes successfully, which means that the
DLPAR-aware application has reconfigured its resource set and is no longer
using logical CPU 1. We verify this with the lsrset command:

lpar08# lsrset -vp 311444
Effective rset: 1 CPU, 0 Memory
 CPU: 0
 MEM: <empty>
 Chapter 11. Resource sets 373

We verify that only one processor is left in the partition:

lpar08# lsdev -Cc processor
proc3 Available 00-03 Processor

The blocking process is still running on logical CPU 0. Now both processes are
running on the remaining processor:

lpar08# lsrset -vp 245858
Effective rset: 1 CPU, 0 Memory
 CPU: 0
 MEM: <empty>

Now we add the processor to the partition again. As already explained, the
application is designed so that it switches its resource set over to the newly
added processor.

hmc$ chhwres -m ITSO_p690 -p lpar08 -r cpu -o a -q 1 -W 4 -d 4

We use the lsrset command to verify that the DLPAR-aware process has
reconfigured its resource set. Now both processes are running on separate
processors again.

lpar08# lsrset -vp 245858
Effective rset: 1 CPU, 0 Memory
 CPU: 0
 MEM: <empty>

lpar08# lsrset -vp 311444
Effective rset: 1 CPU, 0 Memory
 CPU: 1
 MEM: <empty>
374 The Complete Partitioning Guide for IBM Eserver pSeries Servers

Chapter 12. Autonomic applications

The dynamic reconfiguration application framework (DRAF) introduced with AIX
5L Version 5.2 poses a new programming paradigm defined as follows:

� Application resources must be controllable..

� Query the currently available and usable resources dynamically..

� Self-adjust the resource consumption..

� Performance scalability is based on the given resources..

Carefully designed and properly implemented DLPAR-aware applications can
satisfy all of these requirements. We call such applications autonomic
applications, since they can adjust themselves in the autonomic computing
environment where resources are dynamically changed based on various
business and management reasons.

In this chapter, we explain how the autonomic applications should be designed
and discuss what types of applications can be autonomic. An autonomic
application example is also provided to demonstrate how it solves the
challenging requirements posed by the paradigm.

12
© Copyright IBM Corp. 2003. All rights reserved. 375

12.1 Design considerations
When designing autonomic applications, the following should be carefully
considered.

� Application resources must be controllable.

An autonomic application must provide some ways to control (or set) its
resource usage, such as the number of threads or amount of memory. For
example, it may define the default resource usage in the program code, but
should provide a configuration file that defines the resource usage.

If your application is hard-coded to allocate huge amounts of memory in one
chunk, it is hard to modify it to be an autonomic application.

� Query the currently available and usable resources dynamically.

An autonomic application must dynamically query the currently available and
usable resources upon program startup. It must also query the available and
usable resources whenever the operating system notifies the application of
the resource change.

In other words, an autonomic application should be aware of the environment
it is running on.

� Self-adjust the resource consumption.

An autonomic application must adjust its resource usage based on the
currently available resources. Because resource change events can
asynchronously happen unrelated to the current application program status, it
needs to validate the proposed resource change, and then decide whether to
accept or reject the change. The rejection of a resource change should be
made if the proposed resources are inappropriate to maintain the
application’s performance.

In other words, an autonomic application must have a resource usage policy
such that it can dynamically react to resource changes. The policy should not
be hard-coded in the application program. It is ideally defined by an external
configuration file.

� Performance scalability is based on the given resources.

An autonomic application’s performance should scale with the given
resources.

12.2 Possible autonomic applications
In the current DLPAR implementation on AIX, three kinds of resources, CPU,
memory, and I/O slots, are dynamically reconfigured. As for the I/O slot DLPAR
376 The Complete Partitioning Guide for IBM Eserver pSeries Servers

operations, since human intervention would be required in most cases, it is
difficult to design autonomic applications that can react to DLPAR operations for
I/O resources. Therefore, we only consider CPU and memory resources as
target of DLPAR operations in the following discussion.

As for the DLPAR CPU operations, it is not so difficult to design and code
autonomic applications that can react to a CPU resource change. In fact, your
application is usually not aware of, or does not have to be aware of, the currently
available processors in a partition. The kernel scheduler does a good job of
dispatching user threads on to available processors. The difficult part is to make
your application sensitive to the number of available processors.

For example, your application creates a number of threads depending on the
number of available processors. It is not difficult to increase or decrease the
number of threads in your application to react to DLPAR CPU operations.
However, the increase or decrease of threads does not necessarily mean that
your application has the performance scalability based on the available
processors. Sometimes your threads are just sitting in memory without any tasks
to do, or sleeping in the scheduler queue because they are waiting for other
threads’ completion, release of the mutex locks, or there simply is not enough
memory.

As for the DLPAR memory operations, it is quite easy for applications to allocate
additional memory in case of DLPAR memory addition. However, it is difficult
(sometimes impossible) for applications to unallocate already allocated memory
in case of DLPAR memory removal. For example, an autonomic application
allocates 1 GB of memory as buffer, then allocates an additional 3 GB of memory
upon a DLPAR memory addition operation.

The application starts to use all the memory, in total 4 GB, as application buffer
area. Then it is requested to unallocate 2 GB of memory from its buffer since the
administrator has requested a DLPAR memory removal operation. At this
moment you, the programmer of that autonomic application, have the following
three actions to choose from:

� Reject

The application can reject the memory removal request so that the entire
DLPAR removal operation would fail. This is most likely selected while the
application is using the buffer, since the buffer is filled with data of the
transaction or computation.

� Suspend

If the requirement of the application performance or transaction response is
not severe, and if the amount of data in the buffer is not huge, it is technically
possible to store the data into a temporary file, then relinquish the buffer so
that the application can suspend the use of memory. If the application gets
 Chapter 12. Autonomic applications 377

memory later, it can resume by reading the data from the temporary file to the
buffer.

� Abandon

The application can abandon the data in the buffer and unallocate memory, if
the data can be reproduced later and the application performance or
transaction response is not severe.

The autonomic application must provide a policy that selects either of the above
actions when memory removal is requested. It would be better if the policy can
be set in a configuration file and the application can read the configuration file
when requested.

12.3 A sample autonomic application
We developed a sample autonomic application (the complete program source
code written in the C language is listed in Example F-1 on page 490). Basically,
the subject of the sample program is summarized as follows:

� Prepare random data in shared memory segments.

� Seek the character string IBM from the random data in the shared memory
segments.

� Print how many times IBM is found.

The program is a 64-bit multithreaded application. It is assumed that readers are
familiar with the multithreaded programming model. Therefore, primitive data
synchronization facilities in multithreaded programming, such as mutex, are not
explained in this section.

12.3.1 Tasks
To solve the challenging requirements posed by the autonomic computing
environment, the sample program introduces conceptual objects, called tasks.

Tasks are used in this program only in order to logically divide the program’s
subject. Each task can run concurrently and independently from the other tasks.
A task is composed of a user thread and shared memory segments.

A task is represented by a task status table entry, which has either of the
following values (each of the table elements is initialized to ST_READY in
setup()):

enum st {
 ST_READY,
 ST_RUNNING,
378 The Complete Partitioning Guide for IBM Eserver pSeries Servers

 ST_STOPPING,
 ST_DONE
} *st = NULL;

The table entry values have the following meaning:

ST_READY A task in the corresponding task entry can be started.

ST_RUNNING A task in the corresponding task entry is started and a thread
is running for this task.

ST_STOPPING A task in the corresponding task entry is stopping. No new
thread is allowed to run for this task.

ST_DONE A task in the corresponding task is done. No new thread is
allowed to run for this task.

The table provides the task status, and in addition is used as a communication
method between the task scheduler function and worker threads.

12.3.2 Task scheduler
The sample program has a function called task scheduler for adjusting its
resource usage. This function is called periodically and in case of DLPAR
operations.

If there is a task status table entry with the value of ST_READY, the task
scheduler function selects it and then creates a worker thread as follows:

pthread_create(&ch, NULL, worker, (void *) no);

The worker thread determines for which task it is working from the argument no,
which is cast into the variable task as follows:

int task = *((int *) arg);

In order to process tasks, the task scheduler tries to create as many threads as it
can based on the given resources (number of processors and amount of
allowable memory) until all the tasks are completed. If resources are added
before the process terminates, the task scheduler creates additional threads to
process tasks. If allocated resources are reduced, the scheduler reduces the
number of worker threads to satisfy the new resource condition. The tasks for
which stopped worker threads were processing return to the ST_READY state.
The scheduler creates threads to process those tasks later when enough
resources are available.

12.3.3 Pseudo program algorithm
Once invoked, the program does the following:
 Chapter 12. Autonomic applications 379

1. The program sets the process-wide signal mask as follows:

sigemptyset(&set);
sigaddset(&set, SIGINT);
sigaddset(&set, SIGRECONFIG);
pthread_sigmask(SIG_BLOCK, &set, NULL);

This signal mask is used for all the threads in this process except for the
signal watcher thread explained later in this section.

2. If a configuration file name is specified, the main() function calls setup() to
read it. Otherwise, it assumes that the following parameters are specified:

mem_for_os=1024
task_per_cpu=2
mem_per_task=256
mem_allowable_diff=512
max_task=8

The configuration file can be specified as the first command line argument as
follows:

$./seek_IBM ./seek_IBM.conf

3. The setup() function checks the number of online processors and the amount
of currently available memory1, as follows:

cpu_units = sysconf(_SC_NPROCESSORS_ONLN);

if ((fp = popen("lsattr -EOl mem0", "r")) == NULL ||
fgets(buf, 20, fp) == NULL ||
fgets(buf, 20, fp) == NULL || (p = strchr(buf, ':')) == NULL) {
printf("Can't get memory size from lsattr -EOl mem0.\n");

}
*p = 0;
mem_units = atoi(buf);

Next, the setup() function initializes the task scheduler table (st[]) as follows:

if (stmax <= 0 || (st = (enum st *) malloc(sizeof(int) * stmax)) == NULL) {
printf("Can't allocate task table.\n");
exit(1);

}
for (c = 0; c < stmax; c++) {

st[c] = ST_READY;
}

Finally, the setup() function calls the reconfig_check() function to check if the
current available resources (number of processors and amount of memory)
are well balanced.

If reconfig_check() returns less than 0, the program exits.

1 The amount of real memory can also be checked using sysconf(_SC_AIX_REALMEM).
380 The Complete Partitioning Guide for IBM Eserver pSeries Servers

if ((c = reconfig_check(cpu_units, mem_units)) < 0) {
printf("CPU and memory are out of balance. "

"(mem_units=%d MB, cpu_units=%d).\n", mem_units, cpu_units);
exit(3);

}
4. The reconfig_check() function implements the application resource usage

policy. This policy is controlled by several parameters set in the configuration
file, or by the default values explained in step 2.

a. The function calculates required memory for each task as follows:

int mem_for_task = mem_per_task * task_per_cpu * cpu;

b. If the amount of currently available memory (mem) is smaller than the
amount of memory size reserved for the operating system (mem_for_os),
then reconfig_check() returns -1, as follows:

if (mem < mem_for_os) {
prt_log
("** Hey! You will have only %d MB of memory, that is not less\n"
"** than your setting in mem_for_os=%d\n.\n", mem, mem_for_os);
return -1;

} else if

c. If either of the following conditions is satisfied, the function returns -1.
These checks are introduced to the program to give a margin to memory
usage:

• Margin condition #1

} else if (mem_for_task + mem_for_os - mem_allowable_diff > mem) {
prt_log
("** Hey! You will have %d MB of memory that is much less than\n"
"** required memory size, %d MB. Allowable difference between\n"
"** these two values is less than %d MB.\n"
, mem, mem_for_task + mem_for_os, mem_allowable_diff);
return -1;

} else if

• Margin condition #2

} else if (mem_for_task + mem_for_os + mem_allowable_diff < mem) {
prt_log
("** Hey! You will have %d MB of memory that is much more than\n"
"** required memory size, %d MB. Allowable difference between\n"
"** these two values is less than %d MB.\n"
, mem, mem_for_task + mem_for_os, mem_allowable_diff);
return -1;

}

As for an example of how the reconfig_check() calculates the parameters,
let us assume that the following default parameter values are set:

mem_for_os=1024
 Chapter 12. Autonomic applications 381

task_per_cpu=2
mem_per_task=256
mem_allowable_diff=512
max_task=8

If the program is invoked on an AIX partition with four processors and 3
GB of memory assigned, the function calculates:

mem_for_task = mem_per_task * task_per_cpu * cpu
= 256 * 2 * 4 = 2 GB

Because mem_for_task (2 GB) plus mem_for_os (1 GB) is exactly 3 GB,
the function determines that the balance of the number of processors and
memory size in this partition is adequate. If the assigned memory size is
less than 2.5 GB (mem_for_task + mem_for_os - mem_allowable_diff) or
larger than 3.5 GB (mem_for_task + mem_for_os + mem_allowable_diff),
the function determines that the balance is inadequate.

d. If the function evaluates all the above conditions as false, it calculates the
following two values:

int memslots = (mem - mem_for_os) / mem_per_task;
int cpuslots = task_per_cpu * cpu;

These two values specify the number of available slots that can run tasks.

The function always returns the smaller value of memslots or cpuslots. For
example, if the default parameter values are set and the program is
invoked on an AIX partition with four processors and 3.25 GB of memory
assigned, the function calculates:

memslots = (3.25 GB - 1 GB) / 256 MB = 9
cpuslots = 2 * 4 = 8

Since memslots is larger than cpuslots, the function returns 8.

5. The main() function creates a user thread, called signal watcher thread, that
executes the sigwatcher() function only:

pthread_create(&ch, NULL, sigwatcher, NULL);

Once executed, the signal watcher thread sets a signal mask for the
SIGRECONFIG and SIGINT signals and sleeps in the highlighted while loop
shown in Example 12-1. Because the process-wide signal mask ignores
these signals, only this thread in the process is responsible for handling these
signals.

Example 12-1 sigwatcher

void *sigwatcher(void *arg)
{
 int rc;
 sigset_t newset;
382 The Complete Partitioning Guide for IBM Eserver pSeries Servers

 sigemptyset(&newset);
 sigaddset(&newset, SIGRECONFIG);
 sigaddset(&newset, SIGINT);
 while (!sigwait(&newset, &rc)) {
 fprintf(stderr, "sigwatcher: rc=%d\n", rc);
 if (rc == SIGINT) {
 pthread_mutex_lock(&st_l);
 runflag = SEEK_IBM_STOP;
 pthread_mutex_unlock(&st_l);
 task_scheduler(0);
 break;
 } else if (rc == SIGRECONFIG) {
 reconfig_manager();
 }
 }
 pthread_exit(NULL);
}

If SIGINT is sent to the process, sigwatcher() is awakened and calls
task_scheduluer(0). If SIGRECONFIG is sent to the process, sigwatcher() is
awaken to calls reconfig_manager().

In case of DLPAR events, the signal handler function, reconfig_manager(),
queries the proposed resource change using the dr_recofing() system call,
then validates the current resource usage and instructs how many tasks
should be increased or decreased using the task_scheduler() function.
Because this function is lengthy, see Example F-1 on page 490 for the full
listing of this function.

6. The main() function calls the task_scheduler() function with the promoter c,
which is returned from setup(); therefore, c has the smaller value of cpuslots
and memslots:

task_scheduler(c);

The task_scheduler() function sets the task status table (st[]) according to the
passed parameter n, as shown in Example 12-2 on page 383.

Example 12-2 task_scheduler

void task_scheduler(int n)
{
 pthread_t ch;
 int c, d = 0;
 int *no;

 pthread_mutex_lock(&st_l);
 for (c = 0; c < stmax; c++) {
 if (st[c] == ST_RUNNING) {
 d++;
 Chapter 12. Autonomic applications 383

 continue;
 }
 if (st[c] == ST_READY && d < n && runflag == SEEK_IBM_RUN) {
 no = malloc(sizeof(int));
 *no = c;
 pthread_create(&ch, NULL, worker, (void *) no);
 pthread_detach(ch);
 prt_log("create thread %d %d\n", *no, d);
 st[c] = ST_RUNNING;
 d++;
 } else if (st[c] == ST_RUNNING && d >= n) {
 st[c] = ST_STOPPING;
 }
 }
 pthread_mutex_unlock(&st_l);
}

If the condition highlighted in Example 12-2, the task_scheduler() function
creates a new thread, called worker, as follows:

pthread_create(&ch, NULL, worker, (void *) no);

7. A worker thread executes only one function, worker(). Once executed, the
function does the following:

a. It opens the /dev/urandom device to get a random seed number:

if ((fp = fopen("/dev/urandom", "r")) == NULL) {
prt_log("Can't open /dev/urandom.\n");

}
fread(&seed, 1, 4, fp);
fclose(fp);

b. It allocates a 256 MB shared memory segment:

if ((id = shmget(IPC_PRIVATE, ONE_SEG, IPC_CREAT | 0600)) == 0) {
prt_log("%d: shmget error.\n", task);
pthread_exit(NULL);

}
prt_log("%d: id=%d\n", task, id);
if ((buf = shmat(id, 0, 0)) == NULL) {

prt_log("%d: shmat error.\n", task);
pthread_exit(NULL);

}

c. It fills the shared memory segment with the random data produced by
random().

d. It scans the shared memory segment to seek the character string IBM. If it
is found, the ibmc counter increments.

e. Once it finishes the scan, it updates the task table and the IBM_found
variable as follows:
384 The Complete Partitioning Guide for IBM Eserver pSeries Servers

st[task] = ST_DONE;
if (IBM_found < 0) {

IBM_found = ibmc;
} else {

IBM_found += ibmc;
}

f. Before it exits, it unallocates the shared segment.

8. The main() function then loops in the infinity while loop shown in
Example 12-3. Every five seconds, it prints how many times IBM is found in
the random data and calls task_scheduler() to recalculate whether the current
resource usage is adequate.

Example 12-3 An infinity while loop in main()

while (1) {
while (1) {

if (!(c = threadnum())) {
break;

}
if (IBM_found < 0) {

prt_log("+ CPU:%d, memory:%d [MB], threads: %d, tasks: %d\n"
, cpu_units, mem_units, c, n);

} else {
prt_log("+ CPU:%d, memory:%d [MB], threads: %d, tasks: %d,"

" \"IBM\" found %d times so far.\n"
, cpu_units, mem_units, c, n, IBM_found);

}
sleep(5);

}
if ((n = taskleft()) <= 0) {

break;
}
task_scheduler(reconfig_check(cpu_units, mem_units));

}

 Chapter 12. Autonomic applications 385

386 The Complete Partitioning Guide for IBM Eserver pSeries Servers

Part 4 Appendixes

Part 4
© Copyright IBM Corp. 2003. All rights reserved. 387

388 The Complete Partitioning Guide for IBM Eserver pSeries Servers

Appendix A. Test environment

In this appendix, we describe the following:

� Hardware configuration

� Network configuration

� Partition configuration

� The relationship between physical and AIX location codes

We excerpted the necessary information from IBM Eserver pSeries 690
Service Guide, SA38-0589 to make this redbook a comprehensive guide:

� pSeries 670- and pSeries 690-dependent information

� AIX location codes

A

© Copyright IBM Corp. 2003. All rights reserved. 389

Hardware configuration
This redbook was created and verified with several tests using the following test
environment:

� A pSeries 690 (standard processor feature)

� Two multichip modules (MCMs) (16 processors)

� 64 GB of memory (4 x 16 GB memory)

� Two 7040-61D I/O drawers

� A media drawer containing a 4 mm tape drive and a DVD-RAM drive

� A Hardware Management Console (HMC) (FC 7315)

Media drawer SCSI connection
The front SCSI bus of the media drawer is connected to the first SCSI port of the
SCSI adapter, which is inserted into the tenth PCI slot of the left-half planner of
the first I/O drawer, as shown in Figure A-1.

The physical location code of this adapter is U1.9-P1-I10 (see Table A-3 on
page 396), and the first SCSI port is identified as P1-I10-Z1.

Figure A-1 Media drawer SCSI connection

First I/O drawer (rear view)

Media drawer (rear view)

Front SCSI connection
390 The Complete Partitioning Guide for IBM Eserver pSeries Servers

Network configuration
In our test environment, the HMC and all partitions are connected to the single
100 Mbps Ethernet network, as shown in Figure A-2.

Figure A-2 Physical network configuration in the test environment

The network configuration is as follows:

� The subnetwork address is 9.3.4.0 (subnet mask: 255.255.254.0).

� There is only one IP router, configured at 9.3.4.41.

� The primary DNS server for the DNS domain, itsc.austin.ibm.com, is
configured at 9.3.4.2.

Name resolution
The host name resolution is done using the primary DNS server configured at
9.3.4.2, regardless of whether it is on the HMC or partitions. Example A-1 on
page 392 lists IP addresses and host names defined on the HMC and all
partitions so that the reverse name resolution always returns FQDN. For
example, IP address 9.3.4.65 always returns FQDN, lpar01.itsc.austin.ibm.com,
in our test environment:

host 9.3.4.65
lpar01.itsc.austin.ibm.com is 9.3.4.65

HMC

lpar01, lpar02, ..., lpar08

R IBM site
internal network

9.3.4.0/23

41

30

65
66

72

DNS2
 Appendix A. Test environment 391

Example: A-1 Local host table in our test environment

9.3.4.30 itsohmc.itsc.austin.ibm.com itsohmc
9.3.4.65 lpar01.itsc.austin.ibm.com lpar01
9.3.4.66 lpar02.itsc.austin.ibm.com lpar02
9.3.4.67 lpar03.itsc.austin.ibm.com lpar03
9.3.4.68 lpar04.itsc.austin.ibm.com lpar04
9.3.4.69 lpar05.itsc.austin.ibm.com lpar05
9.3.4.70 lpar06.itsc.austin.ibm.com lpar06
9.3.4.71 lpar07.itsc.austin.ibm.com lpar07
9.3.4.72 lpar08.itsc.austin.ibm.com lpar08

Partition configuration
The partitions are configured as follows:

� Processor

– Minimum: 1
– Desired: 2
– Maximum: 4

� Memory

– Minimum: 1 GB
– Desired: 4 GB
– Maximum: 8 GB

� Adapter

– Required: The adapters that are specified with an asterisk (*) in Table A-1
on page 393 and Table A-2 on page 394.

– Desired: The adapters that are not specified with an asterisk (*) in
Table A-1 on page 393 and Table A-2 on page 394.

The inserted adapters shown in Table A-1 on page 393 and Table A-2 on
page 394 are identified with the following adapter identifiers:

A-F FC 4962 Ethernet/LAN Encryption 10/100 Base T

4-Y FC 6203 Dual-Channel Ultra3 SCSI

Note: The SCSI adapter that is inserted into P1.9-P1-I10, is defined as
desired on all the partitions.
392 The Complete Partitioning Guide for IBM Eserver pSeries Servers

Table A-1 Partition configuration: I/O drawer 1

Partition name Physical location code Adapter identifier

lpar01* U1.9-P1-I1 A-F

lpar01 U1.9-P1-I2 A-F

lpar01 U1.9-P1-I3

lpar01 U1.9-P1-I4

lpar02 U1.9-P1-I5 A-F

lpar02 U1.9-P1-I6 A-F

lpar02 U1.9-P1-I7

lpar02 U1.9-P1-I8

lpar02 U1.9-P1-I9

N/A U1.9-P1-I10 4-Y

lpar01* U1.9-P1-Z1 Internal Ultra3 SCSI

lpar02* U1.9-P1-Z2 Internal Ultra3 SCSI

lpar03* U1.9-P2-I1 A-F

lpar03 U1.9-P2-I2 A-F

lpar03 U1.9-P2-I3

lpar03 U1.9-P2-I4

lpar04* U1.9-P2-I5 A-F

lpar04 U1.9-P2-I6 A-F

lpar04 U1.9-P2-I7

lpar04 U1.9-P2-I8

lpar04 U1.9-P2-I9

lpar04 U1.9-P2-I10 4-Y

lpar03* U1.9-P2-Z1 Internal Ultra3 SCSI

lpar04* U1.9-P2-Z2 Internal Ultra3 SCSI
 Appendix A. Test environment 393

Table A-2 Partition configuration: I/O drawer 2

Partition name Physical location code Adapter identifier

lpar05* U1.5-P1-I1 A-F

lpar05 U1.5-P1-I2 A-F

lpar05 U1.5-P1-I3

lpar05 U1.5-P1-I4

lpar06 U1.5-P1-I5 A-F

lpar06 U1.5-P1-I6 A-F

lpar06 U1.5-P1-I7

lpar06 U1.5-P1-I8

lpar06 U1.5-P1-I9

lpar06 U1.5-P1-I10 4-Y

lpar05* U1.5-P1-Z1 Internal Ultra3 SCSI

lpar06* U1.5-P1-Z2 Internal Ultra3 SCSI

lpar07* U1.5-P2-I1 A-F

lpar07 U1.5-P2-I2 A-F

lpar07 U1.5-P2-I3

lpar07 U1.5-P2-I4

lpar08* U1.5-P2-I5 A-F

lpar08 U1.5-P2-I6 A-F

lpar08 U1.5-P2-I7

lpar08 U1.5-P2-I8

lpar08 U1.5-P2-I9

lpar08 U1.5-P2-I10 4-Y

lpar07* U1.5-P2-Z1 Internal Ultra3 SCSI

lpar08* U1.5-P2-Z2 Internal Ultra3 SCSI
394 The Complete Partitioning Guide for IBM Eserver pSeries Servers

The relationship between physical and AIX location
codes

The physical location codes for pSeries systems are different from the AIX
location codes. There are several ways to identify the relationship between the
AIX and physical location codes, including the following:

� Using AIX commands

� Using the physloc field identifier of lsdev (AIX 5L Version 5.2)

Using AIX commands
If the partition is up and running, you can identify the relationship using the
following method.

If the lsdev command is used for identifying the AIX location code of a
component, you will see an output similar to the following:

lsdev -Cl ent0
ent0 Available 3F-08 10/100 Mbps Ethernet PCI Adapter II (1410ff01)

In this example, the AIX location code of ent0 is 3F-08.

When you look at the configuration using the lscfg command, you will see an
output similar to the following example, where the physical location code is
U1.9-P2-I1/E1:

lscfg -vl ent0
 ent0 U1.9-P2-I1/E1 10/100 Mbps Ethernet PCI Adapter II
(1410ff01)

 10/100 Mbps Ethernet PCI Adapter II:
 Part Number.................09P5023
 FRU Number..................09P5023
 EC Level....................H10971A
 Manufacture ID..............YL1021
 Network Address.............0002556AAC19
 ROM Level.(alterable).......SCU001
 Product Specific.(Z0).......A5204205
 Device Specific.(YL)........U1.9-P2-I1/E1

Note: This adapter configuration is solely used to provide the maximum
number of partitions, eight, in our test environment. Therefore, it is presented
as information only and may not always be suitable in your environment.
 Appendix A. Test environment 395

Using the physloc field identifier of lsdev (AIX 5L Version 5.2)
In AIX 5L Version 5.2, an enhancement was made to the lsdev command to
display physical location codes. As shown in the following example, if you specify
the format identifier physloc with the -F option, the command displays the
physical location code of the specified device:

lsdev -Cl ent0 -F physloc
U1.9-P2-I1/E1

Using the service guide
If the partition is not running, you can identify the relationship using the reference
table provided in the service guide for your partioning-capable pSeries server.
For the pSeries 670 and pSeries 690, see the following section.

pSeries 670- and pSeries 690-dependent information
Table A-3 shows the relationship only in the first I/O drawer of pSeries 670 and
pSeries 690.

