
VisualAge® C++ Professional for AIX®

IBM® Open Class™: Overview
Version 5.0

���



Edition Notice

This edition applies to Version 5.0 of IBM VisualAge C++ and to all subsequent releases and modifications until
otherwise indicated in new editions. Make sure you are using the correct edition for the level of the product.

© Copyright International Business Machines Corporation 1998, 2000. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Note!
Before using this information and the product it supports, be sure to read the general
information under “Notices” on page v.



Contents

Notices . . . . . . . . . . . . . . . v
Programming Interface Information . . . . . . vii
Trademarks and Service Marks . . . . . . . . vii
Industry Standards . . . . . . . . . . . viii

About This Book. . . . . . . . . . . ix

Chapter 1. IBM Open Class Overview . . 1
IBM Open Class Applications. . . . . . . . . 4

Design an IBM Open Class Application . . . . 10
User Interface Applications . . . . . . . . . 12

Design a User Interface Application . . . . . 15
Create Cross-Platform Applications . . . . . . 17

Map Coordinate Systems Across Platforms . . . 19
Compile and Build Open Class Applications . . . 22

Build a 64-Bit Enabled Application . . . . . 24
Package and Distribute an IBM Open Class
Application . . . . . . . . . . . . . 25

Build the IBM Open Class Library Source Code for
Debugging Purposes . . . . . . . . . . . 27
Work with the IBM Open Class Samples. . . . . 30

Obsolete or Ignored Member Functions . . . . . 31

Chapter 2. Changes in Version 5 of
Open Class . . . . . . . . . . . . . 35

Chapter 3. Changes in Version 4 of IBM
Open Class . . . . . . . . . . . . . 41
AIX Changes in Version 4 of the IBM Open Class . 44
User Interface Class Changes . . . . . . . . 46

Changes in Version 4 of the IWindow Class . . 46
Changes in Version 4 of the Handler Classes . . 50
Changes in Version 4 of the Canvas Classes . . 53
Changes in Version 4 of the Toolbar Classes . . 56
Other Changes in Version 4 of the IBM User
Interface Classes . . . . . . . . . . . 58

Changes in Version 4 of the IBM 2D Graphics
Classes . . . . . . . . . . . . . . . . 63
Changes in Version 4 of the IBM Collection Classes 72
Deprecated Functions in Version 4 of the IBM Open
Class . . . . . . . . . . . . . . . . 73

© Copyright IBM Corp. 1998, 2000 iii



iv IBM Open Class: Overview



Notices

Note to U.S. Government Users Restricted Rights -- use, duplication or disclosure
restricted by GSA ADP Schedule Contract with IBM Corp.

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION ″AS IS″
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1998, 2000 v



IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Lab Director
IBM Canada Ltd.
1150 Eglinton Avenue East
Toronto, Ontario M3C 1H7
Canada

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. 1998, 2000. All rights reserved.

vi IBM Open Class: Overview



Programming Interface Information
Programming interface information is intended to help you create application
software using this program.

General-use programming interface allow the customer to write application
software that obtain the services of this program’s tools.

However, this information may also contain diagnosis, modification, and tuning
information. Diagnosis, modification, and tuning information is provided to help
you debug your application software.

Warning: Do not use this diagnosis, modification, and tuning information as a
programming interface because it is subject to change.

Trademarks and Service Marks
The following terms are trademarks of the International Business Machines
Corporation in the United States, or other countries, or both:

AIX
AS/400
DB2
CICS
C Set ++
IBM
Network Station
Object Connection
OS/2
OS/390
OS/400
Open Class
Operating System/2
Operating System/400
PowerPC 403
PowerPC 601
PowerPC 603
PowerPC 604
Presentation Manager
RS/6000
S/390
SAA
Systems Application Architechture
TeamConnection
VisualAge
WebSphere
Workplace Shell

Lotus, Lotus Notes, and Domino are trademarks or registered trademarks of the
Lotus Development Corporation in the United States, or other countries, or both.

Tivoli Management Environment, TME 10, and Tivoli Module Designer are
trademarks of Tivoli Systems Inc. in the United States, or other countries, or both.

Encina and DCE Encina Lightweight Client are trademarks of Transarc Corporation
in the United States, or other countries, or both.

Notices vii



Microsoft, Win32, Windows, Windows NT, and the Windows logo are trademarks
or registered trademarks of Microsoft Corporation in the United States, or other
countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

UNIX is a registered trademark in the U.S. and other countries licensed exclusively
through X/Open Company Limited.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks or registered
trademarks of Intel Corporation in the United States, or other countries, or both.

C-bus is a registered trademark of Corollary, Inc.

PC Direct is a registered tradmark of Ziff Communicatoins Company and is used
by IBM Corporation under license

Other company, product, and service names, which may be denoted by a double
asterisk(**), may be trademarks or service marks of others.

Industry Standards
VisualAge C++ Professional for AIX, Version 5.0 supports the following standards:
v The C language is consistent with the International Standard C (ANSI/ISO-IEC

9899–1990 [1992]). This standard has officially replaced American National
standard for Information Systems-Programming Language C (X3.159–1989) and
is technically equivalent to the ANSI C standard. VisualAge C++ supports the
changes adopted into the C Standard by ISO/IEC 9899:1990/Amendment 1:1994.

v The IBM Systems Application Architecture (SAA) C Level 2 language definition.
v The C++ language is consistent with the International Standard for Information

Systems-Programming Language C++ (ISO/IEC 14882:1998).
v The ISO/IEC 9945–1:1990/IEEE POSIX 1003.-1990 standard.
v The X/Open Common Applications Environment Specifications, System

Interfaces and Headers, Issue 4.

viii IBM Open Class: Overview



About This Book

The information in this PDF document is also available in the online help.

To find this information, or any topics listed in this document as Related Concepts,
Related Tasks, or Related References, simply type the topic title into the search bar
in the top frame of your browser in the online help.

For some topics, the suggested references may already be contained in this
document. In such cases, there is a cross-reference to the page on which the related
topic appears.

© Copyright IBM Corp. 1998, 2000 ix



x IBM Open Class: Overview



Chapter 1. IBM Open Class Overview

The IBM Open Class (IOC) is a comprehensive library of C++ classes provided
with VisualAge C++ that you can use to develop applications.

The IBM Open Class takes advantage of the data abstraction and object-oriented
paradigms adopted by C++. This library simplifies otherwise tedious, convoluted,
or error-prone tasks through the use of straightforward interfaces. For example, the
user interface classes enable you to create applications for windowed environments
such as Motif, OS/2’s Presentation Manager®, or Windows®, without the necessity
of learning obscure system calls.

Because this library consists of C++ classes, you can create customized classes
through the C++ language’s mechanism of inheritance.

The IBM Open Class supports AIX, Windows, and OS/2®. Consequently, you can
port your IBM Open Class applications between platforms with minimal effort.

This documentation assumes that you are proficient with both the C++
programming language, and with object-oriented programming concepts and
techniques. Refer to Bjarne Stroustrup’s The C++ Programming Language: Third
Edition by Bjarne Stroustrup for detailed information on this language. This
reference is included with the VisualAge C++ PDF files.

The Organization of the IBM Open Class
The IBM Open Class is organized into several broad categories as follows:
v Application Control
v Streams
v File Systems
v Text and Internationalization
v 2D Graphics
v User Interface

– Multimedia

– Dynamic Data Exchange
v Error Handling, Tracing, and Testing

Three other categories have comparable functionality to the ANSI C++ Standard
Library:
v Collections
v Math
v Non-ANSI Input/Output Streaming

The ANSI C++ Standard Library provides classes and data structures that
efficiently implement the functionality of Collections and Math classes. We suggest
that you use the ANSI C++ Standard Library instead of the IBM Open Class for
new applications that need this functionality. Refer to Stroustrup’s The C++
Programming Language for more information on the ANSI C++ Standard Library.

Application Control
This category provides support for multi-threaded execution environments:

© Copyright IBM Corp. 1998, 2000 1



v Process classes create and manipulate external processes.
v Thread classes create and manipulate threads.
v Notification classes notify interested objects of changes in other objects.
v Reference counting classes manage thread safe access to multiply-referenced

objects.

Other classes in this category interact with and control the application and its
modules, libraries, resources, environments, profile, and timers.

Object-Persistent Streaming
This category implements persistent storage mechanisms for Open Class Library
components. It includes the streaming classes that support streaming data in C++
objects in and out of persistent storage.

File Systems
This category provides portable abstractions that allow you to manipulate physical
file system entities such as volumes, directories, and files.

Text and Internationalization
This category provides support for Unicode text strings and easily localizable
components. This category includes the following groups of classes:
v Unicode support classes inquire about the stylistic and semantic properties of

characters, character sets, and scripts (writing systems). These classes also store
and manipulate Unicode text styles.

v Internationalization classes create international applications and manipulate
international text. This includes language-sensitive comparison of text strings,
conversion between character sets, and a locale mechanism for access to portable
and host-specific resources.

2D Graphics
This category supports the platform-independent creation, manipulation, and
rendering of 2D graphic objects. This category includes these class groups:
v Geometry classes define forms for path, area, and image geometries.
v Attributes describe graphic characteristics such as paint, pen, and joints, so you

can create groups of attributes to apply to graphic objects that you are
rendering.

v Transformations let you apply mathematical transformations such as scaling,
rotating, and translating to 2D graphic objects.

v Modeling classes combine geometry objects with attributes and transformations
for rendering and storing graphics and creating hierarchies of graphics.

v Rendering pipeline classes implement the rendering of 2D graphic objects.

User Interface
This category provides support for building the graphical user interface of an
application:
v Window, menu, handler, and event classes encapsulate the basic graphical

building blocks that are used to construct application windows. This
encapsulation separates window position and appearance (windows and menus)
from event handling (handlers and events).

v Standard control classes support standard controls such as entry field, static text,
and buttons.

v Advanced control, dialog, and handler classes support controls such as
containers, notebooks, toolbars, and font and file dialogs.

v Direct manipulation classes support the “drag-and-drop” mechanism.

2 IBM Open Class: Overview



Multimedia

The Multimedia classes support the creation of applications that
integrate text and graphics with a combination of audio, motion video, images,
and animation. You can implement an interface for your application that looks like
the controls of common electronic devices, such as stereo components and video
cassette recorders (VCRs).

Your application can use these controls as interfaces to control audio and video
media that is presented to the user. Support for media devices is abstracted into
classes that contain the data and functions essential for the operation of the
real-world devices that they model. These real-world devices include the following:
v Master audio
v Audio amplifier-mixer
v CD audio player
v CD Extended-Architecture player
v Waveform audio player
v MIDI sequencer
v Digital video player

Dynamic Data Exchange

Dynamic data exchange (DDE) is a client/server protocol for
communicating between two applications running on the same machine.
Client/server implies a relationship between two applications where the client sends
requests to the server. The server handles the requests and provides services to the
client application which then consumes those services. The server-provided
services can be either of the following:
v Data
v The ability to execute commands on behalf of a client

As a client/server protocol, DDE enables data to be dynamically exchanged, and
thus shared, between two applications running on the same machine. Applications
are shielded from the operating details and can share data once they agree on the
type of data being exchanged. DDE applications can exchange data on an ongoing
basis without user intervention.

Error Handling, Tracing, and Testing
This category provides support for building robust and well-behaved applications:
v Exception classes detect and convey information about unusual circumstances in

applications.
v Tracing classes provide support for your tracing code.
v Test classes help you create and run unit tests for your application.

Collections
This category provides a set of commonly used abstract data types including sets,
maps, sequences, trees, stacks, and queues. You can use the notification classes
from the application control classes to allow observation of changes within a
collection.

Math
This category allows you to manipulate complex numbers. It also provides
cross-platform 64-bit support.

Non-ANSI Input/Output Streaming
The non-ANSI Input/Output Streaming Library, also called the Unix Systems

Chapter 1. IBM Open Class Overview 3



Laboratories (USL) or the AT&T I/O Stream Library, provide the standard input
and output capabilities for C++. In C++, input and output are described in terms of
streams. The processing of these streams is done at two levels:
1. The first level treats the data as sequences of characters.
2. The second level treats the data as a series of values of a particular type.

The I/O Stream Classes predefine streams for standard input, standard output, and
standard error.

The ANSI C++ Standard Library
The ANSI C++ Standard library, which is comprised of the Standard Template
Library (STL) and the Standard C++ Library, is provided with VisualAge C++. The
IBM Open Class contains some classes that duplicate functions provided by the
ANSI C++ Standard library.

We recommend that you take advantage of the ANSI C++ Standard Library in
your applications:
v Use the STL’s containers, iterators, and algorithms instead of the IOC Collections
v Use the STL’s Numerics Library instead of the IOC Math classes
v Use the ANSI C++ I/O Stream classes instead of the non-ANSI I/O Stream

classes.

This release of IBM Open Class uses the ANSI C++ I/O Stream classes and
container class templates. The non-ANSI I/O Stream Library will continue to be
shipped with the product and may be deprecated in a future release. You may use
either the ANSI or USL stream library with the IBM Open Class by defining or
undefining the macro __IOC_ANSI_STREAM.

The IOC Collections will continue to be shipped with the product. Some of the
user interface classes are dependent on the function provided in these classes (for
example, support for notification).

VisualAge C++ PDF Files

IBM Open Class Applications
Include the Open Class Library Headers
A class library is a collection of classes with well-defined interfaces and operations.
To use these classes, you have to first make these interfaces visible to your
program. This is usually done by including the appropriate header files in your
programs.

To include an interface, use the directive #include <filename>, where filename is
the name of the header file. Place this statement at the beginning of the program
that requires any of the classes, function, or operators defined in the header file.
Then, in the body of your program, you can use a class, function, or operator
defined in the header file, as well as derive new classes and overload the functions
and operators.

For the incremental compiler, you can also list the header files in the configuration
file instead of your source file. A configuration file is a set of source files, input
libraries, and processing options that are used to generate one or more targets. A
VisualAge C++ project must have a configuration file.
Create Applications and Naming Files

4 IBM Open Class: Overview



Creating an Open Class Library application is the same as creating a C++
application. You begin by designing the interfaces of your classes and make use of
any existing Open Class Library classes as much as possible. Although there is no
restriction on how C++ files are named, it is often a good idea to use a particular
convention. For an Open Class Library application, the source file is usually named
after the name of the class that resides in the file. For example, a class “ITest” is
defined in the file “itest.cpp” and its interface is defined in “itest.hpp”.

The following list describes files that a typical Open Class application requires:

File Name Contains

filename.cpp Primary C++ code for your application.

filename.icc The configuration file of your application.

filename.hpp

Declaration of any class or classes that you
create. You can put each class in a separate
.hpp file or all classes in one file. If your
classes are used in only one .cpp file, they
can be declared in that .cpp file instead.

filename.h
A header file that contains your symbolic
definitions. Include these as macro source
files in your project’s configuration.

ixxxxxxx.hpp

A header file that contains information about
an Open Class Library class that your
application uses. All Open Class Library
header files begin with the letter “i.”

makefile The make file of your application

Use Command-Line Arguments
With ICurrentNonGUIApplication (or ICurrentApplication for graphic user
interface applications), you can record and query the command line arguments of
your application. Set the arguments by calling setArgs() with the arguments that
were passed to the main function.

To query the number of arguments, use the member function
ICurrentNonGUIApplication::argc(). This member function always returns a
non-zero value because it has at least the name of the application as an argument.

To get the nth argument, use the member function
ICurrentNonGUIApplication::argv(), where the argv(0) component is always the
name of the application. Because argv() returns an IString, you can use all the
functions provided by this class.

The following example demonstrates the use of command-line arguments, as well
as the inclusion of header files into an application. The example accepts one
argument, a string. It stores that string in an IText object, then outputs that string
several times according to a macro defined in a header file. This example is
intentionally convoluted to demonstrate the use of the different kinds of files listed
in the previous table.

A VisualAge C++ application may use either a configuration file or a makefile. The
following example will show you how to use both of these files to build your
application.

The example consists of the following files:

Chapter 1. IBM Open Class Overview 5



v basic.cpp
v basic.hpp
v basic.h
v basic.icc or makefile

basic.cpp
The main() function creates a MyClass object called currentData. The MyClass
constructor takes a reference of an ICurrentNonGUIApplication object as its
argument. When the main() function creates the MyClass object, it saves the
command line arguments with the setArgs() function.

The MyClass constructor accesses the name of the application by calling argv(0).
The constructor accesses the value of the first argument by calling argv(1):
// IText-based Hello World!
#include “basic.hpp”
int main(int argc, char *argv[])
{

// Create a MyClass object using the current application object
// and save the command line arguments with the setArgs() function
MyClass currentData(ICurrentNonGUIApplication::current().setArgs(argc, argv));
// Output the name of the application (the first argument)
cout << “Name of application: ” << currentData.applicationName << endl;
// Output the second argument
for (int i = 1; i <= REPEAT; i++)
{

cout << i << “: ” << currentData.stringArgument << endl;
}

}
MyClass::MyClass(ICurrentNonGUIApplication& myApplication)
{

// Store the first argument as the name of the application
applicationName = myApplication.argv(0);
// Store the second argument as the string to output.
// If the second argument does not exist, then store
// a default string.
if (myApplication.argc() > 1)
{

stringArgument = myApplication.argv(1);
}
else
{

stringArgument = “Default string”;
}

}

basic.hpp
This file contains the declaration of the MyClass class.
// basic.hpp
#include <iapp.hpp>
#include <itext.hpp>
#include <iostream.h>
#include “basic.h”
class MyClass : public IText
{

public:
MyClass(ICurrentNonGUIApplication& myApplication);
IText applicationName;
IText stringArgument;

};

basic.h
This file defines the macro used in this application.

6 IBM Open Class: Overview



// basic.h
#define REPEAT 7

basic.icc
Every application that uses the IBM Open Class must use the following options in
its configuration file:

Option Description

gen(rtti, yes) Controls what run-time type information
(RTTI) is generated. In this case, this option
generates code that supports both the typeid
and dynamic_cast operators.

link(linkWithMultithreadLib, yes)

Links the module being built to the
multithread version of the VisualAge C++
run-time library.

defaults(xlC_r) Specifies the predefined option group xlC_r
to use during compilation. The xlC_r string
means the following:

v Invokes the compiler so that source files
are
compiled as C++ language source code.

v Sets macro names with the following:

– define(“_THREAD_SAFE”, 1)

– define(“_AIX32_THREADS”,1)

– define(“_AES_SOURCE”,1)

v Add the libraries libpthreads.a, libc_r.a,
and
/usr/lib/libc.a.

This configuration file uses several other optional options:

Option Description

link(linkwithsharedlib, yes)
Links the module being built with the
shared version of the VisualAge C++
run-time library.

link(extdictionary, no)

Does not search the extended dictionaries of
libraries when the linker resolves external
references. The extended dictionary is a list of
module relationships within a library.

incl(searchpath, “.”)
Searches the current directory to satisfy
#include directives in the C and C++ source
files.

macros(global)
Specifies that the source contains macros
that apply to the whole project.

This configuration file uses three kinds of directives:

Directive Description

option Defines options for one of the tasks involved
in a build.

Chapter 1. IBM Open Class Overview 7



Directive Description

target Specifies the name of the file that the build
will produce. For example, this
configuration file will produce a file called
basic.exe.

source Specifies files that are used as inputs to a
build.

This example uses two classes from the IBM Open Class Library: IText and
ICurrentNonGUIApplication. To use these classes in your application, you need to
include the header files itext.hpp and iapp.hpp respectively. Instead of using an
#include directive in the code, this example lists these header files in the
configuration file.

This configuration file lists all the source files as well as the IBM Open Class
header files in the scope of the target directive. Unlike a makefile, you do not
specify any C++ file-dependency or processing information in a configuration file.
In addition, you do not have to list these files in your source with the #include
directive.

