
VisualAge® C++ Professional for AIX®

Preprocessing Directives - #pragma
Version 5.0

���

Edition Notice

This edition applies to Version 5.0 of IBM VisualAge C++ and to all subsequent releases and modifications until
otherwise indicated in new editions. Make sure you are using the correct edition for the level of the product.

© Copyright International Business Machines Corporation 1998, 2000. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Note!
Before using this information and the product it supports, be sure to read the general
information under “Notices” on page v.

Contents

Notices v
Programming Interface Information vii
Trademarks and Service Marks vii
Industry Standards viii

About This Book. ix

Chapter 1. Preprocessor Directives -
#pragma 1

Chapter 2. Overview of the #pragma
Options 5
#pragma align (AIX) 5
#pragma alloca (C, AIX) 5
#pragma chars 6
#pragma comment 6
#pragma define (C++) 7
#pragma disjoint 8
#pragma entry 9
#pragma enum 9

#pragma export 10
#pragma hdrfile (C). 11

Examples using #pragma hdrfile (C) 12
#pragma hdrstop (C) 13

Examples using #pragma hdrstop (C). 13
#pragma import 14
#pragma info 15

Example: #pragma isolated_call. 15
#pragma langlvl (C) 16
#pragma leaves 17
#pragma map 18
#pragma namemangling (C++) 19
#pragma object_model (C++) 19
#pragma options (AIX) 20
#pragma priority (C++) 22
#pragma reachable 23
#pragma report (C++) 24
#pragma strings 26

Contacting IBM® 29

© Copyright IBM Corp. 1998, 2000 iii

iv Preprocessing Directives - #pragma

Notices

Note to U.S. Government Users Restricted Rights -- use, duplication or disclosure
restricted by GSA ADP Schedule Contract with IBM Corp.

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION ″AS IS″
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1998, 2000 v

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Lab Director
IBM Canada Ltd.
1150 Eglinton Avenue East
Toronto, Ontario M3C 1H7
Canada

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

® (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. ® Copyright IBM Corp. 1998, 2000. All rights reserved.

vi Preprocessing Directives - #pragma

Programming Interface Information
Programming interface information is intended to help you create application
software using this program.

General-use programming interface allow the customer to write application
software that obtain the services of this program’s tools.

However, this information may also contain diagnosis, modification, and tuning
information. Diagnosis, modification, and tuning information is provided to help
you debug your application software.

Warning: Do not use this diagnosis, modification, and tuning information as a
programming interface because it is subject to change.

Trademarks and Service Marks
The following terms are trademarks of the International Business Machines
Corporation in the United States, or other countries, or both:

AIX
AS/400
DB2
CICS
C Set ++
IBM
Network Station
Object Connection
OS/2
OS/390
OS/400
Open Class
Operating System/2
Operating System/400
PowerPC 403
PowerPC 601
PowerPC 603
PowerPC 604
Presentation Manager
RS/6000
S/390
SAA
Systems Application Architechture
TeamConnection
VisualAge
WebSphere
Workplace Shell

Lotus, Lotus Notes, and Domino are trademarks or registered trademarks of the
Lotus Development Corporation in the United States, or other countries, or both.

Tivoli Management Environment, TME 10, and Tivoli Module Designer are
trademarks of Tivoli Systems Inc. in the United States, or other countries, or both.

Encina and DCE Encina Lightweight Client are trademarks of Transarc Corporation
in the United States, or other countries, or both.

Notices vii

Microsoft, Win32, Windows, Windows NT, and the Windows logo are trademarks
or registered trademarks of Microsoft Corporation in the United States, or other
countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

UNIX is a registered trademark in the U.S. and other countries licensed exclusively
through X/Open Company Limited.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks or registered
trademarks of Intel Corporation in the United States, or other countries, or both.

C-bus is a registered trademark of Corollary, Inc.

PC Direct is a registered tradmark of Ziff Communicatoins Company and is used
by IBM Corporation under license

Other company, product, and service names, which may be denoted by a double
asterisk(**), may be trademarks or service marks of others.

Industry Standards
VisualAge C++ Professional for AIX, Version 5.0 supports the following standards:
v The C language is consistent with the International Standard C (ANSI/ISO-IEC

9899–1990 [1992]). This standard has officially replaced American National
standard for Information Systems-Programming Language C (X3.159–1989) and
is technically equivalent to the ANSI C standard. VisualAge C++ supports the
changes adopted into the C Standard by ISO/IEC 9899:1990/Amendment 1:1994.

v The IBM Systems Application Architecture (SAA) C Level 2 language definition.
v The C++ language is consistent with the International Standard for Information

Systems-Programming Language C++ (ISO/IEC 14882:1998).
v The ISO/IEC 9945–1:1990/IEEE POSIX 1003.-1990 standard.
v The X/Open Common Applications Environment Specifications, System

Interfaces and Headers, Issue 4.

viii Preprocessing Directives - #pragma

About This Book

The information in this PDF document is also available in the online help.

To find this information, or any topics listed in this document as Related Concepts,
Related Tasks, or Related References, simply type the topic title into the search bar
in the top frame of your browser in the online help.

For some topics, the suggested references may already be contained in this
document. In such cases, there is a cross-reference to the page on which the related
topic appears.

© Copyright IBM Corp. 1998, 2000 ix

x Preprocessing Directives - #pragma

Chapter 1. Preprocessor Directives - #pragma

A pragma is an implementation-defined instruction to the compiler. It has the
general form given below, where character_sequence is a series of characters that
giving a specific compiler instruction and arguments, if any.