Table A-3 Physical and AIX location codes: I/O drawer 1

Field Replacement Unit
(FRU) name

Physical
location codes

AIX location code

I/O Subsystem 1 Chassis
and Midplane Card

(MT/M Serial #)
U1.9

I/O subsystem left I/O
backplane assembly

U1.9-P1

I/O subsystem left I/O
backplane assembly VPD

U1.9-P1-N1

EADS 1 - PCI contoller U1.9-P1 2U-58, 2U-5A, 2U-5C, 2U-5E

PCI Slot 1 Content U1.9-P1-I1 2V-08 to 2V-0F or 2W-xx or 2X-xx

PCI Slot 2 Content U1.9-P1-I2 2Y-08 to 2Y-0F or 2Z-xx or 2a-xx

PCI Slot 3 Content U1.9-P1-I3 2b-08 to 2b-0F or 2c-xx or 2d-xx

PCI Slot 4 Content U1.9-P1-I4 2e-08 to 2e-0F or 2f-xx or 2g-xx

EADS 2 - PCI Controller U1.9-P1 2j-58, 2j-5A, 2j-5E

PCI Slot 5 Content U1.9-P1-I5 2k-08 to 2k-0F or 2m-xx or 2n-xx

PCI Slot 6 Content U1.9-P1-I6 2p-08 to 2p-0F or 2q-xx or 2r-xx
396 The Complete Partitioning Guide for IBM Eserver pSeries Servers

PCI Slot 7 Content U1.9-P1-I7 2v-08 to 2v-0F or 2w-xx or 2x-xx

EADS 3 - PCI Controller U1.9-P1 30-58, 30-5A, 30-5E

PCI Slot 8 Content U1.9-P1-I8 31-08 to 31-0F or 32-xx or 32-xx

PCI Slot 9 Content U1.9-P1-I9 34-08 to 34-0F or 35-xx or 36-xx

PCI Slot 10 Content U1.9-P1-I10 3A-08 to 3A-0F or 3B-xx or 3C-xx

I/O Subsystem Right I/O
backplane assembly

U1.9-P2

I/O Subsystem Right I/O
backplane assembly VPD

U1.9-P2-N1

EADS 1 - PCI Controller U1.9-P2 3E-58, 3E-5A, 3E-5C, 3E-5E

PCI Slot 1 Content U1.9-P2-I1 3F-08 to 3F-0F or 3G-xx or 3H-xx

PCI Slot 2 Content U1.9-P2-I2 3J-08 to 3J-0F or 3K-xx or 3L-xx

PCI Slot 3 Content U1.9-P2-I3 3M-08 to 3M-0F or 3N-xx or 3P-xx

PCI Slot 4 Content U1.9-P2-I4 3Q-08 to 3Q-0F or 3R-xx or 3S-xx

EADS 2 - PCI Controller U1.9-P2 3U-58, 3U-5A, 3U-5E

PCI Slot 5 Content U1.9-P2-I5 3V-08 to 3V-0F or 3W-xx or 3X-xx

PCI Slot 6 Content U1.9-P2-I6 3Y-08 to 3Y-0F or 3Z-xx or 3a-xx

PCI Slot 7 Content U1.9-P2-I7 3e-08 to 3e-0F or 3f-xx or 3a-xx

EADS 3 - PCI Controller U1.9-P2 3j-58, 3j-5A, 3j-5E

PCI Slot 8 Content U1.9-P2-I8 3k-08 to 3k-0F or 3m-xx or 3n-xx

PCI Slot 9 Content U1.9-P2-I9 3p-08 to 3p-0F or 3q-xx or 3r-xx

PCI Slot 10 Content U1.9-P2-I10 3v-08 to 3v-0F or 3w-xx or 3x-xx

I/O Subsystem SCSI
controller 1 on P1

U1.9-P1/Z1 2s-08

I/O Subsystem SCSI
controller 2 on P1

U1.9-P1/Z2 37-08

I/O Subsystem SCSI
controller 1 on P2

U1.9-P2/Z1 3b-08

Field Replacement Unit
(FRU) name

Physical
location codes

AIX location code
 Appendix A. Test environment 397

I/O Subsystem SCSI
controller 2 on P2

U1.9-P2/Z2 3s-08

DASD 4 Pack Cage and
card (1)

U1.9-P3

DASD 4 Pack Cage and
card (1) VPD

U1.9-P3-N1

SCSI DASD 1 hdisk at ID 8
connected to controller 2
on P2

U1.9-P2/Z2-A8 3s-08-00-8,0

SCSI DASD 2 hdisk at ID 9
connected to controller 2
on P2

U1.9-P2/Z2-A9 3s-08-00-9,0

SCSI DASD 3 hdisk at ID A
connected to controller 2
on P2

U1.9-P2/Z2-Aa 3s-08-00-10,0

SCSI DASD 4 hdisk at ID A
connected to controller 2
on P2

U1.9-P2/Z2-Ab 3s-08-00-11,0

SCSI Enclosure Services
SES connected to
controller 2 on P2

U1.9-P2/Z2-Af 3s-08-00-15,0

DASD 4 Pack Cage and
card (2)

U1.9-P4

DASD 4 Pack Cage and
card (2) VPD

U1.9-P4-N1

SCSI DASD 1 hdisk at ID 8
connected to controller 1
on P2

U1.9-P2/Z1-A8 3b-08-00-8,0

SCSI DASD 2 hdisk at ID 9
connected to controller 1
on P2

U1.9-P2/Z1-A9 3b-08-00-9,0

SCSI DASD 3 hdisk at ID A
connected to controller 1
on P2

U1.9-P2/Z1-Aa 3b-08-00-10,0

Field Replacement Unit
(FRU) name

Physical
location codes

AIX location code
398 The Complete Partitioning Guide for IBM Eserver pSeries Servers

SCSI DASD 4 hdisk at ID B
connected to controller 1
on P2

U1.9-P2/Z1-Ab 3b-08-00-11,0

SCSI Enclosure Services
SES connected to
controller 1 on P2

U1.9-P2/Z1-Af 3b-08-00-15,0

DASD 4 Pack Cage and
card (3)

U1.9-P5

DASD 4 Pack Cage and
card (3) VPD

U1.9-P5-N1

SCSI DASD 1 hdisk at ID 8
connected to controller 2
on P1

U1.9-P1/Z2-A8 37-08-00-8,0

SCSI DASD 2 hdisk at ID 9
connected to controller 2
on P1

U1.9-P1/Z2-A9 37-08-00-9,0

SCSI DASD 3 hdisk at ID A
connected to controller 2
on P1

U1.9-P1/Z2-Aa 37-08-00-10,0

SCSI DASD 4 hdisk at ID B
connected to controller 2
on P1

U1.9-P1/Z2-Ab 37-08-00-11,0

SCSI Enclosure Services
SES connected to
controller 2 on P1

U1.9-P1/Z2-Af 37-08-00-15,0

DASD 4 Pack Cage and
card (4)

U1.9-P6

DASD 4 Pack Cage and
card (4) VPD

U1.9-P6-N1

SCSI DASD 1 hdisk at ID 8
connected to controller 1
on P1

U1.9-P1/Z1-A8 2s-08-00-8,0

SCSI DASD 2 hdisk at ID 9
connected to controller 1
on P1

U1.9-P1/Z1-A9 2s-08-00-9,0

Field Replacement Unit
(FRU) name

Physical
location codes

AIX location code
 Appendix A. Test environment 399

Table A-4 Physical and AIX location codes: I/O drawer 2

SCSI DASD 3 hdisk at ID A
connected to controller 1
on P1

U1.9-P1/Z1-Aa 2s-08-00-10,0

SCSI DASD 4 hdisk at ID B
connected to controller 1
on P1

U1.9-P1/Z1-Ab 2s-08-00-11,0

SCSI Enclosure Services
SES connected to
controller 1 on P1

U1.9-P1/Z1-Af 2s-08-00-15,0

FRU Name Physical
location codes

AIX location code

I/O Subsystem 2 Chassis
and Midplane Card

(MT/M Serial #)
U1.5

I/O Subsystem Left I/O
backplane assembly

U1.5-P1

I/O Subsystem Left I/O
backplane assembly VPD

U1.5-P1-N1

EADS 1 - PCI Controller U1.5-P1 40-58, 40-5A, 40-5C, 40-5E

PCI Slot 1 Content U1.5-P1-I1 41-08 to 41-0F or 42-xx or 43-xx

PCI Slot 2 Content U1.5-P1-I2 44-08 to 44-0F or 45-xx or 47-xx

PCI Slot 3 Content U1.5-P1-I3 47-08 to 47-0F or 48-xx or 49-xx

PCI Slot 4 Content U1.5-P1-I4 4A-08 to 4A-0F or 4B-xx or 4C-xx

EADS 2 - PCI Controller U1.5-P1 4E-58, 4E-5A, 4E-5E

PCI Slot 5 Content U1.5-P1-I5 4F-08 to 4F-0F or 4G-xx or 4H-xx

PCI Slot 6 Content U1.5-P1-I6 4J-08 to 4J-0F or 4K-xx or 4L-xx

PCI Slot 7 Content U1.5-P1-I7 4Q-08 to 4Q-0F or 4R-xx or 4S-xx

EADS 3 - PCI Controller U1.5-P1 4U-58, 4U-5A, 4U-5E

PCI Slot 8 Content U1.5-P1-I8 4V-08 to 4V-0F or 4W-xx or 4X-xx

PCI Slot 9 Content U1.5-P1-I9 4Y-08 to 4Y-0F or 4Z-xx or 4a-xx

Field Replacement Unit
(FRU) name

Physical
location codes

AIX location code
400 The Complete Partitioning Guide for IBM Eserver pSeries Servers

PCI Slot 10 Content U1.5-P1-I10 4e-08 to 4e-0F or 4f-xx or 4g-xx

I/O Subsystem Right I/O
backplane assembly

U1.5-P2

I/O Subsystem Right I/O
backplane assembly VPD

U1.5-P2-N1

EADS 1 - PCI Controller U1.5-P2 4j-58, 4j-5A, 4j-5C, 4j-5E

PCI Slot 1 Content U1.5-P2-I1 4k-08 to 4k-0F or 4m-xx or 4n-xx

PCI Slot 2 Content U1.5-P2-I2 4p-08 to 4p-0F or 4q-xx or 4r-xx

PCI Slot 3 Content U1.5-P2-I3 4s-08 to 4s-0F or 4t-xx or 4t-xx

PCI Slot 4 Content U1.5-P2-I4 4v-08 to 4v-0F or 4t-xx or 4u-xx

EADS 2 - PCI Controller U1.5-P2 50-58, 50-5A, 50-5E

PCI Slot 5 Content U1.5-P2-I5 51-08 to 51-0F or 52-xx or 53-xx

PCI Slot 6 Content U1.5-P2-I6 54-08 to 54-0F or 55-xx or 56-xx

PCI Slot 7 Content U1.5-P2-I7 5A-08 to 5A-0F or 5B-xx or 5C-xx

EADS 3 - PCI Controller U1.5-P2 5E-58, 5E-5A, 5E-5E

PCI Slot 8 Content U1.5-P2-I8 5F-08 to 5F-0F or 5G-xx or 5H-xx

PCI Slot 9 Content U1.5-P2-I9 5J-08 to 5J-0F or 5K-xx or 5L-xx

PCI Slot 10 Content U1.5-P2-I10 5Q-08 to 5Q-0F or 5R-xx or 5S-xx

I/O Subsystem SCSI
controller 1 on P1

U1.5-P1/Z1 4M-08

I/O Subsystem SCSI
controller 2 on P1

U1.5-P1/Z2 4b-08

I/O Subsystem SCSI
controller 1 on P2

U1.5-P2/Z1 57-08

I/O Subsystem SCSI
controller 2 on P2

U1.5-P2/Z2 5M-08

DASD 4 Pack Cage and
card (1)

U1.5-P3

DASD 4 Pack Cage and
card (1) VPD

U1.5-P3-N1

FRU Name Physical
location codes

AIX location code
 Appendix A. Test environment 401

SCSI DASD 1 hdisk at ID 8
connected to controller 2
on P2

U1.5-P2/Z2-A8 5M-08-00-8,0

SCSI DASD 2 hdisk at ID 9
connected to controller 2
on P2

U1.5-P2/Z2-A9 5M-08-00-9,0

SCSI DASD 3 hdisk at ID A
connected to controller 2
on P2

U1.5-P2/Z2-Aa 5M-08-00-10,0

SCSI DASD 4 hdisk at ID A
connected to controller 2
on P2

U1.5-P2/Z2-Ab 5M-08-00-11,0

SCSI Enclosure Services
SES connected to
controller 2 on P2

U1.5-P2/Z2-Af 5M-08-00-15,0

DASD 4 Pack Cage and
card (2)

U1.5-P4

DASD 4 Pack Cage and
card (2) VPD

U1.5-P4-N1

SCSI DASD 1 hdisk at ID 8
connected to controller 1
on P2

U1.5-P2/Z1-A8 57-08-00-8,0

SCSI DASD 2 hdisk at ID 9
connected to controller 1
on P2

U1.5-P2/Z1-A9 57-08-00-9,0

SCSI DASD 3 hdisk at ID A
connected to controller 1
on P2

U1.5-P2/Z1-Aa 57-08-00-10,0

SCSI DASD 4 hdisk at ID B
connected to controller 1
on P2

U1.5-P2/Z1-Ab 57-08-00-11,0

SCSI Enclosure Services
SES connected to
controller 1 on P2

U1.5-P2/Z1-Af 57-08-00-15,0

DASD 4 Pack Cage and
card (3)

U1.5-P5

FRU Name Physical
location codes

AIX location code
402 The Complete Partitioning Guide for IBM Eserver pSeries Servers

DASD 4 Pack Cage and
card (3) VPD

U1.5-P5-N1

SCSI DASD 1 hdisk at ID 8
connected to controller 2
on P1

U1.5-P1/Z2-A8 4b-80-00-8,0

SCSI DASD 2 hdisk at ID 9
connected to controller 2
on P1

U1.5-P1/Z2-A9 4b-80-00-9,0

SCSI DASD 3 hdisk at ID A
connected to controller 2
on P1

U1.5-P1/Z2-Aa 4b-80-00-10,0

SCSI DASD 4 hdisk at ID B
connected to controller 2
on P1

U1.5-P1/Z2-Ab 4b-80-00-11,0

SCSI Enclosure Services
SES connected to
controller 2 on P1

U1.5-P1/Z2-Af 4b-80-00-15,0

DASD 4 Pack Cage and
card (4)

U1.5-P6

DASD 4 Pack Cage and
card (4) VPD

U1.5-P6-N1

SCSI DASD 1 hdisk at ID 8
connected to controller 1
on P1

U1.5-P1/Z1-A8 4M-08-00-8,0

SCSI DASD 2 hdisk at ID 9
connected to controller 1
on P1

U1.5-P1/Z1-A9 4M-08-00-9,0

SCSI DASD 3 hdisk at ID A
connected to controller 1
on P1

U1.5-P1/Z1-Aa 4M-08-00-10,0

SCSI DASD 4 hdisk at ID B
connected to controller 1
on P1

U1.5-P1/Z1-Ab 4M-08-00-11,0

SCSI Enclosure Services
SES connected to
controller 1 on P1

U1.5-P1/Z1-Af 4M-08-00-15,0

FRU Name Physical
location codes

AIX location code
 Appendix A. Test environment 403

AIX location codes
The basic formats of the AIX location codes are as follows:

� For non-SCSI devices/drives:

AB-CD-EF-GH

� For SCSI devices/drives:

AB-CD-EF-G,H

Non-SCSI devices
For planars (backplanes), cards, and non-SCSI devices, the location code is
defined as follows:

AB-CD-EF-GH
| | | |
| | | Device/FRU/Port ID
| | Connector ID
| devfunc Number, Adapter Number or Physical Location
Bus Type or PCI Parent Bus

Where:

� The AB value identifies a bus type or PCI parent bus as assigned by the
firmware.

� The CD value identifies the adapter number, devfunc number, or physical
location. The devfunc number is defined as the PCI device number times 8,
plus the function number.

� The EF value identifies a connector.

� The GH value identifies a port, address, device, or FRU.

Adapters and cards are identified only with AB-CD.

The possible values for CD depend on the adapter and card. For pluggable PCI
adapters and cards, CD is the device’s devfunc number (the PCI device number
times 8, plus the function number). The C and D are characters in the range of 0
to 9 and A to F (hex numbers). The location codes, therefore, uniquely identify
multiple adapters on individual PCI cards.

EF is the connector ID used to identify the adapter’s connector to which a
resource is attached.
404 The Complete Partitioning Guide for IBM Eserver pSeries Servers

GH is used to identify a port, device, or FRU; for example:

� For asynchronous devices, GH defines the port on the fanout box. The values
are 00 to 15.

� For a diskette drive, H identifies either diskette drive 1 or 2. G is always 0.

� For all other devices, GH is equal to 00.

For an integrated adapter, EF-GH is the same as the definition for a pluggable
adapter. For example, the location code for a diskette drive is 01-D1-00-00. A
second diskette drive is 01-D1-00-01.

SCSI devices
For SCSI devices, the location code is defined as follows:

AB-CD-EF-G,H
| | | | |
| | | | Logical Unit address of the SCSI Device
| | | Control Unit Address of the SCSI Device
| | Connector ID
| devfunc Number, Adapter Number or Physical Location
Bus Type or PCI Parent Bus

Where:

� AB-CD-EF are the same as non-SCSI devices.

� G defines the control unit address of the device. Values of 0 to 15 are valid.

� H defines the logical unit address of the device. Values of 0 to 255 are valid.

A bus location code is also generated as 00-XXXXXXXX, where XXXXXXXX is
equivalent to the node’s unit address.

Examples of physical location codes and AIX location codes are as follows:

� PCI adapter in first I/O subsystem, slot 1 (primary rack):

– Physical location code U1.9-P1-I1

– AIX location code 2V-08

� PCI adapter in fifth I/O subsystem, slot 1 (secondary rack):

– Location code U2.1-P1-I1

– AIX location code 8V-08
 Appendix A. Test environment 405

406 The Complete Partitioning Guide for IBM Eserver pSeries Servers

Appendix B. Dynamic logical partitioning
program templates

This appendix provides the following sample dynamic logical partitioning
(DLPAR) program templates. These templates are provided as samples to
integrate DLPAR operations into your applications.

� Perl template

� Korn shell template

� Sample DLPAR-aware application using a signal handler

For further information about DLPAR program and its usage, see Chapter 3,
“Dynamic logical partitioning” on page 53.

B

Note: The source files for these examples are available. See Appendix G,
“Additional material” on page 503 for information about how to download
example source files.
© Copyright IBM Corp. 2003. All rights reserved. 407

General information
The templates included in this appendix are as follows:

� “Perl template” on page 409

� “Korn shell template” on page 421

� “Sample DLPAR-aware application using a signal handler” on page 433

If you can access the source code of your application, see the last template
example to make your applications DLPAR-aware.

If not, you can choose your favorite programming language from Perl, Korn shell,
and the C language in order to integrate DLPAR operations into your
applications. The first two templates are slightly modified from the files originally
installed in the /usr/samples/dr/scripts directory on AIX 5L Version 5.2 to add a
debug output facility and insert comments for readability. The original template
files are included in the bos.adt.samples fileset, as shown in the following
example:

lslpp -w /usr/samples/dr/scripts/IBM_template.*
 File Fileset Type
 --
 /usr/samples/dr/scripts/IBM_template.c bos.adt.samples File
 /usr/samples/dr/scripts/IBM_template.pl bos.adt.samples File
 /usr/samples/dr/scripts/IBM_template.sh bos.adt.samples File
lslpp -L bos.adt.samples
 Fileset Level State Type Description (Uninstaller)
 --
 bos.adt.samples 5.2.0.0 C F Base Operating System
Samples

Note: Some scripts in the /usr/samples/dr/scripts directory are provided to
demonstrate error situations. For example, IBM_XYZ_fail_dr_2.sh generates
the AIX error log shown in Example B-1 in a CPU removal DLPAR event. You
should carefully read the readme file in this directory, before registering these
scripts.
408 The Complete Partitioning Guide for IBM Eserver pSeries Servers

Example: B-1 DR_UNSAFE_PROCESS

LABEL: DR_UNSAFE_PROCESS
IDENTIFIER: 0E2A04B4

Date/Time: Fri Nov 15 11:04:17 CST
Sequence Number: 114
Machine Id: 0021768A4C00
Node Id: lpar01
Class: S
Type: INFO
Resource Name: SYSPROC

Description
DR Unsafe application

Detail Data
Process ID

30499421762355200

These templates implement all the necessary command syntaxes explained in
Table 3-7 on page 76 that define the DLPAR script syntax.

Perl template
Example B-2 provides the Perl version of the DLPAR script template. It can be
used by system administrators as a starting point to integrate DLPAR operations
into your applications.

The script is added a file handle, DBG, to be used to print debug information to
the debug file, /tmp/dr_IBM_template.pl.dbg. The debug information is very
helpful when you have to debug your DLPAR script, because the script should
not print any undefined name-value pairs to the standard out.

To display the debug information sent to the file, type the following command:

$ tail -f /tmp/dr_IBM_template.pl.dbg

Example: B-2 DLPAR script template: Perl

#!/usr/bin/perl

(C) COPYRIGHT International Business Machines Corp. 2000, 2002
All Rights Reserved
Licensed Materials - Property of IBM
#
US Government Users Restricted Rights - Use, duplication or
 Appendix B. Dynamic logical partitioning program templates 409

disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
#
FILE NAME: dr_IBM_template.pl
#
FILE DESCRIPTION:
This perl script will provide a template for DLPAR script developers
to develop their custom perl scripts.
#
It is the basic test script. It implements all the commands of DLPAR
script and for all them returns success. It identifies itself with
distinct details.

#--
GLOBAL OBJECTS
#--

This hash contains the required commands specified in the DRAF.
The values assigned to each command is irrelevant. The script
converts the text into a number for quick accessing
%DR_script_commands = (
 scriptinfo => 1,
 register => 2,
 usage => 3,
 checkrelease => 4,
 prerelease => 5,
 postrelease => 6,
 undoprerelease => 7,
 checkacquire => 8,
 preacquire => 9,
 postacquire => 10,
 undopreacquire => 11
);
This hash contains data used by the scriptinfo command. It lists
required information about the script
%SCRIPT_DATA = (
 SCRIPT_INFO => “AIX “,
 SCRIPT_VERSION => “1”,
 SCRIPT_VENDOR => “IBM Corp.”,
 SCRIPT_TIMEOUT => 5
);
This hash contains the resources for which the script will register.
In this case, this script wants to register for DR operations that
involve memory and cpu events.
%REGISTER_DATA = (
 CPU_RESOURCE => “cpu”,
 MEM_RESOURCE => “mem”
);
This hash contains usage descriptions for each possible resource.
%USAGE_DATA = (
410 The Complete Partitioning Guide for IBM Eserver pSeries Servers

 CPU_USAGE => “Testing DLPAR on CPU resource”,
 MEM_USAGE => “Testing DLPAR on MEM resource”
);

#--
Helper Functions
#--

#==
Name: str_to_cmd
#
Description: converts a string to a command value
#
Input: command string
#
Output: logically mapped command value
#
Return Code: None
#==
sub str_to_cmd {

 $s_cmd = $_[0];
 $DR_script_commands{$s_cmd};
}

#--
Required DRAF commands
#--

#==
Name: process_scriptinfo
#
Description: returns information about the script
#
Input: none
#
Output: name-value pairs
#
Return Code: 0 = success
1 = failure
#==
sub process_scriptinfo {

 print “DR_SCRIPTINFO=$SCRIPT_DATA{SCRIPT_INFO}\n”;
 print “DR_VERSION=$SCRIPT_DATA{SCRIPT_VERSION}\n”;
 print “DR_DATE=19042002\n”;
 print “DR_VENDOR=$SCRIPT_DATA{SCRIPT_VENDOR}\n”;
 print “DR_TIMEOUT=$SCRIPT_DATA{SCRIPT_TIMEOUT}\n”;
 Appendix B. Dynamic logical partitioning program templates 411

 0;
}

#==
Name: process_scriptinfo
#
Description: returns information about the script
#
Input: none
#
Output: name-value pairs
#
Return Code: 0 = success
1 = failure
#==
sub process_register {

 foreach $key (keys %REGISTER_DATA){
 print “DR_RESOURCE=$REGISTER_DATA{$key}\n”;
 }
 0;
}

#==
Name: process_usage
#
Description: returns usage information about the script
#
Input: resource
#
Output: name-value pairs
#
Return Code: 0 = success
1 = failure
#==
sub process_usage {

 $l_rc = 0;
 $res = $_[0];

 USE_SWITCH: {
 if ($res eq $REGISTER_DATA{CPU_RESOURCE}) {
 print “DR_USAGE=$USAGE_DATA{CPU_USAGE}\n”;
 last USE_SWITCH;
 }
 if ($res eq $REGISTER_DATA{MEM_RESOURCE}) {
 print “DR_USAGE=$USAGE_DATA{MEM_USAGE}\n”;
 last USE_SWITCH;
412 The Complete Partitioning Guide for IBM Eserver pSeries Servers

 }
 print “DR_ERROR=script does not use resource $res\n”;
 $l_rc = 1;
 }
 return $l_rc;
}

#==
Name: process_checkrelease
#
Description: verifies a resource can be removed without compromises
the application.
#
Input: resource
#
Output: Any DR_ERROR=description or DR_LOG_DEBUG=description variables
#
Return Code: 0 = success
1 = failure
#==
sub process_checkrelease {

 $l_rc = 0;
 $res = $_[0];

 print DBG “-- start checkrelease phase --\n”;
 foreach $key (sort keys %ENV) {
 if ($key =~ /^DR_/) {
 print DBG $key, ‘=’, $ENV{$key}, “\n”;
 }
 }

 USE_SWITCH: {
 if ($res eq $REGISTER_DATA{CPU_RESOURCE}) {
 # perform all cpu related checks here and determine
 # if resource remove can proceed.
 last USE_SWITCH;
 }
 if ($res eq $REGISTER_DATA{MEM_RESOURCE}) {
 # perform all memu related checks here and determine
 # if resource remove can proceed.
 last USE_SWITCH;
 }
 print “DR_ERROR=script does not use resource $res\n”;
 $l_rc = 1;
 }

 print DBG “-- end checkrelease phase --\n”;
 Appendix B. Dynamic logical partitioning program templates 413

 return $l_rc;
}

#==
Name: process_prerelease
#
Description: Prepares for the resource to be removed
#
Input: resource
#
Output: Any DR_ERROR=description or DR_LOG_DEBUG=description variables
#
Return Code: 0 = success
1 = failure
#==
sub process_prerelease {

 $l_rc = 0;
 $res = $_[0];

 print DBG “-- start prerelease phase --\n”;
 foreach $key (sort keys %ENV) {
 if ($key =~ /^DR_/) {
 print DBG $key, ‘=’, $ENV{$key}, “\n”;
 }
 }

 # before we allow DR manager to proceed, we can do any prerelease
 # actions here. For instance, we could send a signal from here
 # and wait for the application to take some action.

 # resource specific actions
 USE_SWITCH: {
 if ($res eq $REGISTER_DATA{CPU_RESOURCE}) {
 # release any cpu bindings, etc. here if the resource
 # is being used by the application.
 last USE_SWITCH;
 }
 if ($res eq $REGISTER_DATA{MEM_RESOURCE}) {
 # release any application hold over memory, etc, that
 # is being removed.
 last USE_SWITCH;
 }
 print “DR_ERROR=script does not use resource $res\n”;
 $l_rc = 1;
 }

 print DBG “-- end prerelease phase --\n”;
414 The Complete Partitioning Guide for IBM Eserver pSeries Servers

 return $l_rc;
}

#==
Name: process_undoprerelease
#
Description: Invoked to undo any changes done by the prerelease
command.
#
Input: resource
#
Output: Any DR_ERROR=description or DR_LOG_DEBUG=description variables
#
Return Code: 0 = success
1 = failure
#==
sub process_undoprerelease {

 $l_rc = 0;
 $res = $_[0];
 # perform any actions here which were performed in the prerelease
 # command.

 print DBG “-- start undoprerelease phase --\n”;
 foreach $key (sort keys %ENV) {
 if ($key =~ /^DR_/) {
 print DBG $key, ‘=’, $ENV{$key}, “\n”;
 }
 }

 # resource specific actions
 USE_SWITCH: {
 if ($res eq $REGISTER_DATA{CPU_RESOURCE}) {
 # undo cpu related changes done by the prerelease cmd
 last USE_SWITCH;
 }
 if ($res eq $REGISTER_DATA{MEM_RESOURCE}) {
 # undo mem related changes done by the prerelease cmd
 last USE_SWITCH;
 }
 print “DR_ERROR=script does not use resource $res\n”;
 $l_rc = 1;
 }

 print DBG “-- end undoprerelease phase --\n”;

 return $l_rc;
}

 Appendix B. Dynamic logical partitioning program templates 415

#==
Name: process_postrelease
#
Description: After the resource is removed, this command makes
necessary adjustments
#
Input: resource
#
Output: Any DR_ERROR=description or DR_LOG_DEBUG=description variables
#
Return Code: 0 = success
1 = failure
#==
sub process_postrelease {

 $l_rc = 0;
 $res = $_[0];

 # reacquire any resource released during prerelease
 # activate any applications quieced during prerelease.

 print DBG “-- start postrelease phase --\n”;
 foreach $key (sort keys %ENV) {
 if ($key =~ /^DR_/) {
 print DBG $key, ‘=’, $ENV{$key}, “\n”;
 }
 }

 # resource specific actions
 USE_SWITCH: {
 if ($res eq $REGISTER_DATA{CPU_RESOURCE}) {
 # perform cpu related actions.
 last USE_SWITCH;
 }
 if ($res eq $REGISTER_DATA{MEM_RESOURCE}) {
 # perform mem related actions.
 last USE_SWITCH;
 }
 print “DR_ERROR=script does not use resource $res\n”;
 $l_rc = 1;
 }

 print DBG “-- end postrelease phase --\n”;
 return $l_rc;
}

#==
Name: process_checkacquire
#

416 The Complete Partitioning Guide for IBM Eserver pSeries Servers

Description: verifies a resource can be added withouth
compromising the application or system.
#
Input: resource
#
Output: Any DR_ERROR=description or DR_LOG_DEBUG=description variables
#
Return Code: 0 = success
1 = failure
#==
sub process_checkacquire {

 $l_rc = 0;
 $res = $_[0];

 print DBG “-- start checkacquire phase --\n”;
 foreach $key (sort keys %ENV) {
 if ($key =~ /^DR_/) {
 print DBG $key, ‘=’, $ENV{$key}, “\n”;
 }
 }

 # resource specific actions
 USE_SWITCH: {
 if ($res eq $REGISTER_DATA{CPU_RESOURCE}) {
 # perform all cpu related checks here and determine
 # if resource addition can proceed.
 print DBG “cpu resources: logical $ENV{DR_LCPUID}, bind $ENV{DR_BCPUID}\n”;
 if ($END{DR_LCPUID} eq 2) {
 $l_rc = 1;
 }
 last USE_SWITCH;
 }
 if ($res eq $REGISTER_DATA{MEM_RESOURCE}) {
 # perform all mem related checks here and determine
 # if resource addition can proceed.
 print DBG “mem resources: $ENV{DR_MEM_SIZE_REQUEST}\n”;
 last USE_SWITCH;
 }
 print “DR_ERROR=script does not use resource $res\n”;
 $l_rc = 1;
 }

 print DBG “-- end checkacquire phase --\n”;
 return $l_rc;
}

#==
Name: process_preacquire
 Appendix B. Dynamic logical partitioning program templates 417

#
Description: prepares application before the resource is added
#
Input: resource
#
Output: Any DR_ERROR=description or DR_LOG_DEBUG=description variables
#
Return Code: 0 = success
1 = failure
#==
sub process_preacquire {