The following is the configuration file for AIX:
defaults(xlC_r),
link(linkwithsharedlib, yes),
gen(rtti, yes),
{

target “basic”
{

option incl(searchpath,“.”)
{

option macros(global)
{

source type(hpp) “itext.hpp”
source type(hpp) “iapp.hpp”
source type(hpp) “basic.hpp”
source type(h) “basic.h”

}
source type(cpp) “basic.cpp”

}
source “libioc.a”

}
}

The following is the configuration file for Windows and OS/2:
option

link(linkwithmultithreadlib, yes),
link(linkwithsharedlib, yes),
link(extdictionary, no),
gen(rtti, yes),
link(padding, no)

{
target “basic.exe”
{

option incl(searchpath,“.”)
{

option macros(global)

8 IBM Open Class: Overview



{
source type(hpp) “itext.hpp”
source type(hpp) “iapp.hpp”
source type(hpp) “basic.hpp”
source type(h) “basic.h”

}
source type(cpp) “basic.cpp”

}
}

}

makefile

Use the make command to compile this example with the following
makefile. You do not need to put the names of any IBM Open Class header files in
the make file:
# makefile for basic.exe
# —- Body —-
all: basic
basic: basic.o

xlC_r -o basic basic.o -lioc
basic.o: basic.cpp basic.h

xlC_r -c -qarch=com -qnotempinc -qnoinfo -qrtti=all \
-I. -obasic.o -+ basic.cpp

clean:
rm -f basic.o basic

Use the nmake command to compile this example with the following
makefile:
# makefile for basic.exe
#
# Make file assumptions:
# - Environment variable INCLUDE contains paths to:
# IBM Compiler target_directory\include;
# - Environment variable LIB contains paths to:
# IBM Compiler target_directory\lib;
# - current directory will be used to store:
# object, executable, and resource files
# —- Tool defintions —-
ERASE=ERASE
GCPPC=ICC
GLINK=ICC
# —- Tool flags —-
ICLCPPOPTS=/Gm+ /Gd+ /Gh+ /Ti+ /Fb+ /Q+
GCPPFLAGS=$(LOCALOPTS) $(ICLCPPOPTS)
GCPPLFLAGS=/Tdp /B“/debug /browse”
# —- Body —-
all: basic.exe
basic.exe: basic.obj

$(GLINK) $(GCPPLFLAGS) $(GCPPFLAGS) /Fe“basic.exe” basic.obj
basic.obj: basic.cpp basic.hpp basic.h

$(GCPPC) /C+ $(GCPPFLAGS) basic.cpp
# —- Clean —-
clean:

-$(ERASE) basic.exe
-$(ERASE) basic.obj

Output
Assume that you execute this example with the following on the command line:
basic “Hello World!”

Chapter 1. IBM Open Class Overview 9



This will be the output:
Name of application: basic
1: Hello World!
2: Hello World!
3: Hello World!
4: Hello World!
5: Hello World!
6: Hello World!
7: Hello World!

IBM Open Class Overview
“User Interface Applications” on page 12
Configuration Files

“Design an IBM Open Class Application”
“Design a User Interface Application” on page 15

Design an IBM Open Class Application
This section gives recommendations for designing Open Class Library applications.
These general recommendations should not substitute for detailed design
guidelines. Many of the topics listed here require a great deal of consideration
when you design complex object-oriented applications. See the topic “Design a
User Interface Application” on page 15 for more specific information on graphic
user interface applications.

The Hello World sample application shipped with this product uses these design
recommendations.

Including the IBM Open Class Library
To use the classes, functions and operators available in the IBM Open Class
Library, you must include the parts of the library’s interface that you need in your
C++ source code. To include an interface, you must either:
v Specify the header file in a source configuration file directive that applies to any

build target using this interface.
v Include the following statement in any file using this interface:

#include <filename>

where filename is the name of the header file.

Then, in the body of your program, you can use a class, function or operator
defined in the header file, as well as derive new classes and overload the functions
and operators. See the topic Libraries, Headers, and Conventions for more
information about how the IBM Open Class names its header files and classes.

Create Your Own Classes
Most applications require you to derive new classes from existing classes. You
derive new classes to inherit implementation details from a base class.

Do not derive from a particular base class unless you have a good reason to do so.
When creating data type or settings classes, do not derive from a base class, unless
for some reason your new class must derive from one of your own base classes.

10 IBM Open Class: Overview



Choose Multiple Inheritance or Composition
It is easier to inherit from multiple classes when you design simple applications.
Because all of the functions from the derived classes are immediately available,
you can easily use them as-is and not override them.

However, as your application evolves into a more complex application, it can be
difficult to anticipate how changes in the functions of the inherited classes will
affect the derived class.

Generally, if the class you design has an “is-a” relationship with, for example, a
frame window, then it should inherit from the IFrameWindow class. Inheriting
from IFrameWindow is typical, but not necessary in most cases. For example, a
“has-a” relationship is often fine with frame windows. However, if the class has a
“has-a” relationship, for example, command handler, the derived frame window
class should contain an ICommandConnectionTo<> template object as a data
member, or an object derived from ICommandHandler. It should not inherit from
the command handler class. The Hello World version 3 sample application
provides an example.

Override Virtual Functions
When you override inherited member functions, such as the
ICommandHandler::command() function, that are defined as virtual, declare the
overriding function as virtual too. This improves the readability of the inheriting
class by saving the reader from having to search up the inheritance chain to
discover that the function was originally defined as virtual.

Delete Objects Created with New
If you create objects dynamically by using the new operator, delete them by using
the delete operator. If an object is composed of dynamically created objects, that is,
you create the composed objects with the new operator in the constructor of the
composing object, then you should delete the object in the destructor of the
composing object.

The following are exceptions to this rule:
v Classes that use the autoDelete behavior of IWindow derived classes. See

IWindow::setAutoDeleteObject().
v IContainerColumn and IContainerObject. You can have the IBM Open Class

delete these for you by calling IContainerControl::setDeleteColumnsOnClose()
and IContainerControl::setDeleteObjectsOnClose().

v Classes derived from IMRefCounted.
v ICountedPointerTo<> template objects.
v Objects that you pass to functions with “adopt” semantics, such as IThreadFn*

pointers you pass to IThread, and IGrafBundle* pointers you pass to
INonGUIThread, IThread, and IMGraphic::adoptBundle().

Define Strings Outside the Executable Program
The values of strings in applications vary by user because of preference or national
language. Therefore, you should define strings outside the application.

To use strings outside of a non-GUI application, use a message file.

IBM Open Class Overview
“IBM Open Class Applications” on page 4

Chapter 1. IBM Open Class Overview 11



“Design a User Interface Application” on page 15

IBM Open Class Libraries, Headers and Conventions

User Interface Applications
An easy way to understand how the classes and objects work together in a user
interface application is to look at a simple application called Hello World Version
1. This application has two basic user interface components:
v A standard frame window with a title bar, system menu button, border, and

minimize and maximize buttons.
v The rest of the window, called the client area, containing the phrase “Hello

World!!!”

The main window for Hello World Version 1 looks like this:

One source file, the .cpp file, is required for this application.

Creating a C++ Source File
The Hello World samples, versions 1 through 6, illustrates many Open Class
Library features. Hello World version 1 has only a .cpp file. This file is the C++
source file used by VisualAge C++ to generate the executable part of this
application. A copy of the “Hello World” version 1 application is included in the
online samples.

The listing of the C++ source file for the Hello World version 1 application follows:
#include <iapp.hpp>
#include <istattxt.hpp>
#include <iframe.hpp>
#include “ahellow1.h”
/************************************************************
* main *
* - Application entry point for Hello World Version 1. *
* *
* Creates a new object mainWindow of class IFrameWindow *
* Creates a new object hello of class IStaticText *
* Sets the static text value and aligns it *

12 IBM Open Class: Overview



* Sets the static text as the client of the mainWindow *
* Sets the size of mainWindow *
* Sets the window focus to mainWindow *
* Displays the mainWindow *
* Starts the events processing for the application *
************************************************************/
int main()
{

IFrameWindow mainWindow (WND_MAIN);
IStaticText hello(WND_HELLO, &mainWindow, &mainWindow);
hello.setText(STR_HELLO);
hello.setAlignment(IStaticText::centerCenter);
mainWindow.setClient(&hello);
mainWindow.sizeTo(ISize(400,300));
mainWindow.setFocus();
mainWindow.show();
IApplication::current().run();
return 0;

} /* end main() */

This application creates the following objects:

Object Description

mainWindow This IFrameWindow object is the main
window for the application.

hello This is the static text control (IStaticText)
object that displays the string “Hello
World!!!” which was loaded from the .rc file

ISize object An unnamed temporary ISize object used in
the call to mainWindow.sizeTo()

ICurrentApplication object The call to IApplication::current() returns a
reference to the current application, which is
an object of the class
ICurrentApplication

In the main function you create the primary application window, call its functions
to change settings, such as size or position, call its inherited frame window
functions to give it focus and have it displayed, and call ICurrentApplication::run()
to begin event processing.

To create a user-interface application with more functionality than the Hello World
version 1 sample, you generally create a class that represents your main window.
Usually this class derives from IFrameWindow. The IFrameWindow class, as well
as the IWindow class, have many functions you can call that perform general tasks
like resizing the border of your main window.

In the constructor of your main window class you can create controls (such as push
buttons or entry fields) and event handlers (functions that process events like the
selection of a push button).
The Open Class Library provides you with virtual functions that you can override.
For example, the ICommandHandler class (a class that processes application
command and system command events) has a virtual function called command().
You can override this function to process events such as the selection of a
command from a menu bar.

You can create objects of other classes based on user input.

Chapter 1. IBM Open Class Overview 13



In the destructor of your main window class, you stop your event handlers and
delete any composed objects that you created using operator new, except those
IWindow objects that the Open Class Library will delete for you. Specify these
objects by calling IWindow::setAutoDeleteObject().

Start Event Processing
Starting event processing allows the events generated by the system, user, or
application to be processed by event handlers or by default behavior provided by
the system.

To start event processing for a C++ application using the Open Class Library,
follow these steps:
1. Obtain a reference to ICurrentApplication by using the static member function

IApplication::current(). Objects of the ICurrentApplication class represent the
application that is currently running.

2. Call ICurrentApplication::run() to execute your application.

The following example comes from the Hello World version 1 source file:
IApplication::current().run();

By default, the call to ICurrentApplication::run() does not return until all primary
windows have been closed. Without this call, the application window you created
displays only briefly before the main function exits, thereby ending the application
prematurely.

Load Resources into an Application
Resources are user-interface components, such as text strings, icons, and bitmaps.
(These resources are not the window-related resources used by X and Motif, such
as the ones you can place in your .Xdefaults file.) The following are the basic steps
to load resources into your application:
1. Decide what resources to separate from the code. Many can be hardcoded into

the program, such as strings and accelerator keys. Others have to be in a
resource file such as bitmaps and icons (unless you decide to load the images
instead directly from the bitmap and icon files), and help tables.

2. Code those resources in a .rc file.
3. Compile the resource file using the resource compiler.
4. Link the resulting binary resource file to either the executable file or to a shared

library.
5. Add code to your application to use the resources you created.

See the concept Resources for more information.

The Open Class Library loads resources where necessary for an application. Use
the ICurrentApplication member function setUserResourceLibrary() to identify
which resource library will be used if none is specified on a call that loads a
resource. The following example uses the name passed as a program parameter as
the name of the application’s default resource library.
// Main function with arguments
int main(int argc, char *argv[])
{

// Save the command line arguments
// in the current application object
IApplication::current().

setArgs(argc, argv);
IString dllname(IApplication::current().argv(1));
// Get current application

14 IBM Open Class: Overview



// and set the name of resource DLL
IApplication::current().

setUserResourceLibrary(dllname);
// Create main window
AHelloWindow mainWindow (WND_MAIN);
// Start event processing
// for the application
IApplication::current().run();
return 0;

} /* end main */

The Open Class Library tries to create a frame window by loading a dialog with
the WND_MAIN ID from the default user resource library, specified on the call to
ICurrentApplication::setUserResourceLibrary().

This construction of a frame window does not apply on AIX since this platform
does not support dialogs defined with resource libraries.

You can also determine the current user resource library by calling the
userResourceLibrary() member function. The following code displays the name of
the user resource library in the client window of the frame window:
// Call IFrameWindow constructor
AHelloWindow :: AHelloWindow(unsigned long windowId)

: IFrameWindow(windowId)
{

// Create static text control
// Pass in myself as owner & parent
hello=new IStaticText(WND_HELLO,

this, this);
// Set text in static text control to library name
hello->setText(

IApplication::current().
userResourceLibrary().fileName());

// Set alignment to center in both directions
hello->setAlignment(

IStaticText::centerCenter);
// Set hello control as client window
setClient(hello);
// Set focus to main window
setFocus();
// Set to show main window
show();

} /* end AHelloWindow :: AHelloWindow(...) */

IBM Open Class Overview
Resources

“Design an IBM Open Class Application” on page 10
“Design a User Interface Application”

Design a User Interface Application
This section gives recommendations for designing user interface applications using
the IBM Open Class. See the topic “IBM Open Class Applications” on page 4 for
more general information.

Chapter 1. IBM Open Class Overview 15



Create Your Own Classes
Most applications require you to derive new classes from existing classes. You
derive new classes to inherit implementation details from a base class.

The following table provides a starting point to determine which base class to use:

Class Functionality Derived From

Attribute IAttribute (for window attributes)

Canvas class ICanvas

Control IWindow or ITextControl

Data type -

Event IEvent

Primary or secondary window IFrameWindow

Settings -

Style IBitFlag

Window behavior IHandler or one of its derived classes

Do not derive from a particular base class unless you have a good reason to do so.
When creating data type or settings classes, do not derive from a base class, unless
for some reason your new class must derive from one of your own base classes.

For window attributes, derive from IAttribute, since the IWindow interface
supports the addition and removal of IAttribute objects. For other named
attributes, IAttribute is also a handle. For arbitrary, unnamed attributes attached to
your own classes, you do not need to derive from an Open Class Library base
class.

Define Strings Outside the Executable Program
The values of strings in applications vary by user because of preference or national
language. Therefore, you should define strings outside the application.

In Windows and OS/2 this capability is provided by using Windows or OS/2
resource compiler (.rc) files. This format lets you use descriptive tags to identify
tables of strings and associate them with unique IDs in your application. In AIX,
the default format used by the resource compiler is the OS/2 format.

The syntax for the resource files on the various platforms are very similar, but the
keywords are different. Also, this product’s resource compiler handles extended
menu syntax and keywords. Refer to the Resource Compiler - Syntax topic in the
Tools and Utilities section of the reference for information on the resource file
syntax. Refer to the Resource Conversion Utility - Overview topic in the Tools and
Utilities section of the reference for information on converting your resource files.

Hello World versions 1 and 2 show how to use Open Class Library functions to
reference strings from resource files.

Define Menus in Resource Files
Use resource files to define menu bars, pop-up menus, and accelerators. By using
the same ID for the menu bar and the frame window, you can define the layout,
menu item text, and accelerator key definitions external to application logic. Hello
World version 3 and version 4 demonstrate this feature.

16 IBM Open Class: Overview



Use Canvases Instead of Dialog Templates
Windows and OS/2 provide support for dialog templates, which are “layouts” of
frame windows and controls. This support is not available in Motif and, therefore,
is not portable. Instead, use the canvas classes, such as IMultiCellCanvas and
ISetCanvas, for designing portable dialogs across Windows, Motif, and OS/2. Hello
World version 4 demonstrates this feature. Note that there are also other features
of canvases, such as automatic layout, that compensate for internationalization text
changes and font differences between platforms.

Defining the Client Window ID
To specify the client window in a way that is portable, create the window with
IC_FRAME_CLIENT_ID (defined in icconst.h) as its identifier, and call the
IFrameWindow::setClient() function.

IBM Open Class Overview
“IBM Open Class Applications” on page 4
“User Interface Applications” on page 12

“Design an IBM Open Class Application” on page 10
“Create Cross-Platform Applications”
“Compile and Build Open Class Applications” on page 22

Resource Compiler - Syntax
Resource Conversion Utility - Overview

Create Cross-Platform Applications
There are many things to consider when you create applications that are portable
across OS/2, Windows, and AIX. This section discusses how the Open Class
Library differs between platforms and how you can include nonportable functions
in a portable application. For information on converting resource and bitmap files
between OS/2, Windows, and AIX, see the topic Convert Application Resources.

Open Class Library Differences between Platforms
The Open Class Library for AIX does not support the following items which are
supported in the Open Class Library for OS/2 and Windows:
v Dialog template (DLGTEMPLATE) resources and the ability to construct an

IFrameWindow from a dialog template resource. (If you port OS/2 or Windows
programs that use dialog templates, you must convert them to use the canvas
classes.)

v All Dynamic Data Exchange (IDDE*) classes. There is no support for Dynamic
Data Exchange under Motif.

v IGroupBox does not support a transparent background. This may cause painting
conflicts with sibling windows. For portable applications, use ICanvas or a class
derived from ICanvas, which has methods that let you draw a box around the
canvas and label your canvas.

v IWindow::setParent().
v ITabControl.

Chapter 1. IBM Open Class Overview 17



v IContainerControl is limited.
v Multimedia classes and depreciated 2D graphics classes.

Platform Specific and Ignored Classes and Member Functions
Some classes and member functions from the Open Class Library are platform
specific. Attempts to use these classes and member functions for platforms other
than those platforms they were designed for will result in a compile-time error.

The Open Class Library makes these classes and member functions platform
specific by using the #ifdef and #endif preprocessor directives, and the macro
symbols listed in the table at the bottom of this page.

Also, there are some classes and member functions that are ignored on certain
platforms. This means that you will get valid compile results because the class or
member function is ignored. An example is using the
IRadioButton::disableAutoSelect() function in AIX. The autoselect style is always in
effect for Motif. Therefore, when your program calls disableAutoSelect(), the Open
Class Library does nothing. Many of these ignored classes and member functions
result from “look and feel” differences between OS/2 Presentation Manager,
Windows, and Motif.

The Open Class Library notes which classes and functions are ignored with flags in
the .hpp files. To see if your application contains any of these classes and member
functions, include the option define(IC_MOTIF_FLAGNOP) directive in your
application’s configuration file. See the topic “Obsolete or Ignored Member
Functions” on page 31 for more information.

This causes all of the ignored classes and member functions to not be declared, so
any occurrence of an ignored class or member function in your application
produces a compiler error. Note that you cannot link using object files built with
IC_MOTIF_FLAGNOP or other options that notes which classes and member
functions are ignored. The use of these compile-time checks causes the compiler to
generate code that does not match the IOC runtime libraries.

Include Nonportable Functions in Portable Applications
You may want to take advantage of system-specific APIs while developing an
application with Open Class Library. For example, in Create Your Own Handler
Sample, the X-Windows timer function gets the system time. However, these calls
prevent the application from building on OS/2 or Windows. To overcome this, the
application also provides the corresponding OS/2 and Windows function calls. The
conditional use of these calls is accomplished by using the compiler preprocessor
directives, #ifdef and #endif. In this case, you need the following symbols in the
#ifdef statement: IC_MOTIF, IC_WIN, and IC_PM.

You can find the Create Your Own Handler Sample in the samples/ioc/ownhdr
directory.

The Open Class header files environment symbols are defined in icomdefs.h. To
get these symbols, include the icomdefs.h. file. The following lists the symbols and
the corresponding platforms the symbol is defined when compiling:

Symbol Platform

IC_PM

IC_WIN

18 IBM Open Class: Overview



Symbol Platform

IC_MOTIF

IC_PMWIN

IC_MOTIFPM

IC_MOTIFWIN

“Obsolete or Ignored Member Functions” on page 31

Convert Application Resources

Map Coordinate Systems Across Platforms
Unfortunately all operating systems do not position windows on the display using
the same coordinate system. In the Windows and AIX operating systems, you
position a window relative to the upper-left corner of the window it is contained
in. Under OS/2, you position a window relative to the lower-left corner of its
containing window.

Use ICoordinateSystem to Set Your Application’s Orientation
To facilitate developing cross platform applications, the Open Class Library
provides you with the ICoordinateSystem class. This class allows you to develop
your application based on one of the two coordinate systems, and provides
functions to assist you in porting it to a platform with a different orientation. The
ICoordinateSystem::EOrientation enum has two values, kOriginUpperLeft and
kOriginLowerLeft.

