
VisualAge® C++ Professional for AIX®

IBM® Open Class™: User Interface
Version 5.0

���

Edition Notice

This edition applies to Version 5.0 of IBM VisualAge C++ and to all subsequent releases and modifications until
otherwise indicated in new editions. Make sure you are using the correct edition for the level of the product.

© Copyright International Business Machines Corporation 1998, 2000. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Note!
Before using this information and the product it supports, be sure to read the general
information under “Notices” on page vii.

Contents

Notices vii
Programming Interface Information ix
Trademarks and Service Marks ix
Industry Standards x

About This Book. xi

Chapter 1. Windows 1
Window Relationships 2
Create a Frame Window 4
Change the Title Bar 6
Create an Information Area 9
Create a Message Box 11

Chapter 2. Styles 15
Add Styles 15

Chapter 3. Events and Event Handlers 19
Event and Event Handler Mechanism 23
Write an Event Handler 25
Extend Event Handling 27
Handle Mouse Events 33
Add Mouse Event Handling 36

Mouse Handler Example 40
File: mhsamp.cpp 40
File: mhsamp.h 42
File: mhsamp.hpp 43
File: mhsamp.rc 44

Set Time Intervals 44
Add Time Intervals 47
Monitor Text-Change Events. 49
Use Keyboard Accelerators 50
Handle Text-Change Events 52

Chapter 4. Menus 55
Add Menus to Your Application 57
Add a Menu Bar 59
Create a Pop-Up Menu 62
Create a Pop-Up Menu for a List Box. 65

Pop-Up Menu Example 69
File: popmenu.cpp 69
File: popmenu.h 72
File: popmenu.hpp 73
File: popmenu.rc. 74

Dynamically Modify a Menu with the ISubmenu
Class 75

Chapter 5. Use Cursor Classes 79

Chapter 6. Static Text Controls 81
Create a Static Text Control 81

Chapter 7. Entry Fields and Multiline
Edit (MLE) Fields 83
Create an Entry Field 83

Entry Field Example 87
File: entryf3.cpp 87
File: entryf3.h. 89
File: entryf3.hpp 90
File: entryf3.rc 91

Create an MLE 92

Chapter 8. Buttons 97
Create a Push Button 99
Create a Radio Button 103

Radio Button Example 107
File: radio.cpp 107
File: radio.h 110
File: radio.hpp 110
File: radio.rc 111

Create a Check Box 112
Check Box Example 114
File: checkbo1.cpp 114
File: checkbo1.h. 115
File: checkbo1.hpp 116
File: checkbo1.rc 117

Create a Three-State Check Box 117

Chapter 9. List Boxes 119
Create a List Box 119

List Box Example 123
File: listbox.cpp. 123
File: listbox.h 126
File: listbox.hpp 126
File: listbox.rc 127

Add or Delete a List Box Item 128

Chapter 10. Combination Boxes . . . 133
Create a Combination Box 133

Chapter 11. Sliders 135
Create a Slider Control 136

Slider Example 140
File: slider.cpp 140
File: slider.h 144
File: slider.hpp 144

Chapter 12. Spin Buttons 147
Create a Spin Button 147

Spin Button Example 150
File: spinbtn.cpp 150
File: spinbtn.h 152
File: spinbtn.hpp 153

Chapter 13. Canvas Controls. 155
Set Canvases 156

© Copyright IBM Corp. 1998, 2000 iii

Create a Set Canvas 157
Set Canvas Example 160
File: esetcv.cpp 160
File: esetcv.h 162
File: esetcv.hpp 162
File: esetcv.rc 163

Split Canvases 164
Create a Split Canvas. 165
Split Canvas Example 1 170
File: splitcan.cpp 170
File: splitcan.h 173
File: splitcan.hpp 173
File: splitcan.rc 175
Split Canvas Example 2 176
File: esplitcv.cpp 176
File: esplitcv.h 177
File: esplitcv.hpp 177
File: esplitcv.rc 178

Multicell Canvases 179
Create a Multicell Canvas 181
Multicell Canvas Example 1 184
File: mcc.cpp 184
File: mcc.h 186
File: mcc.hpp 187
Multicell Canvas Example 2 188
File: emcelcv.cpp 188
File: emcelcv.h 190
File: emcelcv.hpp 191
File: emcelcv.rc 192

View Ports 193
Create a View Port 193
View Port Example 196
File: vp1.cpp 196
File: vp1.h 198
File: vp1.hpp 198
File: vp1.rc 199

Drawing Canvases 200

Chapter 14. Notebooks 203
Use Notebooks 204
Create a Notebook. 208
Specify Notebook Styles 209
Add Pages to the Notebook 211
Remove Notebook Pages 213
Change Notebook Colors 214
Tab Controls. 214

Create a Tab Control 216
Create an OS/2 Warp 4.0 Style Notebook 219

Chapter 15. Containers 223
Create and Use Containers 225
Create Container Objects 225
Add and Remove Container Objects 227
Share Objects Among Containers 229
Filter Container Objects 230
Sort Objects in a Container 232
Access Container Objects Using an Object Cursor 233
Change Views in a Container 235
Define the Details View Using Container Columns 236
Create a Pop-Up Menu in a Container 239
Use the Windows Native Container Control . . . 240

Chapter 16. Toolbars 243
Create a Toolbar 245
Add a Toolbar 247
Create Toolbar Buttons 252

Chapter 17. Common Dialogs 261
Specify File Dialog Information 261
Create a File Dialog 263
Specify Font Dialog Information 266
Create a Font Dialog 267

Chapter 18. Fonts 271
Construct Fonts 271

Chapter 19. Help Information. 275
Create Help Information. 276
Add Fly-Over Help 282

Chapter 20. Clipboard 285
Add Clipboard Support 286
Sample: Add Clipboard Support 289

Chapter 21. Resources 297

Chapter 22. Client/Server Applications
and Dynamic Data Exchange. 303
Establishing DDE Conversations 304
The DDE Framework Design 306
Add DDE Client Support 307
Add DDE Server Support 309

Chapter 23. Direct Manipulation . . . 313
Use Default Direct Manipulation 316

Use Rendering Mechanisms and Formats . . . 320
Use Drag Item Types 323
Enable Direct Manipulation for an Entry Field
or MLE 324
Enable Direct Manipulation for a Container . . 325
Set and Query the Drag Operation 330
Set the Target Emphasis 331

Add Images to Drag Items 331

Chapter 24. Multimedia Devices . . . 335
Create Master Devices 338
Play Audio Compact Discs 340

Audio CD Example 348
File: samp5.cpp. 348
File: samp5.h 352
File: samp5.hpp 353

Create Audio Devices 354
Playing/Recording Waveform Example. . . . 365
File: samp8.cpp. 365
File: samp8.h 370
File: samp8.hpp 371
File: samp8.rc 372
Playing/Recording MIDI Example 373
File: samp6.cpp. 373
File: samp6.h 375
File: samp6.hpp 376

iv IBM Open Class: User Interface

File: samp6.rc 378
Create Video Devices 378
Add Animated Buttons and Circular Sliders . . . 385

Chapter 25. Bidirectional Language
Support 389
Set and Query Default Bidirectional Attributes . . 391
Assign Bidirectional Attributes to Individual
Windows 393

Chapter 26. Port and Convert
Applications 395
Convert Application Resources 395
Port Applications with Frame Windows 397
Use Native Window Controls and 3D Borders . . 398
Support Double-Byte Character Set and Multiple
Languages 399

Chapter 27. Work with the User
Interface Samples 401
Hello World Version 1: Create a Main Window . . 402
Hello World Version 2: Add Resource Files and
Frame Extensions 405
Hello World Version 3: Add Command Handlers
and Menu Bars 412
Hello World Version 4: Adding Dialogs and Push
Buttons 420
Hello World Version 5: Add Canvases, a List Box,
Native System Functions, and Help 433
Hello World Version 6: Adding a Font Dialog,
Pop-up Menus, Notebooks, and Graphics 443
Task and Samples Cross-Reference Table 445

Contents v

vi IBM Open Class: User Interface

Notices

Note to U.S. Government Users Restricted Rights -- use, duplication or disclosure
restricted by GSA ADP Schedule Contract with IBM Corp.

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION ″AS IS″
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1998, 2000 vii

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Lab Director
IBM Canada Ltd.
1150 Eglinton Avenue East
Toronto, Ontario M3C 1H7
Canada

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

® (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. ® Copyright IBM Corp. 1998, 2000. All rights reserved.

viii IBM Open Class: User Interface

Programming Interface Information
Programming interface information is intended to help you create application
software using this program.

General-use programming interface allow the customer to write application
software that obtain the services of this program’s tools.

However, this information may also contain diagnosis, modification, and tuning
information. Diagnosis, modification, and tuning information is provided to help
you debug your application software.

Warning: Do not use this diagnosis, modification, and tuning information as a
programming interface because it is subject to change.

Trademarks and Service Marks
The following terms are trademarks of the International Business Machines
Corporation in the United States, or other countries, or both:

AIX
AS/400
DB2
CICS
C Set ++
IBM
Network Station
Object Connection
OS/2
OS/390
OS/400
Open Class
Operating System/2
Operating System/400
PowerPC 403
PowerPC 601
PowerPC 603
PowerPC 604
Presentation Manager
RS/6000
S/390
SAA
Systems Application Architechture
TeamConnection
VisualAge
WebSphere
Workplace Shell

Lotus, Lotus Notes, and Domino are trademarks or registered trademarks of the
Lotus Development Corporation in the United States, or other countries, or both.

Tivoli Management Environment, TME 10, and Tivoli Module Designer are
trademarks of Tivoli Systems Inc. in the United States, or other countries, or both.

Encina and DCE Encina Lightweight Client are trademarks of Transarc Corporation
in the United States, or other countries, or both.

Notices ix

Microsoft, Win32, Windows, Windows NT, and the Windows logo are trademarks
or registered trademarks of Microsoft Corporation in the United States, or other
countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

UNIX is a registered trademark in the U.S. and other countries licensed exclusively
through X/Open Company Limited.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks or registered
trademarks of Intel Corporation in the United States, or other countries, or both.

C-bus is a registered trademark of Corollary, Inc.

PC Direct is a registered tradmark of Ziff Communicatoins Company and is used
by IBM Corporation under license

Other company, product, and service names, which may be denoted by a double
asterisk(**), may be trademarks or service marks of others.

Industry Standards
VisualAge C++ Professional for AIX, Version 5.0 supports the following standards:
v The C language is consistent with the International Standard C (ANSI/ISO-IEC

9899–1990 [1992]). This standard has officially replaced American National
standard for Information Systems-Programming Language C (X3.159–1989) and
is technically equivalent to the ANSI C standard. VisualAge C++ supports the
changes adopted into the C Standard by ISO/IEC 9899:1990/Amendment 1:1994.

v The IBM Systems Application Architecture (SAA) C Level 2 language definition.
v The C++ language is consistent with the International Standard for Information

Systems-Programming Language C++ (ISO/IEC 14882:1998).
v The ISO/IEC 9945–1:1990/IEEE POSIX 1003.-1990 standard.
v The X/Open Common Applications Environment Specifications, System

Interfaces and Headers, Issue 4.

x IBM Open Class: User Interface

About This Book

The information in this PDF document is also available in the online help.

To find this information, or any topics listed in this document as Related Concepts,
Related Tasks, or Related References, simply type the topic title into the search bar
in the top frame of your browser in the online help.

For some topics, the suggested references may already be contained in this
document. In such cases, there is a cross-reference to the page on which the related
topic appears.

© Copyright IBM Corp. 1998, 2000 xi

xii IBM Open Class: User Interface

Chapter 1. Windows

A window is a generic term for a rectangular area on the screen that behaves in a
well defined manner. All windows have basic properties (such as size, position,
boundaries, and visibility), and behavior (such as the ability to receive mouse or
keyboard input, or to paint when visible).

The IWindow class is the base class for all windows. This class lets you query and
set properties shared by all windows. However, you rarely need to create an
IWindow object. Instead, create objects of classes derived from IWindow to
represent specific types of windows, such as an IFrameWindow object to represent
a frame window. Create an IWindow object (for example, from a window handle)
only when the specific type of presentation system window is either unknown or
unimportant.

An IWindow object is designed to represent a Motif widget.

Frame Windows
A frame window provides the basic structure and support for the elements of an
application. You can create and manipulate frame windows with the
IFrameWindow class. The frame window provides support for basic components
and features such as the following:
v Title bar
v Minimize and maximize buttons
v Sizing border
v System menu and menu bar

The frame window also coordinates these basic elements with the client window.

You can associate a frame window with a set of resources. (Resources are
user-interface components, such as text strings, menu bars, icons, bitmaps, and
keyboard accelerator tables, that you define in a separate file.)

The client window contains application-specific material; it should be the reason
why your frame window exists in the first place. Thus, your application should
display or collect data from the user via the client window. The client window fills
the client area, the portion of the frame window not occupied by the basic frame
components or the frame extensions.

You can add frame extensions to the frame window. A frame extension is a
rectangular region that you can add to the outside edge of the client area of a
frame window. You can add controls into frame extensions. You can place a frame
extension left, right, above, or below the client area of a frame window. The
information area implemented by the IInfoArea class is an example of a frame
extension.

Presentation System
The presentation system is the windowing system for the operating system.

© Copyright IBM Corp. 1998, 2000 1

Desktop Window
The desktop window is the window that represents the entire screen. The
IWindow::desktopWindow() function returns an IWindow object that represents the
desktop window.

Controls
A control is a specialized window that provides a general-purpose interface, such
as buttons, entry fields, and list boxes.

The AIX platform uses the term widgets for controls.

An aggregate or a compound control is a window that is actually comprised of more
than one widget or control. The following are examples of aggregates:

v View port: consists of a horizontal scroll bar, vertical scroll bar, clipping
window, and a parent window for these controls.

v Combination box: consists of an entry field, a list box, and a parent
window for these controls that may draw the drop-down button.

Input Focus
The input focus determines which window receives all keyboard input. Only one
window at a time may have input focus. A window indicates that it has input
focus through a visual cue. For example, when an entry field has the input focus, it
displays an input cursor. When a push button has the input focus, it becomes
highlighted

The input focus does not determine which window receives mouse input. Instead,
the presentation system uses the position of the mouse pointer to determine the
window to send mouse input. First it checks whether the topmost window
underneath the pointer accepts mouse input. If the window does, it sends the
mouse message to that window. If not, it checks the window underneath that
window and continues to the desktop window until it finds a window that accepts
mouse input, and sends the mouse message there. Some controls, such as static
text on some platforms, ignore mouse input.

“Window Relationships”
“Chapter 3. Events and Event Handlers” on page 19
“Chapter 21. Resources” on page 297

“Create a Frame Window” on page 4
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Window Relationships
Window relationships define how windows interact with each other. There are two
kinds of relationships:
v Parent-child relationship
v Ownership

2 IBM Open Class: User Interface

Parent-Child Relationship
The parent-child relationship determines the visual relationship between windows on
the screen. The presentation system positions a child window relative to its parent
window.

The presentation system draws child windows on top of their parent window, but
the child windows cannot visually extend beyond the bounds of their parent
window. The parent window crops its child windows to fit within its boundaries.

Typically frame windows have the desktop window as their parent.

Frame windows that do not have the desktop as their parent are child frame
windows. The Open Class Library supports child frame windows only on OS/2®.
You specify the parent of a frame window when you construct the IFrameWindow
object. Creating a frame window without a parent window is equivalent to
creating it with the desktop window as its parent.

Windows that share the same parent window are sibling windows. The order the
IBM Open Class creates sibling windows is called the sibling order. By default, the
IBM Open Class creates new windows at the bottom of the sibling order. The
sibling order defines the following:
v The order of painting (from bottom to top)
v The order of keyboard movement with the Tab key (top to bottom)
v The window to receive mouse events (the one on top)

Ownership
Ownership defines a path for message processing within the presentation system. A
window always notifies its owner window of any significant events. For example, a
button notifies its owner whenever a user selects it. A window also passes
keyboard and mouse events that it does not process to its owner window for
possible processing.

Ownership also defines the path for inheriting colors and fonts. For example, if a
window doesn’t have a specific font assigned to it, it uses the font of its owner
window.

We recommend that you keep parent and owner windows the same.

You must create a window and its owner window on the same thread.

There are two kinds of frame windows depending on ownership:
v Primary windows: Frame windows that have no owner or are owned by the

desktop window.
v Secondary windows: Frame windows with an owner other than the desktop

window.

Between two frame windows, ownership defines the following behavior:
v Closing a frame window returns the input focus to its owner window.

Chapter 1. Windows 3

v Moving, minimizing, restoring, or closing a frame window causes the secondary
windows it owns to move, minimize, restore, or close.

You may specify the style IFrameWindow::noMoveWithOwner so that secondary
windows do not move with their owner.

v Frame windows always remain above their owners.

You generally use a secondary window for the following purposes:
v To display views of subcomponents of objects displayed in your main view. For

example, a list of properties and attributes of a file is a secondary window.
v To prompt the user for input as a result of selecting a menu choice. For example,

the file dialog that appears after selecting the menu choice Open is a secondary
window.

“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Create a Frame Window”
“Add Styles” on page 15
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Create a Frame Window
Use the IFrameWindow class to create a frame window. The default style of the
IFrameWindow class has a title bar, system menu, minimize button, maximize
button, and restze border. The default style adds an entry for the frame window to
the system window list.

In Motif, the default style of the IFrameWindow class has a title bar, window menu
button, minimize button, maximize button, and resize window border. The
window menu button on AIX is a system menu button on OS/2. The Open Class
Library uses the IFrameWindow::systemMenu style to create the window menu
button for AIX.

The following sample code creates a default frame window:
// A simple frame window example
#include <iframe.hpp>
#include <iapp.hpp>
#define MAIN_WINDOW 1
// Main Routine - application entry point
int main()
{

// Construct the frame window
IFrameWindow frame(“Basic Frame Window”,

MAIN_WINDOW,
IFrameWindow::defaultStyle());

frame.setFocus().show();
// Start event processing
IApplication::current().run();
return 0;

}

4 IBM Open Class: User Interface

The following figure shows the frame window on the Windows® platform created
using the preceding example:

The IFrameWindow class also provides several other styles. You can, for example,
associate an accelerator key table to the frame window or provide an icon to be
used when the window is minimized.

The following shows the components of a frame window created using the
IFrameWindow class with the default style and some added controls. This image is
from the Windows platform:

When you construct an IFrameWindow with a style of
IFrameWindow::minimizedIcon, IFrameWindow::accelerator, or
IFrameWindow::menuBar, resources corresponding to the style must be in the
resource library you use to construct the frame. This library is usually the default
user library, which you can use by using the following line of code:

IApplication::current().userResourceLibrary();

You can explicitly specify the resource library on the IFrameWindow constructor
by using the const IResourceId argument, giving an IResourceLibrary value.

Chapter 1. Windows 5

When you construct an IFrameWindow with a style of minimizedIcon, accelerator,
or menuBar, the corresponding resource defined with the IFrameWindow window
ID in the resource file is automatically loaded. If a required resource is not found,
an exception is thrown, and the frame window is not constructed.

When a frame window is minimized, the frame window hides and draws its
minimized icon. Sometimes other windows associated with the frame window are
drawn on top of its icon. This occurs when the windows are children of the frame
window but not the client window or frame extensions.

To suppress the drawing of child windows that are not frame extensions of the
client window when they are supposed to be minimized, add a handler to the
frame window that detects when the frame is minimized, and hides these
windows. The handler should make these windows visible when the frame is
restored.

The Open Class Library defers positioning and sizing components of a frame
window until the frame window shows. As a result, if you query the size and
position of the frame window’s client window or frame extensions, an accurate
value is not returned until the frame window is shown.

The IWindow::show or IFrameWindow::showModally member functions
automatically update the frame window.

You can force the frame window to update itself by calling the
IFrameWindow::update() member function.

“Chapter 1. Windows” on page 1
“Chapter 21. Resources” on page 297
“Chapter 3. Events and Event Handlers” on page 19

“Add Styles” on page 15
“Convert Application Resources” on page 395
“Write an Event Handler” on page 25
“Hello World Version 1: Create a Main Window” on page 402
“Hello World Version 3: Add Command Handlers and Menu Bars” on page 412
“Task and Samples Cross-Reference Table” on page 445

Change the Title Bar
The title bar is the area at the top of each frame window that contains a window
title.

6 IBM Open Class: User Interface

If you do not provide a window title, the Open Class Library sets the title to a
string loaded from the application’s resource library. The ID of the string in the
string table is the frame window’s ID.

In Motif, if you do not provide a window title, Open Class Library looks for a
string in the application’s resource file. If the Open Class Library cannot find a
string, the title defaults to the system-generated title (typically, the name of the
executable file).

You can specify the icon which displays when the application is minimized. Use
the minimizedIcon style when you create the frame window.

The following code, from Hello World version 3, shows you how to specify a
minimized icon and the window title when you create the frame window.
1. Define the title text and the minimized icon in the resource script file:

#include “ahellow3.h”
ICON WND_MAIN ahellow3.ico
STRINGTABLE

BEGIN
STR_HELLO, “Hello, World!!!”
WND_MAIN, “Hello World Sample - Version 3”

// ...

The above resource script file is for AIX or OS/2.

WND_MAIN is the frame window identifier. The frame window uses the window
identifier (windowId) passed on the constructor to load its icon, title, menu bar,
or accelerator table resources if these components are specified in the frame
window style.

2. Use the defaultStyle and minimizedIcon styles in the IFrameWindow
constructor. The following code comes from the ahellow3.cpp file:
int main()
{

// ...
AHelloWindow mainWindow (WND_MAIN);
mainWindow.setTextAlignment(AHelloWindow::left);
mainWindow.sizeTo(ISize(400,300));
mainWindow.setFocus();
mainWindow.show();
IApplication::current().run();
return 0;

}
// ...
AHelloWindow :: AHelloWindow(const unsigned long windowId)

:IFrameWindow(IFrameWindow::defaultStyle() |
IFrameWindow::minimizedIcon,
windowId)

,menuBar(windowId, this)
,statusLine(WND_STATUS,this,this)
,hello(WND_HELLO, this, this)
,infoArea(this)

Chapter 1. Windows 7

,commandHandler(this)
{

// ...
}

When the application creates the AHelloWindow object, it constructs the
IFrameWindow base class using the default style with a minimized icon,
ahellow3.ico, and “Hello World Sample - Version 3” as the title text. The frame
window determines the icon and title text based on the window ID and the
resource library.

To access or change your frame window’s title, use the IFrameWindow::titleText
and IFrameWindow::setTitleText member functions. You can also create an ITitle
object.

The ITitle Class
The ITitle class creates and updates the title bar area of your frame window. The
ITitle class consists of the following three components:
v Object text
v View text
v View number

When you construct a title, you must provide the object text. The other two
components are optional. The Open Class Library separates the object text and
view text with a hyphen (-). The library separates the view text and view number
with a colon (:), as in the following example:

OS/2 System - Icon View:2

Use ITitle if you want the Presentation Manager-compatible support for the object,
view, and view number. If you do not want this support, you can specify a title
using an IFrameWindow constructor or calling the IFrameWindow::setTitleText
function again.

ITitle does not create the title bar as a separate window on the Windows operating
system. The setAutoDeleteObject function (which deletes the object when the
window is deleted) does not work because no window is being deleted. Therefore,
do not use the setAutoDeleteObject function to delete a title bar. Instead, perform
your own delete for the objects that your application creates using the new
operator.

The title may exceed 60 bytes in length, but only the first 60 bytes appear in a
Window List entry. Use IFrameWindow::addToWindowList to add entries to the
window list.

An ITitle window is not a separate window owned by the application; it is created
and managed by the Window Manager. As a result, you cannot use
IWindow::setAutoDeleteObject to automatically delete ITitle objects. Instead
perform your own delete for the ITitle objects that your application creates using
operator new. Similarly, you cannot use IWindow::setAutoDestroyWindow.

8 IBM Open Class: User Interface

“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Hello World Version 3: Add Command Handlers and Menu Bars” on
page 412“Create a Frame Window” on page 4
“Create an Information Area”
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Create an Information Area
The information area is a small rectangular area that is usually located at the bottom
of a frame window. You can use the information area to display:
v A brief explanation of the state of an object
v Information about the completion of a process
v Information messages displayed with fly-over help

Use the IInfoArea class to create and manage the information area. Objects of
IInfoArea class provide a frame extension to show information about the menu
item where the cursor is positioned. The string displayed in the information area is
defined in a string table in the resource file.

The following sample uses the IInfoArea class to create the information area and
the text to display in it.
1. Define the menu bar and string table in a resource script file. The string table

contains strings of text, and each string is associated with a menu item. For
Windows, when you choose the menu item, the string related to that item
displays in the information area. The following is from the ahellow3.rc file.

The following is a sample OS/2 and AIX resource script file:
#include “ahellow3.h”
ICON WND_MAIN ahellow3.ico
STRINGTABLE

BEGIN
STR_HELLO, “Hello, World!!!”
WND_MAIN, “Hello World Sample - Version 3”
STR_INFO, “Use Alt-F4 to Close Window”
MI_ALIGNMENT, “Alignment Menu”
MI_CENTER, “Set Center Alignment”
MI_LEFT, “Set Left Alignment”
MI_RIGHT, “Set Right Alignment”
STR_CENTER, “Center Alignment”
STR_LEFT, “Left Alignment”
STR_RIGHT, “Right Alignment”

END
MENU WND_MAIN

BEGIN
SUBMENU “xAlignment”, MI_ALIGNMENT

BEGIN
MENUITEM “xLeft”, MI_LEFT

Chapter 1. Windows 9

MENUITEM “xCenter”, MI_CENTER
MENUITEM “xRight”, MI_RIGHT

END
END

The same resource file would appear as follows for a Windows application:
#include “ahellow3.h”
WND_MAIN ICON ahellow3.ico
STRINGTABLE

BEGIN
STR_HELLO, “Hello, World!!!”
WND_MAIN, “Hello World Sample - Version 3”
STR_INFO, “Use Alt-F4 to Close Window”
MI_ALIGNMENT, “Alignment Menu”
MI_CENTER, “Set Center Alignment”
MI_LEFT, “Set Left Alignment”
MI_RIGHT, “Set Right Alignment”
STR_CENTER, “Center Alignment”
STR_LEFT, “Left Alignment”
STR_RIGHT, “Right Alignment”

END
WND_MAIN MENUEX

BEGIN
POPUP “&Alignment”, MI_ALIGNMENT

BEGIN
MENUITEM “&Left”, MI_LEFT
MENUITEM “&Center”, MI_CENTER
MENUITEM “&Right”, MI_RIGHT

END
END

2. This code is from the ahellow3.hpp file. The highlighted lines add an
information area object to the AHelloWindow class.
class AHelloWindow : public IFrameWindow
{

public:
enum Alignment
{

left, center, right
};
AHelloWindow(const unsigned long windowId);
virtual

xAHelloWindow();
virtual AHelloWindow
&setTextAlignment(const Alignment alignment);

private:
IMenuBar

menuBar;
IStaticText

statusLine,
hello;

IInfoArea
infoArea;

ACommandHandler
commandHandler;

AHelloWindow
&operator= (const AHelloWindow&);

};

3. In the ahellow3.cpp file, construct the information area when AHelloWindow is
created as follows:
AHelloWindow :: AHelloWindow(const unsigned long windowId)

:IFrameWindow(IFrameWindow::defaultStyle() |
IFrameWindow::minimizedIcon,

10 IBM Open Class: User Interface

windowId)
,menuBar(windowId, this)
,statusLine(WND_STATUS,this,this)
,hello(WND_HELLO, this, this)
,infoArea(this)
,commandHandler(this)

{
setClient(&hello);
addExtension(&statusLine,

IFrameWindow::aboveClient,
IFont(&statusLine).maxCharHeight());

hello.setText(STR_HELLO);
infoArea.setDefaultText(STR_INFO);
commandHandler.handleEventsFor(this);
setTextAlignment(center);

}

“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Hello World Version 3: Add Command Handlers and Menu Bars” on page 412
“Create a Frame Window” on page 4
“Create Help Information” on page 276
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Create a Message Box
A message box is a frame window that an application uses to display a note,
caution, or warning to the user. For instance, an application can use a message box
to inform a user of a problem that the application encountered while performing a
task. The Open Class Library provides an IMessageBox class for displaying
messages in a message box.

You construct objects of the IMessageBox class by using an object of a class derived
from IWindow. The IWindow object becomes the owner of the new message box,
as follows:

IMessageBox messageBox(owner);

The following example shows you how to create a message box:
// Message box example
#include <iframe.hpp>
#include <imsgbox.hpp>
int about();
int main()
{

about();
return 0;

}
int about()
{

// Create instance of IMessageBox
IMessageBox msg(IWindow::desktopWindow());
// Create a title for IMessageBox
msg.setTitle(“Basic MsgBox”);
msg.show(“Error MsgBox”,

IMessageBox::abortRetryIgnoreButton |
IMessageBox::defButton1 |

Chapter 1. Windows 11

IMessageBox::errorIcon |
IMessageBox::moveable);

return true;
}

The following image from Windows shows a message box created by the
preceding example:

Creating a Message Window
The class IMessageWindow supports message IDs on a message box.
IMessageWindow is a customizable window for displaying simple to complex
messages in your application. An IMessageWindow can be made to look similar to
an IMessageBox using predefined settings, or can be customized by replacing or
adding to components on the message window. The default message window
contains an image in the upper left, message text in the center, a button area along
the bottom, and message ID text in the lower right. Through various mechanisms,
you can customize or replace any of these areas on the message window. In
contrast, IMessageBox does not provide the message ID text area and is not
customizable. The appearance of the message window is platform independent, so
it may look slightly different than the native controls supported by IMessageBox.

You can use IMessageWindow without customization. There are five predefined
message types in the EMessageType enumeration that you can pass on the
IMessageWindow constructor that give the message window a certain image and
certain buttons. Using one of these predefined types gives you a message window
that looks similar to an IMessageBox. However, IMessageWindow only provides
the most commonly used combinations for this simple use.

In addition, there are degrees of customization you can use with IMessageWindow.
The simplest customization is to create the message window with the
kUserDefinedMessage type, which indicates no image and no buttons, and add
your own image and buttons using setMessageImage and addButton, respectively.
With these functions you can specify a predefined image or button, or create your
own, and add them to the message window. This allows you to customize without
deriving from IMessageWindow. Any buttons you create and add to the message
window should be created with the parent window returned by buttonParent. If a
button is added without this parent, an exception is thrown. The buttons are added
left to right in the order that you call addButton. You can call addButton even if
you used a message type other than kUserDefinedMessage on the constructor, and
any buttons you add are placed to the right of the existing buttons. There is no
limit on the number of buttons you can add.

You can obtain a pointer to a predefined button you have added to the message
window by calling the button function and passing one of the EButton
enumerations. You can use the pointer returned to manipulate the appearance of
the button, for example, by changing the text. One reason you may want to change
the default buttons or add your own buttons to the message window is so you can

12 IBM Open Class: User Interface

provide translated text for them. The predefined button text is not translated into
all languages on whose platforms you may want to run your application.

Set the styles of buttons you add or change to obtain the desired behavior for your
message window. If you want a button to be the default, you must give it the
IPushButton::defaultButton style. Likewise, if you want a help button, you must
give it the IPushButton::help and IButton::noPointerFocus styles.

For further customization, you can derive from IMessageWindow and override one
or more functions to provide your own controls to be placed in the message
window. The message window allows you to provide controls for the image, the
message text, and the message ID by overriding createMessageImage(),
createMessageText(), and createMessageIdText(), respectively. You can provide any
IBitmapControl or derived class for the image, and any ITextControl or derived
class for the message text and message ID. The default image is an IIconControl,
and the default message text and message ID are IStaticText controls. Any control
you replace is positioned in the same place in the message window client area.
However, you define the characteristics of the control such as minimum size,
image, text, scrollability, or color.

Note that you can still add or replace buttons if you derive from IMessageWindow
by using IMessageWindow::addButton().

The most comprehensive way to customize IMessageWindow is to derive your
own class and replace the entire client area by overriding createClient. You must
use the deferClientCreation style for your override of createClient to be called. The
function is called when the message window is shown. Whatever you return from
this function is placed in the client area with no changes. You can obtain the
default image, message text, and message ID controls to place in your client area
by calling createMessageImage(), createMessageText(), or createMessageIdText().
The characteristics of the controls returned from these functions are dependent on
the message type indicated in the constructor and previous calls to
setMessageText(), setMessageImage(), and setMessageId(). To determine which
buttons to place in your client area or other characteristics you may want to add,
you can call messageType() to obtain the message type specified on the constructor.

Since IMessageWindow derives from IFrameWindow, you can use inherited
functions and styles to manage the message window. Use IFrameWindow::show()
or IFrameWindow::showModally() to display your message window. Use
IFrameWindow::systemModal to make your message window system modal. There
are many other frame window functions and styles you may want to apply to your
message window.

You must use an ICommandHandler to handle processing for any buttons you add
to your message window that are not listed in the EButton enumeration. By
default, the message window will dismiss itself when any predefined button
(except help) is clicked. The IDs for the predefined buttons provided by
IMessageWindow are listed in the EButton enumeration. For buttons you create
and add, you determine the action to be taken in your handler. If you display the
message window using showModally(), the ID of the button clicked is returned
from the call to that function.

Provide help for your message window just as you would any other frame
window.

Chapter 1. Windows 13

“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Create a Frame Window” on page 4
“Create an Information Area” on page 9
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

14 IBM Open Class: User Interface

Chapter 2. Styles

A style affects the appearance and behavior of a window. Each window class has
styles that are encapsulated in style objects.

Generic styles are defined in IWindow. Classes derived from IWindow can combine
their own styles with those of IWindow.

Each window class maintains its own default style object. You can access default
style objects using the static member function defaultStyle() and then set it using
the static member function setDefaultStyle(). Each window class also maintains a
style object called classDefaultStyle that corresponds to the initial setting of
defaultStyle().

Most window classes provide one or more constructors that accept a style object as
one parameter. You can only construct a style object from existing style objects.
These style objects are only used by window constructors. The style of a window
can subsequently be changed and queried using the window class member
functions. Also, styles which cannot change after a window has been created, in
the case of, no member function is provided to change the style.

“Chapter 1. Windows” on page 1

“Add Styles”
“Create a Frame Window” on page 4
“Task and Samples Cross-Reference Table” on page 445

Add Styles
The following sections describe how you can use bitwise operators with style
objects. For the sake of simplicity, the IComboBox class and its styles are used for
all examples. The IBitFlag class provides bitwise operators that you can use with
the styles of the Open Class Library just as if you were using them with numbers.

Copy Styles
The assignment operator (=) returns one style object that is set equal to the
specified style object. The value of the resulting object is equal to the value of the
operand object. For example:

IComboBox::Style myStyle = IComboBox::dropDownType;

Combine Styles
The bitwise OR (|) operator returns a style object that is a combination of two or
more style objects. The value of the resulting object is the bitwise OR of the value
of the two operand objects.

You can combine any existing style objects, such as myStyle1 and myStyle2 in the
following example, to create yet another style object. For example:

IComboBox::Style
myStyle3 = myStyle1 | myStyle2;

© Copyright IBM Corp. 1998, 2000 15

This example adds the tabStop style to the myStyle object:
IComboBox::Style myStyle = IComboBox::dropDownType;
myStyle |= IWindow::tabStop;

In many cases, you can combine styles of one class with those of another class.
Here, an IComboBox style is combined with an IWindow style. The documentation
for each class that has styles specifies whether other classes have compatible styles
that you can use when constructing objects for those classes.

Test Styles
The bitwise AND (&) operator returns an unsigned long integer that identifies if
there are any bits common to the operand style or attribute objects. Typically, you
use this operator to test whether a bitwise OR (|) operator has been used to
combine one style object with another. For example:

bool isADropDown = false;
if (myStyle1 & IComboBox::dropDownType)

isADropDown = true;

Negate Styles
The bitwise NOT (x) operator returns a negated style object. The value of the
resulting object is the bitwise NOT of the value of the operand object. For example:

IComboBox::Style::NegatedStyle
negatedStyle = xmyStyle;

This code returns an object named negatedStyle that negates the value of the
myStyle object.

The precedence of the AND operator (&) is greater than the OR operator (|). You
must be aware of operator precedence to avoid creating invalid styles that might
not be obvious.

If you do not want to consider operator precedence, specify the styles you want
instead of negating others from the default Open Class Library styles.

The following example creates an invalid style that the IViewPort constructor will
reject. This causes the following:
IViewPort::defaultStyle()

| IViewPort::alwaysHorizontalScrollBar
& xIViewPort::asNeededHorizontalScrollBar

to be evaluated as:
IViewPort::defaultStyle()

| (IViewPort::alwaysHorizontalScrollBar
& xIViewPort::asNeededHorizontalScrollBar)

as opposed to the following:
(IViewPort::defaultStyle()

| IViewPort::alwaysHorizontalScrollBar)
& xIViewPort::asNeededHorizontalScrollBar

Therefore, you must consider the order and the operator precedence when you
negate a style because the Open Class Library cannot change the order in which
operators are evaluated in the code statement.

Setting Window Styles
You can create a window with a specific style in the following ways:

16 IBM Open Class: User Interface

v Create a window using a constructor that accepts the style as a parameter. The
following three examples illustrate this method.
This example shows how to create an entry field control with a style that is a
combination of styles from IWindow and IEntryField:

IEntryField entryField(ID_EF1, parent, owner,
IRectangle(10, 10, 100, 20),
IWindow::visible |
IWindow::tabStop |
IWindow::group |
IEntryField::margin |
IEntryField::autoScroll);

Alternatively, you can explicitly construct the style object and pass it as a
parameter as follows:

IEntryField::Style efStyle = IWindow::visible |
IWindow::tabStop |
IWindow::group |
IEntryField::margin |
IEntryField::autoScroll ;

IEntryField entryField(ID_EF1, parent, owner,
IRectangle(10, 10, 100, 20),
efStyle);

You can also access the default style object using the static member function
defaultStyle. This simplifies the preceding example to the following:

IEntryField entryField(ID_EF1, parent, owner,
IRectangle(10, 10, 100, 20),
IEntryField::defaultStyle() |
IWindow::tabStop |
IWindow::group);

v Use the static member function setDefaultStyle to set the default style and then
construct the window. For example:

IEntryField::Style efStyle = IEntryField::defaultStyle() |
IWindow::tabStop |
IWindow::group;

IEntryField::setDefaultStyle(efStyle);
IEntryField entryField(ID_EF1, parent, owner,

IRectangle(10, 10, 100, 20));

v Create a window with the default style and change it using member functions of
the window. The example now becomes:

IEntryField entryField(ID_EF1, parent, owner,
IRectangle(10, 10, 100, 20));

// Member function of IWindow
entryField.enableGroup();
// Member function of IWindow
entryField.enableTabStop();
// Member function of IEntryField
entryField.enableAutoScroll();

“Chapter 2. Styles” on page 15
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Create a Frame Window” on page 4
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Chapter 2. Styles 17

18 IBM Open Class: User Interface

Chapter 3. Events and Event Handlers

The graphical user interfaces that the Open Class Library supports are event-driven.
A window can process a wide variety of events from many sources. Events can
include the following:
v Command Events: when a user selects a menu item, presses an accelerator key, or

selects a push button.
v Keyboard Events: from individual keystrokes, such as changing the contents of an

entry field.
v Mouse Events: when a user moves the mouse or presses and releases a mouse

button.
v Paint Events: when a portion of a window becomes invalidated, so that a visible

part of the window cannot accurately display itself. This can happen when the
user covers and uncovers a window, or when the application itself explicitly
invalidates the window.

v Resizing Events: when the user or application changes the size of a window.

You can change the behavior of a window by changing how it processes an event.
With the Open Class Library, you do this by adding an event handler to the
window.

Event Handlers
The Open Class Library represents events with objects derived from IEvent. You
process events routed to a window with event handler objects. Therefore, you can
add customized behavior for a window by attaching your own event handler to it.
You attach an event handler to a window by passing the window to the handler’s
handleEventsFor function.

In addition, you can reuse your handler for other windows. For example, you can
reuse a handler that verifies telephone numbers wherever an entry field accepts
telephone numbers. You can also attach different handlers to a window.

The following table describes various event handler classes you can use to
customize the behavior of your windows:

Class Description

ICommandHandler Processes command events, such as
displaying a file dialog window when a user
selects Open from a menu bar.

IKeyboardHandler Processes the individual keystrokes from a
user, such as verifying a telephone number
entered into an entry field. You would not
use this class for keys that relate to
command processing, such as accelerator
keys, or keys that the operating system itself
uses, such as the F1 key to request help.

IMouseHandler Adds additional mouse functionality that the
operating system does not provide.

IPaintHandler Specializes the processing of a paint event,
such as painting your client window with
simple 2D graphics.

© Copyright IBM Corp. 1998, 2000 19

Class Description

IResizeHandler Customizes the behavior of your window
when you resize your window. For example,
you can reposition and resize the
components of a window when it is resized,
or change the size of the font it uses.

Processing Events
Each handler class has one or more virtual functions that process events. To use an
event handler, you create a class derived from a handler class, then override the
virtual functions to implement the behavior you want.

Your virtual function should either return a value of false to indicate that it has not
processed the event, or true to indicate that no additional processing needs to
occur for the event. Returning false allows other handlers attached to the window
to be called to process the event. Handlers are called in the reverse order in which
they are attached. Therefore the order in which you attach handlers can cause a
handler to not receive events.

If none of the handlers attached to the window process the event, the window
passes the event on for default processing by either Open Class Library or the
presentation system. This could cause the event to be passed to the owner window
for it to process.

All handler classes contain a dispatchHandlerEvent function to determine whether
the handler needs to process an event, or return it unprocessed. If an event needs
processing, the dispatchHandlerEvent function creates the appropriate event object
and calls the appropriate virtual function to process the event.

The IEvent class acts as the base class for more specialized event classes. It
provides general member functions to extract the message ID and message
parameters. The IEvent derived classes, such as ICommandEvent, generally add
more specialized functions for extracting information specific to that type of event.
The IEvent class also provides a member function, setResult, for those events that
require a value to be returned.

The following diagram describes how the Hello World version 5 sample handles
the event that occurs when a user selects the Center command from the menu bar:

20 IBM Open Class: User Interface

The main window class, mainWindow, handles two kinds of events:
v Command events that result from the user selecting the Left, Center, Right, or

Text menu items
v Help events that result from the user selecting the General help, Keys help or

Help index menu items

A class derived from ICommandHandler called ACommandHandler handles the
command events. A class derived from IHelpHandler called AHelpHandler handles
the help events. The following describes the above diagram in further detail:

Chapter 3. Events and Event Handlers 21

1. The mainWindow constructor creates an ACommandHandler object called
commandHandler. The mainWindow constructor attaches this command handler by
calling the handleEventsFor function:

commandHandler.handleEventsFor(this);

2. The mainWindow constructor creates and attaches an AHelpHandler object called
helpHandler:

helpHandler.handleEventsFor(this);

3. The user selects the Center menu item. The ID of this command is MI_CENTER.
This ID has been defined in the ahellow5.h header file:
#define MI_ALIGNMENT 0x1500
#define MI_CENTER 0x1501
#define MI_LEFT 0x1502
#define MI_RIGHT 0x1503
#define MI_EDIT 0x1504
#define MI_TEXT 0x1505
#define MI_HELP 0x1510

The ahellow5.rc file resource script file maps this ID onto the menu as follows:
WND_MAIN MENUEX

BEGIN
POPUP “&Edit” , MI_EDIT

BEGIN
POPUP “&Alignment” , MI_ALIGNMENT

BEGIN
MENUITEM “&Left\tF7” , MI_LEFT
MENUITEM “&Center\tF8” , MI_CENTER
MENUITEM “&Right\tF9” , MI_RIGHT

END
MENUITEM “&Text...” , MI_TEXT

END
POPUP “&Help” , MI_HELP , MFT_RIGHTJUSTIFY

BEGIN
MENUITEM “&General help...” , SC_HELPEXTENDED /*MIS_SYSCOMMAND*/
MENUITEM “&Keys help...” , SC_HELPKEYS /*MIS_SYSCOMMAND*/
MENUITEM “Help &index...” , SC_HELPINDEX /*MIS_SYSCOMMAND*/

END
END

This extract is from a Windows resource script file.

The IBM Open Class creates an IEvent object to represent this event.
4. The IBM Open Class calls the IWindow::dispatch command so that the event

handlers attached to mainWindow can process the event.
5. Since helpHandler was attached last, it gets to process the event first. The help

handler processes the event object by calling its dispatchHandlerEvent function.
Since the event is a command event and not a help event, the
dispatchHandlerEvent function returns false. A false value indicates that it did
not process the event and the next event handler should process the event.

6. The command handler commandHandler processes the event object by calling its
dispatchHandlerEvent function. Since the event object is a command event, the
dispatchHandlerEvent creates an ICommandEvent object from the event object.
The processes this ICommandEvent object by calling its command virtual
function ACommandHandler::command.

7. The Hello World version 5 sample overrides the command virtual function as
follows:

22 IBM Open Class: User Interface

bool
ACommandHandler :: command(ICommandEvent & cmdEvent)

{
bool eventProcessed(true);
switch (cmdEvent.commandId()) {

case MI_CENTER:
frame->setTextAlignment(AHelloWindow::center);
break;

case MI_LEFT:
frame->setTextAlignment(AHelloWindow::left);
break;

case MI_RIGHT:
frame->setTextAlignment(AHelloWindow::right);
break;

case MI_TEXT:
frame->editText();
break;

default:
eventProcessed=false;

}

return(eventProcessed);
}

To obtain the ID of the command event you call the
ICommandEvent::commandId function. The command virtual function indicates
that it has processed the event by returning true. If the command virtual
function returns true, no other processing occurs for the event.

8. If a handler’s dispatchEventsFor function or its associated virtual function (such
as ICommandHandler::command) returns false, the event object is passed to the
dispatchHandlerEvent function of the next handler attached to the window. If
no handlers process the event, the event object is passed to the window’s
defaultProcedure function for processing.

“Chapter 1. Windows” on page 1
“Event and Event Handler Mechanism”

“Create a Frame Window” on page 4
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Event and Event Handler Mechanism
Encapsulation of User Interface Architectures
The Open Class Library uses events and event handlers to encapsulate and hide
the message architectures of Windows, OS/2 Presentation Manager® (PM) and
Motif in an object-oriented way.

You can either post or send a message. When a message is sent (sendEvent), the
sender is blocked until the receiver processes the message and returns. If the
sender and receiver are on the same thread, a direct function call is made to the
receiver. If the sender and receiver are on different threads, the message is placed
on a private area of the receiver’s message queue. In either case, the sender is
blocked until the receiver processes the message and returns.

When a message is posted, the message is placed on the receiver’s message queue.
The poster’s thread then continues without waiting for a reply.

Chapter 3. Events and Event Handlers 23

A thread switch occurs on each sent message. Continuously posting messages to
another thread is less expensive than sending them.

Notifiers and Observers
The notification and observer mechanism is not an extension of the event and
handler mechanism. They are designed for two different purposes. IBM Open
Class uses handlers and event objects to provide a platform independent
abstraction of the underlying operating system UI events and event processing.

A handler allows you to watch for certain events, perform some work in response
to the event before passing it on, or even prevent it from being passed on to other
handlers (including the control’s window procedure). Notifications and observers
are not related to the underlying operating system events and event processing.
They are related to the interfaces of the IBM Open Class classes.

Multiple observers can say they are interested in knowing when certain aspects of
an IBM Open Class object change or some event occurs. This is different than
events and handlers in the sense that as an observer, you are notified when the
aspect you are observing changes or occurs, but so are all the other observers
watching that object. As an observer, you cannot stop notification from proceeding.

Events and event handling are specific to user interface objects. A non-user
interface object can be a notifier and/or an observer.

The IBM Open Class objects generate notifications themselves in their member
functions (for example, this occurs at the C++ object level not the presentation
system control level). Since IWindow derives from INotifier, all controls know how
to notify observers from any member function that does something an observer
might be interested in knowing.

Valid Message IDs for Events
The Open Class Library reserves message IDs beginning at 0xFE00. If you use the
Open Class Library, define application-specific messages and events only in the
range of WM_USER through 0xFDFF.

WM_USER has a value of 0x0400. The Windows operating system defines
messages above the WM_USER range. Refer to your Windows documentation to
ensure that you are not conflicting with these messages.

WM_USER has a value of 0x1000.

There is no WM_USER on Motif so you have to stay below 0xFE00.

Tips When Using Event Handlers
When you are within a handler member function, do not delete the IWindow
object to which the handler is attached. This will cause the Open Class Library to
throw an exception.

The order in which you attach handlers can cause a handler to not receive events
because handlers are called in the reverse order that they are attached.

24 IBM Open Class: User Interface

Ensure that handlers return from virtual functions as quickly as possible to avoid
locking up the system by delaying the message processing.

“Chapter 3. Events and Event Handlers” on page 19

“Write an Event Handler”
“Extend Event Handling” on page 27
“Task and Samples Cross-Reference Table” on page 445

Write an Event Handler
In general, writing an event handler can be divided into the following steps:
1. Determine which handler class processes the event.
2. Create a class derived from that handler class and override the event-handling

functions.
3. Create an instance of your derived class.
4. Attach event handlers to the window.
5. Stop handling events for the window.

The Hello World application has several event handlers. The following example
illustrates how to use the above steps to process user menu selections. The code
shown is from Hello World version 3.
1. Determine which handler class processes the event.

When you select a menu item, an ICommandEvent is generated. The handler
class for this type of event is ICommandHandler.

2. Create a class derived from that handler class and override the event-handling
functions.
The Hello World application creates a new class called ACommandHandler that is
derived from the ICommandHandler class. The virtual function,
ICommandHandler::command processes command events. The class
ACommandHandler overrides this function to provide its own command event
handling.
The following sample, taken from the ahellow3.hpp, file, shows the class
declaration of ACommandHandler:
class ACommandHandler : public ICommandHandler
{

public:
ACommandHandler(AHelloWindow *helloFrame);
virtual
xACommandHandler() { };

protected:
virtual bool

command(ICommandEvent& cmdEvent);
private:

AHelloWindow
*frame;

};

The public constructor and private data member frame save a pointer to the
frame window for which commands will be processed.

The ACommandHandler command function provides command processing for
AHelloWindow class objects. The definition of the command function is taken

Chapter 3. Events and Event Handlers 25

from ahellow3.cpp. The ID of the menu item is extracted from the command
event object using the commandId member function, as follows:
bool ACommandHandler :: command(ICommandEvent & cmdEvent)
{

bool eventProcessed(true);
switch (cmdEvent.commandId())
{

case MI_CENTER:
frame->setTextAlignment(AHelloWindow::center);
break;

case MI_LEFT:
frame->setTextAlignment(AHelloWindow::left);
break;

case MI_RIGHT:
frame->setTextAlignment(AHelloWindow::right);
break;

default:
eventProcessed=false;

}
return(eventProcessed);

}

3. Create an instance of your derived class.
Define a data member from your new handler class in your application
window. The following code comes from the ahellow3.hpp file:

ACommandHandler commandHandler;

Construct the ACommandHandler object in the initializer of the constructor for the
application window. This is shown in the ahellow3.cpp file:
AHelloWindow :: AHelloWindow(unsigned long windowId)

: IFrameWindow(IFrameWindow::defaultStyle() |
IFrameWindow::minimizedIcon,
windowId)

,menuBar(WND_MAIN, this)
,statusLine(WND_STATUS, this, this)
,hello(WND_HELLO, this, this)
,infoArea(this)
,commandHandler(this)

4. Attach event handlers to the window.
The base class IHandler provides a member function handleEventsFor to attach
a handler to a window. In the Hello World application, ahellow3.cpp, the
ACommandHandler begins processing command events for the AHelloWindow in its
constructor with the following statement:

commandHandler.handleEventsFor(this);

5. Stop handling events for the window.
The base class IHandler provides a member function stopHandlingEventsFor to
stop event processing for the window. In the Hello World application,
ahellow3.cpp, the ACommandHandler stops processing command events for the
AHelloWindow in its destructor with the following statement:

commandHandler.stopHandlingEventsFor(this);

“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Hello World Version 3: Add Command Handlers and Menu Bars” on page 412
“Task and Samples Cross-Reference Table” on page 445

26 IBM Open Class: User Interface

Extend Event Handling
Write Handlers
The IBM Open Class provides handler classes for common operating system
messages. However, you may need to process messages for which there are no
predefined handler classes. The IHandler class is the base class for handlers. All
event handlers are derived from this class.

The Create Your Own Handler Sample shows a way to provide a new handler
class derived from IHandler. The sample uses timer functions to implement a timer
event handler.

To write your own handler class you generally follow these steps:
1. Derive your class from IHandler.
2. Optionally, override the handleEventsFor member function that you inherit

from IHandler.
3. Override your dispatchHandlerEvent function you inherit from IHandler to call

an event processing function.
4. Define the event processing function of your handler class.
5. Optionally, override the stopHandlingEventsFor function you inherit from

IHandler.

System functions vary by operating system. If you need to call system-specific
APIs you can code them within #ifdef preprocessor statements. This technique
allows you to implement a function in different ways on different platforms within
the same source file. See the topic Create Cross-Platform Applications for more
information about using #ifdef statements.

You can find the Create Your Own Handler Sample in the samples/ioc/ownhdr
directory:
1. Derive your class from IHandler.

The sample defines an ATimerHandler class that derives from IHandler. The
class defines a virtual function tick that will process timer events received at
one second intervals. The following code is from the timehdr.hpp file:
class ATimeHandler : public IHandler
{

typedef IHandler
Inherited;

public:
ATimeHandler() : timerId(0) { }
virtual xATimeHandler() { }
virtual ATimeHandler

&handleEventsFor(IWindow *window),
&stopHandlingEventsFor(IWindow *window);

protected:
virtual bool

dispatchHandlerEvent(IEvent& event);
virtual bool

tick(IEvent& event);
private:

unsigned long timerId;
};

The sample defines the following type definition as a convenient way to
reference your base class, in this case, IHandler:

typedef IHandler Inherited;

2. Override the handleEventsFor member function that you inherit from IHandler.

Chapter 3. Events and Event Handlers 27

The function ATimeHandler::handleEventsFor starts a system timer that
measures an interval of one second. The following code is from timehdr.cpp:
ATimeHandler &ATimeHandler :: handleEventsFor(IWindow *window)
{
#ifdef IC_MOTIF

timerId = XtAppAddTimeOut (
XtWidgetToApplicationContext ((Widget)window->handle()),
TIME_INTERVAL,
(XtTimerCallbackProc) postATimeHandlerEvent,
window);

#endif
#ifdef IC_PM

timerId = TIMER_ID;
WinStartTimer(IThread::current().anchorBlock(),

window->handle(), timerId, TIME_INTERVAL);
#endif
#ifdef IC_WIN

timerId = TIMER_ID;
SetTimer(window->handle(), timerId, TIME_INTERVAL, NULL);

#endif
Inherited::handleEventsFor(window);
return (*this);

}

The ATimeHandler::handleEventsFor function calls IHandler::handleEventsFor
to complete the starting of the handler. The sample used a type definition to
replace the class name IHandler with the name Inherited.

Once the timer measures its defined time interval (in this case, one second) it
stops. After measuring the time interval, it calls the callback function
postATimeHandlerEvent. You must define this callback function. See Callback
Functions later on this page for more information. The callback function posts a
timer event to the window and starts another timer.

The Windows and OS/2 timers continue to measure a given time interval (in
this case, one second) until you stop the timer. After measuring the time
interval, the timer posts a WM_TIMER event to the window you specified
when you started the timer.

3. Override your dispatchHandlerEvent function you inherited from IHandler.
The ATimeHandler::dispatchHandlerEvent checks to see if the IEvent object is
an timer event; it checks whether the ID of the IEvent object is WM_TIMER. If
the IEvent object is a timer event, it calls the tick function to process the event.
The following code is from timehdr.cpp:
bool ATimeHandler :: dispatchHandlerEvent(IEvent& event)
{

bool eventProcessed(false);
if ((event.eventId() == WM_TIMER) && (event.parameter1() == timerId))
{

#ifdef IC_MOTIF
timerId = event.parameter2();

#endif
eventProcessed = tick(event);
}
return (eventProcessed);

}

28 IBM Open Class: User Interface

4. Define the event processing function of your handler class.
Normally, the event processing function of a general handler class does nothing
but return false. You can then create specialized classes derived from the
general class where you can code implementations appropriate for specific
windows. The following function, in the timehdr.cpp file, is the default timer
tick handling function that inheriting classes should override:
bool ATimeHandler :: tick(IEvent& event)
{

return (false);
}

The sample derives a class from ATimeHandler called MyTimeHandler. The
sample then overrides the tick function to set the contents of a static text
control to the current time. The following code is from ownhdr.cpp:
bool

MyTimeHandler::tick(IEvent& event)
{

pText->setText(ITime().asString());
return false;

}

5. Override the stopHandlingEventsFor function you inherited from IHandler.
The ATimeHandler::stopHandlingEventsFor function frees all timer resources by
stopping or removing the timer, depending on the platform. The following code
comes from the timehdr.cpp file:
ATimeHandler

&ATimeHandler::stopHandlingEventsFor(IWindow *window)
{

#ifdef IC_MOTIF
XtRemoveTimeOut (timerId);
timerId = 0;

#endif
#ifdef IC_PM

if (window->isValid())
WinStopTimer(IThread::current().anchorBlock(),

window->handle(), timerId);
#endif
#ifdef IC_WIN

if (window->isValid())
KillTimer(window->handle(), timerId);

#endif
Inherited::stopHandlingEventsFor(window);
return (*this);

}

Refer to the Create Your Own Handler sample application to see how to derive
from ATimeHandler to provide a ticking clock. You can find this sample in the
samples/ioc/ownhdr directory.

The following image, from Windows, was generated from this sample:

Chapter 3. Events and Event Handlers 29

Callback Functions

The system timer function on AIX, XtAppAddTimeOut, stops after it measures its
specified time interval. After it measures the time interval it calls a callback
function. The sample uses the callback function to create new timers so that the
sample can measure seconds on a continual basis. The following is from the
ATimeHandler::handleEventsFor function that was shown earlier:
ATimeHandler &ATimeHandler :: handleEventsFor(IWindow *window)
{
#ifdef IC_MOTIF

timerId = XtAppAddTimeOut (
XtWidgetToApplicationContext ((Widget)window->handle()),
TIME_INTERVAL,
(XtTimerCallbackProc) postATimeHandlerEvent,
window);

#endif
// ...
Inherited::handleEventsFor(window);
return (*this);

}

The XtAppAddTimeOut call takes the callback function, postATimeHandlerEvent, as
one of its arguments. The return value of XtAppAddTimeOut identifies that timer
that it created.

The sample uses the callback function to post a timer event. The following
definition of postATimeHandlerEvent is from the timehdr.cpp file:
#ifdef IC_MOTIF
extern void _System postATimeHandlerEvent (IWindow * window,

XtIntervalId *timerUp)
{

if (window->isValid())
{

IEventParameter2 newTimer = XtAppAddTimeOut (
XtWidgetToApplicationContext((Widget)window->handle()),
TIME_INTERVAL,
(XtTimerCallbackProc)postATimeHandlerEvent,
window);

window->postEvent (WM_TIMER, IEventParameter1(*timerUp), newTimer);
}

}
#endif

30 IBM Open Class: User Interface

The call to XtAppAddTimeOut is the same as the one in the
ATimeHandler::handleEventsFor function.

You can store data in IEvent objects. An IEvent object can hold two parameters of
type IEventData. To access these parameters you call IEvent::parameter1 and
IEvent::parameter2. To create objects of these types use the constructors of
IEventParameter1 and IEventParameter2, respectively.

The above call to IWindow::postEvent implicitly creates an event object with two
parameters: the timer that has just expired (timerUp) and the new timer (newTimer)
created by XtAppAddTimeOut. This event object will be processed by the
ATimeHandler::dispatchHandlerEvent function. The definition of this function is
from timehdr.cpp:
bool ATimeHandler :: dispatchHandlerEvent(IEvent& event)
{

bool eventProcessed(false);
if ((event.eventId() == WM_TIMER) && (event.parameter1() == timerId))
{

#ifdef IC_MOTIF
timerId = event.parameter2();

#endif
eventProcessed = tick(event);

}
return (eventProcessed);

}

The ATimeHandler::dispatchHandlerEvent first checks to see whether the event
object is a timer event. If it is, it checks to see if the first parameter of the event
object is equal to timerId. This second check determines if the event object
represents the event posted right after the last timer expired. If this second check is
true, it sets timerId to the value of the event object’s second parameter (the timer
that has been newly created). This ensures that the
ATimeHandler::dispatchHandlerEvent function will process the timer event that the
callback function posts after the new timer expires.

Add Event Classes
To prevent ATimeHandler users from having to understand how information is
encoded in the two message parameters inside the event, derive an event class
from IEvent to encapsulate this information. The following statements show an
example of how to do this:
class ATimerEvent : public IEvent
{
public:

ATimerEvent(IEvent &evt) : IEvent(evt) {}
unsigned long timerNumber() const
{

return parameter1().asUnsignedLong();
}

#ifdef IC_MOTIF
unsigned long nextTimerNumber() const
{

return parameter2().asUnsignedLong();
}

#endif
};

You can only construct objects of this class from an instance of IEvent. Because of
the small amount of code required, the example defines the code inline.

Chapter 3. Events and Event Handlers 31

To use the new class, change the dispatchHandlerEvent member function to create
an instance of ATimerEvent. Pass this event object to the tick function. Also,
change the ATimeHandler::tick member function to accept an ATimerEvent object
as a parameter:
bool ATimeHandler :: dispatchHandlerEvent(IEvent& event)
{

// Assume event will not be processed
bool eventProcessed(false);
if (event.eventId() == WM_TIMER)
{

ATimerEvent timerEvent(event);
if (timerId == timerEvent.timerNumber())
{

// This is the timer we started.
#ifdef IC_MOTIF

// Save the ID for the next timer event.
timerId = timerEvent.nextTimerNumber();

#endif
eventProcessed = this->tick(timerEvent);
if (eventProcessed)
{

// Copy the event result.
event.setResult(timerEvent.result());

}
}

}
return (eventProcessed);

}
bool ATimeHandler :: tick(ATimerEvent& event)
{

// The timer event is not processed
return (false);

}

The two classes now completely encapsulate timer messages. Users of the classes
do not need to know which messages are generated or how the information is
encoded in the message parameters.

Restrict Window Classes from Specific Handlers
You can restrict the window classes to which a handler can be attached. The
following steps show you how to restrict the attachment of the MyTimeHandler class
to the ITextControl class and its derived classes.
1. Write the class declaration following this example:

class MyTimeHandler : public ATimeHandler
{

public:
MyTimeHandler();
virtual MyTimeHandler

&handleEventsFor (ITextControl* textWindow),
&stopHandlingEventsFor (ITextControl*

textWindow);
protected:

virtual bool
tick(ATimerEvent& event);

private:
// Make these functions private
// so that an application
// cannot call them
virtual MyTimeHandler

&handleEventsFor (IWindow* window)
{

return *this;
}

32 IBM Open Class: User Interface

virtual MyTimeHandler
&stopHandlingEventsFor (IWindow* window)
{

return *this;
}

};

2. Override the handleEventsFor member function to accept only ITextControl
objects, as shown in the following example:
MyTimeHandler

&MyTimeHandler::handleEventsFor(ITextControl* textWindow)
{

this->ATimeHandler::handleEventsFor((IWindow*) textWindow);
return *this;

}

3. Override stopHandlingEventsFor member function to accept only ITextControl
objects. For example:
MyTimeHandler

&MyTimeHandler::stopHandlingEventsFor(ITextControl* textWindow)
{

this->ATimeHandler::stopHandlingEventsFor((IWindow*) textWindow);
return *this;

}

The advantage of permitting these functions to accept only ITextControl objects is
that from within the tick function you can safely cast the value returned by
IEvent::dispatchingWindow from an IWindow* to an ITextControl*, since the
handler can only be attached to ITextControl objects. This means that
MyTimeHandler::tick could be implemented as follows:
bool MyTimeHandler::tick (ATimerEvent& event)
{

ITextControl
textControl = (ITextControl) event.dispatchingWindow();

textControl->setText(ITime().asString());
return false;

}

“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

Create Your Own Handler Sample
Create Cross-Platform Applications
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Handle Mouse Events
Pointer devices give users the ability to perform actions directly. The Open Class
Library offers classes to handle the mouse pointer.

You can use IMouseHandler to process a variety of mouse events. These events
include button presses and releases, double-clicks, multiple button presses, and
mouse moves. You can also query keyboard state information at the time a mouse
event is generated.

Chapter 3. Events and Event Handlers 33

You do not need to use IMouseHandler for mouse events that the operating system
already supports, such as the resizing of a frame window by dragging the sizing
border, or the selection of a button control by a mouse click. The following table
describes some mouse events and the handler you should use instead of
IMouseHandler:

Mouse Event Recommended Handler

Click on a button control ICommandHandler

Click on a menu bar item ICommandHandler

Click on a notebook or tab control ICommandHandler

Click or drag a scroll bar The IViewPort class provides automatic
event handling for your scroll bars. If you
want to customize the behavior of your
scroll bars, then use IScrollHandler

Display a pop-up menu IMenuHandler

Drag and drop (direct manipulation) IDMSourceHandler, IDMTargetHandler

Begin by creating an IMouseHandler object and then attach it to any kind of
window (for example, IMultiLineEdit or ISetCanvas). Although the window that
the mouse is over receives a mouse event first, events are sometimes passed on for
additional processing to their owner windows. A mouse event continues to travel
up the owner window chain until either a handler stops it or the event is
processed by the window itself. The mouse handler must return true to stop any
additional processing of a mouse event.

When an IMouseHandler object receives a mouse event, it creates either an
IMouseEvent, an IMouseClickEvent, or an IMousePointerEvent and routes it to a
mouse handler virtual function. For the cases where mouse movement is involved
(mouseMoved, mouseEnter, mouseLeave, mousePointerChange), whether and how
often IMouseHandler calls its virtual functions is determined by the styles you
pass to the IMouseHandler constructor. The mouse handler virtual functions are as
follows:

Function Purpose

mouseClicked Processes a mouse click event.

mouseEnter Processes when the mouse pointer is moved
to enter a window. IMouseHandler does not
call this function for a given window again
until the mouse first moves into another
window, and then back into the given
window.

mouseLeave Processes when the mouse pointer is moved
to leave a window. IMouseHandler does not
call this function for a given window again
until the mouse first moves into the
window, and then moves back out.

mouseMoved Processes a mouse move event.

mousePointerChange Changes the pointer when the mouse is over
the handled window. If you need to change
the mouse pointer for a frame window and
all its children, use
IWindow::setMousePointer.

34 IBM Open Class: User Interface

On a two-button mouse, button1 is the left mouse button on a right-handed mouse
and the right button on a left-handed mouse. Button2 is the right mouse button on
a right-handed mouse and the left button on a left-handed mouse.

The IMouseEvent defines the following virtual functions:

Function Purpose

mousePosition Returns the position of the mouse, relative
to the window
handling the event.

isAltKeyDown Returns true if the Alt or menu key is down
when the mouse is moved.

isCtrlKeyDown Returns true if the Ctrl key is down when
the mouse is moved.

isShiftKeyDown Returns true if the Shift key is down when
the mouse is moved.

windowUnderPointer Returns the handle of the window that is
under the mouse pointer.

Whenever a mouse button’s state changes, the IMouseHandler calls its
mouseClicked function. The IMouseClickEvent object identifies the button, its
current keyboard state, and the mouse pointer position.

The IMouseClickEvent defines the following virtual functions:

Function Purpose

mouseButton Returns the clicked mouse button (button1,
button2, button3).

mouseAction Returns the mouse action (clicked,
double-clicked).

mousePosition Returns the position of the mouse relative to
the window handling the event.

IMouseHandler calls its mousePointerChange function to process a mouse pointer
event when the mouse pointer enters and exits a window and/or moves within a
window. The frequency that mousePointerChange is called is determined by the
styles you use when calling the IMouseHandler constructor.

The IMousePointerEvent class defines the following functions:

Function Purpose

defaultMousePointer Returns the default mouse pointer for the
window that is under the mouse. The
window will use this pointer if you do not
call setMousePointer.

mousePosition Returns the position of the mouse, relative
to the window handling the event.

mousePointer Returns the value passed to
setMousePointer.

setMousePointer Sets the pointer to use for the window that
is under the mouse.

Chapter 3. Events and Event Handlers 35

Function Purpose

windowId Returns the window ID of the control that
the event applies to.

“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Add Mouse Event Handling”
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Add Mouse Event Handling
To add mouse event handling with the IMouseHandler class, you generally follow
these steps:
1. Derive a new class from IMouseHandler
2. Create an object of your new mouse handling class in any window constructor
3. Call IMouseHandler::handleEventsFor() for each window that will recognize

mouse events
4. Override any virtual function from IMouseHandler that you want to implement

The following code creates a split canvas as a client window. Each pane of the split
canvas contains a set canvas. The set canvas located at the top of the frame
window contains two bitmaps and a static text string. There is an information area
at the bottom of the frame window. A mouse handler is attached to the split
canvas, the set canvases, the bitmaps, and the information area. The mouse pointer
changes when it is over either of the set canvases. The information area indicates
when the mouse is over the set canvases or the bitmaps. The information also
indicates when the mouse is clicked while over the bitmaps.
1. Derive a new class from IMouseHandler. The following code is from

mhsamp.hpp:
class AMouseHandler : public IMouseHandler
{

public:
AMouseHandler(MainWindow *aFrame);

protected:
virtual bool

mouseClicked(IMouseClickEvent & event);
virtual bool

mousePointerChange(IMousePointerEvent& event);
private:

MainWindow* frame;
};

2. Add the new mouse handling class as a data member of the MainWindow
class. The following code is from mhsamp.hpp:
class MainWindow : public IFrameWindow
{

public:
MainWindow(unsigned long windowId);
bool handleClickEvent(unsigned long id);
bool handleChangeEvent(IMousePointerEvent& event);

private:
ITitle title;

36 IBM Open Class: User Interface

ISplitCanvas clientCanvas;
ISetCanvas topCanvas;
ISetCanvas bottomCanvas;
IBitmapControl bmp1;
IBitmapControl bmp2;
IStaticText bmpText;
IStaticText infoText;
IPointerHandle ptr_bmp;
AMouseHandler mouseHandler;

};

3. In the constructor of MainWindow, call IMouseHandler::handleEventsFor for each
window that will recognize mouse events. The following code is from
mhsamp.cpp:
MainWindow::MainWindow(unsigned long windowId)

: IFrameWindow(windowId, defaultStyle()),
title(this, ID_TEXT),
clientCanvas(REMOTECANVASID, this, this),
topCanvas(TOPCANVASID, &clientCanvas, &clientCanvas),
bottomCanvas(BOTTOMCANVASID, &clientCanvas, &clientCanvas),
bmp1(BMP1ID, &topCanvas, &topCanvas,

ISystemBitmapHandle::minimizeButton),
bmp2(BMP2ID, &topCanvas, &topCanvas,

ISystemBitmapHandle::maximizeButton),
bmpText(BMPTXT, &topCanvas, &topCanvas,

IRectangle(),
IStaticText::defaultStyle() |
IStaticText::center |
IStaticText::top),

infoText(INFOID, this, this, IRectangle(),
IStaticText::defaultStyle() |
IStaticText::top |
IStaticText::left |
IStaticText::wordBreak),

mouseHandler(this)
{

addExtension(&infoText, IFrameWindow::belowClient,
IFont(&infoText).maxCharHeight(),
IFrameWindow::thickLine);

infoText.setText(ID_TEXT);
bmpText.setText(“<==Click on bitmaps”);
clientCanvas.setOrientation(ISplitCanvas::horizontalSplit);
topCanvas.setDeckOrientation(ISetCanvas::horizontal);
topCanvas.add(&bmpText);
topCanvas.add(&bmp1);
topCanvas.add(&bmp2);
mouseHandler.handleEventsFor(&bmp1);
mouseHandler.handleEventsFor(&bmp2);
mouseHandler.handleEventsFor(&topCanvas);
mouseHandler.handleEventsFor(&bottomCanvas);
mouseHandler.handleEventsFor(&clientCanvas);
mouseHandler.handleEventsFor(&infoText);
IResourceLibrary reslib;
ptr_bmp = reslib.loadPointer(PTR_BITMAP);
setClient(&clientCanvas);
show();
setFocus();

}

4. Override any virtual function from IMouseHandler that you want to
implement. This example overloads two virtual functions: mousePointerChange
and mouseClicked.
The IMouseHandler calls mousePointerChange whenever the user moves the
mouse pointer over a handled window. The overridden version of
mousePointerChange in this example calls MainWindow::handleChangeEvent.

Chapter 3. Events and Event Handlers 37

This function changes the appearance of the mouse pointer depending on the
window underneath the pointer. The following code is from mhsamp.hpp:
bool MainWindow::handleChangeEvent(IMousePointerEvent& event)
{

unsigned long whichWindow = event.windowId();
if ((whichWindow == BMP1ID) || (whichWindow == BMP2ID))
{

event.setMousePointer(
ISystemPointerHandle(ISystemPointerHandle::kArrow));

return true;
}
else if (whichWindow == BOTTOMCANVASID)
{

event.setMousePointer(ptr_bmp);
infoText.setText(BOTTOMCANVAS_TEXT);
return true;

}
else if (whichWindow == TOPCANVASID)
{

event.setMousePointer(ptr_bmp);
infoText.setText(TOPCANVAS_TEXT);
return true;

}
else
{

infoText.setText(ID_TEXT);
return false;

}
}
// ...
bool AMouseHandler::mousePointerChange(IMousePointerEvent& event)
{

return (frame->handleChangeEvent(event));
}

This example calls IMousePointerEvent::setMousePointer to change the
appearance of the pointer. The ISystemPointerHandle provides you with a
selection of system pointers such as a text I-beam pointer and an hourglass
pointer. The following function call changes the pointer to the arrow pointer:

event.setMousePointer(
ISystemPointerHandle(ISystemPointerHandle::kArrow));

The IMouseHandler calls mouseClicked whenever the user changes the state of
the a mouse button. The mouseClicked command takes an IMouseClickEvent
reference as its argument. The overridden version of mousePointerChange
determines the window underneath the mouse pointer by calling
IMouseEvent::windowUnderPointer. It then passes the window ID of this
window as an argument to MainWindow::handleClickEvent. This function
changes the text in the information area depending on the window being
clicked. The following code is from mhsamp.cpp:
bool AMouseHandler::mouseClicked(IMouseClickEvent& event)
{

IWindow* pWindow = IWindow::windowWithHandle(event.windowUnderPointer());
unsigned long int winId = pWindow->id();
frame->handleClickEvent(winId);
return true;

}
// ...
bool MainWindow::handleClickEvent(unsigned long id)
{

switch (id)
{

case BMP1ID:

38 IBM Open Class: User Interface

infoText.setText(MIN_TEXT);
break;

case BMP2ID:
infoText.setText(MAX_TEXT);
break;

}
return true;

}

The following image, from Windows, shows the result of using this example:

You can find the complete source to this example in the following files:
v mhsamp.cpp
v mhsamp.h
v mhsamp.hpp
v mhsamp.rc

Derived Template Classes
Alternatively, instead of using IMouseHandler you can use the derived template
classes IMouseClickConnectionTo and IMouseMoveConnectionTo. You can use
these classes to cause a function in another class, such as a window class, to be
called to process a mouse event. By using these template classes you can easily
place mouse-handling code in a window class and avoid having to use multiple
inheritance, friendship, or extra query and set functions to share data between
classes.

The IBM Open Class has similar template classes for ICommandHandler,
IKeyboardHandler, and IPaintHandler.

“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Handle Mouse Events” on page 33
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Chapter 3. Events and Event Handlers 39

“File: mhsamp.cpp”
“File: mhsamp.h” on page 42
“File: mhsamp.hpp” on page 43
“File: mhsamp.rc” on page 44

Mouse Handler Example

File: mhsamp.cpp
#include “mhsamp.hpp”
#include “mhsamp.h”
/**
* main *
* - Application entry point. *
**/
int main()
{

// Create our main window on the desktop
MainWindow mainWindow(WINDOWID);
mainWindow.sizeTo(ISize(400,300));
// Get the current application and run it
IApplication::current().run();
return 0;

}
/**
* Class MainWindow :: MainWindow *
**/
MainWindow::MainWindow(unsigned long windowId)

: IFrameWindow(windowId, defaultStyle()),
title(this, ID_TEXT),
clientCanvas(REMOTECANVASID, this, this),
topCanvas(TOPCANVASID, &clientCanvas, &clientCanvas),
bottomCanvas(BOTTOMCANVASID, &clientCanvas, &clientCanvas),
bmp1(BMP1ID, &topCanvas, &topCanvas,

ISystemBitmapHandle::minimizeButton),
bmp2(BMP2ID, &topCanvas, &topCanvas,

ISystemBitmapHandle::maximizeButton),
bmpText(BMPTXT, &topCanvas, &topCanvas,

IRectangle(),
IStaticText::defaultStyle() |
IStaticText::center |
IStaticText::top),

infoText(INFOID, this, this, IRectangle(),
IStaticText::defaultStyle() |
IStaticText::top |
IStaticText::left |
IStaticText::wordBreak),

mouseHandler(this)
{

addExtension(&infoText, IFrameWindow::belowClient,
IFont(&infoText).maxCharHeight(),
IFrameWindow::thickLine);

infoText.setText(ID_TEXT);
bmpText.setText(“<==Click on bitmaps”);
clientCanvas.setOrientation(ISplitCanvas::horizontalSplit);
topCanvas.setDeckOrientation(ISetCanvas::horizontal);
topCanvas.add(&bmpText);
topCanvas.add(&bmp1);
topCanvas.add(&bmp2);
mouseHandler.handleEventsFor(&bmp1);
mouseHandler.handleEventsFor(&bmp2);
mouseHandler.handleEventsFor(&topCanvas);
mouseHandler.handleEventsFor(&bottomCanvas);

40 IBM Open Class: User Interface

mouseHandler.handleEventsFor(&clientCanvas);
mouseHandler.handleEventsFor(&infoText);
IResourceLibrary reslib;
ptr_bmp = reslib.loadPointer(PTR_BITMAP);
setClient(&clientCanvas);
show();
setFocus();

}
/**
* Class MainWindow :: handleChangeEvent *
**/
bool MainWindow::handleChangeEvent(IMousePointerEvent& event)
{

unsigned long whichWindow = event.windowId();
if ((whichWindow == BMP1ID) || (whichWindow == BMP2ID))
{

event.setMousePointer(
ISystemPointerHandle(ISystemPointerHandle::kText));

return true;
}
else if (whichWindow == BOTTOMCANVASID)
{

event.setMousePointer(ptr_bmp);
infoText.setText(BOTTOMCANVAS_TEXT);
return true;

}
else if (whichWindow == TOPCANVASID)
{

event.setMousePointer(ptr_bmp);
infoText.setText(TOPCANVAS_TEXT);
return true;

}
else
{

infoText.setText(ID_TEXT);
return false;

}
}
/**
* Class AMouseHandler :: mouseClicked *
**/
bool AMouseHandler :: mouseClicked (IMouseClickEvent & event)
{

IWindow * pWindow =IWindow::windowWithHandle(event.windowUnderPointer());
unsigned long int winId = pWindow->id();
frame->handleClickEvent(winId);
return false;

}
/**
* Class MainWindow :: handleClickEvent *
**/
bool MainWindow::handleClickEvent(unsigned long id)
{

switch (id)
{

case BMP1ID:
infoText.setText(MIN_TEXT);
break;

case BMP2ID:
infoText.setText(MAX_TEXT);
break;

}
return true;

}
/**
* Class AMouseHandler :: AMouseHandler *
**/

Chapter 3. Events and Event Handlers 41

AMouseHandler :: AMouseHandler(MainWindow *aFrame)
{

frame=aFrame;
}
/**
* Class AMouseHandler :: mousePointerChange *
**/
bool AMouseHandler :: mousePointerChange (IMousePointerEvent& event)
{

return (frame->handleChangeEvent(event));
}

“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Add Mouse Event Handling” on page 36
“Handle Mouse Events” on page 33
“File: popmenu.cpp” on page 69“File: mhsamp.h”
“File: mhsamp.hpp” on page 43
“File: mhsamp.rc” on page 44
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

File: mhsamp.h
#define WINDOWID 1001
#define BMPTXT 1002
#define REMOTECANVASID 1003
#define INFOID 1004
#define TOPCANVASID 1005
#define BOTTOMCANVASID 1006
#define BMP1ID 2001
#define BMP2ID 2002
#define PTR_BITMAP 2003
#define BITMAP_TEXT 3001
#define ID_TEXT 3002
#define TOPCANVAS_TEXT 3003
#define BOTTOMCANVAS_TEXT 3004
#define MAX_TEXT 3005
#define MIN_TEXT 3006

“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Add Mouse Event Handling” on page 36
“Handle Mouse Events” on page 33
“File: popmenu.cpp” on page 69“File: mhsamp.cpp” on page 40
“File: mhsamp.hpp” on page 43
“File: mhsamp.rc” on page 44
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

42 IBM Open Class: User Interface

File: mhsamp.hpp
#include “mhsamp.h”
#include <imoushdr.hpp>
#include <ibmpctl.hpp>
#include <iframe.hpp>
#include <isplitcv.hpp>
#include <isetcv.hpp>
#include <istattxt.hpp>
#include <ititle.hpp>
#include <ifont.hpp>
#include <ihandle.hpp>
class MainWindow;
/**
* Class AMouseHandler *
**/
class AMouseHandler : public IMouseHandler
{

public:
AMouseHandler(MainWindow *aFrame);

protected:
virtual bool mouseClicked (IMouseClickEvent & event);
virtual bool mousePointerChange(IMousePointerEvent& event);

private:
MainWindow * frame;

};
/**
* Class MainWindow *
**/
class MainWindow : public IFrameWindow
{

public:
MainWindow(unsigned long windowId);
bool handleClickEvent(unsigned long id);
bool handleChangeEvent(IMousePointerEvent& event);

private:
ITitle title;
ISplitCanvas clientCanvas;
ISetCanvas topCanvas;
ISetCanvas bottomCanvas;
IBitmapControl bmp1;
IBitmapControl bmp2;
IStaticText bmpText;
IStaticText infoText;
IPointerHandle ptr_bmp;
AMouseHandler mouseHandler;

};

“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Add Mouse Event Handling” on page 36
“Handle Mouse Events” on page 33
“File: popmenu.cpp” on page 69“File: mhsamp.cpp” on page 40
“File: mhsamp.h” on page 42
“File: mhsamp.rc” on page 44
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Chapter 3. Events and Event Handlers 43

File: mhsamp.rc

This is a Windows resource script file.
#include “mhsamp.h”
PTR_BITMAP CURSOR hwe.cur
STRINGTABLE

BEGIN
BITMAP_TEXT, “<==Click on bitmaps”
ID_TEXT, “Mouse Handler Example”
TOPCANVAS_TEXT, “Mouse on top split canvas”
BOTTOMCANVAS_TEXT, “Mouse on bottom split canvas”
MAX_TEXT, “Maximize bitmap clicked”
MIN_TEXT, “Minimize bitmap clicked”

END

This is an AIX or OS/2 resource script file:
#include “mhsamp.h”
POINTER PTR_BITMAP hwe.cur
STRINGTABLE

BEGIN
BITMAP_TEXT, “<==Click on bitmaps”
ID_TEXT, “Mouse Handler Example”
TOPCANVAS_TEXT, “Mouse on top split canvas”
BOTTOMCANVAS_TEXT, “Mouse on bottom split canvas”
MAX_TEXT, “Maximize bitmap clicked”
MIN_TEXT, “Minimize bitmap clicked”

END

Additional Files

Cursor: hwe.cur

“Chapter 3. Events and Event Handlers” on page 19
“Chapter 21. Resources” on page 297

“Add Mouse Event Handling” on page 36
“Handle Mouse Events” on page 33
“Convert Application Resources” on page 395
“File: popmenu.cpp” on page 69“File: mhsamp.cpp” on page 40
“File: mhsamp.h” on page 42
“File: mhsamp.hpp” on page 43

Set Time Intervals
A timer controls when certain events will occur based on a specified timed basis.
You can use the ITimer class objects to set time-interval-based operations. The
Open Class Library uses timers in fly-over help and with IAnimatedButton. The
Open Class Library provides the following classes to create timer objects:

44 IBM Open Class: User Interface

Class Description

ITimer This class creates objects representing
operating system timers. An object of this
class calls a specified function in your class
when the timer expires. The timer continues
to call the function each time the specified
time limit expires.

ITimerFn An abstract timer function class. An instance
of this class is passed into ITimer when you
start it. You can then delete the ITimer
object, and the timer will continue to run.

ITimerMemberFn Template class for the timer member
function. This class inherits from ITimerFn.

ITimerMemberFn0 Another template class for the timer member
function. This class does not accept any
parameters.

Create Timers
Use the ITimer class objects to define and set time-interval-based operations for
your current program. You can also use ITimer objects to create additional
time-interval-based operations by instantiating new ITimer objects and starting
them. You start a timer using the ITimer::start() member function.

The following is an example of starting a new timer to execute a member function:
ITimer timer;
timer.start(new ITimerMemberFn<MyClass>(*this, foo));

You construct instances of this class in one of the following ways:
v Use the default constructor. Use this to build an ITimer that is started using the

ITimer::start() member function.
v Reference the code that you want to execute with the timer. This form of the

constructor is used to construct a new ITimer and immediately start it. It is
equivalent to constructing using the default constructor and then using
ITimer::start(). You can specify a time-interval to be used (in thousandths of a
second) with this constructor. A time-interval of one second is the default.

v Use the timer ID of a currently started ITimer object.

ITimer has a virtual destructor that deallocates resources. This destructor, however,
does not stop the timer. The timer continues to run until you call ITimer::stop().
The reference to the class that is passed into the constructor must be dynamically
allocated. Otherwise, it results in an exception when the timer is stopped.
Furthermore, stopping the timer deletes the allocation of the object making any
previous pointers to it illegal.

Timer identifiers are limited to the value 0x7FFF to allow portability to OS/2
where this limit is imposed by the operating system.

The ITimerFn class is an abstract timer function class. Objects of this class represent
events dispatched when an active timer expires. These objects are
reference-counted to manage their destruction after the timer has stopped. This
reference to an ITimerFn is then passed to ITimer::start(). The timerExpired()
function is called when the timer expires.

Chapter 3. Events and Event Handlers 45

The ITimerMemberFn template class is an ITimerFn-derived class for dispatching
C++ member functions against an object when a timer expires. You can use
instances of this class to dispatch C++ member functions when a timer expires. The
template argument is the class of the object for which the member functions are
called. The constructor for such objects requires two arguments:
v A reference to the object the member function is to be applied to.
v A pointer to the member function. This member function must return a void and

accept a timer reference argument.

This class overrides the inherited function timerExpired().

To create a timer, do the following:
1. Write a function for what you want to do on a timed basis.
2. Create an ITimerMemberFn or ITimerMemberFn0 object. For a function that

will be repeating an action on a timed basis, use ITimerMemberFn0.
Use ITimerMemberFn if you need to know the timer ID. Use ITimerMemberFn0
if you do not need the timer ID.
The ITimerMemberFn constructor takes a pointer to a member function as an
argument. This member function must return a void parameter and accept an
unsigned long formal parameter that represents the timer ID. The timer ID is
passed to you when the timer stops. For ITimerMemberFn0, you define a
function that takes no parameters and you do not get the timer ID.
An example would be if you wanted a window to refresh itself every 30
minutes. If you wanted a window displayed for five seconds and then have it
disappear, you would use ITimerMemberFn because the action only occurs
once. You would then use ITimer::stop() to delete the timer.
If you call setInterval() with any value, the timer is stopped and restarted with
the new interval. Restarting the timer with a value of zero causes the timer to
timeout immediately and results in a call to your timer member function. If
you call ITimer::start() without stopping the timer, you will get an
IInvalidRequest exception.

The following is an example of a timer created to run the public member job in
MyClass:

class MyClass
{

public:
void job(unsigned long timerId)
{

// Code to run.
}

};
//...

MyClass myObj;
ITimer timer;
timer.start(new ITimerMemberFn<MyClass>(myObj, MyClass::job));

In the preceding example, we used ITimerMemberFn because the job member
function returns void and accepts an unsigned long parameter, timerId. When
parameters are not accepted by the member function, you can use
ITimerMemberFn0.

“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

46 IBM Open Class: User Interface

“Write an Event Handler” on page 25
“Hello World Version 6: Adding a Font Dialog, Pop-up Menus, Notebooks, and
Graphics” on page 443
“Task and Samples Cross-Reference Table” on page 445

Add Time Intervals
You can specify an event to occur at regular intervals by following these steps:
1. Define a class that derives from ITimerFn.
2. Create a ITimer object.
3. Define the interval for the timer.
4. Override the timerExpired() virtual function. The application calls this function

when the timer expires.
5. Create a function that turns the timer on and off.

The Hello World Version 6 sample uses the ITimerFn class to make stars twinkle.
The twinkleStars() function redraws each of the stars at a different intensity. The
application calls this function at regular intervals to “twinkle” the stars:
1. Define a class that derives from ITimerFn. The ITimerFn class has a virtual

function called timerExpired(). The application calls this function when the
timer stops. The following code is from aearthw6.hpp:
class ATwinkleTimeHandler : public ITimerFn
{

public:
// Constructor
// - constructs the object with a pointer to the
// earth window
ATwinkleTimeHandler (AEarthWindow *a) : aew(a) {}
// Override timerExpired function
// - the timerExpired() function is called each time
// the ITimer expires.
virtual void

timerExpired (unsigned long);
private:

AEarthWindow
*aew;

};

2. Create an ITimer object. The following code is from aearthw6.hpp:
class AEarthWindow : public IDrawingCanvas
{

public:
AEarthWindow(unsigned long windowId,

IWindow * parentownerWindow,
const IRectangle& rect=IRectangle());

// ...
bool twinkleStars();
// ...
virtual AEarthWindow &enableTwinkle(bool turningOn=true),
// ...

private:
// ...
ITimer twinkleTimer;
// ...

};

3. Define the interval for the timer. This interval determines the duration between
successive calls to timerExpired(). The following code is from aearthw6.cpp:

Chapter 3. Events and Event Handlers 47

// Constructor for the Earth window
AEarthWindow :: AEarthWindow(unsigned long windowId,

IWindow * parowWindow,
const IRectangle& rect)

: // ...
{

// ...
twinkleTimer.setInterval(500);
// ...

}

4. Override the timerExpired() virtual function. The overridden version of
timerExpired() in this sample calls the member function twinkleStars(). The
following code is from aearthw6.cpp:
// Make the stars twinkle and refresh.
bool

AEarthWindow::twinkleStars()
{

if (twinkling)
{

// If the stars are twinkling, then call the flicker
// function for each and redraw them on the
// IDrawingCanvas.
for (int i=0;i<13 ;i++)

starList[i].flicker();
paintWorld();

}
return true;

}

// ...

// Process ATimeHandler ticks by calling the AEarthWindow
// function for twinkling the stars.
void ATwinkleTimeHandler::timerExpired(unsigned long timeid)
{

aew->twinkleStars();
}

5. Create a function that turns the timer on and off. This function creates a new
ITimerFn object to start the timer. The following code is from aearthw6.cpp:
// Make the stars twinkle.
AEarthWindow

&AEarthWindow :: enableTwinkle(bool turningOn)
{

if (turningOn && !twinkling)
{

twinkling=true;
twinkleTimer.start(new ATwinkleTimeHandler(this));
twinkleStars();

}
else if (!turningOn && twinkling)
{

twinkling=false;
twinkleTimer.stop();
addObjectsToGroup();

}
return (*this);

}

“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

48 IBM Open Class: User Interface

“Set Time Intervals” on page 44
“Hello World Version 6: Adding a Font Dialog, Pop-up Menus, Notebooks, and
Graphics” on page 443
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Monitor Text-Change Events

The classes ITextChangeEvent and ITextChangeHandler are not supported on
OS/2.

Objects of the ITextChangeEvent class represent a pending change to the text data
in an editable text control.

You can verify any change to the text data of these controls using the
ITextChangeHandler class. Changes to the text might include insertions,
replacements, and deletions.

The change can be via keyboard entry, cut and paste, or using the text control’s
functions. Depending on how this event is processed, the change will be successful
(either exactly as proposed, or you can modify the proposed text data), or
unsuccessful. If successful, a control event is sent to the IEditHandler signaling that
the change has occurred.

An ITextChangeHandler constructs and processes ITextChangeEvents. They can be
constructed elsewhere as well. You must write your own handler class derived
from ITextChangeHandler. You can then use this handler to gain access to
ITextChangeEvents, allowing you to edit and/or verify proposed changes to an
editable text control.

ITextChangeEvents are first dispatched to the handlers attached to the control
itself, then to the handlers attached to the owner window of the control.

ITextChangeHandler is called after IKeyboardHandlers, but before IEditHandlers
and before any of the changes in the text values show up on the screen.

You can create a handler derived from ITextChangeHandler and attach it to either
the control whose input users can change or to the control’s owner window. You
do this by calling IHandler::handleEventsFor to pass the appropriate control
window or owner window to the text-change handler.

When the text-change handler receives a text-change event, it creates an
ITextChangeEvent object and routes that object to the textChange virtual function.
You must override this virtual function to supply your own specialized processing
of a text-change event. In your processing, you decide whether the proposed
change is successful (either exactly as proposed, or you can modify the proposed
text data) or unsuccessful. The ITextChangeEvent, which is routed to the virtual
function, contains both the proposed data and the allowChange flag. This is the
event you modify in your processing.

When processing, you can increase or decrease the size of the proposed text or you
can change the value of of the proposed text. Handlers which are called after yours

Chapter 3. Events and Event Handlers 49

can set the allowChange flag to false. After all the handlers have been called, the
final state of allowChange determines whether a control event is created. The
default behavior is successful (true). The control event is sent to IEditHandler
signaling the change to the control.

The return value from the virtual function specifies whether the control event is
passed on for additional processing. If true, the text-change event requires no
additional processing and is not passed to another handler.

If false, the text-change event is passed to the next handler for additional
processing and if there is another handler for the control or window, the
text-change event is passed to the next handler. If this is the last handler for the
control, call IWindow::dispatch to dispatch the text-change event to the control’s
owner window. If this is the last handler for the owner window, call
IWindow::defaultProcedure to process the text-change event.

Note that additional processing by another handler can alter the proposed data
again, and possibly modify the allowChange flag.

“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Use Keyboard Accelerators”
“Handle Text-Change Events” on page 52
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Use Keyboard Accelerators
A keyboard accelerator is a keystroke or a series of combined keys that generate a
command message for an application. Using a keyboard accelerator lets a user
quickly access commands. It has the same effect as choosing a menu item.

Your application can load accelerators either statically or at runtime:
v For static loading, you load the definitions of keyboard accelerators from a

resource file (via an accelerator table resource).
v For dynamic or runtime loading, you create and/or modify accelerator keys

programmatically.

Then, the application frame window loads the accelerator table with the same
resource ID, if found. The Open Class Library also provides IAccelerator,
IAcceleratorKey, and IAcceleratorTable classes to add accelerators at runtime.

You can also add accelerators to a window by using the
IFrameWindow::accelerator style object. For example, the Hello World version 4
sample passes the IFrameWindow::accelerator style object as a parameter for the
main window constructor. The following is an excerpt from ahellow4.cpp:
AHelloWindow :: AHelloWindow(const unsigned long windowId)

:IFrameWindow(IFrameWindow::defaultStyle() |
IFrameWindow::minimizedIcon |
IFrameWindow::accelerator,
windowId)

50 IBM Open Class: User Interface

Accelerator Tables

On Windows, both upper and lower case accelerators are treated as the same
accelerator. For example, pressing “Ctrl-a” or “Ctrl-A” works with an accelerator
defined in a resource file as follows:
WND_MAIN ACCELTABLE
BEGIN

“A” , MI_SELECT_ALL , CONTROL
“D” , MI_DESELECT_ALL , CONTROL

END

However, OS/2 and AIX differentiates between upper and lower case accelerators.
Pressing “Ctrl-a” or “Ctrl-A” requires separate accelerator entries as follows:
ACCELTABLE WND_MAIN
BEGIN

“A” , MI_SELECT_ALL , CONTROL
“a” , MI_SELECT_ALL , CONTROL
“D” , MI_DESELECT_ALL , CONTROL
“d” , MI_DESELECT_ALL , CONTROL

END

Without accelerators, a user might generate commands by pressing the Alt or F10
keys for OS/2 and Windows, or the F10 key for Motif. These keys access the menu
bar where you can use the Arrow keys to select the item, and then press the Enter
key to choose the item. In contrast, accelerators let users generate commands with
fewer keystrokes.