The character_sequence on a pragma is subject to macro substitutions, unless
otherwise stated. More than one pragma construct can be specified on a single
#pragma directive. The compiler ignores unrecognized pragmas, issuing an
informational message indicating this.

The following pragmas are available:

Platform and Language
Restrictions

#pragma Description

“#pragma align (AIX)” on
page 5

Aligns data items within
structures.

“#pragma alloca (C, AIX)” on
page 5

Provides an inline version of
the function alloca(size_t
size).

alloc_text Groups functions into
separate 32-bit code
segments.

“#pragma chars” on page 6 Sets the sign type of
character data.

code_seg Marks the current code
section in effect.

“#pragma comment” on
page 6

Places a comment into the
object file.

data_seg Places static and external
variables in different 32-bit
data segments.

“#pragma define (C++)” on
page 7

Forces the definition of a
template class without
actually defining an object of
the class.

“#pragma disjoint” on page 8 Lists the identifiers that are
not aliased to each other
within the scope of their use.

() & “#pragma entry” on page 9 Specifies the function to be
used as the entry point for
the application being built.

“#pragma enum” on page 9 Specifies the size of enum
variables that follow.

© Copyright IBM Corp. 1998, 2000 1

Platform and Language
Restrictions

#pragma Description

() & “#pragma export” on page 10 Declares that a DLL function
is to be exported and
specifies the name of the
function outside the DLL.

handler Registers an exception
handler for a function.

hashome Informs the compiler that the
specified class has a home
module that will be specified
by the IsHome pragma.

“#pragma hdrfile (C)” on
page 11

Specifies the filename of the
precompiled header to be
generated and/or used.

“#pragma hdrstop (C)” on
page 13

Manually terminates the
initial sequence of #include
directives being considered
for precompilation.

implementation Tells the compiler the name
of the file containing the
function-template definitions
that correspond to the
template declarations in the
include file which contains
the pragma.

() & “#pragma import” on
page 14

Lets you import a function
or a variable from a DLL
using either an ordinal
number or a name different
from the one that it has in
the DLL.

“#pragma info” on page 15 Controls the diagnostic
messages generated by the
info(...) compiler options.

ishome Informs the compiler that the
specified class’s home
module is the current
compilation unit.

isolated_call Lists functions that do not
alter data objects visible at
the time of the function call.

“#pragma langlvl (C)” on
page 16

Selects the C language level
for compilation.

“#pragma leaves” on page 17 Takes a function name and
specifies that the function
never returns to the
instruction after the function
call.

library This tells the linker to pull in
the appropriate libraries at
link time.

2 Preprocessing Directives - #pragma

Platform and Language
Restrictions

#pragma Description

linkage Identifies the linkage or
calling convention used on a
function call.

“#pragma map” on page 18 Tells the compiler that all
references to an identifier are
to be converted to a new
name.

margins Specifies the columns in the
input line that are to be
scanned for input to the
compiler.

mc_func Specifies machine
instructions for a particular
function.

“#pragma namemangling
(C++)” on page 19

Sets the maximum length for
external names generated
from source code.

“#pragma object_model
(C++)” on page 19

Specifies the object model to
use for the structures,
unions, and classes that
follow it.

“#pragma options (AIX)” on
page 20

Specifies options to the
compiler in your source
program.

option_override Specifies alternate
optimization options for
specific functions.

pack Specifies the alignment rules
to use for the structures,
unions, and classes that
follow it.

page Skips the number of pages of
the generated source listing.
The number of pages is
defined by the user.

pagesize Sets the number of lines per
page to user-defined value
for the generated source
listing.

“#pragma priority (C++)” on
page 22

Specifies the order in which
static objects are to be
initialized at run time.

“#pragma reachable” on
page 23

Declares that the point after
the call to a routine marked
reachable can be the target of
a branch from some
unknown location.

Chapter 1. Preprocessor Directives - #pragma 3

Platform and Language
Restrictions

#pragma Description

reg_killed_by Specifies those registers
which value will be
corrupted by the specified
function. It must be used
together with #pragma
mc_func.

“#pragma report (C++)” on
page 24

Controls the generation of
specific messages.

seg16 Shares a data object between
16-bit and 32-bit processes.

sequence Defines the section of the
input line that is to contain
sequence numbers.

skip Skips the specified number
of lines of the generated
source listing.

stack16 Specifies the size of the stack
to be allocated for calls to
16-bit routines.

stack_align Applies the stack alignment
rules to the user defined
functions.

“#pragma strings” on page 26 Sets storage type for strings.

subtitle Places the text specified by
subbtitle on all subsequent
pages of the generated
source listing.

title Places the text specified by
the user on all subsequent
pages of the generated
source listing.

weak Adds an alternate function
name with weak binding for
the specified function.

Preprocessor Directives - An Overview

#pragma Preprocessor Directives for Parallel Processing (C Only)

4 Preprocessing Directives - #pragma

Chapter 2. Overview of the #pragma Options

The following is a summary of each #pragma option.

#pragma align (AIX)
The #pragma align directive specifies that the compiler should align data items
within structures.

On the Intel platform, use #pragma pack instead.

Preprocessor Directives - An Overview
“Chapter 1. Preprocessor Directives - #pragma” on page 1

#pragma alloca (C, AIX)
Description

The #pragma alloca directive specifies that the compiler should provide an inline
version of the function alloca(size_t <size>). The function alloca(size_t <size>) can be
used to allocate space for an object. The amount of space allocated is determined
by the value of <size>, which is measured in bytes. The allocated space is put on
the stack.