 $l_rc = 0;
 $res = $_[0];

 print DBG “-- start preacquire phase --\n”;
 foreach $key (sort keys %ENV) {
 if ($key =~ /^DR_/) {
 print DBG $key, ‘=’, $ENV{$key}, “\n”;
 }
 }

 # resource specific actions
 USE_SWITCH: {
 if ($res eq $REGISTER_DATA{CPU_RESOURCE}) {
 # Prepare application for cpu additions.
 last USE_SWITCH;
 }
 if ($res eq $REGISTER_DATA{MEM_RESOURCE}) {
 # Prepare application for memory additions.
 last USE_SWITCH;
 }
 print “DR_ERROR=script does not use resource $res\n”;
 $l_rc = 1;
 }

 print DBG “-- end preacquire phase --\n”;

 return $l_rc;
}

#==
Name: process_undopreacquire
#
Description: If a failure occues, this will undo any changes made by
the preacquire command.
#
Input: resource
#

418 The Complete Partitioning Guide for IBM Eserver pSeries Servers

Output: Any DR_ERROR=description or DR_LOG_DEBUG=description variables
#
Return Code: 0 = success
1 = failure
#==
sub process_undopreacquire {

 $l_rc = 0;
 $res = $_[0];

 print DBG “-- start undopreacquire phase --\n”;
 foreach $key (sort keys %ENV) {
 if ($key =~ /^DR_/) {
 print DBG $key, ‘=’, $ENV{$key}, “\n”;
 }
 }

 # resource specific actions
 USE_SWITCH: {
 if ($res eq $REGISTER_DATA{CPU_RESOURCE}) {
 # undo cpu actions taken in the preacquire command.
 last USE_SWITCH;
 }
 if ($res eq $REGISTER_DATA{MEM_RESOURCE}) {
 # undo mem actions taken in the preacquire command.
 last USE_SWITCH;
 }
 print “DR_ERROR=script does not use resource $res\n”;
 $l_rc = 1;
 }

 print DBG “-- end undopreacquire phase --\n”;

 return $l_rc;
}

#==
Name: process_postacquire
#
Description: After a resource has been added, this will perform any
necessary actions.
#
Input: resource
#
Output: Any DR_ERROR=description or DR_LOG_DEBUG=description variables
#
Return Code: 0 = success
1 = failure
#==
 Appendix B. Dynamic logical partitioning program templates 419

sub process_postacquire {

 $l_rc = 0;
 $res = $_[0];

 print DBG “-- start undopreacquire phase --\n”;
 foreach $key (sort keys %ENV) {
 if ($key =~ /^DR_/) {
 print DBG $key, ‘=’, $ENV{$key}, “\n”;
 }
 }

 # resource specific actions
 USE_SWITCH: {
 if ($res eq $REGISTER_DATA{CPU_RESOURCE}) {
 # Perform actions to allow the application to adjust to a
 # cpu addition such as adding more threads, etc.
 last USE_SWITCH;
 }
 if ($res eq $REGISTER_DATA{MEM_RESOURCE}) {
 # Perform actions to allow the application to adjust to a
 # memory addition such as increasing memory areas reserved
 # for application, etc.
 last USE_SWITCH;
 }
 print “DR_ERROR=script does not use resource $res\n”;
 $l_rc = 1;
 }

 print DBG “-- end undopreacquire phase --\n”;

 return $l_rc;
}

#--
Main Program
#--

because we should only write the specified name-value
pairs in the DRAF, we should print debug information
to a file.
open (DBG, “>>/tmp/dr_IBM_template.pl.dbg”);

This block processes the command line inputs.
ARG_SWITCH: {
 if ($#ARGV == -1) { $rc = -1; last ARG_SWITCH; }
 if ($#ARGV == 0) { $command_str = $ARGV[0] ; last ARG_SWITCH; }
 if ($#ARGV == 1) { $command_str = $ARGV[0]; $res_name = $ARGV[1]; last ARG_SWITCH; }
 $rc = -2;
420 The Complete Partitioning Guide for IBM Eserver pSeries Servers

}

Convert the string to a command.
$command = str_to_cmd $command_str;

#This block invokes the proper function to handle the command
CMD_SWITCH: {
 if ($command == ‘’) {$rc = 10; print “DR_ERROR=command not supported\n”; last CMD_SWITCH }
 if ($command == 1) {$rc = process_scriptinfo; last CMD_SWITCH }
 if ($command == 2) {$rc = process_register; last CMD_SWITCH }
 if ($command == 3) {$rc = process_usage $res_name; last CMD_SWITCH }
 if ($command == 4) {$rc = process_checkrelease $res_name; last CMD_SWITCH }
 if ($command == 5) {$rc = process_prerelease $res_name; last CMD_SWITCH }
 if ($command == 6) {$rc = process_postrelease $res_name; last CMD_SWITCH }
 if ($command == 7) {$rc = process_undoprerelease $res_name; last CMD_SWITCH }
 if ($command == 8) {$rc = process_checkacquire $res_name; last CMD_SWITCH }
 if ($command == 9) {$rc = process_preacquire $res_name; last CMD_SWITCH }
 if ($command == 10) {$rc = process_postacquire $res_name; last CMD_SWITCH }
 if ($command == 11) {$rc = process_undopreacquire $res_name; last CMD_SWITCH }
}

close the debug file handle
close(DBG);
exit status generated from command processing
$rc;

Korn shell template
Example B-3 on page 422 provides the Korn shell version of the DLPAR script
template. It can be used by system administrators as a starting point to integrate
DLPAR operations into your applications.

The script sends debug information to the debug file,
/tmp/<script_file_name>.dbg. The debug information is very helpful when you
have to debug your DLPAR script, because the script should not print any
undefined name-value pairs to the standard out.

To display the debug information sent to the file, type the following command:

$ tail -f /tmp/<script_file_name>.dbg
 Appendix B. Dynamic logical partitioning program templates 421

Example: B-3 DLPAR script template: Korn shell

#! /usr/bin/ksh
(C) COPYRIGHT International Business Machines Corp. 2000, 2002
All Rights Reserved
Licensed Materials - Property of IBM

US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
#
#
DLPAR aware Application developers will modify this script to
develop a DLPAR script to suit their application's needs of control
vis-a-vis Dynamic Reconfiguration(DLPAR) Operations.
#

FILE NAME: IBM_template.sh
#
FILE DESCRIPTION:
This is an example template shell DLPAR script file for
Dynamic Reconfiguration Application Framework of AIX.
This template file just prints the various inputs
from drmgr.
#
Note that DLPAR script file should adher to the guildelines
related to AIX Dynamic Reconfiguration. Some of the
issues to be considered while chaagng this script file
are:
1. Output name=value pairs only to stdout
as per the DRAF guidelines. Refer to
Manuals related to DLPAR for more details.
2. Return 0 upon success, 10 if the command
is not implemented, else return any other
return code (1 to 9, 11 to 255)
3. Use DRAF defined environment variables and
input parameters for processing the
command.
4. To debug the script file, one can use
the method shown in this template file.
#
RETURN VALUE DESCRIPTION:
0 Successful
10 Command not implemented
Else Error
#
################################# dbg #######################################
#
NAME: dbg()
422 The Complete Partitioning Guide for IBM Eserver pSeries Servers

#
DESCRIPTION: Write the debug message to debug file
#
INPUT:
Message to write to debug file
#
OUTPUT:
Message echoed to the debug file.
#
RETURN VALUE DESCRIPTION:
None
#
##

dbg()
{

echo $1 >> ${DBG_FILE_NAME}
}

############################## process_scriptinfo ############################
#
NAME: process_scriptinfo()
#
DESCRIPTION: Process 'scriptinfo' command from drmgr
#
INPUT:
The various environment variables set by drmgr
#
OUTPUT:
Output name=value pairs to stdout
Various pieces of information about the DLPAR script.
#
RETURN VALUE DESCRIPTION:
0 : success
Else failure.
#
##

process_scriptinfo()
{

echo "DR_SCRIPTINFO=AIX DR ksh example script"
echo "DR_VERSION=1"
echo "DR_DATE=18102002"
echo "DR_VENDOR=IBM"
echo "DR_TIMEOUT=10"
return 0

}

############################## process_register ############################
 Appendix B. Dynamic logical partitioning program templates 423

#
NAME: process_register()
#
DESCRIPTION: Process 'register' command from drmgr
#
INPUT:
The various environment variables set by drmgr
#
OUTPUT:
Output name=value pairs to stdout
List of all the resources supported by this DLPAR script.
#
RETURN VALUE DESCRIPTION:
0 : success
Else failure.
#
##

process_register()
{

echo "DR_RESOURCE=cpu"
echo "DR_RESOURCE=mem"
return 0

}

############################## process_usage ############################
#
NAME: process_usage()
#
DESCRIPTION: Process 'usage' command from drmgr
#
INPUT:
The various environment variables set by drmgr
resource name input variable
#
OUTPUT:
Output name=value pairs to stdout
Writes the how this resource is being used by the application
associated with this DLPAR script.
#
RETURN VALUE DESCRIPTION:
0 : success
Else failure.
#
##

process_usage()
{

case "$1" in
424 The Complete Partitioning Guide for IBM Eserver pSeries Servers

"cpu")
echo "DR_USAGE=cpu binding for performance"
;;
"mem")
echo "DR_USAGE=Shared(Pinned) memory for app XYZ"
;;
*)
echo "DR_ERROR=Script does not use Resource $1"
;;

esac
return 0

}

############################## process_checkrelease ##########################
#
NAME: process_checkrelease()
#
DESCRIPTION: Process 'checkrelease' command from drmgr
#
INPUT:
The various environment variables set by drmgr
resource name input variable
#
OUTPUT:
Any debug information using DR debug name=value pairs
such as DR_LOG_DEBUG="..."
Any error message in the form of DR_ERROR name=value pair
#
#
RETURN VALUE DESCRIPTION:
0 : success
10 : Command not implemented for this resource.
Else DLPAR operatin is not ok with the DLPAR script/associated app.
#
##

process_checkrelease()
{

case "$1" in
"cpu")
dbg "Resource : cpu"
Do all the cpu related checks here and determine
whether DLPAR remove can proceed.
;;
"mem")
dbg "Resource : mem"
Do all the memory related checks here and determine
whether DLPAR remove can proceed.
;;
 Appendix B. Dynamic logical partitioning program templates 425

*)
echo "DR_ERROR=Script does not support Resource $1"
;;

esac

return 0
}

############################## process_prerelease ############################
#
NAME: process_prerelease()
#
DESCRIPTION: Process 'prerelease' command from drmgr
#
INPUT:
The various environment variables set by drmgr
resource name input variable
#
OUTPUT:
Any debug information using DR debug name=value pairs
such as DR_LOG_DEBUG="..."
Any error message in the form of DR_ERROR name=value pair
#
#
RETURN VALUE DESCRIPTION:
0 : success
10 : Command not implemented for this resource.
Else DLPAR script/associated application could not release the resource
for DLPAR operation.
#
##
process_prerelease()
{

Do any pre release actions here. One could send a signal
from here and wait for application do the necessary.
Return from here only after the desired actions have
taken place.
case "$1" in

"cpu")
bg "Resource : cpu"
Release any cpu bindings etc here if the
resource being released is used by the app.
;;
"mem")
dbg "Resource : mem"
Release application hold over any memory
that is being removed.
;;
*)
426 The Complete Partitioning Guide for IBM Eserver pSeries Servers

echo "DR_ERROR=Script does not support Resource $1"
;;

esac

return 0
}

############################## process_postrelease ############################
#
NAME: process_postrelease()
#
DESCRIPTION: Process 'postrelease' command from drmgr
#
INPUT:
The various environment variables set by drmgr
resource name input variable
#
OUTPUT:
Any debug information using DR debug name=value pairs
such as DR_LOG_DEBUG="..."
Any error message in the form of DR_ERROR name=value pair
#
#
RETURN VALUE DESCRIPTION:
0 : success
10 : Command not implemented for this resource.
Else DLPAR script/associated application could not post DLPAR operations.
#
##
process_postrelease()
{

Reacquire any resource release during prerelease.
activate any apps quieced during prerelease.

case "$1" in
"cpu")
dbg "Resource : cpu"
;;
"mem")
dbg "Resource : mem"
;;
*)
echo "DR_ERROR=Script does not support Resource $1"
;;

esac

return 0
}

 Appendix B. Dynamic logical partitioning program templates 427

############################## process_undoprerelease #########################
#
NAME: process_undoprerelease()
#
DESCRIPTION: Process 'process_undoprerelease' command from drmgr
#
INPUT:
The various environment variables set by drmgr
resource name input variable
#
OUTPUT:
Any debug information using DR debug name=value pairs
such as DR_LOG_DEBUG="..."
Any error message in the form of DR_ERROR name=value pair
#
#
RETURN VALUE DESCRIPTION:
0 : success
10 : Command not implemented for this resource.
Else DLPAR script/associated application failed undorelease
#
##
process_undoprerelease()
{

DLPAR operation was aborted/failed. Hence undo any
changes done during prerelease for this resource
and the application associated with the DLPAR script.
case "$1" in

"cpu")
dbg "Resource : cpu"
;;
"mem")
dbg "Resource : mem"
;;
*)
echo "DR_ERROR=Script does not support Resource $1"
;;

esac
return 0

}

############################## process_checkacquire #########################
#
NAME: process_checkacquire()
#
DESCRIPTION: Process 'process_checkacquire' command from drmgr
#
INPUT:
The various environment variables set by drmgr
428 The Complete Partitioning Guide for IBM Eserver pSeries Servers

resource name input variable
#
OUTPUT:
Any debug information using DR debug name=value pairs
such as DR_LOG_DEBUG="..."
Any error message in the form of DR_ERROR name=value pair
#
#
RETURN VALUE DESCRIPTION:
0 : success
10 : Command not implemented for this resource.
Else DLPAR script/associated application does want this resource.
#
##
process_checkacquire()
{

Do any checks prior to resource addition.
case "$1" in

"cpu")
dbg "Resource : cpu"
;;
"mem")
dbg "Resource : mem"
;;
*)
echo "DR_ERROR=Script does not support Resource $1"
;;

esac
return 0

}
############################## process_preacquire #########################
#
NAME: process_preacquire()
#
DESCRIPTION: Process 'process_preacquire' command from drmgr
#
INPUT:
The various environment variables set by drmgr
resource name input variable
#
OUTPUT:
Any debug information using DR debug name=value pairs
such as DR_LOG_DEBUG="..."
Any error message in the form of DR_ERROR name=value pair
#
#
RETURN VALUE DESCRIPTION:
0 : success
10 : Command not implemented for this resource.
 Appendix B. Dynamic logical partitioning program templates 429

Else DLPAR script/associated application preacquire failed.
#
##
process_preacquire()
{
 # Do all the necessary work prior to resource addition.
 case "$1" in
 "cpu")
 dbg "Resource : cpu"
 ;;
 "mem")
 dbg "Resource : mem"
 ;;
 *)
 echo "DR_ERROR=Script does not support Resource $1"
 ;;
 esac
 return 0
}

############################## process_undopreacquire #########################
#
NAME: process_undopreacquire()
#
DESCRIPTION: Process 'process_undopreacquire' command from drmgr
#
INPUT:
The various environment variables set by drmgr
resource name input variable
#
OUTPUT:
Any debug information using DR debug name=value pairs
such as DR_LOG_DEBUG="..."
Any error message in the form of DR_ERROR name=value pair
#
#
RETURN VALUE DESCRIPTION:
0 : success
10 : Command not implemented for this resource.
Else DLPAR script/associated application undopreacquire failed.
#
##
process_undopreacquire()
{

DLPAR operation has failed. So undo any activities done during
preacquire
case "$1" in

"cpu")
dbg "Resource : cpu"
430 The Complete Partitioning Guide for IBM Eserver pSeries Servers

;;
"mem")
dbg "Resource : mem"
;;
*)
echo "DR_ERROR=Script does not support Resource $1"
;;

esac
return 0

}
############################## process_postacquire #########################
#
NAME: process_postacquire()
#
DESCRIPTION: Process 'process_postacquire' command from drmgr
#
INPUT:
The various environment variables set by drmgr
resource name input variable
#
OUTPUT:
Any debug information using DR debug name=value pairs
such as DR_LOG_DEBUG="..."
Any error message in the form of DR_ERROR name=value pair
#
#
RETURN VALUE DESCRIPTION:
0 : success
10 : Command not implemented for this resource.
Else DLPAR script/associated application postacquire failed.
#
##
process_postacquire()
{

execute any actions required after the DLPAR add operation.
Egs: Increase the number of threads for the application
Increase memory areas reserved for application etc.
case "$1" in

"cpu")
dbg "Resource : cpu"
;;
"mem")
dbg "Resource : mem"
;;
*)
echo "DR_ERROR=Script does not support Resource $1"
;;

esac
return 0
 Appendix B. Dynamic logical partitioning program templates 431

}

###
MAIN SCRIPT STARTS HERE
###

script_file_name=`basename $0`
DBG_FILE_NAME=/tmp/${script_file_name}.dbg

date_and_time=`date`
dbg "------ DLPAR Script start at $date_and_time -------"

if [$# -eq 0]; then
Atleast the command must be part of the invocation
dbg "No command passed to the DLPAR script"
echo "DR_ERROR=Script Usage Error"
exit 1

fi

Note down the command
command=$1
ret_code=0

dbg "command issued: $1"
case "$1" in

scriptinfo)
process_scriptinfo
ret_code=$?
;;
register)
process_register
ret_code=$?
;;
usage)
process_usage $2
ret_code=$?
;;
checkrelease)
process_checkrelease $2
ret_code=$?
;;
prerelease)
process_prerelease $2
ret_code=$?
;;
postrelease)
process_postrelease $2
ret_code=$?
;;
432 The Complete Partitioning Guide for IBM Eserver pSeries Servers

undoprerelease)
process_undoprerelease $2
ret_code=$?
;;
checkacquire)
process_checkacquire $2
ret_code=$?
;;
preacquire)
process_preacquire $2
ret_code=$?
;;
undopreacquire)
process_undopreacquire $2
ret_code=$?
;;
postacquire)
process_postacquire $2
ret_code=$?
;;
*)
dbg "unknown command: $1 issued"
ret_code=10
;;
esac

dbg "SCRIPT exiting with return code : $ret_code"

dbg "................DLPAR Script end "

return $ret_code

B.1 Sample DLPAR-aware application using a signal
handler

If you can access the source code of your application, you can modify your
application by adding a signal handler that reacts to the SIGRECONFIG signal
so that the application is made DLPAR-aware. The SIGRECONFIG signal will be
delivered to the application process upon DLPAR events.

Example B-4 on page 434 can be used by application programmers as a starting
point to add a signal handler to the application.
 Appendix B. Dynamic logical partitioning program templates 433

B.1.1 How to compile and run the application
Before running this application, you must compile the C source code by
executing the following command1:

$ cc -o DLPAR_appl DLPAR_appl.c

Where:

DLPAR_appl The application program name to be executed

DLPAR_appl.c The file name of C program source code

To run this application, type DLPAR_appl at the command line prompt. To stop it,
type Control-C at the command line prompt where you have invoked it.

The application process sends debug information to the
/tmp/dr_api_template.C.dbg file. To display the debug information sent to the file,
issue the following:

$ tail -f /tmp/dr_api_template.C.dbg

Example: B-4 C language application with a signal handler

#include <stdio.h>
#include <stdlib.h>
#include <signal.h>
#include <errno.h>
#include <sys/dr.h>

/*===*/
/* Prototypes */
/*===*/
void perror_msg(char *func_name, int errno_old, const int line_num);
void dr_func(int arg);
int checkAcquire_mem(void);
int checkAcquire_cpu(void);
int preAcquire_mem(void);
int preAcquire_cpu(void);
int postAcquire_mem(void);
int postAcquire_cpu(void);
int postAcquireError_mem(void);
int postAcquireError_cpu(void);
int checkRelease_mem(void);
int checkRelease_cpu(void);
int preRelease_mem(void);
int preRelease_cpu(void);
int postRelease_mem(void);
int postRelease_cpu(void);

1 This example requires that the C compiler is installed and available on your AIX system.
434 The Complete Partitioning Guide for IBM Eserver pSeries Servers

int postReleaseError_mem(void);
int postReleaseError_cpu(void);

/*===*/
/* Globals */
/*===*/
extern int errno;
dr_info_t dr_info;
char msg_buf[BUFSIZ];
FILE * l_dbgFd;

typedef struct {
int (*mem_ptr)(void);
int (*cpu_ptr)(void);

} phases_t;

phases_t definedPhase[] = { /* #J */
{ &checkAcquire_mem, &checkAcquire_cpu },
{ &preAcquire_mem, &preAcquire_cpu },
{ &postAcquire_mem, &postAcquire_cpu },
{ &postAcquireError_mem, &postAcquireError_cpu },
{ &checkRelease_mem, &checkRelease_cpu },
{ &preRelease_mem, &preRelease_cpu },
{ &postRelease_mem, &postRelease_cpu },
{ &postReleaseError_mem, &postReleaseError_cpu }

};

#define CHECK_ACQUIRE &definedPhase[0];
#define PRE_ACQUIRE &definedPhase[1];
#define POST_ACQUIRE &definedPhase[2];
#define POST_ACQUIRE_ERROR &definedPhase[3];
#define CHECK_RELEASE &definedPhase[4];
#define PRE_RELEASE &definedPhase[5];
#define POST_RELEASE &definedPhase[6];
#define POST_RELEASE_ERROR &definedPhase[7];

#define DR_API_SUCCESS 0
#define DR_API_FAIL 1

/*===*/
/* Helper Functions */
/*===*/

/*===*/
/* Description: Handles any unexected errors */
/* */
/* Output: none */
/* Inputs: function name */
/* errno */
 Appendix B. Dynamic logical partitioning program templates 435

/* linenumber */
/*===*/
void
perror_msg(char *func_name, int errno_old, const int line_num)
{

sprintf(msg_buf
, “%s failed with errno = %d at line (%d).\n”
, func_name, errno_old, line_num);

perror(msg_buf);

return;
}

/*===*/
/* Description: Memory Check Acquire phase */
/* */
/* This function should ensure that a memory addition will not */
/* disrupt the application, before the actual DR event occurs. */
/* */
/* Output: integer value indicating status of DR operation */
/* Values: DR_API_SUCCESS */
/* Input: None */
/*===*/
int checkAcquire_mem(void)
{

int l_rc = DR_API_SUCCESS;

fprintf(l_dbgFd, “*****Entered CheckedAcquire_mem*****\n”);

/* Check for plock’d memory */
if (dr_info.plock) {

fprintf(l_dbgFd, “\t-- process has plock()’ed memory --\n”);
l_rc = DR_API_FAIL;

}
/* check for pinned memory */
if (dr_info.pshm) {

fprintf(l_dbgFd, “\t-- process has pinned shared memory --\n”);
l_rc = DR_API_FAIL;

}

return l_rc;
}

/*===*/
/* Description: CPU check acquire phase */
/* This function should ensure that a cpu addition will not */
/* disrupt the application, before the actual DR event takes place*/
/* */
/* Output: integer value indicating status of DR operation */
436 The Complete Partitioning Guide for IBM Eserver pSeries Servers

/* Values: DR_API_SUCCESS */
/* DR_API_FAIL */
/* Inputs: None */
/*===*/
int checkAcquire_cpu(void)
{

int l_rc = DR_API_SUCCESS;

fprintf(l_dbgFd, “*****Entered CheckedAcquire_cpu*****\n”);

/* check for processor dependencies */
if (dr_info.bindproc) {

fprintf(l_dbgFd, “\t-- process has bindprocessor() dependency --\n”);
l_rc = DR_API_FAIL;

}
if (dr_info.softpset) {

fprintf(l_dbgFd, “\t-- process has soft pset() dependency --\n”);
l_rc = DR_API_FAIL;

}
if (dr_info.hardpset) {

fprintf(l_dbgFd, “\t-- process has hard pset() dependency --\n”);
l_rc = DR_API_FAIL;

}

return l_rc;
}

/*===*/
/* Mem pre acquire phase */
/* */
/* Detailed Description: */
/* This function should ensure that the necessary steps are taken */
/* to prepare the application for a memory addition. If need be, */
/* the application should be halted. */
/* */
/* Output: integer value indicating status of DR operation */
/* Values: DR_API_SUCCESS */
/* DR_API_FAIL */
/* Inputs: None */
/*===*/
int preAcquire_mem(void)
{

int l_rc = DR_API_SUCCESS;

fprintf(l_dbgFd, “*****Entered PreeAcquire_mem*****\n”);

/* Perform actions here. */

return l_rc;
 Appendix B. Dynamic logical partitioning program templates 437

}

/*===*/
/* CPU pre acquire phase */
/* */
/* Detailed Description: */
/* This function should ensure that the necessary steps are taken */
/* to prepare the application for a cpu addition. If need be, */
/* the application should be stopped. */
/* */
/* Output: integer value indicating status of DR operation */
/* Values: DR_API_SUCCESS */
/* DR_API_FAIL */
/* Inputs: None */
/*===*/
int preAcquire_cpu(void)
{

int l_rc = DR_API_SUCCESS;

fprintf(l_dbgFd, “*****Entered PreAcquire_cpu*****\n”);

/* Perform actions here */

return l_rc;
}

/*===*/
/* Mem post acquire phase */
/* */
/* Detailed Description: */
/* After a memory addition has taken place, this function should */
/* perform any actions to clean up the DR operation and allow the */
/* application to use the new resources. If the application was */
/* stopped, it should be restarted here. */
/* */
/* Output: integer value indicating status of DR operation */
/* Values: DR_API_SUCCESS */
/* DR_API_FAIL */
/* Inputs: None */
/*===*/
int postAcquire_mem(void)
{

int l_rc = DR_API_SUCCESS;

fprintf(l_dbgFd, “*****Entered PostAcquire_mem*****\n”);

/* Perform actions here */

return l_rc;
438 The Complete Partitioning Guide for IBM Eserver pSeries Servers

}

/*===*/
/* CPU post acquire phase */
/* */
/* Detailed Description: */
/* After a cpu addition, this function allows the application */
/* access to the new resources. If the application was stopped, */
/* iy should be restarted here. */
/* */
/* Output: integer value indicating status of DR operation */
/* Values: DR_API_SUCCESS */
/* DR_API_FAIL */
/* Inputs: None */
/*===*/
int postAcquire_cpu(void)
{

int l_rc = DR_API_SUCCESS;

fprintf(l_dbgFd, “*****Entered PostAcquire_cpu*****\n”);

/* Perform actions here */

return l_rc;
}

/*===*/
/* Handles post acquire Error phase for mem */
/* */
/* Detailed Description: */
/* If an error should occur, this phase should handle undoing the */
/* preacquire actions taken for mem rmovals. */
/* */
/* Output: integer value indicating status of DR operation */
/* Values: DR_API_SUCCESS */
/* DR_API_FAIL */
/* Inputs: None */
/*===*/
int postAcquireError_mem(void)
{

int l_rc = DR_API_SUCCESS;

fprintf(l_dbgFd, “*****Entered PostAcquireError_mem*****\n”);

/* Perform actions here */

return l_rc;
}

 Appendix B. Dynamic logical partitioning program templates 439

/*===*/
/* Handles post acquire Error phase for cpu */
/* */
/* Detailed Description: */
/* If an error should occur, this phase should handle undoing the */
/* preacquire actions taken for cpu rmovals. */
/* */
/* Output: integer value indicating status of DR operation */
/* Values: DR_API_SUCCESS */
/* DR_API_FAIL */
/* Inputs: None */
/*===*/
int postAcquireError_cpu(void)
{

int l_rc = DR_API_SUCCESS;

fprintf(l_dbgFd, “*****Entered PostAcquireError_cpu*****\n”);

/* Perform actions here */

return l_rc;
}

/*===*/
/* Mem check release phase */
/* */
/* Detailed Description: */
/* This should check to make sure the application can tolerate a */
/* memory removal. If not, this should terminate the DR operation*/
/* */
/* Output: integer value indicating status of DR operation */
/* Values: DR_API_SUCCESS */
/* DR_API_FAIL */
/* Inputs: None */
/*===*/
int checkRelease_mem(void)
{

int l_rc = DR_API_SUCCESS;

 fprintf(l_dbgFd, “*****Entered CheckeRelease_mem*****\n”);

/* Check for memory issues */
if (dr_info.plock) {

fprintf(l_dbgFd, “\t-- process has plock()’ed memory --\n”);
l_rc = DR_API_FAIL;

}
if (dr_info.pshm) {

fprintf(l_dbgFd, “\t-- process has pinned shared memory --\n”);
l_rc = DR_API_FAIL;
440 The Complete Partitioning Guide for IBM Eserver pSeries Servers

}
return l_rc;

}

/*===*/
/* Handles post release Error phase for cpu */
/* */
/* Detailed Description: */
/* If an error should occur, this phase should handle undoing the */
/* prerelease actions taken for cpu rmovals. */
/* */
/* Output: integer value indicating status of DR operation */
/* Values: DR_API_SUCCESS */
/* l DR_API_FAIL */
/* Inputs: None */
/*===*/
int checkRelease_cpu(void)
{

int l_rc = DR_API_SUCCESS;

fprintf(l_dbgFd, “*****Entered CheckRelease_cpu*****\n”);

/* Check for processor dependencies */
if (dr_info.bindproc) {

fprintf(l_dbgFd, “\t-- process has bindprocessor() dependency --\n”);
l_rc = DR_API_FAIL;

}
if (dr_info.softpset) {

fprintf(l_dbgFd, “\t-- process has soft pset() dependency --\n”);
l_rc = DR_API_FAIL;

}
if (dr_info.hardpset) {

fprintf(l_dbgFd, “\t-- process has hard pset() dependency --\n”);
l_rc = DR_API_FAIL;

}
return l_rc;

