
VisualAge C++ Professional for AIX

Visual Composition Tasks and Concepts
Version 5.0

IBM

Before using this information and the product it supports, be sure to read the general information under .

Second Edition (Feburary 2000)
This edition applies to Version 5.0 of the VisualAge C++ product, and to all subsequent releases and modifications
until otherwise indicated in new editions. Make sure you are using the correct edition for the level of the product.

Contents

About this Book . vii

Chapter 1. Visual Programming Fundamentals 1

Chapter 2. How Classes and Parts Are Related 3

Chapter 3. Visual, Nonvisual, and Composite Parts 5

Chapter 4. Primary Part . 7

Chapter 5. Visual Composition 9
Free-form Surface . 9
Parts Palette . 10
About Adding Parts in the Composition Editor 11
Property Sheets . 11
About Setting Groups and Tab Stops 12
About Tearing Off Attributes . 13

Chapter 6. Starting the Visual Builder in AIX 15

Chapter 7. Working with Parts in the Visual Builder Window 17
Preloading the Visual Builder Window 17
Displaying Part Names . 17
Selecting All Parts . 17
Deselecting All Parts . 17
Creating a New Part . 17
Opening Parts in the Visual Builder Window 18
Copying Parts from One Part File to Another 19
Moving Parts to a Different Part File. 20
Deleting Parts from a Part File 20
Renaming Parts in Part Files 21

Chapter 8. Using Parts from Previous Versions of VisualAge 23

Chapter 9. Working with Parts in the Composition Editor 25
Displaying Part Pop-Up Menus 26
Browsing a Part’s Features . 26
Editing Part Properties. 27

Opening the Property Sheet for a Part 27
Using Code Strings in Part Properties 28
Applying Changes to Properties 28
Editing Part Labels Directly 29

Undoing and Redoing Changes in the Composition Editor. 29
Editing Parts within a Composite Part 29
Renaming Parts in the Composition Editor 30
Listing Parts within a Composite Part 31
Setting Template Arguments. 31
Saving a Part . 32

Chapter 10. Dropping Parts in the Composition Editor 33
Dropping a Part that Appears on the Palette. 33
Dropping a Part that Is Not on the Palette 34
Unloading the Mouse Pointer 34

iii

Selecting Parts . 35
Deselecting Parts . 35
Deleting Parts . 36

Chapter 11. Manipulating Parts in the Composition Editor 37
Positioning Parts . 37

Using the Grid for Layout. 37
Aligning Parts . 38
Spacing Composite Parts within Composers Parts 38
Spacing Parts within a Bounding Box 39

Moving a Part . 39
Resizing a Visual Part . 39

Resizing a Part by Dragging 40
Matching Part Sizes Using the Tool Bar 40

Copying a Part . 40
Copying Parts by Dragging 41
Copying Parts Using the Clipboard 41

Changing Depth Order within a Composite Part 42
Changing the Tabbing Order 42

Setting Tab Stops and Groups 43
Tearing Off Attributes . 43

Chapter 12. Making Connections in the Composition Editor 45
Connecting Features to Other Features 45
Connecting Features to Member Functions 46
Connecting Features to Custom Logic 47
Connecting from Connection Results 48
Supplying Parameter Values for Incomplete Connections 49

Supplying a Parameter Value Using a Connection 49
Supplying a Parameter Value Using a Constant 50
Specifying Default Values for Parameters 50

Opening Connection Settings 51
Changing Connection Settings When a Member Function Is the Target . . . 52

Chapter 13. Manipulating Connections on the Free-Form Surface 53
Showing and Hiding Connections 53
Deleting Connections . 53
Selecting and Deselecting Connections 54

Selecting a Single Connection 54
Selecting Multiple Connections. 54
Deselecting Connections . 55

Reordering Connections . 55
Changing the Source and Target of Connections 56

Moving Either End of a Connection to a Different Part 56
Moving Either End of a Connection to a Different Feature 57
Reversing the Direction of a Connection 57

Changing the Shape of a Connection 57

Chapter 14. Generating Code 59
Preparing for Code Generation 59
Generating Source Code . 60
Generating Resource Code for Translation 61
Generating Source Code for Your Application’s main() Function 61
Generating User Interface Source 61

Chapter 15. Preparing for Compilation of Generated Files 63

iv VisualAge C++ Professional for AIX: Visual Composition Tasks and Concepts

Chapter 16. Debugging Connections 65

Chapter 17. Fixing Problems with Your Visually Constructed Application . 67

Chapter 18. Managing the Parts Palette 69
Preparing Icons for the Parts Palette 69
Adding a Category to the Parts Palette. 69
Adding a Part to the Palette . 70
Deleting a Part or Category from the Palette 71
Saving Parts Palette Changes 71

Chapter 19. Defining Part Interfaces for Visual Composition 73
Adding Features to the Part Interface 73

Adding Attribute Features. 74
Adding Event Features . 75
Adding Action Features . 75

Promoting Embedded Part Features in the Composition Editor 76
Promoting Embedded Part Features in the Part Interface Editor 77
Specifying Preferred Features 78
Specifying Hidden Features . 78
Defining the Part Interface Using Part Information Statements 79

Chapter 20. Deriving from Visual Classes 81

Chapter 21. Incorporating User-Written Code into Visual Composites . . . 83
Using Handwritten Code from Previous Versions of VisualAge 83
Assembling a Part from Generated and User-Written Code 84

Specifying Code Files . 85
Generating Feature Code 85
Modifying Generated Feature Code 86

Adapting User-Written Classes for Use as Parts 86

Chapter 22. Sharing Parts with Other Programmers 89
Sharing Custom Visual Parts 89
Sharing Nonextendable Parts 90
Adding Part Information for Visual Composition 90
Exporting a Part Interface for Reuse. 91
Packaging Part Files for Distribution. 92

Chapter 23. Packaging Visually Composed Applications 95

Chapter 24. Part Design Guidelines 97
Naming Guidelines for Parts and Their Features 97
Part Implementation. 98
About Implementing Nonvisual Parts 99

Constructors in Nonvisual Parts 99
Destructors in Nonvisual Parts 100
Assignment Operators in Nonvisual Parts 100

About Implementing Custom Visual Parts 101

Chapter 25. About Defining Part Interfaces 103
About Promoting Part Features 103

Default Promoted Feature Names 104

Chapter 26. Connections . 105
The Source and Target of a Connection 106

Contents v

Attribute-to-Attribute Connections 106
Event-to-Attribute Connections 108
Event-to-Action Connections 108
Member Function Connections. 108
Attribute-to-Action Connections 109
Custom Logic Connections . 109
Parameter Connections . 110

Chapter 27. Generated Code 111
Generated Feature Code . 111
Generated Part Code . 112
Generated Application Code. 112
Generated Interface Code . 113
Example of Code Generated for a Visual Composite. 114
Code Generation Errors . 116
Resource Files Generated for Translation 116

The Resource File (.rc) . 117
The Resource Header File (.h) 118

Chapter 28. VisualAge Component Model 119
Access to a Part’s Properties 119
Access to a Part’s Behavior . 120
Notification of Changes to Parts 121

Chapter 29. Notification Framework 123
Notifiers and Observers . 123
About Implementing Notification 124

vi VisualAge C++ Professional for AIX: Visual Composition Tasks and Concepts

About this Book

This Portable Document Format (PDF) file is a collection of some of the concepts
and tasks selected from the online information for this product. PDF files give you
an easier way to review or print a group of related topics.

References to VisualAge C++ in this book should be interpreted as VisualAge C++,
Version 5.0.

vii

viii VisualAge C++ Professional for AIX: Visual Composition Tasks and Concepts

Chapter 1. Visual Programming Fundamentals

VisualAge for C++ includes a state-of-the-art object-oriented visual composition
editor for assembling applications visually from IBM Open Class components.

Object-oriented programming facilitates development of complex software systems
by breaking them up into a number of much smaller, simpler program elements
called objects. Objects work together by sending each other messages, that is, by
requesting behavior that is implemented by the target object. Taken as a group,
these behaviors comprise a class interface.

Using an object-oriented approach for complex systems provides the following
benefits:

v Individual classes are much easier to create and understand.

v Systems are much easier to maintain and enhance. Object implementations can
be modified individually without modifying the rest of the system, as long as the
objects continue to respond appropriately to messages sent to them by other
objects.

Despite these benefits, implementing large systems can still be expensive. One way
to reduce the cost is to reuse object implementations. Many companies would
prefer to buy reliable reusable classes, creating classes only for functions specific to
their business. This vision of constructing custom software using standard building
blocks has been called construction from parts. The building blocks themselves
have popularly been called parts or components.

However, reuse is hard to achieve when the class interfaces are too specific to the
application for which they were originally developed. To promote wider reuse, class
interface conventions called component models have been defined, such as
ActiveX, OpenDoc, and JavaBeans.

The IBM notification framework of the IBM Open Class library is the component
model used by VisualAge. The IBM notification framework includes the following
definitions:

An event model. Event models specify how a component sends messages to
other objects without knowing the exact methods that the other object
implements. This enables a component to be reused with a range of objects that
have different interfaces

Events, attributes, and actions. The IBM notification framework defines a
component interface in terms of the events it can signal, the attribute values that
can be read and set, and the actions it implements. This definition provides
more structure to the interface of a component compared with a simple class
interface, facilitating the use of tools such as the VisualAge Composition Editor.

The Composition Editor enables you to create programs graphically from existing
parts. Parts are simply C++ classes that comply with the IBM notification
framework. The IBM notification framework is the component model supported and
used throughout VisualAge, so this documentation will refer to VisualAge
components as parts.

VisualAge provides user interface parts based on classes in the IBM Open Class
library. The Composition Editor is also extensible. It allows you to work with parts
you create yourself, and it allows you to include parts imported into the environment

1

from other sources. You can even create your own parts graphically using the
Composition Editor and then reuse these parts again within another program being
created with the Composition Editor.

To build a program with the Composition Editor, you draw a picture using a canvas
and palette of icons representing reusable parts. This picture specifies the set of
parts that implements the function of the larger program (or part) you are creating.
For parts like user interface controls, the position of the controls relative to each
other in the picture specifies how the controls will appear in the final program. For
parts such as database components, the position of the part in the picture generally
has no significance.

The Composition Editor provides a very sophisticated connection capability to
specify how components of the picture will interact to implement functions of the
program. Using connections, much of the behavior of an application can be
specified graphically. Connections also allow you to integrate custom code written in
the C++ language.

“Chapter 2. How Classes and Parts Are Related” on page 3

“Chapter 5. Visual Composition” on page 9

“Chapter 24. Part Design Guidelines” on page 97

2 VisualAge C++ Professional for AIX: Visual Composition Tasks and Concepts

Chapter 2. How Classes and Parts Are Related

VisualAge parts are C++ classes that conform to the IBM notification framework.
Composite parts are made up of embedded parts. We use the term part to refer to
both a class and its instances, as follows:

v When we refer to parts on a palette or to parts that you create by writing code,
we mean part classes .

v When we refer to parts on the free-form surface or to parts that are connected,
we mean part instances .

During visual composition, you interact with part interfaces. The most useful part
interfaces contain the following features:

Access to data, or attributes. A complete attribute interface includes member
functions to return the value of the attribute, to set the value of the attribute, and
to notify other parts when the value of the attribute changes. The interface for a
attribute does not have to be complete. For example, a attribute might be
read-only, in which case the interface would not support the ability to set the
value of an attribute. A attribute can be any of the following:

– An actual data object stored within the part, such as the street in an address
part

– A computed data, such as the sum of all numbers in an array or the profit
that is computed by subtracting dealer cost from the retail price

Access to the behavior of a part, or actions. These represent tasks you can
ask a part to perform, such as open a window or add an object to a collection of
objects.

Event notification. By signaling events, a part can notify other parts that its
state has changed. For example, a push button can signal an event to notify
other objects when it is clicked, or a window can signal an event when it is
opened, or a bank account can signal an event when the balance becomes
negative.

Events can also be signaled when the value of a part attribute changes, such as
when money is deposited into or withdrawn from a bank account.

“Chapter 1. Visual Programming Fundamentals” on page 1

“Chapter 28. VisualAge Component Model” on page 119

“Chapter 5. Visual Composition” on page 9

“Chapter 24. Part Design Guidelines” on page 97

3

4 VisualAge C++ Professional for AIX: Visual Composition Tasks and Concepts

Chapter 3. Visual, Nonvisual, and Composite Parts

You can use many kinds of parts to construct program elements. All parts exist as
either primitives or composites. Primitive parts are the basic building blocks from
which composites are constructed. You must construct new primitive parts using a
programming language because there are no similar parts to use in building them.
Primitive parts can be either visual or nonvisual.

Visual parts are elements of the program that the user can see at run time. The
development-time representations of visual parts in the Composition Editor
closely match their runtime visual forms. Users can edit these parts in the
Composition Editor in their visual runtime forms. Examples include windows,
entry fields, and push buttons. In general, visual parts are subclasses of
IWindow.

Nonvisual parts are elements of the program that are not necessarily seen by
the user at run time. On the Composition Editor’s free-form surface, users can
manipulate these parts only as icons. Examples include business logic,
database queries, and communication access protocol parts.

Parts that have a visual representation at run time but do not support visual
editing are treated as nonvisual. Examples of this kind of nonvisual part include
message boxes and file selection dialogs.

Composite parts can contain both visual and nonvisual components. In general,
composite parts are based on one of these classes:

v IFrameWindow, for GUI applications

v One of several ICanvas base classes, for reusable GUI client areas

“Chapter 2. How Classes and Parts Are Related” on page 3

“Chapter 5. Visual Composition” on page 9

“Chapter 4. Primary Part” on page 7

“Chapter 28. VisualAge Component Model” on page 119

“Chapter 21. Incorporating User-Written Code into Visual Composites” on
page 83

5

6 VisualAge C++ Professional for AIX: Visual Composition Tasks and Concepts

Chapter 4. Primary Part

On the Composition Editor’s free-form surface, this part represents the composite’s
base class. For example, if your composite part inherits from IFrameWindow,
VisualAge adds an instance for you when you create the class. All visual composite
parts must have a primary part; otherwise, VisualAge cannot generate the correct
code.

You can, however, change the primary part under certain circumstances. If the
composite part in question inherits from IFrameWindow and you later add another
IFrameWindow* instance, you can designate the new instance as the primary part
instead of the one originally assigned by VisualAge.

“Chapter 3. Visual, Nonvisual, and Composite Parts” on page 5

“Chapter 5. Visual Composition” on page 9

“Chapter 28. VisualAge Component Model” on page 119

“Chapter 21. Incorporating User-Written Code into Visual Composites” on
page 83

7

8 VisualAge C++ Professional for AIX: Visual Composition Tasks and Concepts

Chapter 5. Visual Composition

Visual composition is the creation of object-oriented programs by manipulating
graphical representations of components. VisualAge provides a powerful tool, the
Composition Editor, that enables you to construct programs visually.

In the Composition Editor, you select and place parts to create graphical user
interfaces (GUIs). These GUIs can include VisualAge parts, imported parts, and
parts you create yourself. By following a few guidelines, you can design versatile
parts that you can reuse in many compositions. VisualAge also enables you to use
nonvisual parts to perform the business logic and data access.

Development using visual composition can include the following steps:

1. Design your program elements. Determine what you can compose visually and
what you must write by hand.

2. Create nonvisual parts.

3. Using the Composition Editor, enhance these classes by dropping parts and
setting initial values for attributes. Extend the behavior of VisualAge parts by
writing member functions.

4. For business logic, add code to the appropriate class stubs.

5. Connect parts to define the program element’s behavior and flow.

6. Save and generate the code for your part within the Composition Editor, and
compile your application.

“Chapter 1. Visual Programming Fundamentals” on page 1

“Chapter 2. How Classes and Parts Are Related” on page 3

“Chapter 3. Visual, Nonvisual, and Composite Parts” on page 5

“Free-form Surface”

“Parts Palette” on page 10

“About Adding Parts in the Composition Editor” on page 11

“About Setting Groups and Tab Stops” on page 12

“About Tearing Off Attributes” on page 13

“Chapter 9. Working with Parts in the Composition Editor” on page 25

“Chapter 6. Starting the Visual Builder in AIX” on page 15

Free-form Surface

The free-form surface is the large open area in the Composition Editor. It is like a
blank sheet of paper or work area where you can add, manipulate, and connect the
parts that you work with to create your composite part.

The free-form surface represents the part you are developing. It is separate from its
parent part, which is represented by the primary part or base class. Options for this
part, such as pop-up menu items, do not refer to the inherited features. Access
inhereted features through the primary part.

9

Some of the functions you can perform on the free-form surface include:

v Add visual parts.

v Add nonvisual parts to build the application logic for a composite part.

v Delete parts.

v Connect parts to define behavior.

“Chapter 9. Working with Parts in the Composition Editor” on page 25

Parts Palette

The parts palette provides building blocks you can use to construct a program
element. It consists of several categories, each one containing a set of parts. You
can add a part to your program element by selecting a category from the palette
and then a part and dropping it on the free-form surface. The status area displays
the name of the category and the part you select from the palette.

The parts palette can contain the following:

v Parts supplied with VisualAge

v Parts you have constructed yourself

v Parts supplied by a vendor

Typically, a category contains parts that are similar in behavior or that you can use
to perform similar tasks. For example, the Frame extensions category contains
parts such as menus, menu items, menu separators, and cascaded menu items.
You can use all of these to add menus to an application.

Typically, a category contains parts that are similar in behavior or that you can use
to perform similar tasks. Often you can use the parts in a category to assemble a
particular application. However, parts can be in more than one category.

You can also modify the palette by adding parts. Modifying the palette can help
increase your productivity in the following ways:

v Allows you to quickly and easily place parts that you have created and that you
use often in the Composition Editor.

v Eliminates the need for manually placing the parts, which requires that you know
the exact class name of the part.

When you add a new part to the palette, the entire visual part, class interface part,
or nonvisual part is represented with a symbol in the category you select. When you
originally created the part, you specified its name in the Name field. The name you
specified appears on the parts palette. Once you have added parts to the palette,
you can place these parts on the free-form surface in the same way you place parts
that VisualAge provides.

“Dropping a Part that Appears on the Palette” on page 33

“Chapter 18. Managing the Parts Palette” on page 69

10 VisualAge C++ Professional for AIX: Visual Composition Tasks and Concepts

About Adding Parts in the Composition Editor

When you place parts in the Composition Editor:

v Avoid overlaying parts

It is not good interface design for one part to overlay another part. Completely or
partially overlaying a part can result in focus problems, causing users to see but
be unable to select the part.

v Place other parts on top of parts in the Composers category

Parts included in the Composers category can contain any other visual parts that
are placed on top of them. The parts contained by the Composers part become
composites of the Composers part. For example, if you place an entry field, a list
box, and two push buttons in a frame window, the frame window contains these
parts and they in turn become the frame window’s embedded parts.

The following table lists each of the palette categories and specifies how you can
use the parts in each category.

Table 1. Categories and How You Can Use Their Parts

Category
Use Parts to Contain
Other Parts? Use Parts as Subparts?

Buttons No Yes

Data entry No Yes

Lists No Yes

Frame Extensions No No

Sliders No Yes

Composers Yes Yes

Models No No

Other No No

v Embed composite parts into other composites

For example, you can create a composite part that consists of a panel on which
you have placed buttons and check boxes, each connected to a variable. When
you embed this part in your main program, such as in a frame window, you place
it and work with it as one part—not as a panel and separate buttons and check
boxes.

Although the connections and variables for an embedded composite part are not
displayed when that part is embedded, they are there. You do not see them
because you do not edit them or their embedded parts directly within the main
composite part. Using embedded composite parts reduces the number of
connections and simplifies your work space.

To change the connections, the default text on the buttons and check boxes, or
to otherwise alter this part, you must edit the part indirectly, as described in
“Editing Parts within a Composite Part” on page 29.

“Chapter 10. Dropping Parts in the Composition Editor” on page 33

“Chapter 6. Starting the Visual Builder in AIX” on page 15

Property Sheets

Use the part property sheet to change the initial appearance and operation of parts.

Chapter 5. Visual Composition 11

The part property sheet contains two columns: a list of properties on the left and
their values on the right. The value column contains the current values and is where
you edit the properties. Typical part properties include:

Name There are two name-type properties. The label property is for the text that
appears on parts such as buttons. The partName property is the name by
which this part is identified.

Style The property sheet includes several control settings that enable you to
specify style information for the part. These controls might include tab stop
and group.

Color You can modify both background color and foreground color.

Font You can specify the font, font size, and font highlight you use for the part.

“Editing Part Properties” on page 27

“Opening the Property Sheet for a Part” on page 27

“Applying Changes to Properties” on page 28

“Using Code Strings in Part Properties” on page 28

About Setting Groups and Tab Stops

The tabbing order is the sequence in which the input focus moves from part to part
as the user presses the Tab key. The first part in the tabbing order receives the
initial input focus. For example, if the first part in the tabbing order is a push button,
that push button receives the initial input focus when the application starts. The
tabbing order can also indicate the order in which the input focus moves among
parts within a tab group as the user presses the arrow keys. Tabbing order is
related to depth order.

The tabbing order can only be set for parts that are placed within a Composers
part. For example, if you place a row of push buttons in a frame window, you can
set the tabbing order for the push buttons.

The following guidelines are for setting groups and tab stops:

v The tabbing order of the parts should be the same as the order in which they are
displayed in the window, from left to right and then top to bottom.

v Select both Group and Tab stop for Parts that are not in groups, such as entry
fields and list boxes.

v Put each group of related parts, such as check boxes and radio buttons, within a
group or outline box and select Group for the first part only. Select Tab stop for
each part within the Group that you want to receive input focus. If there is only
one group of related parts, such as push buttons, you do not need to put them
within a group or outline box.

v Do not select either Group or Tab stop for Parts that should not receive input
focus, such as static text parts.

All parts within a composite part that have only Group selected are treated as a
single tabbing unit. When the user tabs within the composite part, input focus
moves to the next tab stop whether it is within the group or not. When the user
uses the keyboard arrow keys, the input focus moves between all parts within the
group, regardless of which parts have Tab stop selected.

