
VisualAge® C++ Professional for AIX®

IBM® Open Class™: Collections
Version 5.0

���

Edition Notice

This edition applies to Version 5.0 of IBM VisualAge C++ and to all subsequent releases and modifications until
otherwise indicated in new editions. Make sure you are using the correct edition for the level of the product.

© Copyright International Business Machines Corporation 1998, 2000. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Note!
Before using this information and the product it supports, be sure to read the general
information under “Notices” on page v.

Contents

Notices v
Programming Interface Information vii
Trademarks and Service Marks vii
Industry Standards viii

About This Book. ix

Chapter 1. Collection Classes Overview 1
Collection Characteristics 2
Types of Collections 4
Examples of Using the Collection Classes 6
Hierarchy and Design of the Collection Classes . . 10
Class Template Naming Conventions 13
Implementation Variants 14

AVL Tree 14
B* Tree 16
Diluted Table 17
Hash Table 18
List 19
Table 20

Possible Implementation Paths 21
Choose One of the Provided Implementation
Variants 23

Replace the Default Implementation 24

Chapter 2. Instantiate the Collection
Classes 25
Implement Bounded Collections 26

Chapter 3. Addition, Removal, and
Replacement of Elements 27
Add an Element to a Collection 29
Remove an Element from a Collection 29
Add and Overload Member Functions 30
Example: Abstract Class Hierarchy 31

Chapter 4. Copy and Reference
Collections 33

Chapter 5. Implement Element- and
Key-Type Functionality 35
Define Equality Relation 40
Define Key or Element Equality 41
Define an Operations Class 42

Manage Memory with Element Operation Classes 44

Chapter 6. Iteration 47
Use Cursors to Locate and Access Elements . . . 48
Use Cursors to Iterate Over a Collection 50
Use allElementsDo and Applicators to Iterate Over a
Collection 51

Chapter 7. Smart Pointers 53
Construct Smart Pointers 54
Choose the Appropriate Smart Pointer Class . . . 55
Use Automatic Pointers 56
Use Element Pointers 58
Use Managed Pointers. 61

Chapter 8. Thread Safety and the
Collection Classes. 63
Insure Thread Safety with Guard Objects 63
Instantiate a Guard Object 64
Use Guard Objects 65

Chapter 9. Support for Notifications . . 67
Use Collection Notification 68

Chapter 10. Collection Class Library
Exceptions 71
Enable Exception Checking 74
Handle Exceptions with Cursors 74

Chapter 11. Troubleshoot Collection
Class Problems 77
Compilation Errors Indicating a Problem with
Constructors 77
Compilation Errors Indicating that an Element Type
or Function is not Declared 78
Compilation Errors about Multiple Definitions. . . 78
Compiler Warning of an Error in istdops.h 79
Link or Bind Errors about Multiple Definitions . . 80
Link or Bind Error Indicating istdops.h 80
Unexpected Exception Tracing Output 81
Unexpected Results when Adding an Element to a
Unique Key Collection. 82
Unexpected Results when Using Cursors 82

© Copyright IBM Corp. 1998, 2000 iii

iv IBM Open Class: Collections

Notices

Note to U.S. Government Users Restricted Rights -- use, duplication or disclosure
restricted by GSA ADP Schedule Contract with IBM Corp.

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION ″AS IS″
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1998, 2000 v

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Lab Director
IBM Canada Ltd.
1150 Eglinton Avenue East
Toronto, Ontario M3C 1H7
Canada

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

® (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. ® Copyright IBM Corp. 1998, 2000. All rights reserved.

vi IBM Open Class: Collections

Programming Interface Information
Programming interface information is intended to help you create application
software using this program.

General-use programming interface allow the customer to write application
software that obtain the services of this program’s tools.

However, this information may also contain diagnosis, modification, and tuning
information. Diagnosis, modification, and tuning information is provided to help
you debug your application software.

Warning: Do not use this diagnosis, modification, and tuning information as a
programming interface because it is subject to change.

Trademarks and Service Marks
The following terms are trademarks of the International Business Machines
Corporation in the United States, or other countries, or both:

AIX
AS/400
DB2
CICS
C Set ++
IBM
Network Station
Object Connection
OS/2
OS/390
OS/400
Open Class
Operating System/2
Operating System/400
PowerPC 403
PowerPC 601
PowerPC 603
PowerPC 604
Presentation Manager
RS/6000
S/390
SAA
Systems Application Architechture
TeamConnection
VisualAge
WebSphere
Workplace Shell

Lotus, Lotus Notes, and Domino are trademarks or registered trademarks of the
Lotus Development Corporation in the United States, or other countries, or both.

Tivoli Management Environment, TME 10, and Tivoli Module Designer are
trademarks of Tivoli Systems Inc. in the United States, or other countries, or both.

Encina and DCE Encina Lightweight Client are trademarks of Transarc Corporation
in the United States, or other countries, or both.

Notices vii

Microsoft, Win32, Windows, Windows NT, and the Windows logo are trademarks
or registered trademarks of Microsoft Corporation in the United States, or other
countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

UNIX is a registered trademark in the U.S. and other countries licensed exclusively
through X/Open Company Limited.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks or registered
trademarks of Intel Corporation in the United States, or other countries, or both.

C-bus is a registered trademark of Corollary, Inc.

PC Direct is a registered tradmark of Ziff Communicatoins Company and is used
by IBM Corporation under license

Other company, product, and service names, which may be denoted by a double
asterisk(**), may be trademarks or service marks of others.