Syntax

You must include the #pragma alloca directive to have the compiler provide an
inline version of alloca.

Once specified, it applies to the rest of the file and cannot be turned off. If a source
file contains any functions that you want compiled without #pragma alloca, place
these functions in a different file.

Preprocessor Directives - An Overview
“Chapter 1. Preprocessor Directives - #pragma” on page 1

© Copyright IBM Corp. 1998, 2000 5

#pragma chars
Description

The #pragma chars directive sets the sign type of char objects to be either signed or
unsigned.

In C, this pragma must appear before any source statements, in order for
this pragma to take effect.

In C++ incremental mode, this pragma may be defined anywhere in the
source file. In C++ batch mode, the pragma must appear before any souce
statements.

Syntax

Once specified, it applies to the entire file and cannot be turned off. If a source file
contains any functions that you want to be compiled without #pragma chars, place
these functions in a different file. If the pragma is specified more than once in the
source file, the first one will take precedence.

Note: the default character type behaves like an unsigned char.

Preprocessor Directives - An Overview
“Chapter 1. Preprocessor Directives - #pragma” on page 1

#pragma comment
Description

The #pragma comment directive places a comment into the target or object file.

Syntax

where:

compiler the name and version of the compiler is
appended to the end of the generated object
module.

date the date and time of compilation is appended
to the end of the generated object module.

timestamp the date and time of the last modification of
the source is appended to the end of the
generated object module.

6 Preprocessing Directives - #pragma

copyright the text specified by the token_sequence is
placed by the compiler into the generated
object module and is loaded into memory
when the program is run.

user the text specified by the token_sequence is
placed by the compiler into the generated
object but is not loaded into memory when
the program is run.

lib A library search record is placed into
generated object module. Equivalent to
#pragma library.

Preprocessor Directives - An Overview
“Chapter 1. Preprocessor Directives - #pragma” on page 1

#pragma define (C++)
Description

The #pragma define directive forces the definition of a template class without
actually defining an object of the class. This pragma is only provided for backward
compatibility purposes. The user can explicitly instantiate a class, function or
member template specialization by using a construct of the form:
template declaration

For example:
#pragma define(Array<char>)

is equivalent to:
template class Array<char>;

This pragma must be defined in global scope (i.e. it cannot be enclosed inside a
function/class body).

Syntax

where the template_classname is the name of the template to be defined.

The pragma can only appear in the global scope. It is used when organizing your
program for the efficient or automatic generation of template functions.

Preprocessor Directives - An Overview
“Chapter 1. Preprocessor Directives - #pragma” on page 1

Chapter 2. Overview of the #pragma Options 7

#pragma disjoint
Description

The #pragma disjoint directive lists the identifiers that are not aliased to each other
within the scope of their use.

Syntax

The directive informs the compiler that none of the identifiers listed shares the
same physical storage, which provides more opportunity for optimizations. If any
identifiers actually share physical storage, the pragma may cause the program to
give incorrect results. This pragma directive can be enabled or disabled by
specifying the opt(pragmadisjoint) option in the configuration file.

An identifier in the directive must be visible at the point in the program where the
pragma appears. The identifiers in the disjoint name list cannot refer to any of the
following:
v a member of a structure, or union
v a structure, union, or enumeration tag
v an enumeration constant
v a typedef name
v a label

Example
int a, b, *ptr_a, *ptr_b;
#pragma disjoint(*ptr_a, b) // *ptr_a never points to b
#pragma disjoint(*ptr_b, a) // *ptr_b never points to a
one_function()
{

b = 6;
*ptr_a = 7; // Assignment does not alter the value of b
another_function(b); // Argument “b” has the value 6

}

Because external pointer ptr_a does not share storage with and never points to the
external variable b, the assignment of 7 to the object that ptr_a points to will not
change the value of b. Likewise, external pointer ptr_b does not share storage with
and never points to the external variable a. The compiler can assume that the
argument of another_function has the value 6 and will not reload the variable from
memory.

Preprocessor Directives - An Overview
“Chapter 1. Preprocessor Directives - #pragma” on page 1
Functionality of Configuration Files

pragmadisjoint Optimization Option - opt(pragmadisjoint)

8 Preprocessing Directives - #pragma

#pragma entry

Under the AIX platform, this pragma is not available for C, but is
available for C++.

Description

The #pragma entry directive specifies the function to be used as the entry point for
the application being built.

Syntax

The function_name is the name of the function to be used as an entry point. This
function must be in the same compilation unit as the #pragma entry directive. The
following types of functions cannot be used with #pragma entry:
v functions with C++ linkage
v C++ member functions
v template member functions
v overloaded functions

v Under the OS/2® platform, your function must have _System linkage.

Under the Windows® platform, your function must have __cdecl
linkage.

Normally when an application is started, the system calls the C library entry point.
When you specify a different entry point using the #pragma entry, the system calls
that entry point and does not perform any C library initialization or termination. If
you use #pragma entry, you must ensure that your executable file does not require
library initialization or termination, or you must provide your own initialization
and termination functions.

Preprocessor Directives - An Overview
“Chapter 1. Preprocessor Directives - #pragma” on page 1

#pragma enum
Description

The #pragma enum directive specifies the size of enum variables that follow. The
size at the left brace of a declaration is the one that affects that declaration,
regardless of whether further enum directives occur within the declaration. This
pragma pushes a value on a stack each time it is used, with a reset option
available to return to the previously pushed value.

