
VisualAge® C++ Professional for AIX®

Migration Guide
Version 5.0

���

Edition Notice

This edition applies to Version 5.0 of IBM VisualAge C++ and to all subsequent releases and modifications until
otherwise indicated in new editions. Make sure you are using the correct edition for the level of the product.

© Copyright International Business Machines Corporation 1998, 2000. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Note!
Before using this information and the product it supports, be sure to read the general
information under “Notices” on page v.

Contents

Notices v
Programming Interface Information vii
Trademarks and Service Marks vii
Industry Standards viii

About This Book. ix

Chapter 1. Prepare to Migrate to Version
5.0 1
Choosing the Right Compiler 2

Features at a glance 2
Recommendations based on code you have to
maintain 3

Chapter 2. Migrate to Incremental
Compilation 5
Create a Configuration File for Migration 6

A. Creating an Empty Configuration File with the
IDE and SmartGuides 6
B. Copying an Existing Configuration File from
the Samples Provided with VisualAge C++ . . . 7

Preparation for Grouping Source Files for Migration 8
Create Source Group Directives for Migration . . . 9
Convert Compile and Link Options to Configuration
Options. 10
Add Source Files to the Project for Migration . . . 11

Adding Source Files Using the IDE 11
Adding a Source File by Editing the
Configuration File 12
Example: Configuration File with Source File
Added 12
Build Errors You May Encounter After Adding
Source Files 12

Promote Included System and User Header Files . . 13
Add Another Target to your Project for Migration 14
Migrate Other Commands 15

Using the run Directive to Call Other Tools. . . 15
Syntax of the run Directive 15
Example: run Directive 16
Notes on the Example 16

Arrange Options in Groups 17

Chapter 3. Migrate from Version 4.0 to
Version 5.0 19
Combine Multiple Codestores in One Project . . . 19
Divide a Single-Codestore Project into Multiple
Codestores 20

Chapter 4. Migrate to Version 5.0 Batch
Compilation 21

Chapter 5. Troubleshooting References 23
Common Errors when Migrating 23

Errors Due to Changes in the C++ Language . . . 23
bool, true, and false Keywords 23
Changes to Digraphs in the C++ Language . . . 24

Errors Due to Changes in Compiler Behavior . . . 24
Access-checking errors. 24
typedefs 24
Overloading ambiguities 25
Syntax errors with new 26

Coding Adjustments for Orderless Programming . . 26
Overload Resolution is Handled Differently . . 26
Resolution to an Unexpected Declaration . . . 26
Solution 27
Unexpected Results With Macro Source Files . . 27

Common Template Problems 28
Changes in Name Resolution 28
Changes to friend Declarations 28
Changes to the friend Declarator 29

Common Errors due to Duplicate Symbols 30
Solution 31

Adjust for Using the IBM Open Class Library . . . 31

Chapter 6. Special Considerations for
Migrating to Incremental Compilation . 33
Application Requires Multiple Targets 33
Application Uses Meta Source Files 34
Application Uses Meta Header Files 35

Example: Meta Header Files 36
Application Needs to Maintain Compatibility with a
Batch Compiler 37
Application Uses Both C and C++ Source 38

Chapter 7. Migration Concepts 41
Promoting Source Files to the Configuration File . . 41

Macro Source Files 42
Using Macros Which Expand to Different Values
in Different Source Files 42

Meta Source Files 43
Considerations When Using C++ I/O 43

Example 44
Migration of Resource Files 44

Resource Conversion Utilities for Cross-Platform
Development 44

Chapter 8. Other Migration References 47
Options for Compatibility with Previous Versions of
VisualAge C++ 47
Compile Options from Earlier Versions of VisualAge
C++ and Equivalent Configuration Options (AIX) . 53
Link Options from Earlier Versions of VisualAge
C++ (AIX) 66
New Standard C++ Library Header Files 67

The Language Support Library 67
The Diagnostics Library 67
The General Utilities Library 68
The Standard String Templates 68

© Copyright IBM Corp. 1998, 2000 iii

Localization Classes and Templates 68
The Containers, Iterators and Algorithms
Libraries (the Standard Template Library) . . . 68
The Standard Numerics Library 69
The Standard Input/Output Library 69

Use the Standard Iostreams Library and the
Compatibility Iostreams Library 71

Use the Standard Iostreams Library with the IBM
Open Class Library 71
Makefile Rules Mapped to Configuration File
Directives 72

Contacting IBM 73

iv Migration Guide

Notices

Note to U.S. Government Users Restricted Rights -- use, duplication or disclosure
restricted by GSA ADP Schedule Contract with IBM Corp.

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION ″AS IS″
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1998, 2000 v

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Lab Director
IBM Canada Ltd.
1150 Eglinton Avenue East
Toronto, Ontario M3C 1H7
Canada

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. 1998, 2000. All rights reserved.

vi Migration Guide

Programming Interface Information
Programming interface information is intended to help you create application
software using this program.

General-use programming interface allow the customer to write application
software that obtain the services of this program’s tools.

However, this information may also contain diagnosis, modification, and tuning
information. Diagnosis, modification, and tuning information is provided to help
you debug your application software.

Warning: Do not use this diagnosis, modification, and tuning information as a
programming interface because it is subject to change.

Trademarks and Service Marks
The following terms are trademarks of the International Business Machines
Corporation in the United States, or other countries, or both:

AIX
AS/400
DB2
CICS
C Set ++
IBM
Network Station
Object Connection
OS/2
OS/390
OS/400
Open Class
Operating System/2
Operating System/400
PowerPC 403
PowerPC 601
PowerPC 603
PowerPC 604
Presentation Manager
RS/6000
S/390
SAA
Systems Application Architechture
TeamConnection
VisualAge
WebSphere
Workplace Shell

Lotus, Lotus Notes, and Domino are trademarks or registered trademarks of the
Lotus Development Corporation in the United States, or other countries, or both.

Tivoli Management Environment, TME 10, and Tivoli Module Designer are
trademarks of Tivoli Systems Inc. in the United States, or other countries, or both.

Encina and DCE Encina Lightweight Client are trademarks of Transarc Corporation
in the United States, or other countries, or both.

Notices vii

Microsoft, Win32, Windows, Windows NT, and the Windows logo are trademarks
or registered trademarks of Microsoft Corporation in the United States, or other
countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

UNIX is a registered trademark in the U.S. and other countries licensed exclusively
through X/Open Company Limited.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks or registered
trademarks of Intel Corporation in the United States, or other countries, or both.

C-bus is a registered trademark of Corollary, Inc.

PC Direct is a registered tradmark of Ziff Communicatoins Company and is used
by IBM Corporation under license

Other company, product, and service names, which may be denoted by a double
asterisk(**), may be trademarks or service marks of others.

Industry Standards
VisualAge C++ Professional for AIX, Version 5.0 supports the following standards:
v The C language is consistent with the International Standard C (ANSI/ISO-IEC

9899–1990 [1992]). This standard has officially replaced American National
standard for Information Systems-Programming Language C (X3.159–1989) and
is technically equivalent to the ANSI C standard. VisualAge C++ supports the
changes adopted into the C Standard by ISO/IEC 9899:1990/Amendment 1:1994.

v The IBM Systems Application Architecture (SAA) C Level 2 language definition.
v The C++ language is consistent with the International Standard for Information

Systems-Programming Language C++ (ISO/IEC 14882:1998).
v The ISO/IEC 9945–1:1990/IEEE POSIX 1003.-1990 standard.
v The X/Open Common Applications Environment Specifications, System

Interfaces and Headers, Issue 4.

viii Migration Guide

About This Book

The information in this PDF document is also available in the online help.

To find this information, or any topics listed in this document as Related Concepts,
Related Tasks, or Related References, simply type the topic title into the search bar
in the top frame of your browser in the online help.

For some topics, the suggested references may already be contained in this
document. In such cases, there is a cross-reference to the page on which the related
topic appears.

© Copyright IBM Corp. 1998, 2000 ix

x Migration Guide

Chapter 1. Prepare to Migrate to Version 5.0

If you have not installed VisualAge C++, Version 5.0 yet, and you are not sure
whether you should use the batch compiler or make the change to an incremental
environment, please read “Choosing the Right Compiler” on page 2.

Migrating From a Batch Compiler Such as C Set ++® to Incremental Compilation

Lots of things have changed since the last release of C Set ++ and VisualAge C++
Version 3.5:

The Technology
VisualAge features an incremental compiler. The implications for your code
and your productivity are impressive, but if you are moving from a batch
environment, you will need to spend some time to adapt your applications
before you can take advantage of the changes. For example, makefiles
cannot be processed by the incremental compiler. Following the migration
process will reduce the amount of time and memory required to do each
build, as well as the time you spend rebuilding when you make changes to
source files.

The C++ Language
VisualAge C++, Version 5.0 implements the 1998 approved C++ language
standard. To help you make the transition, we have provided a number of
compatibility options, but you still need to be aware of the many
differences.

The VisualAge Development Environment
The interface was redesigned in Version 4.0 with a host of helpful features.
If you have not worked with VisualAge C++, Version 4.0, take time to
familiarize yourself with the new Integrated Development Environment
before you begin the process of migrating your applications. Several
tutorials are included with the online help and in the Getting Started book.

You do not have to migrate fully in order to begin using VisualAge C++. You can
migrate an application in stages, and take advantage of Version 5.0 features before
your application is completely migrated. This approach makes sense for large
applications.

In the initial phases of moving your applications to the new build paradigm, you
may not see immediate improvement in build times, especially with newly created
configuration files. Once you have invested the time to create an efficient build
setup, however, you will find build performance increased, and the configuration
file much easier to read than a traditional makefile.

The information in this document will help you make the transition and learn the
new paradigm quickly.

Migrating From Version 4.0 to Version 5.0

While such features as incremental compilation and the Integrated Development
Environment are familiar to users of Version 4.0, there are some changes you
should be aware of. For example, VisualAge C++ now supports multiple
codestores in a single project. We recommend you try the tutorials to learn about

© Copyright IBM Corp. 1998, 2000 1

the new shape of projects. For a list of new features and capabilities, read What’s
New in the online help or in the Getting Started book.

Migrating to the New Batch Compiler

The new batch compiler included in VisualAge C++, Version 5.0 allows you to
continue using makefiles. You may have to make some adjustments for changes in
the C++ language, however. See “Chapter 4. Migrate to Version 5.0 Batch
Compilation” on page 21.

Choosing the Right Compiler
VisualAge C++ Version 5.0 features both a fully incremental compiler and a new
batch compiler. The Integrated Development Environment (IDE) operates with the
incremental compiler. The batch compiler is run from the command line. Both
compilers support the latest ANSI/ISO C++ language standard, and the latest
version (Version 5) of the IBM® Open Class™ library.

Here are some considerations to help you choose the right setup for your needs.

Features at a glance

Features Benefits Incremental
Compiler

Batch Compiler

Compilation Supports the latest
language standard

Uses configuration
files

Uses makefiles

Ease of migration for
makefile-based
projects

Allow existing
projects to take
advantage of new
standards and
compiler technologies

Requires creation of
configuration files

Little or no work
required

IDE with real-time
updates

Assists in rapid
application
development;
integrated editing,
browsing and
debugging

Yes No

Incremental
compilation

Speeds compilation,
especially with larger
projects

Yes No

Visual Builder Speeds development
with visual
application assembly
from predefined
parts and
automatically
generated code.

Yes Yes

Compiles Visual
Builder generated
code

Yes Yes

2 Migration Guide

Data Access Builder Speeds development
with visual mapping
from relational
database tables into
reusable parts, ready
for use with the
Visual Builder

Yes Yes

Compiles Data
Access Builder
generated code

Yes Yes

Integrated debugger Permits debugging
without leaving the
IDE

Yes Yes1

Stand-alone debugger Allows you to debug
programs running a
remote machine as
well as any programs
compiled with
traditional debug
information

Yes2 Yes

Libraries ANSI/ISO Standard
C++ library,
including the
Standard Template
Library

Yes Yes

IBM Open Class
Library, V5.0

Compatible with
Standard Template
Library

Yes Yes

Performance Analysis Examine how your
program uses system
resources

Yes Yes

1The IDE debugger allows you to debug programs that have been compiled with
traditional debug information (TDI).

2Stand-alone debugging requires that you enable the export debugging information
feature in your configuration file.

Recommendations based on code you have to maintain

If you are... IBM recommends:

writing new code incremental compiler

maintaining projects developed with
VisualAge C++ Version 4.0

incremental compiler

maintaining existing code from a batch
environment

batch compiler

porting existing code from another IBM
platform

incremental compiler

porting existing code from a non-IBM
platform

batch compiler

developing applications for deployment on
multiple flavors of UNIX®

batch compiler

Chapter 1. Prepare to Migrate to Version 5.0 3

developing applications using C OpenMP
support, SMP explicit directives or automatic
parallelization

batch compiler

4 Migration Guide

Chapter 2. Migrate to Incremental Compilation

For most projects, the task of migration follows this general pattern:

Each of the following steps is explained in greater detail in this book:
1. “Create a Configuration File for Migration” on page 6, with one target, using

the IDE’s Project SmartGuide, or by copying a configuration file from one of
the samples.

2. Ensure the target directive in your configuration file is disabled or
commented, if you did not use the SmartGuide to do this automatically, so
that the link phase is not invoked.

3. “Preparation for Grouping Source Files for Migration” on page 8 for your
source files. In a later step, you will add source files to the configuration in
these groups.

4. Using your current makefile and compiler, run a make and save the log to a
text file. Open the file in the IDE. Locate the compile and link options, and
“Convert Compile and Link Options to Configuration Options” on page 10.

5. Add a source file to the configuration. Choose one that includes the majority
of your header files, if possible.

© Copyright IBM Corp. 1998, 2000 5

6. Build the project and correct any errors.
7. Promote included system and user header files and rebuild the project.
8. Add the next source file, and repeat steps 5, 6, and 7 until all of the source

files for this target have been added. Once you have added several source
files, you can make steps 5, 6, and 7 faster by adding a number of source files,
rather than a single file, with each repetition of the steps.

9. Remove the comments from the target, and perform a clean build by selecting
Clean from the Project Workbook menu, or by deleting the codestore (.ics
file) and rebuilding. You may encounter build failures. You may need to add
template source files or missing libraries, or address problems with virtual
function tables not being defined. Do this before going to the next step.

10. For any pre-build and post-build targets your makefile called for, add the
necessary run before or run after directives to invoke make. See “Migrate
Other Commands” on page 15 for more details.

11. If your application requires more than one target, repeat steps 1 through 8 for
each target. You can add several targets to a single configuration, or create a
separate configuration for each target. The choices are described in
“Application Requires Multiple Targets” on page 33.

12. When you have created a working configuration for each of your targets, you
can combine all of the configuration files into one project.

Before you begin migrating, please read the Special Considerations to learn if there
are any changes you should make to the process outlined here.

While migrating your project you may find that making significant changes to a
configuration file results in a slow rebuild. You may achieve better performance by
performing a clean build after you make extensive changes.

How Configuration Files Are Processed
“Migration of Resource Files” on page 44
“Promoting Source Files to the Configuration File” on page 41
Sources

“Chapter 6. Special Considerations for Migrating to Incremental Compilation” on
page 33

Create a Configuration File for Migration
Creating a basic, skeletal configuration file is the first step in migrating your
application to the VisualAge C++ incremental compiler.

There are two ways to do this:

A. Creating an Empty Configuration File with the IDE and
SmartGuides

1. Create a new configuration using the IDE’s Configuration SmartGuide
(selectCreate Configuration from the Project Workbook menu).

2. On the Configuration page of the SmartGuide (the title bar reads Create a
configuration), give your configuration a name and choose a directory where
the configuration file (.icc file) will be created.