}

/*===*/
/* Mem pre release phase */
/* */
/* Detailed Description: */
/* This function should prepare the application for memory */
/* resources being removed. */
/* */
/* Output: integer value indicating status of DR operation */
/* Values: DR_API_SUCCESS */
/* DR_API_FAIL */
 Appendix B. Dynamic logical partitioning program templates 441

/* Inputs: None */
/*===*/
int preRelease_mem(void)
{

int l_rc = DR_API_SUCCESS;

fprintf(l_dbgFd, “*****Entered PreRelease_mem*****\n”);

/* Perform actions here */

return l_rc;
}

/*===*/
/* Cpu pre release phase */
/* */
/* Detailed Description: */
/* This should prepare the application for cpu resources being */
/* removed. */
/* */
/* Output: integer value indicating status of DR operation */
/* Values: DR_API_SUCCESS */
/* DR_API_FAIL */
/* Inputs: None */
/*===*/
int preRelease_cpu(void)
{

int l_rc = DR_API_SUCCESS;

fprintf(l_dbgFd, “*****Entered PreRelease_cpu*****\n”);

/* Perform actions here */

return l_rc;
}

/*===*/
/* Mem post release phase */
/* */
/* Detailed Description: */
/* After the memory resources are removed, this function should */
/* take care of cleaning up any DR modifications made and allow */
/* the application to continue running. */
/* */
/* Output: integer value indicating status of DR operation */
/* Values: DR_API_SUCCESS */
/* DR_API_FAIL */
/* Inputs: None */
/*===*/
442 The Complete Partitioning Guide for IBM Eserver pSeries Servers

int postRelease_mem(void)
{

int l_rc = DR_API_SUCCESS;

fprintf(l_dbgFd, “*****Entered PostReleasee_mem*****\n”);

/* Perform actions here */

return l_rc;
}

/*===*/
/* Cpu post release phase */
/* */
/* Detailed Description: */
/* After cpu resources are removed, this function should handle */
/* the application so that it can continue after the DR operation.*/
/* */
/* Output: integer value indicating status of DR operation */
/* Values: DR_API_SUCCESS */
/* Values: DR_API_FAIL */
/* Inputs: None */
/*===*/
int postRelease_cpu(void)
{

int l_rc = DR_API_SUCCESS;

fprintf(l_dbgFd, “*****Entered PostRelease_cpu*****\n”);

/* Perform actions here */

return l_rc;
}

/*===*/
/* Handles post release Error phase for mem */
/* */
/* Detailed Description: */
/* If an error should occur, this phase should handle undoing the */
/* prerelease actions taken for mem rmovals. */
/* */
/* Output: integer value indicating status of DR operation */
/* Values: DR_API_SUCCESS */
/* DR_API_FAIL */
/* Inputs: None */
/*===*/
int postReleaseError_mem(void)
{

int l_rc = DR_API_SUCCESS;
 Appendix B. Dynamic logical partitioning program templates 443

fprintf(l_dbgFd, “*****Entered PostReleaseError_mem*****\n”);

/* Perform actions here */

return l_rc;
}

/*===*/
/* Handles post release Error phase for cpu */
/* */
/* Detailed Description: */
/* If an error should occur, this phase should handle undoing the */
/* prerelease actions taken for cpu rmovals. */
/* */
/* Output: integer value indicating status of DR operation */
/* Values: DR_API_SUCCESS */
/* DR_API_FAIL */
/* Inputs: None */
/*===*/
 int postReleaseError_cpu(void)
{

int l_rc = DR_API_SUCCESS;

fprintf(l_dbgFd, “*****Entered PostReleaseError_cpu*****\n”);

/* Perform actions here */

return l_rc;
}

/*===*/
/* Functions */
/*===*/

/*===*/
/* SIGRECONFIG signal handler */
/* */
/* Detailed Description: */
/* This will handle the signal, when a DR event occurs. The main */
/* information is communicated through a dr_info_t data structure.*/
/* This will take care of parsing the data structure and taking */
/* appropriate actions. */
/* */
/* Output: None */
/* Input: argument, not used for compatability */
/*===*/
void
dr_func(int arg)
444 The Complete Partitioning Guide for IBM Eserver pSeries Servers

{
int l_rc= DR_API_SUCCESS;
phases_t *l_currentPhase;

/* #1 create debug output file stream */
l_dbgFd = fopen(“/tmp/dr_api_template.C.dbg”, “a”); /* open for appending */
if (l_dbgFd == NULL) {

perror_msg(“NULL file descriptor”, errno, __LINE__);
exit(1);

}

fprintf (l_dbgFd, “---Start of Signal Handler---\n”);

l_rc = dr_reconfig(DR_QUERY, &dr_info); /* #C */
if (l_rc != 0) {

perror_msg(“dr_reconfig()”, errno, __LINE__);
exit(1);

}

/* #2 determine type of operation and phase. */

/* addition operations */
if (dr_info.add) { /* #D */

fprintf(l_dbgFd, “An add request\n “);

/* now determine which acquire phase we are in. */
if (dr_info.check) {

fprintf(l_dbgFd, “\t** check phase **\n”);
l_currentPhase = CHECK_ACQUIRE;

} else if (dr_info.pre) {
fprintf(l_dbgFd, “\t** pre phase **\n”);
l_currentPhase = PRE_ACQUIRE;

} else if (dr_info.post) {
fprintf(l_dbgFd, “\t** post phase **\n”);
l_currentPhase = POST_ACQUIRE;

} else if (dr_info.posterror) {
fprintf(l_dbgFd, “\t** error phase **\n”);
l_currentPhase = POST_ACQUIRE_ERROR;

}
}
/* remove operations. */
if (dr_info.rem) { /* #E */

fprintf(l_dbgFd, “A remove request\n “);

/* now determine which remove phase we are in. */
if (dr_info.check) {

fprintf(l_dbgFd, “\t** check phase **\n”);
l_currentPhase = CHECK_RELEASE;

} else if (dr_info.pre) {
 Appendix B. Dynamic logical partitioning program templates 445

fprintf(l_dbgFd, “\t** pre phase **\n”);
l_currentPhase = PRE_RELEASE;

} else if (dr_info.post) {
fprintf(l_dbgFd, “\t** post phase **\n”);

l_currentPhase = POST_RELEASE;
} else if (dr_info.posterror) {

fprintf(l_dbgFd, “\t** error phase **\n”);
l_currentPhase = POST_RELEASE_ERROR;

}
}

/* #3 invoke the command associated with the resource. */

/* cpu resource. */
if (dr_info.cpu) { /* #F */

fprintf(l_dbgFd, “Resource is CPU .\n”);
fprintf(l_dbgFd, “\tlogical CPU ID = %d\n\tBind CPU ID = %d\n”

, dr_info.lcpu, dr_info.bcpu);

/* invoke the command to process a cpu DR event */
l_rc = l_currentPhase->cpu_ptr(); /* #H */

/* memory resource. */
} else if (dr_info.mem) { /* #G */

fprintf(l_dbgFd, “Resource is Memory.\n”);
fprintf(l_dbgFd, “\trequested memory size (in bytes) = %lld\n”

, dr_info.req_memsz_change);
fprintf(l_dbgFd, “\tsystem memory size = %lld\n”, dr_info.sys_memsz);
fprintf(l_dbgFd, “\tnumber of free frames in system = %lld\n”

, dr_info.sys_free_frames);
fprintf(l_dbgFd, “\tnumber of pinnable frams in system = %lld\n”

, dr_info.sys_pinnable_frames);
fprintf(l_dbgFd, “\ttotal number of frames in system = %lld\n”

, dr_info.sys_total_frames);

/* invoke the command to process a mem DR event */
l_rc = l_currentPhase->mem_ptr(); /* #I */

/* unknown resource. */
} else {

fprintf(l_dbgFd, “Unknown resource type.\n”);
}

/* Check the return code of the DLPAR operation handler. */
if (l_rc == DR_API_FAIL) {

fprintf(l_dbgFd, “DLPAR OPERATION failed!\n”);

/* Let the DR manager know we have to fail the DLPAR operation. */
l_rc = dr_reconfig(DR_EVENT_FAIL, &dr_info);
446 The Complete Partitioning Guide for IBM Eserver pSeries Servers

if (l_rc != 0) {
perror_msg(“dr_reconfig()”, errno, __LINE__);
exit(1);

}
}

fprintf(l_dbgFd, “---end of signal handler.---\n\n”);
fclose(l_dbgFd);

}

/*===*/
/* Main application */
/*===*/

/*===*/
/* Some Applicaiton that is registered for DR signals */
/* */
/* Detailed Description: */
/* This is a sample program that registers the signal handler */
/* function that will response to the SIGRECONFIG signal. */
/* */
/* Output: None */
/* Inputs: None */
/*===*/
int
main(int argc, char *argv[], char *envp[])
{

int rc;
struct sigaction sigact_save, sigact;

/* Start: register this application for a DR signal. */
if ((rc = sigemptyset(&sigact.sa_mask)) != 0) {

perror_msg(“sigemptyset()”, errno, __LINE__);
exit(1);

}
if ((rc = sigemptyset(&sigact_save.sa_mask)) != 0) {

perror_msg(“sigemptyset()”, errno, __LINE__);
exit(1);

}

/* register the signal handler function dr_func. */
sigact.sa_handler = dr_func;
sigact.sa_flags |= SA_SIGINFO;

if ((rc = sigaction(SIGRECONFIG, &sigact, &sigact_save)) != 0) { /* #A */
perror_msg(“sigaction()”, errno, __LINE__);
exit(1);

}

 Appendix B. Dynamic logical partitioning program templates 447

/* Finish: registered the signal handler. */
while (1) { /* #B */

;
/* your applicaiton logic goes here. */

}

exit(0);

}

448 The Complete Partitioning Guide for IBM Eserver pSeries Servers

Appendix C. Dynamic logical partitioning
output samples

This appendix provides sample outputs from several debug facilities to be used
with dynamic logical partitioning (DLPAR) events explained in 3.10, “Error
handling of DLPAR operations” on page 115. There are three debug facilities
described in the following:

� Using the syslog facility

� Using the AIX system trace facility

� Using the AIX error log facility

These facilities are to be used to analyze the problem if a DLPAR operation
request fails. When writing a DLPAR script or DLPAR-aware application, if the
problem persists, then testing the application in a test partition can help isolate
the problem.

By familiarizing yourself with these facilities, you can quickly determine the root
cause of a DLPAR operation failure.

C

© Copyright IBM Corp. 2003. All rights reserved. 449

Using the syslog facility
The syslog facility records the activity of DLPAR operations when it is configured
correctly, as explained in “The syslog facility” on page 118.

CPU addition
Example C-1 shows a sample syslog output when a CPU addition DLPAR
operation is successfully performed.

Example: C-1 Sample syslog output for a CPU addition request

Jul 27 16:49:51 thimblelp4 syslogd: restart
Jul 27 16:50:25 thimblelp4 DRMGR: ==== Start: CPU addition operation ====
Jul 27 16:50:25 thimblelp4 DRMGR: Cpu: 0x1002 has been unisolated and allocated
Jul 27 16:50:25 thimblelp4 DRMGR: Starting CHECK phase for cpu Add operation.
Jul 27 16:50:25 thimblelp4 DRMGR: Phase CHECK started for scripts,kernel extensions and
applications.
Jul 27 16:50:25 thimblelp4 DRMGR: Starting CHECK phase for Scripts.
Jul 27 16:50:25 thimblelp4 DRMGR: Completed the phase for Scripts.
Jul 27 16:50:26 thimblelp4 DRMGR: Starting the phase for kernel extensions.
Jul 27 16:50:26 thimblelp4 DRMGR: Completed the phase for kernel extensions.
Jul 27 16:50:26 thimblelp4 DRMGR: Starting the phase for application signal handlers.
Jul 27 16:50:26 thimblelp4 DRMGR: Completed the phase for kernel extensions.
Jul 27 16:50:26 thimblelp4 DRMGR: Starting PRE phase.
Jul 27 16:50:26 thimblelp4 DRMGR: Phase PRE started for scripts,kernel extensions and
applications.
Jul 27 16:50:26 thimblelp4 DRMGR: Starting PRE phase for scripts.
Jul 27 16:50:26 thimblelp4 DRMGR: Completed the phase for Scripts.
Jul 27 16:50:26 thimblelp4 DRMGR: Starting the phase for application signal handlers.
Jul 27 16:50:26 thimblelp4 DRMGR: Completed the phase for kernel extensions.
Jul 27 16:50:27 thimblelp4 DRMGR: kernel operations complete
Jul 27 16:50:27 thimblelp4 DRMGR: firmware operations complete
Jul 27 16:50:27 thimblelp4 DRMGR: ODM update complete
Jul 27 16:50:27 thimblelp4 DRMGR: Starting POST phase.
Jul 27 16:50:27 thimblelp4 DRMGR: Phase POST started for scripts,kernel extensions and
applications.
Jul 27 16:50:27 thimblelp4 DRMGR: Starting the phase for application signal handlers.
Jul 27 16:50:27 thimblelp4 DRMGR: Completed the phase for kernel extensions.
Jul 27 16:50:27 thimblelp4 DRMGR: Starting POST phase for scripts.
Jul 27 16:50:27 thimblelp4 DRMGR: Completed the phase for Scripts.
Jul 27 16:50:27 thimblelp4 DRMGR: ~~~~ End: CPU addition operation ~~~~
450 The Complete Partitioning Guide for IBM Eserver pSeries Servers

CPU removal
Example C-2 shows a sample syslog output when a CPU removal DLPAR
operation is successfully performed.

Example: C-2 Sample syslog output for a CPU removal request

Jul 27 16:47:58 thimblelp4 syslogd: restart
Jul 27 16:48:08 thimblelp4 DRMGR: ==== Start: CPU Removal operation ====
Jul 27 16:48:08 thimblelp4 DRMGR: Starting CHECK phase for cpu Remove operation.
Jul 27 16:48:08 thimblelp4 DRMGR: Phase CHECK started for scripts,kernel extensions and
applications.
Jul 27 16:48:08 thimblelp4 DRMGR: Starting CHECK phase for Scripts.
Jul 27 16:48:08 thimblelp4 DRMGR: Completed the phase for Scripts.
Jul 27 16:48:08 thimblelp4 DRMGR: Starting the phase for kernel extensions.
Jul 27 16:48:08 thimblelp4 DRMGR: Completed the phase for kernel extensions.
Jul 27 16:48:08 thimblelp4 DRMGR: Starting the phase for application signal handlers.
Jul 27 16:48:08 thimblelp4 DRMGR: Completed the phase for kernel extensions.
Jul 27 16:48:08 thimblelp4 DRMGR: Starting PRE phase.
Jul 27 16:48:08 thimblelp4 DRMGR: Phase PRE started for scripts,kernel extensions and
applications.
Jul 27 16:48:08 thimblelp4 DRMGR: Starting PRE phase for scripts.
Jul 27 16:48:08 thimblelp4 DRMGR: Completed the phase for Scripts.
Jul 27 16:48:08 thimblelp4 DRMGR: Starting the phase for application signal handlers.
Jul 27 16:48:08 thimblelp4 DRMGR: Completed the phase for kernel extensions.
Jul 27 16:48:08 thimblelp4 DRMGR: kernel operations complete
Jul 27 16:48:08 thimblelp4 DRMGR: Cpu: 0x1002 has been isolated and unallocated
Jul 27 16:48:08 thimblelp4 DRMGR: Firmware operations complete
Jul 27 16:48:09 thimblelp4 DRMGR: ODM update complete
Jul 27 16:48:09 thimblelp4 DRMGR: Starting POST phase.
Jul 27 16:48:09 thimblelp4 DRMGR: Phase POST started for scripts,kernel extensions and
applications.
Jul 27 16:48:09 thimblelp4 DRMGR: Starting the phase for application signal handlers.
Jul 27 16:48:09 thimblelp4 DRMGR: Completed the phase for kernel extensions.
Jul 27 16:48:09 thimblelp4 DRMGR: Starting POST phase for scripts.
Jul 27 16:48:09 thimblelp4 DRMGR: Completed the phase for Scripts.
Jul 27 16:48:09 thimblelp4 DRMGR: ~~~~ End: CPU Removal operation ~~~~
 Appendix C. Dynamic logical partitioning output samples 451

Memory addition
Example C-3 shows a sample syslog output when a memory addition DLPAR
operation is successfully performed.

Example: C-3 Sample syslog output for a memory addition request

Jul 27 16:49:51 thimblelp4 syslogd: restart
Jul 27 16:51:34 thimblelp4 DRMGR: ==== Start: MEM Addition operation ====
Jul 27 16:51:34 thimblelp4 DRMGR: Configured LMB addr: 0x0
Jul 27 16:51:34 thimblelp4 DRMGR: Total Megabytes to add is 0
Jul 27 16:51:34 thimblelp4 DRMGR: Starting CHECK phase for mem Add operation.
Jul 27 16:51:34 thimblelp4 DRMGR: Phase CHECK started for scripts,kernel extensions and
applications.
Jul 27 16:51:34 thimblelp4 DRMGR: Starting CHECK phase for Scripts.
Jul 27 16:51:34 thimblelp4 DRMGR: Completed the phase for Scripts.
Jul 27 16:51:34 thimblelp4 DRMGR: Starting the phase for kernel extensions.
Jul 27 16:51:34 thimblelp4 DRMGR: Completed the phase for kernel extensions.
Jul 27 16:51:34 thimblelp4 DRMGR: Starting the phase for application signal handlers.
Jul 27 16:51:34 thimblelp4 DRMGR: Completed the phase for kernel extensions.
Jul 27 16:51:34 thimblelp4 DRMGR: Starting PRE phase.
Jul 27 16:51:34 thimblelp4 DRMGR: Phase PRE started for scripts,kernel extensions and
applications.
Jul 27 16:51:34 thimblelp4 DRMGR: Starting PRE phase for scripts.
Jul 27 16:51:34 thimblelp4 DRMGR: Completed the phase for Scripts.
Jul 27 16:51:34 thimblelp4 DRMGR: Starting the phase for application signal handlers.
Jul 27 16:51:34 thimblelp4 DRMGR: Completed the phase for kernel extensions.
Jul 27 16:51:35 thimblelp4 DRMGR: ODM operations complete
Jul 27 16:51:35 thimblelp4 DRMGR: Starting POST phase.
Jul 27 16:51:35 thimblelp4 DRMGR: Phase POST started for scripts,kernel extensions and
applications.
Jul 27 16:51:35 thimblelp4 DRMGR: Starting the phase for application signal handlers.
Jul 27 16:51:35 thimblelp4 DRMGR: Completed the phase for kernel extensions.
Jul 27 16:51:35 thimblelp4 DRMGR: Starting POST phase for scripts.
Jul 27 16:51:35 thimblelp4 DRMGR: Completed the phase for Scripts.
Jul 27 16:51:35 thimblelp4 DRMGR: ~~~~ End: DR operation ~~~~
452 The Complete Partitioning Guide for IBM Eserver pSeries Servers

Memory removal
Example C-4 shows a sample syslog output when a memory removal DLPAR
operation is successfully performed.

Example: C-4 Sample syslog output for a memory removal request

Jul 27 16:49:51 thimblelp4 syslogd: restart
Jul 27 16:51:07 thimblelp4 DRMGR: ==== Start: MEM Removal operation ====
Jul 27 16:51:07 thimblelp4 DRMGR: Starting CHECK phase for mem Remove operation.
Jul 27 16:51:07 thimblelp4 DRMGR: Phase CHECK started for scripts,kernel extensions and
applications.
Jul 27 16:51:07 thimblelp4 DRMGR: Starting CHECK phase for Scripts.
Jul 27 16:51:07 thimblelp4 DRMGR: Completed the phase for Scripts.
Jul 27 16:51:07 thimblelp4 DRMGR: Starting the phase for kernel extensions.
Jul 27 16:51:07 thimblelp4 DRMGR: Completed the phase for kernel extensions.
Jul 27 16:51:07 thimblelp4 DRMGR: Starting the phase for application signal handlers.
Jul 27 16:51:07 thimblelp4 DRMGR: Completed the phase for kernel extensions.
Jul 27 16:51:07 thimblelp4 DRMGR: Starting PRE phase.
Jul 27 16:51:07 thimblelp4 DRMGR: Phase PRE started for scripts,kernel extensions and
applications.
Jul 27 16:51:07 thimblelp4 DRMGR: Starting PRE phase for scripts.
Jul 27 16:51:07 thimblelp4 DRMGR: Completed the phase for Scripts.
Jul 27 16:51:07 thimblelp4 DRMGR: Starting the phase for application signal handlers.
Jul 27 16:51:07 thimblelp4 DRMGR: Completed the phase for kernel extensions.
Jul 27 16:51:08 thimblelp4 DRMGR: LMB index:0xf has been sucessfully removed
Jul 27 16:51:08 thimblelp4 DRMGR: Firmware operations complete
Jul 27 16:51:08 thimblelp4 DRMGR: ODM operations complete
Jul 27 16:51:08 thimblelp4 DRMGR: Starting POST phase.
Jul 27 16:51:08 thimblelp4 DRMGR: Phase POST started for scripts,kernel extensions and
applications.
Jul 27 16:51:08 thimblelp4 DRMGR: Starting the phase for application signal handlers.
Jul 27 16:51:08 thimblelp4 DRMGR: Completed the phase for kernel extensions.
Jul 27 16:51:08 thimblelp4 DRMGR: Starting POST phase for scripts.
Jul 27 16:51:08 thimblelp4 DRMGR: Completed the phase for Scripts.
Jul 27 16:51:08 thimblelp4 DRMGR: ~~~~ End: DR operation ~~~~
 Appendix C. Dynamic logical partitioning output samples 453

Using the AIX system trace facility
The AIX system trace facility records the detailed activity of DLPAR operations
when it is configured correctly, as explained in “AIX system trace facility” on
page 119.

CPU addition trace output
Example C-5 shows a sample system trace output when a CPU addition DLPAR
operation is successfully performed.

Example: C-5 Sample system trace output for a CPU addition request

ID ELAPSED_SEC DELTA_MSEC APPL SYSCALL KERNEL INTERRUPT

001 0.000000000 0.000000 TRACE ON channel 0
 Mon Sep 23 11:40:52 2002
38F 73.305720033 73305.720033 DYNAMIC RECONFIG: Dr_register: DR
Operation: 0000000000000008 FORCE Option: 0000
38F 73.305723429 0.003396 DYNAMIC RECONFIG: get_user_data: DR
Operation: 0000000000000008 input data: 000000002FF21EF8
38F 73.305725392 0.001963 DYNAMIC RECONFIG: Addcpu_validate: DR
Phase: 0000 Input: F00000002FF3A4D8
38F 73.305727203 0.001811 DYNAMIC RECONFIG: Register_dr_event: DR
Operation: 40000000
38F 73.305729377 0.002174 DYNAMIC RECONFIG: dr_callout: DR Callout
index: 0003 DR Phase: 0001
38F 73.305729602 0.000225 DYNAMIC RECONFIG: Addcpu_validate: DR
Phase: 0001 Input: 0000000000FB73C0
38F 73.306332726 0.603124 DYNAMIC RECONFIG: Dr_notify: DR Phase: 0002
Flags: 0001 Timeout in secs: 0000 Input: 0000000000000000
38F 73.306334115 0.001389 DYNAMIC RECONFIG: Validate_notify: DR
Phase: 0002 Flags: 0001
38F 73.306334355 0.000240 DYNAMIC RECONFIG: validate_phase: Current
Phase: 0001 Requested Phase: 0002 Flags: 0001
38F 73.306336885 0.002530 DYNAMIC RECONFIG: Run_notify: Perform DR
Check/Pre/Post/Posterror Phases
38F 73.306337096 0.000211 DYNAMIC RECONFIG: dr_callout: DR Callout
index: 0003 DR Phase: 0002
38F 73.306538971 0.201875 DYNAMIC RECONFIG: Dr_notify: DR Phase: 0002
Flags: 0004 Timeout in secs: 003C Input: 0000000000000000
38F 73.306539560 0.000589 DYNAMIC RECONFIG: Validate_notify: DR
Phase: 0002 Flags: 0004
38F 73.306539800 0.000240 DYNAMIC RECONFIG: validate_phase: Current
Phase: 0002 Requested Phase: 0002 Flags: 0004

Note: The trace hook ID for DLPAR operations is 38F.
454 The Complete Partitioning Guide for IBM Eserver pSeries Servers

38F 73.306545297 0.005497 DYNAMIC RECONFIG: Run_notify: Perform DR
Check/Pre/Post/Posterror Phases
38F 73.306546257 0.000960 DYNAMIC RECONFIG: Invoke Reconfig Handlers:
action: 0001
38F 73.308395576 1.849319 DYNAMIC RECONFIG: Invoke Reconfig Handlers:
Number of reconfig handlers waiting for: 0000
38F 73.308396070 0.000494 DYNAMIC RECONFIG: Invoke Reconfig Handlers:
All reconfig handlers completed, Status: 0000
38F 73.308536626 0.140556 DYNAMIC RECONFIG: Dr_notify: DR Phase: 0002
Flags: 0002 Timeout in secs: 0000 Input: 0000000000000000
38F 73.308537287 0.000661 DYNAMIC RECONFIG: Validate_notify: DR
Phase: 0002 Flags: 0002
38F 73.308537527 0.000240 DYNAMIC RECONFIG: validate_phase: Current
Phase: 0002 Requested Phase: 0002 Flags: 0002
38F 73.308538189 0.000662 DYNAMIC RECONFIG: Run_notify: Perform DR
Check/Pre/Post/Posterror Phases
38F 73.308538414 0.000225 DYNAMIC RECONFIG: dr_send_signal: Posting
signal (003A) to all processes catching
38F 73.308730538 0.192124 DYNAMIC RECONFIG: Dr_reconfig: Flags: 0001
DR Info: 000000002FF22610 DR Operation: 0008 DR Phase: 0002
38F 73.308737235 0.006697 DYNAMIC RECONFIG: dr_send_signal: Number of
processes posted: 0001
38F 83.309400202 10000.662967 DYNAMIC RECONFIG: Dr_notify: DR Phase: 0003
Flags: 0001 Timeout in secs: 0000 Input: 0000000000000000
38F 83.309402034 0.001832 DYNAMIC RECONFIG: Validate_notify: DR
Phase: 0003 Flags: 0001
38F 83.309402260 0.000226 DYNAMIC RECONFIG: validate_phase: Current
Phase: 0002 Requested Phase: 0003 Flags: 0001
38F 83.309404165 0.001905 DYNAMIC RECONFIG: Run_notify: Perform DR
Check/Pre/Post/Posterror Phases
38F 83.309404703 0.000538 DYNAMIC RECONFIG: dr_callout: DR Callout
index: 0003 DR Phase: 0003
38F 83.309406957 0.002254 DYNAMIC RECONFIG: Addcpu_pre: Logical CPU
coming online: 0002
38F 83.309607727 0.200770 DYNAMIC RECONFIG: Dr_notify: DR Phase: 0003
Flags: 0002 Timeout in secs: 0000 Input: 0000000000000000
38F 83.309608258 0.000531 DYNAMIC RECONFIG: Validate_notify: DR
Phase: 0003 Flags: 0002
38F 83.309608483 0.000225 DYNAMIC RECONFIG: validate_phase: Current
Phase: 0003 Requested Phase: 0003 Flags: 0002
38F 83.309608825 0.000342 DYNAMIC RECONFIG: Run_notify: Perform DR
Check/Pre/Post/Posterror Phases
38F 83.309610301 0.001476 DYNAMIC RECONFIG: dr_send_signal: Posting
signal (003A) to all processes catching
38F 83.309738306 0.128005 DYNAMIC RECONFIG: Dr_reconfig: Flags: 0001
DR Info: 000000002FF22610 DR Operation: 0008 DR Phase: 0003
38F 83.309751780 0.013474 DYNAMIC RECONFIG: dr_send_signal: Number of
processes posted: 0001
 Appendix C. Dynamic logical partitioning output samples 455

38F 93.310361840 10000.610060 DYNAMIC RECONFIG: Dr_notify: DR Phase: 0005
Flags: 0001 Timeout in secs: 0000 Input: 0000000000000000
38F 93.310363963 0.002123 DYNAMIC RECONFIG: Validate_notify: DR
Phase: 0005 Flags: 0001
38F 93.310364254 0.000291 DYNAMIC RECONFIG: validate_phase: Current
Phase: 0003 Requested Phase: 0005 Flags: 0001
38F 93.310365163 0.000909 DYNAMIC RECONFIG: Kernel_notify: Perform DR
Kernel Phase
38F 93.310365454 0.000291 DYNAMIC RECONFIG: dr_callout: DR Callout
index: 0003 DR Phase: 0005
38F 93.310367432 0.001978 DYNAMIC RECONFIG: Addcpu_doit: Logical CPU:
0002 Physical ID: 0015
38F 93.310371860 0.004428 DYNAMIC RECONFIG: Register_dr_event: DR
Operation: 80000008
38F 93.310372747 0.000887 DYNAMIC RECONFIG: Invoke Reconfig Handlers:
action: 0002
38F 93.310394779 0.022032 DYNAMIC RECONFIG: Invoke Reconfig Handlers:
Number of reconfig handlers waiting for: 0000
38F 93.310395245 0.000466 DYNAMIC RECONFIG: Invoke Reconfig Handlers:
All reconfig handlers completed, Status: 0000
38F 93.310416484 0.021239 DYNAMIC RECONFIG: Call MPC freeze handler
01
38F 93.310445504 0.029020 DYNAMIC RECONFIG: Start_bs_proc: Starting a
new cpu: Physical ID: 0015 Gserver: 00000000000000FF Server: 0000000000000015
38F 93.991532779 681.087275 DYNAMIC RECONFIG: Invoke Reconfig Handlers:
action: 0004
38F 93.991536952 0.004173 DYNAMIC RECONFIG: Invoke Reconfig Handlers:
Number of reconfig handlers waiting for: 0000
38F 93.991537709 0.000757 DYNAMIC RECONFIG: Invoke Reconfig Handlers:
All reconfig handlers completed, Status: 0000
38F 93.991556098 0.018389 DYNAMIC RECONFIG: Unregister_dr_event: DR
Operation: 80000008
38F 94.015313247 23.757149 DYNAMIC RECONFIG: Dr_notify: DR Phase: 0006
Flags: 0001 Timeout in secs: 0000 Input: 0000000000000000
38F 94.015314549 0.001302 DYNAMIC RECONFIG: Validate_notify: DR
Phase: 0006 Flags: 0001
38F 94.015314905 0.000356 DYNAMIC RECONFIG: validate_phase: Current
Phase: 0005 Requested Phase: 0006 Flags: 0001
38F 94.015315930 0.001025 DYNAMIC RECONFIG: Run_notify: Perform DR
Check/Pre/Post/Posterror Phases
38F 94.015316366 0.000436 DYNAMIC RECONFIG: dr_callout: DR Callout
index: 0003 DR Phase: 0006
38F 94.015382834 0.066468 DYNAMIC RECONFIG: Dr_notify: DR Phase: 0006
Flags: 0002 Timeout in secs: 0000 Input: 0000000000000000
38F 94.015383336 0.000502 DYNAMIC RECONFIG: Validate_notify: DR
Phase: 0006 Flags: 0002
38F 94.015383561 0.000225 DYNAMIC RECONFIG: validate_phase: Current
Phase: 0006 Requested Phase: 0006 Flags: 0002
456 The Complete Partitioning Guide for IBM Eserver pSeries Servers

38F 94.015383903 0.000342 DYNAMIC RECONFIG: Run_notify: Perform DR
Check/Pre/Post/Posterror Phases
38F 94.015384768 0.000865 DYNAMIC RECONFIG: dr_send_signal: Posting
signal (003A) to all processes catching
38F 94.015521608 0.136840 DYNAMIC RECONFIG: Dr_reconfig: Flags: 0001
DR Info: 000000002FF22610 DR Operation: 0008 DR Phase: 0006
38F 94.015556140 0.034532 DYNAMIC RECONFIG: dr_send_signal: Number of
processes posted: 0001
38F 104.016466326 10000.910186 DYNAMIC RECONFIG: Dr_unregister:
Unregistering DR operation
38F 104.016468027 0.001701 DYNAMIC RECONFIG: dr_callout: DR Callout
index: 0003 DR Phase: 0009
38F 104.016468507 0.000480 DYNAMIC RECONFIG: Clearing DR Kernel
Data...
38F 104.016470936 0.002429 DYNAMIC RECONFIG: Unregister_dr_event: DR
Operation: 40000000
002 322.179517597 218163.046661 TRACE OFF channel 0000 Mon Sep 23 11:46:14
2002

CPU removal trace output
Example C-6 shows a sample system trace output when a CPU removal DLPAR
operation is successfully performed.