Although accelerators are usually used to generate existing commands as menu
items, they also can send commands that have no menu-item equivalent.

Accelerator Tables
An accelerator table contains an array of accelerators.

Accelerator tables exist at two levels within the operating system: a single
accelerator table for the system queue and individual accelerator tables for
application windows.

Accelerators in the system queue apply to all applications. For example, the F1 key
always generates a help message.

Having accelerators for individual application windows ensures that an application
can define its own accelerators without interfering with other applications. An
accelerator for an application window can override the accelerator in the system
queue.

An application can modify both its own accelerator table and the system’s
accelerator table.

Chapter 3. Events and Event Handlers 51

“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Handle Text-Change Events”
“Monitor Text-Change Events” on page 49
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Handle Text-Change Events
The IEditHandler class handles events resulting from a user changing a control’s
input value, such as changing the value of an entry field or moving the arm of a
slider. IEditHandler objects process edit events for the following controls:
v ICircularSlider
v IComboBox
v IEntryField
v IMultiLineEdit
v INumericSpinButton
v IProgressIndicator
v ISlider
v ITextSpinButton

When the edit handler receives an edit event, it creates an IControlEvent object and
routes that object to the IEditHandler::edit() virtual function. You override this
virtual function to supply your own specialized processing of an edit event.

Objects of the ITextChangeHandler class process text change events for the
following controls:
v IComboBox
v IEntryField
v IMultiLineEdit
v INumericSpinButton
v ITextSpinButton

Objects of the ITextChangeEvent class represent a pending change to the text data
in an editable text control.

Text-change events describe a proposed change to the data in an editable text
control. Such events result from a user attempting to change an input text value.

The ITextChangeHandler class is not supported for OS/2 Presentation Manager.

ITextChangeHandler handles an event that the text control generates before
updating its text. IEditHandler handles an event generated after the text control
has updated its text.

52 IBM Open Class: User Interface

“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Monitor Text-Change Events” on page 49
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Chapter 3. Events and Event Handlers 53

54 IBM Open Class: User Interface

Chapter 4. Menus

A menu is a list of predetermined items (like text strings, bitmaps, or images drawn
by an application) from which a user can choose using a mouse or keyboard. The
types of menus are the menu bar, pop-up menus, and the system menu. You can
layer the choices on a menu into a hierarchy so that selecting a choice on a menu
bar can display further choices in a pull-down menu. Similarly, selecting a choice
in a pop-up, system, or pull-down menu can display additional choices in a
cascaded menu.

You can dynamically create a menu using program functions or load it from a
resource file. A menu is always owned by another window, usually a frame
window.

A menu item is a choice on a menu or a separator between choices. A menu item
can represent either a command choice, or it can represent an item that, when
selected, brings up an additional list of choices to choose from. When a user selects
a menu item which represents a command choice, it sends a command event to the
owner of the menu. You can process this event with a command handler.

Menu Bars and Pull-Down Menus
The menu bar is the area near the top of a window, below the title bar and above
the client area of the window. A menu bar is a horizontal menu that contains a list
of choices. When a user selects a choice on a menu bar, a pull-down menu
associated with that choice is displayed.

A pull-down menu is a vertical menu that appears below the menu bar as the result
of selecting a menu item that represents this list of choices. (If there is not enough
room to show the pull-down menu, it will appear above the menu bar.) Typically,
all of the menu items on a menu bar represent pull-down menus instead of
command choices. The pull-down menus are ordinarily hidden, but they become
visible when the user makes a selection from the menu bar.

In turn, selecting a menu item in the pull-down can display more menu items in
what is called a cascaded menu. Several GUI style guides recommend that you use
no more than three levels of cascaded menus, and create a new frame window
when you have more than three.

The Open Class Library provides the IMenu, IMenuBar, and IMenuItem classes for
creating menu bars, menu items, and pull-down menus, and querying the contents
of an existing menu.

Use the classes IMenuBar, IPopUpMenu, ISubmenu, and ISystemMenu to work
with your menus and to add and remove items from menus. These classes derive
from IMenu. This class provides member functions that you use to manipulate
menus according to the needs of your application. You can add, replace, remove,
select, and disable menu items in menus. This class also provides functions to
access properties such as the following:
v The number of menu items in the menu
v The bounding rectangle for menu items

Objects of the IMenu (and derived) classes are not windows themselves. The
IMenu class does not inherit from the IWindow class.

© Copyright IBM Corp. 1998, 2000 55

To support menus loaded from a resource file, IMenu classes have the following
requirements:
v

Menu resources must be defined using the MENU keyword.
v

Menu resources must be defined using the MENUEX keyword.
v Unique IDs must be provided for all pop-up menu items, indicated by the

POPUP keyword.

IMenu does not support conditional cascading behavior in menus.

Pop-Up Menus
A pop-up menu is displayed next to a selected object when a user presses the
appropriate key or mouse button. A pop-up menu contains choices that can be
applied to the object when the menu is displayed.

The Open Class Library provides the IPopUpMenu and IMenuHandler classes to
manipulate pop-up menus. To create a pop-up menu in your application, derive
your class from IMenuHandler, override the makePopUpMenu function, and
construct an IPopUpMenu object.

You can dynamically add, remove, or change items in the pop-up menu by
overriding the IMenuHandler::menuShowing virtual function and making the
appropriate changes to the ISubmenu object passed to the menuShowing function.

System Menu
The system menu in the upper-left corner of a standard frame window is different
from the menus defined by the application. The system menu is controlled and
defined by the operating system. However, using Open Class Library, you can
enable and disable items on the system menu, add or delete items, or even decide
not to include the system menu on your frame window. The ISystemMenu class
gives you access to the system menu and allows you to manipulate its items. You
can create a frame window with a system menu by constructing an IFrameWindow
object with the style IFrameWindow::systemMenu. This is a default style for
IFrameWindow.

Window Menu Button

The window menu displayed by the window menu button in the upper-left corner
of a standard Motif frame window is different from the menus defined by the
application. The window menu button is controlled and defined almost exclusively
by the system; your only decision about it is whether to include it when creating a
frame window.

Menu Bar Interaction
When the user selects a menu item that represents a command choice, any
command handlers attached to the frame window are notified of the command
event, indicating which choice the user selected. If the command event is not

56 IBM Open Class: User Interface

processed by the frame window, the frame window will send it to its client
window for processing (if it has a client window). See ICommandHandler for more
information about its use.

This generally applies to pop-up menus, except the command events first go to the
owner window of the pop-up menu. If the window receiving a command event is
derived from ICanvas or is an IContainerControl and the command event is not
handled, the canvas or container will send the event to its owner window for
processing.

“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Add Menus to Your Application”
“Add a Menu Bar” on page 59
“Create a Pop-Up Menu” on page 62
“Create a Pop-Up Menu for a List Box” on page 65
“Dynamically Modify a Menu with the ISubmenu Class” on page 75
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Add Menus to Your Application
A typical application uses a menu bar with several pull-down submenus. This
section shows you two ways to create a menu bar:
1. Most applications load a menu resource script to define the menus they need,

and there are two ways to load this predefined menu resource.
2. Some applications dynamically create the menu bar programmatically using

IMenu member functions.

Applications can also choose to mix and match these methods to obtain the results
desired. An example of this would be to dynamically load a menu bar containing
all possible menu options and then programmatically remove those items at run
time which are not needed, depending on the state of the application.

IMenu is no longer derived from IWindow to more closely model the behavior on
the Windows operating system. On OS/2 and Motif, you still have access to an
IWindow object if needed. Draw-item menus are supported on all platforms.

Load a Menu From a Resource File
Version 6 of the Hello World application creates a frame window with the
following statements and then loads a menu bar from the resource file. In
ahellow6.hpp, we do the following:

class AHelloWindow : public IFrameWindow
{

// ...
private:

IMenuBar menuBar;
// ...

};

In ahellow6.cpp, we do the following:

Chapter 4. Menus 57

AHelloWindow::AHelloWindow(unsigned long windowId)
: IFrameWindow(IFrameWindow::defaultStyle() |

IFrameWindow::minimizedIcon |
IFrameWindow::accelerator,
windowId)

, menuBar(windowId, this)
// ...

In the preceding example, the frame window is constructed without specifying the
IFrameWindow::menuBar style on the constructor. During initialization of the
frame, it will then construct an IMenuBar object and will load the menu bar from
the resource file, using the windowId passed as the identifier for that resource. The
content of the menu bar is defined in the ahellow6.rc resource file as in the
following statements:

WND_MAIN MENUEX
BEGIN

POPUP “&Edit”, MI_EDIT
BEGIN

POPUP “&Alignment”, MI_ALIGNMENT
BEGIN

MENUITEM “&Left\tF7”, MI_LEFT
MENUITEM “&Center\tF8”, MI_CENTER
MENUITEM “&Right\tF9”, MI_RIGHT

END
MENUITEM “&Text...”, MI_TEXT
MENUITEM “&Font...”, MI_FONT

END
POPUP “&Settings”, MI_SETTINGS
BEGIN

MENUITEM “&Read from profile”, MI_READSETS
MENUITEM “&Open ...”, MI_OPENSETS
MENUITEM “&Save to profile”, MI_SAVESETS

END
END

This is an example of a Windows resource file.

This same menu bar can also be created and loaded in the frame window
constructor by specifying the IFrameWindow::menuBar style. If an IMenuBar object
is needed, it can be created by wrappering the one loaded by the frame window
constructor. The following statements demonstrate this:

AHelloWindow :: AHelloWindow(unsigned long windowId)
: IFrameWindow(IFrameWindow :: defaultStyle() |

IFrameWindow :: menuBar |
IFrameWindow :: minimizedIcon |
IFrameWindow :: accelerator,
windowId)

, menuBar(this, IMenuBar::wrapper)

Dynamically Create a Menu Using IMenu Member Functions
You can create a menu bar dynamically at run time. This can be done using the
IMenuBar constructor and specifying the IMenuBar::empty style and the frame
window the menu bar is for. The menu can then be populated using IMenu
member functions. The addText member function is used to add a menu item to
the menu bar with the ID specified and the string passed. If a third parameter is
passed, the menu item is added into the pull-down menu specified instead of the
menu bar itself. The addSubmenu member functions are used to cause a menu
item to display a pull-down menu. The following statements demonstrate building
the same menu that is defined in the preceding resource file:

58 IBM Open Class: User Interface

IMenuBar* menuBar = new IMenuBar(this);
(*menuBar)

.addText(MI_EDIT, “&Edit”)

.addSubmenu(MI_EDIT)
.addText(MI_ALIGNMENT, “&Alignment”, MI_EDIT)
.addSubmenu(MI_ALIGNMENT)

.addText(MI_LEFT , “&Left\tF7”, MI_ALIGNMENT)

.addText(MI_CENTER , “&Center\tF8”, MI_ALIGNMENT)

.addText(MI_RIGHT , “&Right\tF9”, MI_ALIGNMENT)
.addText(MI_TEXT , “&Text...” , MI_EDIT)
.addText(MI_FONT , “&Font...” , MI_EDIT)

.addText(MI_SETTINGS, “&Settings”)

.addSubmenu(MI_SETTINGS)
.addText(MI_READSETS , “&Read from profile”, MI_SETTINGS)
.addText(MI_OPENSETS , “&Open ...”, MI_SETTINGS)
.addText(MI_SAVESETS , “&Save to profile”, MI_SETTINGS);

“Chapter 4. Menus” on page 55
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Add a Menu Bar”
“Create a Frame Window” on page 4
“Hello World Version 6: Adding a Font Dialog, Pop-up Menus, Notebooks, and
Graphics” on page 443
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Add a Menu Bar
The Hello World Version 3 contains a menu bar with only one submenu named
Alignment. When you run the sample and select Alignment, the pull-down menu
is displayed. The choices in the pull-down menu are Left, Center, and Right.
When you select one of the choices, the text string in the client window aligns to
the selected position and a check mark appears beside the selected item.
1. Define the menu bar. The Hello World Version 3 sample uses a resource script

file to define the text for the for the menu bar and its associated pull-down
menu.

The following is from the ahellow3.rc file for Windows:
WND_MAIN MENUEX

BEGIN
POPUP “&Alignment” , MI_ALIGNMENT

BEGIN
MENUITEM “&Left” , MI_LEFT
MENUITEM “&Center” , MI_CENTER
MENUITEM “&Right” , MI_RIGHT

END
END

The following is from the ahellow3.rc file for AIX and OS/2:

Chapter 4. Menus 59

MENU WND_MAIN
BEGIN

SUBMENU “xAlignment” , MI_ALIGNMENT
BEGIN

MENUITEM “xLeft” , MI_LEFT
MENUITEM “xCenter” , MI_CENTER
MENUITEM “xRight” , MI_RIGHT

END
END

To assist keyboard users of your application, underline the mnemonic in each
menu item.

Use the ampersand (&).

Use the tilde (x).
2. Declare and create the menu bar. This sample declares an IMenuBar object in

the main window class called AHelloWindow. The following excerpt is from
ahellow3.hpp:
class AHelloWindow : public IFrameWindow
{

public:
// ...
private:

IMenuBar
menuBar;

IStaticText
statusLine,
hello;

IInfoArea
infoArea;

ACommandHandler
commandHandler;

// ...
};

The sample creates the menu bar as a child of the main window in the
AHelloWindow constructor. The following excerpt is from ahellow3.cpp:
AHelloWindow :: AHelloWindow(const unsigned long windowId)

:IFrameWindow(IFrameWindow::defaultStyle() |
IFrameWindow::minimizedIcon,
windowId)

,menuBar(windowId, this)
,statusLine(WND_STATUS,this,this)
,hello(WND_HELLO, this, this)
,infoArea(this)
,commandHandler(this)

{
// ...

}

3. Define a command handler to handle events created when a user selects a
menu item. This sample derives a command handler class from
ICommandHandler called ACommandHandler. The constructor for
ACommandHandler uses a reference to AHelloWindow to access member functions
of AHelloWindow, namely the function that aligns the text string in the client
window. The following excerpt is from ahellow3.hpp:

60 IBM Open Class: User Interface

class ACommandHandler : public ICommandHandler
{

public:
ACommandHandler(AHelloWindow *helloFrame);
virtual xACommandHandler() { };

protected:
virtual bool command(ICommandEvent& cmdEvent);

private:
AHelloWindow *frame;

};

4. Override the ICommandHandler::command virtual function. When the user
selects one of the commands from the menu bar the ACommandHandler::command
function is called. This command calls AHelloWindow::setTextAlignment to
align the text string depending on the ID of the event (MI_CENTER, MI_LEFT, or
MI_RIGHT). The ACommandHandler::command function returns true to indicate that
no other event handlers should process the menu bar command.
bool ACommandHandler :: command(ICommandEvent & cmdEvent)
{

// Assume event will be processed
bool eventProcessed(true);
// Depending on the command event ID, call the
// AHelloWindow::setAlignment function with the appropriate
// AHelloWorld::Alignment value.
switch (cmdEvent.commandId())
{

case MI_CENTER:
frame->setTextAlignment(AHelloWindow::center);
break;

case MI_LEFT:
frame->setTextAlignment(AHelloWindow::left);
break;

case MI_RIGHT:
frame->setTextAlignment(AHelloWindow::right);
break;

default:
// The event was not processed
eventProcessed=false;

} /* end switch */
return(eventProcessed);

}

5. Enable your application to process events. The sample creates an
ACommandHandler object called commandHandler as a child of AHelloWindow. The
constructor then attaches the command handler to AHelloWindow by calling the
ICommandHandler::handleEventsFor function. The following excerpt is from
ahellow3.cpp:
AHelloWindow :: AHelloWindow(const unsigned long windowId)

:IFrameWindow(IFrameWindow::defaultStyle() |
IFrameWindow::minimizedIcon,
windowId)

,menuBar(windowId, this)
,statusLine(WND_STATUS,this,this)
,hello(WND_HELLO, this, this)
,infoArea(this)
,commandHandler(this)

{
// ...
commandHandler.handleEventsFor(this);
// ...

}

To stop event handling, the sample calls
ICommandHandler::stopHandlingEventsFor in the destructor of the main
window. The following is from ahellow3.cpp:

Chapter 4. Menus 61

AHelloWindow :: xAHelloWindow()
{

commandHandler.stopHandlingEventsFor(this);
}

The following, from Windows, shows the menu generated by the Hello World
version 3 sample:

“Chapter 4. Menus” on page 55
“Chapter 3. Events and Event Handlers” on page 19

“Hello World Version 3: Add Command Handlers and Menu Bars” on page 412
“Add Menus to Your Application” on page 57
“Create a Frame Window” on page 4
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Create a Pop-Up Menu
This section shows you two ways to create a pop-up menu. You can create a
pop-up menu statically as a data member of a window class. You may also
dynamically create one whenever the user requests a pop-up menu. Typically, you
choose one of these approaches based on resource balancing. Static pop-up menus
are only created and deleted once, but take up storage whether they are needed or
not; dynamic pop-up menus are created and deleted on demand, which can slow
processing if you request them frequently.

To create a pop-up menu, follow these steps:
1. Define the pop-up menu like a menu bar, either by using a resource script file

or by using the IMenu member functions. See the topic “Add Menus to Your
Application” on page 57 for more information.

2. Create a class derived from IMenuHandler and override the
IMenuHandler::makePopUpMenu() member function. The makePopUpMenu()
member function is called whenever the user requests a pop-up menu, usually
by clicking mouse button 2, in a window for which menu requests are being

62 IBM Open Class: User Interface

handled. In your implementation of this function, create and show the
appropriate pop-up menu.. To display the pop-up menu, call IMenu::show().

Version 6 of the Hello World application creates two pop-up menus: one for the
“Hello, World” static text control and one for the Earth window drawing canvas.
The application creates the the pop-up menu for the “Hello, World” static text
control statically, and creates the other pop-up menu dynamically.

The contents of the pop-up menus are defined in the ahellow6.rc resource file as
follows:

MENU WND_HELLOPOPUP
BEGIN

MENUITEM “xLeft-align text” , MI_LEFT
MENUITEM “xCenter text” , MI_CENTER
MENUITEM “xRight-align text” , MI_RIGHT

END
MENU WND_EARTHPOPUP

BEGIN
MENUITEM “xTwinkling stars” , MI_TWINKLE
MENUITEM SEPARATOR
MENUITEM “xBrighten stars” , MI_BRIGHT
MENUITEM “xDim stars” , MI_DIM

END

This is an example of an OS/2 or AIX resource file.

In the ahellow6.hpp file, an APopUpHandler class is defined to process requests for
making the pop-up menus appear, as follows:

class APopUpHandler : public IMenuHandler
{

public:
APopUpHandler(IPopUpMenu* argPopUpMenu)

: passedPopUpMenu(argPopUpMenu) {}
protected:
virtual bool

makePopUpMenu(IMenuEvent& menuEvent);
private:

IPopUpMenu* passedPopUpMenu;
};

The APopUpHandler class derives from IMenuHandler and overrides the
IMenuHandler::makePopUpMenu() function. You need the APopUpHandler
constructor and the pointer to an IPopUpMenu object only if you want to create a
pop-up menu statically. This constructor and pointer allows you to access your
predefined IPopUpMenu object from within makePopUpMenu(). You do not need
this constructor and pointer if you want to create dynamic pop-up menus since
you will create your own IPopUpMenu object from each time within
makePopUpMenu().

The makePopUpMenu() function in Hello World version 6 demonstrates how to
create a pop-up menu as a data member of the AHelloWindow class and how to
dynamically show an existing pop-up menu using a data member.

The following sample is from the ahellow6.cpp file:

Chapter 4. Menus 63

bool APopUpHandler::makePopUpMenu(IMenuEvent &menuEvent)
{

bool eventProcessed(true);
IPopUpMenu *popUpMenu;
IWindow *popUpOwner = menuEvent.controlWindow();
IStaticText *hello;
AEarthWindow *earth;
switch (popUpOwner->id())
{
case WND_HELLO:

popUpMenu = passedPopUpMenu;
if (popUpMenu)
{

hello = (IStaticText *)popUpOwner;
popUpMenu->enableItem(MI_LEFT,

hello->alignment()!=IStaticText::centerLeft);
popUpMenu->enableItem(MI_CENTER,

hello->alignment()!=IStaticText::centerCenter);
popUpMenu->enableItem(MI_RIGHT,

hello->alignment()!=IStaticText::centerRight);
}
else eventProcessed = false;
break;

case WND_EARTH:
popUpMenu = new IPopUpMenu(WND_EARTHPOPUP,popUpOwner);
if (popUpMenu)
{

popUpMenu->setAutoDeleteObject();
earth = (AEarthWindow *)popUpOwner;
popUpMenu->checkItem(MI_TWINKLE,earth->isTwinkling());
if (earth->isBright())
{ popUpMenu->disableItem(MI_BRIGHT); }
else
{ popUpMenu->disableItem(MI_DIM); }

}
else eventProcessed=false;
break;

default:
eventProcessed=false;

}
if (eventProcessed)

popUpMenu->show(menuEvent.mousePosition());
return(eventProcessed);

}

The case statement for WND_HELLO shows an existing pop-up menu that was created
statically in the APopUpHandler constructor. a pop-up window statically. The code
simply accesses the pop-up menu (called passedPopUpMenu in this sample) from
within makePopUpMenu().

The case statement for WND_EARTH case creates a pop-up menu dynamically. The
IPopUpMenu’s constructor needs two arguments: the window ID (called
WND_EARTHPOPUP in this sample) and a pointer to the owner of the pop-up menu.
The IMenuEvent object stores a pointer to a window that originated the event. The
application uses this pointer to construct the IPopUpMenu object. You access this
pointer with the controlWindow() function. Because this application creates the
menu using the new operator, it must also be deleted. The easiest way to delete a
dynamic pop-up menu is to use the IPopUpMenu::setAutoDeleteObject function
which causes the menu to be automatically deleted when the menu ends.

64 IBM Open Class: User Interface

In either case, when the menu is found or created, the makePopUpMenu() function
displays the menu by using IPopUpMenu::show(). The mouse pointer position,
which is taken from the menu event, is passed as one argument to specify where
the pop-up menu will appear.

The makePopUpMenu() function is only called for windows that are attached to
the pop-up menu handler. Hello World version 6 attaches a pop-up menu handler
directly to the IStaticText object hello and the IDrawingCanvas earthWindow. It
attaches to the objects instead of the frame because these objects do not pass events
up the owner chain. Therefore, use this approach if you develop portable
applications. For the same reason, the command handler attaches to these objects
so that the command events that result from using the pop-up menus will be sent
to the command handler. In Hello World version 6, this is done using the following
code from the ahellow6.cpp file:

commandHandler.handleEventsFor(&hello);
commandHandler.handleEventsFor(&earthWindow);
popUpHandler.handleEventsFor(&hello);
popUpHandler.handleEventsFor(&earthWindow);

By reusing the existing command handler, commands such as MI_LEFT can have the
same processing whether they are generated by a menu bar item, a push button,
an accelerator key, or a pop-up menu.

“Chapter 4. Menus” on page 55
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Create a Frame Window” on page 4
“Add Menus to Your Application” on page 57
“Add a Menu Bar” on page 59
“Hello World Version 6: Adding a Font Dialog, Pop-up Menus, Notebooks, and
Graphics” on page 443
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Create a Pop-Up Menu for a List Box
The following example shows you how to create a pop-up menu for a list box:
1. Define your pop up menu in a resource script file similar to the one that

follows. This excerpt is from popmenu.rc:
ID_POPUP2 MENUEX
BEGIN

POPUP “&Color”, ID_COLOR
BEGIN

MENUITEM “Blue”, ID_BLUE
MENUITEM “Green”, ID_GREEN
MENUITEM “Red”, ID_RED

END
POPUP “&Text”, ID_TEXTMENU

BEGIN
MENUITEM “&Add Learn Text”, ID_ADD_FIRST
MENUITEM “&Delete All Text”, ID_DELETE_TEXT
MENUITEM “&Add Know Text”, ID_ADD_LAST

END
END

Chapter 4. Menus 65

This is from a Windows resource script file.
2. Declare a handler that is derived from both IMenuHandler and

ICommandHandler so that the same handler can be used for handling the
pop-up menu and the commands that originate from it. The following excerpt
is from popmenu.hpp:
// Define the frame window
class AppWindow : public IFrameWindow
{

public:
AppWindow(unsigned long windowId);
virtual xAppWindow();

private:
ITitle title;
IMenuBar menu;
IMultiCellCanvas canvas;
IStaticText sttxt;
IListBox listbox;
PopUpHandler pLBPopUp;

};

Add an IPopUpMenu data member to the handler class as follows:
// Define the pop-up and command handler
class PopUpHandler : public IMenuHandler,

public ICommandHandler
{

public:
PopUpHandler(IListBox & lbUpdate, IStaticText & stMsg);
xPopUpHandler();

protected:
virtual bool makePopUpMenu(IMenuEvent& menuEvent);
virtual bool command(ICommandEvent& cmdevt);

private:
void setLBColor(unsigned long ulNewColor);
void setLBText(unsigned long ulNewSize);
IListBox * pLB;
IStaticText * pST;
IPopUpMenu * pPopUpMenu;
unsigned long ulColor;
unsigned long ulText;

};

3. Create an instance of the pop-up handler as shown in the following code. This
excerpt is from popmenu.cpp:
// Construct the frame window with children
AppWindow::AppWindow(unsigned long windowId)

: IFrameWindow(windowId, defaultStyle()),
title(this, “PopUp”,“Example”),
canvas(ID_CANVAS, this, this),
listbox(ID_LISTBX, &canvas, &canvas),
sttxt(ID_TEXT, &canvas, &canvas),
pLBPopUp(listbox, sttxt)

{
// ...

}

4. Construct the pop-up handler. The following is the PopUpHandler constructor. It
attaches a command handler and a menu handler to the pop-up menu by
calling the appropriate handleEventsFor functions.
To handle command events that result from selecting items from the pop-up
menu, override the ICommandHandler::command virtual function.

66 IBM Open Class: User Interface

To display a pop-up menu override the IMenuHandler::makePopUpMenu
virtual function. Within makePopUpMenu, you can either create and show a
pop-up menu, or show an existing pop-up menu. This example shows an
existing pop-up menu by calling IPopUpMenu::show. To get the current
position of the mouse call IMenuEvent::mousePosition. Use this value as an
argument to IPopUpMenu::show to display the pop-up menu at the current
mouse position.
The following excerpt is from popmenu.cpp:
// PopUpHandler constructor
PopUpHandler::PopUpHandler(IListBox & LBUpdate, IStaticText & stMsg)
: pLB(&LBUpdate),

pST(&stMsg),
pPopUpMenu(ID_POPUP2, pLB),
ulColor(0),
ulText(0)

{
unsigned long ulColor, ulText;
// We need pointers to list box and static text so we can
// update them.
// pLB points to the list box
// pST points to the static text
// Default color and alignment values
ulColor = ID_BLUE;
ulText = ID_ADD_FIRST;
// Check the default items
pPopUpMenu.checkItem(ulColor);
pPopUpMenu.checkItem(ulText);
// Set default color and alignment
setLBColor(ulColor);
setLBText(ulText);
// handle events on pop-up menu
ICommandHandler::handleEventsFor(pLB);
IMenuHandler::handleEventsFor(pLB);

}
// ...
// Show the pop-up menu created in the constructor
bool PopUpHandler::makePopUpMenu(IMenuEvent& menuEvt)
{

pPopUpMenu->show(menuEvt.mousePosition());
return true;

}
// Command handling for the pop-up menu
bool PopUpHandler::command(ICommandEvent& cmdevt)
{

switch (cmdevt.commandId())
{

case ID_RED:
case ID_GREEN:
case ID_BLUE:

setLBColor(cmdevt.commandId());
return true;

case ID_ADD_FIRST:
case ID_DELETE_TEXT:
case ID_ADD_LAST:

setLBText(cmdevt.commandId());
return true;

}
return false;

}
// ...
// Handle the menu functions to change the list box color
void PopUpHandler::setLBColor(unsigned long ulNewColor)
{

switch (ulNewColor) {
case ID_RED:

Chapter 4. Menus 67

pLB->setBackgroundColor(IColor::kRed);
pST->setText(“Changed color to Red”);
pPopUpMenu->checkItem(ID_RED);
pPopUpMenu->uncheckItem(ID_GREEN);
pPopUpMenu->uncheckItem(ID_BLUE);
break;

case ID_GREEN:
pLB->setBackgroundColor(IColor::kGreen);
pST->setText(“Changed color to Green”);
pPopUpMenu->uncheckItem(ID_RED);
pPopUpMenu->checkItem(ID_GREEN);
pPopUpMenu->uncheckItem(ID_BLUE);
break;

case ID_BLUE:
pLB->setBackgroundColor(IColor::kBlue);
pST->setText(“Changed color to Blue”);
pPopUpMenu->uncheckItem(ID_RED);
pPopUpMenu->uncheckItem(ID_GREEN);
pPopUpMenu->checkItem(ID_BLUE);
break;

default:
break;

}
}
// Handle the menu functions to add text to the list box
void PopUpHandler::setLBText(unsigned long ulNewText)
{

switch (ulNewText) {
case ID_ADD_FIRST:

pLB->addAscending(“I need to learn C++”);
pST->setText(“Added text to list box in ascending order”);
pPopUpMenu.checkItem(ID_ADD_FIRST);
pPopUpMenu.uncheckItem(ID_DELETE_TEXT);
pPopUpMenu.uncheckItem(ID_ADD_LAST);

break;
case ID_DELETE_TEXT:

pLB->removeAll();
pST->setText(“Deleted All Text from ListBox”);
pPopUpMenu.uncheckItem(ID_ADD_FIRST);
pPopUpMenu.checkItem(ID_DELETE_TEXT);
pPopUpMenu.uncheckItem(ID_ADD_LAST);

break;
case ID_ADD_LAST:

pLB->addDescending(“I know C++”);
pST->setText(“Added text to list box in descending order”);
pPopUpMenu.uncheckItem(ID_ADD_FIRST);
pPopUpMenu.uncheckItem(ID_DELETE_TEXT);
pPopUpMenu.checkItem(ID_ADD_LAST);

break;
default:

break;
}

}

The following, from Windows, shows the pop-up menu generated from this
example:

68 IBM Open Class: User Interface

You can find the complete source to this example in the following files:
v popmenu.cpp
v popmenu.h
v popmenu.hpp
v popmenu.rc

“Chapter 4. Menus” on page 55“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Create a Pop-Up Menu” on page 62
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445
“File: popmenu.cpp”
“File: popmenu.h” on page 72“File: popmenu.hpp” on page 73
“File: popmenu.rc” on page 74

Pop-Up Menu Example

File: popmenu.cpp
#include “popmenu.h”
#include “popmenu.hpp”
/**
* main *
* - Application entry point. *
**/
int main()
{

AppWindow mainWindow(ID_MAIN);
mainWindow.sizeTo(ISize(500,300));
mainWindow.setFocus();
mainWindow.show();
IApplication::current().run();
return 0;

}
/**
* Class AViewWindow :: AViewWindow *
* - Constructor for the main window. *

Chapter 4. Menus 69

**/
AppWindow::AppWindow(unsigned long windowId)

: IFrameWindow(windowId, defaultStyle()),
title(this, “PopUp”,“Example”),
canvas(ID_CANVAS, this, this),
listbox(ID_LISTBX, &canvas, &canvas),
sttxt(ID_TEXT, &canvas, &canvas),
pLBPopUp(listbox, sttxt)

{
listbox.setForegroundColor(IColor::kYellow);
sttxt.setText(“ListBox Set to Default Values”);
sttxt.setLimit(30);
// Customize the multicell canvas
setClient(&canvas);
canvas.addToCell(&listbox, 2, 2);
canvas.setRowHeight(2, 20, true);
canvas.setColumnWidth(2, 20, true);
canvas.addToCell(&sttxt, 2, 6);
canvas.setRowHeight(1, 10);
canvas.setRowHeight(4, 25);
canvas.setRowHeight(7, 10);
canvas.setColumnWidth(1, 10);
canvas.setColumnWidth(3, 10);

}
/**
* Class PopUpHandler :: PopUpHandler *
**/
PopUpHandler::PopUpHandler(IListBox & LBUpdate, IStaticText & stMsg)
: pLB(&LBUpdate),

pST(&stMsg),
pPopUpMenu(ID_POPUP2, pLB),
ulColor(0),
ulText(0)

{
unsigned long ulColor, ulText;
// We need pointers to list box and static text so we can
// update them.
// pLB points to the list box
// pST points to the static text
// Default color and alignment values
ulColor = ID_BLUE;
ulText = ID_ADD_FIRST;
// Check the default items
pPopUpMenu.checkItem(ulColor);
pPopUpMenu.checkItem(ulText);
// Set default color and alignment
setLBColor(ulColor);
setLBText(ulText);
// handle events on pop-up menu
ICommandHandler::handleEventsFor(pLB);
IMenuHandler::handleEventsFor(pLB);

}
/**
* Class PopUpHandler :: xPopUpHandler *
**/
PopUpHandler::xPopUpHandler()
{

ICommandHandler::stopHandlingEventsFor(pLB);
IMenuHandler::stopHandlingEventsFor(pLB);
pLB = 0;
pST = 0;

}
/**
* Class PopUpHandler :: setLBColor *
**/
void PopUpHandler::setLBColor(unsigned long ulNewColor)
{

70 IBM Open Class: User Interface

switch (ulNewColor) {
case ID_RED:

pLB->setBackgroundColor(IColor::kRed);
pST->setText(“Changed color to Red”);
pPopUpMenu.checkItem(ID_RED);
pPopUpMenu.uncheckItem(ID_GREEN);
pPopUpMenu.uncheckItem(ID_BLUE);
break;

case ID_GREEN:
pLB->setBackgroundColor(IColor::kGreen);
pST->setText(“Changed color to Green”);
pPopUpMenu.uncheckItem(ID_RED);
pPopUpMenu.checkItem(ID_GREEN);
pPopUpMenu.uncheckItem(ID_BLUE);
break;

case ID_BLUE:
pLB->setBackgroundColor(IColor::kBlue);
pST->setText(“Changed color to Blue”);
pPopUpMenu.uncheckItem(ID_RED);
pPopUpMenu.uncheckItem(ID_GREEN);
pPopUpMenu.checkItem(ID_BLUE);
break;

default:
break;

}
}
/**
* Class PopUpHandler :: setLBText *
**/
void PopUpHandler::setLBText(unsigned long ulNewText)
{

switch (ulNewText) {
case ID_ADD_FIRST:

pLB->addAscending(“I need to learn C++”);
pST->setText(“Added text to list box in ascending order”);
pPopUpMenu.checkItem(ID_ADD_FIRST);
pPopUpMenu.uncheckItem(ID_DELETE_TEXT);
pPopUpMenu.uncheckItem(ID_ADD_LAST);

break;
case ID_DELETE_TEXT:

pLB->removeAll();
pST->setText(“Deleted All Text from ListBox”);
pPopUpMenu.uncheckItem(ID_ADD_FIRST);
pPopUpMenu.checkItem(ID_DELETE_TEXT);
pPopUpMenu.uncheckItem(ID_ADD_LAST);

break;
case ID_ADD_LAST:

pLB->addDescending(“I know C++”);
pST->setText(“Added text to list box in descending order”);
pPopUpMenu.uncheckItem(ID_ADD_FIRST);
pPopUpMenu.uncheckItem(ID_DELETE_TEXT);
pPopUpMenu.checkItem(ID_ADD_LAST);

break;
default:

break;
}

}
/**
* Class PopUpHandler :: makePopUpMenu *
**/
bool PopUpHandler::makePopUpMenu(IMenuEvent& menuEvt)
{

pPopUpMenu.show(menuEvt.mousePosition());
return true;

}
/**
* Class PopUpHandler :: command *

Chapter 4. Menus 71

**/
bool PopUpHandler::command(ICommandEvent& cmdevt)
{

switch (cmdevt.commandId())
{

case ID_RED:
case ID_GREEN:
case ID_BLUE:

setLBColor(cmdevt.commandId());
return true;

case ID_ADD_FIRST:
case ID_DELETE_TEXT:
case ID_ADD_LAST:

setLBText(cmdevt.commandId());
return true;

}
return false;

}

“Chapter 4. Menus” on page 55
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Create a Pop-Up Menu for a List Box” on page 65
“File: popmenu.h”“File: popmenu.hpp” on page 73
“File: popmenu.rc” on page 74
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

File: popmenu.h
#ifndef _POPMENU_H_
#define _POPMENU_H_
/**
* Window IDs *
**/
#define ID_MAIN 10
#define ID_CANVAS 20
#define ID_TEXT 30
#define ID_LISTBX 40
/**
* Pop-Up Menu IDs *
**/
#define ID_POPUP2 300
#define ID_COLOR 500
#define ID_BLUE 510
#define ID_GREEN 520
#define ID_RED 530
#define ID_TEXTMENU 600
#define ID_ADD_FIRST 610
#define ID_DELETE_TEXT 620
#define ID_ADD_LAST 630
#endif

“Chapter 4. Menus” on page 55
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

72 IBM Open Class: User Interface

“Create a Pop-Up Menu for a List Box” on page 65
“File: popmenu.cpp” on page 69
“File: popmenu.h” on page 72“File: popmenu.hpp”
“File: popmenu.rc” on page 74
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

File: popmenu.hpp
#ifndef _POPMENU_
#define _POPMENU_
#include <iframe.hpp>
#include <icmdhdr.hpp>
#include <iapp.hpp>
#include <ititle.hpp>
#include <istattxt.hpp>
#include <icanvas.hpp>
#include <imenubar.hpp>
#include <imcelcv.hpp>
#include <ientryfd.hpp>
#include <imenuhdr.hpp>
#include <ilistbox.hpp>
#include <icolor.hpp>
#include <ipopmenu.hpp>
class AppWindow;
class PopUpHandler;
/**
* Class AppWindow *
**/
class AppWindow : public IFrameWindow
{

public:
AppWindow(unsigned long windowId);

private:
ITitle title;
IMultiCellCanvas canvas;
IStaticText sttxt;
IListBox listbox;
PopUpHandler pLBPopUp;

};
/**
* Class PopUpHandler *
**/
class PopUpHandler : public IMenuHandler,

public ICommandHandler
{

public:
PopUpHandler(IListBox & lbUpdate, IStaticText & stMsg);
virtual xPopUpHandler();

protected:
virtual bool makePopUpMenu(IMenuEvent& menuEvent);
virtual bool command(ICommandEvent& cmdevt);

private:
void setLBColor(unsigned long ulNewColor);
void setLBText(unsigned long ulNewSize);
IListBox * pLB;
IStaticText * pST;
IPopUpMenu pPopUpMenu;
unsigned long ulColor;
unsigned long ulText;

};
#endif

Chapter 4. Menus 73

“Chapter 4. Menus” on page 55
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Create a Pop-Up Menu for a List Box” on page 65
“File: popmenu.cpp” on page 69
“File: popmenu.h” on page 72“File: popmenu.rc”
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

File: popmenu.rc

This is a Windows resource script file.
#include “popmenu.h”
ID_POPUP2 MENUEX
BEGIN

POPUP “&Color”, ID_COLOR
BEGIN

MENUITEM “&Blue”, ID_BLUE
MENUITEM “&Green”, ID_GREEN
MENUITEM “&Red”, ID_RED

END
POPUP “&Text”, ID_TEXTMENU

BEGIN
MENUITEM “&Add Learn Text”, ID_ADD_FIRST
MENUITEM “&Delete All Text”, ID_DELETE_TEXT
MENUITEM “Add &Know Text”, ID_ADD_LAST

END
END

This is an AIX or OS/2 resource script file:
#include “popmenu.h”
MENU ID_POPUP2
BEGIN

SUBMENU “xColor”, ID_COLOR
BEGIN

MENUITEM “xBlue”, ID_BLUE
MENUITEM “xGreen”, ID_GREEN
MENUITEM “xRed”, ID_RED

END
SUBMENU “xText”, ID_TEXTMENU

BEGIN
MENUITEM “xAdd Learn Text”, ID_ADD_FIRST
MENUITEM “xDelete All Text”, ID_DELETE_TEXT
MENUITEM “Add xKnow Text”, ID_ADD_LAST

END
END

“Chapter 4. Menus” on page 55
“Chapter 21. Resources” on page 297
“Chapter 1. Windows” on page 1

74 IBM Open Class: User Interface

“Chapter 3. Events and Event Handlers” on page 19

“Create a Pop-Up Menu for a List Box” on page 65
“Convert Application Resources” on page 395
“File: popmenu.cpp” on page 69
“File: popmenu.h” on page 72“File: popmenu.hpp” on page 73
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Dynamically Modify a Menu with the ISubmenu Class
The ISubmenu class lets you dynamically modify the contents of a pull-down
menu, cascade menu, or pop-up menu. Unlike the IMenu class, when the user
closes the menu, the ISubmenu class will restore the changes you have made to the
menu. You do not directly create ISubmenu objects. When a user displays a
pull-down, cascade, or pop-up menu, the IMenuHandler class creates an ISubmenu
object and passes it to the menuShowing() member function.

To use the ISubmenu class, create a new class derived from the IMenuHandler
class. Override the IMenuHandler::menuShowing() member function to make
changes to the ISubmenu object that was passed as a parameter. IMenuHandler
calls this function before the pull-down, cascade, or pop-up menu appears on the
screen.You can identify the menu being shown and represented by the ISubmenu
object by calling IMenu::id() on the ISubmenu object or IMenuEvent::menuItemId().

The Multiline Edit Sample shows you how to use the ISubmenu class. The sample
uses this class to disable or enable the Cut, Copy, and Paste menu choices
depending on whether the user has selected any text in the multiline edit control,
or whether the clipboard contains any text:
1. Derive your main window from the IMenuHandler class. The following code

sample, from the amle.hpp file, declares the main window class AEditorWindow.
class AEditorWindow : public IFrameWindow

, public ICommandHandler
, public IMenuHandler
, public AUserMessageHandler

{
// ...

}

This allows us to declare the IMenuHandler::menuShowing() member function
as a protected member function in the AEditorWindow class as follows:

protected:
bool command(ICommandEvent& cmdEvent);
bool menuShowing(IMenuEvent& mnEvt

,ISubmenu& smnAboutToShow);
bool userMessage(IEvent& evt);
bool setFileMenuitemsState(bool f);
AEditorWindow &displayLoadFailedMsg();
bool loadMLE();

2. Enable your application to process events by attaching event handlers to your
main window. The constructor for the AEditorWindow class calls the
handleEventsFor so that the AEditorWindow can start processing menu events.

((ICommandHandler *)this)->handleEventsFor(this);
((AUserMessageHandler *)this)->handleEventsFor(this);
((IMenuHandler *)this)->handleEventsFor(this);

The AEditorWindow constructor calls the handleEventsFor function three times:

Chapter 4. Menus 75

a. Handle command events
b. Handle user message events
c. Handle menu events

The first call to handleEventsFor will process events with the
ICommandHandler::command virtual function. The third call to
handleEventsFor will process events with the IMenuHandler::menuShowing
virtual functions. This sample uses the ICommandHandler class to process all
menu events except for the Edit command. Instead, the IMenuHandler
processes this command.

3. Override the IMenuHandler::menuShowing virtual function. This sample
overrides the menuShowing virtual function to handle events created from the
Edit command:
bool AEditorWindow::menuShowing(IMenuEvent& mnEvt,

ISubmenu& smnAboutToShow)
{

bool fProcessed = false;
switch (smnAboutToShow.id())
{

case MI_EDIT:
if (! mle.hasSelectedText())
{

smnAboutToShow.disableItem(MI_COPY);
smnAboutToShow.disableItem(MI_CUT);
fProcessed = true;

}
try
{

if (! mle.clipboardHasTextFormat())
{

smnAboutToShow.disableItem(MI_PASTE);
fProcessed = true;

}
}
catch(IAccessError& exception)
{

smnAboutToShow.disableItem(MI_PASTE);
fProcessed = true;

}
break;

default:
break;

}
return fProcessed;

}

IMenuHandler calls the menuShowing function after the user selects the Edit
command, and before the application displays the pull-down menu.

The Edit pull-down menu has three commands to select from: Cut, Copy, and
Paste. These commands are enabled before the application displays the
pull-down menu. This menuShowing function disables these three commands
depending on whether the multiline edit has text selected or the clipboard
holds text. The overridden menuShowing function disables the commands with
the ISubmenu::disableItem function (as opposed to the equivalent function in
the IMenuBar class). Using the ISubmenu function in this case means that you
do not have to call any functions to restore disabled command choices. The
ISubmenu class will undo calls to the disableItem function when the Edit
pull-down menu is dismissed, putting the menu back in its original state with
all the menu items enabled.

76 IBM Open Class: User Interface

You can find the Multiline Edit Sample in the samples/ioc/mle directory.

“Chapter 4. Menus” on page 55“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

Multiline Edit Sample
“Add Menus to Your Application” on page 57
“Add a Menu Bar” on page 59
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Chapter 4. Menus 77

78 IBM Open Class: User Interface

Chapter 5. Use Cursor Classes

Window classes that can contain one or more items generally provide a nested
cursor class. The cursor classes provide member functions to move through the
items, either forward or backward.

The Open Class Library cursor classes are designed to have the same look and feel
as the collection class cursors.

A cursor must be in a valid state to access the items in a list. A cursor is generally
created in an invalid state. Any cursor function that causes the cursor to point to
an item in the list validates the cursor. For example, the function setToFirst causes
the cursor to be valid if there are items in the list. If the contents of the list that the
cursor is iterating through change by the addition or removal of items, the cursor
becomes invalid. It cannot be used to access items in the list until it is validated
again by a function that points the cursor at a valid item.

IWindow::ChildCursor is an exception to this.

Some cursors support iteration over items in a collection that match a particular
property. For example, the constructor for a list box cursor can have a second
parameter that determines whether the cursor returns all items in the list box or
just the selected items.

The following example, from the Hello World version 5 ahellow5.cpp file, shows
how to set text from the first selected item in a multiple-selection list box:

// ...
AHelloWindow &

AHelloWindow :: setTextFromListBox()
{

// Create a cursor to the list box. Using the default
// filter for a list box cursor, selectedItems, causes the
// setToFirst() function to position the cursor to the
// first selected item.
// Set the hello IStaticText control text value.
IListBox::Cursor lbCursor(listBox);
lbCursor.setToFirst();
hello.setText(listBox.elementAt(lbCursor));
// Return a reference to the frame
return (*this);

}
// ...

Iteration
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Hello World Version 5: Add Canvases, a List Box, Native System Functions, and
Help” on page 433
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

© Copyright IBM Corp. 1998, 2000 79

IListBox

80 IBM Open Class: User Interface

Chapter 6. Static Text Controls

Static text controls are text fields, bitmaps, icons, and boxes that you can use to
label or box other controls. Your user typically does not interact with these controls
using the keyboard or mouse. Generally, you do not need to change a static
control’s appearance on the screen, so visually these controls tend to be
unchanging.

The static control classes include the following classes:
v IStaticText displays a text string.
v IBitmapControl displays a bitmap with optional text.
v IIconControl displays an icon with optional text.
v IOutlineBox displays a simple border.
v IGroupBox displays a border with a text label.

“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Create a Static Text Control”
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Create a Static Text Control
Static text controls are text fields, bitmaps, icons, and boxes that you can use to
label or box other controls. A user typically does not interact with these controls
using the keyboard or mouse. Generally, you do not need to change a static
control’s appearance on the screen, so visually these controls tend to be
unchanging. Static text control classes include IBitmapControl, IIconControl,
IOutlineBox, IGroupBox, and IStaticText. The IStaticText class creates and manages
the static text control window.

You can set the text and its color, size, and position in the static text window.

The following sample comes from the ahellow1.cpp file from the Hello World
sample application and shows how to create a static text control:
IStaticText hello(WND_HELLO, &mainWindow, &mainWindow);
hello.setText(STR_HELLO);
hello.setAlignment(IStaticText::centerCenter);
mainWindow.setClient(&hello);

The first line uses the window ID, the parent window, and the owner window to
create the static text control and an object for it.

The second line sets a text string in the control using the setText member function,
which is inherited from ITextControl. The string is provided in the resource (.rc)
file.

The third line uses the setAlignment member function to center the static text.

© Copyright IBM Corp. 1998, 2000 81

The following figure, from Windows, shows the Hello World version 1 static text
control:

“Chapter 6. Static Text Controls” on page 81
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Create a Static Text Control” on page 81
“Create an Entry Field” on page 83
“Create an MLE” on page 92
“Hello World Version 1: Create a Main Window” on page 402
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

82 IBM Open Class: User Interface

Chapter 7. Entry Fields and Multiline Edit (MLE) Fields

An entry field is a control window that enables a user to view and edit a single line
of text. An entry field provides the text-editing capabilities of a simple text editor
and is useful whenever an application requires a short line of text from the user.

Use the IEntryField class to represent an entry field control.

Multiline Edit Fields
If the application requires more sophisticated text-editing capabilities and multiple
lines of text from the user, the application can use a multiline edit (MLE) field.

A multiline edit field enables users to view and edit multiple lines of text. Use the
IMultiLineEdit class to create an MLE field. The member functions of the
IMultiLineEdit class enable you to display text files with horizontal and vertical
scrolling, read a file into and save it from an MLE, or perform basic clipboard tasks
(such as cut, copy, paste, and clear).

“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Create an Entry Field”
“Create an MLE” on page 92
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Create an Entry Field
The following is an example of creating an entry field.
1. Declare three entry fields in the .hpp file. This example declares three entry

fields called ef1, ef2, and ef3:
#include <ientryfd.hpp>
/***/
/* Create the frame window */
/* Declare the entry fields */
/***/
class AppWindow : public IFrameWindow
{
public:

AppWindow(unsigned long windowId);
xAppWindow();
void handleEvents(unsigned long eventtype);

private:
ICanvas canvas;
IEntryField ef1;
IEntryField ef2;
IEntryField ef3;
ACommandHandler * commandHandler;

};

2. Construct the entry fields in the .cpp file and manipulate data inside them. The
constructor for ef3 takes efStyle as one of its agruments. This variable defines
the following style attributes:

© Copyright IBM Corp. 1998, 2000 83

Style Description

IWindow::visible Causes the window to be visible.

IWindow::tabStop Identifies the window as one the user can
move the input focus to using the Tab key.

This style does has no affect on tabbing
between windows. The Motif operating
environment determines how the input
focus is changed via the keyboard.

IWindow::group Identifies the window as being the first in a
group. Windows in a group are sibling
windows consecutively ordered by sibling
order. You can navigate between windows in
a group using the keyboard arrow keys.

IEntryField::margin Draws a border around the entry field, with
a margin between the border and the entry
field. The margin’s size is determined by the
current font being used for entry field text
(half a
character-width wide and half a
character-height high).

Because the margin and border are drawn
around the entry field, using the margin
style does not change the position of the
entry field itself.

IEntryField::autoScroll If the user tries to move off the end of a
line, the entry field automatically scrolls
one-third the width of the window in the
appropriate direction.

The example uses the following member functions from IEntryField:

Member Function Description

setLimit Sets the maximum number of bytes the
entry field can contain.

setText Sets the control window’s text. (This is an
inherited function from ITextControl.)

setBackgroundColor Sets the background color to the indicated
color. (This is an inherited function from
IWindow.)

setForegroundColor Sets the foreground color to the indicated
color. (This is an inherited function from
IWindow.)

setBorderColor Sets the border color to the indicated color.
(This is an inherited function from
IWindow.)

setFocus Sets the input focus to the window. (This is
an inherited function from IWindow.)

#include “entryf3.h”
#include “entryf3.hpp”
#include <icoordsy.hpp>

84 IBM Open Class: User Interface

IEntryField::Style efStyle = IWindow::visible |
IWindow::tabStop |
IControl::group |
IEntryField::margin |
IEntryField::autoScroll;

/**
* Class AppWindow :: AppWindow *
* - Window constructor *
**/
AppWindow :: AppWindow(unsigned long windowId)

: IFrameWindow(“Entry Field Example”,
windowId,
IFrameWindow::defaultStyle() |
IFrameWindow::menuBar),

canvas(ID_CANVAS, this, this),
ef1(ID_ENTRY, &canvas,&canvas,

IRectangle(10, 200, 600, 240)),
ef2(ID_ENTRY2, &canvas, &canvas,

IRectangle(10, 125, 300, 175)),
ef3(ID_ENTRY3, &canvas, &canvas,

IRectangle(10, 50, 300, 100),
efStyle)

{
// Create first entry field
ef1.setLimit(50);
ef1.setText(“Initial Text for Entry Field 1”);
ef1.setBackgroundColor(IColor(213, 219, 255));
ef1.setForegroundColor(IColor::kBlack);
ef1.setBorderColor(IColor::kGreen);
ef1.setFocus();
// Create second entry field
ef2.setLimit(50);
ef2.setText(“Initial Text for Entry Field 2”);
ef2.setBackgroundColor(IColor(213, 219, 255));
ef2.setForegroundColor(IColor::kBlack);
ef2.setBorderColor(IColor::kGreen);
// Create third entry field
ef3.setLimit(50);
ef3.setText(“Initial Text for Entry Field 3”);
ef3.setBackgroundColor(IColor(213, 219, 255));
ef3.setForegroundColor(IColor::kBlack);
ef3.setBorderColor(IColor::kGreen);
moveSizeTo(IRectangle(0, 0, 670, 350));
canvas.setBackgroundColor(IColor(170, 182, 255));
setClient(&canvas);
show();
commandHandler = new ACommandHandler(this, &ef1,

&ef2, &ef3);
commandHandler->handleEventsFor(this);

}

3. Declare a command handler in the .hpp. Thie example will override the virtual
function ICommandHandler::command to process events from the menu.
class ACommandHandler : public ICommandHandler {
public:

ACommandHandler(AppWindow *efWindow,
IEntryField *ef1,
IEntryField *ef2,
IEntryField *ef3);

protected:
virtual bool command(ICommandEvent& cmdEvent);

private:
AppWindow *ef;
IEntryField *ef1,

*ef2,
*ef3;

};

Chapter 7. Entry Fields and Multiline Edit (MLE) Fields 85

4. Add event handling in the .cpp to manipulate the data inside the entry fields.
The menu of this example provides you with five commands:
v Toggle Read Only for 1

v Cut Selected from 2

v Copy Selected from 1

v Paste into 3

v Clear Selected from 3

The example overrides the ICommandHandler::command function to process
these commands:
ACommandHandler::ACommandHandler(AppWindow *efWindow,

IEntryField *ef1,
IEntryField *ef2,
IEntryField *ef3):

ef(efWindow),
ef1(ef1),
ef2(ef2),
ef3(ef3)

{
}
bool ACommandHandler::command(ICommandEvent& cmdEvent)
{

switch (cmdEvent.commandId())
{

case ID_READONLY_ITEM:
ef1->enableDataUpdate(ef1->isWriteable());
break;
case ID_COPY_ITEM:
if (ef1->hasSelectedText()) {

ef1->copy();
}

break;
case ID_CUT_ITEM:
if (ef2->hasSelectedText()) {

ef2->cut();
}
break;

case ID_PASTE_ITEM:
if (ef3->clipboardHasTextFormat()) {

ef3->paste();
}
break;

case ID_CLEAR_ITEM:
if (ef3->hasSelectedText()) {

ef3->clear();
}

break;
return true;

} // end of switch
return false;

}

The following figure, from Windows, shows the entry fields created using the
preceding example:

86 IBM Open Class: User Interface

You can find the complete source to this example in the following files:
v entryf3.cpp
v entryf3.h
v entryf3.hpp
v entryf3.rc

“Chapter 7. Entry Fields and Multiline Edit (MLE) Fields” on page 83
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Create a Static Text Control” on page 81
“Create an MLE” on page 92
“File: entryf3.cpp”
“File: entryf3.h” on page 89
“File: entryf3.hpp” on page 90
“File: entryf3.rc” on page 91
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Entry Field Example

File: entryf3.cpp
#include “entryf3.h”
#include “entryf3.hpp”
#include <icoordsy.hpp>
IEntryField::Style efStyle = IWindow::visible |

IWindow::tabStop |
IControl::group |
IEntryField::margin |
IEntryField::autoScroll;

/**
* Class AppWindow :: AppWindow *
* - Window constructor *
**/
AppWindow :: AppWindow(unsigned long windowId)

: IFrameWindow(“Entry Field Example”,

Chapter 7. Entry Fields and Multiline Edit (MLE) Fields 87

windowId,
IFrameWindow::defaultStyle() |
IFrameWindow::menuBar),

canvas(ID_CANVAS, this, this),
ef1(ID_ENTRY, &canvas,&canvas,

IRectangle(10, 200, 600, 240)),
ef2(ID_ENTRY2, &canvas, &canvas,

IRectangle(10, 125, 300, 175)),
ef3(ID_ENTRY3, &canvas, &canvas,

IRectangle(10, 50, 300, 100),
efStyle)

{
// Create first entry field
ef1.setLimit(50);
ef1.setText(“Initial Text for Entry Field 1”);
ef1.setBackgroundColor(IColor(213, 219, 255));
ef1.setForegroundColor(IColor::kBlack);
ef1.setBorderColor(IColor::kGreen);
ef1.setFocus();
// Create second entry field
ef2.setLimit(50);
ef2.setText(“Initial Text for Entry Field 2”);
ef2.setBackgroundColor(IColor(213, 219, 255));
ef2.setForegroundColor(IColor::kBlack);
ef2.setBorderColor(IColor::kGreen);
// Create third entry field
ef3.setLimit(50);
ef3.setText(“Initial Text for Entry Field 3”);
ef3.setBackgroundColor(IColor(213, 219, 255));
ef3.setForegroundColor(IColor::kBlack);
ef3.setBorderColor(IColor::kGreen);
moveSizeTo(IRectangle(0, 0, 670, 350));
canvas.setBackgroundColor(IColor(170, 182, 255));
setClient(&canvas);
show();
commandHandler = new ACommandHandler(this, &ef1,

&ef2, &ef3);
commandHandler->handleEventsFor(this);

}
/**
* Class AppWindow :: xAppWindow *
* - Window destructor *
**/
AppWindow :: xAppWindow()
{

commandHandler->stopHandlingEventsFor(this);
}
/**
* Class ACommandHandler :: ACommandHandler *
**/
ACommandHandler::ACommandHandler(AppWindow *efWindow,

IEntryField *ef1,
IEntryField *ef2,
IEntryField *ef3):

ef(efWindow),
ef1(ef1),
ef2(ef2),
ef3(ef3)

{
}
/**
* Class ACommandHandler :: command *
**/
bool ACommandHandler::command(ICommandEvent& cmdEvent)
{

switch (cmdEvent.commandId())
{

88 IBM Open Class: User Interface

case ID_READONLY_ITEM:
ef1->enableDataUpdate(!ef1->isWriteable());
break;
case ID_COPY_ITEM:
if (ef1->hasSelectedText()) {

ef1->copy();
}

break;
case ID_CUT_ITEM:
if (ef2->hasSelectedText()) {

ef2->cut();
}
break;

case ID_PASTE_ITEM:
if (ef3->clipboardHasTextFormat()) {

ef3->paste();
}
break;

case ID_CLEAR_ITEM:
if (ef3->hasSelectedText()) {

ef3->clear();
}

break;
return true;

}
return false;

}
/**
* main *
* - Application entry point. *
**/
int main()
{

ICoordinateSystem::setApplicationOrientation(
ICoordinateSystem::kOriginLowerLeft);

AppWindow appWindow(WID_MAIN);
IApplication::current().run();
return 0;

}

“Chapter 7. Entry Fields and Multiline Edit (MLE) Fields” on page 83
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Create an Entry Field” on page 83
“File: entryf3.h”
“File: entryf3.hpp” on page 90
“File: entryf3.rc” on page 91
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

File: entryf3.h
#ifndef ENTRYFD_H
#define ENTRYFD_H
#define WID_MAIN 1000 // Frame Window ID
#define ID_CANVAS 1001 // Canvas ID
#define ID_ENTRY 1003 // Entry Field ID
#define ID_ENTRY2 1004 // Entry Field2 ID
#define ID_ENTRY3 1005 // Entry Field3 ID
#define MMI_ACTIONS 1999 // Manipulate menu item ID
#define ID_CENTER_ITEM 2000 // Center menu item ID

Chapter 7. Entry Fields and Multiline Edit (MLE) Fields 89

#define ID_LEFT_ITEM 2001
#define ID_RIGHT_ITEM 2002
#define ID_READONLY_ITEM 2003
#define ID_CUT_ITEM 2004
#define ID_COPY_ITEM 2005
#define ID_PASTE_ITEM 2006
#define ID_CLEAR_ITEM 2007
#endif

“Chapter 7. Entry Fields and Multiline Edit (MLE) Fields” on page 83
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Create an Entry Field” on page 83
“File: entryf3.cpp” on page 87
“File: entryf3.hpp”
“File: entryf3.rc” on page 91
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

File: entryf3.hpp
#include <iframe.hpp>
#include <icmdhdr.hpp>
#include <icanvas.hpp>
#include <istattxt.hpp>
#include <ientryfd.hpp>
#include <iapp.hpp>
class AppWindow;
/**
* Class ACommandHandler *
**/
class ACommandHandler : public ICommandHandler
{

public:
ACommandHandler(AppWindow *efWindow,

IEntryField *ef1,
IEntryField *ef2,
IEntryField *ef3);

protected:
virtual bool command(ICommandEvent& cmdEvent);

private:
AppWindow *ef;
IEntryField *ef1,

*ef2,
*ef3;

};
/**
* Class AppWindow *
**/
class AppWindow : public IFrameWindow
{

public:
AppWindow(unsigned long windowId);
xAppWindow();
void handleEvents(unsigned long eventtype);

private:
ICanvas canvas;
IEntryField ef1;

90 IBM Open Class: User Interface

IEntryField ef2;
IEntryField ef3;
ACommandHandler * commandHandler;

};

“Chapter 7. Entry Fields and Multiline Edit (MLE) Fields” on page 83
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Create an Entry Field” on page 83
“File: entryf3.cpp” on page 87
“File: entryf3.h” on page 89
“File: entryf3.rc”
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

File: entryf3.rc

This resource script file is for Windows:
#include “entryf3.h”
WID_MAIN MENUEX

BEGIN
POPUP “&Manipulate” , MMI_ACTIONS

BEGIN
MENUITEM “Toggle Read &Only for 1” , ID_READONLY_ITEM
MENUITEM “Cu&t Selected from 2” , ID_CUT_ITEM
MENUITEM “&Copy Selected from 1” , ID_COPY_ITEM
MENUITEM “&Paste into 3” , ID_PASTE_ITEM
MENUITEM “&Clear Selected from 3” , ID_CLEAR_ITEM

END
END

This resource script file is for AIX or OS/2:
#include “entryf3.h”
MENU WID_MAIN

BEGIN
SUBMENU “xManipulate” , MMI_ACTIONS

BEGIN
MENUITEM “Toggle Read xOnly for 1” , ID_READONLY_ITEM
MENUITEM “Cuxt Selected from 2” , ID_CUT_ITEM
MENUITEM “xCopy Selected from 1” , ID_COPY_ITEM
MENUITEM “xPaste into 3” , ID_PASTE_ITEM
MENUITEM “xClear Selected from 3” , ID_CLEAR_ITEM

END
END

“Chapter 7. Entry Fields and Multiline Edit (MLE) Fields” on page 83
“Chapter 21. Resources” on page 297
“Chapter 1. Windows” on page 1

Chapter 7. Entry Fields and Multiline Edit (MLE) Fields 91

“Chapter 3. Events and Event Handlers” on page 19

“Create an Entry Field” on page 83
“Convert Application Resources” on page 395
“File: entryf3.cpp” on page 87
“File: entryf3.h” on page 89
“File: entryf3.hpp” on page 90
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Create an MLE
A multiline edit (MLE) field enables users to view and edit multiple lines of text.
Use the IMultiLineEdit class to create an MLE field. The member functions of the
IMultiLineEdit class enable you to display text files with horizontal and vertical
scrolling, read a file into and save it from an MLE, or perform basic clipboard tasks
(for example, cut, paste, copy, and clear).

Some library styles and functions are ignored on Windows, for example
IMultiLineEdit::enableWordWrap.

To create an object of the IMultiLineEdit class, include the ID of a specified MLE,
the parent and owner windows, an IRectangle object, and one or more styles.

Styles define such functions as scrolling text, wrapping words, adding a border,
and making the field read-only.

The following, from the Multiline Edit Sample, creates an MLE with basic file and
clipboard operations. You can find this sample in the samples/ioc/mle directory.
1. Declare an application frame window that contains an MLE and a command

handler that can process events for the MLE, as follows:
/**/
/* Create the command handler */
//***/
class ACommandHandler : public ICommandHandler
{
public:

ACommandHandler(AppWindow *mleWindow, IMultiLineEdit *amle);
protected:

virtual bool command(ICommandEvent& cmdEvent);
private:

IMultiLineEdit *mle;
};
/***/
/* Create the frame window */
/***/
class AppWindow : public IFrameWindow, public ICommandHandler
{
public:

AppWindow(unsigned long windowId);
xAppWindow();

private:
about();
ITitle title;
IMultiLineEdit mle;
ACommandHandler * commandHandler;

};

92 IBM Open Class: User Interface

2. Construct the MLE in the .cpp file as follows:
/***/
/* Window Constructor */
/***/
AppWindow :: AppWindow(unsigned long windowId)

: IFrameWindow(windowId, // create Frame window
defaultStyle() | menuBar),

title(this,“MLE Example”), // include Title
mle(ID_MLE, this, this) // create MLE

{
setClient(&mle);
handleEventsFor(this);
setIcon(ID_ICON);
mle.setFocus();

//***
// Create Command Handler
//***

commandHandler = new ACommandHandler(this, &mle);
commandHandler->handleEventsFor(this);

3. Use the following code for event handling:
/***/
/* Command Handler Constructor */
/***/
ACommandHandler :: ACommandHandler (AppWindow *mleWindow,

IMultiLineEdit *amle):
mle(amle)

{
}
/***/
/* MyWindow Command Event Handler */
/***/
bool ACommandHandler :: command(ICommandEvent& cmdevt)
{

switch (cmdevt.commandId())
{

case ID_IMPORT_ITEM:
mle->importFromFile(“import.txt”,IMultiLineEdit:: MLEFormat);
return true;

case ID_EXPORT_ITEM:
mle->exportToFile(“export.txt”,IMultiLineEdit:: noTran);
return true;

case ID_INIT_ITEM:
mle->setText(“This is some initial text.”);
return true;

case ID_MARK_ITEM:
mle->selectRange(IRange(13,19));
return true;

case ID_COPY_ITEM:
if (mle->hasSelectedText())

mle->copy();
return true;

case ID_CUT_ITEM:
if (mle->hasSelectedText())

mle->cut();
return true;

case ID_PASTE_ITEM:
if (mle->clipboardHasTextFormat())

mle->paste();
return true;

case ID_DELMARK_ITEM:
if (mle->hasSelectedText())

mle->discard();
return true;

case ID_DELALL_ITEM:
mle->removeAll();
return true;

Chapter 7. Entry Fields and Multiline Edit (MLE) Fields 93

case ID_INSERT_ITEM:
mle->add(“inserted”);
return true;

case ID_WORDWRAP_ITEM:
mle->enableWordWrap(!mle->isWordWrap());
return true;

case ID_HOME_ITEM:
mle->setCursorPosition(0);
return true;

} /* end switch */
return false;

}

Loading and Saving a File
The following member functions from the IMultiLineEdit class allow you to import
text to an MLE from a file and export text from an MLE into a file.

Member Function Use To

importFromFile Load a file into an MLE

exportToFile Save from an MLE

exportSelectedTextToFile Save marked text in an MLE into a file

You can load and save a file to the MLE, as follows:
case ID_IMPORT_ITEM:

mle->importFromFile(“import.txt”,IMultiLineEdit::MLEFormat);
return true;

case ID_EXPORT_ITEM:
mle->exportToFile(“export.txt”,IMultiLineEdit::noTran);
return true;

Positioning the Cursor
You can position the cursor on a specific line of an MLE or in a specific character
position, add to or remove lines from an MLE, or request the number of lines in an
MLE.

Position the cursor on the first line, as follows:
case ID_HOME_ITEM:

mle->setCursorPosition(0);
return true;

The following figure, from Windows, shows the cursor on the first line of the MLE:

94 IBM Open Class: User Interface

Performing Clipboard Operations
The IMultiLineEdit class has several member functions to perform clipboard
operations, including copy, cut, and paste. After you define an MLE, use these
member functions to copy text to the clipboard, cut and put text into the clipboard,
or paste only the marked lines from the clipboard.

In Motif applications, you select a range of text by pressing mouse button 1. To
paste text, you use mouse button 2.

The following code performs clipboard operations:
case ID_MARK_ITEM: // First mark some text

mle->selectRange(IRange(13,19));
return true;

case ID_COPY_ITEM:
if (mle->hasSelectedText())

mle->copy();
return true;
case ID_PASTE_ITEM:

if (mle->clipboardHasTextFormat())
mle->paste();

return true;
case ID_CUT_ITEM: // Check that text is marked

if (mle->hasSelectedText()) // then cut it to the clipboard
mle->cut();

return true;

The following figure shows an example of cutting text to the clipboard. It contains
marked lines in the client area and a menu option, Edit, with three menu items,
including Cut. The menu item ID of the Cut menu item is ID_CUT_ITEM.

Chapter 7. Entry Fields and Multiline Edit (MLE) Fields 95

You can find the Multiline Edit Sample in the samples/ioc/mle directory.

“Chapter 7. Entry Fields and Multiline Edit (MLE) Fields” on page 83
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

Multiline Edit Sample
“Create a Static Text Control” on page 81
“Create an Entry Field” on page 83
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

96 IBM Open Class: User Interface

Chapter 8. Buttons

A button is a type of control window used to initiate an operation or to set the
attributes of an operation. A button can appear alone or with a group of other
buttons. When buttons are grouped, you can move from button to button within
the group by pressing the Arrow keys. You can also move among groups by
pressing the Tab key.

A user can select a button by clicking it with the mouse or by pressing the
spacebar when the button has the keyboard focus. In most cases, a button changes
its appearance when selected.

A button sends notification messages to its owner window when the user selects it.

There are four main types of buttons which determine how the button looks and
behaves:
v Push buttons
v Radio buttons
v Check boxes
v Three-state check boxes

The AIX platform does not support three-state check boxes.

A radio button, check box, or three-state check box control an operation; a push
button initiates an operation.

Make sure that you put each set of radio buttons, check boxes, or three-state check
boxes into a single group. Buttons in a group must also have the same parent
window. You can do this by either constructing the first button of the set with the
IWindow::group style, or calling IWindow::enableGroup() after you create the first
button of the set.

Push buttons
A push button is a rectangular window that contains a text string. Typically, an
application uses a push button to let the user start or stop an operation. A push
button represents an action that is initiated when a user selects it. You can label it
with text, graphics, or both. When a user selects a push button, the action occurs
immediately if there is a handler for the generated command event.

Use the IPushButton class to create and maintain the push button window. By
default, a push button generates an application ICommandEvent. You can change
the default style by changing the window style value to generate a help event or a
system command event. Using system command events is not recommended for
portable applications. You cannot set colors for push buttons on the Windows
operating system.

For example, in the Hello World - Version 3 user interface sample, the
AHelloWindow::command member function handles the command events generated
by pressing the Left, Center, and Right push buttons in the application. Note, the
command events are the same as those used for the corresponding menu items.

© Copyright IBM Corp. 1998, 2000 97

Therefore, the command function processing is the same whether you press the
push button or select the item on the menu bar.

Radio buttons
A radio button is a button control that contains a small circular indicator with a text
string to the right of it. Use radio buttons to let your users choose from a small list
of mutually exclusive items.

For example, an order form application asking the user to select from Small,
Medium, and Large could use radio buttons.

Generally, to deselect a radio button you select another radio button in the same
group.

If you have a large list of mutually exclusive choices, try using a single-selection
list box instead.

The IRadioButton class lets you create and manage the radio button window. The
ISelectHandler class processes the selection of a radio button. You add the handler
to either the radio button or its owner window by calling the handler’s
handleEventsFor function.

Check boxes
A check box is a button control that contains a small box with a text string to the
right of it. They are similar to radio buttons except that you can select anywhere
between none and all of the check boxes in a group.

Each time the user selects a check box, that button’s state toggles between selected
and unselected.

A check mark symbol appears in the check box to indicate that the user has
selected the choice.

Motif fills in the check box to indicate that the user has selected the choice.

Use a check box to set a choice in a group of choices that are not mutually
exclusive.

Check boxes may also toggle application features on or off. For example, a word
processing application might use a check box to let the user turn word wrapping
on or off.

If you have a large list of items, try using a multiple-selection list box instead.

The ICheckBox class lets you create and maintain a check box. The selection of a
check box is processed by using the ISelectHandler class. You add the handler to
either the check box or its owner window.

98 IBM Open Class: User Interface

Three-state check boxes
Three-state check boxes are similar to check boxes except that three-state check boxes
have three possible states: selected, unselected, and halftoned. The halftone state
would indicate that the choice is indeterminable.

For example, word processing applications occasionally use three-state check boxes
to describe the attributes of a selected block of text, such as italics:
v If the selected block of text contains no italicized text, then the application

would display an unselected three-state check box.
v If the block of text contains all italicized text, then the application would display

a selected three-state check box.
v If the block of text contains a mix of italicized and non-italicized text, then the

application would display a halftoned three-state check box.

The I3StateCheckBox class lets you create and maintain a three-state check box.
You have to use a combination of the isSelected and isHalftone member functions
to determine the state of a three-state check box. The following table shows the
state of the three-state check box and its relation to the isSelected and isHalftone
member functions.

Current state isSelected isHalftone

checked true false

halftone true true

not checked false false

The I3StateCheckBox class is not supported on Motif.

You process the selection of a three-state checkbox with the ISelectHandler class.
You can add the handler to either the three-state check box to its owner window.

“Chapter 1. Windows” on page 1

“Create a Push Button”
“Create a Radio Button” on page 103
“Create a Check Box” on page 112
“Create a Three-State Check Box” on page 117
“Task and Samples Cross-Reference Table” on page 445

Create a Push Button
A push button is a rectangular window that contains a text string. Typically, an
application uses a push button to let the user start or stop an operation. A push
button represents an action that is initiated when a user selects it. You can label it
with text, graphics, or both. When a user selects a push button, the action occurs
immediately if there is a handler for the generated command event.

Use the IPushButton class to create and maintain the push button window. By
default, a push button generates an application ICommandEvent. You can change
the default style by changing the window style value to generate a help event or a

Chapter 8. Buttons 99

system command event. Using system command events is not recommended for
portable applications. You cannot set colors for push buttons on the Windows
operating system

Refer to the reference documentation for a list of the styles provided for
IPushButton and for the IPushButton derived class, IGraphicPushButton.

The Hello World version 4 application defines three push buttons (Left, Center,
and Right) in the ahellow4.cpp file.

The command events generated by pressing the Left, Center, and Right push
buttons are handled by the AHelloWindow::command member function. Note, the
command events are the same as those used for the corresponding menu items.
Therefore, the command function processing is the same whether you press the
push button or select the item on the menu bar.
1. Optionally, in a resource script file, declare the strings that will appear on the

buttons. You declare strings in a resource script file in a string table, as in the
following excerpt from ahellow4.rc.
#include “ahellow4.h”
WND_MAIN ICON ahellow4.ico
STRINGTABLE

BEGIN
STR_HELLO , “Hello, World!!!”

// ...
STR_LEFTB , “Left”
STR_CENTERB , “Center”
STR_RIGHTB , “Right”

// ...
END

2. Declare the push buttons in a header file. This excerpt from ahellow4.hpp
declares three IPushButton objects, leftButton, centerButton, and rightButton,
as members of the main window class AHelloWindow (which inherits from
IFrameWindow). The AHelloWindow class also has an ISetCanvas object called
buttons. The sample uses buttons to arrange the push buttons on the main
window.
class AHelloWindow : public IFrameWindow
{

// ...
private:

IMenuBar
menuBar;

IStaticText
statusLine,
hello;

ISetCanvas
buttons;

IPushButton
leftButton,
centerButton,
rightButton;

IInfoArea
infoArea;

ACommandHandler
commandHandler;

AHelloWindow
&operator=(const AHelloWindow&);

};

3. Construct the push buttons and arrange them on the main window. The excerpt
is from the ahellow4.cpp file. The AHelloWindow constructor creates the three
buttons with the MI_LEFT, MI_CENTER, and MI_RIGHT window IDs. These IDs are

100 IBM Open Class: User Interface

the same ones used by the menu commands Left, Right, and Center. Thus, any
any event handling routines created for these menu commands will be the
same as for the push buttons. The AHelloWindow constructor creates the three
buttons as children of the set canvas buttons.
The AHelloWindow constructor calls the IButton::setText function to place text
strings onto the push buttons. The call to IWindow::enableTabStop identifies the
window as one the user can move the input focus to using the Tab key.

This function has no effect on tabbing between windows. The Motif operating
environment determines how the input focus is changed via the keyboard.

The calls to ISetCanvas::setMargin and ISetCanvas::setPad configure the set
canvas in such a way so that no spaces remain between the push buttons, or
between the button and the edge of the frame window. The call to
IFrameWindow::addExtension puts the set canvas buttons in a frame extension
above the information area:
AHelloWindow :: AHelloWindow(const unsigned long windowId)

:IFrameWindow(IFrameWindow::defaultStyle() |
IFrameWindow::minimizedIcon |
IFrameWindow::accelerator,
windowId)

,menuBar(windowId, this)
,statusLine(WND_STATUS, this, this)
,hello(WND_HELLO, this, this)
,buttons(WND_BUTTONS, this, this)
,leftButton(MI_LEFT, &buttons, &buttons)
,centerButton(MI_CENTER, &buttons, &buttons)
,rightButton(MI_RIGHT, &buttons, &buttons)
,infoArea(this)
,commandHandler(this)

{
setClient(&hello);
addExtension(&statusLine, IFrameWindow::aboveClient,

IFont(&statusLine).maxCharHeight());
hello.setText(STR_HELLO);
leftButton.setText(STR_LEFTB);
centerButton.setText(STR_CENTERB);
rightButton.setText(STR_RIGHTB);
infoArea.setDefaultText(STR_INFO);
leftButton.enableTabStop();
buttons.setMargin(ISize());
buttons.setPad(ISize());
addExtension(&buttons, IFrameWindow::belowClient,

(unsigned long)buttons.minimumSize().height());
commandHandler.handleEventsFor(this);
setTextAlignment(center);

}

4. Declare an event handler for the buttons. This is an excerpt from the file
ahellow4.hpp. The class ACommandHandler inherits from ICommandHandler.
class ACommandHandler : public ICommandHandler
{

public:
// Constructor
// - constructs the object with a pointer to the main
// frame window
ACommandHandler(AHelloWindow *helloFrame);
// Destructor
virtual
xACommandHandler() { };

protected:
// Override command function

Chapter 8. Buttons 101

// - the command function is called to handle
// application command events
virtual bool

command(ICommandEvent& cmdEvent);
private:

AHelloWindow
*frame;

};

5. Override the ICommandEvent::command virtual function so that the
application can handle events from the buttons. This function also handles
events from the menu as well as events from the keyboard, as defined in the
resource script file ahellow4.rc:
bool ACommandHandler :: command(ICommandEvent & cmdEvent)
{

bool eventProcessed(true);
switch (cmdEvent.commandId()) {

case MI_CENTER:
frame->setTextAlignment(AHelloWindow::center);
break;

case MI_LEFT:
frame->setTextAlignment(AHelloWindow::left);
break;

case MI_RIGHT:
frame->setTextAlignment(AHelloWindow::right);
break;

case MI_TEXT:
frame->editText();
break;

default:
eventProcessed=false;

}
return(eventProcessed);

}

6. Create a command handler, then implement event handling. The constructor of
AHelloWindow creates a member object of type ACommandHandler called
commandHandler. In the constructor of AHelloWindow the following line of code
attaches the command handler to AHelloWindow so it can process event
handling:

commandHandler.handleEventsFor(this);

In the AHelloWindow destructor the following line of code stops event handling:
commandHandler.stopHandlingEventsFor(this);

The following figure, from Windows, shows the Hello World version 4 push
buttons:

102 IBM Open Class: User Interface

“Chapter 8. Buttons” on page 97
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Hello World Version 4: Adding Dialogs and Push Buttons” on page 420
“Create a Radio Button”
“Create a Check Box” on page 112
“Create a Three-State Check Box” on page 117
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Create a Radio Button
The following example creates a group of radio buttons. The example creates five
radio buttons named White, Black, Blue, Red and Yellow. An information area
indicates which button the user has selected. You can disable or enable the Blue
radio button by selecting the appropriate command in the menu bar:
1. Define the text associated with each radio button in the resource script file as

follows:
STRINGTABLE

BEGIN
STR_BLACK, “Black”
STR_WHITE, “White”
STR_BLUE, “Blue”
STR_RED, “Red”
STR_YELLOW, “Yellow”

END

2. Declare the radio buttons in the header file. This example declares the radio
buttons in the main window class called AppWindow:
// AppWindow declaration
class AppWindow : public IFrameWindow
{
public:

AppWindow(unsigned long windowId);
xAppWindow();
AppWindow & enableButton();
AppWindow & disableButton();
private:

Chapter 8. Buttons 103

ITitle *title;
ISetCanvas *canvas1;
IInfoArea *infoArea;
IRadioButton *white;
IRadioButton *black;
IRadioButton *blue;
IRadioButton *red;
IRadioButton *yellow;
IMenuBar *menuBar;
MySelectHandler *selectHandler;
MyCommandHandler *commandHandler;

};

3. Construct the radio buttons in the main window constructor. Because this
example adds radio buttons to a set canvas, the example does not have to
specify the exact location of the radio button within the main window; the set
canvas automatically arranges its controls for you.
The IWindow::enableGroup() function groups the five radio buttons. Windows
in a group are sibling windows consecutively ordered by sibling order. As a
result, this example lets you naviage between the radio buttons by using the
keyboard arrow keys. Moving forward from the last window in the group
causes the input focus to return to the first window in the group. Moving
backward from the first window in the group causes the input focus to return
to the last window in the group:
// AppWindow Constructor
AppWindow :: AppWindow(unsigned long windowId)

: IFrameWindow(windowId,
IFrameWindow::defaultStyle())

{
// Create Menu Bar
menuBar = new IMenuBar(windowId, this);
// Create Title
title = new ITitle(this,ID_RADIO_TITLE);
// Create Canvas
canvas1 = new ISetCanvas(ID_CANVAS, this, this);
moveSizeTo(IRectangle(0,0,400,100));
setClient(canvas1);
IWindow * pParent= canvas1;
IWindow * pOwner = canvas1;
// Create Status Area
infoArea = new IInfoArea(this);
// Create Radio Buttons
white = new IRadioButton(WND_WHITEBT, pParent, pOwner);
white->setText(STR_WHITE);
black = new IRadioButton(WND_BLACKBT, pParent, pOwner);
black->setText(STR_BLACK);
blue = new IRadioButton(WND_BLUEBT, pParent, pOwner);
blue->setText(STR_BLUE);
red = new IRadioButton(WND_REDBT, pParent, pOwner);
red->setText(STR_RED);
yellow = new IRadioButton(WND_YELLOWBT, pParent, pOwner);
yellow->setText(STR_YELLOW);
// Set the group style of the controls
white->enableGroup();
// Select white as the default button
white->select();
infoArea->setText(“White is the currently selected color”);
// Set the select handler to handle events
selectHandler = new MySelectHandler(infoArea);
selectHandler->handleEventsFor(white);
selectHandler->handleEventsFor(black);
selectHandler->handleEventsFor(blue);
selectHandler->handleEventsFor(red);
selectHandler->handleEventsFor(yellow);
// Set the command handler to handle menu events

104 IBM Open Class: User Interface

commandHandler = new MyCommandHandler(this);
commandHandler->handleEventsFor(this);
setFocus().show();

}

4. Process events that result from selecting a radio button in the select handler
routines. This example, in the header file, declares an event handler called
MySelectHandler which inherits from ISelectHandler. The MySelectHandler class
overrides the protected function selected() so that the example can define what
will happen when a user selects a radio button. The MySelectHandler class has
a pointer to an IInfoArea object called infoArea. This class uses this pointer to
change the text in the information area when a user selects a radio button:
// Select handler class declaration
class MySelectHandler: public ISelectHandler
{
public:

MySelectHandler(IInfoArea *info);
protected:

selected(IControlEvent& evt);
private:
bool fProcess;
IInfoArea *infoArea;

};

When a user selects a radio button, an IControlEvent object is created. The
MySelectHandler::selected() function processes the IControlEvent object. The
MySelectHandler::selected() function in this example returns false to indicate
that the next event handler should process the selection event (in this example,
the selection event is the selection of a radio button):
// AppWindow Select Event Handler
MySelectHandler::MySelectHandler(IInfoArea *info)

:ISelectHandler(),
infoArea(info)

{
}
// Set static text when radio button selected.
bool MySelectHandler::selected(IControlEvent& evt)
{

bool fprocess = false;
switch(evt.controlId())
{
case WND_BLACKBT:

infoArea->setText(“Black is the currently selected color”);
fProcess=false;
break;

case WND_WHITEBT:
infoArea->setText(“White is the currently selected color”);
fProcess=false;
break;

case WND_REDBT:
infoArea->setText(“Red is the currently selected color”);
fProcess=false;
break;

case WND_BLUEBT:
infoArea->setText(“Blue is the currently selected color”);
fProcess=false;
break;

case WND_YELLOWBT:
infoArea->setText(“Yellow is the currently selected color”);
fProcess=false;
break;

}
return fProcess = false;

}

Chapter 8. Buttons 105

5. Process menu events in the command handler routines. This example, in the
header file, declares a command handler called MyCommandHandler. This
command handler overrides the protected virtual function
ICommandHandler::command() to process menu commands. The
MyCommandHandler class stores a pointer to AppWindow so that the
MyCommandHandler can access the member functions and objects of the main
window:
// Command handler class declaration
class MyCommandHandler : public ICommandHandler {
public:

MyCommandHandler(AppWindow *mainWindow);
protected:

virtual bool command(ICommandEvent& cmdEvent);
private:

AppWindow *appWindow;
};

When a user selects a command from the menu bar, an ICommandEvent object
is created. The MyCommandHandler::command() function processes this
ICommandEvent object. This function processes two command events: Disable
Blue Button and Enable Blue Button. To process these events, the
MyCommandHandler::command() function calls enableButton() and
disableButton(), respectively:
// Enable the blue radio button
AppWindow & AppWindow::enableButton()
{

blue->enable();
return (*this);

}
// Disable the blue radio button
AppWindow & AppWindow::disableButton()
{

blue->disable();
return (*this);

}
// Construct the command handler
MyCommandHandler::MyCommandHandler(AppWindow *mainWindow)
{

appWindow = mainWindow;
}
// AppWindow command event handler
bool MyCommandHandler :: command(ICommandEvent& cmdevt)
{

switch (cmdevt.commandId())
{

case ID_DISABLE_BLUE_BTN:
appWindow->disableButton();

break;
case ID_ENABLE_BLUE_BTN:

appWindow->enableButton();
break;

return true;
}
return false;

}

The following figure shows the radio buttons created with the preceding code
example:

106 IBM Open Class: User Interface

You can fild the source to this example in the following files:
v radio.cpp
v radio.h
v radio.hpp
v radio.rc

“Chapter 8. Buttons” on page 97
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“File: radio.cpp”
“File: radio.h” on page 110
“File: radio.hpp” on page 110
“File: radio.rc” on page 111
“Create a Push Button” on page 99
“Create a Check Box” on page 112
“Create a Three-State Check Box” on page 117
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

IRadioButton

Radio Button Example

File: radio.cpp
#include <iselhdr.hpp>
#include <ititle.hpp>
#include <iframe.hpp>
#include <iradiobt.hpp>
#include <isetcv.hpp>
#include <icmdhdr.hpp>
#include <iinfoa.hpp>
#include <imenubar.hpp>
#include “radio.h”
#include “radio.hpp”
int main()
{

if (IBidiSettings::isBidiSupported()) {
IBidiSettings bd = IBidiSettings::applicationDefaults();
bd.setWindowLayout(IBidiSettings::layoutRightToLeft);
IBidiSettings::setApplicationDefaults(bd);

}
AppWindow mainWindow(WND_MAIN);
mainWindow.setFocus().show();
IApplication::current().run();
return 0;

Chapter 8. Buttons 107

}
// AppWindow Constructor
AppWindow :: AppWindow(unsigned long windowId)

: IFrameWindow(windowId,
IFrameWindow::defaultStyle())

{
// Create Menu Bar
menuBar = new IMenuBar(windowId, this);
// Create Title
title = new ITitle(this,ID_RADIO_TITLE);
// Create Canvas
canvas1 = new ISetCanvas(ID_CANVAS, this, this);
moveSizeTo(IRectangle(0,0,400,100));
setClient(canvas1);
IWindow * pParent= canvas1;
IWindow * pOwner = canvas1;
// Create Status Area
infoArea = new IInfoArea(this);
// Create Radio Buttons
white = new IRadioButton(WND_WHITEBT, pParent, pOwner);
white->setText(STR_WHITE);
black = new IRadioButton(WND_BLACKBT, pParent, pOwner);
black->setText(STR_BLACK);
blue = new IRadioButton(WND_BLUEBT, pParent, pOwner);
blue->setText(STR_BLUE);
red = new IRadioButton(WND_REDBT, pParent, pOwner);
red->setText(STR_RED);
yellow = new IRadioButton(WND_YELLOWBT, pParent, pOwner);
yellow->setText(STR_YELLOW);
// Set the group style of the controls
white->enableGroup();
// Select white as the default button
white->select();
infoArea->setText(“White is the currently selected color”);
// Set the select handler to handle events
selectHandler = new MySelectHandler(infoArea);
selectHandler->handleEventsFor(white);
selectHandler->handleEventsFor(black);
selectHandler->handleEventsFor(blue);
selectHandler->handleEventsFor(red);
selectHandler->handleEventsFor(yellow);
// Set the command handler to handle menu events
commandHandler = new MyCommandHandler(this);
commandHandler->handleEventsFor(this);
setFocus().show();

}
// AppWIndow destructor
AppWindow::xAppWindow()
{

commandHandler->stopHandlingEventsFor(this);
}
// AppWindow Select Event Handler
MySelectHandler::MySelectHandler(IInfoArea *info)

:ISelectHandler(),
infoArea(info)

{
}
// Set static text when radio button selected.
bool MySelectHandler::selected(IControlEvent& evt)
{

bool fprocess = false;
switch(evt.controlId())
{
case WND_BLACKBT:

infoArea->setText(“Black is the currently selected color”);
fProcess=false;
break;

108 IBM Open Class: User Interface

case WND_WHITEBT:
infoArea->setText(“White is the currently selected color”);
fProcess=false;
break;

case WND_REDBT:
infoArea->setText(“Red is the currently selected color”);
fProcess=false;
break;

case WND_BLUEBT:
infoArea->setText(“Blue is the currently selected color”);
fProcess=false;
break;

case WND_YELLOWBT:
infoArea->setText(“Yellow is the currently selected color”);
fProcess=false;
break;

}
return fProcess = true;

}
// Enable the blue radio button
AppWindow & AppWindow::enableButton()
{

blue->enable();
return (*this);

}
// Disable the blue radio button
AppWindow & AppWindow::disableButton()
{

blue->disable();
return (*this);

}
// Construct the command handler
MyCommandHandler::MyCommandHandler(AppWindow *mainWindow)
{

appWindow = mainWindow;
}
// AppWindow command event handler
bool MyCommandHandler :: command(ICommandEvent& cmdevt)
{

switch (cmdevt.commandId())
{

case ID_DISABLE_BLUE_BTN:
appWindow->disableButton();

break;
case ID_ENABLE_BLUE_BTN:

appWindow->enableButton();
break;

return true;
}
return false;

}

“Chapter 8. Buttons” on page 97
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Create a Radio Button” on page 103
“File: radio.h” on page 110
“File: radio.hpp” on page 110
“File: radio.rc” on page 111

Chapter 8. Buttons 109

“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

File: radio.h
#define WND_MAIN 100
#define ID_RADIO_TITLE 200
#define ID_CANVAS 210
#define ID_TEXT 220
#define ID_STAT_TITLE 230
#define ID_GROUPBOX 240
#define ID_EDIT 300
#define ID_DISABLE_BLUE_BTN 310
#define ID_ENABLE_BLUE_BTN 320
#define WND_WHITEBT 400
#define WND_BLACKBT 410
#define WND_BLUEBT 420
#define WND_REDBT 430
#define WND_YELLOWBT 440
#define STR_WHITE 500
#define STR_BLACK 510
#define STR_BLUE 520
#define STR_RED 530
#define STR_YELLOW 540

“Chapter 8. Buttons” on page 97
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Create a Radio Button” on page 103
“File: radio.cpp” on page 107
“File: radio.hpp”
“File: radio.rc” on page 111
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

File: radio.hpp
// Command handler class declaration
class MyCommandHandler : public ICommandHandler {
public:

MyCommandHandler(AppWindow *mainWindow);
protected:

virtual bool command(ICommandEvent& cmdEvent);
private:

AppWindow *appWindow;
};
// Select handler class declaration
class MySelectHandler: public ISelectHandler
{
public:

MySelectHandler(IInfoArea *info);
protected:

selected(IControlEvent& evt);
private:
bool fProcess;
IInfoArea *infoArea;

};
// AppWindow declaration
class AppWindow : public IFrameWindow

110 IBM Open Class: User Interface

{
public:

AppWindow(unsigned long windowId);
xAppWindow();
AppWindow & enableButton();
AppWindow & disableButton();
private:
ITitle *title;
ISetCanvas *canvas1;
IInfoArea *infoArea;
IRadioButton *white;
IRadioButton *black;
IRadioButton *blue;
IRadioButton *red;
IRadioButton *yellow;
IMenuBar *menuBar;
MySelectHandler *selectHandler;
MyCommandHandler *commandHandler;

};

“Chapter 8. Buttons” on page 97
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Create a Radio Button” on page 103
“File: radio.cpp” on page 107
“File: radio.h” on page 110
“File: radio.rc”
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

File: radio.rc

This is a Windows resource script file.
#include “basic.h”
STRINGTABLE

BEGIN
ID_RADIO_TITLE, “Radio Button Example”
ID_STAT_TITLE, “Color Selection”
STR_BLACK, “Black”
STR_WHITE, “White”
STR_BLUE, “Blue”
STR_RED, “Red”
STR_YELLOW, “Yellow”

END
WND_MAIN MENUEX
BEGIN

POPUP “&Edit”, ID_EDIT
BEGIN

MENUITEM “&Disable Blue Button”, ID_DISABLE_BLUE_BTN
MENUITEM “&Enable Blue Button”, ID_ENABLE_BLUE_BTN

END
END

“Chapter 8. Buttons” on page 97
“Chapter 21. Resources” on page 297

Chapter 8. Buttons 111

“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Create a Radio Button” on page 103
“Convert Application Resources” on page 395
“File: radio.cpp” on page 107
“File: radio.h” on page 110
“File: radio.hpp” on page 110
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Create a Check Box
Check boxes are similar to radio buttons, except that they can offer multiple-choice
selection, as well as individual choice.

When a user selects the choice, a check mark symbol appears in the box to indicate
that the choice is selected.

When a user selects the choice, the check box is filled in to indicate that the choice
is selected.