12 VisualAge C++ Professional for AIX: Visual Composition Tasks and Concepts

Grouped radio buttons are special in that they become mutually exclusive within
their group. For example, suppose you have four consecutive radio buttons in your
list and you select Group for RadioButton1 and RadioButton3. In this case,
RadioButton1 and RadioButton2 become mutually exclusive in their group, and
RadioButton3 and RadioButton4 become mutually exclusive in their group.

You can set the group and tab stops from the pop-up menu. You can display the
tabbing order by opening a parts list for the Composers part that contains the push
buttons. You can change the tabbing order within the parts list, by changing the
positions of parts.

If the tabbing order includes each entry field in which a user can type, the user can
move the input focus from one entry field to another. Arrow keys only move the
cursor within an entry field; only the Tab key, backtab key, and mouse can change
the input focus from one entry field to another. Read-only fields do not need to be
included in the tabbing order.

As you add or rearrange parts, you will probably need to change the tabbing order.
For example, rearrange three push buttons so that PushButton3 is between
PushButton1 and PushButton2. The tabbing order is still PushButton1,
PushButton2, PushButton3, even though PushButton3 is now between PushButton1
and PushButton2. You must change the order in the parts list to have the focus
move from PushButton1, to PushButton3, and then PushButton2.

“Changing the Tabbing Order” on page 42

“Setting Tab Stops and Groups” on page 43

“Changing Depth Order within a Composite Part” on page 42

About Tearing Off Attributes

You tear off an attribute to gain access to the encapsulated features of a part. This
can be necessary when an attribute is in itself a part and you want to connect to
one of its features. The torn-off attribute is not actually a separate part but a
variable that represents the attribute itself or points to it.

For example, in an address book application you might tear off attributes as follows:

v You might have a Person part that contains both homeAddress and workAddress
attributes, both of which, in turn, could contain street, city, and state attributes.

v By tearing off either the homeAddress or workAddress attribute, you can create a
new part that contains street, city, and state attributes.

v Tearing off a homeAddress or workAddress attribute makes the nested street,
city, and state attributes directly accessible. Now that the nested attributes are
directly accessible, you can make connections to and from them, as well as to
their associated events and actions.

“Tearing Off Attributes” on page 43

Chapter 5. Visual Composition 13

14 VisualAge C++ Professional for AIX: Visual Composition Tasks and Concepts

Chapter 6. Starting the Visual Builder in AIX

To start a Visual Builder session in AIX, do the following:

1. Change to your data directory

2. At the prompt, enter ivb and the Visual Builder window appears.

Tasks you can perform from the Visual Builder window include:

v “Preloading the Visual Builder Window” on page 17

v “Creating a New Part” on page 17

v “Opening Parts in the Visual Builder Window” on page 18

v “Displaying Part Names” on page 17

v “Selecting All Parts” on page 17

v “Deselecting All Parts” on page 17

v “Copying Parts from One Part File to Another” on page 19

v “Moving Parts to a Different Part File” on page 20

v “Deleting Parts from a Part File” on page 20

v “Renaming Parts in Part Files” on page 21

“Chapter 7. Working with Parts in the Visual Builder Window” on page 17

15

16 VisualAge C++ Professional for AIX: Visual Composition Tasks and Concepts

Chapter 7. Working with Parts in the Visual Builder Window

The topics in this section describe how to work with parts from the Visual Builder
window.

Preloading the Visual Builder Window

In order to preload your part files into the Visual Builder window, create a
vbload.dat file. This text file contains the names of the part files you wish to
preload. Once you have created the file, place it in the working directory along with
the actual part files. When you open the Visual Builder window, VisualAge
automatically loads the listed files saving you the task of manually loading each file.

Managing your project is easier if you keep the vbload.dat file updated with all the
project part file names. For an example of a vbload.dat file, refer to any of the
samples provided with VisualAge.

Displaying Part Names

To display the names of the parts in a part file, from the Loaded files list box in the
Visual Builder window, select the file containing the parts you want to see. Visual
parts appear in the Visual parts list box; nonvisual parts and class interface parts
in the Nonvisual parts list box.

Once part names are displayed, you can perform actions on them, such as opening
or deleting them.

Selecting All Parts

To select all of the parts in the selected part files, select Edit and then Select all
parts .

If you want to deselect any of the parts, hold the Ctrl key and select the part name
with mouse button 1.

Deselecting All Parts

To deselect all of the parts in the selected part files, select Edit and Deselect all
parts .

Creating a New Part

To create a new part, do the following:

1. Select Part—New and then select Visual or Nonvisual part or Class. The
Part–New window appears.

2. Enter the name that you want to give to your part in the Class name field.

3. Enter a description of the part in the Description field. Visual Builder uses the
description that you enter here in the following ways:

v If you add the part to the parts palette, Visual Builder displays its description
in the information area at the bottom of the Composition Editor when the part
is selected.

17

v If you export the information about the part to a .vbe file, the description is
included with the other information about the part.

4. In the File name field, enter the part file name where you want VisualAge to
store the part. If the file does not exist, VisualAge creates it for you.

5. Select the type of part that you want to create in the Part type field. You can
select one of the following:

v Visual part

v Nonvisual part

v Class interface part

6. Either keep the default class name provided by Visual Builder in the Base class
field, change it, or delete it.

Note the following:

v A nonvisual part must have the IStandardNotifier class in its inheritance so it
can exhibit the behavior required for all parts—a part interface (attributes,
events, and actions). It must inherit this behavior from IStandardNotifier.
Therefore, you cannot leave this field blank when creating a nonvisual part.
The default base class for a nonvisual part is IStandardNotifier.

v A visual part must have the IWindow class in its inheritance so it can inherit
the visual behavior common to all windows, as well as part interface
behavior, which IWindow inherits from IStandardNotifier. Therefore, you
cannot leave this field blank when creating a visual part. The default base
class for a visual part is IFrameWindow, which inherits from IWindow.

v No inheritance is required for a class interface part. Therefore, you can leave
the Base class field blank when creating a class interface part.

7. Select Open . One of the following occurs:

v If you are creating a visual part, the Composition Editor appears.

v If you are creating a nonvisual part or a class interface part, the Part
Interface Editor appears.

8. Use the displayed editor to create your part.

Opening Parts in the Visual Builder Window

Use Part and then Open to open existing parts. You must load the part file that
contains a part before you can open it. .

The Composition Editor uses the question mark icon on the free-form surface to
represent unloaded parts. If you open a part that contains unloaded parts, Visual
Builder displays this icon.

The question mark folder icon indicates that most of the information about the
unloaded part is not available to the Composition Editor. You can select connections
between unloaded parts and other parts to see which features are connected, but
the features are not available in the unloaded part’s connection menu.

You should not make changes to an unloaded part or generate any code when a
part is not loaded.

If you open a part and see a question mark folder icon, load the part file that
contains the unloaded part.

Opening one part

18 VisualAge C++ Professional for AIX: Visual Composition Tasks and Concepts

To open one part, do the following:

1. Find the name of the part that you want to open by scrolling through the
appropriate list box in the part selector window.

Note: If the list boxes are empty or if you cannot find the part, the part file is
not loaded.

2. Select the part you want to open.

3. Select Part on the menu bar.

4. Select Open in the pull-down menu. One of the following occurs:

v If you are opening a visual part, the Composition Editor appears.

v If you are opening a nonvisual part, the Composition Editor appears.

v If you are opening a class part, thePart Interface Editor appears.

You can also open an existing part by double-clicking the part name within the
Visual parts or Nonvisual parts list box.

Opening multiple parts

To open multiple parts, do the following:

1. Find the name of the first part that you want to open by scrolling through the
Nonvisual parts and Visual parts list boxes shown in the part selector window.

Note: If the list boxes are empty, you must load the part files.

2. Select the first part you want to open.

3. Do one of the following, depending on how the other parts appear in the list:

v If the other parts are adjacent in the list to the part previously selected, hold
down the Shift key and click on the last part in the group you want to select.
All parts between the first and last parts selected are now highlighted.

v If the parts are not adjacent in the list, hold down the Ctrl key while selecting
each part.

4. Select Part on the menu bar.

5. Select Open in the pull-down menu. Visual Builder displays a separate window
for each part that you selected. The window displayed is the Composition Editor
for visual/nonvisual parts or the Part Interface Editor for class parts.

Copying Parts from One Part File to Another

To copy a part, do the following:

1. Select the part that you want to copy in the Visual Parts or Nonvisual parts
list box. If you select more than one part or if you do not select a part, the Copy
function is not available.

2. Select Part and then Copy . The Copy window appears.

The Source part name field shows the name of the part that you selected to
copy.

3. In the Target part name field, enter the name you for the new part.

4. In the Target file name field, enter the name of the part file where you want to
copy the part. If you leave this field blank, the current part file name is used.

5. Select the Copy push button. The part is copied under the new name and
stored in the designated part file.

Chapter 7. Working with Parts in the Visual Builder Window 19

Moving Parts to a Different Part File

Here is what happens to the part file where the part or parts are moved:

v If the designated part file does not exist, VisualAge creates and loads it for you.

v If the designated part file exists and is loaded, the part or parts are moved into it.

v If the designated part file exists but is not loaded, VisualAge overwrites the
unloaded file with the new part.

To move one or more parts from one part file to another, do the following:

1. Select the part or parts that you want to move. If you do not select at least one
part, the Move function is not available.

2. Select Part and then Move .

3. Use the following instructions for moving one part or multiple parts:

Moving one part

If you selected one part, the Move Part Window appears.

The Part name field displays the name of the selected part. The File name field
displays the complete path of the part file for the part you want to move.

Do the following:

a. In the New file name field, enter the path and name of the part file to where
you want to move the part.

b. Select the Move push button.

The part is moved to the part file specified in the New file name field.

Moving multiple parts

If you selected more than one part, the Move Part Window for moving more than
one partappears.

The text in the window specifies the names of the selected parts. Do the following:

1. In the entry field, enter the name of the part file to where you want to move the
parts. If the part file is not in your current directory, specify the complete path for
the part file.

2. Select OK and the parts are moved to the part file specified in the entry field.

You can also move a part by changing the name of the part file specified in the
Class Editor.

Deleting Parts from a Part File

To delete a part, do the following:

1. Select the part or parts that you want to delete in the Visual parts list box,
Nonvisual parts list box, or both.

If you do not select at least one part, the Delete function is not available.

2. Select Part and then Delete .

Deselect any parts that you do not want to delete. Once you delete a part from
a part file, you cannot recover it unless you have another copy stored in another
part file.

3. Select the Delete push button.

The selected parts are deleted.

20 VisualAge C++ Professional for AIX: Visual Composition Tasks and Concepts

Renaming Parts in Part Files

The Part—Rename menu choice lets you change the name that a part is stored
under in a part file.

Note: Use care when renaming parts. The name changes only in the part file
where the part is stored. The part name does not change in any other part
where this part is embedded. Therefore, when you open the part where you
embedded the renamed part, VisualAge will not be able to find the renamed
part.

To rename a part in a part file, do the following:

1. Select the part that you want to rename in the Visual parts or Nonvisual parts
list box. If you select more than one part or if you do not select a part, the
Rename function is not available.

2. Select Part and then Rename . The Rename window appears.

The Part name field shows the name of the part that you selected to rename.

3. In the New part name field, enter the new name for the part.

4. Select Rename and the part is renamed.

“Chapter 6. Starting the Visual Builder in AIX” on page 15

Chapter 7. Working with Parts in the Visual Builder Window 21

22 VisualAge C++ Professional for AIX: Visual Composition Tasks and Concepts

Chapter 8. Using Parts from Previous Versions of VisualAge

To continue to use parts from Versions 3.0 and 3.5, perform these steps as required
by your application:

v Make sure any member function signatures with input arguments specify both a
type and a name for each argument. (Previously, you only had to specify a type.)
If you run the migration utility on a part file in which only types are specified,
VisualAge defines the name and type to be the same (for example, IDate and
IDate).

v Run the migration utility on your part files (.vbb and .vbe). To do this, type the
following, substituting the names of your files for the placeholders below:
ivb -vbmigrate mypart1.vbb mypart2.vbe @mypart.lst

As shown in the example, you can simply list the files separated by a space or
create a list file. If you use the list-file method, the file name must be preceded
by an at-sign (@). If you do not specify a file name, a file selection window
appears.

v Clean up migrated parts that contain connections between the actionResult
feature and a connection parameter.

v Any connections from promoted or embedded ready events are deleted by the
migration utility, because they are no longer permitted. Add alternative
connections as necessary.

v Edit handwritten code for updated features and changes in generated code.

“Chapter 27. Generated Code” on page 111

“Using Handwritten Code from Previous Versions of VisualAge” on page 83

23

24 VisualAge C++ Professional for AIX: Visual Composition Tasks and Concepts

Chapter 9. Working with Parts in the Composition Editor

Parts make up the user interface and logic of a program. The Composition Editor
provides many tools for visually creating these parts. Visually developing a user
interface includes:

1. Designing the user interface.

2. Dropping parts on the free-form surface.

3. Changing properties and manipulating the parts.

4. Making connections to determine the parts behavior.

5. Manipulating connections.

6. Generating the code for the parts.

7. Generating source code for the main() function.

8. Compiling and linking the code.

9. Making changes.

When you edit the part that represents the overall structure of your application
(usually its main user interface view), you graphically build your application. By
making connections between parts, you build your program’s business logic.

Building a program with the Composition Editor involves the following tasks:

v “Chapter 10. Dropping Parts in the Composition Editor” on page 33

v “Opening the Property Sheet for a Part” on page 27

v “Chapter 12. Making Connections in the Composition Editor” on page 45

v “Saving a Part” on page 32

“Chapter 5. Visual Composition” on page 9

“About Adding Parts in the Composition Editor” on page 11

“Generated Application Code” on page 112

“Chapter 6. Starting the Visual Builder in AIX” on page 15

“Generating Source Code for Your Application’s main() Function” on page 61

“Generating Source Code” on page 60

“Displaying Part Pop-Up Menus” on page 26

“Browsing a Part’s Features” on page 26

“Editing Part Properties” on page 27

“Undoing and Redoing Changes in the Composition Editor” on page 29

“Editing Parts within a Composite Part” on page 29

“Renaming Parts in the Composition Editor” on page 30

“Listing Parts within a Composite Part” on page 31

“Saving a Part” on page 32

25

Displaying Part Pop-Up Menus

To see a menu of operations you can perform on a part, click mouse button 2 on
the part. The pop-up menu for the part appears. Choices on the pop-up menu allow
you to delete the part, rename it, and perform other operations (which vary,
depending on the part).

A part does not have to be selected for you to display its pop-up menu. The pop-up
menu appears for whatever part the mouse pointer is over when you click mouse
button 2, even if another part is selected.

To display pop-up menus for multiple parts:

v Select the parts.

v Place the mouse pointer over any of the selected parts.

v Click mouse button 2.

“Selecting Parts” on page 35

Browsing a Part’s Features

Sometimes it is useful to browse part features before using them in a connection.
For example, you might want to look at an attribute to see if it has a set member
function so that it can update itself when it receives new data from another attribute.

By using Browse part features , you can see all features of a part in one window
and browse, but not change, the information about each feature. To modify a
feature, use the Part Interface Editor.

There is an important distinction between browsing part features and displaying
features for making a connection. When you browse part features, you see all of its
features, even if some of them are not available for connections. (This includes
inherited features if the base parts are loaded.) When you display the connection
menu for a part, however, you see only those features that are available for
connections.

To browse the features of a part, do the following:

1. Move the mouse pointer over the part and click mouse button 2. The
Composition Editor displays the pop-up menu for the part.

2. Select Browse part features . The Composition Editor displays a browse
window that contains three columns: actions, attributes, and events.

3. Select the feature you want to browse.

The Composition Editor displays information about the feature that you select in
the entry fields below the feature columns. The categories of information
displayed for a part depend upon whether you select an action, an attribute, or
an event.

The information that the Composition Editor displays when you browse part
features is the same as the information in the Part Interface Editor.

26 VisualAge C++ Professional for AIX: Visual Composition Tasks and Concepts

Editing Part Properties

The property sheet for a part provides a way to display and set initial attribute
values for the part.

If a Boolean value does not behave the way you expect, its property value may be
set to default (rather than true or false). This means that the part inherits its value
from the parent window.

For properties in numeric entry fields, the Composition Editor reflects only those
values entered in decimal notation. You can enter numbers with bases other than
10 by using the number sign (#, as in #0xBF), but the expression is not evaluated
until compile time.

The Composition Editor does not evaluate properties that you enter as string
expressions (text strings preceded by a number sign). User interface controls where
size is determined by the length of the property value, are not displayed in the
Composition Editor as they appear in the compiled application. An example would
be the size of a push button that is determined by the length of its text string.
However, the Composition Editor passes the expression correctly into the generated
code so it compiles successfully. For example, suppose you enter #pbText as the
value of a text attribute of an IPushButton* part. Because #pbText is not a literal
value, the length of the text string is unknown and the push button appears small in
the Composition Editor. If you have defined the value of #pbText elsewhere, the
push button appears with the correct size and text string in the compiled
application.

For help with filling out the property sheet for a part, open the help for that part.

“Property Sheets” on page 11

“Opening the Property Sheet for a Part”

“Using Code Strings in Part Properties” on page 28

“Applying Changes to Properties” on page 28

Opening the Property Sheet for a Part

To change the properties for a single part, follow these steps:

1. Place the mouse pointer over the part and double-click mouse button 1. The
property sheet for the part appears.

2. When you have chosen the property you wish to modify, select the value field to
the right of the property name.

3. Make the appropriate changes from the provided options. Options for modifying
the properties depend upon the part and may include selecting a button,
entering information into the field, selecting from a drop-down list, or proceeding
to other dialog boxes.

To change the properties for multiple parts, follow these steps:

1. Select the parts with properties you want to change.

2. Move the mouse pointer over one of the selected parts.

3. Click mouse button 2.

Chapter 9. Working with Parts in the Composition Editor 27

4. Select Open Settings from the pop-up menu. A property sheet for each of the
selected parts appears.

“Editing Part Properties” on page 27

“Using Code Strings in Part Properties”

“Applying Changes to Properties”

Using Code Strings in Part Properties

Many property sheets provide fields in which you can specify initial values for part
properties. For example, the property sheet for the IEntryField* contains a property
name for Text and Limit . In the value column of the property name for Text , you
can enter a text string that you want to initially display in the entry field. You can
change the default value of Limit , which is the maximum number of characters a
user can type in the entry field, from 32 to the number you desire.

To facilitate national language support (NLS) translation and code changes in
providing property values, such as the ones just described, you can enter a code
string to provide those values. You must precede the code string with a number
sign (#). If the first character of your code string is a #, enter two #s separated by a
space:the first one to signify that a code string follows and the second one to begin
your code string.

For example, suppose you want the initial text in an entry field to be Enter a name
here. Further, suppose that you want the limit for this entry field to be 18
characters. In a user header file (.hpv or .h), you could insert the following #define
statements:
#define NAME_PROMPT "Enter a name here"
#define NAME_LENGTH 18

Be sure to enter the name of the file that contains these #define statements in the
Required include files field in the Class Editor. Otherwise, this file is not included
when you generate the code for this part.

Then, in the property sheet of the IEntryField* you could enter the following in the
Text and Limit value column, respectively:
#NAME_PROMPT
#NAME_LENGTH

By doing this, the values that you defined for NAME_PROMPT and
NAME_LENGTH are used when you generate the source code for the part being
edited.

“Editing Part Properties” on page 27

“Opening the Property Sheet for a Part” on page 27

“Applying Changes to Properties”

Applying Changes to Properties

After you make changes to the properties, you can activate them in either of the
following ways:

28 VisualAge C++ Professional for AIX: Visual Composition Tasks and Concepts

v To immediately activate and save the property changes and to close the property
sheet, select the OK push button.

v To apply the property changes you have made and keep the property sheet
open, select the Apply push button. This enables you to see whether you need
to modify any of the changes you have made. The changes remain applied until
you change them again.

To close the property sheet, select the Cancel push button. If you made changes
and selected the Apply push button, the changes are saved.

For more help with using the property sheet, select the Help push button.

“Editing Part Properties” on page 27

“Opening the Property Sheet for a Part” on page 27

“Using Code Strings in Part Properties” on page 28

Editing Part Labels Directly

Some visual parts, such as buttons and menus, contain text strings. To edit the text
of a label for a part, follow these steps:

1. Hold down the Alt key. Hold down the Alt + Ctrl keys in AIX.

2. Select the text you want to change with mouse button 1.

3. Edit the text.

4. When you are finished, press Shift+Enter.

Note: Pressing the Esc key cancels direct edit without making changes.

You can also use this direct editing technique to edit the names of nonvisual parts.
The name of a nonvisual part appears directly below its icon.

Undoing and Redoing Changes in the Composition Editor

If you want to reverse changes you made within the Composition Editor, select
Undo from the Edit pull-down menu. You can undo any or all of the changes you
made since you opened the Composition Editor. Undo reverses one change at a
time, moving backward from the most recently made change.

If you undo an operation that you decide you had right in the first place, select
Redo from the Edit pull-down menu. Redo restores the part to the state before the
last Undo , including any connections that were deleted.

Undo and Redo affect operations you perform on the free-form surface and the
parts palette in the Composition Editor, the Class Editor, and the Part Interface
Editor. They do not affect any of the functions in the File pull-down menu.

Editing Parts within a Composite Part

VisualAge provides a way for you to edit a composite part that is embedded within
another composite part.

Chapter 9. Working with Parts in the Composition Editor 29

The only exception is that the Composition Editor does not allow you to modify the
VisualAge provided base parts. However, if you place one of these base parts on
either a Composers part or the free-form surface, you can modify the embedded
parts by doing either of the following:

v If you want to add an action to the embedded part, connect to a member function
or custom logic that belongs to the composite part. Write a member function or
provide custom logic if you need to perform an action of limited use—that is, one
that you do not anticipate using very often and that you do not want a derived
part to inherit.

v If you want to add a new feature that you plan to use often, create a new part
that is derived from the base part. For example, to add a new feature to an
IEntryField* part, create a new visual part whose base part is the IEntryField*
part and replace the IEntryField* part that you were using with your new part.
You can then add as many new features to your new part as you need.