Example: C-6 Sample system trace output for a CPU removal request

ID ELAPSED_SEC DELTA_MSEC APPL SYSCALL KERNEL INTERRUPT

001 0.000000000 0.000000 TRACE ON channel 0
 Sat Jul 27 17:22:09 2002
38F 8.210889322 8210.889322 DYNAMIC RECONFIG: Dr_register: DR
Operation: 0000000000000004 FORCE Option: 0000
38F 8.210890417 0.001095 DYNAMIC RECONFIG: get_user_data: DR
Operation: 0000000000000004 input data: 000000002FF22AF0
38F 8.210892128 0.001711 DYNAMIC RECONFIG: Rmcpu_validate: DR Phase:
0000 CPU id: 0001 CPU Type: 0002
38F 8.210892971 0.000843 DYNAMIC RECONFIG: Register_dr_event: DR
Operation: 40000000
38F 8.210896029 0.003058 DYNAMIC RECONFIG: dr_callout: DR Callout
index: 0002 DR Phase: 0001
38F 8.210896238 0.000209 DYNAMIC RECONFIG: Rmcpu_validate: DR Phase:
0001 CPU id: 0001 CPU Type: 0002
38F 8.212724871 1.828633 DYNAMIC RECONFIG: Dr_notify: DR Phase: 0002
Flags: 0001 Timeout in secs: 0000 Input: 0000000000000000
38F 8.212725498 0.000627 DYNAMIC RECONFIG: Validate_notify: DR
Phase: 0002 Flags: 0001
38F 8.212726175 0.000677 DYNAMIC RECONFIG: validate_phase: Current
Phase: 0001 Requested Phase: 0002 Flags: 0001
 Appendix C. Dynamic logical partitioning output samples 457

38F 8.212728618 0.002443 DYNAMIC RECONFIG: Run_notify: Perform DR
Check/Pre/Post/Posterror Phases
38F 8.212728821 0.000203 DYNAMIC RECONFIG: dr_callout: DR Callout
index: 0002 DR Phase: 0002
38F 8.212836663 0.107842 DYNAMIC RECONFIG: Dr_notify: DR Phase: 0002
Flags: 0004 Timeout in secs: 003C Input: 0000000000000000
38F 8.212837119 0.000456 DYNAMIC RECONFIG: Validate_notify: DR
Phase: 0002 Flags: 0004
38F 8.212837322 0.000203 DYNAMIC RECONFIG: validate_phase: Current
Phase: 0002 Requested Phase: 0002 Flags: 0004
38F 8.212842109 0.004787 DYNAMIC RECONFIG: Run_notify: Perform DR
Check/Pre/Post/Posterror Phases
38F 8.212842392 0.000283 DYNAMIC RECONFIG: Invoke Reconfig Handlers:
action: 0010
38F 8.212843444 0.001052 DYNAMIC RECONFIG: Invoke Reconfig Handlers:
Number of reconfig handlers waiting for: 0000
38F 8.212844231 0.000787 DYNAMIC RECONFIG: Invoke Reconfig Handlers:
All reconfig handlers completed, Status: 0000
38F 8.212914941 0.070710 DYNAMIC RECONFIG: Dr_notify: DR Phase: 0002
Flags: 0002 Timeout in secs: 0000 Input: 0000000000000000
38F 8.212915409 0.000468 DYNAMIC RECONFIG: Validate_notify: DR
Phase: 0002 Flags: 0002
38F 8.212915605 0.000196 DYNAMIC RECONFIG: validate_phase: Current
Phase: 0002 Requested Phase: 0002 Flags: 0002
38F 8.212915858 0.000253 DYNAMIC RECONFIG: Run_notify: Perform DR
Check/Pre/Post/Posterror Phases
38F 8.212916116 0.000258 DYNAMIC RECONFIG: dr_send_signal: Posting
signal (003A) to all processes catching
38F 8.212995181 0.079065 DYNAMIC RECONFIG: dr_send_signal: Number of
processes posted: 0000
38F 8.213781181 0.786000 DYNAMIC RECONFIG: Dr_notify: DR Phase: 0003
Flags: 0001 Timeout in secs: 0000 Input: 0000000000000000
38F 8.213781637 0.000456 DYNAMIC RECONFIG: Validate_notify: DR
Phase: 0003 Flags: 0001
38F 8.213781858 0.000221 DYNAMIC RECONFIG: validate_phase: Current
Phase: 0002 Requested Phase: 0003 Flags: 0001
38F 8.213782153 0.000295 DYNAMIC RECONFIG: Run_notify: Perform DR
Check/Pre/Post/Posterror Phases
38F 8.213782332 0.000179 DYNAMIC RECONFIG: dr_callout: DR Callout
index: 0002 DR Phase: 0003
38F 8.213783243 0.000911 DYNAMIC RECONFIG: Rmcpu_pre: DR Phase: 0003
Logical CPU id: 0001
38F 8.213980321 0.197078 DYNAMIC RECONFIG: Dr_notify: DR Phase: 0003
Flags: 0002 Timeout in secs: 0000 Input: 0000000000000000
38F 8.213980795 0.000474 DYNAMIC RECONFIG: Validate_notify: DR
Phase: 0003 Flags: 0002
38F 8.213980992 0.000197 DYNAMIC RECONFIG: validate_phase: Current
Phase: 0003 Requested Phase: 0003 Flags: 0002
458 The Complete Partitioning Guide for IBM Eserver pSeries Servers

38F 8.213981262 0.000270 DYNAMIC RECONFIG: Run_notify: Perform DR
Check/Pre/Post/Posterror Phases
38F 8.213981515 0.000253 DYNAMIC RECONFIG: dr_send_signal: Posting
signal (003A) to all processes catching
38F 8.214019626 0.038111 DYNAMIC RECONFIG: dr_send_signal: Number of
processes posted: 0000
38F 8.214186223 0.166597 DYNAMIC RECONFIG: Dr_notify: DR Phase: 0005
Flags: 0001 Timeout in secs: 0000 Input: 0000000000000000
38F 8.214186709 0.000486 DYNAMIC RECONFIG: Validate_notify: DR
Phase: 0005 Flags: 0001
38F 8.214187109 0.000400 DYNAMIC RECONFIG: validate_phase: Current
Phase: 0003 Requested Phase: 0005 Flags: 0001
38F 8.214187429 0.000320 DYNAMIC RECONFIG: Kernel_notify: Perform DR
Kernel Phase
38F 8.214187601 0.000172 DYNAMIC RECONFIG: dr_callout: DR Callout
index: 0002 DR Phase: 0005
38F 8.214189318 0.001717 DYNAMIC RECONFIG: Rmcpu_doit: DR Phase:
0005 CPU Guard Operation: 0000
38F 8.214192929 0.003611 DYNAMIC RECONFIG: Register_dr_event: DR
Operation: 80000004
38F 8.214193618 0.000689 DYNAMIC RECONFIG: Rmcpu_doit: Controlling
LCPU: 0000 Highest Bind cpuid: 0001
38F 8.214213369 0.019751 DYNAMIC RECONFIG: Rmcpu_doit: Invoke HA
Handlers...
38F 8.218559640 4.346271 DYNAMIC RECONFIG: Invoke Reconfig Handlers:
action: 0020
38F 8.218561874 0.002234 DYNAMIC RECONFIG: Invoke Reconfig Handlers:
Number of reconfig handlers waiting for: 0000
38F 8.218562286 0.000412 DYNAMIC RECONFIG: Invoke Reconfig Handlers:
All reconfig handlers completed, Status: 0000
38F 8.218562489 0.000203 DYNAMIC RECONFIG: Migrating all
PROCESSOR_CLASS_ANY work from the cpu being removed
38F 8.218778851 0.216362 DYNAMIC RECONFIG: Initializing/Rerouting
the Interrupts... From Physical CPU: 0013 To Physical CPU: 0011 Phase: 0001 Flags: 0001
38F 8.218966349 0.187498 DYNAMIC RECONFIG: Rmcpu_doit: Disable
Decrementer...
38F 8.218980956 0.014607 DYNAMIC RECONFIG: Call MPC remove handler
01
38F 8.218982174 0.001218 DYNAMIC RECONFIG: Initializing/Rerouting
the Interrupts... From Physical CPU: 0013 To Physical CPU: 0011 Phase: 0002 Flags: 0002
38F 8.218982470 0.000296 DYNAMIC RECONFIG: Rmcpu_doit: Enable
Decrementer...
38F 8.225044879 6.062409 DYNAMIC RECONFIG: DR: Stopping logical CPU:
0001
38F 8.226081506 1.036627 DYNAMIC RECONFIG: Updating System
Topology...
38F 8.226114591 0.033085 DYNAMIC RECONFIG: Move_threads: Moving
threads from logical cpu 0001 to 0000
 Appendix C. Dynamic logical partitioning output samples 459

38F 8.226234647 0.120056 DYNAMIC RECONFIG: migrate_watchdogs: From
LCPU: 0001 To LCPU: 0000
38F 8.226243790 0.009143 DYNAMIC RECONFIG: Invoke Reconfig Handlers:
action: 0040
38F 8.226244399 0.000609 DYNAMIC RECONFIG: Invoke Reconfig Handlers:
Number of reconfig handlers waiting for: 0000
38F 8.226244916 0.000517 DYNAMIC RECONFIG: Invoke Reconfig Handlers:
All reconfig handlers completed, Status: 0000
38F 8.226245137 0.000221 DYNAMIC RECONFIG: Rmcpu_doit: DR CPU
Removal: CPU Guard: 0000 Status: 0000
38F 8.226245839 0.000702 DYNAMIC RECONFIG: Unregister_dr_event: DR
Operation: 80000004
38F 8.407728629 181.482790 DYNAMIC RECONFIG: Dr_notify: DR Phase: 0006
Flags: 0001 Timeout in secs: 0000 Input: 0000000000000000
38F 8.407729373 0.000744 DYNAMIC RECONFIG: Validate_notify: DR
Phase: 0006 Flags: 0001
38F 8.407729650 0.000277 DYNAMIC RECONFIG: validate_phase: Current
Phase: 0005 Requested Phase: 0006 Flags: 0001
38F 8.407731693 0.002043 DYNAMIC RECONFIG: Run_notify: Perform DR
Check/Pre/Post/Posterror Phases
38F 8.407731878 0.000185 DYNAMIC RECONFIG: dr_callout: DR Callout
index: 0002 DR Phase: 0006
38F 8.407907882 0.176004 DYNAMIC RECONFIG: Dr_notify: DR Phase: 0006
Flags: 0002 Timeout in secs: 0000 Input: 0000000000000000
38F 8.407908350 0.000468 DYNAMIC RECONFIG: Validate_notify: DR
Phase: 0006 Flags: 0002
38F 8.407908553 0.000203 DYNAMIC RECONFIG: validate_phase: Current
Phase: 0006 Requested Phase: 0006 Flags: 0002
38F 8.407908848 0.000295 DYNAMIC RECONFIG: Run_notify: Perform DR
Check/Pre/Post/Posterror Phases
38F 8.407909297 0.000449 DYNAMIC RECONFIG: dr_send_signal: Posting
signal (003A) to all processes catching
38F 8.407989156 0.079859 DYNAMIC RECONFIG: dr_send_signal: Number of
processes posted: 0000
38F 8.409821659 1.832503 DYNAMIC RECONFIG: Dr_unregister:
Unregistering DR operation
38F 8.409823339 0.001680 DYNAMIC RECONFIG: dr_callout: DR Callout
index: 0002 DR Phase: 0009
38F 8.409823727 0.000388 DYNAMIC RECONFIG: Clearing DR Kernel
Data...
38F 8.409826052 0.002325 DYNAMIC RECONFIG: Unregister_dr_event: DR
Operation: 40000000
002 10.460418340 2050.592288 TRACE OFF channel 0000 Sat Jul 27 17:22:19
2002
460 The Complete Partitioning Guide for IBM Eserver pSeries Servers

Memory addition trace output
Example C-7 shows a sample system trace output when a memory addition
DLPAR operation is successfully performed.

Example: C-7 Sample system trace output for a memory addition request

ID ELAPSED_SEC DELTA_MSEC APPL SYSCALL KERNEL INTERRUPT

001 0.000000000 0.000000 TRACE ON channel 0
 Sat Jul 27 17:21:13 2002
38F 5.368745028 5368.745028 DYNAMIC RECONFIG: Dr_register: DR
Operation: 0000000000000002 FORCE Option: 0000
38F 5.368746271 0.001243 DYNAMIC RECONFIG: get_user_data: DR
Operation: 0000000000000002 input data: 000000002FF22988
38F 5.368748763 0.002492 DYNAMIC RECONFIG: Register_dr_event: DR
Operation: 40000000
38F 5.368751162 0.002399 DYNAMIC RECONFIG: dr_callout: DR Callout
index: 0001 DR Phase: 0001
38F 5.370106721 1.355559 DYNAMIC RECONFIG: Dr_notify: DR Phase: 0002
Flags: 0001 Timeout in secs: 0000 Input: 0000000000000000
38F 5.370107638 0.000917 DYNAMIC RECONFIG: Validate_notify: DR
Phase: 0002 Flags: 0001
38F 5.370108136 0.000498 DYNAMIC RECONFIG: validate_phase: Current
Phase: 0001 Requested Phase: 0002 Flags: 0001
38F 5.370110819 0.002683 DYNAMIC RECONFIG: Run_notify: Perform DR
Check/Pre/Post/Posterror Phases
38F 5.370111003 0.000184 DYNAMIC RECONFIG: dr_callout: DR Callout
index: 0001 DR Phase: 0002
38F 5.370229053 0.118050 DYNAMIC RECONFIG: Dr_notify: DR Phase: 0002
Flags: 0004 Timeout in secs: 003C Input: 0000000000000000
38F 5.370229515 0.000462 DYNAMIC RECONFIG: Validate_notify: DR
Phase: 0002 Flags: 0004
38F 5.370229724 0.000209 DYNAMIC RECONFIG: validate_phase: Current
Phase: 0002 Requested Phase: 0002 Flags: 0004
38F 5.370232068 0.002344 DYNAMIC RECONFIG: Run_notify: Perform DR
Check/Pre/Post/Posterror Phases
38F 5.370232345 0.000277 DYNAMIC RECONFIG: Invoke Reconfig Handlers:
action: 0100
38F 5.370234357 0.002012 DYNAMIC RECONFIG: Invoke Reconfig Handlers:
Number of reconfig handlers waiting for: 0000
38F 5.370234806 0.000449 DYNAMIC RECONFIG: Invoke Reconfig Handlers:
All reconfig handlers completed, Status: 0000
38F 5.370313004 0.078198 DYNAMIC RECONFIG: Dr_notify: DR Phase: 0002
Flags: 0002 Timeout in secs: 0000 Input: 0000000000000000
38F 5.370313490 0.000486 DYNAMIC RECONFIG: Validate_notify: DR
Phase: 0002 Flags: 0002
38F 5.370313705 0.000215 DYNAMIC RECONFIG: validate_phase: Current
Phase: 0002 Requested Phase: 0002 Flags: 0002
 Appendix C. Dynamic logical partitioning output samples 461

38F 5.370314013 0.000308 DYNAMIC RECONFIG: Run_notify: Perform DR
Check/Pre/Post/Posterror Phases
38F 5.370314241 0.000228 DYNAMIC RECONFIG: dr_send_signal: Posting
signal (003A) to all processes catching
38F 5.370385443 0.071202 DYNAMIC RECONFIG: dr_send_signal: Number of
processes posted: 0000
38F 5.371572355 1.186912 DYNAMIC RECONFIG: Dr_notify: DR Phase: 0003
Flags: 0001 Timeout in secs: 0000 Input: 0000000000000000
38F 5.371572823 0.000468 DYNAMIC RECONFIG: Validate_notify: DR
Phase: 0003 Flags: 0001
38F 5.371573063 0.000240 DYNAMIC RECONFIG: validate_phase: Current
Phase: 0002 Requested Phase: 0003 Flags: 0001
38F 5.371573352 0.000289 DYNAMIC RECONFIG: Run_notify: Perform DR
Check/Pre/Post/Posterror Phases
38F 5.371573555 0.000203 DYNAMIC RECONFIG: dr_callout: DR Callout
index: 0001 DR Phase: 0003
38F 5.371688418 0.114863 DYNAMIC RECONFIG: Dr_notify: DR Phase: 0003
Flags: 0002 Timeout in secs: 0000 Input: 0000000000000000
38F 5.371688892 0.000474 DYNAMIC RECONFIG: Validate_notify: DR
Phase: 0003 Flags: 0002
38F 5.371689199 0.000307 DYNAMIC RECONFIG: validate_phase: Current
Phase: 0003 Requested Phase: 0003 Flags: 0002
38F 5.371689446 0.000247 DYNAMIC RECONFIG: Run_notify: Perform DR
Check/Pre/Post/Posterror Phases
38F 5.371689679 0.000233 DYNAMIC RECONFIG: dr_send_signal: Posting
signal (003A) to all processes catching
38F 5.371726129 0.036450 DYNAMIC RECONFIG: dr_send_signal: Number of
processes posted: 0000
38F 5.373202390 1.476261 DYNAMIC RECONFIG: Dr_notify: DR Phase: 0005
Flags: 0009 Timeout in secs: 0000 Input: 000000002FF22988
38F 5.373202857 0.000467 DYNAMIC RECONFIG: Validate_notify: DR
Phase: 0005 Flags: 0009
38F 5.373203134 0.000277 DYNAMIC RECONFIG: validate_phase: Current
Phase: 0003 Requested Phase: 0005 Flags: 0009
38F 5.373203430 0.000296 DYNAMIC RECONFIG: get_user_data: DR
Operation: 0000000000000002 input data: 000000002FF22988
38F 5.373203774 0.000344 DYNAMIC RECONFIG: dr_callout: DR Callout
index: 0001 DR Phase: 0004
38F 5.373204199 0.000425 DYNAMIC RECONFIG: Kernel_notify: Perform DR
Kernel Phase
38F 5.373204359 0.000160 DYNAMIC RECONFIG: dr_callout: DR Callout
index: 0001 DR Phase: 0005
38F 5.373205799 0.001440 DYNAMIC RECONFIG: Invoke Reconfig Handlers:
action: 0200
38F 5.373206199 0.000400 DYNAMIC RECONFIG: Invoke Reconfig Handlers:
Number of reconfig handlers waiting for: 0000
38F 5.373206666 0.000467 DYNAMIC RECONFIG: Invoke Reconfig Handlers:
All reconfig handlers completed, Status: 0000
462 The Complete Partitioning Guide for IBM Eserver pSeries Servers

38F 5.373212290 0.005624 DYNAMIC RECONFIG: Register_dr_event: DR
Operation: 80000002
38F 5.432293377 59.081087 DYNAMIC RECONFIG: Unregister_dr_event: DR
Operation: 80000002
38F 5.432298927 0.005550 DYNAMIC RECONFIG: Invoke Reconfig Handlers:
action: 0400
38F 5.432309307 0.010380 DYNAMIC RECONFIG: Invoke Reconfig Handlers:
Number of reconfig handlers waiting for: 0000
38F 5.432309707 0.000400 DYNAMIC RECONFIG: Invoke Reconfig Handlers:
All reconfig handlers completed, Status: 0000
38F 5.533246164 100.936457 DYNAMIC RECONFIG: Dr_notify: DR Phase: 0006
Flags: 0001 Timeout in secs: 0000 Input: 0000000000000000
38F 5.533247161 0.000997 DYNAMIC RECONFIG: Validate_notify: DR
Phase: 0006 Flags: 0001
38F 5.533248219 0.001058 DYNAMIC RECONFIG: validate_phase: Current
Phase: 0005 Requested Phase: 0006 Flags: 0001
38F 5.533250176 0.001957 DYNAMIC RECONFIG: Run_notify: Perform DR
Check/Pre/Post/Posterror Phases
38F 5.533250348 0.000172 DYNAMIC RECONFIG: dr_callout: DR Callout
index: 0001 DR Phase: 0006
38F 5.533429817 0.179469 DYNAMIC RECONFIG: Dr_notify: DR Phase: 0006
Flags: 0002 Timeout in secs: 0000 Input: 0000000000000000
38F 5.533430291 0.000474 DYNAMIC RECONFIG: Validate_notify: DR
Phase: 0006 Flags: 0002
38F 5.533430518 0.000227 DYNAMIC RECONFIG: validate_phase: Current
Phase: 0006 Requested Phase: 0006 Flags: 0002
38F 5.533430789 0.000271 DYNAMIC RECONFIG: Run_notify: Perform DR
Check/Pre/Post/Posterror Phases
38F 5.533431349 0.000560 DYNAMIC RECONFIG: dr_send_signal: Posting
signal (003A) to all processes catching
38F 5.533512937 0.081588 DYNAMIC RECONFIG: dr_send_signal: Number of
processes posted: 0000
38F 5.535515956 2.003019 DYNAMIC RECONFIG: Dr_unregister:
Unregistering DR operation
38F 5.535517217 0.001261 DYNAMIC RECONFIG: dr_callout: DR Callout
index: 0001 DR Phase: 0009
38F 5.535517777 0.000560 DYNAMIC RECONFIG: Clearing DR Kernel
Data...
38F 5.535520023 0.002246 DYNAMIC RECONFIG: Unregister_dr_event: DR
Operation: 40000000
38F 5.548827288 13.307265 DYNAMIC RECONFIG: HA_proc: Checking with
Kernel for BAD CPU: Input: 0001 Event: 0000000000000001 Retry: 0000000000000000
002 7.719713425 2170.886137 TRACE OFF channel 0000 Sat Jul 27 17:21:21
2002
 Appendix C. Dynamic logical partitioning output samples 463

Memory removal trace output
Example C-8 shows a sample system trace output when a memory removal
DLPAR operation is successfully performed.

Example: C-8 Sample system trace output for a memory removal request

ID ELAPSED_SEC DELTA_MSEC APPL SYSCALL KERNEL INTERRUPT

001 0.000000000 0.000000 TRACE ON channel 0
 Sat Jul 27 17:20:16 2002
38F 7.821123474 7821.123474 DYNAMIC RECONFIG: Dr_register: DR
Operation: 0000000000000001 FORCE Option: 0000
38F 7.821125437 0.001963 DYNAMIC RECONFIG: get_user_data: DR
Operation: 0000000000000001 input data: 000000002FF22970
38F 7.821127517 0.002080 DYNAMIC RECONFIG: Register_dr_event: DR
Operation: 40000000
38F 7.821128637 0.001120 DYNAMIC RECONFIG: dr_callout: DR Callout
index: 0000 DR Phase: 0001
38F 7.822487468 1.358831 DYNAMIC RECONFIG: Dr_notify: DR Phase: 0002
Flags: 0001 Timeout in secs: 0000 Input: 0000000000000000
38F 7.822488219 0.000751 DYNAMIC RECONFIG: Validate_notify: DR
Phase: 0002 Flags: 0001
38F 7.822488601 0.000382 DYNAMIC RECONFIG: validate_phase: Current
Phase: 0001 Requested Phase: 0002 Flags: 0001
38F 7.822489610 0.001009 DYNAMIC RECONFIG: Run_notify: Perform DR
Check/Pre/Post/Posterror Phases
38F 7.822489813 0.000203 DYNAMIC RECONFIG: dr_callout: DR Callout
index: 0000 DR Phase: 0002
38F 7.822603894 0.114081 DYNAMIC RECONFIG: Dr_notify: DR Phase: 0002
Flags: 0004 Timeout in secs: 003C Input: 0000000000000000
38F 7.822604356 0.000462 DYNAMIC RECONFIG: Validate_notify: DR
Phase: 0002 Flags: 0004
38F 7.822604534 0.000178 DYNAMIC RECONFIG: validate_phase: Current
Phase: 0002 Requested Phase: 0002 Flags: 0004
38F 7.822608060 0.003526 DYNAMIC RECONFIG: Run_notify: Perform DR
Check/Pre/Post/Posterror Phases
38F 7.822608417 0.000357 DYNAMIC RECONFIG: Invoke Reconfig Handlers:
action: 1000
38F 7.822610244 0.001827 DYNAMIC RECONFIG: Invoke Reconfig Handlers:
Number of reconfig handlers waiting for: 0000
38F 7.822610736 0.000492 DYNAMIC RECONFIG: Invoke Reconfig Handlers:
All reconfig handlers completed, Status: 0000
38F 7.822686190 0.075454 DYNAMIC RECONFIG: Dr_notify: DR Phase: 0002
Flags: 0002 Timeout in secs: 0000 Input: 0000000000000000
38F 7.822687070 0.000880 DYNAMIC RECONFIG: Validate_notify: DR
Phase: 0002 Flags: 0002
38F 7.822687316 0.000246 DYNAMIC RECONFIG: validate_phase: Current
Phase: 0002 Requested Phase: 0002 Flags: 0002
464 The Complete Partitioning Guide for IBM Eserver pSeries Servers

38F 7.822687629 0.000313 DYNAMIC RECONFIG: Run_notify: Perform DR
Check/Pre/Post/Posterror Phases
38F 7.822687863 0.000234 DYNAMIC RECONFIG: dr_send_signal: Posting
signal (003A) to all processes catching
38F 7.822772761 0.084898 DYNAMIC RECONFIG: dr_send_signal: Number of
processes posted: 0000
38F 7.824002622 1.229861 DYNAMIC RECONFIG: Dr_notify: DR Phase: 0003
Flags: 0001 Timeout in secs: 0000 Input: 0000000000000000
38F 7.824003040 0.000418 DYNAMIC RECONFIG: Validate_notify: DR
Phase: 0003 Flags: 0001
38F 7.824003268 0.000228 DYNAMIC RECONFIG: validate_phase: Current
Phase: 0002 Requested Phase: 0003 Flags: 0001
38F 7.824003612 0.000344 DYNAMIC RECONFIG: Run_notify: Perform DR
Check/Pre/Post/Posterror Phases
38F 7.824003858 0.000246 DYNAMIC RECONFIG: dr_callout: DR Callout
index: 0000 DR Phase: 0003
38F 7.824117669 0.113811 DYNAMIC RECONFIG: Dr_notify: DR Phase: 0003
Flags: 0002 Timeout in secs: 0000 Input: 0000000000000000
38F 7.824118088 0.000419 DYNAMIC RECONFIG: Validate_notify: DR
Phase: 0003 Flags: 0002
38F 7.824118328 0.000240 DYNAMIC RECONFIG: validate_phase: Current
Phase: 0003 Requested Phase: 0003 Flags: 0002
38F 7.824118592 0.000264 DYNAMIC RECONFIG: Run_notify: Perform DR
Check/Pre/Post/Posterror Phases
38F 7.824118832 0.000240 DYNAMIC RECONFIG: dr_send_signal: Posting
signal (003A) to all processes catching
38F 7.824154322 0.035490 DYNAMIC RECONFIG: dr_send_signal: Number of
processes posted: 0000
38F 7.825608291 1.453969 DYNAMIC RECONFIG: Dr_notify: DR Phase: 0005
Flags: 0009 Timeout in secs: 0000 Input: 000000002FF22970
38F 7.825608752 0.000461 DYNAMIC RECONFIG: Validate_notify: DR
Phase: 0005 Flags: 0009
38F 7.825608961 0.000209 DYNAMIC RECONFIG: validate_phase: Current
Phase: 0003 Requested Phase: 0005 Flags: 0009
38F 7.825609287 0.000326 DYNAMIC RECONFIG: get_user_data: DR
Operation: 0000000000000001 input data: 000000002FF22970
38F 7.825609632 0.000345 DYNAMIC RECONFIG: dr_callout: DR Callout
index: 0000 DR Phase: 0004
38F 7.825610013 0.000381 DYNAMIC RECONFIG: Kernel_notify: Perform DR
Kernel Phase
38F 7.825610167 0.000154 DYNAMIC RECONFIG: dr_callout: DR Callout
index: 0000 DR Phase: 0005
38F 7.825611625 0.001458 DYNAMIC RECONFIG: Invoke Reconfig Handlers:
action: 2000
38F 7.825617182 0.005557 DYNAMIC RECONFIG: Invoke Reconfig Handlers:
Number of reconfig handlers waiting for: 0000
38F 7.825617643 0.000461 DYNAMIC RECONFIG: Invoke Reconfig Handlers:
All reconfig handlers completed, Status: 0000
 Appendix C. Dynamic logical partitioning output samples 465