Syntax

Chapter 2. Overview of the #pragma Options 9

where option can be substituted with one of the following:

Options
small enum size is the smallest integral type that

can contain all variables.
int enum size is 4
1 enum size is 1
2 enum size is 2
4 enum size is 4
pop the option will reset the enum size to the one

before the previously set enum size.
reset the option is an alternative method of

resetting the enum size to the one before the
previously set enum size. This option is
provided for backwards compatibility.

Example:
#pragma enum(1)
#pragma enum(2)
#pragma enum(4)
#pragma enum(pop) /* will reset enum size to 2 */
#pragma enum(reset) /* will reset enum size to 1 */
#pragma enum(pop) /* will reset enum size to default

Popping on an empty stack generates a warning message and the enum value
remains unchanged.

The gen(enumsize) option can be used to set the enum size to default. The
#pragma enum directive overrides gen(enumsize).

Preprocessor Directives - An Overview
“Chapter 1. Preprocessor Directives - #pragma” on page 1

enumsize code generation option - gen(enumsize) option

#pragma export

Under AIX, this pragma is not available for C, but it is available for
C++

Description

The #pragma export directive declares that a shared library function or variable is to
be exported and specifies the name of the function outside the shared library.

Syntax

10 Preprocessing Directives - #pragma

where:

identifier the name of the function or variable in the
shared library.

If the identifier is the name of an
overloaded function or a member function,
there is a risk that the pragma will override
the compiler-generated names. This will
create problems during linking.

export_name The export name is the name for identifier
outside of the shared library. The export
name must be fully decorated according to
the linkage convention that applies to it. This
parameter is optional, however if we do not
wish to specify the export_name but we
want to specify an ordinal number, then all
commas must be present. For example:

#pragma export(identifier,, ordinal)
ordinal the number of the identifier within the DLL.

* If no export_name is specified, identifier is used.

Preprocessor Directives - An Overview
“Chapter 1. Preprocessor Directives - #pragma” on page 1

_declspec Keyword
_Export Keyword
Keywords in C and C++

#pragma hdrfile (C)
Description

The #pragma hdrfile directive specifies the filename of the precompiled header to be
generated and/or used.

Syntax

One of the compiler options, file(genpch, ...) or file(usepch, ...), must be specified to
allow more than one precompiled header to be use for a single application.

Chapter 2. Overview of the #pragma Options 11

If a file name is specified both on the command line and on #pragma hdrfile, the
name specified on the pragma takes precedence. If the name specified is a
directory, then the the compiler searches for or generates a file with the default
name in that directory.

In order to maximize the reuse of precompiled headers, the use #pragma hdrfile in
combination with #pragma hdrstop to manually limit the initial sequence of
#include directives.

Use precompiled header files to decrease compile time. Using precompiled headers
will not improve compile time performance in most applications without some
organization of the headers included by each source file.

“Examples using #pragma hdrfile (C)”

Preprocessor Directives - An Overview
“Chapter 1. Preprocessor Directives - #pragma” on page 1

genpch C File Option - file(genpch, ...)

usepch C File Option - file(usepch, ...)

Examples using #pragma hdrfile (C)
/**
* In the following example, the headers h1.h and h2.h are precompiled *
* using the file fred.pch (provided /Si or /Fi are specified). If *
* /Fidave.pch is specified alone, the compiler looks for the precompiled*
* headers in fred.pch but will not generate new headers. *
**/
#pragma hdrfile “fred.pch”
#include “h1.h”
#include “h2.h”
main()
{
// Your Code Goes Here
}

/**
* In the following example, only the header h1.h will be precompiled *
* using the file fred.pch (provided /Si or /Fi are specified). If *
* /Sidave.pch is specified alone, the compiler looks for the precompiled*
* headers in fred.pch but will not generate new headers. *
**/
#pragma hdrfile “fred.pch”
#include “h1.h”
#pragma hdrstop
#include “h2.h”
main()
{
// Your Code Goes Here
}

“#pragma hdrfile (C)” on page 11

12 Preprocessing Directives - #pragma

#pragma hdrstop (C)
Description

The #pragma hdrstop directive manually terminates the initial sequence of #include
directives being considered for precompilation.

Syntax

It has no effect if:
v The initial sequence of #include directives has already ended
v Neither the file(genpch, ...) option nor the file(usepch, ...) option is specified
v It does not appear in the primary source file

Use precompiled header files to decrease compile time. Using precompiled headers
will not improve compile time performance in most applications without some
organization of the headers included by each source file.

“Examples using #pragma hdrstop (C)”

Preprocessor Directives - An Overview
“Chapter 1. Preprocessor Directives - #pragma” on page 1

genpch C File Option - file(genpch, ...)

usepch C File Option - file(usepch, ...)

Examples using #pragma hdrstop (C)
/**
* In the following example, only the header h1.h will be precompiled *
* using the file default.pch (provided /Si or /Fi are specified). If *
* /Sidave.pch /Fijohn.pch are specified, the compiler will look for the *
* precompiled headers in john.pch and will regenerate them if they are *
* not found or not usable. *
**/
#include “h1.h”
#pragma hdrstop
#include “h2.h”
main()
{
// Your Code Goes Here
}

/**
* In the following example, no precompiled headers will be generated or *
* used for the compilation, even if /Fi or /Si are specified. *
**/
#pragma hdrstop
#include “h1.h”
#include “h2.h”
main()
{
// Your Code Goes Here
}

Chapter 2. Overview of the #pragma Options 13

“#pragma hdrstop (C)” on page 13

#pragma import

Under AIX, this pragma is not available for C, but it is available
for C++.