If you want to edit a part that was added to the part you are editing:

1. Move the mouse pointer over the part you want to edit.

2. Click mouse button 2. The pop-up menu appears.

3. Select Edit part , and VisualAge displays the appropriate editor for the part:

v For a visual part, the Composition Editor

v For a nonvisual or class interface part, the Part Interface Editor.

4. Edit the part. If you want to promote any of the part features used to create the
composite part you are editing, do so now to prevent having to edit this part
later. See “About Promoting Part Features” on page 103 for more information.

5. Select File and then Save to save the part.

6. Close the editor and you are returned to the Composition Editor.

7. To apply your changes, select File and then Save and save the original part.

8. Close the Composition Editor for the original part that you were editing, as
described previously.

9. Reopen the original part you were editing to see the changes you made.

“Editing Part Labels Directly” on page 29

“Editing Part Properties” on page 27

“Undoing and Redoing Changes in the Composition Editor” on page 29

“Renaming Parts in the Composition Editor”

“Connecting Features to Member Functions” on page 46

“Connecting Features to Custom Logic” on page 47

Renaming Parts in the Composition Editor

The Composition Editor names parts based on the part palette names or the names
you specify when you place parts on the free-form surface. For example, the first
push button part that you use is named PushButton1. When you select this part, the
information area at the bottom of the Composition Editor displays the message
“PushButton1 selected.” The second push button you use is named PushButton2,
the third is named PushButton3, and so forth. The Composition Editor assigns
these default names to distinguish parts and connections when you generate the
code to build your application.

30 VisualAge C++ Professional for AIX: Visual Composition Tasks and Concepts

To assign part names that are more descriptive or meaningful to your program
element, follow these steps:

1. Move the mouse pointer over the part whose name you want to change.

2. Click mouse button 2 and the pop-up menu for the part appears.

3. Select Change Name and a Name Change Request window appears.

4. Type a new name in the entry field.

5. Select OK. The Composition Editor changes the name of the part to the name
that you typed in the entry field.

You can also change a part name by opening the property sheet for the partand
changing the name in the partName value column.

“Chapter 9. Working with Parts in the Composition Editor” on page 25

Listing Parts within a Composite Part

The Parts List window provides a way to display an ordered list of the parts
dropped on a given part. At first, parts are listed in the order in which they were
dropped. You can change the tabbing order of parts that have tabbing set, by
rearranging the parts in the list.

Note: If you are using Windows and you have problems with the parts list, set your
system palette to 256 colors or fewer.

To view the parts list for a composite part, do the following:

1. Open the composite part in the Composition Editor.

2. Click on the free-form surface with mouse button 2. The pop-up menu appears.

3. Select View parts list and the Parts List window appears. At first, the Parts List
window displays only the immediate embedded parts of the selected composite
part. An expansion icon appears next to each part that contains parts of its own.
To see those parts, select the expansion icon.

Setting Template Arguments

Collection-class parts rely on class templates to be able to handle a variety of
element types. Some IBM Open Class parts contain a collection attribute (actually
called items), so they, too, use class templates. A list of these parts follows:

v IVBCollectionViewComboBox

v IVBCollectionViewListBox

v IVBContainerControl

v IVSequence

Among these parts, two forms of class template exist. One takes only one argument
(element type); the other takes two arguments (element type and collection type).

You are not limited to these template-based classes.

In any case, you must set the appropriate arguments in order for VisualAge to
generate code that can be successfully compiled. To do this, select Change

Chapter 9. Working with Parts in the Composition Editor 31

Template Arguments from the pop-up menu for the part. Then enter the types
required, using template notation for the collection type as necessary.

“Chapter 9. Working with Parts in the Composition Editor” on page 25

Saving a Part

Saving a part that you have constructed includes generating the source code. If the
part is an application or if you want to test the part by itself, you need a main part,
which is a subclass of IVBMain.

To save the part and generate the source code:

1. Select File from the menu bar.

2. Select Save and generate .

3. Select Part source .

To create an executable application, and generate code for the main() function:

1. Create a nonvisual composite part that inherits from IVBMain.

2. Generate source code for the main part as you did for other composites.

“Generated Application Code” on page 112

“Generating Source Code” on page 60

“Generating Source Code for Your Application’s main() Function” on page 61

32 VisualAge C++ Professional for AIX: Visual Composition Tasks and Concepts

Chapter 10. Dropping Parts in the Composition Editor

Use the Composition Editor to place visual, class interface, and nonvisual parts on
the free-form surface. You can add parts that appear on the parts palette, as well as
parts that do not appear on the parts palette.

“Chapter 5. Visual Composition” on page 9

“Dropping a Part that Appears on the Palette”

“Dropping a Part that Is Not on the Palette” on page 34

“Unloading the Mouse Pointer” on page 34

“Selecting Parts” on page 35

“Deselecting Parts” on page 35

“Deleting Parts” on page 36

“Chapter 6. Starting the Visual Builder in AIX” on page 15

Dropping a Part that Appears on the Palette

To add a part from the palette to the Composition Editor surface, follow these steps:

1. In the left column of the parts palette, use mouse button 1 to select the category
containing the part you want. The right column contains the icons representing
the parts in the selected category.

2. From the right column, select the part you want. The mouse pointer becomes a
crosshair, indicating that the mouse pointer is loaded with the part you selected.

3. Move the mouse pointer to the location where you want to place the part.

4. Press and hold mouse button 1. An outline of the selected part appears under
the mouse pointer. Without releasing the mouse button, move the mouse pointer
to position it precisely.

5. Release the mouse button. The part you selected is placed at the location of the
mouse pointer, and the mouse pointer returns to normal.

To add multiple instances of the same part, select the Sticky check box at the
bottom of the parts palette.

If the part you want to add is not on the parts palette, you can add it with the Add
new part choice from the Options pull-down menu.

“About Adding Parts in the Composition Editor” on page 11

“Parts Palette” on page 10

“Free-form Surface” on page 9

“Dropping a Part that Is Not on the Palette” on page 34

“Chapter 10. Dropping Parts in the Composition Editor”

33

Dropping a Part that Is Not on the Palette

To place a part on the Composition Editor:

1. From the Options pull-down menu, select Add part and the Add Part window
appears.

2. Enter the class name in the Part class field. This is the class name that was
specified when the part was created. When you begin typing, you replace the
highlighted prompt, class_name*, with the name of the part you want to add. You
can also select the List... button and select a class from the Add Part —
Select Class window.

The asterisk at the end of the name is a reminder that you are actually entering
a pointer to the part. When you enter a valid class name for the part without
deleting the asterisk, the Composition Editor automatically selects the Part radio
button. You can place a pointer to a variable by selecting the Variable radio
button.

If you delete the asterisk, the Composition Editor grays out the Part radio button
and selects the Variable radio button. You will be adding a variable with the
class name type you entered in the Part class field.

You cannot add abstract parts or template parts using the Add Part window. For
example, IButton* is the abstract part that IPushButton* inherits from. You can
add IPushButton*, but not IButton*.

Note: You cannot add an object factory part using the Add Part window
because it is a template. You must add it by selecting it on the parts
palette.

3. Type a name for the part in the Name field. This name appears in the
information area at the bottom of the Composition Editor when you select the
placed part; it represents the part in generated part code.

The Name field is optional. If you leave it blank, the Composition Editor uses
the class name for the part.

4. Select the Add push button to add the part. TheAdd Part window disappears
and the mouse pointer turns into the same crosshairs used for placing a part on
the free-form surface.

To enable the Add push button, you must enter the name of a part that is
known to the Composition Editor in the Part class field.

5. To keep the Add Part window active after loading the mouse pointer with the
part, select Apply .

6. Move the crosshairs to the place where you want to add the part and click
mouse button 1.

“About Adding Parts in the Composition Editor” on page 11

“Chapter 10. Dropping Parts in the Composition Editor” on page 33

“Dropping a Part that Appears on the Palette” on page 33

Unloading the Mouse Pointer

To unload the mouse pointer at any time, do either of the following:

v From the tool bar, select

34 VisualAge C++ Professional for AIX: Visual Composition Tasks and Concepts

Selection tool.

v From the menu bar, select Tool , then Selection tool .

Selecting Parts

You must select a part before you can perform an action on it, such as renaming.
The Composition Editor displays the name of the selected part in the information
area at the bottom of the window. If more than one part is selected, *Multiple
selection* is displayed.

You cannot select parts and connections together—they are mutually exclusive.
However, if you delete a part that is connected to other parts, the Composition
Editor deletes the connections and the part.

When you select a part in the Composition Editor, selection handles appear on
the corners. If you select more than one part, the last part selected has solid
selection handles, indicating that it is the anchor part. The other selected parts have
hollow selection handles.

To select a single part, click the part with mouse button 1. If you previously
selected other parts, they are deselected automatically.

To select multiple parts, do one of the following:

v Hold down the Ctrl key and click mouse button 1 on each additional part you
want to select.

v Hold down mouse button 1 and move the mouse pointer over each part you
want to select. After you select the parts, release mouse button 1. (This method
does not work in Windows.)

Select your anchor part last, or Ctrl and double-click an already selected part to
make it the anchor. For example, if you want to match the widths of two parts, the
anchor part is used as the guideline width.

“Deselecting Parts”

Deselecting Parts

To deselect a part after you have selected it, hold down the Ctrl key and click the
selected part with mouse button 1.

To deselect multiple parts, follow these steps:

1. Hold down the Ctrl key.

2. Click and release mouse button 1 on all the parts you want to deselect.

You can deselect all selected parts by clicking mouse button 1 in a clear spot on
the free-form surface.

“Selecting Parts”

Chapter 10. Dropping Parts in the Composition Editor 35

Deleting Parts

To delete one or more parts :

1. Select all of the parts you want to delete. If you are deleting just one part, you
do not have to select it.

2. Position the mouse pointer over the part you want to delete or one of the
selected parts.

3. Click mouse button 2.

4. From the part pop-up menu, select Delete and the part or parts are deleted.

You can also delete parts by selecting them and pressing the Delete key.

When you delete a connected part, the Composition Editor displays a message to
alert you that the connections between that part and other parts are also deleted.
However, when you select Edit and then Undo , you restore any connections that
were removed when you deleted the part.

“Editing Part Properties” on page 27

36 VisualAge C++ Professional for AIX: Visual Composition Tasks and Concepts

Chapter 11. Manipulating Parts in the Composition Editor

Once you have placed parts on the free-form surface, you can make the following
changes to achieve the look and function you want:

v “Positioning Parts”

v “Moving a Part” on page 39

v “Resizing a Visual Part” on page 39

v “Copying a Part” on page 40

v “Changing the Tabbing Order” on page 42

v “Changing Depth Order within a Composite Part” on page 42

v “Tearing Off Attributes” on page 43

v “Using the Grid for Layout”

v “Aligning Parts” on page 38

v “Spacing Composite Parts within Composers Parts” on page 38

v “Spacing Parts within a Bounding Box” on page 39

v “Listing Parts within a Composite Part” on page 31

v “Editing Parts within a Composite Part” on page 29

v “Deleting Parts” on page 36

Positioning Parts

Positioning a part refers to aligning or spacing. The tool bar and the Tools
pull-down menu provide options for aligning selected parts.

The pop-up menu provides options for spacing within the bounding box, an unseen
box that contains the selected parts. You can also manage the placement of parts
by using a multi-cell canvas.

“Chapter 11. Manipulating Parts in the Composition Editor”

Using the Grid for Layout

The Composition Editor provides grids for positioning parts. The free-form surface
has a grid and so do container parts such as frame windows. The Composition
Editor provides the following grid options:

Snap to Grid
This tool positions the upper left corner of the part(s) to the nearest grid
coordinate. Snap to grid works on the part(s) you have selected that are
already on the surface. The Snap to grid tool is on the tool bar and also
listed in the Tools pull-down menu.

Snap on Drop
When Snap on drop is activated, every part you drop on the gridded
surface aligns to the nearest grid coordinate. The Snap on drop tool is
located on the Options pull-down menu.

37

Snap on Size

This tool allows you to align the edges of a part to the grid as you size it.
Sizing to the grid helps keep part dimensions in exact and easily countable
increments.

Set Grid Spacing
This tool allows you to determine the horizontal and vertical distance, in
pixels, between the lines of the grid. Select this tool from the pop-up menu.

Toggle Grid
This tool allows you to show or hide the grid. If no parts are selected, you
can select the Toggle Grid tool to toggle the grid for the free-form surface.
If a Composers part is selected, the Toggle Grid tool toggles the grid for
the Composers part.

“Selecting Parts” on page 35

“Positioning Parts” on page 37

Aligning Parts
1. Select all the parts you want to align, and then select the part you want the

others to match.

2. Select one of the following alignment tools from the tool bar:

Align Left

Align Top

Align Center

Align Middle

Align Right

Align Bottom

“Selecting Parts” on page 35

“Spacing Composite Parts within Composers Parts”

“Spacing Parts within a Bounding Box” on page 39

Spacing Composite Parts within Composers Parts

To evenly space composites within their Composers part:

1. Select all the parts you want to evenly space.

2. Select one the following spacing tools from the tool bar:

v Distribute Horizontally

v

38 VisualAge C++ Professional for AIX: Visual Composition Tasks and Concepts

Distribute Vertically

“Selecting Parts” on page 35

“Spacing Parts within a Bounding Box”

“Aligning Parts” on page 38

Spacing Parts within a Bounding Box
1. Select all the parts you want to evenly space. You must select a minimum of

three parts.

2. From the pop-up menu of one of the selected parts, select Layout and then
Distribute , and then either Horizontally in bounding box or Vertically in
bounding box .

“Aligning Parts” on page 38

“Spacing Composite Parts within Composers Parts” on page 38

Moving a Part

To move a part in the Composition Editor, follow these steps:

1. Place the mouse pointer over the part you want to move.

2. Hold down the appropriate mouse button and move the mouse pointer to the
new location.

v In Windows, hold down mouse button 1.

v In OS/2, hold down mouse button 2.

v In AIX, hold down the middle mouse button.

An outline of the part you are moving appears as you move the mouse.

3. Release the mouse button. The part appears in its new location with a solid
border around the window or form that contains the part, indicating target
emphasis.

If the part you are dragging is one of several that you selected, all selected parts
move together. Pressing the Esc key cancels the move without making changes.

“Chapter 11. Manipulating Parts in the Composition Editor” on page 37

Resizing a Visual Part

You can change the size of a visual part in the Composition Editor using any of the
following techniques:

v Dragging the selection handles

v Matching by multiple selection

v Changing Size and position prompter properties

v Resize option on the part pop-up resets to the default size

Chapter 11. Manipulating Parts in the Composition Editor 39

You can also size a part to the grid coordinates by selecting Snap on size from the
Options pull-down menu.

“Resizing a Part by Dragging”

“Matching Part Sizes Using the Tool Bar”

Resizing a Part by Dragging

To change the size of a visual part, follow these steps:

1. Select the part by clicking it with mouse button 1. To size several parts at once,
select all the parts you want to size.

2. Place the mouse pointer over one of the handles and hold down mouse button
1.

3. While holding down mouse button 1, drag the handle to a new location. As you
move the mouse, the outline of the part dynamically changes size. When it is
the size you want, release the mouse button. The part changes to the size that
you chose.

Note: Pressing the Esc key cancels resizing without making changes.

To size a part in only one direction, press and hold the Shift key while sizing the
part. Holding down the Shift key prevents one dimension of the part from changing
when you resize the other dimension. For example, to change the width of a part
but prevent its height from changing, hold down the Shift key while changing the
width.

“Matching Part Sizes Using the Tool Bar”

Matching Part Sizes Using the Tool Bar
1. Select all the parts you want to size, making sure the last part you select, the

anchor, is the size you want the others to match. You can change the anchor by
holding the Ctrl key and double-clicking the new anchor.

2. Select one of the following from the tool bar or the Tools pull-down menu:

Match Width

Match Height

The size of the selected parts changes to match the size of the anchor part.

Copying a Part

You can use the following techniques to copy parts in the Composition Editor:

v “Copying Parts by Dragging” on page 41

v “Copying Parts Using the Clipboard” on page 41

40 VisualAge C++ Professional for AIX: Visual Composition Tasks and Concepts

Copying Parts by Dragging
1. Select all the parts you want to copy. If you only want to copy one part, you do

not have to select it.

2. Position the mouse pointer over one of the parts you want to copy.

3. Hold down and do not release both the Ctrl key and the appropriate mouse
button.

v For Windows, hold mouse button 1.

v For OS/2, hold mouse button 2.

v For AIX, hold mouse button 3.

4. Move the mouse pointer to a new position. To help you with positioning, an
outline of the part or parts appears. When you are copying multiple parts, the
outlines of each part move together as a group.

5. When the copy is in the desired position, release the mouse button and Ctrl key.
The copy appears where you positioned the outline or outlines.

Note: Pressing the Esc key before releasing the mouse button cancels copying
without making changes.

“Copying Parts Using the Clipboard”

Copying Parts Using the Clipboard
1. Select all the parts you want to copy.

2. From the Edit pull-down menu, select Copy . A copy of each selected part is
placed on the clipboard.

3. From the Edit pull-down menu, select Paste . The mouse pointer turns into
crosshairs, indicating that it is loaded with the copied parts.

4. Position the mouse pointer where you want the parts to be copied.

5. Click mouse button 1. Copies of the parts are pasted at the position of the
mouse pointer.

Note: Only the part or parts are copied to the clipboard, not the connections.

Parts that you copy remain on the clipboard until you copy something else.
Therefore, you can continue to paste copies of those parts by selecting Paste ,
positioning the mouse pointer, and clicking mouse button 1.

If you select Paste and then decide against pasting the parts, you can unload the
mouse pointer by either selecting Selection tool on the tool bar or by selecting

Tools on the menu bar and then Selection tool from the pull-down menu.

“Copying Parts by Dragging”

Chapter 11. Manipulating Parts in the Composition Editor 41

Changing Depth Order within a Composite Part

Depth order is the order in which parts are stacked on the application desktop.
Parts lower (or later) in the depth order overlay at least a portion of parts higher up
(or first). An example of this is a push button on a canvas. The canvas appears
higher in the depth order; the push button, which lies on top of the canvas, appears
lower.

The Composition Editor assigns the depth order as parts are dropped. Depth order
is hierarchical, depending on the arrangement of Composers parts.

You can change the depth order within a single composite part by dragging items in
the parts list. To change the depth order, do the following:

1. Open a parts list in the composite part by selecting View parts list from the
pop-up menu of the part.

2. To move more than one part:

v If the parts are adjacent in the list, select the first part in the group you want
to move. Hold down the Shift key and select the last part in the group you
want to move. VisualAge highlights all the parts between the first and the last
part selected.

v If the parts are not adjacent in the list, select the first part and hold down the
Ctrl key while selecting the other parts.

Note: If you want to move only one part, you do not need to select it first.

3. Using mouse button 2, drag the selected parts to their new location in the depth
order.

If you set the tabbing for any of the moved parts, the tabbing order is also changed.

“About Setting Groups and Tab Stops” on page 12

“Changing the Tabbing Order”

“Setting Tab Stops and Groups” on page 43

Changing the Tabbing Order
1. Open a parts list for the Composers part.

2. Move the mouse pointer to the part in the list whose position you want to
change.

3. Press and hold mouse button 2.

4. Drag the part icon to its new position.

5. Release mouse button 2.

Note: You cannot move a composite to a new Composers part by changing the
tabbing order. You must do this by moving the parts themselves in the
Composition Editor.

“About Setting Groups and Tab Stops” on page 12

42 VisualAge C++ Professional for AIX: Visual Composition Tasks and Concepts

“Changing Depth Order within a Composite Part” on page 42

“Setting Tab Stops and Groups”

“Opening the Property Sheet for a Part” on page 27

Setting Tab Stops and Groups

If you want the user to be able to move the input focus to a part using the Tab and
backtab keys, do the following:

1. Open the pop-up menu for the part.

2. Select Set tabbing .

3. Select Tab stop , Group or both.

A check next to the option, indicates that it is set.

You can also Set tabbing through the property sheet, as follows:

1. Select the part.

2. Open the pop-up menu for the part.

3. Select Open Settings and the Properties window appears.

4. Select the Style value field and a small box appears on the right side of

the field.

5. Select the box and the Style options appear.

6. Deselect the Set value to nil (None) checkbox and the Property column is
enabled.

7. Select the Group , Tab stop , or value fields and select ON from the drop-down
list.

8. Select OK twice.

The group includes all parts in the tabbing order below the part that has Group
selected.

To start another group, enable Group for the part with the initial input focus for the
group.

Note: If a part has both Group and Tab stop enabled, a user can tab to the first
part in the group and then use the arrow keys to move to the other parts in
the group.

“About Setting Groups and Tab Stops” on page 12

“Changing Depth Order within a Composite Part” on page 42

“Changing the Tabbing Order” on page 42

Tearing Off Attributes
1. Select Tear off attribute from the pop-up menu of the part with the attribute you

want to access. Another menu appears listing all of the attributes of the part.

2. Select the attribute you want to tear off. The mouse pointer is now loaded with a
variable part representing or pointing to the attribute you selected.

Chapter 11. Manipulating Parts in the Composition Editor 43

3. Place the new part on the free-form surface, as you would any other nonvisual
part. The torn-off attribute now appears as a variable part connected to the
original part by an attribute-to-attribute connection.

“About Tearing Off Attributes” on page 13

“Attribute-to-Attribute Connections” on page 106

44 VisualAge C++ Professional for AIX: Visual Composition Tasks and Concepts

Chapter 12. Making Connections in the Composition Editor

In VisualAge, you draw connections between parts to define their interaction. This
involves using the mouse to select part features from each end point in the
Composition Editor. The type of feature at either end—attribute, action, event, or
member function—determines the type of connection. You may find the Browse
part features option on the part pop-up menu useful in determining the type of
connection you wish to make.