6 Migration Guide

3. On the same page, check the box labelled Disable created target and source
directives.

4. Click Next.
5. On the Target Type page, select the type of target your configuration will

build (an executable, shared library or static library), and click the Add Target
button.

6. Click Next on the first page of the Target SmartGuide.
7. On the Target Name page, specify a name for your executable, library or

shared library, and select a program type from the list in the lower half of the
page.

8. Click OK, rather than Next (if you click Next accidentally, simply click Back
on the next page).

9. Click Finish.
10. When you are prompted to open the project in the IDE, click Yes.
11. When you are asked if you wish to begin a build, click No.

Once you have created a configuration file, you can begin creating groups in the
configuration. Later, when you add source files, they will be placed in the groups
you create. Proceed to “Preparation for Grouping Source Files for Migration” on
page 8.

B. Copying an Existing Configuration File from the Samples
Provided with VisualAge C++

1. Browse the Samples section of the online help. Choose a sample project that
resembles your application in function. There are also samples to illustrate
changes to the language standard, using database access, and using the
Standard Template Libraries.

2. Locate the sample you want in the idesamp or samples directory, copy the .icc
file to your working directory, and rename it.

3. Start the IDE and open this project by selecting Open an Existing Project and
clicking the Browse button to locate the renamed .icc file.

4. When you are prompted to begin a build, click No.
5. Switch to a Source view in your Configuration section.
6. Remove the file name listed in the target directive and replace it with the name

of your target (.exe, .so or .a file).
7. Comment out the target directive, using C++-style double slashes (//), so that

the link phase is not invoked (otherwise there may be many unresolved
reference errors after each build). Ensure the open brace (’{’) following the
target directive is not commented out (i.e., it should be on a separate line).

8. Delete any source files listed for the sample project.
9. Save and rename the updated .icc file by selecting Save As from the Source

menu.

Once you have created a configuration file, you can begin creating groups in the
configuration. Later, when you add source files, they will be placed in the groups
you create. Proceed to “Preparation for Grouping Source Files for Migration” on
page 8.

Chapter 2. Migrate to Incremental Compilation 7

Configuration Files
Incremental C++ Builds
Macros in C++ Source Files

“Chapter 2. Migrate to Incremental Compilation” on page 5

Configuration File Syntax

Preparation for Grouping Source Files for Migration
If you have just finished using the Configuration SmartGuide to create a
configuration, you will have a configuration file that resembles the following:
disable target type(exe) “test2.exe”
{

disable source “afile.cpp”
disable source “main.cpp”

}

Now that you have created a basic configuration file for your first target, you will
create groups in order to organize the source files used as input. At this stage, you
have not yet added any source files. There are several reasons for creating groups
for your source files at this stage, rather than adding all the source files in one
group:
v When you add source files later, you will be able to add them in a methodical

fashion.
v You will be able to easily maintain the configuration if you need to make

changes after migration.
v When you have to apply options later, it will be easier to apply the options to a

group of source files than to list the files inside each option directive.

You will create empty groups like the following, where applicable to your
application:
v A group called PRIMARY_SOURCES, which will list your own .cpp, .cxx or .C

files.
v A group called MACRO_SOURCES, which will list any of your own .cpp, .cxx

or .C files which contain macros that need to be visible outside the file. Macro
sources can be your own files, or system include files. If you wish to keep the
different types of files separate, you could create two groups,
MACRO_SOURCES and SYSTEM_INCLUDES, instead of one.

v If necessary, a group to collect any source files that do not fall into the previous
three categories, for example, PRIMARY_SPECIAL_GROUP.

These group names are given as examples. You can use any descriptive name that
helps you to organize your source files.

When you are ready to start creating groups for your sources, proceed to “Create
Source Group Directives for Migration” on page 9.

“Chapter 2. Migrate to Incremental Compilation” on page 5

8 Migration Guide

Create Source Group Directives for Migration
You can add a group directive by using objects in the IDE or by editing the
configuration file.

Creating Source Group Directives in the IDE

1. Switch to the Configuration section of the IDE and select the Source and
Groups page.

2. Select the Source and Groups view on this page (the upper left pane).
Right-click on the background (white space) of the view.

3. Select Add Directive -> Group from the pop-up menu.
4. In the Group field of the dialog box, type the name you want to give the group

(PRIMARY_SOURCES, MACRO_SOURCES, or SYSTEM_INCLUDES. These
example names are explained in the previous step, “Preparation for Grouping
Source Files for Migration” on page 8).

5. Click Apply. The new group directive is added to the configuration file. The
views in the Configuration section are refreshed to show the new directive.
Currently the directive is empty. It contains no files (source specifiers). Views in
other sections will not be updated until you build the project.

6. To make sure the group is considered a source, you must add the new group
directive into a source directive.

Creating Source Group Directives in the Configuration File

1. Switch to the Configuration section of the IDE and select a Source view.
2. Move the insertion point to the location in the file where you want to insert a

group. A group should be defined before it is called by your target and source
directives.

3. Type group groupname= ’’ (empty string enclosed in single quotes), to create an
empty group. Replace groupname with the names of each group you want to
create, for example, PRIMARY_SOURCES, MACRO_SOURCES, or
SYSTEM_INCLUDES (These example names are explained in the previous step,
“Preparation for Grouping Source Files for Migration” on page 8).

4. Make sure that each group name you create also appears later in a source
directive, for example:
source type(cpp) PRIMARY_SOURCES
If the group name does not appear in a source directive, the files in the group
will not be considered part of the build.

When you have created the groups for your source files, your configuration file
should resemble the following example :

group SYSTEM_INCLUDES = ''
group MACRO_SOURCES = ''
group PRIMARY_SOURCES = ''
disable target targetname
{
option macros(global)
{
source type(cpp) SYSTEM_INCLUDES, MACRO_SOURCES
}
source type(cpp) PRIMARY_SOURCES
}

The next step in the migration process is to “Convert Compile and Link Options to
Configuration Options” on page 10.

Chapter 2. Migrate to Incremental Compilation 9

Configuration Files

“Preparation for Grouping Source Files for Migration” on page 8
“Chapter 2. Migrate to Incremental Compilation” on page 5

group Configuration File Directive
macros global Miscellaneous Build Option (C++)

Convert Compile and Link Options to Configuration Options
Follow these steps in order to identify the options that were set for your
application in your makefile:
1. Run a make and generate a make log file, using your current batch compiler.
2. Save the log as a text file.
3. Open the log file as a section in the IDE. To do this, locate the file name in the

Host section of the Workbook, right-click over it, and select View as -> Section
from the pop-up menu.

4. For now, disregard any options and commands that are not related to
compilation (for example, options and commands for tools or preprocessors).
You will need to refer to these commands later. Now you need to convert only
the remaining compile and link options to configuration options.

5. In the remaining options, check to see if any sets of options are applied only to
specific targets, or only to specific groups of source files. If there are sets of
options like this, you may want to create option groups later, in order to make
it easier to apply multiple options, and to maintain the setup after migration.
Details are provided in the Related Tasks below.

Once you have identified which compile and link options applied to your project
from your make log, you can use the Convert Batch Options view in the IDE to
determine their equivalent configuration options and insert them into your
configuration file. Option tables are also provided in the online documentation and
in this book.

To convert the options in the IDE

1. Select the Configuration section of the IDE.
2. In the Configuration section, select the Options page.
3. In the upper left-hand pane (Source and Targets view), highlight the source file

(), or target () to which you want to apply the compile and link options.
4. Change the view in the right-hand pane. In the View Types menu, select

Convert Batch Options.
5. In the right-hand pane (now the Convert Batch Options view), click in the

Batch Options entry field.
6. Type in the first compile or link option you identified in your make log, in the

format it appears (for example, -O).
7. Click Add. If the option has a valid equivalent in VisualAge C++, Version 5, the

equivalent configuration option is displayed under Converted options.

10 Migration Guide

8. When you have finished converting all the options identified in your makefile
log, click Apply. The options are applied to the object you selected in the
Source and Targets view.

When you have converted all the compile and link options and applied them to
the correct sources, groups, or targets, you can proceed to “Add Source Files to the
Project for Migration”. For further optimization of your options, you may wish to
create groups for the options in the same way you created groups of sources. See
Arrange Options in Groups for more information on doing this.

“Arrange Options in Groups” on page 17
“Chapter 2. Migrate to Incremental Compilation” on page 5
“Migrate Other Commands” on page 15
Setting Build Options

Compile Options from Earlier Versions of VisualAge C++

Add Source Files to the Project for Migration
Once you have created a configuration file and set up source groups, you can
insert source files into your source groups.

Even if your application is very large, do not add a long list of source files
immediately. Adding one source file that includes many header files early in the
migration process will make the rest of the process much faster. In most
applications, a few source files will include the majority of header files that are
needed by the application. It is best to avoid adding multiple files at once until
you have done this part of the process several times, without encountering new
errors.

Start by adding one of your .cpp, .cxx, or .C files to the PRIMARY_SOURCES
group you created in Step 3 of the migration process.

You can add source files using views in the IDE, or by editing the configuration
file.

Adding Source Files Using the IDE
1. In the IDE, select the Configuration tab, and the Sources and Groups page

button. This view allows you to add source specifiers to configuration source
and group directives.

2. Select the PRIMARY_SOURCES source group (from the Source and Groups
pane), which you created in “Create Source Group Directives for Migration” on
page 9.

3. To add the source to your group directive, select Browse from the Change
Group Directives pane and select a source file in the Select Files Dialog.

4. To confirm the selected file, click OK.
5. Click Add.
6. Click Apply.

Chapter 2. Migrate to Incremental Compilation 11

7. Build the project by clicking the Build button or by pressing
Ctrl+Shift+B.

If there are build errors, use the Messages page of the Project section in the IDE to
locate and resolve them.

Adding a Source File by Editing the Configuration File
1. In the IDE, select the Configuration tab, and the Source page button.
2. Add a source file to the PRIMARY_SOURCES group directive, by typing the

filename inside the empty string (’ ’)you inserted when you created the groups:
group PRIMARY_SOURCES ='filename'

where filename is the name of the source file. When you add more files to the
same group, separate them with commas.

3. Build the project by clicking the Build button or by pressing
Ctrl+Shift+B.

If there are build errors, use the Messages page of theProject section in the IDE to
locate and resolve them.

Example: Configuration File with Source File Added
If you created the groups used as examples in the previous step, your
configuration file would now resemble the following:
group SYSTEM_INCLUDES = 'firstfile.cpp'
group MACRO_SOURCES = ''
group PRIMARY_SOURCES = ''
disable target targetname
{
option macros(global)
{
source type(cpp) SYSTEM_INCLUDES, MACRO_SOURCES
}
source type(cpp) PRIMARY_SOURCES
}

When you build this configuration file, firstfile.cpp is compiled, but as the target is
currently disabled, it will not be linked.

Build Errors You May Encounter After Adding Source Files
Some errors may be due to changes in the C++ language, which were not enforced
by older compilers. You may need to either modify your source to conform to the
new standard, or use compatibility options to mimic old C++ language semantics.
See the related references for compatibility options and information about common
errors.

Other errors may occur because a header file which was previously promoted to be
a PRIMARY_SOURCE file contains a macro which was not used by other source
files, but is used in this newly added source file. You may need to convert the
header file from a primary source to a macro source by adding the header file
name to the MACRO_SOURCES group and removing it from the
PRIMARY_SOURCES group. More information on macro and non-macro sources is
provided in Migration Concepts.

12 Migration Guide

Once you have completed a build with no errors, the next step is to promote the
files that were included by this file to your configuration, rebuild, and correct any
further errors, before you add any more source files. Proceed to Promote Included
System and User Header Files.

Sources
“Promoting Source Files to the Configuration File” on page 41

“Chapter 2. Migrate to Incremental Compilation” on page 5

Options for Compatibility with Previous Versions of VisualAge C++
“Common Errors when Migrating” on page 23

Promote Included System and User Header Files
Each time you add a source file to your PRIMARY_SOURCES group, the next step
is to promote any files that were included by that file.

To locate the included files in the IDE and add them to the configuration file:
1. Go to the Codestore section of the workbook. Select the Source Files page,

and the Source Files view on that page.

2. In the pane showing the Source Files view, pull down the Filter menu ()
and select Show All from the list of filters.

3. The view will now display all the files used to build the codestore: those that

are listed in the configuration file are displayed as , and those that are

included are displayed as .

4. Highlight one or more system files identified by the glyph. As a general
rule, it is better to avoid promoting system files from the /usr/include
directory until after you have promoted other system files, such as those in
/usr/vacpp/include.

5. Right-click on the selection, and select Add Source to Configuration
from the pop-up menu.

6. Select Add Source to Source Directive in the dialog box.
7. In the Add to Source Directive dialog box, select one of the groups you

created in an earlier stage of the Migration Process. For example, if you
created only one group for macro sources, select it. Otherwise, select
SYSTEM_INCLUDES.

8. Build the project, and correct any errors.
9. Return to the Source Files view. You should no longer see the system file you

promoted displayed as an object.
10. If there are still included files to promote in this view, repeat step 4 to step 7.

Add your application’s included files to the PRIMARY_SOURCES group,
system files to the SYSTEM_INCLUDES group, and so on.

Chapter 2. Migrate to Incremental Compilation 13

11. Build again. You may encounter some build errors that are due to macros in
your application include files. If this is the case, move the files containing
macros to the MACRO_SOURCES group, instead of the PRIMARY_SOURCES
group.

12. Return to the Source Files view again. This time, you should see no more
application header files displayed as secondary sources. If there are any, add
them to the PRIMARY_SOURCES or the MACRO_SOURCES group.

Once you have corrected any errors, you can return to Add Source Files to the
Project for Migration, to add the next source file. If you have already added a
number of source files, you can modify Step 5 of the migration process by adding
a number of files in each iteration. The steps are described in “Chapter 2. Migrate
to Incremental Compilation” on page 5.

When you have no more source files to add for this target, you have finished
creating the configuration. You have several choices now:
v If you have not already done so, you can refine your configuration by creating

groups for your options, as you did for your source files. This will not impact
build times, but will make your configuration file easier to read. The steps are
described in Arrange Options in Groups.

v If your project contains other targets, you can add the remaining targets. See
Add Another Target to your Project for Migration for details.

v If you have finished creating configurations for all the targets in your project,
remove the disable keyword (or comments, //) from the configuration file for
each target, to enable the linking phase. Optionally, you can also create a project
and add each configuration to the project as a subproject. This is described in
Combine Multiple Codestores in One Project.

v Finally, when all of your targets have been migrated, you can migrate any parts
of your former make process that were not related to compiling and linking (for
example, code generation phases). See “Migrate Other Commands” on page 15
for information on doing this.

“Promoting Source Files to the Configuration File” on page 41

“Add Source Files to the Project for Migration” on page 11

Add Another Target to your Project for Migration
If you have already gone through the migration process described in “Chapter 2.
Migrate to Incremental Compilation” on page 5, you have created a configuration
file and added a number of sources to it.

If you have more than one target in your project (for example, multiple executable
files, or an executable file and several libraries), you do not have to repeat the first
three steps of the migration process to add another target. You can add another
target to the same configuration file, or create a separate configuration for each
target. Considerations for either option are described in “Application Requires
Multiple Targets” on page 33.

To create a new configuration for each target, simply repeat the migration process
for each target.

14 Migration Guide

To add a target to an existing configuration, follow the steps described in Add or
Remove a Target.

When you have created a configuration for every target, you can remove the
disable keyword (or comments, //) from the target directive in each configuration
file, to enable the linking phase. Optionally, you can also create a project and add
each configuration to the project as a subproject. This is described in “Combine
Multiple Codestores in One Project” on page 19.