By selecting the choice again, the user deselects the check box. Use a check box to
set a choice in a group of choices that are not mutually exclusive.

Check boxes also toggle application features on or off. For example, a word
processing application might use a check box to let the user turn word wrapping
on or off.

The ICheckBox class lets you create and maintain a check box. The selection of a
check box is processed by using the ISelectHandler class. You add the handler to
either the check box or its owner window.

The following example shows you how to create a check box.
1. Create a check box by first making a declaration in the checkbo1.hpp file, as

follows:
/***/
/* Set canvas class declaration */
/***/
class MySet : public ISetCanvas
{

public:
MySet(unsigned long winId, IWindow* pParent);

private:
ICheckBox check1;
ICheckBox check2;
ICheckBox check3;

};
/***/
/* Application Window declaration */
/***/
class AppWindow : public IFrameWindow

112 IBM Open Class: User Interface

{
public:

AppWindow(unsigned long windowId);
xAppWindow();

private:
ITitle title;
MySet * pSetCv;
IMultiCellCanvas canvas;

};

2. Construct the frame window:
/***/
/* Window Constructor */
/***/
AppWindow :: AppWindow(unsigned long windowId)

: IFrameWindow(windowId,
defaultStyle()),

title(this,PSZ_OBJECT,PSZ_VIEW),
canvas(ID_CANVAS, this, this)

{
setClient(&canvas);
//***
// Create Canvas
//***
pSetCv = new MySet(ID_SET, &canvas);
canvas.addToCell(pSetCv, 2, 2);
}

3. Construct the check boxes as shown here:
/***/
/* MySet constructor */
/***/
MySet :: MySet(unsigned long winId, IWindow* pParent)
: ISetCanvas(winId, pParent, pParent),

check1(ID_BOX1, this, this, IRectangle(),
ICheckBox::classDefaultStyle |
IWindow::group),

check2(ID_BOX2, this, this),
check3(ID_BOX3, this, this)

{
check1.setText(PSZ_BOX1);
check2.setText(PSZ_BOX2);
check3.setText(PSZ_BOX3);
setBorderText(IResourceId(PSZ_GROUP));

}

The following figure shows the check boxes created using the preceding example:

You can find the complete source to this example in the following files:
v checkbo1.cpp
v checkbo1.h
v checkbo1.hpp

Chapter 8. Buttons 113

v checkbo1.rc

“Chapter 8. Buttons” on page 97
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Create a Push Button” on page 99
“Create a Radio Button” on page 103
“Create a Three-State Check Box” on page 117
“File: checkbo1.cpp”
“File: checkbo1.h” on page 115
“File: checkbo1.hpp” on page 116
“File: checkbo1.rc” on page 117
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Check Box Example

File: checkbo1.cpp
#include “checkbo1.h”
#include “checkbo1.hpp”
/**
* main *
* - Application entry point. *
**/
int main()
{

AppWindow appWindow(ID_MAIN);
appWindow.setFocus().show();
IApplication::current().run();
return 0;

}
/**
* Class AppWindow :: AppWindow *
**/
AppWindow :: AppWindow(unsigned long windowId)

: IFrameWindow(windowId,
defaultStyle()),

title(this,PSZ_OBJECT,PSZ_VIEW),
canvas(ID_CANVAS, this, this)

{
setClient(&canvas);
// Create Canvas
pSetCv = new MySet(ID_SET, &canvas);
canvas.addToCell(pSetCv, 2, 2);

}
/**
* Class AppWindow :: xAppWindow *
**/
AppWindow :: xAppWindow ()
{

delete pSetCv;
}
/**
* Class MySet :: MySet *
**/
MySet :: MySet(unsigned long winId, IWindow* pParent)
: ISetCanvas(winId, pParent, pParent),

check1(ID_BOX1, this, this, IRectangle(),
ICheckBox::classDefaultStyle |

114 IBM Open Class: User Interface

IControl::group),
check2(ID_BOX2, this, this),
check3(ID_BOX3, this, this)

{
check1.setText(PSZ_BOX1);
check2.setText(PSZ_BOX2);
check3.setText(PSZ_BOX3);
setBorderText(IResourceId(PSZ_GROUP));

}

“Chapter 8. Buttons” on page 97
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Create a Check Box” on page 112
“File: checkbo1.h”
“File: checkbo1.hpp” on page 116
“File: checkbo1.rc” on page 117
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

File: checkbo1.h
/**
* Window IDs *
**/
#define ID_ICON 1
#define ID_MAIN 2
#define ID_CANVAS 3
#define ID_SET 4
#define ID_BOX1 5
#define ID_BOX2 6
#define ID_BOX3 7
/**
* Menu Bar IDs *
**/
#define ID_HELP_MENU 900
#define ID_ABOUT_ITEM 910
/**
* String table IDs *
**/
#define PSZ_BOX1 310
#define PSZ_BOX2 320
#define PSZ_BOX3 330
#define PSZ_OBJECT 340
#define PSZ_VIEW 350
#define PSZ_GROUP 360

“Chapter 8. Buttons” on page 97
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Create a Check Box” on page 112
“File: checkbo1.cpp” on page 114
“File: checkbo1.hpp” on page 116

Chapter 8. Buttons 115

“File: checkbo1.rc” on page 117
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

File: checkbo1.hpp
#ifndef _CHECKBOX_
#define _CHECKBOX_
#include <iframe.hpp>
#include <ititle.hpp>
#include <icheckbx.hpp>
#include <iapp.hpp>
#include <isetcv.hpp>
#include <imcelcv.hpp>
class AppWindow;
class IFrameWindow;
class ITitle;
class IMultiCellCanvas;
class ISelectHandler;
/**
* Class MySet *
**/
class MySet : public ISetCanvas
{

public:
MySet(unsigned long winId, IWindow* pParent);

private:
ICheckBox check1;
ICheckBox check2;
ICheckBox check3;

};
/**
* Class AppWindow *
**/
class AppWindow : public IFrameWindow
{

public:
AppWindow(unsigned long windowId);
xAppWindow();

private:
ITitle title;
MySet * pSetCv;
IMultiCellCanvas canvas;

};
#endif

“Chapter 8. Buttons” on page 97
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Create a Check Box” on page 112
“File: checkbo1.cpp” on page 114
“File: checkbo1.h” on page 115
“File: checkbo1.rc” on page 117
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

116 IBM Open Class: User Interface

File: checkbo1.rc
#include “checkbo1.h”
/*****************************/
/* String table */
/*****************************/
STRINGTABLE

BEGIN
PSZ_OBJECT, “CHECKBOX”
PSZ_VIEW, “Check Box Example”
PSZ_BOX1, “Check Box 1”
PSZ_BOX2, “Check Box 2”
PSZ_BOX3, “Check Box 3”
PSZ_GROUP, “Check Box Group ”

END

“Chapter 8. Buttons” on page 97
“Chapter 21. Resources” on page 297
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Create a Check Box” on page 112
“Convert Application Resources” on page 395
“File: checkbo1.cpp” on page 114
“File: checkbo1.h” on page 115
“File: checkbo1.hpp” on page 116
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Create a Three-State Check Box
The following example shows how to create a three-state check box:

I3StateCheckBox three(ID_THREE, &canvas, &canvas,
IRectangle(100,220,250,280));

three.setText(“3 State”);
three.selectHalftone();
// Determine state of the button
if (three.isSelected())
{

if (three.isHalftone())
{

// is halftone
}
else
{

// is checked
}

}
else
{

// is not selected
}

“Chapter 8. Buttons” on page 97
“Chapter 1. Windows” on page 1

Chapter 8. Buttons 117

“Chapter 3. Events and Event Handlers” on page 19

“Create a Push Button” on page 99
“Create a Radio Button” on page 103
“Create a Check Box” on page 112
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

I3StateCheckBox
ISelectHandler

118 IBM Open Class: User Interface

Chapter 9. List Boxes

A list box is a control that displays several items at a time, one or more of which
can be selected by the user. List boxes are scrollable.

An application uses a list box when it requires a list of selectable fields that is too
large for the display area or a list of choices that can change dynamically. Each list
item contains a text string and an optional handle. The text string is displayed in
the list box window, but the handle is available to the application to reference
other data associated with each of the items in the list.

Once you create the list box, your application controls the inserting and deleting of
list items. Items can be inserted at the end of the list, automatically sorted into the
list, or inserted at a specified index or cursor position. You can add an array of
items at a specified index or cursor position.

The IBaseListBox class creates and manages list box control windows. Two types of
list box controls are derived from IBaseListBox. They are IListBox and
ICollectionViewListBox. IListBox extends the IBaseListBox list box control creation
and management to include adding, removing, and replacing list box items. The
ICollectionViewListBox<Element, Collection> template class extends the
IBaseListBox control to enable the viewing of an ordered collection as items in a
list box. The sequence of elements is the same between the ordered collection and
the list box.

You can attach an ISelectHandler to a list box or its owner window to process
events created when the user selects or double-clicks on an item in the list box.

For an ICollectionViewListBox list box, the inserting, sorting, and deleting actions
occur on the collection.

You can use cursors to manipulate the list box. Cursors can be filters to process all
items in the list box or only the selected ones.

“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Create a List Box”
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Create a List Box
The following example shows you how to create an IListBox list box control. The
example creates an entry field and a list box. You can type a string into the entry
field, then select a menu command to add that string into the list box:

© Copyright IBM Corp. 1998, 2000 119

1. In the header file, declare an IListBox object. This example declares an IListBox
as a private member of the main window of class Frame. In addition, declare a
command handler (called commandHandler in this example) and an event
handler (called handleEvent()):
class Frame : public IFrameWindow
{

public:
Frame(unsigned long windowId);
xFrame();
void handleEvent(unsigned long int);

private:
ITitle title;
IEntryField ef;
IListBox listbox;
IStaticText stTxt1;
IStaticText stTxt2;
ACommandHandler * commandHandler;

};

2. In the listbox.cpp file, create the IListBox object in the main window
constructor. The list box in this example enables multiple selection (the user can
select any number of objects at a time in the list box or not select any) and
prevents a horizontal scroll bar from appearing within the list box. The frame
window positions the listbox in a frame extension with the
IFrameWindow::addExtension() function:
Frame::Frame(unsigned long windowId)

: IFrameWindow(windowId,
IFrameWindow::defaultStyle() |
IFrameWindow::menuBar),

title(this,“List Box Example”),
ef(ID_ENTRY, this, this, IRectangle()),
listbox(ID_LISTBOX, this, this, IRectangle(),

(IListBox::defaultStyle()
| IListBox::multipleSelect)
& xIListBox::horizontalScroll),

stTxt1(ID_STTXT1, this, this),
stTxt2(ID_STTXT2, this, this)

{
stTxt1.setAlignment(
IStaticText::centerLeft);
addExtension(&stTxt1,
IFrameWindow::aboveClient);
addExtension(&ef,
IFrameWindow::aboveClient);
stTxt2.setAlignment(
IStaticText::centerLeft);
addExtension(&stTxt2,
IFrameWindow::aboveClient);
stTxt1.setText(“Enter text into entry field:”);
stTxt2.setText(“Use the menu to add entry field text to the list box:”);
moveSizeTo(IRectangle(0, 0, 630, 470));
stTxt1.setBackgroundColor(IColor(199, 212, 204));
stTxt2.setBackgroundColor(IColor(199, 212, 204));
ef.setFocus();
addExtension(&listbox, IFrameWindow::aboveClient);
show();
commandHandler = new ACommandHandler(this);
commandHandler->handleEventsFor(this);

}

3. In the listbox.cpp file, add event handling so that you can perform actions on
the list box. This example adds event handling with the Frame::handleEvent()
function. (The example adds command handling from within the main window
constructor.):

120 IBM Open Class: User Interface

void Frame :: handleEvent(unsigned long int eventtype)
{

switch (eventtype)
{
case ID_ADD_ITEM:

if (!ef.isEmpty()) {
listbox.addAsFirst(ef.text());
ef.setText(“”);

}
break;
case ID_ASC_ITEM:

if (!ef.isEmpty()) {
listbox.addAscending(ef.text());
ef.setText(“”);

}
break;
case ID_DESC_ITEM:

if (!ef.isEmpty()) {
listbox.addDescending(ef.text());
ef.setText(“”);

}
break;
case ID_DEL_ITEM:

{
IListBox::Cursor lbc(listbox, IListBox::Cursor::selectedItems);
for (lbc.setToFirst(); lbc.isValid(); lbc.setToFirst()) {

listbox.removeAt(lbc);
}

}
break;
case ID_DELALL_ITEM:

if (!listbox.isEmpty()) {
listbox.removeAll();

}
break;
case ID_SINGLE_ITEM:

listbox.disableMultipleSelect();
listbox.disableExtendedSelect();
break;
case ID_MULTI_ITEM:

listbox.disableExtendedSelect();
listbox.enableMultipleSelect();
break;
case ID_EXTEND_ITEM:

listbox.disableMultipleSelect();
listbox.enableExtendedSelect();
break;

}
}

This event handler lets you perform the following list box commands in this
example:

Member function of IListBox Description

addAsFirst() Inserts the line of text as the first item in the
list box.

addAscending() Inserts the line of text in ascending sort
order.

addDescending() Inserts the line of text in descending sort
order.

removeAt() Removes the item at the cursor and places
the cursor at the next available valid item.

removeAll() Removes all items from the list box.

Chapter 9. List Boxes 121

Member function of IListBox Description

Member function of IBaseListBox

disableMultipleSelect() Disables multiple selection

disableExtendedSelect() Disables extended selection

enableMultipleSelect() Enables multiple selection: the user can select
any number of objects at a time in the list
box or not select any.

enableExtendedSelect() Enables extended selection: extends selection
to more than one object. This style is a type
of selection optimized for the
selection of a single object.

4. Handle commands from the menu bar using a customized command handler.
In the constructor for the ACommandHandler class (which is derived from
ICommandHandler), make a local copy of the Frame object so its handleEvent
function can be called. Then, in the ACommandHandler::command() function, look
for the specific items from the menu bar. When application-specific items are
found, route them to the Frame::handleEvent() function for processing, as
follows:
ACommandHandler::ACommandHandler(Frame *listWindow)
{

list = listWindow;
}
// ...
bool ACommandHandler::command(ICommandEvent& cmdEvent)
{

switch (cmdEvent.commandId())
{

case ID_ADD_ITEM:
case ID_ASC_ITEM:
case ID_DESC_ITEM:
case ID_DEL_ITEM:
case ID_DELALL_ITEM:
case ID_SINGLE_ITEM:
case ID_MULTI_ITEM:
case ID_EXTEND_ITEM:

list->handleEvent(cmdEvent.commandId());
return true;

}
return false;

}

The following figure shows the list box created with the previous example. Several
elements have been added to the list box:

122 IBM Open Class: User Interface

You can find the complete source to this example in the following files:
v listbox.cpp
v listbox.h
v listbox.hpp
v listbox.rc

“Chapter 9. List Boxes” on page 119
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Hello World Version 5: Add Canvases, a List Box, Native System Functions, and
Help” on page 433
“File: listbox.cpp”
“File: listbox.h” on page 126
“File: listbox.hpp” on page 126
“File: listbox.rc” on page 127
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

IBaseListBox

List Box Example

File: listbox.cpp
#include “listbox.h”
#include “listbox.hpp”
#include <icoordsy.hpp>
/**
* Class Frame :: Frame *
* - Window constructor *
**/
Frame::Frame(unsigned long windowId)

: IFrameWindow(windowId
, IFrameWindow::defaultStyle()
| IFrameWindow::menuBar
| IFrameWindow::accelerator),

Chapter 9. List Boxes 123

title(this,“List Box Example”),
ef(ID_ENTRY, this, this, IRectangle()),
listbox(ID_LISTBOX, this, this, IRectangle(),

(IListBox::defaultStyle()
| IListBox::multipleSelect)
& xIListBox::horizontalScroll),

stTxt1(ID_STTXT1, this, this),
stTxt2(ID_STTXT2, this, this)

{
stTxt1.setAlignment(
IStaticText::centerLeft);
addExtension(&stTxt1,
IFrameWindow::aboveClient);
addExtension(&ef,
IFrameWindow::aboveClient);
stTxt2.setAlignment(
IStaticText::centerLeft);
addExtension(&stTxt2,
IFrameWindow::aboveClient);
stTxt1.setText(“Enter text into entry field:”);
stTxt2.setText(“Use the menu to add entry field text to the list box:”);
moveSizeTo(IRectangle(0, 0, 630, 470));
stTxt1.setBackgroundColor(IColor(199, 212, 204));
stTxt2.setBackgroundColor(IColor(199, 212, 204));
ef.setFocus();
addExtension(&listbox, IFrameWindow::aboveClient);
show();
commandHandler = new ACommandHandler(this);
commandHandler->handleEventsFor(this);

}
/**
* Class Frame :: xFrame *
* - Window destructor *
**/
Frame:: xFrame()
{

commandHandler->stopHandlingEventsFor(this);
}
/**
* Class ACommandHandler :: ACommandHandler *
* - Window destructor *
**/
ACommandHandler::ACommandHandler(Frame *listWindow)
{

list = listWindow;
}
/**
* Class Frame :: handleEvent *
**/
void Frame :: handleEvent(unsigned long int eventtype)
{

switch (eventtype)
{
case ID_ADD_ITEM:

if (!ef.isEmpty()) {
listbox.addAsFirst(ef.text());
ef.setText(“”);

}
break;
case ID_ASC_ITEM:

if (!ef.isEmpty()) {
listbox.addAscending(ef.text());
ef.setText(“”);

}
break;
case ID_DESC_ITEM:

if (!ef.isEmpty()) {

124 IBM Open Class: User Interface

listbox.addDescending(ef.text());
ef.setText(“”);

}
break;
case ID_DEL_ITEM:

{
IListBox::Cursor lbc(listbox, IListBox::Cursor::selectedItems);
for (lbc.setToFirst(); lbc.isValid(); lbc.setToFirst()) {

listbox.removeAt(lbc);
}

}
break;
case ID_DELALL_ITEM:

if (!listbox.isEmpty()) {
listbox.removeAll();

}
break;
case ID_SINGLE_ITEM:

listbox.disableMultipleSelect();
listbox.disableExtendedSelect();
break;
case ID_MULTI_ITEM:

listbox.disableExtendedSelect();
listbox.enableMultipleSelect();
break;
case ID_EXTEND_ITEM:

listbox.disableMultipleSelect();
listbox.enableExtendedSelect();
break;

}
}
/**
* Class ACommandHandler :: command *
**/
bool ACommandHandler::command(ICommandEvent& cmdEvent)
{

switch (cmdEvent.commandId())
{

case ID_ADD_ITEM:
case ID_ASC_ITEM:
case ID_DESC_ITEM:
case ID_DEL_ITEM:
case ID_DELALL_ITEM:
case ID_SINGLE_ITEM:
case ID_MULTI_ITEM:
case ID_EXTEND_ITEM:
list->handleEvent(cmdEvent.commandId());

return true;
}
return false;

}
/**
* main *
* - Application entry point. *
**/
int main()
{

Frame frame(WID_MAIN);
IApplication::current().run();
return 0;

}

Chapter 9. List Boxes 125

“Chapter 9. List Boxes” on page 119
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Create a List Box” on page 119
“File: listbox.h”
“File: listbox.hpp”
“File: listbox.rc” on page 127
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

File: listbox.h
#ifndef LISTBOX_H
#define LISTBOX_H
#define WID_MAIN 1000
#define ID_CANVAS 1001
#define ID_ENTRY 1002
#define ID_LISTBOX 1003
#define ID_STTXT1 1004
#define ID_STTXT2 1005
#define ID_ACTION_MENU 2000
#define ID_ADD_ITEM 2001
#define ID_ASC_ITEM 2002
#define ID_DESC_ITEM 2003
#define ID_DEL_ITEM 2004
#define ID_DELALL_ITEM 2005
#define ID_SINGLE_ITEM 2006
#define ID_MULTI_ITEM 2007
#define ID_EXTEND_ITEM 2008
#endif

“Chapter 9. List Boxes” on page 119
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Create a List Box” on page 119
“File: listbox.cpp” on page 123
“File: listbox.hpp”
“File: listbox.rc” on page 127
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

File: listbox.hpp
#include <iframe.hpp>
#include <icmdhdr.hpp>
#include <iapp.hpp>
#include <istattxt.hpp>
#include <icanvas.hpp>
#include <ientryfd.hpp>
#include <ititle.hpp>
#include <ilistbox.hpp>
#include <istring.hpp>
class Frame;
/**
* Class ACommandHandler *

126 IBM Open Class: User Interface

**/
class ACommandHandler : public ICommandHandler
{

public:
ACommandHandler(Frame *listWindow);

protected:
virtual bool command(ICommandEvent& cmdEvent);

private:
Frame *list;

};
/**
* Class Frame *
**/
class Frame : public IFrameWindow
{

public:
Frame(unsigned long windowId);
xFrame();
void handleEvent(unsigned long int);

private:
ITitle title;
IEntryField ef;
IListBox listbox;
IStaticText stTxt1;
IStaticText stTxt2;
ACommandHandler * commandHandler;

};

“Chapter 9. List Boxes” on page 119
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Create a List Box” on page 119
“File: listbox.cpp” on page 123
“File: listbox.h” on page 126
“File: listbox.rc”
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

File: listbox.rc

The following resource script file is for Windows:
#include “listbox.h”
WID_MAIN MENUEX

BEGIN
POPUP “&Actions” , ID_ACTION_MENU

BEGIN
MENUITEM “Add &item\tCtrl+I” , ID_ADD_ITEM
MENUITEM “Add &ascending\tCtrl+A” , ID_ASC_ITEM
MENUITEM “Add &descending\tCtrl+D” , ID_DESC_ITEM
MENUITEM “Delete &selected” , ID_DEL_ITEM
MENUITEM “Delete a&ll items” , ID_DELALL_ITEM

MENUITEM “”, 0, MFT_SEPARATOR
MENUITEM “S&ingle select” , ID_SINGLE_ITEM
MENUITEM “&Multiple select” , ID_MULTI_ITEM
MENUITEM “E&xtended select” , ID_EXTEND_ITEM

END
END

Chapter 9. List Boxes 127

WID_MAIN ACCELERATORS
BEGIN

“I”, ID_ADD_ITEM , CONTROL
“A”, ID_ASC_ITEM , CONTROL
“D”, ID_DESC_ITEM , CONTROL

END

The following resource script file is for AIX or OS/2:
#include “listbox.h”
MENU WID_MAIN

BEGIN
SUBMENU “xActions” , ID_ACTION_MENU

BEGIN
MENUITEM “Add xitem\tCtrl+I” , ID_ADD_ITEM
MENUITEM “Add xascending\tCtrl+A” , ID_ASC_ITEM
MENUITEM “Add xdescending\tCtrl+D” , ID_DESC_ITEM
MENUITEM “Delete xselected” , ID_DEL_ITEM
MENUITEM “Delete axll items” , ID_DELALL_ITEM

MENUITEM SEPARATOR
MENUITEM “Sixngle select” , ID_SINGLE_ITEM
MENUITEM “xMultiple select” , ID_MULTI_ITEM
MENUITEM “Exxtended select” , ID_EXTEND_ITEM

END
END

ACCELTABLE WID_MAIN
BEGIN

“I”, ID_ADD_ITEM , CONTROL
“i”, ID_ADD_ITEM , CONTROL
“A”, ID_ASC_ITEM , CONTROL
“a”, ID_ASC_ITEM , CONTROL
“D”, ID_DESC_ITEM , CONTROL
“d”, ID_DESC_ITEM , CONTROL

END

“Chapter 9. List Boxes” on page 119
“Chapter 21. Resources” on page 297
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Create a List Box” on page 119
“Convert Application Resources” on page 395
“File: listbox.cpp” on page 123
“File: listbox.h” on page 126
“File: listbox.hpp” on page 126
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Add or Delete a List Box Item
Your applications can add or delete an item in a list box. Items in a list are
specified with a 0-based index (beginning at the top of the list). A new list is
created empty; then, the application initializes the list by inserting items.

128 IBM Open Class: User Interface

The application specifies the text and position for each new item. It can specify an
absolute-position index or use a list box cursor.

For an ICollectionViewListBox control, the list box control window reflects actions
on the associated collection. So an element removed from the collection will be
visually reflected in the list box control.

The following sample shows you how to create an IListBox list box control and
then add and delete items. This sample creates two list boxes called listbox and
listbox2. The menu for this sample has five commands:
v Add items: Add five elements to listbox.
v Read selected items: Output the number of selected elements in listbox2. Then.

for each element selected in listbox output the following in listbox2:
– The position of the element in listbox

– The text contained in the element
v Read all items: Apply the command Read selected items to all elements

whether or not an element is selected.
v Select all: Selects all the elements in listbox.
v Deselect all: Deselects all the elements in listbox.

You can find the source of the following, from the Listbox Sample in the
samples/ioc/listbox directory:
1. Declare a frame window with the list box as a child in the .hpp file, as follows:

class AListBox : public IFrameWindow,
public ICommandHandler

{
public:

AListBox(unsigned long windowId);
AListBox
&output(const IString& astr),
&setStatus();

private:
IListBox

listbox,
listbox2;

IInfoArea
infoArea;

IStaticText
statusLine;

IMenuBar
menuBar;

ACommandHandler
commandhandler;

};

2. Construct the frame window, initializing the child controls. In this example, the
frame window constructor adds the list boxes in frame extensions.
AListBox :: AListBox(unsigned long windowId)

: IFrameWindow(IFrameWindow::defaultStyle()
| IFrameWindow::accelerator
| IFrameWindow::minimizedIcon,
windowId),

listbox(WND_HELLO, this, this, IRectangle(), //Create listbox
(IListBox::defaultStyle()
| IListBox::multipleSelect)
& xIListBox::horizontalScroll),

listbox2(WND_HELLO, this, this, IRectangle(), //Create trace listbox
IListBox::defaultStyle()
& xIListBox::horizontalScroll),

infoArea(this),

Chapter 9. List Boxes 129

statusLine(WND_STATUS, this, this),
menuBar(WND_MAIN, this),
commandhandler(this,&listbox)

{
statusLine.setAlignment(

IStaticText::centerLeft);
addExtension(&statusLine,

IFrameWindow::aboveClient, 30UL);
setStatus();
addExtension(&listbox,

IFrameWindow::leftOfClient, 0.5);
setClient(&listbox2);
commandhandler.handleEventsFor(this);
sizeTo(ISize(400,300));
update();
setFocus();
show();

}

3. Handle commands from the menu bar using a customized command handler.
In the constructor for the ACommandHandler class (which is derived from
ICommandHandler), make a local copy of the AListBox and the IListBox objects
so that the command handler can call member functions of AListBox and
IListBox. Then, in the ACommandHandler::command() function, look for the
specific items from the menu bar. When application-specific items are found,
route them to the appropriate function for processing (such as
AListBox::output() and AListBox::setStatus()).
The AListBox::output() function adds text to the listbox2 list box. The
AListBox::setStatus() function creates the text string to put into the listbox2
list box.
/**
* class AListBox :: output - output status data to listbox2 *
**/
AListBox& AListBox :: output(const IString& astr)
{
/*——————————————————————————————————————|
| Add the string to listbox2 |
| If the listbox has more than 7 lines, scroll |
——————————————————————————————————————-*/

listbox2.addAsLast(astr);
if (listbox2.count() > 7)

listbox2.setTop(listbox2.count()-7);
return *this;

}
/**
* class AListBox :: setStatus - set the status line text *
**/
AListBox& AListBox :: setStatus()
{
/*——————————————————————————————————————|
| Get the resource library |
| Load a string from the resource library |
| Concatenate the count to the string |
| Set the infoarea text to the string |
——————————————————————————————————————-*/

IResourceLibrary reslib;
IString str=reslib.loadString(STR_INFO);
str += listbox.count();
statusLine.setText(str);
return *this;

}
/**
* class ACommandHandler::ACommandHandler - Constructor for the command handler*
* *
* Stores pointers to the main window and the listbox. *

130 IBM Open Class: User Interface

**/
ACommandHandler::ACommandHandler(AListBox *alb,IListBox *lb1)

: alistbox(alb)
, listbox1(lb1)

{
}
/**
* AListBox :: command - command handler *
**/
bool ACommandHandler :: command(ICommandEvent & cmdEvent)
{

IResourceLibrary rlib;
bool fProcessed = true;
switch (cmdEvent.commandId()) {

case MI_SELECT_ALL:
/*——————————————————————————————————————|
| Select all the items in listbox1 |
——————————————————————————————————————-*/

listbox1->selectAll();
break;

case MI_DESELECT_ALL:
/*——————————————————————————————————————|
| Deselect all the items in listbox1 |
——————————————————————————————————————-*/

listbox1->deselectAll();
break;

case MI_ADD_ITEMS:
/*——————————————————————————————————————|
| Add string items from the resource library to listbox1 |
| Update the status |
——————————————————————————————————————-*/

listbox1->addAsLast(STR_LIST_ITEM1);
listbox1->addAsLast(STR_LIST_ITEM2);
listbox1->addAsLast(STR_LIST_ITEM3);
listbox1->addAsLast(STR_LIST_ITEM4);
listbox1->addAsLast(STR_LIST_ITEM5);
alistbox->setStatus();
break;

case MI_READ_SEL_ITEMS:
{

/*——————————————————————————————————————|
| Create a listbox cursor for selected items |
| Output each line to alistbox |
| Output the number of selected items |
——————————————————————————————————————-*/

IListBox::Cursor lbCursor(*listbox1);
for (lbCursor.setToFirst(); lbCursor.isValid(); lbCursor.setToNext())
{

alistbox->output(IString(
IString(lbCursor.asIndex())
+ “ - ”
+ listbox1->elementAt(lbCursor)));

}
alistbox->output(IString(rlib.loadString(STR_SELECTEDITEMS)

+ IString(listbox1->numberOfSelections())));
break;

}
case MI_READ_ALL_ITEMS:

{
/*——————————————————————————————————————|
| Create a listbox cursor for selected items |
| Output each line to alistbox |
——————————————————————————————————————-*/

IListBox::Cursor lbCursor(*listbox1, IListBox::Cursor::allItems);
for (lbCursor.setToFirst(); lbCursor.isValid(); lbCursor.setToNext())
{

alistbox->output(IString(

Chapter 9. List Boxes 131

IString(lbCursor.asIndex())
+ “ - ”
+ listbox1->elementAt(lbCursor)));

}
alistbox->output(IString(rlib.loadString(STR_NUMBERITEMS)

+ IString(listbox1->count())));
break;

}
default:

fProcessed = false; // event not processed
break;

} /* end switch */
return fProcessed;

}

The following figure shows the list box created with the preceding code example.
Some items have been added, and the Read selected items command has been
executed:

You can find the Listbox Sample in the samples/ioc/listbox directory.

“Chapter 9. List Boxes” on page 119
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

Listbox Sample
“Create a List Box” on page 119
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

132 IBM Open Class: User Interface

Chapter 10. Combination Boxes

A combination box, also called a prompted entry field, is two controls in one: an entry
field and a list box. There are three types of combination box controls:
v Drop-down: Allows the user to type a choice or to select a choice from a

drop-down list.
v Read-only drop-down: Allows the user to select a choice from a drop-down list.
v Simple: Allows the user to type a choice or to select a choice from a list that is

always visible.

Drop-down and Read-only drop down boxes allow the user to show and hide the
list box when needed.

A combination box control automatically manages the interaction between the
entry field and the list box. For example, when the user chooses an item in the list
box, the combination box control displays the text for that item in the entry field.
Then, the user can edit the text without affecting the item in the list box. When the
user types letters in the entry field, the combination box control scrolls the list box
contents so that items with those letters become visible

Objects of the IBaseComboBox class create and manage combination box control
windows. There are two types of combination boxes derived from IBaseComboBox:
IComboBox and ICollectionViewComboBox.

The IComboBox populates the combination box with the following member
functions:
v IComboBox::add
v IComboBox::remove
v IComboBox::replaceAt

The ICollectionViewComboBox populates the combination box list box from
collection elements using the setItems member function. Only
ICollectionViewComboBox displays its contents from a collection and reflects
updates to the collection.

“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Create a Combination Box”
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Create a Combination Box
This section shows you how to create a combination box control. The code comes
from the Hello World version 6 sample application. The adialog6.cpp file does the
following:
v Creates a drop-down combination box using the following initializer in the

ATextDialog constructor:

© Copyright IBM Corp. 1998, 2000 133

,textField(DID_ENTRY,&clientCanvas,&clientCanvas
,IRectangle(), IWindow::visible|IComboBox::dropDownType)

v Uses a loop to load strings from the resource file into the combination box in
ascending order, as follows:
for (int i=0;i<HI_COUNT;i++)

textField.addAscending(HI_WORLD+i);

v Loads the entry field portion of the combination box with the text string passed
into the constructor, using the following code:
textField.setText(saveText);

v Disables the entry field portion of the combination box for automatic scrolling,
adds a margin, and sets a tab stop:
textField.disableAutoScroll().enableMargin().enableTabStop();

v Retrieves the text that users leave in the entry field portion of the combination
box from the combination box object by using the text function, as follows:
saveText = textField.text();

The following shows the Hello World version 6 combination box control:

“Chapter 10. Combination Boxes” on page 133
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Create a List Box” on page 119
“Add or Delete a List Box Item” on page 128
“Hello World Version 6: Adding a Font Dialog, Pop-up Menus, Notebooks, and
Graphics” on page 443
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

IWindow

134 IBM Open Class: User Interface

Chapter 11. Sliders

A slider is a visual component that enables a user to set, display, or modify a value
by moving the slider arm along the slider shaft. A slider consists of a slider arm,
one or two slider scales and, optionally, detents, tick marks, tick text, and slider
buttons.

Note that you can have two native slider scales, but only the primary one is
visible.

The following table lists the slider components and their descriptions:

Slider Component Description

Detent

A user-selectable mark that can be placed
anywhere along the slider scale.

Progress indicator A read-only version of a slider.

Slider arm An arm that shows the current value by its
position on the slider shaft and can be
changed programmatically, as well as by
users. Users can move the arm along the
shaft to set slider values.

Slider buttons Buttons that move the slider arm
incrementally in the indicated direction.

Slider shaft A track for the slider arm to move along.

Tick text A label indicating the value the tick mark
represents.

Tick mark An incremental value in a slider scale.

Typically, sliders let users set values that have familiar increments, such as feet,
degrees, or decibels. You can use sliders for other purposes when immediate
feedback is required, such as to blend colors or show a task’s percentage of
completion. For example, your application might let a user mix and match color
shades by moving a slider arm, or a progress indicator (with the ribbonStrip style)
could show how much of a task is complete by filling in the slider shaft as the task
progresses.

The slider’s appearance and user’s interaction with a slider is similar to that of a
scroll bar. However, these two controls are not interchangeable because each has a
unique purpose. A scroll bar scrolls information into view that is outside a
window’s work area, while the slider sets, displays, or modifies that information.

Your application can specify different scales, sizes, and orientations for its sliders,
but the underlying function of the control remains the same.

© Copyright IBM Corp. 1998, 2000 135

The ISlider class inherits from the IProgressIndicator class, which is a read-only
version of the slider control. Typically, you use a progress indicator to display the
percentage of a task that is complete by filling in its shaft as the task progresses.
The default for progress indicators is to use the ribbonStrip style to fill the shaft. If
you do not use this, there is a slider arm present to indicate the current value.
Users cannot move the slider arm in a progress indicator.

You may use the ICircularSlider class to create a circular slider that emulates a dial
from typical stereo and video components.

Typically, you use the ISliderArmHandler class to handle events resulting from a
user changing a control’s input value without releasing the mouse, such as rotating
the circular slider or moving the arm of a slider. ISliderArmHandler objects process
input tracking events for the ISlider and ICircularSlider controls.

You create a handler derived from ISliderArmHandler and attach it to either the
control whose input users can change or to the control’s owner window. Call
IHandler::handleEventsFor to pass the appropriate control window or owner
window to the edit handler.

“Chapter 9. List Boxes” on page 119
“Chapter 10. Combination Boxes” on page 133
“Chapter 11. Sliders” on page 135
“Chapter 12. Spin Buttons” on page 147
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Create a List Box” on page 119
“Add or Delete a List Box Item” on page 128
“Create a Combination Box” on page 133
“Create a Slider Control”
“Create a Spin Button” on page 147
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Create a Slider Control
The following example is comprised of three sliders used to set the red, green, and
blue colors in a color mixer. As the slider arm moves, the static text color changes
appropriately.
1. Define the main window. A multicell canvas is used as the client window. The

client canvas contains the sliders as well as a multicell canvas containing the
static text which represents the current color, as follows:
class ColorMixerWindow : public IFrameWindow
{

public:
ColorMixerWindow();
xColorMixerWindow();
ColorMixerWindow& displayNewColor();

private:
IMultiCellCanvas canvas;
ISlider redSlider, greenSlider, blueSlider;
IMultiCellCanvas colorAreaCanvas;
ISetCanvas colorAreaFrame;

136 IBM Open Class: User Interface

IStaticText colorArea;
ColorMonitor colorMonitor;
ISetCanvas redTitleCanvas, greenTitleCanvas, blueTitleCanvas;
IStaticText redTitle, greenTitle, blueTitle;
IStaticText redValue, greenValue, blueValue;
IStaticText mixerTitle;

};

2. Define the ColorMonitor class. The ColorMonitor class is used to detect when a
slider is moved. The edit member function is overridden to detect when a new
color is to be displayed in the color area, as follows:
class ColorMonitor : public IEditHandler

{
public:

ColorMonitor(ColorMixerWindow *colorMixerWindow)
: _colorMixerWindow(colorMixerWindow)
{;}

protected:
bool edit(IControlEvent &event);

private:
ColorMixerWindow *_colorMixerWindow;

};

3. Create the main window. Note that the tick spacing defaults to 0 so the slider is
automatically sized to the width of the control window:
ColorMixerWindow::ColorMixerWindow()

: IFrameWindow(“Slider Example”)
, canvas(ID_MCCANVAS, this, this)
, mixerTitle(ID_MIXER_TITLE, &canvas, &canvas)
, redTitleCanvas(ID_RED_CANVAS, &canvas, &canvas)
, redValue(ID_RED_VALUE, &redTitleCanvas, &redTitleCanvas)
, redTitle(ID_RED_TITLE, &redTitleCanvas, &redTitleCanvas)
, redSlider(ID_RED_SLIDER, &canvas, &canvas, IRectangle(), 256, 0,

ISlider::pmCompatible |
ISlider::homeLeft | ISlider::horizontal | ISlider::primaryScale1 |
ISlider::alignCentered | ISlider::buttonsLeft | IWindow::visible)

, greenTitleCanvas(ID_GREEN_CANVAS, &canvas, &canvas)
, greenValue(ID_GREEN_VALUE, &greenTitleCanvas, &greenTitleCanvas)
, greenTitle(ID_GREEN_TITLE, &greenTitleCanvas, &greenTitleCanvas)
, greenSlider(ID_GREEN_SLIDER, &canvas, &canvas, IRectangle(), 256. 0,

ISlider::pmCompatible |
ISlider::homeLeft | ISlider::horizontal | ISlider::primaryScale1 |
ISlider::alignCentered | ISlider::buttonsLeft | IWindow::visible)

, blueTitleCanvas(ID_BLUE_CANVAS, &canvas, &canvas)
, blueValue(ID_BLUE_VALUE, &blueTitleCanvas, &blueTitleCanvas)
, blueTitle(ID_BLUE_TITLE, &blueTitleCanvas, &blueTitleCanvas)
, blueSlider(ID_BLUE_SLIDER, &canvas, &canvas, IRectangle(), 256, 0,

ISlider::pmCompatible |
ISlider::homeLeft | ISlider::horizontal | ISlider::primaryScale1 |
ISlider::alignCentered | ISlider::buttonsLeft | IWindow::visible)

, colorAreaCanvas(ID_COLOR_CANVAS, &canvas, &canvas)
, colorAreaFrame(ID_COLOR_FRAME, &colorAreaCanvas, &colorAreaCanvas)
, colorArea(ID_COLOR_AREA, &colorAreaCanvas, &colorAreaCanvas)
, colorMonitor(this)
{

4. Set up sliders and color area:
// Put a border of 10 around the sliders

canvas
.setColumnWidth(1, 10)
.setColumnWidth(5, 10)
.setRowHeight(1, 10)
.setRowHeight(15, 10)

// Mark the column that contains the sliders as expandable.
.setColumnWidth(2, 10,true);

mixerTitle
.setText(“Color Mixer”)

Chapter 11. Sliders 137

.setAlignment(IStaticText::centerCenter);
// Set up the sliders to have a range of 0 to 255 for color selection
redSlider

.setTickText(0, “0”)

.setTickText(255, “255”)

.moveArmToTick(0);
redTitle.setText(“Red”);
redValue

.setText(“0”)

.setLimit(3);
redTitleCanvas

.setDeckOrientation(ISetCanvas::horizontal)

.setPackType(ISetCanvas::tight);
greenSlider

.setTickText(0, “0”)

.setTickText(255, “255”)

.moveArmToTick(0);
greenTitle.setText(“Green”);
greenValue

.setText(“0”)

.setLimit(3);
greenTitleCanvas

.setDeckOrientation(ISetCanvas::horizontal)

.setPackType(ISetCanvas::tight);
blueSlider

.setTickText(0, “0”)

.setTickText(255, “255”)

.moveArmToTick(0)

.setForegroundColor(IColor::white);
blueTitle.setText(“Blue”);
blueValue

.setText(“0”)

.setLimit(3);
blueTitleCanvas

.setDeckOrientation(ISetCanvas::horizontal)

.setPackType(ISetCanvas::tight);
// Set each slider's background to the color that the slider
// represents.
redSlider.setBackgroundColor (IColor::red);
greenSlider.setBackgroundColor(IColor::green);
blueSlider.setBackgroundColor (IColor::blue);
// Add a ISetCanvas to the multicell canvas and use its text feature to
// put a border around the colorArea. The IFont for the colorAreaFrame is
// used to figure out the size of the first row.
IFont colorAreaFont(&colorAreaFrame);
colorAreaCanvas

.addToCell(&colorAreaFrame, 1, 1, 3, 3)

.addToCell(&colorArea, 2, 2)

.setColumnWidth(2, 10, true)

.setRowHeight(1, 5 + colorAreaFont.maxCharHeight())

.setRowHeight(2, 10, true);
colorAreaFrame.setBorderText(“Color Area”);
// Set the slider visible ticks to be every 5th one.
for (int i = 0; i <= 255; i=i+5)

{
redSlider.setTickLength (i, 10);
greenSlider.setTickLength(i, 10);
blueSlider.setTickLength (i, 10);
}

// Add the controls to the multicell canvas.
canvas

.addToCell(&mixerTitle, 2, 2)

.addToCell(&redTitleCanvas, 2, 4)

.addToCell(&redSlider, 2, 6)

.setRowHeight(6, 10, true)

.addToCell(&greenTitleCanvas, 2, 8)

.addToCell(&greenSlider, 2, 10)

138 IBM Open Class: User Interface

.setRowHeight(10, 10, true)

.addToCell(&blueTitleCanvas, 2, 12)

.addToCell(&blueSlider, 2, 14)

.setRowHeight(14, 10, true)

.addToCell(&colorAreaCanvas, 4, 4, 1, 11);
// Add the colorMonitor to each slider so that we can detect when
// to update the colorArea.
colorMonitor

.handleEventsFor(&redSlider)

.handleEventsFor(&blueSlider)

.handleEventsFor(&greenSlider);
// Initialize the color areas color.
colorArea.setBackgroundColor(IColor(0, 0, 0));
setClient(&canvas);
}

5. Change color area to mix of colors specified by the sliders:
ColorMixerWindow& ColorMixerWindow::displayNewColor()

{
// Use the armTickOffset of each of the sliders to create an IColor
// object to use to set the background color of the colorArea.
IColor newColor(redSlider.armTickOffset(),

greenSlider.armTickOffset(),
blueSlider.armTickOffset());

colorArea.setBackgroundColor(newColor);
// Display the value used to create the colorArea's background color.
redValue.setText (IString(redSlider.armTickOffset()));
greenValue.setText(IString(greenSlider.armTickOffset()));
blueValue.setText (IString(blueSlider.armTickOffset()));
return *this;
}

6. Handle the events occuring when a slider’s value changes:
bool ColorMonitor::edit(IControlEvent& event)
{

// When the slider's value changes display
// a new background color in the colorArea.
// [The color specified in the figure below is
// the favorite color of G.M.]
_colorMixerWindow->displayNewColor();
return true;

}

The following figure shows the slider created by the preceding example:

Chapter 11. Sliders 139

You can find the complete source to this example in the following files:
v slider.cpp
v slider.h
v slider.hpp

“Chapter 11. Sliders” on page 135
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“File: slider.cpp”
“File: slider.h” on page 144
“File: slider.hpp” on page 144
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

ISlider

Slider Example

File: slider.cpp
#include <iapp.hpp>
#include <istring.hpp>
#include <ifont.hpp>
#include “slider.hpp”
#include “slider.h”

140 IBM Open Class: User Interface

/**
* main *
* - Application entry point. *
**/
int main()
{

ColorMixerWindow colorMixer;
colorMixer.setFocus().sizeTo(ISize(540,500)).show();
IApplication::current().run();
return 0;

}
/**
* Class ColorMixerWindow :: ColorMixerWindow *
**/
ColorMixerWindow::ColorMixerWindow()

: IFrameWindow(“Slider Example”)
, canvas(ID_MCCANVAS, this, this)
, mixerTitle(ID_MIXER_TITLE, &canvas, &canvas)
, redTitleCanvas(ID_RED_CANVAS, &canvas, &canvas)
, redValue(ID_RED_VALUE, &redTitleCanvas, &redTitleCanvas)
, redTitle(ID_RED_TITLE, &redTitleCanvas, &redTitleCanvas)
, redSlider(ID_RED_SLIDER, &canvas, &canvas,

IRectangle(), 256, 0,
ISlider::pmCompatible |
ISlider::homeLeft |
ISlider::horizontal |
ISlider::primaryScale1 |
ISlider::alignCentered |
ISlider::buttonsLeft |
IWindow::visible)

, greenTitleCanvas(ID_GREEN_CANVAS, &canvas, &canvas)
, greenValue(ID_GREEN_VALUE, &greenTitleCanvas,

&greenTitleCanvas)
, greenTitle(ID_GREEN_TITLE, &greenTitleCanvas,

&greenTitleCanvas)
, greenSlider(ID_GREEN_SLIDER, &canvas, &canvas,

IRectangle(), 256, 0,
ISlider::pmCompatible |
ISlider::homeLeft |
ISlider::horizontal |
ISlider::primaryScale1 |
ISlider::alignCentered |
ISlider::buttonsLeft |
IWindow::visible)

, blueTitleCanvas(ID_BLUE_CANVAS, &canvas, &canvas)
, blueValue(ID_BLUE_VALUE, &blueTitleCanvas,

&blueTitleCanvas)
, blueTitle(ID_BLUE_TITLE, &blueTitleCanvas,

&blueTitleCanvas)
, blueSlider(ID_BLUE_SLIDER, &canvas, &canvas,

IRectangle(), 256, 0,
ISlider::pmCompatible |
ISlider::homeLeft |
ISlider::horizontal |
ISlider::primaryScale1 |
ISlider::alignCentered |
ISlider::buttonsLeft |
IWindow::visible)

, colorAreaCanvas(ID_COLOR_CANVAS, &canvas, &canvas)
, colorArea(ID_COLOR_AREA, &colorAreaCanvas,

&colorAreaCanvas)
, colorMonitor(this)

{
// Put a border of 10 around the sliders
canvas

.setColumnWidth(1, 10)

.setColumnWidth(5, 10)

Chapter 11. Sliders 141

.setRowHeight(1, 10)

.setRowHeight(15, 10)
// Mark the column that contains the sliders
// as expandable.
.setColumnWidth(2, 10,true);

mixerTitle
.setText(“Color Mixer”)
.setAlignment(IStaticText::centerCenter);

// Set up the sliders to have a range of 0 to 255
// for color selection
redSlider

.setTickText(0, “0”)

.setTickText(255, “255”)

.moveArmToTick(0);
redTitle.setText(“Red”);
redValue

.setText(“0”)

.setLimit(3);
redTitleCanvas

.setDeckOrientation(ISetCanvas::horizontal)

.setPackType(ISetCanvas::tight);
greenSlider

.setTickText(0, “0”)

.setTickText(255, “255”)

.moveArmToTick(0);
greenTitle.setText(“Green”);
greenValue

.setText(“0”)

.setLimit(3);
greenTitleCanvas

.setDeckOrientation(ISetCanvas::horizontal)

.setPackType(ISetCanvas::tight);
blueSlider

.setTickText(0, “0”)

.setTickText(255, “255”)

.moveArmToTick(0)

.setForegroundColor(IColor::kWhite);
blueTitle.setText(“Blue”);
blueValue

.setText(“0”)

.setLimit(3);
blueTitleCanvas

.setDeckOrientation(ISetCanvas::horizontal)

.setPackType(ISetCanvas::tight);
// Set each slider's background to the color
// that the slider represents.
redSlider.setBackgroundColor (IColor::kRed);
greenSlider.setBackgroundColor(IColor::kGreen);
blueSlider.setBackgroundColor (IColor::kBlue);
// Add the static text control that will show the user's
// selected color to a canvas that draws a border.
colorAreaCanvas

.addToCell(&colorArea, 1, 1)

.setColumnWidth(1, 10, true)

.setRowHeight(1, 10, true);
colorAreaCanvas.setBorderText(“Color Area”);
// Set the slider visible ticks to be every 5th one.
for (int i = 0; i <= 255; i=i+5)

{
redSlider.setTickLength (i, 10);
greenSlider.setTickLength(i, 10);
blueSlider.setTickLength (i, 10);
}

// Add the controls to the multicell canvas.
canvas

.addToCell(&mixerTitle, 2, 2)

.addToCell(&redTitleCanvas, 2, 4)

142 IBM Open Class: User Interface

.addToCell(&redSlider, 2, 6)

.setRowHeight(6, 10, true)

.addToCell(&greenTitleCanvas, 2, 8)

.addToCell(&greenSlider, 2, 10)

.setRowHeight(10, 10, true)

.addToCell(&blueTitleCanvas, 2, 12)

.addToCell(&blueSlider, 2, 14)

.setRowHeight(14, 10, true)

.addToCell(&colorAreaCanvas, 4, 4, 1, 11);
// Add the colorMonitor to each slider so that we
// can detect when to update the colorArea.
colorMonitor

.handleEventsFor(&redSlider)

.handleEventsFor(&blueSlider)

.handleEventsFor(&greenSlider);
// Initialize the color areas color.
colorArea.setBackgroundColor(IColor(0, 0, 0));
setClient(&canvas);

}
/**
* Class ColorMixerWindow :: xColorMixerWindow *
**/
ColorMixerWindow::xColorMixerWindow()
{

colorMonitor
.stopHandlingEventsFor(&redSlider)
.stopHandlingEventsFor(&blueSlider)
.stopHandlingEventsFor(&greenSlider);

}
/**
* Class ColorMixerWindow :: displayNewColor *
**/
ColorMixerWindow& ColorMixerWindow::displayNewColor()
{

// Use the armTickOffset of each of the sliders to
// create an IColor object to use to set the background
// color of the colorArea.
IColor newColor(redSlider.armTickOffset(),

greenSlider.armTickOffset(),
blueSlider.armTickOffset());

colorArea.setBackgroundColor(newColor);
// Display the value used to create the colorArea's
// background color.
redValue.setText (IString(redSlider.armTickOffset()));
greenValue.setText(IString(greenSlider.armTickOffset()));
blueValue.setText (IString(blueSlider.armTickOffset()));
return *this;

}
/**
* Class ColorMonitor :: edit *
**/
bool ColorMonitor::edit(IControlEvent& event)
{

// When the slider's value changes display a new
// background color in the colorArea.
_colorMixerWindow->displayNewColor();
return true;

}

“Chapter 11. Sliders” on page 135
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

Chapter 11. Sliders 143

“Create a Slider Control” on page 136
“File: slider.h”
“File: slider.hpp”
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

File: slider.h
#define ID_MCCANVAS 200
#define ID_RED_SLIDER 201
#define ID_RED_CANVAS 202
#define ID_RED_TITLE 203
#define ID_RED_VALUE 204
#define ID_GREEN_SLIDER 205
#define ID_GREEN_CANVAS 205
#define ID_GREEN_TITLE 206
#define ID_GREEN_VALUE 207
#define ID_BLUE_SLIDER 208
#define ID_BLUE_CANVAS 209
#define ID_BLUE_TITLE 210
#define ID_BLUE_VALUE 211
#define ID_COLOR_CANVAS 212
#define ID_COLOR_AREA 214
#define ID_MIXER_TITLE 215

“Chapter 11. Sliders” on page 135
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Create a Slider Control” on page 136
“File: slider.cpp” on page 140
“File: slider.hpp”
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

File: slider.hpp
#ifndef _COLORMIXER_
#define _COLORMIXER_
#include <islider.hpp>
#include <iframe.hpp>
#include <istattxt.hpp>
#include <imcelcv.hpp>
#include <iedithdr.hpp>
#include <isizehdr.hpp>
#include <isetcv.hpp>
#include “slider.h”
class ColorMixerWindow;
/**
* Class ColorMonitor *
* - The ColorMonitor class is used to detect when a slider *
* is moved. The edit member function is overriden to *
* detect when a new color is to be displayed in the *
* color Area. *
**/
class ColorMonitor : public IEditHandler
{

public:
ColorMonitor(ColorMixerWindow *colorMixerWindow)

: _colorMixerWindow(colorMixerWindow)
{;}

144 IBM Open Class: User Interface

protected:
bool edit(IControlEvent &event);

private:
ColorMixerWindow *_colorMixerWindow;

};
/**
* Class ColorMixerWindow *
* - The ColorMixerWindow is comprised of 3 sliders to set *
* the red, green and blue components for a color mixer *
* sample. The layout is controlled by a IMultiCellCanvas*
* and the color is displayed using a IStaticText. *
**/
class ColorMixerWindow : public IFrameWindow
{

public:
ColorMixerWindow();
xColorMixerWindow();
ColorMixerWindow& displayNewColor();

private:
IMultiCellCanvas canvas;
ISlider redSlider, greenSlider, blueSlider;
IMultiCellCanvas colorAreaCanvas;
IStaticText colorArea;
ColorMonitor colorMonitor;
ISetCanvas redTitleCanvas, greenTitleCanvas, blueTitleCanvas;
IStaticText redTitle, greenTitle, blueTitle;
IStaticText redValue, greenValue, blueValue;
IStaticText mixerTitle;

};
#endif

“Chapter 11. Sliders” on page 135
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Create a Slider Control” on page 136
“File: slider.cpp” on page 140
“File: slider.h” on page 144
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Chapter 11. Sliders 145

146 IBM Open Class: User Interface

Chapter 12. Spin Buttons

A spin button control is a visual component that gives users quick access to a finite
set of data by letting them select from a scrollable ring of choices. Because the user
can see only one item at a time, a spin button should be used only with data that
is intuitively related, such as the months of the year or an alphabetic list of cities
or states.

A spin button has one spin field and may or may not have spin arrows. The user
would find the spin arrows to the right of the spin field. To cycle through the
contents of a spin button, the user may click on the arrows or use the up and
down arrow keys. The first spin field in the spin button can contain a list of
numbers; the second, a list of months; and the third, a list of years.

Master spin buttons have spin arrows, servant spin buttons do not. You may relate
master and servant spin buttons so that the user may scroll either the master or
servant spin button with the spin arrows of the master. To scroll the servant spin
button with the spin arrows, the servant spin button must have the input focus.

For example, in setting a date, you can use one master and two servant spin
buttons. You can represent the year with the master spin button, and the day and
month with the servant spin buttons.

You can create spin buttons from the classes INumericSpinButton and
ITextSpinButton. These classes derive from IBaseSpinButton.

The value in a spin button entry field can be an element in an array of data or
within a range of integers, defined by an upper and lower limit. Text spin buttons
are spin buttons that use arrays of data. Numeric spin buttons are those that use a
range of integers.

Attach a handler derived from ISpinHandler to the spin button to capture spin
events, such as the user pressing the up or down arrow keys.

“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Create a Spin Button”
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Create a Spin Button
The following example shows you how to create three spin buttons to show the
three parts of a date (month, day, and year). It demonstrates how to initialize the
data of both a text spin button and a numeric spin button. It also shows how to
retrieve the value of the spin buttons and show the values in a message box. The

© Copyright IBM Corp. 1998, 2000 147

spin buttons are children of the client canvas. The frame also contains a status area
and a push button. The push button is added as an extension below the client
canvas.
1. Define the main window in the spinbtn.hpp file as follows:

/***/
/* Declare the frame window */
/***/
class AppWindow : public IFrameWindow {
public:

AppWindow(unsigned long windowId);
xAppWindow();
ITextSpinButton * spinbtn1;
INumericSpinButton * spinbtn2,

* spinbtn3;
IStaticText statusarea;
IPushButton pushbtn;
void eventHandle();

private:
ITitle title;
ICanvas canvas;
ACommandHandler * commandHandler

2. Create the spin buttons. Add the extensions and the command handler in the
spinbtn.cpp file:
/***/
/* Create the frame window */
/***/
AppWindow::AppWindow(unsigned long windowId)

: IFrameWindow(windowId,
IFrameWindow::defaultStyle()),
title(this, “Spin Button Example”),
canvas(WID_CANVAS, this, this, IRectangle(5, 5, 410, 460)),
statusarea(WID_STATUS, this, this),
pushbtn(WID_BUTTON, this, this)

{
// Customize the push button with text
pushbtn.setText(“OK”);
//Create month spin button (text type spin button)
spinbtn1 = new ITextSpinButton(WID_MONTH,&canvas, &canvas,

IRectangle(10,250,200,350));
//Create day spin button (numeric type spin button)
spinbtn2 = new INumericSpinButton(WID_DAY,&canvas, &canvas,

IRectangle(10,150,200,240));
//Create year spin button (numeric type spin button)
spinbtn3 = new INumericSpinButton(WID_YEAR,&canvas, &canvas,

IRectangle(10,50,200,140));

3. Add data to the spin buttons:
const int kArraySize = 12;
const int daySize = 31;
const int yearSize = 2000;
const char* textArray[kArraySize] = { “January”, “February”, “March”,

“April”, “May”,“June”, “July”, “August”, “September”, “October”,
“November”, “December” };

// Add month data to spin button
for (int i = 0; i < kArraySize; i++)

spinbtn1->addAsLast(textArray[i]);
// Set range of days to day spin button
spinbtn2->setRange(IRange(1, daySize));
// Set range of years to year spin button (1990 - 2000)
spinbtn3->setRange(IRange(1990, yearSize));
//Add the status area as an extension
statusarea.setText(“Select a MONTH, DAY and YEAR:”);
setClient(&canvas);
addExtension(&statusarea, IFrameWindow::aboveClient,

.05, IFrameWindow::thickLine);

148 IBM Open Class: User Interface

//Add the push button as an extension
addExtension(&pushbtn, IFrameWindow::belowClient,

.05, IFrameWindow::thickLine);
//Add the command handler
commandHandler = new ACommandHandler(this);
commandHandler->handleEventsFor(this);
}

4. Handle an event to show the data in the spin buttons, as follows:
void AppWindow :: eventHandle()
{
IString month = spinbtn1->text() += “ ”;
IString day = spinbtn2->value();
IString year = spinbtn3->value();
IString text = “You have selected: ”;
IString date = text += month;
date += day;
date += “ ”;
date += year;

// Display the data retrieved from the spin buttons
IMessageBox msg(IWindow::desktopWindow());
msg.setTitle(“Spin Buttons Selection Notifier”);
msg.show(date, IMessageBox::informationIcon | IMessageBox::okButton)
return;
}
//***
// ACommandHandler::ACommandHandler *
// Construct the command handler from a pointer to the main window *
// that events will be handled for. *
//***
ACommandHandler::ACommandHandler(AppWindow *pushWindow)
{

push = pushWindow;
}
//***
// ACommandHandler::command *
// Handle menu commands *
//***
bool ACommandHandler::command(ICommandEvent & cmdEvent)
{

bool eventProcessed(true);
// When OK push button is pressed - display the data inside the
// spin buttons

switch (cmdEvent.commandId())
{

case WID_BUTTON:
push->eventHandle();
break;

default:
eventProcessed = false;

}
return true;
}

The following figure shows the spin buttons created using the preceding example:

Chapter 12. Spin Buttons 149

You can find the complete source to this example in the following files:
v spinbtn.cpp
v spinbtn.h
v spinbtn.hpp

“Chapter 12. Spin Buttons” on page 147
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“File: spinbtn.cpp”
“File: spinbtn.h” on page 152
“File: spinbtn.hpp” on page 153
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

ITextSpinButton
INumericSpinButton

Spin Button Example

File: spinbtn.cpp
#include <iostream.h>
#include “spinbtn.h”
#include “spinbtn.hpp”
#include <ifont.hpp>
#include <imsgbox.hpp>
#include <icoordsy.hpp>
/**
* main *
* - Application entry point. *
**/

150 IBM Open Class: User Interface

int main()
{

ICoordinateSystem::setApplicationOrientation(
ICoordinateSystem::kOriginLowerLeft);

AppWindow frameWindow(WID_MAIN);
frameWindow.sizeTo(ISize(440,400));
frameWindow.moveSizeToClient(IRectangle(100,100, 410, 410));
frameWindow.show();
IApplication::current().run();
return 0;

}
/**
* Class AppWindow :: AppWindow *
**/
AppWindow::AppWindow(unsigned long windowId)

: IFrameWindow(windowId,
IFrameWindow::defaultStyle()),
title(this, “Spin Button Example”),
canvas(WID_CANVAS, this, this,

IRectangle(5, 5, 410, 350)),
statusarea(WID_STATUS, this, this),
pushbtn(WID_BUTTON, this, this)

{
pushbtn.setText(“OK”);
// Create month spin button (text type spin button)
spinbtn1 = new ITextSpinButton(WID_MONTH,&canvas, &canvas,

IRectangle(10,250,200,280));
// Create day spin button (numeric type spin button)
spinbtn2 = new INumericSpinButton(WID_DAY,&canvas, &canvas,

IRectangle(10,150,200,180));
// Create year spin button (numeric type button)
spinbtn3 = new INumericSpinButton(WID_YEAR,&canvas, &canvas,

IRectangle(10,50,200,80));
const int kArraySize = 12;
const int daySize = 31;
const int yearSize = 2000;
const char* textArray[kArraySize] =

{ “January”, “February”, “March”,
“April”, “May”,“June”, “July”,
“August”, “September”, “October”,
“November”, “December” };

// Add month data to spin button
for (int i = 0; i < kArraySize; i++)

spinbtn1->addAsLast(textArray[i]);
// Set range of days to day spin button
spinbtn2->setRange(IRange(1, daySize));
// Set range of years to year spin button (1990 - 2000)
spinbtn3->setRange(IRange(1990, yearSize));
statusarea.setText(“Select a MONTH, DAY and YEAR:”);
setClient(&canvas);
addExtension(&statusarea, IFrameWindow::aboveClient,

.05, IFrameWindow::thickLine);
addExtension(&pushbtn, IFrameWindow::belowClient,

.05, IFrameWindow::thickLine);
commandHandler = new ACommandHandler(this);
commandHandler->handleEventsFor(this);

}
/**
* Class AppWindow :: xAppWindow *
**/
AppWindow::xAppWindow()
{

commandHandler->stopHandlingEventsFor(this);
delete commandHandler;

}
/**
* Class AppWindow :: eventHandle *

Chapter 12. Spin Buttons 151

**/
void AppWindow :: eventHandle()
{

IString month = spinbtn1->text() += “ ”;
IString day = spinbtn2->value();
IString year = spinbtn3->value();
IString text = “You have selected: ”;
IString date = text += month;
date += day;
date += “ ”;
date += year;
// Display the data retrieved from the spin buttons
IMessageBox msg(IWindow::desktopWindow());
msg.setTitle(“Spin Buttons Selection Notifier”);
msg.show(date, IMessageBox::informationIcon | IMessageBox::okButton);
return;

}
/**
* Class ACommandHandler :: ACommandHandler *
**/
ACommandHandler::ACommandHandler(AppWindow *pushWindow)
{

push = pushWindow;
}
/**
* Class ACommandHandler :: command *
**/
bool ACommandHandler::command(ICommandEvent & cmdEvent)
{

bool eventProcessed(true);
// Identify the event
switch (cmdEvent.commandId())
{

case WID_BUTTON:
push->eventHandle();
break;

default:
eventProcessed = false;

}
return true;

}

“Chapter 12. Spin Buttons” on page 147
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Create a Spin Button” on page 147
“File: spinbtn.h”
“File: spinbtn.hpp” on page 153
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

File: spinbtn.h
#ifndef _SPINBTNH_
#define _SPINBTNH_
#define WID_MAIN 1000
#define WID_CANVAS 1001
#define WID_SPIN 1002
#define WID_MONTH 1003
#define WID_DAY 1004

152 IBM Open Class: User Interface

#define WID_YEAR 1005
#define WID_BUTTON 1006
#define WID_STATUS 1007
#define WID_ID 1008
#endif

“Chapter 12. Spin Buttons” on page 147
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Create a Spin Button” on page 147
“File: spinbtn.cpp” on page 150
“File: spinbtn.hpp”
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

File: spinbtn.hpp
#ifndef _SPINBTN_
#define _SPINBTN_
#include <ipushbut.hpp>
#include <iframe.hpp>
#include <icmdhdr.hpp>
#include <iapp.hpp>
#include <ititle.hpp>
#include <istattxt.hpp>
#include <icanvas.hpp>
#include <ispinnum.hpp>
#include <ispintxt.hpp>
// Forward declarations:
class IFrameWindow;
class AppWindow;
class ICommandHandler;
/**
* Class ACommandHandler *
**/
class ACommandHandler : public ICommandHandler
{

public:
ACommandHandler(AppWindow *pushWindow);

protected:
virtual bool command(ICommandEvent& cmdEvent);

private:
AppWindow *push;

};
/**
* Class AppWindow *
**/
class AppWindow : public IFrameWindow
{

public:
AppWindow(unsigned long windowId);
xAppWindow();
ITextSpinButton * spinbtn1;
INumericSpinButton * spinbtn2,

* spinbtn3;
IStaticText statusarea;
IPushButton pushbtn;
void eventHandle();

private:
ITitle title;

Chapter 12. Spin Buttons 153

ICanvas canvas;
ACommandHandler * commandHandler;

};
#endif

“Chapter 12. Spin Buttons” on page 147
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Create a Spin Button” on page 147
“File: spinbtn.cpp” on page 150
“File: spinbtn.h” on page 152
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

154 IBM Open Class: User Interface

Chapter 13. Canvas Controls

A canvas is a window that manages its child windows.

Canvases provide portable and flexible alternative to dialog boxes. The Open Class
Library does not support dialog templates on AIX, nor does it convert dialog
resources between OS/2 and Windows. In addition, the canvas classes give you
added features dialog boxes do not provide, including the following:
v Managing the size and position of child windows
v Providing movable split bars between windows
v Supporting the ability to scroll a window

Generally, you build a complex window with a canvas control as the client area.
This canvas can contain other canvas controls to build the desired layout.

The canvas classes are as follows:
v ICanvas

– ISetCanvas
– ISplitCanvas
– IMultiCellCanvas
– IViewPort
– IDrawingCanvas

The set and multicell canvases automatically size and position their child windows
for you, based on the child window’s minimum size.

The ICanvas class is the base canvas class. It supports the following basic features:
v

Dialog-like support on Windows and OS/2 for its child windows:
– Movement from one child window to another with the Tab and arrow keys
– Default push buttons
– Mnemonics on buttons, associating a character (sometimes in conjunction

with the Ctrl or Alt key) with a control so that a user may move the input
focus to that control by typing the mnemonic character

– Automatic selection of a radio button when users use Tab or the arrow keys
to give it input focus

– The mutually exclusive selection behavior of buttons: users may select only
one radio button from a group

v Protocol for managing the position and size of child windows via the layout and
setLayoutDistorted virtual functions

v Support for drawing a border with optional text, similar to the static control
IGroupBox. The border text of a canvas can include font and color information

You must explicitly size and position the child windows of ICanvas objects.

© Copyright IBM Corp. 1998, 2000 155

“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Create a Set Canvas” on page 157
“Create a Split Canvas” on page 165
“Create a Multicell Canvas” on page 181
“Create a View Port” on page 193
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Set Canvases
The ISetCanvas class is the simplest canvas class that automatically aligns and
sizes its child windows at run-time. You would generally use set canvases to
arrange child windows of similar size, such as a group of check boxes or radio
buttons, or a row of push buttons.

Decks
A set canvas arranges its child windows in either rows or columns. A deck is either
a row or column of child windows. You can arrange decks oriented horizontally in
a column, or conversely, you may arrange decks oriented vertically in a row. By
default, the set canvas places all of its child windows in one horizontal deck. If
you want to use two or more decks, the set canvas will distribute the child
windows as evenly as possible.

The set canvas creates each deck large enough to contain all of its controls.

Child windows may not overlap one another in a set canvas.

Alternatively you may specify the set canvas to create a new deck for each child
window with the group style. (You would use the style
ISetCanvas::decksByGroup.) In this case, the set canvas ignores any calls specifying
the number of decks.

A set canvas orders its child windows in decks by sibling order, the order by which
you have created your child windows: left to right for horizontal decks, top to
bottom for vertical decks. The Tab and arrow keys move the input cursor in the
same order.

Pad and Margin
The pad is the amount of space the set canvas inserts between child windows. The
margin is the amount of space the set canvas adds between the edge of the canvas
and the child windows. You may modify the default values for pad and margin.

Positioning and Sizing Child Windows
There are three kinds of pack options that specify whether the set canvas changes
the size and position of its child windows. These options are as follows:
v Tight

– The set canvas leaves its child windows at their minimum size
– The set canvas separates its child windows by the default (or specified) pad.
– This is the default option

v Even
– The set canvas leaves its child windows at their minimum size

156 IBM Open Class: User Interface

– The set canvas adds more space to the pad such that the child windows
appear aligned in rows and columns

v Expanded
– The canvas makes all child windows the same size according to the

maximum width and height among all child windows
– The set canvas separates its child windows by the default (or specified) pad.

As a result, the child windows appear aligned in rows and columns.

You can also use IAlignmentAttribute to control the positioning of child windows
within a deck.

The set canvas bases the size of each deck on calls to the minimumSize member
function for each child control. For controls that have sizes defined by the text they
contain, such as push buttons and radio buttons, this default processing is
normally sufficient. However, for a control that does not have a well-defined size,
such as a list box or multiline edit control, you need to set its minimum size by
overriding the calcMinimizeSize member function or by calling its setMinimumSize
member function.

A set canvas displays its controls in the same order as declared in the header file.

“Chapter 13. Canvas Controls” on page 155
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Create a Set Canvas”
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Create a Set Canvas
The following sample shows you how to create a set canvas, as well as how to
create a split canvas. The sample uses a split canvas as a client area. The split
canvas holds three controls: a static text control and two set canvases. The set
canvases each hold seven radio buttons:
1. Declare your canvas objects as member objects of your main window. This code

from the header file, esetcv.hpp, declares the main window called ASetCanvas
as a class derived from IFrameWindow. It also declares two ISetCanvas objects
named vSetCanvas and hSetCanvas:
class ASetCanvas : public IFrameWindow
{

public:
ASetCanvas(unsigned long windowId);

xASetCanvas();
private:

ISplitCanvas clientCanvas;
IStaticText status;
ISetCanvas vSetCanvas,

hSetCanvas;
IRadioButton * radiobut[NUMBER_OF_BUTTONS];
AButtonHandler buttonHandler;

};

2. Construct your main window, filling your set canvases with your controls. The
following code from esetcv.cpp defines the ASetCanvas constructor.

Chapter 13. Canvas Controls 157

The custructor first creates a split canvas called clientCanvas. It then creates
three controls as children of clientCanvas: status (a static text control),
vSetCanvas, and hSetCanvas.
The call to setDeckOrientation() specifies the direction of the decks. The call to
setDeckCount() specifies the maximum number of decks used by the canvas.
For example, the code specifies that vSetCanvas will orient its decks vertically,
and will use a maximum of three decks.
The radio button constructor takes a reference of its parent and owner windows
as two of its arguments. In this case, the parent and owner window is one of
the set canvases. Note that you do not specify where to place the radio button
within the set canvas; set canvases automatically place and arrange their
controls for you:
ASetCanvas::ASetCanvas(unsigned long windowId)

: IFrameWindow(windowId)
, clientCanvas(WND_SPLITCANVAS, this, this ,IRectangle(),

ISplitCanvas::horizontal | IWindow::visible)
, status(WND_STATUS, &clientCanvas, &clientCanvas)
, vSetCanvas(WND_VSETCANVAS, &clientCanvas, &clientCanvas)
, hSetCanvas(WND_HSETCANVAS, &clientCanvas, &clientCanvas)

{
// make split canvas the client area
setClient(&clientCanvas);
// set alignment of status area text
status.setAlignment(IStaticText::centerCenter);
// top canvas has 3 vertical decks
vSetCanvas.setDeckOrientation(ISetCanvas::vertical);
vSetCanvas.setDeckCount(3);
// bottom canvas has 3 horizontal decks
hSetCanvas.setDeckOrientation(ISetCanvas::horizontal);
hSetCanvas.setDeckCount(3);
// set some space around buttons
hSetCanvas.setPad(ISize(10,10));
// give button handler a text control
buttonHandler.useStatus(&status);
unsigned int i, mid = (NUMBER_OF_BUTTONS/2);
// create the first set of radio buttons
for (i = 0 ; i < mid ; ++i)
{

radiobut[i] = new IRadioButton(WND_BUTTON + i,
&vSetCanvas,
&vSetCanvas);

// add handler to button
buttonHandler.handleEventsFor(radiobut[i]);
radiobut[i]->setText(STR_TEXT + i);

}
// set tabStop and Group styles
radiobut[0]->enableGroup().enableTabStop();
// select first button in group
radiobut[0]->select();
// create the second set of radio buttons
for (i = mid ; i < NUMBER_OF_BUTTONS ; ++i)
{

radiobut[i] = new IRadioButton(WND_BUTTON + i,
&hSetCanvas,
&hSetCanvas);

// add handler to button
buttonHandler.handleEventsFor(radiobut[i]);
radiobut[i]->setText(STR_TEXT + i);

}
// set tabStop and Group styles
radiobut[mid]->enableGroup().enableTabStop();
// select first button in group
radiobut[mid]->select();
// set focus to radio button one

158 IBM Open Class: User Interface

radiobut[0]->setFocus();
// set status area text from resource
status.setText(STR_STATUS);
// show main window
show();

}

The following figure shows the canvases created with this example:

You can find the complete source to this example in the following files:
v esetcv.cpp
v esetcv.h
v esetcv.hpp
v esetcv.rc

“Set Canvases” on page 156
“Chapter 13. Canvas Controls” on page 155
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Create a Split Canvas” on page 165
“Create a Multicell Canvas” on page 181
“Create a View Port” on page 193
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

“File: esetcv.cpp” on page 160
“File: esetcv.h” on page 162
“File: esetcv.hpp” on page 162
“File: esetcv.rc” on page 163
ISplitCanvas
IRadioButton

Chapter 13. Canvas Controls 159

Set Canvas Example

File: esetcv.cpp
//
// Set Canvas Example:
// key functions:
// - create a main window
// - run the current application
// - create a horizontal split canvas
// - create static text controls
// - create vertical and horizontal set canvases with
// multiple decks
// - create radio buttons
// - control cursor and tab movement between different
// groups
// - process 'Select' events on the radio buttons
// - load strings from resource bound to the exe
//
#include “esetcv.hpp”
/**
* main *
* - Application entry point. *
**/
int main()
{

ASetCanvas mainWindow(WND_MAIN);
IApplication::current().run();
return 0;

}
/**
* Class ASetCanvas :: ASetCanvas *
**/
ASetCanvas::ASetCanvas(unsigned long windowId)

: IFrameWindow(windowId)
, clientCanvas(WND_SPLITCANVAS, this, this ,IRectangle(),

ISplitCanvas::horizontal | IWindow::visible)
, status(WND_STATUS, &clientCanvas, &clientCanvas)
, vSetCanvas(WND_VSETCANVAS, &clientCanvas, &clientCanvas)
, hSetCanvas(WND_HSETCANVAS, &clientCanvas, &clientCanvas)

{
// make split canvas the client area
setClient(&clientCanvas);
// set alignment of status area text
status.setAlignment(IStaticText::centerCenter);
// top canvas has 3 vertical decks
vSetCanvas.setDeckOrientation(ISetCanvas::vertical);
vSetCanvas.setDeckCount(3);
// bottom canvas has 3 horizontal decks
hSetCanvas.setDeckOrientation(ISetCanvas::horizontal);
hSetCanvas.setDeckCount(3);
// set some space around buttons
hSetCanvas.setPad(ISize(10,10));
// give button handler a text control
buttonHandler.useStatus(&status);
unsigned int i, mid = (NUMBER_OF_BUTTONS/2);
// create the first set of radio buttons
for (i = 0 ; i < mid ; ++i)
{

radiobut[i] = new IRadioButton(WND_BUTTON + i,
&vSetCanvas,
&vSetCanvas);

// add handler to button
buttonHandler.handleEventsFor(radiobut[i]);
radiobut[i]->setText(STR_TEXT + i);

}

160 IBM Open Class: User Interface

// set tabStop and Group styles
radiobut[0]->enableGroup().enableTabStop();
// select first button in group
radiobut[0]->select();
// create the second set of radio buttons
for (i = mid ; i < NUMBER_OF_BUTTONS ; ++i)
{

radiobut[i] = new IRadioButton(WND_BUTTON + i,
&hSetCanvas,
&hSetCanvas);

// add handler to button
buttonHandler.handleEventsFor(radiobut[i]);
radiobut[i]->setText(STR_TEXT + i);

}
// set tabStop and Group styles
radiobut[mid]->enableGroup().enableTabStop();
// select first button in group
radiobut[mid]->select();
// set focus to radio button one
radiobut[0]->setFocus();
// set status area text from resource
status.setText(STR_STATUS);
// show main window
show();

} /* end ASetCanvas :: ASetCanvas(...) */
/**
* Class ASetCanvas :: xASetCanvas *
**/
ASetCanvas::xASetCanvas()
{

for (unsigned int i = 0; i < NUMBER_OF_BUTTONS ; ++i)
{

delete radiobut[i];
}

}
/**
* Class AButtonHandler :: selected *
* - an ISelectEventHandler *
* - return true if event handled else return false *
* - display the number of the button selected in a text *
* control *
**/
bool AButtonHandler::selected(IControlEvent& evt)
{

// assume event is for us
bool fHandled = true;
unsigned long ulButtonId = evt.controlId();
// if the id is one of the buttons
// then display the button number in the
// static text control
if (ulButtonId >= WND_BUTTON &&

ulButtonId <= (WND_BUTTON+NUMBER_OF_BUTTONS) &&
output)

output->setText(IString(ulButtonId-WND_BUTTON+1));
else

// pass event to other handlers
fHandled = false;

return fHandled;
} /* end AButtonHandler::selected(...) */

“Set Canvases” on page 156
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

Chapter 13. Canvas Controls 161

“Create a Set Canvas” on page 157
“File: esetcv.h”
“File: esetcv.hpp”
“File: esetcv.rc” on page 163
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

File: esetcv.h
#ifndef ASETCV_H
#define ASETCV_H
#define NUMBER_OF_BUTTONS 14
#define WND_MAIN 0x1000
#define WND_STATUS 0x1001
#define WND_SPLITCANVAS 0x1002
#define WND_VSETCANVAS 0x1003
#define WND_HSETCANVAS 0x1004
#define WND_BUTTON 0x1010
#define STR_STATUS 0x2000
#define STR_VSETCANVAS 0x2001
#define STR_HSETCANVAS 0x2002
#define STR_TEXT 0x2003
#endif

“Set Canvases” on page 156
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Create a Set Canvas” on page 157
“File: esetcv.cpp” on page 160
“File: esetcv.hpp”
“File: esetcv.rc” on page 163
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

File: esetcv.hpp
#ifndef ASETCV_HPP
#define ASETCV_HPP
#include <iframe.hpp>
#include <istattxt.hpp>
#include <iradiobt.hpp>
#include <isetcv.hpp>
#include <isplitcv.hpp>
#include <iselhdr.hpp>
#include “esetcv.h”
/**
* Class AButtonHandler *
* - This is the select handler for the radio buttons. *
* The button handler is called when a radio button is *
* selected. It displays the number of the button in the *
* static text that is given to it using useInfoArea *
* member function. *
**/
class AButtonHandler : public ISelectHandler
{

public:

162 IBM Open Class: User Interface

AButtonHandler() : output(0) {;}
useStatus(IStaticText * pstatus)

{ output = pstatus; return 0; }
protected:

bool
selected (IControlEvent& evt);

private:
IStaticText * output;

};
/**
* Class ASetCanvas *
* - Main window for the set canvas example. *
* - The window has a split canvas as the client area. *
* Three other controls are added to the split canvas. A *
* static text control is added in the top pane, the lower*
* two panes contain set canvases. *
**/
class ASetCanvas : public IFrameWindow
{

public:
ASetCanvas(unsigned long windowId);

xASetCanvas();
private:

ISplitCanvas clientCanvas;
IStaticText status;
ISetCanvas vSetCanvas,

hSetCanvas;
IRadioButton * radiobut[NUMBER_OF_BUTTONS];
AButtonHandler buttonHandler;

};
#endif

“Set Canvases” on page 156
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Create a Set Canvas” on page 157
“File: esetcv.cpp” on page 160
“File: esetcv.h” on page 162
“File: esetcv.rc”
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

File: esetcv.rc
#include “esetcv.h”
/**
* string resources *
* Relate symbolic names to literal text strings. *
**/
STRINGTABLE

BEGIN
WND_MAIN , “Canvas Classes Example 2 - Set Canvas”
STR_STATUS , “ISplitCanvas and ISetCanvas example”
STR_HSETCANVAS , “Horizontal Set Canvas”
STR_VSETCANVAS , “Vertical Set Canvas”
(STR_TEXT+0) , “Button one”
(STR_TEXT+1) , “Button two”
(STR_TEXT+2) , “Button three”
(STR_TEXT+3) , “Button four”
(STR_TEXT+4) , “Button five”

Chapter 13. Canvas Controls 163

(STR_TEXT+5) , “Button six”
(STR_TEXT+6) , “Button seven”
(STR_TEXT+7) , “Button eight”
(STR_TEXT+8) , “Button nine”
(STR_TEXT+9) , “Button ten”
(STR_TEXT+10) , “Button eleven”
(STR_TEXT+11) , “Button twelve”
(STR_TEXT+12) , “Button thirteen”
(STR_TEXT+13) , “Button fourteen”

END

“Set Canvases” on page 156
“Chapter 21. Resources” on page 297
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Create a Set Canvas” on page 157
“Convert Application Resources” on page 395
“File: esetcv.cpp” on page 160
“File: esetcv.h” on page 162
“File: esetcv.hpp” on page 162
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Split Canvases
The ISplitCanvas class allows you to separate windows with moveable split bars.
(A split bar behaves in a similar manner to a border of a frame window.)

Panes and Split Bars
A split canvas places its child controls into panes. Movable or fixed split bars
separate these panes. (The default is movable split bars.) Panes manage the
position and size of its child windows so that all the child windows (together with
the split bars) will fill the entire area of the split canvas.

Child windows may not overlap one another in a split canvas.

You may orient the split bars vertically or horizontally. Moving a split bar changes
the sizes of the two windows the split bar separates.

You can only move the split canvas using the small square buttons.

You can move a split canvas using any part of the split line.

Positioning and Sizing Child Windows
A split canvas will size a child window to entirely fill a pane. Thus, you should
use a split canvas to contain controls that you can resize to display more
information, such as containers and MLEs. You should not use controls that users

164 IBM Open Class: User Interface

expect to have a certain size or shape. For example, you would not want to put
radio buttons in a narrow pane because the pane might clip the text attached to
the radio button.

Use the IListBox::noAdjustPosition style on a list box control in a split canvas
because, otherwise, the operating system may adjust the height of the list box so it
will not fill the height of the split canvas.

The order in which you create the child controls determines both their relative
position on the split canvas and the order in which tab and cursor keys switch
focus between them. For a canvas with vertical split bars, you will find the first
child control that you created first in the leftmost pane. For a canvas with
horizontal split bars, you will find the first child control in the topmost pane.

“Chapter 13. Canvas Controls” on page 155
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Create a Split Canvas”
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Create a Split Canvas
The following example shows you how to create a split canvas.
1. Declare a split canvas in the .hpp file, as follows:

/***/
/* MySplit class - split canvas class and associated */
/* controls */
/***/
class MySplit : public ISplitCanvas {

public:
MySplit(unsigned long winId, IWindow* pParent);

private:
IStaticText statTxt1;
IStaticText statTxt2;
IStaticText statTxt3;

};
/***/
/* Command handler declaration */
/***/
class ACommandHandler : public ICommandHandler {
public:

ACommandHandler(AppWindow *asplcan);
protected:

virtual bool command(ICommandEvent& cmdEvent);
private:

AppWindow *splcan;
};
/***/
/* AppWindow class declaration */
/***/
class AppWindow : public IFrameWindow
{
public:

AppWindow(unsigned long windowId);
xAppWindow();
AppWindow & updateCanvas(unsigned long eventtype);

Chapter 13. Canvas Controls 165

private:
ITitle * title;
MySplit * splitCv;
ACommandHandler * commandHandler;

};

2. Create the window constructor in a .cpp file, as follows:
/***/
/* Window constructor */
/***/
AppWindow :: AppWindow(unsigned long windowId)

: IFrameWindow(windowId, // create Frame window
defaultStyle() | menuBar)

{
//**/
// Create title */
//**/
title = new ITitle(this,PSZ_OBJECT,PSZ_VIEW);
//**/
// Create split canvas */
//**/
splitCv = new MySplit(ID_SPLIT, this);
setClient(splitCv);
//***
// Create command handler
//***
commandHandler = new ACommandHandler(this);
commandHandler->handleEventsFor(this);
}
/***/
/* TestWindow Destructor */
/***/
AppWindow :: xAppWindow ()
{

commandHandler->stopHandlingEventsFor(this);
delete title;
delete splitCv;

}
/***/
/* Perform Menu Events */
/***/
AppWindow & AppWindow::updateCAN(unsigned long eventtype)
{

switch (eventtype)
{

case ID_VERT_ITEM:
// Change to vertical orientation
splitCv->setOrientation(ISplitCanvas::verticalSplit);
splitCv->refresh();
return (*this);

case ID_HORIZ_ITEM:
// Change to horizontal orientation
splitCv->setOrientation(ISplitCanvas::horizontalSplit);
splitCv->refresh();
return (*this);

case ID_DOUBLE_EDGE_ITEM:
// Double the split bar edge
{

unsigned long thickness;
thickness = splitCv->splitBarThickness(ISplitCanvas::splitBarEdge);
splitCv->setSplitBarThickness(ISplitCanvas::splitBarEdge, thickness*2);
splitCv->refresh();
return (*this);

}
case ID_HALVE_EDGE_ITEM:

// Halve the split bar edge
{

166 IBM Open Class: User Interface

unsigned long thickness;
thickness = splitCv->splitBarThickness(ISplitCanvas::splitBarEdge);
splitCv->setSplitBarThickness(ISplitCanvas::splitBarEdge, thickness/2);
splitCv->refresh();
return (*this);

}
case ID_DOUBLE_MIDDLE_ITEM:

// Double the split bar middle
{

unsigned long thickness;
thickness = splitCv->splitBarThickness(ISplitCanvas::splitBarMiddle);

splitCv->setSplitBarThickness(ISplitCanvas::splitBarMiddle, thickness*2);
splitCv->refresh();
return (*this);

}
case ID_HALVE_MIDDLE_ITEM:

// Halve the split bar middle
{
unsigned long thickness;
thickness = splitCv->splitBarThickness(ISplitCanvas::splitBarMiddle);
splitCv->setSplitBarThickness(ISplitCanvas::splitBarMiddle, thickness/2);
splitCv->refresh();
return (*this);
}

} /* end switch */
return (*this);

}
/***/
/* Construct the Command Handler */
/***/
ACommandHandler::ACommandHandler(AppWindow *asplcnv)
{

splcan = asplcnv;
}
/***/
/* MyWindow Command Event Handler */
/***/
bool ACommandHandler :: command(ICommandEvent& cmdEvent)
{

switch (cmdEvent.commandId())
{

case ID_VERT_ITEM:
case ID_HORIZ_ITEM:
case ID_DOUBLE_EDGE_ITEM:
case ID_HALVE_EDGE_ITEM:
case ID_DOUBLE_MIDDLE_ITEM:
case ID_HALVE_MIDDLE_ITEM:
splcan->updateCAN(cmdEvent.commandId());
break;
return true;

}
return false;

}
/***/
/* MySplit constructor */
/***/
MySplit :: MySplit(unsigned long winId, IWindow* pParent)
: ISplitCanvas(winId, pParent, pParent),

statTxt1(ID_TEXT1, this, this),
statTxt2(ID_TEXT2, this, this),
statTxt3(ID_TEXT3, this, this)

{
setSplitWindowPercentage(&statTxt1, 20);
setSplitWindowPercentage(&statTxt2, 40);
setSplitWindowPercentage(&statTxt3, 40);
statTxt1.setText(PSZ_TEXT1);
statTxt2.setText(PSZ_TEXT2);

Chapter 13. Canvas Controls 167

statTxt3.setText(PSZ_TEXT3);
statTxt1.setBackgroundColor(IColor(254, 254, 201));
statTxt2.setBackgroundColor(IColor(190, 204, 220));
statTxt3.setBackgroundColor(IColor(199, 212, 204));

}

3. Handle command events:
/***/
/* Construct the command handler */
/***/
ACommandHandler::ACommandHandler(AppWindow *asplcnv)
{

splcan = asplcnv;
}
/***/
/* MyWindow command event handler */
/***/
bool ACommandHandler :: command(ICommandEvent& cmdEvent)
{

switch (cmdEvent.commandId())
{

case ID_VERT_ITEM:
case ID_HORIZ_ITEM:
case ID_DOUBLE_EDGE_ITEM:
case ID_HALVE_EDGE_ITEM:
case ID_DOUBLE_MIDDLE_ITEM:
case ID_HALVE_MIDDLE_ITEM:
splcan->updateCanvas(cmdEvent.commandId());
return true;

}
return false;

}

The following figure shows the split canvas created by using the preceding
example:

You can find the complete source to this example in the following files:
v splitcan.cpp
v splitcan.h
v splitcan.hpp
v splitcan.rc

The following examples show how to create a window containing two split
canvases. Each pane is occupied by a static text control.