38F 7.825622836 0.005193 DYNAMIC RECONFIG: Register_dr_event: DR
Operation: 80000001
38F 7.909427355 83.804519 DYNAMIC RECONFIG: Unregister_dr_event: DR
Operation: 80000001
38F 7.909764006 0.336651 DYNAMIC RECONFIG: Invoke Reconfig Handlers:
action: 4000
38F 7.909765157 0.001151 DYNAMIC RECONFIG: Invoke Reconfig Handlers:
Number of reconfig handlers waiting for: 0000
38F 7.909765551 0.000394 DYNAMIC RECONFIG: Invoke Reconfig Handlers:
All reconfig handlers completed, Status: 0000
38F 9.184001504 1274.235953 DYNAMIC RECONFIG: Dr_notify: DR Phase: 0006
Flags: 0001 Timeout in secs: 0000 Input: 0000000000000000
38F 9.184002919 0.001415 DYNAMIC RECONFIG: Validate_notify: DR
Phase: 0006 Flags: 0001
38F 9.184003412 0.000493 DYNAMIC RECONFIG: validate_phase: Current
Phase: 0005 Requested Phase: 0006 Flags: 0001
38F 9.184007042 0.003630 DYNAMIC RECONFIG: Run_notify: Perform DR
Check/Pre/Post/Posterror Phases
38F 9.184007214 0.000172 DYNAMIC RECONFIG: dr_callout: DR Callout
index: 0000 DR Phase: 0006
38F 9.184189925 0.182711 DYNAMIC RECONFIG: Dr_notify: DR Phase: 0006
Flags: 0002 Timeout in secs: 0000 Input: 0000000000000000
38F 9.184190528 0.000603 DYNAMIC RECONFIG: Validate_notify: DR
Phase: 0006 Flags: 0002
38F 9.184190756 0.000228 DYNAMIC RECONFIG: validate_phase: Current
Phase: 0006 Requested Phase: 0006 Flags: 0002
38F 9.184191051 0.000295 DYNAMIC RECONFIG: Run_notify: Perform DR
Check/Pre/Post/Posterror Phases
38F 9.184192196 0.001145 DYNAMIC RECONFIG: dr_send_signal: Posting
signal (003A) to all processes catching
38F 9.184340075 0.147879 DYNAMIC RECONFIG: dr_send_signal: Number of
processes posted: 0000
38F 9.186468805 2.128730 DYNAMIC RECONFIG: Dr_unregister:
Unregistering DR operation
38F 9.186471334 0.002529 DYNAMIC RECONFIG: dr_callout: DR Callout
index: 0000 DR Phase: 0009
38F 9.186472743 0.001409 DYNAMIC RECONFIG: Clearing DR Kernel
Data...
38F 9.186475444 0.002701 DYNAMIC RECONFIG: Unregister_dr_event: DR
Operation: 40000000
38F 9.201400247 14.924803 DYNAMIC RECONFIG: HA_proc: Checking with
Kernel for BAD CPU: Input: 0001 Event: 0000000000000001 Retry: 0000000000000000
002 11.867866488 2666.466241 TRACE OFF channel 0000 Sat Jul 27 17:20:28
2002
466 The Complete Partitioning Guide for IBM Eserver pSeries Servers

Using the AIX error log facility
AIX generates an error log entry when a DLPAR operation fails due to a kernel,
kernel extension, or other platform failures. The following three examples provide
sample error log entries:

� Example C-9

� Example C-10 on page 468

� Example C-11 on page 469

See Table 3-16 on page 122 for further detailed information about these error log
entries.

Example: C-9 Sample AIX error log entry: DR_MEM_UNSAFE_USE

LABEL: DR_MEM_UNSAFE_USE
IDENTIFIER: 12337A8D

Date/Time: Fri May 24 07:47:39 CDT
Sequence Number: 637
Machine Id: 003579124C00
Node Id: thimblelp4
Class: S
Type: TEMP
Resource Name: DR_KER_MEM

Description
Affected memory not available for DR removal

Probable Causes
Kernel extension not DR aware

Failure Causes
Memory marked as non removable

Recommended Actions
Contact kernel extension owner

Detail Data
Return Code
 114
Memory Address
0000 0000 6927 2000
LR Value
0000 0000 0010 30DC
Module Name
/usr/lib/drivers/testmod
 Appendix C. Dynamic logical partitioning output samples 467

Example: C-10 Sample AIX error log entry: DR_DMA_MIGRATE_FAIL

LABEL: DR_DMA_MIGRATE_FAIL
IDENTIFIER: 4DA8FE60

Date/Time: Fri May 24 04:10:29 CDT
Sequence Number: 622
Machine Id: 003579124C00
Node Id: thimblelp4
Class: S
Type: TEMP
Resource Name: DR_KER_MEM

Description
Memory related DR operation failed

Probable Causes
DMA activity to memory being removed

Failure Causes
DMA specific memory migration failed

Recommended Actions
Quiesce the device causing DMA to the memory

Detail Data
Return Code
 0 2
Memory Address
0000 0003 FF11 1000
Hypervisor return code
 -2
LIOBN
0000 0008
DMA Address
0000 0000 0000 0000 0080 C000
468 The Complete Partitioning Guide for IBM Eserver pSeries Servers

Example: C-11 Sample AIX error log entry: DR_DMA_MAPPAER_FAIL

LABEL: DR_DMA_MAPPER_FAIL
IDENTIFIER: 268DA6A3

Date/Time: Fri May 24 04:10:29 CDT
Sequence Number: 621
Machine Id: 003579124C00
Node Id: thimblelp4
Class: S
Type: TEMP
Resource Name: DR_KER_MEM

Description
Memory related DR operation failed

Probable Causes
DMA Mapper DR handler failure

Failure Causes
DMA specific memory mapper failed

Recommended Actions
Try DR operation on other memory resources

Detail Data
Return Code
 4 -16
Memory Address
0000 0000 4096 A000
Handler Address
0000 0000 01F2 A1A4
Module Name
/usr/lib/drivers/pci_busdd
 Appendix C. Dynamic logical partitioning output samples 469

470 The Complete Partitioning Guide for IBM Eserver pSeries Servers

Appendix D. Using the Job Scheduling
Console

This appendix shows how to define jobs and job streams using the Job
Scheduling Console (JSC) with IBM Tivoli Workload Scheduler.

D

© Copyright IBM Corp. 2003. All rights reserved. 471

Using the Job Scheduling Console
Open the Job Scheduling Console on your Windows-based workstation as
shown in Figure D-1.

Figure D-1 Job Scheduling Console

Create a new job
To create a job in the Job Scheduling Console, do the following:

1. In the Actions list pane, open the New Job Definition.

2. Select the scheduler engine you want to use.

3. Select the Unix Script job type. The Properties - Job Definition window is
displayed as shown in Figure D-2 on page 473.
472 The Complete Partitioning Guide for IBM Eserver pSeries Servers

Figure D-2 Properties - Job Definition: General

4. Complete at least the next fields:

– Name
– Workstation
– Login

5. Click Task in the left pane as shown in Figure D-3 on page 474.
 Appendix D. Using the Job Scheduling Console 473

Figure D-3 Properties - Job Definition: Task

6. Enter the script name in the Script field.

7. Click OK to add the new job.

Repeat the previous steps for the second job (DLPARNIGHT).

Figure D-4 shows the two jobs we just created, DLPARDAY and DLPARNIGHT.

Figure D-4 Jobs List

Create a new job stream
This process shows you how to add a job stream in the Job Scheduling Console.
To create a job stream, do the following:
474 The Complete Partitioning Guide for IBM Eserver pSeries Servers

1. In the Actions list pane, open the New Job Stream.

2. Select the scheduler engine you want to use. The Properties - Job Stream
window is displayed, as shown in Figure D-5.

Figure D-5 Properties - Job Stream

3. Complete at least the next fields:

– Name
– Workstation

4. Click OK. The Job Stream Editor window is displayed, as shown in Figure D-6
on page 476.
 Appendix D. Using the Job Scheduling Console 475

Figure D-6 Job Stream Editor

5. From the menu, select Actions → Add Job → Job Definition. The
Properties - Job window is displayed, as shown in Figure D-7.

Figure D-7 Properties - Job

6. Click the ... button. The Find Job window is displayed, as shown in Figure D-8
on page 477.
476 The Complete Partitioning Guide for IBM Eserver pSeries Servers

Figure D-8 Find Job

7. Complete the Find and Workstation Name fields.

8. Click Start. A list of jobs matching the criteria is displayed, as shown in
Figure D-9.

Figure D-9 Find Job with job list

9. Select the DLPARDAY job.

10.Click OK. The Properties - Job window is updated with the selected job, as
shown in Figure D-10 on page 478.
 Appendix D. Using the Job Scheduling Console 477

Figure D-10 Properties - Job: General

11.Click OK to add the job to the job stream editor window, as shown in
Figure D-11.

Figure D-11 Job Stream Editor with a job

12.From the menu, select File → Properties. The Properties - Job Stream
window is displayed.

13.Click Time Restrictions in the left pane, as shown in Figure D-12 on
page 479.
478 The Complete Partitioning Guide for IBM Eserver pSeries Servers

Figure D-12 Properties - Job Stream: Time Restriction

14.Select Specify time.

15.Enter the beginning time of the job stream in the field At.

16.Click OK.

17.From the menu, select View → Run Cycle. The run cycle view is displayed as
shown in Figure D-13 on page 480.
 Appendix D. Using the Job Scheduling Console 479

Figure D-13 Job Stream Editor: Run Cycle

18.From the menu, select Actions → Add → Weekly Run Cycle. The Weekly
Run Cycle window is displayed, as shown in Figure D-14.

Figure D-14 Weekly Run Cycle

19.Click Rule in the left pane. The rule view is displayed, as shown in
Figure D-15 on page 481.
480 The Complete Partitioning Guide for IBM Eserver pSeries Servers

Figure D-15 Weekly Run Cycle: Rule

20.Select Everyday.

21.Click OK to update the job run cycle, as shown in Figure D-16.

Figure D-16 Job Stream Editor: Run Cycle

22.From the menu, select File → Save.

23.From the menu, select File → Close.

Repeat the previous steps for the second job stream (DLNIGHT).

Figure D-17 on page 482 shows the two job streams we just created, DLDAY and
DLNIGHT.
 Appendix D. Using the Job Scheduling Console 481

Figure D-17 Job Streams List
482 The Complete Partitioning Guide for IBM Eserver pSeries Servers

Appendix E. Advanced DLPAR script
examples

The examples in this appendix show how the configuration file of the IHS is
modified with Perl scripts. There is one script for changing the number of child
processes the IHS spawns at startup (StartServers), and another that changes
the maximum number of connections to the IHS (MaxClients).

E

© Copyright IBM Corp. 2003. All rights reserved. 483

E.1 Changing StartServers
Example E-1 shows the Perl code used for modifying the configuration file of the
IHS. The script opens the configuration file and searches for the StartServers
stanza. The number behind that stanza is changed to the number given on the
command line.

To change the number of httpd daemon processes to 40, use the following
command:

chStartServers.pl 40

With this code we write a new configuration file including the modification to a
temporary file. Then the temporary file is copied over the configuration file. By
using this method, the configuration file is changed in one single operation and
there is no risk of corrupting the configuration file.

Example: E-1 Perl code for changing StartServers in httpd.conf

#!/usr/bin/perl -w
use strict;

set stanza to change
my $stanza = "StartServers";

check if command line argument is given,
we probably would like to check if this is a number
if ($#ARGV < 0) {
 # print usage information and exit if no arguments are found
 print("usage: ch$stanza number\n");
 exit 1;
}
get number to set from command line
my $n = $ARGV[0];

set file names
my $filename = "/usr/HTTPServer/conf/httpd.conf";
my $tmpfile = "/usr/HTTPServer/conf/httpd.conf.tmp";

open config file read mode
open(FILE, "$filename") or die "can't open $filename";
open temporary file in write mode
open(TMP, ">$tmpfile") or die "can't open $tmpfile";

read file
while (<FILE>) {
 my $line = $_;
 # find stanza with regular expression
 if ($line =~ m/^\s*$stanza\s+\d+\s*$/) {
484 The Complete Partitioning Guide for IBM Eserver pSeries Servers

 # change value
 $line =~ s/$stanza\s+\d+/$stanza $n/;
 }
 # print line to temporary file
 print TMP $line;
}

close(FILE);
close(TMP);

cp temporary file to config file
rename($tmpfile, $filename);

exit;
__END__

Example E-2 shows the Perl code for printing the current setting for StartServers
in the httpd.conf file. We open the configuration file and search the StartServers
stanza with a regular expression. The number behind the StartServers keyword
is printed to standard output.

Example: E-2 Perl script for reading the value of StartServers

#!/usr/bin/perl -w
use strict;

set stanza to read
my $stanza = "StartServers";

set file name
my $filename = "/usr/HTTPServer/conf/httpd.conf";

open file in read mode
open(FILE, "$filename") or die "can't open $filename";

value in stanza
my $value;

read file into array
my @array = <FILE>;
close file
close(FILE);

find stanza with regular expression
foreach (@array) {
 if ($_ =~ m/^\s*$stanza\s+(\d+)\s*$/) {
 # read value
 $value = $1;
 Appendix E. Advanced DLPAR script examples 485

 }
}

printf("$value\n");

exit;
__END__

E.2 Changing MaxClients
The Perl code in Example E-3 is very similar to Example E-1 on page 484. We
have changed the name of the configuration stanza that has to be changed in the
configuration file. Again the script is called with the new value as a command line
argument.

If we want to change the maximum number of connections to the IHS to 600, we
use the following command:

chMaxClients.pl 600

Example: E-3 Perl code for changing MaxClients in httpd.conf

#!/usr/bin/perl -w
use strict;

set stanza to change
my $stanza = "MaxClients";

check if command line argument is given,
we probably would like to check if this is a number
if ($#ARGV < 0) {
 # print usage information and exit if no arguments are found
 print("usage: ch$stanza number\n");
 exit 1;
}
get number to set from command line
my $n = $ARGV[0];

set file names
my $filename = "/usr/HTTPServer/conf/httpd.conf";
my $tmpfile = "/usr/HTTPServer/conf/httpd.conf.tmp";

open config file read mode
open(FILE, "$filename") or die "can't open $filename";
open temporary file in write mode
open(TMP, ">$tmpfile") or die "can't open $tmpfile";
486 The Complete Partitioning Guide for IBM Eserver pSeries Servers

read file
while (<FILE>) {
 my $line = $_;
 # find stanza with regular expression
 if ($line =~ m/^\s*$stanza\s+\d+\s*$/) {
 # change value
 $line =~ s/$stanza\s+\d+/$stanza $n/;
 }
 # print line to temporary file
 print TMP $line;
}

close(FILE);
close(TMP);

cp temporary file to config file
rename($tmpfile, $filename);

exit;
__END__

Example E-4 shows the Perl code for reading the current value of MaxClients
from the httpd.conf file and printing the value to standard output.

Example: E-4 Perl script for reading the value of MaxClients

#!/usr/bin/perl -w
use strict;

set stanza to read
my $stanza = "MaxClients";

set file name
my $filename = "/usr/HTTPServer/conf/httpd.conf";

open file in read mode
open(FILE, "$filename") or die "can't open $filename";

value in stanza
my $value;

read file into array
my @array = <FILE>;
close file
close(FILE);

find stanza with regular expression
foreach (@array) {
 if ($_ =~ m/^\s*$stanza\s+(\d+)\s*$/) {
 Appendix E. Advanced DLPAR script examples 487

 # read value
 $value = $1;
 }
}

printf("$value\n");

exit;
__END__
488 The Complete Partitioning Guide for IBM Eserver pSeries Servers

Appendix F. Autonomic application
example

This appendix contains an autonomic C program example discussed in
Chapter 12, “Autonomic applications” on page 375.

F

© Copyright IBM Corp. 2003. All rights reserved. 489

F.1 Autonomic C program example
Example F-1 shows an autonomic C program example discussed in Chapter 12,
“Autonomic applications” on page 375.

To compile the program, do the following:

$ cc _r -q64 seek_IBM.c

To run the compiled executable program, a.out, do the following:

$./seek_IBM | tee seek_IBM.log

If you need to terminate the program before it ends, use Ctrl-C on the terminal
where you have invoked the program, or send the SIGINT signal to the program
process. This instructs the program to release acquired shared memory
segments before it terminates.

Example: F-1 seek_IBM.c

#include <pthread.h>
#include <stdio.h>
#include <unistd.h>
#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include <stdarg.h>
#include <sys/shm.h>
#include <sys/dr.h>
#include <errno.h>

#define ONE_SEG (256 * 1024 * 1024)

pthread_mutex_t prt_log_l;
pthread_mutex_t st_l;
int cpu_units;
int mem_units;
int IBM_found = -1;
enum runflag {
 SEEK_IBM_RUN,
 SEEK_IBM_STOP
} runflag = SEEK_IBM_RUN;

enum st {
 ST_READY,
 ST_RUNNING,

Note: The program is designed as a 64-bit multi-threaded application.
490 The Complete Partitioning Guide for IBM Eserver pSeries Servers

 ST_STOPPING,
 ST_DONE
} *st = NULL;
int stmax = 8;

int mem_for_os = 1024;
int mem_per_task = 256;
int task_per_cpu = 2;
int mem_allowable_diff = 512;
char *dr_phase[] = { “check”, “pre”, “post”, “error” };
char *dr_op[] = { “add”, “remove” };
char *dr_res[] = { “cpu”, “memory”, “other” };
sigset_t set;

void prt_log(char *fmt, ...)
{
 va_list argp;

 if (runflag == SEEK_IBM_STOP) {
 return;
 }
 pthread_mutex_lock(&prt_log_l);
 va_start(argp, fmt);
 vprintf(fmt, argp);
 fflush(stdout);
 va_end(argp);
 pthread_mutex_unlock(&prt_log_l);
}

int checkst(int task)
{
 pthread_mutex_lock(&st_l);
 if (st[task] == ST_STOPPING) {
 /* Aborted */
 st[task] = ST_READY;
 pthread_mutex_unlock(&st_l);
 prt_log(“%d: stopped.\n”, task);
 return -1;
 }
 pthread_mutex_unlock(&st_l);
 return 0;
}

void *worker(void *arg)
{
 char *buf;
 int id, rc, task = *((int *) arg);
 time_t start, end;
 Appendix F. Autonomic application example 491

 int unit, c, ibmc = 0;
 FILE *fp;
 unsigned int seed;

 free(arg);
 prt_log(“%d: started.\n”, task);

 if ((fp = fopen(“/dev/urandom”, “r”)) == NULL) {
 prt_log(“Can’t open /dev/urandom.\n”);
 }
 fread(&seed, 1, 4, fp);
 fclose(fp);
 prt_log(“%d: random seed=%x\n”, task, seed);

 if ((id = shmget(IPC_PRIVATE, ONE_SEG, IPC_CREAT | 0600))
 == 0) {
 prt_log(“%d: shmget error.\n”, task);
 pthread_exit(NULL);
 }
 prt_log(“%d: id=%d\n”, task, id);
 if ((buf = shmat(id, 0, 0)) == NULL) {
 prt_log(“%d: shmat error.\n”, task);
 pthread_exit(NULL);
 }
 prt_log(“%d: buf=%x\n”, task, buf);

 time(&start);

 /* Repeat 16 times; 16 MB x 16 = 256 MB. */
 for (unit = 0; unit < 16; unit++) {
 int count;
 int *unitbuf = (int *) (buf + unit * 16 * 1024 * 1024);

 /* Fill up 16 MB of memory with random data. */
 time(&start);
 for (count = 0; count < 4 * 1024 * 1024; count++) {
 char *nowbuf = (char *) unitbuf + count;
 int n;

 /* Set random number in integer on 4 byte of charactor */
 unitbuf[count] = rand_r(&seed);
 unitbuf[count] *= unitbuf[count];

 /* Convert each bytes to printable characters */
 for (n = 0; n < 4; n++) {
 nowbuf[n] = nowbuf[n] % 26 + ‘A’;
 }
 }
 time(&end);
492 The Complete Partitioning Guide for IBM Eserver pSeries Servers

 prt_log(“task:%d has completed initializing of unit:”
 “%d in %d sec.\n”, task, unit, end - start);

 /* Check if this task is requested to stop. */
 if (checkst(task)) {
 goto end_of_task;
 }
 }

 /* Repeat 16 times; 16MBx16=256MB */
 for (unit = 0; unit < 16; unit++) {
 char *ubuf = buf + unit * 16 * 1024 * 1024;
 int max = unit == 15 ? 16 * 1024 * 1024 - 3 : 16 * 1024 * 1024;

 /* Scan 16 MB of memory */
 time(&start);
 for (c = 0; c < max; c++) {
 if (ubuf[c] == ‘I’ && ubuf[c + 1] == ‘B’ && ubuf[c + 2] == ‘M’) {
 ibmc++;
 }
 }
 time(&end);

 prt_log(“task:%d has completed scanning of unit:%d in %d sec”
 “ and found \”IBM\” %d times.\n”, task, unit, end - start,
 ibmc);

 /* Check if this task is requested to stop. */
 if (checkst(task)) {
 goto end_of_task;
 }
 }
 pthread_mutex_lock(&st_l);
 /* It’s done. */
 st[task] = ST_DONE;
 if (IBM_found < 0) {
 IBM_found = ibmc;
 } else {
 IBM_found += ibmc;
 }
 pthread_mutex_unlock(&st_l);
 prt_log(“task %d completed. \”IBM\” found %d times.\n”, task, ibmc);

 end_of_task:
 if (rc = shmdt(buf)) {
 prt_log(“%d: shmdt error.\n”, task);
 pthread_exit(NULL);
 }
 Appendix F. Autonomic application example 493

 if (rc = shmctl(id, IPC_RMID, NULL)) {
 prt_log(“%d: shmctl error(%d).\n”, task, rc);
 pthread_exit(NULL);
 }
 pthread_exit(NULL);
}

void task_scheduler(int n)
{
 pthread_t ch;
 int c, d = 0;
 int *no;

 pthread_mutex_lock(&st_l);
 for (c = 0; c < stmax; c++) {
 if (st[c] == ST_RUNNING) {
 d++;
 continue;
 }
 if (st[c] == ST_READY && d < n && runflag == SEEK_IBM_RUN) {
 no = malloc(sizeof(int));
 *no = c;
 pthread_create(&ch, NULL, worker, (void *) no);
 pthread_detach(ch);
 prt_log(“create thread %d %d\n”, *no, d);
 st[c] = ST_RUNNING;
 d++;
 } else if (st[c] == ST_RUNNING && d >= n) {
 st[c] = ST_STOPPING;
 }
 }
 pthread_mutex_unlock(&st_l);
}

int taskleft()
{
 int c, t = 0;

 pthread_mutex_lock(&st_l);
 if (runflag == SEEK_IBM_RUN) {
 /* Check if it is not completed yet. */
 for (c = 0; c < stmax; c++) {
 if (st[c] == ST_READY) {
 t++;
 }
 }
 } else {
 /* Check if it is not stopped yet, while runflag=SEEK_IBM_STOP. */
 for (c = 0; c < stmax; c++) {
494 The Complete Partitioning Guide for IBM Eserver pSeries Servers

 if (st[c] == ST_STOPPING) {
 t++;
 }
 }
 }
 pthread_mutex_unlock(&st_l);
 return t;
}

int threadnum()
{
 int c, t = 0;

 pthread_mutex_lock(&st_l);
 for (c = 0; c < stmax; c++) {
 if (st[c] == ST_RUNNING) {
 t++;
 }
 }
 pthread_mutex_unlock(&st_l);
 return t;
}

int reconfig_check(int cpu, int mem)
{
 int mem_for_task = mem_per_task * task_per_cpu * cpu;

 prt_log(“** You will have %d cpu and %d MB of memory.\n”
 “** As a cpu can run %d task and a task requires %d MB of\n”
 “** memory, and you specified to save %d MB for OS,\n”
 “** you need %d MB of memory in total for %d task.\n”,
 cpu, mem, task_per_cpu, mem_per_task, mem_for_os,
 mem_for_task + mem_for_os, cpu * task_per_cpu);

 if (mem < mem_for_os) {
 prt_log
 (“** Hey! You will have only %d MB of memory, that is not less\n”
 “** than your setting in mem_for_os=%d\n.\n”, mem,
 mem_for_os);
 return -1;
 } else if (mem_for_task + mem_for_os - mem_allowable_diff > mem) {
 prt_log
 (“** Hey! You will have %d MB of memory that is much less than\n”
 “** required memory size, %d MB. Allowable difference between\n”
 “** these two values is less than %d MB.\n”, mem,
 mem_for_task + mem_for_os, mem_allowable_diff);
 return -1;
 } else if (mem_for_task + mem_for_os + mem_allowable_diff < mem) {
 Appendix F. Autonomic application example 495

 prt_log
 (“** Hey! You will have %d MB of memory that is much more than\n”
 “** required memory size, %d MB. Allowable difference between\n”
 “** these two values is less than %d MB.\n”, mem,
 mem_for_task + mem_for_os, mem_allowable_diff);
 return -1;
 } else {
 int memslots = (mem - mem_for_os) / mem_per_task;
 int cpuslots = task_per_cpu * cpu;

 if (cpuslots < memslots) {
 prt_log(“** Memory size (%d MB) that will be required for task”
 “ and OS is less than \n”
 “** amount of memory (%d MB) you will have. Let’s run”
 “ %d tasks.\n”,
 mem_for_task + mem_for_os, mem, cpuslots);
 return cpuslots;
 } else {
 prt_log
 (“** Memory size (%d MB) that will be required for task and”
 “ OS is more than \n”
 “** equal amount of memory (%d MB) you will have. You can”
 “ not run %d tasks.\n”
 “** You want to save %d MB for OS, then you can use %d MB”
 “ for task out of\n”
 “** %d MB total memory size. As each task requires %d MB,”
 “ you can run\n”
 “** %d task.\n”, mem_for_task + mem_for_os, mem, cpuslots,
 mem_for_os, mem - mem_for_os, mem, mem_per_task,
 memslots);
 return memslots;
 }
 }
}

void reconfig_manager()
{
 dr_info_t dr;
 int rc, now, n, c;
 char *phase, *op, *res;

 prt_log(“- A reconfig request is received.\n”);
 if ((rc = dr_reconfig(DR_QUERY, &dr)) == 0) {
 if (dr.check) {
 phase = dr_phase[0];
 } else if (dr.pre) {
 phase = dr_phase[1];
 } else if (dr.post) {
496 The Complete Partitioning Guide for IBM Eserver pSeries Servers

 phase = dr_phase[2];
 } else
 phase = dr_phase[3];

 if (dr.add) {
 op = dr_op[0];
 } else {
 op = dr_op[1];
 }

 if (dr.cpu) {
 res = dr_res[0];
 } else if (dr.mem) {
 res = dr_res[1];
 } else {
 res = dr_res[2];
 }

 prt_log(“- %s phase to %s %s\n”, phase, op, res);

 if (dr.mem) {
 n = (int) (dr.req_memsz_change / (1024 * 1024));
 if (dr.add) {
 if (dr.pre || dr.check) {
 prt_log(“- add memory %d\n”, n);
 } else if (dr.post &&
 (c =
 reconfig_check(cpu_units,
 mem_units + n)) > 0) {
 prt_log(“- add memory %d + %d\n”, mem_units, n);
 task_scheduler(c);
 mem_units += n;
 } else {
 dr_reconfig(DR_EVENT_FAIL, &dr);
 prt_log(“- Reconfig request is denied as “
 “%dMB of memory is too large for %d CPUs.\n”,
 mem_units + n, cpu_units);
 return;
 }
 } else if (dr.rem) {
 if (dr.post || dr.check) {
 prt_log(“- remove memory %d\n”, n);
 } else if (dr.pre &&
 (c =
 reconfig_check(cpu_units,
 mem_units - n)) > 0) {
 prt_log(“- remove memory %d - %d\n”, mem_units, n);
 task_scheduler(c);
 mem_units -= n;
 Appendix F. Autonomic application example 497