Finally, when all of your targets have been migrated, you can migrate any parts of
your former make process that were not related to compiling and linking (for
example, code generation phases). See “Migrate Other Commands” for information
on doing this.

“Chapter 2. Migrate to Incremental Compilation” on page 5

Migrate Other Commands
In general, when you migrate an application, the only portions of your makefile
that will have an equivalent in a configuration file are the commands directly
related to compilation. Tools and preprocessors or post-processors can still be
called using make. The command to launch the make process can be inserted in
your configuration file with run directives (run before, run after and run
cleanup, described below).

If your makefile contains commands which call other tools, a roughly equivalent
configuration file would follow this format:
v run before make setup

v target and source directives (i.e. equivalent of everything in the makefile that has
to do with compilation)

v run after make post_compile_commands

Grouping common commands in the run before and run after directives will help
minimize the dual maintenance of the makefile and configuration file.

Using the run Directive to Call Other Tools
Use the run directive to execute system commands at different times during a
build. Typical uses of the run directive include:
v Invoking other compilers such as an assembler or previous version of VisualAge

C++.
v Invoking external utilities such as gencat, perl, or cppfilt.
v Setting file permissions of generated files.
v Invoking VisualAge C++ recursively to perform preprocessing.
v Calling make to perform portions of a build that have not yet been converted to

VisualAge C++.

Syntax of the run Directive
run [before | after | cleanup] [sources (string_list)] [targets
(string_list)] string_list

Chapter 2. Migrate to Incremental Compilation 15

The parameters of the run directive are system commands that are run
synchronously as child processes at one of three points in the build. run before
and run after directives execute commands either before or after the compile and
link phase of the build is performed. run cleanup executes the commands only
when Clean is selected from the IDE Project Workbook menu. Run directives
normally execute during every build, in the order in which they appear in the
configuration file. The exception to this is when a list of file sources and targets are
specified. In this case, the sources and targets determine the order in which the
directives are executed so that dependencies between directives are satisfied. The
timestamps of the sources and targets also determine whether or not the
commands are run. The rules are as follows:
v If any sources are missing or have timestamps that are later than the previous

build then the commands are run.
v If any targets are missing or have timestamps that are later than the previous

build then the commands are run.
v If any sources have timestamps that are later than any targets then the

commands are run.
v If no sources or targets are specified then the commands are run.

Example: run Directive
The following configuration file copies a text file from another directory and then
uses it to generate a message catalog using the gencat utility:
//run directive #1:
run before
sources(“/home/project/messages/catalog.txt”)
targets(“mycatalog.txt”)
“cp /home/project/messages/catalog.txt /home/build/mycatalog.txt”

//run directive #2:
run before
sources(“mycatalog.txt”)
targets(“mycatalog.cat”)
“cd /home/build”,
“-chmod -f +w mycatalog.cat”,
“usr/bin/gencat mycatalog.cat mycatalog.txt”,
“-chmod -f -w mycatalog.cat”

Notes on the Example
1. Run directive#1 will execute before run directive#2 because run directive#2 lists

“mycatalog.txt” as one of its targets and run directive#1 lists “mycatalog.txt” as
one of its sources. That is, the order of appearance alone does not determine
the order in which the commands are executed.

2. The use of the “-” preceding the chmod commands indicates that a nonzero
return code from the command should not matter. If you omit the “-” then the
build will fail if the command returns a nonzero return code.

If you have completed the migration process described in “Chapter 2. Migrate to
Incremental Compilation” on page 5, you may wish to further optimize your code
for the new environment. See the Related References below for more details.

run Configuration File Directive

16 Migration Guide

“Coding Adjustments for Orderless Programming” on page 26
“Makefile Rules Mapped to Configuration File Directives” on page 72

Arrange Options in Groups
If you are applying the same set of options to more than one source file, source
group, or target, you may find it easier to create groups of options than to
repeatedly list the same options in your configuration file.

For example, if you have an ungrouped set of options that appear in several places
in your configuration file, like this:
target “mytarget”

{
option lang(signedbitfields), lang(digraphs,no), alloc(debug)

{
source mysource1.C
}

}

you can create a group for the options, and use only the group name, instead of
the list of options, in every part of the configuration where you need to repeat the
same options.

Here is an example of defining an options group, using the options from the
example above:
option common_options = lang(signedbitfields), lang(digraphs,no), alloc(debug)

Using the example of the configuration file above, the file would now resemble
this:
target “mytarget”
{
option common_options
{
source mysource1.C
}

}

option Configuration File Directive

Migrate to Incremental Compilation

Chapter 2. Migrate to Incremental Compilation 17

18 Migration Guide

Chapter 3. Migrate from Version 4.0 to Version 5.0

If you are already using VisualAge C++ Version 4.0 incremental compilation and
have set up your application’s configuration file or files, migrating to Version 5.0 is
relatively simple. You have three possible approaches to choose from:
1. Keep the divisions in your application as they are currently. In this case, you do

not necessarily need to create project files to organize your configuration files,
but you may wish to do so in order to make it easier to define multiple build
scenarios.

2. Create a new project, using a project file, in order to bring together several
different codestores into one project. See “Combine Multiple Codestores in One
Project” for details on doing this.

3. Create a new project, using a project file with several subprojects, in order to
split up a large application that contains multiple targets currently in one
configuration file. For information on doing this, read “Divide a
Single-Codestore Project into Multiple Codestores” on page 20.

Some considerations when deciding whether to combine multiple codestores in one
project are listed in “Application Requires Multiple Targets” on page 33.

“Application Requires Multiple Targets” on page 33

Combine Multiple Codestores in One Project
To create a VisualAge C++, Version 5.0 project that includes several projects created
in Version 4.0, or several configurations created in the migration process, do the
following:
1. Start the Project SmartGuide, either by selecting Create a new project from the

Welcome dialog, or selecting Create project from the Project Workbook menu in
the IDE.

2. On the first page of the SmartGuide, the Project page, enter a name and
working directory for the project. The name you enter here will be used to
name the project file (an .icp file) which will contain the definition of your
project, in much the same way the configuration file contains a definition of
your targets and sources.

3. On the same page, in the Project setup area, select the second radio button,
Create a new project using new or existing configuration files. (If you have
already advanced to the next page, click Back to return).

4. Click Next.
5. On the next page, Configurations, browse to find each configuration file (.icc

file) that you want to bring into the new project. Highlight each file or several
files, and click Add. If you also want to create a new configuration, click the
Create configuration button. This will launch the Configuration SmartGuide.

6. When you have located or created all the configuration files you need, click the
Finish button. An .icp file will be created, listing all the configurations you
selected as individual subprojects, and containing the outline of a default build
similar to a make all.

© Copyright IBM Corp. 1998, 2000 19

7. You will be prompted to open the project in the IDE. To see how the new
project was set up, click Yes to open it.

If your Version 4.0 project made use of IBM Open Class, read “Adjust for Using
the IBM Open Class Library” on page 31 for information on other changes you
may have to make.

“Adjust for Using the IBM Open Class Library” on page 31

Divide a Single-Codestore Project into Multiple Codestores
If your project was developed in VisualAge C++ Version 4.0 and contained
multiple targets in a single configuration, you can divide this configuration into
several subprojects in Version 5.0. Considerations for doing this are listed in
“Application Requires Multiple Targets” on page 33.

If you choose to do this, the following steps can help maintain readability and
reusability of your project setup as you create subprojects:
1. Create a configuration file (.icc file) that contains only the options you

previously had listed in your Version 4.0 configuration.
2. In this new file, create a named options group to list the options.
3. In your original configuration file, remove the options, include the new .icc file,

and name the option group contained in the new file in place of the options
you removed.

4. Cut and paste each target out of the original file, into a new configuration file
(use a separate file for each target). Make sure to include all the source
directives for each target.

5. Cut and paste the include directive for the options file and the option group
name into each new file you create.

Once you have created a separate configuration for each target, follow the steps in
Combine Multiple Codestores in One Project to create a project that consists of a
subproject for each configuration.

“Chapter 3. Migrate from Version 4.0 to Version 5.0” on page 19

20 Migration Guide

Chapter 4. Migrate to Version 5.0 Batch Compilation

You can use IBM VisualAge C++ in batch mode as a C compiler for files with a .c
(small c) suffix, or as a C++ compiler for files with a .C (capital C), .cc, .cpp, or .cxx
suffix. The compiler processes your text-based program source files to create an
executable object module, in the same manner as most traditional batch compilers.

However, the Version 5.0 batch compiler supports the new C++ language standard
(ISO/IEC 14882:1998). You may have to make some changes in your code to reflect
this. See “Errors Due to Changes in the C++ Language” on page 23 for more
information on source-related changes you may have to make.

VisualAge C++ Batch Compilers

Common Errors When Migrating
Common Template Problems

Equivalent Batch Compile and Incremental Build Options
List of Batch Compiler Options and Their Defaults
New Standard C++ Library Header Files

© Copyright IBM Corp. 1998, 2000 21

22 Migration Guide

Chapter 5. Troubleshooting References

Common Errors when Migrating
You may encounter situations in which code that compiles without errors in
versions of VisualAge C++ prior to Version 4.0 produces warnings or error
messages in VisualAge C++ Version 4.0 and 5.0. This can be due to changes in the
language, or due to differences in the compiler behavior.

If you are migrating from any version of VisualAge C++ prior to Version 4.0, you
should be aware of potential syntax errors with new. Versions of VisualAge C++
prior to Version 4.0 treated the following two statements as semantically
equivalent:
new (int *) [1];
new int* [1];

The first statement is syntactically incorrect even in older versions of the C++
standard. However, previous versions of VisualAge C++ accepted it. This
inconsistency with the language standard was corrected in VisualAge C++ Version
4.0. The first statement will produce a compilation error in Version 4.0 and 5.0.

Examples of changes to the language that may affect your code are provided in
“Errors Due to Changes in the C++ Language”.

If you are migrating from a batch environment to the incremental compiler, some
of the examples in “Errors Due to Changes in Compiler Behavior” on page 24 may
be applicable to you.

“Chapter 2. Migrate to Incremental Compilation” on page 5

“Coding Adjustments for Orderless Programming” on page 26
“Common Template Problems” on page 28
“Errors Due to Changes in Compiler Behavior” on page 24
Errors Due to Changes in the C++ Language.

Errors Due to Changes in the C++ Language

bool, true, and false Keywords
The C++ standard now defines as keywords the tokens bool, true, and false. In
versions of VisualAge C++ prior to Version 4.0, these keywords were not defined.
When you migrate programs that define these keywords, you will encounter
compilation errors. You can either remove your definitions, or use the
’lang(nokeyword)’ option for each of these keywords that you want to undefine for
compatibility purposes. For example, with the incremental compiler, to disable all
three keywords, add the following to your configuration:
option lang(nokeyword, “bool”),

lang(nokeyword, “true”),
lang(nokeyword, “false”)

© Copyright IBM Corp. 1998, 2000 23

To make the same change with the batch compiler, use the
-qnokeyword=true|false|bool option.

Changes to Digraphs in the C++ Language
The C++ standard now defines and, bitor, or, xor, compl, bitand, and_eq, or_eq,
xor_eq, not and not_eq as alternate tokens for &&, |, ||, |, x, &, &=, |=, |=, ! and
!=. If any of these alternate tokens are used as variable, function or type names
then you can set lang(digraph, no), or -qnodigraph to suppress the parsing of these
tokens as digraphs.

Note: the lang(nokeyword) option cannot be used to disable the digraph.

“Common Errors when Migrating” on page 23
“Common Template Problems” on page 28

Errors Due to Changes in Compiler Behavior
The following are examples of code which compiles without errors in versions of
VisualAge C++ prior to Version 4.0, but which will produce errors or warnings
with the incremental compiler.

Access-checking errors
class A {

class B {
void f(A::B);
// A::B is private and can not be accessed from B
// void f(B); <—- this is the appropriate change which
// works for both compilers.

};
};

The following code would result in the error 1540-0413: “A::B” is already
declared with a different access:

class A {
public:
class B;
const B& foo();
private:
class B {};

};

This can be solved by either moving the definition of class B to the public
part of class A (before the declaration of foo()) or moving the declaration of
the member function foo to the private of class A (after the class B definition)

typedefs
This code will generate error 1540-0193: A typedef name cannot be used in this
context. Do not use the typedef-name: instead, use the name of the class:

24 Migration Guide

class A { };
typedef A B;
class C {
friend class B; // Should be friend class A;
};

Overloading ambiguities
There are now floating point and long double overloads of the standard math
functions. For example, the following, which would generate no errors in a
previous version of VisualAge C++, will produce the error message 1540-0219:
The call to “pow” has no best match on Version 5.0:

#include <math.h>
int main()
{

float a = 137;
float b;
b = pow(a, 2.0); //The call to “pow” has no best match.
return 0;

}

The solution is to cast the arguments to pow, or use the compatMath
language option, which removes the float and long double overloads. In this
example casting 2.0 to be of type float solves the problem:
b = pow(a, (float)2.0);

The following generates a number of errors:
1540-0216: An expression of type “B” cannot be converted to “A”.
1540-0219: The call to “A::A” has no best match.
1540-1228: Argument number 1 is an lvalue of type “B”.
1540-1202: No candidate is better than “A::A(const A&)”.
1540-1231: The conversion from argument number 1 to “const A &” uses the
user-defined conversion “B::operator A() const” followed by an
lvalue-to-rvalue transformation.
1540-1202: No candidate is better than “A::A(const C &)”.
1540-1231: The conversion from argument number 1 to “const C &” uses the
user-defined conversion “B::operator C() const”.

e.C
—-
struct C {};
struct A {

A();
A(const C &);
A(const A &);

};
struct B {

operator A() const { A a ; return a;};
operator C() const { C c ; return c;};

};
void f(A x) {};
int main(){

B b;
f((A)b);

// The call matches two constructors for A instead of calling “operator A()
return 0;

}

Solutions include (depending on your access to classes A, B, and C):

Chapter 5. Troubleshooting References 25

v changing f((A)b) to the explicit call f(b.operator A())

v removing the constructor A(const C &)

v adding a constructor A(B)

v removing either operator A() or operator C()

Syntax errors with new
Versions of VisualAge C++ prior to Version 4.0 treated the following two
statements as semantically equivalent:
new (int *) [1];
new int* [1];

The first statement is syntactically incorrect even in older versions of the C++
standard. However, previous versions of VisualAge C++ accepted it. This
inconsistency with the language standard was corrected in VisualAge C++ Version
4.0. The first statement will produce a compilation error in Version 4.0 and 5.0.

“Coding Adjustments for Orderless Programming”
“Common Errors when Migrating” on page 23
“Errors Due to Changes in Compiler Behavior” on page 24

Coding Adjustments for Orderless Programming
Orderless programming may introduce changes to the semantics of a program
migrated into the VisualAge C++, Version 5.0 incremental compilation
environment. You should be aware of the effects of orderless programming
described below, and make the necessary adjustments to your code.

If you are concerned about maintaining compatibility with batch compilation
environments, consider using the lang(orderednamelookup) configuration option.
This option can force builds to use an ordered programming model so that
potential errors relating to orderless programming are detected and diagnosed
within VisualAge C++, Version 5.0. However, builds may be slower when you use
this option.