If you decide to change the behavior of the part later, you can edit or reorder the
existing connections without redrawing them.

“Chapter 26. Connections” on page 105

“Connecting Features to Other Features”

“Supplying Parameter Values for Incomplete Connections” on page 49

“Opening Connection Settings” on page 51

“Connecting Features to Member Functions” on page 46

“Connecting Features to Custom Logic” on page 47

“Reordering Connections” on page 55

“Selecting and Deselecting Connections” on page 54

“Deleting Connections” on page 53

“Showing and Hiding Connections” on page 53

“Changing the Source and Target of Connections” on page 56

“Connecting from Connection Results” on page 48

Connecting Features to Other Features

To connect two features, follow these steps. In this procedure, the term source
refers to the first end point. The term target refers to the second end point.

1. Select the source part, click mouse button 2, and select Connect from the
pop-up menu. In OS/2 and Windows NT, you can display the connection pop-up
menu more quickly as follows:

a. Position the mouse pointer over the source.

b. Hold down the Alt key while clicking mouse button 2.

In most cases, a cascade menu appears that displays the names of the most
commonly used (or preferred) features. If additional features exist that are
appropriate for the connection type, All Features also appears on the menu.
Selecting All Features opens a connection window with an expanded list of
features, sorted alphabetically and by feature type.

v If a connection window appears instead of the cascade menu, this means
that preferred features have not been assigned for the part.

v If the All Features selection does not appear on the menu, this means the
menu contains all available features, not just the preferred ones, and there
are no more from which to select.

45

2. Select a feature by doing one of the following:

v If the feature appears in the preferred list, select it.

v If the feature does not appear in the list but the All Features selection is
available, select All Features and then select the feature from the expanded
list in the connection window.

v If the feature does not appear in either the preferred or expanded list, you
may be able to edit the part to add the feature you need.

3. If, at this point, you decide not to complete the connection, do one of the
following:

v If a pop-up menu appears, move the mouse pointer away from the
connection menu and click mouse button 1.

v If a window showing all the features appears, select the Cancel push button
at the bottom of the window.

The menu or window disappears without completing the connection.

4. Place the mouse pointer over the target part. As you move the mouse, a
dashed line trails from the mouse pointer back to the source part.

5. Click mouse button 1. As with the source part, either a pop-up menu or
connection window appears.

6. Select the target feature as before.

When you complete the connection, a colored connection line appears. The color
indicates the connection’s type, based on the features you selected as end points.

“Chapter 26. Connections” on page 105

“Connecting Features to Custom Logic” on page 47

“Supplying Parameter Values for Incomplete Connections” on page 49

“Opening Connection Settings” on page 51

“Reordering Connections” on page 55

“Selecting and Deselecting Connections” on page 54

“Changing the Source and Target of Connections” on page 56

Connecting Features to Member Functions

The source for a member function connection must be either an event or an
attribute with an associated event. Connect to a member function as follows:

1. Open the connection menu for the source part.

2. From this menu, select the event. If the event you want is not on the Preferred
Features list, select the feature from the All Features menu.

3. Move the mouse pointer to an empty point on the free-form surface and click
mouse button 1. Doing this indicates that you want to connect the event to the
composite part rather than to one of its embedded parts.

The Composition Editor displays the Member Function Connection window.

4. Type the signature of the existing member function in the entry field. Be sure to
type the full declaration of the member function, including return type.

46 VisualAge C++ Professional for AIX: Visual Composition Tasks and Concepts

5. If the member function takes input parameters and you want to specify them as
constants, select the Set parameters push button.

6. Select OK.

The connection window disappears and VisualAge draws a green connection
arrow from the source part toward the edge of the free-form surface. If the
connection arrow is dashed, you must supply values for the input parameters of
the member function.

7. Before you generate the code for your part, you must switch to the Class Editor
and enter the names of the files containing the member function code so that
VisualAge includes them in your part code.

8. You must create an .hpv file that contains a declaration for this member function
and a .cpv file that contains the code for this member function. The member
function declaration that you enter in this field must be identical to the
declaration in the .hpv file.

“Member Function Connections” on page 108

“Supplying a Parameter Value Using a Constant” on page 50

“Connecting Features to Custom Logic”

“Connecting from Connection Results” on page 48

“Opening Connection Settings” on page 51

Connecting Features to Custom Logic

The source for a custom logic connection must either be an event or an attribute
with an associated event.

1. Open the connection menu for the source part.

2. From this menu, select the event.

3. Move the mouse pointer to the target part and click mouse button 1. The
connection menu opens for the target part.

4. Select Custom logic . The Custom Logic Connection window appears.

5. Enter information about the connection in the Description field.

The Description field serves two purposes. After you complete the connection,
if you select the connection line, the text that you entered in this field appears in
the information area at the bottom of the Composition Editor.

When you generate the code for this part, VisualAgeinserts this description in
the ITRACE_DEVELOP statement that appears in the dispatchNotificationEvent
member function for the connection class. When you run the compiled
application with tracing set on, VisualAge write this description to the trace
destination whenever the connection code runs.

6. Enter the appropriate value in the Return type field.

This field contains the return type for your custom logic. If you want to pass a
return value from your custom logic, change the return type from the default
void to the type of data that you want to pass.

7. Add code to the Custom Logic field.

The Custom Logic field is a multiline entry field, where you enter your custom
logic.

Chapter 12. Making Connections in the Composition Editor 47

You can specify whether your custom code affects the source or the target part
by selecting the appropriate push button before entering a line of code.

Select the Event push button to insert a reference to the source of the
connection (an INotificationEvent). The event reference gives you access to the
data that is passed by the event. You might use this to test for specific event
data and do processing based on the result of the test.

8. Select the Add push button and the connection window disappears. VisualAge
draws a connection arrow from the source to the target.

“Custom Logic Connections” on page 109

“Connecting Features to Other Features” on page 45

“Connecting Features to Member Functions” on page 46

“Opening Connection Settings” on page 51

“Reordering Connections” on page 55

“Selecting and Deselecting Connections” on page 54

“Changing the Source and Target of Connections” on page 56

Connecting from Connection Results

An exception is any user, logic, or system error detected by a function that does not
deal with the error itself but passes the error on to a handling routine, called an
exception handler. In VisualAge, you can catch exceptions by connecting exception
events to either actions or member functions.

An exception event is a feature of a connection, not a part. It appears as
exceptionOccurred on the connection’s connection menu. Exception events are
typically connected to IMessageBox* parts, which are used to display error
messages associated with the exceptions.

The return type of a target action displays as the actionResult event of the
connection. You can connect the actionResult event to a feature of the same part or
another part.

To connect an exception event, do the following:

1. Write a member function or action that throws an exception. The easiest way to
do this is to include something like the following:
throw IException("Error message.");

where the text of the error message that you want to display in the message
box is the only parameter given for the IException constructor.

2. For an action, update the part interface.

3. Connect an event to the action or member function you just created.

4. Drop an IMessageBox* part on the free-form surface. This message box will
display the error message in the completed application.

5. Connect the exceptionOccurred event of the connection to the showException
action of the IMessageBox* part.

48 VisualAge C++ Professional for AIX: Visual Composition Tasks and Concepts

This connection causes the application to show a message box that contains
the exception error message whenever the exception is thrown.

“Chapter 26. Connections” on page 105

“Connecting Features to Other Features” on page 45

“Connecting Features to Member Functions” on page 46

“Connecting Features to Custom Logic” on page 47

“Opening Connection Settings” on page 51

“Selecting and Deselecting Connections” on page 54

Supplying Parameter Values for Incomplete Connections

Connections sometimes require parameters, or input arguments. If a connection
requires parameters that have not been specified explicitly or by default, it appears
as a dashed arrow, indicating that it is incomplete. When you have made all the
necessary parameter connections, the connection line becomes solid, indicating that
the connection is complete.

Be sure that you make the parameter connections before code is generated for
your part.

“Parameter Connections” on page 110

“Supplying a Parameter Value Using a Connection”

“Supplying a Parameter Value Using a Constant” on page 50

“Specifying Default Values for Parameters” on page 50

“Chapter 12. Making Connections in the Composition Editor” on page 45

“Opening Connection Settings” on page 51

“Reordering Connections” on page 55

“Changing Connection Settings When a Member Function Is the Target” on
page 52

Supplying a Parameter Value Using a Connection

One way to supply parameter values is to make a connection from the incomplete
connection line to the parts supplying the parameter values. Most of the time, the
values you need are those of attributes from other parts that you are working with in
the Composition Editor. Sometimes, however, the value you need is the return value
from an action, a member function, or custom logic.

1. Start a new connection using as the source, the dashed connection line that
requires the parameter.

When you make a connection, the Composition Editor provides a visual cue to
help you position the pointer correctly. When you have the pointer directly over
the connection line, a small hollow box appears.

Chapter 12. Making Connections in the Composition Editor 49

2. For the target, select the feature that is to provide the value.

“Parameter Connections” on page 110

“Supplying a Parameter Value Using a Constant”

“Specifying Default Values for Parameters”

“Chapter 12. Making Connections in the Composition Editor” on page 45

“Connecting from Connection Results” on page 48

Supplying a Parameter Value Using a Constant

When connections need parameters with constant input values, provide these
values through the settings window of the incomplete connection, as follows:

1. Open settings for the incomplete connection by selecting Open Settings from
the pop-up menu. The settings window of the incomplete connection appears.

2. Select Set parameters . The Constant Parameter Value Settings window
appears showing the parameters for which you can set constant values.

3. Enter the constant parameter values you want to use.

Type the parameter values just as you would type them as parameters for the
member function if you were coding it by hand. For example, to provide a
constant value for a text parameter, enter the string that you want the parameter
to receive. VisualAge copies these values as strings to the output files when
you generate code.

4. Do one of the following:

v To apply the values and save them, select OK. This action closes the
window.

v To close settings without saving any of the parameter values you just
entered, select Cancel .

“Parameter Connections” on page 110

“Opening Connection Settings” on page 51

“Supplying a Parameter Value Using a Connection” on page 49

“Specifying Default Values for Parameters”

Specifying Default Values for Parameters

You can specify default parameters for actions in the declaration of the member
function for the action, as follows:

v In the .vbe file for the part

v On the Action page of the Part Interface Editor

Either of these enables a default value to be passed in an event-to-action
connection, thus avoiding the need to supply a parameter value.

For example, suppose you want to connect the buttonClickEvent feature of a
Remove push button to a removeSelected action that you created for an

50 VisualAge C++ Professional for AIX: Visual Composition Tasks and Concepts

IListBox*-based part. Normally, you would also need to connect the selection
attribute of the IListBox*-based part to the index attribute of the connection between
buttonClickEvent and removeSelected. This connection would be required to get the
index of the selected item in the list box.

However, in the .vbe file of the IListBox*-based part, you can specify the following
default parameter value for the removeSelected action:
//VBAction: removeSelected, "removeSelected",,
//VB: removeSelected(unsigned long index=selection())

This means that if no attribute of the IListBox*-based part is connected to the index
attribute, the selection member function (the get member function of the selection
attribute) is called by default to provide the index of the selected item.

You could do the same thing by creating a removeSelected action on the Action
page of the Part Interface Editor for the IListBox*-based part. You would specify the
default parameter in the declaration of the removeSelected member function in the
Action member function field as follows:
virtual unsigned long removeSelected(unsigned long index=selection())

However, you must include this signature and the default parameters in the actual
C++ code or you will receive an error.

“Parameter Connections” on page 110

“Supplying a Parameter Value Using a Connection” on page 49

“Supplying a Parameter Value Using a Constant” on page 50

“Chapter 12. Making Connections in the Composition Editor” on page 45

Opening Connection Settings

Connection settings enable you to change a connection without redrawing it.
Through the settings window, you can do the following:

v Change the source or target feature, depending on the connection type

v Reverse the direction of an attribute-to-attribute connection

v Specify an input parameter as a constant

v Delete the connection

To open settings for a connection, move the mouse pointer over the connection and
do one of the following:

v Double-click mouse button 1.

v Click mouse button 2 and select Open Settings from the connection’s pop-up
menu.

“Chapter 26. Connections” on page 105

“Chapter 12. Making Connections in the Composition Editor” on page 45

“Supplying a Parameter Value Using a Constant” on page 50

Chapter 12. Making Connections in the Composition Editor 51

“Changing the Source and Target of Connections” on page 56

“Deleting Connections” on page 53

“Changing Connection Settings When a Member Function Is the Target”

Changing Connection Settings When a Member Function Is the Target

The Settings window for member function connections looks similar to the window
you used to specify the original connection:

v To change the source event, either select a new event fro the drop-down box or
type the name of an event in the Event name field. If a field labeled Attribute
name appears instead, the current source event is associated with an attribute.
To change it, type the name of an attribute in the field.

v To change the member function, enter a new member function signature in the
entry field at the bottom of window.

v To supply a constant parameter value, select the Set parameters push button.

“Member Function Connections” on page 108

52 VisualAge C++ Professional for AIX: Visual Composition Tasks and Concepts

Chapter 13. Manipulating Connections on the Free-Form
Surface

Once you have made connections to and from parts you dropped on the free-form
surface, you can modify them as follows:

v Display or hide the connection lines

v Delete the connection

v Reorder the connections

v Change the source and target of the connection without starting over

“Showing and Hiding Connections”

“Deleting Connections”

“Selecting and Deselecting Connections” on page 54

“Reordering Connections” on page 55

“Changing the Source and Target of Connections” on page 56

Showing and Hiding Connections

You can show and hide connections by using the Show connections and

Hide connections tools. They can be found on the tool bar or as selections

on the Tools pull-down menu. These tools show or hide all connections that have
the selected part or parts as their end points. If no parts are selected, these tools
show and hide all connections in the composite part.

If you hide connections, the Composition Editor is refreshed faster and is less
cluttered, making it easier for you to work.

You can also do this from the pop-up menu by selecting the Browse Connections
cascade menu. The choices in this menu affect only connections going to and from
the part whose pop-up menu you opened.

“Chapter 26. Connections” on page 105

“Selecting Parts” on page 35

“Chapter 12. Making Connections in the Composition Editor” on page 45

Deleting Connections

To delete a connection, do one of the following:

v Select the connection and press the Delete key.

v From the connection’s pop-up menu, select Delete .

v From the connection’s Settings window, select the Delete push button.

53

“Chapter 26. Connections” on page 105

“Opening Connection Settings” on page 51

“Displaying Part Pop-Up Menus” on page 26

“Chapter 12. Making Connections in the Composition Editor” on page 45

“Selecting and Deselecting Connections”

Selecting and Deselecting Connections

You select connections in the same way that you select parts. When you select a
connection, boxes called selection handles appear on it to show that it is
selected. When first drawn, a connection contains three selection handles: one at
each end and one in the middle. You can use selection handles to change either of
the following:

v The end points of the connection.

v The shape of the connection line, by dragging the middle box to another location.
This helps you distinguish among several connection lines that are close
together.

“Chapter 26. Connections” on page 105

“Changing the Shape of a Connection” on page 57

“Selecting a Single Connection”

“Selecting Multiple Connections”

“Deselecting Connections” on page 55

Selecting a Single Connection
1. Move the mouse pointer over the connection you want to select.

2. Click mouse button 1 and the connection is selected.

“Selecting Multiple Connections”

“Deselecting Connections” on page 55

Selecting Multiple Connections

To select multiple connections in OS/2 using just the mouse, follow these steps:

1. Move the mouse pointer over one of the connections you want to select.

2. Hold down mouse button 1 instead of clicking it.

3. Move the mouse pointer over each connection that you want to select. The
selection boxes appear on each connection that the mouse pointer passes over
to show they are selected.

4. After the connections are selected, release mouse button 1.

54 VisualAge C++ Professional for AIX: Visual Composition Tasks and Concepts

To select multiple connections on all platforms using both the mouse and the
keyboard, follow these steps:

1. Hold down the Ctrl key.

2. Move the mouse pointer over a connection.

3. Click mouse button 1 while the mouse pointer is over the connection line.

4. Without releasing the Ctrl key, repeat the preceding steps until all connections
that you want to select are selected.

“Selecting a Single Connection” on page 54

“Deselecting Connections”

Deselecting Connections

To deselect a connection without selecting another part or connection, follow these
steps:

1. Move the mouse pointer over the connection line.

2. Hold down the Ctrl key.

3. Click mouse button 1.

“Selecting a Single Connection” on page 54

“Selecting Multiple Connections” on page 54

Reordering Connections

If you make several connections from the same part, they run in the order in which
you made the connections. To ensure the correct flow of control when you generate
the source code, you might need to reorder the connections. If so, do the following:

1. Select the source part.

2. From the source part pop-up menu, select Reorder Connections From . The
Reorder Connections window appears, showing a list of your connections.

3. With the mouse pointer over the connection you want to reorder, press and hold
as follows:

v In OS/2, mouse button 2

v In Windows, mouse button 1

v In AIX, mouse button 3

4. Drag the connection to the place in the list where you want the connection to
occur.

Note: Parameter connections must always follow the connections they supply.

5. Release the mouse button.

6. Repeat these steps until the connections are listed in the order in which you
want them to occur.

7. Close the window.

“Chapter 26. Connections” on page 105

Chapter 13. Manipulating Connections on the Free-Form Surface 55

“Chapter 12. Making Connections in the Composition Editor” on page 45

“Opening Connection Settings” on page 51

“Selecting and Deselecting Connections” on page 54

Changing the Source and Target of Connections

You can change the end points of a connection without redrawing it, either by
dragging the connection or by changing its settings.

You can change the source of any connection. In most cases, you can also change
the target. However, depending on the feature that you connect to when you make
the change, you might get a different type of connection than the one you started
with.

Table 2. What Can Be Changed on a Connection, by Type

Connection type Move either end
Move source

end only

attribute-to-attribute x

attribute-to-member function x

attribute-to-action x

event-to-action x

event-to-attribute x

event-to-member function x

custom logic x

parameter connection x

“Chapter 26. Connections” on page 105

“Moving Either End of a Connection to a Different Part”

“Moving Either End of a Connection to a Different Feature” on page 57

“Reversing the Direction of a Connection” on page 57

“Chapter 12. Making Connections in the Composition Editor” on page 45

“Opening Connection Settings” on page 51

“Changing the Shape of a Connection” on page 57

Moving Either End of a Connection to a Different Part
1. Select the connection.

2. Move the mouse pointer over the appropriate selection handle at the end of the
connection.

3. Press and hold mouse button 1.

4. Move the mouse pointer to the new part or connection.

5. Release the mouse button.

56 VisualAge C++ Professional for AIX: Visual Composition Tasks and Concepts

If you change the target of a feature-to-action connection to a part that does not
support the target action, the connection menu appears, and you can select a new
target feature.

“Chapter 26. Connections” on page 105

“Moving Either End of a Connection to a Different Feature”

“Chapter 12. Making Connections in the Composition Editor” on page 45

“Selecting and Deselecting Connections” on page 54

Moving Either End of a Connection to a Different Feature
1. Open settings for the connection. The Settings window for that connection type

appears.

2. Select new end points from the lists shown.

3. Select the OK push button.

“Chapter 26. Connections” on page 105

“Opening Connection Settings” on page 51

“Moving Either End of a Connection to a Different Part” on page 56

“Chapter 12. Making Connections in the Composition Editor” on page 45

Reversing the Direction of a Connection

The direction of attribute-to-attribute connections determines which end point is
initialized first. The target attribute is initialized first based on the value of the
source. Only attribute-to-attribute connections can be reversed. To do this, open
settings for the connection and select the Reverse push button.

“Chapter 26. Connections” on page 105

“Opening Connection Settings” on page 51

Changing the Shape of a Connection

To help you distinguish among several connection lines that are close together, you
can change the shape of connections. To do this, follow these steps:

v Select the connection line you want to change.

v Place the mouse pointer over the middle box of the connection line.

v Click and hold mouse button 1 and drag the connection line to the desired
shape.

v Release the mouse button and the new line is set.

You can change the connection back to its original shape by selecting Restore
Shape from the pop-up window.

Chapter 13. Manipulating Connections on the Free-Form Surface 57

58 VisualAge C++ Professional for AIX: Visual Composition Tasks and Concepts

Chapter 14. Generating Code

The parts you have created are stored in the VisualAge data model. This includes
information about the part interfaces, connections between them, and initial property
settings. At several points during development, you will want to generate code for
your application, compile it, and test it. The process for a visually constructed
application follows.

1. “Preparing for Code Generation”

2. “Generating Source Code” on page 60, including “Generating Resource Code
for Translation” on page 61

3. “Generating Source Code for Your Application’s main() Function” on page 61

4. “Generating User Interface Source” on page 61 (for custom visual parts only)

5. “Chapter 15. Preparing for Compilation of Generated Files” on page 63

6. “Chapter 16. Debugging Connections” on page 65

7. “Chapter 17. Fixing Problems with Your Visually Constructed Application” on
page 67

8. “Chapter 23. Packaging Visually Composed Applications” on page 95

The process of generating feature code is treated separately under “Assembling a
Part from Generated and User-Written Code” on page 84.

“Chapter 27. Generated Code” on page 111

Preparing for Code Generation

Before generating code, you must set generation options in the Class Editor. A
summary of tasks associated with these settings follows.

Enabling code generation
To enable generation of class code, select the Generate code (.hpp and
.cpp) check box.

To enable generation of feature code, select the appropriate check boxes in
the User files included in generation group. This selection also ensures
that feature files are properly included in the generated class files.

Specifying a name for generated files
By default, VisualAge sets a name for generated files. However, you can
change the default by modifying the contents of the C++ header file field.
When this value is changed, the value of the Base name for other files
field is also changed.

Including handwritten code files
Before VisualAge can generate the proper include statements for
handwritten code, you must select the appropriate check boxes in the User
files included in generation group.

Linking in a part that will be compiled separately
If the part will be compiled separately into a runtime library, you can indicate

59

so to VisualAge by entering the name of the link library file in the .LIB file
name field. If this is set, VisualAge generates a #pragma library statement
in the.hpp file for the part.

Using a resource library
If the part uses a resource library, you must indicate so to VisualAge by
entering a value in the Resource DLL name field.