168 IBM Open Class: User Interface

1. This code from the header file declares the ASplitCanvas class as an
IFrameWindow derived class. Member functions are initialized in the order that
they appear in the class declaration.
#include <iframe.hpp> // IFrameWindow
#include <istattxt.hpp> // IStaticText
#include <isplitcv.hpp> // ISplitCanvas class
ASplitCanvas : public IFrameWindow {

public:
ASplitCanvas(unsigned long windowId); // Constructor

private:
ISplitCanvas horzCanvas, // The canvases will be created

vertCanvas; // in the same order they
IStaticText lText, // are declared.

rText,
bText;

};

2. This code creates the window:
ASplitCanvas :: ASplitCanvas(unsigned long windowId)

: IFrameWindow(windowId)
, horzCanvas(WND_CANVAS, this, this)
, vertCanvas(WND_CANVAS2, &horzCanvas, &horzCanvas)
, lText(WND_TXTL, &vertCanvas, &vertCanvas)
, rText(WND_TXTR, &vertCanvas, &vertCanvas)
, bText(WND_TXTB, &horzCanvas, &horzCanvas)

{
// give the canvas a horizontal split bar
// and make it the client area
horzCanvas.setOrientation(ISplitCanvas::horizontalSplit);
setClient(&horzCanvas);
// give the canvas a vertical split bar
vertCanvas.setOrientation(ISplitCanvas::verticalSplit);
// set top left static text
lText.setText(STR_TOPLEFT);
lText.setAlignment(IStaticText::centerCenter);
// set top right static text
rText.setText(STR_TOPRIGHT);
rText.setAlignment(IStaticText::centerCenter);
// set bottom static text
bText.setText(STR_BOTTOM);
bText.setAlignment(IStaticText::centerCenter);
// set focus and show window
setFocus().show();

}

The following figure shows the completed split canvas:

Chapter 13. Canvas Controls 169

You can find the complete source to this example in the following files:
v esplitcv.cpp
v esplitcv.h
v esplitcv.hpp
v esplitcv.rc

“Split Canvases” on page 164
“Chapter 13. Canvas Controls” on page 155
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Create a Set Canvas” on page 157
“Create a Multicell Canvas” on page 181
“Create a View Port” on page 193
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

“File: splitcan.cpp”
“File: splitcan.h” on page 173
“File: splitcan.hpp” on page 173
“File: splitcan.rc” on page 175
“File: esetcv.cpp” on page 160
“File: esetcv.h” on page 162
“File: esetcv.hpp” on page 162
“File: esetcv.rc” on page 163
ISplitCanvas

Split Canvas Example 1

File: splitcan.cpp
#include “splitcan.h”
#include “splitcan.hpp”
/**
* main *
* - Application entry point. *
**/
int main()
{

AppWindow appWindow(ID_MAIN);
appWindow.setFocus().show();
IApplication::current().run();
return 0;

}
/**
* Class AppWindow :: AppWindow *
**/
AppWindow :: AppWindow(unsigned long windowId)

: IFrameWindow(windowId, defaultStyle() | menuBar)
{

// Create Title
title = new ITitle(this,PSZ_OBJECT,PSZ_VIEW);
// Create SplitCanvas
splitCv = new MySplit(ID_SPLIT, this);

170 IBM Open Class: User Interface

setClient(splitCv);
// Create Command Handler
commandHandler = new ACommandHandler(this);
commandHandler->handleEventsFor(this);

}
/**
* Class AppWindow :: xAppWindow *
**/
AppWindow :: xAppWindow ()
{

commandHandler->stopHandlingEventsFor(this);
delete title;
delete splitCv;

}
/**
* Class AppWindow :: updateCAN *
**/
AppWindow & AppWindow::updateCAN(unsigned long eventtype)
{

switch (eventtype)
{

case ID_VERT_ITEM:
{

// Change to vertical orientation
splitCv->setOrientation(ISplitCanvas::verticalSplit);
splitCv->refresh();
return (*this);

}
case ID_HORIZ_ITEM:
{

// Change to horizontal orientation
splitCv->setOrientation(ISplitCanvas::horizontalSplit);
splitCv->refresh();
return (*this);

}
case ID_DOUBLE_EDGE_ITEM:
{

// Double the split bar edge
unsigned long thickness;
thickness = splitCv->splitBarThickness(

ISplitCanvas::splitBarEdge);
splitCv->setSplitBarThickness(

ISplitCanvas::splitBarEdge, thickness*2);
splitCv->refresh();
return (*this);

}
case ID_HALVE_EDGE_ITEM:
{

// Halve the split bar edge
unsigned long thickness;
thickness = splitCv->splitBarThickness(

ISplitCanvas::splitBarEdge);
splitCv->setSplitBarThickness(

ISplitCanvas::splitBarEdge, thickness/2);
splitCv->refresh();
return (*this);

}
case ID_DOUBLE_MIDDLE_ITEM:
{

// Double the split bar middle
unsigned long thickness;
thickness = splitCv->splitBarThickness(

ISplitCanvas::splitBarMiddle);
splitCv->setSplitBarThickness(

ISplitCanvas::splitBarMiddle, thickness*2);
splitCv->refresh();
return (*this);

Chapter 13. Canvas Controls 171

}
case ID_HALVE_MIDDLE_ITEM:
{

// Halve the split bar middle
unsigned long thickness;
thickness = splitCv->splitBarThickness(

ISplitCanvas::splitBarMiddle);
splitCv->setSplitBarThickness(

ISplitCanvas::splitBarMiddle, thickness/2);
splitCv->refresh();
return (*this);

}
}
return (*this);

}
/**
* Class ACommandHandler :: ACommandHandler *
**/
ACommandHandler::ACommandHandler(AppWindow *asplcnv)
{

splcan = asplcnv;
}
/**
* Class ACommandHandler :: command *
**/
bool ACommandHandler :: command(ICommandEvent& cmdEvent)
{

switch (cmdEvent.commandId())
{

case ID_VERT_ITEM:
case ID_HORIZ_ITEM:
case ID_DOUBLE_EDGE_ITEM:
case ID_HALVE_EDGE_ITEM:
case ID_DOUBLE_MIDDLE_ITEM:
case ID_HALVE_MIDDLE_ITEM:
splcan->updateCAN(cmdEvent.commandId());
break;
return true;

}
return false;

}
/**
* Class MySplit :: MySplit *
* - Create a split canvas with three areas of 20,40 and *
* 40% *
**/
MySplit :: MySplit(unsigned long winId, IWindow* pParent)
: ISplitCanvas(winId, pParent, pParent),

statTxt1(ID_TEXT1, this, this),
statTxt2(ID_TEXT2, this, this),
statTxt3(ID_TEXT3, this, this)

{
setSplitWindowPercentage(&statTxt1, 20);
setSplitWindowPercentage(&statTxt2, 40);
setSplitWindowPercentage(&statTxt3, 40);
statTxt1.setText(PSZ_TEXT1);
statTxt2.setText(PSZ_TEXT2);
statTxt3.setText(PSZ_TEXT3);
statTxt1.setBackgroundColor(IColor(254, 254, 201));
statTxt2.setBackgroundColor(IColor(190, 204, 220));
statTxt3.setBackgroundColor(IColor(199, 212, 204));

}

“Split Canvases” on page 164
“Chapter 1. Windows” on page 1

172 IBM Open Class: User Interface

“Chapter 3. Events and Event Handlers” on page 19

“Create a Split Canvas” on page 165
“File: splitcan.h”
“File: splitcan.hpp”
“File: splitcan.rc” on page 175
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

File: splitcan.h
/**
* Window and Control IDs *
**/
#define ID_MAIN 2
#define ID_SPLIT 3
#define ID_TEXT1 4
#define ID_TEXT2 5
#define ID_TEXT3 6
/**
* Menu Bar IDs *
**/
#define ID_ACTIONS_MENU 100
#define ID_VERT_ITEM 110
#define ID_HORIZ_ITEM 120
#define ID_DOUBLE_EDGE_ITEM 130
#define ID_HALVE_EDGE_ITEM 140
#define ID_DOUBLE_MIDDLE_ITEM 150
#define ID_HALVE_MIDDLE_ITEM 160
#define ID_HELP_MENU 900
#define ID_ABOUT_ITEM 910
/**
* String table IDs *
**/
#define PSZ_OBJECT 300
#define PSZ_VIEW 310
#define PSZ_TEXT1 320
#define PSZ_TEXT2 330
#define PSZ_TEXT3 340

“Split Canvases” on page 164
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Create a Split Canvas” on page 165
“File: splitcan.cpp” on page 170
“File: splitcan.hpp”
“File: splitcan.rc” on page 175
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

File: splitcan.hpp
#ifndef _SPLITCAN_
#define _SPLITCAN_
#include <iframe.hpp>
#include <icmdhdr.hpp>
#include <ititle.hpp>
#include <iapp.hpp>

Chapter 13. Canvas Controls 173

#include <imsgbox.hpp>
#include <istattxt.hpp>
#include <isplitcv.hpp>
class ITitle;
class MySplit;
class IFrameWindow;
class ICommandHandler;
class AppWindow;
class IStaticText;
/**
* Class MySplit *
* - Split canvas class and associated controls *
**/
class MySplit : public ISplitCanvas
{

public:
MySplit(unsigned long winId, IWindow* pParent);

private:
IStaticText statTxt1;
IStaticText statTxt2;
IStaticText statTxt3;

};
/**
* Class ACommandHandler *
**/
class ACommandHandler : public ICommandHandler
{

public:
ACommandHandler(AppWindow *asplcan);

protected:
virtual bool command(ICommandEvent& cmdEvent);

private:
AppWindow *splcan;

};
/**
* Class AppWindow *
**/
class AppWindow : public IFrameWindow
{

public:
AppWindow(unsigned long windowId);
xAppWindow();
AppWindow & updateCAN(unsigned long eventtype);

private:
ITitle * title;
MySplit * splitCv;
ACommandHandler * commandHandler;

};
#endif

“Split Canvases” on page 164
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Create a Split Canvas” on page 165
“File: splitcan.cpp” on page 170
“File: splitcan.h” on page 173
“File: splitcan.rc” on page 175
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

174 IBM Open Class: User Interface

File: splitcan.rc

This is a Windows resource script file.
#include “splitcan.h”
/*****************************/
/* Menu bar */
/*****************************/
ID_MAIN MENUEX

BEGIN
POPUP “&Actions” , ID_ACTIONS_MENU

BEGIN
MENUITEM “&Vertical orientation” , ID_VERT_ITEM
MENUITEM “&Horizontal orientation” , ID_HORIZ_ITEM

MENUITEM “”, 0, MFT_SEPARATOR
MENUITEM “&Double split bar edge” , ID_DOUBLE_EDGE_ITEM
MENUITEM “H&alve split bar edge” , ID_HALVE_EDGE_ITEM

MENUITEM “”, 0, MFT_SEPARATOR
MENUITEM “D&ouble split bar middle” , ID_DOUBLE_MIDDLE_ITEM
MENUITEM “Ha&lve split bar middle” , ID_HALVE_MIDDLE_ITEM

END
END

/*****************************/
/* String table */
/*****************************/
STRINGTABLE

BEGIN
PSZ_OBJECT, “SPLIT”
PSZ_VIEW, “Split Canvas”
PSZ_TEXT1, “Static Text 1”
PSZ_TEXT2, “Static Text 2”
PSZ_TEXT3, “Static Text 3”

END

This is an AIX or OS/2 resource script file:
#include “splitcan.h”
/*****************************/
/* Menu bar */
/*****************************/
MENU ID_MAIN

BEGIN
SUBMENU “xActions” , ID_ACTIONS_MENU

BEGIN
MENUITEM “xVertical orientation” , ID_VERT_ITEM
MENUITEM “xHorizontal orientation” , ID_HORIZ_ITEM

MENUITEM SEPARATOR
MENUITEM “xDouble split bar edge” , ID_DOUBLE_EDGE_ITEM
MENUITEM “Hxalve split bar edge” , ID_HALVE_EDGE_ITEM
MENUITEM SEPARATOR

MENUITEM “Dxouble split bar middle” , ID_DOUBLE_MIDDLE_ITEM
MENUITEM “Haxlve split bar middle” , ID_HALVE_MIDDLE_ITEM

END
END

/*****************************/
/* String table */
/*****************************/
STRINGTABLE

BEGIN
PSZ_OBJECT, “SPLIT”
PSZ_VIEW, “Split Canvas”

Chapter 13. Canvas Controls 175

PSZ_TEXT1, “Static Text 1”
PSZ_TEXT2, “Static Text 2”
PSZ_TEXT3, “Static Text 3”

END

“Split Canvases” on page 164
“Chapter 21. Resources” on page 297
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Create a Split Canvas” on page 165
“Convert Application Resources” on page 395
“File: splitcan.cpp” on page 170
“File: splitcan.h” on page 173
“File: splitcan.hpp” on page 173
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Split Canvas Example 2

File: esplitcv.cpp
//
// Split Canvas Example
// key functions:
// - create a main window
// - run the current application
// - create horizontal and vertical split canvases
// - create static text controls
// - load strings from resource bound to the exe
//
#include <iapp.hpp>
#include “esplitcv.hpp”
#include “esplitcv.h”
/**
* main *
* - Application entry point. *
**/
int main()
{

ASplitCanvas mainWindow(WND_MAIN);
IApplication::current().run();
return 0;

} /* end main */
/**
* Class ASplitCanvas :: ASplitCanvas *
**/
ASplitCanvas :: ASplitCanvas(unsigned long windowId)

: IFrameWindow(windowId)
, horzCanvas(WND_CANVAS, this, this)
, vertCanvas(WND_CANVAS2, &horzCanvas, &horzCanvas)
, lText(WND_TXTL, &vertCanvas, &vertCanvas)
, rText(WND_TXTR, &vertCanvas, &vertCanvas)
, bText(WND_TXTB, &horzCanvas, &horzCanvas)

{
// give the canvas a horizontal split bar
// and make it the client area
horzCanvas.setOrientation(ISplitCanvas::horizontalSplit);
setClient(&horzCanvas);
// give the canvas a vertical split bar
vertCanvas.setOrientation(ISplitCanvas::verticalSplit);

176 IBM Open Class: User Interface

// set top left static text
lText.setText(STR_TOPLEFT);
lText.setAlignment(IStaticText::centerCenter);
// set top right static text
rText.setText(STR_TOPRIGHT);
rText.setAlignment(IStaticText::centerCenter);
// set bottom static text
bText.setText(STR_BOTTOM);
bText.setAlignment(IStaticText::centerCenter);
// set focus and show window
setFocus().show();

} /* end ASplitCanvas :: ASplitCanvas(...) */

“Split Canvases” on page 164
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Create a Split Canvas” on page 165
“File: esplitcv.h”
“File: esplitcv.hpp”
“File: esplitcv.rc” on page 178
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

File: esplitcv.h
#ifndef ASPLITCV_H
#define ASPLITCV_H
#define WND_MAIN 0x1000
#define WND_CANVAS 0x1001
#define WND_CANVAS2 0x1002
#define WND_TXTB 0x1003
#define WND_TXTL 0x1004
#define WND_TXTR 0x1005
#define STR_BOTTOM 0x2000
#define STR_TOPLEFT 0x2001
#define STR_TOPRIGHT 0x2002
#endif

“Split Canvases” on page 164
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Create a Split Canvas” on page 165
“File: esplitcv.cpp” on page 176
“File: esplitcv.hpp”
“File: esplitcv.rc” on page 178
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

File: esplitcv.hpp
#ifndef ASPLITCV_HPP
#define ASPLITCV_HPP
#include <iframe.hpp>
#include <istattxt.hpp>
#include <isplitcv.hpp>

Chapter 13. Canvas Controls 177

/**
* Class ASplitCanvas *
* - Time Handler class the processes time ticks for *
* AHelloWindow. *
**/
class ASplitCanvas : public IFrameWindow
{

public:
ASplitCanvas(unsigned long windowId);

private:
ISplitCanvas horzCanvas,

vertCanvas;
IStaticText lText,

rText,
bText;

};
#endif

“Split Canvases” on page 164
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Create a Split Canvas” on page 165
“File: esplitcv.cpp” on page 176
“File: esplitcv.h” on page 177
“File: esplitcv.rc”
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

File: esplitcv.rc
#include “esplitcv.h”
/**
* string resources *
* Relate symbolic names to literal text strings. *
**/
STRINGTABLE

BEGIN
WND_MAIN , “Canvas Classes Example 1 - Split Canvas”
STR_BOTTOM , “Bottom text”
STR_TOPLEFT , “Top left text”
STR_TOPRIGHT , “Top right text”

END

“Split Canvases” on page 164
“Chapter 21. Resources” on page 297
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Create a Split Canvas” on page 165
“Convert Application Resources” on page 395
“File: esplitcv.cpp” on page 176
“File: esplitcv.h” on page 177
“File: esplitcv.hpp” on page 177
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

178 IBM Open Class: User Interface

Multicell Canvases
The IMultiCellCanvas class lets you position child windows in a grid of cells based
on the minimum sizes of the child windows.

Cells
A cell is the intersection of a row and a column. You may control the size of these
cells, and how these cells behave when the user resizes a multicell canvas.

Expandable Rows and Columns
By default, the size of rows and columns is fixed. You may mark rows and
columns as expandable. The multicell canvas resizes expandable rows and columns
when the user resizes the canvas.

Positioning Child Windows
You place child windows on a multicell canvas by specifying the starting cell and
the number of contiguous rows and columns that they span. You refer to cells in
the grid by the column and row value. For example, you would refer to the
top-left cell with the coordinate (1,1).

More than one child window may occupy the same cell, as long as they do not
share the same starting cell. The starting cell is the start row and column you
specify when you add a child window to a multicell canvas (by calling addToCell).

The following figure shows a multicell canvas. Notice that the small window’s
location is at column 4, row 5 (4,5), while the large window starts at column 9, row
2 (9,2). The large window is 2 columns wide and 3 rows high.

The default cell size is 10 pixels high by 10 pixels wide. The actual number of rows
and columns in the canvas is the highest row and column value used. For
example, suppose you placed a radio button placed at (4,5) and a push button at
(2,7). Therefore, the canvas has 4 columns and 7 rows.

Sizing Child Windows
Generally, a multicell canvas does the following to size its child windows. These
series of steps applies to rows, but analogous processing occurs for columns also:
1. The multicell canvas initially sizes rows to their minimum height (assigned by

calls to IMultiCellCanvas::setRowHeight).
2. Any row without an explicit height gets the height of the default cell size. (This

default is 10.)
3. The multicell canvas finds all child windows that occupy only a single row. For

each such child window the multicell canvas does the following:
a. The canvas gets its minimum size.
b. If the height of the minimum size is larger than the height of the row the

child window occupies, the multicell canvas sizes the row to the height of
the minimum size.

Chapter 13. Canvas Controls 179

After the milticell canvas checks all such child child windows, the rows should
have the greater of their assigned height (or default cell height), and the largest
height of the child windows that they entirely contain.

4. The multicell canvas performs the following for all child windows that span
multiple rows:
a. The canvas gets the child window’s minimum size.
b. The canvas compares the height of the minimum size against the the sum of

the heights of the rows the child window occupies.
c. If the sum is less, then do the following:

v If none of the rows being spanned by the child window are expandable,
the canvas increases the height of the first row to make the sum equal. (If
the canvas was constructed with the IMultiCellCanvas::spaceAddedToLast
style, it increases the height of the last row instead of the first.)

v Otherwise, the canvas increases the height of the expandable row(s) to
make the sum equal.

5. The multicell canvas increases the height of the expandable rows to fill the
height of the canvas. (Expandable rows grow in proportion to their height.)

6. The multicell canvas sizes all child windows to fit their cells. However, you can
cause the canvas to size the child window to its minimum size by assigning it
an IAlignmentAttribute object. This also specify how the multicell canvas will
align the child window within the cell.

Sizing the Multicell Canvas
The Open Class Library bases the minimum size of a multicell canvas by the
minimum sizes of all of the windows plus the size of empty rows and columns. It
does not include the extra space added to expandable rows and columns. If you
size the multicell canvas smaller than this minimum size, you will clip the canvas
at the lower-right corner. You can use the IViewPort class to add scroll bars to
handle this situation. (If the multicell canvas has expandable rows or columns, you
should construct the IViewPort with the IViewPort::expandableViewWindow style.)

Multicell Canvas Layout Aids
The multicell canvas has two styles that can help you create layouts with a
multicell canvas. These styles provide a way to easily visualize the placement and
size of each cell:
v Grid lines: Grid lines are stationary lines that the multicell canvas draws between

rows and columns. Use the gridLines style to add grid lines to your multicell
canvas.

v Drag lines: Drag lines are like grid lines, except that you may move them with
the mouse. Use the dragLines style to add drag lines to your multicell canvas.

AIX does not support drag lines.

Here are some considerations when using grid lines and drag lines:
v The multicell canvas draws grid lines and drag lines at the left and top edges of

cells.
v Child windows can overwrite grid lines and drag lines.
v The use of grid lines or drag lines does not change the initial placement or

sizing of child windows.
v Moving a drag line resizes child windows on each side of the drag line in a

manner similar to a split canvas.

180 IBM Open Class: User Interface

“Chapter 13. Canvas Controls” on page 155
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Create a Multicell Canvas”
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Create a Multicell Canvas
The following example shows you how to create a multicell canvas. This canvas
contains five static text fields and five entry fields:
1. Declare a class that uses a multicell canvas control in the header file with static

text and entry field controls, as follows:
class MyWindow : public IFrameWindow
{

public:
MyWindow(unsigned long windowID);
xMyWindow();

protected:
bool command(ICommandEvent& cmdEvent);

private:
IMultiCellCanvas myClient;
IStaticText stName,

stAddress,
stId,
stBirthday,
stPhone;

IEntryField efName,
efAddress,
efId,
efBirthday,
efPhone;

ACommandHandler * commandHandler;
};

2. Construct the multicell canvas as follows:
MyWindow::MyWindow(unsigned long windowId)

: IFrameWindow(“MultiCell Canvas Example”,windowId,
IFrameWindow::defaultStyle()),

myClient(ID_MCC, this, this),
stName(ID_ST_NAME, &myClient, &myClient),
stAddress(ID_ST_ADDR, &myClient,& myClient),
stId(ID_ST_ID, &myClient, &myClient),
stBirthday(ID_ST_BD, &myClient, &myClient),
stPhone(ID_ST_PHONE, &myClient, &myClient),
efName(ID_EF_NAME, &myClient, &myClient),
efAddress(ID_EF_ADDR, &myClient, &myClient),
efId(ID_EF_ID, &myClient, &myClient),
efBirthday(ID_EF_BD, &myClient, &myClient),
efPhone(ID_EF_PHONE, &myClient, &myClient)

{
setClient(&myClient);
// Build multicell canvas with fields
myClient.addToCell(&stName, 2, 2);
myClient.addToCell(&efName, 3, 2);
myClient.addToCell(&stAddress, 2, 3);
myClient.addToCell(&efAddress, 3, 3);
myClient.addToCell(&stId, 2, 4);
myClient.addToCell(&efId, 3, 4);

Chapter 13. Canvas Controls 181

myClient.addToCell(&stBirthday, 2, 5);
myClient.addToCell(&efBirthday, 3, 5);
myClient.addToCell(&stPhone, 2, 6);
myClient.addToCell(&efPhone, 3, 6);
// Load the static text fields
stName.setText(“Name:”);
stName.setForegroundColor(IColor::kBlack);
stName.setAlignment(IStaticText::centerRight);
stAddress.setText(“Address:”);
stAddress.setForegroundColor(IColor::kBlack);
stAddress.setAlignment(IStaticText::centerRight);
stBirthday.setText(“Birthdate:”);
stBirthday.setForegroundColor(IColor::kBlack);
stBirthday.setAlignment(IStaticText::centerRight);
stId.setText(“ID:”);
stId.setForegroundColor(IColor::kBlack);
stId.setAlignment(IStaticText::centerRight);
stPhone.setText(“Phone:”);
stPhone.setForegroundColor(IColor::kBlack);
stPhone.setAlignment(IStaticText::centerRight);
// Create Command Handler
commandHandler = new ACommandHandler(this);
commandHandler->handleEventsFor(this);

}

The following figure shows the multicell canvas that this example creates:

You can find the complete source to this example in the following files:
v mcc.cpp
v mcc.h
v mcc.hpp

The following example shows you how to create a window containing a multicell
canvas. The canvas contains two check boxes, two radio buttons, three static text
controls, and one push button:
1. This code from the header file declares the AMultiCellCanvas class as an

IFrameWindow derived class:
class AMultiCellCanvas : public IFrameWindow
{

public:
AMultiCellCanvas(unsigned long windowId);
AMultiCellCanvas&

displayButtonStatus();
private:

IMultiCellCanvas clientCanvas;
IStaticText status,

title1,
title2;

ICheckBox check1,

182 IBM Open Class: User Interface

check2;
IRadioButton radio1,

radio2;
IPushButton pushButton;
APushButtonHandler pushButtonHandler;

};

2. This code creates the window:
AMultiCellCanvas::AMultiCellCanvas(unsigned long windowId)

: IFrameWindow(windowId)
, clientCanvas(WND_MCCANVAS, this, this)
, status(WND_STATUS, &clientCanvas, &clientCanvas)
, title1(WND_TITLE1, &clientCanvas, &clientCanvas)
, title2(WND_TITLE2, &clientCanvas, &clientCanvas)
, check1(WND_CHECK1, &clientCanvas, &clientCanvas)
, check2(WND_CHECK2, &clientCanvas, &clientCanvas)
, radio1(WND_RADIO1, &clientCanvas, &clientCanvas)
, radio2(WND_RADIO2, &clientCanvas, &clientCanvas)
, pushButton(WND_PUSHBUT, &clientCanvas, &clientCanvas)

{
// make multi-cell canvas the client
setClient(&clientCanvas);
// set status area text
status.setAlignment(IStaticText::centerCenter);
status.setText(STR_STATUS);
// set text and attributes
title1.setAlignment(IStaticText::centerLeft);
title1.setText(STR_TITLE1);
// set text and attributes
title2.setAlignment(IStaticText::centerLeft);
title2.setText(STR_TITLE2);
// set checkbox text
check1.setText(STR_CHECK1);
// set radio button text
check2.setText(STR_CHECK2);
radio1.setText(STR_RADIO1);
radio2.setText(STR_RADIO2);
pushButton.setText(STR_PUSHBUT);
// pre-select one radio button
radio1.select();
// set tabStop and Group styles
check1.enableGroup().enableTabStop();
radio1.enableGroup().enableTabStop();
pushButton.enableGroup().enableTabStop();
// initialize push button handler
pushButtonHandler.setOwnerWindow(this);
// add handler to canvas
pushButtonHandler.handleEventsFor(&clientCanvas);
// add controls to canvas.
// the canvas runs from 1,1 to 4,7
// exactly one row and one column is expandable, as this
// allows the canvas to fill the whole client.
clientCanvas.addToCell(&status , 1, 1, 4, 1);
clientCanvas.addToCell(&title1 , 1, 3, 2, 1);
clientCanvas.addToCell(&title2 , 3, 3, 2, 1);
clientCanvas.addToCell(&check1 , 2, 4);
clientCanvas.addToCell(&check2 , 2, 5);
clientCanvas.addToCell(&radio1 , 4, 4);
clientCanvas.addToCell(&radio2 , 4, 5);
clientCanvas.addToCell(&pushButton , 2, 7);
// set size of empty rows
clientCanvas.setRowHeight(2, 20, true);
clientCanvas.setRowHeight(6, 40);
// last column expandable
clientCanvas.setColumnWidth(4, 40, true);
// set focus to first checkbox

Chapter 13. Canvas Controls 183

check1.setFocus();
// show main window
show();

}

Note that there is not a 1:1 relationship between Windows, OS/2 and Motif
pixels.

The following figure shows the completed multicell canvas:

You can find the complete source to this example in the following files:
v emcelcv.cpp
v emcelcv.h
v emcelcv.hpp
v emcelcv.rc

“Chapter 13. Canvas Controls” on page 155
“Multicell Canvases” on page 179

“Create a Set Canvas” on page 157
“Create a Split Canvas” on page 165
“Create a View Port” on page 193

“File: mcc.cpp”
“File: mcc.h” on page 186
“File: mcc.hpp” on page 187
“File: emcelcv.cpp” on page 188
“File: emcelcv.h” on page 190
“File: emcelcv.hpp” on page 191
“File: emcelcv.rc” on page 192

Multicell Canvas Example 1

File: mcc.cpp
#include “mcc.hpp”
#include “mcc.h”
#include <iostream.h>
/**
* main *

184 IBM Open Class: User Interface

* - Application entry point. *
**/
int main()
{

MyWindow myWindow(WND_MAIN);
myWindow.show();
IApplication::current().run();
return 0;

}
/**
* Class MyWindow :: MyWindow *
**/
MyWindow::MyWindow(unsigned long windowId)

: IFrameWindow(“MultiCell Canvas Example”,windowId,
IFrameWindow::defaultStyle()),

myClient(ID_MCC, this, this),
stName(ID_ST_NAME, &myClient, &myClient),
stAddress(ID_ST_ADDR, &myClient,& myClient),
stId(ID_ST_ID, &myClient, &myClient),
stBirthday(ID_ST_BD, &myClient, &myClient),
stPhone(ID_ST_PHONE, &myClient, &myClient),
efName(ID_EF_NAME, &myClient, &myClient),
efAddress(ID_EF_ADDR, &myClient, &myClient),
efId(ID_EF_ID, &myClient, &myClient),
efBirthday(ID_EF_BD, &myClient, &myClient),
efPhone(ID_EF_PHONE, &myClient, &myClient)

{
setClient(&myClient);
// Build multicell canvas with fields
myClient.addToCell(&stName, 2, 2);
myClient.addToCell(&efName, 3, 2);
myClient.addToCell(&stAddress, 2, 3);
myClient.addToCell(&efAddress, 3, 3);
myClient.addToCell(&stId, 2, 4);
myClient.addToCell(&efId, 3, 4);
myClient.addToCell(&stBirthday, 2, 5);
myClient.addToCell(&efBirthday, 3, 5);
myClient.addToCell(&stPhone, 2, 6);
myClient.addToCell(&efPhone, 3, 6);
// Load the static text fields
stName.setText(“Name:”);
stName.setForegroundColor(IColor::kYellow);
stName.setAlignment(IStaticText::centerRight);
stAddress.setText(“Address:”);
stAddress.setForegroundColor(IColor::kYellow);
stAddress.setAlignment(IStaticText::centerRight);
stBirthday.setText(“Birthdate:”);
stBirthday.setForegroundColor(IColor::kYellow);
stBirthday.setAlignment(IStaticText::centerRight);
stId.setText(“ID:”);
stId.setForegroundColor(IColor::kYellow);
stId.setAlignment(IStaticText::centerRight);
stPhone.setText(“Phone:”);
stPhone.setForegroundColor(IColor::kYellow);
stPhone.setAlignment(IStaticText::centerRight);
// Create Command Handler
commandHandler = new ACommandHandler(this);
commandHandler->handleEventsFor(this);

}
/**
* Class MyWindow :: xMyWindow *
**/
MyWindow :: xMyWindow ()
{

commandHandler->stopHandlingEventsFor(this);
}
/**

Chapter 13. Canvas Controls 185

* Class ACommandHandler :: ACommandHandler *
**/
ACommandHandler::ACommandHandler(MyWindow *amcc)
{

mcc_type = amcc;
}
/**
* Class ACommandHandler :: command *
**/
bool ACommandHandler::command(ICommandEvent& cmdEvent)
{

switch (cmdEvent.commandId())
{

case ID_DUMMY:
return true;
break;
default:
return false;

}
return 0;

}

“Multicell Canvases” on page 179
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Create a Multicell Canvas” on page 181
“File: mcc.h”
“File: mcc.hpp” on page 187
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

File: mcc.h
#ifndef _MCELLH_
#define _MCELLH_
#define WND_MAIN 1
#define ID_DUMMY 2
#define ID_MCC 3
#define ID_ST_NAME 4
#define ID_ST_ADDR 5
#define ID_ST_ID 6
#define ID_ST_BD 7
#define ID_ST_PHONE 8
#define ID_EF_NAME 9
#define ID_EF_ADDR 10
#define ID_EF_ID 11
#define ID_EF_BD 12
#define ID_EF_PHONE 13
#endif

“Multicell Canvases” on page 179
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

186 IBM Open Class: User Interface

“Create a Multicell Canvas” on page 181
“File: mcc.cpp” on page 184
“File: mcc.hpp”
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

File: mcc.hpp
#ifndef _MCELL_
#define _MCELL_
#include <iframe.hpp>
#include <icmdhdr.hpp>
#include <iapp.hpp>
#include <imcelcv.hpp>
#include <imle.hpp>
#include <iinfoa.hpp>
#include <istattxt.hpp>
#include <ientryfd.hpp>
class ACommandHandler;
class IFrameWindow;
class MyWindow;
/**
* Class ACommandHandler *
**/
class ACommandHandler : public ICommandHandler
{

public:
ACommandHandler(MyWindow *amcc);

protected:
virtual bool command(ICommandEvent& cmdEvent);

private:
MyWindow *mcc_type;

};
/**
* Class MyWindow *
**/
class MyWindow : public IFrameWindow
{

public:
MyWindow(unsigned long windowID);
xMyWindow();

protected:
bool command(ICommandEvent& cmdEvent);

private:
IMultiCellCanvas myClient;
IStaticText stName,

stAddress,
stId,
stBirthday,
stPhone;

IEntryField efName,
efAddress,
efId,
efBirthday,
efPhone;

ACommandHandler * commandHandler;
};
#endif

“Multicell Canvases” on page 179
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

Chapter 13. Canvas Controls 187

“Create a Multicell Canvas” on page 181
“File: mcc.cpp” on page 184
“File: mcc.h” on page 186
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Multicell Canvas Example 2

File: emcelcv.cpp
//
// Multi Cell Canvas
// key functions:
// - create a main window
// - run the current application
// - create a multi cell canvas and use as client area
// canvas has 4 columns and 7 rows
// one row and one column are expandable
// all other controls attached to canvas
// - create static text controls
// - create check boxes, radio buttons and push buttons
// - control cursor and tab movement between different groups
// - process 'Command' events generated by the push button
// - load strings from resource bound to the exe
//
#include <iapp.hpp>
#include <imsgbox.hpp>
#include <istring.hpp>
#include <ireslib.hpp>
#include <ifont.hpp>
#include “emcelcv.h”
#include “emcelcv.hpp”
/**
* main *
* - Application entry point. *
**/
int main()
{

AMultiCellCanvas mainWindow(WND_MAIN);
IApplication::current().run();
return 0;

}
/**
* Class AMultiCellCanvas :: AMultiCellCanvas *
**/
AMultiCellCanvas::AMultiCellCanvas(unsigned long windowId)

: IFrameWindow(windowId)
, clientCanvas(WND_MCCANVAS, this, this)
, status(WND_STATUS, &clientCanvas, &clientCanvas)
, title1(WND_TITLE1, &clientCanvas, &clientCanvas)
, title2(WND_TITLE2, &clientCanvas, &clientCanvas)
, check1(WND_CHECK1, &clientCanvas, &clientCanvas)
, check2(WND_CHECK2, &clientCanvas, &clientCanvas)
, radio1(WND_RADIO1, &clientCanvas, &clientCanvas)
, radio2(WND_RADIO2, &clientCanvas, &clientCanvas)
, pushButton(WND_PUSHBUT, &clientCanvas, &clientCanvas)

{
// make multi-cell canvas the client
setClient(&clientCanvas);
// set status area text
status.setAlignment(IStaticText::centerCenter);
status.setText(STR_STATUS);
// set text and attributes

188 IBM Open Class: User Interface

title1.setAlignment(IStaticText::centerLeft);
title1.setText(STR_TITLE1);
// set text and attributes
title2.setAlignment(IStaticText::centerLeft);
title2.setText(STR_TITLE2);
// set checkbox text
check1.setText(STR_CHECK1);
// set radio button text
check2.setText(STR_CHECK2);
radio1.setText(STR_RADIO1);
radio2.setText(STR_RADIO2);
pushButton.setText(STR_PUSHBUT);
// pre-select one radio button
radio1.select();
// set tabStop and Group styles
check1.enableGroup().enableTabStop();
radio1.enableGroup().enableTabStop();
pushButton.enableGroup().enableTabStop();
// initialize push button handler
pushButtonHandler.setOwnerWindow(this);
// add handler to canvas
pushButtonHandler.handleEventsFor(&clientCanvas);
// add controls to canvas.
// the canvas runs from 1,1 to 4,7
// exactly one row and one column is expandable, as this
// allows the canvas to fill the whole client.
clientCanvas.addToCell(&status , 1, 1, 4, 1);
clientCanvas.addToCell(&title1 , 1, 3, 2, 1);
clientCanvas.addToCell(&title2 , 3, 3, 2, 1);
clientCanvas.addToCell(&check1 , 2, 4);
clientCanvas.addToCell(&check2 , 2, 5);
clientCanvas.addToCell(&radio1 , 4, 4);
clientCanvas.addToCell(&radio2 , 4, 5);
clientCanvas.addToCell(&pushButton , 2, 7);
// set size of empty rows
clientCanvas.setRowHeight(2, 20, true);
clientCanvas.setRowHeight(6, 40);
// last column expandable
clientCanvas.setColumnWidth(4, 40, true);
// set focus to first checkbox
check1.setFocus();
// show main window
show();

} /* end AMultiCellCanvas :: AMultiCellCanvas(...) */
/**
* Class AMultiCellCanvas :: displayButtonStatus *
**/
AMultiCellCanvas& AMultiCellCanvas::displayButtonStatus()
{

unsigned long str_id1, str_id2, str_id3;
IMessageBox msgbox(this);
IResourceLibrary reslib =

IApplication::current().userResourceLibrary();
msgbox.setTitle(IResourceId(STR_MSGBOX));
str_id1 = check1.isSelected() ? STR_CHK1_SEL : STR_CHK1_NOSEL;
str_id2 = check2.isSelected() ? STR_CHK2_SEL : STR_CHK2_NOSEL;
IString str1 = reslib.loadString(str_id1),

str2 = reslib.loadString(str_id2),
str3 = reslib.loadString(radio1.selectedIndex() +

STR_RAD1_SEL);
str1 += str2 + str3;
msgbox.show((char *)str1 , IMessageBox::okButton |

IMessageBox::informationIcon |
IMessageBox::applicationModal |
IMessageBox::moveable);

return *this;
}

Chapter 13. Canvas Controls 189

/**
* Class APushButtonHandler :: command *
**/
bool APushButtonHandler::command(ICommandEvent& evt)
{

bool fProcessed = false;
if (evt.commandId() == WND_PUSHBUT && window)
{

window->displayButtonStatus();
fProcessed = true;

}
return fProcessed;

}

“Multicell Canvases” on page 179
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Create a Multicell Canvas” on page 181
“File: emcelcv.h”
“File: emcelcv.hpp” on page 191
“File: emcelcv.rc” on page 192
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

File: emcelcv.h
#ifndef AMCELCV_H
#define AMCELVC_H
#define WND_MAIN 0x1000
#define WND_STATUS 0x1001
#define WND_MCCANVAS 0x1002
#define WND_TITLE1 0x1003
#define WND_TITLE2 0x1004
#define WND_RADIO1 0x1005
#define WND_RADIO2 0x1006
#define WND_CHECK1 0x1007
#define WND_CHECK2 0x1008
#define WND_PUSHBUT 0x1009
#define STR_STATUS 0x2000
#define STR_TITLE1 0x2001
#define STR_TITLE2 0x2002
#define STR_CHECK1 0x2003
#define STR_CHECK2 0x2004
#define STR_RADIO1 0x2005
#define STR_RADIO2 0x2006
#define STR_PUSHBUT 0x2007
#define STR_PUSHED 0x2008
#define STR_MSGBOX 0x2009
#define STR_CHK1_SEL 0x200A
#define STR_CHK1_NOSEL 0x200B
#define STR_CHK2_SEL 0x200C
#define STR_CHK2_NOSEL 0x200D
#define STR_RAD1_SEL 0x200E
#define STR_RAD2_SEL 0x200F
#endif

190 IBM Open Class: User Interface

“Multicell Canvases” on page 179
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Create a Multicell Canvas” on page 181
“File: emcelcv.cpp” on page 188
“File: emcelcv.hpp”
“File: emcelcv.rc” on page 192
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

File: emcelcv.hpp
#ifndef AMCELCV_HPP
#define AMCELCV_HPP
#include <iframe.hpp>
#include <istattxt.hpp>
#include <ipushbut.hpp>
#include <iradiobt.hpp>
#include <icheckbx.hpp>
#include <imcelcv.hpp>
#include <icmdhdr.hpp>
// forward declaration of class
class AMultiCellCanvas;
/**
* Class APushButtonHandler *
* - The push button handler uses the displayButtonStatus *
* function from the multicell canvas when the button is *
* pressed. *
**/
class APushButtonHandler : public ICommandHandler
{

public:
APushButtonHandler() : window(0) {;}
setOwnerWindow(AMultiCellCanvas *pmcellcv)

{ window = pmcellcv; return 0; }
protected:

command(ICommandEvent& evt);
private:

AMultiCellCanvas * window;
};
/**
* Class AMultiCellCanvas *
* - Main window for the application. It contains a *
* multicell canvas and the other controls are attached *
* to the canvas. The pushbutton displays a message box *
* showing the current state of the buttons *
**/
class AMultiCellCanvas : public IFrameWindow
{

public:
AMultiCellCanvas(unsigned long windowId);
AMultiCellCanvas&

displayButtonStatus();
private:

IMultiCellCanvas clientCanvas;
IStaticText status,

title1,
title2;

ICheckBox check1,
check2;

IRadioButton radio1,
radio2;

Chapter 13. Canvas Controls 191

IPushButton pushButton;
APushButtonHandler pushButtonHandler;

};
#endif

“Multicell Canvases” on page 179
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Create a Multicell Canvas” on page 181
“File: emcelcv.cpp” on page 188
“File: emcelcv.h” on page 190
“File: emcelcv.rc”
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

File: emcelcv.rc
#include “emcelcv.h”
/**
* string resources *
* Relate symbolic names to literal text strings. *
**/
STRINGTABLE

BEGIN
WND_MAIN , “Canvas Classes Example 3 - Multi Cell Canvas”
STR_STATUS , “IMultiCellCanvas example”
STR_TITLE1 , “Check Boxes”
STR_TITLE2 , “Radio Buttons”
STR_CHECK1 , “check box one”
STR_CHECK2 , “check box two”
STR_RADIO1 , “radio button one”
STR_RADIO2 , “radio button two”
STR_PUSHBUT , “Read...”
STR_PUSHED , “You have pressed the push button!”
STR_MSGBOX , “Current Button State”
STR_CHK1_SEL , “check box one selected, ”
STR_CHK1_NOSEL , “check box one not selected, ”
STR_CHK2_SEL , “check box two selected, ”
STR_CHK2_NOSEL , “check box two not selected, ”
STR_RAD1_SEL , “and radio button one selected”
STR_RAD2_SEL , “and radio button two selected”

END

“Multicell Canvases” on page 179
“Chapter 21. Resources” on page 297
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Create a Multicell Canvas” on page 181
“Convert Application Resources” on page 395
“File: emcelcv.cpp” on page 188
“File: emcelcv.h” on page 190
“File: emcelcv.hpp” on page 191

192 IBM Open Class: User Interface

“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

View Ports
The IViewPort class provides a scrollable view area with horizontal and vertical
scroll bars. A user may scroll a view port using the keyboard, or the mouse if the
view port displays any scroll bars.

A view port consists of four windows:
v The horizontal scroll bar.
v The vertical scroll bar.
v The clipping rectangle. This is the rectangular area that the scroll bars do not

occupy, or the area within the view port where you view your data.
v The view port. This is the parent and the owner of the windows listed above.

The view window is the child window that a view port scrolls.

Behavior and Characteristics
By default, a view port will display scroll bars only when needed: if the view
window is larger than the clipping window, the user can scroll the view window.
You may specify whether the view port must always display either of its scroll
bars (by using the styles IViewPort::alwaysHorizontalScrollBar or
IViewPort::alwaysVerticalScrollBar). You may also specify whether the view port
must never display either of its scroll bars (by using the styles
IViewPort::noHorizontalScrollBar or IViewPort::noVerticalScrollBar).

The size of the child window is fixed (unless you construct the viewport with the
IViewPort::expandableViewWindowStyle).

A view port can have only one child window (unless you call
IViewPort::setViewWindow). To display more than one window in a view port at
the same time, place the windows into another type of canvas. Make this canvas
the child of the view port.

“Chapter 13. Canvas Controls” on page 155
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Create a View Port”
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Create a View Port
A view port canvas provides a scrollable view area with horizontal and vertical
scroll bars. By default, the scroll bars display only when needed. A view port can
have only one child control. The size of the child control is fixed. If the view port
is smaller than the child control, the view port allows the user to scroll the child
control.

If you need more than one control in a view port, place the controls into another
type of canvas, which you can then make the child of the view port.

Chapter 13. Canvas Controls 193

The following example shows how to create a view port.
1. Declare a view port as follows:

class AViewWindow : public IFrameWindow
{

public:
AViewWindow(unsigned long windowId);
xAViewWindow();
AViewWindow & moveHoriz();
AViewWindow & moveVert();

private:
ITitle title;
IViewPort viewPort;
ICanvas canvas;
IStaticText text;
IMultiLineEdit mle1;
IMultiLineEdit mle2;
ACommandHandler * commandHandler;

};

2. Define the view port as shown in the following code:
AViewWindow::AViewWindow(unsigned long windowId)

: IFrameWindow(windowId,
IFrameWindow::defaultStyle() |
IFrameWindow::menuBar),
title(this, “View Port Example”),
viewPort(WID_VIEWPORT, this,this, IRectangle()),
canvas(WID_CANVAS, &viewPort, &viewPort,

IRectangle(5,15, 410, 660)),
text(WID_TEXT, &canvas, &canvas,

IRectangle(10, 360, 400, 410)),
mle1(WID_MLE1, &canvas, &canvas,

IRectangle(10,10, 400, 149)),
mle2(WID_MLE2, &canvas, &canvas,

IRectangle(10, 160, 400, 349))
{

viewPort.setBackgroundColor(IColor(199, 212, 204));
setClient(&viewPort);
text.setText(“Enter some data into the MLE, please”);
commandHandler = new ACommandHandler(this);
commandHandler->handleEventsFor(this);
sizeTo(ISize(400,500));
show();

}

3. Handle events, as follows:
/**
* Class AViewWindow :: moveHoriz *
**/
AViewWindow & AViewWindow :: moveHoriz()
{

viewPort.scrollViewHorizontallyTo(200);
return(*this);

}
/**
* Class AViewWindow :: moveVert *
**/
AViewWindow & AViewWindow :: moveVert()
{

viewPort.scrollViewVerticallyTo(200);
return(*this);

}
/**
* Class ACommandHandler :: ACommandHandler *
**/
ACommandHandler::ACommandHandler(AViewWindow *viewWindow)
{

194 IBM Open Class: User Interface

view = viewWindow;
}
/**
* Class ACommandHandler :: command *
**/
bool ACommandHandler::command(ICommandEvent & cmdEvent)
{

bool eventProcessed(true);
// Identify the event
switch (cmdEvent.commandId())
{

case ID_HORIZ:
view->moveHoriz();
break;

case ID_VERT:
view->moveVert();
break;

default:
eventProcessed = false;

}
return true;
}

The following figure shows the view port created with the preceding code.

You can find the source to this example in the following files:
v vp1.cpp
v vp1.h
v vp1.hpp
v vp1.rc

Chapter 13. Canvas Controls 195

“View Ports” on page 193
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Create a Set Canvas” on page 157
“Create a Split Canvas” on page 165
“Create a Multicell Canvas” on page 181
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

“File: vp1.cpp”
“File: vp1.h” on page 198
“File: vp1.hpp” on page 198
“File: vp1.rc” on page 199

View Port Example

File: vp1.cpp
#include “vp1.h”
#include “vp1.hpp”
#include <icoordsy.hpp>
/**
* main *
* - Application entry point. *
**/
int main()
{

ICoordinateSystem::setApplicationOrientation(
ICoordinateSystem::kOriginLowerLeft);

AViewWindow viewWindow(WID_MAIN);
IApplication::current().run();
return 0;

}
/**
* Class AViewWindow :: AViewWindow *
**/
AViewWindow::AViewWindow(unsigned long windowId)

: IFrameWindow(windowId,
IFrameWindow::defaultStyle() |
IFrameWindow::menuBar),
title(this, “View Port Example”),
viewPort(WID_VIEWPORT, this,this, IRectangle()),
canvas(WID_CANVAS, &viewPort, &viewPort,

IRectangle(5,15, 410, 660)),
text(WID_TEXT, &canvas, &canvas,

IRectangle(10, 360, 400, 410)),
mle1(WID_MLE1, &canvas, &canvas,

IRectangle(10,10, 400, 149)),
mle2(WID_MLE2, &canvas, &canvas,

IRectangle(10, 160, 400, 349))
{

viewPort.setBackgroundColor(IColor(199, 212, 204));
setClient(&viewPort);
text.setText(“Enter some data into the MLE, please”);
commandHandler = new ACommandHandler(this);
commandHandler->handleEventsFor(this);
sizeTo(ISize(400,500));
show();

196 IBM Open Class: User Interface

}
/**
* Class AViewWindow :: xAViewWindow *
**/
AViewWindow::xAViewWindow()
{

commandHandler->stopHandlingEventsFor(this);
delete commandHandler;

}
/**
* Class AViewWindow :: moveHoriz *
**/
AViewWindow & AViewWindow :: moveHoriz()
{

viewPort.scrollViewHorizontallyTo(200);
return(*this);

}
/**
* Class AViewWindow :: moveVert *
**/
AViewWindow & AViewWindow :: moveVert()
{

viewPort.scrollViewVerticallyTo(200);
return(*this);

}
/**
* Class ACommandHandler :: ACommandHandler *
**/
ACommandHandler::ACommandHandler(AViewWindow *viewWindow)
{

view = viewWindow;
}
/**
* Class ACommandHandler :: command *
**/
bool ACommandHandler::command(ICommandEvent & cmdEvent)
{

bool eventProcessed(true);
// Identify the event
switch (cmdEvent.commandId())
{

case ID_HORIZ:
view->moveHoriz();
break;

case ID_VERT:
view->moveVert();
break;

default:
eventProcessed = false;

}
return true;
}

“View Ports” on page 193
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Create a View Port” on page 193
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Chapter 13. Canvas Controls 197

“File: radio.h” on page 110
“File: radio.hpp” on page 110
“File: radio.rc” on page 111

File: vp1.h
#ifndef _VIEWPORT_H_
#define _VIEWPORT_H_
/**
* Window IDs *
**/
#define WID_MAIN 0x1000
#define WID_VIEWPORT 0x1010
#define WID_CANVAS 0x1020
#define WID_TEXT 0x1030
#define WID_MLE1 0x1040
#define WID_MLE2 0x1050
/**
* Menu IDs *
**/
#define ID_MENU 0x2000
#define ID_HORIZ 0x2002
#define ID_VERT 0x2003
#endif

“View Ports” on page 193
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Create a View Port” on page 193
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

“File: radio.cpp” on page 107
“File: radio.hpp” on page 110
“File: radio.rc” on page 111

File: vp1.hpp
#ifndef _VIEWPORT_
#define _VIEWPORT_
#include <iframe.hpp>
#include <icmdhdr.hpp>
#include <iapp.hpp>
#include <ititle.hpp>
#include <imle.hpp>
#include <istattxt.hpp>
#include <icanvas.hpp>
#include <ivport.hpp>
// Forward declarations:
class IFrameWindow;
class AViewWindow;
class ICommandHandler;
/**
* Class ACommandHandler *
**/

198 IBM Open Class: User Interface

class ACommandHandler : public ICommandHandler
{

public:
ACommandHandler(AViewWindow *viewWindow);

protected:
virtual bool command(ICommandEvent& cmdEvent);

private:
AViewWindow *view;

};
/**
* Class AViewWindow *
**/
class AViewWindow : public IFrameWindow
{

public:
AViewWindow(unsigned long windowId);
xAViewWindow();
AViewWindow & moveHoriz();
AViewWindow & moveVert();

private:
ITitle title;
IViewPort viewPort;
ICanvas canvas;
IStaticText text;
IMultiLineEdit mle1;
IMultiLineEdit mle2;
ACommandHandler * commandHandler;

};
#endif

“View Ports” on page 193
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Create a View Port” on page 193
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

“File: radio.cpp” on page 107
“File: radio.h” on page 110
“File: radio.rc” on page 111

File: vp1.rc

This is a Windows resource script file:
#include “vp1.h”
WID_MAIN MENUEX

BEGIN
POPUP “&Scroll Menu” , ID_MENU

BEGIN
MENUITEM “&HorizontalShift” , ID_HORIZ
MENUITEM “&VerticalShift” , ID_VERT

END
END

Chapter 13. Canvas Controls 199

This is an AIX or OS/2 resource script file:
#include “vp1.h”
MENU WID_MAIN

BEGIN
SUBMENU “xScroll Menu” , ID_MENU

BEGIN
MENUITEM “xHorizontalShift” , ID_HORIZ
MENUITEM “xVerticalShift” , ID_VERT

END
END

“View Ports” on page 193
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Create a View Port” on page 193
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

“File: radio.cpp” on page 107
“File: radio.h” on page 110
“File: radio.hpp” on page 110

Drawing Canvases
The IDrawingCanvas class is a control class that provides support for drawing
graphic objects.

Behavior and Characteristics
The drawing canvas contains an IGraphicGroup to which you can add graphic
objects. By default, Open Class Library attaches a paint handler to the drawing
canvas. When paint events occur, the paint handler sets the clip region to the
drawing canvas’ update region and iterates through the graphic objects in the
IGraphicGroup, redrawing the graphic objects necessary to update the window. If
you do not add graphic objects to the IGraphicGroup, the drawing canvas simply
paints the window using the current background color.

To add graphic objects to a drawing canvas, create an IGraphicGroup object and
call IViewPort::setGraphicGroup. You can easily change the objects drawn in the
drawing canvas by changing the IGraphicGroup object.

If you want to use your own paint handler instead of the drawing canvas’ default
paint handler, construct the IDrawingCanvas object without the
useDefaultPaintHandler style.

If the user resizes the drawing canvas smaller, it does not repaint. If your
application requires the drawing canvas to repaint in this case, use the
IResizeHandler class to calll the refresh member function.

200 IBM Open Class: User Interface

Like the ICanvas class, the IDrawingCanvas class does not position or size child
windows. All drawing will be done underneath any child windows.

Graphic Contexts
You have the option of setting the graphic context, or the drawing port, that the
drawing canvas will use when drawing the graphic objects contained in the
IGraphicGroup object. By changing graphic contexts, you can change the
appearance of the graphic objects or the device on which they are rendered. (You
would use the setGrafPort member function to do this.)

2D Graphics Overview
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Hello World Version 5: Add Canvases, a List Box, Native System Functions, and
Help” on page 433
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Chapter 13. Canvas Controls 201

202 IBM Open Class: User Interface

Chapter 14. Notebooks

A notebook control is a visual component that organizes related information on
individual “pages” so that a user can find and display that information. It
simulates a real notebook and provides the user with a recognizable visual
component. Users select and display pages using a mouse or the keyboard. Your
application can specify different colors, sizes, and orientations for its notebooks,
but the underlying function of the control remains the same.

The INotebook class supports both a Presentation Manager-compatible notebook
control and a Windows tab control. The PM-compatible version allows code using
INotebook to be shared easily between OS/2 and Windows. However, the look and
feel of the notebook control on Windows will not match the look and feel of other
applications.

Use INotebook if you might port your code across different platforms since the
ITabControl class is not available on AIX.

A notebook generally contains the following components:

Component Description

Page window area The notebook reserves the client area to
display the application window.

Binding You may choose to display your notebook
with either a spiral binding or a solid
binding. This ornamental feature visually
depicts the spine of your notebook.

The Windows tab control contains no
binding area. Windows ignores any binding
settings.

Back pages The back pages are the recessed edges that
give the notebook a three-dimensional look.

The Windows tab control contains no back
pages area. Windows ignores any back
pages settings.

Page buttons The page buttons allow the user to move
through the pages of the notebook one page
at a time. The notebook positions the page
buttons on the corner where the back pages
intersect.

© Copyright IBM Corp. 1998, 2000 203

Component Description

Major tabs The major tabs let the user move quickly
through the sections of the notebook. You
may orient the major tabs along any edge of
the notebook. The INotebook class will put
the binding on the opposite edge. You may
also change the shape of the tabs.

The Windows tab control ignores shape
settings and tab orientation. It only supports
rounded tabs positioned at the top of the
control. The Windows tab control supports
multiple rows of tabs; this style keeps all
tabs visible to the user.

Minor tabs The minor tabs permit the user to move
within a major tab section of a notebook.
The notebook places the minor tabs along
the back page edge that does not already
hold the major tabs.

The Windows tab control does not support
minor tabs. As a result, the INotebook class
converts all pages in a notebook with minor
tabs or no tabs to pages with major tabs.

Status area The status area displays a text string about
the current page. The notebook positions the
status area on the same line as the page
buttons.

The Windows tab control contains no status
area. Windows ignores any status area
settings.

“Tab Controls” on page 214
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Use Notebooks”
“Hello World Version 6: Adding a Font Dialog, Pop-up Menus, Notebooks, and
Graphics” on page 443
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Use Notebooks
Using the Default Notebook Styles
You can specify notebook styles during notebook creation to define the look and
feel of the notebook, or you can use the default notebook styles provided by the
Open Class Library. The default notebook styles are the following:

204 IBM Open Class: User Interface

Style Description

INotebook::backPagesBottomRight Simulates recessed pages along the right and
bottom edges of the notebook. This function
is ignored in the Windows tab control
implementation.

INotebook::majorTabsRight Places major tabs on the right side of the
notebook. For the Windows tab control, all
tabs are minor and are at the top of the
control.

INotebook::solidBinding Binding is solid. This function is ignored in
the Windows tab control implementation.

INotebook::squareTabs Tabs are square-shaped in the
PM-compatible control, rounded in the
Windows tab control.

INotebook::statusTextLeft Status text is left-justified. This function is
ignored in the Windows tab control
implementation.

INotebook::tabTextCenter Tab text is centered.

IWindow::visible Notebook is visible.

The following figure shows the appearance of the Windows native notebook
control created using the default notebook styles. This notebook is from the
Notebook Sample.

The next figure shows the appearance of the PM-compatible notebook control
created using the default notebook styles and INotebook::pmCompatible. This
notebook is also from the Notebook Sample.

Chapter 14. Notebooks 205

The notebook control resembles a real notebook in its general appearance. For
example, the notebook has a binding that, along with recessed pages on the right
and bottom edges, gives the notebook a three-dimensional appearance. The
binding is solid and placed on the left side, using the default INotebook styles
backPagesBottomRight and solidBinding.

In the bottom right corner of the notebook are the page buttons. These buttons are
for bringing one page of the notebook into view at a time. They are a standard
component provided with every notebook. Your application can change the default
width and height of the page buttons using INotebook::setPageButtonSize.
However, you cannot query the size of the page buttons.

Selecting the forward page button (the arrow pointing to the right) causes the next
page to be displayed; selecting the backward page button (the arrow pointing to the
left) causes the previous page to be displayed.

To the left of the page buttons when using the default notebook style is the status
line, which enables your application to provide information to the user about the
page currently displayed. The notebook does not supply any default text for the
status line. You are responsible for using INotebook::PageSettings::setStatusText or
INotebook::setStatusText to associate a text string with the status line of each page.
By default, the text in the status line is left-justified.

The page buttons are always located in the corner where the recessed edges of the
notebook intersect. These recessed edges are called the back pages. The default
notebook’s back pages intersect in the bottom right corner, which means the
recessed pages are on the bottom and right edges.

The back pages are important because their intersection determines where the
major tabs can be placed, which in turn determines the placement of the binding
and the minor tabs. You can use major and minor tabs to organize related pages
into sections; minor tabs define subsections within major tab sections. The content
of each section has a common theme, which is represented to the user by a tabbed
divider, similar to a tabbed page in a notebook.

The default style, INotebook::majorTabsRight, specifies that major tabs, if used, are
placed on the right side of the notebook. This is the default placement when the

206 IBM Open Class: User Interface

back pages intersect at the bottom right corner of the notebook. The binding is
located on the left because it is always located on the opposite side of the notebook
from the major tabs.

Minor tabs are always placed perpendicular to the major tabs, based on the
intersection of the back pages and the major tab placement.

Minor tabs are displayed only as the associated major tab page is selected or if the
notebook has no major tab pages.

The default shape of the tabs used on notebook divider pages is square. You can
change the default width and height of the major and minor tabs using
INotebook::setMajorTabSize and INotebook::setMinorTabSize, respectively.

A notebook tab may contain either text or a bitmap. You can place text on a tab
using INotebook::PageSettings::setTabText or INotebook::setTabText. Use
INotebook::PageSettings::setTabBitmap or INotebook::setTabBitmap to place a
bitmap on a tab. You cannot position a bitmap on a tab using the default support
because the bitmap stretches to fill the rectangular area of the tab. However, you
may use the owner draw support to control the positioning and drawing of the
bitmap on a tab.

The Windows tab control has the following behavior:
v The INotebook’s implementation of the Windows tab control only supports

major tab pages. However, it converts all minor and non-tab pages in your
existing application to major tab pages. The placement of the major tabs is at the
top of the control and their shape is rounded. Tab orientation and shape settings
are ignored. The Windows tab control only supports rounded major tabs with
their orientation limited to the top of the control. Tab text alignment for the
Windows tab control is left. Tab text alignment settings are ignored.

v The Windows tab control automatically sizes the tabs, unless you specify a size
via INotebook::setMajorTabSize.

v The Windows tab control allows both a bitmap and text on the same tab. The
capability to set both a bitmap and text on the same tab is supported by the
INotebook class.

v The Windows tab control supports multiple rows of tabs that keep all of the tabs
visible to the user. Specify the notebook style, INotebook::allTabsVisible, during
INotebook construction to enable multiple row tab support.

v The Windows tab control supports owner drawing of the tabs. However, you
must specify the notebook style, INotebook::handleDrawTabs, during INotebook
construction to enable the owner draw support. The owner-drawn tabs must all
be the same width.

v The Windows tab control contains no binding or back pages area. The
INotebook’s implementation of this control ignores the binding and back pages
settings.

v The Windows tab control contains no status text line. The INotebook’s
implementation of this control ignores the status text and text alignment settings.

v The Windows tab control contains no page buttons. The INotebook’s
implementation of this control ignores the page button settings.

v The Windows tab control does not provide color support APIs. All tab control
colors are based upon the default system colors. The INotebook’s
implementation of this control ignores the color settings.

Chapter 14. Notebooks 207

“Chapter 14. Notebooks” on page 203
“Tab Controls” on page 214
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Create a Notebook”
“Specify Notebook Styles” on page 209
“Add Pages to the Notebook” on page 211
“Remove Notebook Pages” on page 213
“Change Notebook Colors” on page 214
“Create a Tab Control” on page 216
“Create an OS/2 Warp 4.0 Style Notebook” on page 219
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Create a Notebook
Use the INotebook class to create and manage the notebook control window. You
can create an object of this class using one of the following constructors:
v

INotebook(unsigned long windowId,
IWindow* parent,
IWindow* owner,
const IRectangle& initial = IRectangle(),
const Style& style = defaultStyle());

v

INotebook(unsigned long windowId,
IWindow* parentAndOwner);

v

INotebook(const IWindowHandle& handle);

Only the first of the three constructors creates a new notebook control. This
constructor accepts a numeric identifier for the notebook, a pointer to a window
object for its parent window, and a pointer to a window object for its owner
window. You can optionally specify the position, size, and styles of the notebook.

The next two constructors wrap an existing notebook control. The first of these two
constructors is designed to wrap a notebook control that is loaded as a dialog
resource. It accepts a numeric identifier for the notebook, and a pointer to a
window object for its parent and owner window. The last of these two constructors
is designed to wrap an existing notebook control. It accepts the existing notebook’s
window handle.

Version 6 of the Hello World application creates a notebook as a private data
member, helloSettingsNotebook, from a derived IFrameWindow class, called
ANotebookWindow. The helloSettingsNotebook object is initialized on the
ANotebookWindow constructor using the following INotebook constructor from the
anotebw6.cpp file:
ANotebookWindow :: ANotebookWindow(unsigned long windowId,

AHelloWindow * ownerWnd)
: IFrameWindow(windowId, IWindow::desktopWindow(),

ownerWnd, IRectangle(),
classDefaultStyle |

208 IBM Open Class: User Interface

dialogBackground |
dialogBorder)

, helloSettingsNotebook(WND_NOTEBOOK, this, this)
// ...
{

// ...
}

This constructor creates the notebook as a child window of the ANotebookWindow
object and uses the default style.

The following figure shows the Hello World version 6 notebook control:

“Chapter 14. Notebooks” on page 203
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Hello World Version 6: Adding a Font Dialog, Pop-up Menus, Notebooks, and
Graphics” on page 443
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Specify Notebook Styles
You can specify notebook styles during notebook creation to define the look and
feel of the notebook. The Open Class Library provides notebook styles so that your
application can specify or change the notebook’s styles.

When you specify an INotebook style on the notebook constructor, ensure that no
conflicts occur. Many of the style choices are not independent from one another.

If you specify more than one style bit, you must use a bitwise OR operator (|) to
combine them.

Chapter 14. Notebooks 209

If you want to specify notebook styles other than the default when you are
creating a notebook, create an object of the INotebook class, initialize it, and pass a
reference to it on the constructor that accepts a style parameter. For example in the
Notebook Sample .cpp file, we do the following:
ABitmapNotebook :: ABitmapNotebook(unsigned long windowId)

:IFrameWindow(windowId)
,reslib()
,tabSize(50,50)
,tab1(reslib.loadBitmap(BM_PAGE1, tabSize))
,tab2(reslib.loadBitmap(BM_PAGE2, tabSize))
,tab3(reslib.loadBitmap(BM_PAGE3, tabSize))
,tab4(reslib.loadBitmap(BM_PAGE4, tabSize))
,notebook(WND_NB, this, this, IRectangle()

, INotebook::defaultStyle()
&xINotebook::majorTabsRight
| INotebook::majorTabsBottom
| INotebook::spiralBinding)

,viewport1(WND_VP1, ¬ebook, ¬ebook)
,viewport2(WND_VP2, ¬ebook, ¬ebook)
,viewport3(WND_VP3, ¬ebook, ¬ebook)
,viewport4(WND_VP4, ¬ebook, ¬ebook)
,bitmap1(BM_PAGE1, &viewport1, &viewport1, BM_PAGE1)
,bitmap2(BM_PAGE2, &viewport2, &viewport2, BM_PAGE2)
,bitmap3(BM_PAGE3, &viewport3, &viewport3, BM_PAGE3)
,bitmap4(BM_PAGE4, &viewport4, &viewport4, BM_PAGE4)

{
// ...

}

The notebook created using the preceding statements has a spiral binding and tabs
on the bottom:

You can create a notebook, specify its style, and change the size of major tabs and
minor tabs with the following statements:

INotebook
*pnoteBook = new INotebook(ID_NOTEBOOK,

this,
this,
IRectangle(),
(INotebook::spiralBinding |
INotebook::backPagesTopRight |

210 IBM Open Class: User Interface

INotebook::majorTabsRight |
INotebook::statusTextLeft |
IWindow::visible));

pnoteBook->setMajorTabSize(ISize(60, 30));
pnoteBook->setMinorTabSize(ISize(80, 40));

The notebook created using the preceding statements has a spiral binding, back
pages on the right and top edges, major tabs on the right, status text that is
left-justified, and is visible.

If you do not code the style on the first constructor, the static function,
INotebook::defaultStyle determines the style. Initially, this function returns the
default style, INotebook::classDefaultStyle. Use the function
INotebook::setDefaultStyle to change the notebook’s default style setting.

Once you create your notebook, you can change the various styles using member
functions provided by INotebook that change the binding, orientation, tab shape,
and tab text alignment of the notebook.

“Chapter 14. Notebooks” on page 203
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Use Notebooks” on page 204
“Create a Notebook” on page 208
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Add Pages to the Notebook
A page setting object lets the user change and set information about pages in a
notebook. Use the INotebook::PageSettings and INotebook::PageSettings::Attribute
classes to create each page of the notebook.

Use the nested class INotebook::PageSettings to describe the characteristics of a
notebook page before you add it to the notebook. An INotebook::PageSettings
object defines page attributes like the use of major or minor tabs, automatic sizing
behavior, the text or bitmap for the tabs, and the text for the status area.

Use INotebook::PageSettings::Attribute to specify the attributes of a page. This
class is similar to a style class and has constant values defined for its values.

When inserting new pages into a notebook, carefully consider how your user will
expect those pages to be organized. For an existing notebook especially, the
underlying hierarchy must be observed when inserting new pages to provide
efficient organization and navigation through the information contained in the
notebook.

Use the following list of add functions to insert new pages into the notebook:
v INotebook::addFirstPage()
v INotebook::addLastPage()
v INotebook::addPageAfter()

Chapter 14. Notebooks 211

v INotebook::addPageBefore()

All of these functions contain an optional parameter, pageWindow, that you can
use to specify a page window to associate to a notebook page. A page window is an
application window that you associate with a page of a notebook.

After a page is inserted into a notebook, you must facilitate the display of the
information for this page when it is brought to the front of the notebook. The
notebook provides a top page area in which the application can display page
windows for the topmost page. For each inserted page, the application must
associate the handle of a page window that is to be invalidated when the page is
brought to the top of the book. You can associate the same handle with different
pages.

The page window may be an IFrameWindow that you create from a dialog
template, or it may be one of the ICanvas derived classes. You can associate a page
window to a page of a notebook when you add the page to the notebook, or you
can specify it later using INotebook::setWindow(). You determine the best time to
associate your application window, immediately or delayed, based upon the
resource requirements of your notebook.

You can define page windows using different window types, but we recommend
using one of the canvas classes. When using a canvas class for your notebook
page, you may need to set the size of the pages as in the following example:

page1.sizeTo(page1.minimumSize());

Use IPageHandle to identify a page once it is in the notebook. An IPageHandle is a
wrapper class for the numeric identifier assigned to a page when you add it to the
notebook. You use IPageHandle on most operations affecting the characteristics of
the page and to remove the page from the notebook.

The following sample comes from the Hello World version 6 anotebw6.cpp file:
ANotebookWindow :: ANotebookWindow(unsigned long windowId,

AHelloWindow * ownerWnd)
// ...
{

// ...
// Create the notebook page settings with attributes for a
// major tab and automatic page size.
// Set tab text to the Earth tab text from the resource
// file.
// Use the earthPage canvas and the notebook settings to
// add a page to the beginning of the notebook.
// Reset the tab text to the date and time tab text from
// the resource file.
// Use the dateTimePage canvas and the notebook settings
// to add a page to the end of the notebook.
// The Motif release of the User Interface Class Library
// automatically sizes the major tab. For other releases,
// manually resize the tabs.
INotebook::PageSettings

helloSettings(INotebook::PageSettings::majorTab|
INotebook::PageSettings::autoPageSize);

helloSettings.setTabText(IResourceId(STR_EARTHTAB));
helloSettingsNotebook.addFirstPage(helloSettings,&earthPage);
helloSettings.setTabText(IResourceId(STR_DATETIMETAB));
helloSettingsNotebook.addLastPage(helloSettings,&dateTimePage);
// ...

}

212 IBM Open Class: User Interface

Each notebook page window, in this case, is a multicell canvas. Hello World
version 6 creates a PageSettings object, helloSettings, to contain the specifications
for each notebook page. The object is created with the
INotebook::PageSettings::Attributes that specify major tabs and automatic page
sizing. You use this PageSettings object to set the text in the tabs with the
setTabText() member function.

To create the first page, use INotebook::addFirstPage() function. This function takes
a PageSettings object and the page window that you want to associate with this
page. The Hello World Version 6 sample uses helloSettings for the PageSettings
object, and a reference to earthPage as the page window, to create its first page.

To create the next page, use INotebook::addLastPage(). If you wanted to add more
pages to Hello World version 6, use addLastPage() again to append pages to the
end of the notebook.

“Chapter 14. Notebooks” on page 203
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Use Notebooks” on page 204
“Create a Notebook” on page 208
“Specify Notebook Styles” on page 209
“Remove Notebook Pages”
“Hello World Version 6: Adding a Font Dialog, Pop-up Menus, Notebooks, and
Graphics” on page 443
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Remove Notebook Pages
You can remove pages from the notebook by supplying the IPageHandle that was
returned when the page was created.

Use the following INotebook functions to remove notebook pages:

removePage
Accepts a handle directly or determines the handle from an instance of an
INotebook::Cursor.

removeAllPages
Removes multiple pages of a notebook.

removeTabSection
Removes the pages associated with a major or minor tab section.

“Chapter 14. Notebooks” on page 203
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

Chapter 14. Notebooks 213

“Use Notebooks” on page 204
“Create a Notebook” on page 208
“Add Pages to the Notebook” on page 211
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Change Notebook Colors
Your application can tailor the color of almost any part of the notebook. Use the
various color functions to change the colors of a notebook.

When you change the color in a control area, the presentation system passes this
color change request to all the children of the control. This causes a child window
with the same color control area to change to the new specified color if its control
area has not been explicitly set. Therefore, changing colors in the notebook can
cause changes to the page windows on the notebook.

Use the following INotebook functions to change the notebook’s color:
v setPageBackgroundColor()
v setMajorTabBackgroundColor()
v setMinorTabBackgroundColor()
v setMajorTabForegroundColor()
v setMinorTabForegroundColor()
v setBackgroundColor()
v setForegroundColor()

“Chapter 14. Notebooks” on page 203
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Use Notebooks” on page 204
“Create a Notebook” on page 208
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Tab Controls
The ITabControl class gives you another option to implement a notebook-like
dialog. It creates a tab control similar to the native Windows tab control.

AIX does not support the ITabControl class.

The OS/2 Warp 4 operating system supports the ITabControl class, but not OS/2
Warp Server 4. This control uses the BKS_TABBEDDIALOG style on the PM
notebook.

214 IBM Open Class: User Interface

A tab control is a window that appears as a stack of tabbed pages (the tabs located
at the top of the pages) with an set of optional push buttons.

You can use an ITabControl object as the client window of an IFrameWindow to
create a tab control dialog.

The ITabPage Class
An ITabControl object manages a set of ITabPage objects and an optional set of
IPushButton objects. You must create an ITabPage object or an object of a derived
class for each page in the tab control. A tab page is a logical representation of a
page in a tab control and has an associated page window and optional push
buttons. A tab page object is not a wrapper for a platform window as are IWindow
derived objects.

Each tab page has a style and either text or a bitmap to be displayed on the
corresponding tab in the tab control. You can specify the text and bitmap for the
tab page when constructing the ITabPage object, or by calling
ITabPage::setTabBitmap or setTabText.

In the Windows environment, tab pages can have both text and a bitmap displayed
on the tab simultaneously.

In the OS/2 environment, you can assign both text and a bitmap for a tab, but
OS/2 only displays the last item set.

Optional Push Buttons
The optional push buttons in the tab control appear in a button area below the tab
pages, or, in the OS/2 environment, the button area can optionally appear above
the tab pages. You can specify buttons on a per page basis as well as specifying a
set of common buttons. ITabControl displays the set of common buttons whenever
the top page has no page specific buttons. You must manage common buttons via
ITabControl member functions and manage page specific buttons via ITabPage
member functions.

You can add one of the five predefined push buttons provided by the EButton
enumeration as common or page specific buttons. You can use the same buttons in
multiple page button sequences as well as the common button sequence. This
allows maximum flexibility in tailoring the buttons that appear as the user selects
each tab page. For example, one tab page may have OK, Cancel, and Help buttons
while all other pages have OK, Default, Cancel, and Help buttons. You would add
the OK, Default, Cancel, and Help buttons as common push buttons and add the
OK, Cancel, and Help buttons as page push buttons for the unique page.

You can also create your own IPushButton objects for use as tab control buttons.
You must use the window returned by ITabControl::buttonParent as the parent and
owner of any IPushButton objects you construct for use as either common buttons
or page buttons.

Chapter 14. Notebooks 215

Command Handling
To process the command events generated by tab control buttons, attach a handler
derived from ICommandHandler to the tab control or a window in its owner
window chain.

“Chapter 14. Notebooks” on page 203
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Create a Tab Control”
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Create a Tab Control

The ITabControl class gives you another option to implement a settings or
properties dialog. ITabControl creates a window that appears as a stack of tabbed
pages with an optional button area.

For OS/2, this control uses the BKS_TABBEDDIALOG style on the PM notebook.
On the Windows operating system, this is the native tab control with some
additional drawing to emulate the Windows property sheet.

You can use an ITabControl object as the client of an IFrameWindow to create a tab
control dialog.

An ITabControl object manages a set of ITabPage objects and an optional set of
IPushButton objects. You must create an ITabPage object or an object of a derived
class for each page in the tab control. A tab page is a logical representation of a
page in a tab control and has an associated page window and optional push
buttons. A tab page object is not a wrapper for a platform window as are IWindow
derived objects.

Each tab page has a style and either text or a bitmap to be displayed on the
corresponding tab in the tab control. You can specify the text and bitmap for the
tab page during ITabPage construction or by using one of the ITabPage Tab Text &
Bitmap member functions. In the Windows environment, tab pages can have both
text and a bitmap displayed on the tab simultaneously. In the OS/2 environment,
you can assign both text and a bitmap for a tab, but only the last item set is
displayed.

The optional push buttons in the tab control appear in a button area below the tab
pages, or, in the OS/2 environment, the button area can optionally appear above
the tab pages. You can specify buttons on a per page basis as well as specifying a
set of common buttons. ITabControl displays the set of common buttons whenever
the top page has no page specific buttons. You must manage common buttons via
ITabControl member functions and manage page specific buttons via ITabPage

216 IBM Open Class: User Interface

member functions. To process the command events generated by tab control
buttons, create a handler of an ICommandHandler derived class and attach it to
either the tab control or frame window.

You can add one of the five predefined push buttons provided by the EButton
enumeration as common or page specific buttons. You can use the same buttons in
multiple page button sequences as well as the common button sequence. This
allows maximum flexibility in tailoring the buttons that appear as the user selects
each tab page. For example, one tab page may have Ok, Cancel, and Help buttons
while all other pages have Ok, Default, Cancel, and Help buttons. You would add
the Ok, Default, Cancel, and Help buttons as common push buttons and add the
Ok, Cancel, and Help buttons as page push buttons for the unique page.

You can also create your own IPushButton objects for use as tab control buttons.
You must use the window returned by buttonParent as the parent of any
IPushButton objects you construct for use as either common buttons or page
buttons.

To process the command events generated by tab control buttons, you must attach
a handler derived from ICommandHandler to the tab control or frame window.

In the following sample, from the Tab Control Sample, TabTest is our main
window class. An ITabControl object is constructed and set as the frame window’s
client. Three different ITabPage derived objects are constructed. These three tab
pages are then added to the tab control. Help is initialized for the application and
a command handler is constructed and attached to the tab control to handle
command events from the tab control push buttons.

The following code is from tabctl.cpp:
TabTest :: TabTest(unsigned long windowId)
: IFrameWindow(windowId

,classDefaultStyle
|shellPosition
|dialogBackground
|dialogBorder)

, tabControl(WND_TABCONTROL,
this,
this,
IRectangle(),
ITabControl::defaultStyle()
| ITabControl::buttons)

, enrollPage(this)
, dataPage(this)
, helpWindow(HELP_TABLE,

this)
, tabCommandHandler(this)
{

// Add the three tab pages to the tab control.
tabControl.addLastPage(&enrollPage);
tabControl.addLastPage(&dataPage);
tabControl.addLastPage(&photoPage);
// Add three common buttons to the tab control.
// These push buttons are displayed for pages which
// don't have any page buttons set.
tabControl.addCommonButton(ITabControl::kOk, true);
tabControl.addCommonButton(ITabControl::kCancel);
tabControl.addCommonButton(ITabControl::kHelp);
// Set the application icon.
// Set the tab control as the frame's client window.
// Size the client area to the tab control's minimum size
// Size the frame window to the client size.

Chapter 14. Notebooks 217

setIcon(WND_MAIN);
setClient(&tabControl);
IRectangle clientRect = clientRectFor(rect());
clientRect.sizeTo(tabControl.minimumSize());
moveSizeToClient(clientRect);
// Start handling command events from the tab control
// buttons. You can attach the command handler to either
// the tab control or the frame. It is attached to the tab
// control here.
tabCommandHandler.handleEventsFor(&tabControl);
// Add the help library to the help window using
// addLibraries(). Set the help window title from a
// string in the resource file.
try
{

helpWindow.addLibraries(“tabctl.hlp”);
helpWindow.setTitle(STR_HTITLE);

}
catch(...)
{

IMessageBox
msgBox(this);

msgBox.setTitle(STR_HELP_NOT_FOUND_TITLE);
msgBox.show(STR_HELP_NOT_FOUND, IMessageBox::information);

}
}

In the tabctl.hpp, we define our class as follows:

class TabTest : public IFrameWindow
{

public:
// Constructor
// - constructs the object with a window ID
TabTest(unsigned long windowId);
// Destructor
virtual
xTabTest() { };

// Accessors
// - These functions provide a means of getting and
// settings the accessible attributes of instances
// of this class:
// sponsor - Returns the name of the sponsor.
// setSponsor - Sets the name of the sponsor.
// cheetahIndex - Returns the selected cheetah index
// from enroll page
IString

sponsor() const;
TabTest
&setSponsor(const IString& currentSponsor);
unsigned long

cheetahIndex() const;
private:

ITabControl
tabControl;

EnrollPage
enrollPage;

DataPage
dataPage;

PhotoPage
photoPage;

TabCommandHandler
tabCommandHandler;

IHelpWindow

218 IBM Open Class: User Interface

helpWindow;
IString

sponsorName;
};

We then go on to define and implement our accesor functions and various pages.
The tab control uses delayed page window construction to allow for a user’s
choice. They are constructed only when needed by the application. Each page can
contain a variety of controls.

“Tab Controls” on page 214
“Chapter 14. Notebooks” on page 203
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Use Notebooks” on page 204
“Create a Notebook” on page 208
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Create an OS/2 Warp 4.0 Style Notebook

You cannot create an OS/2 Warp 4.0 style notebook directly using the INotebook
class, but you can create a notebook with this style (using WinCreateWindow) and
construct an INotebook object for it. The following example illustrates this method:
/**
* Merlin Notebook Sample Program: This program creates a Merlin style *
* notebook as a client window. The notebook is created via WinCreateWindow *
* and an object is then constructed for it using an INotebook wrapper *
* constructor. The OS/2 Warp 4.0 Toolkit must be installed in order to *
* implement this sample. *
**/
extern “C” {

#define INCL_WIN
#define INCL_WINSTDBOOK
#include <os2.h>

}
#include <iapp.hpp>
#include <inotebk.hpp>
#include <iframe.hpp>
#include <istattxt.hpp>
#define WND_MAIN 1000
#define WND_NB 1010
#define WND_STATIC1 2110
#define WND_STATIC2 2120
#define WND_STATIC3 2130
#define WND_STATIC4 2140
/**
* Class AMerlinNotebook — Sample application that constructs an OS/2 *
* Warp 4.0 BKS_TABBEDDIALOG style notebook and wrappers it with an *
* INotebook object. *
**/
class AMerlinNotebook : public IFrameWindow
{
public:
/*—————————————— Constructor ———————————————*/

Chapter 14. Notebooks 219

AMerlinNotebook(unsigned long windowId);
virtual

xAMerlinNotebook() { };
INotebook

*notebook;
IStaticText

*static1,
*static2,
*static3,
*static4;

};
/**
* main() - Construct the frame window with a notebook client and run the *
* application. *
**/
int main()
{

AMerlinNotebook mainWindow(WND_MAIN);
mainWindow.show();
IApplication::current().run();
return 0;

}
/**
* AMerlinNotebook :: AMerlinNotebook - constructor *
* *
* Construct the IFrameWindow using the default style. *
* Create the BKS_TABBEDDIALOG notebook as a child window of the frame. *
**/
AMerlinNotebook :: AMerlinNotebook(unsigned long windowId)

:IFrameWindow(windowId)
{

// Create a Merlin style notebook directly via WinCreateWindow.
IWindowHandle hwndNotebook = WinCreateWindow(

handle(), // parent
WC_NOTEBOOK, // notebook class
NULL, // window text
BKS_TABBEDDIALOG // window style
| BKS_MAJORTABTOP
| WS_VISIBLE,

0, 0, 0, 0, // window rectangle
handle(), // owner
HWND_TOP, // insertion order
WND_NB, // window id
NULL, // control data
NULL); // presentation parms

// Now create an INotebook object by using the INotebook wrapper
// constructor.
notebook = new INotebook(hwndNotebook);
// Create some static text to use for the page windows.
static1 = new IStaticText(WND_STATIC1, notebook, notebook);
static2 = new IStaticText(WND_STATIC2, notebook, notebook);
static3 = new IStaticText(WND_STATIC3, notebook, notebook);
static4 = new IStaticText(WND_STATIC4, notebook, notebook);
static1->setText(“Page one”);
static2->setText(“Page two”);
static3->setText(“Page three”);
static4->setText(“Page four”);
// Create a page settings object that specifies that pages should have a
// major tab and pages should be automatically sized to fit the
// notebook. For each page to be added to the notebook, set the tab text.
INotebook::PageSettings pageSettings(

INotebook::PageSettings::majorTab |
INotebook::PageSettings::autoPageSize);

pageSettings.setTabText(“Page 1”);
notebook->addLastPage(pageSettings, static1);
pageSettings.setTabText(“Page 2”);
notebook->addLastPage(pageSettings, static2);

220 IBM Open Class: User Interface

pageSettings.setTabText(“Page 3”);
notebook->addLastPage(pageSettings, static3);
pageSettings.setTabText(“Page 4”);
notebook->addLastPage(pageSettings, static4);
// Size the notebook and make it the client of the frame window.
notebook->sizeTo(ISize(400, 400));
setClient(notebook);

}

While the BKS_TABBEDDIALOG notebook can be wrappered with an INotebook
object, not all of the INotebook member functions are applicable to notebooks with
this style. The following INotebook styles are not applicable to the Merlin style
notebook:
v majorTabsLeft
v majorTabsRight
v polygonTabs
v roundedTabs
v squareTabs
v solidBinding
v spiralBinding
v statusTextLeft
v statusTextRight
v statusTextCenter
v tabTextLeft
v tabTextRight
v tabTextCenter

The following INotebook member functions should not be used with the Merlin
style notebook:
v bindingsetBinding
v setPageButtonSize
v setStatusTextAlignment
v statusTextAlignment
v setMinorTabSize
v setTabShape
v tabShape
v setTabTextAlignment
v tabTextAlignment

“Chapter 14. Notebooks” on page 203
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Use Notebooks” on page 204
“Create a Notebook” on page 208
“Specify Notebook Styles” on page 209
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Chapter 14. Notebooks 221

222 IBM Open Class: User Interface

Chapter 15. Containers

A container allows you to store, view, and manipulate non-window elements called
objects. An object represents another container or an item such as an executable
program, a word processing file, or a bitmap image. For example, the desktop
window used by the graphical user interface of OS/2, Windows, and Motif are
containers that hold program or data objects.

The IContainerControl supports both an OS/2 Presentation Manager-compatible
container and a container using the native Windows list view and tree view
controls. By default, the IContainerControl class uses the Windows container style.
The Windows container style gives more consistency between the look of the
container in an IBM Open Class application and the Windows graphic user
interface. On the other hand, the PM-compatible style allows you to easily port
between OS/2 and Windows.

The following figure shows an example of two containers. The left application uses
the Windows container style, while the one on the right uses the OS/2 container
style:

Due to the limited capabilities in Motif, the IBM Open Class does not support the
following areas of IContainerControl and its related classes:
v Vertical split bar in the details view
v All emphasis, except selection and cursor emphasis
v The following ICnrHandler overrides will not be called:

– deltaReached
– windowScrolled

v Draw item (for example, owner draw)
v Scrolling functions, including:

© Copyright IBM Corp. 1998, 2000 223

– scroll
– scrollDetailsHorizontally
– scrollHorizontally
– scrollToObject
– scrollVertically

v IContainerControl constructors for creating an instance from an existing
container control or a dialog template

Views
Containers can display their objects in different views:

View Description

Text This view displays a text string
representation of the objects of a container in
a column.

Name This view is an extension of the text view. It
displays an icon representation of the object
to the left of the text string.

Icon This view displays an object’s icon
representation with its text string
representation centered below the icon. The
container positions the icon-text pair on the
screen based on a pair of coordinates. Either
the IContainerControl class, you, or the user
may specify these coordinates

Tree This view displays a hierarchical view of a
container’s objects. A tree view lists its
objects vertically. By default, the container
draws a plus sign to the left of an object to
indicate that the object (called the parent)
contains other objects (called child objects).
The user may expand a parent object to view
its child objects. Conversely, a minus sign
indicates that the user may collapse the
object, hiding its child objects from view.
You may only display child objects with the
tree view.

Details This view displays detailed information
about each object of a container in a chart
form. Each row contains the information
about one object. Each column relates to one
piece of data common to all the objects in
the container.

“Chapter 23. Direct Manipulation” on page 313
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Create and Use Containers” on page 225
“Use Default Direct Manipulation” on page 316
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

224 IBM Open Class: User Interface

Create and Use Containers
Use the IContainerControl class to create an instance of a container object. With
this class, you can control, for example, the view of the objects inside the container.
The following example shows one way to create a container:

IContainerControl cnrCtl(CNR_RESID, this, this);

Several styles are available for containers that you can use to manage such
activities as multiple-selection and automatic positioning.

You can define the styles in the constructor, or you can use member functions to
set the style required after you create an instance of the container object. An
example of a style statement is highlighted in the following code:

cnrCtl = new IContainerControl (CNR_RESID, this, this);
cnrCtl->setExtendedSelection();

The IContainerControl supports both the OS/2 Presentation Manager-compatible
container and the Windows container. The Windows container is a ported version
of the PM container control. The Windows container is composed of the list view
and tree view control which are native to the Windows environment. On all
platforms, you can get PM style controls using the
IContainerControl::pmCompatible option. On NT, you can also get the Windows
list view control. This style of control is not available on OS/2 or AIX. The
Windows list view control is the default selection in the Windows environment.

“Chapter 15. Containers” on page 223
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Use Default Direct Manipulation” on page 316
“Task and Samples Cross-Reference Table” on page 445
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

ICnrHandler
IContainerColumn
IContainerObject

Create Container Objects
Because a container has no meaning without its objects, use the IContainerObject
class to create objects to put into it. At a minimum, an IContainerObject has an
icon and a name.

The following is an example of an IContainerObject constructor:
IContainerObject

(const IString& string,
const IPointerHandle& iconHandle = 0);

To design your own objects for your applications, create a class that is derived
from the IContainerObject class. If you use multiple inheritance, you must list the
IContainerObject class first. To create a container object with department names,

Chapter 15. Containers 225

addresses, and zip codes for your company, define this class as follows. This
excerpt is from the Container Sample. You can find this sample in the
samples/ioc/cnr directory:
class Department : public IContainerObject
{

public:
Department(const IString& Name,

const IPointerHandle& Icon,
const IString& Code,
const IString& Address);

IString Code()
const {return strCode;}

IString Address()
const {return strAddress;}

void setCode (IString code)
{strCode = code;}

void setAddress (IString address)
{strAddress = address;}

virtual void handleOpen
(IContainerControl* container);

private:
IString strAddress;
IString strCode;

};

The statements for a constructor definition are as follows:
Department :: Department(const IString& Name,

const IPointerHandle& Icon,
const IString& Code,
const IString& Address):

IContainerObject(Name, Icon),
strCode (Code),
strAddress (Address),

{}

After you define the class, create an instance of an object using either of the
following statement:

dept1 = new Department (
“OS2 Development”,
IApplication::current().userResourceLibrary().loadIcon(IBMLOGO),
“TWPD”,
“Building 71”);

dept2=new Department(reslib.loadString(STR_ITEM_21),
reslib.loadIcon(CLOGO),
reslib.loadString(STR_ITEM_22),
reslib.loadString(STR_ITEM_23));

You can find the Container Sample in the samples/ioc/cnr directory:

“Chapter 15. Containers” on page 223
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

Container Sample
“Create and Use Containers” on page 225
“Add and Remove Container Objects” on page 227
“Share Objects Among Containers” on page 229
“Filter Container Objects” on page 230
“Sort Objects in a Container” on page 232

226 IBM Open Class: User Interface

“Access Container Objects Using an Object Cursor” on page 233
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Add and Remove Container Objects
After you create the objects and the container, add the objects to the container.
The following statements from the Container Sample add objects to the container,
cnrCtl. The first line adds an object, dept1. The next three lines add dept2, dept3,
and dept4 in a hierarchy under dept1. The last two lines add dept5 and dept6.
cnrCtl->addObject(dept1); // Add Department 1 to container
cnrCtl->addObject(dept2,dept1); // Add Department 2 under Department 1
cnrCtl->addObject(dept3,dept1); // Add Department 3 under Department 1
cnrCtl->addObject(dept4,dept1); // Add Department 4 under Department 1
cnrCtl->addObject(dept5); // Add Department 5 to container
cnrCtl->addObject(dept6); // Add Department 6 to container

When you place the container in the client window and show the window and the
container, you see a window like the one below.

You can find the source files of the Container Sample in the samples/ioc/cnr
directory.

Example of a Container Showing Objects in an Expanded Tree View
The window shows a tree view of the container’s objects. This view is discussed
later.

Note that in these figures we show both the PM compatible version and the
Windows native container.

You can also use the ICnrAllocator class to allocate a list of container items to be
inserted into an IContainerControl. When you construct instances of this class, you
can allocate memory from the container control for a specified number of objects
with one call.

Chapter 15. Containers 227

The IContainerControl::addObjects member function inserts all the initialized items
of the allocator.

The following example shows how to use the ICnrAllocator class and the
IContainerControl::addObjects member function:
/**/
/* Define your derived IContainerObject class */
/**/
class MyObject : public IContainerObject
{
public:

MyObject(const IString& name) : IContainerObject(name) {}
xMyObject() {}

};
/**********************************/
/* Create a frame and a container */
/**********************************/
IFrameWindow frame(0x1300);
IContainerControl cnr(0x1400, &frame, &frame);
cnrCtl.showTextView();
/**/
/* Create an allocator and allocate 10000 objects */
/**/
ICnrAllocator allocator(10000, sizeof(MyObject));
/************************/
/* Initialize all 10000 */
/************************/
for(int i=0; i<10000; i++)
{

new(allocator) MyObject(“Peter”);
}
/**/
/* Add all the objects to the container */
/**/
cnrCtl.addObjects(allocator);

By default, the container only removes objects when the container is deleted. It
does not delete them. However, you can delete all objects in the container when
the container is deleted by using the following code statement:
cnrCtl->setDeleteObjectsOnClose();

You can call IContainerControl::deleteAllObjects to delete all objects in a container.
Specify the style IContainerControl::noSharedObjects when you create a container
that does not share any objects with other containers. This increases the
performance of the IContainerControl::deleteAllObjects member function.

The following example shows how to create a container with the noSharedObjects
style:
/***/
/* Create a container with the noSharedObjects style */
/***/
IContainerControl* cnrCtl = new IContainerControl(0x1400, &frame,

&frame, IRectangle(0,0,0,0),
IContainerControl::defaultStyle() |
IContainerControl::noSharedObjects);

“Chapter 15. Containers” on page 223
“Chapter 1. Windows” on page 1

228 IBM Open Class: User Interface

“Chapter 3. Events and Event Handlers” on page 19

Container Sample
“Create and Use Containers” on page 225
“Create Container Objects” on page 225
“Share Objects Among Containers”
“Filter Container Objects” on page 230
“Sort Objects in a Container” on page 232
“Access Container Objects Using an Object Cursor” on page 233
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

IContainerControl
IContainerObject

Share Objects Among Containers
You can also create objects and place them in multiple containers. The same object
is then shared by two or more different containers.

In the Container Sample, dept2, dept3, and dept4 are in a hierarchy under dept1.
We now want to create another container with only the main departments. This
new container will then share dept1, dept5, and dept6 with the other container.

The following statements add three objects to a container, cnrCtl2, that already
exists in another container, cnrCtl. You can find this sample in the
samples/ioc/cnr directory.
/***/
/* Container with all departments */
/***/
cnrCtl->addObject(dept1); // Add Department 1 to container
cnrCtl->addObject(dept2,dept1); // Add Department 2 under Department 1
cnrCtl->addObject(dept3,dept1); // Add Department 3 under Department 1
cnrCtl->addObject(dept4,dept1); // Add Department 4 under Department 1
cnrCtl->addObject(dept5); // Add Department 5 to container
cnrCtl->addObject(dept6); // Add Department 6 to container
/***/
/* Container with main departments only */
/***/
cnrCtl2->addObject(dept1); // Add Department 1 to second container
cnrCtl2->addObject(dept5); // Add Department 5 to second container
cnrCtl2->addObject(dept6); // Add Department 6 to second container

Since the same object can exist in more than one container, the attributes of an
object also reflect the state of that object. For example, an object can be visible in
one container but hidden in another. You should consider the state of an object’s
attribute in each container and the state of the attribute in each place the object
resides.

The following container attributes can be modified:
v Visibility (PM-compatible container only)
v Cursored emphasis
v Selection emphasis
v In-use emphasis
v Refresh status

Chapter 15. Containers 229

v Open status
v Direct edit status
v Expanded or collapsed state in tree view
v Target emphasis
v Source emphasis (PM-compatible container only)

Use the base container handler, ICnrHandler, to capture the event notifications
provided by the container class. When the values of object attributes in the
container change, these series of notifications are captured by the handler and
routed to virtual functions within the handler.

For example, for both containers to reflect the same selection emphasis, you must
attach an ICnrHandler to keep the objects in the same state in each container. Once
both icons are selected, the same action is performed on both containers.

If you are performing multiple actions that cause the container to refresh, you can
manipulate the refresh state so that the container will not repaint, as follows:

cnrCntl.setRefreshOff();
:
:
cnrCntl.setRefreshOn();
cnrCntl.refresh();

“Chapter 15. Containers” on page 223
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

Container Sample
“Create and Use Containers” on page 225
“Create Container Objects” on page 225
“Add and Remove Container Objects” on page 227
“Filter Container Objects”
“Sort Objects in a Container” on page 232
“Access Container Objects Using an Object Cursor” on page 233
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

IContainerObject

Filter Container Objects
You can filter objects in a container when using the PM-compatible container
control. The container uses the FilterFn nested class to show a subset of the
existing objects by filtering some of the objects.

The native Windows list view and tree view controls do not support filtering
container objects.

To create a filter, do the following:
1. Define a class derived from the FilterFn class and override the member

function isMemberOf to code the conditions of a valid object.

230 IBM Open Class: User Interface

class SelectedObjectsFilter : public IContainerControl::FilterFn
{
virtual bool

isMemberOf(IContainerObject* object,
IContainerControl* container) const

{
return container->isSelected(object);

}
};

If true is returned by the FilterFn derived class, the container object remains
displayed in the container; if false, the object is hidden.

The isSelected member function returns true if the object has selection
emphasis.

2. Call IContainerControl::filter. Use the following statements:
SelectedObjectsFilter selObjects;
cnrCtl->filter(selObjects);

Before Filtering the Container Objects:

After Filtering the Container Objects:

Chapter 15. Containers 231

This output is from the Container Sample. You can find this sample in the
samples/ioc/cnr directory.

“Chapter 15. Containers” on page 223
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

Container Sample
“Create and Use Containers” on page 225
“Create Container Objects” on page 225
“Add and Remove Container Objects” on page 227
“Share Objects Among Containers” on page 229
“Sort Objects in a Container”
“Access Container Objects Using an Object Cursor” on page 233
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

IContainerControl

Sort Objects in a Container
To sort objects in the container using their icon text, call
IContainerControl::sortByIconText. You can also use a comparison function
provided by your application. With an application comparison function, you can
sort the objects in the container a variety of different ways. When you call the
function sortByIconText, the container provides its own comparison function to do
the sorting.

To provide your own sort behavior, do the following:
1. Define a class derived from IContainerControl::CompareFn and implement the

function isEqual. The function isEqual should return an integer value that is

232 IBM Open Class: User Interface

less than zero if the first object is less than the second object, zero if the first
object is equal to the second object, or greater than zero if the first object is
greater than the second object.

2. Create an object of the newly defined comparison class. Call the function
IContainerControl::sort, and pass the comparison function object.

The following example sorts the objects in our container by two different criteria:
case ID_SORT1:

{
/*——————————————————————————————————————-
| Sort the container based on the Icon Text. |
| We call a container function to do this. |
——————————————————————————————————————*/

pcnr->sortByIconText (true);
break;

}
case ID_SORT2:
{

/*——————————————————————————————————————-
| Sort the container based on the Code Text. |
| We must create an instance of the SortByCode class and pass this in. |
——————————————————————————————————————*/

SortByCode sortByCode;
pcnr->sort(sortByCode);
break;

}

To view the entire sample, see the acnr.cpp file in the samples directory.