Overload Resolution is Handled Differently
VisualAge C++, Version 5.0 resolves an overloaded function call to the best
available match, based on all known declarations of the function. In a traditional
compiler, only those declarations that have been encountered at the point where
the call occurs are used to determine the best match. In the following example,
traditional compilers would resolve the call of foo to foo(int), since foo(double) has
not yet been seen. The VisualAge C++ incremental compiler, however, knows
about both declarations of foo, and will resolve the call to foo(double).
void foo (int);
void bar() { foo(1.2); } // call to foo matches which overload?
void foo(double);

Resolution to an Unexpected Declaration
A variable of class or struct type whose name is the same as that of the class or
struct may result in a different interpretation in VisualAge C++, Version 5.0. In the
following example, stat is both a type of struct, and an instance variable of that
struct. A traditional compiler treats the int f(stat); declaration as a declaration of

26 Migration Guide

a function f that takes an argument of type stat. In VisualAgeC ++ Version 5.0,
the declaration is treated as that of an integer variable that is initialized by the int
operator of struct stat:
struct stat {

operator int();
};

int f(stat); // function declaration or variable initializer?
struct stat stat;

Solution
struct stat {

operator int();
};

int f(struct stat);
// the elaborated type (with the keyword struct) ensures that
// the struct stat is introduced as a declaration and so it can
// not be an expression.
struct stat stat;

Unexpected Results With Macro Source Files
Do not rely on the order of listing of macro source files in the configuration file
when any of the files have include directives. If a macro source includes another
macro source that is listed after it in the configuration file, or includes a non-macro
source that is included in the configuration file, the included file will be
preprocessed and compiled before any non-macro source files (in other words, it
will be treated as part of the macro source that includes it). This may cause
unexpected results if there are dependencies between the macro source files. For
example, consider the following source files and macro source statement in a
configuration file:
// a.hpp
#include “c.hpp”
//...

// b.hpp
#define DEFINED_IN_B

// c.hpp
#ifdef DEFINED_IN_B
//...
#endif

// Configuration file
//...
option macros(global) {

“a.hpp”,
“b.hpp”,
“c.hpp”

}
//...

The macro source a.hpp includes c.hpp, however c.hpp contains a conditional
preprocessor directive based on a macro defined in b.hpp. Because neither a.hpp
nor c.hpp includes b.hpp, the macro DEFINED_IN_B will be treated as false in
c.hpp, because c.hpp is preprocessed before b.hpp. If you add #include “b.hpp” to
either a.hpp or c.hpp, the problem is solved.

The best way to prevent this from happening is to ensure that macro source files
only define macros, and do not include any non-macro source files.A file can
become a macro source even if you do not list it in a macros(global) option, if it is

Chapter 5. Troubleshooting References 27

included by another file that is listed in a macros(global) option. The only way to
force a macro to not be global is to make it a secondary source file (a file not listed
in the configuration file), and to ensure that no macro source files include the file.
This can be a difficult task, requiring many primary source files to be changed to
secondary source files, and potentially resulting in slower rebuild times.

“Common Errors when Migrating” on page 23

Common Template Problems
If your code makes use of templates, you will be affected by various changes to
the way the C++ language handles templates.

Changes in Name Resolution
v A template definition must be parseable (previous compilers would skip the

definition and only parse the template as it was instantiated). To control the way
the compiler handles template definitions, use the lang(templatedefimpls)
option. To make the compiler follow the behavior of previous versions, set this
option to dontparse.

v A name not found by name lookup and not indicated to be a type by the
typename keyword, is assumed to not name a type.

v Name lookup does not consider template-dependent base classes.
v The keyword typename must be used to mark a dependent name as a type. The

following example illustrates this:
template <class T> struct A
{
typedef int X;
};
template <class T> struct B:A <T>
{
T::Y b1; // error Y is not found
A <T>::X b2; // error X is not found
void foo(X); // error X is not found
};

The errors can be fixed by changing the definition of B to:
template <class T> struct B : A <T>
{
typename T::Y b1;

// keyword “typename” tells parser Y is a type
typename A<T>::X b2;

// keyword “typename” tells parser X is a type
void foo(typename A<T>::X);

// keyword “typename” tells parser X is a type
};

Changes to friend Declarations
With VisualAge C++, Version 4.0 and 5.0, friend declarations in templates may not
have the same meaning they did with previous versions. For example, the
following code will generate a warning message:
struct A {} a;

template <class T> struct S;

template <class T> void f(T&, S<T>&) {}

template <class T> A& operator << (A&, S<T>&) { return a;}

28 Migration Guide

template <class T> struct S
{
friend void f (T&, S&); // no explicit arguments
friend A& operator << (A&, S&); // no explicit arguments
};

To migrate this code, the friend declarations should be changed to include explicit
template arguments:
template <class T> struct S
{
friend void f<T> (T&, S&); // explicit argument T
friend A& operator << <T> (A&, S&); // explicit argument T
};

Without the explicit arguments, the friend declarations will introduce nontemplate
functions f(int&, S&)’ and ’operator <<(A&, S&)’ into global scope and these
nontemplate functions (which have no corresponding definition) will be the friends
of S.

With the template argument added explicitly, an instantiation of S, such as S<int>,
will make the template instantiations f<int>(int&, S<int>&) and operator <<
<int> (A&, S<int>&) friends of S.

Previous versions of VisualAge C++ would not accept explicit template arguments
on friend declarations. If you wish to maintain compatibility with previous
versions of the compiler, the explicit template arguments should be added with
the use of a macro.

Changes to the friend Declarator
friend no longer prototypes the function. It simply implies that a function of the
specified signature is granted friend access:

g.C
—-
class A {
friend int lib_func1(int); // This function is from a library.
};
int f(){

return lib_func1(1);
}

The solution is to add the following line:
int lib_func1(int);

“Chapter 4. Migrate to Version 5.0 Batch Compilation” on page 21
“Chapter 2. Migrate to Incremental Compilation” on page 5

“Common Errors when Migrating” on page 23
templateDefImpls Language Option

Chapter 5. Troubleshooting References 29

Common Errors due to Duplicate Symbols
The VisualAge C++, Version 5.0 incremental compiler enforces the one-definition rule
across all the source files listed in a configuration file. Traditional compilers are not
able to enforce this rule, so it will not be uncommon to encounter some error
messages associated with duplicate symbols while migrating to the incremental
compiler, even if you did not encounter such errors with any other or previous
compilers.

You may encounter unexpected error messages if:
v Two different classes are defined with the same name at global scope in two

different source files.
v A function is defined in a header file which is processed more than once.

Usually the messages associated with a duplicate-definition error will indicate
where the original and conflicting definitions appear. Wherever possible, it is best
to rename one of the declarations. When the error is the result of header files
which are processed more than once, it is best to promote the header files to the
configuration file.

In the case of a class with multiple definitions, if you cannot rename either of the
definitions, you can use namespaces to overcome the problem, as follows:
1. If the source file defining the class appears in the configuration file, remove it.
2. For each source file you remove, add a new source file to the configuration.

This new source file should define a unique namespace, and should include
the original source file between the opening and closing braces of the
namespace.

3. Each time you reference the class, qualify the class name with the enclosing
namespace, or precede the reference with a using namespace statement.

Example: Multiple Definitions of a Class
// one.hpp
class TooMany {

public:
int x,y;

};

// two.hpp
class TooMany {

public:
int a,b;

};

// main.cpp
int main(void) {

TooMany One;
TooMany Two;
One.x=3;
Two.a=4;

}

// toomany.icc
target “problem.exe”
{

source “one.hpp”,
“two.hpp”,
“main.cpp”

}

A build of this project fails with two messages:

30 Migration Guide

x is not a member of class “TooMany”
“TooMany” is already defined.

Solution
To solve the problem, make one.hpp and two.hpp into secondary sources, included
by the new primary sources ns_one.hpp and ns_two.hpp. (Do this by changing the
sources “one.hpp” and “two.hpp” in the configuration to “ns_one.hpp” and
“ns_two.hpp”.) Each of these new files defines a namespace within which it
includes its near-namesake. In main, explicitly reference the appropriate namespace.
The solution is shown below (the contents of one.hpp and two.hpp do not change):
// ns_one.hpp
namespace ns_One {

#include “one.hpp”
}

// ns_two.hpp
namespace ns_Two {

#include “two.hpp”
}

// main.cpp
int main(void) {

ns_One::TooMany One;
using namespace ns_Two;
TooMany Two;
One.x=3;
Two.a=4;

}

// toomany.icc
target “problem.exe”
{

source “ns_one.hpp”,
“ns_two.hpp”,
“main.cpp”

}

“Promote Included System and User Header Files” on page 13

The One-Definition Rule

Adjust for Using the IBM Open Class Library
If your project was built in VisualAge C++ Version 4.0, you needed to set several
language options so that bool, false and true would not be treated as keywords.

A different version of the IBM Open Class is included in VisualAge C++, Version
5.0, and this version does not require those options to be set. To migrate your
project to Version 5.0, you should remove the following options from your
configuration files:
v lang(nokeyword, bool)
v lang(nokeyword, false)
v lang(nokeyword, true)

More detailed information on changes to the IBM Open Class is included in
Changes in Version 5 of the IBM Open Class in the online help.

Chapter 5. Troubleshooting References 31

For examples of configuration files for applications using IBM Open Class, browse
the ioc/samples subdirectory in the VisualAge installation directory.

Changes in Version 5 of the IBM Open Class
Changes in Version 4 of the IBM Open Class

“Chapter 2. Migrate to Incremental Compilation” on page 5
“Chapter 4. Migrate to Version 5.0 Batch Compilation” on page 21

32 Migration Guide

Chapter 6. Special Considerations for Migrating to
Incremental Compilation

If VisualAge C++ incremental compilation is to become the only development
environment for your application, the migration path will resemble closely the
steps outlined in “Chapter 2. Migrate to Incremental Compilation” on page 5. The
following describe special situations that may require you to change the steps
described there.

Application Requires Multiple Targets
The resulting project may have to consist of multiple smaller projects.

Application Uses Meta Source Files or Meta Header Files
The meta source model reduces duplicate preprocessing and compilation in
a traditional environment, and is easily translated into an efficient
configuration for your VisualAge C++, Version 5.0 project.

Application Needs to Maintain Compatibility With a Batch Compiler
You must avoid using some Version 5.0 features and features of the new
C++ language standard.

Application Uses both C and C++ Source
C and C++ can be combined in the incremental compilation environment
with little effort. There are some debugging considerations, however.

When you have determined the considerations for your application, you are ready
to begin the migration process.

“Chapter 2. Migrate to Incremental Compilation” on page 5Migrate a Simple
Application to VisualAge C++, Version 5.0 Incremental Compilation

Application Requires Multiple Targets
In VisualAge C++ Version 4.0, the only way to debug across targets was to
combine them in a single codestore. This is no longer necessary. With VisualAge
C++, Version 5.0, you can create a project to produce multiple executables or
shared libraries. Typically, a project like this will consist of a subproject for each
executable or library. You can also combine several targets in a single subproject.
Considerations for both approaches are outlined here.

Multiple Targets in a Single Codestore

Here are some reasons for choosing to produce all targets from a single
configuration file with a single codestore:
v Build times for changes made to shared interfaces will be reduced. For example,

if three libraries and two executables make use of the same class, changes to the
class interface need only be rebuilt once. If the same libraries and executables
were in separate codestores, changes to the class interface would need to be
rebuilt five times.

v Less disk space will be required to save the codestore.

Within a single codestore, you cannot break the one-definition rule (defining the
same function or type more than once). You can, however, define the function

© Copyright IBM Corp. 1998, 2000 33

main() more than once. This support for multiple main functions allows you to
develop and debug multiple executables using the same libraries in the same
codestore.

A Separate Codestore for Each Target

There are several reasons to distribute your targets among several subprojects. If
your application meets any of the following conditions, you should set up your
project to consist of several subprojects, one for each target:
v Producing all targets from a single codestore may result in too large a codestore,

or excessive build times or memory usage.
v You have multiple definitions of a name. However, if you can rename one of

the conflicting definitions, or make use of namespaces to separate the conflicting
definitions, and recode, you can produce all targets from a single codestore.

v You can confine code changes to implementations, not interfaces. If you are only
making changes to the internal implementations of individual targets, having
targets in different codestores may result in faster build times and less memory
usage.

v If you expect to make frequent changes to a specific target, you will not have to
rebuild any other targets when you make updates.

If you are ready to begin migrating your application to the incremental
compilation environment, proceed to “Chapter 2. Migrate to Incremental
Compilation” on page 5.

Configurations
The One-Definition Rule

Build in a Team Environment
“Divide a Single-Codestore Project into Multiple Codestores” on page 20
Produce Multiple Targets from One Build

“Chapter 6. Special Considerations for Migrating to Incremental Compilation” on
page 33

Application Uses Meta Source Files
The meta source model eliminates much of the duplicate preprocessing and
compilation that the migration process attempts to reduce. Therefore, if your
application already makes use of meta source with a batch compiler, you may see
only a small improvement when you initially migrate to the incremental compiler.
However, with this model, every change requires the entire meta source file to be
recompiled. With the incremental compiler, subsequent builds should be
significantly faster.

To migrate an application that uses a meta source file, follow these steps in place
of the steps outlined in Migrate to VisualAge C++, Version 5.0 Incremental
Compilation:

34 Migration Guide

1. “Create a Configuration File for Migration” on page 6, with one target, using
the IDE’s Project SmartGuide, or by copying a configuration file from one of
the samples directories.

2. Comment out the “target” directive in your configuration file, if you did not
already do so when creating the configuration file, so that the link phase is not
invoked.

3. Add each file listed in the meta-source file to your configuration, inside a
macros(global) option. Use the same order in the configuration file as in the
meta source file. Do not include any header files in the configuration unless
they are only included by the meta source file itself. For example:
//target “prog.exe”

{
option macros(global)
{

source “src1.cpp”
source “src2.cpp”
...
source “srcN.cpp”

}
}

4. Build the application and fix any errors. Repeat this step until all errors are
fixed.

5. If your application requires more than one target, “Add Another Target to your
Project for Migration” on page 14 to your configuration file, and repeat Steps 1
through 4.

6. Remove the comments from the targets, and perform a clean build by selecting
Clean from the Project Workbook menu, or by deleting the codestore (.ics file)
and building.

7. Add the necessary run before or run after directives to invoke make for any
pre-build and post-build targets your makefile called for. See “Migrate Other
Commands” on page 15 for more details on doing this.

“Application Uses Meta Header Files”
“Meta Source Files” on page 43

“Chapter 6. Special Considerations for Migrating to Incremental Compilation” on
page 33

Application Uses Meta Header Files
It is not uncommon for an application to have one header file, for example
“glob.h”, that includes all or most of the application’s header files. If your
application fits this description, you should follow these steps to migrate the
application:
1. “Create a Configuration File for Migration” on page 6, with one target, using

the IDE’s Project SmartGuide, or by copying a configuration file from one of
the samples directories.

2. Comment out the “target” directive in your configuration file, if you did not
already do so when creating the configuration file, so that the link phase is
not invoked.

Chapter 6. Special Considerations for Migrating to Incremental Compilation 35

3. Using your current, makefile-based setup, run a make and save the log to a
text file. Open the file as a section in the IDE. Separate the options for tools
other than the compiler, and “Convert Compile and Link Options to
Configuration Options” on page 10.

4. Add the meta header file to the configuration, and apply the macros(global)
option to it. For more information on adding source files, see the Related Task
below.

5. Build the project and correct any errors.
6. Add other source files, several at a time, or all at once.
7. Build and correct any errors. Repeat this step until all errors have been fixed.
8. If your application requires more than one target, “Add Another Target to

your Project for Migration” on page 14 to your configuration file, and repeat
Steps 1 through 7.

9. Remove the comments from the targets, and perform a clean build by selecting
Clean from the Project Workbook menu, or by deleting the codestore (.ics
file) and building.

10. Add the necessary run before or run after directives to invoke make for any
pre-build and post-build targets your original makefile called for. See “Migrate
Other Commands” on page 15 for more details on doing this.