Enabling custom visual support
To enable behavioral support for a custom visual part on the free-form
surface, enter the name of the part’s interface library in the Composition
Editor interface DLL name field and select the Use interface DLL check
box.

Selecting the check box indicates to VisualAge that you want the part
instantiated ″live″ on the free-form surface. If you do not select the check
box, VisualAge uses a gray box to represent the part on the free-form
surface.

“Chapter 27. Generated Code” on page 111

“Generating Source Code”

“Generating Resource Code for Translation” on page 61

“Generating User Interface Source” on page 61

Generating Source Code

After you finish constructing a part, you must generate source code for it. You can
generate source code for the part being edited as follows:

1. From the editor’s menu bar, select File .

2. Select Save and generate ; then select Part source . When generation is
complete, VisualAge displays the results in a log window.

If you are using the Composition Editor, you can select the Generate Part Code
tool from the tool bar instead. There is no difference between selecting this icon and
selecting the menu item described previously.

If you have not already done so, the next step is “Generating Source Code for Your
Application’s main() Function” on page 61.

“Generated Part Code” on page 112

“Chapter 14. Generating Code” on page 59

“Code Generation Errors” on page 116

60 VisualAge C++ Professional for AIX: Visual Composition Tasks and Concepts

Generating Resource Code for Translation

VisualAge automatically generates separate code for window resources contained
within visual parts. If you intend to have your application’s user interface translated
into another language, you can opt to have VisualAge generate separate code for
string resources as well.

To have VisualAge generate separate code for string resources, set the following
generation options in the Class Editor before generating code:

v Select the Generate code (.hpp and .cpp) check box.

v Select the Generate resource IDs for strings check box

v Enter a value in the Starting resource ID field.

v Specify the name you plan to give the compiled resource library by entering a
value in the Resource DLL name file.

For guidelines on choosing an appropriate starting resource ID, read the conceptual
topic listed below.

“Resource Files Generated for Translation” on page 116

“Chapter 14. Generating Code” on page 59

“Code Generation Errors” on page 116

Generating Source Code for Your Application’s main() Function

To create an executable application, you must generate code for the standard
main() function. You can do this for parts that you want to test individually or for
your entire application. In either case, the process is as follows:

1. Create a nonvisual composite part that inherits from IVBMain.

2. Generate source code for the main part as you would any other composite.

The next step is “Chapter 15. Preparing for Compilation of Generated Files” on
page 63 .

“Generated Application Code” on page 112

“Generating Source Code” on page 60

Generating User Interface Source

To have VisualAge generate interface library source code for custom visual parts,
follow these steps:

1. In the Class Editor, select the Generation Options tab.

2. Enter the name of the interface library in the Composition Editor interface
DLL name field.

Chapter 14. Generating Code 61

3. From the menu bar, select File .

4. Select Save and generate ; then select User Interface Source . When
generation is complete, VisualAge displays the results in a log window.

The generated code file has an extension of .cp. In OS/2 and Windows, you can
treat this file as you could a .cpp file. In AIX, you must do a little work by hand
before VisualAge can compile the interface library. For more information, read
“Chapter 15. Preparing for Compilation of Generated Files” on page 63.

“Generated Interface Code” on page 113

“About Implementing Custom Visual Parts” on page 101

“Chapter 20. Deriving from Visual Classes” on page 81

“Sharing Custom Visual Parts” on page 89

62 VisualAge C++ Professional for AIX: Visual Composition Tasks and Concepts

Chapter 15. Preparing for Compilation of Generated Files

Before compiling your application, be sure the following files have been generated:

v Header files for all parts

v .cpp files for all parts, including the main part

v Resource files for any applicable parts

Make sure the following options are enabled in the application’s build setup:
gen(enumsize, 4),
gen(rtti, yes),
defaults(xlC_r),
lang(nokeyword,"false"),
lang(nokeyword,"true"),
lang(nokeyword,"bool"),
define(IC_LANG_BOOL,0),
define("IC_TRACE_DEVELOP"),
link(linkwithsharedlib, yes),
link(linkwithmultithreadlib, yes),
link(map, no),
link(padding, no),
incl(searchpath,".")

If you intend to compile parts into separate runtime or interface libraries, remember
to set the appropriate targets in the application’s build setup. For complete
examples of build setups for executable files, runtime libraries, and interface
libraries, see the OASearch sample.

In OS/2 and Windows, part files (.vbf) are automatically recognized as a valid
source format in the IDE; it is from these that VisualAge reads dependency
information. In AIX, however, you must use the generated .cpp file names; you must
also explicitly include any system runtime libraries that must be linked. Here is a
portion of the AIX build setup for the OASearch application, found in oasearch.icc.
Note the specification of the runtime library for a custom visual part,
OAMorphableSpinButton, which is found in the current build directory.

"skill.cpp",
"skillb.cpp"

source "pthread.h"
source "./oamorph.a"

source "libvacbase.a"
source "libvacui.a"
source "libvacvgui40.a"
source "libvacvngui40.a"
source "libvacgraph2d.a"

If you intend to build an interface library for custom visual parts in AIX, you must
write a small amount of code by hand and add the new code file to your build
setup. (You need one of these code files for each interface library you plan to build,
regardless of the number of parts to be included.) This is not necessary for OS/2 or
Windows; in these cases, build the interface library the same way you would build
the runtime library for the part. Here is the AIX interface code for the
OAMorphableSpinButton part, found in oamorph.cp:
#include <iavlbase.h>
#if defined (IC_MOTIF)
//
// Add one extern statement for each custom visual part.
// Get the name of the primitive table from the interface source file
// that is generated for the part.

63

//
extern EsPrimitiveTable (OAMorphableSpinButtonTable);
//
// You can name this new primitive table anything you want,
// but the name must be unique to your application.
//
EsDefinePrimitiveTable(OAMorph)
//
// Add one EsSubTable statement for each custom visual part.
// Use the same primitive table name as you did in the extern statement.
//
EsSubTable (OAMorphableSpinButtonTable)
EsEndPrimitiveTable
#endif

In AIX, the IDE does not recognize .cp as a valid source type, so you must explicitly
declare it in the build setup for the interface library. Note that the name of the AIX
build target ends in .w; Visual Builder assumes this for all interface libraries in AIX.
Also note the correspondence between the primitive table created in the previous
code and one link option that follows. Here is the AIX build setup for
OAMorphableSpinButton, found in oamorphw.icc:
option

gen(enumsize, 4),
gen(rtti, yes),
defaults(xlC_r),
lang(nokeyword,"false"),
lang(nokeyword,"true"),
lang(nokeyword,"bool"),
define(IC_LANG_BOOL,0),
define("IC_TRACE_DEVELOP"),
link(linkwithsharedlib, yes),
link(linkwithmultithreadlib, yes),
link(map, yes),
link(padding, no),
link(sharedLibPriority,-2147482557),
link(exportAll),
link(entry,OAMorph),
incl(searchpath,".")

{

target type(shr) "oamorphw.w"
{

source type(cpp) "oamorphw.cp"
source type(cpp) "oamrfbtn.cp"

source "libvacvifbase.a"
source "libvacbase.a"

source "libvacui.a"
source "./oamorph.a"

}

}

“Chapter 14. Generating Code” on page 59

Changing a Build Setup

“Chapter 16. Debugging Connections” on page 65

64 VisualAge C++ Professional for AIX: Visual Composition Tasks and Concepts

../../ide/tasks/tibchgb.htm

Chapter 16. Debugging Connections

To make connections easier to debug, follow these steps:

1. Set environmental variables.

In OS/2 or Windows, add these lines to your config.sys file and reboot:
SET ICLUI TRACE=ON
SET ICLUI TRACETO=OUT

In AIX, add these lines to your .profile file and log back in:
export ICLUI_TRACE=ON
export ICLUI_TRACETO=OUT

2. Make sure the following options are enabled in the application’s build setup:

v Under Linker Options, Include debug information in the generated
executable module

v Under Miscellaneous Options, Define macros . In the Macro name field,
enter IC_TRACE_DEVELOP

3. Build your application.

4. When you run your compiled application, redirect the output to a file. For
example, run myapp.exe as follows on OS/2 and Windows NT:
myapp >myapp.out 2>&1

Run myapp as follows on AIX:
myapp >myapp.out

5. Browse the output file (myapp.out) to see what connections were run and in
what order. The file also lists any exceptions that were thrown.

“Chapter 14. Generating Code” on page 59

Changing a Build Setup

“Chapter 17. Fixing Problems with Your Visually Constructed Application” on
page 67

65

../../ide/tasks/tibchgb.htm

66 VisualAge C++ Professional for AIX: Visual Composition Tasks and Concepts

Chapter 17. Fixing Problems with Your Visually Constructed
Application

If you have problems running your application, check first for the following
situations:

v Check the order in which connections occur within the part. Even if they seem
correct in the Composition Editor, enable tracing, recompile, and run the
application in debug mode.

v If you mix static and dynamic linking on OS/2 or Windows, the resulting
application might behave unpredictably. We recommend you use DLLs and link
dynamically. Alternatively, compile and link one executable file statically with no
DLLs. Do not mix static and dynamic libraries.

v When you disable notification on collection parts, unpredictable results occur. For
example, if you use a sequence part to manage objects in a container and then
disable notification in the sequence, the container is not notified of the change in
the sequence and is therefore not refreshed.

“Chapter 27. Generated Code” on page 111

“Chapter 14. Generating Code” on page 59

“Chapter 16. Debugging Connections” on page 65

67

68 VisualAge C++ Professional for AIX: Visual Composition Tasks and Concepts

Chapter 18. Managing the Parts Palette

You can modify the parts palette at any time from the Composition Editor.

“Parts Palette” on page 10

“Preparing Icons for the Parts Palette”

“Adding a Category to the Parts Palette”

“Adding a Part to the Palette” on page 70

“Saving Parts Palette Changes” on page 71

“Deleting a Part or Category from the Palette” on page 71

Preparing Icons for the Parts Palette

Each category and part on the Composition Editor parts palette is represented by a
bitmap so you can recognize it visually. You can create and use your own bitmaps
when you extend the parts palette. If you do not, you can still extend the parts
palette and accept the default category icon, and the default part icon.

To prepare bitmaps for use with the Composition Editor:

1. Create your icons using an icon editor. In OS/2, for example, use the OS/2 icon
editor, which is available in the operating system toolkit.

Bitmaps used on the parts palette must be no larger than standard icons for the
display resolution being used. For VGA displays on OS/2, use the Independent
VGA form (32x32). For higher display resolutions on OS/2, use the 8514-16
colors form (40x40).

2. Create a resource library that contains your icons.

3. Place the resource library in the proper directory: for OS/2 or AIX in a directory
in your LIBPATH statement, and for Windows in a directory in your PATH
statement.

“Parts Palette” on page 10

“Adding a Category to the Parts Palette”

“Adding a Part to the Palette” on page 70

“Deleting a Part or Category from the Palette” on page 71

“Saving Parts Palette Changes” on page 71

Adding a Category to the Parts Palette

Once you have prepared an icon in a resource library, you can add a new category
to the parts palette.

69

1. From the Composition Editor, select Options , Modify palette , and then Add
new category . The Add palette category window appears.

2. In the Category name field, enter the name for your category. When you select
your new category on the parts palette, the Composition Editor displays this text
in the information area.

3. From the Category Graphic group, select the category of graphic.

4. Enter the name of your resource library in the Module name field.

Note: Only enter the resource library file extension in the Module name field
for AIX platforms.

5. In the Opened Category Graphic group, follow the same procedure to specify
the graphic you want to represent the opened category.

6. Select OK.

If you do not specify a resource library, the Composition Editor uses the default
icon.

If you specify a resource library the Composition Editor cannot locate, it uses the
question mark icon. If the question mark icon appears, make sure the following
conditions are met:

v The resource library exists and is in the LIBPATH for OS/2 or PATH for Windows.

v The resource library file name is correct.

v The resource ID for the icon (in the .rc file) exists in the resource library.

“Parts Palette” on page 10

“Preparing Icons for the Parts Palette” on page 69

“Adding a Part to the Palette”

“Saving Parts Palette Changes” on page 71

“Deleting a Part or Category from the Palette” on page 71

Adding a Part to the Palette

You can add the part that you are currently editing to any category on the parts
palette.

1. Open the part in the Composition Editor.

2. Select Options , Modify palette , and Add new part . The Add to Palette window
appears.

3. Enter the name of the part in the Name field.

4. Select a category for the new part.

5. Select OK. The Composition Editor adds the part to the category on the parts
palette.

“Parts Palette” on page 10

70 VisualAge C++ Professional for AIX: Visual Composition Tasks and Concepts

“Preparing Icons for the Parts Palette” on page 69

“Adding a Category to the Parts Palette” on page 69

“Saving Parts Palette Changes”

“Deleting a Part or Category from the Palette”

Deleting a Part or Category from the Palette

To remove a part from the parts palette:

1. Select the part on the parts palette.

2. Select Modify palette and then Remove part from the Options pull-down
menu. The selected part is removed from the parts palette.

To remove a category from the parts palette:

1. Select the category on the parts palette.

2. Select the Options pull-down menu.

3. Select Modify palette and then Remove category . The selected category and
all of the parts in it are removed from the parts palette.

“Parts Palette” on page 10

“Preparing Icons for the Parts Palette” on page 69

“Adding a Category to the Parts Palette” on page 69

“Adding a Part to the Palette” on page 70

“Saving Parts Palette Changes”

Saving Parts Palette Changes

The Composition Editor automatically saves all parts palette changes for you. When
you create a new category or part, the Composition Editor stores information about
that category or part in a file named vbpalet.dat, which is stored in your startup
directory. This file is written automatically.

Once VisualAge creates the vbpalet.dat file, it reads it each time you start
VisualAge. Therefore, the new categories or parts that you added are always
included, and those that you removed are prevented from appearing on the parts
palette.

Note: If you update the icon associated with a part, the parts palette is updated the
next time you select the category where the icon appears.

“Parts Palette” on page 10

“Chapter 18. Managing the Parts Palette” on page 69

“Adding a Part to the Palette” on page 70

Chapter 18. Managing the Parts Palette 71

“Adding a Category to the Parts Palette” on page 69

“Deleting a Part or Category from the Palette” on page 71

72 VisualAge C++ Professional for AIX: Visual Composition Tasks and Concepts

Chapter 19. Defining Part Interfaces for Visual Composition

You can define the part interface in the following ways:

v Create a new part based on a class with features you need. The new part
inherits the features of the class it extends.

v Add features to a part in the Part Interface Editor. You can add features to extend
the inherited feature set, to override inherited features, or both.

v Promote features of embedded parts to the interface of a composite part.

v Describe parts and features with part information statements. This is useful
primarily for existing code that you want to use in visual composition. You can
define any of the following constructs in this manner:

– A C++ class that you want to use as a part

– A group of C functions that you want to use as a part

– An enumeration or type definition that you want to use with parts

“Chapter 25. About Defining Part Interfaces” on page 103

“Chapter 27. Generated Code” on page 111

“Adding Features to the Part Interface”

“Promoting Embedded Part Features in the Composition Editor” on page 76

“Promoting Embedded Part Features in the Part Interface Editor” on page 77

“Defining the Part Interface Using Part Information Statements” on page 79

“Specifying Preferred Features” on page 78

Adding Features to the Part Interface

Use the Part Interface Editor to add features to the part interface. Define features
on the following tabs:

v Attribute

v Event

v Action

The defined feature tabs list features that have been defined for a part. These tabs
do not list either promoted or inherited features. Features that have been promoted
from embedded parts are listed on the Promote tab. Both promoted and inherited
features are listed on the defined feature tabs of the parts that define the features.

You can add features to the part connection menu on the Preferred tab.

“Adding Attribute Features” on page 74

“Adding Action Features” on page 75

“Adding Event Features” on page 75

“Specifying Preferred Features” on page 78

73

Adding Attribute Features

Add each new attribute on the Attribute tab as follows:

1. Enter a name in the Attribute name entry field.

2. If you want to add the attribute with default values for all fields, select Add with
defaults . The attribute is added to the part interface and to the Attribute name
list.

3. If you do not add the attribute with default values for all fields, do the following:

v Select Defaults to have VisualAge produce default values for the following
fields:

– Attribute type

– Get member function

– Set member function

– Event identification

v If you want to specify a different class or data type for the attribute, either
select a choice in the Attribute type drop-down list or enter a different type
in the entry field.

v If you changed the attribute type, select Defaults again to update the get and
set member function signatures.

v If you do not want the attribute value to be retrievable, clear the Get member
function field. If you want to change the default signature, edit the value. The
get member function provides the attribute value for connections.

v If you do not want the attribute value to be changeable, clear the Set
member function field. If you want to change the default signature, edit the
value. The set member function changes the attribute value for connections.

v If you do not want the attribute to notify other parts when the value changes,
clear the Event identification field. If you want to change the default
identifier, edit the value.

v If you want a text description of the attribute, either enter text in the
Description field or select Edit to specify a resource ID for translatable text.
This description appears when you select the attribute in the Feature
Implementation Browser window.

v If you want to hide the attribute from the part property sheet, select No for the
Property field in the Constraints group.

v If you want to hide the attribute from the part connection list, select No for the
Connectable field in the Constraints group.

v If you want to prevent definition of the attribute for some system platforms,
select relevant check boxes in the Platform constraints group.

v Select Add to add the attribute to the part interface. The attribute is also
added to the Attribute name list.

4. Select Clear to clear the input fields before adding the next attribute.

When you have finished adding features to the part interface, select Save from the
File menu to save the part.

“Naming Guidelines for Parts and Their Features” on page 97

“Specifying Hidden Features” on page 78

“Adding Action Features” on page 75

74 VisualAge C++ Professional for AIX: Visual Composition Tasks and Concepts

“Adding Event Features”

“Adding Features to the Part Interface” on page 73

Adding Event Features

Define event features to represent the occurrence of any events in your part that
you want other parts to be aware of.

Add each new event on the Event tab as follows:

1. Enter a name in the Event name entry field.

2. If you want to add the event with default values for all fields, select Add with
defaults . The event is added to the part interface and to the Event name list.

3. If you do not add the event with default values for all fields, do the following:

v Select Defaults to have VisualAge produce default values for the following
fields:

– Event identification

v If you want to change the default identifier, edit the value in the Event
identification field. The identifier is used to specify what event occurred for
connections.

v If you want to pass a parameter in event data, specify the parameter data
type in the Event parameter type field.

v If you want a text description of the event, either enter text in the Description
field or select Edit to specify a resource ID for translatable text. This
description appears when you select the event in the Feature Implementation
Browser window.

v If you want to prevent definition of the event for some system platforms,
select check boxes for relevant Platform constraints fields.

v Select Add to add the event to the part interface. The event is also added to
the Event name list.

4. Select Clear to clear the input fields before adding the next event.

When you have finished adding features to the part interface, select Save from the
File menu to save the part.

“Naming Guidelines for Parts and Their Features” on page 97

“Specifying Hidden Features” on page 78

“Adding Attribute Features” on page 74

“Adding Action Features”

“Adding Features to the Part Interface” on page 73

Adding Action Features

Define action features to represent part behaviors or functions that you want other
parts to have access to.

Add each new action on the Action tab as follows:

1. Enter a name in the Action name entry field.

Chapter 19. Defining Part Interfaces for Visual Composition 75

2. If you want to add the action with default values for all fields, select Add with
defaults . The action is added to the part interface and to the Action name list.

3. If you do not add the action with default values for all fields, do the following:

v Select Defaults to have VisualAge produce default values for the following
fields:

– Action member function

– Return type

v If you want to change the default action member function signature, edit the
Action member function value. The action member function performs the
action for connections.

v If you do not want the action member function return value to be available for
connections, clear the Return type field. If you change the return type, be
sure that it is compatible with the action member function signature. The
return value is connectable through the actionResult event.

v If you want a text description of the action, either enter text in the
Description field or select Edit to specify a resource ID for translatable text.
This description appears when you select the action in the Feature
Implementation Browser window.

v If you want to hide the action from the part connection list, select No for the
Connectable field in the Constraints group.

v If you want to prevent definition of the action for some system platforms,
select relevant check boxes in the Platform constraints group.

v Select Add to add the action to the part interface. The action is also added to
the Action name list.

4. Select Clear to clear the input fields before adding the next action.

When you have finished adding features to the part interface, select Save from the
File menu to save the part.

“Naming Guidelines for Parts and Their Features” on page 97

“Specifying Hidden Features” on page 78

“Adding Attribute Features” on page 74

“Adding Event Features” on page 75

“Adding Features to the Part Interface” on page 73

Promoting Embedded Part Features in the Composition Editor

You can promote features from an embedded part in the Composition Editor when
you are composing the composite part. You can also promote part features in the
Part Interface Editor when you are defining the interface of a composite part.

Promote features in the Composition Editor as follows:

1. From the pop-up menu of the embedded part, select Promote part feature to
open the Promote Features window.

2. For each feature that you want to promote, do the following:

76 VisualAge C++ Professional for AIX: Visual Composition Tasks and Concepts

a. In the Action , Attribute , or Event list box, select the feature you are
promoting. A default feature name is placed in the Promote feature name
field.

b. If you do not want to use the default name, change the feature name in the
Promote feature name field.

c. Select Promote . The feature is added to the Previously promoted list.

3. Select OK to close the Promote Features window.

4. When you have finished promoting features to the part interface, select Save
from the File menu to save the part.

“About Promoting Part Features” on page 103

“Default Promoted Feature Names” on page 104

“Editing Parts within a Composite Part” on page 29

“Promoting Embedded Part Features in the Part Interface Editor”

“Chapter 19. Defining Part Interfaces for Visual Composition” on page 73

Promoting Embedded Part Features in the Part Interface Editor

You can promote features from an embedded part in the Part Interface Editor when
you are defining the interface of a composite part. You can also promote part
features in the Composition Editor when you are composing the composite part.

Promote features of an embedded part in the Part Interface Editor as follows:

1. Select the Promote tab.

2. For each feature that you want to promote, do the following:

a. In the Subpart name list box, select the embedded part.

b. In the Feature type list box, select the feature type.

c. In the Promotable feature list box, select the feature you are promoting.

d. To add the feature with a default name, select Add with defaults .
Otherwise, enter a feature name in the Promote feature name field and
select Add . The feature name is added to the Promoted features list.