To develop a portable application, we recommend that you pick one of the two
orientations and code all of your windows using this orientation.To change the
way the Open Class Library interprets coordinates you must call the
ICoordinateSystem function setApplicationOrientation function, passing the
EOrientation you wish to use. This will cause the Open Class Library to interpret
all input parameters, and return objects based on this orientation. For example, to
code all coordinates based on the lower-left corner use the following line of code:

ICoordinateSystem::setApplicationOrientation(ICoordinateSystem::kOriginLowerLeft);

You must make this call prior to calling any Open Class Library function that uses
the window coordinates.

If an application does not call ICoordinateSystem::setApplicationOrientation(), then
the orientation defaults to upper-left.

Calling this function after IWindow objects have been created may cause
unpredictable results. If your design calls for using an orientation other than the
Open Class Library default of native orientation, you should set the orientation
early in your program.

This function does not affect the processing of dialog templates loaded from
resource files. The coordinates in resource files are always interpreted in native
system coordinates when the dialog is being loaded.

Chapter 1. IBM Open Class Overview 19



You can construct an IExtendedRootGrafPort object with an
ICoordinateSystem::EOrientation enumerated type for drawing 2D graphics with
the coordinate system of your choice. If you do not specify an enumerator value
when constructing the IExtendedRootGrafPort object, it will use the application
orientation by default. You can set the orientation by calling
ICoordinateSystem::setApplicationOrientation().

Use Platform Dependent Coordinates
There may be situations where you will need to deal with the native coordinate
system. For example, if you develop your own control and make the calls to the
operating system to create the control or to move and size it, you must specify the
window’s position and size in native coordinates. The Open Class Library also
contains functions to help you with these conversions.

If you are extending the library by writing classes for custom controls or providing
other reusable classes based on Open Class Library, then you should consider
using this class to provide coordinate mapping for your users. Coordinate
conversion is needed when you make calls to system routines which accept points
or rectangles. It also may be needed if you rely on a specific orientation to perform
layout of windows or graphics.

You can determine the native and application orientations by calling the
ICoordinateSystem functions nativeOrientation() and applicationOrientation()
respectively. When they return different values you need to convert the coordinates
of objects that are passed to and returned by you. The ICoordinateSystem function
isConversionNeeded() is the best way to determine if you must make conversions.
It returns true if the native and application orientations are different.

When developing cross-platform applications, you may need to use the following
member functions to manipulate the orientation of your application objects:
v Use ICoordinateSystem::convertToApplication() to convert a point or rectangle

from the native coordinate orientation to the application orientation.
This function returns a point or rectangle in application coordinates. This is
computed from a point or rectangle expressed in native orientation and a
reference size (the size of the coordinate space in which the native point
coordinate is expressed).

v Use ICoordinateSystem::convertToNative() to convert a point or rectangle from
the application coordinate orientation to the native orientation. This function
returns a point or rectangle in native coordinates.

v Use IWindow::nativeRect() to get a IRectangle object that represents the position
and size of a window in the native coordinates. (IWindow::rect() returns the
position and size of the window in reference to the application’s coordinate
system.)

Use Portable Rectangles
Various graphics and windowing classes, as well as their member functions, use
rectangles so when porting applications, you need to understand the different
coordinate system mappings.

Objects of the IRectangle class represent a rectangular area defined by two points
that form opposite corners of the rectangle. These two points are referred to as the
minimum and maximum points. IRectangle objects are designed to be usable
independently of the coordinate system in use. The minimum, or origin, is defined
as the point with the lowest coordinate values. Therefore, in a coordinate space
where (0, 0) is the upper left and increasing a point’s coordinate value moves it to

20 IBM Open Class: Overview



the right and down, the minimum point of an IRectangle is the top-left corner and
the maximum corner is the lower-right corner. Conversely, in a coordinate space
where (0, 0) is the lower-left corner and increasing a point’s coordinate value
moves it to the right and up, the minimum corner of an IRectangle is the lower
left, and the maximum corner is the top right.

The original functions provided in IRectangle to return points and coordinates had
names like lowerLeft() and upperRight(). So, to get the origin of a rectangle on
OS/2 you would call lowerLeft(). Unfortunately this is not the origin on Windows
or AIX.

IRectangle is a data type class that is based on a mathematical coordinate system
(where y values increment from bottom to top). This coordinate system also
corresponds to the one used by OS/2, but IRectangle does not consider the
application orientation which deals with window coordinates only. As a result, the
implementation of IRectangle::lowerLeft() returns the point with the smallest X and
Y values in the rectangle. If you use the IRectangle functions in the context of a
Windows coordinate system, IRectangle::lowerLeft() returns what would be the
upper left corner of the rectangle. So IRectangle::lowerLeft() does return the origin
of a windowing rectangle on all platforms, but it is extremely confusing when not
using a lower-left coordinate system.

IRectangle now has new functions that allow you to get information in an
orientation aware manner. For instance there are now functions named
minXMinY(), minXCenterY(), and minXMaxY(). To write portable applications you
should use these new functions exclusively.

Set Window Positions
You use the IWindow member functions for window positioning to set and query
the size and position of windows. Unless otherwise noted, the orientation of the
coordinates accepted and returned by these members is the application orientation.

IWindow::mapPoint() for ITitle::handle() mapping to the desktop returns the wrong
data. This appears to return native coordinates relative to the application when the
default is the OS/2 coordinate system. These problems arise since on Windows, the
following is true:

frame->handle() == title->handle();

2D Coordinate System and Data Types

“Create Cross-Platform Applications” on page 17

Chapter 1. IBM Open Class Overview 21



Compile and Build Open Class Applications
Compile Options
All Open Class executables must use the following options in their configuration
files or makefiles:

Configuration File Option Makefile Option Description

gen(rtti, yes) -qrtti=all Controls what run-time type
information (RTTI) is
generated. In this case, this
option generates code that
supports both the typeid and
dynamic_cast operators.

link(linkWithMultithreadLib,
yes)

-lioc Links the module being built
to the multithread version of
the VisualAge C++ run-time
library.

defaults(xlC_r) xlC_r Specifies the predefined
option group xlC_r to use
during compilation. The
xlC_r string means the
following:

v Invokes the compiler so
that source files are
compiled as C++ language
source code.

v Sets macro names with the
following:

–
define(“_THREAD_SAFE”,
1)

–
define(“_AIX32_THREADS”,1)

–
define(“_AES_SOURCE”,1)

v Add the libraries
libpthreads.a, libc_r.a, and
/usr/lib/libc.a.

If an Open Class application or an application which uses POSIX threads is built
with a non-optimized configuration file, an error similar to the following may be
generated:
“/usr/include/pthread.h”, line 552.17:(S)CPPPC0403:
“_mutex_global_np” is already defined.

This may occur because the system header file pthread.h contains the definition of
a variable called _mutex_global_np. Some of the Open Class header files include
pthread.h. This causes duplicate definitions when these headers are included in
separate source files which are built into the same target. To resolve this, add the
following to the configuration file as one of the sources for the appropriate target:
option macros(global,yes)
{

source type(h) 'pthread.h'
}

22 IBM Open Class: Overview



Build with the Motif 1.2 Compatibility Library on AIX 4.3
The Open Class Libraries are built using Motif 1.2 and X11R5. On AIX 4.3 the
operating system has made Motif 2.1 and X11R6 the default. An application that
uses IBM Open Class (and thus Motif 1.2) cannot use Motif 2.1. These two levels of
Motif are not binary compatible.

Thus for a user to mix native X-widgets and IBM Open Class widgets, on AIX 4.3
the user will have to compile and link to the Motif 1.2 compatibility library. To use
these libraries read the information in the /usr/lpp/X11/readme file.

Avoid Reserved Pragma Priority Values
The Open Class Library reserves the use of #pragma priority values in the range of
-2147482624 through -2147481600. The C++ compiler reserves the range below that.
As a result, avoid using a #pragma priority value less than -2147481599 (this is
equivalent to INT_MIN + 2048) to control the order of static object construction in
your Open Class Library application.

Open Class Library Error and Exception Output
Although Open Class is designed to catch as many errors as possible during the
compilation and link steps, some errors can only be detected at run time. The
classes in Open Class throw C++ exceptions to indicate runtime errors. Errors
messages describing the exception can be seen while debugging, or can be seen in
trace output sent to STDOUT, STDERR or a queue; trace output is only seen if you
have turned tracing on. Your own classes can also throw C++ exceptions and
output trace information in the same way, by using the IException and ITrace
classes.

Link an Application to the Open Class Library

To use dynamic linking, specify link(linkWithSharedLib, yes). To
use static linking specify link(linkWithSharedLib, no). When statically linking on
OS/2 and Windows, this option automatically pulls in the necessary Open Class
Library static link libraries.

You do not need to specify which libraries to use because this happens
automatically via #pragma library statements. Only if you build with the
link(defaultLibs,no) will you need to manually include the names of the import
libraries (if dynamically linking) or static libraries (if statically linking).

On AIX, you must specify exactly which libraries should be used. You should link
an IBM Open Class application against libioc.a.

The following additional rules apply when you build your application with the
dynamic libraries, instead of the static object libraries:
1. A DLL using the Open Class Library must link dynamically to the Open Class

Library code (that is, you must link with the Open Class Library import
libraries). In other words, if you build a DLL that uses Open Class, then you
must not build this DLL with the link(linkWithSharedLib,no) option.

Chapter 1. IBM Open Class Overview 23



2. An .exe using the Open Class Library and calling a DLL that also uses the class
library must link dynamically to the Open Class Library (that is, you must link
with the Open Class Library import libraries).

3. An .exe or .dll file should not link both dynamically and statically to the Open
Class Library code.

Link your AIX application to the Open Class Library by specifying either the
import library or the following static libraries at link time:
v Import library:

– libioc.a
v Static libraries:

– libiocns.a (application control, streams, test framework, and everything else
not listed below)

– libiocclns.a (collection classes)
– libiocunis.a (user interface and 2D graphics)

IBM Open Class Overview
“IBM Open Class Applications” on page 4

“Build a 64-Bit Enabled Application”

IBM Open Class Libraries, Headers and Conventions

Build a 64-Bit Enabled Application
You can build in 64-bit mode IBM Open Class applications that do not contain any
User Interface or 2D Graphics code.

New typedefs have been added for creating portable applications that can be built
using either the 32-bit or 64-bit definitions of longs. When you build your
application in 64-bit mode, the macro __IOC_64BIT is set within the IBM Open
Class Library. This macro controls the use of the typedefs for long or integer
variables. See an example of this in the istring.hpp file found in the include
directory.

To build a 64-bit application, use either one of these build options:
v OBJECT_MODE environment variable (for example, export OBJECT_MODE=64)
v gen(objectMode,64) configuration option
v -q64 compiler option

IBM Open Class Overview
“IBM Open Class Applications” on page 4

“Compile and Build Open Class Applications” on page 22

24 IBM Open Class: Overview



Package and Distribute an IBM Open Class Application
An important factor in determining how you package and distribute your
application is whether you link statically or dynamically to VisualAge C++ code.
Linking statically creates a larger executable program but minimizes the number of
files you have to distribute. Linking dynamically is better if you build several
programs since this allows a single copy of VisualAge C++ code to be shared
instead of a copy linked into each executable file.

An application built with the IBM Open Class (IOC) needs the following files at
runtime:
v IOC runtime code: See IBM Open Class Libraries, Headers, and Conventions for

the file names of the runtime libraries.
v IOC language files

– Resource library: The libvacocres.o (AIX) and the cpporr40.dll (Windows and
OS/2) files store resources that the library provides, such as bitmaps and text
for standard toolbar buttons, bitmaps for animated buttons, container icons,
direct manipulation icons, and system pointers.

– Message file or catalog: The ibmvaccl.cat (AIX) and the cppaoi40.msg
(Windows and OS/2) supply text, primarily for the IBM Open Class
exceptions. If these messages are not available at runtime, the IOC defaults to
using English strings for the text it needs.

See Package and Deliver Your Finished Application for additional VisualAge C++
files you may need. These include the following:
v C/C++ runtime code

v IPF runtime code for help support

Package a Dynamically Linked Application

When packaging your application you must include the VisualAge C++
fileset(s) that contains the IBM Open Class runtime libraries, and optionally the
filesets containing the language files libvacocres.o and ibmvaccl.cat. The IBM Open
Class libraries cannot be renamed or individually redistributed. For example, you
do not distribute libvacbase5.a, but rather the fileset that this library belongs to.

You must rename the runtime .dll files and the resource library cpporr40.dll
in order to ship them. Use the dllrname tool shipped with VisualAge C++ to
rename these files.

The first four characters of cppoqi40.dll (the library that is needed primarily by the
PM-compatible versions of the following user interface classes: IContainerControl,
IProgressIndicator, ISlider, INumericSpinButton, ITextSpinButton, and INotebook)
must be the same as the first four characters of the renamed user interface classes
library (cppoui40.dll).

In addition to renaming the Open Class resource library cpporr40.dll, add a
call to ICurrentApplication::setResourceLibrary to the beginning of your program.
Specify the new resource file library name as an argument to the call. You can also

Chapter 1. IBM Open Class Overview 25



set the environment variable ICLUI_RESLIB to change the default name of this
DLL. The function call is better for production-level applications.

You must rename the the message file cppaoi40.msg in order to ship it. To
identify the new name, add a call to IMessageText::setMessageFile to the beginning
of your program. Specify the new name as an argument to the call.

Package a Statically Linked Application

You cannot statically link to the PM-compatible code in cppoqi40.dll. The
user interface classes dynamically load this DLL when needed. If your program
needs this DLL to run you must ship it. In this case rename the file using dllrname
so its first four characters match the first four characters of the file name of your
executable program. The last four characters of the DLL must remain “qi40.”

You can either ship the IOC resource library as described in the previous section
(for AIX ship the fileset containing libvacocres.o, for Windows or OS/2, rename
cpporr40.dll), or add the resources to your own resource library.

Follow these steps to include IBM Open Class resources into your application’s
resource library:
1. Add all the resources that your application requires, including those built into

libvacocres.o (AIX) or cpporr40.dll (Windows and OS/2), into your application
resource file. IBM Open Class resources are located in the following directories:

v source/res

v /usr/vacpp/iocsrc/res/aix

To ensure that you have not omitted any resource, we recommend that you
include all resources that the IBM Open Class provides.

2. Ensure that the IDs of your resources do not duplicate those of the IBM Open
Class resources you are adding to your resource file.

3. Add a call to ICurrentApplication::setResourceLibrary to the beginning of your
program. Specify the name of the resource library as an argument to the call.
(Use a value of 0 to specify the application executable file.)

You must rename the the message file cppaoi40.msg in order to ship it. To
identify the new name, add a call to IMessageText::setMessageFile to the beginning
of your program. Specify the new name as an argument to the call.

You should ship the fileset containing the IOC message catalog, ibmvaccl.cat.

“Compile and Build Open Class Applications” on page 22
Package and Deliver Your Finished Application

IBM Open Class Libraries, Headers, and Conventions

26 IBM Open Class: Overview



Build the IBM Open Class Library Source Code for Debugging
Purposes

You can build debuggable versions of the IBM Open Class (IOC) libraries.

Conditions
The IBM Open Class source is provided only to help you debug your code. You
cannot redistribute the source or binaries you build from these source files.

Prerequisites
You can build the IOC libraries either with the incremental or the batch compiler.

v To build with the batch compiler you will need xlC_r and GNU Make
3.77 (or above) (ftp://ftp.gnu.org/pub/gnu/make)
Note: GNU Make is not officially supported by IBM.

v To build with the incremental compiler you will need vacide.

Operating System Prerequisites
In order to build the IBM Open Class libraries, you must have a minimum amount
of disk space and memory available as listed in the following table:

Component Requirements

Disk space x600MB

Memory x512MB

Environment Variable Settings
The IOC build procedure uses the following environment variables:

Environment Variable Description Default Value When
Undefined

OPENCLASSBUILDTOS Defines the build target
operating system. The following
are the possible values:

v aix42

v aix43

You must define this
variable

OPENCLASSROOT If this is defined, the IOC source
files are assumed to be stored in
the directory
$(OPENCLASSROOT)/iocsrc.

If this is not defined, the
IOC source files are
assumed to be stored in
the directory
/usr/vacpp/iocsrc.

OPENCLASSBUILDROOT
Defines where the newly built

libraries are stored.

New libraries are stored in the
following directory:

$(OPENCLASSBUILDROOT)/lib/
$(OPENCLASSBUILDTOS)

Files generated during the build
are stored in the following
directory:

$(OPENCLASSBUILDROOT)/
$(OPENCLASSBUILDTOS).bin

The current working
directory

Chapter 1. IBM Open Class Overview 27



Environment Variable Description Default Value When
Undefined

OBJECT_MODE Specifies whether you are
building 32-bit or 64-bit objects.

32-bit

IOC Source Directory Hierarchy and Installation Targets
In the standard installation of VisualAge C++, you can find the IBM Open Class
source tree in the /usr/vacpp/iocsrc directory. In the following tables that describe
the directory hierarchy and installation targets, the top level IOC source directory
is $(top_srcdir).

Non-Graphical Libraries

Library Description Directory Target Library File Name

Core/Base Services such as
multithreading,
resource locking,
object streaming,
internationalization
support, and file
system access.

$(top_srcdir)/core core libvacbase5.a

Collection An alternative
collection library to
the ANSI Standard
Template Library. It
supports notification
and streaming.

$(top_srcdir)/collect
collect libvaccl5.a

Test
Framework

A framework for
creating and running
test cases.

$(top_srcdir)/testfw
testfw libvactestfw5.a

File I/O
Stream

I/O stream
support for files. $(top_srcdir)/fstream fstream

libvacfstrm5.a

Graphical Libraries

Library Description Directory Target Library File Name

2D
Graphics

Creates and
manipulates 2D
graphics.

$(top_srcdir)/graph2d graph2d
libvacgraph2d5.a

User
Interface

A framework for
creating graphical
user interfaces.

$(top_srcdir)/ui ui libvacui5.a

Import and Static Libraries
The following libraries do not have any targets; they are generated automatically
by invoking any of the above targets:

Library Library File Name

Import Library libioc.a

Static non-GUI Library libiocns.a

Static GUI Library libiocuins.a

28 IBM Open Class: Overview



Library Library File Name

Static Collection Library libiocclns.a

Build with the Batch Compiler
To build a debuggable IOC library with the batch compiler, call make with the
master makefile, called Makefile. For example, the following command creates the
Core library in the output tree:
make -f /usr/vacpp/iocsrc/Makefile core

If you do not supply a target, the default behavior is to rebuild the entire IOC
library.

Build with the Incremental Compiler
If you want to use the incremental compiler, use the vacide command. To open the
Open Class Library project, invoke the following command:
vacide /usr/vacpp/iocsrc/IOC.icp

Within the IDE, choose the library you want to build in the Overview page.

Example of Building an IOC Library
For example, if you want to create a debuggable IOC library in the
/home/userid/iocout directory, invoke the following commands:
v slibclean (in case an application is still using the libraries)
v export OPENCLASSBUILDTOS=aix42

v export OPENCLASSBUILDROOT=/home/userid/iocout

v make -f /usr/vacpp/iocsrc/Makefile
or
vacide /usr/vacpp/iocsrc/IOC.icp

After the build is completed, the object files will be in the directory
/home/userid/iocout/aix42.bin, and the libraries will be in the directory
/home/userid/iocout/lib/aix42.

To use the new libraries for debugging, set the LIBPATH environment variable to
include the directory /home/userid/iocout/lib/aix42:
export LIBPATH=/home/userid/iocout/lib/aix42:$LIBPATH

Build Messages
When building the IOC libraries, you might encounter some Duplicated Symbol
warnings. These warnings are normal and can be safely ignored.

AIX4.3 Considerations
AIX4.3 supports two object modes: 32-bit and 64-bit. You can build only the
non-graphical IOC libraries using either object mode. To compile the IOC
non-graphical libraries using the 64-bit object mode, set the OBJECT_MODE
environment variable to 64 (for example: export OBJECT_MODE=64).