“Chapter 15. Containers” on page 223
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Create and Use Containers” on page 225
“Create Container Objects” on page 225
“Add and Remove Container Objects” on page 227
“Share Objects Among Containers” on page 229
“Filter Container Objects” on page 230
“Access Container Objects Using an Object Cursor”
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

IContainerControl

Access Container Objects Using an Object Cursor
Use an object cursor to find all objects or find only those objects that meet a
specific criteria.

The following example creates an ObjectCursor and uses it to select all container
objects:

IContainerControl::ObjectCursor CO1 (*cnrCtl);
for (CO1.setToFirst(); CO1.isValid(); CO1.setToNext())

{
cnrCtl->setSelected(cnrCtl->objectAt(CO1));
}

Chapter 15. Containers 233

The following figure shows the before and after result of setting the selection
emphasis using an object cursor.

“Chapter 15. Containers” on page 223
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Create and Use Containers” on page 225
“Create Container Objects” on page 225
“Add and Remove Container Objects” on page 227
“Share Objects Among Containers” on page 229
“Filter Container Objects” on page 230
“Sort Objects in a Container” on page 232
“Write an Event Handler” on page 25

234 IBM Open Class: User Interface

“Task and Samples Cross-Reference Table” on page 445

IContainerControl

Change Views in a Container
You can specify the view using a style on the constructor, or you can set it with a
member function. For example, the following statement uses the member function
that causes a container to display the icon view:

cnrCtl->showIconView();

This statement provides the container view shown below:

The following statement provides the tree icon view:
cnrCtl->showTreeIconView();

The following figure shows a container with the tree icon view:

Chapter 15. Containers 235

“Chapter 15. Containers” on page 223
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Define the Details View Using Container Columns”
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Define the Details View Using Container Columns
The IContainerColumn class defines the information that is displayed for a given
object when the container is in the details view. Only the items that you added
with no parent display in the details view. You can use this class to set text in the
heading of the columns, add horizontal and vertical separators by column, and
align the column contents.

The following code is from the Container Sample. You can find this sample in the
samples/ioc/cnr directory.

One way to create an instance of an IContainerColumn is for you to provide the
offset of the object data to be displayed in the column and, optionally, the styles to
be used for the heading and data.
IContainerColumn (unsigned long dataOffset,

const HeadingStyle& title = defaultHeadingStyle(),
const DataStyle& data = defaultDataStyle());

ANSI C++ allows use of the offsetof macro only for structures and not classes. Use
the following macro if your compiler raises an error for offsetof:
ICONTAINERCOLUMN_OFFSETOF

To create an instance of a container column, use the following statements:

236 IBM Open Class: User Interface

colIcon = new IContainerColumn (IContainerColumn::isIcon);
colName = new IContainerColumn (IContainerColumn::isIconViewText);
colCode = new IContainerColumn (ICONTAINERCOLUMN_OFFSETOF(Department, strCode));
colAddress = new IContainerColumn (ICONTAINERCOLUMN_OFFSETOF(Department, strAddress));

In the previous example, colIcon, colName, colCode, and colAddress are defined as
members of an IContainerColumn. The statements look like this:
private: //Define private information

IContainerControl * cnrCtl;
Department *dept1, *dept2, *dept3, *dept4, *dept5, *dept6 ;
IContainerColumn *colIcon, *colName, *colCode, *colAddress;
IMenuBar * menuBar;

After creating the container columns, you can add heading text to them using the
following statements:
colIcon->setHeadingText(“Icon”);
colName->setHeadingText(“Department Name”);
colCode->setHeadingText(“Code”);
colAddress->setHeadingText(“Address”);

When using the PM-compatible container you can use showSeparators to add a
vertical separator next to a column or a horizontal separator under the heading
text. The default adds both. To create only one of the separators, specify it in the
member function statement. The following statements show examples of how to
create separators:

//Only Horizontal Separator
colIcon->showSeparators(IContainerColumn::horizontalSeparator);

//Only Vertical Separator
colName->showSeparators(IContainerColumn::verticalSeparator);
colCode->showSeparators(); //both separator by default
colAddress->showSeparators(); //both separator by default

After you create the container columns, add them into the container using the
following statements:
cnrCtl->addColumn(colIcon);
cnrCtl->addColumn(colName);
cnrCtl->addColumn(colCode);
cnrCtl->addColumn(colAddress);

The following shows an example of a details view of a container:

Chapter 15. Containers 237

When using the PM-compatible container control, you can use the following code
statement to put a split bar in the details view by specifying the last column to be
viewed in the left window and the location of the split bar in pixels. (This call is
ignored on Windows when using a native container control and on AIX.)
cnrCtl->setDetailsViewSplit(colName, 350);

Separators and split bars are ignored in the native Windows list view and tree
view containers. These options are supported by the PM control on both the
Windows and OS/2 operating systems. The native control, however, provides
dynamic sizing of all columns.

You can find the Container Sample in the samples/ioc/cnr directory.

“Chapter 15. Containers” on page 223
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

Container Sample
“Change Views in a Container” on page 235
“Use the Windows Native Container Control” on page 240
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

238 IBM Open Class: User Interface

Create a Pop-Up Menu in a Container
To create a pop-up menu in a container, create a class derived from
ICnrMenuHandler and override the makePopUpMenu. The following statements in
acnr.hpp create the class:
class ACnrMenuHandler: public ICnrMenuHandler
{

public:
/*———————————— Constructors/Destructor ——————————————
| Construct the object in only one way: |
| 1) Parameter for IContainerControl |
——————————————————————————————————————-*/

ACnrMenuHandler(IContainerControl* cnr) { pcnr = cnr; };
protected:

virtual bool
makePopUpMenu(IMenuEvent& event);

private:
IContainerControl
*pcnr;

};

After overriding the makePopUpMenu member function, you can add your own
statements. The following statements in acnr.cpp create a pop-up menu displayed
next to a container object with source emphasis:
bool ACnrMenuHandler::makePopUpMenu(IMenuEvent& event)
{
/*——————————————————————————————————————-
| If a valid container object, continue |
——————————————————————————————————————*/
if (popupMenuObject())
{

/*——————————————————————————————————————-
| Create a popup menu |
| If not in details view, disable editing of Name, Code, and Address columns. |
——————————————————————————————————————*/

IPopUpMenu* popUp = new IPopUpMenu(ID_POPMENU,
event.window());

if (!pcnr->isDetailsView())
{

popUp->disableItem(MI_EDNAME);
popUp->disableItem(MI_EDCODE);
popUp->disableItem(MI_EDADDRESS);

}
else
{

/*——————————————————————————————————————-
| Disable editing of the object |
——————————————————————————————————————*/

popUp->disableItem(MI_EDRECORD);
}

/*——————————————————————————————————————-
| To avoid memory leaks, auto delete the C++ popup menu when the GUI popup |
| window closes |
| Show the popup menu at the current mouse position |
| Visually indicate the container object is the source for this action |
| Visually indicate the container object is the current cursor |
——————————————————————————————————————*/

popUp->setAutoDeleteObject();
pcnr->showSourceEmphasis(popupMenuObject());
pcnr->setCursor(popupMenuObject());
popUp->show(event.mousePosition());
return true;

}
return false;

};

Chapter 15. Containers 239

The following figure shows the pop-up menu in a container object:

“Chapter 15. Containers” on page 223
“Chapter 4. Menus” on page 55
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Create and Use Containers” on page 225
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

IPopUpMenu

Use the Windows Native Container Control

This section lists the differences between the native Windows container control and
the PM-compatible control.

The default IContainerControl wrappers the Windows native ListView and
TreeView controls. The underlying controls are created when needed. If you create
an IContainerControl in the default icon view, only a ListView control is created. A
TreeView control is not created until the view is switched to a tree view or a child
object is added. To optimize a tree view container, consider the following:
v Create the container in tree view and do not switch to a nontree view. This

optimizes adding and removing objects because there is only one underlying
control.

v Call IContainerControl::setDefaultStyle to set the initial value.

Constructors
For the native Windows control, you cannot use the following constructors:

240 IBM Open Class: User Interface

IContainerControl (unsigned long id,
IWindow* parentDialog);

IContainerControl (const IWindowHandle& handle);

Member Functions
Source emphasis is not supported. This is true of both the Windows CUA control
and the native Windows control.

There is no windows native multiple selection. IContainerControl::multipleSelection
is the same as extendedSelection and IContainerControl::verifyPointers is ignored.

The following IContainerControl attributes are ignored:
v readOnlyTitle
v detailsViewTitles
v handleDrawItem
v handleDrawBackground
v orderedTargetEmphasis
v mixedTargetEmphasis
v visibleTreeLine

The following are not supported:

showTextView
Always flowed using the native container

showNameView
Non tree views are all flowed using the native container

setTreeViewIndent
Not supported using the native control

setTreeItemIcons
Not supported using the native control

setTreeExpandIconSize
Not supported using the native control

The Open Class Library does not support the following when using the native
Windows container control:
v You cannot change the minimum distance required by the container for

emphasis painting as line spacing is not supported.
v The filtering of container objects is not supported.
v The container title cannot be updated.
v Column titles are always visible.
v Scrolling in the tree view is not supported.
v You cannot change the direct manipulation target emphasis.
v The HeadingStyle is the same as IContainerColumn::DataStyle, must be text, and

is always read-only.
v You cannot put an icon in a column heading.
v A column heading is always read only.
v You cannot filter out container columns.
v You cannot change a column’s separator styles. Vertical column separators are

not supported and horizontal column separators are required.
v You cannot change a column heading’s style.

Chapter 15. Containers 241

v You cannot change a column heading’s attributes.
v Split bars are not supported in native containers. However, all columns are

sizeable by the user.
v Data caching is not supported.
v The handleDrawItem and handleDrawBackground attributes are not supported.
v The ICnrAllocator class can be used but the performance advantage is not as

great as when used with the pmCompatible style. The container objects must be
inserted one at a time when using the native control.

Note that the native ListView control requires the first column in a details view to
be the icon and text pair that is displayed in the other views. This column is sized
to nonzero if either a IContainerColumn with
objectDataType=isIcon

or
objectDataType=isIconViewText

is added. Regardless of where they are added, these columns are displayed as the
first column. If neither is added, the column size is set to zero but it is possible for
the user to size this column using the mouse.

This is the only icon that may be displayed in the details view. If you add any
other columns to display icons, the icons are not be visible.

The native control allows selection only in this first column. If this column is sized
to zero, objects in the container cannot be selected.

“Chapter 15. Containers” on page 223
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Create and Use Containers” on page 225
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

IContainerControl

242 IBM Open Class: User Interface

Chapter 16. Toolbars

A toolbar is a window whose buttons represent tools, menu items, or actions. The
toolbar can be located along the top, bottom, or sides of a frame window or can
“float” and be positioned anywhere on your desktop. You can also have multiple
toolbars with a variety of different toolbar buttons using text, bitmaps, or both.

You create toolbars with the IToolBar class. The IToolBarContainer class allows you
to manage more than one toolbar. Toolbar buttons and combo boxes are probably
the most common types of windows you will use in a toolbar. You can create
toolbar buttons with the IToolBarButton class.

The IToolBar (and the IToolBarContainer) classes derive from ISetCanvas.
Therefore, these toolbar classes can take advantage of the set canvas’s functionality:
v Add any object derived from IWindow to a toolbar.
v Specify the amount of space, or pad, between groups of buttons on a toolbar.
v Lay out your the buttons of your toolbar into decks like a set canvas.
v Create multiple toolbars that you can lay out and display like a set canvas.

Positioning Toolbars
You may position your toolbar in one of two locations:
v Along one edge of the client window. The Open Class Library essentially treats the

toolbar as a frame extension in this case. (Frame extensions are rectangular areas
whose size and position the frame window will manage.) The default location
for a toolbar is along the top of the client window.

v Floating. The IToolBar class puts your toolbar into the client area of a new frame
window separate from the one the toolbar is associated with.

The user can “pin” the frame of the floating toolbar to the associated frame
window so it moves with that frame window.

There are restrictions on changing the position of a toolbar. For example, you
cannot change between a floating and non-floating toolbar. Also there are cases
when you cannot change the edge of the client area that the toolbar is positioned
next to when displaying multiple toolbars. See the IToolBar::isMoveValid function
for more information.

You can make the toolbar invisible by using the IToolBar::hide function. Use the
show function to make the toolbar visible again.

Non-Floating Toolbars
You may put as many toolbars you want in a frame extension. Suppose that you
create a toolbar with the IToolBar class that you intend to position along an edge
of a client window. The IToolBar class will perform the following:
1. Create an IToolBarContainer object
2. Put the IToolBarContainer object into the intended frame extension
3. Make your toolbar a child of the IToolBarContainer object

© Copyright IBM Corp. 1998, 2000 243

If an IToolBarContainer object already exists in the intended frame extension, the
IToolBar class makes your toolbar a child of the existing IToolBarContainer object.
Since the IToolBarContainer class inherits from the ISetCanvas class, you may treat
the children of the IToolBarContainer class (your toolbars) like a set canvas.

Floating Toolbars
When you create a floating toolbar, or change the location of a toolbar to floating,
the IToolBar creates an IToolBarFrameWindow to contain your floating toolbar. You
can only put one toolbar in a IToolBarFrameWindow object.

When the user closes a floating toolbar from the close item on the floating frame
window’s system menu, the toolbar is hidden. This is done through a call to
IToolBar::hide.Consequently, neither the floating frame, the toolbar, or the windows
within the toolbar are destructed. You can re-show the toolbar with a call to
IToolBar::show.

IToolBarFrameWindows do not contain the minimize or maximize/restore buttons.
To expand and collapse the toolbar contained in the toolbar frame window, you
must call IToolBar::expand and IToolBar::collapse.

IToolBarFrameWindows are visually distinct from other frame windows in that the
title bar height of IToolBarFrameWindows is smaller than other frame windows. In
addition, there are two buttons that appear where the frame window’s minimize
and maximize buttons normally are:
v The left button is a toggle button that allows you to pin or attach a toolbar

frame window to its owning frame window. This has the effect that the toolbar
stays in the same location relative to its owner when the owner is moved.

v The right button allows you to expand and collapse the toolbar contained in the
toolbar frame window. This allows you to shrink the toolbar to recover screen
area when you are not actively using the toolbar and later expand the toolbar to
show all toolbar controls.

The maximize/restore button on an IToolBarFrameWindow allows you to expand
and collapse the toolbar contained in the toolbar frame window. This allows you to
shrink the toolbar to recover screen area when you are not actively using the
toolbar and later expand the toolbar to show all toolbar controls.

Toolbar Buttons
The IToolBarButton class supports the following behavior:
v Toolbar buttons can accept text and a bitmap.
v You can cause bitmaps to be drawn on the toolbar buttons transparently.

Drawing a bitmap transparently means changing some of the bits in your
bitmap to match the color already on the display. The IToolBarButton class does
this by selecting one color as the transparent color, then changing that transparent
color to match the color on the display. By default, the transparent color is pink
(255, 0, 255), but you may change it on a per button basis.

v You can create latchable toolbar buttons. Latchable buttons toggle between a
latched (depressed) and unlatched (default) state.

244 IBM Open Class: User Interface

Standard Toolbar Buttons
The classes that comprise the toolbar are also shipped with common text, bitmaps,
and default fly-over help strings for frequently used functions found on a toolbar.
This ensures a common look among applications and products. In addition, toolbar
buttons support a standard style to ensure a consistent look across applications.

Direct Manipulation Support
You can use direct manipulation to rearrange the toolbar buttons within an
application. To enable direct manipulation, either create the IToolBar object with
the style IToolBar::dragDrop, or call IToolBar::enableDragDrop.

Misfit Filtering
Toolbars may contain any object derived from IWindow, but generally, you would
not use certain objects like notebooks and containers in a toolbar. Usually you
would find the drop-down combination boxes and entry fields in a toolbar, but
only in a horizontal toolbar. Because of their widths, these controls would waste
too much space in a vertical toolbar. The IToolBar class provides misfit filtering that
temporarily removes any windows in the toolbar that exceed a specified width, the
misfit width, when you orient a toolbar vertically.

“Chapter 23. Direct Manipulation” on page 313
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Create a Toolbar”
“Use Default Direct Manipulation” on page 316
“Add Images to Drag Items” on page 331
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Create a Toolbar
The following figure, from the Toolbar Sample 1, shows an example of a toolbar.

Chapter 16. Toolbars 245

This figure is created using the sample code found in the samples/ioc/tbar1
directory.

You can construct objects from the IToolBar class in the following ways:
1. The following IToolBar constructor creates a toolbar as the last toolbar in the

toolbar area defined by the frameLocation. If groupWithPreceding is true, the
toolbar is placed on the same row or column as the previous toolbar, if one
exists. If an IToolBarContainer is needed for the location indicated, it is created
when you use this constructor.

IToolBar (unsigned long identifier,
IFrameWindow* owner,
Location location = aboveClient,
bool groupWithPreceding = false,
const Style& style=defaultStyle());

2. Alternatively, you can construct a toolbar relative to an existing toolbar created
with the first constructor (or with this constructor). This constructor adds the
toolbar to the IToolBarContainer created when the precedingToolBar was
created as follows:

IToolBar (unsigned long identifier,
IToolBar* precedingToolBar,
bool groupWithPreceding = false,
const Style& style=defaultStyle());

Customize Your Toolbar
When you create an object from the IToolBarButton class, you can use a standard
format to ensure that all your buttons have the same common appearance.
Standard formatting controls the amount of area occupied by the bitmap (when
visible) and the amount of area occupied by text (when visible). Standard
formatting affects all of the toolbar buttons that have a style of
IToolBarButton::standardFormat. The Open Class Library takes advantage of the
standard formatting of toolbar buttons when painting the button. This therefore
improves the performance.

The nested classes IToolBar::Style and IToolBarButton::Style provide a set of valid
styles you can use upon construction for objects of the class.

“Chapter 16. Toolbars” on page 243
“Chapter 23. Direct Manipulation” on page 313
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

Toolbar Sample 1
“Create Help Information” on page 276
“Use Default Direct Manipulation” on page 316
“Add Images to Drag Items” on page 331
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

ICustomButton
IFlyOverHelpHandler
IFlyText

246 IBM Open Class: User Interface

Add a Toolbar
The following, from Toolbar Sample 2, shows a customized toolbar that
implements fly-over help, direct manipulation support, and floating toolbars. This
sample is found in the samples/ioc/tbar2 directory.

The tbar2.hpp file does the following:
1. Defines the main window for the MLE, EditorMLE.
2. Defines three toolbars, fileToolBar, editToolBar, and fontToolBar.
3. Defines IToolBarButton objects, the buttons that this sample places on the

toolbar.
4. Defines the toolbar settings notebook with the ToolBarNotebook class.
//—————————————————————————————————-
// Editor
//
// This class is the main window of the sample problem. It is
// responsible for creating and managing all of the windows that
// are used.
//—————————————————————————————————-
class Editor : public IFrameWindow
{
public:

Editor();
EditorMLE
&editorWindow () { return editWindow; }
IFont
&editorFont () { return editFont; }
Editor
&updateFontToolBar ();
IToolBar
&toolBar (unsigned long id);
private:

ITitle
title;

IToolBar
fileToolBar,
editToolBar,
fontToolBar;

IFlyText
flyText;

IStaticText
infoText;

IFlyOverHelpHandler
flyHelpHandler;

EditorMLE
editWindow;

EditorCommandHandler
commandHandler;

FontSelectHandler
fontSelectHandler;

IToolBarButton
openButton,
saveButton,
cutButton,
copyButton,
pasteButton,
boldButton,
italicButton,
underscoreButton;

IComboBox
fontCombo;

IMenuBar
menu;

Chapter 16. Toolbars 247

IFont
editFont;

};
//—————————————————————————————————-
// ToolBarNotebook
//—————————————————————————————————-
class ToolBarNotebook : public IFrameWindow
{
public:

ToolBarNotebook (Editor& editor);
private:
Editor

&editorFrame;
INotebook

notebook;
};

The tbar2.cpp file does the following:
1. Constructs and show the editor (MLE) main window in the main function.
2. Constructs toolbars within the Editor constructor
3. Constructs the fly-over help short and long text and help handler within the

Editor constructor
4. In the Editor constructor, adds the toolbar buttons to the toolbars with the

addAsLast function
5. In the Editor constructor, adds the toolbar titles for floating toolbars with the

setFloatingTitle function
6. In the Editor constructor, adds handlers for events, including fly-over help, to

flyHelpHandler and commandHandler

/**
* main - creates and shows the editor window *
**/
int main()
{

Editor editor;
editor.show();
editor.setFocus();
IApplication::current().run();
return 0;

}
/**
* Class Editor::Editor - Constructor for the editor window *
**/
Editor::Editor ()

: IFrameWindow(ID_MAIN_WINDOW)
, title(this)
, fileToolBar(ID_FILE, this, IToolBar::aboveClient, false,

IToolBar::classDefaultStyle
| IToolBar::dragDrop)

, editToolBar(ID_EDIT, &fileToolBar, true,
IToolBar::classDefaultStyle
| IToolBar::dragDrop)

, fontToolBar(ID_FONT, &editToolBar, true,
IToolBar::classDefaultStyle
| IToolBar::dragDrop)

, flyText(ID_FLYTEXT, this)
, infoText(ID_INFOTEXT, this, this)
, flyHelpHandler(&flyText, &infoText, 0, 0)
, editWindow(ID_EDITOR, *this)
, commandHandler(*this)
, fontSelectHandler(*this)
, openButton(IC_ID_OPEN,&fileToolBar, &fileToolBar,

IRectangle(), IToolBarButton::defaultStyle() |
IToolBarButton::dragDelete)

248 IBM Open Class: User Interface

, saveButton(IC_ID_SAVE,&fileToolBar, &fileToolBar,
IRectangle(), IToolBarButton::defaultStyle() |
IToolBarButton::dragDelete)

, cutButton(IC_ID_CUT,&editToolBar, &editToolBar,
IRectangle(), IToolBarButton::defaultStyle() |
IToolBarButton::dragDelete)

, copyButton(IC_ID_COPY,&editToolBar, &editToolBar,
IRectangle(), IToolBarButton::defaultStyle() |
IToolBarButton::dragDelete)

, pasteButton(IC_ID_PASTE,&editToolBar, &editToolBar,
IRectangle(), IToolBarButton::defaultStyle() |
IToolBarButton::dragDelete)

, boldButton(IC_ID_BOLD, &fontToolBar, &fontToolBar,
IRectangle(), IToolBarButton::defaultStyle() |
IToolBarButton::transparentBitmap)

, italicButton(IC_ID_ITALIC, &fontToolBar, &fontToolBar,
IRectangle(), IToolBarButton::defaultStyle() |
IToolBarButton::transparentBitmap)

, underscoreButton(IC_ID_UNDERSCORE, &fontToolBar, &fontToolBar,
IRectangle(), IToolBarButton::defaultStyle() |
IToolBarButton::transparentBitmap)

, fontCombo(ID_FONTCOMBO, &fontToolBar, &fontToolBar, IRectangle(),
IComboBox::classDefaultStyle &xIComboBox::simpleType |
IComboBox::readOnlyDropDownType)

, menu(ID_MAIN_WINDOW,this)
, editFont()

{
/*——————————————————————————————————————-|
| Set the icon and the title |
———————————————————————————————————————*/

setIcon(id());
title.setTitleText(ID_MAIN_WINDOW);

/*——————————————————————————————————————-|
| Add buttons to the file toolbar |
———————————————————————————————————————*/

fileToolBar.addAsLast(&openButton,true)
.addAsLast(&saveButton);

/*——————————————————————————————————————-|
| Add buttons to the edit toolbar |
———————————————————————————————————————*/

editToolBar.addAsLast(&cutButton,true)
.addAsLast(©Button)
.addAsLast(&pasteButton);

/*——————————————————————————————————————-|
| Add buttons to the font toolbar |
———————————————————————————————————————*/

fontToolBar.addAsLast(&boldButton,true)
.addAsLast(&italicButton)
.addAsLast(&underscoreButton)
.addAsLast(&fontCombo,true);

/*——————————————————————————————————————-|
| Set up the latchabable style for font property buttons |
| Note: When in bitmapAndTextView, latching a toolbar button will show the |
| gray background for the bitmap. To eliminate the gray background, set |
| the transparent color to gray and turn on the transparent style for the |
| button. If you do not use the bitmapAndTextView and you have many buttons |
| with the latchable style, consider not enabling the transparent style as |
| transparency incurs additional overhead and increases performance time. |
———————————————————————————————————————*/

boldButton.enableLatching();
italicButton.enableLatching();
underscoreButton.enableLatching();
boldButton.setTransparentColor(IColor::kPaleGray);
italicButton.setTransparentColor(IColor::kPaleGray);
underscoreButton.setTransparentColor(IColor::kPaleGray);

/*——————————————————————————————————————-|
| Load up front combo box with face names |

Chapter 16. Toolbars 249

———————————————————————————————————————*/
fontCombo.setLimit(10);

#ifndef IC_MOTIF
IFont::FaceNameCursor fontCursor;
for (fontCursor.setToFirst(); fontCursor.isValid(); fontCursor.setToNext())
{

IString faceName = IFont::faceNameAt(fontCursor);
fontCombo.addAsLast(faceName);
if (faceName.length() > fontCombo.limit())

fontCombo.setLimit(faceName.length());
}

#endif
updateFontToolBar();

/*——————————————————————————————————————-|
| Set up titles for toolbars when floating |
———————————————————————————————————————*/

fileToolBar.setFloatingTitle(ID_FILE);
editToolBar.setFloatingTitle(ID_EDIT);
fontToolBar.setFloatingTitle(ID_FONT);

/*——————————————————————————————————————-|
| Setup the editor |
———————————————————————————————————————*/

setClient(&editWindow);
editWindow.setFont(editFont);
try
{

editWindow.importFromFile(“toolbar2.not”);
}
catch(...)
{

IMessageBox
msgBox(this);

msgBox.setTitle(STR_MSGBOX_TITLE);
msgBox.show(STR_FILE_NOT_FOUND,

IMessageBox::okButton |
IMessageBox::warningIcon);

}
editWindow.setTop(1);

/*——————————————————————————————————————-|
| Add the info frame extension |
———————————————————————————————————————*/

addExtension(&infoText, IFrameWindow::belowClient);
/*——————————————————————————————————————-|
| Set up and add the help handler |
———————————————————————————————————————*/

flyHelpHandler.setLongStringTableOffset(OFFSET_INFOTEXT);
flyHelpHandler.setDefaultText(“\0”);
flyHelpHandler.handleEventsFor(&fileToolBar);
flyHelpHandler.handleEventsFor(&editToolBar);
flyHelpHandler.handleEventsFor(&fontToolBar);

/*——————————————————————————————————————-|
| Attach the Command Handler to frame and toolbar |
———————————————————————————————————————*/

commandHandler.handleEventsFor(this);
commandHandler.handleEventsFor(&fileToolBar);
commandHandler.handleEventsFor(&editToolBar);
commandHandler.handleEventsFor(&fontToolBar);

/*——————————————————————————————————————-|
| Add the handler to change the font |
———————————————————————————————————————*/

fontSelectHandler.handleEventsFor(&fontCombo);
moveSizeToClient(IRectangle(IPoint(100,100),

ISize(editFont.avgCharWidth()*80,
editFont.maxCharHeight()*15)));

}

The resulting MLE and toolbars are displayed below.

250 IBM Open Class: User Interface

You can use the settings notebook to chose where the toolbar appears and what
appears on each toolbar button. In the preceding figure, there are three toolbars
with different toolbar buttons. The floating toolbar, containing the font information,
has been pinned to the owner window. The edit toolbar has been placed on the
bottom of the window and contains both text and bitmaps on the buttons.

The settings notebook for the toolbars is displayed below.

You can find this sample in the samples/ioc/tbar2 directory.

“Chapter 16. Toolbars” on page 243
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

Toolbar Sample 2
“Create a Toolbar” on page 245
“Create Toolbar Buttons” on page 252

Chapter 16. Toolbars 251

“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

IToolBar

Create Toolbar Buttons
For creating toolbar buttons, the Open Class Library supplies a set of bitmaps and
associated bitmap and help text. These bitmaps are based on the IBM/Lotus
approved set available for user interface application development.

The IBM/Lotus toolbar graphics consist of approximately 60 graphical images,
each representing a common action. This collection was comprised from graphical
images used in a number of IBM and Lotus® applications.

The Open Class Library supplies these images (in the form of bitmaps), plus a few
others for your use in toolbar buttons. In addition to the button bitmaps, the Open
Class Library also supplies button text and short and long help text. The button
text is used when toolbar buttons are set to text or to text and bitmap view. The
help text is used to provide additional information to the user about the function
of the button. The code samples display the short text for each button in fly-over
help (sometimes called hover help), when the mouse is moved over a button. The
samples display the long text for each button in an information area at the bottom
of the main window. This text is also triggered by the movement of the mouse
over a toolbar button.

The resource IDs for these common bitmaps are defined in the icconst.h file. The
following figure shows the commonly used bitmaps shipped with the IBM Open
Class Library. The figure was generated from the Toolbar Button Sample. You can
find this sample in the samples/ioc/tbarbutn directory:

When you build applications that use toolbars or any other resources provided,
you must supply the Open Class Library resource DLL with your application. See
the topic Package and Distribute an IBM Open Class Application for more
information.

The following is a list of the new toolbar button bitmaps and their associated text.
The identifier (ID) is used when creating the toolbar button.

252 IBM Open Class: User Interface

Note: The \n in the button text of certain buttons indicates a line break. When
toolbar button text is displayed, the \n is removed, and the remaining text is
continued on the next line:
ID: IC_ID_CANCELOPERATION
Button Text: Cancel
Short Help Text: Cancel Current Operation
Long Help Text: End the current operation and discard any changes
ID: IC_ID_EXIT
Button Text: Exit
Short Help Text: Exit
Long Help Text: Leave the application
ID: IC_ID_OPEN
Button Text: Open
Short Help Text: Open
Long Help Text: Open another document/object
ID: IC_ID_NEW
Button Text: New
Short Help Text: New
Long Help Text: Create a new document/object and open it
ID: IC_ID_SAVE
Button Text: Save
Short Help Text: Save
Long Help Text: Save your current work
ID: IC_ID_SAVE_AS
Button Text: Save As
Short Help Text: Save As
Long Help Text: Save a copy of the current document/object with a new name
ID: IC_ID_LOCATE
Button Text: Find...
Short Help Text: Find
Long Help Text: Find within the current document/object
ID: IC_ID_CUT
Button Text: Cut
Short Help Text: Cut
Long Help Text: Cut the selected object to the Clipboard
ID: IC_ID_COPY
Button Text: Copy
Short Help Text: Copy
Long Help Text: Copy the selected object to the Clipboard
ID: IC_ID_PASTE
Button Text: Paste
Short Help Text: Paste
Long Help Text: Paste from the Clipboard
ID: IC_ID_PASTESPECIAL
Button Text: Paste\nSpecial...
Short Help Text: Paste Special
Long Help Text: Paste, link, or embed from the Clipboard
ID: IC_ID_PASTELINK
Button Text: Paste Link
Short Help Text: Paste Link
Long Help Text: Paste a link from the Clipboard
ID: IC_ID_HELP
Button Text: Help
Short Help Text: Help
Long Help Text: Display help text
ID: IC_ID_GENERALHELP
Button Text: General\nHelp
Short Help Text: General Help
Long Help Text: Display general help information
ID: IC_ID_HELPINDEX
Button Text: Help Index
Short Help Text: Help Index
Long Help Text: Display an index of all the available help
ID: IC_ID_HELPTUTORIAL
Button Text: Tutorial
Short Help Text: Take a Tutorial

Chapter 16. Toolbars 253

Long Help Text: Take a tutorial explaining how to use the application
ID: IC_ID_USINGHELP
Button Text: Using Help
Short Help Text: Using Help
Long Help Text: Learn how to use help
ID: IC_ID_DESELECTALL
Button Text: Deselect\nAll
Short Help Text: Deselect All
Long Help Text: Deselect all objects
ID: IC_ID_SELECTALL
Button Text: Select All
Short Help Text: Select All
Long Help Text: Select all objects
ID: IC_ID_INSERTCOLUMN
Button Text: Insert\nColumn
Short Help Text: Insert Column
Long Help Text: Insert a column into the table
ID: IC_ID_DELETECOLUMNS
Button Text: Delete\nColumn
Short Help Text: Delete Column
Long Help Text: Delete the selected column(s)
ID: IC_ID_INSERTROW
Button Text: Insert Row
Short Help Text: Insert Row
Long Help Text: Insert a row into the table
ID: IC_ID_DELETEROWS
Button Text: Delete Row
Short Help Text: Delete Row
Long Help Text: Delete the selected row(s)
ID: IC_ID_UNDO
Button Text: Undo
Short Help Text: Undo
Long Help Text: Undo the last action you took
ID: IC_ID_REDO
Button Text: Redo
Short Help Text: Redo
Long Help Text: Redo the action you just undid
ID: IC_ID_CHECKSPELLING
Button Text: Spelling
Short Help Text: Check Spelling
Long Help Text: Check the spelling
ID: IC_ID_NORMAL
Button Text: Normal\nText
Short Help Text: Normal Text
Long Help Text: Remove emphasis from the selected text
ID: IC_ID_ABOUT
Button Text: Product\nInfo
Short Help Text: Product Info
Long Help Text: Version, copyright and legal information
ID: IC_ID_UPDATE
Button Text: Update
Short Help Text: Update
Long Help Text: Update the current view
ID: IC_ID_MAILSEND
Button Text: Send...
Short Help Text: Send This to Someone
Long Help Text: Send the current document/object to another person
ID: IC_ID_MOVEPAGES
Button Text: Move Page
Short Help Text: Move Page
Long Help Text: Move the current page to another position
ID: IC_ID_PRINT
Button Text: Print...
Short Help Text: Print
Long Help Text: Print the current document/object
ID: IC_ID_PRINTPREVIEW
Button Text: Print\nPreview

254 IBM Open Class: User Interface

Short Help Text: Print Preview
Long Help Text: See how the document looks when printed
ID: IC_ID_PRINTSETUP
Button Text: Print\nSetup
Short Help Text: Print Setup
Long Help Text: Display the current settings for printing
ID: IC_ID_SORTAZ
Button Text: Sort A-Z
Short Help Text: Sort Ascending (alphabetical)
Long Help Text: Sort the selected objects in ascending alphabetical order
ID: IC_ID_SORTZA
Button Text: Sort Z-A
Short Help Text: Sort Descending (alphabetical)
Long Help Text: Sort the selected objects in descending alphabetical order
ID: IC_ID_SORTUP
Button Text: Sort 1-9
Short Help Text: Sort Ascending (numeric)
Long Help Text: Sort the selected objects in ascending numerical order
ID: IC_ID_SORTDOWN
Button Text: Sort 9-1
Short Help Text: Sort Descending (numeric)
Long Help Text: Sort the selected objects in descending numerical order
ID: IC_ID_SETTINGS
Button Text: Properties
Short Help Text: Properties
Long Help Text: Show properties of the current document/object
ID: IC_ID_TOOLBAR
Button Text: Show\nToolbar
Short Help Text: Show Toolbar
Long Help Text: Display the toolbar for the application
ID: IC_ID_TOOLBARSETUP
Button Text: Toolbar\nSetup
Short Help Text: Toolbar Setup
Long Help Text: Customize the setup of your toolbar
ID: IC_ID_RUNSCRIPT
Button Text: Run\nScript...
Short Help Text: Run a Script
Long Help Text: Run a script
ID: IC_ID_VPAPALETTE
Button Text: Show\nActions...
Short Help Text: Show Actions and Properties You Can Add
Long Help Text: Show a palette of available actions and properties you can add to this applicatio
ID: IC_ID_TOUR
Button Text: Tour...
Short Help Text: Take a Tour
Long Help Text: Take a tour of the application's features and learn how to use them
ID: IC_ID_LEFTALIGNOBJ
Button Text: Left Align
Short Help Text: Left Align Objects
Long Help Text: Left align the selected objects
ID: IC_ID_RIGHTALIGNOBJ
Button Text: Right Align
Short Help Text: Right Align Objects
Long Help Text: Right align the selected objects
ID: IC_ID_ZOOM
Button Text: Zoom
Short Help Text: Zoom
Long Help Text: Zoom selected area , so it fills the work area
ID: IC_ID_ZOOMIN
Button Text: Zoom In
Short Help Text: Zoom In
Long Help Text: Zoom in closer to the current document/object
ID: IC_ID_ZOOMOUT
Button Text: Zoom Out
Short Help Text: Zoom Out
Long Help Text: Zoom out farther from the current document/object
ID: IC_ID_LOGON

Chapter 16. Toolbars 255

Button Text: Logon
Short Help Text: Logon
Long Help Text: Log on to the system
ID: IC_ID_LOGOFF
Button Text: Logoff
Short Help Text: Logoff
Long Help Text: Log off the system
ID: IC_ID_BOLD
Button Text: Bold
Short Help Text: Bold
Long Help Text: Make the selected text bold
ID: IC_ID_ITALIC
Button Text: Italic
Short Help Text: Italic
Long Help Text: Make the selected text Italic
ID: IC_ID_UNDERSCORE
Button Text: Underline
Short Help Text: Underline
Long Help Text: Underline the selected text
ID: IC_ID_DOUBLEUNDERSCORE
Button Text: Double\nUnderline
Short Help Text: Double Underline
Long Help Text: Double underline the selected text
ID: IC_ID_CENTER
Button Text: Align\nCenter
Short Help Text: Align Center
Long Help Text: Center align the selected text
ID: IC_ID_LEFT
Button Text: Align\nLeft
Short Help Text: Align Left
Long Help Text: Left align the select text
ID: IC_ID_RIGHT
Button Text: Align\nRight
Short Help Text: Align Right
Long Help Text: Right align the selected text
ID: IC_ID_JUSTIFY
Button Text: Justify
Short Help Text: Full Justify
Long Help Text: Fully justify the selected text
ID: IC_ID_CLEAR
Button Text: Clear
Short Help Text: Clear
Long Help Text: Clear the selected object(s)
ID: IC_ID_DELETE
Button Text: Delete
Short Help Text: Delete
Long Help Text: Delete the selected object(s)

The new Open Class toolbar bitmaps differ in some ways from the previous Open
Class toolbar bitmaps. In addition to the change in the number of bitmaps, their
size, default transparent state, and the number of lines needed to display text have
changed.

The new bitmaps consist of the 61 listed above. There are also 13 available in the
current product. Each of these is also included in the new group. The actual
graphic depiction of these 13 is replaced with a new representation. The ID you
use to refer to the current bitmaps references the new bitmaps.

You can still reference the current bitmaps by using a new ID that corresponds to
these bitmaps. These new IDs are as follows:
v IC_ID_TRANS_NEW
v IC_ID_TRANS_ABOUT
v IC_ID_TRANS_OPEN

256 IBM Open Class: User Interface

v IC_ID_TRANS_SAVE
v IC_ID_TRANS_PRINT
v IC_ID_TRANS_LOCATE
v IC_ID_TRANS_CUT
v IC_ID_TRANS_COPY
v IC_ID_TRANS_PASTE
v IC_ID_TRANS_HELP
v IC_ID_TRANS_BOLD
v IC_ID_TRANS_ITALIC
v IC_ID_TRANS_UNDERSCORE
v IC_ID_TRANS_SETTINGS
v IC_ID_TRANS_COPYTO

Each of the new bitmaps has a non-transparent gray background. This means that
the solid background area of a bitmap does not show through the bitmap.
Changing the default state of buttons from transparent to non-transparent is being
done for performance. Displaying a bitmap with transparency involves creating a
mask bitmap, which must be combined with the original bitmap and drawn to the
screen. This operation is quite a bit slower than drawing a single non-transparent
bitmap to the screen. In a toolbar with 10 or more buttons, this performance
savings is clearly visible.

The background gray color selection is being carefully chosen. On Windows, the
background gray has a Red, Green, Blue (RBG) value of (192, 192, 192). This
matches the default gray used by Win32. On OS/2, the background RGB values
are (204, 204, 204), to match the default gray used by OS/2 4.0. On AIX, the
background gray color is (204, 204, 204).

To provide support for transparent buttons, we introduced a new style called
IToolBarButton::transparentBitmap. If you want transparent behaviour for a
particular button, you need to specify this style on button creation. In addition to
specifying this style, you also need to define a color to be used for transparency.
By default, a transparent color is initially defined. This color, pink, has an RGB
value of (255,0,255). The following example sets up transparent behavior for one of
the new button bitmaps:

IToolBarButton * cutButton = new IToolBarButton(
IC_ID_CUT, &toolBar, &toolBar,
IRectangle(), IToolBarButton::defaultStyle() |
IToolBarButton::transparentBitmap);

//By default, a transparenent color of RGB value (255,0,255) has
//already been set. Reset the color to match the background in the bitmap.
IColor *transparentColor = new IColor(192,192,192); //Win32
cutButton->setTransparentColor(*transparentColor);

Each of the new bitmaps is slightly larger. This in turn makes the toolbar button
slightly larger. This change is being made for the following reasons: The larger size
makes the buttons more readable. There is more room to depict each graphical
image. The buttons are symmetrically square rather than rectangular, which with
their larger size, makes them more consistent with the Lotus Smart Suite
applications and other Win32 applications.

The button sizes are as follows:

Chapter 16. Toolbars 257

Current Bitmaps New Bitmaps
———————- —————-

Bitmap size: 20x17 22x22
Resulting button size: 27x24 29x29

To differentiate between similar images and actions, the button text (which can be
seen when the button is displayed in text or bitmap and text view) is two lines on
some buttons. These are:
v IC_ID_PASTESPECIAL, with text of: “Paste\nSpecial...”
v IC_ID_GENERALHELP, with text of: “General\nHelp”
v IC_ID_DESELECTALL, with text of: “Deselect\nAll”
v IC_ID_INSERTCOLUMN, with text of: “Insert\nColumn”
v IC_ID_DELETECOLUMNS, with text of: “Delete\nColumn”
v IC_ID_NORMAL, with text of: “Normal\nText”
v IC_ID_ABOUT, with text of: “Product\nInfo”
v IC_ID_PRINTPREVIEW, with text of: “Print\nPreview”
v IC_ID_PRINTSETUP, with text of: “Print\nSetup”
v IC_ID_TOOLBAR, with text of: “Show\nToolbar”
v IC_ID_TOOLBARSETUP, with text of: “Toolbar\nSetup”
v IC_ID_RUNSCRIPT, with text of: “Run\nScript...”
v IC_ID_VPAPALETTE, with text of: “Show\nActions...”
v IC_ID_DOUBLEUNDERSCORE, with text of: “Double\nUnderline”
v IC_ID_CENTER, with text of: “Align\nCenter”
v IC_ID_LEFT, with text of: “Align\nLeft”
v IC_ID_RIGHT, with text of: “Align\nRight”

The default for standard buttons (those created with the
IToolBarButton::standardFormat style) is still to display only one line of text on a
button when the button is displayed in text or bitmap and text view. This is being
left unchanged to maintain consistency with existing Open Class toolbar
applications and because the majority of the buttons have only one line of text.

If you are using one of the pre-defined buttons above, and your toolbar buttons
are standard format, you can set the default number of lines of text to be displayed
for toolbar buttons to 2. You call IToolBarButton::setStandardTextLines, as follows:

IToolBarButton::setStandardTextLines(2);

If you do not set the standard text lines to 2, the second line of text is not
displayed.

The rationale behind adding a second line to display the extra text, is so that the
toolbar lays-out better in an application. If the extra text were to be displayed on
one long line, the buttons would need to be wide rectangular shaped to fit the text.

Each of the new toolbar bitmaps contains associated short and long help text. The
help text is used to provide additional information to the user about the function
of the button. Most often, application developers choose to display short text for a
button in fly over help, which appears when the mouse is moved over a button.
Developers often choose to display long text for a button in an information area at
the bottom of a window. This text is also triggered by the movement of the mouse
over a toolbar button.

258 IBM Open Class: User Interface

You can still supply your own short and long help text, as you do in previous
versions of Open Class. However, if you want to use the Open Class supplied help
text, you can do so in only a few lines of code:

//Tell the IFlyOverHelpHandler to search for text in the Open Class
//supplied resource library.
flyHelpHandler.setResourceLibrary(

IApplication::current().resourceLibrary().fileName());
//Tell the IFlyOverHelpHandler the offsets for the help text.
flyHelpHandler.setFlyTextStringTableOffset(IC_FLYTEXTOFFSET);
flyHelpHandler.setLongStringTableOffset(IC_LONGTEXTOFFSET);

If you want to supply your own help text, first ensure that the
IFlyOverHelpHandler’s resource library is the one bound to your application
(which is the default for IFlyOverHandler). Second, associate your text string with
the button ID in your resource file. You can optionally define an ID offset, as is
done above.

If you have an existing Open Class application, you get the new bitmaps
automatically with no changes needed to your application. Of course, if you want
to take advantage of the short and long help text, or use one of the added bitmaps
that have two lines of button text, you need to make some modifications to your
program.

To revert back to the current bitmaps, you need to change your application to use
the new IDs that refer to these bitmaps. These IDs are listed above. Secondly, you
need to create each button with the IToolBarButton::transparentBitmap style.

If the window ID is in the Open Class library reserved range, the bitmap and text
are loaded from the Open Class Library’s resource library. Otherwise, the bitmap
and text are loaded from the default user defined resource library. If no bitmap is
found in the appropriate library, a default bitmap is loaded.

“Chapter 16. Toolbars” on page 243
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

Toolbar Button Sample
“Create a Toolbar” on page 245
“Add a Toolbar” on page 247
Package and Distribute an IBM Open Class Application
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Chapter 16. Toolbars 259

260 IBM Open Class: User Interface

Chapter 17. Common Dialogs

Common dialog boxes make it easier for you to develop applications. These dialog
boxes provide common, consistent functions that applications can use to help the
end user increase his productivity. Although a wide range of function is available,
the simplest applications can make use of these to provide a consistent
look-and-feel with a minimal coding effort.

The Open Class Library provides several classes to enable you to use common
dialog boxes such as the Open Filename dialog, the Save As Filename dialog, and
the Font Selection dialog.

A dialog box is a special, short-lived window that you use to display information
and receive input from the user in a structured dialog format. The information is
typically related to a particular action being performed by the application.

If you develop portable applications, use a canvas for dialog windows.

“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Specify File Dialog Information”
“Create a File Dialog” on page 263
“Specify Font Dialog Information” on page 266
“Hello World Version 4: Adding Dialogs and Push Buttons” on page 420
“Create a Split Canvas” on page 165
“Specify Font Dialog Information” on page 266
“Create a Font Dialog” on page 267
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Specify File Dialog Information
Many applications work with information stored in files. Whenever a user wants
to retrieve information stored in a file, the user must select the name of the file
from which to get the data. The same holds true when the user wants to save any
work that is in progress for future reference.

The file dialog enables a user to specify a file to be opened or a file name in which
current work is to be saved. It provides basic functions that you can extend to
meet the requirements of your application. These basic functions give users the
ability to:
v Display and select from a list of drives, directories, and files.
v Enter a file name directly.
v Filter the file names before they are displayed.
v Display active network connections.
v Interact with a single-selection or multiple-selection file dialog.
v Interact with a modal or modeless file dialog.

© Copyright IBM Corp. 1998, 2000 261

The Open Class Library provides the IFileDialog and IFileDialog::Settings classes to
create and display file dialogs in your application.

IFileDialog::Settings is a settings type class, which defines data, styles, and
attributes of a file dialog. You create IFileDialog::Settings objects and use them to
create an IFileDialog object. This object governs the usage and appearance of the
file dialog, as well as returning the file name choice (or choices in the case of
multiple selection) that the user made.

Before you can create an IFileDialog, you first need to create an
IFileDialog::Settings object. To create this settings object, follow these steps.
1. Create a default IFileDialog::Settings object, as shown in the following example:

IFileDialog::Settings fsettings;

2. Initialize this settings object using the member functions available. While the
default settings may be suitable for many applications, most application
developers modify one of more these settings. Some of the more common
settings that you can change are the following:

Dialog type
The setOpenDialog and setSaveAsDialog member functions are used to
specify the type of file dialog that will be displayed. The default type of
the file dialog is an Open dialog. If you want a Save As dialog, use the
setSaveAsDialog member function.

Initial file name displayed
The setFileName member function is used to specify the initial file
name that is shown when the file dialog is displayed.

Dialog position
The setPosition member function is used to specify the placement of
the file dialog, relative to the window that owns the dialog.

Dialog title
The setTitle member function is used to specify the text that is
displayed in the title bar of the dialog.

The following example shows some of these being initialized for the object
created in the previous example:

fsettings.setSaveAsDialog(); // The dialog type is Save As,
fsettings.setFileName(“example.txt”); // the initial filename displayed is example.txt,
fsettings.setTitle(STR_MYAPP); // and the title is loaded from a resource file

Now that you have a settings object created, you can create an IFileDialog object.
There are several ways to construct an IFileDialog object, but in general you need
to provide the owner and parent windows and a settings object. Optionally, you
can provide different dialog styles to control the appearance and functionality of
the dialog, but these have defaults and do not need to be modified for many
applications. The IFileDialog object can be constructed using the following
statements:
IFileDialog* fdialog = new IFileDialog(// Create file open dialog

desktopWindow(), // parent is desktop
this, // owner is me
fsettings); // use the settings defined above.

When the dialog is dismissed, you need to check the actions of the end user to
determine if he has selected any file names to be used by your application. You
can test the response from the file dialog using the pressedOK member function.

262 IBM Open Class: User Interface

This member functions returns true if the user ended the dialog by pressing the
OK push button. It returns false if the user pressed Cancel or an error occurred.
The test can be done with the following statement:

if (fdialog.pressedOK())

If the end user pressed OK, then the file name (or names) selected can be retrieved
from the dialog using the fileName member function. This function returns the
fully qualified file name, which includes drive and directory information. For a
single selection style of the file dialog, the following statement is used:

IString fname = fdialog.fileName();

For a multiple selection style of the file dialog, the following statements are used:
int count = fdialog.selectedFileCount(); // Retrieve # of files selected
int i;
for (i=1; i <= count; i++) // For each file selected,
{ // retrieve the fully-qualified

IString fname = fdialog.fileName(i); // file name into a string
// ... // Process it

} // and then get the next one

For a complete code sample, see the openFile member function in the ahellow6.cpp
file of Hello World Version 6.

“Create a File Dialog”
“Chapter 17. Common Dialogs” on page 261
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Hello World Version 6: Adding a Font Dialog, Pop-up Menus, Notebooks, and
Graphics” on page 443
IFileDialog
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Create a File Dialog
The following code, from the multiline edit sample, shows you how to create both
an Open file dialog and a Save As file dialog. You can find the Multiline Edit
Sample in the samples/ioc/mle directory:
1. In the constructor of your main window, declare functions that will display

your file dialogs. In the MLE sample, the openFile() function will create an
Open file dialog, and the saveAsFile() function will create a Save As file dialog:
class AEditorWindow : public IFrameWindow

, public ICommandHandler
, public IMenuHandler
, public AUserMessageHandler

{
public:

AEditorWindow(unsigned long windowId);
AEditorWindow
&openFile(bool fUseThread),
&saveFile(),
&saveAsFile(),
&openFont(),

Chapter 17. Common Dialogs 263

&loadOnThread(unsigned long eventId),
&load();

// ...
};

2. Define the function that will create an Open file dialog. The MLE sample first
creates an IFileDialog::Settings object called fdSettings. This object lets you lets
you specify the following characteristics of an IFileDialog object:
v The dialog’s title
v The text to appear on the OK push button
v The position of the dialog
v Whether the dialog is an Open or Save As dialog
v An initial file specification

The MLE sample uses the setOpenDialog() function to specify that the file
dialog will be an Open file dialog. The sample uses the setFileName() function
to specify the default file name selection.
The IFileDialog constructor takes the fdSettings object as one of its agruments:
AEditorWindow& AEditorWindow::openFile(bool fUseThread)
{

IFileDialog::Settings fdSettings;
fdSettings.setOpenDialog();
if (filename.size())

fdSettings.setFileName(filename);
else

fdSettings.setFileName(DEFAULT_FILE_SPEC);
IFileDialog fileDlg(desktopWindow(), this, fdSettings);
if (fileDlg.pressedOK())

{
filename=fileDlg.fileName();
titleBar.setObjectText(IResourceId(WND_MAIN));
titleBar.setViewText(filename);
if (filename.size())

{
// determine whether to use thread
// Since GUI operations are not thread
// safe on Motif, do not use threads for
// loading files into the MLE.

if (fUseThread)
{

// disable file menu items to avoid them
// being reselected while thead running

setFileMenuitemsState(false);
// create our thread function and
// specify the message id we want
// posted back

AThreadFn *atmFn = new AThreadFn(*this, UWM_THREADEND);
// dispatch thread to run function
// thread will have a PM environment

IThread thread(atmFn, IThread::defaultAutoInitGUI());
}

else
{
load();
}

}
}

return *this;
}

264 IBM Open Class: User Interface

3. Define the function that will create a Save As file dialog. The MLE does this in
a similar manner to the openFile() function defined above. It uses the
setSaveAsDialog() function to specify that the file dialog will be a Save As file
dialog:
AEditorWindow& AEditorWindow::saveAsFile()
{

IFileDialog::Settings fdSettings;
fdSettings.setSaveAsDialog();
fdSettings.setFileName(filename);
IFileDialog fileDlg(desktopWindow(), this, fdSettings);
if (fileDlg.pressedOK())

{
filename=fileDlg.fileName();
if (filename.size())

{
mle.exportToFile(filename);
titleBar.setObjectText(IResourceId(WND_MAIN));
titleBar.setViewText(filename);
}

}
return *this;

}

The following figure shows the Open file dialog created using the preceding
example:

You can find the Multiline Edit Sample in the samples/ioc/mle directory.

“Chapter 17. Common Dialogs” on page 261
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

Multiline Edit Sample
“Specify File Dialog Information” on page 261
“Specify Font Dialog Information” on page 266
“Create a Font Dialog” on page 267
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Chapter 17. Common Dialogs 265

Specify Font Dialog Information
Many applications display information to users in a variety of ways, many of them
textually based. A common action that users perform is selecting a font with which
to display or print this textual information. A font represents all of the characters
of one style of type in one size.

The font dialog provides a dialog you can implement to enable users to view and
select the font family names, styles, and sizes available in an application. It
provides basic functions that you can extend to meet the requirements of your
application. These basic functions give users the ability to display and select from a
list of the following:
v Font family names installed on the system
v Styles for each font
v The available sizes for each font
v The emphasis styles available for each font.

In addition, users can view their selections using a sample character string in a
preview area, and interact with a modal or modeless font dialog.

The Open Class Library provides the IFontDialog class to create and display font
dialogs in your application.

IFontDialog::Settings is a settings type class that defines data, styles and attributes
of a font dialog. You create IFontDialog::Settings objects and use them to create an
IFontDialog object. This object governs the usage and appearance of the font
dialog, as well as returning the font chosen by the user.

Before you can create an IFontDialog, you first need to create an
IFontDialog::Settings object. To create this settings object, follow these steps:
1. Create an IFontDialog::Settings object, passing it the initial font to be used, as

shown in the following example:
IFont tempFont(&hello); // Create a font from the hello window
IFontDialog::Settings // Create the initial settings object

fsettings(&tempFont); // from the font

2. Initialize this settings object using the many member functions available. While
the default settings are suitable for many applications, most application
developers modify one of more these settings. Some of the more common
settings that you can change are the following:

Preview text
The setPreviewText member function is used to specify the text string
that is used to demonstrate how the selected font will look if selected.

Dialog position
The setPosition member function is used to specify the placement of
the font dialog, relative to the window that owns the dialog.

Dialog title
The setTitle member function is used to specify the text that is
displayed in the title bar of the dialog.

The following example shows these being initialized for the object created in
the previous example:

fsettings.setPreviewString(“ABCDabcd”); // Use this string to demo type,
fsettings.setPosition(IPoint(50, 20)); // position at 50,20 in owner,
fsettings.setTitle(“Choose font”); // and the title is Choose font

266 IBM Open Class: User Interface

Now that you have a settings object created, you can create an IFontDialog object.
There are several ways you can construct an IFontDialog but in general, you need
to provide the owner and parent windows and a settings object. Optionally, you
can provide different dialog styles to control the appearance and functionality of
the dialog, but these have defaults and do not need to be modified for many
applications. The IFontDialog object can be constructed using the following
statements:

IFontDialog* fdialog = new IFontDialog(// Create font dialog
desktopWindow(), // Parent is desktop
this, // Owner is me
fsettings); // Use the settings defined above

When the dialog is dismissed, you need to check the actions of the end user to
determine if he has selected a valid font to be used by your application. You can
test the response from the font dialog using the pressedOK member function. This
member functions returns true if the user ended the dialog by pressing the OK
push button. It returns false if the user pressed Cancel or an error occurred. The
test can be done with the following statement:

if (fdialog.pressedOK())

If the end user did press OK, the tempFont object that was used to initialize the
settings object is automatically updated to be an IFont object that reflects the users
selection. Your application can now use this font to change how you display
textual information to your users. This is done using either the setWindowFont
member function (a function of IFont which accepts a window to apply the font to)
or the setFont member function (a function of IWindow which accepts a font to
apply to the window). can be used. The latter is shown in the following statement:

hello.setFont(&tempFont);

“Chapter 18. Fonts” on page 271
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Create a Font Dialog”
“Hello World Version 6: Adding a Font Dialog, Pop-up Menus, Notebooks, and
Graphics” on page 443
“Chapter 17. Common Dialogs” on page 261
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

IStaticText

Create a Font Dialog
The following section describes how to create a font dialog using the Hello World
version 6 application. The following code comes from the ahellow6.cpp file:
AHelloWindow &

AHelloWindow :: setHelloFont()
{
/*————————————————————————————————————|
| Set the text in the information area from the font dialog information |
| string in the resource file. |

Chapter 17. Common Dialogs 267

| Create a font from the current font of the hello static text object. |
| Create a font settings object from the tempFont object. |
| Set the title to be used in the font dialog from a string resource in |
| the resource file. |
| Start the font dialog by creating an IFontDialog object. The font |
| dialog is created as a modal dialog window with the desktopWindow |
| as the parent, the AHelloWindow frame as the owner, resetButton |
| style which supplies the user with a way to reset the fields in the |
| dialog, and the font settings that were just created. |
|————————————————————————————————————*/

infoArea.setDefaultText(STR_FONTDLGT);
IFont tempFont(&hello);
IFontDialog::Settings fontSettings(&tempFont);
fontSettings.setTitle(IResourceId(STR_FONTDLGT));
IFontDialog fontDialog(desktopWindow(), this,

IFontDialog::resetButton, fontSettings);
/*————————————————————————————————————|
| If the user pressed OK in the font dialog, then change the font for |
| the hello IStaticText object using the tempFont object that was set |
| by the font dialog. |
| Reset the information area inactive text. |
|————————————————————————————————————*/

if (fontDialog.pressedOK())
{

hello.setFont(tempFont);
}
infoArea.setDefaultText(STR_INFO);
return (*this); // Return a reference to the frame

}; /* end AHelloWindow :: setHelloFont() */

In the preceding sample, the font in an IStaticText control is changed to the font
the user selects from an IFontDialog. We accomplished this by doing the following:
1. Creating an IFont object called tempFont that represents the font currently

being used by the IStaticText control pointed to by hello
2. Passing a pointer to the tempFont object on the constructor to an

IFontDialog::Settings object called fsettings
3. Passing the fsettings object on the IFontDialog constructor

Because fontSettings is constructed using tempFont, the IFontDialog initially
displays the name, style, size, and emphasis associated with tempFont (for
example, the font currently used by the IStaticText object). If the user dismisses the
IFontDialog by pressing OK, then tempFont automatically updates itself to reflect
the font the user chose via the IFontDialog. The setFont member function can be
used to actually change the font of the IStaticText control to tempFont.

The following shows an example of a font dialog:

268 IBM Open Class: User Interface

“Chapter 18. Fonts” on page 271
“Chapter 17. Common Dialogs” on page 261
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Hello World Version 6: Adding a Font Dialog, Pop-up Menus, Notebooks, and
Graphics” on page 443
“Specify Font Dialog Information” on page 266
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Chapter 17. Common Dialogs 269

270 IBM Open Class: User Interface

Chapter 18. Fonts

A font is a collection of characters (both textual and symbolic) that share common
visual elements between all of the characters of one size of one type style. These
visual elements can be broken up into several categories which uniquely identify
the font. The major categories are the name of the typeface, the size of type, the
style of type, and the weight of type.

A typeface is a unique name, usually registered, which identifies a font by the
attributes of the characters in the font. Different parts of a type character such as
stroke width, presence or lack of serifs, vertex shaping, are all used to distinguish
one font from another. The size of type is measured in points. A point is 1/72 of an
inch, so there are 72 points in one inch. The style of type typically indicates
whether a font is upright or slanted, while the weight of type refers to how light
or heavy the type characters are.

Most operating systems provide a default set of fonts for you to use in your
applications. These fonts are shipped with the system but they vary from one
operating system type to another. It is important to keep this in mind when
writing portable applications because the font you select to use on one operating
system may not be available on another.

“Chapter 17. Common Dialogs” on page 261
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Construct Fonts”
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Construct Fonts
The Open Class Library provides the IFont class to allow you to create and
manipulate fonts within your application. This section demonstrates how you can
construct and modify fonts using IFont.

There are four ways you can construct IFont objects in your application:
v Create default IFont objects
v Create IFont objects using an existing window’s font
v Create IFont objects with a specific font facename and optional attributes
v Create IFont objects using an existing graphic context

Creating a Default IFont Object
The first way to create an IFont object is using the default constructor. This causes
an object to be created that represents the system default font for the operating
system.

© Copyright IBM Corp. 1998, 2000 271

This represents the stock font object SYSTEM_FONT.

This represents the System Proportional font.

This represents the “fixed” font.

The following example shows how to construct a default IFont object:
IFont defaultFont();

Creating an IFont Object Using a Window’s Font
The second way to create an IFont object is to use a font that is currently in use by
an existing window. The window containing the font is queried for the font that is
in use, and the characteristics of that font are used to create another font with the
same name, size and attributes. The following example demonstrates this by first
creating an information area object for a frame window and then creating an IFont
object from that info area. Finally, the maximum character height of the font is
retrieved for this font and is used to set the height of the information area.

IInfoArea* infoArea = new IInfoArea(this, WND_INFO);
IFont infoFont(infoArea);
setExtensionSize(&infoArea, infoFont.maxCharHeight());

Creating an IFont Object with a Specific Name
The third way to create an IFont object is to specify an exact facename of a font
along with some optional characteristics of the font such as size, type information,
and graphic context. Because individual font facenames may not be available on all
operating systems, this approach may not be portable across operating systems.

The highlighted lines in the following example show you how to create a font with
a specific name and point size, and then how to change the point size of the text
associated with visible Open Class Library objects. A Helvetica 8 point font is
initially constructed. It is then modified to be a Helvetica 12 point font and applied
to the title. It is then modified again to be a Helvetica 20 point font and is applied
to the checkbox.

#include <ifont.hpp>
IFont font(“Helvetica”,8);
title1.setAlignment(IStaticText::centerLeft);
title1.setText(STR_TITLE1);
font.setPointSize(12);
title1.setFont(font);
check1.setText(STR_CHECK1);
font.setPointSize(20);
check1.setFont(font);

To test the font statements, include the highlighted lines in the amcelcv.cpp file.
The amcelcv.cpp file, from the Multicell Canvas Sample, is located in the
samples/ioc/mcelcv directory.

Note that the example above demonstrates dynamically creating new fonts from
existing fonts using different IFont member functions to change the characteristics
of the font. There are a wide range of member functions available to use to change
attributes of the font. The following is a list of the more common font attributes
that can be modified:

272 IBM Open Class: User Interface

Attribute Description

Font facename The setName member function is used to
modify the exact facename of the IFont

Font pointsize The setPointSize member function is used to
modify the point size of the font.

Font characteristics The setUnderscore, setStrikeout, setBold,
setItalic and setOutline member functions
are used to modify a specific attribute of the
font. These functions underline the text,
draw a line through the text, change the font
to have more weight, slant the font, and
only draw the outline of the characters,
respectfully.

For portable applications, consider using a font dialog.

Creating an IFont Object from a Graphic Context
The final way to construct an IFont object is to use an existing graphic context,
represented by an IPresSpaceHandle. The graphic context is queried to determine
the font that is currently in use and that font is then used to construct an IFont
object with the same name and characteristics. The following example
demonstrates this:

IPresSpaceHandle ps = IPresSpaceHandle();
IFont tempFont(ps);

“Chapter 18. Fonts” on page 271
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Chapter 17. Common Dialogs” on page 261
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445
Multicell Canvas Sample

IFontDialog
IMGraphic
IText

Chapter 18. Fonts 273

274 IBM Open Class: User Interface

Chapter 19. Help Information

Help information is the information about how to use an application. By describing
an application’s choices, objects, and interaction techniques, help information can
assist users in learning to use a product.

The IHelpWindow only addresses help panels. You do not need this class to
display other forms of help such as fly-over help and information areas.

The IHelpWindow class lets you use either native Windows help (Rich Text
Format) or the OS/2 Information Presentation Facility (IPF) to provide help
information for applications:
v

You use IPF help files and the default style is set to
IHelpWindow::ipfCompatible. This default cannot be changed.

v

You have the option to use Native Windows help or IPF help. The default is to
use Native Windows help. To use IPF help, you call
IHelpWindow::setDefaultStyle(IHelpWindow::ipfCompatible) before constructing
IHelpWindow objects. You can also specify the style
IHelpWindow::ipfCompatible when constructing an IHelpWindow object.

The RTF and IPF help formats determine how you code (tag) the source files for
your help panels, the tool you use to build them into binary help files, the tool you
can use to view them, and the look of the help panels when they are displayed to
the user.

To view an IPF help file on Windows, use iview.exe. On OS/2, the executable is
view.exe and on Motif it is xview.

You create and associate an IHelpWindow object with one of your application’s
main windows. The Open Class Class Library also provides an IHelpHandler class
to process help window events. When you associate an application window with a
help window, help events are dispatched to the help handlers attached to the
application window.

To use the IHelpWindow class, you create and associate an IHelpWindow object
with one or more of your application’s main windows. The help panels displayed
by IHelpWindow are written and compiled using tools native to your development
environment or provided with the VisualAge C++ product. To present a consistent
look and feel for help across development environments, use the IPF help
information compiler and runtime.

On the Windows environment, you can also display your information using the
native Windows help facility. Although the process of generating the help

© Copyright IBM Corp. 1998, 2000 275

information is different, and the display and interaction of the Windows help
facility is different from IPF, you can still use the classes of IHelpWindow to
interact with native Windows help. However, some of the IHelpWindow functions
have no equivalent for Windows help and therefore return without performing any
operation. To use IPF help files, call the following before constructing your
IHelpWindow objects:

IHelpWindow::setDefaultStyle(IHelpWindow::ipfCompatible);

You can also specify the style when calling the IHelpWindow constructor.

Overriding the Behavior of the Help Facility
In some cases, you may want to override the behavior of the help facility. You can
attach an IHelpHandler object to a frame window that has been associated with a
help window. By default, the IHelpHandler provides meaningful message boxes
when odd situations occur, such as the help file not being found. To override this
behavior, derive your own class from IHelpHandler and override the functions you
need to change.

See the Hello World Sample Version 5 Sample for a demonstration of the
IHelpHandler class. You can find this sample in the samples/ioc/hello5 directory.

“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Create Help Information”
“Add Fly-Over Help” on page 282
“Create an Information Area” on page 9
“Hello World Version 5: Add Canvases, a List Box, Native System Functions, and
Help” on page 433
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Create Help Information
Use the following steps to create IPF help information for your application:
v Create a file containing the help information.

Create the source text that displays in your application’s help window using the
IPF format (.ipf file) for the OS/2 operating system and the IPF/X format (.ipf
file) for the Windows and Motif environments. Compile your file into a help file
(.hlp file) using the IPFC compiler.
Refer to the Information Presentation Facility documentation for descriptions of
the tags you use to create the source .ipf file.
For an example of a .ipf source file, see the Hello World version 5 ahellow5.ipf
file, which is described in Hello World Version 5: Adding Canvases, a List Box,
Native System Functions, and.

v Define the help window title and the help submenu in your resource file. The
following is frim the Windows ahellow5.rc file:
STR_HTITLE, “C++ Hello World - Help Window” //Help window title string
POPUP “&Help” , MI_HELP , RIGHTJUSTIFY

BEGIN

276 IBM Open Class: User Interface

MENUITEM “&General help...” , SC_HELPEXTENDED /*MIS_SYSCOMMAND*/
MENUITEM “&Keys help...” , SC_HELPKEYS /*MIS_SYSCOMMAND*/
MENUITEM “Help &index...” , SC_HELPINDEX /*MIS_SYSCOMMAND*/

END

The AIX and OS/2 .rc file appears as follows:
STR_HTITLE, “C++ Hello World - Help Window”
SUBMENU “xHelp”, MI_HELP, MIS_HELP

BEGIN
MENUITEM “xGeneral help...”, SC_HELPEXTENDED, MIS_SYSCOMMAND
MENUITEM “xKeys help...”, SC_HELPKEYS, MIS_SYSCOMMAND
MENUITEM “Help xindex...”, SC_HELPINDEX, MIS_SYSCOMMAND

END

Applications with .rc files that use the following constants should include the
icconst.h file:
– SC_HELPKEYS
– SC_HELPINDEX
– SC_HELPEXTENDED

MI_HELP is the help menu ID.

Normally, you specify MIS_HELP for a menu item to cause a help event, rather
than a command event, to be posted when the menu item is selected.

When you specify MIS_HELP (OS/2) or RIGHTJUSTIFY (Windows) for a
submenu item, Motif automatically positions the item to the far right of the
menu bar. OS/2 PM ignores MIS_HELP specified on submenu items.

When MIS_SYSCOMMAND is specified with the predefined SC_HELP* IDs, a
system command event is generated. The default system command handler
recognizes the predefined IDs and shows the appropriate help panel, except for
SC_HELPKEYS, which by default does nothing. SC_HELP* IDs are defined in
the <icconst.h> file. You can override this default processing for
SC_HELPKEYS, using an IHelpHandler, which is described in a later step.

v Define a help table in the resource file.
The help table defines the relationship between the window ID and the general
or contextual panel ID that is defined in the .ipf file. The following help table is
defined in the resource file, ahellow5.rc, for Hello World version 5:
HELPTABLE HELP_TABLE

BEGIN
HELPITEM WND_MAIN, SUBTABLE_MAIN, 100
HELPITEM WND_TEXTDIALOG, SUBTABLE_DIALOG, 200

END
HELPSUBTABLE SUBTABLE_MAIN //Main window help subtable

BEGIN //
HELPSUBITEM WND_HELLO, 100 //Hello static text help ID
HELPSUBITEM WND_LISTBOX,102 //List box help ID
HELPSUBITEM MI_EDIT, 110 //Edit menu item help ID
HELPSUBITEM MI_ALIGNMENT, 111 //Alignment menu item help ID
HELPSUBITEM MI_LEFT, 112 //Left command help ID
HELPSUBITEM MI_CENTER, 113 //Center command help ID
HELPSUBITEM MI_RIGHT, 114 //Right command help ID
HELPSUBITEM MI_TEXT, 199 //Text command help ID

END //
HELPSUBTABLE SUBTABLE_DIALOG //Text dialog help subtable

BEGIN //
HELPSUBITEM DID_ENTRY, 201 //Entry field help ID

Chapter 19. Help Information 277

HELPSUBITEM DID_OK, 202 //OK command help ID
HELPSUBITEM DID_CANCEL, 203 //Cancel command help ID

END //

WND_HELLO and WND_LISTBOX are control IDs, MI_* are menu item IDs,
and the DID_* are push button IDs. Each window ID is related to a help panel
ID. In the preceding example, WND_MAIN and WND_HELLO both correspond
to help panel ID 100. That is, pressing the F1 key in the main window area
displays the same help panel as selecting General help... from the Help
submenu.

v Create a help window object for your application window.
Use the IHelpWindow class to associate help information with an application
window. Hello World version 5 defines the private data member, helpWindow,
as an IHelpWindow object. It is initialized in the AHelloWindow constructor in
ahellow5.cpp using the following statement:
,helpWindow(HELP_TABLE,this)

The first parameter identifies the help table defined in the resource file. The
second parameter identifies the application window for which the help is being
provided.

Use the IHelpWindow::addLibraries member function to associate a help file
with a help window. The AHelloWindow constructor in Hello World version 5
provides an example:
helpWindow.addLibraries(“ahellow5.hlp”);

You can set the title of the help window by using the IHelpWindow::setTitle
member function. The following code sets the title from a string defined in the
resource file:
helpWindow.setTitle(STR_HTITLE);

v Create a help handler by creating an IHelpHandler derived class.
A help handler processes help events. Create your own help handler class
derived from IHelpHandler to provide help event processing that is unique to
your application. Hello World version 5 uses a help handler only to display the
keys help panel describing accelerator key definitions.
To override keys help processing, do the following:
1. Define a new class that is derived from IHelpHandler, as shown in the Hello

World version 5 class definition file, ahellow5.hpp.
class AHelpHandler : public IHelpHandler
{

public:
/*——————————————— Destructor ———————————————|
| Destruct the object with: |
| 1) No parameters |
————————————————————————————————————-*/

virtual xAHelpHandler() { }
protected:

/*———————————- Override keysHelpId Function —————————-|
| The keysHelpId() function is called to set the event result to the |
| ID within the Hello World help libraries for Keys Help. |
|————————————————————————————————————*/
virtual bool

keysHelpId(IEvent& evt);
};

278 IBM Open Class: User Interface

2. Provide the overridden virtual function keysHelpId, which is called when
keys help is requested. The following code, from the Hello World version 5
ahellow5.cpp file, shows how to implement this function.
bool AHelpHandler :: keysHelpId(IEvent& evt)
{

evt.setResult(1000); //1000=keys help ID in
// ahellow5.ipf file

return (true); //Event is always processed
} /* end AHelpHandler :: keysHelpId(...) */

In the preceding code, the help panel ID for the Hello World version 5 keys
help is set in the event result.

3. Start and stop help events processing.
Your help handler, previously described, does not begin handling help events
until you use the handleEventsFor member function. For example, the
following code causes the helpHandler to begin processing help events for
this frame window:
helpHandler.handleEventsFor(this);

Typically, you include this statement in the constructor for the frame
window.

Note that the window that handles help events must be an associated
window. That is, you should identify the window as the associated window
on the IHelpWindow constructor or explicitly identify the window as an
associated window using the IHelpWindow::setAssociatedWindow function.

When you want to stop handling help events, for example, when you close
your frame window, use the stopHandlingEventsFor member function, as
follows:
helpHandler.stopHandlingEventsFor(this);

You typically include this statement in the destructor for the frame window.
4. Associate secondary frame windows with the parent window’s help window.
5. Attach the following special handler to child frame windows in your

application. This handler is needed so that help processes correctly for these
windows.
class ChildFrameHelpHandler : public IHandler {
typedef IHandler Inherited;
/***
* This handler enables the OS/2 Help Manager to use help tables to display *
* contextual help for a child frame window (one whose parent window is not *
* the desktop). This handler should only be attached to child frame windows. *
***/
public:
virtual ChildFrameHelpHandler
&handleEventsFor (IFrameWindow* frame),
&stopHandlingEventsFor (IFrameWindow* frame);
protected:
virtual bool

dispatchHandlerEvent (IEvent& evt);
ChildFrameHelpHandler
&setActiveWindow (IEvent& evt, bool active = true);
private:
virtual IHandler
&handleEventsFor (IWindow* window),
&stopHandlingEventsFor (IWindow* window);
};

Chapter 19. Help Information 279

6. In the .cpp file, do the following:
bool ChildFrameHelpHandler :: dispatchHandlerEvent (IEvent& evt)
{

switch (evt.eventId())
{

case WM_ACTIVATE:
setActiveWindow(evt, evt.parameter1().number1());
break;

case WM_HELP:
setActiveWindow(evt, true);
break;

default:
break;

} /* endswitch */
return false; // Never stop processing of event

}
ChildFrameHelpHandler&

ChildFrameHelpHandler :: setActiveWindow (IEvent& evt,
bool active)

{
IHelpWindow* help = IHelpWindow::helpWindow(evt.window());
if (help)
{

IFrameWindow* frame = 0;
if (active)
{

frame = (IFrameWindow*)evt.window();
}
help->setActiveWindow(frame, frame);

}
return *this;

}
ChildFrameHelpHandler&

ChildFrameHelpHandler :: handleEventsFor (IFrameWindow* frame)
{

IASSERTPARM(frame != 0);
Inherited::handleEventsFor(frame);
return *this;

}
ChildFrameHelpHandler&

ChildFrameHelpHandler :: stopHandlingEventsFor (IFrameWindow* frame)
{

IASSERTPARM(frame != 0);
Inherited::stopHandlingEventsFor(frame);
return *this;

}
IHandler& ChildFrameHelpHandler :: handleEventsFor (IWindow* window)
{ // private to hide version in IHandler

ITHROWLIBRARYERROR(IC_MEMBER_ACCESS_ERROR,
IErrorInfo::invalidRequest,
IException::recoverable);

return *this;
}
IHandler& ChildFrameHelpHandler :: stopHandlingEventsFor (IWindow* window)
{ // private to hide version in IHandler

ITHROWLIBRARYERROR(IC_MEMBER_ACCESS_ERROR,
IErrorInfo::invalidRequest,
IException::recoverable);

return *this;
}

Assigning Help IDs to Windows
You can assign helpIDs directly to windows by using IWindow::setHelpId(
unsigned long topicId); while maintaining portability. When F1 is pressed, the
window with focus is then be queried for its context helpID and if one is found, it

280 IBM Open Class: User Interface

is used to identify the help panel to display. If one is not found and there is a help
table, it is searched for the appropriate helpId to use.

If you are not using a help table, the helpId of the active frame is used as the
general help panel.

Using Native Windows Help Files with IHelpWindow

By default, IHelpWindow uses the native help for the platform to handle help
requests using a .hlp file that was created from RTF or IPF source. This allows the
code you write to be portable while giving your users native look-and-feel. IPF
help files are also portable between the various platforms. RTF help files are not
portable. In addition, some functions provided by IPF are not available when using
Windows native help (RTF). The major differences are as follows:
v There is only one instance of Windows Help for all your applications.
v The size and position of WinHelp is NOT relative to any particular application.
v IPF uses a set of filenames to locate help; WinHelp is one file at a time, but you

must still use IHelpWindow::addLibraries to change the help file name.
v IPF help has sections for CONTENTS, INDEX, KEYS, GENERAL, and USING.

WinHelp has HELP_FINDER and HELPONHELP.
v Only IPF allows the application to change the Help Manager menu and

accelerators.
v Only IPF allows the application to set a title for each help object.
v Only IPF allows querying of handles for IPF sections, such as the coverpage or

contents.
v Only IPF allows the application to toggle showing of the help IDs in the help

manager window titles.

“Chapter 19. Help Information” on page 275
“Chapter 1. Windows” on page 1
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Add Fly-Over Help” on page 282
“Add Menus to Your Application” on page 57
“Add a Menu Bar” on page 59
“Write an Event Handler” on page 25
Hello World Version 5: Adding Canvases, a List Box, Native System Functions, and
Help
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

IFlyText
IFlyOverHelpHandler
IHelpHandler
IHelpWindow

Chapter 19. Help Information 281

Add Fly-Over Help
Fly-over help displays short help windows for the object that the mouse pointer is
currently positioned over. As users move their mouse pointer over various objects,
different help windows are displayed. In addition, you can display descriptive text
for the object in a text control, such as the information area at the bottom of the
window.

You can use the following classes to add fly-over help to your applications:

IFlyText
Use this static text control to display brief informative messages for a
window, such as the function of a push button contained in a toolbar.

ITextControl
Use a class derived from this base class to display longer, more detailed
text. Typically, you use an information area as the ITextControl.

IFlyOverHelpHandler
Attach an IFlyOverHelpHandler to a window to provide context-specific
help messages for any window that is a child of the window you attached
the handler to.

The following figure shows an example of fly-over help used on a toolbar.

Displaying Fly-Over Help Information
The IFlyText control displays help messages in a bordered window that is sized
large enough to contain the help text. The text is displayed using one row that
does not re-flow. The default font used to display the help messages in PM is
8-point Helvetica.

The IFlyText control positions itself relative to one of the corners of the window
the mouse pointer is over. Fly-over help displays the help message so that none of
the text is drawn outside the desktop. This determines the corner of the IFlyText
control from which it is drawn. The order in which the IFlyText control attempts to
position itself is as follows:
1. Lower-right corner

282 IBM Open Class: User Interface

2. Lower-left corner
3. Upper-left corner
4. Upper-right corner

You can construct instances of this class from a given window ID and an owner
window.

For example:
IFrameWindow frameWindow(0x1000);
IToolBar toolbar(0x1001, &frameWindow, &frameWindow);
IFlyText flyText(0x1002, &toolbar);
IFlyOverHelpHandler flyOverHelpHandler(&flyText);
flyOverHelpHandler.handleEventsFor(&toolbar);

IFlyText provides the function setText to set the accessible attributes of each
instance, and it provides functions setRelativeWindowRect and
relativeWindowRect to set and query the position relative to the IFlyText control.

For Windows, the actual owner of the control is set to the first IFrameWindow
object found in the owner chain of the specified owner. This insures proper
operation in cases where the parentage of the specified owner is changed. For
example, this occurs when you make a toolbar a floating toolbar.

The control ID of IFlyText is ignored.

Attach Handlers to Provide Context-Sensitive Help
By attaching an IFlyOverHelpHandler to a window, you can provide
context-specific help messages for any window that is a child of the window you
attached the handler to.

You can use the IFlyOverHelpHandler to update an IFlyText control, an
ITextControl, or both. The IFlyText control contains short messages (one or two
words, for example) for a window, and ITextControl displays more descriptive text
in the information area. You do not need a string associated with every window in
your application. When a help string cannot be found for a window, a single blank
is displayed by default to keep the frame extension handler from hiding the
ITextControl when it contains a null string. You can also use the setMissingText
function to set the text to be displayed when an information string cannot be
found.

Note that new-line characters are removed from a string before they are displayed
in the IFlyText control.

The last two parameters of each handler constructor are time delays expressed in
milliseconds. The first delay, indicates the time the mouse pointer must remain in
in the same location before the fly-over help is displayed for the first time. The
second delay, indicates the time the mouse pointer must remain in the same
location after the fly-over help has been displayed for the first time.

You can change the length of the first delay using the setInitialDelayTime member
function or query what is currently set using the initialDelayTime member
function. Use the setDelayTime member function to change the second delay and
use delayTime to query what is currently set for that second delay.

Chapter 19. Help Information 283

You associate context-specific help for a window to a help message by specifying a
window identifier. This identifier is used with an offset to load strings from a
string table. Specify different offsets into the string table for the IFlyText and the
ITextControl objects to display different help messages in each of the controls.

Note that to display help for a window using the string, you must either create the
window using the Open Class Library or wrapper an existing window.

Dynamically Add Help Text to Windows
You can also dynamically associate help text to a window using
IFlyOverHelpHandler, a window handler. This is useful when you dynamically
add controls to a canvas or push buttons to a tool bar.

Use the following functions to dynamically add or remove the help text specified
for a window:

flyHelpText
Returns the short help text for a window if you have dynamically added
help text for the window.

longHelpText
Returns the long help text for a window if you have dynamically added
long help text for the window.

setHelpText
Sets help text for a window by specifying a string or resource ID. If you
add help text to a window by the setHelpText functions, this text takes
precedence over text that would otherwise be loaded from a string table.

removeHelpText
Removes help text you added to a window through the setHelpText
function.

“Chapter 19. Help Information” on page 275
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Create Help Information” on page 276
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

284 IBM Open Class: User Interface

Chapter 20. Clipboard

A clipboard is a system-wide place for users to store data temporarily. The clipboard
enables your user to move data within a single application or to exchange data
among applications. Typically, a user selects data in the application using the
mouse or keyboard, then initiates a cut or copy operation on the selected data. The
clipboard can hold an entire object or part of that object, and it can hold any kind
of object. For example, the clipboard can hold a single line of text or an entire
database, a single line segment or an entire graphic.

When the user selects the paste operation, the data is transferred to the application
from the clipboard.

Only a single item of data can be stored in the clipboard at a time. Therefore, do
not use the clipboard to store data unless a user requests it because you can
overlay the user’s data stored there. This is important: the user must always
control access to the clipboard.

While you can only store a single item of data in the clipboard, you can store this
item in multiple formats. This allows an application to choose the format it
supports that gives it the most information about the data. For example, a graphics
application might copy a picture into the clipboard as both a metafile and a
bitmap. This allows applications that support both metafiles and bitmaps to
retrieve the picture as a metafile if it needs to modify the picture or as a bitmap if
it only needs to display the picture.

IClipboard predefines several system clipboard formats. In addition, any
application can create and register additional private formats.

Before you can write any data to, or read any data from, the clipboard, you must
first open it. Only a single application at a time can open the clipboard. If an
application tries to open the clipboard but another application already has it open,
it waits until the clipboard is available. The default behavior of the clipboard
classes minimizes the time the clipboard is open.

If you use the default behavior of IClipboard, the clipboard functions that require
an open clipboard open it when needed and close it when finished. You turn off
the default behavior of IClipboard when you explicitly open the clipboard by
calling IClipboard::open. If you open the clipboard in this manner, functions in
IClipboard will not close the clipboard when complete. If you explicitly open the
clipboard, you must close the clipboard by calling IClipboard::close. You can turn
off the default behavior of IClipboard to place different formats of your data on
the clipboard without opening and closing it to write each format.

All clipboard operations must be associated with a window. You provide this
window on the IClipboard constructor. If necessary, IClipboard makes this window
the owner of the clipboard. The clipboard owner is the window responsible for the
data put on the clipboard. It is also the window that the operating system sends
messages to for events relating to the clipboard. The IClipboard object establishes
this window as the system clipboard owner when you call IClipboard::empty. If
you call IClipboard::owner before calling empty, your window will not be returned
because it is not yet the system clipboard owner.

© Copyright IBM Corp. 1998, 2000 285

The clipboard classes support an advanced concept called delayed rendering.
Delayed rendering allows you to wait until another application requests the data
before you put the data on the clipboard. You activate delayed rendering by
supplying 0 for the data when you call the clipboard functions to place data on the
clipboard.

You process clipboard events by creating and attaching an IClipboardHandler
object to your clipboard owner window. In particular, if you use delayed
rendering, you must attach an IClipboardHandler object to your clipboard’s
window (the owner window). The window dispatcher calls this handler when a
request is made to the clipboard for data that has not been placed there yet.

Because the clipboard should only be kept open for a short time, create IClipboard
objects as temporary objects with a short lifetime. This helps ensure that the
clipboard is only open for the time necessary.

The IClipboard destructor always closes the clipboard if it is still open.

“Chapter 23. Direct Manipulation” on page 313
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Add Clipboard Support”
“Sample: Add Clipboard Support” on page 289
“Use Default Direct Manipulation” on page 316
“Add Images to Drag Items” on page 331
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Add Clipboard Support
You provide the clipboard owner on the IClipboard constructor and allow the
functions needing an open clipboard to open the clipboard and close it when
finished.

The following example uses an IClipboard object to copy text from an MLE into
the clipboard and then to paste the data from the clipboard back into the MLE:
bool CommandHandler::command (ICommandEvent& event)
{

switch(event.commandId())
{

case MI_COPY:
{

IClipboard clipboard(event.window()->handle());
clipboard.empty();
clipboard.setText(edit.selectedText());
return true;

}
case MI_PASTE:
{

IClipboard clipboard(event.window()->handle());
if (clipboard.hasText())

edit.add(clipboard.text());
return true;

286 IBM Open Class: User Interface

}
}
return false;

}

An application can put only one item of one format into the clipboard. You can
only put multiple items into the clipboard if each has a different format. Adding
multiple items with the same format results in replacing the data.

Use the classes described below to create and manage a clipboard for your
application:

Class Description

IClipboard Interface declaration class that creates a
clipboard object.

IClipboard::Cursor Nested class that iterates the available
formats of data in the clipboard.

IClipboardHandler Handler class to process the events that the
clipboard sends to its owner. This includes
requests to render clipboard data for formats
that are put on the clipboard with delayed
rendering.

To clear the contents of the clipboard, use the IClipboard::empty member function.
This empties the contents of the clipboard and establishes the owner provided on
open as the real clipboard owner. This function opens the clipboard if it is not
already open and closes it after use unless you have explicitly opened the
clipboard by calling open.

Use the IClipboard::isOpen function to query the clipboard status. It returns true if
the clipboard is open.

Move Data Using the Clipboard
You can use the following IClipboard class member functions to move data to and
from the clipboard:

Function Descrpition

setText() Copies the passed text into shared memory
and places it on the clipboard with the
format IClipboard::textFormat().

setBitmap() Copies the passed bitmap and places the
handle on the clipboard with the format
IClipboard::bitmapFormat().

setData() Copies the passed data buffer and places it
on the clipboard with the format specified.
Register any private formats first by calling
registerFormat. If “data” is 0, create an
IClipboardHandler to process requests to
render the data.

setHandle() Places the passed handle on the clipboard.

hasText() Returns true if the clipboard has data with
the format IClipboard::textFormat().

hasBitmap() Returns true if the clipboard has data with
the format IClipboard::bitmapFormat().

Chapter 20. Clipboard 287

Function Descrpition

hasData() Returns true if the clipboard has data of any
format.

text() Returns data of the format
IClipboard::textFormat() as an IString object.

bitmap() Copies data of the format
IClipboard::bitmapFormat() and returns an
IBitmapHandle.

data() Returns a void* value. This value can either
be a pointer to the data being rendered or a
handle depending on the format of the data.
This function always leaves the clipboard
open. The caller must copy the data, if
necessary, before closing the clipboard.
Access to the data is lost after the clipboard
is closed.

You can request delayed rendering of data by using the setData() member function
with the appropriate format and a 0 data pointer. Delayed rendering requires that
you create an IClipboard handler to process requests to render the data when
needed.

While all three environments support delayed rendering by allowing an
application to pass a zero pointer for the data, Motif differs in that it passes back a
data identifier that needs to be used when the data is later placed on the clipboard.
Further, actually putting the data on the clipboard requires a different api
(XmClipboardCopyByName) then putting the data on the clipboard normally
(XmClipboardCopy). OS/2 and Windows use the same APIs in both scenarios. This
API is handled in Open Class Library with a call to IClipboard::setData().

Open Class now has the member IClipboardHandler::setDelayedData(). On Motif,
implement this member by calling IClipboardImp::setDelayedData(). The Motif
version of this implementation function, IMotifClipboardImp::setDelayedData(),
calls XmClipboardCopyByName. The OS/2 and Windows versions of
setDelayedData() calls setData().

Code that needs to be portable to Motif must change the override of
IClipboardHandler::renderFormat() from a call to IClipboard::setData() to
IClipboardHandler::setDelayedData().

When you copy data to the clipboard in response to a delayed rendering message
on OS/2 and Windows, the data is actually placed on the clipboard. Repeated
attempts to access the data, return the data on the clipboard. No further action is
necessary from the owner of the data. On Motif, every time delayed-rendered data
is requested, it is acquired from the owner’s callback routine. It acts like the data
never ends up on the clipboard. This is a problem in scenarios where an object is
cut from an application because the object is deleted at the time of the cut and is

288 IBM Open Class: User Interface

therefore unavailable at the time the application is asked to provide the data in a
delayed-rendering scenario. This is a Motif restriction and your code will have to
be different for Cut than it is in Copy.

IClipboardHandler processes the clipboard event by creating an IEventobject and
routing it to the appropriate virtual function. The virtual function allows you to
supply your own specialized processing of the event. The return values from the
virtual function specify whether the paint event is passed on to another handler
object to be processed.

The dispatchHandlerEvent member function evaluates the event to determine if it
is appropriate for this handler object to process. If it is, this function calls the
virtual function used to process the event.

“Chapter 20. Clipboard” on page 285
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Use Default Direct Manipulation” on page 316
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

IClipboardHandler

Sample: Add Clipboard Support
This sample demonstrates how you can add clipboard support to a control, such as
a container, that does not have built-in clipboard support. It also demonstrates how
to use delayed rendering to put the data on the clipboard only when a user
requests it during a paste operation. You can find the following, from the
Clipboard Sample, in the directory samples/ioc/clipbrd.

In the clipbrd.hpp file we do the following:
1. Declare a Department container object with an interface for rendering the object

into a predefined format string and for initializing an existing object from a
format string. This enables us to save the state of a Department object on a copy
or cut operation so that we can create new Department objects during a paste
operation.

2. Declare a ContainerCutPasteHandler object that is responsible for the following:
v Creating and displaying a popup menu containing cut, copy, and paste

choices.
v Responding to user commands to cut, copy, and paste the content of

Department objects on the clipboard.
v Responding to clipboard handler requests to render the data to the clipboard.

#ifndef _CLIPBRD_
#define _CLIPBRD
#include <icliphdr.hpp>
#include <icmdhdr.hpp>
#include <istring.hpp>
#include <icnr.hpp>

Chapter 20. Clipboard 289

//**
// Class: Department *
// *
// Purpose: Defines the data stored in the container for a Department. *
// *
//**
class Department : public IContainerObject {
public:

Department (const IString& name=IString(),
const IString& address=IString())

: IContainerObject (name),
strAddress(address) {}

// Add functions to query and set the data.
virtual IString
name () const,
address () const;
virtual Department
&setName (const IString& name),
&setAddress (const IString& address);
// Define the functions to render an object both as a
// private format and as a normal text string, and to
// re-construct the object from the private format.
IString
asString () const,
text () const;
Department
&initializeFromString (const IString& renderedString);
// Define the separator character (a tilde) that separates
// the fields of the object in its string format.
static const IString
separator,
renderedFormat;
// Define a function to return the offset of the Address field.
static unsigned long

offsetOfAddress () { return ICONTAINERCOLUMN_OFFSETOF(Department, strAddress); }
private:
IString

strAddress;
};
class ICnrObjectSet;
//**
// Class: ContainerCutPasteHandler *
// *
// Purpose: Adds Clipboard support to the container for a Department *
// object. This includes: *
// 1) A container menu handler to show a popup menu with *
// cut, copy, and paste choices. *
// 2) A command handler to process the cut, copy, and paste *
// requests. *
// 3) A clipboard handler to process requests from the clipboard *
// to render data not yet on the clipboard. *
//**
class ContainerCutPasteHandler : public ICommandHandler,

public ICnrMenuHandler,
public IClipboardHandler {

public:
ContainerCutPasteHandler (IContainerControl& container);

xContainerCutPasteHandler ();
IContainerControl
&container () { return cnr; }
protected:
// Define the command handler callback.
virtual bool

command (ICommandEvent& event);
// Define the popup menu callback.
bool

makePopUpMenu(IMenuEvent& cnEvt);

290 IBM Open Class: User Interface

// Define the callbacks to render data on the
// clipboard.
virtual bool

clipboardEmptied (IEvent& event),
renderFormat (IEvent& event,

const IString& format),
renderAllFormats (IEvent& event);

// Define a string object to use as a separator between fields
// for the private format.
static const IString
separator;
IString

selectedData ();
private:
IContainerControl
&cnr;
ICnrObjectSet
*objectList;
};
#endif

To support copying our Department object to the clipboard, we have devised a
design to render a Department object as a data string and to create and initialize a
new Developer object from data stored in such a data string. This data string
contains fields separated by a character that we know does not exist in the data of
our Department object. We define this separator character and initialize it to a tilde
character later in clipbrd.cpp.