3. When you have finished promoting features to the part interface, select Save
from the File menu to save the part.

“About Promoting Part Features” on page 103

“Default Promoted Feature Names” on page 104

“Promoting Embedded Part Features in the Composition Editor” on page 76

“Chapter 19. Defining Part Interfaces for Visual Composition” on page 73

Chapter 19. Defining Part Interfaces for Visual Composition 77

Specifying Preferred Features

You can designate preferred features that you expect to connect to most often. You
can select a preferred feature from the Connect menu for a part. To connect to a
nonpreferred feature, you must select All Features from the Connect menu, then
select the feature from all connectable features for the part.

To designate a feature as preferred, do the following:

1. Open the Part Interface Editor for the part.

2. Select the Preferred tab.

3. Select the attribute, action, or event that you want to add to the preferred list.

4. Select Add to add the selected feature to the preferred list.

5. Select Save from the File menu to save the part.

“Connecting Features to Other Features” on page 45

“Adding Features to the Part Interface” on page 73

“Chapter 19. Defining Part Interfaces for Visual Composition” on page 73

Specifying Hidden Features

You can designate hidden attributes or actions that you do not want to be available
for property settings and connections. These are features that you use within the
part for implementation that you do not want exposed.

To designate a feature as hidden, do the following:

1. Open the Part Interface Editor for the part.

2. For an attribute, do the following:

v Select the Attribute tab.

v Select the attribute in the Attribute name field.

v Select No for the Property field in the Constraints group.

v Select No for the Connectable field in the Constraints group.

3. For an action, do the following:

v Select the Action tab.

v Select the action in the Action name field.

v Select No for the Connectable field in the Constraints group.

4. Select Save from the File menu to save the part.

“Adding Features to the Part Interface” on page 73

“Chapter 19. Defining Part Interfaces for Visual Composition” on page 73

78 VisualAge C++ Professional for AIX: Visual Composition Tasks and Concepts

Defining the Part Interface Using Part Information Statements

If C++ code already exists for your application, you can more efficiently define the
part interface using part information statements. This involves the following steps:

1. Determine the part features.

2. Create a part information file using a text editor.

3. Import the part information file.

To write part information statements, you need to be aware of rules for statement
composition. Some rules apply to all part information. Others rules are specific to
statements for particular kinds of part information.

The following rules apply to all part information:

v All part information code lines begin with //VB in columns 1-4. Between
statements, lines that do not start with //VB are ignored.

v You can arrange a statement on a single line or continue it on multiple lines by
using the VB continuation statement.

v All part, class, function group, enumeration, and type definition names must be
unique.

v A single file can contain information about multiple constructs. The VisualAge IDE
for OS/2 and Windows works with only one part per file, but you can include
multiple enumerations and type definitions used by the part.

You can package multiple parts in a part interface (.vbe) information file, but the
VisualAge IDE for OS/2 and Windows recognizes only the first part in the file. To
indicate that there are multiple parts in the file, you can define an informational
part as the first part in the file. Specify the noAdd and noBaseClass constraints
for the informational part to prevent its use in the Composition Editor. The
informational part can be opened in the IDE, providing information that it
represents a file with multiple parts. All other parts in the file are available in the
Add Part window. For AIX, all other parts are also available in the Visual Builder
window. See the vbcc.vbe and vbmm.vbe files in the ivb directory for examples of
informational part definition.

v The part information about a specific part, class, function group, enumeration, or
type definition must be contained in a single file.

v You cannot begin one type of information until you have ended another. For
example, you cannot put a VBBeginEnumInfo statement between
VBBeginPartInfo and VBEndPartInfo statements. If you do, you will not be able to
import the part information.

v Part information statement parameters are separated by commas. When you
omit optional parameters between specified parameters, you must include
intervening commas. You do not have to include commas after the last specified
parameter. For example, you can use the VBComposerInfo statement to specify
different types of support information, only one of which is required. The following
statements are acceptable:
//VBComposerInfo: visual
//VBComposerInfo: visual,803,cppres,primitive
//VBComposerInfo: visual,,,primitive

The following statement is not acceptable:
//VBComposerInfo: visual,primitive

“Adding Part Information for Visual Composition” on page 90

Chapter 19. Defining Part Interfaces for Visual Composition 79

“Chapter 19. Defining Part Interfaces for Visual Composition” on page 73

80 VisualAge C++ Professional for AIX: Visual Composition Tasks and Concepts

Chapter 20. Deriving from Visual Classes

Use this procedure to set up behavioral support on the free-form surface for parts
not contained in the IBM Open Class runtime libraries shipped with VisualAge. For
best results, read the conceptual topics listed below.

1. If the part is a composite, generate part source (.cpp) and interface source (.cp).

2. Otherwise, define the part interface in VisualAge and generate interface source.

3. Export the part’s interface (.vbe).

4. Compile the part source (.cpp and .rc, if applicable) into runtime and string
resource libraries.

5. Compile the interface source (.cp) into an interface library. You must have this in
order to work with the part on the free-form surface.

“About Implementing Custom Visual Parts” on page 101

“Chapter 27. Generated Code” on page 111

“Chapter 19. Defining Part Interfaces for Visual Composition” on page 73

“Generating User Interface Source” on page 61

“Sharing Custom Visual Parts” on page 89

81

82 VisualAge C++ Professional for AIX: Visual Composition Tasks and Concepts

Chapter 21. Incorporating User-Written Code into Visual
Composites

Although VisualAge enables you to compose and generate user interface parts, you
will probably want to write other parts yourself at some point. These are typically
nonvisual parts that provide business logic. You can either create a new part and
write the code to support its features (“Assembling a Part from Generated and
User-Written Code” on page 84), or you can define part interface features for code
you have already written (“Adapting User-Written Classes for Use as Parts” on
page 86). If you intend to export your part for use by others, read “Chapter 22.
Sharing Parts with Other Programmers” on page 89.

If you just need to extend the function of the composite, you can probably
accomplish this by using member function or custom logic connections. As a last
resort, you can modify generated code for the visual composite.

“Chapter 3. Visual, Nonvisual, and Composite Parts” on page 5

“Member Function Connections” on page 108

“Custom Logic Connections” on page 109

“Chapter 27. Generated Code” on page 111

“Using Handwritten Code from Previous Versions of VisualAge”

“Chapter 19. Defining Part Interfaces for Visual Composition” on page 73

“Specifying Code Files” on page 85

“Generating Feature Code” on page 85

“Modifying Generated Feature Code” on page 86

“Adding Part Information for Visual Composition” on page 90

Using Handwritten Code from Previous Versions of VisualAge

If your application contains user-written code from Versions 3.0 or 3.5, you might
have to update it so that it meshes properly with generated code. In addition,
several key member functions are being marked obsolete, so although you are not
required to update your code in this release, you might want to do it anyway. A
general list of changes that affect user-written code follows.

v Several IBM Open Class part features have been changed, removed, or
renamed. Consider reviewing part documentation for changes that affect your
application. In particular, template support has been added, affecting the
interfaces of the ICollectionViewComboBox, ICollectionViewListBox, and
IVBContainerControl parts.

v Most embedded parts are now instantiated in an implementation class separate
from the composite class. As a result, any user-written code referring to these
embedded parts must be updated.

For example, suppose member function or custom logic code sets the label of an
IPushButton* part, named MyButton, that is embedded into a part called MyPart.
The current code looks something like this:

83

iMyButton -> setText("Update");

Generated code for the push button now appears in an implementation class
associated with MyPart called fImpl, so your code needs to look like this:
fImpl -> iMyButton() -> setText("Update");

v If your handwritten code calls initializePart(), remove the call. This function is no
longer used to enable notification and signal the ready event.

v If the name of a composite is the same as that of its primary part, VisualAge
changes the name of the primary part to force uniqueness. It does this by
appending the word Part to the end of the name. For example, a primary part
called MyWindow is renamed automatically to MyWindowPart. However, any
user-written code referring to this part must be updated manually.

v Use of the INotificationEvent class for passing event data in the notification signal
is being phased out. Its replacement, INotificationEventFor, is a template,
enabling support for event data other than pointers. Instances of
INotificationEvent commonly appear in generated feature code for attributes; if
you have modified the code to pass event data, consider updating the call to use
the new class.

The current event signal looks something like this:
notifyObservers(INotificationEvent(SomeClass::someId, *this, true, (void*)&someEventData));

The preferred form for an event signal now looks something like this:
notifyObservers(INotificationEventFor<someEventDataType>(IInterest(*this, someId), someEventData)

“Chapter 27. Generated Code” on page 111

“Chapter 8. Using Parts from Previous Versions of VisualAge” on page 23

Assembling a Part from Generated and User-Written Code
1. Design the part interface.

2. Define the part interface in the Part Interface Editor.

3. Specify code files for the part interface features.

4. Generate feature code for the part interface.

5. Modify the feature code to provide the behavior you want.

“Chapter 24. Part Design Guidelines” on page 97

“Chapter 3. Visual, Nonvisual, and Composite Parts” on page 5

“Chapter 19. Defining Part Interfaces for Visual Composition” on page 73

“Specifying Code Files” on page 85

“Generating Feature Code” on page 85

“Modifying Generated Feature Code” on page 86

“Adding Part Information for Visual Composition” on page 90

84 VisualAge C++ Professional for AIX: Visual Composition Tasks and Concepts

Specifying Code Files

Before you can generate feature code for a part, you must specify your code files
as follows:

1. Open the Class Editor for the part.

2. Specify the .hpv and .cpv files for the feature code by filling in the User .hpv file
and User .cpv file fields.

To include previously written member function code with generated class
declarations, do the following:

1. Change the file extension of .cpp files to .cpv.

2. Change the file extension of .hpp files to .hpv.

3. Change the file extension of any .rc files to .rcv.

4. Add these files in the Class Editor.

“Chapter 21. Incorporating User-Written Code into Visual Composites” on
page 83

“Generating Feature Code”

“Modifying Generated Feature Code” on page 86

Generating Feature Code

You can have VisualAge generate part source code and feature code for your part.
If you generate part source code, you should generate feature code separately.
Each time you generate part source code, VisualAge replaces existing code
because there is no need for you to modify it. Each time you generate feature code,
however, VisualAge appends the newly generated code to the end of the existing
feature code. This is done so that you will not lose any code that you have written.

The first time you generate feature code, you will probably want to generate code
for all of your features. Then, you can generate code for other features as you add
them.

Note: If you regenerate code for a feature, be sure to first remove the previous
code for that feature to prevent compilation errors or unwanted results.

To generate feature code, do the following:

1. Select File , then select Save and generate , then select Feature source . The
Generate Feature Source Code window appears.

2. Generate the feature code using one of the following methods:

v Select the Generate all push button to generate feature code for member
functions and data members.

v Select the appropriate member functions and data members from the
Member functions , Attribute data members , or Event data members list
boxes. Then, select the Generate selected push button.

“Chapter 27. Generated Code” on page 111

Chapter 21. Incorporating User-Written Code into Visual Composites 85

“Chapter 21. Incorporating User-Written Code into Visual Composites” on
page 83

“Specifying Code Files” on page 85

“Modifying Generated Feature Code”

Modifying Generated Feature Code

For attributes, generated feature code is usually sufficient without modification. For
action features, you must modify the feature code to add the behavior you want
your part to provide.

You can modify the feature code using your favorite editor. The code is in the files
that you specified in the Class Editor.

If you need to modify the signature for a member function that supports a feature,
follow these steps:

1. Remove the feature in the the page.

2. Modify or replace the member function in the page.

3. Add the feature again in the the page.

“Using Handwritten Code from Previous Versions of VisualAge” on page 83

“Chapter 21. Incorporating User-Written Code into Visual Composites” on
page 83

“Specifying Code Files” on page 85

“Generating Feature Code” on page 85

Adapting User-Written Classes for Use as Parts

This topic is geared toward classes that would become nonvisual parts. To adapt
GUI classes for use as visual parts, start at “Chapter 20. Deriving from Visual
Classes” on page 81 and read the topic that suits your particular circumstance.

1. Design the part interface.

2. Modify your code to support the part interface.

3. Define the part interface using part information statements.

4. Import the part information.

5. Extend the part interface with new features as needed.

If you add a new action feature with the same name as a member function you
have already written, VisualAge replaces the existing member function.

“Chapter 24. Part Design Guidelines” on page 97

“Chapter 27. Generated Code” on page 111

“Chapter 19. Defining Part Interfaces for Visual Composition” on page 73

“Specifying Code Files” on page 85

86 VisualAge C++ Professional for AIX: Visual Composition Tasks and Concepts

“Adding Part Information for Visual Composition” on page 90

“Assembling a Part from Generated and User-Written Code” on page 84

Chapter 21. Incorporating User-Written Code into Visual Composites 87

88 VisualAge C++ Professional for AIX: Visual Composition Tasks and Concepts

Chapter 22. Sharing Parts with Other Programmers

Well-designed parts can be reused. To use a part provided by another programmer,
add its part information file to the list of part source files you are working with. To
share a part with other programmers, package its part information with dependent
source and library files.

To share a finished part for reuse, do the following:

1. Export the part interface

2. Package part files for reuse

3. Distribute the package

To share a part for further development, do the following:

1. Package part files for development

2. Distribute the package

“Chapter 2. How Classes and Parts Are Related” on page 3

“Chapter 19. Defining Part Interfaces for Visual Composition” on page 73

“Sharing Custom Visual Parts”

“Sharing Nonextendable Parts” on page 90

“Adding Part Information for Visual Composition” on page 90

“Exporting a Part Interface for Reuse” on page 91

“Packaging Part Files for Distribution” on page 92

Sharing Custom Visual Parts

To provide a custom visual part for other programmers to embed in visual
composite parts, do the following:

1. Export the part interface

2. Package as visual part files for reuse

3. Distribute the package

Provide an interface library so the part consumer can do the following:

v Make property settings changes to the part that are reflected in the Composition
Editor as well as in generated code.

v Add and visually compose embedded parts in the custom visual part if it is a
composer.

v Derive parts from the part.

“About Implementing Custom Visual Parts” on page 101

“Generated Interface Code” on page 113

“Chapter 20. Deriving from Visual Classes” on page 81

89

“Exporting a Part Interface for Reuse” on page 91

“Packaging Part Files for Distribution” on page 92

“Chapter 22. Sharing Parts with Other Programmers” on page 89

Sharing Nonextendable Parts

To provide a part that is not visually modifiable or extendable, do the following:

1. Export the part interface

2. Package as nonvisual part files for reuse

3. Distribute the package

The part consumer will not be able to do the following:

v Make property settings changes to the part that are reflected in the Composition
Editor. However, property settings are applied to generated code.

v Add and visually compose embedded parts in the part.

v Derive parts from the part.

“Exporting a Part Interface for Reuse” on page 91

“Packaging Part Files for Distribution” on page 92

“Chapter 22. Sharing Parts with Other Programmers” on page 89

Adding Part Information for Visual Composition

To reuse a part, you need to add its part information file to your list of part source
files. You can add either of the following types of part information files:

v A part interface (.vbe) file, for a part that you want to use in visual composition.

v A part implementation (.vbf) file, for a part that is under development.

On Windows or OS/2, add a new target based on existing part information files as
follows:

1. From the Project Workbook menu in the IDE, select Add Target . Then, select
Executable(EXE) or Dynamic Link Library(DLL) to open a Target SmartGuide.

2. Select Next in each window until you reach the Source Files window.

3. In the Source Files window, do the following for each part information file that
you want to add.

v Select the part information file

v Select Add

4. When you have added the part information files you want in the Source Files
window, select Finish to add the target.

On Windows or OS/2, add part information files to an existing target as follows:

1. Open the target pop-up menu from any of the following views in the
Configuration section of the IDE:

v The Targets view of the Targets page

v The Source and Targets view of the Options page

90 VisualAge C++ Professional for AIX: Visual Composition Tasks and Concepts

v The Details view of the Advanced page

2. From the target pop-up menu, select Add source into to open the Add Source
into window.

3. In the Add Source into window, do the following for each part information file
that you want to add.

a. Select Find to open a file dialog

b. Select the part information file

c. Select Add

4. When you have added the part information files you want in the Add Source into
window, select Apply to add the files to the target.

On AIX, add a part information file as follows:

1. From the File menu of the Visual Builder window, select Load to open a file
dialog.

2. Select the part information file that you want to load.

3. Select the OK push button to load the part information. The part information file
is added to the list of part source files in the Loaded Part Files list box. Any
visual parts in the part information file are displayed in the Visual Parts list box,
and any nonvisual parts and class interface parts are displayed in the
Nonvisual Parts list box.

If you add part information from a part interface (.vbe) file, you must have the
following files:

v The .hpp header file for the part. If you have an .hpv header file for the part,
include that as well.

v Resource and runtime libraries for the part.

v For custom visual primitives, an interface library for working with the part on the
free-form surface.

Add or Change Targets

“Exporting a Part Interface for Reuse”

“Packaging Part Files for Distribution” on page 92

“Chapter 22. Sharing Parts with Other Programmers” on page 89

Exporting a Part Interface for Reuse

On Windows or OS/2, export a part interface as follows:

1. Open the part pop-up menu in the Parts view of the Parts page in the Project
section of the IDE.

2. From the part pop-up menu, select Export Part . The part interface is saved in a
part interface (.vbe) file with a name based on the part name.

On AIX, export a part interface as follows:

1. In the Visual Builder window, select the part or parts whose information you
want to export. You can select parts in either the Visual Parts list box, the
Nonvisual Parts list box, or both.

2. Select Part , then select Export interface to open a file dialog.

Chapter 22. Sharing Parts with Other Programmers 91

../../ide/tasks/tibchgtg.htm

3. In the Save as filename field, either use the default name or specify the name
of the part interface (.vbe) file in which you want to save the part information.

v If you select a single part, the default name is based on the part name.

v If you select multiple parts, the default name is Exported.vbe.

4. Select the OK push button. The part interface is saved in the file you specify.

The part interface file does not contain any information about the implementation of
the part. The part can be used in visual composition, but cannot be edited.

“Adding Part Information for Visual Composition” on page 90

“Packaging Part Files for Distribution”

“Chapter 22. Sharing Parts with Other Programmers” on page 89

Packaging Part Files for Distribution

Before you distribute a finished part for reuse, you must export its interface to a part
interface (.vbe) information file. If you are distributing an unfinished part for further
development, use its part implementation (.vbf) information file. Package the part
information file with dependent files used by the part. The following factors
determine what file types you need to package:

v Are you distributing the part for reuse or for further development?

v Is the part visual or nonvisual?

v Are you providing translatable text?

The following table summarizes the code file types you need. You should also
provide documentation, including installation or build instructions and any
information about how to add the part to the parts palette.

File type Package for reuse Package for further
developmentNonvisual Visual

Part interface (.vbe)
or implementation
(.vbf) file

Yes (.vbe) Yes (.vbe) Yes (.vbf)

C++ header (.hpp,
.hpv) files

Yes Yes Yes (.hpv)

C++ user source
(.cpv) files

No No Yes

Resource header (.h,
.hv) and source (.rc,
.rcv) files

No Yes, for text that the
part consumer can
translate

Yes (.hv, .rcv)

Resource libraries Yes, for part palette
and composition
surface icons

Yes, for icons,
bitmaps, and text
(including any
translated text that
you provide)

No

Interface library No Yes No

Runtime library Yes Yes No

92 VisualAge C++ Professional for AIX: Visual Composition Tasks and Concepts

File type Package for reuse Package for further
developmentNonvisual Visual

Import library (.lib) file Yes, for dynamic
linking on OS/2 and
Windows

Yes, for dynamic
linking on OS/2 and
Windows

No

“Exporting a Part Interface for Reuse” on page 91

“Adding Part Information for Visual Composition” on page 90

“Chapter 22. Sharing Parts with Other Programmers” on page 89

Chapter 22. Sharing Parts with Other Programmers 93

94 VisualAge C++ Professional for AIX: Visual Composition Tasks and Concepts

Chapter 23. Packaging Visually Composed Applications

Before you distribute an application, you must package your work with any files that
you use. Your application uses resources such as programming language services,
help files, translatable text, bitmaps, and menus. In addition to resources that you
create, you should package the following VisualAge resources with visually
composed applications:

v For Windows and OS/2, package C runtime libraries:

– cppzmi40.dll

– cpprmi40.dll

– cpprbi40.dll

v If you use Open Class resources, package a renamed copy of the Open Class
resource library. This library contains resources such as default bitmaps for
common tool bar buttons.

– For Windows, copy cpporr40.dll

– For OS/2, copy cpporr40.dll

– For AIX, copy libvacocres.o

Specify the renamed library for your application in the
userInterfaceResourceLibrary property of its IVBMain* part.

v Package Open Class runtime libraries. For Windows and OS/2, package the
following libraries:

– cppobi40.dll—for all programs

– cppoui40.dll—for programs with user interface classes

– cppogi40.dll—for programs with 2-dimension graphics classes

For AIX, package the following libraries:

– libvacbase.a—for all programs

– libvacui.a—for programs user interface classes

– libvacgraph2d.a—for programs with 2-dimension graphics classes

v Package runtime libraries for visually composed parts. For Windows and OS/2,
package the following libraries:

– cppvpi40.dll—for all programs

– cppvoi40.dll—for programs with visual parts

For AIX, package the following libraries:

– libvacvngui.a—for all programs

– libvacvgui.a—for programs with visual parts

Your license type determines which libraries you are authorized to redistribute. If
you are not sure, check the license card that came with your copy of the product.

“Generated Interface Code” on page 113

95

96 VisualAge C++ Professional for AIX: Visual Composition Tasks and Concepts

Chapter 24. Part Design Guidelines

Before creating a new primitive part, answer the following questions:

v Is the part visual or nonvisual?

v Can it be created as a composite part?

v Do you have a good model of the part and its responsibilities?