AIX4.3 also supports two versions of Motif: 1.2 and 2.1. However, the IOC
graphical libraries support only Motif 1.2. The IOC graphical libraries require the
X11.compat.adt.Motif12 fileset to get the proper headers and import libraries.

IBM Open Class Overview

Chapter 1. IBM Open Class Overview 29



Compile and Build an IBM Open Class Application

Work with the IBM Open Class Samples
VisualAge C++ ships samples that demonstrate the use of the IBM Open Class.
You can use the samples to learn the IBM Open Class by example. The samples
can show you how to properly use a class within the context of an application. You
can also use the samples as a starting-point for an application you want to
develop. Find a sample that closely resembles your desired application, and add or
revise code.

Copy Samples

To compile any sample, you must create a copy in a directory that you
have access to. For instance, enter the following commands in a command shell to
copy the IBM Open Class sample called “notebook”:
v Go to your userid’s top directory:

cd x

v Create a directory to store the sample:
mkdir -p samples/ioc/notebook
cd samples/ioc/notebook

v Recursively copy all the files (including sub-directories) to the destination
directory:
cp -r /usr/vacpp/samples/ioc/notebook/* .

v If you wish to modify the sample, run the change mode command:
chmod +w *

Build the Samples
Samples are shipped in a pre-built state. They are ready to run. All samples are
built in 32-bit mode.

All samples contain the following files:
v project file
v configuration file
v makefile

The project file and configuration file use the incremental compiler and generate a
code store. The makefile uses the batch compiler.

You can build the Core samples, the ones that do not contain User Interface or 2D
Graphics classes, in 64-bit mode. The appropriate environment variable or compiler
option must be used to build these samples in 64-bit mode. See the topic “Build a
64-Bit Enabled Application” on page 24 for more information.

The samples are built in optimized mode. You can build the samples in debug or
static mode using the appropriate compiler options.

The LANG environment variable must be set to build the samples. This value is
used to locate the resource and help files associated with the sample. If you receive
build errors when compiling the samples, make sure that your LANG environment
variable is correct and that the subdirectory corresponding to the value you are
using exists in the sample’s directory. For example, the English resource and help

30 IBM Open Class: Overview



files are found in the en_US subdirectory for each sample and the LANG
environment variable must be set to en_US respectively.

The following samples use a mixture of IBM Open Class and ANSI STL classes:
v animals
v evenodd
v intkyset
v letterdq
v planets
v pushpop
v wordseq

The samples are built using English resources. You can rebuild them in the other
supported languages by installing the appropriate filesets, setting the LANG
environment variable, and rebuilding the sample.

Build ja_JP Samples
Sample resources are not shipped for ja_JP. You can build these resources and
rebuild the sample by following these steps:
1. Install the language filesets for Ja_JP sample resources.
2. Copy the sample to a working directory (as described above in “Copy

Samples”).
3. Change to the sample’s working directory and create a ja_JP subdirectory.
4. Copy all files from the sample’s Ja_JP subdirectory to the ja_JP subdirectory.
5. Change to the ja_JP subdirectory and run the following command on each file

(where filename is the name of the file and outfilename is the name of the output
file):
iconv -f IBM-932 -t IBM-eucJP filename > outfilename

6. Set the LANG environment variable as follows:
export LANG=ja_JP

7. Rebuild the sample.

Execute a Sample
We recommended that you change to the sample’s directory when running the
sample. Some of the samples look for help or data files in their current working
directory.

IBM Open Class Overview
“IBM Open Class Applications” on page 4

“Build a 64-Bit Enabled Application” on page 24

Obsolete or Ignored Member Functions
The following sections define obsolete and ignored functions and explain how to
use these functions in the IBM Open Class. To develop portable applications, you
should be aware of these areas.

Chapter 1. IBM Open Class Overview 31



The IBM Open Class constantly evolves to improve quality and design. As a result,
some functions and classes become obsolete or ignored. A set of macros identifies
these obsolete functions and classes so you can migrate to replacements.

You can find these macros in the icomdefs.h header file. One macro conditionally
defines the obsolete level for the current version of the library by the platform you
are using. Another set of macros defines the obsolete level for previous versions.
The following excerpt from icomdefs.h defines the first obsolete level as 310:
#define IC_OBSOLETE_1 310
#define IC_OBSOLETE_2 400
#define IC_OBSOLETE_3 410
#define IC_OBSOLETE_4 500
// ——————————————- Obsolete Levels ———————————————
#ifndef IC_OBSOLETE

#ifdef IC_WIN
#define IC_OBSOLETE 400

#endif
#ifdef IC_PM

#define IC_OBSOLETE 400
#endif
#ifdef IC_AIX

#define IC_OBSOLETE 400
#endif
#ifdef IC_400

#define IC_OBSOLETE 310
#endif

An obsolete interface is then wrapped as follows:
#if (IC_OBSOLETE <= IC_OBSOLETE_1)

// An obsolete interface
#endif // IC_OBSOLETE

Notice that IC_OBSOLETE is conditionally defined in icomdefs.h so that you you
can set its value. You can easily identify the obsolete interfaces you are currently
using by defining IC_OBSOLETE to be greater than any of the obsolete levels. For
example, if you define IC_OBSOLETE to be 510, you will receive compile errors for
each obsolete function used in your code.

There are several important guidelines regarding obsolete functions:
v Usually the implementation of an obsolete function calls the function that has

replaced it.
v Typically, we remove the interface obsoleted in a version of library in the next

major release of the library. We do not document obsoleted interfaces in the
main body of the reference manual. Instead, they are documented in a section
which identifies obsolete interface and replacement classes and functions if they
are available.

Even if you get no error messages, code compiled with one of these macros
defined cannot be run because the generated code does not match any shipped
dynamic or static libraries on your system. These macros are only provided to
assist you in identifying obsoleted functions and code must be recompiled without
any of these macros defined to be executable.

Ignored Functions
Ignored functions are functions that cannot be implemented on a particular platform
but you still can call from your program.

32 IBM Open Class: Overview



Generally, these functions are implemented to do nothing. Although their missing
functionality should not be critical to the running of most programs, you should
examine how you use ignored functions for each platform on which you develop.

You can identify the functions ignored on a specific platform using the following
macros. Compiling with these macros will generate a compiler error for each
ignored function you use:

Symbol Platform

IC_PM_FLAGNOP

IC_WIN_FLAGNOP

IC_MOTIF_FLAGNOP

IC_PMWIN_FLAGNOP

IC_MOTIFPM_FLAGNOP

IC_MOTIFWIN_FLAGNOP

By defining one of these macros, you can identify the functions that have little to
no effect on the corresponding platforms. You can check for ignored functions on
any platform; you are not limited to only the platform on which you compile.

For example, IFont::setFontShear() is an ignored function under Motif. The
following is an excerpt from ifont.hpp:
#ifndef IC_MOTIF_FLAGNOP
virtual IFont
&setFontShear( const IPoint& point,

const IPresSpaceHandle& presSpaceHandle = IPresSpaceHandle() );
#endif

By compiling your with IC_MOTIF_FLAGNOP, IC_MOTIFPM_FLAGNOP, or
IC_MOTIFWIN_FLAGNOP defined, the compiler will identify the calls you make
to IFont::setFontShear() and any other functions ignored on AIX.

For example, to find the ignored functions that only AIX will ignore, compile your
code as follows:
icc -Gm+ -dIC_MOTIF_FLAGNOP sampcode.cpp

You receive error messages from the compiler for each ignored function used.

Even if you get no error messages, code compiled with one of these macros
defined cannot be run because the generated code does not match any shipped
dynamic or static libraries on your system. These macros are only provided to
assist you in identifying ignored functions and code must be recompiled without
any of these macros defined to be executable.

IBM Open Class Overview

Chapter 1. IBM Open Class Overview 33



“Compile and Build Open Class Applications” on page 22

34 IBM Open Class: Overview



Chapter 2. Changes in Version 5 of Open Class

This section describes the major changes in version 5 of the IBM Open Class
Library. It can help you identify areas in your application that may need to be
changed as you migrate your applications to the version of IBM Open Class
shipped with VisualAge C++.

This version of VisualAge C++ uses version 5 of the IBM Open Class. See Changes
in Version 4 of IBM Open Class to identify changes between versions 3 and 4 of
IBM Open Class.

All changes to IBM Open Class are cumulative in the next higher release unless
otherwise stated.

General
The following changes apply to IBM Open Class as a whole or apply to more than
one component:
v Boolean Values

The IBM Open Class recognizes bool, true, and false as C++ keywords. You will
have to update your compiler options accordingly (remove the nokeyword
option for these keywords).

v Building the IBM Open Class Source
You can build the IBM Open Class from its source for debugging purposes.

v Import Libraries
To build your applications, you must link with the IBM Open Class import
libraries:
– For dynamic linking, you only need libioc.a.
– For static linking, use libiocns.a for the base classes, libiocclns.a for the

collection classes, and libiocuins.a for the user interface classes.
v Unicode

You can write Unicode applications with the IBM Open Class. All components
support UTF-8. The core classes and the 2D classes also support UCS-2. The IBM
Open Class has been updated to Unicode 3.0.

v 64-Bit Support
You can write 64-bit applications with the core classes on AIX 4.3.

v Version Number
The macro IC_MAJOR_VERSION is set to 500 and IC_OBSOLETE is set to 400
for IC_PM, IC_WIN, and IC_AIX. The macro IC_MINOR_VERSION is set to 0
and is updated as program fixes are manufactured and released. You can find
these values in the icomdefs.h file.

Application Control

v IThread::start
This function creates either a INonGUIThread or a GUI-based thread determined
by IThread::defaultAutoInitGUI. The default flag can be set with a call to
setDefaultAutoInitGUI(bool initFlag = true). This restores behavior of the class
that existed prior to version 4 of IBM Open Class.

v IThreadFn
The IThreadFn object is now referenced counted. You can use the functions

© Copyright IBM Corp. 1998, 2000 35



addRef and removeRef to extend the lifetime of your IThreadFn object or share
the same IThreadFn object among multithreaded thread objects.

Collection Classes

v Standard Template Library
You can use the ANSI Standard Template Library (STL) containers in an IBM
Open Class application. We recommend that you use the STL instead of the IBM
Collection classes for new development.

v Import Libraries
The import library libiocclns.a contains the IBM Collection classes.

v Wrapper Classes
Previous collection wrapper classes that were shipped in the IBM Open Class
source code (in the source/core/collwrap directory) but were not built into the
libraries have been removed. Applications that used the undocumented i*2.h
headers (for example iset2.h) will need to be changed to use the corresponding
header without the “2” in its name (for example iset.h).

Text and International Classes

v Unicode 3.0
The IBM Open Class Library has been updated to the Unicode 3.0 standard.
Many character attributes have been updated since Unicode 2.0 (the supported
standard in Version 4 of IBM Open Class). The enumerated types in the Unicode
Classes have also been updated to the new standard. You might need to update
your program to cope with this change.

v ioc::unichar_t Data Type
A more flexible data type called ioc::unichar_t is now used instead of UniChar.
For compatibility reasons, this new data type has the same definition as UniChar
(unsigned short). However, if you define the macro __IOC_USE_WCHAR, the
definition of ioc::unichar_t is changed to wchar_t. This is convenient if you
compile IBM Open Class applications on operating systems with native support
for Unicode in their C runtimes.

v IUnicode::EUnicodeScript
The constant kPrivateUse from the enumerated type IUnicode::EUnicodeScript
has been replaced by kPrivateUseArea.

v Default Locale
IDate, ITime, ITimeStamp, IString, and IBuffer all assume C runtime locale by
default. Users need to explicitly call IString::disableInternationalization() to
restore to the original behavior. (The original behavior is to not use C runtime
locale by default.)

v National Language SupportNational language support is on by default. The
following statements turn off national language support:

SET ICLUI_I18N=OFF

export ICLUI_I18N=OFF

v IMessageText
The return type for IMessageText::messageFile has been changed from char* to
const char*. The return type for IMessageText::successful has been changed from
int to bool.

Streams and Storage

v ANSI 3.0 Stream Library
The IBM Open Class supports the ANSI 3.0 stream library. You can use both
new and old stream libraries as long as the ANSI stream classes explicitly use
the std namespace.

36 IBM Open Class: Overview



v Release to Release Data Compatibility
To support Release to Release Data Compatibility (RRDC) streaming for future
releases, the streaming model for the following classes have been changed. This
change breaks streaming compatibility between Version 4 and Version 5 of IBM
Open Class:
– Base Library:

- ITabStop
- IBinaryCodedDecimal
- IDate
- IString
- ITime
- ITimeStamp
- IVersion

– 2D Graphics Library
- IGPoint2D
- IGRPoint2D
- IGRect2D
- IGPolygon2D
- IGArea
- IGCurve2D
- IGImage
- IGLine2D
- IGPolyline2D
- IGrafMatrix
- IGQuadrilateral
- IRawArray

User Interface Classes

v IViewPort Clipping Window
IViewPort::clippingWindow returns the clipping window of a view port.
Previously you had to use one of the following to get this window:
– the window identifier IC_VIEWPORT_VIEWRECTANGLE
– the window handle returned by IViewPort::handleForChildCreation

IViewPort::setViewWindow throws an exception if the specified view window is
not parented by the clipping window. Previously this condition was not detected
until the view port ran its layout routine.

v IBaseComboBox Obsoleted Style
The style IBaseComboBox::border3D is now obsolete. It had no affect on any
platforms.

v Font
The AIX-only function IFont::fontSet returns void* instead of _XFontSet*. You
should cast the return value of this function to XFontSet. (The typedef XFontSet
in Xlib.h has changed in Xlib specification 6).

v Build with the Motif 1.2 Compatibility Library on AIX 4.3
The Open Class Libraries are built using Motif 1.2 and X11R5. On AIX 4.3 the
operating system has made Motif 2.1 and X11R6 the default. A user interface
application that uses IBM Open Class (and thus Motif 1.2) cannot use Motif 2.1.
These two levels of Motif are not binary compatible.

Chapter 2. Changes in Version 5 of Open Class 37



Thus for a user interface application to mix native X-widgets and IBM Open
Class widgets, on AIX 4.3 that application will have to compile and link to the
Motif 1.2 compatibility library. To use these libraries read the information in the
/usr/lpp/X11/readme file. You will find information about installing the fileset
X11.compat.adt.Motif12 and how to modify the compile/link command to link
to the Motif 1.2 compatibility library.

v IIconControl
The following function has been obsoleted:
IIconControl& IIconControl::setIcon(ISystemPointerHandle::Identifier icon)
It has been replaced with this function:
IIconControl& IIconControl::setIcon (ISystemPointerHandle::EPointerType icon)
If you have overridden a previous version of IIconControl::setIcon, you will have
to add a new override that will accept an ISystemPointerHandle::EPointerType
enumerated type.

v IListBox
IListBox can now sort items in a locale sensitive manner. It relies on the
internationalization setting of IString.

v IToolBarButton Styles
In Version 4 of IBM Open Class, using the styles IToolBarButton::useIdForBitmap
or useIdForText when creating toolbar buttons with window IDs in the IBM
Open Class reserved range (greater than or equal to IC_ID_BASE) causes
IToolBarButton to load the bitmap and text for the button only from the IBM
Open Class resource library. In Version 5 of IBM Open Class, IToolBarButton first
tries to load the bitmap and text for the button from the application resource
library. If not found, IToolBarButton loads these resources from the IBM Open
Class resource library.
In some cases, toolbar buttons whose text and/or bitmap were supplied by IBM
Open Class may now show text and/or a bitmap from the application resource
library. If this is not desired, you can change the application in one of two ways:
1. Change the ID of the string in the string table or the bitmap resource to

avoid the range of IBM Open Class reserved toolbar button IDs.
2. Replace use of the styles IToolBarButton::useIdForBitmap and/or

useIdForText with calls to IToolBarButton::setBitmap and/or the inherited
setText to load these resources from the IBM Open Class resource library.

Error Handling and Testing Classes

v Non-GUI Exceptions
The user interface exception classes have been moved from the core library to
the UI library. As a result, your non-GUI applications should include the file
“iexcbase.hpp” rather than “iexcept.hpp” (which contain the GUI exceptions).
This has no effect to GUI applications.

v Deprecated Operators
The const char* and implicit const char* operators are now deprecated. Use
either text() or textW() to retrieve exception text (or message text) in either 8-bit
char form or 16-bit ioc::unichar_t form.

v ANSI Exceptions
The IBM Open Class uses the ANSI class library extensively. You may want to
catch both ANSI exceptions and IBM Open Class exceptions.

v baseLibrary Error Code Group
This error code group has been changed from “IBM Class Library” to “IBM
Open Class Library.”

v IMessageText
Constructing an IMessageText object with uncasted NULL pointers for file name

38 IBM Open Class: Overview



and message parameters can now cause an ambiguity error at compile time. You
should cast these NULL pointers to either const char* or const ioc::unichar_t*.

Changes in Version 4 of the IBM Open Class

Chapter 2. Changes in Version 5 of Open Class 39



40 IBM Open Class: Overview



Chapter 3. Changes in Version 4 of IBM Open Class

This section describes the major changes in version 4 of the IBM Open Class
Library. It can help you identify areas in your application that you may have to
change as you migrate your applications to the version of IBM Open Class shipped
with VisualAge C++.

The current version of IBM Open Class in this version of VisualAge C++ is version
5. See the section Changes in Version 5 of the IBM Open Class to identify changes
between Version 4 and version 5 of IBM Open Class.

All changes to IBM Open Class are cumulative in the next higher release unless
otherwise stated.

Inheritance
Classes that inherit from either IBase or IVBase no longer exist.

Predefined Constants
Constants that were previously defined in ibase.hpp are now defined in icconst.h.

2D Graphics Classes
The 2D graphics classes provided in VisualAge for C++ Version 3.0 and 3.5 have
been replaced by new graphic classes.

Color
The existing IColor class incorporates new color support:
v The enums IColor::Color and IColor::SystemColor have been deprecated in favor

of new enums called IBaseColor::EPredefinedColor and IColor::ESystemColor.
v The enum values have been changed from “white” to “kWhite”, and so on.
v If you construct an IColor object with the ESystemColor enum, calling

IColor::writeToStream causes the enumerator value to be streamed. Use of the
enum is not portable across systems or display devices. The platform makes a
best effort to interpret the value appropriately.

v To permit chaining, the upwardly compatible function IColor&
setRed(CharIntensity) replaces the function void setRed(CharIntensity).

The IBaseColor class replaces IBasicColor. IColor is now a subclass of IBaseColor.
IBasicColor still exists for backward compatibility.

Threads
A non-GUI thread class called INonGUIThread has been added with the following
thread priority functions:
v INonGUIThread::threadPriority
v INonGUIThread::setThreadPriority

These replace the following functions:
v IThread::priorityLevel
v IThread::priorityClass
v IThread::setPriority
v IThread::adjustPriority

© Copyright IBM Corp. 1998, 2000 41



Scheduling in this release uses the Windows NT® model: processes can only have a
priority class, and threads can only have a priority level. Thus, the process
automatically sets the priority class for all of its threads, but each thread can
set/reset its own priority within the process. Both process priorities and thread
priorities are specified as enumerated types.

Process scheduling uses the following enum:

enum INonGUIApplication::EProcessPriority

Thread scheduling uses the following enum:

enum INonGUIThread::EThreadPriority

These functions have been moved to INonGUIThread and made OS/2-only.

The following table lists other thread classes that are new or extended in this
release:

Class Description

IExternalProcess Basic facilities for starting and controlling
the execution of processes

IThreadLocalStorage Provides a portable way to create and access
per-thread global data

IEnvironment Specifies the execution environment for use
with a process

ICondition A class to be used for thread
synchronization. When used in conjunction
with IResource, provides the classic
“Monitors and Conditions” construct

IPrivateCondition Concrete subclass of ICondition, for use
within a process

ISharedCondition Concrete subclass of ICondition, for use
between processes on a single computer

Reference Counting and Thread Functions
The IRefCounted class is now obsolete. The IMRefCounted class has replaced it.