Example: Meta Header Files
target “test.exe”

{
option macros(global), define(“MAIN”, “”) //or define(MAIN, “1”),

//depending on how MAIN
//is defined
{
// macros(global) is used to make macros defined in glob.h
// visible in each “srcX.cpp” file.
// MAIN is an example of a macro that might be used to
// conditionally define variable and functions declared in
// the header file.

source “glob.h”
}

source “src1.cpp”
source “src2.cpp”
...
source “srcN.cpp”

}

“Application Uses Meta Source Files” on page 34
“Meta Source Files” on page 43

“Add Source Files to the Project for Migration” on page 11

“Chapter 6. Special Considerations for Migrating to Incremental Compilation” on
page 33

36 Migration Guide

Application Needs to Maintain Compatibility with a Batch Compiler
The following migration considerations apply if the target platforms for your
application do not all support a version of the VisualAge C++, Version 5.0
incremental compiler:
v You may have to maintain a list of your sources in both your makefiles and

your configuration files. Other commands, however, can be kept in their current
state in a makefile. For more information on which types of commands to
migrate, read “Migrate Other Commands” on page 15.

v You will need to maintain #include directives and forward declarations.
Otherwise you may encounter preprocessor errors, or syntactic or semantic
errors, when compiling changed code in the old environment.
The lang(orderednamelookup) configuration option can force builds to use an
ordered programming model so that potential errors relating to orderless
programming are detected and diagnosed within VisualAge C++, Version 5.0.

v If you are using a version of Visual Age C++ or C Set ++ prior to Version 4.0, or
if your compiler does not support the new (1998) language standard, you should
use appropriate compatibility options and minimize use of language features
such as:
– for-loop counter variables scoped to the for statement. Set the

lang(ansiForStatementScopes) option to “no” if you need to build your code
with a compiler that does not support this change to the language.

– New keywords such as true, false, bool. You can use the
lang(nokeyword,“name”) option for each such keyword so that a compile
error occurs when you try to use such a keyword and you have not defined it
somewhere in your program.

– Enhancements to templates in the new standard. Template partial
specializations and explicit instantiations are new. Avoid partial
specializations, and use #pragma define instead of explicit instantiations. You
can use macros for handling typename and template name qualifiers and for
the header of a template specialization.

– Namespaces
– The Standard C++ Library, as declared in the namespace std, and which

includes header files listed in “New Standard C++ Library Header Files” on
page 67.

See the information in Options for Compatibility with Previous Versions of
VisualAge C++ for options that can help you maintain compatibility with earlier
releases.

v In the case where new constructs must be used (for example, you may need to
conditionally use “typename” to allow your template code to compile in both
environments), you can use a set of preprocessor directives to define macros
such as the following, and make the source file containing this code a macro
source file in your configuration file. The macro used in this example,
__IBMCPP__, is a predefined preprocessor macro that can be used to
manipulate source based on the level of IBM compiler that is being used.
__IBMCPP__ is set to the value of 500 for IBM VisualAge Version 5.0 and later,
and can be used as follows:
#if __IBMCPP__ >= 500
#define TYPENAME typename
#else

#define TYPENAME
#endif

Chapter 6. Special Considerations for Migrating to Incremental Compilation 37

This provides backwards compatibility while allowing you to use new keywords
as keywords. Where possible, use compatibility options instead.

“Chapter 2. Migrate to Incremental Compilation” on page 5

nokeyword Language Option
Options for Compatibility with Previous Releases
orderednamelookup Language Option
“Chapter 6. Special Considerations for Migrating to Incremental Compilation” on
page 33

Application Uses Both C and C++ Source
You can use the IDE to develop both C code and C++ code. However, there are
some special considerations when migrating an application using both C and C++
source files.

Features Supporting C Development

v The incremental compiler does not generate object files unless you specifically
request them. If you need to generate object files (.a or .obj files), you can use
the file(genObject, path) option to generate C object files to a specified directory.
This can be useful for developing projects that use multiple directories.

v In a configuration file, you can explicitly specify whether each source file
contains C or C++ source code, or accept the default type set by the file
extension. VisualAge C++ runs the C compiler for C source files (i.e., for files
with the extension .c)

v If you build with mixed source in the IDE, messages generated from compilation
of both types of source are displayed in the Messages view.

Limitations with C Development

v You will need to specify the link(debug) option for targets containing C and you
will need to specify gen(debug) for C source files. If all of your source is C++,
and you are using the IDE is for debugging, these options should not be used.

v The C compiler is not incremental. A VisualAge C++ build from C source files
records the include hierarchy and information from the configuration file in the
codestore. It stores no other information about your C source code. Each time
you rebuild, every C source file is recompiled if it or a file that it includes has a
later timestamp than on the previous build.

v You cannot use incremental compilation for C source files or use incremental
linking on code generated from C source code. If you have both C and C++
source files in one build, the linker links the object files compiled from C source
files with the code in the codestore generated from C++ source files.

v You must include header files in every C source file that requires them, and
ensure that functions, variables, etc., are declared before they are used. You do
not have to take these precautions with C++ source code.

v C symbols are not exported by the option link(exportAll). C symbols need to be
explicitly exported using the link(export, symbol) option.

If you are ready to begin migrating your application to the incremental
compilation environment, proceed to “Chapter 2. Migrate to Incremental
Compilation” on page 5.

38 Migration Guide

Sources

debug Link Option
exportAll Link Option
export Link Option
Special Considerations for Migrating to Incremental Compilation

Chapter 6. Special Considerations for Migrating to Incremental Compilation 39

40 Migration Guide

Chapter 7. Migration Concepts

Promoting Source Files to the Configuration File
When a secondary source file is added directly to the configuration file (i.e., made
primary), it is promoted. Promoting a source file can significantly improve build
performance, although not every source file can safely be promoted.

The compiler only compiles source files that are listed in the configuration file
once; any #include preprocessor directives in source files that include the primary
source file are ignored. You can safely promote a source file to the configuration
file provided the promotion does not change how the promoted file or other source
files are transformed during preprocessing. For example, a source file containing
conditional preprocessor directives based on a macro definition should not be
promoted, if the source file is included by several other source files that define the
macro differently. Consider the following three files, one.cpp, two.cpp, and
condsrc.hpp:

one.cpp
#define CONDITION1
#include “condsrc.hpp”

two.cpp
#define CONDITION2
#include “condsrc.hpp”

condsrc.hpp
#ifdef CONDITION1
// Source code...
#endif
#ifdef CONDITION2
// Different source code...
#endif

Given these three files, it would probably not be safe to promote condsrc.hpp to
your configuration, because the files one.cpp and two.cpp include differently
preprocessed versions of the file. Making condsrc.hpp a primary source would be
an error because the preprocessed code seen by the compiler would be different
than if condsrc.hpp were not promoted. However, if the two sections of code in
condsrc.hpp are not mutually exclusive (that is, there is no harm if both sections
are compiled for both .cpp files) the best approach would be to define both macros
within the configuration file, and to promote condsrc.hpp to the configuration file
as a macro source file. The configuration file would contain the following macro
definitions:
option define(“CONDITION1”),

define(“CONDITION2”),
macros(“global”) {

source “condsrc.hpp”
}

Another situation where promoting a source file may not be safe is one in which
the source file defines a macro whose name is also used in a different way
elsewhere in your program. For example, consider the following two files,
three.cpp and three.hpp:

© Copyright IBM Corp. 1998, 2000 41

three.cpp
int A=4; // Line 1
int x=A; // Line 2
#include “three.hpp”
x++;

three.hpp
#define A 3

If three.hpp is made a macro source in the configuration (so that it is visible to all
non-macro sources in the project), then A will be defined as the integer literal 3,
resulting in two problems:
v A compilation error at line1 of three.cpp (because the statement int A=4;

becomes int 3=4;)
v The literal value 3 assigned to x at line 2, instead of the variable A, whose value

would have been 4.

This situation is usually easy to detect during migration, as compile errors often
result. In this example the best solution would be to remove the ambiguity by
renaming either the variable A or the macro A, and promoting three.hpp to the
configuration file as a macro source file.

Macro Source Files
When you promote a source file to the configuration file, you should determine
whether the source file should be a macro source file. Macro source files are
treated differently from other primary source files in two ways:
v Macro source files are preprocessed before compilation begins, and any macros

defined in them are visible to all primary source files
v Macro source files are guaranteed to be preprocessed in the order in which they

appear in the configuration file, so macros defined by one configuration file are
defined in all subsequently listed macro source files unless redefined or
undefined later.

If a header file defines macros used by other sources, and is listed as a source in a
configuration file, it should be enclosed in the macros(global) option.

Using Macros Which Expand to Different Values in Different
Source Files

Here is an example,
—-global.hpp—-
....
extern int i
#ifdef MAIN
= 1
#endif
;

——-t.icc——
target “t.exe”

{
option define(“MAIN”, “”) //or define(MAIN, “1”), depending

//on how MAIN is defined

{
source “global.hpp”, “other.hpp”
}

42 Migration Guide

source “t.cpp”
...
...
}

In this application, global.hpp is included by many .cpp files but the macro MAIN
is only defined when compiling one of the .cpp files. global.hpp can be manually
promoted by enclosing it with option define(MAIN, “”) { global.hpp }.

Sources

“Promote Included System and User Header Files” on page 13

Meta Source Files
A meta source file is a file that includes other source files to improve the
performance of full builds in a traditional compiler environment. For example, if
you have ten source files that all make use of a group of common header files, you
can reduce the time taken for a full build of your application by compiling a single
meta file that includes these ten source files, instead of compiling each source file
separately, as follows:
// meta.cpp
#include “src1.cpp”
#include “src2.cpp”
...
#include “srcN.cpp”

Headers used by more than one source file in the group are compiled only once
when the meta source file is compiled (provided the header files use macro
guards), instead of being compiled up to ten times. This build improvement in full
builds is offset by slower builds when a single source file included by the meta
source file is changed, because the meta source file itself is the compilation unit
that must be recompiled.

When you migrate meta source files to configuration files for the VisualAge C++,
Version 5.0 incremental compiler, you can gain some performance benefits
(because, as with a traditional compiler, your included files will be compiled fewer
times). However, the difference in build times may not be as significant as the
difference achieved when migrating from individual source files to a configuration
file. The meta source model has already reduced the build time.

“Application Uses Meta Source Files” on page 34
“Application Uses Meta Header Files” on page 35

Considerations When Using C++ I/O
Two implementations of the iostreams input/output library are included in
VisualAge C++, Version 5.0:
v The first implementation conforms to the specification of the iostreams library as

it appears in the ISO C++ standard. Types and functions associated with this
implementation are declared in the standard header files <iosfwd>, <iostream>,
<ios>, <streambuf>, <istream>, <fstream>, <ostream>, <iomanip>, <sstream>

Chapter 7. Migration Concepts 43

and <strstream>. Use this implementation of iostreams for conformance to the
C++ standard, or when using other components of the Standard C++ Library.

v The second implementation is provided for compatibility with versions of
VisualAge C++ prior to Version 4.0. Types and functions associated with this
implementation are declared in the non-standard header files <iostream.h>,
<fstream.h>, <iomanip.h>, <strstream.h>, <stream.h> and <stdiostr.h>.

The standard iostreams library declares all names in the standard namespace std,
while the compatibility iostreams library declares all names in the global
namespace. In a project that uses both iostreams implementations, if the
using-directive using namespace std; appears in any scope that encloses the use of
a name which is declared by both implementations of iostreams, a compile-time
error will result.

Example
#include <iostream>
#include <iostream.h>
using namespace std; // Line 1
int main(void) {

cout << “I can hear music\n”; // Line 2 - which cout?
}

The header file <iostream> declares the static object std::cout and the header file
<iostream.h> declares the static object ::cout. Because of the using-directive at line
1, both of these objects will be considered when name lookup attempts to resolve
the identity of the cout named at line 2. The compiler will halt with a diagnostic
message. If the using-declaration at line 1 is deleted, the source of ambiguity is
removed and the example will compile successfully. The cout named at line 2 will
then resolve to the compatibility iostream library’s cout, which is declared in the
global scope in the header file <iostream.h>.

It is possible to use the two implementations of iostreams together.

“Use the Standard Iostreams Library and the Compatibility Iostreams Library” on
page 71
“Use the Standard Iostreams Library with the IBM Open Class Library” on page 71

Migration of Resource Files

Resource Conversion Utilities for Cross-Platform Development
Because resource files are unique to the environment they were developed in,
resources cannot simply be inherited by similar applications developed under
different environments. To create the same application and use the same resources
for a different platform, the format of the resource must be converted to suit the
operating environment. The resource conversion utilities enable resources to be
ported to other platforms without having to re-create the objects for similar
applications.

Resource Conversion Utility

44 Migration Guide

The Resource Conversion Utility converts Windows-specific resource files for use
with AIX. VisualAge C++, Version 5.0 for AIX can accept Windows-format icons,
bitmaps, and cursors without conversion.

Resource Conversion Utility

The Resource Conversion Utility converts OS/2-specific resources to
Windows-compatible resources and vice versa. Resources compiled with an OS/2®

resource compiler, will enable only OS/2 applications to access resources in the
.RC files.

“Chapter 4. Migrate to Version 5.0 Batch Compilation” on page 21
“Chapter 2. Migrate to Incremental Compilation” on page 5

Chapter 7. Migration Concepts 45

46 Migration Guide

Chapter 8. Other Migration References

Options for Compatibility with Previous Versions of VisualAge C++
Three predefined options groups are provided with VisualAge C++, Version 5.0 to
allow for greater compatibility with IBM C and C++ Compilers, Version 3.6 and
later, and with the C++ language standard.

The options groups can be set in a configuration file by including the option group
name in an option directive. The available groups are lang_compat366,
lang_strict98 or lang_ansi, and lang_extended. The options and settings included in
each group are listed in the tables below.

To use these option groups with the batch compiler, use the -qlanglvl option, with
the settings -qlanglvl=compat366, -qlanglvl=strict98 or -qlanglvl=ansi, and
-qlanglvl=extended, respectively.

Note: the lang_strict98 and lang_ansi groups are identical.