The ContainerCutPasteHandler utilizes a very similar design to store a series of
container objects on the clipboard. The ContainerCutPasteHandler must use a
different separator to distinguish the parts of its data. In the .cpp, we define the
caret (|) character as the separator between objects on the clipboard. When our
handler receives a request to render the data to the clipboard in our private format,
it creates a string with the following layout:

countn separator (|) object1 separator (|) objectn

The number of objects in the string is stored as a text number in the firstseparator
delimited field of the string. Also in the string, we put Department object1 through
objectn in their own separator delimited format with the following layout:

Department name separator (x) Department address

For example, if the name field of a Department object is “Accounting” and the
address field is “Building 4000,” then the format string using the tilde character (x)
as the separator is:

“AccountingxBuilding 4000”

If in addition to the Accounting department object above, we stored a“Sales”
Department object with an address of “Building 5000,” they would collectively
appear on the clipboard as the string:

“2|AccountingxBuilding 4000|SalesxBuilding 5000”

Rather than copying our objects to the clipboard during the cut or copy operation,
we have added support for delayed rendering. The design entails maintaining a
collection of the objects cut or copied to the clipboard. When a user requests the
data on the clipboard, our ContainerCutPasteHandler’s renderFormat routine is

Chapter 20. Clipboard 291

called to put the data on the clipboard. It iterates the objects in the collection and
writes their data to the clipboard in the string format previously described.

A user that copies data to the clipboard and later pastes it into an application
usually expects that the data will be the same as it was when it was first copied.
To ensure this, any time the data of one of the objects in our collection changes or
the object is removed from the container, we must force the delayed rendering
mechanism to put the objects on the clipboard first. This support does not exist in
our current clipboard sample.

This demonstrates that while delayed rendering has the potential for improving
the performance of your application, it also increases its complexity. We therefore
recommend that you first determine that you need to improve performance before
deciding to add delayed rendering support to your application.

In the clipbrd.cpp file we do the following:
1. Define our static Separator objects:

// Define our static Separator objects:
// The first separates fields in the Department object string;
// the second separates multiple Department object strings.
const IString Department::separator(“x”);
const IString ContainerCutPasteHandler::separator(“|”);

2. Define the private format of our Department object:
// Define the private format of our Department object.
const IString Department::renderedFormat(“Department_rendered”);

3. Construct the ContainerCutPasteHandler, enable the event handlers, and
register the private clipboard format.
/*———————————————————————————————————————
| ContainerCutPasteHandler::ContainerCutPasteHandler |
| |
| Construct the handlers, register our private clipboard format, and |
| attach the handlers to the container. |
———————————————————————————————————————*/
ContainerCutPasteHandler :: ContainerCutPasteHandler (IContainerControl& container)

: cnr(container),
objectList(new ICnrObjectSet())

{
// Enable the command, menu, and clipboard handlers.
ICommandHandler::handleEventsFor(&container);
ICnrMenuHandler::handleEventsFor(&container);
IClipboardHandler::handleEventsFor(&container);
// Register the Department object's private format.
IClipboard::registerFormat(Department::renderedFormat);

}

4. Process the clipboard operations cut, copy, and paste.
/*———————————————————————————————————————
| ContainerCutPasteHandler::command |
| |
| Handle the command events associated with the clipboard (Cut, Copy, |
| and Paste). |
———————————————————————————————————————*/
bool ContainerCutPasteHandler::command (ICommandEvent& event)
{

switch(event.commandId())
{

case MI_CUT :
case MI_COPY :
{

// Create a clipboard object.
IClipboard clipboard(event.controlWindow()->handle());

292 IBM Open Class: User Interface

// Find the cursored object in the container.
Department* cursoredObject = (Department*)(container().cursoredObject());
// If a Copy request, utilize delayed rendering to put the data of
// of the private format on the clipboard. If a Cut request, put
// the data directly on the clipboard since the object won't be
// around later when the renderFormat code needs it.
// We maintain an “objectList” collection to keep track of
// the objects copied onto the clipboard so that renderFormat
// knows which objects to render.
// We also store text data for the objects so that applications
// that don't support the private format can paste the data into a
// text editor.
// Clear the collection used to keep track of clipboard objects.
objectList->removeAll();
// If the cursored object is selected, loop through all other
// selected objects and store the objects in our set.
if (container().isSelected(cursoredObject))
{

unsigned long count = 0;
IString objectsAsText(“\0”);
IContainerControl::ObjectCursor cursor(container(), IContainerObject::selected);
for (cursor.setToFirst(); cursor.isValid(); cursor.setToNext())
{

count++;
Department* selectedObject = (Department*)(container().objectAt(cursor));
objectList->add(selectedObject);
objectsAsText = objectsAsText + selectedObject->text();

}
// Empty the clipboard to establish ownership
clipboard.empty();
// Put the data on the clipboard. We put our private
// format first since it has the most information.
// We use 0 for the data on a Copy request because
// we want to delay the rendering until
// the paste operation.
// If this is a Cut, put the data on the clipboard
// instead of using delayed rendering because we delete
// the object.
if (event.commandId() == MI_CUT)
{

IString string = selectedData();
clipboard.setData(Department::renderedFormat, (const char*)string, string.length()+1
objectList->removeAll();
container().deleteSelectedObjects();

}
else

clipboard.setData(Department::renderedFormat, 0, 0);
clipboard.setText(objectsAsText);

}
else
{

// If the object is not selected, repeat the above procedure
// for the cursored object.
objectList->add(cursoredObject);
// Empty the clipboard to establish ownership
clipboard.empty();
// Put the data on the clipboard (using
// delayed rendering for a Copy. Delete the object
// if a Cut request.
IString objectAsText = cursoredObject->text();
if (event.commandId() == MI_CUT)
{

IString string = selectedData();
clipboard.setData(Department::renderedFormat, (const char*)string, string.length()+
objectList->removeAll();
container().removeObject(cursoredObject);
delete cursoredObject;

Chapter 20. Clipboard 293

}
else

clipboard.setData(Department::renderedFormat, 0,0);
clipboard.setText(objectAsText);

}
return true;

}
case MI_PASTE :
{

IClipboard clipboard(event.controlWindow()->handle());
// If the clipboard has data of the private format,
// get the data and build objects from it.
// Note: To see the text format of the data, paste
// from the clipboard using any text editor that
// supports the clipboard.
if (clipboard.hasData(Department::renderedFormat))
{

IString strCount, strObject, objectsAsString;
// Query the data on the clipboard.
char* data = (char*)clipboard.data(Department::renderedFormat);
// Parse the string into our data fields.
data >> strCount >> separator >> objectsAsString;
// Extract the number of objects stored in the string.
unsigned long count = strCount.asUnsigned();
// Turn refresh off to eliminate multiple painting.
container().setRefreshOff();
// Construct new objects from the data.
for(int i=0; i> strObject >> separator >> objectsAsString;

Department* department = new Department();
department->initializeFromString(strObject);
container().addObject(department);

}
// Enable refresh and refresh the container.
container().setRefreshOn();
container().refresh();

}
return true;

}
}

return false;
}

5. Create and display the popup menu.
/*———————————————————————————————————————
| ContainerCutPasteHandler::makePopUpMenu |
| |
| Create a pop-up menu with the clipboard actions. |
———————————————————————————————————————*/
bool ContainerCutPasteHandler::makePopUpMenu(IMenuEvent& event)
{

IPopUpMenu* popUpMenu = new IPopUpMenu(CNR_POPUPMENU,
event.controlWindow());

// Enable the allowable menu items in the pop-up menu.
if (popupMenuObject()) {

((IContainerControl*)event.controlWindow())->setCursor(popupMenuObject());
popUpMenu->disableItem(MI_PASTE);

}
else
{

popUpMenu->disableItem(MI_CUT);
popUpMenu->disableItem(MI_COPY);

}
// Show the menu.
popUpMenu->setAutoDeleteObject();
popUpMenu->show(event.mousePosition());
return true;

}

294 IBM Open Class: User Interface

6. Iterate our collection of clipboard objects and put the data onto the clipboard
during the processing of the renderFormat function.
/*———————————————————————————————————————
| ContainerCutPasteHandler::renderFormat |
| |
| Put our private format data on the clipboard. |
———————————————————————————————————————*/
bool ContainerCutPasteHandler::renderFormat(IEvent& event,

const IString& format)
{

// Use the handler's collection to find the Department objects
// whose data we need to put on the clipboard.
IClipboard clipboard(event.controlWindow()->handle());
if (format == Department::renderedFormat)
{

IString objectsAsString = selectedData();
setDelayedData(event,

Department::renderedFormat,
(const char*)objectsAsString,
objectsAsString.size());

return true;
}
return false;

}

7. Initialize Department objects from our string format in the function
initializeFromString and build the string format for an object in the function
asString.
/*———————————————————————————————————————
| Department::initializeFromString |
| |
| Set the fields of the object by parsing the passed string. |
———————————————————————————————————————*/
Department& Department::initializeFromString (const IString& renderedString)
{

IString strName, strAddress;
renderedString >> strName >> separator >> strAddress;
setName (strName);
setAddress(strAddress);
return *this;

}
// ...
/*———————————————————————————————————————
| Department::asString |
| |
| Render the Department object as a String that we can later use to |
| reconstruct a Department object. |
———————————————————————————————————————*/
IString Department::asString () const
{

IString strObject = name() + separator + address();
return strObject;

}

“Chapter 20. Clipboard” on page 285
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

Clipboard Sample
“Add Clipboard Support” on page 286
“Write an Event Handler” on page 25

Chapter 20. Clipboard 295

“Task and Samples Cross-Reference Table” on page 445

IClipboard
IClipboardHandler
ICnrMenuHandler
ICommandHandler
IContainerObject

296 IBM Open Class: User Interface

Chapter 21. Resources

Resources are user-interface components, such as text strings, icons, bitmaps, and
keyboard accelerator tables. You define resources in a resource script file, a text file
that contains statements describing your resources. For example, you may define a
menu, string table, or dialog template in a resource script file. A benefit of defining
resources in a resource script file is that you can make changes to resource
definitions without affecting the application code itself. This makes supporting
multiple languages (for example, English and French) easier because a translator
does not have to edit your source code files looking for text to change. After
creating a resource script file, you compile it into a binary-format resource file, then
incorporate the compiled resource file into your application.

You can code a resource script file yourself using the resource tag language. See the
page on Resource Script Files under the Tools and Utilities category in the
reference for more information about this language.

You can use the Integrated Resource Editor (IRE) to graphically edit resources and
create dialog boxes.

Use one of the following tools to convert resource files across platforms.

Tool Description

IRE

Lets you imports a binary or script resource
file (or extract the binary resources from an
executable or DLL), then save it in either an
OS/2 or Windows format.

convrc.exe

Converts resource script files between
Windows and OS/2.

irccnv.exe

Converts resource script files between
Windows and OS/2 on the AIX platform.
Motif’s resource compiler understands the
OS/2 format for resource script files and
graphic files.

© Copyright IBM Corp. 1998, 2000 297

Tool Description

ibmpcnv.exe

Convert bitmap (.bmp), icon
(.ico), pointer (.ptr) or cursor (.cur) images
between OS/2 readable formats and
Windows formats.

Using the resource compiler, you compile your resource script file (a text file with
the extension .rc) into a binary-format resource file (a file with the extension .res).
You may incorporate the compiled resource file into your application as follows:
v Bind the binary-format resource file to the application’s main executable file.
v

Bind the compiled version of the resources into a separate dynamic link library
(DLL). You may use this DLL for one or more applications.

v

Link the compiled version of the resources in a shared library.

OS/2 and AIX will let you bind only one resource file to a particular executable
file. (OS/2 will let you bind only one resource file to a DLL as well.)

Windows lets you bind multiple resources to an executable.

You can also provide national language versions by storing the resources for each
language in a separate resource file. You can then build your application as
separate executable versions for each language (each with a different resource file
bound to it) or as a single executable with a separate DLL for each language.

The IBM Open Class Resource Library
The IBM Open Class Resource Library includes the following standardized
resources:
v bitmaps (for use as toolbar buttons)
v button text and short and long help text for the provided bitmaps
v container expand/collapse bitmaps
v multimedia bitmaps
v strings for buttons on common dialogs and message boxes

See the topic “Create Toolbar Buttons” on page 252 for a description of bitmaps
and button text shipped with VisualAge C++.

The library is cpporr50.dll for Windows and OS/2, and libvacocres.o for AIX.

298 IBM Open Class: User Interface

When building or packaging applications that use these bitmaps or strings, you
must provide the IBM Open Class Resource Library. See the topic Package and
Distribute an IBM Open Class Application for more information.

Dialog Templates
A dialog template is a data structure that describes a dialog window and its control
windows. Windows and OS/2 uses the data in the dialog template to create the
dialog window and control windows. An application can create a dialog template
at run time, or it can use the system resource compiler to create a dialog-template
resource.

Motif does not support dialog templates. If you write portable applications, use
canvases instead of dialog templates. The Hello World 4 sample application shows
you how to do this. You can find this sample in the samples/ioc/hello4 directory.

Only the IRE will let you convert dialog templates. Neither convrc.exe nor
irccnv.exe can convert these files.

Loading Resource Libraries
A resource library is the file, such as an executable, dynamic link library (Windows
and OS/2) or shared library (AIX), with a compiled resource file bound to it. The
ICurrentApplication class represents the program that is currently running. Use the
following member functions of this class to load and access the resource library of
your application:

Member function Description

setResourceLibrary Sets the default resource library for Open
Class Library resources. Open Class Library
uses this resource library to load the
resources it provides, such as bitmaps and
text for standard toolbar buttons. You
specify a resource library using the name of
a dynamic link library or a value of 0. If you
specify 0, Open Class Library attempts to
load its resources from the application’s
executable file.

If you do not call this function, Open Class
Library loads its resources from
libvacocres.o.

If you do not call this function, Open Class
Library loads its resources from cpporr50.dll.

Chapter 21. Resources 299

Member function Description

resourceLibrary Obtains a reference to the Open Class
Library’s resource library. Open Class
Library loads the resources that it requires
from this resource library. To change the
name of the resource library, call
ICurrentApplication::setResourceLibrary or
set the environment variable ICLUI_RESLIB
with the name of the dynamic link library or
shared library.

If you do not call
ICurrentApplication::setResourceLibrary to
identify Open Class Library’s resource
library, ICurrentApplication::resourceLibrary
first searches the NLSPATH and then it
searches the LIBPATH to locate the library.

If you do not change the name of the
resource library, this function returns a
handle to libvacocres.o. If this function
cannot find the resource library using
NLSPATH and LIBPATH, it searches for the
resource library in /usr/vacpp/loc/C. You
can set the environment variable,
ICLUI_RESLIB, using the statement export
ICLUI_RESLIB=newname from an operating
system command line.

If you do not change the name of the
resource library, this function returns a
handle to cpporr50.dll. You can set the
environment variable, ICLUI_RESLIB, using
the statement set ICLUI_RESLIB=newname
from an operating system command line.

setUserResourceLibrary Sets the default resource library for
application-defined resources. Open Class
Library uses this resource library to load an
application-defined resource when you do
not otherwise identify a resource library. You
can specify a resource library when
constructing an IResourceId object to
identify a resource. If you do not call
setUserResourceLibrary, the default
application-defined resource library is the
executable file.

You can use an argument of 0 for the
resLibName parameter to reset the resource
library for application-defined resources to
the executable file.

300 IBM Open Class: User Interface

Member function Description

userResourceLibrary Obtains a reference to the default resource
library that Open Class Library uses to load
application-defined resources for this
application. If you do not explicitly specify
an application-defined resource library with
a call to setUserResourceLibrary, IResourceId
uses the executable file.

You can optionally specify the .o extension when naming a shared library.

To specify a DLL as the resource library, do not include its file extension when
passing its name to the function.

Loading Specific Resources
The IResourceLibrary class provides member functions that load resources, such as
strings, menus, and bitmaps, from an application’s executable file. Use the
IDynamicLinkLibrary class to load resources that are stored in a dynamic link
library.

Typically, you do not need to use the IResourceLibrary as most classes in Open
Class Library that require resources provide functions that accept an IResourceId
and load the resources
from the resource file themselves.
To obtain either the Open Class Library’s resource library or the default user
resource library, call ICurrentApplication::resourceLibrary or
ICurrentApplication::userResourceLibrary, respectively.

Searching for Resource Files
You may specify how your application searches for resources libraries with an
argument in ICurrentApplication::setResourceLibrary and
ICurrentApplication::setUserResourceLibrary. The enumerated type
IDynamicLinkLibrary::ESearchLocation defines the following search methods:

Search Method Description

kOSDefaultSearch Finds a resource library using the PATH or
LIBPATH environment variables following
the search rules of the native operating
system. This is the default search method.

Chapter 21. Resources 301

Search Method Description

kNLSPathSearch Finds the dynamic link library using the
NLSPATH environment variable after
substituting %L with the users’ current
locale.

v

On these platforms, it is the LANG
environment variable.

v

Instead of using the LANG environment,
the user’s current locale is retrieved from
a call to setlocale(LC_MESSAGES, NULL).

Loading a resource library from NLSPATH
allows you to have multiple languages of
your resource libraries on a single system.

When loading a shared library IDynamicLinkLibrary, these classes will search
paths specified in the header section of the executable in addition to the NLSPATH
or the LIBPATH environment variables.

“Chapter 1. Windows” on page 1
“Chapter 4. Menus” on page 55
“Chapter 3. Events and Event Handlers” on page 19

“Convert Application Resources” on page 395
“Hello World Version 4: Adding Dialogs and Push Buttons” on page 420
Package and Distribute an IBM Open Class Application
“Create Toolbar Buttons” on page 252
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

302 IBM Open Class: User Interface

Chapter 22. Client/Server Applications and Dynamic Data
Exchange

Dynamic data exchange (DDE) is a client/server protocol for communicating
between two applications running on the same machine. Client/server implies a
relationship between two applications where the client sends requests to the server.
The server handles the requests and provides services to the client application
which then consumes those services. The server-provided services can be either of
the following:
v Data
v The ability to execute commands on behalf of a client

The server can provide these services to one or more clients, and a client can
request services from one or more servers. In addition, an application can be a
client and a server because it can request services from a server while providing
services to clients.

As a client/server protocol, DDE enables data to be dynamically exchanged, and
thus shared, between two applications running on the same machine. Applications
are shielded from the operating details and can share data once they agree on the
type of data being exchanged. DDE works with applications written for Windows
or OS/2 Presentation Manager.

DDE is based on a client/server application model, as follows:
1. The DDE client application requests a conversation with the DDE server

application.
2. The DDE server accepts and handles the conversation.
3. The DDE client can now send a variety of predefined requests to the server.
4. The DDE server then sends data, as well as positive and negative

acknowledgments, to client applications.
5. The only unsolicited communication a DDE server application can have with a

client application is to end a conversation. It cannot send requests to the client
application.

From the users’ perspective, DDE gives them the ability to import and export data
between applications. DDE applications can exchange data on an ongoing basis
without the users intervening. From the application developers’ perspective, DDE
is a client/server-based protocol consisting of a set of messages, macros, and data
structures.

Typically, in a multiprocessing operating system, messages deliver requests and
replies. The following points are true:
v Resources in one application are protected from being accessed by another

application.
v Memory protection schemes create obstacles when applications need to share

data.

© Copyright IBM Corp. 1998, 2000 303

To counteract these points, an operating system provides interprocess communication
(IPC), which enables information to be exchanged between processes or threads
through semaphores, queues, pipes, and shared memory. For these IPC methods to
work, each application must do the following:
v Register the IPC method being used
v Contain specific information on how to access the data

In windowed environments, such as Presentation Manager or Windows, the
primary IPC method is to pass messages. In this case, the same memory protection
that protects the operating system also protects the data passed in these messages.
Thus, for one application to send data to another, it allocates a shared memory object
and gives it to the receiver.

How the DDE Protocol Works
The Open Class Library DDE protocol works with the operating system APIs
because DDE messages are dispatched like other operating system messages.
Because DDE uses object windows to communicate, an application that uses this
component needs to process window messages. To do this, either execute
ICurrentThread::processMsgs, even if your application has no interface
components, or call the following in your code:

IApplication::current().run();

“Establishing DDE Conversations”
“The DDE Framework Design” on page 306
Open Class Threading Model
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Add DDE Client Support” on page 307
“Add DDE Server Support” on page 309
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Establishing DDE Conversations
When you use DDE, the client application must first initiate a conversation with
the server applications. Conversations are based on a two-tier hierarchy: application
and topic. Application is typically the name of the executable program; the topic is
typically the name of a file in a spreadsheet or word-processor application. During
the initiation, the server determines if it can satisfy the client’s request. The server
does not respond to the client if it cannot satisfy the request. If it can satisfy the
request, it creates a new window and includes the handle of this new window in
its response. A server responds once for each topic it can support and, for each
response, the server provides a unique window handle. This guarantees that each
window handle pair identifying a conversation link is unique.

Once a DDE conversation is established, client applications can request services
from the server through DDE transactions. In DDE, all transactions are one-way
because the client always issues the request and a server responds. The only
exception to this rule is the end transaction. The client specifies what it wants from
the server by providing the data item name of a service.

304 IBM Open Class: User Interface

A conversation continues until one of the participants ends it. The conversations
can be ended by either participant at any time during the interchange.

DDE Transactions
DDE is transaction-based because all communications between DDE client and
server applications occur within the context of a DDE conversation. Once a DDE
client application has successfully initiated a conversation with a DDE server
application, all subsequent communications are in the form of asynchronous
transactions. These transactions are asynchronous in nature, because they are
implemented using operating system messages that are posted, not sent, to the
other application. This can lead to complications because there is a minimal
amount of information provided in the DDE messages and control blocks they pass
in shared memory to connect a response to a particular request. As a result of
these potential complications in any asynchronous communications, the DDE
protocol requires server applications to respond to requests from any one client in
the exact order they are received. With the Open Class Library, the DDE
framework enforces this synchronization for you on the server side. On the client
side, the framework keeps track of all outstanding transactions, ensuring they are
responded to in the correct order. It also provides you with information about your
original request, along with the response data.

Using Applications, Topics, and Items
For the purpose of initiating a DDE conversation, the conversation is uniquely
identified by the application name of the DDE server and the name of the topic,
where a topic is a logical data context. For example, for a word processing or
spreadsheet DDE server application, the topic is typically the file name of a
document or spreadsheet. For a DDE news server, the topic could be an area of
interest. Once a conversation has been initiated, it is uniquely identified by a pair
of window handles, provided by the client and server applications. An item is a
named data object, which can be passed as part of a transaction within a DDE
conversation. An item can be anything from a simple data type, such as an integer
or character string, to something as large as a bitmap or data file.

Specifying Data Formats
Whenever a DDE application requests or provides data, it must specify the format
of the data. With this information, DDE applications know how to package,
unpackage, or interpret the data they pass between them. Before a data format is
used by a DDE application, the application must ensure the data format has a
unique identification by registering its name in the system atom table. The
operating system defines a number of constant names for industry-standard data
formats, and adds them to the system atom table. The Open Class Library DDE
framework verifies that any format specified by your application is defined in the
atom table. As a DDE client application, you request data in a format supported by
the DDE server application. As a DDE server application, you provide data in
useful formats that DDE client applications can process.

The standard format for exchanging text data is the Developer’s Toolkit for OS/2
constant, DDEFMT_TEXT, which is defined to be #1.

“Chapter 23. Direct Manipulation” on page 313
“The DDE Framework Design” on page 306
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

Chapter 22. Client/Server Applications and Dynamic Data Exchange 305

“Add DDE Client Support” on page 307
“Add DDE Server Support” on page 309
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

The DDE Framework Design
On the DDE server side, IDDETopicServer is the primary class, and represents a
DDE server for a single topic. An IDDETopicServer object can have as many
concurrent conversations as it needs. These conversations can be with the same or
different applications. The only restriction is they must all be on the same topic.

On the DDE client side, IDDEClientConversation is the primary class. An
IDDEClientConversation object represents a single conversation with a single DDE
server application. An IDDEClientConversation object can be reused. For example,
when you end a conversation with a DDE server application, you can use the
IDDEClientConversation object to begin a conversation with any DDE server
application on any topic.

Most IDDEClientConversation and IDDETopicServer functions have a default
behavior, which you can override on each callback function. For an
IDDETopicServer object, the callback functions pass requests for information or for
the server to carry out an action. The default implementation for most functions is
to return false, indicating the DDE server does not support this particular DDE
transaction type. To support a particular transaction type, you must override the
function and provide an appropriate implementation. This typically involves
setting information or data into the passed DDE event. The
IDDETopicServer::requestData function is a pure virtual function so you must
derive a class from IDDETopicServer to provide an implementation for it. In this
way, you can build a DDE server application incrementally, supporting only the
DDE transaction types you need for your application.

For an IDDEClientConversation object, the callback functions pass you the
responses that the DDE server application has sent to your requests. The default
implementation for these functions is to do nothing. Because you made the request
to the DDE server application, you are interested in the response the server has
sent to you. You must override these functions to process the data and information
that is sent as part of each response. IDDETopicServer and
IDDEClientConversation objects pass data and information to you in the form of
event objects.

IDDEEvent is the main event class from which most other DDE event classes are
derived. The only exceptions to this are the event classes associated with beginning
and ending a conversation; IDDEBeginEvent, IDDEEndEvent, and
IDDEClientEndEvent.

“Chapter 23. Direct Manipulation” on page 313
“Establishing DDE Conversations” on page 304
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

306 IBM Open Class: User Interface

“Add DDE Client Support”
“Add DDE Server Support” on page 309
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Add DDE Client Support

Do the following to provide DDE client support in your Windows or OS/2
application:
1. Derive a class from IDDEClientConversation to provide implementations for all

of the virtual callback functions in which you are interested. You must provide
an implementation for the data pure virtual function.

2. Create an object of the class you derived from IDDEClientConversation.
3. Initiate a conversation with a DDE server application on a particular topic.
4. Make requests for services from the DDE server. These transactions, or services,

are usually requests for data, requests to accept data from you (poke data), or
requests to execute commands on your behalf.

5. Handle the responses to your requests that the DDE server sends you (in the
virtual callback functions you have overridden).

6. End the conversation with this DDE server application when you do not need
any more services from this particular DDE server.

7. Delete the object of the class derived from IDDEClientConversation or reuse the
object and start over at item 3.

If you want to have multiple concurrent conversations, repeat the same procedure
for each simultaneous conversation you need. Remember, although an
IDDEClientConversation object represents a single conversation with a single
server at any point in time, you can reuse the object for a subsequent conversation,
after you have ended the current conversation.

Request a DDE Conversation
You can begin a DDE conversation in the following ways:
v When you construct an IDDEClientConversation .
v When you call IDDEClientConversation::begin.

The begin function requires you to specify the name of the application you wish to
have a conversation with, and the name of the topic you are interested in having a
conversation about. For example:
bool bStarted = aConversation.begin(“Weather Server”,“Today's Forecast”)

The begin function returns true if the IDDEClientConversation object succeeds in
initiating a conversation with the requested application on the requested topic. If
the IDDEClientConversation object is already in conversation on any topic, it will
throw an IInvalidRequest exception. You can reuse the IDDEClientConversation
object for a subsequent conversation once you have ended the current
conversation.

The IDDEClientConversation class provides a second version of the begin function.
Use this if you have already established a DDE conversation with another
application, and you have an alternate method of exchanging the requisite window
handles.

Chapter 22. Client/Server Applications and Dynamic Data Exchange 307

Request Data
To request data from a server application, use the requestData function. A server
application can respond to a request for data in one of two ways:
v By sending the data item in the requested format to the client application.
v By sending a negative acknowledgment indicating it cannot provide the data

item in the requested format.

In both cases, the following points are true:
v One of the IDDEEvent derived classes is passed to you using a callback function

so you can call IDDEEvent::item and IDDEEvent::format to determine what data
item you requested and in what format it should be rendered.

v If the server application sends the requested data item, the
IDDEClientConversation object creates an IDDEDataEvent object and passes a
reference to this event by calling the data function. This is the one pure virtual
function of IDDEClientConversation, which means you must provide an
implementation for it. You can call the various functions of the IDDEDataEvent
object to get detailed information about the event.

Request a Data Hot Link
The DDE protocol supports ongoing links to data items, called hot links. Once you
establish a hot link with a DDE server application for a particular data item, the
server informs you whenever the value of the data changes. To request a hot link
to a data item with a server application, you must use the beginHotLink function.

After you have established a data hot link, every time the value of the data item
changes in the DDE server application, the following occurs:
1. The server sends you the new value of the data item.
2. The IDDEClientConversation object receives the updated data item, creates an

IDDEDataEvent object, and passes a reference to this event when calling the
data function.

Note that you can also use notification hot links. Every time the value of the data
item changes in the DDE server application, the server sends a notification that the
value of the data item has changed. When the IDDEClientConversation object
receives the notification, it creates an IDDEClientHotLinkEvent object. You can then
request the data when and if you need it.

End a Hot Link
Use IDDEClientConversation::endHotLink and
IDDEClientConversation::endHotLinks to end hot links. To end a single hot link,
call the endHotLink function, specifying the name of the data item and, optionally,
the format of the data. For example, if you have multiple active hot links with a
DDE server application on the Weather Corp data item, each in a different format,
end one of the hot links as follows:
aConversation.endHotLink(“Weather Corp”, SZFMT_CPTEXT);

Use the endHotLinks function to end multiple hot links with one function call.
There are two ways you can use this function:
1. To end all of the hot links for all data formats of a particular data item, specify

the name of the data item.
2. To end all hot links for all data items and data formats for the

IDDEClientConversation object, call endHotLinks with no parameters.

Poke Data
The DDE protocol introduces the concept of poking data from a DDE client
application to a DDE server application. Poking data is essentially requesting a DDE

308 IBM Open Class: User Interface

server application to set a specified data item to a value passed by the client
application. The IDDEClientConversation::pokeData member function sends a data
poke request to the conversing DDE server application.

The IDDEClientConversation object throws an IInvalidRequest exception if it is not
currently engaged in a conversation and the server application can respond to this
request with either a positive or negative acknowledgment. In either case, the
IDDEClientConversation object creates an IDDEAcknowledgePokeEvent object and
passes a reference to this event by calling the pokeAcknowledged function.

Execute Remote Commands
The DDE protocol allows DDE client applications to send commands and
command strings to DDE server applications for remote execution. Typically, you
use this to send macros and commands to word processing or spreadsheet
applications that support a command language and support this aspect of the DDE
protocol. You can use IDDEClientConversation::executeCommands to send
commands to DDE server applications.

End a Conversation
To end the current conversation, call the IDDEClientConversation::end. The
IDDEClientConversation object first cleans up and then resets all of its object data
to their original values when constructed.

For an example of how to set up a DDE client, refer to the DDE Client Sample in
the samples/ioc/dde/ddeclnt directory.

“Chapter 22. Client/Server Applications and Dynamic Data Exchange” on page 303
“Establishing DDE Conversations” on page 304
“The DDE Framework Design” on page 306
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

DDE Client Sample
DDE Server Sample
“Add DDE Server Support”
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Add DDE Server Support
This page also outlines the following tasks:
v Providing Data
v Supporting Hot Links

When creating a client/server application with DDE, there is no limit to the
number of concurrent conversations in which an IDDETopicServer object can
participate. You can have multiple IDDETopicServer objects supporting the same
topic in your application. If you choose to do this, you determine how you want to

Chapter 22. Client/Server Applications and Dynamic Data Exchange 309

split the load among the multiple servers you create to support the same topic. An
IDDETopicServer object always supports the topic it is constructed for; the topic
cannot be changed.

To provide DDE server support in your Windows or OS/2 application, do the
following for each DDE topic you want to support in your application:
1. Derive a class from IDDETopicServer to provide implementations for all of the

virtual callback functions associated with the DDE transactions that you want
your DDE topic server to support.
Note that you must provide an implementation for the requestData pure virtual
function.

2. Create an object of the class you derived from IDDETopicServer.
3. Wait for DDE client applications to initiate conversations with you. Accept as

many of the conversations as you want.
4. Wait for transaction requests from the DDE client applications with which you

are in conversations. Process these requests in the order they arrive. These
requests may consist of requests for data, hot links, requests to execute
commands, and requests to accept data from the client application.

5. End one or more of the conversations as needed. You can do this at any point.
6. Delete the object of the class derived from IDDETopicServer. The

IDDETopicServer destructor automatically ends all conversations in which the
IDDETopicServer derived class is currently engaged.

When an IDDETopicServer object receives a request to begin a conversation from a
DDE client application, it does some preliminary checking to verify that the
request is valid for this topic server before calling to see if you want to accept the
conversation request. The IDDETopicServer object compares the application name
and topic name supplied in the request with the names contained in its object data,
ignoring mismatches due to differences in case. If either the application name or
topic name does not match, the request to begin a conversation is discarded. The
exception to this is a zero length char* for either the application name or topic
name. The DDE protocol allows DDE client applications to use zero-length
character strings as global characters (or wildcards) for application and topic
names. This is a way for DDE clients to find all topics supported by a particular
application, all applications that support a particular topic, or all active
application-topic pairs.

Providing Data
When an IDDETopicServer object receives a request for data from a DDE client
application, it ensures it has an active conversation with the client. If there is a
current conversation with the client application, the IDDETopicServer object creates
an IDDERequestDataEvent object and calls the requestData function.

If you want to provide the data, call IDDERequestDataEvent::setData. If you want
to request an acknowledgment from the client application upon receipt of the data,
call IDDERequestDataEvent::requestAck.

If you cannot provide the requested data, you must return false from
IDDERequestDataEvent::requestData. You can provide specific information to the
client application as to why you are not providing the requested data.

Supporting Hot Links
The DDE protocol supports ongoing links to data items, hot links. Send the
updated data item value or notification, depending on the type of hot link,
whenever the value of the data item changes. When an IDDETopicServer object

310 IBM Open Class: User Interface

receives a request for a hot link from a DDE client application, the first thing it
does is ensure it has an active conversation with the client. If there is a current
conversation with the client application, the IDDETopicServer object creates an
IDDEServerHotLinkEvent object.

Keep track of all of the data items for which you have accepted a hot link. When
the value of one of these data items changes, call the
IDDETopicServer::hotLinkUpdate member function and pass the name of the
changed data item.

“Chapter 22. Client/Server Applications and Dynamic Data Exchange” on page 303
“Establishing DDE Conversations” on page 304
“The DDE Framework Design” on page 306
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Add DDE Client Support” on page 307
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

IDDE
IDDEAcknowledgeEvent
IDDEActiveServer
IDDEBeginEvent
IDDEDataEvent
IDDEEndEvent
IDDEEvent
IDDEExecuteEvent
IDDEPokeEvent

Chapter 22. Client/Server Applications and Dynamic Data Exchange 311

312 IBM Open Class: User Interface

Chapter 23. Direct Manipulation

Direct manipulation is a user interface technique that lets a user start application
functions by manipulating objects. The user begins an action by moving the mouse
pointer over an object and then pressing and holding down the drag mouse button
while dragging the selected object to a new location. The user then drops the object
onto the new location by releasing the mouse button. For this reason, direct
manipulation is also known as drag and drop.

Thus, the user can perform operations directly on objects that appear on the
desktop or within an application.

Direct manipulation is not limited to objects in containers, as the object can be a
text string in an entry field. Also, users can drag and drop an object onto a new
location in the current window, onto another object in a window, or onto a
different window.

Direct manipulation is used to move, copy, and link objects. Generally, move is the
default operation and is accomplished through the use of the mouse button
defined for drag and drop. Other operations can be specified with the additional
use of augmentation keys: the Ctrl key or a combination of the Shift and Ctrl keys.

To initiate a move operation, the user presses and holds the Shift key while
moving the drag mouse button. The visual indication of this operation for OS/2
and Motif is the drag image. For Windows, the visual indication for move is the
halftoning of the object.

To initiate a copy, the user presses and holds down the Ctrl key while pressing and
moving the drag mouse button. The visual indication of this operation for OS/2
and Motif is the halftoning of the drag image. For Windows, the visual indication
for copy is the halftoning of the object with the plus sign displayed in the
lower-right corner.

Likewise, users can accomplish a link operation by pressing and moving the drag
mouse button while pressing the Shift and Ctrl keys. The visual indication of this
operation in OS/2 is a line that is drawn that connects the drag image with the
object where the drag was initiated. For Windows, the visual indication is the
halftoning of the object with the short cut arrow displayed in the lower-right
corner. For AIX, the visual indication is the halftoning of the drag image with the
link arrow displayed in the lower-right hand corner.

Users can request help during a direct manipulation operation by pressing the help
key F1. This displays help for the object a user is dragging over.

To cancel a direct manipulation operation, press the Esc key.

The Open Class Library provides four main classifications of objects to support
direct manipulation:
v A drag item (IDMItem)
v A drag item provider (IDMItemProvider)
v A renderer (IDMSourceRenderer or IDMTargetRenderer)
v An event handler (IDMSourceHandler or IDMTargetHandler)

© Copyright IBM Corp. 1998, 2000 313

The collaboration of these objects allows the rendering from a source to a target
location. Rendering is the process by which data is transferred from the source of a
direct manipulation operation to a target. The following is an overview of the
process:
1. A user initiates a drag request, which generates an event that is processed by

the source handler.

For Windows, this event needs to be generated. Windows leaves it up to the
control to decide when a drag operation is occurring. This decision is usually
made on a per control basis because Windows allows using the same mouse
button, the left button by default, for selection and drag.
IWindow::isDragStarting (Windows only) helps to detect a drag operation and
is called for controls that have been enabled for drag through
IDMHandler::enableDragFrom or IDMHandler::enableDragDropFor. After a
control has been enabled for drag, IWindow::isDragStarting is called for every
mouse button down, up, or move that is dispatched to the control. When a
drag has been detected, the isDragStarting override should return true. The
return value of true causes IDMHandler to send a WM_BEGINDRAG message
and initiate the IDM classes to start the drag operation.

Once the WM_BEGINDRAG message is generated, the IDM classes work the
same on all platforms. OS/2 and AIX can generate the WM_BEGINDRAG
message for you. Windows offers you the option of initiating a drag with the
right mouse button for non default drag and drops, which allows
differentiating the drag and selection operations. IWindow has a default
implementation of isDragStarting that tracks the left button state along with
mouse move messages. If the left button down message is received and the
mouse moves more than 2 pels before a left button up event is received, then a
drag operation has occurred. If you need to support drag from a control that
requires more elaborate drag conditions, override this member function and
supply an implementation. You can use IWindow, IEntryField, IMultiLineEdit
and IContainerControl implementations of isDragStarting for examples.

2. The source handler uses the source window’s attached drag item provider to
request generation of source drag items.
Drag items represent the objects that are the focus of the direct manipulation
operation and provide access to the object’s data. Drag item providers are
designed to assist in the generation of drag items and bridge the gap between
the drag items and the source and target handlers.
When you use the IDMItemProviderFor template to instantiate the provider, the
static function in the derived drag item class, generateSourceItems, is called.
Alternatively, if the provider is instantiated from a derived drag item provider
class, then the IDMItemProvider::provideSourceItems override is called.

3. Once the source drag items are generated, appropriate source renderers are
selected.

4. When you enter a potential target window, an event is generated that is
processed by the target handler.

5. The target handler uses the target window’s attached drag item provider to
request generation of target drag items.
When you use the IDMItemProviderFor template to instantiate the provider, the
target drag item constructor is called, as follows:

IDMItem (const Handle& item);

314 IBM Open Class: User Interface

Alternatively, if the provider is instantiated from a derived drag item provider
class, then the IDMItemProvider::provideTargetItemFor override is called.

6. The target handler also uses the drag item provider to request additional
verification support via the virtual function,
IDMItemProvider::provideEnterSupport.

7. Once the target drag items are generated and verified, the appropriate target
renderer is selected.

8. The drop is processed based upon the rendering mechanism and format, which
is stored in the target renderer, and the data is subsequently transferred. The
virtual function, IDMItem::targetDrop, is used to process the drop event.

Renderers encapsulate the various mechanisms and formats that are used for
rendering and implement the logic that supports the mechanisms and formats
(RMFs). Generally, a mechanism defines the method of data transfer, whereas the
format identifies the format of the data. The Open Class Library’s implementation
groups the mechanisms and formats under one mechanism.

Target rendering transfers data from the source to the target. Because the source can
package all the required transfer information when the drag operation begins, the
target can complete the drop operation without further assistance from the source.

A good example of target rendering involves the use of the Open Class Library’s
process RMF™. If the source and target are in the same process, the target directly
accesses the source’s data and subsequently renders the information as required.

On the other hand, source rendering occurs when the target requires additional
information from the source in order to complete processing of the drop. The
target issues the appropriate events to request the information from the source. A
good example of source rendering involves the use of the User Interface Class
Library’s shared memory RMF. When the source and the target are in separate
processes, the target can select this RMF that generates a shared memory buffer
that, in turn, transfers the data between the source and target.

Drag Items
Drag items are represented by objects of class IDMItem. Drag items encapsulate the
logic that serves as the bridge between the context-insensitive handlers and
renderers and the application-specific behavior of particular source and target
windows. Thus, the drag items provide the application-specific semantics of the
direct manipulation operation.

IDMItem is the base class that defines the general behavior of all direct
manipulation items. The three derived classes provided by the Open Class Library
provide specializations of the base class that represent the objects being dragged
and dropped on specific controls.

The following classes are derived from IDMItem:
v IDMCnrItem
v IDMMLEItem
v IDMEFItem

Drag Item Providers
The IDMItemProvider class is an extension of the IWindow class that provides
direct manipulation functions. Objects of the IDMItemProvider class allow generic
controls, such as an entry field, to generate context-sensitive drag items. For

Chapter 23. Direct Manipulation 315

example, a container that contains customer objects can generate a “customer”
item; a bitmap can provide an item that can extract the picture from a .BMP file.

The IDMItemProvider class also provides functions that deal with target entry and
exit, as well as help. With IDMItemProvider::provideEnterSupport you can verify
objects, using different schemes, when the object is over a potential target.

For example, if you want to restrict drops in an icon view container to the white
space area of the container, you can use the provideEnterSupport function to
determine if the pointing device is over either white space or an actual container
object:

bool CnrProvider::provideEnterSupport
(IDMTargetEnterEvent &event)

{
// Allow default verification to occur
if (Inherited::provideEnterSupport(event))
{
// Prevent the drop if we're over a

// container object (icon view)
if (event.object())
{

event.setDropIndicator(IDM::notOk);
return(false);

}
return(true);

}
return(false);

}

The return value is not currently used to determine if a drop is allowed. Only the
drop indicator is used to set the drop disposition.

“Chapter 20. Clipboard” on page 285
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Add Clipboard Support” on page 286
“Use Default Direct Manipulation”
“Add Images to Drag Items” on page 331
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Use Default Direct Manipulation
The Open Class Library provides default direct manipulation support for the
following:
v Entry fields
v Multiline edit (MLE) fields
v Containers (within the same process)
v Tool bars (including menu bars and tool bar buttons)

On OS/2, you use the left mouse button to drag objects. On Windows, you use the
right mouse button to drag objects. You can use the left mouse button to drag but
when the drag operation is finished, you get a pop-up menu requiring a menu

316 IBM Open Class: User Interface

choice of Copy, Move, or Cancel. To drag objects on AIX use the middle mouse
button or if you have a two button mouse use both buttons simultaneously.

Using Defaults for Entry Fields and MLEs
The default direct manipulation support for entry fields and MLEs is almost
identical. When you create source items, selected text is stored within the item
using the IDMItem::setContents function.

In Windows, the text must be selected in order to initiate a drag. In OS/2, all of
the text is dragged if none is selected. Afterwards, the optimal rendering
mechanisms and formats are determined using the length of the text characters
plus any embedded characters. If the text length is fewer than or equal to 255
characters, and does not contain any embedded nulls, the text rendering format,
IDM::rfText, is used. Otherwise, the shared rendering format, IDM::rfSharedMem is
used.

To further optimize performance, the process rendering format, IDM::rfProcess, is
added to the prior selection to handle it when the source and target entry fields or
MLEs are located within the same process. If they are located within separate
processes, one of the other rendering formats, is used.

The default rendering support for IDM::rfSharedMem automatically allocates the
shared memory buffer and transfers the data (stored in the source item using
IDMItem::setContents) from one process to another when its use is required.
Therefore, the data is accessible to IDMItem::contents in the target item after the
drop has occurred.

The default drag image style for the entry field and MLE support are the OLE
drag cursors.

The default drag image style for the entry field and MLE support is
IDM::allStacked.

The default implementation of the IDMItemProvider::provideEnterSupport function
for the entry field and MLE items prevents a user from dropping text within the
same window. The source and target window cannot be the same window.

When the entry field and MLE items differ, default target drop processing occurs.
The entry field item retrieves the text using the IDMItem::contents function and
sets the text into the entry field. The MLE item appends the text to the end of the
MLE field.

Using Defaults for Containers
The default direct manipulation for containers supports moving or copying
container objects within the same process. Also, all of the container views are
supported. When you construct a source item, the container object is stored within
the source item using the IDMItem::setObject function. Because a target can
directly address a container object in the same process, you can use
IDMItem::object at the target to access the container object after the drop has
occurred. Therefore, the use of IDMItem::setContents and IDMItem::contents is
supported if you extend the default support, but they are not used in the default
implementation. Finally, the process rendering format, IDM::rfProcess, is set. This is
the only RMF used for the default support.

Chapter 23. Direct Manipulation 317

If the user selects multiple container objects, a sequence collection is created. The
source items are then stored based upon the following order:
1. The object under the mouse pointer is stored first.
2. The other objects are stored in the order in which

IContainerControl::ObjectCursor returns them.

The default drag image style for container support is IDM::allStacked.

The default implementation of the IDMItemProvider::provideEnterSupport function
for the container item prevents the user from dropping an object on a target
container object if drops have been disabled by the IContainerObject::disableDrop
function. Also, the IContainerControl::isMoveValid function is called to ensure that
a move operation, the default, is valid.

Default target-drop processing handles both moving and copying. The default
positioning of the dropped items is based upon the view of the target container. If
multiple container objects are involved, IDMCnrItem::targetDrop is called once for
each container item, and the items are processed in the reverse order in which they
were added to the sequence collection.

When implementing container copy support, you must define an override for
IContainerObject::objectCopy in the derived IContainerObject class. Also, you must
define a copy constructor to be used by the override.

These are illustrated in the drag3 sample.

Enabling Default Support
You enable the default direct manipulation support for the container, entry field,
and MLE by calling the desired IDMHandler static function. A pointer to the
control object is supplied as the functional parameter to the static function, which
performs all the required setup to enable the default support. Two samples, drag1
and drag3, are supplied to illustrate enabling default support.

Containers and windows that support direct manipulation can be the source,
target, or source and target of a drag operation. This is determined by the use of
the static functions IDMHandler::enableDragFrom, IDMHandler::enableDropOn, or
IDMHandler::enableDragDropFor, respectively. However, notice the differences in
the support for the menu bar, tool bar, and tool bar buttons.

Using Defaults for Tool Bars
The default direct manipulation for tool bars supports the dropping of menu item
objects from a menu bar within the same process to create a new tool bar button.
Also, moving tool bar buttons within the same process is supported: you can move
and arrange tool bar buttons within the same tool bar or you can move them from
another tool bar.

Deleting tool bar buttons is also supported, as you can drop the buttons on a
shredder object.

On OS/2, when a source item is constructed from a menu item, the menu item
resource identifier is stored within the source item using the IDMItem::setObject
function, and the menu item text is stored using the IDMItem::setContents
function. The process rendering format, IDM::rfProcess, is set as it is the only RMF
used for the default support.

318 IBM Open Class: User Interface

Afterwards, the IDMMenuItem constructor attempts to set the drag image based
upon a stored image referenced by the resource identifier. The image can be one of
the supplied Open Class Library defaults or the user can define it. If one is
unavailable, a default image is used. The default drag image style for menu bar
support is IDM::allStacked. The default operation is IDMOperation::link, and the
drag item type is IDM::menuItem.

The Open Class Library for Windows does not support the dropping of menu item
objects from a menu bar to create a new tool bar button.

Because the menu bar is only supported from a source perspective, the
IDMItemProvider::provideEnterSupport and IDMItem::targetDrop functions are not
implemented.

When a source item is constructed from a tool bar button, a pointer to the button
window is stored within the source item. The process rendering format,
IDM::rfProcess, is set, as well the shredder RMF, IDM::rmDiscard, and
IDM::rfUnknown. Then, the IDMTBarButtonItem constructor sets the drag image
based upon the button’s stored image. The image can be one of the supplied IBM
Open Class Library defaults or the user can define it. If the image is unavailable, a
default image is used. The default drag image style for tool bar button support is
IDM::allStacked. The default operation is IDMOperation::move, and the drag item
type is IDM::toolBarButton.

The default implementation of the IDMItemProvider::provideEnterSupport function
for the tool bar button item prevents the user from dropping a button on itself. It
also filters the drag item types to allow drops only for the following types:
IDM::toolBarButton, IDM::menuItem (OS/2 only), and IDM::bitmap. IDM::bitmap
is included to allow system bitmaps to be dropped on a button. The special case of
a system bitmap with a type of IDM::plainText is also handled.

Default tool bar button drop processing handles both moving and linking. The
default positioning of the dropped item is based upon the position of the object
over the tool bar button when it was added to the tool bar. If the new button is
dropped on the left half of a tool bar button, the button is moved before the button
where the drop occurred. If the new button is dropped on the right half or at the
center of the tool bar button, the button is moved after the button where the drop
occurred. This rule applies to every source of a drag operation, including tool bar
buttons created from a menu bar, buttons within the same tool bar, and buttons
from another tool bar. If the tool bar is vertical, a similar rule applies. If the new
button is dropped on the lower half of a tool bar button, the new tool bar button is
moved below the button where the drop occurred. If the new button is dropped on
the upper half, or at the center of the tool bar button, the button is moved above
the tool bar button where the drop occurred. Finally, if the item that was dropped
was a system bitmap, the current tool bar button image is replaced using the
system bitmap.

The tool bar only supports drop processing. The default positioning adds the tool
bar button to the end of the tool bar and places it within its own group. If the
source of the drag was a menu bar, a new button is created and added to the end
of the tool bar. If the source of the drag was a tool bar button within the same tool
bar, the button is moved to the end of the tool bar. When the source of the drag
was a tool bar button in another tool bar, the button is removed from the source
tool bar, and added to the end of the target tool bar.

Chapter 23. Direct Manipulation 319

Tool bar support only works upon menu bars, tool bar buttons, and tool bars that
are within the same process.

“Chapter 23. Direct Manipulation” on page 313
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Use Rendering Mechanisms and Formats”
“Use Drag Item Types” on page 323
“Enable Direct Manipulation for an Entry Field or MLE” on page 324
“Enable Direct Manipulation for a Container” on page 325
“Set and Query the Drag Operation” on page 330
“Set the Target Emphasis” on page 331
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Use Rendering Mechanisms and Formats
Rendering is the process by which data is transferred from the source of a direct
manipulation operation to the target. If the source and target objects are within the
same process, both objects have access to the same memory address space, and the
target can readily access the source data to complete the transfer. If the source and
target are in separate processes, the data transfer is facilitated using a global (or
shared) memory buffer and an operation that involves the dispatching and
processing of rendering messages.

Renderers transfer the representation of the object being manipulated from the
source object to the target object. Direct manipulation renderers manage and
maintain rendering mechanisms and formats (RMFs) whose characteristics are
defined by the RMF pairs that represent the data transfer method. The rendering
mechanisms and formats identify the set of protocols that your items support.
These renderers are objects of classes IDMSourceRenderer and IDMTargetRenderer
and are derived from IDMRenderer.

When you create an IDMSourceHandler object, the Open Class Library creates a
default IDMSourceRenderer. The following table displays the source RMF pairs
and the corresponding drag item type. IDM::any represents any drag item type.
Any object that you manipulate must have an explicit attribute that identifies the
type of the item. These objects are often passed by Presentation Manager
mechanisms that need to identify the attributes of an item.

Default Source Renderer

Rendering Mechanism Rendering Format Item Type

IDM::rmLibrary IDM::rfProcess IDM::any

IDM::rmLibrary IDM::rfText IDM::any

IDM::rmLibrary IDM::rfSharedMem IDM::any

IDM::rmPrint IDM::rfUnknown IDM::any

IDM::rmDiscard IDM::rfUnknown IDM::any

IDM::rmFile IDM::rfUnknown IDM::any

IDM::rmObject IDM::rfObject IDM::any

320 IBM Open Class: User Interface

When an IDMTargetHandler object is created, the Open Class Library creates a
default IDMTargetRenderer. The default target renderer RMF pairs are shown in
the table below.

Default Target Renderer

Rendering Mechanism Rendering Format Item Type

IDM::rmLibrary IDM::rfProcess IDM::any

IDM::rmLibrary IDM::rfText IDM::any

IDM::rmLibrary IDM::rfSharedMem IDM::any

IDM::rmFile IDM::rfUnknown IDM::any

IDM::rmObject IDM::rfObject IDM::any

The Open Class Library provides IDM::rmLibrary as the rendering mechanism
used for efficient drag and drop operations. The following table displays other
rendering messages defined as part of the default renderers.

Other Default Rendering Mechanisms

Rendering Mechanism Used When...

IDM::rmPrint (OS/2 only) An Open Class Library object is dropped on
a printer

IDM::rmDiscard (OS/2 only) An Open Class Library object is dropped on
the shredder

IDM::rmFile (OS/2 only) A file is dragged from the source and
dragged over or dropped on a target

IDM::rmObject (OS/2 only) A Workplace Shell® object is processed. Your
application may be required to run under a
Workplace Shell process to use this
rendering mechanism.

Several default rendering formats are defined to assist you in using the direct
manipulation classes. The following table displays these default rendering formats.

Default Rendering Formats

Format Used When...

IDM::rfProcess Determining if the source of the direct
manipulation operation and the target are in
the same process. This format must be
constructed by calling the static member
function IDMItem::rfForThisProcess.

IDM::rfText Dragging text that has a length of 255 or
fewer characters with no embedded null
characters.

IDM::rfSharedMem A shared memory buffer is required to
transfer the data from the source to the
target. This format should be used when
transferring data between two separate
processes and IDM::rfText cannot be used.

Chapter 23. Direct Manipulation 321

Format Used When...

IDM::rfUnknown The format is unknown.

IDM::rfObject (OS/2 only) A Workplace Shell object is processed. Your
application may be required to run under a
Workplace Shell process to use this
rendering format.

You can use the IDM::any type to represent any drag item type.

The native renderer is the first rendering mechanism and format defined when you
create the item. For example, in the declaration of the default source renderer, the
native renderer supports the library rendering mechanism, the process rendering
format, and any item type. In the declaration of the default target renderer, the
native renderer supports the library rendering mechanism, the process rendering
format, and any item type.

The following table displays the default Open Class Library RMF pairs that
support target rendering.

Target RMFs

Mechanism Format

IDM::rmLibrary IDM::rfProcess

IDM::rmLibrary IDM::rfText

IDM::rmFile IDM::rfUnknown

IDM::rmFile IDM::rfText

IDM::rmObject IDM::rfObject

The following table displays the default Open Class Library RMF pairs that
support source rendering.

Source RMFs

Mechanism Format

IDM::rmLibrary IDM::rfSharedMem

IDM::rmPrint IDM::rfUnknown

IDM::rmDiscard IDM::rfUnknown

To create renderers for controls not supported by the Open Class Library, you can
create your own source or target renderer. To do this, derive from the
IDMSourceRenderer or IDMTargetRenderer, create instances, and then add them to
the handler using setDefaultTargetRenderer and setDefaultSourceRenderer.

“Chapter 23. Direct Manipulation” on page 313
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

322 IBM Open Class: User Interface

“Use Default Direct Manipulation” on page 316
“Use Drag Item Types”
“Enable Direct Manipulation for an Entry Field or MLE” on page 324
“Enable Direct Manipulation for a Container” on page 325
“Set and Query the Drag Operation” on page 330
“Set the Target Emphasis” on page 331
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Use Drag Item Types
Drag item types are useful in distinguishing drag items. Normally, the type is
defined when the drag item object is constructed. IDMItem functions, such as
IDMItem::setTypes and IDMItem::types, are defined to allow the setting and
querying of the types, respectively.

The Open Class Library defines the following default types that you can use in
your application:

IDM::any
Any type

IDM::binary
Generic binary item type

IDM::binaryData
Binary data item type

IDM::bitmap
Bitmap item type

IDM::container
Container item type

IDM::containerObject
Container object item type

IDM::file
File item type

IDM::icon
Icon item type

IDM::menuItem
Menu item drag item type (OS/2 only)

IDM::plainText
Plain text drag item type

IDM::text
Generic text drag item type

IDM::toolBarButton
Tool bar button drag item type

IDM::unknown
Unknown drag item type

You can define new types as required by your application if the preceding list does
not have the types you need.

Chapter 23. Direct Manipulation 323

“Chapter 23. Direct Manipulation” on page 313
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Use Default Direct Manipulation” on page 316
“Use Rendering Mechanisms and Formats” on page 320
“Enable Direct Manipulation for an Entry Field or MLE”
“Enable Direct Manipulation for a Container” on page 325
“Set and Query the Drag Operation” on page 330
“Set the Target Emphasis” on page 331
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Enable Direct Manipulation for an Entry Field or MLE
The following sample shows you how to enable direct manipulation for an entry
field or an MLE control and how to use the static function,
IDMHandler::enableDragDropFor. This static function creates the following:
v Source and target handlers
v Source and target default renderers
v An entry field item provider

In the following, from the Direct Manipulation Sample 1, the highlighted lines
enable direct manipulation of text between two entry fields in the same process.
Direct manipulation is enabled the same way for an MLE. The complete sample is
located in the samples/ioc/drag1 directory.
#include <iframe.hpp>
#include <ientryfd.hpp>
#include <idmefit.hpp>
#include <idmhndlr.hpp>
#include “dmsamp1.h”
/**
* main *
* - Application entry point. *
**/
int main()
{

// Create a generic frame window.
IFrameWindow frame(WND_MAIN);
// Create 2 entry fields for the client area.
IEntryField

client(1000, &frame, &frame),
ext (1001, &frame, &frame);

// Enable source and target direct manipulation support
// for both entry fields.
IDMHandler::enableDragDropFor(&client);
IDMHandler::enableDragDropFor(&ext);
// Frame setup - Put both entry fields in the client
// area, with one added as an extension.
frame

.setIcon(frame.id())

.setClient(&client)

.addExtension(&ext, IFrameWindow::belowClient, 0.5)

.setFocus()

.show();

324 IBM Open Class: User Interface

// Run Direct Manipulation Sample 1
IApplication::current().run();
return 0;

}

The preceding sample illustrates how you can enable direct manipulation if you
only need default entry field support. If you substitute IMultiLineEdit for
IEntryField when constructing client and ext, the preceding sample then
demonstrates the default MLE support.

You can find the Direct Manipulation Sample 1 in the samples/ioc/drag1 directory.

“Chapter 23. Direct Manipulation” on page 313
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

Direct Manipulation Sample 1
“Use Default Direct Manipulation” on page 316
“Use Rendering Mechanisms and Formats” on page 320
“Use Drag Item Types” on page 323
“Enable Direct Manipulation for a Container”
“Set and Query the Drag Operation” on page 330
“Set the Target Emphasis” on page 331
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Enable Direct Manipulation for a Container
This section shows you how to enable direct manipulation for a container and how
to use the IDMHandler static functions enableDragFrom and enableDropOn.

In the following, from the Direct Manipulation Sample 3, the dmsamp3.hpp file
defines a container control object. The dmsamp3.cpp file creates the container and
container objects and, in the highlighted lines, calls IDMHandler::enableDragFrom
and IDMHandler::enableDropOn. You can find the following sample in the
samples/ioc/drag3 directory:
int main()
{

MySourceWin sourceWin(WND_SOURCE);
MyTargetWin targetWin(WND_TARGET);
IApplication::current().run();
return 0;

}
// ...
MySourceWin :: MySourceWin(unsigned long windowId)

: MyWindow(windowId)
{

ITitle title(this, TITLE_SOURCE);
// Enable the source for dragging from (only).
IDMHandler::enableDragFrom(cnrCtl);

};
/**
* MyTargetWin :: MyTargetWin *
* - Constructor *
**/
MyTargetWin :: MyTargetWin (unsigned long windowId) :

MyWindow (windowId)

Chapter 23. Direct Manipulation 325

{
ITitle title(this, TITLE_TARGET);
// Enable the target for dropping on (only).
IDMHandler::enableDropOn(cnrCtl);

}
/**
* Customer :: Customer *
* - Copy Constructor *
**/
Customer :: Customer(const Customer &cnrobj)

: IContainerObject((const IContainerObject&) cnrobj),
strName(cnrobj.name()),
strAddress(cnrobj.address()),
strPhone(cnrobj.phone()),
myWin(cnrobj.myWin)

{
}
// ...
/**
* Customer :: objectCopy *
* - Make a copy of the Customer object. Called by *
* IContainerObject::copyObjectTo(). *
**/
IContainerObject* Customer :: objectCopy()
{

// Use Customer copy constructor to make a copy of the
// object.
Customer *copy = new Customer(*this);
return((IContainerObject *)copy);

}

v The MySourceWin constructor creates a source window. This constructor calls
IDMHandler::enableDragFrom. This function enables the window as a drag
source.

v The MyTargetWin constructor creates a target window. This constructor calls
IDMHandler::enableDropOn. This function enables the window as a drop target.

v The Customer::objectCopy function overrides IContainerObject::objectCopy. This
function calls the Customer copy constructor.

The preceding sample illustrates how you can enable direct manipulation if you
only need default container support. The Direct Manipulation Sample 3 is located
in the samples/ioc/drag3 directory.

The previous container example only illustrates intraprocess (source and target
containers are in the same process) container support. The following sample, from
the Direct Manipulation Sample 4, shows interprocess (source and target containers
are in separate processes) container support. You must start two copies of this
sample, drag4, to view the interprocess support.

The module dmsamp4.cpp contains the key logic for the drag4 sample. You can
find the following sample in the samples/ioc/drag4 directory:
// ...
/*———————————————————————————————————————
| CustomerItem::CustomerItem |
| |
| Constructor. |
———————————————————————————————————————*/
CustomerItem :: CustomerItem (const IDMItem::Handle& item) :

IDMCnrItem (item)
{

IString
rmf1 = IDMItem::rmfFrom(IDM::rmLibrary, IDM::rfSharedMem),
rmf2 = IDMItem::rmfFrom(IDM::rmDiscard, IDM::rfUnknown);

326 IBM Open Class: User Interface

/***/
/* Get pointer to the associated Customer container object */
/***/
Customer *pCustomer = (Customer *)object();
/***/
/* Build and set contents. We can only do this on the source */
/* side. Note that since we call this constructor on both source */
/* and target sides, we must distinguish them. That is done */
/* here by checking the “object” pointer. If this constructor was */
/* called from within our generateSourceItems, then this value */
/* will be non-zero. If called from with the template provider's */
/* provideTargetItemFor, then it will be zero. */
/***/
if (pCustomer)
{

IString
contents,
delim = '\x01';

contents += pCustomer->iconText() + delim;
contents += pCustomer->name() + delim;
contents += pCustomer->address() + delim;
contents += pCustomer->phone() + delim;
contents += pCustomer->iconId();
setContents(contents);
/***/
/* Add RMFs supported by this class (IDMCnrItem will have */
/* already specified the other RMFs we use) */
/***/
addRMF(rmf1);
addRMF(rmf2);

}
else
{

/***/
/* On target side, add in <rmLibrary,rfSharedMem> if source concurs */
/* (and it's not already in there)... */
/***/
if ((item->supportsRMF(rmf1)) &&

!(supportsRMF(rmf1)))
{

addRMF(rmf1);
}

}
}
/*———————————————————————————————————————
| CustomerItem::generateSourceItems |
| |
| Called to give CustomerItem opportunity to attach new CustomerItem's to the |
| argument IDMSourceOperation object. |
———————————————————————————————————————*/
bool CustomerItem :: generateSourceItems (IDMSourceOperation* pSrcOp)
{

/***/
/* Get generic container items. Note that we call the inherited */
/* function since it already has logic to deal with multi-selection, */
/* etc... */
/***/
bool result = Inherited::generateSourceItems(pSrcOp);
/***/
/* Now, replace each IDMCnrItem with a CustomerItem */
/***/
for (unsigned i = 1; i <= pSrcOp->numberOfItems(); i++)
{

pSrcOp->replaceItem(i, new CustomerItem(pSrcOp->item(i)));
}
/***/
/* Set stack3AndFade as the default image style and set the stacking */

Chapter 23. Direct Manipulation 327

/* percentage that is used to set the stacking offset as a percentage */
/* of the image size. */
/***/
pSrcOp->setImageStyle(IDM::stack3AndFade);
pSrcOp->setStackingPercentage(IPair(25, 25));
return(result);

}
/*———————————————————————————————————————
| CustomerItem::supportedOperationsFor |
| |
| Called when a CustomerItem is dropped on a target container. |
———————————————————————————————————————*/
unsigned long CustomerItem ::

supportedOperationsFor (const IString& rmf) const
{

if (rmf == IDMItem::rmfFrom(IDM::rmLibrary, IDM::rfSharedMem))
{

/***/
/* If using <rmLibrary,rfSharedMem> then only copy is supported */
/***/
return(IDMItem::copyable & supportedOperations());

}
/***/
/* Otherwise, whatever base class supports... */
/***/
return(Inherited::supportedOperationsFor(rmf));

}
/*———————————————————————————————————————
| CustomerItem::sourceDiscard |
| |
| Called when a CustomerItem is dropped on a Workplace Shell shredder. |
———————————————————————————————————————*/
bool CustomerItem :: sourceDiscard (IDMSourceDiscardEvent& event)
{

/***/
/* Remove the object from the container */
/***/
IContainerControl
*pCnr = (IContainerControl *)(event.sourceOperation()->sourceWindow());
IContainerObject
*pCnrObj = (IContainerObject *)(object());
pCnr->removeObject(pCnrObj);
return(true);

}
/*———————————————————————————————————————
| CustomerItem::targetDrop |
| |
| Called when a CustomerItem is dropped on a target container. |
———————————————————————————————————————*/
bool CustomerItem :: targetDrop (IDMTargetDropEvent& event)
{

bool result = true;
/***/
/* Check if using ICLUI shared memory rendering format */
/***/
IString myRMF = IDMItem::rmfFrom(IDM::rmLibrary, IDM::rfSharedMem);
if (selectedRMF() == myRMF)
{

/***/
/* Yes, construct new Customer object from passed data */
/***/
IString

contents = this->contents(),
delim = '\x01',
text = contents.subString(1, contents.indexOf(delim) - 1);

contents = contents.subString(contents.indexOf(delim) + 1);
IString

328 IBM Open Class: User Interface

name = contents.subString(1, contents.indexOf(delim) - 1);
contents = contents.subString(contents.indexOf(delim) + 1);
IString

addr = contents.subString(1, contents.indexOf(delim) - 1);
contents = contents.subString(contents.indexOf(delim) + 1);
IString

phone = contents.subString(1, contents.indexOf(delim) - 1),
iconId = contents.subString(contents.indexOf(delim) + 1);

IContainerControl *pCnr = event.container();
Customer *pNewCustomer = new Customer(text,

iconId.asUnsigned(),
name,
addr,
phone,
(MyWindow *)(pCnr->parent()));

/***/
/* ...and insert the new Customer object into the container */
/***/
pCnr->addObject(pNewCustomer);
/***/
/* Create an IDMItem::Handle */
/* */
/* Note: We must break this into 2 statements due to a bug in the */
/* IRefCounted class. If we use an initializer to create */
/* the handle, this sample will eventually trap due to the */
/* inability of the initializer to properly increment the */
/* drag item object use count: */
/* IDMItem::Handle thisHandle = this; //initializer form */
/* */
/* When we break the create into 2 statements, it takes the */
/* form of an assignment which does not have the problem. */
/***/
IDMItem::Handle thisHandle;
thisHandle = this;
/***/
/* Position the object within the container */
/***/
IPoint pos = targetOperation()->dropPosition(thisHandle, event);
pCnr->moveObjectTo(pNewCustomer,

0,
pCnr,
0,
pos);

}
else
{

/***/
/* Some other RMF, base class must support it */
/***/
result = Inherited::targetDrop(event);

}
return(result);

}
// ...

The Open Class Library’s shared memory rendering format provides the
interprocess support. The shared memory format uses a shared memory buffer to
transfer the container object data that is stored in the source item (using
IDMItem::setContents, called in the CustomerItem constructor) to the target item
where the data can be retrieved (using IDMItem::contents, called in
CustomerItem::targetDrop). Remember that the source item and target items are
in separate processes.

Chapter 23. Direct Manipulation 329

The sourceDiscard function demonstrates container object removal after the user
drops the object on the shredder or recycle bin. The supportedOperationsFor
function lets you determine which operation or operations a drag item supports
based upon the selected rendering mechanism and format. For example, you could
make the item IDMItem::copyable, as shown in the preceding example, if the
selected RMF is the Open Class Library shared memory RMF. For other RMFs, you
could let the drag item default to IDMItem::moveable.

The CustomerItem constructor is generally used to construct target items because it
is automatically called for target item construction when using the
IDMItemProviderFor template. However, this sample shows how to use it to
construct source items as well. The CustomerItem constructor uses the
IDMItem::object function to determine if a source or a target item is being
constructed. The call to replaceItem in the CustomerItem::generateSourceItems
function is the key, as it calls the constructor to create the source item.

The Direct Manipulation Sample 4 is found in samples/ioc/drag4 directory.

“Chapter 23. Direct Manipulation” on page 313
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

Direct Manipulation Sample 3
Direct Manipulation Sample 4
“Use Default Direct Manipulation” on page 316
“Use Rendering Mechanisms and Formats” on page 320
“Use Drag Item Types” on page 323
“Enable Direct Manipulation for an Entry Field or MLE” on page 324
“Set and Query the Drag Operation”
“Set the Target Emphasis” on page 331
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Set and Query the Drag Operation
The default operation for direct manipulation is IDMOperation::drag. The direct
manipulation target determines the type of operation (for example, move, copy, or
link) based upon the allowable operations defined by the item. However, you can
override this setting in a derived item’s IDMItem::generateSourceItems function
using IDMOperation::setOperation.

The target continually updates this setting, which can be dynamically manipulated
using the keyboard augmentation keys. It can be queried using the
IDMOperation::operation function.

If the direct manipulation source needs to determine which operation occurred at
the target, the operation can be queried using the IDMSourceOperation::operation
function. This is sometimes required in a derived item’s IDMItem::sourceEnd
function override.

For example, you could distinguish a move from a copy operation so you remove
the object from the source if you were performing a move operation

330 IBM Open Class: User Interface

“Chapter 23. Direct Manipulation” on page 313
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Use Default Direct Manipulation” on page 316
“Use Rendering Mechanisms and Formats” on page 320
“Use Drag Item Types” on page 323
“Enable Direct Manipulation for an Entry Field or MLE” on page 324
“Enable Direct Manipulation for a Container” on page 325
“Set the Target Emphasis”
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Set the Target Emphasis
The IDMTargetEvent::presSpace and IDMTargetEvent::releasePresSpace functions
are defined to assist IDMTargetEnterEvent, IDMTargetLeaveEvent, and
IDMTargetDropEvent events in the drawing and removal of target emphasis. You
must use these functions to acquire and release the presentation space that is used
to draw target emphasis. IWindow::presSpace and IWindow::releasePresSpace do
not work. The drag2 sample contains a simple implementation of target emphasis
support.

“Chapter 23. Direct Manipulation” on page 313
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Use Default Direct Manipulation” on page 316
“Use Rendering Mechanisms and Formats” on page 320
“Use Drag Item Types” on page 323
“Enable Direct Manipulation for an Entry Field or MLE” on page 324
“Enable Direct Manipulation for a Container” on page 325
“Set and Query the Drag Operation” on page 330
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Add Images to Drag Items
When you drag an object, a visual image is displayed for that object. The Open
Class Library provides default system images, or you can change the image style
and provide your own images.

To change the drag image style, use the IDMSourceOperation::setImageStyle
member function. We recommend that you call setImageStyle from the
IDMItem::generateSourceItems member function of the application’s derived item
class.

The following table describes the IDMImage enumerated types and the steps you
must take to use them:

Chapter 23. Direct Manipulation 331

IDMImage Enumeration Description What to code

systemImages If one item is dragged, the
ISystemPointerHandle::singleFile
icon is used. For more than
one item, the
ISystemPointerHandle::multipleFile
icon is used. Any images
supplied with drag items are
ignored.

Default

allStacked Shows each image provided
in each drag item. If no
images are specified, system
images are used.

Attach IDMImage objects to
each IDMItem object

stack3AndFade Shows the first three images
provided in the drag items
and then shows a special
icon that looks like the rest
of the images fading out.
This is optimal when the
user can drag more than
three items. If no images are
specified, system images are
used.

Attach IDMImage objects to
three IDMItem objects.

You can use the IDMSourceOperation::setStackingPercentage member function to
define the stacking percentage used to calculate the placement of the next stacked
image when the image style, IDM::stack3AndFade or IDM::allStacked, is specified.
By default, the percentage for both the x- and y- axis is defined as 50 percent of
the current image’s size, which results in the placement of the origin (bottom
left-hand corner for OS/2 applications) of the next image in the center of the
current image. The placement of the first image is determined by the position of
the mouse pointer. The default direction of stacking is toward the upper right.
Increase the stacking percentage to expand the stacking of images, and conversely,
decrease the stacking percentage to compress the stacking of images. Also, you can
alter the direction of stacking using negative percentages as shown below:
IDMSourceOperation::setStackingPercentage(IPair(x, y)); //stacking direction is upper right
IDMSourceOperation::setStackingPercentage(IPair(-x, y)); //stacking direction is upper left
IDMSourceOperation::setStackingPercentage(IPair(-x, -y)); //stacking direction is lower left
IDMSourceOperation::setStackingPercentage(IPair(x, -y)); //stacking direction is lower right

Here, x is the stacking percentage for the x-axis and y is the stacking percentage
for the y-axis.

You can set this function only once per each drag operation.

The drag4 sample contains a simple illustration of the use of the
IDMSourceOperation::setStackingPercentage function.

You can attach IDMImage objects to IDMItem objects by using the
IDMItem::setImage member function in the following:
v The constructor of the derived item object
v The implementation of the IDMItem::generateSourceItems member function

The following example adds the text I-beam pointer as an image to a derived
IDMItem in its constructor:

332 IBM Open Class: User Interface

MyItem::MyItem (IDMSourceOperation* pIDMSrcOp)
{
IDMImage image = IDMImage(ISystemPointerHandle(

ISystemPointerHandle::text));
setImage(image);
}

Drag Image Resources for stack3AndFade
When you use the IDMItem::stack3AndFade enumerated type, the Open Class
Library uses a fade icon that looks like the images are fading out. This icon is one
of many resources that the IBM Open Class provides for you. To package this
resource in your application, refer to Package and Distribute an IBM Open Class
Application.

“Chapter 23. Direct Manipulation” on page 313
IBM Open Class Libraries, Headers and Conventions
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Use Default Direct Manipulation” on page 316
Package and Distribute an IBM Open Class Application
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Chapter 23. Direct Manipulation 333

334 IBM Open Class: User Interface

Chapter 24. Multimedia Devices

A multimedia application that integrates text and graphics with a combination of
audio, motion video, images, and animation makes your application more
attractive to the user, easier to use, and offers better mapping to real world objects.

You can use the window control classes and multimedia classes to implement an
interface for your application that looks like the controls of common electronic
devices, such as stereo components and video cassette recorders (VCRs). Your
application can use these controls as interfaces to control audio and video media
that is presented to the user.

Keep in mind user expectations when you create your user interface. Mapping
your user interface to the mental image the user has of real-world devices greatly
enhances the ease of use of your product. For instance, most users are familiar
with the play, stop, pause, fast forward, and reverse controls of an audio cassette
recorder.

To use the multimedia classes, ensure that your working environment meets the
following requirements:

Multimedia Task Hardware Required

Using MIDI, audio classes, or software
motion video sound

Windows or OS/2-supported sound card

Using CDXA or AudioCD CDROM (OS/2 only)

Hearing any sounds (CD or otherwise) Speakers or headphones

Recording audio Microphone

A medium is a carrier of information. A multimedia computer system is one that is
capable of input or output on more than one medium. With the new class of
computers, information in virtually any format can be combined into multimedia
presentations.

Multiple types of input allow the user to interact with the computer in a style that
best suits the information to be communicated, thus relieving overloaded input
channels, such as a keyboard, mouse, or microphone.

Output information can be presented in a variety of formats. Typically, output
implies a computer display, video, or audio. Video has the potential to hold
people’s interest and illustrate concepts better than static images. Audio and
speech contribute a unique quality to the multimedia system and can increase the
information’s content.

Multimedia Device Classes
The Open Class Library supports audio adapters, CD-ROM drives, video-disc
players, logical devices, amplifier-mixers, and other hardware devices as media

© Copyright IBM Corp. 1998, 2000 335

devices. These media devices are abstracted into classes that contain the data and
functions essential for the operation of the real-world devices that they model.

The classes you define for your application combine the capabilities of several
classes. Before defining the objects your application needs, choose real-world
models that the user knows how to manipulate for the interfaces. You can then use
the appropriate Open Class Library multimedia classes that provide the
corresponding functions.

The base device classes let you create multimedia devices for your application. The
following table lists the base classes and refers to the appropriate sections
describing the multimedia devices. In addition, these sections describe how to use
the devices.

You can directly instantiate device objects from the following classes:

Device Class

Audio amplifier-mixer IMMAmpMixer

CD audio player IMMAudioCD

CD Extended-Architecture player IMMCDXA

Digital video player IMMDigitalVideo

Master audio IMMMasterAudio

MIDI sequencer IMMSequencer

Waveform audio player IMMWaveAudio

Abstract Device Classes
Common functions for devices are made available through abstract device classes.
That is, abstract device classes allow inheriting classes to reuse common functions.
Note that you cannot instantiate objects from these classes. The following sections
describe the multimedia base class and abstract device classes. The multimedia
base class (IMMDevice) is the parent class for the family of multimedia classes,
including the base device classes and the other abstract classes.

Device Purpose

IMMPlayableDevice Used for many tasks, such as playing,
pausing, and seeking.

IMMFileMedia Used for devices that work with files.

IMMRecordable Records, saves, cuts, pastes, allows undo,
allows redo, saves-as.

IMMRemovableMedia Opens and ejects media; unlocks and locks
doors.

Base Functions for Multimedia
All of the multimedia device classes inherit from the IMMDevice class. This
abstract class contains all of the common functions for device objects. These
functions include the following:
v Querying the capabilities of a device
v Opening and closing devices
v Changing the speed and time formats
v Changing the audio (on or off)

336 IBM Open Class: User Interface

v Controlling the volume

Playable Device
Objects are usually instantiated from this class in applications that manage
different types of devices (such as a VCR and CD remote). You do not create an
actual device, rather the instantiated object is used to point to a device a user
wants to activate (such as a video player).

An object instantiated from IMMPlayableDevice is capable of performing tasks that
a home device does to play such media as CDs or video tapes. In addition to the
common device functions, such as play, pause, and seek for devices that support
playback, IMMPlayableDevice objects are able to perform resume, stop, and query
position and length operations.

When using the multimedia classes on the Windows operating system, for audio
and video devices you need to load the appropriate file before using any functions
on those devices. Otherwise, an exception is thrown.

Audio Devices
Audio input and output is usually in the form of wave or MIDI files.

There is a distinction between sound and music; while it might not be distinctive
to a radio, it is to a computer. Sound, such as the sound in wave files, is basically
just digitized data that a computer cannot process. Your system plays whatever is
in a wave file out to your speakers. By comparison, music, such as the music in
MIDI files, is actual information.

MIDI Concepts
MIDI is a standardized set of data blocks or “messages” that instructs any
MIDI-compatible sound source as to which notes to play. Rather than representing
actual sound recordings, as a file of digitized audio does, a MIDI file merely
describes what notes to play and includes settings for the sound or instrument,
duration, stereo pan position (how far left or right), and volume.

A MIDI file is comprised of variable-length chunks. There are two types of chunks:
a header chunk and one or more track chunks. The number of chunks are defined
in the header. A MIDI event can be one of a number of things. It can be a message
that turns a particular note on or off, that changes the voice being played by a
particular channel, or that defines something about the piece being played.

When you create multimedia applications that play instrumental music, handle it
with MIDI (music) rather than digitized audio files (sound). The relative size of the
files involved is one of the best arguments for doing so. Compact discs (CDs) are
common and hold large amounts of information.

Digital synthesis methods, either FM or wavetable playback, are customarily
driven by MIDI.

MIDI files have the extension .mid and deliver more music per byte than other
formats. MIDI files are comparable in size to ASCII text files, while the other music
and sound formats (for example, wave) are comparable to color bitmaps. A digital
audio recording of a musical instrument performance can consume large amounts
of storage; a MIDI file describing that same performance can take only a kilobyte
(K) or two. Wave and CD audio files can sometimes be too big to distribute easily,
whereas MIDI files are smaller. Compare 5 minutes of sound in a MIDI file to a 20

Chapter 24. Multimedia Devices 337

MB-wave file. The MIDI file takes about 10K of storage whereas the wave file takes
20 MB. There is a noticeable difference with your application’s performance.

MIDI files do not support voice or words. The main role for MIDI in multimedia is
music composition and production. Once the music is recorded, it can be played
on a high-end synthesizer and recorded in wave or CD-audio formats.

Waveform Concepts
Waveform refers to a digital representation of an original audio sound wave. Audio
refers to sound waves that have a perceived effect on the human ear.

Digital recordings offer more consistency than MIDI files. A CD recording of music
sounds virtually the same on any CD player you use, but a MIDI musical file
could sound like, for instance, a French horn on one synthesizer and a kazoo on
another. The sound depends on the quality of the sound card. However, MIDI
music typically sounds cleaner, more realistic, and more professional than the
digital recording, especially if you do not have a sound studio to record your
tracks.

Wave files have the extension .wav and contain analog sound that has been
recorded digitally. The pieces of sound are usually sampled sound stored as data.
An analog-to-digital converter creates sampled sound. A wave file can reproduce
sound with anything from telephone to compact disc quality in monaural or stereo
under computer control.

“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Create Master Devices”
“Play Audio Compact Discs” on page 340
“Create Audio Devices” on page 354
“Create Video Devices” on page 378
“Add Animated Buttons and Circular Sliders” on page 385
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Create Master Devices

The master volume control determines the maximum volume level of all audio
output devices in the system. It sets a scale by which all subsequent volume
commands are based. For instance, if the volume control sets the master volume at
50 percent, then all volume levels are cut in half.

Use the IMMMasterAudio class to create a master audio object. The master audio
object has functions that do the following:
v Returns the current or saved setting of headphones, speakers, and master

volume.
v Saves the current setting of headphones, speakers, and master volume.

338 IBM Open Class: User Interface

v Sets the headphones and speakers on or off.
v Sets the master volume to a percent of the total volume available.

We recommend that you do not use a master volume control in your application
unless it absolutely requires you to do so. This control affects all volumes in your
system. One scenario that is appropriate for using a master volume control is when
you are using the amplifier-mixer device class to control a complete system. In this
case, you want to control all volume in the system.

Creating Amplifier-Mixer Devices (IMMAmpMixer)
The visuals and functions of the amplifier-mixer device are similar to the
amplifier-mixer device on your home stereo system. Components are plugged into
the amplifier-mixer so that audio signals can be transferred to a pair of attached
speakers, headphones, or another device. The amplifier-mixer is the center of all
audio signals and provides input or output switching and sound-shaping services,
such as volume, treble, or base control.

Use the IMMAmpMixer class to create an amplifier-mixer device. Its specific
functions include the following:
v Controlling the balance, bass, treble, gain, and pitch of a signal
v Connecting other devices that need the above functions to the amplifier-mixer
v Turning off and on the sound that is routed through the amplifier-mixer to

another device

Creating CD Audio Player Devices (IMMAudioCD)
The CD audio player device’s interface should look and function similarly to your
home CD system as it uses the same meduim, the compact disk.

A compact disc can store up to 74 minutes of 44.1-kilohertz, two-channel audio
encoded as digital information. The audio compact disc, or the audio portion with
both data and audio on it, is organized as tracks, where one track is typically one
song. A track can be any length you want it to be, as long as it fits in the length of
the disc. The length of a compact disc track is measured in minutes, seconds, and
frames, where one frame is 1/75 second. It is possible to play portions of a track,
starting and stopping within the accuracy of a single frame. While an application
can play portions of a track, the amount of time required to seek from one track to
another and locate the starting frame in question can be substantial; it can vary
depending on where you are starting from. If your application calls for playing
numerous sounds from a CD with precise timing, make sure they are located
physically close together on the disc.

In addition to playing tracks, you can find out things about a CD, such as how
many tracks it contains and how long each track is, or you can query a CD’s table
of contents.

The CD device class, IMMAudioCD, provides access to devices that read CDs in
order to play a compact disc’s digital audio data. This data format, which is digital
audio, consists of sound that has been recorded as a sequence of 1’s and 0’s. A
digital-to-analog converter recreates the original waveforms at playback.

You can perform the following functions with the IMMAudioCD class:
v Playing
v Scanning
v Tracking
v Querying a CD’s table of contents

Chapter 24. Multimedia Devices 339

v Querying a UPC code or country code (a UPC code is a serial number that is
assigned to a disc)

v Setting up to play a particular song automatically
v Forwarding or reversing to a particular track
v Forwarding or reversing to a particular location (for example, 2 minutes into

track 3)

Also useful is the ability to program the order in which a CD plays its tracks.
Using the IProfile class, you can record in a file the song title or track information.
The IMMAudioCD object loads the profile data and plays the CD based on the
contents of the data. This might be useful in a CD store, where a system allows
you to listen to CDs, traversing through the various tracks in six minutes.

You can use the following command to create a CD device object:
#include <immcdda.hpp> // Define the header file
IMMAudioCD cdPlayer; // Define the object
cdPlayer(true); // Pass true to the device constructors so

// the devices are opened and no additional
// function calls are made before using
// the device.

“Chapter 24. Multimedia Devices” on page 335
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Play Audio Compact Discs”
“Create Audio Devices” on page 354
“Create Video Devices” on page 378
“Add Animated Buttons and Circular Sliders” on page 385
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Play Audio Compact Discs

The interface for accessing and playing CDs should look very similar to what you
are used to on your home system. It should allow you to scan, play, stop, pause,
and reverse. The IMMAudioCD class works only on discs that contain CD_DA
tracks.

The application must ensure that the appropriate compact disc is in the CD drive.
For example, a CD player application might simply update its track and time
displays if a new disc is inserted and verified. If you try to open an IMMAudioCD
object and there is not an audio CD in the CD-ROM drive, then the application
sends a message that the medium is not valid. A CD-drive can only be accessed by
one player at a time. An example of designing a user interface with a player panel
containing a CD player device follows.
1. Define the device in the header file as follows. This excerpt is from the

samp5.hpp file:

340 IBM Open Class: User Interface

class CD : public IMultiCellCanvas,
public ICommandHandler,
public IObserver,
public ISliderArmHandler,
public ISelectHandler

{
public:

CD(unsigned long windowid,
IWindow* parent,
IWindow* owner);

xCD();
protected:

virtual bool
command (ICommandEvent& event),
selected(IControlEvent& event),
moving (IControlEvent& event);

virtual IObserver
&dispatchNotificationEvent(const INotificationEvent&);

private:
IMMAudioCD

cdPlayer;
IMMPlayerPanel

baseButtons;
IAnimatedButton

trackF,
trackB,
scanF,
scanB,
eject;

ICircularSlider
volume;

IStaticText
name,
readout;

IRadioButton
doorOpen,
doorClosed;

IMMAmpMixer
*pAmpMixer;

};

The class CD inherits from five classes:
v The IMultiCellCanvas class allows you to arrange the push buttons, dials,

and other controls on the application.
v The ICommandHandler class lets you process commands created when the

user presses one of the push buttons such as Track Reverse or Eject. To
process these events you override the virtual function
ICommandHandler::command.

v The IObserver class enables the application to be notified of the behavior of
the CD so that you can keep track of the current track or time elapsed. To
handle notifications you override the virtual function
IObserver::dispatchNotificationEvent.

v The ISliderArmHandler allows you to process events generated when the
user turns the volume dial. To process these events you override the virtual
function ISliderArmHandler::moving.

v The ISelectHandler class lets you handle events that occur when a user
selects one of the radio buttons that opens or closes the CD drive. To handle
these events you override the virtual function ISelectHandler::selected.

Chapter 24. Multimedia Devices 341

The IMMPlayerPanel class provides you with rewind, stop, pause, play, and
fast forward buttons. Not only does this class create buttons and organize
them, it also makes the actual function call for the button.

The IMMAmpMixer class lets you adjust the volume of the CD player in this
example. This class is similar to a home stereo amplifier and mixer. You connect
devices such as the CD player to IMMAmpMixer so that audio signals can be
transferred to speakers or another device.

2. Create the device as follows. This excerpt is from the samp5.cpp file:
CD::CD(unsigned long windowid,

IWindow* parent,
IWindow* owner)

: IMultiCellCanvas(windowid,parent,owner),
readout (READOUTID, this,this),
name (CDNAMEID, this, this),
baseButtons (BASEBUTTONID, this,this, IMMDevice::audioCD),
trackF (TRACKFID,&baseButtons,&baseButtons,IRectangle(),

IWindow::visible |
IAnimatedButton::animateWhenLatched),

trackB (TRACKBID,&baseButtons,&baseButtons,IRectangle(),
IWindow::visible |
IAnimatedButton::animateWhenLatched),

scanF (SCANFID,&baseButtons,this,IRectangle(),
ICustomButton::autoLatch |
ICustomButton::latchable |
IWindow::visible |
IAnimatedButton::animateWhenLatched),

scanB (SCANBID,&baseButtons,this,IRectangle(),
ICustomButton::autoLatch |
ICustomButton::latchable |
IWindow::visible |
IAnimatedButton::animateWhenLatched),

eject (EJECTID,this,this,IRectangle(),
ICustomButton::autoLatch |
IWindow::visible |
IAnimatedButton::animateWhenLatched),

volume (VOLID, this, this, IRectangle(),
ICircularSlider::defaultStyle() |
ICircularSlider::proportionalTicks),

doorOpen (OPENBTN, this, this, IRectangle(),
IRadioButton::defaultStyle() |
IControl::group),

doorClosed(CLOSEDBTN, this, this),
cdPlayer(),
pAmpMixer(0)

{
// Allow the CD to play without a connector.
cdPlayer.enableConnector(IMMDevice::cdStream);
// Allow the CD to send events
// to handleNotificationEvent
cdPlayer.enableNotification();
// Add the additional button to the player panel.
baseButtons.setPlayableDevice(&cdPlayer);
baseButtons.addToCell(&trackB , 7, 1, 1, 1);
baseButtons.addToCell(&trackF , 8, 1, 1, 1);
baseButtons.addToCell(&scanB , 10, 1, 1, 1);
baseButtons.addToCell(&scanF , 11, 1, 1, 1);
// Put the bitmaps on the buttons.
trackB.setBitmaps(IAnimatedButton::trackReverse);
trackF.setBitmaps(IAnimatedButton::trackAdvance);
scanB.setBitmaps(IAnimatedButton::scanBackward);
scanF.setBitmaps(IAnimatedButton::scanForward);
eject.setBitmaps(IAnimatedButton::eject);
// Put text on the buttons. The \n cause the text to be
// on a new line.

342 IBM Open Class: User Interface

trackB.setText(“Track\nReverse”);
trackF.setText(“Track\nAdvance”);
scanB.setText(“Scan\nBackward”);
scanF.setText(“Scan\nForward”);
eject.setText(“Eject”);
doorOpen.setText(“Open door”);
doorClosed.setText(“Close door (if possible)”);
doorOpen.select();
//Set up the title
name.setText(“CD Player”);
//Set up the display
readout.setText(“TRACK 00 MIN:SEC 00:00”);
readout.setLimit(24);
volume.setArmRange (IRange(0,100));
volume.setRotationIncrement(10);
volume.setText (“Volume”);
volume.setValue(100);
cdPlayer.setVolume(100);
pAmpMixer = new IMMAmpMixer(cdPlayer.connectedDeviceId(IMMDevice::cdStream));
pAmpMixer->enableMonitoring();
pAmpMixer->setCloseOnDestroy(false);
//Add the controls to the multicell
addToCell (&name, 2, 1, 4, 1);
addToCell (&readout, 2, 3, 4, 1);
addToCell (&doorOpen, 2, 5, 4, 1);
addToCell (&doorClosed, 2, 6, 4, 1);
addToCell (&volume, 4, 7);
addToCell (&baseButtons, 4, 9);
addToCell (&eject, 2, 9);
setColumnWidth (5, 0, true);
ISelectHandler::handleEventsFor(this);
ICommandHandler::handleEventsFor(this);
IObserver::handleNotificationsFor(cdPlayer);
ISliderArmHandler::handleEventsFor(&volume);

}

3. Handle the CD track and scan buttons. Call the following function in the CD
constructor to start handling events generated from the CD track and scan
buttons:

ICommandHandler::handleEventsFor(this);

Afterwards, override the ICommandHandler::command virtual function to
process these events. The following code is from samp5.cpp:
bool CD::command(ICommandEvent& evt)
{

bool
rv = false;

switch (evt.commandId())
{
case TRACKBID:

cdPlayer.trackBackward();
rv=true;
break;

case TRACKFID:
cdPlayer.trackForward();
rv=true;
break;

case SCANFID:
if (scanF.isLatched())

cdPlayer.startScanningForward();
else

cdPlayer.stop();
rv=true;
break;

case SCANBID:
if (scanB.isLatched())

Chapter 24. Multimedia Devices 343

cdPlayer.startScanningBackward();
else

cdPlayer.stop();
rv=true;
break;

case EJECTID:
if (cdPlayer.isMediaPresent())

cdPlayer.openDoor();
else
{

cdPlayer.closeDoor();
if (cdPlayer.isMediaPresent())
eject.unlatch();

}
rv = true;
break;

}
return rv;

}

The following member functions from IMMAudioCD (unless otherwise stated)
control the CD drive:

Function Description

trackBackward Moves the current position backwards the
passed-in number of tracks.

trackForward Moves the current position forwards the
passed-in number of tracks.

startScanningForward Causes the audio CD device to search
forward at high speed.

startScanningBackward Causes the audio CD device to search
backward at high speed.

stop Stops playback and backward or forward
scanning of the CD.

IMMRemovableMedia
::isMediaPresent

Returns true if media is inserted in the
device. Otherwise, it returns false.

IMMRemovableMedia
::openDoor

Opens the door and ejects the tray, if
possible.

IMMRemovableMedia
::closeDoor

Retracts the tray and closes the door, if
possible.

4. Handle the notification events from the operation of the CD to update current
track number and elapsed time. Call the following functions in the CD
constructor to enable the IObserver::dispatchNotificationEvent function to
process notifications from cdPlayer:

cdPlayer.enableNotification();
IObserver::handleNotificationsFor(cdPlayer);

To process these events override dispatchNotificationEvent. The following
excerpt is from samp5.cpp:
IObserver& CD::dispatchNotificationEvent(const INotificationEvent& event)
{

if (event.notificationId() == IMMAudioCD::positionTimerId)
{

IMMTrackMinSecFrameTime* time = (IMMTrackMinSecFrameTime*)(event.eventData().asUnsignedLong
readout.setText(IString(“TRACK ”) +

IString(time->track()).rightJustify(2,'0') +
IString(“ MIN:SEC ”) +

344 IBM Open Class: User Interface

IString(time->minutes()).rightJustify(2,'0') +
IString(“:”) +
IString(time->seconds()).rightJustify(2,'0'));

}
else if (event.notificationId() == IMMAudioCD::trackStartedId)
{

IMMTrackMinSecFrameTime* time = (IMMTrackMinSecFrameTime*)(event.eventData().asUnsignedLo
readout.setText(IString(“TRACK ”) +

IString(time->track()).rightJustify(2,'0') +
IString(“ MIN:SEC ”) +
IString(time->minutes()).rightJustify(2,'0') +
IString(“:”) +
IString(time->seconds()).rightJustify(2,'0'));

}
return *this;

}

The notification identifiers positionTimerId and trackStartedId are sent
whenever the position of the CD changes or the track of the CD changes,
respectively. The IMMTrackMinSecFrameTime class is a data type that
represents the tracks-minutes-seconds-frames time format.