IMRefCounted is a public base class that can be used by any class that needs
reference-counting semantics, similar to the IRefCounted class provided by the IBM
Open Class library in the past. IMRefCounted differs from IRefCounted in two
ways
v IMRefCounted is thread safe. That is, its addRef, removeRef, and count member

functions can be called from multiple threads simultaneously without causing
data corruption.

v When an IMRefCounted object is created, its initial reference count is set to 0
rather than 1, which is what IRefCounted uses. An initial count of 0 makes
IMRefCounted work much more cleanly with smart pointer classes such as
ICountedPointerTo.

42 IBM Open Class: Overview



One result is the removal of IRefCounted as the base class of IThreadFn.
Consequently, code that called addRef or removeRef on an IThreadFn object no
longer compiles.

If your application uses reference counting to prolong the lifetime of the IThreadFn
object beyond that needed by the IThread or INonGUIThread object running it,
then you must change your code to create a new IThreadFn object for each IThread
or INonGUIThread that needs it.

Boolean Type Definition
Boolean and IBoolean have been changed to bool to meet ANSI standards.

Bidirectional Language Support
Bidirectional (BIDI) language support has been added. Classes and functions that
support a BIDI environment include the following:
v IBidiSettings::applicationDefaults static function
v IBidiSettings::setApplicationDefaults static function
v IWindow::leftToRight style
v IWindow::rightToLeft style

v IWindow::setBidiSettings protected virtual function

Collection Classes
These classes now support interest-based notification and streaming.

Text and Internationalization Classes
These classes are new in this release. It provides support for creating
internationalized applications that handle text expressed in various encoded
character systems. Using these classes, you can transcode text expressed in
supported character encoding systems to and from Unicode. IText class provides
support for Unicode data, and transcoder classes provide the ASCII to Unicode
conversion. Collation is also supported. The primary classes provided by the Text
Framework are:
v IText, a variable-length styled string class you can use for storing styled or

unstyled international text.
v ITextBoundary, which implements methods for locating boundaries of characters,

words, lines, and sentences.
v Style classes, which can be applied to individual characters, ranges of characters,

or paragraphs.
v Iterator classes, which provide access to the character data in IText objects.
v Collation classes that support comparing Unicode string in a cultural-sensitive

manner.
v Transcoder classes that support conversion of a string from one codepage to

another.

The isxxx functions (for example isDigits()) from IString return false for empty
string. This is a change in behavior from Version 3 of C Set++ for AIX.

Notification Classes
These classes have been extended with the following features:
v A filtering mechanism so that the client object can specify what types of

notification to receive
v Asynchronous, in addition to synchronous, notification

Chapter 3. Changes in Version 4 of IBM Open Class 43



Application Control
The Application Control classes have the following enhancements:
v Distinction between non-GUI application (INonGUIApplication) and GUI

application (IApplication)
v New DLL loading mechanism allows loading DLLs from the user’s NLSPATH

Test Classes
The Test classes are new in this release. These classes include the following
features:
v ITest abstract base class provides a standard testing API.
v ITestCollection is a collection of ITest objects and allows them to be run

sequentially.
v ITestMultiplexer allows multiple decision functions applied to a single test

target.
v ITimingTest can measures the time it takes to perform a specific operation.

File Systems
The File System classes are new in this release. It gives users access to all file
system objects such as volumes, directories, files, file contents and operations in a
platform-independent manner. The following are typical tasks you can perform
using the File System classes:
v Creating, moving, copying, deleting, locating, and manipulating file system

objects.
v Manipulating and parsing pathnames.
v Accessing the attributes of files, directories, and volumes.
v Accessing the contents of volume, directory, and file objects using the IBM Open

Class stream classes.
v Iterating through directories and volumes.

Streaming
Capabilities supported by the Streaming classes include monomorphic streaming,
polymorphic streaming, platform-to-platform data compatibility (a document
streamed out on one platform will be readable on another platform), and
release-to-release data compatibility (a document written by one version of an
application or system will be readable by a newer or an older version).

“AIX Changes in Version 4 of the IBM Open Class”
“Changes in Version 4 of the IWindow Class” on page 46
“Changes in Version 4 of the Handler Classes” on page 50
“Changes in Version 4 of the Canvas Classes” on page 53
“Changes in Version 4 of the Toolbar Classes” on page 56
“Other Changes in Version 4 of the IBM User Interface Classes” on page 58
Changes in Version 4 of the IBM 2D Graphics Classes
“Changes in Version 4 of the IBM Collection Classes” on page 72
“Deprecated Functions in Version 4 of the IBM Open Class” on page 73
Changes in Version 5 of the IBM Open Class

AIX Changes in Version 4 of the IBM Open Class
User Interface Classes
These classes support the following features:

44 IBM Open Class: Overview



v Accelerators: Support for accelerators existed in the previous AIX release,
although in a more limited form.

v Clipboard
v Direct Manipulation
v Fly-Over Help
v Resources
v Toolbar
v Handling of Mouse Movement Events
v Portable Font Dialog
v 2D Graphics
v Timer Support
v Bidirectional (BIDI) Support

Restricted Motif Support for IMouseHandler::mousePointerChange
This function is now supported on all platforms, although its use on Motif is
restricted. For this callback function to be called each time the mouse is moved,
you must create the IMouseHandler with the style
IMouseHandler::allMouseMoves.
If you remove a handler overriding IMouseHandler::mousePointerChange, or that
handler does not handle the pointer-change event, the mouse pointer is not
automatically reset to the default pointer. Instead, when the mouse is over the
window it uses the last pointer set by the handler.

Alternatively, you may change the mouse pointer by calling
IWindow::setMousePointer. To change the mouse pointer dynamically based on
what portion of the window the mouse is over, override
IMouseHandler::mouseMoved to call IWindow::setMousePointer (mouseMoved is
the best place to determine whether the mouse changed and the mouse’s location).
You could get inconsistent behavior if you use both IWindow::setMousePointer and
an IMouseHandler to change the mouse pointer for a window, depending on the
order that you call setMousePointer and attach the handler (and whether the
handler returns true or false).

Toolbars on Motif
The Open Class Library now contains IToolBar, IToolBarButton and the other
toolbar related classes with limited functionality. The following Motif toolbar
functionality is provided at this time:
v The ability to create a toolbar at any location: above, below, left and right of the

client or as a floating toolbar.
v Support for multiple toolbars in same location.
v Addition of any window to the toolbar.
v Bitmap view and text view for buttons.
v Toolbar filtering.
v IToolBar::setLocation to move a toolbar from one location to another. Due to

Motif system restrictions, certain toolbar movements are restricted. (A new
function IToolBar::isMoveValid has been created to verify toolbar movements.)

v Toolbar container.

The following Motif toolbar functionality has not been implemented at this time:
v IToolBar::bitmapAndText view with only text
v Custom drawing through IToolbarButton and ICustomButton virtual functions
v ICustomButtonDrawEvent

Chapter 3. Changes in Version 4 of IBM Open Class 45



v Button latching and disabled buttons
v Drag/drop of toolbar or buttons

“Chapter 3. Changes in Version 4 of IBM Open Class” on page 41
“Changes in Version 4 of the IWindow Class”
“Changes in Version 4 of the Handler Classes” on page 50
“Changes in Version 4 of the Canvas Classes” on page 53
“Changes in Version 4 of the Toolbar Classes” on page 56
“Other Changes in Version 4 of the IBM User Interface Classes” on page 58
Changes in Version 4 of the IBM 2D Graphics Classes
“Changes in Version 4 of the IBM Collection Classes” on page 72
“Deprecated Functions in Version 4 of the IBM Open Class” on page 73

User Interface Class Changes

Changes in Version 4 of the IWindow Class
Window Owner versus Parent
The use of an owner different from the parent is discouraged in child windows. In
top level windows (IFrameWindow objects, typically) owner and parent remain
distinct and are supported portably. A top level window owned by another top
level window remains above its owner in the Z order and is closed when its owner
is closed. Modality also depends on the owner. In IFrameWindow, the parent
window is the one that is less portable. An IFrameWindow usually has a parent of
zero or IWindow::desktopWindow, which is the portable variant. Setting the parent
of an IFrameWindow to another window can be useful in some scenarios but is
less portable. In particular, an IFrameWindow child of another IFrameWindow
behaves differently on the three platforms.

The API perspective has no change. Constructors which took both a parent and an
owner continue to do so, even if the owner is ignored. This product does not
provide parent-only-required constructors. In essence, the change here is one of
documentation. The additional parameters are not needed and are ignored.
However behavioral changes may occur on OS/2 if specific behavior was expected
when the parent was different from the owner.

Changes to IObjectWindow and IWindow for Support of “bound” Windows
In previous releases, the notion of a primary window as defined by the operating
system, and the concept of a window requiring that the message queue persist for
the lifetime of that window, were treated as a single concept. Both concepts are
useful, and they are now treated as distinct in the interface, as follows:
v The behavior of IWindow::setParent and setOwner has changed.

IWindow::setParent and setOwner have changed so their checks for setting the
primary window flag matches IWindow::startHandlingEventsFor. This breaks
any code that relies on using IWindow::setParent to remove the primary window
flag. A specific interface for being able to control the primary window flag has
also been added.

v The behavior of IWindow::isPrimary has been changed so that it only returns
true if the window is truly a primary window.

v A new style has been be added to IObjectWindow, boundToMessageQueue. The
default style is boundToMessageQueue.

46 IBM Open Class: Overview



v A new protected function has been added to IWindow to bind the message
queue. The IObjectWindow constructor must call this function if the style is
present.

v The three places that the primary flag can be set (setParent, setOwner, and
startHandlingEventsFor) should also set the “bound” flag as appropriate. All
primary windows are also “bound” windows, but all “bound” windows are not
primary.

v “Bound” windows are now checked instead of primary windows when deciding
whether to shut down the message queue.

v The following are the new interfaces for IObjectWindow and IWindow:
/* New interface in IObjectWindow */
public:

class Style;
IObjectWindow ( const IObjectWindow::Style& style = defaultStyle() );
INESTEDBITFLAGCLASSDEF0( Style, IObjectWindow );

static const Style
IC_IMPORTU classDefaultStyle,
IC_IMPORTU boundToMessageQueue,
IC_IMPORTU noStyle;

static Style
defaultStyle ( );

static void
setDefaultStyle ( const Style& style );

private:
INESTEDBITFLAGCLASSFUNCS(Style, IFrameWindow);

static Style
fCurrentDefaultStyle;

/* New interface in IWindow */
protected:

IWindow
&bindMessageQueue ( );

bool
isBoundToMessageQueue ( ) const;

In the canvas classes collections of objects are created that are nothing more than a
pointer to an IWindow with a bit of extra data for the class that is specific to the
IWindow. These collections are needed because there is no way to extend the data
of an IWindow from outside the object. These collections of objects must be kept
up to date so that they accurately represent the child windows of a parent object in
sibling order. This requirement is difficult enough that ISetCanvas rebuilds the
collection each time it does layout so that it is accurate.

Extensions to the data of an IWindow are now allowed. IWindow is updated to
store an array of pointers to objects. Any class that needs to store data in an
IWindow object first queries to receive a magic token. A class uses a magic token to
to store and retrieve data from an IWindow object. (The magic token is
implemented as an index into the array of pointers.) Instead of creating collections
of objects to represent additional data, classes like the canvases define and create
an object that they store as additional IWindow data. They then use
IWindow::ChildCursor to walk through the IWindow children and retrieve their
extended data. Support has been added to IWindow::ChildCursor to allow it to
visit only IWindow children.

The following classes and members have been implemented:

Class or Member Description

IWindow::DataHandle This is the magic token.

Chapter 3. Changes in Version 4 of IBM Open Class 47



Class or Member Description

IWindowData This abstract base class of data added to an
IWindow provides a virtual destructor so
that IWindow can manage the destruction of
the object. IWindow adopts the object and
deletes it in the IWindow destructor.

static DataHandle
IWindow::dataHandleWithKey
(const char* dataKeyName);

This thread-safe function increments a
counter so that each new dataTypeName
gets a different offset. It also keeps a
collection of registered names so that
duplicate requests return the same
DataHandle.

inline IWindowData*
IWindow::windowData
(const DataHandle& typeToken)
const;

This inline function indexes the array (stored
directly in IWindow) and returns the pointer
at the offset of the passed DataHandle.

IWindow&
IWindow::adoptWindowData
(const DataHandle& typeToken,
IWindowData* windowData);

This member checks to see if an array of
IWindowData exists for the window and
allocates it if there is none. It also checks to
see if the array is large enough to contain
the index and reallocates it if necessary. It
then stores the pointer in the array. If an
entry already exists at the handle location, it
is deleted before the new window data is
stored.

IWindow::ChildCursor::ChildCursor
(IWindow& parent,
bool onlyIWindowChildren = false);

This function is updated to allow iteration
only over IWindow children. When
cursorIWindowChildren is true, the cursor
movement functions call
windowWithHandle to query and store the
IWindow* at the cursor location. The cursor
movement function continues to enumerate
and call windowWithHandle until all
children have been visited or
windowWithHandle returns a valid
IWindow pointer.

IWindow*
IWindow::childWindowAt
(const ChildCursor&)
const;

This function returns the IWindow* stored in
the child cursor. The function first checks the
validity of the cursor
(IASSERTSTATE(fWindowHandle != 0)). If
the child cursor’s IWindow* value is not
zero, it returns that value. If the cursor’s
IWindow* value is zero, it returns the result
of windowWithHandle (which may be zero,
no exception is thrown).

There is a new version of IWindow::create that takes an IWindow* for parent and
owner instead of IWindowHandles. Use this new create function when you inherit
from an IWindow object. The library then ensures that the correct handle for the
creation ( parent->handleForChildCreation) of the control is used.

The use of handle on Motif was different from its use on Windows and OS/2. If an
aggregate could have children, such as IFrameWindow and IViewPort, handle was
used as the parent of the child. Windows and OS/2 get around this problem by
using a setParent to change the parent of the child to the correct control. Motif
cannot use this technique because reparenting is not available. Motif had a

48 IBM Open Class: Overview



topHandle and a handle so that children of a control can have a different parent
handle than the handle used for geometry management. In Motif, the topHandle
was the handle of the control (widget) that encompassed all of the widgets of the
aggregate. The topHandle was used for geometry management of the control such
as moving and sizing the control. The problem with topHandle is that it was used
only on Motif and had the same meaning as handle does on OS/2 and Windows.

A new member function returns the handle that a child of a control should use as
their parent. When a control is created and an IWindow* is specified as the parent,
handleForChildsParent is used instead of handle. The default implementation of
handleForChildsParent returns just handle. Any subclass that needs a different
implementation, like IViewPort, overrides this member function and returns the
appropriate handle.

Here are the changes to IWindow:
#ifdef IC_PMWIN

virtual IWindowHandle
create ( unsigned long id,

const char* text,
unsigned long style,
const char* windowClass,
const IWindowHandle& parent,
const IWindowHandle& owner,
const IRectangle& initRect,
const void* ctlData,
const void* presParams,
IWindow::SiblingOrder ordering = defaultOrdering(),
unsigned long extendedStyle = 0 );

virtual IWindowHandle
create ( unsigned long id,

const char* text,
unsigned long style,
const char* windowClass,
const IWindow* parent,
const IWindow* owner,
const IRectangle& initRect,
const void* ctlData,
const void* presParams,
IWindow::SiblingOrder ordering = defaultOrdering(),
unsigned long extendedStyle = 0 );

#endif
#ifdef IC_MOTIF

virtual IWindowHandle
create ( unsigned long id,

const char* text,
unsigned long style,
IXmCreateFunction createFunction,
const IWindowHandle& parent,
const IWindowHandle& owner,
const IRectangle& initRect,
const void* callerArgList,
const unsigned int callerNumberArguments,
IWindow::SiblingOrder ordering = defaultOrdering(),
unsigned long extendedStyle = 0 );

virtual IWindowHandle
create ( unsigned long id,

const char* text,
unsigned long style,
IXmCreateFunction createFunction,
const IWindow* parent,
const IWindow* owner,
const IRectangle& initRect,
const void* callerArgList,

Chapter 3. Changes in Version 4 of IBM Open Class 49



const unsigned int callerNumberArguments,
IWindow::SiblingOrder ordering = defaultOrdering(),
unsigned long extendedStyle = 0 );

#endif

The implementation of the new create function uses the old create function and
passes through the correct handles:
// IWindow::create()
// This create will take care of the using
// the correct parent's handle for
// the creation of children.
IWindowHandle IWindow::create( unsigned long id,

const char* text,
unsigned long style,
IXmCreateFunction createFunction,
const IWindow* parent,
const IWindow* owner,
const IRectangle& initRect,
const void* callerArgList,
const unsigned int callerNumberArguments,
IWindow::SiblingOrder ordering,
unsigned long extendedStyle )
{

return this->create( id,
text,
style
createFunction,
parent->handleForChildsParent(),
owner->handle(),
initRect,
callerArgList,
callerNumberArguments,
ordering,
extendedStyle );

}

“Chapter 3. Changes in Version 4 of IBM Open Class” on page 41
“AIX Changes in Version 4 of the IBM Open Class” on page 44
“Changes in Version 4 of the Handler Classes”
“Changes in Version 4 of the Canvas Classes” on page 53
“Changes in Version 4 of the Toolbar Classes” on page 56
“Other Changes in Version 4 of the IBM User Interface Classes” on page 58
Changes in Version 4 of the IBM 2D Graphics Classes
“Changes in Version 4 of the IBM Collection Classes” on page 72
“Deprecated Functions in Version 4 of the IBM Open Class” on page 73

Changes in Version 4 of the Handler Classes
IPresSpaceHandle
This is an existing class whose constructor was changed to take an additional
optional window handle. The window handle is important when creating
IPresSpaceHandle objects on OS/2 to draw with the new 2D graphics classes.
Letting the value of the window handle default to zero can cause incorrect
drawing when using upper-left coordinates.

New interface on IWindow for Event Dispatching
The following new functions allow event handlers for a window to receive or not
receive certain messages have been added:
v IWindow::startHandling(const EventMask& mask)

50 IBM Open Class: Overview



v IWindow::stopHandling(const EventMask& mask)
v IWindow::isHandling(const EventMask& mask) const

where EventMask is a nested class that derives from IBitFlag. The following are
public static event masks that IWindow provides:
v IWindow::EventMask someMouseMoves
v IWindow::EventMask allMouseMoves
v IWindow::EventMask mouseEntersLeaves

On OS/2 and Windows, someMouseMoves and allMouseMoves are equivalent.
The style mouseEntersLeaves enables someMouseMoves on certain platforms such
as Windows NT. The stopHandling function prevents any handlers from being
called for that window to process the specified type of event. Conversely, the
startHandling function allows handlers to be called for the event.

The stopHandling function does not prevent IWindow::defaultProcedure from
being called. No attempt is made, however, to call private default handlers of a
window. Therefore, if you turn off receipt of messages, you may change the default
behavior of a window. For example, it can prevent the user from being able to
move split bar of an ISplitCanvas on OS/2 or Windows.

To allow multiple calls to startHandling and stopHandling for an event type, the
IBM Open class uses reference counting. A default bool argument to stopHandling
has been implemented to keep handlers from receiving messages regardless of the
reference counting state. By default, handlers of all windows will receive all events
on OS/2 and Windows. For performance reasons, Motif handlers will not receive
mouse move or mouse enter/leave events by default. Note that an application
generally should not need to call these functions. To cover the most common case
where these functions need to be called IMouseHandler is enhanced to call them
on the application’s behalf.

Cases where an application needs to call IWindow::startHandling or stopHandling
include the following:
v The application is processing mouse move events in a handler that does not

derive from IMouseHandler.
v The application prefers to not modify or cannot modify the call to the

IMouseHandler constructor. For example, it uses a mouse handler class provided
by a third party.

v The application needs to dynamically start and stop the receipt of mouse
messages, which IMouseHandler does not support.