Options Group names

Configuration Option Batch Option compat366 strict98/
ansi

extended

gen (rtti) -qrtti

no yes no

Options Group names

Configuration Option Batch Option compat366 strict98/
ansi

extended

gen
(compatNestedTemplateAlignmentRule)

-qlanglvl=oldtmplalign

yes no no

Options Group names

Configuration Option Batch Option compat366 strict98/
ansi

extended

lang (allowTypedefAsClassName) -qlanglvl=typedefclass

yes no no

© Copyright IBM Corp. 1998, 2000 47

Options Group names

Configuration Option Batch Option compat366 strict98/
ansi

extended

lang (anonymousStructs) -qlanglvl=anonstruct

no no yes

Options Group names

Configuration Option Batch Option compat366 strict98/
ansi

extended

lang (ansiForStatementScopes) -qlanglvl=ansifor

no yes yes

Options Group names

Configuration Option Batch Option compat366 strict98/
ansi

extended

lang (compatFriendDeclarations) -qlanglvl=oldfriend

yes no no

Options Group names

Configuration Option Batch Option compat366 strict98/
ansi

extended

lang (compatMath) -qlanglvl=oldmath

yes no no

Options Group names

Configuration Option Batch Option compat366 strict98/
ansi

extended

lang (compatTempAccessChecking) -qlanglvl=oldtempacc

yes no no

48 Migration Guide

Options Group names

Configuration Option Batch Option compat366 strict98/
ansi

extended

lang (compatTemplateSpecialization) -qlanglvl=oldtmplspec

yes no no

Options Group names

Configuration Option Batch Option compat366 strict98/
ansi

extended

lang (extendedAnonymousUnions) -qlanglvl=anonunion

yes no yes

Options Group names

Configuration Option Batch Option compat366 strict98/
ansi

extended

lang (illformedPointerToMember) -qlanglvl=illptom

yes no yes

Options Group names

Configuration Option Batch Option compat366 strict98/
ansi

extended

lang (implicitInt) -qlanglvl=implicitint

yes no yes

Options Group names

Configuration Option Batch Option compat366 strict98/
ansi

extended

lang (longlong) -qlonglong

yes no yes

Chapter 8. Other Migration References 49

Options Group names

Configuration Option Batch Option compat366 strict98/
ansi

extended

lang (offsetOfNonPODClasses)) -qlanglvl=offsetnonpod

yes no yes

Options Group names

Configuration Option Batch Option compat366 strict98/
ansi

extended

lang (oldDigraphs) -qlanglvl=olddigraph

no yes yes

Options Group names

Configuration Option Batch Option compat366 strict98/
ansi

extended

lang (staticConstLinkage) N/A

yes yes no

Options Group names

Configuration Option Batch Option compat366 strict98/
ansi

extended

lang (templateDefImpl,
dontparse|parsewithwarnings)

dontparse parsewithwarnings parsewithwarnings

-qtmplparse=
no|parse|warn

no warn warn

Options Group names

Configuration Option Batch Option compat366 strict98/
ansi

extended

lang (trailingEnumCommas) -qlanglvl=trailenum

yes no yes

50 Migration Guide

Options Group names

Configuration Option Batch Option compat366 strict98/
ansi

extended

lang (zeroExtentArrays) -qlanglvl=zeroextarray

no no yes

Options Group names

Configuration Option Batch Option compat366 strict98/
ansi

extended

Options Group names

Configuration Option Batch Option compat366 strict98/
ansi

extended

link (nameMangling)

-qnamemangling=compat|ansi compat ansi ansi

Options Group names

Configuration Option Batch Option compat366 strict98/
ansi

extended

macros (redefine) -qlanglvl=redefine

no no no

Options Group names

Configuration Option Batch Option compat366 strict98/
ansi

extended

lang (keyword,bool) -qkeyword=bool

no yes yes

Options Group names

Configuration Option Batch Option compat366 strict98/
ansi

extended

lang (keyword,explicit) -qkeyword=
explicit

no yes yes

Chapter 8. Other Migration References 51

Options Group names

Configuration Option Batch Option compat366 strict98/
ansi

extended

lang (keyword,export) -qkeyword=export

no yes yes

Options Group names

Configuration Option Batch Option> compat366 strict98/
ansi

extended

lang (keyword,false) -qkeyword=false

no yes yes

Options Group names

Configuration Option Batch Option> compat366 strict98/
ansi

extended

lang (keyword,mutable) -qkeyword=
mutable

no yes yes

Options Group names

Configuration Option Batch Option> compat366 strict98/
ansi

extended

lang (keyword,namespace) -qkeyword=
namespace

no yes yes

Options Group names

Configuration Option Batch Option compat366 strict98/
ansi

extended

lang (keyword,true) -qkeyword=true

no yes yes

52 Migration Guide

Options Group names

Configuration Option Batch Option compat366 strict98/
ansi

extended

lang (keyword,typename) -qkeyword=
typename

no yes yes

Options Group names

Configuration Option Batch Option compat366 strict98/
ansi

extended

lang (keyword,using) -qkeyword=using

no yes yes

Equivalent Batch Compile and Incremental Build Options (AIX)

Compile Options from Earlier Versions of VisualAge C++ and
Equivalent Configuration Options (AIX)

With the VisualAge C++ incremental compiler, the old form of options are no
longer used. For both C and C++, you control the compile and link stages of build
by specifying options in a configuration file.

The syntax of configuration file options indicates whether the option relates to
code generation, optimization, the C or C++ language, the link stage, or other
features of builds.

The table below gives the configuration file option equivalent to compile options of
C Set ++, Version 3.1.4. In an incremental C++ compile, not all the old options are
meaningful, some are automatic, and the functionality of others is provided in a
different way. An entry of N/A in the table indicates that an equivalent new
option is not available. Whether the new option applies only to C or only to C++
code in this version of VisualAge C++ is indicated in the description column.

In the option syntax, the characters [and] enclose optional items, and the
character | indicates alternatives.

Old Option Description Configuration File Option

-# Display language commands but do
not invoke them; output goes to
stdout.

N/A

-+ Treat .c files as C++ source code. N/A

-a Produce test coverage information;
output goes to .d file.

N/A

Chapter 8. Other Migration References 53

Old Option Description Configuration File Option

-ae Produce test coverage information for
C++ exception handling; output goes
to .d file.

N/A

-B Construct alternate
compiler/assembler/linkage editor
program names.

N/A

-bbigtoc

-bnobigtoc

Generates extra code when the size
of the table of contents (TOC) grows
to a size greater than 64KB.

link(bigTOC, yes)
link(bigTOC, no)

-bD:number
-bmaxdata:number

Set the size of the heap in bytes. The
first number specifies the total virtual
address space to reserve. The second
number the amount of physical
memory to commit initially.

link(heap, number)

-bdynamic
-bstatic

Determines which types of library
files are searched by linkage editor.

link(linkWithSharedLib
[,yes])
link(linkWithSharedLib,no)

-bI:filename supported as a source in the
configuration:
source type(imp) “filename”
or
source “filename.imp”

-blibpath:string Override search path. link(libPathOut, string)

-bnoentry Specify that the address of the
symbol is the start address of the
executable module being built.

link(entry,no)

-bnso or -bnautoimp
-bso or -bautoimp

Specifies if unstripped, shared objects
are statically linked as ordinary object
files.

link(static, yes)
link(static, no)

-brtl Tells the linkage editor to accept both
.so and .a library file types.

N/A

-c Do not send object files to the linkage
editor.

N/A

-C Preserve comments in preprocessed
output.

pp(preprocessOnly)
pp(preserveComments)

-D<name>[=<def>] Define <name> as in #define
directive. If <def> is not specified, 1
is assumed.

define(...)

-Dname[=[value]] Define preprocessor macro. define(macro_name[, string])

-Wl,-Dnumber Set the starting address for the data
section of the output file to number.

link(dataStart, number)

-E Preprocess but do not compile.
Output goes to stdout.

pp(preprocessOnly)
pp(stdout)

-ename Specify that the address of the
symbol is the start address of the
executable module being built.

link(entry, string)

-F Use alternate configuration file, etc. supported as a vacbld command
option

54 Migration Guide

Old Option Description Configuration File Option

-F<x>[:<stanza>] Use alternate configuration file, etc. supported as a vacbld command
option
stanzas also supported by
defaults(stanza)

-g Include traditional debug option. link(debug[, yes])
link(debug, no)

-Hnumber Set the address alignment for all
loadable segments so that the start of
each segment is aligned at a multiple
of the specified number of bytes.

link(alignAddr, number)

-I Specify #include search paths. incl(searchpath, path)

-I<dir> Search in directory <dir> for include
files that do not start with an absolut
path.

include(searchPath,string)

-I<key> Search the specified library file,
where <key> selects the file
lib<key>.a.

N/A

-K

-z

N/A

-lname N/A

-Lstring Specify search path for library files. link(libSearchPath,string)

-ma Generate inline calls to the “alloca”
function as if “#pragma alloca”
directives were in the source file.

N/A

-M Generate information to be included
in a “make” description file; output
goes to .u file.

file(makeDep[,yes])

-o Name generated executable or object
file.

N/A

-o<name> Name generated executable or object
file.

file(genObject[,yes])
file(genObject,string)
file(genObject,no)

-O
-O2
-O3

Optimize code. opt(level, number)

-O4 Equivalent to -O3 -qipa with
automatic detection of architecture
and tuning option.

N/A

-p

-pq

Enable code for performance
analysis.

gen(profile[, yes])

-pg Generate profiling support code
including BSD profiling support.

gen(profile, bsd)
link(debug[,yes])

-P Preprocess but do not compile.
Output goes to .i file.

pp(preprocessOnly[,yes])

-Q Inline specified user functions. opt(inline[, yes])
opt(inline, no)
opt(autoInline[, yes])
opt(autoInline, no)
opt(autoInlineLimit)

Chapter 8. Other Migration References 55

Old Option Description Configuration File Option

-Q!
-qnoinline

Do not inline any function. opt(inline, no)
opt(autoInline, no)

-Q=<lc>

-qinline=<lc>

Inline if number of source statement
in function is less than the number
specified in <lc>.

opt(inline)
opt(autoInline)
opt(autoInlineLimit)

-Q-<nm>

-qinline-<nm>

Not inline function listed by names
in <nm>.

opt(inline[, yes])
opt(autoInline)
opt(noInlineFunc,name)

-Q+<nm>

-qinline+<nm>

Attemp to inline funtion listed by
names in <nm>.

opt(inline[, yes])
opt(inlineFunc,name)

-qalias=<typ|allp|addr|ansi> Specifies the aliasing assertion to be
applied to your compilation unit. The
available options are:
typ= Pointers to different types are
never aliased.
allp= Pointers are never aliased.
addr= Variables are disjoint from
pointers unless their address is taken.
ansi= Pointers can only point to an
object of the same type. Require -O
option.

opt(alias,...)

-qalign=option Specify alignment of data items. gen(align, option)

-qansialias

-qnoansialias

Specify which aliasing rules can be
used during optimization.

opt(alias, ...)

-qarch=name

-qarch=<com|pwr|pwr2|
pwrx|ppc|ppcgr>

Specifies the architecture on which
the executable program will be run.
The available options are:
com= Produce an object that contains
instructions that will run on all the
POWER and PowerPC hardware
platforms.
pwr= Produce an object that contains
instructions that will run on the
POWER hardware platform.
pwr2= Produce an object that
contains instructions that will run on
the POWER2 hardware platform.
pwrx= Same as pwr2.
ppc= Produce an object that contains
instructions that will run on any of
the 32-bit PowerPC hardware
platforms.
ppcgr= Produce an object that
contains optional graphics
instructions for PowerPC processors.
The default is -qarch=com. If the
-qarch option is specified without the
-qtune=<option>, the compiler uses
-qtune=pwr.

gen(arch, name)
gen(arch,...)

56 Migration Guide

Old Option Description Configuration File Option

-qassert=option

-qassert=<typ|allp|addr>

Specifies the aliasing assertion to be
applied to your compilaton unit. The
available options are:
typ= Pointers to different types are
never aliased.
allp= Pointers are never aliased.
addr= Variables are disjoint from
pointers unless their address is taken.

opt(alias, option)
opt(aliasAssert,typ[,yes])
opt(aliasAssert,typ,no)
opt(aliasAssert,allp[,yes])
opt(aliasAssert,allp,no)
opt(aliasAssert,addr[,yes])
opt(aliasAssert,addr,no)

-qattr Produce an attribute listing; output
goes to.lst file.

list(attr[,yes])

-qattr=full Produce an attribute listing
containing all names, whether
referenced or not; output goes to .lst
file.

list(attr, full)

-qbitfields=signed
-qbitfields=unsigned

Specify whether bitfields will be
signed or unsigned.

lang(signedBitfields[,yes])
lang(singedBitfields,no)

-qbrowse Produce information for the source
code browser; output goes to .brs file.

N/A

-qchars=signed
-qchars=unsigned

Treat plain char variables as signed or
unsigned.

lang(signedChars[, yes])
lang(signedChars, no)

-qcheck
-qnocheck

-qcheck=suboptions

The suboptions are:
all= Switches on all of the following
suboptions.
nullptr= Performs run-time checking
of addresses contained in pointer
variables used to reference storage.
bounds= Performs run-time checking
of addresses when subscipting within
an object of known size.
divzero= Performs run-time checking
of integer division.

gen(check, zeroDivide[, yes])
gen(check, zeroDivide, no)
gen(check, nullPointer[,yes])
gen(check, nullPointer,no)
gen(check, bounds[,yes])
gen(check, bounds,no)

-qcinc=<prefix>

-qnocinc=prefix

Includes files form/user/include by
inserting
extern “C” {
before each <prefix> and inserting }
after it.

incl(externC, prefix)
incl(noExternC, prefix)

-qcompact
-qnocompact

Optimize code for size. opt(size[, yes])
opt(size, no)

-qcpluscmt

-qnocpluscmt

Permit “//” to introduce comment
that lasts until the end of the current
source line, as in C++.

lang(slashSlashComment
[,yes])
lang(slashSlashComment,no)

-qdataimported
-qdataimported=string

-qdataimported=
<name1>:<name2>:...

Specify which data items are
imported. If no names are specified,
all data items are assumed to be
imported. This is the default.

link(dataImported, none)
link(dataImported, all)
link(dataImported, names)
link(dataImportedNames, string)

-qdatalocal

-qdatalocal=string

-qdatalocal=
<name1>:<name2>:...

Specify which data items are local. If
no names are specified, all data items
are assumed to be local.

link(dataLocal, none)
link(dataLocal, all)
link(dataLocal, names)
link(dataLocalNames, string)

-qdbcs

-qnodbcs

Allow use of DBCS. lang(dbcs[,yes])
lang(dbcs,no)

Chapter 8. Other Migration References 57

Old Option Description Configuration File Option

-qdbxextra

-nodbxextra

Produce symbol table for
unreferenced variables.

gen(debugunreferenced[, yes])

-qdigraph

-qnodigraph

Permit ANSI digraph and keyword
operators.

lang(digraphs[, yes])
lang(digraphs, no)

-qdisjoint=<disjointSpec> Tell the optimizer that certain aliases
are impossible.

N/A

-qdollar

-qnodollar

Allow user to specify dollar sign (’$’)
in identifier names.

lang(allowDollarInNames[, yes])
lang(allowDollarInNames, no)

-qenum=enumopt

-qenum=<small|int|1|2|4>

Specify whether minimum-sized
enumerated types will be produced
or not. <enumopt> can be either
small, int, 1, 2 or 4.
small denotes that either one, two or
four bytes of storage will be allocated
for enum variables based on the
range of the enum constants.
int is the default, and causes enum
variables to be treated as though they
were of type signed int for C or
either signed or unsigned int for C++
depending on the range of the enum
constants.
1 will cause enum variables to be
packed into 1 byte.
2 will cause enum variables to be
packed into 2 bytes.
4 will cause enum variables to be
packed into 4 bytes.

gen(enumSize, ...)

-qextchk

-qnoextchk

Perform external name type-checking
and function call checking.

link(typeCheck[, yes])
link(typeCheck, no)

-qfdpr

-qnofdpr

Collect information about programs
for use with the AIX fdpr (Feedback
Directed Program Restructuring)
performance-tuning utility.

N/A

-qflag Set minimum severity level. report(level, ...)