Description

The #pragma import directive lets you import a function or a variable from a shared
library using either an ordinal number or a name different from the one that it has
in the shared library.

Syntax

Ordinals are not supported in AIX; everything is by name.

The identifier is the name you use in your source to refer to the function or
variable. The “export_name” is the name of the function or variable in the shared
library.

For C++ files, “export_name” can also be a function prototype. If
“export_name” is not specified, it is assumed to be the same as identifier.

If the identifier is the name of an overloaded function or a member
function, there is a risk that the pragma will override the compiler-generated
names. This will create problems during linking.

Note: Both identifier and “export_name”must be defined only once in each
compilation unit.

The “module” is the name of the shared library containing the identifier, and ordinal
indicates the position of the function or variable within the shared library. Ordinal
numbers are described in more detail in the Toolkit documentation.

The information provided by #pragma import is used at load time to locate the
imported identifier. If ordinal is 0, the “export_name” is used to find the identifier. If
ordinal is any other number, “export_name” is ignored and the identifier is located by
number. It is usually faster to locate the identifier by number than by name. By
default, ordinal has a value of 0

Note: You cannot use the ordinals provided in the Toolkit header files with
#pragma import. These ordinals are provided as C macros that cannot be used in
#pragma directives.

14 Preprocessing Directives - #pragma

If an identifier is specified in more than one #pragma import, all instances of the
pragma must have the same “export_name”, module, and ordinal value. If the export
name, module name, or ordinal value are different, an error will occur.

For example, the following imports “Joe” from the “TeamList”:
#pragma import(player, “Joe”, “TeamList”, 2)

Preprocessor Directives - An Overview
“Chapter 1. Preprocessor Directives - #pragma” on page 1

#pragma info
Description

The #pragma info directive controls the diagnostic messages generated by the
info(...) compiler option. The #pragma directive overrides any info(...) option stated
in the configuration file.

Syntax:

The effects of the options used with #pragma info are listed as follows:

all turns on all diagnostic checking.
none turns off all diagnostic suboptions for specific

portions of your program
restore restores the options that were in effect before

the previous #pragma info directive.
group generates all messages associated with that

diagnostic group
nogroup suppresses all messages associated with that

group.

For example:
#pragma info(ret)

Preprocessor Directives - An Overview
“Chapter 1. Preprocessor Directives - #pragma” on page 1

Information Message Groups

info Miscellaneous Option - info(...)

Example: #pragma isolated_call
The following example shows the use of the #pragma isolated_call directive.
Because the function this_function does not have side effects, a call to it will not

Chapter 2. Overview of the #pragma Options 15

change the value of the external variable a. The compiler can assume that the
argument to other_function has the value 6 and will not reload the variable from
memory.
int a;
// Assumed to have no side effects
int this_function(int);

#pragma isolated_call=this_function
that_function()
{

a = 6;
// Call does not change the value of “a”
this_function(7);
// Argument “a” has the value 6
other_function(a);

}

The isolated call compiler option has the same effect as this pragma. The ignprag
compiler option causes aliasing pragmas to be ignored. Use the ignprag compiler
option to debug applications containing the #pragma isolated_call directive.

Preprocessor Directives - An Overview
“Chapter 1. Preprocessor Directives - #pragma” on page 1

#pragma isolated_call

#pragma langlvl (C)
Description

The #pragma langlvl directive selects the C language level for compilation.

Syntax

This pragma can be specified only once in a source file, and it must appear before
any statements in a source file. The compiler uses predefined macros in the header
files to make declarations and definitions available that define the specified
language level.

ansi Defines the predefined macros __ANSI__ and
__STDC__ and undefines other langlvl
variables. Allows only language constructs
that conform to ANSI/ISO C standards.

extended Defines the predefined macro
__EXTENDED__ and undefines other langlvl
variables. The default language level is
extended.

classic Defines the predefined macro __CLASSIC__
and undefines other langlvl variables.

16 Preprocessing Directives - #pragma

saa Defines the predefined macro __SAA__ and
undefines other langlvl variables. Allows
only language constructs that conform to the
most recent level of SAA C standards
(currently Level 2). These include ANSI C
constructs. This language level is valid for C
programs only.

saal2 Defines the predefined macro __SAAL2__
and undefines other langlvl variables. Allows
only language constructs that conform to
SAA Level 2 C standards. These include
ANSI C constructs. This language level is
valid for C programs only.

The langlvl configuration file options lang(level, ansi), lang(level, extended),
lang(level, classic), lang(level, saa), and lang(level, saal2) have the same effect as
this pragma.

Preprocessor Directives - An Overview
“Chapter 1. Preprocessor Directives - #pragma” on page 1

level Language Option - lang(level, ...)

#pragma leaves
Description

The #pragma leaves directive takes a function name and specifies that the function
never returns to the instruction after the call.

Syntax

This pragma tells the compiler that the flow of the program’s execution ends,
although the program does not terminate, when function is called.

The advantage of the pragma is that it allows the compiler to ignore any code that
exists after function, in turn, the optimizer can generate more efficient code. This
pragma is commonly used for custom error-handling functions, in which programs
can be terminated if a certain error is encountered. Some functions which also
behave similarily are exit, longjmp, and terminate.