To design a new part, do the following:

1. Determine the attributes (properties) of the part.

2. Determine the change-in-state notifications (events) that the part will signal.

3. Determine the behaviors (actions) for the part. To minimize the number of
connections that the users of your part will have to make, require as few input
parameters as possible.

4. After determining the part interface, investigate the available parts to see if one
already exists or to determine which class to use as a base. Determine if any
classes can be converted to parts.

“Chapter 3. Visual, Nonvisual, and Composite Parts” on page 5

“Naming Guidelines for Parts and Their Features”

Naming Guidelines for Parts and Their Features

Because the names of classes come from a flat name-space, developers of parts
must ensure that their class names are unlikely to duplicate the class names used
by other developers. Using a prefix on your class names is a good way to reduce
the chances of duplicating a class name. All IBM class names in the global name
space begin with the letter “I” for IBM.

A part feature is an element of a part’s interface. It is used as a collective term for a
part action, attribute, or event.

If you follow these simple conventions in choosing your feature names, it is easier
for users of your parts to recognize the function of a feature:

v Name actions with phrases that indicate activities to be performed, together with
an optional receiver of that activity. Examples of feature names for actions are
startTimer, openWindow, hide, and setFocus.

v Name attributes with phrases that indicate the physical property they represent.
Examples of feature names for attributes are height, buttonLabel, and contents.

v Name events with phrases that indicate activities that either have happened or
are about to happen. Examples of feature names for events are clicked,
aboutToCloseWindow, and timeExpired.

Note: Do not use feature names that start with avl or vb. These are reserved for
use by VisualAge.

The main place that users see your action, attribute, and event names is on the
Connect menu of the Composition Editor. Because features are shown on this
pop-up menu in alphabetical order, the phrasing you use for a feature name is often
the only way to distinguish between actions, attributes, and events.

97

It is important to choose unique names for your new actions, attributes, or events.
This prevents you from unintentionally overriding an inherited part feature. If you
intend to replace an existing part feature that your part inherits, then your new
name must be the same as the name of the part feature you are replacing. The
scope within which your feature name must be unique is your part class and all its
base classes in the class hierarchy.

“About Implementing Nonvisual Parts” on page 99

“About Implementing Custom Visual Parts” on page 101

Part Implementation

The following checklists contain the items required to implement a new part or to
convert an existing class to a part. Because parts are implemented as classes, you
can convert existing classes to parts and still use them as classes.

Make the following interface changes to support parts:

1. To enable notification, make sure your class inherits from the appropriate
notifier.

2. Define the constructors.

3. Define a virtual destructor.

4. If appropriate, define the assignment operator for nonvisual parts.

5. Define a public notification ID for each event.

6. Define a public notification ID for each attribute.

7. Define a public get member function with no parameters so users can obtain the
value of each attribute.

8. If the attribute can be changed, define a public set member function with a
single parameter containing the new value. If this attribute is a boolean, set the
default to true.

9. Define any public action member functions. Consider reset or default actions for
attributes, including disable and enable actions for boolean attributes.

Make the following code changes to support parts:

1. Code each event notification ID using a string containing the class name and
event name.

2. Code each attribute notification ID using a string containing the class name and
attribute name.

3. Code the constructors and a virtual destructor.

4. If defined, code the assignment operator.

5. Code the public get member functions for each attribute.

6. Code the public set member functions for each attribute. Notify observers when
the value changes.

7. Call get and set member functions to return and change attribute values in
actions. In addition, notify observers of events specified by the part.

“Chapter 24. Part Design Guidelines” on page 97

“Naming Guidelines for Parts and Their Features” on page 97

98 VisualAge C++ Professional for AIX: Visual Composition Tasks and Concepts

About Implementing Nonvisual Parts

The first step associated with implementing a part is positioning the part class in the
C++ class hierarchy. Place your nonvisual part under the IStandardNotifier class
hierarchy. Inserted in this location, your part inherits certain default behavior from
IStandardNotifier and the INotifier protocol.

In some cases, you might want your nonvisual part to be abstract. Be aware that
your users cannot drop abstract nonvisual parts onto the Composition Editor’s
free-form surface. If you do not provide concrete parts derived from this abstract
part, your users must derive their own concrete parts.

Deriving from a class that uses or contains template-based classes (such as
collection classes) is possible with certain restrictions. To preserve the template
implementation, you must define the part interface using a .vbe file; you cannot
specify it properly through the Part Interface Editor. (If you do use the Part Interface
Editor, VisualAge will issue an error message when it generates code for the part.)
The alternative to using an interface file is deriving the part from an instance of the
template-based class.

If the part is itself a class template, you must define any notification IDs in a
separate IDs class. When used, these notification IDs must be scoped to the class
in which they are implemented. (For example, to specify the itemChanged event in
a notifyObservers call, use IVBContainerControlIds::itemChangedId. To specify the
event associated with the selectedCnrElement attribute, use
IContainerControl::selectId.) For examples of an IDs class, see the ivbids.hpp
header file.

Otherwise, creating a class for a part is not much different from creating any other
class. There are just a few additional guidelines to keep in mind for those member
functions that support your part’s interface. Before you get started, please read
“Constructors in Nonvisual Parts”, “Destructors in Nonvisual Parts” on page 100 ,
and “Assignment Operators in Nonvisual Parts” on page 100.

“Constructors in Nonvisual Parts”

“Destructors in Nonvisual Parts” on page 100

“Assignment Operators in Nonvisual Parts” on page 100

“Chapter 24. Part Design Guidelines” on page 97

“Naming Guidelines for Parts and Their Features” on page 97

“About Implementing Custom Visual Parts” on page 101

Constructors in Nonvisual Parts

Nonvisual parts should have a default constructor. An example of the IAddress
class default constructor follows:
IAddress();

The implementation of the standard constructor for the IAddress class follows:
IAddress::IAddress() : IStandardNotifier(),
iStreet("101 Main Street"),
iCity("Hometown"),

Chapter 24. Part Design Guidelines 99

iState("NC"),
iZip("27511")
{
}

For most nonvisual parts, supply a copy constructor. An example follows:
IAddress (const IAddress& partCopy);

The implementation of the copy constructor for IAddress follows:
IAddress::IAddress (const IAddress& partCopy) : IStandardNotifier (partCopy),
iStreet(partCopy.street()),
iCity(partCopy.city()),
iState(partCopy.state()),
iZip(partCopy.zip())
{
}

“Destructors in Nonvisual Parts”

“Assignment Operators in Nonvisual Parts”

Destructors in Nonvisual Parts

For all nonvisual parts, specify a virtual destructor. An example follows:
virtual

IAddress ();

The implementation of the IAddress destructor follows:
IAddress:: IAddress()

{
}

“Constructors in Nonvisual Parts” on page 99

“Assignment Operators in Nonvisual Parts”

Assignment Operators in Nonvisual Parts

To ensure that attribute changes are signaled, specify an assignment operator for
nonvisual parts with attributes, as follows:
IAddress& operator= (const IAddress& aIAddress);

The implementation of the IAddress class assignment operator follows:
IAddress& IAddress::operator= (const IAddress& aIAddress)
{
if (this == &aIAddress) {
return *this;

} /* endif */
IStandardNotifier::operator=(aIAddress);
setStreet(aIAddress.street());
setCity(aIAddress.city());
setState(aIAddress.state());
setZip(aIAddress.zip());
return *this;

}

Note the following in the previous example:

100 VisualAge C++ Professional for AIX: Visual Composition Tasks and Concepts

v The assignment operator checks to ensure that the new value is not the current
object.

v The part’s base class is called to ensure that the base class’ data is assigned
correctly.

v To ensure notification of attribute changes, the attribute set member functions are
used to change the value of the attributes.

“Constructors in Nonvisual Parts” on page 99

“Destructors in Nonvisual Parts” on page 100

About Implementing Custom Visual Parts

Implementing your own visual parts presents a problem that implementing nonvisual
parts does not. Nonvisual parts are represented on the free-form surface by icons,
so only a part interface specification is needed to enable the part to be used in
theComposition Editor. However, most visual parts on the free-form surface are
real-time class instances, so VisualAge must have access to an interface library
from which to instantiate each visual part. These custom visual parts include the
following:

v Composites to be embedded in other composites, if you intend to update them
from the free-form surface. Adding this support enables you to drop parts into the
embedded composite and directly set properties of the embedded composite.
You do not need this support to embed composites without modification
capability.

v Composites to be used as base classes for new parts. The issues are similar to
what is described in the previous bullet.

v Primitives derived from IBM Open Class controls. Adding this support enables
you to interact with dropped instances on the free-form surface as if they had
been shipped by IBM.

v Composers derived from IBM Open Class windows. Adding this support enables
you to drop parts into a Composer instance as if it were an ICanvas-based part
shipped by IBM. (Some restrictions apply. Be sure to read the topics listed
below.)

Deriving from a class that uses or contains template-based classes is possible with
certain restrictions. To preserve the template implementation, you must define the
part interface using a .vbe file; you cannot specify it properly through the Part
Interface Editor. (If you do use the Part Interface Editor, VisualAge will issue an
error message when it generates code for the part.) The alternative to using an
interface file is deriving the part from an instance of the template-based class.
These template restrictions apply to the following classes:

v IVBCollectionViewComboBox

v IVBCollectionViewListBox

v IVBContainerControl

If the part is itself a class template, you must define any notification IDs in a
separate IDs class. When used, these notification IDs must be scoped to the class
in which they are implemented. (For example, to specify the itemChanged event in
a notifyObservers call, use IVBContainerControlIds::itemChangedId. To specify the

Chapter 24. Part Design Guidelines 101

event associated with the selectedCnrElement attribute, use
IContainerControl::selectId.) For examples of an IDs class, see the ivbids.hpp
header file.

Deriving from certain other classes (mostly Composer parts) is possible only with
restrictions. For more information, see reference information for the parts you want
to use as base classes.

“Chapter 24. Part Design Guidelines” on page 97

“Naming Guidelines for Parts and Their Features” on page 97

“About Implementing Nonvisual Parts” on page 99

“Generating User Interface Source” on page 61

“Chapter 20. Deriving from Visual Classes” on page 81

102 VisualAge C++ Professional for AIX: Visual Composition Tasks and Concepts

Chapter 25. About Defining Part Interfaces

Through the part interface, you determine which features of your part can be
connected to other parts in visual composition. You can also determine which
attributes can be given initial values.

You can define the part interface in the following ways:

v Create a new part based on a class with features you need. The new part
inherits the features of the class it extends.

v Add new features to a part. You can add features to extend the inherited feature
set, to override inherited features, or both.

v Promote features of embedded parts to the interface of a composite part.

v Describe parts and features with part information statements. This is useful
primarily for existing code that you want to use in visual composition.

“Chapter 28. VisualAge Component Model” on page 119

“Chapter 2. How Classes and Parts Are Related” on page 3

“About Promoting Part Features”

“Chapter 27. Generated Code” on page 111

“Chapter 19. Defining Part Interfaces for Visual Composition” on page 73

About Promoting Part Features

When you create a composite part, you might want some features of parts
embedded within it to appear in the interface of the composite part. For example,
suppose you create a composite part named ButtonSet containing a set of push
buttons that you want to reuse. When you add the ButtonSet composite part to
another composite, you want to be able to connect to each of the push buttons.

When you first create a composite part, its interface reflects its inheritance, not the
features of the parts embedded within it. To expose features of the embedded parts,
you must promote them to the composite’s interface.

Alternatively, you can promote the this attribute of an embedded part to add the
entire part as an attribute of the composite part. Then, when you use the composite
part in another composite part, you can tear off the attribute as a Variable part and
connect to features of the embedded part represented by the Variable.

“Chapter 25. About Defining Part Interfaces”

“Default Promoted Feature Names” on page 104

“About Tearing Off Attributes” on page 13

“Chapter 19. Defining Part Interfaces for Visual Composition” on page 73

103

Default Promoted Feature Names

When you promote a part feature, you can use a default composite part feature
name produced by VisualAge. The default feature name is a combination of the
name of the part you are promoting the feature from and the name of the feature
you are promoting. This identifies the part that implements the feature, which is
helpful if the composite part contains more than one part with the same feature.
Then, when you connect to the feature, you can tell which embedded part it
belongs to.

For example, if you promote the buttonClickEvent feature for a part named
PushButton2, the default composite part feature name is
pushButton2ButtonClickEvent.

“About Promoting Part Features” on page 103

104 VisualAge C++ Professional for AIX: Visual Composition Tasks and Concepts

Chapter 26. Connections

When you make a connection in the Composition Editor, you define the interaction
between components. For example, if you want a data value to change when an
event occurs, you would make an event-to-attribute connection. The following table
summarizes the types of connections that the Composition Editor provides. The
return value is supplied by the connection’s actionResult event.

Table 3. Connection Type Summary

If you want to... Use this connection type Color

Does
connection
have a return
value?

Cause one data value
to change another

attribute-to-attribute Dark blue No

Change a data value
whenever an event
occurs

event-to-attribute Dark green Yes

Call a public behavior
whenever an event
occurs

event-to-action Dark green Yes

Call a private behavior
whenever an event
occurs

event-to-member function Dark green Yes

Call a public behavior
whenever a data value
changes

attribute-to-action Dark green Yes

Call a private behavior
whenever a data value
changes

attribute-to-member function Dark green Yes

Call customized code
whenever a data value
changes or an event
occurs

custom logic Light blue Yes

Supply a value to a
parameter

parameter Violet No

“Attribute-to-Attribute Connections” on page 106

“Attribute-to-Action Connections” on page 109

“Event-to-Attribute Connections” on page 108

“Event-to-Action Connections” on page 108

“Member Function Connections” on page 108

“Custom Logic Connections” on page 109

“Parameter Connections” on page 110

“The Source and Target of a Connection” on page 106

“Chapter 12. Making Connections in the Composition Editor” on page 45

105

The Source and Target of a Connection

A connection is directional; it has a source and a target. The direction in which you
draw the connection determines the source and target. The part on which the
connection begins is the source; the part on which it ends is the target.

Often, it does not matter which part you choose as the source or target, but there
are connections where direction is important.

v In an event connection, the event is always the source. In the case of
attribute-to-action connections, the source event is signaled when the attribute
changes value.If you try to make an event the target, VisualAge automatically
reverses it for you.

v For attribute-to-attribute connections, if only one of the attributes has a public set
member function, VisualAge makes that attribute the target. This is done so that
the attribute that has the public set member function can be initialized at run
time.

v When you make attribute-to-attribute connections, the order in which you choose
the source and target is important. The source and target attribute values may be
different when the part is first initialized. If they are, VisualAge resolves the
difference by changing the value of the target to match that of the source.
Thereafter, if both attributes have public set member functions, the connection
updates either attribute if the other changes.

The target of a connection can have a return value. If it does, you can treat the
return value as a feature of the connection and use it as the source of another
connection. This return value appears in the connection menu for the connection as
actionResult.

“Chapter 26. Connections” on page 105

“Changing the Source and Target of Connections” on page 56

Attribute-to-Attribute Connections

An attribute-to-attribute connection links two attribute values together. This causes
the value of one attribute to change when the value of the other changes, except as
noted below.

A connection of this type appears as a bidirectional dark blue line

with dots at either end. The solid dot indicates the target, and the hollow dot
indicates the source.

For most attribute-to-attribute connections, the target attribute is set to the value of
the source attribute when your part is constructed at run time. However, deferred
creation affects the timing of initialization in the following ways:

v Attribute-to-attribute connections are initialized when the target is created.

v Creation of the target forces creation of the source.

v Creation of the source does NOT force creation of the target.

Note: These connections never take parameters.

106 VisualAge C++ Professional for AIX: Visual Composition Tasks and Concepts

If the source of an attribute-to-attribute connection is a variable, its initialization type
determines the initializaiton order.

Table 4. Initialization Order with a Variable Source

If the initialization type is... Initialization is from...

apply target to source

targetInit variable source to target

broadcast variable source to target

In order to achieve the behavior that you anticipate, you must know something
about the attributes you are connecting. The following table shows the results of
connecting attributes of different types.

Table 5. Behavioral Considerations for Connections

And the target has
both set member
function and event...

And the target has
an event but no set
member function...

And the target has a
set member
function but no
event...

If the source has
both set member
function and event...

Source and target
values are fully
synchronized.

VisualAge
automatically
reverses the
connection.

The source initializes
the target. The target
is updated whenever
the source’s value
changes.

If the source has an
event but no set
member function...

The source initializes
the target. The target
is updated whenever
the source’s value
changes.

This connection is not
valid.

The source initializes
the target. The target
is updated whenever
the source’s value
changes.

If the source has a
set member
function but no
event...

The source initializes
the target only. The
source is updated
whenever the target’s
value changes.

VisualAge
automatically
reverses the
connection.

The source initializes
the target. No further
updates occur.

Usage Notes:

v You can use a class interface part as the source of a connection only when
making an attribute-to-attribute connection. You can use an attribute of a class
interface part to initialize an attribute of another part without using notification.

v Do not create attribute-to-attribute connections in which the source is not
initialized before the ready event is signaled. You may get a system error in the
resulting application.

“The Source and Target of a Connection” on page 106

“Chapter 26. Connections” on page 105

“Connecting Features to Other Features” on page 45

Chapter 26. Connections 107

Event-to-Attribute Connections

An event-to-attribute connection updates the target attribute whenever the source
event occurs. An event-to-attribute connection appears as a unidirectional dark
green arrow with the arrowhead pointing to the target.

The attribute must have a public set member function known to VisualAge;
otherwise, you cannot make the connection. If you open settings on a connection of
this type, the target of the connection appears as an action with the same name as
that of the target attribute.

“Chapter 26. Connections” on page 105

“Connecting Features to Other Features” on page 45

Event-to-Action Connections

An event-to-action connection calls the specified action of the target object
whenever the source event occurs.

An event-to-action connection appears as a unidirectional dark green arrow
with the arrowhead pointing to the target.

To access behavior that is not part of the part interface, use member function or
custom logicconnections.

“Member Function Connections”

“Custom Logic Connections” on page 109

“Chapter 26. Connections” on page 105

“Connecting Features to Other Features” on page 45

“Supplying Parameter Values for Incomplete Connections” on page 49

Member Function Connections

A member function connection calls a member function of the composite part
whenever the source event occurs. The event can be either a user interface event
or one associated with an attribute.

This type of connection appears as a unidirectional dark green arrow
with the arrowhead pointing to the free-form surface.

A member function is a member function of a visual composite, but unlike a part
action feature, a member function does not have to be accessible outside the
class.Examples of potential member functions follow:

v Local member functions declared as private or protected

108 VisualAge C++ Professional for AIX: Visual Composition Tasks and Concepts

v Inherited member functions declared as protected

Connect to member functions instead of to actions when you want to keep the
operation internal to the class. For example, suppose that the composite part needs
to perform a calculation whenever a value changes. If users of the composite do
not need to be aware that this is happening, use a member function.

“Chapter 26. Connections” on page 105

“Connecting Features to Member Functions” on page 46

Attribute-to-Action Connections

An attribute-to-action connection calls an action whenever the source attribute
changes value. This connection is similar to an event-to-action connection, because
the connection calls the action when the attribute’s event is signaled.

This type of connection appears as a unidirectional dark green arrow
with the arrowhead pointing to the target. The attribute’s value is

passed as the first parameter of the action if no parameter is explicitly specified. If
the action requires more than one input parameter, the connection line initially
appears dashed to show that it is incomplete. To make the connection complete you
must provide the input parameter. You can do this either through a parameter
connection or by setting a constant parameter value.

“Chapter 26. Connections” on page 105

“Connecting Features to Other Features” on page 45

“Supplying Parameter Values for Incomplete Connections” on page 49

Custom Logic Connections

A custom logic connection calls your customized logic whenever the source event
occurs. You can use either an event or an attribute as the source for this
connection; if you use an attribute, the custom logic is called when the attribute’s
event is signaled. A custom logic connection appears as a unidirectional light blue
arrow with the arrowhead pointing to the edge of the free-form surface.

Use custom logic whenever your connection needs special handling. Like member
function connections, custom logic connections cannot be altered by programmers
using your part. Unlike member function code, which becomes a member of your
composite part, your custom logic code becomes part of the connection. This
means that you cannot reuse custom logic by call; you must reenter the code every
time.

For example, suppose you want to test an attribute for a specific value before
calling an action. Instead of connecting to the action directly, you could write custom
logic on the connection: if the attribute is equal to a certain value, call the action.
Otherwise, just return.

Chapter 26. Connections 109

“Chapter 26. Connections” on page 105

“Connecting Features to Custom Logic” on page 47

Parameter Connections

A parameter connection supplies an input value to the target of a connection by
passing either an attribute’s value or the return value from an action, member
function, or custom logic. This connection appears as a unidirectional violet arrow

with the arrowhead pointing from the parameter of the

original connection to the attribute or action providing the value.

If you are in doubt about a connection that you want to make, you can browse a
part’s features to see the parameter names.

The original connection is always the source of a parameter connection; the source
feature is the parameter itself. If you select the parameter as the target, VisualAge
reverses the direction of the parameter connection automatically.

If the target of the original connection takes parameters and the same event
provides parameters by default, the connection line might appear solid. This is true
even if the target takes one input parameter and you have not otherwise provided
one. VisualAge can use any of the following means to supply parameters with
values:

v If the parameter is connected to an attribute, the connection calls the attribute’s
get member function to get the attribute’s value and return it to the parameter.

v If the parameter is connected to an action, the connection code calls the action
and passes the action’s return value to the parameter. The same is true when a
parameter is connected to a member function or to custom logic.

v If the source of the original connection passes event data in the connection code,
VisualAge applies it to the parameter. If several values are required, event data
is applied to the first parameter only.

v If you specify a constant parameter value in the original connection, VisualAge
passes it in the connection code.

“Chapter 26. Connections” on page 105

“Supplying Parameter Values for Incomplete Connections” on page 49

110 VisualAge C++ Professional for AIX: Visual Composition Tasks and Concepts

Chapter 27. Generated Code

VisualAge can generate code for several different uses, as follows:

v C++ code for shared libraries. This includes part source code and (optionally)
feature source code.

v C++ code for applications. This includes part source code, main() code, and
(optionally) feature source code.

v C++ code for C interface libraries. You need this to use custom visual parts in the
Composition Editor.

v String resource files for national language support.