Style Added to IMouseHandler
An optional style argument to the IMouseHandler constructor has been added.
These styles dictate the type of mouse messages that the handlers of the window
can receive. As a result, they actually affect more than just the single mouse
handler. The constructor now looks like the following:
IMouseHandler ( const Style& style = defaultStyle() );

where Style is a nested class that derives from IBitFlag. IMouseHandler provides
the following the public static styles:
v static const IMouseHandler::Style noMouseMoves
v static const IMouseHandler::Style someMouseMoves
v static const IMouseHandler::Style allMouseMoves
v static const IMouseHandler::Style mouseEntersLeaves

Chapter 3. Changes in Version 4 of IBM Open Class 51



The default style is someMouseMoves. This supports backward compatibility with
existing mouse handlers written for OS/2 and Windows by requesting a portion of
the mouse move events for the window’s handlers. On OS/2 and Windows,
someMouseMoves and allMouseMoves are equivalent. The IMouseHandler
constructor calls IWindow::startHandling or stopHandling as appropriate (these
styles map to the EventMask flags). If the application constructs the handler with
the noMouseMoves style, then code is added to
IMouseHandler::dispatchHandlerEvent to prevent its mouseMoved virtual function
from being called, even if the handler receives a mouse move event. The same rule
applies to not specifying the mouseEnters or mouseLeaves style. In this case the
new mouseEnter and mouseLeave virtual functions described later are never
called.

The following standard auxiliary style members are added to IMouseHandler:
v static Style IMouseHandler::defaultStyle()
v static void IMouseHandler::setDefaultStyle(const Style& style)
v static const Style classDefaultStyle

Pointer Enter/Leave Support
The following protected virtual functions in IMouseHandler are new:
virtual bool

IMouseHandler::mouseEnter ( IEvent& event ),
IMouseHandler::mouseLeave ( IEvent& event );

IMouseHandler calls these virtual functions when the mouse pointer crosses the
dispatching window’s boundary.

The return value from processing the mouseEnter and mouseLeave virtual
functions has no effect on whether the mouseMoved virtual function is called. The
same is true the other way around as well. IMouseHandler does not support a
time delay (your application can use ITimer to achieve this support).

Make IMousePointerEvent Available on OS/2 and Windows Only
This class is not implemented on AIX, but it is not deprecated either. In the class
library it is only used by the deprecated IMouseHandler::mousePointerChange
function and the IC_PMWIN-only IMousePointer class.

IMouseConnectionTo Deprecated
This class template has been deprecated and it not implemented on AIX. Replace
all use of IMouseConnectionTo with one of the following two classes, as
appropriate:
v IMouseClickConnectionTo
v IMouseMoveConnectionTo

IMousePointerHandler
This class performs no processing on Motif, other than to enable the window to
receive a limited number of mouse movement events. IMousePointerHandler still
overrides mousePointerChange on Windows and OS/2.

“Chapter 3. Changes in Version 4 of IBM Open Class” on page 41
“AIX Changes in Version 4 of the IBM Open Class” on page 44
“Changes in Version 4 of the IWindow Class” on page 46
“Changes in Version 4 of the Canvas Classes” on page 53
“Changes in Version 4 of the Toolbar Classes” on page 56

52 IBM Open Class: Overview



“Other Changes in Version 4 of the IBM User Interface Classes” on page 58
Changes in Version 4 of the IBM 2D Graphics Classes
“Changes in Version 4 of the IBM Collection Classes” on page 72
“Deprecated Functions in Version 4 of the IBM Open Class” on page 73

Changes in Version 4 of the Canvas Classes
The following function was added to ICanvas to determine if windows have been
added to the canvas.You may need to override this function in your own ICanvas
derived classes.
virtual bool

hasChildrenToLayout() const;

New Protected Constructor for ISetCanvas
The following protected functions were added to ISetCanvas to simplify the
construction of derived classes and support delayed window creation:
ISetCanvas();
ISetCanvas

&initialize(unsigned long windowId,
IWindow* parent,
IWindow* owner,
const IRectangle& initialRect,
unsigned long style,
unsigned long extendedStyle);

Calling the protected constructor does not create a presentation system window.
However, you can create a canvas presentation system window by calling initialize.
The style arguments are of type unsigned long so that styles defined by a class
derived from ISetCanvas can also be used.

IToolBar and IToolBarContainer call this protected constructor, which gives a set
canvas with a default configuration but no underlying presentation system
window. IToolBar and IToolBarContainer later call ICanvas::initialize to create the
presentation system window.

Border Support
ICanvas now has the capability to draw a border with text. Previously, ISetCanvas
was the only canvas class with this support. ICanvas provides the following public
members to provide this support:

static const Style
ICanvas::border;
static INotificationId const
ICanvas::borderTextId;

virtual ICanvas&addBorder ( ),
&removeBorder ( ),
&setBorderText ( const IText& borderText, bool showBorder=true),
&setBorderText ( const IResourceId& borderText, bool showBorder=true),
&setBorderColor ( const IColor& borderColor),
&resetBorderColor ( );

virtual bool
hasBorder ( ) const;

IText
borderText ( ) const;
virtual IColor
borderColor ( ) const;

The ICanvas class demonstrates the following behavior when drawing borders:

Chapter 3. Changes in Version 4 of IBM Open Class 53



v Constructing a canvas with the style ICanvas::border creates a canvas with a
border but no text.

v Calling ICanvas::setBorderText(text) adds and displays a border (and the
corresponding border style) with text.

v Calling a canvas containing border text with ICanvas::setBorderText(0) causes a
canvas to remove its border text, but leaves the border.

v Calling removeBorder removes the border and any border text and repositions
its children to use the additional space (the canvas does not draw its border
text).

You can query and set the color or font of the border text using the IText class.

The following protected members were added to ICanvas for derived classes to
implement layout within a border:

IPoint
topLeftLayoutOffset ( ) const,
bottomRightLayoutOffset ( ) const;
IRectangle
rectangleInsideBorder ( const ISize& sizeWithBorder ) const;
ISize
sizeWithBorder ( const ISize& sizeWithoutBorder ) const;

The following member from ISetCanvas was removed:
static const Style ISetCanvas::border;

The following members of ISetCanvas have changed its behavior::
// if specifying text, change to call
// setBorderText(text, true), else
// change to call removeBorder.
ISetCanvas::setText();

// change to call borderText
ISetCanvas::text();

The following member of ISetCanvas was deprecated:
// Replaced by ICanvas::borderTextId.
static INotificationId const ISetCanvas::textId;

Explicitly Adding and Removing Child Windows from ISetCanvas
An interface was added so you can add and remove child windows from the
layout of a set canvas.
v A tool bar (which is derived from ISetCanvas) in Motif can now filter misfit

controls and remove child controls. It cannot currently do this given the lack of
IWindow::setParent.

v An application can temporarily remove a control from the layout of a set canvas
in Motif (an application usually does this today in OS/2 by reparenting the
control to the object window).

v IToolBar can behave predictably when a control has not explicitly been added to
the tool bar.

To simplify layout processing in ISetCanvas, the application should specify at
construction time whether it is using the add/remove interface. Use the following
style to do this:

ISetCanvas::explicitAddsNeeded

The following interface was added so the application can add child windows or
remove them from the layout of the canvas:

54 IBM Open Class: Overview



virtual ISetCanvas
&add ( IWindow* child ),
&remove ( IWindow* child),
&replaceChildWith ( IWindow* existingChild IWindow* newChild );
bool
areExplicitAddsNeeded() const;

The ISetCanvas class demonstrates the following behavior when managing child
windows:
v For a set canvas to manage the size and position of a child window, that child

window must be considered to have been added to the canvas. Not using the
style causes all child windows initially to be considered added. Calling the add
function to add an already added child window produces no result. Specifying
the style causes all child windows initially to be considered not added; in this
case you must call add to add a child window to the layout of the canvas.
Whether you use the style or not, you can still remove or replace child windows;
you can add back removed or replaced child windows. See the isInLayout
function for more details on when a child window is considered added or not
added.

v When adding a child window, ISetCanvas also shows and enables the child.
However, ISetCanvas does not change the z-order of the child window. The
z-order will still determine where the child window appears in the layout.

v When removing or replacing a child window, the ISetCanvas hides the child
window and sizes it to (0,0). Not hiding the child window causes the child
window to remain visible to the user.

v Before replacing a child window, ISetCanvas moves the new child to the existing
child’s position in the z-order. It copies the tab stop and group styles of the
existing child to the new child. It also shows the new child.

To query whether a set canvas is managing the size and position of a child
window, the following was added:

virtual bool
isInLayout ( IWindow* child ) const;

This function returns true for a child window in these cases:
v If you add the child window to the canvas using a call to ISetCanvas::add or

replaceChildWith, and did not remove or replace it afterwards by calling remove
or replaceChildWith.

v If you did not create the canvas with the style ISetCanvas::explicitAddsNeeded,
and never specified the child window on a call to ISetCanvas::add, remove, or
replaceChildWith.

This function returns false for a child window in these cases:
v If you removed or replaced the child window by calling remove or

replaceChildWith without later adding it back to the canvas.
v If you created the canvas with the style ISetCanvas::explicitAddsNeeded, never

specified the child window on a call to ISetCanvas::add, and never added it to
the canvas by calling replaceChildWith.

IViewPort Performance
The following added interface improves IViewPort performance by allowing the
viewport child (view window) to be set:

virtual IViewPort
&setViewWindow ( const IWindowHandle& viewWindow );

Chapter 3. Changes in Version 4 of IBM Open Class 55



This portable interface boosts IViewPort performance on both OS/2 and Windows
by avoiding the child window lookup currently required to find the view window
to scroll on each scroll message. This interface also allows you to easily change the
window that a view port scrolls.

The restriction of allowing only a single view window per viewport is removed
and an exception is no longer thrown when multiple view windows exist. If
setViewWindow is not called, the first view window found is used as the
viewports’ view window. In order to replace a view window with a different view
window, you must issue setViewWindow. The previous view window is hidden.

“Chapter 3. Changes in Version 4 of IBM Open Class” on page 41
“AIX Changes in Version 4 of the IBM Open Class” on page 44
“Changes in Version 4 of the IWindow Class” on page 46
“Changes in Version 4 of the Handler Classes” on page 50
“Changes in Version 4 of the Toolbar Classes”
“Other Changes in Version 4 of the IBM User Interface Classes” on page 58
Changes in Version 4 of the IBM 2D Graphics Classes
“Changes in Version 4 of the IBM Collection Classes” on page 72
“Deprecated Functions in Version 4 of the IBM Open Class” on page 73

Changes in Version 4 of the Toolbar Classes
New Styles for Direct Manipulation Support
For performance reasons, support for drag and drop is no longer enabled by
default. This change necessitated the addition of a new style and deprecation of an
existing style. The style IToolBar::dragdrop enables dragging and dropping of the
toolbar items. This style is not part of classDefaultStyle. It replaces the style
IToolBarButton::noDragDrop, which has been deprecated.

The style IToolBarButton::dragDelete enables the dragging and dropping of toolbar
buttons to the shredder; the drag handler queries this style. This style is part of
classDefaultStyle. It replaces the style IToolbarButton::noDragDelete, which has
been deprecated. Specifying this deprecated style has no effect. Although buttons
could originally be dropped on the shredder, to get this style, you must now use
the classDefaultStyle or specify the style explicitly.

There is a new override of IToolBar::layout.

A new performance setting, IPerformanceSettings::dynamicToolBarButtons affects
the behavior of the following toolbar button functions:
v IToolBarButton::setStandardBitmapSize
v IToolBarButton::setStandardTextLines
v IToolBarButton::setStandardTextWidth

With this setting enabled, these functions dynamically change the settings of all
IToolBarButtons created with the IToolBarButton::standardFormat style. Calling
these functions causes existing toolbar buttons to adopt the new settings
immediately. Each button resizes and redraws with the new settings.

Without this setting enabled, calling these functions causes default settings to be
used during the creation of any toolbar buttons that are subsequently created with
the IToolBarButton::standardFormat style. This does not affect existing toolbar
buttons. By default, this setting is not enabled, which provides for better toolbar
performance.

56 IBM Open Class: Overview



New Default Toolbar Buttons
The new Lotus® toolbar buttons are included in the IBM Open Class resource
library.

IToolBar::Style and IToolBarContainer::Style changes
IToolBar::Style and IToolBarContainer::Style has been changed so that you can no
longer combine style objects of these types with ISetCanvas::Style objects. If you do
specify an orientation or alignment using ISetCanvas::Style objects when
constructing an IToolBar or IToolBarContainer, these values are ignored because
both IToolBar and IToolBarContainer explicitly set the orientation and alignment
themselves. The only ISetCanvas styles that you can set are the packing styles. You
can also set the packing styles by calling ISetCanvas::setPackType, and
ISetCanvas::decksByGroup which IToolBarContainer gives you by default.

The ability to use IWindow, ICanvas, and ISetCanvas styles on the IToolBar
constructor has been deprecated. IToolBar does not pass IWindow styles to the
public ISetCanvas constructor it calls, and it ignores extended styles. This is
because it explicitly configures the ISetCanvas using function calls. Using
application-specified IWindow, ICanvas, and ISetCanvas styles could break existing
code. This behavior also applies to IToolBarContainer::Style.

Transparency in Toolbars
To optimize performance, this product no longer supports transparency by default.
IToolBarButton::transparentBitmap was added to provide transparency support.
Transparent bitmaps are used within toolbar buttons for the following purposes:
v To display the button in an up state. The transparent area of the bitmap shows

through to the background color, which can be changed by the user.
v To display a button in latched state. In latched state, a button is drawn in the

down state, with the transparent area of the bitmap showing through to a
half-toned background look.

To avoid transparency overhead, a new style for IToolbarButtons buttons called
IToolBarButton::transparentButton was added. This style is turned off as the
default.

For the IBM Open Class supplied bitmaps (IC_ID_OPEN, etc), this product
supplies non-transparent bitmaps, and skips any transparency related code. The
existing IBM Open Class bitmaps now have new IDs, such as
IC_ID_OPEN_WITH_TRANSPARENCY. If you want to use the existing
transparency function you must use the new bitmap IDs and set the
IToolBarButton::transparentButton style for the button. For user supplied bitmaps,
the default is that transparency is turned off. If you want transparency and you
supply a transparent bitmap, you must turn the style on for those buttons.

The transparentButton style affects both buttons drawn in an up state and those
drawn in a latched state. Without the style set for a button, if the button is drawn
in the latched state when the button view is bitmap only, you see the
non-transparent latched look. The button is painted as if in the down state, with a
slight half-toned look just inside the border and around the bitmap.

When the button view is bitmap and text, the button background color around the
text area, which you can configure, might not match the non-transparent gray of
the bitmap. In this case, you have the option to use a transparent bitmap for up
state and latched buttons. You must make this choice at button creation, or use the
function, IToolBarButton::enableTransparency(bool enable = true).

Chapter 3. Changes in Version 4 of IBM Open Class 57



Window Changes
Reparenting of windows is not supported on Motif. This is a Motif-only restriction
requiring that any window added to a toolbar must be a child of that toolbar.

You can still add previously created windows to a toolbar on OS/2 and
Windows since the IBM Open Class will reparent the window automatically.

“Chapter 3. Changes in Version 4 of IBM Open Class” on page 41
“AIX Changes in Version 4 of the IBM Open Class” on page 44
“Changes in Version 4 of the IWindow Class” on page 46
“Changes in Version 4 of the Handler Classes” on page 50
“Changes in Version 4 of the Canvas Classes” on page 53
“Other Changes in Version 4 of the IBM User Interface Classes”
Changes in Version 4 of the IBM 2D Graphics Classes
“Changes in Version 4 of the IBM Collection Classes” on page 72
“Deprecated Functions in Version 4 of the IBM Open Class” on page 73

Other Changes in Version 4 of the IBM User Interface Classes
IWindow
Override handleForChildCreation if you have created an aggregate that can have
children. Call IWindow::create with the parent window of your aggregate’s
handleForChildCreation (instead of handle) or use the new IWindow::create
override.

topHandle is replaced with handle; topHandle is deprecated. Do not call
addRelated or rely on windowWithHandle working on anything but the registered
handle.

Keyboard
The following data types are deprecated, as they provide little utility and are
nonportable:

public:
#ifdef IC_MOTIF

static unsigned long
IC_IMPORTU ulShiftMask,
IC_IMPORTU ulAltMask,
IC_IMPORTU ulCtrlMask;

#endif
protected:

#ifndef IC_WIN_FLAGNOP
static const unsigned long

IC_IMPORTU ulCharacterFlag,
IC_IMPORTU ulScanCodeFlag,
IC_IMPORTU ulVirtualFlag,
IC_IMPORTU ulRepeatFlag,
IC_IMPORTU ulUncombinedFlag,
IC_IMPORTU ulShiftFlag,
IC_IMPORTU ulCtrlFlag,
IC_IMPORTU ulForCompositeFlag,
IC_IMPORTU ulCompositeFlag,
IC_IMPORTU ulInvalidCompositeFlag;

58 IBM Open Class: Overview



#endif
static const unsigned long

IC_IMPORTU ulUpTransitionFlag,
IC_IMPORTU ulAltFlag;

IKeyboardHandler and IKeyboardEvent

You can call the virtual function IKeyboardHandler::characterKeyPress to
process WM_KEYDOWN and WM_SYSKEYDOWN messages, in addition to the
WM_CHAR messages you could previously process. As a result, code that extracts
event data from the IKeyboardEvent using IEvent::parameter1 and parameter2
needs to verify the message type, since the message parameters for
WM_KEYDOWN and WM_SYSKEYDOWN differ from those of WM_CHAR.
Similarly, IKeyboardEvent::isCharacter can return true now for some WM_KEYUP,
WM_SYSKEYUP, WM_KEYDOWN, and WM_SYSKEYDOWN messages, in
addition to WM_CHAR messages. You should check the message type if you
access data using IEvent::parameter1 and parameter2.

Frame Window
Users who wish only to set the title text on a frame window now have a simple,
straightforward, portable way to do this. You no longer have to create an ITitle
object to have title text on a frame window.

The following new functions have been added to IFrameWindow:
virtual IFrameWindow&
setTitleText ( const IString& titleText ),
setTitleText ( const IResourceId& titleResId );
virtual IString
titleText ( ) const;

A notification to IFrameWindow for text changes has also been added:
static INotificationId const

IC_IMPORTU titleTextId;

Fonts
New classes and functions have been added to provide the following functionality:
v Ask for Helvetica 30, such that the font looks the same as in other applications.

The font will also scale (on the screen) the same way fonts scale in other
applications as device resolution is changed.

v Program in pixels, if you want to.
v Achieve WYSIWYG (metric fidelity), if wanted.

Menus
In previous releases, the IMenu class was derived from IWindow. As a result, you
could use an IMenu object to call IWindow functions even though most had no
effect on Windows.

For this release, the menu hierarchy has changed. IMenu no longer derives from
IWindow. You can only call IWindow member functions by first calling
IMenu::window to get the underlying window, under OS/2 and AIX. Selected
IWindow functions have been added to IMenu or one of its derived classes and
implemented there in a portable way.

IControl
The group and tabStop styles and their associated functions have moved from
IControl to IWindow.

Chapter 3. Changes in Version 4 of IBM Open Class 59



New interface for IContainerObject
The following functions set a special in-use icon for this particular object in all
containers in which it exists.
v virtual IContainerObject& IContainerObject::setInUseIcon( const

IPointerHandle& inUseIcon );
v virtual IContainerObject& IContainerObject::setInUseIcon( const IResourceId&

inUseIconId );
v virtual IContainerObject& IContainerObject::setInUseIcon( unsigned long

inUseIconId );
v virtual IPointerHandle IContainerObject::inUseIcon( ) const;

The behavior is as follows:

This applies to Windows applications only when they use an
IContainerControl object created with the IContainer::pmCompatible style. When
the client calls setInUse, the code checks to see if a special in-use icon has been set
for the object. If so, this icon is displayed, the original icon cached, and the normal
processing continues. This includes sending the container a
CM_SETRECORDEMPHASIS message to draw the hatched background behind the
icon. When removeInUse is called, the previous icon that was cached will be
replaced and the normal processing continues. This includes removing the hatched
background. If a special in-use icon is not set for the object, the normal drawing of
the hatched background takes place.