-qflag=<sev> Specify severity level of diagnostics
to be reported in source listing adn
stderr; the severity level is one of
<i,w,e,s,u>.

list(reportLevel, sev)
report(level,sev)

-qflag=<sev1>:<sev2> Specify severity level of diagnostics
to be reported in source listing
(<sev1>), adn stderr (<sev2>); the
severity levels are one of <i,w,e,s,u>.

list(reportLevel, sev1)
report(level, sev2)

58 Migration Guide

Old Option Description Configuration File Option

-qfloat

-qfloat=<opt1>:<opt2>:
...:<optN>

The available options are:
emulate= Function calls are emitted
in place of PowerPC floating-point
instructions.

fltint= Do range checking of floating
point to integer conversions.
hsflt= Never round single-precision
expressions, and do not perform
range checking for floating-point to
integer conversions.
hssngl= Round single-precision
expressions only when the results are
stored into REAL*4 memory
locations.
nans= Detect conversion of
single-precision NaNS to double
precision call checking.
nomaf= Suppress generation of
multiply-add instructions.
nofold= Suppress compile-time
evaluation of constant floating-point
expressions.
rndsngl= Ensure strict adherence to
IEEE standard. Results of operations
on single-precision values remain in
single precision.
rrm= Specify run-time rounding
mode.

rsqrt= Specify whether a division by
the result of a square root can be
replaced with a multiple by the
reciprocal of the square root.

spnans= Generate extra instructions
to detect signalling NaN of
conversion from single precision to
double precision. (Obsolete; use the
equivalent -qfloat=nans option.)

gen(float, ...)
gen(float, string[,yes])
gen(float, string,no)

-qflttrap
-qflttrap=option

-qflttrap=
<opt1>:<opt2>:...:<optN>

-qnoflttrap

Generate calls to detect and trap
floating point. The available options
are: overflow, underflow, zerodivide,
invalid, inexact, enable, imprecise.

gen(floatTrap, option[, yes])
gen(floatTrap,option, no)

-qfold
-qnofold

Specifies that constant floating-point
expressions are to be evaluated at
compile time.

gen(float, fold[, yes])
gen(float, fold, no)

-qfullpath
-qnofullpath

Specify path information. link(debugFullPath[, yes])
link(debugFullPath, no)

-qfuncsect

-qnofuncsect

Place instructions for each function in
a separate cset.

gen(funcSect[, yes])
gen(funcSect, no)

-qgenpcomp Generate pretokenized include files. N/A

Chapter 8. Other Migration References 59

Old Option Description Configuration File Option

-qgenpcomp[=dirname] Generate pretokenized include files. file(genPCH[, yes])
file(genPCH, string)
file(genPCH, no)

-qgenproto Generate ANSI prototypes form K&R
function definitions.

N/A

-qgenproto=<parmnames> Produces ANSI prototypes from K&R
function definitions.

file(genProto[, yes])
file(genProto, no)

-qhalt

-qhalt=<w|e|s|u>

Stop compiler after first phase if
severity of errors detected equals or
exceeds <sev>; the severity lievel is
one of w, e, s, u.

N/A

-qhd Generate additional information for
use with the Heapview debugger.

N/A

-qheapdebug

-qnoheapdebug

Enables debug versions of memory
management functions.

alloc(debug[,yes])
alloc(debug,no)

-qidirfirst
-qnoidirfirst

Specify search order for files. incl(searchpathfirst[, yes])
incl(searchpathfirst, no)

-qignerrno
-qnoignerrno

Tell optimizer that program will
never refer to or set errno.

opt(ignErrno)
opt(ignErrno, no)

-qignprag

-qignprag=disjoint

-qignprag=isolated

-qignprag=all

Honour or ignore references to
#pragma disjoint and/or
isolated_call.

opt(pragmaDisjoint[, yes])
opt(pragmaDisjoint, no)
opt(pragmaIsolatedCall[, yes])
opt(pragmaIsolatedCall, no)

-qinfo=infoopt
-qinfo=<class>

Produce additional lint-like messages
based on <class>.

info()

-qinitauto=value

-qinitauto=<hh>

Initialialize automatic storage to
<hh>. <hh> is a hexadecimal value.
This generates extra code and should
only be used for error determination.

gen(initAuto[, yes])
gen(initAuto, number)
gen(initAuto, no)

-qinlglue
-qnoinlglue

Generate fast external linkage by
inlining the code (pointer glue code)
necessary at calls via a function
pointer and calls to external
procedures.

gen(inlinePointerGlue[, yes])
gen(inlinePointerGlue, no)

-qinline

-qnoinline

Determine whether functions in your
code qualified with the _Inline or
inline keywords are candidates for
inlining.

opt(inline[, yes])
opt(inline, no)

-qipa

-qnoipa

-qipa=option

Turn the IPA optimizer on or off. opt(ipa)
opt(ipa, no)
opt(ipaoption, option)

-qipa[=<ipa_options>] Turn on inter-procedural analysis. N/A

-qisolated_call=
<name1>:<name2>:...

Specify that the calls to the functios
listed have no side effcts. <name1>
and <name2> are function names.
The user may specify as many
function names as necessary.

opt(isolatedCall,...)

60 Migration Guide

Old Option Description Configuration File Option

-qlanglvl Set language level. N/A

-qlanglvl=<ansi|saa12|saa|
extended|classic>

Specify language level to be used
during compilation. <langlvl> can be
ansi, saa12, saa, extended, or classic.

lang(level,...)

-qldbl128
-qnoldbl128
-qlongdouble
-qnolongdouble

Represent long doubles as 80 bit
values on OS/2 and Windows®, or as
128 bit values on AIX.

gen(longDouble[, yes])
gen(longDouble, no)

-qlibansi
-qnolibansi

Process ANSI C library names as
system functions.

gen(libansi)
gen(libansi, no)

-qlinedebug

-qnolinedebug

Generates abbreviated line number
and source file name information for
the debugger.

gen(lineOnlyDebug[,yes])
gen(lineOnlyDebug,no)

-qlist

-qnolist

Produce an object listing; output goes
to .lst file.

list(listing[,yes])
list(listing,no)

-qlistopt

-qnolistopt

Display the settings of all options;
output goes to .lst file.

list(options[, yes])

-qlonglong
-qnolonglong

Processor disallow long long int. lang(longlong)
lang(longlong, no)

-qmacpstr

-qnomacpstr

Allow ’\p’ as the first character of a
string constant.

lang(macPStr[, yes])
lang(macPStr, no)

-qmakedep

-qnomakedep

Creates an output file that contains
targets suitable for inclusion in a
description file for the AIX make
command.

file(makeDep[,yes])
file(makeDep,no)

-qmaxerr Instructs the compiler to halt
compilation when a specified number
of errors of specified or greater
severity is reached.

debug(maxErrors, number)

-qmaxmen=<num> Limit the amount of memory used by
space intensive ooptimization to
<num>. <num> specified in
kilobytes. priority=NNN

opt(maxMem, number)

-qmbcs

-qnombcs

Allow use of DBCS. lang(dbcs[, yes])
lang(dbcs, no)

-qnoprint Direct listing to /dev/null. list(listing, no)

-qnostdinc

-qstdinc

Specify which files are included with
the #include “file_name” and
#include <file_name> directives. If
-qnostdinc is specified, the
/usr/include directory is not
searched.

incl(standardInclude, no)

-qonce

-qnoonce

Process #include files only once. file(once[, yes])
file(once, no)

-qpascal

-nopascal

Accept and ignore the keyword
’pascal’ as a type modifier.

lang(pascal[, yes])
lang(pascal, no)

Chapter 8. Other Migration References 61

Old Option Description Configuration File Option

-qpdf1

-qpdf2

Perform aggressive optimizations
with profile directed feedback.

N/A

-qphsinfo Produce compiler phase information N/A

-qpriority=<num> Specifies the priority level for
initialization of static constructors.

link(sharedLibPriority, number)

-qproclocal

-qproclocal=
<name1>:<name2>:...

Specify which functions are local. If
no filenames are specified, all
invoked functions are assumed to be
defined within the current file. The
last explicit specification for a
function takes precedence.

link(procLocal,<none|all|
names>)
link(procLocalName, string)

-qprocimported

-qprocimported=
<name1>:<name2>:...

Specify which functions are
imported. If no filenames are
specified, all invoked functions are
assumed to be defined outside the
current file. The last explicit
specification for a function takes
precedence.

link(procImport,<nome|all|
names>)
link(procImportName,string)

-qprocunknown

-qprocunknown=
<name1>:<name2>:...

Specify which functions are unknown
to be local or imported. If no
filenames are specified, all functions
called are assumed to be unknown.
This is the default when no user
options are specified. The last explicit
specification for a function takes
precedence.

link(procUnknown,<none|all|
names>)
link(procUnknownName, string)

-qproto

-qnoproto

Assert that procedure call points
agree with their declarations even if
the procedure has not been
prototyped. This allows the caller to
pass floating point arguments
floating point registers instead of
general purpose registers.

lang(checkNonProto[,yes])
lang(checkNonProto,no)

-qro
-qnoro

Put string literals in read only area. gen(readonly[, yes])
gen(readonly, no)

-qroconst
-qnoroconst

Put constant values in read only area. gen(readonlyconst)
gen(readonlyconst, no)

-qrwvftable

-qnorwvftable

Place virtual function tables into
read/write memory.

N/A

-qshowinc

-qnoshowinc

Include the source for all included
files in the source listing, if the
-qsource option is in effect.

list(expAllInc[,yes])
list(expAllInc,no)

-qsom Turn on implicit SOM mode. N/A

-qsomgs Disable direct access to SOM
attributes.

N/A

-qsominc Include or exclude files in implicit
SOM mode.

N/A

-qsomro Write the release order of the
specified class to stdout.

N/A

62 Migration Guide

Old Option Description Configuration File Option

-qsource

-qnosource

Produce a source listing; output goes
to.lst file.

list(incSource[,yes])
list(incSource,no)

-qspill=number
-qspill=<size>

Specify the size of the register
allocation spill area.

opt(registerSpillSize, number)

-qsrcmsg

-qnosrcmsg

Reconstruct source lines in error
along with the diagnostic messages.

report(srcMsg[, yes])
report(srcMsg, no)

-qstatsym
-qnostatsym

Adds user-defined, nonexternal
names that have a persistent storage
class, such as initialized and
uninitialized static variables, to the
name list (the symbol table of xcoff
objects).

link(staticSymbols)
link(staticSymbols, no)

-qstrict
-qnostrict

Valid only at -03. This option turns
off aggresive optimizations which
have the potential to alter the
semantics of a user’s program. This
option also sets
-qfloat=nofltint:norsqrt.

opt(strict)
opt(strict, no)

-qsyntaxonly

-qnosyntaxonly

Causes the compiler to perform
syntax checking without generating
an object file.

file(syntaxOnly[,yes])
file(syntaxOnly,no)

-qtabsize=<size> Change the length of tabs in your
source file.

file(tabSize, number)

-qtbtable=option
-qtbtable=<option>

Generate a traceback table for each
function and place it in the text
segment at the end of the function
code.
The available options are:
none= No traceback table is
generated.
full= A full traceback table is
generated. This is the default with -g
specified.
small= A traceback table is generated
with no name or parameter
information. This is the default when
-g is NOT specified.

gen(traceBackTable,option)
link(traceBackTable,
<none|full|small>)

-qtempinc
-qtempinc=<directory>

-qnotempinc

Automatically generate template
functions in the specified directory.
Use the “notempinc” option to
suppress this behaviour.

N/A

-qtempmax Specify the maximum number of files
to be created in the tempinc directory
for each template file.

N/A

Chapter 8. Other Migration References 63

Old Option Description Configuration File Option

-qtune=name

-qtune=<403|601|603|604|
pwr|pwr2|pwr2s>

Specifies the architecture system for
which the executable program is
optimized. The available options are:
403= Produce an object optimized for
all the PowerPC 403™ processors.
Use -qfloat=emulate to emulate the
floating-pointing instructions omitted
by the 403 processor.
601= Produce an object optimized for
all the PowerPC 601® processors.
603= Produce an object optimized for
all the Power PC 603® processors.
604= Produce an object optimized for
all the PowerPC 604™ processors.
pwr= Produce an object optimized
for the POWER hardware platform.
pwr2= Produce an object optimized
for the POWER2 hardware platform.
pwr2s= Produce an object optimized
for the POWER2 hardware platform,
avoiding certain quadruple-precision
instructions that would slow program
performance.
pwrx= Same as pwr2.

opt(tune, name)
opt(tune,...)

-qtwolink

-qnotwolink

Link twice in order to minimize the
number of static constructors
included form libraries (default with
langlvl=compat).

N/A

-qunique
-qnounique

Generates unique names for static
constuctor/descructor file
ocmpilation units.

link(uniqueNames[, yes])
link(uniqueNames, no)

-qunroll

-qunroll=number
-qnounroll

-qunroll[=n]

Allow the optimizer to unroll loops. opt(loopUnroll[, yes])
opt(loopUnroll, number)
opt(loopUnroll, no)

-qupconv
-qnoupconv

Preserves the unsigned specification
when performing integral
promotions.

lang(preserveUnsigned
Promotion[, yes])
lang(preserveUnsigned
Promotion, no)

-qusepcomp Use pretokenized include files. N/A

-qusepcomp[=dirname] Use pretokenized include files. file(usePCH[,yes])
file(usePCH,string)
file(usePCH,no)

-qvftable
-qnovftable

Determine whether the virtual
function table is included in the
module that is the target of the build.

gen(vft[, yes])
gen(vft, no)

-qwait

-qwait[=<seconds>]

Specify the number of seconds to
wait for a NetLS license to become
available. The default is to wait
forever.

N/A

-qxcall

-qnoxcall

Generate code to static routines
within a compilation unit as if they
were external routines.

gen(externStaticLinkage[, yes])
gen(externStaticLinkage, no)

64 Migration Guide

Old Option Description Configuration File Option

-qxref

-noxref

Produce a cross-reference listing;
output goes to .lst file.

list(minXRef[, yes])
list(minXRef, no)

-qxref=full Produce a cross-reference listing
containing all names, whether
referenced or not; output goes to .lst
file.

list(fullXRef[, yes])
list(fullXRef, no)

-r Permits the output file to be
produced even if it contains
unresolved symbols.

link(force)

-s link(strip[, yes])
link(strip, no)

-S Generate an assembler language (.s)
file

file(genAsm[,yes])

-Snumber Set the total size of the program stack
in bytes.

Windows NT® and OS/2 only:
link(stack, number)

-t Apply prefix from the -B option to
the specified program.

N/A

-t<p/c/b/i/a/l/m/f/I> Apply prefix form the -B option to
the specified program <x>, where x
can be on or more of the following:
p= preprocessor
c= compiler frontend
b= compiler backend
i= compiler inliner
a= assembler
l= linkage editor
m= ’munch’ utility
I= inter procedural analysis

N/A

-Tnumber Sets the start address of the text
section of the output file to number.

link(textStart, number)

-U<name> Undefine name as in #undef
directive.

undefine(name)

-v Display language processing
commands as they are invoked by
xIC; output goes to stdout.

N/A

-w Suppress information, language-level,
and warning messages.

report(level, ...)

-W Give specified options to specidied
compiler program.

N/A

-W<x,y> Give the options <y> to the compiler
program <c> where x can be one or
more of the following:
<p,c,b,i,a,l,I,m>

N/A

-y<option> Specifies compile-time rounding of
constant floating-point expressions.
(is this the right description?)

gen(roundConstFp, option)

Chapter 8. Other Migration References 65

Old Option Description Configuration File Option

-Y<x> Specify compile-time rounding of
constant floating-point expressions,
where <x> can be one of the
following:
n= round to nearest
m= round toward minus infinity
p= round toward positive infinity
z= round toward zero.

gen(roundConstFp, option)

-Zstring Prefix the names of the library search
paths with the string.

link(libsearchpathprefix, string)

Incremental C++ Build
C Compilation
Configuration Files
Setting Build Options

Build

Build Options

Build Options for ANSI C++ Compliance

Build Options for Compatibitility with Old C++ Compilers

Link Options from Earlier Versions of VisualAge C++ (AIX)
VisualAge C++ includes an incremental linker that replaces the traditional AIX
linker (ld). Much of the same link functionality is provided, but you specify
options in the configuration file for your project rather than as command line
options for the linker.

In previous versions of VisualAge C++, we recommended that you issue all link
edit commands to ld through the xlC command. Therefore, the table in Compile
Options from Earlier Versions of VisualAge C++(AIX) provides the new
equivalents to the earlier link options.