“Generated Feature Code”

“Generated Part Code” on page 112

“Generated Application Code” on page 112

“Generated Interface Code” on page 113

“Resource Files Generated for Translation” on page 116

“Chapter 14. Generating Code” on page 59

Generated Feature Code

After you have defined the interface for a new part, VisualAge can generate C++
code for the interface’s features.

Before generation, you must set generation properties in the Class Editor. In
assigning file specifications, VisualAge uses the same file name root set for the part
source code, but the file extensions are slightly different, as follows:

.cpv A C++ code file.

.hpv The header file for the .cpv file.

In most cases, code generated for attributes is sufficient for use without
modification. Code generated for actions is skeletal but compilable—sufficient for
visual construction, but you must eventually add the appropriate logic to the
generated action code. Event code is automatically generated for all attributes, but
if you wish to signal events from actions, you must add the notifyObservers call by
hand.

VisualAge does not automatically include generated feature code in part source
unless the appropriate generation options have been set in the Class Editor. You
select which file types to be included. In addition to the file types listed above,
VisualAge also supports inclusion of the following types:

.hv A resource header file for the .cpv file. This file contains the resource IDs
you are adding by hand.

.rcv A resource file that contains any strings you are adding by hand.

“Generated Part Code” on page 112

111

“Generated Application Code”

“Chapter 29. Notification Framework” on page 123

“Chapter 27. Generated Code” on page 111

“Generating Feature Code” on page 85

“Preparing for Code Generation” on page 59

Generated Part Code

For each part processed, VisualAge generates several source code files and puts
them in the current working directory:

.cpp A C++ code file.

.hpp The header file for the .cpp file.

.h A resource header file for the .cpp file. This file contains the resource IDs
for your part. It is generated under any of the following circumstances:

v The part is visual or contains visual parts.

v You specified a starting resource ID for the part.

v You associated a handwritten resource header file (.hv) with this part.

.rc A resource file that contains any strings used in the part for entry field
labels, push buttons, menus, and so forth. This file is only generated if you
have opted to have VisualAge assign resource IDs.

You must specify a starting resource ID in the Class Editor for all parts for which
you want VisualAge to export translatable strings into resource files.

“Resource Files Generated for Translation” on page 116

“Generated Feature Code” on page 111

“Generated Application Code”

“Chapter 27. Generated Code” on page 111

“Generating Source Code” on page 60

Generated Application Code

Each composite part you develop represents a piece of the finished application. At
some point, you must integrate the various pieces into a runnable whole. This
integration point is called the main part, a nonvisual composite based on the
IVBMain class.

At a minimum, the main part contains the primary part (an icon representing the
IVBMain class) and a composite representing the first window that appears in the
finished application. To configure certain aspects of main(), edit properties of the
primary part. (An example of this is specifying an IBM Open Class resource library
other than the default.)

112 VisualAge C++ Professional for AIX: Visual Composition Tasks and Concepts

For each main part processed, VisualAge creates several files and puts them in the
current working directory:

.cpp The code file containing the main() function definition and part
implementation.

.hpp The header file for the .cpp file.

.h A resource header file for the .cpp file. This file contains resource IDs for
your part. It is generated under any of the following circumstances:

v The part is visual or contains visual parts.

v You specified a starting resource ID for the part.

v You associated a handwritten resource header file (.hv) with this part.

.rc A resource file that contains any strings used in the part. This file is only
generated if you have opted to have VisualAge assign resource IDs.

“Generated Part Code” on page 112

“Chapter 4. Primary Part” on page 7

“Chapter 27. Generated Code” on page 111

“Generating Source Code for Your Application’s main() Function” on page 61

Generated Interface Code

Interface code must be generated for each custom visual part used. For each part
processed, VisualAge creates a C++ code file (.cp). You then have to compile this
file into the interface library needed for behavioral support in the Composition
Editor.

The generated code uses types defined in the iavlbase.h header file. The most
significant of these is AvlObject, a void pointer used to return an instance of your
custom visual part to the Composition Editor. The part is instantiated in a
constructor-within-a constructor, a function called ClassNameClassName.

“About Implementing Custom Visual Parts” on page 101

“Chapter 27. Generated Code” on page 111

“Generating User Interface Source” on page 61

“Chapter 20. Deriving from Visual Classes” on page 81

Chapter 27. Generated Code 113

Example of Code Generated for a Visual Composite

This simple Hello World! program puts each word of the pink text into its own entry
field. This program consists of two composites, HelloWorld (the main part) and
MyHelloWorldWindow (shown above).

HelloWorld contains only two parts:

v An IVBMain* part, the primary part

v A MyHelloWorldWindow* part, named MyHelloWindow

Code is generated for HelloWorld into hllworld.cpp and hllworld.hpp. The header
defines only one class, HelloWorld, which is based on IVBMain.

The .cpp file for HelloWorld defines the main() function and the following classes:

v HelloWorldImpl, the implementation class associated with HelloWorld.

v HelloWorldConn, the connection class associated with HelloWorld. The only
connection in this part is an instance of this class.

Program flow within these classes is summarized below. Obvious steps, such as
instantiation of a class by its constructor, are omitted.

1. The main() function creates a HelloWorld instance named fiPart.

v The constructor for HelloWorld creates an instance of HelloWorldImpl named
fImpl, initializing it with a call to the constructImpl() function of fImpl. This
instance is the only data member associated with HelloWorld.

114 VisualAge C++ Professional for AIX: Visual Composition Tasks and Concepts

v The constructImpl() function assigns a window resource to fImpl and calls
the createiPart() function of fImpl.

v The createiPart() function creates an instance of HelloWorldConn named
fConn0Perform and registers it as an event observer by calling the
handleNotificationsFor() function inherited from the IObserver class.

v The constructor also signals the ready event. The ready event triggers a call
to the conn0Perform() function, which creates an instance of
MyHelloWorldWindow named fiMyHelloWorld and makes it visible.

This happens because the HelloWorld part contains a connection between
the composite’s ready event and the show action of the
MyHelloWorldWindow instance.

MyHelloWorldWindow contains the following parts:

v An IFrameWindow* part, the primary part

v An ICanvas* part as client

v Two IEntryField* parts, named FirstEF and SecondEF

v An IStaticText* part, named MyHelloText

v An IPushButton* part, named SplitButton

v An IString* part, named MyString

Code is generated for MyHelloWorldWindow into myhllwdw.cpp and myhllwdw.hpp.
The header defines only one class, MyHelloWorldWindow, which is based on
IFrameWindow.

Of all classes represented on the free-form surface, only IFrameWindow is
instantiated in the MyHelloWorldWindow constructor. All others are instantiated in
the scope of the implementation class described below.

The .cpp file for MyHelloWorldWindow defines the following classes:

v MyHelloWorldWindowImpl, the implementation class associated with
MyHelloWorldWindow. All parts other than the primary are members of
MyHelloWorldWindowImpl.

v MyHelloWorldWindowConn, the connection class associated with
MyHelloWorldWindow. All connections in this composite are instances of
MyHelloWorldWindowConn.

In general, these classes are related to each other in a similar way to those
associated with HelloWorld. Additional notes follow.

v Connection functions exist for primary connections only. Data represented by a
parameter connection is incorporated into the function for its primary connection.

v Promoted features (not shown in this sample) are implemented in code as
connection class instances.

“Generated Part Code” on page 112

“Chapter 4. Primary Part” on page 7

“Chapter 27. Generated Code” on page 111

“Chapter 14. Generating Code” on page 59

“About Promoting Part Features” on page 103

Chapter 27. Generated Code 115

Code Generation Errors

One of the most common causes of code generation errors is changing the names
of features that are connected to other features. For example, suppose feature A is
connected to feature B. If you change the name of feature A and then regenerate
the source code for your part, VisualAge displays an error. This can also occur if
you change the name of a promoted feature. To correct the error, double-click on
the connection and replace the incorrect feature name with the correct one.

If this message appears, the setting that corresponds to the specified attribute is not
currently valid:
CPP.GEN.14.e: The X attribute of the Y part cannot be set.

If this message appears, a feature that is not currently valid is either the source or
target of a connection:
CPP.GEN.24.e: (connection_number_and_description): The X feature was not found in the part interfac

If this message appears, a feature that is not currently valid is used to supply a
parameter value in a connection.:
CPP.GEN.3.e: The X feature of the Y part has changed since this part was developed.

“Chapter 27. Generated Code” on page 111

“Chapter 14. Generating Code” on page 59

Resource Files Generated for Translation

VisualAge generates the following resource files for you:

v A resource file (.rc), which contains the text strings and other program resources
used in your part

v A resource header file (.h), which contains the resource ID definitions for your
application

In order for VisualAge to assign most resource definitions to the .h and .rc files, you
must specify a starting resource ID in the Class Editor for every part. You can either
use the default value or specify an alternative, but consider the following:

v The resource ID must be a number.

v The number specified must be either high enough or low enough that the
resource IDs produced do not conflict with the resource IDs that VisualAge
generates for other parts that comprise your application.

For example, suppose you have a reusable Address part (a canvas with entry fields
and static text) that you want to embed in your application’s main window. You
might give the main window part a starting resource ID of 5000 and the Address
part a starting resource ID of 6000. Doing this would prevent conflicts between the
resource IDs that VisualAge generates for the main window part and those it
generates for the Address part.

Consider using starting resource IDs between 100 and 14500 for most applications,
for the following reasons:

116 VisualAge C++ Professional for AIX: Visual Composition Tasks and Concepts

v The operating system has reserved many resource IDs below 100 for its own
use.

v When determining resource IDs for window resources, VisualAge begins with
15000 and increments the resource ID of each successive primitive part by 5.
Starting resource IDs between 100 and 14500 are low enough to prevent you
from experiencing any resource ID conflicts in most cases.

“The Resource File (.rc)”

“The Resource Header File (.h)” on page 118

“Chapter 14. Generating Code” on page 59

The Resource File (.rc)

The .rc file defines nonwindow resources. Nonwindow resources are the strings that
are displayed in your composite part. Examples are window titles, static text used to
label entry fields and list boxes, and the text on push buttons and menu items.
These strings are delimited by quotation marks (″ ″) and can be translated into
another language.

Each string that VisualAge inserts in the .rc file is preceded by a resource hame
that begins with STRRC, as follows:
STRRC_ToDoList_FrameWindow_title, "ToDo List"

VisualAge defines numeric resource IDs for these resource names in the .h file,
starting with the resource ID you specified for your part in the Class Editor.

You may have strings in your part (such as the application name) that you do not
want translated. If that is the case, you can prevent those text strings from being
inserted in the resource file by inserting a number sign (#) at the beginning of the
text and enclosing the text in quotation marks (″ ″). This change must be made in
the property sheet for the part, not by direct edit in the Composition Editor.

Suppose you do not want a window title to be translated. To prevent VisualAge from
inserting the title string in the resource file, edit the window’s title property. In the
case of the ToDoList part, the modified title appears as follows:
#"ToDo List"

After code generation, no resource definition for the modified title appears in the .rc
file. Instead, the hardcoded string appears in the generated .cpp file as part of the
defaultTitle() function.

“The Resource Header File (.h)” on page 118

“Resource Files Generated for Translation” on page 116

“Chapter 14. Generating Code” on page 59

Chapter 27. Generated Code 117

The Resource Header File (.h)

In the resource header file, VisualAge uses #define statements to assign unique
resource IDs to each of the string resources listed in the .rc file. VisualAge also
assigns unique window IDs to all primitive visual parts. The only resource ID that
you must specify is the starting resource ID for the part; you do that in the Class
Editor. During code generation, VisualAge uses this number as the resource ID of
the first text string and increments the resource ID of each successive text string by
1.

For an example, look at the todolist.h file that VisualAge generates for the ToDo List
application. The first #define statement in the todolist.h file appears as follows:
#define RC_ToDoList 10000

The number in this #define statement, 10000, is the starting resource ID.

“The Resource File (.rc)” on page 117

“Resource Files Generated for Translation” on page 116

“Chapter 14. Generating Code” on page 59

118 VisualAge C++ Professional for AIX: Visual Composition Tasks and Concepts

Chapter 28. VisualAge Component Model

This component model supports both new and pre-existing classes. You can apply
the interface protocol to existing classes without making extensive code
modifications. The part interface architecture specifies the general format of the
programming interfaces, not the particular implementation behind the interface.

“Access to a Part’s Properties”

“Access to a Part’s Behavior” on page 120

“Notification of Changes to Parts” on page 121

Access to a Part’s Properties

Attributes provide access to the properties of a part. A property can be any of the
following:

v An actual data object stored within the object, such as the street in an address
object

v An actual data object that is accessed via another object or the system, such as
the contents of an entry field (the contents are stored within the system entry
field control or widget)

v A computed data object that is a transformed version of an actual data object,
such as the temperature in Fahrenheit when the actual data object is the
temperature in Celsius

v A computed data object that is not stored, such as the sum of all numbers in an
array or the profit that is computed by subtracting dealer cost from the retail
price.

You can use an attribute to return the value of a property, to set the value of a
property, and to notify other parts when the value of a property changes. You are
not required to make public a complete attribute interface for a property. For
example, a property might be read-only, in which case the part’s attribute interface
would not support the ability to set the property’s value.

The attribute interface is represented as follows:
aType aQueryMember();
aSetMember(aType aValue);
static INotificationId const anEventId;

aQueryMember is the public member function to get the current value of the property;
aSetMember is the publicmember function to set the value of the property to aValue;
aType is the type of aValue; anEventId is the notification ID for the property change
event.

Themember function that sets the value of the property can use the following
expression to notify dependent parts that the value of its property has changed:
notifyObservers(INotificationEvent(anEventId, *this, true,
(void*)aValue));

notifyObservers is the member function that signals the event; anEventId is the
notification ID for the property change event; *this is the notifier object; true

119

indicates that the value of the attribute has changed; aValue is the event data. (For
more information about events, see “Notification of Changes to Parts” on page 121.)

The following simpler call can be made if no event parameters are to be passed:
notifyObservers(INotificationEvent(anEventId, *this));

The member function that sets a property’s value usually signals the value change,
but any member function that is aware of the change can signal the event.

While a property is often represented as a data member of a part, it need not be;
the property could be a computed value. What is important is that whenever the
value of the property changes, the change takes place using the set member
function for the property. Changes made in any other way might not cause the
event to be signaled.

“Access to a Part’s Behavior”

“Notification of Changes to Parts” on page 121

Access to a Part’s Behavior

An action provides access to the behavior of a part. Actions represent the tasks you
can assign a part to do, such as open a window or add an object to a collection of
objects.

The action interface is represented as follows:
aType aMemberFunction();

aMemberFunction is the public member function for the action to be performed.

A part implements the action interface by supplying a member function that
responds to the behavior declared in the header file. For example, the following
member function supports the action interface to set the default value of the city
attribute in the IAddress class:
IAddress & IAddress :: setCityToDefault ()

{
return setCity("Hometown");

}

This example shows that actions can cause values of attributes to change. In fact,
most Boolean attributes can be set to false using the disable member function. For
example, the disableMouseClickFocus member function in the IButton class causes
the mouseClickFocus attribute to be set to false.

“Access to a Part’s Properties” on page 119

“Notification of Changes to Parts” on page 121

120 VisualAge C++ Professional for AIX: Visual Composition Tasks and Concepts

Notification of Changes to Parts

By signaling events, a part can notify other parts that a state or value in its interface
has changed. Events can be signaled when the state of a view part changes, such
as when a push button is clicked or when a window is opened, as well as when the
state of a model part changes, such as when the balance in a bank account
becomes negative. Events can also be signaled when the value of a part’s property
changes, such as when money is deposited into or withdrawn from a bank account.

Notifications appear as messages broadcast to all parts that are observers of the
event. Observers of an event are those parts that depend on the event’s
occurrence. The event interface is represented as follows:
static INotificationId const anEventId;

anEventId is the notification ID for the event.

Several different options are available to signal events. The first option is an
example of using the event interface for attribute notification with event parameters:
notifyObservers(INotificationEvent(anEventId, *this, true,
(void*)aValue));

v notifyObservers is the member function that causes the event notification.

v anEventId is the notification ID for the property change event.

v *this is the notifier object.

v true indicates that the value of the attribute has changed.

v aValue is the new value of the property.

The following simpler call can be made if no event parameters are to be passed:
notifyObservers(INotificationEvent(anEventId, *this));

Parts can also signal events when no attributes have changed, as follows:
notifyObservers(INotificationEvent(anEventId, *this, false,
(void*)aValue));

v notifyObservers is the member function that signals the event.

v anEventId is the notification ID for the property change event.

v *this is the notifier object.

v false indicates that the value of the attribute has not changed.

v aValue is the value of the property.

The following simpler call can be made if no event parameters are to be passed:
notifyObservers(INotificationEvent(anEventId, *this, false));

“Access to a Part’s Properties” on page 119

Chapter 28. VisualAge Component Model 121

122 VisualAge C++ Professional for AIX: Visual Composition Tasks and Concepts

Chapter 29. Notification Framework

You use the IBM notification framework to implement event and attribute notification
for visual and nonvisual parts. You can also use it in code you are writing by hand if
the code is based on the IBM Open Class Library.

The notification framework is different from the previously existing event-handler
framework. Handlers can block the dispatching of events to the remaining handlers
in the chain. This is unsatisfactory for a notification framework, where registered
observer objects must always be notified of an event regardless of how the event
was handled.

The notification framework contains the following entities:

v Notifiers, which broadcast changes in their internal state. Notifier instances
support a protocol defined by the INotifier class.

v Observers, which register themselves as dependent upon the occurrence of a
specific change in state. Observer instances support a protocol defined by the
IObserver class.

v Events, which identify what state has changed in which notifier instance. Event
instances support a protocol defined by the INotificationEvent class. An event
instance can also contain the new value of the state that was changed (event
data).

v Notification IDs, static strings in a notifier’s interface that specify which events are
supported by the notifier class. Each notification ID is in the form of the
notifier-class name followed by the event name, such as
IStaticText::backgroundColorId.

v Interests, which act as common currency among notifier, observer, and event
instances. An instance of the IInterest class, each interest associates a notifier
instance with a notification ID. This pairing uniquely identifies an event so that
only interested observers respond to the event signaled.

“Notifiers and Observers”

“About Implementing Notification” on page 124

Notifiers and Observers

To register dependence upon a notifier, an observer calls the handleNotificationsFor
function:
// *fiAccountNumEF is an IEntryField instance, a notifier
// The notification ID for the text attribute is inherited from ITextControl

handleNotificationsFor(IInterest(*fiAccountNumEF, ITextControl::textId));

To cancel registration, an observer calls the stopHandlingNotificationsFor function:
stopHandlingNotificationsFor(IInterest(*fiAccountNumEF, ITextControl::textId));

To signal an event, notifiers call the notifyObservers function. If event data is not
passed with the notification, the call looks like this:
// Called from the setAccountNum function of OAContract

notifyObservers(INotificationEvent(IInterest(*this, OAContract::accountNumId)));

123

Otherwise, the call looks like this:
// Called from the enableIDvalid function of OAContractor
// The type of event data being passed is IString, represented by iContractorID

notifyObservers(INotificationEventFor<IString> (IInterest(*this, OAContractor::IdvalidId), iContrac

To ensure that all notifier objects can coexist, no data is stored in any notifier
object. A notifier adds observers to an observer list and uses this list to notify
observers in a first-in, first-notified manner.

“About Implementing Notification”

About Implementing Notification

Concrete classes that inherit from the abstract INotifier class must implement its
protocol. This includes the following:

v Enabling, disabling, and querying the ability to signal events through the following
members:
virtual INotifier& enableNotification(bool enable = true) = 0;
virtual INotifier& disableNotification() = 0;
virtual bool isEnabledForNotification() const = 0;

In general, notifiers are created in a disabled state, so they must be explicitly
enabled before they can signal events. This allows time for notifier and
connection instances to initialize themselves and related instances.

v Managing the collection of observers through following protected members in
INotifier:
virtual INotifier& addObserver(IObserver& observer, const IInterest& interest);
virtual INotifier& removeObserver(IObserver& observer) = 0;
virtual INotifier& removeObserver(IObserver& observer, const IInterest& interest);
virtual INotifier& removeAllObservers() = 0;
virtual IObserverList& observerList(const IInterest* anInterest = 0) const = 0;

v Signaling an event through the notifyObservers member:
virtual INotifier& notifyObservers(const INotificationEvent& event) = 0;

While the classes providing notification must call this function, in many cases it
makes sense that the responsibility be delegated to another class. For instance,
in the IBM Open Class Library, this responsibility is typically delegated to handler
classes.

The IStandardNotifier class implements the notifier protocol and provides the base
support for nonvisual parts. For visual parts, the notifier protocol is implemented in
subclasses of IWindow. The notification under the IWindow classes occurs primarily
using the existing handler classes.

To implement notification, your new nonvisual part can either inherit from
IStandardNotifier or contain an IStandardNotifier instance. To use inheritance,
specify IStandardNotifier (or a derived notifier class) as the base class when you
create the part in VisualAge. If you do not specify a standard notifier as the base
class, VisualAge assumes you want the part to notify using containment and
generates the appropriate source code by default.

124 VisualAge C++ Professional for AIX: Visual Composition Tasks and Concepts

You can override the notification behavior that is provided by default through
containment; this requires you write some code to be included in the generated
class code. Follow these steps:

v In a .cpv file, derive a class from the implementation class generated for the part.
(Make sure to change generation options in the Class Editor so that the .cpv file
will be included in generated code.)

v In the derived implementation class, override the notifier() function, returning a
reference to some type of notifier. It is through this function that you implement
unique notification behavior for the part. Define a data member to hold the
notifier instance returned from the notifier() function.

v To instantiate your derived implementation class instead of the base class at run
time, add a line of code to the beginning of the constructor for the part in the
Class Editor. The code must look something like this:
fImpl = new MyImplementationSubclass();

“Notifiers and Observers” on page 123

“Preparing for Code Generation” on page 59

Chapter 29. Notification Framework 125