This applies to Windows applications only when they use an
IContainerControl object that has not been created with the
IContainer::pmCompatible style. When the client calls setInUse, the code checks to
see if a special in-use icon has been set for the object. If so, this icon is displayed
and the original icon cached. If there is not a special in-use icon set, this call does
nothing. When the client calls removeInUse, the previous icon that was cached, if
any, is replaced. Do not provide a hatched background because it is an OS/2 (or a
Windows container with an IContainer::pmCompatible style) specific behavior.

ICoordinateSystem and Application Origin
To provide the capability to write portable applications, the Open Class Library has
defined the following behavior:
v If an application does not call ICoordinateSystem::setApplicationOrientation(),

then the orientation defaults to upper-left. This behavior differs from previous
releases, where the application orientation was upper-left for Windows and
lower-left for OS/2.

v IExtendedRootGrafPort uses the default orientation which you can set with
ICoordinateSystem::setApplicationOrientation, unless you specify an orientation
when constructing the IExtendedRootGrafPort object.

v Changing the application orientation does not affect existing
IExtendedRootGrafPort objects. As a result, calling
ICoordinateSystem::setApplicationOrientation in the middle of your application,
after IExtendedRootGrafPort objects have already been created, can result in
unexpected behavior.

v The enum ICoordinateSystem::Orientation has been deprecated.

60 IBM Open Class: Overview



v A new enum, ICoordinateSystem::EOrientation() has been created. It has two
values: kOriginUpperLeft and kOriginLowerLeft.

Examples:
function()
{

ICoordinateSystem::setApplicationOrientation
(ICoordinateSystem::kOriginLowerLeft);

// The origin defaults to the
// application orientation
// lower left
IExtendedRootGrafPort aPort(hps);

}
function()
{

ICoordinateSystem::setApplicationOrientation
(ICoordinateSystem::kOriginUpperLeft);

// The origin defaults to the
// application orientation
// upper left
IExtendedRootGrafPort aPort(hps);

}
function()
{

// The origin defaults to application
// orientation which defaults
// to upper left
IExtendedRootGrafPort aPort(hps);

}
function()
{

// The origin is always upper left
// regardless of calls to
// ICoordinateSystem::setApplicationOrientation()
IExtendedRootGrafPort

aPort(hps, ICoordinateSystem::kOriginUpperLeft);
}
function()
{

// The origin is always lower left
// regardless of calls to
// ICoordinateSystem::setApplicationOrientation()
IExtendedRootGrafPort

aPort(hps, ICoordinateSystem::kOriginLowerLeft);
}

Combo Box
To support toolbars, the current combo box can now drop down past its parent’s
area. This limitation has been removed by parenting the listbox portion of a
drop-down combo box to a shell. This is an AIX-specific enhancement (combo
boxes already behave this way on OS/2 and Windows).

Scroll Bar
The IScrollBar class currently contains the autoSize style. This style is supported on
OS/2 and AIX, but is not supported in Windows.

This style was implemented in the class library to always force the scrollbar width
(height) to the (hardcoded) system default dimension.

The specification of the autoSize style results in a vertical scrollbar that is

Chapter 3. Changes in Version 4 of IBM Open Class 61



automatically sized to the system scrollbar width if a width of zero is specified, or
a horizontal scrollbar that will be automatically sized to the system scrollbar height
if a height of zero is specified.

The IScrollBar::autoSize style in OS/2 has been deprecated and removed from AIX
for the following reasons, which assume a vertical scrollbar:
v In order to use it in OS/2, a width of zero must be specified when the scrollbar

is sized. This style, therefore, has no value for a scrollbar in a multicell canvas
since the canvas uses the minimum size to determine the optimal width and
sizes the scrollbar accordingly. If the scrollbar is not constructed as a child of a
multicell canvas, then the system width needs to be used in order to properly
position it and other child windows. Whatever width is assumed in order to
acquire the preferred layout should actually be used to size the scrollbar.

v The AIX implementation was not equivalent to the functionality provided in
OS/2.

v A scrollbar can be constructed using the system scrollbar width as returned by
the static IScrollBar::systemScrollBarWidth function.

ICustomButton
IToolBarButton inherits from ICustomButton. In previous implementations, the
default protected ICustomButton constructor attached a default
ICustomButtonDrawHandler handler. The current implementation of
IToolBarButton makes the ICustomButton default handler unnecessary.
IAnimatedButton also uses this ICustomButton constructor and does not need the
default ICustomButtonDrawHandler. Each toolbar button incurred the overhead of
the additional handler attached to it. For performance reasons, this handler has
now been removed and the following changes made:
v The protected functions ICustomButton::addDefaultDrawHandler and

ICustomButton::removeDefaultDrawHandler have been added.
v The behavior of the ICustomButton protected constructor has been changed so it

does not add the ICustomButtonDrawHandler.

You cannot override the default paint handler for custom buttons. Use the two
new functions or if the class derived from ICustomButton wants to use the default
paint handler, call the addDefaultDrawHandler function to add the handler. This is
a change in behavior because a class derived from ICustomButton used to have the
default paint handler attached to it automatically. However, a derived class that
has its own paint handler derived from the ICustomButtonDrawHandler will not
see any behavior changes and might see some performance improvements.

Direct Manipulation
The following functions have been removed because IMenu no longer derives from
IWindow:
v IDMHandler::enableDragFrom(IMenuBar*)
v IDMHandler::enableDragFrom(ISubmenu*)

“Chapter 3. Changes in Version 4 of IBM Open Class” on page 41
“AIX Changes in Version 4 of the IBM Open Class” on page 44
“Changes in Version 4 of the IWindow Class” on page 46
“Changes in Version 4 of the Handler Classes” on page 50
“Changes in Version 4 of the Canvas Classes” on page 53
“Changes in Version 4 of the Toolbar Classes” on page 56
Changes in Version 4 of the IBM 2D Graphics Classes

62 IBM Open Class: Overview



“Changes in Version 4 of the IBM Collection Classes” on page 72
“Deprecated Functions in Version 4 of the IBM Open Class” on page 73

Changes in Version 4 of the IBM 2D Graphics Classes
This section describes how to migrate your VisualAge C++ 3.0 and 3.5 graphics
code to the API available with the IBM Open Class Library. It contains the
following:
v General Transitions
v IGraphicContext Replacements
v IGraphicContext Constructors
v IGraphicContext Boundary Accumulation
v IGraphicContext Conversions
v Default Drawing Attributes
v IGraphicContext Device Space Transformation
v IGraphicContext Drawing
v IGraphicContext Drawing Attributes
v Font Operations
v Hit Testing
v IGraphicContext Mapping Modes
v IGraphicContext Recoordination
v IGraphicContext World Space Transformation
v IGraphic
v IGraphic Constructors
v Bounding Rectangle
v Graphic Drawing
v Graphic Bundles
v IGraphic Hit Testing
v IGraphic Object Identifier
v IGraphic World Space Transformation
v IGraphicBundle Constructors

General Transitions

VisualAge C++ 3.0/3.5 IBM Open Class

IGraphicBundle IGrafBundle

IRegionHandle no change

ITransformMatrix IGrafMatrix

IFont no change

IFont::FaceNameCursor no change

IFont::PointSizeCursor no change

IGList::Cursor IGraphicGroupIterator

IGraphic IMGraphic

IG3PointArc IGArcThrough3Points, ICurve

Chapter 3. Changes in Version 4 of IBM Open Class 63



IGArc IGCurve2D
(const IGEllipse2D& e,
GDegrees angle1,
GDegrees angle2),
ICurve

IGBitmap IGImage, IImage (see ibaseactl/inotebk.cpp)

IGEllipse IGEllipse2D, IEllipse

IGLine IGLine2D, ILine

IGList IGraphicGroup

IGPie IGPie2D, ICurve

IGChord IGLoop2D, ILoop (arc constructors)

IGPolyline IGPolyline2D, IPolyline

IGPolygon IGPolygon2D, IPolygon

IGRectangle IGRect2D, IPolygon

IGRegion IGArea, IArea

IGString IGraphicText (from Text Framework)

IGraphicContext IGrafPort

IGraphicContext Replacements
The IGraphicContext class is replaced by IGrafPort and its subclasses,
ILinkedGrafPort, IBaseRootGrafPort, IExtendedRootGrafPort, and IStatefulGrafPort
as shown in the table below.

VisualAge C++ 3.0/3.5 IBM Open Class

IGraphicContext IGrafPort (abstract)

ILinkedGrafPort

IBaseRootGrafPort

IExtendedRootGrafPort

IStatefulGrafPort

IGraphicContext Constructors

VisualAge C++ 3.0/3.5 IBM Open Class

IGraphicContext
(const IPresSpaceHandle&)

IBaseRootGrafPort(
const IPresSpaceHandle&
deviceContextToBeAdopted,
IColorMap* colormap =
&(IColorMap::defaultColorMap());

IExtendedRootGrafPort(
IPresSpaceHandle
deviceContextToBeAdopted,
ICoordinateSystem::EOrientation,
EDeviceMappingMode = kPixel);

IGraphicContext()
draws to memory

IBaseRootGrafPort()
draws on desktop device

64 IBM Open Class: Overview



IGraphicContext
(const IWindowHandle&)

IBaseRootGrafPort(
IManagedPresSpaceHandle(
const IWindowHandle&
windowHandle));

IExtendedRootGrafPort(
IManagedPresSpaceHandle(
const IWindowHandle& windowHandle),
ICoordinateSystem::EOrientation,
EDeviceMappingMode = kPixel);

IGraphicContext(const ISize&) IGImagePixelAccessor(const IGImage&
referencedImage);

IGraphicContext Boundary Accumulation
Area geometries provide a rich set of functions and superior boundary
accumulation. For example:

IGArea boundary = IGArea(IGRect2D) + IGArea(IGRect2D)

Boundary accumulation is done in a device-independent fashion. Instead of using
an IGrafPort, call bounds() on a geometry class (such as IGCurve2D), or call
geometricBounds on any IMGraphic subclass. Then use the extendTo() function on
IGRect2D to accumulate the bounds.

If device-dependent bounds are needed, then call looseFitBounds on IMGraphic,
and pass in the appropriate IGrafPort.

VisualAge
C++ 3.0/3.5

IBM Open Class

addToBoundingRectSee IGRect2D::extendTo(const IGRect2D&); with geometricBounds() on
IMGraphic or bounds() from any geometry class

Also see IMGraphic::looseFitBounds (const IGrafPort*) const;

isAccumulatingBoundingRect

startBoundaryAccumulation

stopBoundaryAccumulation

IGraphicContext Conversions

VisualAge C++ 3.0/3.5 IBM Open Class

handle -> IPresSpaceHandle See IGrafPort::orphanDeviceContext; ->
IPresSpaceHandle

IGraphic Current Drawing Position
All IMGraphic classes offer the translateBy( const IGPoint2D& ) function for setting
the location. In addition, the current drawing position can be set absolutely on
IGraphicText, a text subclass of IMGraphic.

VisualAge C++
3.0/3.5

IBM Open Class

currentDrawingPositionIGraphicText::location(
const IGPoint2D&);

Chapter 3. Changes in Version 4 of IBM Open Class 65



setCurrentDrawingPositionIGraphicText::setLocation(
const IGPoint2D&);

IMGraphic::translateBy(
const IGPoint2D&);

Default Drawing Attributes
Each IGrafPort subclass can maintain state for retained mode drawing. In
particular, IBaseRootGrafPort has a set of default values for its attributes.

IGraphicContext Device Space Transformation
For device space transformations, use IGrafMatrix with ILinkedGrafPort.

VisualAge C++ 3.0/3.5 IBM Open Class

pageSize See IGrafMatrix and ILinkedGrafPort

setPageSize

setViewPortRect

viewPortRect See IGrafPort::invertedDeviceTransform

IGraphicContext Drawing
The draw calls on IGrafPort take the new geometry classes, as well as other
information, such as the IAttributeState and the IGrafMatrix. Text is drawn from
IGraphicText.

VisualAge C++ 3.0/3.5 IBM Open Class

draw(const IGLine& line) draw(const IGLine2D& geometry)

draw(const IGPolyline& polyline) draw(const IGPolyline2D& geometry)

draw(const IGPolygon& polygon) draw(const IGPolygon2D& geometry)

draw(const IGEllipse& geometry) draw(const IGEllipse2D& geometry)

draw(const IGRectangle& graphicRectangle) draw(const IGRect2D& geometry)

draw(const IGArc& arc) draw(const IGCurve2D& geometry)

draw(const IG3PointArc& arc) as above, but with IGArcThrough3Points

draw(const IGPie& pie) draw(const IGLoop2D& geometry) with
IGPie2D

draw(const IGChord& chord) draw(const IGLoop2D& geometry)

draw(const IGString& graphicString) See IGraphicText

draw(const IGList& list) See IGraphicGroup: draw(IGrafPort&) const

draw(const IGRegion& region) draw(const IGArea& geometry)

IGraphicContext Drawing Attributes
IGraphicContext drawing attributes are covered by the IAttribute state and the
following subclasses:
v IFillBundle contains imaging information for 2D graphic objects of the

solid-filled, no-frame variety.
v IFrameBundle contains imaging information for 2D graphic objects of the

non-filled, framed (with any size frame) variety.
v IFillAndFrameBundle contains imaging information for 2D graphic objects of the

solid-filled, framed (with any size of frame) variety.

66 IBM Open Class: Overview



v IGrafBundle is a collection of attributes that contain imaging information for the
rendering device.

Unless otherwise stated, all members in the right column are in IAttributeState.
Objects of this class are passed to the draw() call on IGrafPort subclasses. Other
concepts from IGraphicContext are now expressed as classes such as IPaint, ICap,
IJoint, and IPen. IGrafBundle, for example, has setFramePen(const IPen& pen) and
const IPen* framePen() const members for relating an IPen.

VisualAge
C++ 3.0/3.5

IBM Open Class

backgroundColornone

backgroundMixModealways transparent

drawOperation

EDrawOperation drawingOperation() const;

fillColor const IBaseColor* fillColor() const;

fillPattern const IPaint* fillPaint() const; then call pattern() on IPaint

graphicBundle See IGrafPort: const IAttributeState* attributes()

mixMode const IColorTransferMode* fillTransferMode() const;

const IColorTransferMode* frameTransferMode() const;

const IImageTransferMode* imageTransferMode() const;

patternOrigin See IPaint: const IGPoint2D* patternPhase() const;

penColor const IBaseColor* frameColor() const;

penEndingStyleconst ICap* frameEndCap() const;

penJoiningStyleconst IJoint* frameJoint() const;

penPattern const IPaint* framePaint() const; then call pattern() on IPaint

penType EPenType penType() const;

penWidth GCoordinate penWidth() const;

setBackgroundColornone

setBackgroundMixModealways transparent

setDrawOperationsetDrawingOperation(IAttributeState::EDrawOperation);

setFillColor setFillColor(const IBaseColor&);

setFillPattern Set the pattern on an IPaint object,

then setFillPaint(const IPaint& paint);

setGraphicBundleSee constructors of IGrafPort subclasses

setMixMode setFillTransferMode(const IColorTransferMode&);

setFrameTransferMode(const IColorTransferMode&);

setImageTransferMode(const IImageTransferMode&);

Chapter 3. Changes in Version 4 of IBM Open Class 67



setPatternOriginSee IPaint (patternPhase means origin):

IPaint(
const IBaseColor& aColor,
const IMaskPattern& maskPattern = IMaskPattern::solid(),
const IGPoint2D& patternPhase = IGPoint2D::origin());

IPaint(const IGImage& imagePattern, const IGPoint2D& patternPhase =
IGPoint2D::origin());

setPenColor setFrameColor(const IBaseColor& color);

setPenEndingStylesetFrameEndCap(const ICap&);

setPenJoiningStylesetFrameJoint(const IJoint&);

setPenPattern Set pattern on an IPaint object, then setFramePaint(const IPaint& paint);

setPenType Set pen type on an IPen object, then setFramePen(const IPen& newPen);

setPenWidth Set pen width on an IPen object, then setFramePen(const IPen& newPen);

Font Operations
Use ITextStyleSet instead of IFont when setting font attributes such as bold. Use
IFont only for font manager purposes. See Styles and Style Sets for more
information.

Hit Testing
The API currently provides simple support for hit testing, which does not replace
the full functionality originally provided in VisualAge 3.5. A simple approach is to
use the geometricBounds call to obtain an IGRect2D, and then to ask that rectangle
if it contains a point or intersects with a rectangle.

From IMGraphic:

IGRect2D geometricBounds() const;

From IGRect2D:

bool contains(const IGPoint2D&) const;

bool intersects(const IGRect2D&) const;

IGraphicContext Mapping Modes
IExtendedRootGrafPort is an extended IBaseRootGrafPort. It defines the coordinate
system and mapping mode of the device.

VisualAge C++ 3.0/3.5 IBM Open Class

mappingMode Set at construction time only

setMappingMode IExtendedRootGrafPort(
IPresSpaceHandle
deviceContextToBeAdopted,
ICoordinateSystem::EOrientation,
EDeviceMappingMode = kPixel);

IGraphicContext Recoordination
The recoordination height, which is used to convert to and from coordinates with
the origin in upper left and lower left, is set by IExtendedRootGrafPort at the time
of construction. Apply an ILinkedGrafPort with an IGrafMatrix of type

68 IBM Open Class: Overview



EMatrixKind::kModelMatrix to change it.

VisualAge C++ 3.0/3.5 IBM Open Class

recoordinationHeight Retrieve from the model matrix

setRecoordinationHeight IExtendedRootGrafPort and ILinkedGrafPort

IGraphicContext Region Operations
All IGrafPort subclasses can return the clip area. Use ILinkedGrafPort with an
IGArea for clipping. Additionally, IStatefulGrafPort can set it directly.

VisualAge C++
3.0/3.5

IBM Open Class

setClipRegion ILinkedGrafPort(IGrafPort* referencedParent, const IGArea*
referencedClipArea);

See IStatefulGrafPort: setClipArea(const IGArea& clipArea);

clipRegion SeeIGrafPort: const IGArea* clipArea() const;

clearClipRegion set a huge area

IGraphicContext World Space Transformation
Use ILinkedGrafPort with an IGrafMatrix for a world space transform. Specify
EMatrixKind::kModelMatrix to transform just the geometry, or select
EMatrixKind::kViewMatrix to transform both the geometry and the attributes (for
example, pen width).

VisualAge C++
3.0/3.5

IBM Open Class

setWorldTransformMatrixILinkedGrafPort(
IGrafPort* referencedParent,
EMatrixKind matrixKind,
const IGrafMatrix* referencedMatrix);

setMatrix(
EMatrixKind matrixKind,
const IGrafMatrix& matrix);

worldTransformMatrixconst IGrafMatrix* matrix(EMatrixKind) const;

IGraphic
Just as an IGraphic can contain an IGraphicBundle and an ITransformationMatrix,
the new class IMGraphic can contain an IAttributeState and an IGrafMatrix.
Subclasses of IGraphic have to override drawOn, whereas those of IMGraphic
must override draw() as well as geometricBounds and transformBy.

IGraphic Constructors
Both IGraphic and IMGraphic are abstract base classes, and as such have no public
constructors. As exhibited by the IGraphic hierarchy, the IMGraphic tree follows
the pattern of providing default, copy, and bundle constructors.

VisualAge C++ 3.0/3.5 IBM Open Class

Model Geometry

default - uses attributes in
drawOn

same, but for draw see IGrafPort::draw

Chapter 3. Changes in Version 4 of IBM Open Class 69



copy - uses copy’s attributes same ILinkedGrafPort(
IGrafPort* referencedParent,
const IAttributeState*
referencedAttributes);

IGraphicBundle IAttributeState

Bounding Rectangle
The bounding rectangle concept is similar. Call looseFitBounds for more accurate
bounds at device resolution and with respect to the attributes.

VisualAge C++ 3.0/3.5 IBM Open Class

boundingRect IGRect2D geometricBounds() const

IGRect2D looseFitBounds() const

Graphic Drawing
IGrafPort replaces IGraphicContext, and draw(IGrafPort&) replaces
drawOn(IGraphicContext&).

VisualAge C++ 3.0/3.5 IBM Open Class

drawOn draw(IGrafPort&) const

Graphic Bundles
IGrafBundle replaces IGraphicBundle.