5. Handle the volume slider events. Call the following function in the CD
constructor to process events generated when the user turns the volume dial.

ISliderArmHandler::handleEventsFor(&volume);

To process these events override the virtual function
ISliderArmHandler::moving. The following excerpt is from samp5.cpp:
bool CD::moving(IControlEvent& evt)
{

bool
result = false;

ICircularSlider
pSld = (ICircularSlider)(evt.controlWindow());

short
val = pSld->value();

switch(evt.controlId())
{

case VOLID:
pAmpMixer->setVolume(val);
result = true;
break;

}
return result;

}

The IMMDevice::setVolume function sets the volume of the audio channel for
the device, where 0 is the least amount of volume and 100 is the most amount
of volume.

6. Handle the radio buttons to open and close the CD drive. Call the following
function in the CD constructor to start handling events created from the radio
buttons:

ISelectHandler::handleEventsFor(this);

To process these events override the ISelectHandler::selected virtual function.
The following excerpt is from samp5.cpp:
bool CD::selected(IControlEvent& evt)
{

bool
rv = false;

switch(evt.controlId())
{

Chapter 24. Multimedia Devices 345

case OPENBTN:
// enable open cd
cdPlayer.openDoor();
rv = true;
break;

case CLOSEDBTN:
// close cd
cdPlayer.closeDoor();
rv = true;
break;

}
return rv;

}

The following figure from OS/2 shows this audio CD example. Note that the track
information is displayed on the top part of the interface. The open and closed
radio buttons control the CD door.

You can find the source of this example in the following files:
v samp5.cpp
v samp5.h
v samp5.hpp

Using a MIDI Sequencer Device (IMMSequencer)
A sequencer device plays a MIDI file by sending commands to a synthesizer where
the commands are converted to the sounds of a specific musical instrument. The
sequencer uses the timing commands to sequence the playing of the music.

Music devices with a sequencer, such as a Casio keyboard or a drum machine (a
machine that reproduces percussion sounds), can record what is being played and
can play what has been recorded previously. This recording is called a sequence.
This sequence of music notes is stored in the MIDI format.

A sequencer is personal computer software that allows you to record, edit, and
arrange multiple tracks of MIDI data. Most sequencers let you edit the messages in
a sequence and link different sequences stored in memory. This finished sequence,
ready for playback, is called a song. If you do not want to manipulate songs
already recorded with a sequencer, you can also create original songs. A sequencer
lets you record any style of music you want.

346 IBM Open Class: User Interface

The MIDI sequencer device plays a MIDI song by sending commands from a MIDI
file to a synthesizer where the commands are converted to the sounds of specific
instruments. The IMMSequencer class is the base class for handling a MIDI
sequencer device, and it supports the MIDI standard. Thus, the sequencer controls
the characteristics of the MIDI information. In addition to allowing you to load
MIDI files, the IMMSequencer class inherits all of the main functions, such as play,
stop, pause, and record.

You can use the following command to create a MIDI sequencer object:
// Define the header file
#include <immsequ.hpp>
// Define the object
IMMSequencer midiPlayer;
// Pass true to the device constructors so
// the devices are opened and no additional
// functions calls are made before using the
// device.
midiPlayer(true);

Using a Waveform Audio Player Device (IMMWaveAudio)
The waveform audio device allows an application to play or record digital audio
using files or application memory. Waveform audio devices require some form of
input, that is, a file. The file contains the actual sound or waveform. The device
can be opened with or without a file. If it is opened without a file, then a file is
typically loaded later.

This device can use files or memory buffers. Buffering data improves performance
of multimedia applications that perform numerous file input and output
operations when accessing media devices. Applications that are
performance-sensitive (that is, slow machines) can optimize file input and
performance by buffering their data. If the data is already in the memory buffer,
the operating system can transfer the record to the application’s area without
reading the sector from disk.

An object instantiated from IMMWaveAudio is capable of performing many tasks
with a sound file. It can edit, play back, and record to name a few. In addition, the
object inherits up the chain for the functions of play, stop, pause, and setFormat,
plus cut, copy, and paste to, and from a memory buffer.

You can use the following command to create a waveform audio device object:
// Define the header file
#include <immwave.hpp>
// Define the object
IMMWaveAudio wavePlayer;
// Pass true to the device constructors so
// the devices are opened and no additional
// functions calls are made before using
// the device.
wavePlayer(true);

“Chapter 24. Multimedia Devices” on page 335
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

Chapter 24. Multimedia Devices 347

“Create Master Devices” on page 338
“Create Audio Devices” on page 354
“Create Video Devices” on page 378
“Add Animated Buttons and Circular Sliders” on page 385
“File: samp5.cpp”
“File: samp5.h” on page 352
“File: samp5.hpp” on page 353
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Audio CD Example

File: samp5.cpp

This example is for Windows or OS/2.
#include “samp5.hpp”
#include “samp5.h”
#include <imsgbox.hpp>
/**
* main *
* - Application entry point. *
**/
int main()
{

try
{
MainWindow mainWindow(WINDOWID); //Create our main window on the desktop
IApplication::current().run(); //Get the current application and
} // run it
catch (IException& exc)
{

IMessageBox msgBox(IWindow::desktopWindow());
msgBox.setTitle(“No Multimedia”);
msgBox.show(“Incompatible multimedia.”,

IMessageBox::okButton |
IMessageBox::errorIcon);

}
return 0;

}
/**
* Class MainWindow :: MainWindow *
**/
MainWindow::MainWindow(unsigned long windowId)

: IFrameWindow(“Audio CD Example”,windowId),
clientCanvas(CLIENTCANVASID,this,this)

{
cd = new CD (CD_ID, &clientCanvas, this);
setBackgroundColor(IColor(IColor::kPaleGray));
IFont(“Helv”,8).setWindowFont(this);
sizeTo(ISize(600, 300));
setClient(cd);
clientCanvas.setDeckOrientation(ISetCanvas::vertical);
show();
setFocus();

}
/**
* Class MainWindow :: xMainWindow *
**/
MainWindow::xMainWindow()
{

348 IBM Open Class: User Interface

if (cd)
delete cd;

}
/**
* Class CD :: CD *
**/
CD::CD(unsigned long windowid,

IWindow* parent,
IWindow* owner)

: IMultiCellCanvas(windowid,parent,owner),
readout (READOUTID, this,this),
name (CDNAMEID, this, this),
baseButtons (BASEBUTTONID, this,this, IMMDevice::audioCD),
trackF (TRACKFID,&baseButtons,&baseButtons,IRectangle(),

IWindow::visible |
IAnimatedButton::animateWhenLatched),

trackB (TRACKBID,&baseButtons,&baseButtons,IRectangle(),
IWindow::visible |
IAnimatedButton::animateWhenLatched),

scanF (SCANFID,&baseButtons,this,IRectangle(),
ICustomButton::autoLatch |
ICustomButton::latchable |
IWindow::visible |
IAnimatedButton::animateWhenLatched),

scanB (SCANBID,&baseButtons,this,IRectangle(),
ICustomButton::autoLatch |
ICustomButton::latchable |
IWindow::visible |
IAnimatedButton::animateWhenLatched),

eject (EJECTID,this,this,IRectangle(),
ICustomButton::autoLatch |
IWindow::visible |
IAnimatedButton::animateWhenLatched),

volume (VOLID, this, this, IRectangle(),
ICircularSlider::defaultStyle() |
ICircularSlider::proportionalTicks),

doorOpen (OPENBTN, this, this, IRectangle(),
IRadioButton::defaultStyle() |
IControl::group),

doorClosed(CLOSEDBTN, this, this),
cdPlayer(),
pAmpMixer(0)

{
// Allow the CD to play without a connector.
cdPlayer.enableConnector(IMMDevice::cdStream);
// Allow the CD to send events
// to handleNotificationEvent
cdPlayer.enableNotification();
// Add the additional button to the player panel.
baseButtons.setPlayableDevice(&cdPlayer);
baseButtons.addToCell(&trackB , 7, 1, 1, 1);
baseButtons.addToCell(&trackF , 8, 1, 1, 1);
baseButtons.addToCell(&scanB , 10, 1, 1, 1);
baseButtons.addToCell(&scanF , 11, 1, 1, 1);
// Put the bitmaps on the buttons.
trackB.setBitmaps(IAnimatedButton::trackReverse);
trackF.setBitmaps(IAnimatedButton::trackAdvance);
scanB.setBitmaps(IAnimatedButton::scanBackward);
scanF.setBitmaps(IAnimatedButton::scanForward);
eject.setBitmaps(IAnimatedButton::eject);
// Put text on the buttons. The \n cause the text to be
// on a new line.
trackB.setText(“Track\nReverse”);
trackF.setText(“Track\nAdvance”);
scanB.setText(“Scan\nBackward”);
scanF.setText(“Scan\nForward”);
eject.setText(“Eject”);

Chapter 24. Multimedia Devices 349

doorOpen.setText(“Open door”);
doorClosed.setText(“Close door (if possible)”);
doorOpen.select();
//Set up the title
name.setText(“CD Player”);
//Set up the display
readout.setText(“TRACK 00 MIN:SEC 00:00”);
readout.setLimit(24);
volume.setArmRange (IRange(0,100));
volume.setRotationIncrement(10);
volume.setText (“Volume”);
volume.setValue(100);
cdPlayer.setVolume(100);
pAmpMixer = new IMMAmpMixer(cdPlayer.connectedDeviceId(IMMDevice::cdStream));
pAmpMixer->enableMonitoring();
pAmpMixer->setCloseOnDestroy(false);
//Add the controls to the multicell
addToCell (&name, 2, 1, 4, 1);
addToCell (&readout, 2, 3, 4, 1);
addToCell (&doorOpen, 2, 5, 4, 1);
addToCell (&doorClosed, 2, 6, 4, 1);
addToCell (&volume, 4, 7);
addToCell (&baseButtons, 4, 9);
addToCell (&eject, 2, 9);
setColumnWidth (5, 0, true);
ISelectHandler::handleEventsFor(this);
ICommandHandler::handleEventsFor(this);
IObserver::handleNotificationsFor(cdPlayer);
ISliderArmHandler::handleEventsFor(&volume);

}
/**
* Class CD :: xCD *
**/
CD::xCD()
{

cdPlayer.stop();
delete pAmpMixer;

}
/**
* Class CD :: moving *
**/
bool CD::moving(IControlEvent& evt)
{

bool
result = false;

ICircularSlider
pSld = (ICircularSlider)(evt.controlWindow());

short
val = pSld->value();

switch(evt.controlId())
{

case VOLID:
pAmpMixer->setVolume(val);
result = true;
break;

}
return result;

}
/**
* Class CD :: command *
**/
bool CD::command(ICommandEvent& evt)
{

bool
rv = false;

switch (evt.commandId())
{

350 IBM Open Class: User Interface

case TRACKBID:
cdPlayer.trackBackward();
rv=true;
break;

case TRACKFID:
cdPlayer.trackForward();
rv=true;
break;

case SCANFID:
if (scanF.isLatched())

cdPlayer.startScanningForward();
else

cdPlayer.stop();
rv=true;
break;

case SCANBID:
if (scanB.isLatched())

cdPlayer.startScanningBackward();
else

cdPlayer.stop();
rv=true;
break;

case EJECTID:
if (cdPlayer.isMediaPresent())

cdPlayer.openDoor();
else
{

cdPlayer.closeDoor();
if (cdPlayer.isMediaPresent())
eject.unlatch();

}
rv = true;
break;

}
return rv;

}
/**
* Class CD :: selected *
**/
bool CD::selected(IControlEvent& evt)
{

bool
rv = false;

switch(evt.controlId())
{

case OPENBTN:
// enable open cd
cdPlayer.openDoor();
rv = true;
break;

case CLOSEDBTN:
// close cd
cdPlayer.closeDoor();
rv = true;
break;

}
return rv;

}
/**
* Class CD :: dispatchNotificationEvent *
**/
IObserver& CD::dispatchNotificationEvent(const INotificationEvent& event)
{

if (event.notificationId() == IMMAudioCD::positionTimerId)
{

IMMTrackMinSecFrameTime* time = (IMMTrackMinSecFrameTime*)(event.eventData().asUnsignedLong(
readout.setText(IString(“TRACK ”) +

Chapter 24. Multimedia Devices 351

IString(time->track()).rightJustify(2,'0') +
IString(“ MIN:SEC ”) +
IString(time->minutes()).rightJustify(2,'0') +
IString(“:”) +
IString(time->seconds()).rightJustify(2,'0'));

}
else if (event.notificationId() == IMMAudioCD::trackStartedId)
{

IMMTrackMinSecFrameTime* time = (IMMTrackMinSecFrameTime*)(event.eventData().asUnsignedLong())
readout.setText(IString(“TRACK ”) +

IString(time->track()).rightJustify(2,'0') +
IString(“ MIN:SEC ”) +
IString(time->minutes()).rightJustify(2,'0') +
IString(“:”) +
IString(time->seconds()).rightJustify(2,'0'));

}
return *this;

}

“Chapter 24. Multimedia Devices” on page 335
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Play Audio Compact Discs” on page 340
“File: samp5.h”
“File: samp5.hpp” on page 353
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

File: samp5.h

This example is for Windows or OS/2.
#define CLIENTCANVASID 1006
#define REMOTECANVASID 1007
#define WINDOWID 1020
#define AMP_ID 1035
#define CD_ID 1036
#define ID_ICON 1037
#define ID_DUMMY 1038
#define SCANFID 4001
#define SCANBID 4002
#define TRACKFID 4003
#define TRACKBID 4004
#define EJECTID 4005
#define READOUTID 4006
#define BASEBUTTONID 4007
#define CDNAMEID 4008
#define VOLID 4009
#define BALID 4010
#define OPENBTN 4011
#define CLOSEDBTN 4012

352 IBM Open Class: User Interface

“Chapter 24. Multimedia Devices” on page 335
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Play Audio Compact Discs” on page 340
“File: samp5.cpp” on page 348
“File: samp5.hpp”
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

File: samp5.hpp

This example is for Windows or OS/2.
#include “samp5.h”
#include <icolor.hpp>
#include <iframe.hpp>
#include <immcdda.hpp>
#include <isetcv.hpp>
#include <ifont.hpp>
#include <imcelcv.hpp>
#include <icslider.hpp>
#include <immttime.hpp>
#include <inotifev.hpp>
#include <ianimbut.hpp>
#include <icmdhdr.hpp>
#include <istattxt.hpp>
#include <iobservr.hpp>
#include <immplypn.hpp>
#include <immamix.hpp>
#include <iradiobt.hpp>
#include <iselhdr.hpp>
#include <isldahdr.hpp>
#include <ictlevt.hpp>
/**
* Class CD *
**/
class CD : public IMultiCellCanvas,

public ICommandHandler,
public IObserver,
public ISliderArmHandler,
public ISelectHandler

{
public:

CD(unsigned long windowid,
IWindow* parent,
IWindow* owner);

xCD();
protected:

virtual bool
command (ICommandEvent& event),
selected(IControlEvent& event),
moving (IControlEvent& event);

virtual IObserver
&dispatchNotificationEvent(const INotificationEvent&);

private:
IMMAudioCD

Chapter 24. Multimedia Devices 353

cdPlayer;
IMMPlayerPanel

baseButtons;
IAnimatedButton

trackF,
trackB,
scanF,
scanB,
eject;

ICircularSlider
volume;

IStaticText
name,
readout;

IRadioButton
doorOpen,
doorClosed;

IMMAmpMixer
*pAmpMixer;

};
/**
* Class MainWindow *
**/
class MainWindow : public IFrameWindow
{

public:
MainWindow(unsigned long windowId);

xMainWindow();
private:

ISetCanvas
clientCanvas;

CD*
cd;

};

“Chapter 24. Multimedia Devices” on page 335
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Play Audio Compact Discs” on page 340
“File: samp5.cpp” on page 348
“File: samp5.h” on page 352
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Create Audio Devices

The following sections discuss various ways of using the audio devices provided
with the Open Class Library Multimedia Classes.

Playing a Waveform
If you want to design an application that can record and play back an audio signal
from the user’s desktop, create an IMMWaveAudio object.

354 IBM Open Class: User Interface

To play or record audio data, a device must be able to start and stop. Also, you
might want fast-forward, reverse, and pause functions. Because most people are
familiar with the control panel of the typical stereo, choose that model as your
application’s user interface model.

Recording a Waveform
As stated earlier, a waveform is a digital representation of a sound wave. Different
formats of a waveform, such as pulse code modulation (PCM), encode sound into
digital data that can be sent to an amplifier-mixer device for subsequent
conversion into audio. This signal can be played through conventional speakers or
earphones.

The average waveform audio driver uses PCM, 22 kiloHertz, 16 bits-per-second,
and monaural as the default for 16-bit adapters. If the adapter does not support
16-bit PCM, then the resolution (bits-per-second) is downgraded to 8 bits. The
types of audio resolution are 8 (multimedia), 16 (CD audio) and 24 (high-end)
digital bits-per-sample. Red Book audio is a music industry term technically known
as the CD digital audio standard for music CD audio. Yellow Book audio is 16-bit or
8-bit digital audio played back by the sound card. Typically, yellow book audio is
stored on the personal computer as .wav files.

One of the typical uses of the waveform audio device is to digitize an input signal
or sound into discrete samples for storage in a file. An example of this is recording
an electronic audio mail message to tell someone about an idea, as opposed to
typing a memo. An electronic audio mail application would provide the user with
a simple control panel to allow the message to be recorded. Recording digitally
means you get flawless sound quality that does not deteriorate.

You can record digital audio information in the format that fits your specific needs,
such as for space or quality. For example, assume that a new wave audio file is
created with the following code:

#include <immwave.hpp>
// Create the object
wavePlayer = new IMMWaveAudio(true);
// Enter begin and end time values.
wavePlayer.record(10, 20);

When you create the file, you might want a file that is compatible with mu-law
(the compression scheme used by a telephone system). The compression scheme
can change the frequency range from a telephone to CD quality.

The attributes you need to consider when recording a file are the following:
v Format and its compression algorithm (pcm, adpcm, ibmcvcsd, okiadpcm,

dviadpcm, digistd, digifix, or alaw)
v Bits per sample (16-bit is considered CD quality)
v Sampling rate (for example, 22 kiloHertz)
v Number of channels (stereo or monaural)

These attributes determine the audio quality. You can even make the decision to
use low-bit resolution, a low sample rate, or even monaural versus stereo on the
basis of disc space and bandwidth considerations. Always set the waveform
format, sampling rate, resolution, and number of channels to ensure that the
waveform is created with the desired parameters.

The following is an example of code that sets these values.

Chapter 24. Multimedia Devices 355

#include <immwave.hpp>
// Create the object.
wavePlayer = new IMMWaveAudio();
wavePlayer.setBitsPerSample(Value);
// Set sampling rate
wavePlayer.setSamplesPerSecond(Value);
// Monaural is 1 (stereo is 2)
wavePlayer.setChannels(1);

Your application needs to define or select the recording source. The microphone is
the default input device for recording waveforms.

The IMMWaveAudio class inherits the record function. An example of playing and
recording a wave file follows:
1. Define the wave player device in the header file as follows. This excerpt is from

samp8.hpp:
class WavePlayer : public IMultiCellCanvas,

public ICommandHandler,
public ISliderArmHandler,
public ISelectHandler

{
public:

WavePlayer(unsigned long windowid,
IWindow* parent,
IWindow* owner);

public:
virtual bool

command(ICommandEvent& event),
selected(IControlEvent& event),
moving(IControlEvent& event);

private:
IStaticText

infoText;
IAnimatedButton

playbtn,
stopbtn,
ffbtn,
rewbtn,
pausebtn,
recordbtn;

ICircularSlider
volume;

IRadioButton
mono,
stereo;

IStaticText
formatText;

IMMWaveAudio
wavePlayer;

};

The WavePlayer class inherits from four classes:
v The IMultiCellCanvas class allows you to arrange the push buttons, dials,

and other controls on the application.
v The ICommandHandler class lets you process commands created from the

menu or the push buttons. To process these events you override the virtual
function ICommandHandler::command.

v The ISliderArmHandler allows you to process events generated when the
user turns the volume dial. To process these events you override the virtual
function ISliderArmHandler::moving.

356 IBM Open Class: User Interface

v The ISelectHandler class lets you handle events that occur when a user
selects one of the radio buttons that sets the number of audio channels
(mono or stereo). To handle these events you override the virtual function
ISelectHandler::selected.

2. Create the wave player as follows. The following excerpt is from the samp8.cpp
file.
WavePlayer::WavePlayer(unsigned long windowid,

IWindow* parent,
IWindow* owner)

:IMultiCellCanvas (windowid, parent, owner),
volume (VOLID, this, this, IRectangle(),

ICircularSlider::defaultStyle() |
ICircularSlider::proportionalTicks),

playbtn (PLAYID, this, this, IRectangle(),
ICustomButton::latchable |
ICustomButton::autoLatch |
IControl::group |
IWindow::visible |
IAnimatedButton::animateWhenLatched),

stopbtn (STOPID, this, this, IRectangle(),
IWindow::visible |
IAnimatedButton::animateWhenLatched),

pausebtn (PAUSEID, this, this, IRectangle(),
ICustomButton::latchable |
ICustomButton::autoLatch |
IControl::group |
IWindow::visible |
IAnimatedButton::animateWhenLatched),

ffbtn (FFID, this, this, IRectangle(),
IWindow::visible |
IAnimatedButton::animateWhenLatched),

rewbtn (REWID, this, this, IRectangle(),
IWindow::visible |
IAnimatedButton::animateWhenLatched),

recordbtn (RECID, this, this, IRectangle(),
IWindow::visible |
IAnimatedButton::animateWhenLatched),

infoText (INFOTXT, this, this),
mono (MONOID, this, this, IRectangle(),

IRadioButton::defaultStyle() |
IControl::group),

stereo (STEREOID, this, this),
formatText (FORTEXTID, this, this),
wavePlayer ()

{
infoText.setText(“Welcome to Stereo Sound - push a button”);
infoText.setForegroundColor(IColor(0, 160, 0));
infoText.setBackgroundColor(IColor::kPaleGray);
volume.setArmRange(IRange(0, 100));
volume.setRotationIncrement(10);
volume.setText(“Volume”);
volume.setValue(100);
mono.setText(“Mono”);
stereo.setText(“Stereo”);
stereo.select();
formatText.setText(“Select a Format:”);
addToCell(&formatText, 1, 1, 2, 1);
addToCell(&mono, 2, 2, 1, 1);
addToCell(&stereo, 3, 2, 1, 1);
addToCell(&volume, 5, 4, 1, 1);
addToCell(&rewbtn, 1, 8, 1, 1);
addToCell(&stopbtn, 2, 8, 1, 1);
addToCell(&pausebtn, 3, 8, 1, 1);
addToCell(&playbtn, 4, 8, 1, 1);
addToCell(&ffbtn, 5, 8, 1, 1);

Chapter 24. Multimedia Devices 357

addToCell(&recordbtn, 7, 8, 1, 1);
rewbtn.setBitmaps(IAnimatedButton::rewind);
ffbtn.setBitmaps(IAnimatedButton::fastForward);
pausebtn.setBitmaps(IAnimatedButton::pause);
stopbtn.setBitmaps(IAnimatedButton::stop);
playbtn.setBitmaps(IAnimatedButton::play);
recordbtn.setBitmaps(IAnimatedButton::record);
playbtn.setText (“Play”);
rewbtn.setText (“Rewind”);
ffbtn.setText (“Fast\nForward”);
pausebtn.setText (“Pause”);
stopbtn.setText (“Stop”);
recordbtn.setText(“Record”);
playbtn.enable(false);
rewbtn.enable(false);
ffbtn.enable(false);
pausebtn.enable(false);
stopbtn.enable(false);
recordbtn.enable(false);
setBackgroundColor(IColor::kPaleGray);
setForegroundColor(IColor::kBlack);
ICommandHandler::handleEventsFor(this);
ISliderArmHandler::handleEventsFor(this);
ISelectHandler::handleEventsFor(this);

}

The WavePlayer constructor calls the following functions so that it can process
events for the various controls in this example:

ICommandHandler::handleEventsFor(this);
ISliderArmHandler::handleEventsFor(this);
ISelectHandler::handleEventsFor(this);

3. Handle events as follows. This excerpt is from samp8.cpp:
bool WavePlayer::moving(IControlEvent& evt)
{

bool
result = false;

ICircularSlider
pSld = (ICircularSlider)(evt.controlWindow());

short
val = pSld->value();

switch(evt.controlId())
{

case VOLID:
wavePlayer.setVolume(val);
result = true;
break;

}
return result;

}
bool WavePlayer::command(ICommandEvent& evt)
{

bool
rv = false;

switch(evt.commandId())
{

case MI_OPEN:
{

IFileDialog::Settings
fdSettings;

fdSettings.setTitle(“Load file”);
fdSettings.setFileName(“*.wav”);
IFileDialog

fd(desktopWindow(), this, fdSettings);
if (fd.pressedOK())
{

358 IBM Open Class: User Interface

newRecord = false;
wavePlayer.loadOnThread(fd.fileName());
wavePlayer.setVolume(100);
playbtn.enable();
rewbtn.enable();
ffbtn.enable();
pausebtn.enable();
stopbtn.enable();
recordbtn.enable();

}
rv=true;
break;

}
case MI_SAVE:
case MI_SAVEAS:
{

IFileDialog::Settings
fdSettings;

fdSettings.setSaveAsDialog();
fdSettings.setTitle(“Save file”);
fdSettings.setFileName(“*.wav”);
IFileDialog

fd(desktopWindow(), this, fdSettings);
if (fd.pressedOK())
{

wavePlayer.saveAs(fd.fileName());
}
rv=true;
break;

}
case PLAYID:
{

wavePlayer.play();
infoText.setText(“Play Mode”);
rv=true;
break;

}
case STOPID:
{

wavePlayer.stop();
playbtn.enable();
pausebtn.enable();
ffbtn.enable();
rewbtn.enable();
infoText.setText(“Stop Mode”);
playbtn.unlatch();
rv=true;
break;

}
case REWID:
{

wavePlayer.seekToStart();
infoText.setText(“Rewind Mode”);
rv=true;
break;

}
case FFID:
{

wavePlayer.seekToEnd();
infoText.setText(“FF Mode”);
rv=true;
break;

}
case PAUSEID:
{

if (IMMDevice::paused == wavePlayer.mode())
playbtn.latch();

Chapter 24. Multimedia Devices 359

wavePlayer.pause();
infoText.setText(“Pause Mode”);
rv=true;
break;

}
case RECID:
{

newRecord = false;
recordbtn.latch();
playbtn.enable(false);
pausebtn.enable(false);
ffbtn.enable(false);
rewbtn.enable(false);
wavePlayer.enableConnector(IMMDevice::microphones);
wavePlayer.record();
infoText.setText(“Record Mode”);
rv=true;
break;

}
}
return rv;

}
bool WavePlayer::selected(IControlEvent& evt)
{

bool
rv = false;

switch(evt.controlId())
{

case MONOID:
if (newRecord)

wavePlayer.setChannels(1);
rv = true;
break;

case STEREOID:
if (newRecord)

wavePlayer.setChannels(2);
rv = true;
break;

}
return rv;

}

To process events generated from the volume dial override the virtual function
ISliderArmHandler::moving. The IMMDevice::setVolume function sets the
volume of the audio channel for the device, where 0 is the least amount of
volume and 100 is the most amount of volume.

To process events generated from the menu or the push buttons override the
virtual function ICommandHandler::command.

To process events generated from the radio buttons, override the virtual
function ISelectHandler::selected. The IMMConfigurableAudio::setChannels
function lets you set the number of audio channels for playing and recording:
v monaural is 1
v stereo is 2

The following figure from OS/2 demonstrates the above example:

360 IBM Open Class: User Interface

You can find the source to the above example in the following files:
v samp8.cpp
v samp8.h
v samp8.hpp
v samp8.rc

Loading the Audio or Video Device Data Files (IMMFileMedia)
The devices that the Multimedia Classes support inherit load functions from
IMMFileMedia. The following describes the ways you can load audio and video
files:
v Use the load function with wait (of type CallType) as an argument. The call does

not return until the system loads the file into memory. This ties up the operating
system’s windowing system until this call returns.

v Use the load function with nowait (of type CallType) as an argument. This
creates a thread. The thread then loads the data and then notifies the attached
observers when it is done. This call returns without waiting for the thread to
complete. This will not tie up the operating system’s windowing system.

v Use the loadOnThread function. This creates a thread. The thread then loads the
data. This call does not return until the thread finishes. This does not tie up the
operating system’s windowing system.

Using the Default Device Player (IMMPlayerPanel)
The interface for play, pausing, and stopping should appear similar to your system
at home.

You can use Open Class Library’s custom player panel. The IMMPlayerPanel class
creates and manages a player panel. If you create the IMMPlayerPanel without
passing in a device type then you get the default buttons, which follows:
v Play
v Stop
v Pause
v Rewind
v Fast forward

If you pass in an overlay, videoDisk animation, or digital video, you get step
forward and step backward buttons.

Chapter 24. Multimedia Devices 361

The base player panel is sufficient to control most multimedia devices.

The buttons are added to an IMultiCellCanvas in the following coordinates:

Button Coordinates

Play (4,1) or at (5,1) if the step buttons are
enabled

Pause (3,1) or at (4,1) if the step buttons are
enabled

fastForward (5,1) or at (6,1) if step buttons are enabled

rewind (1,1) or at (2,1) if step buttons are enabled

stop (2,1) or at (3,1) if step buttons are enabled

stepForward (7,1) if step buttons are enabled

stepBackward (1,1) if step buttons are enabled

An example of creating the custom player panel follows:
// Create a playable wave device
IMMWaveAudio player;
// Create the player panel and set it to control the wave audio player
IMMPlayerPanel panel(0x8008, &mainWindow, &mainWindow,

IMMDevice::waveAudio);
panel.setPlayableDevice(player);

The following figure shows a custom player panel.

Notice how the stop and pause buttons are disabled when starting up the
application.

Editing a Waveform
The IMMWaveAudio class edits wave behavior. You can cut, copy, and paste to
and from a memory buffer. A wave editor program allows you to record, edit,
combine, and add special effects to a digital audio file. The file is not actually
modified until the original file is saved. The editor allows you to mix tracks. You
can use the musical editing process, for example, to correct mistakes in an artist’s
original interpretation or to change certain points of style before playback or final
recording.

Using Save and Save As
The IMMRecordable class provides all the common behavior for devices that
support recordable media. When you save a file the binary information is stored in
addition to all of the wave’s attributes. For example, if you are saving a waveform,
some of the attributes that are saved follow:
v Sampling rate
v Resolution
v Waveform format
v Number of channels

362 IBM Open Class: User Interface

Playing a Musical Instrument Digital Interface (MIDI) File
Typical user interfaces that play MIDI files have a player panel containing a MIDI
device object, a menu option to load a file via a file dialog, or both. An example
with a player panel follows.
1. Define the MIDI device in the header file as follows. This excerpt is from the

samp6.hpp file:
class MIDI : public IMultiCellCanvas,

public ISliderArmHandler,
public ICommandHandler

{
public:

MIDI(unsigned long windowid,
IWindow* parent,
IWindow* owner);

protected:
virtual bool

command(ICommandEvent& event),
moving(IControlEvent& event);

private:
IMMPlayerPanel

baseButtons;
IAnimatedButton

loadbtn,
rec;

ICircularSlider
volume;

IStaticText
name;

IMMSequencer
midiPlayer;

};

The IMMSequencer class is the base class for MIDI playback. The commands
represent musical events, such as turning a note on and off, as well as timing
mechanisms for specifying the duration of the note’s sound.

2. Create the MIDI player as follows. The MIDI constructor is from the samp6.cpp
file:
MIDI::MIDI(unsigned long windowid,

IWindow* parent,
IWindow* owner)

: IMultiCellCanvas (windowid, parent, owner),
name (MIDINAMEID, this, this),
baseButtons (BASEBUTTONID, this, this),
volume (VOLID, this, this, IRectangle(),

ICircularSlider::defaultStyle() |
ICircularSlider::proportionalTicks),

rec (RECID, &baseButtons, this, IRectangle(),
ICustomButton::latchable |
ICustomButton::latchable |
IWindow::visible |
IAnimatedButton::animateWhenLatched),

loadbtn (LOADID, this, this, IRectangle(),
IWindow::visible |
IAnimatedButton::animateWhenLatched),

midiPlayer ()
{

// Add the buttons to the player panel.
baseButtons.setPlayableDevice(&midiPlayer);
// Put the bitmaps on the buttons.
rec.setBitmaps(IAnimatedButton::record);
loadbtn.setBitmaps(IAnimatedButton::eject);
// Put text on the buttons.
loadbtn.setText(“Load”);

Chapter 24. Multimedia Devices 363

rec.setText(“Record”);
// Set up the title
name.setText(“MIDI Player”);
name.setForegroundColor(IColor(IColor::kRed));
volume.setArmRange(IRange(0,100));
volume.setRotationIncrement(1);
volume.setText(“Volume”);
// Add the controls to the multicell
addToCell(&loadbtn, 1, 9, 1, 1);
addToCell(&name, 2, 1, 1, 1);
addToCell(&volume, 3, 4, 1, 3);
addToCell(&baseButtons, 2, 9, 5, 1);
// Handle events
ICommandHandler::handleEventsFor(this);
ISliderArmHandler::handleEventsFor(this);

}

Call the IMMPlayableDevice::setPlayableDevice so that the player panel
baseButtons can control the MIDI sequencer midiPlayer.

3. Handle events for the volume control by overriding the
ISliderArmHandler::moving virtual function as follows. This excerpt is from
samp6.cpp:
bool MIDI::moving(IControlEvent& evt)
{

bool
result = false;

ICircularSlider
pSld = (ICircularSlider)(evt.controlWindow());

short
val = pSld->value();

switch(evt.controlId())
{

case VOLID:
midiPlayer.setVolume(val);
result = true;
break;

}
return result;

}

4. Handle events for the menu and the animated push buttons by overriding the
ICommandHandler::command virtual function as follows. This excerpt is from
samp6.cpp:
bool MIDI::command(ICommandEvent& evt)
{

bool
rv = false;

switch(evt.commandId())
{

case MI_OPEN:
case LOADID:
{

IFileDialog::Settings
fdSettings;

fdSettings.setTitle(“Load file”);
fdSettings.setFileName(“*.mid”);
IFileDialog

fd(desktopWindow(), this, fdSettings);
if (fd.pressedOK())
{

midiPlayer.loadOnThread(fd.fileName());
}
rv=true;
break;

}

364 IBM Open Class: User Interface

case PLAYID:
{

midiPlayer.play();
rv=true;
break;

}
}
return rv;

}

The following figure displays a MIDI interface. Note that when you select the file
menu option, a file dialog appears.

You can find the source to the above example in the following files:
v samp6.cpp
v samp6.h
v samp6.hpp
v samp6.rc

“Chapter 24. Multimedia Devices” on page 335
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Create Master Devices” on page 338
“Play Audio Compact Discs” on page 340
“Create Video Devices” on page 378
“Add Animated Buttons and Circular Sliders” on page 385
“File: samp8.cpp”
“File: samp8.h” on page 370
“File: samp8.hpp” on page 371
“File: samp8.rc” on page 372
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Playing/Recording Waveform Example

File: samp8.cpp

Chapter 24. Multimedia Devices 365

This example is for Windows or OS/2.
#include “samp8.hpp”
#include “samp8.h”
#include <ifiledlg.hpp>
#include <immwave.hpp>
bool newRecord = true;
/**
* main *
* - Application entry point. *
**/
int main()
{

MainWindow mainWindow(WINDOWID);
IApplication::current().run();
return 0;

}
/**
* Class MainWindow :: MainWindow *
**/
MainWindow::MainWindow(unsigned long windowId)

:IFrameWindow(“Playing/Recording Waveform Example”, windowId),
menuBar (windowId, this),
myWavePlayer(WINDOWID, this, this)

{
setClient(&myWavePlayer);
setFocus().show();

}
/**
* Class WavePlayer :: WavePlayer *
**/
WavePlayer::WavePlayer(unsigned long windowid,

IWindow* parent,
IWindow* owner)

:IMultiCellCanvas (windowid, parent, owner),
volume (VOLID, this, this, IRectangle(),

ICircularSlider::defaultStyle() |
ICircularSlider::proportionalTicks),

playbtn (PLAYID, this, this, IRectangle(),
ICustomButton::latchable |
ICustomButton::autoLatch |
IControl::group |
IWindow::visible |
IAnimatedButton::animateWhenLatched),

stopbtn (STOPID, this, this, IRectangle(),
IWindow::visible |
IAnimatedButton::animateWhenLatched),

pausebtn (PAUSEID, this, this, IRectangle(),
ICustomButton::latchable |
ICustomButton::autoLatch |
IControl::group |
IWindow::visible |
IAnimatedButton::animateWhenLatched),

ffbtn (FFID, this, this, IRectangle(),
IWindow::visible |
IAnimatedButton::animateWhenLatched),

rewbtn (REWID, this, this, IRectangle(),
IWindow::visible |
IAnimatedButton::animateWhenLatched),

recordbtn (RECID, this, this, IRectangle(),
IWindow::visible |
IAnimatedButton::animateWhenLatched),

infoText (INFOTXT, this, this),
mono (MONOID, this, this, IRectangle(),

IRadioButton::defaultStyle() |

366 IBM Open Class: User Interface

IControl::group),
stereo (STEREOID, this, this),
formatText (FORTEXTID, this, this),
wavePlayer ()

{
infoText.setText(“Welcome to Stereo Sound - push a button”);
infoText.setForegroundColor(IColor(0, 160, 0));
infoText.setBackgroundColor(IColor::kPaleGray);
volume.setArmRange(IRange(0, 100));
volume.setRotationIncrement(10);
volume.setText(“Volume”);
volume.setValue(100);
mono.setText(“Mono”);
stereo.setText(“Stereo”);
stereo.select();
formatText.setText(“Select a Format:”);
addToCell(&formatText, 1, 1, 2, 1);
addToCell(&mono, 2, 2, 1, 1);
addToCell(&stereo, 3, 2, 1, 1);
addToCell(&volume, 5, 4, 1, 1);
addToCell(&rewbtn, 1, 8, 1, 1);
addToCell(&stopbtn, 2, 8, 1, 1);
addToCell(&pausebtn, 3, 8, 1, 1);
addToCell(&playbtn, 4, 8, 1, 1);
addToCell(&ffbtn, 5, 8, 1, 1);
addToCell(&recordbtn, 7, 8, 1, 1);
rewbtn.setBitmaps(IAnimatedButton::rewind);
ffbtn.setBitmaps(IAnimatedButton::fastForward);
pausebtn.setBitmaps(IAnimatedButton::pause);
stopbtn.setBitmaps(IAnimatedButton::stop);
playbtn.setBitmaps(IAnimatedButton::play);
recordbtn.setBitmaps(IAnimatedButton::record);
playbtn.setText (“Play”);
rewbtn.setText (“Rewind”);
ffbtn.setText (“Fast\nForward”);
pausebtn.setText (“Pause”);
stopbtn.setText (“Stop”);
recordbtn.setText(“Record”);
playbtn.enable(false);
rewbtn.enable(false);
ffbtn.enable(false);
pausebtn.enable(false);
stopbtn.enable(false);
recordbtn.enable(false);
setBackgroundColor(IColor::kPaleGray);
setForegroundColor(IColor::kBlack);
ICommandHandler::handleEventsFor(this);
ISliderArmHandler::handleEventsFor(this);
ISelectHandler::handleEventsFor(this);

}
/**
* Class WavePlayer :: moving *
**/
bool WavePlayer::moving(IControlEvent& evt)
{

bool
result = false;

ICircularSlider
pSld = (ICircularSlider)(evt.controlWindow());

short
val = pSld->value();

switch(evt.controlId())
{

case VOLID:
wavePlayer.setVolume(val);
result = true;
break;

Chapter 24. Multimedia Devices 367

}
return result;

}
/**
* Class WavePlayer :: command *
**/
bool WavePlayer::command(ICommandEvent& evt)
{

bool
rv = false;

switch(evt.commandId())
{

case MI_OPEN:
{

IFileDialog::Settings
fdSettings;

fdSettings.setTitle(“Load file”);
fdSettings.setFileName(“*.wav”);
IFileDialog

fd(desktopWindow(), this, fdSettings);
if (fd.pressedOK())
{

newRecord = false;
wavePlayer.loadOnThread(fd.fileName());
wavePlayer.setVolume(100);
playbtn.enable();
rewbtn.enable();
ffbtn.enable();
pausebtn.enable();
stopbtn.enable();
recordbtn.enable();

}
rv=true;
break;

}
case MI_SAVE:
case MI_SAVEAS:
{

IFileDialog::Settings
fdSettings;

fdSettings.setSaveAsDialog();
fdSettings.setTitle(“Save file”);
fdSettings.setFileName(“*.wav”);
IFileDialog

fd(desktopWindow(), this, fdSettings);
if (fd.pressedOK())
{

wavePlayer.saveAs(fd.fileName());
}
rv=true;
break;

}
case PLAYID:
{

wavePlayer.play();
infoText.setText(“Play Mode”);
rv=true;
break;

}
case STOPID:
{

wavePlayer.stop();
playbtn.enable();
pausebtn.enable();
ffbtn.enable();
rewbtn.enable();
infoText.setText(“Stop Mode”);

368 IBM Open Class: User Interface

playbtn.unlatch();
rv=true;
break;

}
case REWID:
{

wavePlayer.seekToStart();
infoText.setText(“Rewind Mode”);
rv=true;
break;

}
case FFID:
{

wavePlayer.seekToEnd();
infoText.setText(“FF Mode”);
rv=true;
break;

}
case PAUSEID:
{

if (IMMDevice::paused == wavePlayer.mode())
playbtn.latch();

wavePlayer.pause();
infoText.setText(“Pause Mode”);
rv=true;
break;

}
case RECID:
{

newRecord = false;
recordbtn.latch();
playbtn.enable(false);
pausebtn.enable(false);
ffbtn.enable(false);
rewbtn.enable(false);
wavePlayer.enableConnector(IMMDevice::microphones);
wavePlayer.record();
infoText.setText(“Record Mode”);
rv=true;
break;

}
}
return rv;

}
/**
* Class WavePlayer :: selected *
**/
bool WavePlayer::selected(IControlEvent& evt)
{

bool
rv = false;

switch(evt.controlId())
{

case MONOID:
if (newRecord)

wavePlayer.setChannels(1);
rv = true;
break;

case STEREOID:
if (newRecord)

wavePlayer.setChannels(2);
rv = true;
break;

}
return rv;

}

Chapter 24. Multimedia Devices 369

“Chapter 24. Multimedia Devices” on page 335
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Create Audio Devices” on page 354
“File: samp8.h”
“File: samp8.hpp” on page 371
“File: samp8.rc” on page 372
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

File: samp8.h

This example is for Windows or OS/2.
#define CLIENTCANVASID 1006
#define PLAYID 1008
#define STOPID 1009
#define REWID 1010
#define FFID 1011
#define PAUSEID 1012
#define RECID 1013
#define VOLID 1014
#define BALID 1015
#define WINDOWID 1020
#define WAVEID 1021
#define INFOTXT 1022
#define MONOID 1023
#define STEREOID 1024
#define RIFFFORMATID 1025
#define WAVEFORMATID 1026
#define FORTEXTID 1027
#define CHANID 1028
#define PANELID 3004
#define MI_FILE 3005
#define MI_OPEN 3006
#define MI_SAVE 3007
#define MI_SAVEAS 3008
#define MI_EDIT 3009
#define MI_VOLUP 3010
#define MI_VOLDN 3011
#define MI_VOLMAX 3012
#define MI_HELP 3013
#define MI_INFO 3014

“Chapter 24. Multimedia Devices” on page 335
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Create Audio Devices” on page 354
“File: samp8.cpp” on page 365
“File: samp8.hpp” on page 371

370 IBM Open Class: User Interface

“File: samp8.rc” on page 372
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

File: samp8.hpp

This example is for Windows or OS/2.
#include “samp8.h”
#include <ifont.hpp>
#include <icolor.hpp>
#include <iframe.hpp>
#include <ivport.hpp>
#include <imcelcv.hpp>
#include <icslider.hpp>
#include <isldahdr.hpp>
#include <ictlevt.hpp>
#include <istattxt.hpp>
#include <immwave.hpp>
#include <imenubar.hpp>
#include <ianimbut.hpp>
#include <isetcv.hpp>
#include <icmdhdr.hpp>
#include <iradiobt.hpp>
#include <iselhdr.hpp>
/**
* Class WavePlayer *
**/
class WavePlayer : public IMultiCellCanvas,

public ICommandHandler,
public ISliderArmHandler,
public ISelectHandler

{
public:

WavePlayer(unsigned long windowid,
IWindow* parent,
IWindow* owner);

public:
virtual bool

command(ICommandEvent& event),
selected(IControlEvent& event),
moving(IControlEvent& event);

private:
IStaticText

infoText;
IAnimatedButton

playbtn,
stopbtn,
ffbtn,
rewbtn,
pausebtn,
recordbtn;

ICircularSlider
volume;

IRadioButton
mono,
stereo;

IStaticText
formatText;

IMMWaveAudio
wavePlayer;

};
/**

Chapter 24. Multimedia Devices 371

* Class MainWindow *
**/
class MainWindow : public IFrameWindow
{

public:
MainWindow(unsigned long windowId);

private:
IMenuBar

menuBar;
WavePlayer

myWavePlayer;
};

“Chapter 24. Multimedia Devices” on page 335
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Create Audio Devices” on page 354
“File: samp8.cpp” on page 365
“File: samp8.h” on page 370
“File: samp8.rc”
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

File: samp8.rc

This is a Windows resource script file:
#include “samp8.h”
WINDOWID MENUEX

BEGIN
POPUP “&File”, MI_FILE

BEGIN
MENUITEM “&Open...”, MI_OPEN
MENUITEM “&Save”, MI_SAVE
MENUITEM “Save&As...”, MI_SAVEAS

END
POPUP “&Edit”, MI_EDIT

BEGIN
MENUITEM “&Increase Volume”, MI_VOLUP
MENUITEM “&Decrease Volume”, MI_VOLDN
MENUITEM “&Maximum Volume”, MI_VOLMAX

END
POPUP “&Help”, MI_HELP

BEGIN
MENUITEM “&Product Information”, MI_INFO

END
END

This is an OS/2 resource script file:
#include “samp8.h”
MENU WINDOWID

BEGIN
SUBMENU “xFile”, MI_FILE

BEGIN
MENUITEM “xOpen...”, MI_OPEN

372 IBM Open Class: User Interface

MENUITEM “xSave”, MI_SAVE
MENUITEM “SavexAs...”, MI_SAVEAS

END
SUBMENU “&Edit”, MI_EDIT

BEGIN
MENUITEM “xIncrease Volume”, MI_VOLUP
MENUITEM “xDecrease Volume”, MI_VOLDN
MENUITEM “xMaximum Volume”, MI_VOLMAX

END
SUBMENU “xHelp”, MI_HELP

BEGIN
MENUITEM “xProduct Information”, MI_INFO

END
END

“Chapter 24. Multimedia Devices” on page 335
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Create Audio Devices” on page 354
“File: samp8.cpp” on page 365
“File: samp8.h” on page 370
“File: samp8.hpp” on page 371
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Playing/Recording MIDI Example

File: samp6.cpp

This example is for Windows or OS/2.
#include “samp6.hpp”
#include “samp6.h”
/**
* main *
* - Application entry point. *
**/
int main()
{

// Create our main window on the desktop
MainWindow mainWindow(WINDOWID);
// Get the current application and run it
IApplication::current().run();
return 0;

}
/**
* Class MainWindow :: MainWindow *
**/
MainWindow::MainWindow(unsigned long windowId)

: IFrameWindow (“Example MIDI Window”, windowId),
clientCanvas (CLIENTCANVASID, this, this),
midi (MIDI_ID, &clientCanvas, this),
menuBar (windowId, this)

{
clientCanvas.setBackgroundColor(IColor(IColor::kPaleGray));

Chapter 24. Multimedia Devices 373

setBackgroundColor(IColor(IColor::kPaleGray));
IFont(“Helv”, 8).setWindowFont(this);
sizeTo(ISize(500, 300));
setClient(&midi);
clientCanvas.setDeckOrientation(ISetCanvas::vertical);
setFocus().show();

}
/**
* Class MainWindow :: xMainWindow *
**/
MainWindow::xMainWindow()
{
}
/**
* Class MIDI :: MIDI *
**/
MIDI::MIDI(unsigned long windowid,

IWindow* parent,
IWindow* owner)

: IMultiCellCanvas (windowid, parent, owner),
name (MIDINAMEID, this, this),
baseButtons (BASEBUTTONID, this, this),
volume (VOLID, this, this, IRectangle(),

ICircularSlider::defaultStyle() |
ICircularSlider::proportionalTicks),

rec (RECID, &baseButtons, this, IRectangle(),
ICustomButton::latchable |
ICustomButton::latchable |
IWindow::visible |
IAnimatedButton::animateWhenLatched),

loadbtn (LOADID, this, this, IRectangle(),
IWindow::visible |
IAnimatedButton::animateWhenLatched),

midiPlayer ()
{

// Add the buttons to the player panel.
baseButtons.setPlayableDevice(&midiPlayer);
// Put the bitmaps on the buttons.
rec.setBitmaps(IAnimatedButton::record);
loadbtn.setBitmaps(IAnimatedButton::eject);
// Put text on the buttons.
loadbtn.setText(“Load”);
rec.setText(“Record”);
// Set up the title
name.setText(“MIDI Player”);
name.setForegroundColor(IColor(IColor::kRed));
volume.setArmRange(IRange(0,100));
volume.setRotationIncrement(1);
volume.setText(“Volume”);
// Add the controls to the multicell
addToCell(&loadbtn, 1, 9, 1, 1);
addToCell(&name, 2, 1, 1, 1);
addToCell(&volume, 3, 4, 1, 3);
addToCell(&baseButtons, 2, 9, 5, 1);
// Handle events
ICommandHandler::handleEventsFor(this);
ISliderArmHandler::handleEventsFor(this);

}
/**
* Class MIDI :: moving *
**/
bool MIDI::moving(IControlEvent& evt)
{

bool
result = false;

ICircularSlider
pSld = (ICircularSlider)(evt.controlWindow());

374 IBM Open Class: User Interface

short
val = pSld->value();

switch(evt.controlId())
{

case VOLID:
midiPlayer.setVolume(val);
result = true;
break;

}
return result;

}
/**
* Class MIDI :: command *
**/
bool MIDI::command(ICommandEvent& evt)
{

bool
rv = false;

switch(evt.commandId())
{

case MI_OPEN:
case LOADID:
{

IFileDialog::Settings
fdSettings;

fdSettings.setTitle(“Load file”);
fdSettings.setFileName(“*.mid”);
IFileDialog

fd(desktopWindow(), this, fdSettings);
if (fd.pressedOK())
{

midiPlayer.loadOnThread(fd.fileName());
}
rv=true;
break;

}
case PLAYID:
{

midiPlayer.play();
rv=true;
break;

}
}
return rv;

}

“Chapter 24. Multimedia Devices” on page 335
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Create Audio Devices” on page 354
“File: samp6.h”
“File: samp6.hpp” on page 376
“File: samp6.rc” on page 378
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

File: samp6.h

Chapter 24. Multimedia Devices 375

This example is for Windows or OS/2.
#define CLIENTCANVASID 1006
#define REMOTECANVASID 1007
#define WINDOWID 1020
#define AMP_ID 1035
#define MIDI_ID 1036
#define PLAYID 1201
#define MI_FILE 3005
#define MI_OPEN 3006
#define MI_SAVE 3007
#define MI_SAVEAS 3008
#define MI_EDIT 3009
#define MI_VOLUP 3010
#define MI_VOLDN 3011
#define MI_VOLMAX 3012
#define MI_HELP 3013
#define MI_INFO 3014
#define SCANFID 4001
#define SCANBID 4002
#define TRACKFID 4003
#define TRACKBID 4004
#define EJECTID 4005
#define READOUTID 4006
#define BASEBUTTONID 4007
#define MIDINAMEID 4008
#define VOLID 4009
#define BALID 4010
#define OPENBTN 4011
#define CLOSEDBTN 4012
#define RECID 4013
#define LOADID 4014

“Chapter 24. Multimedia Devices” on page 335
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Create Audio Devices” on page 354
“File: samp6.cpp” on page 373
“File: samp6.hpp”
“File: samp6.rc” on page 378
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

File: samp6.hpp

This example is for Windows or OS/2.
#include <imenubar.hpp>
#include <icolor.hpp>
#include <iframe.hpp>
#include <immsequ.hpp>
#include <isetcv.hpp>
#include <ifont.hpp>
#include <ifiledlg.hpp>

376 IBM Open Class: User Interface

#include <imcelcv.hpp>
#include <icslider.hpp>
#include <immttime.hpp>
#include <inotifev.hpp>
#include <ianimbut.hpp>
#include <icmdhdr.hpp>
#include <istattxt.hpp>
#include <iobservr.hpp>
#include <immplypn.hpp>
#include <iradiobt.hpp>
#include <iselhdr.hpp>
#include <isldahdr.hpp>
#include <ictlevt.hpp>
/**
* Class MIDI *
**/
class MIDI : public IMultiCellCanvas,

public ISliderArmHandler,
public ICommandHandler

{
public:

MIDI(unsigned long windowid,
IWindow* parent,
IWindow* owner);

protected:
virtual bool

command(ICommandEvent& event),
moving(IControlEvent& event);

private:
IMMPlayerPanel

baseButtons;
IAnimatedButton

loadbtn,
rec;

ICircularSlider
volume;

IStaticText
name;

IMMSequencer
midiPlayer;

};
/**
* Class MainWindow *
**/
class MainWindow : public IFrameWindow,

public ICommandHandler
{

public:
MainWindow(unsigned long windowId);
xMainWindow();

private:
ISetCanvas

clientCanvas;
MIDI

midi;
IMenuBar

menuBar;
};

“Chapter 24. Multimedia Devices” on page 335
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

Chapter 24. Multimedia Devices 377

“Create Audio Devices” on page 354
“File: samp6.cpp” on page 373
“File: samp6.h” on page 375
“File: samp6.rc”
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

File: samp6.rc

This is a Windows resource script file:
#include “samp6.h”
WINDOWID MENUEX

BEGIN
POPUP “&File”, MI_FILE

BEGIN
MENUITEM “&Open...”, MI_OPEN

END
END

This is an OS/2 resource script file:
#include “samp6.h”
MENU WINDOWID

BEGIN
SUBMENU “xFile”, MI_FILE

BEGIN
MENUITEM “xOpen...”, MI_OPEN

END
END

“Chapter 24. Multimedia Devices” on page 335
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Create Audio Devices” on page 354
“File: samp6.cpp” on page 373
“File: samp6.h” on page 375
“File: samp6.hpp” on page 376
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Create Video Devices

The differences between analog and digital video are similar to the audio
differences. An analog video is a series of squiggles that modulate an electron beam
in a picture tube to paint images similar to what we see on a television.

378 IBM Open Class: User Interface

Digitizing video freezes images into individual frames, each one a picture that can
be manipulated. The frame rate is akin to the sample rate in that it explains how
many times per second a video is frozen. Frame rates generally vary from 12
(animation) to 24 (film) and up. Instead of bandwidth, a video’s frame rate affects
how smooth the motion of objects within the video image will appear.

Video resolution defines how much information is used to describe each dot or
pixel of a frame. It ranges from 8 (multimedia) to 24 (higher-end graphics).

To visualize what a digital video player device does, compare it to a VCR.
Anything you can do with a VCR you can do with a digital video player device.

A digital video player device supports functions that manipulate digital video and
audio files as well as digital video-only files. The audio-visual files have the
extension of .avi (AVI means audio-visual interface).

The digital video device class, IMMDigitalVideo, includes functions that change the
state of the window, query and set a device’s playback speed, and change a video
window’s attributes. The video window is where the actual video is displayed. The
window can be free-floating or in a canvas window along with the buttons to
manipulate the video. This class inherits functions, such as playback, record, query,
adjust speed of motion video, and modify the audio attributes of the audio stored
in the video file. A sound card is required to play back the sound part of the video
files.

The system-provided default video window does not provide a Close menu choice.
If you want that capability, the digital video class provides the ability to replace
the default video window with one of your choosing.

The command to create a digital video device object is as follows:
#include <immdigvd.hpp> // Define the header file
IMMDigitalVideo videoPlayer; // Define the object
videoPlayer(true); // Pass true to the device constructors so

// the devices are opened and no additional
// functions calls are made before using
// the device.

Playing Video Devices
The type of system in which you plan to play your video files is relative to the
type of performance you will get when you play your files. The AVI files that store
the clips can be rather large, even for a brief commercial. We recommend that you
use the loadOnThread() function when reading in large video clips. If you use
load, it will more than likely tie up your windowing system until the file is loaded.
That can annoy your users. The loadOnThread() function creates a thread to do the
loading, which allows a user to continue doing another task.

In addition to requiring a lot of storage, playing video files requires fast
computers. A 66-megahertz, 486 system is a minimum requirement. Lesser
hardware produces less realistic videos with poorer resolution. Larger objects
require more processor resources to animate. This means that it takes longer to
move each frame of the animation from your hard drive, or wherever it resides, to
your screen.

The following summarize factors affecting playback of a video:
v Processing power of the CPU
v Throughput of data storage (for example, CD-ROM, hard disk, LAN)

Chapter 24. Multimedia Devices 379

v Efficiency of the display subsystem (such as the video adapter and display
driver)

When a motion video device element is opened, the current position in the
medium is the first playable area after any header or table of contents information.

Each frame in a motion video file has a number associated with it. The first frame
is frame 0, the second frame is frame 1, and so on. The current position always
indicates the frame that is about to be displayed. You can specify the play-from
and play-to positions. You also give a frame position parameter to the seek
command.

AVI files typically have digitized sound tracks along with their pictures. If you
play the AVI file on a system with a sound card installed and turn on your
speakers, you also hear the sound it contains.

The faster the machine, the faster the data processing and the playback are. Digital
video is processor-intensive. Raw video requires huge amounts of
memory—typically 900 kilobytes for a single frame of video, which equates to
roughly 27 megabytes-per-second to record or play in real time. So, digital video is
often data-compressed to make it manageable. The simplest form of video
compression is a smaller frame size or slower frame rate. This is the reason most
digital video used in multimedia is so small and jerky. With the slow data transfer
rate of CD drives, the video must be compressed further to be able to play it back.
In sum: as your frame sizes and rates go up, so do your hardware requirements.

The tracks of data on a hard drive are laid out as concentric circles, whereas a CD
has a single, spiral track, like an old phonograph record. Consequently, reading
data requires more processing time on a CD.

One usually designs a player panel with push buttons to play video files. Video
files can either be played in the application’s window or in a free-floating window.
A free-floating window displays a video in motion where the window is separate
from the main application window.

The following example code demonstrates how to play a video file in either an
application window or a free-floating window:
// Digital Video Sample
#include <iframe.hpp>
#include <icmdhdr.hpp>
#include <iselhdr.hpp>
#include <imcelcv.hpp>
#include <immdigvd.hpp>
#include <immplypn.hpp>
#include <ianimbut.hpp>
#include <iradiobt.hpp>
#include <ifiledlg.hpp>
#include <isplitcv.hpp>
#define CLIENTCANVASID 1
#define PANELID 2
#define LOADID 3
#define FREEID 4
#define STATICID 5
#define VIDEOCANVAS 6
#define WND_MAIN 7
#define MAINCANVASID 8
#define VIDEOCANVASID 9
class MainWindow : public IFrameWindow,

public ICommandHandler,
public ISelectHandler

380 IBM Open Class: User Interface

{
public:

MainWindow(unsigned long windowId);
protected:

bool command(ICommandEvent& event),
selected(IControlEvent& event);
private:

ISplitCanvas mainCanvas;
IMultiCellCanvas clientCanvas;
ICanvas videoCanvas; // Define the canvas to place

// controls
IMMDigitalVideo videoPlayer; // Define the video player
IMMPlayerPanel btnPanel; // Define the player panel
IAnimatedButton loadBtn; // Additional button

// to load files
IRadioButton playFree, // Radio buttons

// to choose free-floating
playStatic; // or static window

};
int main()
{

MainWindow mainWindow (WND_MAIN);
mainWindow.setFocus();
mainWindow.show();
IApplication::current().run();
return 0;

}
// MainWindow::MainWindow
MainWindow::MainWindow(unsigned long windowId)

: IFrameWindow(windowId),
mainCanvas(MAINCANVASID,this,this),
clientCanvas(CLIENTCANVASID,&mainCanvas,&mainCanvas),
videoCanvas(VIDEOCANVASID,&mainCanvas,&mainCanvas),
btnPanel(PANELID, &clientCanvas, &clientCanvas),
loadBtn(LOADID, &clientCanvas, &clientCanvas, IRectangle(),

IWindow::visible | IAnimatedButton::animateWhenLatched),
playFree(FREEID, &clientCanvas, &clientCanvas, IRectangle(),

IRadioButton::defaultStyle() | IControl::group),
playStatic(STATICID, &clientCanvas, &clientCanvas),
videoPlayer(true)

{
setTitleText(“Digital Video Sample”);
mainCanvas.setOrientation(ISplitCanvas::horizontalSplit);
videoCanvas.setBackgroundColor(IColor::black);
btnPanel.setPlayableDevice(&videoPlayer); // Attach video

// player to player panel
loadBtn.setBitmaps(IAnimatedButton::eject);
loadBtn.setText(“Load”);
playFree.setText(“Play video in floating window”);
playStatic.setText(“Play video in static window”);
playFree.select();
clientCanvas.addToCell(&btnPanel, 2, 7, 3, 1);
clientCanvas.addToCell(&loadBtn, 1, 7);
clientCanvas.addToCell(&playFree, 2, 2);
clientCanvas.addToCell(&playStatic, 2, 4);
ICommandHandler::handleEventsFor(&btnPanel);
ICommandHandler::handleEventsFor(this);
ISelectHandler::handleEventsFor(&clientCanvas);
setClient(&mainCanvas);
setFocus();
show();

}
// MainWindow::command
bool MainWindow::command(ICommandEvent& evt)
{

bool rv=false;
switch (evt.commandId()) // Load the .avi file to play

Chapter 24. Multimedia Devices 381

{
case LOADID:

IFileDialog::Settings fdSettings;
fdSettings.setTitle(“Load file”);
fdSettings.setFileName(“*.avi”);
IFileDialog fd(desktopWindow(), this, fdSettings);
if (fd.pressedOK())

videoPlayer.loadOnThread(fd.fileName());
rv=true;
break;

}
return rv;

}
// MainWindow::selected
bool MainWindow::selected(IControlEvent& evt)
{

bool rv = false;
switch (evt.controlId()) // Handle radio buttons to switch
{ // between playing free-floaing

case STATICID: // or statically on the frame window
videoPlayer.setWindow(videoCanvas);
rv = true;
break;

case FREEID:
videoPlayer.useDefaultWindow();
rv = true;
break;

}
return rv;

}

The following figure shows the above example playing a video file using a floating
window.

The following figure shows the above example playing a video file on a canvas:

382 IBM Open Class: User Interface

Follow these steps, as demonstrated in the above example code, to interact with
video files.
1. Create buttons that will let the user interact with video files. The example code

uses the IMMPlayerPanel class to create the rewind, stop, pause, play, and fast
forward buttons. Not only does this class create buttons and organize them, it
also makes the actual function call for the button. For example, the play button
calls the play function on whatever devide is currently set into the player
panel. You can easily extend this class by using the addToCell() function to
create new buttons:
class MainWindow : public IFrameWindow,

public ICommandHandler,
public ISelectHandler

{
// ...
private:

// ...
IMMPlayerPanel btnPanel; // Define the player panel
IAnimatedButton loadBtn; // Additional button
// ...

};

This example creates an additional load button that allows the user to load a
video file. This example declares the load button as an IAnimatedButton object.
The IAnimatedButtin class lets you animate a button by specifying a set of
bitmaps to cycle through. This class provides you with predefined sets of
bitmaps. The ianimbut.hpp header file defines these bitmaps in the enumerated
type AnimatedBitmaps. In this example, the loadBtn animated button uses the
bitmaps defined by IAnimatedButton::eject:
MainWindow::MainWindow(unsigned long windowId)
// ...
{

// ...
loadBtn.setBitmaps(IAnimatedButton::eject);
loadBtn.setText(“Load”);
// ...

}

2. Perform event and command handling. Because this example used the
IMMPlayerPanel class, it did need any more code to handle video command
such as play or rewind. This example needed code to implement the load
button, and the radio buttons that allows the user to view a video file in a

Chapter 24. Multimedia Devices 383

free-floating window or a static window.
To implement the load button, this example overrides the
ICommandHandler::command() function and creates an IFileDialog object:
bool MainWindow::command(ICommandEvent& evt)
{

bool rv=false;
switch (evt.commandId()) // Load the .avi file to play
{
case LOADID:

IFileDialog::Settings fdSettings;
fdSettings.setTitle(“Load file”);
fdSettings.setFileName(“*.avi”);
IFileDialog fd(desktopWindow(), this, fdSettings);
if (fd.pressedOK())

videoPlayer.loadOnThread(fd.fileName());
rv=true;
break;

}
return rv;

}

To implement the radio buttons, this example overrides the
ISelectHandler::selected() function. The example calls setWindow() to display
the video file in the application windowm or calls useDefaultWindow() to
display the video file in a free-floating window:
// MainWindow::selected
bool MainWindow::selected(IControlEvent& evt)
{

bool rv = false;
switch (evt.controlId()) // Handle radio buttons to switch
{ // between playing free-floaing

case STATICID: // or statically on the frame window
videoPlayer.setWindow(videoCanvas);
rv = true;
break;

case FREEID:
videoPlayer.useDefaultWindow();
rv = true;
break;

}
return rv;

}

CD Extended-Architecture Player Device (IMMCDXA)
The device class IMMCDXA provides access to devices that read CDs for the
purpose of playing compact disc-extended architecture (CD-XA) data. CD-XA
refers to a storage format that accommodates data that is stored in a mixture of
formats. The CD-XA data is stored in part as files, in part as video, and in part as
audio. The followin lists the maximum amount of storage for each device:

Video 100 MB

Data 50 MB

Audio 20 MB

Playback control is managed by the CD-XA media device and the amplifier-mixer
device.

An application for using the IMMCDXA class might be for video CDs or movie
CDs. When giving a presentation, you might want to call up different data types at
different times.

384 IBM Open Class: User Interface

This class performs the same functions as the IMMAudioCD class.

“Chapter 24. Multimedia Devices” on page 335
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Create Master Devices” on page 338
“Play Audio Compact Discs” on page 340
“Create Audio Devices” on page 354
“Add Animated Buttons and Circular Sliders”
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

IMultiCellCanvas

Add Animated Buttons and Circular Sliders

Animated Buttons
Animated buttons are customized push buttons. For example there is a play
animated button, which has a play button graphic on it. Use the IAnimatedButton
class to create and manage the animated buttons. You can use a set of predefined
bitmaps as graphics on the animated button (such as fast-forward or stop). The
event handling for animated buttons is the same as with push buttons.

See the wave player example for an example of animated buttons. The rewind,
stop, pause, play, fast-forward, and record buttons are all examples of animated
buttons.

Circular Sliders
Use circular sliders for functions that a user can manipulate, such as volume and
balance. You probably know how a linear slider works. A circular slider provides
the same function; however, physically it looks different because it is circular. Like
the dials found on your home electronics, its slider arm is shown as a radius of the
dial. Outside the perimeter of the dial is a circular scale with tick marks
representing incremental values the slider arm can point to. Its value can be
tracked by pointing to any area on the dial and pressing the select button while
moving the mouse on the desktop.

Because of its shape, the circular slider takes up less space than a linear slider and
gives you more flexibility in designing a panel that has multiple controls. Use the
ICircularSlider class to create circular sliders. Use the ISliderArmHandler class to
handle events generated from the ICircularSlider objects.

An example of a creating a circular slider follows:

Chapter 24. Multimedia Devices 385

// Circular slider example
#include <iframe.hpp>
#include <icslider.hpp>
#include <icolor.hpp>
#include <isldahdr.hpp>
#include <iapp.hpp>
class SliderArmHandler : public ISliderArmHandler
{

public:
SliderArmHandler();

};
/**
* main *
* - Application entry point. *
**/
int main()
{

IFrameWindow mainWindow (“Circular Slider Example”,0x1000);
IWindow * pParent = &mainWindow;
IWindow * pOwner = &mainWindow;
ICircularSlider slider(0x8008,

pParent,
pOwner,
IRectangle(),

ICircularSlider::defaultStyle() |
ICircularSlider::proportionalTicks);

slider.setArmRange(IRange(0,100));
slider.setRotationIncrement(1);
slider.setText(“Volume”);
SliderArmHandler *shslider = new SliderArmHandler;
shslider->handleEventsFor(&slider);
mainWindow.setClient(&slider);
mainWindow.sizeTo(ISize(400,300));
mainWindow.show();
mainWindow.setFocus();
IApplication::current().run();
return 0;

}
/**
* Class SliderArmHandler::SliderArmHandler *
**/
SliderArmHandler::SliderArmHandler()

:ISliderArmHandler()
{}

The following figure shows a slider example. Note that its value is currently
shown by both the detents and the number displayed on the dial.

386 IBM Open Class: User Interface

“Chapter 24. Multimedia Devices” on page 335
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Create Master Devices” on page 338
“Play Audio Compact Discs” on page 340
“Create Audio Devices” on page 354
“Create Video Devices” on page 378
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Chapter 24. Multimedia Devices 387

388 IBM Open Class: User Interface

Chapter 25. Bidirectional Language Support

Bidirectional (BIDI) languages, such as Arabic and Hebrew, are written and read
from right to left. However, while Arabic and Hebrew text have an overall
right-to-left direction, they can contain left-to-right strings embedded within them,
such as numbers or English text. Further, left-to-right strings can also contain
right-to-left strings embedded within them, and so on. Bidirectional text can
therefore contain both right-to-left and left-to-right elements. Similarly, a BIDI
document should have an overall right-to-left layout, although elements within it
can be left-to-right.

IBM does not provide an Arabic or Hebrew version of VisualAge for C++. You can,
however, run applications developed with Open Class Library in a BIDI
environment. Examples of BIDI environments include the Arabic-enabled Windows
NT® operating system, the Hebrew version of the OS/2 operating system, and the
AIX operating system with a language option and cultural convention of Hebrew
or Arabic.

Open Class Library supports the running of two types of applications in a BIDI
environment:
v Untranslated applications

These applications have little or no BIDI-specific code. Their titles, menus,
prompts, and other text strings are not Arabic or Hebrew. These applications
may have been written for English-speaking users and may still be targeted for
English-speaking users — even when run in a BIDI environment.
You do not need to make any code changes to run a non-BIDI application in a
BIDI environment. These untranslated applications will correctly maintain their
normal left-to-right appearance since a non-BIDI window should not be have the
appearance of a BIDI document. Nevertheless, these applications can still accept
BIDI input from the user, and in some cases display BIDI strings back to the
user.

v Translated applications
These applications are fully enabled for Arabic and Hebrew users. They accept
BIDI input, display BIDI strings, and display windows with a right-to-left
layout.
You can use Open Class Library to develop BIDI-enabled applications. You can
develop these applications to have a left-to-right look when you run them in a
non-BIDI environment, and a right-to-left look (the look of a BIDI document)
when you run them in a BIDI environment. To do so, you must add some
BIDI-specific code to enable the BIDI support provided by Open Class Library.

Open Class Library externalizes its BIDI support primarily through the class
IBidiSettings and the styles IWindow::leftToRight and IWindow::rightToLeft.
IBidiSettings allows you to query and change the BIDI attributes for the
application or an existing window. Use the BIDI styles IWindow::rightToLeft and
leftToRight to set the BIDI attributes of windows as you create them.

Bidi Support in IWindow and Derived Classes
Generally the operating system provides most of a standard control’s right-to-left
appearance and behavior, such as a radio button displaying its graphic to the right
of its text, as well as its shaping of Arabic text, and handling of direction changes

© Copyright IBM Corp. 1998, 2000 389

between right-to-left and left-to-right elements in a BIDI string. However, some
behavior is implemented by Open Class Library in the IWindow classes.

The following classes support right-to-left layout of their child windows:
v ISetCanvas
v IMultiCellCanvas
v ISplitCanvas
v IViewPort
v IToolBar
v IFrameWindow (for the positioning of its frame extensions)

Window classes that support left and right alignments will reverse their alignment
when assigned a right-to-left layout, such as IStaticText and IEntryField.

IWindow also provides a virtual setBidiSettings function to allow derived classes to
provide control-specific code for supporting a change to their BIDI attributes.
IBidiSettings::apply calls this virtual function. If you are providing your own class
derived from IWindow, you may need to override this function and provide an
implementation.

IFlyText inherits BIDI attributes from its owner window. It uses these BIDI
attributes when drawing its fly-over text. Therefore, if the owner window is
right-to-left, IFlyText will draw its fly-over help text as a BIDI string.
IMessageBox and IMessageWindow inherit the application default BIDI attributes.
They use these attributes when drawing the message text strings that they display.
Therefore, if the application default BIDI attributes are right-to-left, IMessageBox
and IMessageWindow will draw their message text as BIDI strings.

Menus are assigned the BIDI attributes of their owner. Therefore, if the owner
window is right-to-left, its menu bar (in the case of a frame window) and pop-up
menu will also have a right-to-left layout and draw their menu text as BIDI strings.

Drawing BIDI Text
When drawing a text string in a BIDI environment, you can account for the
following BIDI considerations:
v Drawing the text with a right-to-left direction as opposed to a left-to-right

direction.
v Character shaping of Arabic text. (Arabic is a script language where a character

can have a different shape depending on the characters preceding and following
it.)

v Drawing numerals in their national form (such as Hindi) as opposed a Western
form (such as Arabic).

The way you do this differs slightly by platform. These rules apply when drawing
text using the 2D classes IText/IGraphicText and the obsolete 2D class IGString.

On OS/2, you can also use IBidiSettings to query and set the BIDI attributes of a
presentation space (or graphic context).

390 IBM Open Class: User Interface

A string is drawn using the BIDI attributes of the window.

Restrictions

Open Class Library provides PM-compatible versions of the following controls on
Windows, to allow code written on OS/2 to be ported to Windows with minimal
changes:
v IContainerControl
v INotebook
v ISlider
v IProgressIndicator
v INumericSpinButton
v ITextSpinButton

The PM-compatible versions, which are created with the pmCompatible styles of
these classes, are not BIDI-enabled.

The native control versions of IContainerControl and INotebook show little
difference when run in a BIDI environment.

“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Set and Query Default Bidirectional Attributes”
“Assign Bidirectional Attributes to Individual Windows” on page 393
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Set and Query Default Bidirectional Attributes
You can set and query the default bidi attributes for your application using the
static functions IBidiSettings::setApplicationDefaults and
IBidiSettings::applicationDefaults.

By setting application-level bidi attributes, you set the default bidi characteristics
that Open Class Library uses to create top-level frame windows of your
application — frame windows that have no parent window or use the desktop
window as their parent window. All other windows inherit the bidi attributes of
their parent windows. As a result, you can give all windows in your application a
right-to-left look by calling IBidiSettings::setApplicationDefaults with the
appropriate values at the start of your program.

You can do this using the following code, which tests if the application is running
in a bidi environment, queries the bidi attributes of the application as assigned by
the operating system, then explicitly sets the principle bidi attributes that affect the
window layout and text orientation directions (it uses the default values returned
for the other bidi attributes):

Chapter 25. Bidirectional Language Support 391

// Give all windows right-to-left behavior and appearance when
// running in an environment that supports a bidirectional
// language.
if (IBidiSettings::isBidiSupported())
{

IBidiSettings
applicationSettings(IBidiSettings::applicationDefaults());

applicationSettings
.setWindowLayout(IBidiSettings::layoutRightToLeft)
.setTextOrientation(IBidiSettings::textRightToLeft);
IBidiSettings::setApplicationDefaults(applicationSettings);

}

Window layout determines if a window has a general left-to-right or right-to-left
appearance. For example, a right-to-left check box displays its graphic at the right
edge of the window and its text to the left of the graphic. A right-to-left static text
control reverses its alignment. A right-to-left set canvas displays its child windows
from right to left. A right-to-left view port displays its vertical scroll bar to the left
of the window being scrolled.

Text orientation determines if the text should have a general right-to-left or
left-to-right direction. Bidi text should have a right-to-left direction.

On the AIX and OS/2 operating systems, you can also set the following bidi
attributes on an individual window basis:
v Text type
v Numeral display
v Symmetric swapping
v Word-by-word reordering
v Text shaping

You cannot set these other bidi attributes on the Windows operating system.

Calling IBidiSettings::setApplicationDefaults sets the default bidi attributes that
Open Class Library uses on all threads of your application. As a result, if you call
this function to change the default bidi attributes between calls to create individual
top-level windows, you must synchronize your threads to be sure you do not
accidentally create more windows with these bidi attributes than you intend.

The default window layout and text direction in a bidi environment is left-to-right
if you don’t call IBidiSettings::setApplicationDefaults or otherwise set bidi
attributes through the operating system. The different platforms provide the
following support:
v

You can also set application-level bidi attributes using the BIDIATTR
environment variable or calling the WinSetLangInfo API. Calling
WinSetLangInfo to set application values overrides the value of BIDIATTR.
Calling IBidiSettings::setApplicationDefaults is equivalent to calling
WinSetLangInfo to set application values.

392 IBM Open Class: User Interface

v

Motif supports bidi attributes as resources, such as XmNtextMode and
XmNnssMode, that you can set in an application resource file or in the
.Xdefaults file. For example, you can place the following line in your .Xdefaults
file to set the layout direction resource for all widgets that support it:

*layoutDirection: left_to_right

Setting application-level bidi attributes via IBidiSettings::setApplicationDefaults
overrides these Motif bidi resources. The value returned by
IBidiSettings::applicationDefaults does not reflect the setting of any Motif bidi
resources.

Open Class Library does not apply application-level bidi attributes to windows
that it does not create. Therefore, the “wrapper” constructors (those which create
an IWindow-derived object for an existing window, identified by either its window
handle or the combination of its window identifier and parent window) do not
modify the existing window. Similarly, the IFrameWindow constructors do not
modify dialogs they load from a dialog template.

OS/2 allows you to assign bidi attributes to windows and controls in a dialog
template via the BIDIPARAM keyword.

Windows allows you to assign bidi attributes to windows and controls in a dialog
template via the WS_EX_RIGHT and WS_EX_RTLREADING extended styles.

“Chapter 25. Bidirectional Language Support” on page 389
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Assign Bidirectional Attributes to Individual Windows”
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Assign Bidirectional Attributes to Individual Windows
You can also query and set the bidi attributes of individual windows. Setting the
bidi attributes of a window overrides the bidi attributes the window otherwise
inherits by default:
v For a top-level frame window, the attributes returned by

IBidiSettings::applicationDefaults
v For any other window, the attributes it inherits from its parent window

The ability to set the bidi attributes of individual windows is useful for creating a
bidi-enabled application that has a mixture of right-to-left and left-to-right
windows. To do this, set the application-level bidi attributes to what the majority
of your windows need, and set the bidi attributes of the other windows to what
they need.

You can set the bidi attributes for an individual window in one of two ways:

Chapter 25. Bidirectional Language Support 393

v Create the window with either the IWindow::leftToRight or IWindow::rightToLeft
style
Creating a window with the IWindow::leftToRight or IWindow::rightToLeft style
sets its window orientation and text direction accordingly. The window will
continue to get all other bidi attributes from either the application-level settings
or its parent window.
Both styles are ignored if used in a non-bidi environment. Neither is a default
style. If neither is specified, the window also gets its window orientation and
text direction from the application-level bidi attributes or its parent window.

v

Use IBidiSettings to set the bidi attributes of the window after you create it

On the Windows and OS/2 operating systems, you can change the bidi
attributes of a window after you create it. You can do this using the function
IBidiSettings::apply.

Motif bidi resources cannot be changed after a widget is created (for example,
with XtSetValues). Because of the limitation, IBidiSettings::apply does not work
on AIX. To maintain a portable application, set the application-level BIDI
attributes and modify them for individual windows using the
IWindow::leftToRight and IWindow::rightToLeft styles.

“Chapter 25. Bidirectional Language Support” on page 389
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Set and Query Default Bidirectional Attributes” on page 391
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

IBidiSettings
IWindow

394 IBM Open Class: User Interface

Chapter 26. Port and Convert Applications

Convert Application Resources
The Open Class Library provides tools to help you convert Windows, OS/2, and
Motif resource files.

Convert Bitmap and Icon Resources

Use the ibmpcnv tool to convert bitmap (.bmp), icon (.ico), pointer (.ptr), or
cursor(.cur) between the Windows and OS/2 operating systems.

The Motif resource compiler understands both OS/2 and Windows bitmap and
icon formats.

The Open Class Library accesses bitmap and icon resources using an IResourceId
(an unsigned long).

Convert Resource Files
The convrc tool on OS/2 and Windows converts resource (.rc) files between the
two operating system formats. The irccnv tool on Motif converts a Windows
resource file to the OS/2 format. Open Class Library uses the OS/2 format on the
Motif operating system. There is no compiler extension to invoke convrc under a
build. Convert your files with convrc either manually, in your configuration file
using the run directive, or in a makefile.

To use the convrc on the Windows and OS/2 operating systems, use the following
syntax in the VisualAge C++ command Line window:

convrc -option input output

To convert from Windows NT/95/98 to OS/2 specify the following option:
convrc -n input output

To convert from Windows 3.1 to OS/2 specify the following option:
convrc -w input output

The current platform’s resource files have a .rc file extension.

The following example shows the convrc command to use to convert an OS/2 PM
resource file, myapp.rc, to a Windows resource file:

convrc -o myapp.rcx myapp.rc

To use irccnv on Motif, use the following syntax:
irccnv -option input output

Since Motif’s resource compiler understands the OS/2 format, no conversion is
needed for OS/2 resource files.

© Copyright IBM Corp. 1998, 2000 395

To convert Windows to OS/2 format on Motif, use the following:
irccnv -o input output

The convrc and irccnv tools handle the following types of resources:
v accelerator table (ACCELTABLE)
v bitmap (BITMAP)
v extended menus (MENUEX)
v help tables (HELPTABLE)
v help subtable (HELPSUBTABLE)
v icon (ICON)
v menu (MENU)
v menu item (MENUITEM)
v pointers(POINTER) This is OS/2 only
v string table (STRINGTABLE)
v submenu (SUBMENU)

Also keep the following in mind:
v convrc and irccnv error checking do not flag the same errors as the resource

compiler. For example, incomplete lines and missing commas produce erroneous
output from irccnv but no error message. When you use these tools, check input
files for errors using the resource compiler.

v irccnv processes only a single input file. For this reason, do not use wildcard (*)
characters in the input file name.

v irccnv does not convert included files. Convert each included file individually.
v irccnv does not convert dialog templates as they are not a portable solution. Use

the ICanvas class instead.
v irccnv does not change included headers.
v The accelerator table, menu, menu item, string table, and submenu definitions

cannot span multiple lines:
STRINGTABLE
BEGIN

STR_HELLO,
“Hello World”

END

“Chapter 21. Resources” on page 297
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Hello World Version 4: Adding Dialogs and Push Buttons” on page 420
Create Cross-Platform Applications
“Port Applications with Frame Windows” on page 397
“Use Native Window Controls and 3D Borders” on page 398
“Support Double-Byte Character Set and Multiple Languages” on page 399
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

396 IBM Open Class: User Interface

Port Applications with Frame Windows

The following limitations exist on the Windows platform with respect to child
frame windows:
v A child frame window is one whose parent is not IWindow::desktopWindow.
v Focus will not be given to the child window and its title bar will appear as an

inactive window.
v Minimizing to the parent window client area will not work. In particular, the

icon may not be visible.
v Menus cannot be added to the child frame window.
v Child frame windows are not added to the task list or task bar.

We recommend that you do not use the following styles on child frame windows
in portable applications:
v IFrameWindow::maximizeButton
v IFrameWindow::maximized
v IFrameWindow::menuBar
v IFrameWindow::minimizeButton
v IFrameWindow::minimized
v IFrameWindow::minimizedIcon
v IFrameWindow::shellPosition
v IFrameWindow::sizingBorder
v IFrameWindow::systemMenu
v IFrameWindow::systemModal
v IFrameWindow::titleBar
v IFrameWindow::windowList

An alternative to MDI style child windows which is more consistent with the PM,
Motif, and 32-bit Windows style guides is to use secondary frame windows. You
can create such windows with IBM Open Class Library by specifying the parent
window as IWindow::desktopWindow() (or 0), and the primary frame as the
owner.

Frame extensions are non-portable. Like the Windows operating system, control of
the appearance of frame window decorations lies primarily with the system.
Windows gives you a little more control (you can draw your own title bar, for
example). Frame extensions in the non-client area are not supported in either
environment. MDI is not supported on Motif and IOC does not support MDI
correctly in Windows either. The main problem is attaching extensions to menus
and title bar. You can not do this at all in Motif. Tool bar provides a better
alternative for many of the cases where this is used.

There is a new version of IWindow::create() that takes an IWindow* for parent and
owner instead of IWindowHandle objects. Use this new IWindow::create() when
you subclass an IWindow object. The library then ensures that the correct handle
for the creation (parent->handleForChildCreation()) of the control is used.

A new member function returns the handle that a child of a control should use as
their parent. When a control is created and an IWindow* is specified as the parent,

Chapter 26. Port and Convert Applications 397

we use handleForChildCreation() instead of handle(). The default implementation
of handleForChildCreation() just returns the handle that should be used when
creating children. Any subclass that needs a different implementation, like
IViewPort, overrides this member function and returns the appropriate handle.

“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Create a Frame Window” on page 4
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

IViewPort
IWindowHandle

Use Native Window Controls and 3D Borders
The Open Class Library provides features to take advantage of the native look and
feel of each operating system.

Native Windows Controls
You can use the following classes on Windows to create either a native Windows
(Win32) control or a control provided by IBM Open Class that is similar to an
OS/2 control:
v IContainerControl
v INotebook
v IProgressIndicator
v ISlider
v INumericSpinButton
v ITextSpinButton

To create the OS/2-like control, construct the control object with its pmCompatible
style. For example, to use the OS/2-like notebook instead of the Windows tab
control, specify INotebook::pmCompatible when you construct your INotebook
object. You need to specify this style because the native Windows control is the
default in the Windows version of this product.

OS/2 and AIX ignores the pmCompatible style.

The following lists the advantages and disadvantages of the pmCompatible style:

Advantages:

398 IBM Open Class: User Interface

v Allows you to port code written for OS/2 to Windows with minimal effort, since
some functions of the above control classes are not supported for native
Windows controls.

Disadvantages:
v Creates controls that won’t match the look of those created by other Windows

applications.
v

pmCompatible controls are not supported on AIX.

3D Borders
The following controls have the border3D extended style as the default to add an
etched three-dimensional border to the control:
v Combination box
v Entry field
v List box
v Multiline edit field
v Outline box
v Progress indicator
v Slider
v Spin button (ignored if you specify the noBorder or pmCompatible style)
v Static text (not the default)

OS/2 and AIX ignores the 3D border styles.

“Chapter 21. Resources” on page 297
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Convert Application Resources” on page 395
“Port Applications with Frame Windows” on page 397
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Support Double-Byte Character Set and Multiple Languages
You can use one source file for your application code and then provide the
double-byte character set (DBCS) and support multiple languages by using
separate resource files for each of the languages you support. The Open Class
Library approach includes either of the following:
v Use a single executable file with a separate .DLL for each language.
v Use separate executable files for each language (each with a separate resource

file bound to it).

Chapter 26. Port and Convert Applications 399

The following suggestions can assist you in creating DBCS-enabled applications:
v Use the canvas classes to build dialogs because you define message strings in

resource files, you can translate them easily to another language without
changing the source code.

v Use the IString class, which is DBCS-enabled and supports mixed strings that
contain both the single-byte character set (SBCS) and DBCS characters. Objects of
the IString class are essentially arrays of characters. The IString class provides
functions to test the characters that make up the string. These functions help
users determine whether a character is single byte or multiple byte, and whether
it is a valid DBCS first byte.

v Use the IDBCSBuffer class, which ensures that the search functions do not
inadvertently match the second byte of a DBCS character. The IDBCSBuffer class
is derived from the IBuffer class, which holds the IString contents. The two bytes
of a DBCS character will not be split.

v Use the following member functions in a DBCS-enabled application:

Member Function Returns True If...

isCharValid The character at the given index is in the set
of valid characters

isDBCS1 The byte at the given offset is the first byte
of DBCS

isPrevDBCS The character preceding the one at the given
offset is a DBCS character

v Specify one of the following data type styles when you create and manage the
IEntryField and IComboBox classes:

Data Type Styles Allows the Following Input...

anyData A mixture of SBCS and DBCS characters.

dbcsData DBCS-only data.

mixedData A mixture of SBCS and DBCS characters.
Use this style if you plan to convert data to
an EBCDIC code page.

sbcsData SBCS-only data.

v Specify the appDBCSStatus style when constructing an IFrameWindow to
include a DBCS status area when the frame appears in a DBCS environment.
The Open Class Library automatically shares DBCS status control between a
parent and child frame window.

“Chapter 21. Resources” on page 297
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Convert Application Resources” on page 395
“Port Applications with Frame Windows” on page 397
“Use Native Window Controls and 3D Borders” on page 398
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

400 IBM Open Class: User Interface

Chapter 27. Work with the User Interface Samples

Sample application files are provided with the IBM VisualAge C++ product. Use
the Open Class Library samples to understand the classes and their use. Complete
listings are included in the samples/ioc directory.

About the Hello World Application
The Hello World sample application is divided into several versions, starting with
the simplest form, version 1, and building up to the most complicated form,
version 6. Each version shows you a different aspect of the Open Class Library.

Hello World Version 1: Creating a Main Window through Hello World Version 6:
Adding a Font Dialog, Pop-up Menus, Notebooks, and Graphics show you how to
build an application called “Hello World” using the Open Class Library. However,
these sample applications do not teach you C++ programming.

The samples are portable between the operating systems we provide. Application
resources are targeted for the platforms on which they are to be built.

You can also take advantage of native controls by specifying a style.

Reviewing the Conventions Used in the Samples
The Open Class Library uses conventions to enhance the usability and readability
of the code. The following conventions will help you as you create applications.
v Class names begin with a capital letter. For example, all classes belonging to the

Open Class Library with a global scope begin with the letter “I”, as in
IApplication. If a class name consists of more than one word, the first letter of
each word is capitalized, such as IFrameWindow.
In keeping with this standard, the letter “A” was chosen as the first letter (for
example, AHelloWindow) for the Hello World application-defined classes. This
convention helps you distinguish the Hello World application classes from the
Open Class Library classes. This naming convention also helps you distinguish
the classes you create from those supplied by the class library.

v Member functions begin with a lowercase letter. If a member function name
consists of more than one word, the first letter of each word that follows the first
word is capitalized, such as setText. In this infomation, single-word member
functions have ClassName:: added to them; for example, the member function
“show” appears as IWindow::show.

“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Hello World Version 1: Create a Main Window” on page 402
“Hello World Version 2: Add Resource Files and Frame Extensions” on page 405
“Hello World Version 3: Add Command Handlers and Menu Bars” on page 412
“Hello World Version 4: Adding Dialogs and Push Buttons” on page 420
“Hello World Version 5: Add Canvases, a List Box, Native System Functions, and
Help” on page 433
“Hello World Version 6: Adding a Font Dialog, Pop-up Menus, Notebooks, and

© Copyright IBM Corp. 1998, 2000 401

Graphics” on page 443
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Hello World Version 1: Create a Main Window
Version 1 of the Hello World sample application shows you how to create a main
window and insert a text string into it using the static text control. A static text
control is a text field, bitmap, icon, or box that you can use to label or box another
control. In version 1, the “Hello World!!!” text string is inserted into a static text
control.

Version 1 shows you how to do the following:
1. Create the main window
2. Create a static text control
3. Set the focus and show the main window

The main window for version 1 of the application looks like this:

List the Hello World Version 1 Files
You can find the following files in the samples/ioc/hello1 directory:

File Type of Code

ahellow1.cpp Source code for the main procedure.

ahellow1.icc This configuration file differs for each
platform.

ahellow1.h Symbolic definitions file for the hello1
executable file.

ahellow1.rc Resource file for the hello1 executable file.

makefile This makefile differs for each platform.

The Configuration File and Makefile
In VisualAge C++, the configuration file helps you manage your software
development projects and the files associated with your project. You can find the
configuration file ahellow1.icc file in the samples/ioc/hello1 directory.

402 IBM Open Class: User Interface

In VisualAge C++ the make utility helps you manage your software development
projects and the files associated with your project. The make utility uses a makefile
to convert your source code file into an object file. The makefile is a special file
containing a list of tasks that you provide to convert your source file. Refer to the
Hello World Version 1 makefile in the samples/ioc/hello1 directory.

There are two ways to invoke make depending on what you name your make file.
v

If you have a file named makefile run the following command:

make

For these platforms run the following command:

nmake

v If you have a file by a different name, for example, makefile.ioc, type the
following:

make -f makefile.ioc

nmake -f makefile.ioc

Explore Hello World Version 1
The following sections describe each of the tasks performed by the Hello World
version 1 application.

Create the Main Window
The first statement creates the main window, an instance of the IFrameWindow
class, for the application. To make this class available, the application must include
the iframe.hpp library header file, as follows:
#include <iframe.hpp>

Now that the IFrameWindow class is available, a variable, in this case mainWindow,
is defined as a new object of this class. This object represents the main window of
the application:

IFrameWindow mainWindow (WND_MAIN);

WND_MAIN is then defined in the ahellow1.rc file. The object represents the main
window of the application.

Create a Static Text Control
Next, create a static text control for the “Hello, World!!!” text string. Because this
control is an object of the IStaticText class, it includes another library header file,
istattxt.hpp, as follows:

#include <istattxt.hpp>

Chapter 27. Work with the User Interface Samples 403

Now, define another variable, hello, as a new object of the IStaticText class, which
represents a static text control:

IStaticText hello(WND_HELLO, &mainWindow, &mainWindow);

WND_HELLO is the control ID.

The argument that follows identifies the mainWindow as the parent of the static
text control. This positions the static text control in relation to the main window
and displays it on top of the main window.

The last argument identifies the main window as the owner of the static text
control. Controls notify their owner windows when events take place by using
command, help, or control events. In this case, if an action is performed on the
static text control, such as modifying its text string, that action is reported to the
main window, which is specified as the owner. In version 1, no actions are
performed on the static text control, but they are in versions 2 through 6.

Set a Text String for the Static Text Control
After creating the static text control, give it a static text string. The IStaticText class
is derived from the ITextControl class and, thus, inherits its member functions. One
of those member functions, setText, defines the text string for the static text control.
For example:

hello.setText(STR_HELLO);

Then in the .rc file, define the following:
#include “ahellow1.h”
STRINGTABLE

BEGIN
WND_MAIN, “Hello World Sample - Version 1”
STR_HELLO, “Hello, World!!!”

END

Align the Static Text Control
Next, the setAlignment member function of the IStaticText class aligns the text
string in the static text control. In this sample, it is centered both horizontally and
vertically:

hello.setAlignment(IStaticText::centerCenter);

If you do not align the text string, the default placement is in the upper-left corner
of the static text area.

Set Static Text Control as the Client Window
Next, designate the static text control as the frame’s client window so that the
“Hello, World!!!” text string displays in the main window’s client area. Use the
setClient member function of the IFrameWindow class, as follows:

mainWindow.setClient(&hello);

The frame’s client window is the window corresponding to the client area, which
is the rectangular portion of the frame window not occupied by the other frame
controls (for example, title bar, window border, and minimize and maximize
buttons). Setting the static text control as the client window causes it to occupy the
entire client area and to be aligned within the boundaries of that area. When the
user resizes the main window, the client area (static text control in this sample)
grows or shrinks.