Example
#pragma leaves(handle_error_and_quit)
void test_value(int value)
{
if (value == ERROR_VALUE)
{
handle_error_and_quit(value);

Chapter 2. Overview of the #pragma Options 17

TryAgain(); // optimizer ignores this because
// never returns to execute it
}
}

Preprocessor Directives - An Overview
“Chapter 1. Preprocessor Directives - #pragma” on page 1

#pragma map
Description

The #pragma map directive tells the compiler that all references to an identifier are
to be converted to “name”.

Syntax

The follow list describes the options available for #pragma map:

identifier A name of a data object or a nonoverloaded
function with external linkage.

If the identifier is the name of an
overloaded function or a member function,
there is a risk that the pragma will override
the compiler-generated names. This will
create problems during linking.

function_signature A name of a function or operator with
internal linkage. The name can be qualified.

name The external name that is to be bound to the
given object, function, or operator.

You should not use #pragma map to map the following:
v C++ Member functions
v Overloaded functions
v Objects generated from templates
v Functions with C++ or built in linkage

The directive can appear anywhere in the program. The identifiers appearing in
the directive, including any type names used in the prototype argument list, are
resolved as though the directive had appeared at file scope, independent of its
actual point of occurrence.

For example,
int func(int);
class X {
public:
void func(void);
#pragma map(func, “funcname1”) // maps ::func to funcname1
#pragma map(X::func, “funcname2”) // maps X::func to funcname2
};

18 Preprocessing Directives - #pragma

Preprocessor Directives - An Overview
“Chapter 1. Preprocessor Directives - #pragma” on page 1

#pragma namemangling (C++)
Description

The #pragma namemangling directive sets the maximum length for external symbol
names generated from C++ source code.

Syntax

ansi The name mangling scheme complies with
the C++ standard. If you specify ansi but do
not specify a size, the default maximum is
64000 characters.

compat The name mangling scheme is the same as in
earlier versions of VisualAge C++. The
default maximum is 255 characters. Use this
scheme for compatability with link modules
created with earlier versions of VisualAge
C++.

Preprocessor Directives - An Overview
“Chapter 1. Preprocessor Directives - #pragma” on page 1

#pragma object_model (C++)
Description

The #pragma object_model directive specifies the object model to use for the
structures, unions, and classes that follow it.

Object Models
Preprocessor Directives - An Overview
“Chapter 1. Preprocessor Directives - #pragma” on page 1

objectModel Code Generation Option (C++)

Chapter 2. Overview of the #pragma Options 19

#pragma options (AIX)
Description

The #pragma options directive specifies compiler options for your source program.

Syntax

The following are valid options for #pragma options:

Valid options Description

align=option equivalent to option gen(align,option).

[no]ansialias equivalent to option opt(alias,ansi).

arch=option equivalent to option gen(arch,option).

assert=option equivalent to option opt(alias,option).

chars=option equivalent to “#pragma chars” on page 6.

[no]check equivalent to option gen(check,zerodivide).

[no]compact equivalent to option opt(size).

enum=option equivalent to “#pragma enum” on page 9.

flag=option Specify the severity level of diagnostics to be
reported.

#pragma options flag=i ==> “#pragma
report (C++)” on page 24 (level,I)

#pragma options flag=w ==> “#pragma
report (C++)” on page 24 (level,W)

#pragma options flag=e,s,u ==> “#pragma
report (C++)” on page 24 (level,E)

[no]flttrap=option equivalent to option gen(floatTrap,option).

float=[no]option equivalent to option gen(float,option).

[no]fold equivalent to option gen(float,fold).

[no]ignerrno equivalent to option opt(ignerrno).

[no]info=option equivalent to “#pragma info” on page 15.

initauto=value equivalent to option gen(initauto,value).

[no]inlglue equivalent to option gen(inlinePointerGlue).

isolated_call=names equivalent to #pragma isolated_call.

[no]libansi equivalent to option gen(libansi).

20 Preprocessing Directives - #pragma

[no]longlong equivalent to option lang(longlong).

[no]maxmem=number equivalent to option opt(maxmem,number).

priority=number equivalent to “#pragma priority (C++)” on
page 22.

[no]ro equivalent to option gen(readOnly).

[no]roconst equivalent to option gen(readOnlyConst).

[no]rwvftable equivalent to option

gen(vftReadOnly) .

spill=number equivalent to option
opt(registerSpillSize,number).

[no]strict equivalent to option opt(strict).

tbtable=option equivalent to option
link(traceBackTable,option).

tune=option equivalent to option opt(tune,option).

[no]unroll
unroll=number

equivalent to option opt(loopUnroll).

[no]vftable equivalent to option gen(vft).

The following are valid options for #pragma options only in C:

Valid options Description

[no]attr

attr=full

Produces an attribute listing containing all names.

[no]cinc=prefix Specifies files to be included with implicit extern “C”.

[no]dbcs String literals and comments can contain DBCS characters.

[no]dbxextra Generates symbol table information for unreferenced variables.

[no]digraph Allows special digraph and keyword operators.

[no]dollar equivalent to option lang(allowDollarInNames).

[no]extchk Performs external name type-checking and function call
checking.

[no]funcsect Places intructions for each function in a separate cset.

[no]fullpath Specifies the path information stored for files for dbx
stabstrings.

genpcomp Generates pre-compiled headers.

halt Stops compiler when errors of the specified severity detected.