VisualAge C++ 3.0/3.5 IBM Open Class

graphicBundle const IGrafBundle* bundle( ) const;

hasGraphicBundle check if the bundle function returns a null
pointer

removeGraphicBundle IGrafBundle* orphanBundle();

setGraphicBundle adoptBundle(IGrafBundle* adoptedBundle);

IGraphic Hit Testing
Full support for hit detection is not currently provided. For more information see
the section on Hit Testing on this page.

IGraphic Object Identifier
There is no corresponding identification mechanism in the IBM Open Class. You
can use an IRawArray or a dictionary-like collection to maintain keys.

IGraphic World Space Transformation
An IGraphic class supports replacing, pre-multiplying, and post-multiplying
transformations. For IMGraphic, transformation is always post-multiply and cannot
be undone, because the associated geometry has been transformed. To transform
the view but retain the geometry, use EMatrixKind::kViewMatrix with
ILinkedGrafPort instead.

In IGraphic classes, setTransformMatrix replaces the current transform, if any.
IMGraphic classes, however, concatenate the transform in transformBy, and do not
necessarily store the matrix. This results in a lighter-weight, high-performance
object

70 IBM Open Class: Overview



VisualAge C++ 3.0/3.5 IBM Open Class

ITransformMatrix In IGraphicGroup only: const IGrafMatrix*
matrix() const;

setTransformMatrix transformBy(const IGrafMatrix&)

hasTransformMatrix In IGraphicGroup only: test NIL != const
IGrafMatrix* matrix() const;

resetTransformMatrix use the inverse of the matrix

rotateBy rotateBy(GDegrees, const IGPoint2D&
centerOfRotation= IGPoint2D::origin());

scaleBy scaleBy(const IGPoint2D&, const
IGPoint2D& centerOfScale=
IGPoint2D::origin());

translateBy translateBy(const IGPoint2D&);

setTransformMethod always post-multiply

transformMethod always post-multiply

IGraphicBundle Constructors
The class IAttributeState resembles IGraphicBundle’s functionality with the
subclasses IFillBundle and IFrameBundle. IFillAndFrameBundle combines these to
replace most of the functions. IGrafBundle subsumes IGraphicBundle and adds
more functionality, such as the image patterns available through IPaint.

Constructors are described below, and drawing attributes are addressed in the
preceding section on IGraphicContext, which uses IGraphicBundle.

VisualAge C++ 3.0/3.5 IBM Open Class

default IGrafBundle() - no attributes set

copy IGrafBundle(const IGrafBundle&); copies
attributes

from IGraphicContext IGrafBundle(const IAttributeState&);

IGrafBundle(
const IPaint& fPaint,
IAttributeState::EDrawOperation attribute =
kFrame);

IGrafBundle(
const IPaint& fillPaint,
const IPaint& framePaint,
IAttributeState::EDrawOperation attribute =
kFillAndFrame);

IGrafBundle(
const IBaseColor& color,
IAttributeState::EDrawOperation attribute =
kFrame);

IGrafBundle(
const IBaseColor& fillColor,
const IBaseColor& frameColor,
IAttributeState::EDrawOperation attribute =
kFillAndFrame);

Chapter 3. Changes in Version 4 of IBM Open Class 71



“Chapter 3. Changes in Version 4 of IBM Open Class” on page 41
“AIX Changes in Version 4 of the IBM Open Class” on page 44
“Changes in Version 4 of the IWindow Class” on page 46
“Changes in Version 4 of the Handler Classes” on page 50
“Changes in Version 4 of the Canvas Classes” on page 53
“Changes in Version 4 of the Toolbar Classes” on page 56
“Other Changes in Version 4 of the IBM User Interface Classes” on page 58
“Changes in Version 4 of the IBM Collection Classes”
“Deprecated Functions in Version 4 of the IBM Open Class” on page 73
Styles and Style Sets

Changes in Version 4 of the IBM Collection Classes
Backward-Compatible Items
The following items from former releases are compatible with this release:
v Reference Classes

Reference classes are no longer necessary for polymorphic use of the collections.
The concrete collection classes are now directly derived from the abstract class
hierarchy. A linkage of abstract and concrete classes through reference classes is
therefore superfluous. Nevertheless you can continue using the reference class
syntax in existing programs.

v IIterator and IConstantIterator
The classes IIterator and IConstantIterator are now called IApplicator and
IConstantApplicator. The new names express more precisely what the purpose
of objects from these classes is: They do not iterate over a collection themselves,
but they provide a function that is applied to the elements of a collection during
iteration with allElementsDo.
The classes IIterator and IConstantIterator are still available but not
recommended.

v The forCursor macro
Instead of the forCursor macro, the forICursor macro is introduced. The
forCursor macro is still available. However, as with the iterator classes, it is
recommended that you use the new version.

v IECOps
Previously all implementation variants of the collections bag, set, sorted bag and
sorted set used the element operation class IECOps. Now these collections
require only class ICOps which is a subset of IECOps. IECOps is no longer
needed, yet it is still available.

v Naming Conventions
New names have been introduced for the implementation variants as well as for
the corresponding header files. The old names can still be used in existing
programs. Consider the key set as example:

Old Names New Names

IKeySet ikeyset.h IKeySet iks.h

IKeySetAsAvlTree iksavl.h

IKeySetOnBSTKeySortedSet iksbst.h IKeySetAsBstTree iksbst.h

IHashKeySet ihshks.h IKeySetAsHshTable ikshsh.h

IKeySetOnSortedLinkedSequence ikssls.h IKeySetAsList ikslst.h

IKeySetOnSortedTabularSequence ikssts.h IKeySetAsTable ikstab.h

IKeySetOnSortedDilutedSequence ikssds.h IKeySetAsDilTable iksdil.h

72 IBM Open Class: Overview



Incompatibilities
The following items are not compatible with the new collection class library
release:
v New class hierarchy

The abstract hierarchy makes use of virtual inheritance. When you derive from a
Collection Class and implement your own copy constructor, you must initialize
the virtual base class IACollection<Element> in your derived classes.

v The newCursor method
In contrast to previous releases, the return type of the newCursor method is now
for any collection a pointer to the abstract cursor class ICursor (ICursor*).

v Deriving from Reference Classes
You can still derive from reference classes without overriding existing collection
class member functions. Yet, you can no longer override existing collection class
functions and use your derived collection class in a polymorphic way without
additional effort.

“Chapter 3. Changes in Version 4 of IBM Open Class” on page 41
“AIX Changes in Version 4 of the IBM Open Class” on page 44
“Changes in Version 4 of the IWindow Class” on page 46
“Changes in Version 4 of the Handler Classes” on page 50
“Changes in Version 4 of the Canvas Classes” on page 53
“Changes in Version 4 of the Toolbar Classes” on page 56
“Other Changes in Version 4 of the IBM User Interface Classes” on page 58
Changes in Version 4 of the IBM 2D Graphics Classes
“Deprecated Functions in Version 4 of the IBM Open Class”

Deprecated Functions in Version 4 of the IBM Open Class
As the Open Class Library functionality increases, the interface must be changed to
improve the quality and design. Deprecated interfaces are listed below so you can
migrate to replacement classes and functions.

There are several important guidelines regarding deprecated functions:
v Usually the implementation of a deprecated function calls the function that has

replaced it.
v Typically, we remove the deprecated interface in a version of library in the next

major release of the library. We do not document deprecated interface in the
main body of the reference manual. Instead, it is documented in a section which
identifies deprecated interface and replacement classes and functions if they are
available.

The following are changes in the language, functions, enums, and types in Version
4 of the IBM Open Class Library:

Type Name Before Version 4
Name in Version 4 and
Later

class IBase

class IBase
::Version

IVersion

Chapter 3. Changes in Version 4 of IBM Open Class 73



Type Name Before Version 4
Name in Version 4 and
Later

function IBase
::asString() const

IStringGenerator
::stringFor() const (where the
IStringGenerator was
constructed passing in an
instance of an
IStringGeneratorasString
generator function)

class IBasicColor IBaseColor

class IGArc IGCurve2D

class IGBitmap IGImage, IImage

class IGEllipse IGEllipse2D, IEllipse

class IGLine IGLine2D, ILine

class IGList IGraphicGroup

class IGPie IGPie2D, ICurve

class IGPolyline IGPolyline2D, IGPolyline

class IGraphic IMGraphic

class IGraphicBundle IGrafBundle

class IGraphicContext IGrafPort

class IGRectangle IGRect2D, IPolygon

class IGRegion IGArea, IArea

class IGString IGraphicText

class IRootGrafPort IExtendedRootGrafPort

class ITransformMatrix

class IWindow
::BidiSettings

IBidiSettings

class IMouseConnectionTo IMouseClickConnectionTo
and
IMouseMoveConnectionTo

typedef Boolean bool

typedef IBaseErrorInfo
::IErrorInfo

IBaseErrorInfo

typedef IColor
::SysColor

IColor
::SystemColor

typedef IContextHandle IAnchorBlockHandle

typedef ICoordinateSystem
::Orientation

ICoordinateSystem
::EOrientation

enum IColor
::Color

IBaseColor
::EPredefinedColor

enum IColor
::SystemColor

IColor
::ESystemColor

enum EDeviceCoordinateSystem ICoordinateSystem
::EOrientation

enum IImage
::EDitherType

IGImagePixelAccessor
::EDitherType

74 IBM Open Class: Overview



Type Name Before Version 4
Name in Version 4 and
Later

enum IImage
::EImageFormat

IGImagePixelAccessor
::EImageFormat

enum INonGUIApplication
::PriorityClass

INonGUIApplication
::EProcessPriority

enum IWindow
::BidiLayout

IBidiSettings
::BidiLayout

enum IWindow
::BidiNumeralType

IBidiSettings
::BidiNumeralType

enum IWindow
::BidiTextOrientation

IBidiSettings
::BidiTextOrientation

enum IWindow
::BidiTextShape

IBidiSettings
::BidiTextShape

enum IWindow
::BidiTextType

IBidiSettings
::BidiTextType

constructor IBidiSettings (const
IGraphicContext&)

IBidiSettings(const
IGrafPort&)

constructor IBitFlag (unsigned long) IBitFlag(unsigned long, const
unsigned long[])

constructor IBitFlag (unsigned long,
unsigned long)

IBitFlag(unsigned long, const
unsigned long[])

constructor IColor(Color color) IColor(IColor
::EPredefinedColor)

constructor IColor(SystemColor value) IColor(IColor
::ESystemColor)

constructor IColor(unsigned long pixel) IColor(long index)

constructor IImage(IPresSpaceHandle
psh, int , int)

constructor IImage(const IString& .....) IGImagePixelAccessor

data IEntryField
::lowerCase

Create a handler to convert
characters to lowercase

data IEntryField
::upperCase

Create a handler to convert
characters to uppercase

data IKeyboardEvent
::ulAltFlag

data IKeyboardEvent
::ulAltMask

data IKeyboardEvent
::ulCharacterFlag

data IKeyboardEvent
::ulCompositeFlag

data IKeyboardEvent
::ulCtrlFlag

data IKeyboardEvent
::ulCtrlMask

data IKeyboardEvent
::ulForCompositeFlag

Chapter 3. Changes in Version 4 of IBM Open Class 75



Type Name Before Version 4
Name in Version 4 and
Later

data IKeyboardEvent
::ulInvalidCompositeFlag

data IKeyboardEvent
::ulRepeatedFlag

data IKeyboardEvent
::ulScanCodeFlag

data IKeyboardEvent
::ulShiftFlag

data IKeyboardEvent
::ulShiftMask

data IKeyboardEvent
::ulUncombinedFlag

data IKeyboardEvent
::ulUpTransitionFlag

data IKeyboardEvent
::ulVirtualFlag

constructor INonGUIThread(const
IReference<IThreadFn>&)

INonGUIThread(IThreadFn*)

function IBidiSettings
::apply(const
IGraphicContext&)

apply(const IGrafPort&)

function IBitFlag
::asExtendedUnsignedLong (
) const

No true replacement. Classes
using IBitFlag objects must
provide their own mapping
logic (IWindow
::convertToGUIStyle is an
example).

function IBitFlag
::asUnsignedLong ( ) const

No true replacement. Classes
using IBitFlag objects must
provide their own mapping
logic (IWindow
::convertToGUIStyle is an
example)

function IBitFlag
::setValue(unsigned long,
unsigned long)

IBitFlag
::setValue(const IBitFlag&)

function ICanvas
::defaultPushButton ( ) const

IWindow
::defaultEmphasisButton

function ICanvas
::origDefaultButtonHandle ( )
const

IWindow
::defaultPushButton

function IClipboard
::setOwner

Specify the owner when
constructing the IClipboard
(construct a new IClipboard
object if necessary)

function IColor
::asPixel() const

IColor
::index()

function IColor
::systemColor() const

IColor
::runtimeGuiColor()

76 IBM Open Class: Overview



Type Name Before Version 4
Name in Version 4 and
Later

function IColor
::value() const

IColor
::predefinedColor

function ICurrentThread
::appContext

ICurrentThread
::anchorBlock

function ICurrentThread
::appShell

IThread
::applicationShell or
IWindow
::desktopWindow()->handle()

function ICustomButtonDrawEvent
::graphicContext

ICustomButtonDrawEvent
::grafPort

function IDrawingCanvas
::graphicContext

IDrawingCanvas
::grafPort

function IDrawingCanvas
::graphicList

IDrawingCanvas
::graphicGroup

function IDrawingCanvas
::setGraphicContext

IDrawingCanvas
::setGrafPort

function IDrawingCanvas
::setGraphicList

IDrawingCanvas
::setGraphicGroup

function IEntryField
::hasChanged

IEntryField
::hasTextChanged

function IEntryField
::setChangedFlag

IEntryField
::setTextChangedFlag

function IImage
::loadFromFile

IGImagePixelAccessor
::loadFromFile

function IImage
::writeToFile

IGImagePixelAccessor
::writeToFile

function IInfoArea
::handleEventsFor

IInfoArea
::startShowingMenuInfoFor

function IInfoArea
::inactiveText

disabledText

function IInfoArea
::setInactiveText

setDisabledText

function IInfoArea
::stopHandlingEventsFor

IInfoArea
::stopShowingMenuInfoFor

function IMultiLineEdit
::setChangedFlag

IMultiLineEdit
::setTextChangedFlag

function IMultiLineEdit
::resetChangedFlag

IMultiLineEdit
::resetTextChangedFlag

function IMultiLineEdit
::isChanged

IMultiLineEdit
::hasTextChanged

function INonGUIApplication
::adjustPriority

INonGUIApplication
::setProcessPriority

function INonGUIApplication
::setPriority

INonGUIApplication
::setProcessPriority

function INonGUIThread
::priorityLevel

INonGUIThread
::threadPriority

function INonGUIThread
::setPriority

INonGUIThread
::setThreadPriority

Chapter 3. Changes in Version 4 of IBM Open Class 77



Type Name Before Version 4
Name in Version 4 and
Later

function INonGUIThread
::

function INotificationEvent
::setNotifierAttrChanged
(booltrue)

function INotificationEvent
::setEventData(const
IEventData&)

function INotificationEvent
::setObserverData(const
IEventData&)

function INotificationEvent
::hasNotifierAttrChanged

function INotificationEvent
::eventData

function INotificationEvent
::observerData

function INotificationEvent
::notifier

function INotifier
::addObserver( IObserver&,
const IEventData&)

function IPaintEvent
::setGraphicContext

IPaintEvent
::setGrafPort

function IResourceLibrary
::loadAccelTable(unsigned
long, const
IWindowHandle&)

IResourceLibrary
::loadAccelTable(unsigned
long)

function ISetCanvas
::setText

ICanvas
::setBorderText

function ISetCanvas
::text

ICanvas
::borderText

function IStandardNotifier
::addObserver(IObserver&,
const IEventData&)

function IWindow
::addObserver( IObserver&,
const IEventData&)

function IWindow
::applyBidiSettings

IBidiSettings
::apply

function IWindow
::enableFastWindowWithHandle
(bool enable = true)

IWindow
::reserveUserWindowWord

function IWindow
::isBidiSupported

IBidiSettings
::isBidiSupported

function IWindow::
isFastWindowWithHandleEnabled()

IWindow::

isUserWindowWordReserved

constant True true

78 IBM Open Class: Overview



Type Name Before Version 4
Name in Version 4 and
Later

constant False false

constant ICommand
::kCopyToId

kSaveAsId

constant ICoordinateSystem
::originLowerLeft

ICoordinateSystem
::kOriginLowerLeft

constant ICoordinateSystem
::originUpperLeft

ICoordinateSystem
::kOriginUpperLeft

constant IHelpWindow
::using

usingHelp

constant IKeyboardEvent
::ulAltFlag

constant IKeyboardEvent
::ulAltMask

isAltDown()

constant IKeyboardEvent
::ulCharacterFlag

constant IKeyboardEvent
::ulCompositeFlag

constant IKeyboardEvent
::ulCtrlFlag

constant IKeyboardEvent
::ulCtrlMask

isCtrlDown()

constant IKeyboardEvent
::ulForCompositeFlag

constant IKeyboardEvent
::ulInvalidCompositeFlag

constant IKeyboardEvent
::ulRepeatFlag

constant IKeyboardEvent
::ulScanCodeFlag

constant IKeyboardEvent
::ulShiftFlag

constant IKeyboardEvent
::ulShiftMask

isShiftDown()

constant IKeyboardEvent
::ulUncombinedFlag

constant IKeyboardEvent
::ulUpTransitionFlag

constant IKeyboardEvent
::ulVirtualFlag

constant IProgressIndicator
::armTickOffsetId

armChangeId

constant IProgressIndicator
::armPixelOffsetId

armChangeId

constant IScrollBar
::autoSize

constant IScrollBar
::scrollBoxPositionId

scrollBoxChangeId,
scrollBoxTrackId

Chapter 3. Changes in Version 4 of IBM Open Class 79



Type Name Before Version 4
Name in Version 4 and
Later

constant IString
::and

bitAnd

constant IString
::or

bitOr

constant IString
::exclusiveOr

bitExclusiveOr

constant IToolBar
::hidden

constant IToolBar
::noDragDrop

constant IToolBarButton
::noDragDelete

constant kLeftHand ICoordinateSystem
::kOriginUpperLeft

constant kRightHand ICoordinateSystem
::kOriginLowerLeft

“Chapter 3. Changes in Version 4 of IBM Open Class” on page 41
“AIX Changes in Version 4 of the IBM Open Class” on page 44
“Changes in Version 4 of the IWindow Class” on page 46
“Changes in Version 4 of the Handler Classes” on page 50
“Changes in Version 4 of the Canvas Classes” on page 53
“Changes in Version 4 of the Toolbar Classes” on page 56
“Other Changes in Version 4 of the IBM User Interface Classes” on page 58
Changes in Version 4 of the IBM 2D Graphics Classes
“Changes in Version 4 of the IBM Collection Classes” on page 72

80 IBM Open Class: Overview


	Contents
	Notices
	Programming Interface Information
	Trademarks and Service Marks
	Industry Standards

	About This Book
	Chapter 1. IBM Open Class Overview
	IBM Open Class Applications
	Design an IBM Open Class Application

	User Interface Applications
	Design a User Interface Application

	Create Cross-Platform Applications
	Map Coordinate Systems Across Platforms

	Compile and Build Open Class Applications
	Build a 64-Bit Enabled Application
	Package and Distribute an IBM Open Class Application

	Build the IBM Open Class Library Source Code for DebuggingPurposes
	Work with the IBM Open Class Samples
	Obsolete or Ignored Member Functions

	Chapter 2. Changes in Version 5 of Open Class
	Chapter 3. Changes in Version 4 of IBM Open Class
	AIX Changes in Version 4 of the IBM Open Class
	User Interface Class Changes
	Changes in Version 4 of the IWindow Class
	Changes in Version 4 of the Handler Classes
	Changes in Version 4 of the Canvas Classes
	Changes in Version 4 of the Toolbar Classes
	Other Changes in Version 4 of the IBM User Interface Classes

	Changes in Version 4 of the IBM 2D Graphics Classes
	Changes in Version 4 of the IBM Collection Classes
	Deprecated Functions in Version 4 of the IBM Open Class