404 IBM Open Class: User Interface

Set the Size of the Main Window
The following code shows you how to change the size of the main window:

mainWindow.sizeTo(ISize(400,300));

This sets the size of the main window to 400 pixels wide by 300 pixels high.

Set the Focus and Show the Main Window
The following statements designate the main window as the active window and
display the main window when the application runs:

mainWindow.setFocus();
mainWindow.show();

These statements use the IFrameWindow::setFocus and IWindow::show member
functions:

Because IFrameWindow is derived from IWindow, the setFocus and
IWindow::show member functions are inherited from the IWindow class. Classes
inherit functions from the base classes from which they are derived. An application
does not have to include those base classes. Therefore, the IWindow class does not
need to be included in this application for its functions to be available.

Starting Event Processing
The last statement displays the main window and starts the user interface window
event processing for the application. This is accomplished by using member
functions belonging to the IApplication and ICurrentApplication classes. Therefore,
include another library header file, iapp.hpp, as follows:

#include <iapp.hpp>

The IApplication::current member function of the IApplication class returns the
current application as an instance of the ICurrentApplication class. Next, the
ICurrentApplication::run member function displays the main window and starts
event processing for this application, using the following code:

IApplication::current().run();

“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Create a Frame Window” on page 4
“Write an Event Handler” on page 25
“Change the Title Bar” on page 6
“Create an Information Area” on page 9
“Use Keyboard Accelerators” on page 50
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Hello World Version 2: Add Resource Files and Frame Extensions
Version 2 of the Hello World application shows you how to use a resource file and
how to add frame extensions to the application window.

Chapter 27. Work with the User Interface Samples 405

A resource file is a file that contains data used by an application, such as text strings
and icons. This data is often easier to maintain in a resource file than in the source
code of an application because the resource file keeps all of the application’s data
together in one place.

Frame extensions are controls that you can add to a frame window in addition to
those that are provided for you by basic frame windows. For example, in version
2, an information area is added below the client area.

Version 2 of the Hello World application extends version 1 by showing you how
to:
v Get the “Hello, World!!!” text string and text for an information area
v Construct the main window and set the title and system menu icon
v Create and set the information area below the client window

The main window for version 2 of the Hello World application looks like this:

List the Hello World Version 2 Files
You can find the following files in the samples/ioc/hello2 directory:

File Type of Code

ahellow2.cpp Source code for the main procedure and
window constructor

ahellow2.hpp Header file for the AHelloWindow class

ahellow2.h Symbolic definitions file for the hello2
executable file

ahellow2.icc This configuration file differs for each
platform.

ahellow2.rc Resource file for the hello2 executable file

ahellow2.ico Icon file for the hello2 executable file

makefile This makefile differs for each platform.

The Primary Source Code File
The ahellow2.cpp file contains the source code for the main procedure and the
window constructor. The tasks performed by this code are described in the
following sections.

406 IBM Open Class: User Interface

The AHelloWindow Class Header File
The ahellow2.hpp contains the class definition and interface specifications for the
AHelloWindow class, an IFrameWindow derived class, which was created specifically
for this application. It is similar to an Open Class Library header file.

The Symbolic Definitions File
The ahellow2.h file contains the symbolic definitions for this application. These
definitions provide the IDs for the application main window, controls, and text
strings. They are required in this version of the Hello World application, because
the text strings are pulled in from a resource file.

The Resource File
The ahellow2.rc file is the resource file for version 2 of the Hello World application.
This resource file assigns an icon and three text strings to the constants defined in
the ahellow2.h file. The ahellow2.h file is included in this resource file so the icon
and text strings can be associated with the appropriate IDs.

VisualAge C++ provides tools for converting Windows, Motif, and OS/2-style
resources. See “Convert Application Resources” on page 395 for more information
about the resource file conversion tools.

The Icon File
The ahellow2.ico file is used as both the title bar icon and the icon that displays
when the application is minimized.

VisualAge C++ provides tools for converting Windows, Motif, and OS/2 bitmaps
and icons. See “Convert Application Resources” on page 395 for more information
about the bitmap and icon conversion tools.

Here is how the icon appears when minimized on Windows:

Here is how the icon appears when minimized on OS/2:

The Advantages of the C++ File Structure
In version 1, all of the source code was intentionally put in the ahellow1.cpp file to
make that version of the application simple. However, for version 2, the source
code has been distributed among a variety of files to show that you can structure
your applications this way.

Chapter 27. Work with the User Interface Samples 407

First, the AHelloWindow class, the IFrameWindow derived class, is defined in the
header file (ahellow2.hpp). Putting the class definition and interface specifications
in the header file separates them from their implementation in the source code
(ahellow2.cpp). This allows the class and its specifications to be used again with
other applications and to be implemented in different ways. If the class definition
or interface specifications change, for translation, for example, they change in only
one place, the header file.

Similarly, the constant definitions file (ahellow2.h) assigns IDs to the windows and
text strings in one place. Defining the constants this way allows you to use
constants in a variety of places, such as the source code and the resource file, while
keeping their definitions in one place. Then, if you need to change the constant
definitions, you only modify the ahellow2.h file.

The advantage of placing the application’s data in a resource file (ahellow2.rc) is
that all of the resources are specified in one place. For example, finding and
modifying text strings is easier when they are all grouped in one place, rather than
searching through the source code for each one.

Explore Hello World Version 2
The following sections describe each of the tasks performed by version 2 of the
Hello World application. Some of the tasks are the same as those performed by
version 1, but they are described again because they are performed differently in
version 2.

Create the Main Window
One of the major differences between version 1 and version 2 is the manner in
which you create the main window. Version 1 simply creates an IFrameWindow
object. However, version 2 provides its own class, AHelloWindow, to create the main
window.

The AHelloWindow class is defined in the ahellow2.hpp header file and is derived
from the IFrameWindow class. The IFrameWindow class is defined in the
iframe.hpp library header file. Therefore, the ahellow2.hpp header file contains the
following lines to make the derivation of the AHelloWindow class from the
IFrameWindow class possible:
#ifndef _AHELLOW2_
#define _AHELLOW2_
#include <iframe.hpp>
#include <istattxt.hpp>
#include <iinfoa.hpp>

Hello World version 2 uses the compiler directive, ifndef, to prevent the
ahellow2.hpp file from being included again, if it has already been included. This
works because, by convention, the _AHELLOW2_ symbol is defined in the
ahellow2.hpp file as well. Both the Open Class Library and Hello World sample
application use this convention in the header files.

The ahellow2.cpp file, which contains most of the source code for the application,
includes the ahellow2.hpp header file to have access to the AHelloWindow class as
follows:
#include “ahellow2.hpp”

The following lines in the ahellow2.cpp file create the main window by using the
AHelloWindow class constructor:
AHelloWindow mainWindow (WND_MAIN);

408 IBM Open Class: User Interface

The main window is given a value of 1000 as its window ID when the main
window was created. However, instead of specifying that value in the primary
source code file, we use a constant, WND_MAIN, which is defined in the ahellow2.h
file, as follows:
#define WND_MAIN 1000

To have access to this definition, the primary source code file, ahellow2.cpp, must
include the ahellow2.h file, as follows:
#include “ahellow2.h”

Start Event Processing
When the main window is constructed, the following line in the ahellow2.cpp file
gets the current application and runs it:
IApplication::current().run();

See Start Event Processing for a more detailed explanation.

Construct the AHelloWindow Object
Version 2 constructs the main window using the AHelloWindow class. Here is the
class constructor as it is defined in the ahellow2.hpp header file:
class AHelloWindow : public IFrameWindow
{

public:
// Constructor
// - construct the object with the window ID
AHelloWindow (const unsigned long windowId);
// Destructor
virtual
xAHelloWindow() { }

private:
IStaticText

hello;
IInfoArea

infoArea;
// Operators
// - Assignment operator
AHelloWindow

&operator= (const AHelloWindow&);
};

In the primary source code file, ahellow2.cpp, version 2 uses the following lines to
construct the main window:
AHelloWindow :: AHelloWindow(const unsigned long windowId)

: IFrameWindow(IFrameWindow::defaultStyle() |
IFrameWindow::minimizedIcon,
windowId)

,hello(WND_HELLO, this, this)
,infoArea(this)

{
// ...

}

Two capabilities provided by the IFrameWindow class used here are not used in
version 1:
v Setting the main window to the default style.

Use the defaultStyle member function from the IFrameWindow class. It returns
the current default style that all applications use for frame windows. The current
default style is either the original default style that is provided by the Open

Chapter 27. Work with the User Interface Samples 409

Class Library for frame windows or a new default style that you establish by
using the setDefaultStyle member function.
In this case, because the setDefaultStyle member function has not been used, the
current default style is the same as the original default style, which provides a
title bar, title bar icon, minimize button, maximize button, window border,
window list, and an initial shell position for the window.
In this application, the title bar text and the application icon are specified in the
resource file, ahellow2. The text string for the window title is included in the
resource file, and the icon, ahellow2.ico, is specified.

v Displaying an icon when the main window is minimized.
The minimizedIcon style also inherits from the IFrameWindow class. This
member function allows an application to use an icon to represent the
application when it is minimized on the desktop. The Hello World application
provides the ahellow2.ico icon file for this purpose.

Create a Static Text Control
You can create a static text control to display a text string by setting hello equal to
a new instance of the IStaticText class, associating an ID with the control window
(0x1010), and making the main window the parent and owner of the control.

In our Hello World samples, however, this code is divided into separate parts and
placed in different files. As shown in the following lines, hello is declared in the
AHelloWindow class as an IStaticText object in the ahellow2.hpp file:
private:

IStaticText
hello;

In the ahellow2.cpp file, hello points to a new instance of a static text control as
follows:
AHelloWindow :: AHelloWindow(const unsigned long windowId)

: IFrameWindow(IFrameWindow::defaultStyle() |
IFrameWindow::minimizedIcon,
windowId)

,hello(WND_HELLO, this, this)
,infoArea(this)

{
// ...

}

The WND_HELLO constant provides the ID for the static text control. All windows
must have a unique ID, including controls. Therefore, the ahellow2.cpp file must
include the ahellow2.h header file, because that is where this constant is defined:
#include “ahellow2.h”

With the ahellow2.h included, the ID is associated with the WND_HELLO constant.
The following code is from the ahellow2.h file:
#define WND_HELLO 1010

The other two arguments (this, this) pass in the main window (this instance of the
AHelloWindow class) as the parent and owner of the static text control.

See “Window Relationships” on page 2 for information about parent and owner
windows.

410 IBM Open Class: User Interface

Set Static Text Control as the Client Window
Next, set the static text control as the client window. The following code is from
the ahellow2.cpp file:
setClient(&hello);

See “Create a Static Text Control” on page 81 for an explanation of static text
controls and client windows.

Setting a Text String for the Static Text Control
After the static text control is created, the next task is to set text in it. Version 2
gets the text string from a resource file. To do this, it uses the setText member
function, which it inherits from the ITextControl class. The following code is in the
ahellow2.cpp file:
hello.setText(STR_HELLO);

The setText member function finds this constant string in the ahellow2.rc file and
puts it into the static text control:
STR_HELLO, “Hello, World!!!”

As noted earlier, each window, even a control, must have a numeric value assigned
as its ID. The resource file includes the constant definition file, so this constant
definition is available. The following code is from the ahellow2.h file.
#define STR_HELLO 1200

Create an Information Area
The following code, from the ahellow2.cpp file, creates a new instance of an
information area using the IInfoArea class. This class provides a frame extension
below the client window that shows information about the application.
AHelloWindow :: AHelloWindow(const unsigned long windowId)

: IFrameWindow(IFrameWindow::defaultStyle() |
IFrameWindow::minimizedIcon,
windowId)

,hello(WND_HELLO, this, this)
,infoArea(this)

{
// ...

}

Set the Information Area Text
Typically, the information shown in the information area pertains to the frame
menu item at which the selection cursor is currently positioned. The information is
loaded from a resource file string table. A different text string displays for each
menu item, changing dynamically in the information area as the cursor moves
from item to item. The information area also has a special string (called “inactive
text”) that displays whenever no menu item is selected.

Version 2 uses setDefaultText to set the information area’s inactive text to the same
string placed in the static text control in version 1. As a result, this text appears
whenever the menu is inactive. The following code is from the ahellow2.cpp file:
infoArea.setDefaultText(STR_INFO);

The setDefaultText member function finds the STR_INFO constant in the ahellow2.rc
file and puts it into the information area as follows:
STR_INFO, “Use Alt-F4 to Close Window”

Chapter 27. Work with the User Interface Samples 411

The STR_INFO constant is associated with a string ID, hexadecimal value 0x1220, in
the ahellow2.h constant definition file. The resource file includes the constant
definition file, so this constant definition is available as follows:
#define STR_INFO 1220

Align the Static Text Control
As in version 1, the static text control for the client area is centered both
horizontally and vertically in the static text control. The following code is from the
ahellow2.cpp file:
hello.setAlignment(IStaticText::centerCenter);

“Chapter 21. Resources” on page 297
“Window Relationships” on page 2
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Convert Application Resources” on page 395
Start Event Processing
Create a Static Text Control
“Hello World Version 1: Create a Main Window” on page 402
“Write an Event Handler” on page 25
“Create a List Box” on page 119
“Create a Push Button” on page 99
“Create a Static Text Control” on page 81
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Hello World Version 3: Add Command Handlers and Menu Bars
Version 3 provides a menu bar with an Alignment choice. A menu bar is the area
near the top of a window, below the title bar and above the client area of the
window, which contains a list of choices. By selecting the Alignment choice, the
user can display a pull-down menu and align the “Hello, World!!!” text string to
the left, right, or center. In addition, this version adds a status area to show the
status of the text string and an event handler for the menu bar and the pull-down
menu.

In covering these topics, this section shows you how to:
v Create a status line to show the status of the text string alignment
v Use an event handler
v Add a menu bar
v Set an initial check mark in the pull-down menu
v Add command processing (event handling) to align a text string

The main window for version 3 of the Hello World application looks like this:

412 IBM Open Class: User Interface

Listing the Hello World Version 3 Files
You can find the following files in the samples/ioc/hello3 directory:

File Type of Code

ahellow3.cpp
Source code for the main procedure, main
window constructor, and command
processing

ahellow3.hpp
Header file for the AHelloWindow and
ACommandHandler classes

ahellow3.h
Symbolic definitions file for the hello3.exe
file

ahellow3.icc
This configuration file differs on each
platform.

ahellow3.rc Resource file for the hello3.exe file

ahellow3.ico Icon file for the hello3.exe file

makefile This makefile differs on each platform.

The Primary Source Code File
The ahellow3.cpp file contains the source code for the main procedure and the
AHelloWindow and ACommandHandler classes. The tasks performed by this code
are described in the following sections.

The AHelloWindow Class Header File
The ahellow3.hpp file, like the ahellow2.hpp file, contains the class definitions and
interface specifications for the AHelloWindow and ACommandHandler classes,
with a few modifications for version 3.

The Symbolic Definitions File
The ahellow3.h file contains the definitions for this application. These definitions
provide the IDs for the application window components.

For version 3, the symbolic definition file contains a new window ID (WND_STATUS)
for the status area and three new string IDs (STR_CENTER, STR_LEFT, and STR_RIGHT)
for the text strings used in the status area. In addition, menu IDs (MI_ALIGNMENT,
MI_CENTER, MI_LEFT, and MI_RIGHT) have been added for the menu bar Alignment
choice and the Center, Left, and Right choices in the pull-down menu.

Chapter 27. Work with the User Interface Samples 413

The Resource File
Version 3 provides a resource file, ahellow3.rc. This resource file assigns an icon
and several text strings with the constants defined in the ahellow3.h file. It also
contains the text strings for the menu bar. The ahellow3.h file is included in this
resource file so the icon and text strings can be associated with the appropriate
IDs.

The resource file for version 3 contains two primary additions. The first is the text
strings that are assigned to the new string constants that were defined in
ahellow3.h. These text strings are used in the status area to show the state of the
static “Hello, World!!!” text string in the client area. For example, when the main
window is first displayed, the “Center Alignment” text string is shown in the
status area.

The second addition provides the text that appears on the menu bar (Alignment)
and pull-down menu (Left, Center, and Right), indicating which choices are
available. Each text string is assigned to a constant, also defined in ahellow3.h.

In an AIX or OS/2 resource file, the tilde (x) to the left of a letter in each text
string indicates that the user can select those letters to select a menu item. This is
an ampersand (&) in the Windows .rc file. In addition, the Windows .rc file uses
the extended menu as follows:
WND_MAIN MENUEX

BEGIN
POPUP “&Alignment” , MI_ALIGNMENT

BEGIN
MENUITEM “&Left” , MI_LEFT
MENUITEM “&Center” , MI_CENTER
MENUITEM “&Right” , MI_RIGHT

END
END

These are shortcut keys for the application. For example, the sample bevaves in the
same way if you either press R or choose Right from the pull-down menu.

VisualAge C++ provides tools for converting Windows, AIX, and OS/2-style
resources. See “Convert Application Resources” on page 395 for more information
about the resource file conversion tools.

The Icon File
The ahellow3.ico file is used as both the title bar icon and the icon that displays
when the application is minimized. This icon is the same as for version 2.

VisualAge C++ provides tools for converting Windows, AIX, and OS/2 bitmaps
and icons. See “Convert Application Resources” on page 395 for more information
about the bitmap and icon conversion tools.

Explore Hello World Version 3
The following sections describe each of the tasks performed by version 3 of the
Hello World application that have not been described for previous versions.

Construct the AHelloWindow Object
Version 3 has made the following additions to the main window:
v Create a status line
v Create a menu bar
v Set an initial check mark in the pull-down menu

414 IBM Open Class: User Interface

v Align a text string
v Set ACommandHandler the event handler
v Destruct the main window

The following sections describe these additions.

Create a Status Line
The status line shows the text string alignment status. Use the IStaticText class to
create the static text control to display a text string in a status area. The status area
is a small rectangular area that is usually located at the top of a window, below the
menu bar.

In the ahellow3.cpp file, an IStaticText object, called statusLine, is created with
this instance of the AHelloWindow class as the parent and owner as follows:
AHelloWindow :: AHelloWindow(const unsigned long windowId)

:IFrameWindow(IFrameWindow::defaultStyle() |
IFrameWindow::minimizedIcon,
windowId)

,menuBar(windowId, this)
,statusLine(WND_STATUS,this,this)
,hello(WND_HELLO, this, this)
,infoArea(this)
,commandHandler(this)

{
// ...

}

The WND_STATUS constant provides the window ID for this static text control. This
constant is defined in ahellow3.h.

Specify the Location and Height of the Status Area
Use the IFrameWindow member function addExtension in the ahellow3.cpp file to
specify where the status area is positioned and how high it is. For example:
AHelloWindow :: AHelloWindow(const unsigned long windowId)

:IFrameWindow(IFrameWindow::defaultStyle() |
IFrameWindow::minimizedIcon,
windowId)

,menuBar(windowId, this)
,statusLine(WND_STATUS,this,this)
,hello(WND_HELLO, this, this)
,infoArea(this)
,commandHandler(this)

{
// ...
addExtension(&statusLine,

IFrameWindow::aboveClient,
IFont(&statusLine).maxCharHeight());

// ...
}

The aboveClient argument of the Location enumeration specifies that the static text
control displays the status area above the client window.

The maxCharHeight member function returns the status area’s maximum height,
based on the current font.

Create a Menu Bar
Now you can create the Alignment menu bar to display the Left, Center, and
Right choices. In the header file, ahellow3.hpp, menuBar is defined as an instance
of the IMenuBar class as follows:

Chapter 27. Work with the User Interface Samples 415

class AHelloWindow : public IFrameWindow
{

// ...
private:

IMenuBar
menuBar;

// ...
};

The ahellow3.cpp file uses menuBar to create a new instance of that class in the
main window, as follows:
AHelloWindow :: AHelloWindow(const unsigned long windowId)

:IFrameWindow(IFrameWindow::defaultStyle() |
IFrameWindow::minimizedIcon,
windowId)

,menuBar(windowId, this)
,statusLine(WND_STATUS,this,this)
,hello(WND_HELLO, this, this)
,infoArea(this)
,commandHandler(this)

{
// ...

}

The WND_MAIN argument identifies the following menu in the ahellow3.rc resource
file:
MENU WND_MAIN

BEGIN
SUBMENU “xAlignment”, MI_ALIGNMENT

BEGIN
MENUITEM “xLeft”, MI_LEFT
MENUITEM “xCenter”, MI_CENTER
MENUITEM “xRight”, MI_RIGHT

END
END

The window ID for the menu must match the window ID of the frame window.

This menu puts one choice, Alignment, on the menu bar, and provides a
pull-down menu with three choices: Left, Center, and Right.

In addition, the MI_ALIGNMENT, MI_LEFT, MI_CENTER, and MI_RIGHT menu item
attributes correspond to those in the resource file’s string table:
MI_ALIGNMENT,“Alignment Menu”
MI_CENTER, “Set Center Alignment”
MI_LEFT, “Set Left Alignment”
MI_RIGHT, “Set Right Alignment”

When the user moves the selection cursor over each menu item, the text string
associated with that menu item displays in the information area below the client
window. For example, when the cursor is on the Right menu item, the text string
“Set Right Alignment” appears in the information area. For this to work, the string
ID must match the corresponding menu item ID.

Set an Initial Check Mark in the Pull-Down Menu
The pull-down menu that displays when Alignment is selected on the menu bar
contains three choices for aligning the “Hello, World!!!” text string: Left, Center,
and Right. Because this text string is aligned in the center of the client area when
the application is created, there should be a check mark next to Center the first
time the pull-down menu displays.

416 IBM Open Class: User Interface

The checkItem member function of the IMenuBar class lets you place a check mark
on a pull-down menu choice. The following line, from ahellow3.cpp, places a check
mark on Center:
AHelloWindow &

AHelloWindow :: setTextAlignment(const Alignment alignment)
{

switch(alignment)
{

// ...
case center:

hello.setAlignment(IStaticText::centerCenter);
statusLine.setText(STR_CENTER);
menuBar.checkItem(MI_CENTER);
menuBar.uncheckItem(MI_LEFT);
menuBar.uncheckItem(MI_RIGHT);
break;

// ...
}
return (*this);
}

The MI_CENTER constant is defined in the ahellow3.rc resource file as the “Center”
text string for the menu. Do not confuse this with the MI_CENTER menu item
attribute defined in the string table, which is used only by the information area.

Stop Handling Command Events
After your application runs, you need to stop handling command events for the
frame window and delete the objects you created using the new operator. The
AHellowWindow destructor does this in the ahellow3.cpp file do this:
AHelloWindow :: xAHelloWindow()
{

commandHandler.stopHandlingEventsFor(this);
}

Align a Text String
This section shows you how to associate commands with the menu items to align
the text string.

This sample shows command processing for one of the menu items. This code,
from ahellow3.cpp, calls the AHelloWindow::setTextAlignment function to
center-align the “Hello, World!!!” text string in the client window:
bool ACommandHandler :: command(ICommandEvent & cmdEvent)
{

bool eventProcessed(true);
switch (cmdEvent.commandId())
{

case MI_CENTER:
frame->setTextAlignment(AHelloWindow::center);
break;

case MI_LEFT:
frame->setTextAlignment(AHelloWindow::left);
break;

case MI_RIGHT:
frame->setTextAlignment(AHelloWindow::right);
break;

default:
eventProcessed=false;

}
return(eventProcessed);

}

Chapter 27. Work with the User Interface Samples 417

The following code shows the setTextAlignment function from the AHelloWindow
class:
AHelloWindow &

AHelloWindow :: setTextAlignment(const Alignment alignment)
{

switch(alignment)
{

case left:
hello.setAlignment(IStaticText::centerLeft);
statusLine.setText(STR_LEFT);
menuBar.uncheckItem(MI_CENTER);
menuBar.checkItem(MI_LEFT);
menuBar.uncheckItem(MI_RIGHT);
break;

case center:
hello.setAlignment(IStaticText::centerCenter);
statusLine.setText(STR_CENTER);
menuBar.checkItem(MI_CENTER);
menuBar.uncheckItem(MI_LEFT);
menuBar.uncheckItem(MI_RIGHT);
break;

case right:
hello.setAlignment(IStaticText::centerRight);
statusLine.setText(STR_RIGHT);
menuBar.uncheckItem(MI_CENTER);
menuBar.uncheckItem(MI_LEFT);
menuBar.checkItem(MI_RIGHT);
break;

}
return (*this);
}

The preceding code does the following:
v Uses the IStaticText setAlignment member function to center the static text

control vertically and align it on the left horizontally
v Sets the appropriate text string in the status area (left alignment)
v Uses the uncheckItem member function to remove any existing check marks

from the Center and Right menu items
v Uses the checkItem member function to set a check mark on the Left

v Returns true and ends

Add Text for a Status Line
The status area text strings are specified in the resource file, as shown in the
following code:
MI_CENTER, “Set Center Alignment”
MI_LEFT, “Set Left Alignment”
MI_RIGHT, “Set Right Alignment”

The following code, from ahellow3.cpp, gets the “Center Alignment” text string
from the resource file and puts it in the static text control for the status area:
AHelloWindow &

AHelloWindow :: setTextAlignment(const Alignment alignment)
{

switch(alignment)
{

// ...
case center:

hello.setAlignment(IStaticText::centerCenter);
statusLine.setText(STR_CENTER);
menuBar.checkItem(MI_CENTER);
menuBar.uncheckItem(MI_LEFT);
menuBar.uncheckItem(MI_RIGHT);

418 IBM Open Class: User Interface

break;
// ...

}
return (*this);
}

Instantiate the Command Handler
In version 3, the AHelloWindow class contains an ICommandHandler derived class,
called ACommandHandler. This is necessary because, for the first time, this
application handles events. In this case, the events are the commands that align the
“Hello, World!!!” text string.

The following code in ahellow3.cpp creates a command handler from the
ACommandHandler class:
AHelloWindow :: AHelloWindow(const unsigned long windowId)

:IFrameWindow(IFrameWindow::defaultStyle() |
IFrameWindow::minimizedIcon,
windowId)

,menuBar(windowId, this)
,statusLine(WND_STATUS,this,this)
,hello(WND_HELLO, this, this)
,infoArea(this)
,commandHandler(this)

{
// ...
commandHandler.handleEventsFor(this);
// ...

}

The second line of codein the preceding example contains the handleEventsFor
member function inherited from the ICommandHandler class. Use this member
function to set the event handler for the application. In this case, the this argument
is specified.

This member function is available because the header file ahellow3.hpp includes
the icmdhdr.hpp library header file, which contains the ICommandHandler class as
follows:
#ifndef _AHELLOW3_
#define _AHELLOW3_
#include <iframe.hpp>
#include <istattxt.hpp>
#include <iinfoa.hpp>
#include <imenubar.hpp>
#include <icmdhdr.hpp>

Add Command Processing
The next statements construct the command handler from a pointer to the
AHelloWindow that events will be handled for. The ahellow3.cpp file uses the
ACommandHandler to create a command handler, as follows:
ACommandHandler :: ACommandHandler(AHelloWindow *helloFrame)

:frame(helloFrame)
{
}

Depending on the command event ID, you need to call the
AHelloWindow::setTextAlignment function with the appropriate
AHelloWorld::Alignment enumerator, as shown in the following sample from
ahellow3.cpp:

Chapter 27. Work with the User Interface Samples 419

bool
ACommandHandler :: command(ICommandEvent & cmdEvent)

{
bool eventProcessed(true);
switch (cmdEvent.commandId()) {

case MI_CENTER:
frame->setTextAlignment(AHelloWindow::center);
break;

case MI_LEFT:
frame->setTextAlignment(AHelloWindow::left);
break;

case MI_RIGHT:
frame->setTextAlignment(AHelloWindow::right);
break;

default:
eventProcessed=false;

}
return(eventProcessed);

}

The AHelloWorld::Alignment enumerator is defined in the ahellow3.hpp file:
class AHelloWindow : public IFrameWindow
{

public:
enum Alignment
{

left, center, right
};

// ...
};

“Chapter 21. Resources” on page 297
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Convert Application Resources” on page 395
“Add Menus to Your Application” on page 57
“Add a Menu Bar” on page 59
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

IEvent
IHandler
IMenu

Hello World Version 4: Adding Dialogs and Push Buttons
Version 4 modifies the menu bar and the pull-down menu in the following ways:
v Creates an Edit choice on the menu bar.
v Moves the Alignment choice from the menu bar to the pull-down menu.
v Moves the menu items associated with Alignment (Left, Center, and Right)

from the pull-down menu into a cascaded menu that displays when Alignment
is selected. These items still align the “Hello, World!!!” text string in the client

420 IBM Open Class: User Interface

window. However, the commands assigned to these menu items are also
assigned to accelerator keys so the keyboard can bypass the menu choices and
establish the text alignment.

v Adds Text on the pull-down menu. Selecting this item displays a dialog box that
contains an entry field in which the “Hello, World!!!” text string can be edited.

Hello World version 4 contains a resource file from the Open Class Library with
definitions for accelerators.

For OS/2 the accelerator definitions require that you specify the following line in
your resource script (.rc) file:

#include <os2.h>

For AIX this include statement can stay in the resource file for portability without
failure.

The main window for version 4 of the Hello World application looks like this:

List the Hello World Version 4 Files
You can find the following files in the samples/ioc/hello4 directory:

File Type of Code

adialog4.cpp Source code to create the ATextDialog class

adialog4.hpp Header file for the ATextDialog class

ahellow4.cpp Source code for the main procedure, main
window constructor, and command
processing

ahellow4.hpp Header file for the AHelloWindow class

ahellow4.h Symbolic definitions for the hello4
executable file

ahellow4.icc This configuration file differs on each
platform.

Chapter 27. Work with the User Interface Samples 421

File Type of Code

ahellow4.ico Icon file for the hello4 executable file

ahellow4.rc Resource file for the hello4 executable file

ahellow4.icc and makefile The configuration file and the makefile for
building the hello4 executable file.

The Primary Source Code File
The ahellow4.cpp file contains the source code for the main procedure and the
AHelloWindow and ACommandHandler classes. The tasks performed by this code are
described in the following sections.

The AHelloWindow Class Header File
The ahellow4.hpp file, like the ahellow3.hpp file, contains the class definition and
interface specifications for the AHelloWindow class, with a few modifications for
version 4.

The Symbolic Definitions File
The ahellow4.h file contains the symbolic definitions for this application. These
definitions provide the IDs for the application window components.

For version 4, the symbolic definition file contains the Hello World version 3 code,
as well as the following:
v Three window IDs (WND_TEXTDIALOG, WND_MCCANVAS, WND_STCANVAS) for

ATextDialog.
v One window ID for the push button set canvas (WND_BUTTONS). It also contains

new string IDs (STR_CENTERB, STR_LEFTB, and STR_RIGHTB) for the text strings
used in the push buttons.

v Two menu IDs (MI_EDIT and MI_TEXT) for the menu bar Edit choice and the Text
choice in the pull-down menu.

v Four definitions for the dialog window controls (DID_OK, DID_CANCEL, DID_ENTRY,
and DID_STATIC).

The Text Dialog Source Code File
The adialog4.cpp file contains the source code for the ATextDialog class constructor
and functions created for version 4.

The ATextDialog Class Header File
The adialog4.hpp file contains the class definition and interface specifications for
the ATextDialog class.

The Resource File
Version 4 provides a resource file, ahellow4.rc. This resource file assigns an icon
and several text strings with the constants defined in the ahellow4.h file, the
symbolic definitions File. It also contains resources for the menu bar and the
accelerator keys. The ahellow4.h file is included in this resource file so the icon,
text strings, and other resources can be associated with the appropriate IDs.

The file os2.h is included because it is the top level include file that includes all the
files necessary for writing an OS/2 application.

The resource file for version 4 contains the version 3 code, as well as additional
strings, updated menus, and command IDs. The first is the accelerator table of

422 IBM Open Class: User Interface

command IDs assigned to the function keys. These command IDs are used in the
cascaded menu to show the accelerator, or shortcut, key assignments. For example,
with these assignments and the command processing in ahellow4.cpp, when users
press the F7 key, it is the same as if they select the Left choice in the cascaded
menu.

VisualAge C++ provides tools for converting Windows, AIX, and OS/2-style
resources. See “Convert Application Resources” on page 395 for more information
about the resource file conversion tools.

The Icon File
The ahellow4.ico file is used as the icon that displays when the application is
minimized. This icon is the same as for versions 2 and 3.

VisualAge C++ provides tools for converting Windows, AIX, and OS/2 bitmaps
and icons. See “Convert Application Resources” on page 395 for more information
about the bitmap and icon conversion tools.

The Configuration File and the Makefile
The files ahellow4.icc and makefile differ on each platform.

Explore Hello World Version 4
The following sections describe each of the tasks performed by version 4 of the
Hello World application that have not been described for previous versions.

Add a Cascaded Menu to the Menu Bar
For version 4, there are several modifications to the menu bar and its associated
pull-down menu.

Version 4 replaces Alignment on the menu bar with Edit and makes Alignment a
menu item on the Edit pull-down menu. When the Edit pull-down menu displays,
an arrow to the right of Alignment indicates that a cascaded menu will display to
the right when it is selected.

The Alignment and Edit choices are defined in the AIX and OS/2 ahellow4.rc file,
as follows:
MENU WND_MAIN

BEGIN
SUBMENU “xEdit”, MI_EDIT

BEGIN
SUBMENU “xAlignment”, MI_ALIGNMENT

BEGIN
MENUITEM “xLeft\tF7”, MI_LEFT
MENUITEM “xCenter\tF8”, MI_CENTER
MENUITEM “xRight\tF9”, MI_RIGHT

END
MENUITEM “xText...”, MI_TEXT

END
END

This appears in the Windows .rc file as follows:

Chapter 27. Work with the User Interface Samples 423

WND_MAIN MENUEX
BEGIN

POPUP “&Edit” , MI_EDIT
BEGIN

POPUP “&Alignment” , MI_ALIGNMENT
BEGIN

MENUITEM “&Left\tF7” , MI_LEFT
MENUITEM “&Center\tF8” , MI_CENTER
MENUITEM “&Right\tF9” , MI_RIGHT

END
MENUITEM “&Text...” , MI_TEXT

END
END

All Windows menu resources need to use the menu keyword MENUEX (instead of
MENU) when compiling menu resources. In addition, all submenus (which in
Windows are specified in the resource file with the keyword POPUP) should be
identified with a menu item identifier, just like in OS/2.

Add Keyboard Accelerators
Keyboard accelerators are key sequences that perform the same actions as menu
items. In version 3, the Left, Center, and Right choices appeared as items in a
pull-down menu. In version 4, these choices become part of the cascaded menu
and are assigned a function key. The menu items are defined in the in ahellow4.rc
file, with text describing the function and the accelerator key to use. The following
code, from the OS/2 resource file, shows the corresponding accelerator keys for
each menu action:
MENUITEM “xLeft\tF7”, MI_LEFT
MENUITEM “xCenter\tF8”, MI_CENTER
MENUITEM “xRight\tF9”, MI_RIGHT

The Windows menu items and accelerator keys are also defined in the in
ahellow4.rc as follows:
MENUITEM “&Left\tF7” , MI_LEFT
MENUITEM “&Center\tF8” , MI_CENTER
MENUITEM “&Right\tF9” , MI_RIGHT

The Windows accelerators use an ampersand (&) instead of the tilde (x).

The \t indicates that the accelerator key name is tabbed to the right for readability.

This code conveys to users that the Left, Center, and Right alignment choices can
be made by selecting a menu item with the mouse or keyboard, or they can use
the keyboard function keys F7, F8, and F9.

The menu choices for Left, Center, and Right are visual indicators to the user that
F7, F8, and F9 can be used. The main window in ahellow4.cpp must be
programmed to use the accelerator. This is done by using the accelerator style on
the AHelloWindow constructor, as shown in the following code from the
ahellow4.cpp file:
AHelloWindow :: AHelloWindow(const unsigned long windowId)

:IFrameWindow(IFrameWindow::defaultStyle() |
IFrameWindow::minimizedIcon |
IFrameWindow::accelerator,
windowId)

// ...
{

// ...
}

424 IBM Open Class: User Interface

The default processing for this style causes the resource file to be searched for an
ACCELTABLE or ACCELERATORS definition for WND_MAIN, which is the main
window ID.

For Windows, the accelerator table for version 4 is defined in the ahellow4.rc file:
WND_MAIN ACCELERATORS

BEGIN
VK_F7 , MI_LEFT , VIRTKEY
VK_F8 , MI_CENTER , VIRTKEY
VK_F9 , MI_RIGHT , VIRTKEY

END

For OS/2 and AIX, the .rc file contains the following:
ACCELTABLE WND_MAIN

BEGIN
VK_F7 , MI_LEFT , VIRTUALKEY
VK_F8 , MI_CENTER , VIRTUALKEY
VK_F9 , MI_RIGHT , VIRTUALKEY

END

Add a Pull-Down Menu Choice
The final modification to the pull-down menu adds the Text... choice. By
convention, the ellipsis (...) indicates that selecting this choice causes a dialog
window to display.

The following code from the ahellow4.rc file adds the Text choice on the AIX or
OS/2 operating system:
MENUITEM “xText...”, MI_TEXT

The following figure shows the pull-down menu items and the cascaded menu.

Add a Modal Dialog Window
A dialog window is a specific type of frame window containing window controls
that gather information from the user. Typically, dialog windows are defined as

Chapter 27. Work with the User Interface Samples 425

modal to the owner frame window, that is, the user must respond to the dialog
window before returning to the previous frame.

In OS/2 Presentation Manager (PM), you use dialog templates to define dialog
windows externally to the application. The application creates an Open Class
Library frame window with the same window ID defined in the resource file for
the dialog template. Any controls from the dialog, for example entry fields, that
you want to manipulate using the Open Class Library are also constructed from
the corresponding control ID from the resource file. The following example shows
an OS/2 dialog template that you could use with Hello World version 4:
DLGINCLUDE 1 “AHELLOW4.H”
DLGTEMPLATE WND_TEXTDIALOG LOADONCALL MOVEABLE DISCARDABLE
BEGIN

DIALOG “Hello World Edit Dialog”, WND_TEXTDIALOG, 17, 22, 137, 84,
WS_VISIBLE, FCF_SYSMENU | FCF_TITLEBAR

BEGIN
DEFPUSHBUTTON “OK”, DID_OK, 6, 4, 40, 14
PUSHBUTTON “Cancel”, DID_CANCEL, 49, 4, 40, 14
LTEXT “Edit Text:”, DID_STATIC, 8, 62, 69, 8
ENTRYFIELD “”, DID_ENTRY, 8, 44, 114, 8, ES_MARGIN

END
END

If you use the Open Class Library only for AIX or if you write portable
applications, you should not use dialog templates, because they are not supported
in AIX. Instead, you can use Open Class Library canvas controls.

See “Chapter 13. Canvas Controls” on page 155 for information about the canvas
classes. This Hello World version provides an example of using canvases.

In Hello World version 4, the dialog window contains the following:
v A prompt for the entry field. The prompt is a static text control with the text

value loaded from the resource file.
v An entry field for changing the Hello World text string.
v An OK push button, indicating the change should be returned to the main

window.
v A Cancel push button, indicating that the change should not be made.

Because these controls are best organized into columns and rows, use a multicell
canvas control. However, because all controls in a column must be the same width,
aligning the OK push button with the prompt would cause the Cancel push
button to be placed to the right of the prompt text. Therefore, place the push
buttons in a set canvas and align the set canvas as a single control with the prompt
and entry field.

The dialog looks like this:

426 IBM Open Class: User Interface

The following sections describe how to create, start, process, and end the dialog
window.

Invoke the Dialog Window
As mentioned in the previous section, the Text item on the pull-down menu causes
a dialog window to display. It does this by calling the AHelloWindow::editText
member function, as shown in the following code from the ahellow4.cpp file:
bool ACommandHandler :: command(ICommandEvent & cmdEvent)
{

bool eventProcessed(true);
switch (cmdEvent.commandId()) {

case MI_CENTER:
frame->setTextAlignment(AHelloWindow::center);
break;

case MI_LEFT:
frame->setTextAlignment(AHelloWindow::left);
break;

case MI_RIGHT:
frame->setTextAlignment(AHelloWindow::right);
break;

case MI_TEXT:
frame->editText();
break;

default:
eventProcessed=false;

}
return(eventProcessed);

}

The editText function saves the hello text string and sets the information area to
indicate that the text dialog is active. The following code shows this:
AHelloWindow &

AHelloWindow :: editText()
{

IString textValue(hello.text());
infoArea.setDefaultText(STR_INFODLG);
ATextDialog textDialog(textValue,this);
textDialog.showModally();
if (textDialog.result() == DID_OK)

hello.setText(textValue);
infoArea.setDefaultText(STR_INFO);
return (*this);

}

Version 4 creates the textDialog data member from the ATextDialog class, a new
class created as an IFrameWindow derived class. The following code from the
ahellow4.cpp file defines the editText function:

ATextDialog textDialog(textValue,this);

Chapter 27. Work with the User Interface Samples 427

The textValue object is passed as the current text string to the dialog.

Construct the Dialog Window
When you create the textDialog object, the frame that represents the dialog and its
components is initialized as shown in the following sample from the adialog4.cpp
file:
ATextDialog :: ATextDialog(IString & textString, IWindow * ownerWnd)

: IFrameWindow(IResourceId(WND_TEXTDIALOG)
,IWindow::desktopWindow()
,ownerWnd
,IRectangle()

.moveBy(ownerWnd->rect().bottomLeft())
,IWindow::synchPaint

|IWindow::clipSiblings
|IWindow::saveBits
|dialogBackground
|dialogBorder
|systemMenu
|titleBar)

,clientCanvas(WND_MCCANVAS,this,this)
,buttons(WND_STCANVAS, &clientCanvas, &clientCanvas)
,statText(DID_STATIC,&clientCanvas,&clientCanvas)
,textField(DID_ENTRY,&clientCanvas,&clientCanvas)
,pushButton1(DID_OK,&buttons,&buttons)
,pushButton2(DID_CANCEL,&buttons,&buttons)
,dialogCommandHandler(this)
,saveText(textString)

{
// ...

}

The IFrameWindow is initialized, in this case, with values that correspond to the
dialog template. The IRectangle values approximate the size and position that
would be generated from the dialog specifications. The style bits correspond to the
bits that would be set by the template. Notice that dialog windows typically do not
have sizing borders or minimize and maximize buttons.

Next, initialize the six controls needed for the dialog. Note that the buttons are
owned by the set canvas; that the set canvas, the static text, and the entry field are
owned by the multicell canvas; and that the multicell canvas is owned by the
dialog window frame.

Because there are buttons in the frame, you must initialize a command handler for
handling the OK and Cancel push buttons.

The saveText data member is initialized with the reference passed on the
constructor. It provides the setTextFromEntryField function access to the edit
string.

Set the Dialog Window Controls
Once you initialize the dialog window controls, you must position and set them.
The following code, from the adialog4.cpp file in the definition of the ATextDialog
constructor, positions and sets the dialog window controls:

textField.setText(saveText);
textField.disableAutoScroll().enableMargin().enableTabStop();
statText.setText(DID_STATIC);
pushButton1.enableDefault().setText(IResourceId(DID_OK)).enableTabStop();
pushButton2.setText(IResourceId(DID_CANCEL));
buttons.setPackType(ISetCanvas::expanded).setMargin(ISize());

428 IBM Open Class: User Interface

First, set the entry field. Then, set the initial text value from the saved text value.

You set the static text control’s value from the resource file.

Set the push buttons by getting their text values from strings in the resource file
and by enabling tabbing. Next, set pushButton1 as the default push button, which
means that when a user presses Enter, it is the same as pushing that button on the
application.

You only need to turn on padding and set margins to zero for the set canvas
containing the buttons. Turning on padding lets the buttons expand to fill the set
canvas area.

Add the following controls to the multicell canvas:
v A static text field named statText at column 2, row 4
v An entry field named textField at column 2, row 6
v A set canvas of push buttons named buttons at column 2, row 14

The call to setColumnWidth horizontally separates the entry field and the right
edge of the edit dialog by ten pixels. The call to setRowHeight vertically separates
the set canvas of push buttons and the bottom edge of the edit dialog by five
pixels:

clientCanvas.addToCell(&statText , 2, 4);
clientCanvas.addToCell(&textField, 2, 6);
clientCanvas.addToCell(&buttons, 2, 14);
clientCanvas.setColumnWidth(3, 10);
clientCanvas.setRowHeight(15, 5);

Finally, you position the multicell canvas in the dialog frame as the client, start the
command handler for the dialog, and set the focus to the entry field. The following
code, from the adialog4.cpp file, shows this:

setClient(&clientCanvas);
IRectangle dialogPosition(IPoint(0,0),

clientCanvas.minimumSize());
dialogPosition.centerAt(

IWindow::desktopWindow()->rect().centerXCenterY());
moveSizeToClient(dialogPosition);
dialogCommandHandler.handleEventsFor(this);
textField.setFocus();

Process the Dialog Window
Once the textDialog has been created, the editText function displays and gives
control to it using the IFrameWindow::showModally member function. Because the
dialog window shows modally, it continues to have control until the dismiss
function is called:

textDialog.showModally();

Once you give the dialog window control using the IFrameWindow::showModally
function, the user can interact with the dialog in three ways:
v Because you set the focus to the entry field, the user’s normal keystrokes are

processed by the default edit handler and the entry field is edited.
v The user can use the system menu to close or move the dialog window.

However, the window cannot be resized.
v The user can use the Tab keys or the mouse to select a push button. Also,

because you defined the OK push button as a default key, users can use the
Enter key to select it. When a user presses a push button, the

Chapter 27. Work with the User Interface Samples 429

ADialogCommandHandler::command function processes the event. If the user
presses OK, the setTextFromEntryField function is called to change the saved
text value to the one edited in the text entry field. The code for this is found in
the adialog4.cpp file, as follows:

ATextDialog &
ATextDialog::setTextFromEntryField()

{
saveText = textField.text();
return (*this);

}

The dismiss function is then called with the DID_OK ID. This value is saved in the
textDialog’s IFrameWindow object. The dismiss function closes the window and
returns control to the owner window. This is found in the adialog4.cpp file, as
follows:
bool ADialogCommandHandler :: command(ICommandEvent & cmdEvent)
{

bool eventProcessed(true);
switch (cmdEvent.commandId()) {

case DID_OK:
frame->setTextFromEntryField();
frame->dismiss(DID_OK);
break;

case DID_CANCEL:
frame->dismiss(DID_CANCEL);
break;

default:
// The event was not processed
eventProcessed=false;

}
return(eventProcessed);

}

Pressing the Cancel push button does not call the setTextFromEntryField function,
but it does call the IFrameWindow::dismiss function with the DID_CANCEL value.
This is found in the adialog4.cpp file, as follows:
case DID_CANCEL:

frame->dismiss(DID_CANCEL);
break;

The AHelloWindow::editText function can then use the IFrameWindow::result
function to determine if the user changed the text value. The information area is
also reset. The following code is from the ahellow4.cpp file:
AHelloWindow &

AHelloWindow :: editText()
{

IString textValue(hello.text());
infoArea.setDefaultText(STR_INFODLG);
ATextDialog textDialog(textValue,this);
textDialog.showModally();
if (textDialog.result() == DID_OK)

hello.setText(textValue);
infoArea.setDefaultText(STR_INFO);
return (*this);

}

The code for the text dialog comes from the adialog4.cpp file. The declaration and
interface specifications for the ATextDialog class are contained in the adialog4.hpp
file, which is included by both the ahellow4.cpp and adialog4.cpp files.

430 IBM Open Class: User Interface

Delete the Dialog Window
Because you create the textDialog object statically, that is, the new operator is not
used to create it, the object is deleted automatically when it is no longer in scope,
in this case, when the editText function is exited. Using this approach means that
each time the editText function is called, a new textDialog object is created,
processed, and deleted.

Set Push Buttons in a Set Canvas
The following code, from the ahellow4.hpp file, defines the buttons data member
as an instance of the ISetCanvas class:

ISetCanvas
buttons;

To make the ISetCanvas class available to the application, the ahellow4.hpp file
includes the isetcv.hpp library header file, as follows:
#include <isetcv.hpp>

Next, the buttons data member is created as a set canvas control with the main
window as the parent and owner of the control. The WND_BUTTONS constant
provides the window ID for this set canvas control. The following is in
ahellow4.cpp file:
AHelloWindow :: AHelloWindow(const unsigned long windowId)

:IFrameWindow(IFrameWindow::defaultStyle() |
IFrameWindow::minimizedIcon |
IFrameWindow::accelerator,
windowId)

,menuBar(windowId, this)
,statusLine(WND_STATUS, this, this)
,hello(WND_HELLO, this, this)
,buttons(WND_BUTTONS, this, this)
,leftButton(MI_LEFT, &buttons, &buttons)
,centerButton(MI_CENTER, &buttons, &buttons)
,rightButton(MI_RIGHT, &buttons, &buttons)
,infoArea(this)
,commandHandler(this)

{
// ...

}

The WND_BUTTONS constant is defined in ahellow4.h as follows:
#define WND_BUTTONS 0x1070

Use the setMargin and setPad member functions to set the canvas margins and
pad to zero. The following code, from the ahellow4.cpp file, shows how to do this:

leftButton.enableTabStop();
buttons.setMargin(ISize());
buttons.setPad(ISize());
addExtension(&buttons, IFrameWindow::belowClient,

(unsigned long)buttons.minimumSize().height());

Define the Push Buttons
Now that you have a set canvas, define two push button data members in the
header file, adialog4.hpp, as shown in the following code:
class ATextDialog : public IFrameWindow
{

// ...
private:

IPushButton

Chapter 27. Work with the User Interface Samples 431

pushButton1,
pushButton2;

// ...
};

Create Push Buttons
The adialog4.hpp file includes the ipushbut.hpp library header file and makes the
IPushButton class available to version 4. You need the data members defined in the
ahellow4.hpp file to create three push buttons in the set canvas: Left, Center, and
Right. The ahellow4.hpp file uses the following code to include the ipushbut.hpp
file:
#include <ipushbut.hpp>

The following code creates a new instance of the Left push button control and
specifies that it uses the command processing associated with the MI_LEFT menu
item attribute to align the “Hello, World!!!” text string on the left side of the client
window. The following code comes from ahellow4.cpp:
,leftButton(MI_LEFT, &buttons, &buttons)

Other than the data member used (centerButton is used for the Center push button
and rightButton is used for the Right push button), the window ID is the only
difference in the code that is used to create all three push buttons. Specify the
MI_CENTER menu item window ID for the Center push button and MI_RIGHT for the
Right push button.

The set canvas control is identified as the owner and parent of the push button
control.

Set Text in Push Buttons
The ahellow4.cpp file uses the setText member function to set text strings in each
push button. Here is the code that sets the text in the Left push button:
AHelloWindow :: AHelloWindow(const unsigned long windowId)

:IFrameWindow(IFrameWindow::defaultStyle() |
IFrameWindow::minimizedIcon |
IFrameWindow::accelerator,
windowId)

,menuBar(windowId, this)
,statusLine(WND_STATUS, this, this)
,hello(WND_HELLO, this, this)
,buttons(WND_BUTTONS, this, this)
,leftButton(MI_LEFT, &buttons, &buttons)
,centerButton(MI_CENTER, &buttons, &buttons)
,rightButton(MI_RIGHT, &buttons, &buttons)
,infoArea(this)
,commandHandler(this)

{
// ...

}

Other than the data member for which the text is set (centerButton is used for the
Center push button and rightButton is used for the Right push button), the only
difference between this code and the code that puts text in the other two push
buttons is the STR_LEFTB constant, which associates with the appropriate text string
in the resource (ahellow4.rc or .wrc) file. Here are the text string associations for all
three push buttons:
STR_LEFTB , “Left”
STR_CENTERB , “Center”
STR_RIGHTB , “Right”

432 IBM Open Class: User Interface

“Chapter 21. Resources” on page 297
“Chapter 13. Canvas Controls” on page 155
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Convert Application Resources” on page 395
“Chapter 17. Common Dialogs” on page 261
“Use Keyboard Accelerators” on page 50
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

ICanvas
IResource

Hello World Version 5: Add Canvases, a List Box, Native System
Functions, and Help

Version 5 of the Hello World application shows you how to add the following:
v Split canvases for showing multiple control windows in the client window
v List box for selecting text for a static text window
v Help window to provide users with information about the frame window
v 2D-graphics and drawing canvases

The main window for version 5 of the Hello World application looks like this:

List the Hello World Version 5 Files
You can find the following files in the samples/ioc/hello5 directory:

File Type of Code

ahellow5.cpp
Source code for main procedure and
AHelloWindow class

ahellow5.hpp Class header file for AHelloWindow

Chapter 27. Work with the User Interface Samples 433

File Type of Code

ahellow5.h
Symbolic definitions file shared by all source
files

adialog5.cpp Source code for the ATextDialog class

adialog5.hpp Class header file for ATextDialog

aearthw5.cpp Source code for the AEarthWindow class

aearthw5.hpp Class header file for AEarthWindow

ahellow5.rc Resource file source

ahellow5.ico Icon file

ahellow6.rtf and ahello6.hpj Help source files for Windows help

ahello6.ipf IPF help source files

ahellow5.icc and makefile
The configuration file and the makefile for
building the hello5 executable file

The Primary Source Code File
The ahellow5.cpp file contains the source code for the main procedure and
AHelloWindow class functions. The tasks performed by this code are described in the
following sections.

The AHelloWindow Class Header File
The ahellow5.hpp file contains the class definition and interface specifications for
the AHelloWindow class, with a few modifications for version 5.

The Symbolic Definitions File
The ahellow5.h file contains the symbolic definitions for this application. These
symbols and their definitions provide the IDs for the application window
components.

The Text Dialog Source Code File
The adialog5.cpp file contains the source code for the ATextDialog class, modified
for help in version 5.

The ATextDialog Class Header File
The adialog5.hpp file contains the class definition and interface specifications for
the ATextDialog class. The adialog5.hpp file is the same as the adialog4.cpp file.

The Earth Window Source File
The aearthw5.cpp file contains the source code for the Earth window graphic that
is drawn using native-system graphics calls.

The AEarthWindow Class Header File
The aearthw5.hpp file contains the class definition and interface specifications for
the AEarthWindow class.

The Resource File
Version 5 of the Hello World application provides a resource file, ahellow5.rc,
which contains all the resources from version 4, as well as additional resources,
including a help table.

The Icon File
The ahellow5.ico file is used as the icon that displays when the application is
minimized. This icon is the same as for previous versions of Hello World.

434 IBM Open Class: User Interface

The Help Window Source Files
The ahellow5.ipf file contains text with IPF tags. The ahellow5.rtf and ahellow5.hpj
files contain text with RTF tags. The Hello World application uses these files to
generate the help information. IPF uses a tag language to format the text that
appears in a help window. For example, :p. is the paragraph tag, which you use to
start a new paragraph.

The OS/2 makefiles provided with Hello World version 5 use the IPFC compiler,
provided by the OS/2 Developer’s Toolkit, to compile the help file.

Refer to the OS/2 Information Presentation Facility Guide and Reference or the IPF
Information Presentation Facility User and Programmer’s Guide for descriptions of
other tags used in the help source file.

The Motif makefiles provided with Hello World version 5 use the IPFC compiler as
well.

The makefiles provided with Hello World version 5 use the native Windows help
compiler, by default, which uses Rich Text Format (RTF). You can also use IPFC/X
compiler to compile the help file by specifying the following line in your makefile:

nmake USE_IPF=1

A sample file, ahellow5.rtf is provided with the Hello World version 5. You also
need a project file (.HPJ) which is used by the Windows Help Compiler (HCW or
HC31) to create the .HLP file.

The Configuration File and the Makefile
The files ahellow5.icc and makefile differ on each platform.

Explore Hello World Version 5
The following sections describe each of the tasks performed by version 5 of the
Hello World application that were not described for previous versions.

Construct the Client Window with Split Canvases
In previous versions of the Hello World application, the client window contained a
simple static text window. Version 5 provides a sample of a client window with
three visible windows:
v A static text window containing “Hello World!!!” from the previous versions
v A new static text window with a graphical view of the earth from space
v A new list box containing different language versions of the phrase, “Hello

World!!!”

The two new windows are described in detail in later sections of this chapter.

Use the ICanvas class for a common and easy-to-use method for placing multiple
windows into a client window. Version 5 places the two static text windows into a
horizontal split canvas, called helloCanvas, and then places helloCanvas and the
list box into a vertical canvas called clientWindow. It also places windows in a split
canvas by identifying the canvas as the control window’s parent. For example, the

Chapter 27. Work with the User Interface Samples 435

split canvases in the client area of the Hello World main window are initialized in
the AHelloWindow constructor in the ahellow5.cpp file, as follows:
AHelloWindow :: AHelloWindow(unsigned long windowId)

: IFrameWindow(IFrameWindow::defaultStyle() |
IFrameWindow::minimizedIcon |
IFrameWindow::accelerator,
windowId)

,menuBar(windowId, this)
,clientWindow(WND_CANVAS, this, this)
,helloCanvas(WND_HCANVAS,

&clientWindow,
&clientWindow,
IRectangle(),
IWindow::visible |
ISplitCanvas::horizontal)

,hello(WND_HELLO,
&helloCanvas,
&helloCanvas)

,statusLine(WND_STATUS, this, this)
,earthWindow(WND_EARTH, &helloCanvas)
,listBox(WND_LISTBOX,

&clientWindow,
&clientWindow,
IRectangle(),
IListBox::defaultStyle() |
IControl::tabStop |
IListBox::noAdjustPosition)

,buttons(WND_BUTTONS, this, this)
,leftButton(MI_LEFT, &buttons, &buttons)
,centerButton(MI_CENTER, &buttons, &buttons)
,rightButton(MI_RIGHT, &buttons, &buttons)
,helpButton(MI_HELP,

&buttons,
&buttons, IRectangle(),
IPushButton::defaultStyle() |
IPushButton::help |
IButton::noPointerFocus)

,infoArea(this)
,commandHandler(this)
,selectHandler(this)
,helpWindow(HELP_TABLE,this)

{
// ...

}

The order in which you place your child windows into a split canvas determines
the order in which they will be seen. For example, the AHelloWindow::hello static
text window appears above the earthWindow static text window because it is
created as the first child of the helloCanvas window. Likewise, the helloCanvas
window appears to the left of the list box because it is created before the list box.

After initializing the canvases, the following statements from the ahellow5.cpp file
set the client window and the proportions for its child windows in the vertical
split canvas.
AHelloWindow :: AHelloWindow(unsigned long windowId)

// ...
{

// ...
setClient(&clientWindow);
clientWindow.setSplitWindowPercentage(&helloCanvas, 60);
clientWindow.setSplitWindowPercentage(&listBox, 40);
// ...

}

436 IBM Open Class: User Interface

Create and Use a List Box
Hello World version 5 provides you with the ability to change the Hello World text
by selecting different language versions of the phrase “Hello World” from a list
box. The IListBox object in Hello World version 5 is called listBox and is initialized
in the AHelloWindow constructor in ahellow5.cpp as follows:
AHelloWindow :: AHelloWindow(unsigned long windowId)

// ...
,listBox(WND_LISTBOX,

&clientWindow,
&clientWindow,
IRectangle(),
IListBox::defaultStyle() |
IControl::tabStop |
IListBox::noAdjustPosition)

// ...
{

// ...
}

The inherited tabStop style indicates that you can tab to the list box. The
noAdjustPosition style prevents the list box from being automatically resized when
an item in the list does not fit inside the current window.

One way you can populate the newly created list box is to use
IListBox::addAscending. This function adds a text string to the list box in
ascending alphabetical order. For example, Hello World version 5 uses the
addAscending function to load a variable number of strings from the resource file
into the list box as follows:
AHelloWindow :: AHelloWindow(unsigned long windowId)

// ...
{

// ...
for (int i=0;i<HI_COUNT;i++)

listBox.addAscending(HI_WORLD+i);
// ...

}

The strings are defined in the resource file, ahellow5.rc, as follows:
// Change HI_COUNT in ahellow5.h to change number of HIs used.
HI_WORLD, “Hello, World!” //English
HI_WORLD+1, “Hi, World!” //American
HI_WORLD+2, “Howdy, World!” //Southern American
HI_WORLD+3, “Alo, Mundo!” //Portuguese
HI_WORLD+4, “Ola, Mondo!” //Spanish
HI_WORLD+5, “Hallo wereld!” //Dutch
HI_WORLD+6, “Hallo Welt!” //German
HI_WORLD+7, “Bonjour le monde!” //French
HI_WORLD+8, “Put your language here!” //Add more items, too!

HI_WORLD is a symbolic definition for the constant string ID of the first string.
HI_COUNT is the symbolic definition for the constant number of strings to load. In
this sample, HI_COUNT is defined as 8. Therefore, only HI_WORLD through HI_WORLD+7
are loaded. You can add another item to the list by changing the HI_WORLD constant
in the symbolic definition file, ahellow5.h, and adding your strings to the HI_WORLD
list.

Once you create the list box and fill it with items, define a select handler for
processing list box selections. Hello World version 5 provides a select handler class,
called ASelectHandler. (It is similar to the command handler added in Hello World
version 3.)

Chapter 27. Work with the User Interface Samples 437

The three differences are as follows:
v The handler function that you override is called ISelectHandler::selected instead

of ICommandHandler::command.
v The event passed into the function is an IControlEvent, instead of an

ICommandEvent.
v The function that is being called processes the selections that have been made to

our list box.

The ASelectHandler is defined in the AHelloWindow class header file, ahellow5.hpp,
using the following class definition:
class ASelectHandler : public ISelectHandler
{

public:
ASelectHandler(AHelloWindow *helloFrame);
virtual xASelectHandler() { }

protected:
virtual bool selected(IControlEvent& ctlEvent);

private:
AHelloWindow *frame;

};

The ASelectHandler::selected function and the
AHelloWindow::setTextFromListBox function provide the selection event handling
for version 5. These functions are listed below and can be found in the
ahellow5.cpp file:
AHelloWindow &

AHelloWindow :: setTextFromListBox()
{

IListBox::Cursor lbCursor(listBox);
lbCursor.setToFirst();
hello.setText(listBox.elementAt(lbCursor));
return (*this);

}
// ...
bool ASelectHandler :: selected(IControlEvent & evt)
{

frame->setTextFromListBox();
return (true);

}

The setTextFromListBox function uses the typedef IListBox::Cursor. Use a list box
cursor to scan through the items in a list box. The constructor used in Hello World
version 5 for creating the lbCursor object contains only one argument, the list box
object to be scanned. You can also specify an additional argument, called a filter, if
you want to scan all the items in the list or only the items that are selected.
Because the setTextFromListBox function looks for the first item selected it uses
the default filter type. The default filter type is selected.

The IListBox::Cursor::setToFirst function positions the cursor to the first selected
item. Then, the IListBox::elementAt function uses the cursor to locate and return
the text string identified by the first selected item. Hello World version 5 uses the
string value to set the Hello World text.

Like the command handler in Hello World version 3, the
ASelectHandler::selected function is not called until you attach the handler to the
proper window. In this case, you attach the select handler to the list box using the
ASelectHandler inherited IHandler function, handleEventsFor. This causes the
ASelectHandler::selected function to be called each time you select a list box
item.

438 IBM Open Class: User Interface

To stop handling selection events, use the stopHandlingEventsFor function, again
specifying the list box.

Use Native System Functions and Graphics
The aearthw5.hpp and aearthw5.cpp files contain the class header and
implementation for the AEarthWindow class. Refer to the comments and code in
these files for examples of the following:
v Displaying a graphics window using IDrawingCanvas, IGEllipse2D, and

IGrafBundle objects
v Creating and using an IResizeHandler object to resize the window whenever it

is changed
v Representing geometric shapes using IRectangle and IPoint objects
v Using IColor objects as arguments to native function calls

Set Up the Help Area
Use the following steps to create IPF help information for your application:
1. Create a file containing the help information.

Create the source text that displays in your application’s help window using
the IPF format (.ipf file) for the OS/2 operating system and the IPF/X format
(.ipf file) for the Windows and Motif environments. Compile your file into a
help file (.hlp file) using the IPFC compiler.
Refer to the Information Presentation Facility documentation for descriptions of
the tags you use to create the source .ipf file.
For an example of an .ipf source file, see the Hello World version 5 ahellow5.ipf
file.

2. Define the help window title and the help submenu in your resource script file.

The following is from the Windows ahellow5.rc file:
STR_HTITLE, “C++ Hello World - Help Window” //Help window title string
POPUP “&Help” , MI_HELP , RIGHTJUSTIFY

BEGIN
MENUITEM “&General help...” , SC_HELPEXTENDED /*MIS_SYSCOMMAND*/
MENUITEM “&Keys help...” , SC_HELPKEYS /*MIS_SYSCOMMAND*/
MENUITEM “Help &index...” , SC_HELPINDEX /*MIS_SYSCOMMAND*/

END

The following is from the AIX or OS/2 resource script file:
STR_HTITLE, “C++ Hello World - Help Window” //Help window title string
SUBMENU “xHelp”, MI_HELP, MIS_HELP //Help submenu

BEGIN
MENUITEM “xGeneral help...”, SC_HELPEXTENDED, MIS_SYSCOMMAND
MENUITEM “xKeys help...”, SC_HELPKEYS, MIS_SYSCOMMAND
MENUITEM “Help xindex...”, SC_HELPINDEX, MIS_SYSCOMMAND

END

MI_HELP is the help menu ID.

Normally, you specify MIS_HELP for a menu item to cause a help event, rather
than a command event, to be posted when the menu item is selected.

Chapter 27. Work with the User Interface Samples 439

When you specify MIS_HELP (OS/2) or RIGHTJUSTIFY (Windows) for a
submenu item, Motif automatically positions the item to the far right of the
menu bar. OS/2 PM ignores MIS_HELP specified on submenu items.

When MIS_SYSCOMMAND is specified with the predefined SC_HELP* IDs, a
system command event is generated. The default system command handler
recognizes the predefined IDs and shows the appropriate help panel, except for
SC_HELPKEYS, which by default does nothing. SC_HELP* IDs are defined in
the icconst.h file. You can override this default processing for SC_HELPKEYS,
using an IHelpHandler, which is described in a later step.

3. Define a help table in the resource file.
The help table defines the relationship between the window ID and the general
or contextual panel ID that is defined in the .ipf file. The following help table is
defined in the resource file, ahellow5.rc, for Hello World version 5:
HELPTABLE HELP_TABLE

BEGIN
HELPITEM WND_MAIN, SUBTABLE_MAIN, 100
HELPITEM WND_TEXTDIALOG, SUBTABLE_DIALOG, 200

END
HELPSUBTABLE SUBTABLE_MAIN //Main window help subtable

BEGIN //
HELPSUBITEM WND_HELLO, 100 //Hello static text help ID
HELPSUBITEM WND_LISTBOX,102 //List box help ID
HELPSUBITEM MI_EDIT, 110 //Edit menu item help ID
HELPSUBITEM MI_ALIGNMENT, 111 //Alignment menu item help ID
HELPSUBITEM MI_LEFT, 112 //Left command help ID
HELPSUBITEM MI_CENTER, 113 //Center command help ID
HELPSUBITEM MI_RIGHT, 114 //Right command help ID
HELPSUBITEM MI_TEXT, 199 //Text command help ID

END //
HELPSUBTABLE SUBTABLE_DIALOG //Text dialog help subtable

BEGIN //
HELPSUBITEM DID_ENTRY, 201 //Entry field help ID
HELPSUBITEM DID_OK, 202 //OK command help ID
HELPSUBITEM DID_CANCEL, 203 //Cancel command help ID

END //

WND_HELLO and WND_LISTBOX are control IDs, MI_* are menu item IDs, and the
DID_* are push button IDs. Each window ID is related to a help panel ID. In
the preceding example, WND_MAIN and WND_HELLO both correspond to help panel
ID 100. That is, pressing the F1 key in the main window area displays the same
help panel as selecting General help from the Help menu.

4. Create a help window object for your application window.
Use the IHelpWindow class to associate help information with an application
window. Hello World version 5 defines the private data member, helpWindow, as
an IHelpWindow object. It is initialized in the AHelloWindow constructor in
ahellow5.cpp using the following statement:
AHelloWindow :: AHelloWindow(unsigned long windowId)

: IFrameWindow(IFrameWindow::defaultStyle() |
IFrameWindow::minimizedIcon |
IFrameWindow::accelerator,
windowId)

// ...
,helpWindow(HELP_TABLE,this)

{
// ...

}

440 IBM Open Class: User Interface

The first parameter identifies the help table defined in the resource file. The
second parameter identifies the application window for which the help is being
provided.

Use the IHelpWindow::addLibraries member function to associate a help file
with a help window. The AHelloWindow constructor in Hello World version 5
provides an example:
AHelloWindow :: AHelloWindow(unsigned long windowId)

// ...
{

// ...
try
{

helpWindow.addLibraries(“ahellow5.hlp”);
helpWindow.setTitle(STR_HTITLE);
helpHandler.handleEventsFor(this);

}
catch(...)
{

IMessageBox msgBox(this);
msgBox.show(STR_HELP_NOT_FOUND, IMessageBox::warning);

}
// ...

}

You can set the title of the help window by using the IHelpWindow::setTitle
member function. The following code sets the title from a string defined in the
resource file:
helpWindow.setTitle(STR_HTITLE);

5. Create a help handler by creating an IHelpHandler derived class.
A help handler processes help events. Create your own help handler class
derived from IHelpHandler to provide help event processing that is unique to
your application. Hello World version 5 uses a help handler only to display the
keys help panel describing accelerator key definitions.
To override keys help processing, do the following:
a. Define a new class that is derived from IHelpHandler, as shown in the

Hello World version 5 class definition file, ahellow5.hpp.
class AHelpHandler : public IHelpHandler
{

public:
virtual xAHelpHandler() { }

protected:
virtual bool keysHelpId(IEvent& evt);

};

b. Provide the overridden virtual function keysHelpId, which is called when
keys help is requested. The following code, from the Hello World version 5
ahellow5.cpp file, shows how to implement this function.
bool

AHelpHandler :: keysHelpId(IEvent& evt)
{

// 1000 = keys help ID in ahellow5.ipf file
evt.setResult(1000);
return (true);

}

In the preceding code, the help panel ID for the Hello World version 5 keys
help is set in the event result.

c. Start and stop help event processing.

Chapter 27. Work with the User Interface Samples 441

Your help handler, previously described, does not begin handling help
events until you use the handleEventsFor member function. For example,
the following code causes the helpHandler to begin processing help events
for this frame window:
helpHandler.handleEventsFor(this)

Typically, you include this statement in the constructor for the frame
window.

Note that the window that handles help events must be an associated
window. That is, you should identify the window as the associated window
on the IHelpWindow constructor or explicitly identify the window as an
associated window using the IHelpWindow::setAssociatedWindow function.

When you want to stop handling help events, for example, when you close
your frame window, use the stopHandlingEventsFor member function, as
follows:
helpHandler.stopHandlingEventsFor(this);

You typically include this statement in the destructor for the frame window.

Assign Help IDs to Windows
You can assign helpIDs directly to windows by using the IWindow::setHelpId
function while maintaining portability. When F1 is pressed, the window with focus
is then queried for its context helpID and if one is found, it is used to identify the
help panel to display. If one is not found and there is a help table, it is searched
for the appropriate helpID to use.

If you are not using a help table, the helpId of the active frame is used as the
general help panel.

Use Native Windows Help Files with IHelpWindow
By default, IHelpWindow uses the native help for the platform to handle help
requests using a .hlp file that was created from RTF or IPF source. This allows the
code you write to be portable while giving your users native look-and-feel. IPF
help files are also portable between the various platforms. RTF help files are not
portable. In addition, some functions provided by IPF are not available when using
Windows native help (RTF). The major differences are as follows:
v There is only one instance of Windows Help for all your applications.
v The size and position of WinHelp is not relative to any particular application.
v IPF uses a set of file names to locate help; WinHelp is one file at a time, but you

must still use IHelpWindow::addLibraries to change the help file name.
v IPF help has sections for CONTENTS, INDEX, KEYS, GENERAL, and USING.

WinHelp has HELP_FINDER and HELPONHELP.
v Only IPF allows the application to change the Help Manager menu and

accelerators.
v Only IPF allows the application to set a title for each help object.
v Only IPF allows querying of handles for IPF sections, such as the cover page or

contents.
v Only IPF allows the application to toggle showing of the help IDs in the help

manager window titles.

442 IBM Open Class: User Interface

“Chapter 13. Canvas Controls” on page 155
“Chapter 21. Resources” on page 297
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Convert Application Resources” on page 395
“Add Menus to Your Application” on page 57
“Create a Split Canvas” on page 165
“Create a Push Button” on page 99
“Create a List Box” on page 119
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

IEvent
IMenu
IMenuBar

Hello World Version 6: Adding a Font Dialog, Pop-up Menus,
Notebooks, and Graphics

Version 6 of the Hello World application shows you how to do the following:
v Use a font dialog to change the font for a static text window
v Use a pop-up menu and a menu handler
v Use a notebook with multiple controls for changing application settings
v Use the IProfile class to save and read user settings
v Use a combination box instead of an entry field
v Add help to your application using native Windows help (RTF) or the OS/2

Information Presentation Facility (IPF) for portable help files
v Use the 2D graphics classes

The main window for Version 6 of the Hello World application looks like this:

List the Hello World Version 6 Files
The following files contain the code used to create version 6:

Chapter 27. Work with the User Interface Samples 443

File Type of Code

ahellow6.cpp Source code for main procedure and
AHelloWindow class

ahellow6.hpp Class header file for AHelloWindow

ahellow6.h Symbolic definitions file shared by all source
files

adialog6.cpp Source code for the ATextDialog class

adialog6.hpp Class header file for ATextDialog

aearthw6.cpp Source code for the AEarthWindow class

aearthw6.hpp Class header file for AEarthWindow

anotebw6.cpp Source code for the ANotebookWindow class

anotebw6.hpp Class header file for ANotebookWindow

ahellow6.rc Resource file

ahellow6.ico Icon file

ahellow6.rtf and ahello6.hpj Help source files for Windows help

ahello6.ipf IPF help source files

ahellow6.icc and makefile The configuration file and makefile for
building the hello6 executable file

Explore Hello World Version 6
The following list describes the tasks performed by version 6 of the Hello World
application that are not already described for previous versions. The tasks are as
follows:
v Implementing an ITimer object for updating the time and the twinkling of the

stars
Refer to timehdr.cpp and timehdr.hpp in the ownhdr sample for an example of
writing your own handler. This sample demonstrates writing your own handler
by implementing a simple time handler that posts a WM_TIMER event and calls
ATimeHandler::tick every second.
The ownhdr sample demonstrates IHandler derivation; the timer functions
might not handle all cases and might break in a multithreaded environment.
Refer to the aearthw6.cpp and aearthw6.hpp files for ATwinkleTimeHandler. The
ATwinkleTimeHandler uses the ITimer class to provide stars that twinkle.

v Changing the status line in AHelloWindow to a split canvas with the status
alignment plus the current date and time
Hello World version 6 also provides public functions for setting the date and
time formats.

v Adding a pop-up menu and a menu handler to the AHelloWindow class
Hello World version 6 derives a new class, APopUpHandler, from
IMenuHandler, and overrides the virtual function makePopUpMenu to provide
pop-up menus for the hello and earthWindow static text windows. This version
also demonstrates using static and dynamic pop-up menus.

v Adding a new Edit menu item, Fonts

This new menu item invokes the AHelloWindow::setHelloFont function that uses
a modal IFontDialog to change the font in the AHelloWindow::hello static text
window.

v Adding a new submenu to the Settings menu item

444 IBM Open Class: User Interface

This new submenu contains Read, Open, and Save menu items.
v Adding a new Settings menu item, Open

This new menu item invokes the AHelloWindow::openHelloSettings function
that dynamically creates a nonmodal ANotebookWindow frame window. The
nonmodal frame window lets you change AEarthWindow settings and date and
time formats using check boxes, a slider, and radio buttons from a notebook
window.

Refer to anotebw6.hpp and anotebw6.cpp to see how the new ANotebookWindow
class is defined and implemented, and to ahellow6.cpp for an example of its use.
v Adding a new Settings menu item, Save

This new menu item invokes the AHelloWindow::saveHelloSettings function
that saves the hello font and the changeable user settings to an IProfile class file.
Hello World version 6 uses a message box to indicate that the save completed
successfully.

v Adding a new Settings menu item, Read

This new menu item invokes the AHelloWindow::readHelloSettings function
that reads the hello font and the changeable user settings from an IProfile class
file. Hello World version 6 uses a message box to indicate that the read
completed successfully.

v Enhancing the AEarthWindow function using graphics to include the following:
– Setting and querying the intensity of the stars
– Making the stars start and stop twinkling
– Setting and querying the number of atmosphere layers
– Setting and querying the color of the earth

Refer to the aearthw6.cpp and aearthw6.hpp files for more information.

“Chapter 21. Resources” on page 297
“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Convert Application Resources” on page 395
“Add Menus to Your Application” on page 57
“Create a Split Canvas” on page 165
“Create a Push Button” on page 99
“Create a List Box” on page 119
“Use Notebooks” on page 204
“Chapter 17. Common Dialogs” on page 261
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table”

Task and Samples Cross-Reference Table
The following table contains a list of some Open Class Library tasks and
cross-references them to the samples and examples used in the information that
show you how to complete the task. You can find all the samples in the
samples/ioc directory:

Chapter 27. Work with the User Interface Samples 445

Tasks Sample or Example Class Usage

Create a basic frame window
with a line of text centered in
the middle of the window

“Hello World Version 1:
Create a Main Window” on
page 402

IFrameWindow
IStaticText

Align a text string within a
static text control

“Hello World Version 2: Add
Resource Files and Frame
Extensions” on page 405

“Create a Split Canvas” on
page 165

IStaticText

Display information about an
application in an information
area below the client
window

“Hello World Version 2: Add
Resource Files and Frame
Extensions” on page 405

“Hello World Version 3: Add
Command Handlers and
Menu Bars” on page 412

“Hello World Version 4:
Adding Dialogs and Push
Buttons” on page 420

“Hello World Version 5: Add
Canvases, a List Box, Native
System Functions, and Help”
on page 433

“Hello World Version 6:
Adding a Font Dialog,
Pop-up Menus, Notebooks,
and Graphics” on page 443

IFrameExtension
IInfoArea

Title your application using
an .rc file

“Hello World Version 2: Add
Resource Files and Frame
Extensions” on page 405

“Hello World Version 3: Add
Command Handlers and
Menu Bars” on page 412

“Hello World Version 4:
Adding Dialogs and Push
Buttons” on page 420

“Hello World Version 5: Add
Canvases, a List Box, Native
System Functions, and Help”
on page 433

“Hello World Version 6:
Adding a Font Dialog,
Pop-up Menus, Notebooks,
and Graphics” on page 443

IFrameWindow

446 IBM Open Class: User Interface

Tasks Sample or Example Class Usage

Display application status in
a status area

“Hello World Version 3: Add
Command Handlers and
Menu Bars” on page 412

“Hello World Version 4:
Adding Dialogs and Push
Buttons” on page 420

“Hello World Version 5: Add
Canvases, a List Box, Native
System Functions, and Help”
on page 433

“Hello World Version 6:
Adding a Font Dialog,
Pop-up Menus, Notebooks,
and Graphics” on page 443

IFrameExtension
IFrameWindow
IStaticText

Process menu bar items “Hello World Version 3: Add
Command Handlers and
Menu Bars” on page 412

“Hello World Version 4:
Adding Dialogs and Push
Buttons” on page 420

“Hello World Version 5: Add
Canvases, a List Box, Native
System Functions, and Help”
on page 433

“Hello World Version 6:
Adding a Font Dialog,
Pop-up Menus, Notebooks,
and Graphics” on page 443

ICommandHandler
IMenuBar

Let the user perform
functions using accelerator
keys

“Hello World Version 4:
Adding Dialogs and Push
Buttons” on page 420

“Hello World Version 5: Add
Canvases, a List Box, Native
System Functions, and Help”
on page 433

“Hello World Version 6:
Adding a Font Dialog,
Pop-up Menus, Notebooks,
and Graphics” on page 443

IFrameWindow
IMenuBar

Chapter 27. Work with the User Interface Samples 447

Tasks Sample or Example Class Usage

Request text information
from users using a modal
dialog

“Hello World Version 4:
Adding Dialogs and Push
Buttons” on page 420

“Hello World Version 5: Add
Canvases, a List Box, Native
System Functions, and Help”
on page 433

“Hello World Version 6:
Adding a Font Dialog,
Pop-up Menus, Notebooks,
and Graphics” on page 443

IFrameWindow

Display multiple controls in
a client area using a canvas
control

“Hello World Version 5: Add
Canvases, a List Box, Native
System Functions, and Help”
on page 433

“Create a Set Canvas” on
page 157

“Create a Split Canvas” on
page 165

“Create a Multicell Canvas”
on page 181

Set Canvas Sample

Split Canvas Sample

Multicell Canvas Sample

IMultiCellCanvas
ISplitCanvas
ISetCanvas
ICanvas

Display information to a user
in a list

“Hello World Version 5: Add
Canvases, a List Box, Native
System Functions, and Help”
on page 433

“Create a List Box” on
page 119

“Add or Delete a List Box
Item” on page 128

List Box Sample

IListBox

Perform an action when a
user selects an item from a
list

“Hello World Version 5: Add
Canvases, a List Box, Native
System Functions, and Help”
on page 433

IListBox
IListBox::Cursor
ISelectHandler

Display and repaint an
IDrawingCanvas

“Hello World Version 5: Add
Canvases, a List Box, Native
System Functions, and Help”
on page 433

“Hello World Version 6:
Adding a Font Dialog,
Pop-up Menus, Notebooks,
and Graphics” on page 443

IDrawingCanvas
IResizeHandler

448 IBM Open Class: User Interface

Tasks Sample or Example Class Usage

Add help to an application
(requires use of IPFX/X on
AIX and Windows)

“Hello World Version 5: Add
Canvases, a List Box, Native
System Functions, and Help”
on page 433

“Hello World Version 6:
Adding a Font Dialog,
Pop-up Menus, Notebooks,
and Graphics” on page 443

IHelpHandler
IHelpWindow

Perform an action when an
user selects an item from a
combo box in a dialog
window

“Hello World Version 6:
Adding a Font Dialog,
Pop-up Menus, Notebooks,
and Graphics” on page 443

IComboBox
ICommandHandler
IFrameWindow

Show multiple components
on a status line

“Hello World Version 6:
Adding a Font Dialog,
Pop-up Menus, Notebooks,
and Graphics” on page 443

IFrameExtension
ISplitCanvas

Display a digital clock (long
and short form)

“Hello World Version 6:
Adding a Font Dialog,
Pop-up Menus, Notebooks,
and Graphics” on page 443

“Extend Event Handling” on
page 27

Create Your Own Handler
Sample

IString
ITime
ITimer

Display the date (long and
short form)

“Hello World Version 6:
Adding a Font Dialog,
Pop-up Menus, Notebooks,
and Graphics” on page 443

IDate
IString

Let the user dynamically
change the font of an
application using a font
dialog

“Hello World Version 6:
Adding a Font Dialog,
Pop-up Menus, Notebooks,
and Graphics” on page 443

“Create a Toolbar” on
page 245

“Add a Toolbar” on page 247

Toolbar Sample 1

Toolbar Sample 2

IFontDialog
ISelectHandler

Customize an application
using a notebook control

“Hello World Version 6:
Adding a Font Dialog,
Pop-up Menus, Notebooks,
and Graphics” on page 443

ICommandHandler
IFrameWindow
INotebook

Customize an application
using a pop-up menu

“Hello World Version 6:
Adding a Font Dialog,
Pop-up Menus, Notebooks,
and Graphics” on page 443

“Create a Pop-Up Menu for
a List Box” on page 65

IMenuHandler
IPopUpMenu

Chapter 27. Work with the User Interface Samples 449

Tasks Sample or Example Class Usage

Record a user’s settings of an
application

“Hello World Version 6:
Adding a Font Dialog,
Pop-up Menus, Notebooks,
and Graphics” on page 443

IProfile

Customize a control “Add Styles” on page 15 IBitFlag
IWindow

Create a message box “Create a Message Box” on
page 11

Message Box Sample

IMessageBox

Save data from a user-edited
control to a file

“Create an MLE” on page 92

Multi-Line Entry Field
Sample

IMultiLineEdit

Display a list of choices to a
user

“Create a List Box” on
page 119

“Add or Delete a List Box
Item” on page 128

“Hello World Version 5: Add
Canvases, a List Box, Native
System Functions, and Help”
on page 433

“Hello World Version 6:
Adding a Font Dialog,
Pop-up Menus, Notebooks,
and Graphics” on page 443

IListBox
ISelectHandler

Displaying a discrete set of
choices to a user

“Create a List Box” on
page 119

“Add or Delete a List Box
Item” on page 128

INumericSpinButton
ITextSpinButton

Arrange child controls in
rows or columns

“Create a Set Canvas” on
page 157

Set Canvas Sample

ISetCanvas

Arrange child controls in a
grid of rows and columns

“Create a Multicell Canvas”
on page 181

Multicell Canvas Sample

IMultiCellCanvas

Provide a scrollable view
area

“Create a View Port” on
page 193

View Port Sample

IViewPort

450 IBM Open Class: User Interface

Tasks Sample or Example Class Usage

Let the user make a file
selection using a file dialog
control

“Specify File Dialog
Information” on page 261

“Create a File Dialog” on
page 263

“Specify Font Dialog
Information” on page 266

“Create a Font Dialog” on
page 267

Multiline Entry Field Sample

Multimedia Remote Sample

Multimedia Stereo Sample

IFileDialog
IFileDialog::Settings

Create pop-up menus “Create a Pop-Up Menu” on
page 62

“Create a Pop-Up Menu for
a List Box” on page 65

“Hello World Version 6:
Adding a Font Dialog,
Pop-up Menus, Notebooks,
and Graphics” on page 443

Toolbar Sample 1

IMenuHandler
IPopUpMenu

Create and populate a
container control

“Create and Use Containers”
on page 225

Container Sample

ICnrAllocator
IContainerControl
IContainerObject

Enable direct manipulation
support

“Use Default Direct
Manipulation” on page 316

IDM* classes

Enable direct manipulation
for an entry field or an MLE
control

Direct Manipulation Sample
1

IDMHandler
IEntryField
IMultiLineEdit

Enable direct manipulation
for intra-process (source and
target containers in the same
process) container support

Direct Manipulation Sample
3

IContainerColumn
IContainerControl
IContainerObject
IDMHandler

Enable direct manipulation
for inter-process (source and
target containers in the
separate processes) container
support

Direct Manipulation Sample
4

IContainerControl
IContainerObject
IDMCnrItem
IDMHandler
IDMSourceDiscardEvent
IDMSourceOperation
IDMTargetDropEvent

Process different events (time
changes on a clock)

“Extend Event Handling” on
page 27

IHandler

Add mouse handlers “Handle Mouse Events” on
page 33

IMouseHandler

Use clipboards in your
applications

“Add Clipboard Support” on
page 286

Clipboard Sample

IClipboardHandler
IClipboard

Chapter 27. Work with the User Interface Samples 451

Tasks Sample or Example Class Usage

Provide toolbars that the
user can manipulate and
customize

“Create a Toolbar” on
page 245

“Add a Toolbar” on page 247

Toolbar Sample 1

Toolbar Sample 2

IToolBar
IFlyOverHelpHandler

Add 2D graphics support to
your applications

2DCombo Graphics Sample

2DDocs Graphics Sample

2DPaint Graphics Sample

BarChart Graphics Sample

Magnify Sample

“Hello World Version 5: Add
Canvases, a List Box, Native
System Functions, and Help”
on page 433

“Hello World Version 6:
Adding a Font Dialog,
Pop-up Menus, Notebooks,
and Graphics” on page 443

IG* classes

Create a remote control
interface using multimedia
classes

“Create Master Devices” on
page 338

“Play Audio Compact Discs”
on page 340

“Create Audio Devices” on
page 354

“Create Video Devices” on
page 378

Multimedia Remote Sample

IMM* classes

Create a stereo interface
using multimedia classes

“Create Master Devices” on
page 338

“Play Audio Compact Discs”
on page 340

“Create Audio Devices” on
page 354

“Create Video Devices” on
page 378

Multimedia Stereo Sample

IMM* classes

Use a multiline entry field to
create a simple editor

“Create an MLE” on page 92

Multiline Entry Field Sample

ICommandHandler
IFileDialog
IFontDialog
IFrameWindow
IHandler
IMenuHandler
IMultiLineEdit

452 IBM Open Class: User Interface

Tasks Sample or Example Class Usage

Use a view port canvas
displaying a bitmap as a
page in a notebook control

Notebook Sample IBitmapControl
IBitmapHandle
INotebook
IViewPort

You can find all the samples in the samples/ioc directory.

“Chapter 1. Windows” on page 1
“Chapter 3. Events and Event Handlers” on page 19

“Chapter 27. Work with the User Interface Samples” on page 401
“Hello World Version 1: Create a Main Window” on page 402
“Hello World Version 2: Add Resource Files and Frame Extensions” on page 405
“Hello World Version 3: Add Command Handlers and Menu Bars” on page 412
“Hello World Version 4: Adding Dialogs and Push Buttons” on page 420
“Hello World Version 5: Add Canvases, a List Box, Native System Functions, and
Help” on page 433
“Hello World Version 6: Adding a Font Dialog, Pop-up Menus, Notebooks, and
Graphics” on page 443
“Write an Event Handler” on page 25
“Task and Samples Cross-Reference Table” on page 445

Chapter 27. Work with the User Interface Samples 453

	Contents
	Notices
	Programming Interface Information
	Trademarks and Service Marks
	Industry Standards

	About This Book
	Chapter 1. Windows
	Window Relationships
	Create a Frame Window
	Change the Title Bar
	Create an Information Area
	Create a Message Box

	Chapter 2. Styles
	Add Styles

	Chapter 3. Events and Event Handlers
	Event and Event Handler Mechanism
	Write an Event Handler
	Extend Event Handling
	Handle Mouse Events
	Add Mouse Event Handling
	Mouse Handler Example
	File: mhsamp.cpp
	File: mhsamp.h
	File: mhsamp.hpp
	File: mhsamp.rc

	Set Time Intervals
	Add Time Intervals
	Monitor Text-Change Events
	Use Keyboard Accelerators
	Handle Text-Change Events

	Chapter 4. Menus
	Add Menus to Your Application
	Add a Menu Bar
	Create a Pop-Up Menu
	Create a Pop-Up Menu for a List Box
	Pop-Up Menu Example
	File: popmenu.cpp
	File: popmenu.h
	File: popmenu.hpp
	File: popmenu.rc

	Dynamically Modify a Menu with the ISubmenu Class

	Chapter 5. Use Cursor Classes
	Chapter 6. Static Text Controls
	Create a Static Text Control

	Chapter 7. Entry Fields and Multiline Edit (MLE) Fields
	Create an Entry Field
	Entry Field Example
	File: entryf3.cpp
	File: entryf3.h
	File: entryf3.hpp
	File: entryf3.rc

	Create an MLE

	Chapter 8. Buttons
	Create a Push Button
	Create a Radio Button
	Radio Button Example
	File: radio.cpp
	File: radio.h
	File: radio.hpp
	File: radio.rc

	Create a Check Box
	Check Box Example
	File: checkbo1.cpp
	File: checkbo1.h
	File: checkbo1.hpp
	File: checkbo1.rc

	Create a Three-State Check Box

	Chapter 9. List Boxes
	Create a List Box
	List Box Example
	File: listbox.cpp
	File: listbox.h
	File: listbox.hpp
	File: listbox.rc

	Add or Delete a List Box Item

	Chapter 10. Combination Boxes
	Create a Combination Box

	Chapter 11. Sliders
	Create a Slider Control
	Slider Example
	File: slider.cpp
	File: slider.h
	File: slider.hpp

	Chapter 12. Spin Buttons
	Create a Spin Button
	Spin Button Example
	File: spinbtn.cpp
	File: spinbtn.h
	File: spinbtn.hpp

	Chapter 13. Canvas Controls
	Set Canvases
	Create a Set Canvas
	Set Canvas Example
	File: esetcv.cpp
	File: esetcv.h
	File: esetcv.hpp
	File: esetcv.rc

	Split Canvases
	Create a Split Canvas
	Split Canvas Example 1
	File: splitcan.cpp
	File: splitcan.h
	File: splitcan.hpp
	File: splitcan.rc
	Split Canvas Example 2
	File: esplitcv.cpp
	File: esplitcv.h
	File: esplitcv.hpp
	File: esplitcv.rc

	Multicell Canvases
	Create a Multicell Canvas
	Multicell Canvas Example 1
	File: mcc.cpp
	File: mcc.h
	File: mcc.hpp
	Multicell Canvas Example 2
	File: emcelcv.cpp
	File: emcelcv.h
	File: emcelcv.hpp
	File: emcelcv.rc

	View Ports
	Create a View Port
	View Port Example
	File: vp1.cpp
	File: vp1.h
	File: vp1.hpp
	File: vp1.rc

	Drawing Canvases

	Chapter 14. Notebooks
	Use Notebooks
	Create a Notebook
	Specify Notebook Styles
	Add Pages to the Notebook
	Remove Notebook Pages
	Change Notebook Colors
	Tab Controls
	Create a Tab Control

	Create an OS/2 Warp 4.0 Style Notebook

	Chapter 15. Containers
	Create and Use Containers
	Create Container Objects
	Add and Remove Container Objects
	Share Objects Among Containers
	Filter Container Objects
	Sort Objects in a Container
	Access Container Objects Using an Object Cursor
	Change Views in a Container
	Define the Details View Using Container Columns
	Create a Pop-Up Menu in a Container
	Use the Windows Native Container Control

	Chapter 16. Toolbars
	Create a Toolbar
	Add a Toolbar
	Create Toolbar Buttons

	Chapter 17. Common Dialogs
	Specify File Dialog Information
	Create a File Dialog
	Specify Font Dialog Information
	Create a Font Dialog

	Chapter 18. Fonts
	Construct Fonts

	Chapter 19. Help Information
	Create Help Information
	Add Fly-Over Help

	Chapter 20. Clipboard
	Add Clipboard Support
	Sample: Add Clipboard Support

	Chapter 21. Resources
	Chapter 22. Client/Server Applications and Dynamic DataExchange
	Establishing DDE Conversations
	The DDE Framework Design
	Add DDE Client Support
	Add DDE Server Support

	Chapter 23. Direct Manipulation
	Use Default Direct Manipulation
	Use Rendering Mechanisms and Formats
	Use Drag Item Types
	Enable Direct Manipulation for an Entry Field or MLE
	Enable Direct Manipulation for a Container
	Set and Query the Drag Operation
	Set the Target Emphasis

	Add Images to Drag Items

	Chapter 24. Multimedia Devices
	Create Master Devices
	Play Audio Compact Discs
	Audio CD Example
	File: samp5.cpp
	File: samp5.h
	File: samp5.hpp

	Create Audio Devices
	Playing/Recording Waveform Example
	File: samp8.cpp
	File: samp8.h
	File: samp8.hpp
	File: samp8.rc
	Playing/Recording MIDI Example
	File: samp6.cpp
	File: samp6.h
	File: samp6.hpp
	File: samp6.rc

	Create Video Devices
	Add Animated Buttons and Circular Sliders

	Chapter 25. Bidirectional Language Support
	Set and Query Default Bidirectional Attributes
	Assign Bidirectional Attributes to Individual Windows

	Chapter 26. Port and Convert Applications
	Convert Application Resources
	Port Applications with Frame Windows
	Use Native Window Controls and 3D Borders
	Support Double-Byte Character Set and Multiple Languages

	Chapter 27. Work with the User Interface Samples
	Hello World Version 1: Create a Main Window
	Hello World Version 2: Add Resource Files and Frame Extensions
	Hello World Version 3: Add Command Handlers and Menu Bars
	Hello World Version 4: Adding Dialogs and Push Buttons
	Hello World Version 5: Add Canvases, a List Box, Native SystemFunctions, and Help
	Hello World Version 6: Adding a Font Dialog, Pop-up Menus,Notebooks, and Graphics
	Task and Samples Cross-Reference Table