[no]idirfirst Specifies search order for user include files.

langlvl Specifies different language levels.

[no]ldbl128 gen(longdouble) is a CodeStore wide option.

list Produces an object listing.

[no]longdouble gen(longdouble) is a CodeStore wide option.

[no]mbcs String literals and comments can contain DBCS characters.

macpstr Allows ’\p’ as the first character of a string constant.

once Processes include file only once.

Chapter 2. Overview of the #pragma Options 21

showinc Includes the source of all included files in the listing.

som (C++) Turns on implicit SOM mode.

somgs (C++) Disables direct access to attributes for SOM objects.

source Produces a source listing.

srcmsg Reconstructs source lines in error along with the diagnostic
messages.

nostdinc The include directory is not searched.

[no]upconv equivalent to option lang(preserveUnsignedPromotion).

xref Produces a cross-reference listing.

By default, the options specified apply to the entire source program. If you specify
more than one compiler option, use a blank space to separate them.

If certain options are to apply to the entire program, then the #pragma
options directive should be specified before any statements.

Eight compiler options that can be specified with the #pragma options directive
have corresponding preprocessor #pragma directives. They are:

#pragma option Name #pragma Name

chars “#pragma chars” on page 6

enum “#pragma enum” on page 9

flag “#pragma report (C++)” on page 24

info “#pragma info” on page 15

isolated_call isolated_call

langlvl “#pragma langlvl (C)” on page 16

priority “#pragma priority (C++)”

ro “#pragma strings” on page 26

Preprocessor Directives - An Overview
“Chapter 1. Preprocessor Directives - #pragma” on page 1

Build Options

Optimization Options

Code Generation Options

#pragma priority (C++)
Description

22 Preprocessing Directives - #pragma

The #pragma priority directive specifies the order in which static objects are to be
initialized at run time.

Syntax

Where n is an integer literal in the range of INT_MIN to INT_MAX. The default
value is 0. A negative value indicates a higher priority; a positive value indicates a
lower priority. The first 1024 priorities (INT_MIN to INT_MIN + 1023) are reserved
for use by the compiler and its libraries. The priority value specified applies to all
runtime static initialization in the current compilation unit.

Any global object declared before another object in a file is constructed first. Use
#pragma priority to specify the construction order of objects across files. However,
if the user is creating an executable or shared library target from source files,
VisualAge C++ will check dependency ordering, which may override #pragma
priority.

For example, if the constructor to object B is passed object A as a parameter, then
VisualAge C++ will arrange for A to be constructed first, even if this violates the
top-to-bottom or #pragma priority ordering. This is essential for orderless
programming, which VisualAge C++ permits. If the target is an .obj/.lib, this
processing is not done, because there may not be enough information to detect the
dependencies.

To ensure that the objects are always constructed from top to bottom in a file, the
compiler enforces the restriction that the priority specifies all objects before and all
objects after it until the next #pragma (is encountered) is at that priority.

For example,
#pragma priority(1)

Preprocessor Directives - An Overview
“Chapter 1. Preprocessor Directives - #pragma” on page 1

#pragma reachable
Description

The #pragma reachable directive declares that the point after the call to a routine,
function, can be the target of a branch from some unknown location. This pragma
should be used in conjunction with setjmp.

Syntax

Chapter 2. Overview of the #pragma Options 23

Preprocessor Directives - An Overview
“Chapter 1. Preprocessor Directives - #pragma” on page 1

#pragma report (C++)
Description

The #pragma report directive controls the generation of specific messages. The
pragma will take precedence over #pragma info. #pragma report(pop) will revert
the report level to the previous level. If no previous report level was specified,
then a warning will be issued and the report level will remain unchanged.

Syntax
There are three ways in which this directive can be used:
#pragma report (level, (E|W|I))
#pragma report ((enable | disable), message_number)
#pragma report (pop)

where:

level indicates the minimum severity level of diagnostic messages
to display.

24 Preprocessing Directives - #pragma

E | W | I used in conjunction with
level to determine the type of
diagnostic messages to
display.

E: signifies a minimum
message severity of ’error’.
This is considered as the
most severe type of
diagnostic message. A report
level of ’E’ will display only
’error’ messages. An
alternative way of setting the
report level to ’E’ is by
specifying the report(level, E)
compiler option.

W: signifies a minimum
message severity of
’warning’. A report level of
’W’ will filter out all
informational messages, and
display only those messages
classified as warning or error
messages. An alternative way
of setting the report level to
’W’ is by specifying the
report(level, W) compiler
option.

I: signifies a minimum
message severity of
’information’. Information
messages are considered as
the least severe type of
diagnostic message. A level
of ’I’ would display messages
of all types. The VisualAge
C++ development
environment sets this as the
default option. An alternative
way of setting the report
level to ’I’ is by specifying
the report(level, I) compiler
option.

enable | disable enables or disables the
specified message number.

message_number is an identifier containing the
message number prefix,
followed by the message
number. An example of a
message number is:
CPPC1004

pop resets the report level back to
the previous report level. If a
pop operation is performed
on an empty stack, the report
level will remain unchanged
and no message will be
generated.

Chapter 2. Overview of the #pragma Options 25

Examples
1 #pragma info(all)
2 #pragma report(level, W)

In the example above, #pragma info declares all messages to be information
messages. The pragma report instructs the compiler to to display only those
messages with a severity of ’W’ or warning messages. In this case, none of the
messages will be displayed.