 } else {
 dr_reconfig(DR_EVENT_FAIL, &dr);
 prt_log(“- Reconfig request is denied as “
 “%dMB of memory is too little for %d CPUs.\n”,
 mem_units - n, cpu_units);
 return;
 }
 }
 } else if (dr.cpu) {
 n = 1;
 if (dr.add) {
 if (dr.pre || dr.check) {
 prt_log(“- add CPU %d\n”, n);
 } else if (dr.post &&
 (c =
 reconfig_check(cpu_units + 1,
 mem_units)) > 0) {
 prt_log(“- add CPU %d + %d\n”, cpu_units, n);
 task_scheduler(c);
 cpu_units += n;
 } else {
 dr_reconfig(DR_EVENT_FAIL, &dr);
 prt_log(“- Reconfig request is denied as “
 “%d CPUs are too many for %d MB of memory.\n”,
 cpu_units + n, mem_units);
 return;
 }
 } else if (dr.rem) {
 if (dr.post || dr.check) {
 prt_log(“- remove CPU %d\n”, n);
 } else if (dr.pre &&
 (c =
 reconfig_check(cpu_units - 1,
 mem_units)) > 0) {
 prt_log(“- remove CPU %d - %d\n”, cpu_units, n);
 task_scheduler(c);
 cpu_units -= n;
 } else {
 dr_reconfig(DR_EVENT_FAIL, &dr);
 prt_log(“- Reconfig request is denied as “
 “%d CPUs are too few for %d MB of memory.\n”,
 cpu_units - n, mem_units);
 return;
 }
 }
 }
 dr_reconfig(DR_RECONFIG_DONE, &dr);
 prt_log(“- Reconfig request is accepted.\n”);
 } else {
498 The Complete Partitioning Guide for IBM Eserver pSeries Servers

 prt_log(“dr_reconfig() error.\n”);
 }
}

void *sigwatcher(void *arg)
{
 int rc;
 sigset_t newset;

 sigemptyset(&newset);
 sigaddset(&newset, SIGRECONFIG);
 sigaddset(&newset, SIGINT);
 while (!sigwait(&newset, &rc)) {
 fprintf(stderr, “sigwatcher: rc=%d\n”, rc);
 if (rc == SIGINT) {
 pthread_mutex_lock(&st_l);
 runflag = SEEK_IBM_STOP;
 pthread_mutex_unlock(&st_l);
 task_scheduler(0);
 break;
 } else if (rc == SIGRECONFIG) {
 reconfig_manager();
 }
 }
 pthread_exit(NULL);
}

int setup(char *name)
{
 FILE *fp;
 char buf[BUFSIZ];
 char *p;
 int c;

 if ((fp = fopen(name, “r”)) == NULL) {
 printf(“Can’t open file %s\n”, name);
 exit(1);
 }
 while (fgets(buf, sizeof(buf), fp)) {
 if (strncmp(buf, “mem_for_os=”, 11) == 0) {
 mem_for_os = atoi(buf + 11);
 } else if (strncmp(buf, “mem_per_task=”, 13) == 0) {
 mem_per_task = atoi(buf + 13);
 } else if (strncmp(buf, “task_per_cpu=”, 13) == 0) {
 task_per_cpu = atoi(buf + 13);
 } else if (strncmp(buf, “mem_allowable_diff=”, 19) == 0) {
 mem_allowable_diff = atoi(buf + 19);
 } else if (strncmp(buf, “max_task=”, 9) == 0) {
 stmax = atoi(buf + 9);
 Appendix F. Autonomic application example 499

 }
 }
 fclose(fp);

 if (stmax <= 0
 || (st = (enum st *) malloc(sizeof(int) * stmax)) == NULL) {
 printf(“Can’t allocate task table.\n”);
 exit(1);
 }
 for (c = 0; c < stmax; c++) {
 st[c] = ST_READY;
 }

 cpu_units = sysconf(_SC_NPROCESSORS_ONLN);

 if ((fp = popen(“lsattr -EOl mem0”, “r”)) == NULL ||
 fgets(buf, 20, fp) == NULL ||
 fgets(buf, 20, fp) == NULL || (p = strchr(buf, ‘:’)) == NULL) {
 printf(“Can’t get memory size by lsattr -EOl mem0.\n”);
 }
 *p = 0;
 mem_units = atoi(buf);
 if ((c = reconfig_check(cpu_units, mem_units)) < 0) {
 printf(“CPU and memory are out of balance. “
 “(mem_units=%d MB, cpu_units=%d).\n”, mem_units, cpu_units);
 exit(3);
 }
 return c;
}

void main(int argc, char **argv)
{
 pthread_t ch;
 int c, n;

 sigemptyset(&set);
 sigaddset(&set, SIGINT);
 sigaddset(&set, SIGRECONFIG);
 pthread_sigmask(SIG_BLOCK, &set, NULL);

 if (argc > 1) {
 c = setup(argv[1]);
 } else {
 c = setup(“seek_IBM.conf”);
 }

 pthread_mutex_init(&prt_log_l, NULL);
 pthread_mutex_init(&st_l, NULL);
500 The Complete Partitioning Guide for IBM Eserver pSeries Servers

 pthread_create(&ch, NULL, sigwatcher, NULL);

 task_scheduler(c);

 while (1) {
 while (1) {
 if (!(c = threadnum())) {
 break;
 }
 if (IBM_found < 0) {
 prt_log
 (“+ CPU:%d, memory:%d [MB], threads: %d, tasks: %d\n”,
 cpu_units, mem_units, c, n);
 } else {
 prt_log(“+ CPU:%d, memory:%d [MB], threads: %d, tasks: %d,”
 “ \”IBM\” found %d times so far.\n”, cpu_units,
 mem_units, c, n, IBM_found);
 }
 sleep(5);
 }
 if ((n = taskleft()) <= 0) {
 break;
 }
 task_scheduler(reconfig_check(cpu_units, mem_units));
 }
 if (IBM_found >= 0) {
 printf(“*** The program found \”IBM\” %d times in total. ***\n”,
 IBM_found);
 }
 exit(0);
}

 Appendix F. Autonomic application example 501

502 The Complete Partitioning Guide for IBM Eserver pSeries Servers

Appendix G. Additional material

This redbook refers to additional material that can be downloaded from the
Internet as described below.

Locating the Web material
The Web material associated with this redbook is available in softcopy on the
Internet from the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG247039

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with
the redbook form number, SG247039.

G

© Copyright IBM Corp. 2003. All rights reserved. 503

ftp://www.redbooks.ibm.com/redbooks/SG247039
http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/

Using the Web material
The additional Web material that accompanies this redbook includes a tar
archive file, sg247039-01.tar, that includes the following files:

tar tvf sg247039-01.tar
drwxr-sr-x 0 0 0 Sep 22 13:50:00 2003 ./
drwxr-sr-x 0 0 0 Sep 22 13:40:51 2003 ./ch03/
-rw-r--r-- 0 0 28757 Nov 15 09:56:12 2002 ./ch03/DLPAR_appl.c
-rw-r--r-- 0 0 16885 Nov 15 12:45:27 2002 ./ch03/dr_IBM_template.pl
-rw-r--r-- 0 0 14109 Nov 12 16:31:19 2002 ./ch03/dr_IBM_template.sh
drwxr-sr-x 0 0 0 Sep 22 13:49:02 2003 ./ch09/
-rwxr--r-- 0 0 2850 Sep 22 13:45:18 2003 ./ch09/MoveCD
-rwxr--r-- 0 0 1359 Sep 22 13:45:30 2003 ./ch09/MoveRes
-rwxr----- 0 0 4346 Aug 14 14:28:15 2003 ./ch09/ChangeResConfig
-rw-r--r-- 0 0 46 Aug 12 17:12:43 2003 ./ch09/test.cfg
-rw-r--r-- 0 0 23 Aug 11 15:07:01 2003 ./ch09/app1.cfg
-rw-r--r-- 0 0 22 Aug 13 16:10:50 2003 ./ch09/app1_stby.cfg
-rw-r--r-- 0 0 23 Aug 13 16:35:58 2003 ./ch09/app1app2NodeA.cfg
-rw-r--r-- 0 0 23 Aug 14 11:24:39 2003 ./ch09/app1app2NodeB.cfg
-rw-r--r-- 0 0 23 Aug 14 11:24:14 2003 ./ch09/app2.cfg
-rw-r--r-- 0 0 22 Aug 14 11:24:22 2003 ./ch09/app2_stby.cfg
-rwxr--r-- 0 0 638 Aug 14 14:54:26 2003 ./ch09/start_app1
-rwxr--r-- 0 0 638 Aug 14 14:54:53 2003 ./ch09/start_app2
-rwxr--r-- 0 0 633 Aug 14 14:53:56 2003 ./ch09/stop_app1
-rwxr--r-- 0 0 631 Aug 14 14:55:19 2003 ./ch09/stop_app2
drwxr-sr-x 0 0 0 Aug 14 10:15:16 2003 ./ch10/
-rwxr-xr-x 0 0 13598 Aug 13 17:53:35 2003 ./ch10/IBM_template.sh
-rw-r--r-- 0 0 216 Aug 13 18:04:01 2003 ./ch10/README
-rwxr-xr-x 0 0 517 Aug 13 18:18:51 2003 ./ch10/lsMaxClients.pl
-rwxr-xr-x 0 0 1049 Aug 14 09:37:32 2003 ./ch10/chStartServers-1.pl
-rwxr-xr-x 0 0 979 Aug 14 09:43:23 2003 ./ch10/chStartServers-2.pl
-rwxr-xr-x 0 0 1105 Aug 14 09:40:51 2003 ./ch10/chStartServers-3.pl
-rw-r--r-- 0 0 3432 Aug 14 10:15:38 2003 ./ch10/dr_http_reconfig.diff
-rwxr-xr-x 0 0 211 Aug 14 09:48:07 2003 ./ch10/sync.sh
-rw-r--r-- 0 0 14665 Aug 14 10:12:22 2003 ./ch10/dr_http_reconfig.sh
-rwxr-xr-x 0 0 1047 Aug 14 09:37:24 2003 ./ch10/chMaxClients-1.pl
-rwxr-xr-x 0 0 977 Aug 14 09:45:28 2003 ./ch10/chMaxClients-2.pl
-rwxr-xr-x 0 0 1103 Aug 14 09:45:02 2003 ./ch10/chMaxClients-3.pl
-rwxr-xr-x 0 0 519 Aug 13 18:18:33 2003 ./ch10/lsStartServers.pl
drwxr-sr-x 0 0 0 Aug 14 11:16:09 2003 ./ch11/
-rw-r--r-- 0 0 309 Aug 13 14:16:13 2003 ./ch11/Makefile
-rw-r--r-- 0 0 34431 Aug 12 16:35:34 2003 ./ch11/DLPAR_appl_autonomic.c
-rw-r--r-- 0 0 731 Aug 13 14:27:23 2003 ./ch11/block_cpu.c
-rw-r--r-- 0 0 371 Aug 13 15:45:10 2003 ./ch11/rset_create.c
-rw-r--r-- 0 0 221 Aug 13 18:05:15 2003 ./ch11/README
-rw-r--r-- 0 0 473 Aug 08 14:02:20 2003 ./ch11/rset_create_cpu.c
-rw-r--r-- 0 0 474 Aug 08 13:57:35 2003 ./ch11/rset_create_mem.c
-rw-r--r-- 0 0 7781 Aug 13 18:05:07 2003 ./ch11/DLPAR_appl_autonomic.diff
504 The Complete Partitioning Guide for IBM Eserver pSeries Servers

-rw-r--r-- 0 0 28757 Aug 13 18:03:16 2003 ./ch11/DLPAR_appl.c
-rwxr-xr-x 0 0 3295 Aug 08 16:17:28 2003 ./ch11/test.sh
-rw-r--r-- 0 0 595 Aug 08 12:00:38 2003 ./ch11/rset_remcpu.c
-rw-r--r-- 0 0 594 Aug 08 14:01:53 2003 ./ch11/rset_remmem.c
-rwxr-xr-x 0 0 208 Aug 08 11:23:52 2003 ./ch11/sync.sh
-rw-r--r-- 0 0 660 Aug 13 14:26:04 2003 ./ch11/rset_list_cpu.c
-rw-r--r-- 0 0 590 Aug 08 13:56:48 2003 ./ch11/rset_addcpu.c
-rw-r--r-- 0 0 591 Aug 08 14:02:04 2003 ./ch11/rset_addmem.c
-rw-r--r-- 0 0 182 Aug 08 12:08:26 2003 ./ch11/rset_delete.c
drwxr-sr-x 0 0 0 Sep 22 13:51:04 2003 ./ch12/
-rw-r--r-- 0 0 16166 Sep 22 13:51:04 2003 ./ch12/seek_IBM.c

System requirements for downloading the Web material
The following system configuration is recommended:

Hard disk space: 3 MB minimum
Operating System: AIX 5L Version 5.2

How to use the Web material
Create a subdirectory on your AIX systems, and un-tar the contents of the Web
material file in this folder.
 Appendix G. Additional material 505

506 The Complete Partitioning Guide for IBM Eserver pSeries Servers

acronyms
AIX Advanced Interactive
Executive

ALPAR affinity logical partition

APAR authorized program analysis
report

API application programming
interface

ASCII American Standard Code for
Information Interchange

ATS Advanced Technical Support

BOS basic operating system

CD compact disc

CD-R compact disc - recordable

CD-ROM compact disc - read only
media

CD/DVD compact disc/digital versatile
disc

CDT central daylight time

CEC central electronics complex

CHRP Common Hardware
Reference Platform

CIM Common Interface Model

CIMOM Common Interface Model
Object Manager

CPU central processing unit

CST central standard time

DLPAR dynamic logical partitioning

DMA Direct Memory Access

DMTF Desktop Management Task
Force

DNS Domain Name System

DR Data Register

DR dynamic reconfiguration

Abbreviations and
© Copyright IBM Corp. 2003. All rights reserved.
DRAF Dynamic Reconfiguration
Application Framework

DVD digital versatile disc

DVD-RAM digital versatile disc - random
access memory

DVD-ROM digital versatile disc - read
only memory

EC Engineering Change

EEH Enhanced Error Handling

FC Feature Code

FQDN fully qualified domain name

FRU field replaceable unit

FTSS Field Technical Support
Specialist

GB gigabyte

GID group ID

GPFS General Parallel File System

GUI graphical user interface

HACMP high-availability cluster
multiprocessing

HMC Hardware Management
Console

HPC High Performance Computing

HTML Hypertext Markup Language

I/O input/output

IBM International Business
Machines Corporation

IPLA IBM International Program
License Agreement

ID identification

IDE internal data equipment

IP Internet Protocol

IPL initial program load

IR Instruction Register
 507

ISA Industry Standard
Architecture

ISO International Organization for
Standardization

ITSO International Technical
Support Organization

JFS Journaled File System

KB kilobyte

KDB kernel debugger

LAN local area network

LDAP Lightweight Directory Access
Protocol

LED light emitting diode

LMB logical memory block

LPAR logical partitioning

LUN logical unit

LV logical volume

LVD Low Voltage Differential

LVM Logical Volume Manager

M/T machine type

MB megabyte

MCM multichip module

MDL model

MSR Machine Status Register

NFS Network File System

NIM Network Installation Manager

NIS Network Information Services

NVRAM nonvolatile random access
memory

ODM Object Data Manager

OEM original equipment
manufacturer

OS operating system

PAP Password Authentication
Protocol

PC personal computer

PCI peripheral component
interconnect

PFT Page Frame Table

PHB PCI host bridge

PID process ID

PMB physical memory block

POWER performance optimization with
enhanced RISC

PPID parent process ID

PSSP Parallel System Support
Program

QBB Quad Building Block

R/W read/write

RAM random access memory

RAN remote asynchronous node

RAS reliability, availability, and
serviceability

RDBMS relational database
management system

RIP Routing Information Protocol

RISC reduced instruction-set
computer

RMC Resource Monitoring and
Control

RML Real Mode Limit

RMO real mode offset

ROM read only memory

RPM Red Hat Package Manager

RSCT Reliable and Scalable Cluster
Technology

RSPC RISC System Personal
Computer

RTAS Run-Time Abstraction Service

S/N serial number

SCSI small computer system
interface

SMIT System Management
Interface Tool

SMP symmetric multiprocessing
508 The Complete Partitioning Guide for IBM <{(e)server}>Eserver pSeries Servers

SMS System Management
Services

SP scalable parallel

SPOT shared product object tree

SSA serial storage architecture

SSH Secure Shell

SSL Secure Sockets Layer

TCB trusted computing base

TCE translation control entry

TCP Transmission Control Protocol

TLB Translation Look-aside Buffer

TOD time-of-day

TTY Teletype

UDB Universal Database

UDF Universal Disk Format

UID user ID

UP uniprocessor

URL Universal Resource Locator

USB Universal Serial Bus

VMM Virtual Memory Manager

VPD Vital Product Data

VSD Virtual Shared Disk

WLM Workload Manager
 Abbreviations and acronyms 509

510 The Complete Partitioning Guide for IBM <{(e)server}>Eserver pSeries Servers

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks”
on page 515.

� A Practical Guide for Resource Monitoring and Control, SG24-6615

� IBM Eserver pSeries 670 and pSeries 690 System Handbook, SG24-7040

� Linux Applications on pSeries, SG24-6033

� Managing AIX Server Farms, SG24-6606

� POWER4 Processor Introduction and Tuning Guide, SG24-7041

� The Complete Partitioning Guide for IBM Eserver pSeries Servers,
SG24-7039

IBM Redpapers
IBM Redpapers are available in softcopy only.

� IBM Eserver pSeries 615 Models 6C3 and 6E3 Technical Overview and
Introduction, REDP0160

� IBM Eserver pSeries 630 Models 6C4 and 6E4 Technical Overview and
Introduction, REDP0195

� IBM Eserver pSeries 650 Model 6M2 Technical Overview and Introduction,
REDP0194

pSeries hardware publications
The following publications are shipped with the IBM Eserver pSeries servers.
These publications are also available at the following URL (click the
corresponding model name):

http://www.ibm.com/servers/eserver/pseries/library/hardware_docs/
© Copyright IBM Corp. 2003. All rights reserved. 511

http://www.ibm.com/servers/eserver/pseries/library/hardware_docs/

� 128-Port Asynchronous PCI Adapter Installation and User’s Guide,
SA23-2563

� 8-Port Asynchronous PCI Adapter Installation and User’s Guide, SA23-2562

� Adapter, Devices, and Cable Information for Multiple Bus Systems,
SA38-0516

� D10 I/O Drawer Installation Guide, SA23-1296

� D20 I/O Drawer Installation Guide, SA23-1295

� Installation Guide 61D I/O drawer 61R Second I/O Rack, SA23-1281

� IBM Eserver pSeries 615 Model 6C3 and 6E3 Installation Guide,
SA38-0628

� IBM Eserver pSeries 615 Model 6C3 and 6E3 Service Guide, SA38-0629

� IBM Eserver pSeries 615 Model 6C3 and 6E3 User’s Guide, SA38-0630

� IBM Eserver pSeries 630 Model 6C4 and 6E4 Installation Guide,
SA38-0605

� IBM Eserver pSeries 630 Model 6C4 and 6E4 Service Guide, SA38-0604

� IBM Eserver pSeries 630 Model 6C4 and 6E4 User’s Guide, SA38-0606

� IBM Eserver pSeries 650 Model 6M2 Installation Guide, SA38-0610

� IBM Eserver pSeries 650 Model 6M2 Service Guide, SA38-0612

� IBM Eserver pSeries 650 Model 6M2 User’s Guide, SA38-0611

� IBM Eserver pSeries 655 Installation Guide, SA38-0616

� IBM Eserver pSeries 655 Service Guide, SA38-0618

� IBM Eserver pSeries 655 User’s Guide, SA38-0617

� IBM Eserver pSeries 670 Installation Guide, SA38-0613

� IBM Eserver pSeries 670 Service Guide, SA38-0615

� IBM Eserver pSeries 670 User’s Guide, SA38-0614

� IBM Eserver pSeries 690 Installation Guide, SA38-0587

� IBM Eserver pSeries 690 Service Guide, SA38-0589

� IBM Eserver pSeries 690 User’s Guide, SA38-0588

� IBM Eserver pSeries 7311 Model D10 and Model D20 Service Guide,
SA38-0627

� IBM Hardware Management Console for pSeries Maintenance Guide,
SA38-0603

� IBM Hardware Management Console for pSeries Installation and Operations
Guide, SA38-0590
512 The Complete Partitioning Guide for IBM Eserver pSeries Servers

� PCI Adapter Placement References, SA38-0538

AIX official publications
The following publications are contained in the AIX 5L for POWER V 5.2
Documentation CD, 5765-E62, that is shipped as a part of the AIX 5L Version 5.2
CD-ROM media set. These publications are also available at the following URL
(click “AIX 5.2”):

http://techsupport.services.ibm.com/server/library

� AIX Installation in a Partitioned Environment, SC23-4382

� AIX 5L Version 5.2 Asynchronous Communications Guide

� AIX 5L Version 5.2 Installation Guide and Reference

� AIX 5L Version 5.2 Reference Documentation: Commands Reference

� AIX 5L Version 5.2 Security Guide

� AIX 5L Version 5.2 System Management Guide: AIX 5L Version 5.2
Web-based System Manager Administration Guide

� AIX 5L Version 5.2 System Management Guide: Communications and
Networks

� AIX 5L Version 5.2 System Management Guide: Operating System and
Devices

� AIX 5L Version 5.2 Understanding the Diagnostic Subsystem for AIX

� IBM Reliable Scalable Cluster Technology for AIX 5L, Messages, SA22-7891

� IBM Reliable Scalable Cluster Technology for AIX 5L, RSCT Guide and
Reference, SA22-7889

� IBM Reliable Scalable Cluster Technology for AIX 5L, Technical Reference,
SA22-7890

� IBM Reliable Scalable Cluster Technology for AIX 5L and Linux, Group
Services Programming Guide and Reference, SA22-7888

CSM for AIX official publications
The following publications are contained in the Cluster Systems Management for
AIX 5L product (Program Number: 5765-F67). These publications are also
available at the following URL:

http://www.ibm.com/servers/eserver/pseries/library/clusters/aix.html
 Related publications 513

http://techsupport.services.ibm.com/server/library
http://www.ibm.com/servers/eserver/pseries/library/clusters/aix.html

� IBM Cluster Systems Management for AIX 5L, Administration Guide,
SA22-7918

� IBM Cluster Systems Management for AIX 5L, Hardware Control Guide,
SA22-7920

� IBM Cluster Systems Management for AIX 5L, Planning and Installation
Guide, SA22-7919

CSM for Linux official publications
The following publications are contained in the Cluster Systems Management for
Linux product (Program Number: 5765-E88). These publications are also
available at the following URL:

http://www.ibm.com/servers/eserver/clusters/library/linux.html

� IBM Cluster Systems Management for Linux, Administration Guide,
SA22-7873

� IBM Cluster Systems Management for Linux, Hardware Control Guide,
SA22-7856

� IBM Cluster Systems Management for Linux, Planning and Installation Guide,
SA22-7853

� IBM Reliable Scalable Cluster Technology for Linux, Mesages, SA22-7894

� IBM Reliable Scalable Cluster Technology for Linux, RSCT Guide and
Reference, SA22-7892

� IBM Reliable Scalable Cluster Technology for Linux, Technical Reference,
SA22-7893

� IBM Reliable Scalable Cluster Technology for AIX 5L and Linux, Group
Services Programming Guide and Reference, SA22-7888

Other publications
These publications are also relevant as further information sources:

� The PowerPC Architecture, IBM, Morgan Kaufmann Publishers, Inc., ISBN
1-55860-316-6 PB

Online resources
These Web sites and URLs are also relevant as further information sources:
514 The Complete Partitioning Guide for IBM Eserver pSeries Servers

http://www.ibm.com/servers/eserver/clusters/library/linux.html

� AIX toolkit for Linux applications

http://www.ibm.com/servers/aix/products/aixos/linux/download.html

� IBM Eserver pSeries Information Center

http://publib16.boulder.ibm.com/pseries/en_US/infocenter/base/index.htm

� IBM Eserver pSeries & RS/6000 Microcode Updates

http://techsupport.services.ibm.com/server/mdownload

� IBM Eserver pSeries Support Hardware Management Console

https://techsupport.services.ibm.com/server/hmc?fetch=home.html

� Electronic Service Agent for pSeries and RS/6000 User’s Guide

ftp://service.software.ibm.com/aix/service_agent_code/AIX/svcUG.pdf

� Electronic Service Agent for pSeries HMC User’s Guide

ftp://service.software.ibm.com/aix/service_agent_code/HMC/HMCSAUG.pdf

� Microcode Discovery Service

http://techsupport.services.ibm.com/server/aix.invscoutMDS

� OpenSSH Web site

http://www.openssh.com

� VPD Capture Service

http://techsupport.services.ibm.com/server/aix.invscoutVPD

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips,
draft publications and Additional materials, as well as order hardcopy Redbooks
or CD-ROMs, at this Web site:

ibm.com/redbooks
 Related publications 515

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.ibm.com/servers/aix/products/aixos/linux/download.html
http://publib16.boulder.ibm.com/pseries/en_US/infocenter/base/index.htm
http://techsupport.services.ibm.com/server/mdownload
https://techsupport.services.ibm.com/server/hmc?fetch=home.html
ftp://service.software.ibm.com/aix/service_agent_code/AIX/svcUG.pdf
ftp://service.software.ibm.com/aix/service_agent_code/HMC/HMCSAUG.pdf
http://techsupport.services.ibm.com/server/aix.invscoutMDS
http://www.openssh.com
http://techsupport.services.ibm.com/server/aix.invscoutVPD

516 The Complete Partitioning Guide for IBM Eserver pSeries Servers

Index

Symbols
/.rhosts 249
/alt_inst/* file systems 242
/etc/inittab 237
/etc/niminfo 249
/etc/resolv.conf 235
/etc/syslog.conf 118
/tftpboot 248
/tmp 71
/usr/include/sys/dr.h 104
/usr/lib/boot/bin 59
/usr/lib/dr/scripts/all 93
/usr/samples/dr/scripts 408
/usr/sbin 59
/usr/sbin/rsct/install/bin/recfgct 236
/var/adm/ras/alt_disk_inst.log 240
/var/adm/ras/alt_mig/_alt_mig.log 254
/var/adm/ras/nim.setup 221
/var/adm/ras/partition_ready.log 206
/var/adm/syslog.log 119
_system_configuration.max_ncpus 107
_system_configuration.ncpus 107

Numerics
16/48X DVD-ROM auto-docking module 44
2-drop connector cable 44
32-bit AIX kernel 24
32-bit SMP kernel 26
4 mm 20/40 GB auto-docking module 44
4 mm 20/40 GB tape drive 44
4.7 GB R/W DVD-RAM auto-docking module 44
40X CD-ROM auto-docking module 44
4-processor ALPAR configuration 185
520lpp_res 247
520spot_res.chrp.mp.ent 248
64-bit kernel 26
8 mm 60/150 GB auto-docking module 44
8 mm 60/150 GB tape drive 44
8 mm 80/160 GB auto-docking module 44
8 mm 80/160 GB tape drive 44
8-processor ALPAR configuration 185
© Copyright IBM Corp. 2003. All rights reserved.
A
Activate a system profile 182
Activate partitions 192
Activating a specific partition profile 193
Adapter

10/100 4-Port Ethernet 55
10/100 Mbps Ethernet 231
128-Port Async Controller 9
8-Port Async adapter 9

adapter number 404
address 404
ADM_ACCEPT_LICENSES 250
Admin Override Timeout 79
Affinity logical partitions 29, 183
AIX 5L Version 5.1 24
AIX 5L Version 5.2 29
AIX 5L Version 5.2 Web-based System Manager
130
AIX error log facility 121, 467
AIX installation using alternate disk install 231
AIX location code 395, 404
AIX system trace facility 119
alt_ prefix 234
alt_disk_install 231, 234
ALT_PARTIAL_CLEANUP 246
alternate disk install 231
alternate disk migration 242
altinst_rootvg 231
APAR

IY22854 24–25, 205
IY35312 236
IY35456 238

API-based DLPAR event handling 66, 103
Application folder

HMC Maintenance 138
HMC Management 138
Server and Partition 138
Service Applications 139
Software Maintenance 138
System Manager Security 138

AS/400 4
asynchronous devices 405
Attachment Cable, HMC to host, 15 meters 9
Attachment Cable, HMC to host, 6 meters 9
 517

auto detect 231
Auto Start Partitions 159
autonomic computing 53
awk 25

B
b2lcpu 108
bind CPU ID 106
bindproc 105
bindprocessor 70, 105, 107
bindpset 105
boot

devices 45
image 39, 248
loader 39
mode policies 174
strapping 39

bootable external disk subsystem 45
booting partitions over the network 224
building block 4
built-in SCSI controllers 173
bus location code 405
bus memory 15
bus type 404
busy loop 108

C
Capacity Upgrade on Demand 30
CD/DVD devices 7, 201
cell 4
cfgmgr 63, 237, 293
Change

default partition profile 192
default partition profiles 178
script install path 96

channel ID string 119
character string messages 117
chclass 70
chhwres 73, 237, 241, 284
chroot 246
chsysstate 283
cloning 231
command

date 23
kill 70
trace 119
uniq 25
whence 59

Comparison between AIX installation methods 203
compiler directive line 104
composer 310
configuration method 28
Connect to the managed systems 143
connector 404
Console device 50
Contents area 133
context menu 137
control unit address 405
control workstation 45
conventional pSeries SMP server 12
copy a partition profile 178
copy a system profile 182
CPU Guard 30, 103
CPU resource 54
cpu script 76, 81
CPUA 118
CPUR 118
create a partition-ready AIX mksysb image 204
create additional partition profiles 177
create affinity logical partitions 183
create logical partitions and partition profiles 166
create system profiles 179
cron daemon 308
Ctrl+Alt+Backspace 137
CUoD 30
current working directory 71
curses-driven applications 148