Incremental C++ Build
C Compilation
Set Build Options

Build

Compile Options from Earlier Versions of VisualAge C++ (AIX)

66 Migration Guide

New Standard C++ Library Header Files
The Standard C++ Library is composed of eight special-purpose libraries:
v The Language Support Library
v “The Diagnostics Library”
v “The General Utilities Library” on page 68
v “The Standard String Templates” on page 68
v “Localization Classes and Templates” on page 68
v “The Containers, Iterators and Algorithms Libraries (the Standard Template

Library)” on page 68
v “The Standard Numerics Library” on page 69
v “The Standard Input/Output Library” on page 69
v C++ Headers for the Standard C Library (page 70)

C++ implementations that do not conform to the C++ International Standard,
including versions of VisualAge C++ prior to Version 4.0, may not provide support
for the Standard C++ Library. To maintain compatibility between such a product
and VisualAge C++, Version 5.0, do not use the Standard C++ Library.

The Language Support Library
The Language Support Library defines types and functions that will be used
implicitly by C++ programs that employ such C++ language features as operators
new and delete, exception handling and runtime type information (RTTI). To
maintain compatibility with versions of this product prior to Version 4.0, do not
use the standard headers in the left column of the table below. Instead, use the
non-standard headers in the right column, which have been provided with
VisualAge C++, Version 5.0. for compatibility with previous releases.

Standard C++ header Equivalent in previous versions

<exception> <stdexcept.h>

<stdexcpt.h>

<limits> no equivalent

<new> <new.h>

<typeinfo> <typeinfo.h>

The Diagnostics Library
The Diagnostics Library is used to detect and report error conditions in C++
programs. To maintain compatibility with versions of this product prior to Version
4.0, do not use the standard headers in the left column of the table below. Instead,
use the non-standard headers in the right column, which have been provided with
VisualAge C++, Version 5.0. for compatibility with previous releases.

Standard C++ header Equivalent in previous versions

<stdexcept> <stdexcept.h>

<stdexcpt.h>

Chapter 8. Other Migration References 67

The General Utilities Library
The General Utilities Library is used by other components of the Standard C++
Library, especially the Containers, Iterators and Algorithms Libraries (the Standard
Template Library). C++ implementations that do not conform to the C++
International Standard, including versions of this product prior to Version 4.0, may
not provide support for the General Utilities Library. To maintain compatibility
between such a product and VisualAge C++, Version 5.0, do not use this library.

Standard C++ header Equivalent in previous versions

<utility> no equivalent

<functional> no equivalent

<memory> no equivalent

The Standard String Templates
The Strings Library is a facility for the manipulation of character sequences. C++
implementations that do not conform to the C++ International Standard, including
versions of this product prior to Version 4.0, may not provide support for the
Strings Library. To maintain compatibility between such a product and VisualAge
C++, Version 5.0, do not use this library.

Standard C++ header Equivalent in previous versions

<string> no equivalent

Localization Classes and Templates
The Localization Library permits a C++ program to address the cultural differences
of its various users. C++ implementations that do not conform to the C++
International Standard, including versions of this product prior to Version 4.0, may
not provide support for the Localization Library. To maintain compatibility
between such a product and VisualAge C++, Version 5.0, do not use this library.

Standard C++ header Equivalent in previous versions

<locale> no equivalent

The Containers, Iterators and Algorithms Libraries (the
Standard Template Library)

The Standard Template Library (STL) is a facility for the management and
manipulation of collections of objects. C++ implementations that do not conform to
the C++ International Standard, including versions of this product prior to
Version 4.0, may not provide support for the STL. To maintain compatibility
between such a product and VisualAge C++, Version 5.0, do not use this library.

Standard C++ header Equivalent in previous versions

<algorithm> no equivalent

<bitset> no equivalent

<deque> no equivalent

68 Migration Guide

Standard C++ header Equivalent in previous versions

<iterator> no equivalent

<list> no equivalent

<map> no equivalent

<queue> no equivalent

<set> no equivalent

<stack> no equivalent

<vector> no equivalent

The Standard Numerics Library
The Numerics Library is a facility for performing seminumerical operations. C++
implementations that do not conform to the C++ International Standard, including
versions of this product prior to Version 4.0, may not provide support for the
Numerics Library. To maintain compatibility between such a product and
VisualAge C++, Version 5.0, do not use this library.

Users who require library facilities for complex arithmetic but wish to maintain
compatibility with older compilers may use the compatibility complex numbers
library whose types are defined in the non-standard header file <complex.h>.
Although the header files <complex> and <complex.h> are similar in purpose, they
are mutually incompatible.

Standard C++ header Equivalent in previous versions

<complex> no equivalent

<numeric> no equivalent

<valarray> no equivalent

The Standard Input/Output Library
The standard iostreams library differs from the compatibility iostreams in a
number of important respects. C++ implementations that do not conform to the
C++ International Standard, including versions of this product prior to Version
4.0, may not provide support for the standard iostreams library. To maintain
compatibility between such a product and VisualAge C++, Version 5.0, use instead
the compatibility iostreams library. More information on iostreams is provided in
Special Considerations When Using C++ I/O.

Standard C++ header Equivalent in previous versions

<fstream> no equivalent

<iomanip> no equivalent

<ios> no equivalent

<iosfwd> no equivalent

<iostream> no equivalent

<istream> no equivalent

Chapter 8. Other Migration References 69

Standard C++ header Equivalent in previous versions

<ostream> no equivalent

<streambuf> no equivalent

<sstream> no equivalent

C++ Headers for the Standard C Library

The C International Standard specifies 18 headers which must be provided by a
conforming hosted implementation. The name of each of these headers is of the
form name.h. The C++ Standard Library includes the C Standard Library and,
hence, includes these 18 headers. Additionally, for each of the 18 headers specified
by the C International Standard, the C++ standard specifies a corresponding
header that is functionally equivalent to its C library counterpart, but which locates
all of the declarations that it contains within the std namespace. The name of each
of these C++ headers is of the form cname, where name is the string that results
when the .h extension is removed from the name of the equivalent C Standard
Library header. For example, the header files <stdlib.h> and <cstdlib> are both
provided by the C++ Standard Library and are equivalent in function, with the
exception that all declarations in <cstdlib> are located within the std namespace.

C++ implementations which do not conform to the C++ International Standard
may not support the “cname” headers. To maintain source code compatibility
between such an implementation and VisualAge C++, Version 5.0, do not use these
headers. Instead, use the corresponding C Standard Library header whose name is
of the form “name.h.”

Standard C++ Header Corresponding Standard C & C++ Header

<cassert> <assert.h>

<cctype> <ctype.h>

<cerrno> <errno.h>

<cfloat> <float.h>

<ciso646> <iso646.h>

<climits> <limits.h>

<clocale> <locale.h>

<cmath> <math.h>

<csetjmp> <setjmp.h>

<csignal> <signal.h>

<cstdarg> <stdarg.h>

<cstddef> <stddef.h>

<cstdio> <stdio.h>

<cstdlib> <stdlib.h>

<cstring> <string.h>

<ctime> <time.h>

<cwchar> <wchar.h>

<cwctype> <wctype>

70 Migration Guide

Special Considerations When Using C/C++ I/O

Use the Standard Iostreams Library and the Compatibility Iostreams
Library

It is possible to use the standard iostreams library and the compatibility iostreams
library together. To do so, it is better to fully qualify the standard iostreams library
names that are needed, than to use C++ using directives to access the standard
iostreams library. For example:
#include <iostream>
#include <iostream.h>
int main(void) {

cout << “I can hear music\n”; // Line 1
std::cout << “Sweet, sweet music\n”; // Line 2

}

In this example, line 1 will use the compatibility iostreams library, which is
declared in the global namespace, while line 2 will use the standard iostreams
library, which is declared in the std namespace.

Special Considerations When Using C/C++ I/O

Use the Standard Iostreams Library with the IBM Open Class Library
Version 5 of the IBM Open Class library includes a new header, istream.hpp. This
header allows you to choose the iostream library you want to use through a macro,
__IOC_ANSI_STREAM. For example, a truly portable IBM Open Class application
is written this way:
#include <iostream>
#include <istring.hpp>
#ifdef __IOC_ANSI_STREAM
using namespace std;
#endif
IString is(“I can hear music”);
cout << is << endl;

In your makefile or configuration file, simply define __IOC_ANSI_STREAM if you
want to use the ANSI stream library. By default, the IBM Open Class library uses
the USL library to preserve existing behavior.
IOC libraries are iostream independent. This means that you can use either
iostream library, with one exception: the File stream library. Version 5 of the IBM
Open Class library includes two File stream libraries: one compiled with the ANSI
stream library (libvacfastrm.a on AIX platforms, or cpposi50.dll on OS/2 or
Windows) and the other compiled with the USL stream library (libvacfstrm.a or
cppofi50.dll).

Special Considerations when Using C/C++ I/O

“Use the Standard Iostreams Library and the Compatibility Iostreams Library”

Chapter 8. Other Migration References 71

Makefile Rules Mapped to Configuration File Directives
The following table shows configuration file directives and equivalent makefile
rules.

Makefile rule Equivalent Configuration file directive

run_before_rules: <previous run before
targets> run_before__X
run_before__X:

command

run (before|after) command

run_target_rules: <previous targets> run__X
run__X:

command

run command

run_target_rules: <previous targets> run__X
run__X: gram.y

command

run source(“gram.y”) command

run_target_rules: <previous targets> run__X
run__X: ytab.h
ytab.h: gram.y

command

run target(“ytab.h”) source(“gram.y”)
command

run_target_rules: <previous targets> a.out
a.out: a.o

link command
a.o: a.C

compile command

target “a.out” {
source “a.C”

}

run_target_rules: <previous targets> a.out
a.out: b.o

link command

target “a.out” {
source “b.o”

}

run_target_rules: <previous targets> a.out
a.out: a.o b.o

link command
a.o: a.C

compile command

target “a.out” {
source “a.C”, “b.o”

}

run_target_rules: <previous targets> a.o
a.o: a.C

compile command

target “a.o” {
source “a.C”

}

run_target_rules: <previous targets> a.res
a.res:a.rc

irc command

source “a.rc”

Configuration Files

72 Migration Guide

Contacting IBM

We’re delighted to offer a solid cornerstone for your application development:
IBM’s comprehensive support services. Whether you are an occasional user with a
simple question, a power user with many complex technical questions, or someone
who requires application design assistance and consulting, IBM Support can meet
your needs.

Comments on This Help

Please let us know about any errors or omissions in this online help or in the
hardcopy Getting Started book, or our PDF documents. Send your e-mail to:
torrcf@ca.ibm.com

Fee Support

Developers on the VisualAge C++ for AIX Service and Support team handle
everything from simple how-to’s to complex technical problems. Solutions may
take the form of a brief explanation, a workaround, a fix to the current product, or
a fix to the next release.

http://www.ibm.com/support/ describes IBM Support Offerings on all platforms,
worldwide.

http://www.ibm.com/rs6000/support/ describes support offerings on the
RS/6000® platform, in your country. It also indicates whether your country
provides support electronically over the Internet in addition to telephone support.

http://www.lotus.com/passport describes the IBM and Lotus® Passport
Advantage™ contracting option.

The IBM Software Support Handbook, accessible from
http://www.ibm.com/software/support, also lists worldwide support contacts.

Phone numbers for information on Support Line offerings are:
v United States: 1-888-426-4343 (IBM Global Services), option 3 as of December

1999. Should this number change, IBM general information at 1-800-IBM-4YOU
(1-800-426-4968) can route you to the appropriate group.

v Canada: 1-800-465-9600, option 3 as of December 1999. Should this number
change, you can also contact IBM general information at 1-800-IBM-4YOU
(1-800-426-4968).

Please call 1-800-266-8720 in the U.S. and Canada for information on Passport
Advantage offerings.
v Elsewhere, please contact your local IBM office.

If you contact support, please have the following information available:
v The product name
v The product version
v The hardware configuration and software (product names and versions you are

using)
v What happened and what you were doing when the problem occurred

© Copyright IBM Corp. 1998, 2000 73

v Whether you tried to solve the problem and how
v The exact wording of any messages displayed

Consulting Services

VisualAge and WebSphere™ Product Affinity Services Group is a core group of
technical specialists from the IBM development labs that created the IBM
VisualAge and WebSphere products. With access to a network of IBM product area
experts, IBM and industry business partners, and some of the best resources in the
industry, we can put the optimal team in place to meet the challenge of absorbing
new technology. Our goal is to enable organizational success with VisualAge and
WebSphere — ensuring that our products are used effectively within your
development team.

For more information, visit http://www.ibm.com/software/ad/vaws-services/ or
contact the Product Affinity Services Team at:

AIM_SERVICES@us.ibm.com

74 Migration Guide

	Contents
	Notices
	Programming Interface Information
	Trademarks and Service Marks
	Industry Standards

	About This Book
	Chapter 1. Prepare to Migrate to Version 5.0
	Choosing the Right Compiler
	Features at a glance
	Recommendations based on code you have to maintain

	Chapter 2. Migrate to Incremental Compilation
	Create a Configuration File for Migration
	A. Creating an Empty Configuration File with the IDE andSmartGuides
	B. Copying an Existing Configuration File from the SamplesProvided with VisualAge C++

	Preparation for Grouping Source Files for Migration
	Create Source Group Directives for Migration
	Convert Compile and Link Options to Configuration Options
	Add Source Files to the Project for Migration
	Adding Source Files Using the IDE
	Adding a Source File by Editing the Configuration File
	Example: Configuration File with Source File Added
	Build Errors You May Encounter After Adding Source Files

	Promote Included System and User Header Files
	Add Another Target to your Project for Migration
	Migrate Other Commands
	Using the run Directive to Call Other Tools
	Syntax of the run Directive
	Example: run Directive
	Notes on the Example

	Arrange Options in Groups

	Chapter 3. Migrate from Version 4.0 to Version 5.0
	Combine Multiple Codestores in One Project
	Divide a Single-Codestore Project into Multiple Codestores

	Chapter 4. Migrate to Version 5.0 Batch Compilation
	Chapter 5. Troubleshooting References
	Common Errors when Migrating
	Errors Due to Changes in the C++ Language
	bool, true, and false Keywords
	Changes to Digraphs in the C++ Language

	Errors Due to Changes in Compiler Behavior
	Access-checking errors
	typedefs
	Overloading ambiguities
	Syntax errors with new

	Coding Adjustments for Orderless Programming
	Overload Resolution is Handled Differently
	Resolution to an Unexpected Declaration
	Solution
	Unexpected Results With Macro Source Files

	Common Template Problems
	Changes in Name Resolution
	Changes to friend Declarations
	Changes to the friend Declarator

	Common Errors due to Duplicate Symbols
	Solution

	Adjust for Using the IBM Open Class Library

	Chapter 6. Special Considerations for Migrating toIncremental Compilation
	Application Requires Multiple Targets
	Application Uses Meta Source Files
	Application Uses Meta Header Files
	Example: Meta Header Files

	Application Needs to Maintain Compatibility with a Batch Compiler
	Application Uses Both C and C++ Source

	Chapter 7. Migration Concepts
	Promoting Source Files to the Configuration File
	Macro Source Files
	Using Macros Which Expand to Different Values in DifferentSource Files

	Meta Source Files
	Considerations When Using C++ I/O
	Example

	Migration of Resource Files
	Resource Conversion Utilities for Cross-Platform Development

	Chapter 8. Other Migration References
	Options for Compatibility with Previous Versions of VisualAge C++
	Compile Options from Earlier Versions of VisualAge C++ andEquivalent Configuration Options (AIX)
	Link Options from Earlier Versions of VisualAge C++ (AIX)
	New Standard C++ Library Header Files
	The Language Support Library
	The Diagnostics Library
	The General Utilities Library
	The Standard String Templates
	Localization Classes and Templates
	The Containers, Iterators and Algorithms Libraries (theStandard Template Library)
	The Standard Numerics Library
	The Standard Input/Output Library

	Use the Standard Iostreams Library and the Compatibility IostreamsLibrary
	Use the Standard Iostreams Library with the IBM Open Class Library
	Makefile Rules Mapped to Configuration File Directives

	Contacting IBM