1 #pragma report(enable, CPPC1000) // enables message number CPPC1000 2
#pragma report(level, E) // display only error messages

In the example above, if CPPC1000 was an error message, it would be displayed. If
it was any other type of diagnostic message, it would not be displayed. Changing
the order of the code like so:
1 #pragma report(level, E)
2 #pragma report(enable, CPPC1000)

would yield the same result. The order in which the two lines of code appear in,
does not affect the outcome. However, if the message was ’disabled’, then
regardless of what report level is set and order the lines of code appear in, the
diagnostic message will not be displayed.
1 #pragma report(level, I)
2 #pragma report(enable, CPPC1000)
3 #pragma report(level, E)
4 #pragma report(pop)

In line 1 of the example above, the initial report level is set to ’I’, causing message
CPPC1000 to display regardless of the type of diagnostic message it classified as.
In line 3, a new report level of ’E’ is set, indicating at only messages with a
severity level of ’E’ will be displayed. Immediately following line 3, the current
level ’E’ is ’popped’ and reset back to ’I’.

Preprocessor Directives - An Overview
Preprocessor Directive - #pragma

#pragma info
report level Miscellaneous Option - report(level, ...)

#pragma strings
Description

The #pragma strings directive sets storage type for strings. It specifies that the
compiler can place strings into read-only memory or must place strings into
read/write memory. Unlike previous versions of VisualAge C++, this pragma can
appear anywhere in a source file.

For code that will be compiled with the C compiler, this pragma must
appear before any C code.

Syntax

26 Preprocessing Directives - #pragma

Strings are readonly by default.

For example,
#pragma strings(writeable)

Preprocessor Directives - An Overview
“Chapter 1. Preprocessor Directives - #pragma” on page 1

Chapter 2. Overview of the #pragma Options 27

28 Preprocessing Directives - #pragma

Contacting IBM®

We’re delighted to offer a solid cornerstone for your application development:
IBM’s comprehensive support services. Whether you are an occasional user with a
simple question, a power user with many complex technical questions, or someone
who requires application design assistance and consulting, IBM Support can meet
your needs.

Comments on This Help

Please let us know about any errors or omissions in this online help or in the
hardcopy Getting Started book, or our PDF documents. Send your e-mail to:
torrcf@ca.ibm.com

Fee Support

Developers on the VisualAge C++ for AIX Service and Support team handle
everything from simple how-to’s to complex technical problems. Solutions may
take the form of a brief explanation, a workaround, a fix to the current product, or
a fix to the next release.

http://www.ibm.com/support/ describes IBM Support Offerings on all platforms,
worldwide.

http://www.ibm.com/rs6000/support/ describes support offerings on the
RS/6000® platform, in your country. It also indicates whether your country
provides support electronically over the Internet in addition to telephone support.

http://www.lotus.com/passport describes the IBM and Lotus® Passport
Advantage™ contracting option.

The IBM Software Support Handbook, accessible from
http://www.ibm.com/software/support, also lists worldwide support contacts.

Phone numbers for information on Support Line offerings are:
v United States: 1-888-426-4343 (IBM Global Services), option 3 as of December

1999. Should this number change, IBM general information at 1-800-IBM-4YOU
(1-800-426-4968) can route you to the appropriate group.

v Canada: 1-800-465-9600, option 3 as of December 1999. Should this number
change, you can also contact IBM general information at 1-800-IBM-4YOU
(1-800-426-4968).

Please call 1-800-266-8720 in the U.S. and Canada for information on Passport
Advantage offerings.
v Elsewhere, please contact your local IBM office.

If you contact support, please have the following information available:
v The product name
v The product version
v The hardware configuration and software (product names and versions you are

using)
v What happened and what you were doing when the problem occurred

© Copyright IBM Corp. 1998, 2000 29

v Whether you tried to solve the problem and how
v The exact wording of any messages displayed

Consulting Services

VisualAge and WebSphere™ Product Affinity Services Group is a core group of
technical specialists from the IBM development labs that created the IBM
VisualAge and WebSphere products. With access to a network of IBM product area
experts, IBM and industry business partners, and some of the best resources in the
industry, we can put the optimal team in place to meet the challenge of absorbing
new technology. Our goal is to enable organizational success with VisualAge and
WebSphere — ensuring that our products are used effectively within your
development team.

For more information, visit http://www.ibm.com/software/ad/vaws-services/ or
contact the Product Affinity Services Team at:

AIM_SERVICES@us.ibm.com

30 Preprocessing Directives - #pragma

	Contents
	Notices
	Programming Interface Information
	Trademarks and Service Marks
	Industry Standards

	About This Book
	Chapter 1. Preprocessor Directives - #pragma
	Chapter 2. Overview of the #pragma Options
	#pragma align (AIX)
	#pragma alloca (C, AIX)
	#pragma chars
	#pragma comment
	#pragma define (C++)
	#pragma disjoint
	#pragma entry
	#pragma enum
	#pragma export
	#pragma hdrfile (C)
	Examples using #pragma hdrfile (C)

	#pragma hdrstop (C)
	Examples using #pragma hdrstop (C)

	#pragma import
	#pragma info
	Example: #pragma isolated_call

	#pragma langlvl (C)
	#pragma leaves
	#pragma map
	#pragma namemangling (C++)
	#pragma object_model (C++)
	#pragma options (AIX)
	#pragma priority (C++)
	#pragma reachable
	#pragma report (C++)
	#pragma strings

	Contacting IBM®