D
Database applications 65
default channel ID, DRMGR 119
default partition profile 32
delete a system profile 182
delete all affinity logical partitions 190
delete partition profiles 179
Denial of Service across shared resources 13
detaching pinned shared memory segments 68
Detail level 73
devfunc number 404
device 404
df 278
direct memory access 15, 19
disconnect from the managed systems 143
diskette drive 48, 405
DLPAR 12, 53

overview 54
518 The Complete Partitioning Guide for IBM Eserver pSeries Servers

safeness 68
DLPAR event

check phase 61, 118
doit phase 61
post phase 62, 118
pre phase 61, 118
specific information 104

DLPAR operation 56
adding resources to a partition 256
Error handling 115
failed message 116
failure detailed information 117
moving resources between partitions 263
removing resources from a partition 269

DLPAR script 70
database 70
How to manage 93
naming convention 75

DLPAR script input
additional command line arguments 72
environment variables with specified format 72

DLPAR script output
Exit values 72
standard out with specified format 72

DLPAR-aware 64
kernel extensions 115

DLPAR-safe 64
DLPAR-safe and DLPAR-aware applications 64
DMA 15, 19
domains 4
DPAR script

subcommands 76
DR_ prefix 72
DR_BCPUID 74
DR_DATE 78
DR_DETAIL_LEVEL 73
DR_DMA_MEM_MAPPER_FAIL 122
DR_DMA_MEM_MIGRATE_FAIL 122
DR_ERROR 75
DR_EVENT_FAIL 104
DR_FORCE 73
DR_FREE_FRAMES 74
dr_ibm_wlm.pl 75
dr_info

add member 109
cpu member 109
mem member 109
rem member 109

dr_info_t 104

DR_LCPUID 74
DR_LOG_DEBUG 75
DR_LOG_EMERG 75
DR_LOG_ERR 75
DR_LOG_INFO 75
DR_LOG_WARNING 75
DR_MEM_SIZE_COMPLETED 74
DR_MEM_SIZE_REQUEST 74
DR_MEM_UNSAFE_USE 122
DR_PINNABLE_FRAMES 74
DR_QUERY 104
dr_reconfig 103–104, 109
DR_RECONFIG_HANDLER_MSG 122
DR_RESOURCE 81
DR_SCRIPT_MSG 122
DR_SCRIPTINFO 78
dr_sysadmin_wlm.pl 75
DR_TIMEOUT 79
DR_TOTAL_FRAMES 74
DR_USAGE 82
DR_VENDOR 78
DR_VERSION 78
drmgr 59, 66, 70, 80, 93
drmgr command line options 96
DVD-RAM drive 44
Dynamic logical partitioning 12, 30, 48, 53, 256
dynamic processor deallocation 30, 67
dynamic reconfiguration connectors 60

E
EEH 20, 50
emergency processing 73
enhanced error handling 20, 50
entstat 231
environment values

CPU specific 72
General 72
Memory specific 72

error analysis facilities 117
error handling 20
Ethernet 45
Event phase summary 69
execution process 71
exportvg 235, 298
EZ NIM 222

F
fanout box 405
 Index 519

FC
2623 44
2628 44
2629 44
2633 44
2634 207
2635 44
2737 50
2848 50
2943 9, 50
2944 9, 50
4253 207
4260 44
4961 55
4962 392
6120 44
6131 44
6134 44
6158 44
6169 44
6185 44
6203 44, 392
6634 44
7316 8
8120 9
8121 9

Fibre Channel 45
fileset

bos.adt.samples 408
bos.alt_disk_install.boot_images 234
bos.alt_disk_install.rte 234, 247
bos.mp 26
bos.mp64 26
bos.msg.en_US.alt_disk_install.rte 234
bos.rte.methods 59
devices.chrp.base.rte 58–59, 205
devices.chrp.base.ServiceRM 205
devices.chrp_lpar.base.ras 25, 205
devices.chrp_lpar.base.rte 25, 28, 205

firmware 20
level 22
update 51

Fixed RMO region size allocation 41
free frames 74
FRU 404
Full System Partition 12, 158

G
GID 71
Global Open Firmware 21
granularity 5
graphics console 50
group of ISA devices 156
Group_128 173

H
HACMP 313
Hard reset 199
hardware password 22
High availability 50
High Availability Cluster Multi-Processing (HACMP)
313
HMC 8, 255
HMC application

Server Management 139, 143
object hierarchy 139
Partitions 140
System Profiles 140

HMC graphical user interface
Contents area 133
login and logout 130
Menu bar 133
Navigation area 132
Status bar 136
Tool bar 134

HMC menu
Console 133
Help 134
Object 133
Selected 133
View 133
Window 134

HPC 29
hscroot 130

default password 130
http_server.base 331
http_server.ssl 331
httpd.conf 332
hypervisor 18, 21, 35
hypervisor call 18

I
I/O devices assignment consideration 43
I/O ports 15
I/O resource 55
520 The Complete Partitioning Guide for IBM Eserver pSeries Servers

I/O Slot property 156
IBM eServer

iSeries 4
partitioning-capable pSeries servers 3
pSeries 630 Model 6C4 6
pSeries 630 Model 6E4 6
pSeries 650 Model 6M2 6
pSeries 655 Model 651 6
pSeries 670 Model 671 6
pSeries 690 Model 681 6
zSeries 4

IBM Hardware Management Console for pSeries 8,
255
IBM HTTP Server 330
IBM Tivoli Workload Scheduler 309
IBM.DRMd daemon process 58
IBM_XYZ_fail_dr_2.sh 408
IDE DVD-ROM drive 207
IDE media to LVD SCSI interface bridge card 207
ifconfig 293
IHS 330
Initial Program Load 225
install media devices 44
install_assist 237
installing AIX

in the Full System Partition 204
on partitioning-capable pSeries servers 202
using NIM 218
using removable media devices 207

installp 205
instfix 205
integrating the DLPAR operation into the application
66
interaction of AIX and firmware in a partition 25
Internal activity in a DLPAR event 60

CPUs and memory 61
I/O slots 63

internal DVD-ROM 44
internal IDE CD-ROM 44
Interrupt controller 19
Inventory Scout 48
ipcs 70
ISO 9660 format 204

J
job 309
job stream 310

K
KDB 123
kernel debugger 123
kernel extensions 62
kernel service

switch_cpu 107
keyboard and mouse ports 48

L
l2bcpu 108
large page support 29
LED codes 10, 117
Licence Managers 65
Linux 5
list registered DLPAR scripts 94
LMB 16, 62
log out from the HMC 130
LOG_DEBUG 75
LOG_EMERG 75
LOG_ERR 75
LOG_INFO 75
LOG_WARNING 75
logical CPU ID 106
logical memory 15
Logical Memory Block 16
logical partition 4
logical partitioned environment 11
logical partitioning 4
logical unit address 405
logical unit number 50
logout 130
LPAR 4
lsattr 24
lscfg 22
lsclass 70
lsdev 234, 293, 395
lshwres 281
lslpp 59
lsnim 221
lspv 233
lsrset 70, 107, 342
lsslot 63
lssrc 59
lssyscfg 280
LUN 50

M
M/T-MDL
 Index 521

7028-6C4 6
7028-6E4 6
7038-6M2 6
7039-651 6
7040-61D 47, 173
7040-671 6
7040-681 6
7311-D10 46
7311-D20 46
7315-C01 8

machine property 153
mainframe 4
man 96
managed system 11, 132
managed system state

CUOD CTA 160
Error 160
Incomplete 160
Initializing 160
No Connection 160
No Power 160
Ready 160
Recovery 160
Version Mismatch 160

Management Environment 132
Managing resources in affinity logical partitions 189
maximum amount of memory 171
maximum number of processors in partition 169
maximum number of processors, memory size, and
partitions 6
mem 76, 81
MEMA 118
memory

cards 15
property 157
resource 54

MEMR 118
Menu bar 133
migrating AIX using alternate disk migration 242
mkrset 344
mksysb 204, 218
mksysb image install 231
mktcpip 238
MP-unsafe application 88
MSR.DR 19
MSR.IR 19
my_lcpu 108
mycpu 108

N
name-value pair 72
native ISA devices 48
native serial ports 48
navigation area 132
netstat 293
network devices 47
Network Installation Manager 218
Network Installation Manager Alternate Disk Migra-
tion 243
NFS 218

performance 244
NIM 218

Configuring a NIM master quickly 219
Configuring NIM resources 218
Easy NIM Tool 222
environment 218
NIM client 218
NIM master 218

requirements 218
overview 218

NIM resource
bosinst_data 219
lpp_source 219
mksysb 219
nim_script 218
resolv_conf 219
script 246
SPOT 219

nim_master_setup 219, 247
nimadm 243

Cleanup operation 246
Limitations 244
Migration operation 245
Requirements 243
Sleep operation 247
Wakeup operation 246

nPartitions 4
number of online CPUs 107
number of potential CPUs 107
NVRAM 22

O
ODM 39, 61
ODM class

CuDv 26
PdDv 27

ODM lock 61
522 The Complete Partitioning Guide for IBM Eserver pSeries Servers

odmget 26
Open Firmware 21
Open Firmware device tree 60
operating system 13
Operating System Reset 196, 198
Operation states of a managed system 160
Operator panel 161
optional name-value pair 79
oslevel 254

P
Padlock icon 136
page frame table 14
pages 13
paging spaces 14
PAP 22
Parallel 45
Parallel System Support Program 45
partition

ID 238
name 167
operating states 194
page tables 36
profile 31, 57
profile name 168
virtual terminal windows 149

partition and system profile tasks 166
Partition and system profiles 31
Partition Open Firmware 21
partition resource 31

I/O slots 34
memory 34
processors 33

Partition Standby 159
Partition state

Error 194
Not available 195
Open Firmware 195
Ready 194
Running 194
Starting 194

partition_ready 206
partitioned environment

Fast reboot 28
Paging performance 28
Reserved memory regions 35

partitioning support on pSeries servers 5
partitioning-capable pSeries server 5

PATH environment variable 71
PCI adapter Hot Plug capability 63
PCI host bridge 15, 19, 50
PCI parent bus 404
Per processor description area 106
per-partition NVRAM 23
Per-partition Time-Of-Day clock values 23
PFT 14
PHB 15, 19, 50
physical address space 15
physical CPU ID 106
physical location 404
physical location code 395
physical memory 14
Physical Memory Block 16
physical partition 4
physical processor ID 154
physloc 396
Ping Test 229
pinnable frames 74
pinned shared memory segment 106
pipe 71
platform-dependent commands 59
platform-independent command 59
plock 106
plock()’d memory 106
Plug-in loading status 137
PMB 16
Policy property 155
polling 65
pop-up menu 137
port 404
post phase 69
Post-10/2002 firmware 42
post-migration script 246
Power button 162
Power off the managed system 161
Power On Diagnostic Default Boot List 159
Power On Diagnostic Stored Boot List 158
Power On Normal 158
Power On Open Firmware OK Prompt 159
Power On SMS 158
power on the managed system 157
Power on using a system profile 182
POWER4 5, 18
PowerPC interrupt vector 38
ppda 106
pre phase 68
Pre-10/2002 firmware 42
 Index 523

premigration script 246
preprocessor 104
prerequisite filesets 254
process address space 13
process flow of a DLPAR operation 56
processor property 154
processor set attachment 105
programming implications of CPU DLPAR events
106
protection against inter-partition data access 12
prototype definition 104
ps 70
pSeries 630 Model 6C4 6, 44–45, 49
pSeries 630 Model 6E4 6, 44, 46
pSeries 650 Model 6M2 6, 44, 46, 49
pSeries 655 Model 651 6, 45–46, 49
pSeries 670 6, 45, 47, 49, 173
pSeries 670 and pSeries 690 dependent information
396
pSeries 690 6, 45, 47, 49, 173
pshm 106
PSSP 45

Q
QBB 4
Quad Building Block 4

R
R_ALL_RESOURCES 351
R_MAXMEMPS 349
R_MAXPROCS 349
R_MAXSDL 349
R_MCMSDL 349
R_MEMPS 351
R_MEMSIZE 349
R_NUMMEMPS 349
R_NUMPROCS 349
R_PROCS 351
R_SMPSDL 349
ra_attachrset 347
ra_getrset 348
RAM file system 39
RAN breakout box 10
RDBMS 29
Read Boot Error Value 195
real memory 15
real mode code execution 15
real mode limit register 19

real mode offset register 19
Reboot Console 130
rebuild the managed system in the HMC 160
Recommended Maintenance Level

5100-01 24–25, 205
5100-02 29, 219, 247
5100-03 205

reconfig_complete 115
reconfig_register 115
reconfig_unregister 115
Redbooks Web site 515

Contact us xx
register a DLPAR script 94
Reload the HMC graphical user interface 134
removing plocks 68
Reset button 163
Reset the current HMC graphical user interface ses-
sion 137
reset the operating system in a partition 198
resource

addition 54
movement 54
removal 54

resource manager
IBM.DRM 58, 70

Resource Monitoring and Controlling 58
resource set 106, 341
resource value

Desired 35, 55
Maximum 35
Minimum 35
Required 35, 55

rexec 278
RMC 58, 70
rmdev 63, 235, 241, 298
RML 19
RMO 19
RMO region 38
rmset 346
root authority 104
RS/6000 63
RS_ADDRESOURCE 351
rs_alloc 348
RS_COPY 350
RS_DEFINE 352
RS_DELRESOURCE 351
rs_discardname 348
RS_EXCLUSION 350
RS_FIRST 351
524 The Complete Partitioning Guide for IBM Eserver pSeries Servers

rs_free 349
rs_getinfo 349
rs_getnamedrset 350
RS_INTERSECTION 350
RS_ISCONTAINED 351
RS_ISEMPTY 351
RS_ISEQUAL 351
RS_NEXT 351
RS_NEXT_WRAP 351
rs_op 350
RS_REDEFINE 352
rs_registername 351
RS_TESTRESOURCE 351
RS-422 cable 10
rset 106
rset API 346
rset commands 342
RTAS 23
Run-Time Abstraction Services 23

S
S/370 4
sample code using dr_reconfig 108
Scaled RMO region size allocation 40
Script Timeout 79
script-based DLPAR event handling 66, 70
SCSI 45
secure and reliable connection channel 58
Secure Sockets Layer 136
security context 137
segments 13
Server and Partition 139
Server Management menu

Affinity logical partitions 145
Close Terminal Connection 146
Create 145
Delete 145
Open Terminal Window 146
Power On/Off 145
Profile Data 146
Properties 144
Rebuild managed system 146
Release Console Lock 145

Service Agent 48
service authority 51, 174
Service Focal Point 48
service guide 396
service processor 10, 20

service processor menu 51
Service Processor Surveillance Policy 155
Setup Remote IPL 225
shutdown 236
Shutdown Console 130
sigaction 103, 108
signal

SIGABRT 79
SIGCPUFAIL 103
SIGKILL 79

signal handler 103
dr_func() 108
registration 108

SIGRECONFIG 103, 108
Small Real Mode Address Region 40, 170
smit 120
smitty 148
smitty eznim 249
smitty mksysb 206
SMS 22

Adapter Parameters 228
Adapter Parameters with Ping test 229
Configure Boot Device 211
Exit Confirmation 217
IP Parameters 227
main menu 209
Network Parameters 226
Ping Test 230
Select boot options 210
Select Device 215
Select Device (Network) 225
Select Device Type 212
Select Media Adapter 214
Select Media Type 213
Select Task 216

SMS menu 208
Soft reset 199
SSA 45
ssaxlate 298
ssh 237, 241, 278
ssh-agent 279
SSL 136
standard in 71
standard out 71
startsrc 119
state of NIM resources 221
Status bar 136
stopsrc 119
subcommand
 Index 525

checkacquire 88
checkaquire 77
checkrelease 76, 83
postacquire 77, 91
postrelease 76, 86
preacquire 77, 89
prerelease 76, 84
register 76, 80
scriptinfo 76–77
undopreacquire 77, 92
undoprerelease 77, 87
usage 76, 82

Supervisor 19
supported partitioning-capable pSeries servers 6
svmon 288
sys_pinnable_frames 106
sysconf(_SC_NPROCESSORS_CONF) 107
sysconf(_SC_NPROCESSORS_ONLN) 107
sysconfig 107
syslog facility 75, 118
syslog keyword

rotate 119
syslog priority

debug 75
emerg 75
err 75
info 75
warning 75

syslogd subsystem 119
system board 4
system policy parameters 51
System profile 32, 158
systems management services 22

T
TCB 244
TCE 19
TERM=vt320 148
Test environment

Hardware configuration 390
Media drawer SCSI connection 390
Name resolution 391
Network configuration 391
Partition configuration 392

three assignable resource types 33
three kinds of values for resource assignment 35
three phases in a DLPAR event 67
Time-of-day 23

timeout value 79
TLB 14
TOD 23
Token ring 45
Tool bar 134
Total number of frames 74
trace hook ID

38F 120
translate-off 15
translation control entry 19
translation look-aside buffer 14
translation-off mode 19
trcrpt 120
trcstop 119

U
UDF 204
UID 71
uname 238
unbinding processors 68
understand partition boot errors 179
unexpected partition crash 12
uninstall a registered DLPAR script 95
uniprocessor 64
Universal Disk Format 204
using AIX system trace facility 454
using syslog facility 450

V
var.v_ncpus 107
var.v_ncpus_cfg 107
View

Details 135
Tree 135
Tree-Details 135

view and modify partition profile properties 177
view and modify system profile properties 181
viewing properties of the managed system 152
virtual memory 13
virtual memory manager 14
virtual operator panel 117
virtual serial adapter 26
virtual terminal

accessing to the service processor 149
close 149
on the HMC 147
on the remote Web-based System Manager cli-
ent 148
526 The Complete Partitioning Guide for IBM Eserver pSeries Servers

open 149
to partitions 149
to the Full System Partition 149

virtual terminal device support 26
VMM 14

W
wake up a volume group 235
Web-based System Manager 47
Workload Manager 65

X
X server 137
xterm 149
 Index 527

528 The Complete Partitioning Guide for IBM Eserver pSeries Servers

(1.0” spine)
0.875”<->

1.498”
460 <->

 788 pages

The Com
plete Partitioning Guide for

IBM

E

s
e
r
v
e
r pSeries Servers

®

SG24-7039-01 ISBN 0738499447

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

The Complete Partitioning
Guide for IBM Eserver

pSeries Servers

Detailed information
about logical
partitioning and
implementation

How to configure
partitions and
manage DLPAR
operations

Comprehensive AIX
installation and
migration tasks

This IBM Redbook provides a broad understanding of the
logical partitioning on the IBM Eserver
partitioning-capable pSeries servers. This is the most
outstanding feature of these servers, because it enables the
servers to run multiple operating system instances
concurrently on a single system. We focus on the following
topics:

� Logical partitioning overview

� Partitioning implementation on pSeries servers

� Dynamic logical partitioning

� Creating and managing partitions

� Installing and migrating AIX in a partitioned environment

This redbook is a single-source handbook for IBM and IBM
Business Partner technical specialists who support the
partitioning-capable pSeries servers, and for application
developers who need to develop or modify DLPAR-aware
applications.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Figures
	Tables
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Summary of changes
	October 2003, Second Edition
	January 2003, First Edition

	Part 1 Implementations
	Chapter 1. Logical partitioning overview
	1.1 Several partitioning implementations
	1.2 Partitioning support on pSeries servers
	1.2.1 Supported models
	1.2.2 IBM Hardware Management Console for pSeries (HMC)

	1.3 Terminology used in partitioning
	1.3.1 Logical partitioned environment
	1.3.2 Partition isolation and security

	1.4 Four terms regarding memory

	Chapter 2. Partitioning implementation on pSeries servers
	2.1 Partitioning implementation
	2.1.1 Hardware
	2.1.2 Firmware
	2.1.3 Operating system: AIX 5L Version 5.1
	2.1.4 Operating system: AIX 5L Version 5.2

	2.2 Partition resources
	2.2.1 Partition and system profiles
	2.2.2 Three assignable resource types
	2.2.3 Three kinds of values for resource assignment
	2.2.4 Reserved memory regions in a partitioned environment
	2.2.5 Physical memory allocation to partitions

	2.3 I/O device assignment considerations
	2.3.1 Media devices
	2.3.2 Boot devices
	2.3.3 Network devices
	2.3.4 Native Industry Standard Architecture (ISA) devices
	2.3.5 Console devices
	2.3.6 High availability

	2.4 Service authority

	Chapter 3. Dynamic logical partitioning
	3.1 Dynamic logical partitioning overview
	3.2 The process flow of a DLPAR operation
	3.3 Internal activity in a DLPAR event
	3.3.1 Internal activity for CPUs and memory in a DLPAR event
	3.3.2 Internal activity for I/O slots in a DLPAR event

	3.4 DLPAR-safe and DLPAR-aware applications
	3.4.1 DLPAR-safe
	3.4.2 DLPAR-aware

	3.5 Integrating a DLPAR operation into the application
	3.5.1 Three phases in a DLPAR event
	3.5.2 Event phase summary

	3.6 Script-based DLPAR event handling
	3.6.1 Script execution environment
	3.6.2 DLPAR script naming convention

	3.7 DLPAR script subcommands
	3.7.1 The scriptinfo subcommand
	3.7.2 The register subcommand
	3.7.3 The usage subcommand
	3.7.4 The checkrelease subcommand
	3.7.5 The prerelease subcommand
	3.7.6 The postrelease subcommand
	3.7.7 The undoprerelease subcommand
	3.7.8 The checkacquire subcommand
	3.7.9 The preacquire subcommand
	3.7.10 The postacquire subcommand
	3.7.11 The undopreacquire subcommand

	3.8 How to manage DLPAR scripts
	3.8.1 List registered DLPAR scripts
	3.8.2 Register a DLPAR script
	3.8.3 Uninstall a registered DLPAR script
	3.8.4 Change the script install path
	3.8.5 The drmgr command line options
	3.8.6 Sample output examples from a DLPAR script

	3.9 API-based DLPAR event handling
	3.9.1 The dr_reconfig system call
	3.9.2 A sample code using the dr_reconfig system call
	3.9.3 Sample output examples from a DLPAR-aware application
	3.9.4 DLPAR-aware kernel extensions

	3.10 Error handling of DLPAR operations
	3.10.1 Possible causes of DLPAR operation failures
	3.10.2 Error analysis facilities
	3.10.3 AIX error log messages when DLPAR operations fail

	Part 2 Systems Management
	Chapter 4. HMC graphical user interface
	4.1 Login and logout
	4.2 HMC graphical user interface at a glance
	4.2.1 Navigation area
	4.2.2 Contents area
	4.2.3 Menu bar
	4.2.4 Tool bar
	4.2.5 Status bar

	4.3 HMC application overview
	4.4 Server and Partition
	4.4.1 Connect and disconnect managed systems
	4.4.2 Server Management
	4.4.3 Server Management menus

	4.5 Virtual terminal window
	4.5.1 Virtual terminal window concept
	4.5.2 Virtual terminal window in the Full System Partition
	4.5.3 Partition virtual terminal windows

	4.6 Open xterm to access remote system using telnet

	Chapter 5. Basic managed system operation tasks
	5.1 Viewing properties of the managed system
	5.1.1 Machine property
	5.1.2 Processor property
	5.1.3 Policy property
	5.1.4 I/O Slot property
	5.1.5 Memory property

	5.2 Power on the managed system
	5.2.1 Operation states of a managed system
	5.2.2 Rebuild the managed system in the HMC

	5.3 Power off the managed system
	5.4 Operating the managed system with the HMC
	5.4.1 Operator panel
	5.4.2 Power button
	5.4.3 Reset button

	Chapter 6. Creating and managing partitions
	6.1 Partition and system profile tasks
	6.1.1 Create logical partitions and partition profiles
	6.1.2 Create additional partition profiles
	6.1.3 View and modify partition profile properties
	6.1.4 Copy a partition profile
	6.1.5 Change default partition profiles
	6.1.6 Understand partition boot errors
	6.1.7 Delete partition profiles
	6.1.8 Create system profiles
	6.1.9 View and modify system profile properties
	6.1.10 Copy a system profile
	6.1.11 Delete a system profile
	6.1.12 Activate a system profile
	6.1.13 Power on using a system profile

	6.2 Affinity logical partitions
	6.2.1 Create affinity logical partitions
	6.2.2 Manage resources in affinity logical partitions
	6.2.3 Delete all affinity logical partitions

	6.3 Activate partitions
	6.3.1 Change the default partition profile
	6.3.2 Activate a specific partition profile
	6.3.3 Activate partitions without selecting a specific partition profile
	6.3.4 Reactivating a partition with a different partition profile
	6.3.5 Partition operating states

	6.4 Shut down the operating system in a partition
	6.5 Reset the operating system in a partition

	Chapter 7. Installing and migrating AIX in a partitioned environment
	7.1 Installing AIX on partioning-capable pSeries servers
	7.1.1 Install AIX in the Full System Partition
	7.1.2 Create a partition-ready AIX mksysb image

	7.2 Installing AIX using removable media devices
	7.2.1 Boot AIX from removable media devices

	7.3 Installing AIX using Network Installation Manager (NIM)
	7.3.1 NIM overview
	7.3.2 Configure NIM resources
	7.3.3 Boot partitions over the network

	7.4 Installing AIX using alternate disk install
	7.4.1 Alternate disk install overview
	7.4.2 Install AIX 5L Version 5.1 using alternate disk install
	7.4.3 Install AIX 5L Version 5.2 using alternate disk install

	7.5 Migrating AIX using alternate disk migration
	7.5.1 Alternate disk migration overview
	7.5.2 Requirements
	7.5.3 Limitations
	7.5.4 Operation examples
	7.5.5 Use alternate disk migration to migrate AIX

	Chapter 8. DLPAR operation using graphical user interface
	8.1 Dynamic logical partitioning
	8.1.1 Dynamically adding resources to a partition
	8.1.2 Dynamically moving resources between partitions
	8.1.3 Dynamically removing resources from a partition

	Chapter 9. DLPAR operation using a command line interface
	9.1 Secure remote connection to the HMC
	9.1.1 Connection to the HMC for command line operations
	9.1.2 Connection to the HMC for automated operations

	9.2 Command line interface
	9.2.1 Get system information using lssyscfg
	9.2.2 Get hardware resource information using lshwres
	9.2.3 Change system state using chsysstate
	9.2.4 Change hardware resources using chhwres

	9.3 Dynamic logical partitioning operations using chhwres
	9.3.1 DLPAR operation to add a processor
	9.3.2 DLPAR operation to remove a processor
	9.3.3 DLPAR operation to add memory
	9.3.4 DLPAR operation to remove memory
	9.3.5 DLPAR operation to add an I/O slot
	9.3.6 DLPAR operation to remove an I/O slot
	9.3.7 DLPAR operation to move a CD/DVD device

	9.4 Dynamic logical partitioning resources reassignment scheduling
	9.4.1 Partition configuration
	9.4.2 Script example to move the resources
	9.4.3 Reassignment tests using the script
	9.4.4 Scheduling example to move the resources using cron
	9.4.5 Scheduling example to move resources using IBM Tivoli Workload Scheduler

	9.5 Dynamic logical partitioning integration with HACMP
	9.5.1 Resource assignment
	9.5.2 Integration with HACMP
	9.5.3 Application server scripts

	Part 3 Advanced programming examples
	Chapter 10. Dynamic reconfiguration using DLPAR scripts
	10.1 Type of applications that benefit from DLPAR
	10.2 A sample script to reconfigure the IBM HTTP Server
	10.2.1 Installation of the IBM HTTP Server
	10.2.2 Configuration of the httpd processes
	10.2.3 Scripts to reconfigure the IHS
	10.2.4 Add one CPU and reconfigure the IHS
	10.2.5 Remove one CPU and reconfigure the IHS

	Chapter 11. Resource sets
	11.1 rset commands
	11.1.1 lsrset
	11.1.2 mkrset
	11.1.3 rmrset

	11.2 The rset API
	11.2.1 The rset subroutines
	11.2.2 Working with the rset API
	11.2.3 A DLPAR-aware application that is using the rset API

	Chapter 12. Autonomic applications
	12.1 Design considerations
	12.2 Possible autonomic applications
	12.3 A sample autonomic application
	12.3.1 Tasks
	12.3.2 Task scheduler
	12.3.3 Pseudo program algorithm

	Part 4 Appendixes
	Appendix A. Test environment
	Hardware configuration
	Media drawer SCSI connection

	Network configuration
	Name resolution

	Partition configuration
	The relationship between physical and AIX location codes
	Using AIX commands
	Using the physloc field identifier of lsdev (AIX 5L Version 5.2)
	Using the service guide

	pSeries 670- and pSeries 690-dependent information
	AIX location codes
	Non-SCSI devices
	SCSI devices

	Appendix B. Dynamic logical partitioning program templates
	General information
	Perl template
	Korn shell template
	B.1 Sample DLPAR-aware application using a signal handler
	B.1.1 How to compile and run the application

	Appendix C. Dynamic logical partitioning output samples
	Using the syslog facility
	CPU addition
	CPU removal
	Memory addition
	Memory removal

	Using the AIX system trace facility
	CPU addition trace output
	CPU removal trace output
	Memory addition trace output
	Memory removal trace output

	Using the AIX error log facility

	Appendix D. Using the Job Scheduling Console
	Using the Job Scheduling Console
	Create a new job
	Create a new job stream

	Appendix E. Advanced DLPAR script examples
	E.1 Changing StartServers
	E.2 Changing MaxClients

	Appendix F. Autonomic application example
	F.1 Autonomic C program example

	Appendix G. Additional material
	Locating the Web material
	Using the Web material
	System requirements for downloading the Web material
	How to use the Web material

	Abbreviations and acronyms
	Related publications
	IBM Redbooks
	IBM Redpapers

	pSeries hardware publications
	AIX official publications
	CSM for AIX official publications
	CSM for Linux official publications
	Other publications
	Online resources
	How to get IBM Redbooks

	Index
	Back cover