Industry Standards
VisualAge C++ Professional for AIX, Version 5.0 supports the following standards:
v The C language is consistent with the International Standard C (ANSI/ISO-IEC

9899–1990 [1992]). This standard has officially replaced American National
standard for Information Systems-Programming Language C (X3.159–1989) and
is technically equivalent to the ANSI C standard. VisualAge C++ supports the
changes adopted into the C Standard by ISO/IEC 9899:1990/Amendment 1:1994.

v The IBM Systems Application Architecture (SAA) C Level 2 language definition.
v The C++ language is consistent with the International Standard for Information

Systems-Programming Language C++ (ISO/IEC 14882:1998).
v The ISO/IEC 9945–1:1990/IEEE POSIX 1003.-1990 standard.
v The X/Open Common Applications Environment Specifications, System

Interfaces and Headers, Issue 4.

viii IBM Open Class: Collections

About This Book

The information in this PDF document is also available in the online help.

To find this information, or any topics listed in this document as Related Concepts,
Related Tasks, or Related References, simply type the topic title into the search bar
in the top frame of your browser in the online help.

For some topics, the suggested references may already be contained in this
document. In such cases, there is a cross-reference to the page on which the related
topic appears.

© Copyright IBM Corp. 1998, 2000 ix

x IBM Open Class: Collections

Chapter 1. Collection Classes Overview

Collections are used to store and manage elements (or objects) of a user-defined
type. Different collections have different internal structures, performance
characteristics, and access methods for storage and retrieval of objects. The
Collection Classes implement the common collection types, such as trees, relations
and ordered lists. They provide a framework of properties to help you decide
which abstract collection type is appropriate in a given situation, and allow you to
choose how the abstract data type you have chosen is implemented.

The Collection Classes let you choose the appropriate collection type for a given
situation by providing collection classes which have a systematic and consistent
combination of basic properties. These properties help you to select the appropriate
level of abstraction. For example, you may have the choice between using a bag
and a key sorted set. The properties of these two collections will help you decide
which one is more appropriate.

The Collection Classes offer you a choice of implementations for each type of
collection. Each abstract collection class has a common interface with all of its
possible implementations. It is easy to replace one implementation with another for
performance reasons or if the requirements of your application change.

Types of Classes
The Collection Classes are divided into three types:

Type Description

Trees Recursive collections of nodes, where each
node holds an element and has a given
number of nodes as children.

Flat collections The most common types of collections,
include abstractions such as sequence, set,
bag, and map. Unlike trees, flat collections
have no hierarchy of elements or recursive
structure.

Auxiliary classes Support other classes and include classes for
cursors, iterators, and simple and managed
pointers.

The Standard Template Library and the Collection Classes
We recommend that you use the Standard Template Library (STL) instead of the
IBM Open Class Collections. The topic Migrating from IBM Collections to ANSI
STL outlines the limitations and peculiarities of the STL, and serves as a guide for
substituting STL containers with IBM Collections.

Hierarchy and Design of the Collection Classes
“Collection Characteristics” on page 2
Types of Collections

© Copyright IBM Corp. 1998, 2000 1

“Chapter 2. Instantiate the Collection Classes” on page 25

Introduction to the Standard Template Library
Migrating from IBM Collections to ANSI STL

Collection Characteristics
Four basic properties are used to differentiate between different flat collections:

Property Description

Ordering Whether a next or previous relationship
exists between elements.

Access by key Whether a part of the element (a key) is
relevant for accessing an element in the
collection. When keys are used, they are
compared using relational operators.

Equality for elements Whether equality is defined for the element.

Uniqueness of entries Whether any given element or key is
unique, or whether multiple occurrences of
the same element or key are allowed.

Ordering of Collection Elements
The elements of a flat collection class can be ordered in three ways:
v Unordered collections have elements that are not ordered.
v Sorted collections have their elements sorted by an ordering relation defined for

the element type. For example, integers can be sorted in ascending order, and
strings can be ordered alphabetically. The ordering relation is determined by the
instantiations for the collection class. For elements where the ordering relation
returns the same position, elements are added in chronological order.

v Sequential collections have their ordering determined by an explicit qualifier to
the add function, for example, addAtPosition.

A particular element in a sorted collection can be accessed quickly by using the
ordering relation to determine its position. Unordered collections can also be
implemented to allow fast access to the elements, by using, for example, a hash
table or a sorted representation. The Collection Class Library provides a fast locate
function that uses this structure for unordered and sorted collections. Even though
unordered collections are often implemented by sorting the elements, do not
assume that all unordered collections are implemented in this way. If your
program requires this assumption to be true, use a sorted collection instead.

For each flat collection, the Collection Class Library provides both unordered and
sorted abstractions. For example, the Collection Class Library supports both a set
and a sorted set. The ordering property is independent of the other properties of
flat collections. You can make a given flat collection unordered or sorted regardless
of its other properties.

Access by Key
A given flat collection can have a key defined for its elements. A key is usually a
data member of the element, but it can also be calculated from the data members
of the element by some arbitrary function. Keys let you:
v Organize the elements in a collection

2 IBM Open Class: Collections

v Access a particular element in a collection

For collections that have a key defined, an equality relation must be defined for the
key type. Thus, a collection with a key is said to have key equality.

Equality Relation
The Collection Class Library provides sorted and unsorted versions of maps and
relations, for which both key and element equality must be defined. These
collections are similar to key set and key bag, except that they define functions
based on element equality, namely union and intersection. The add function
behaves differently for maps and relations than it does for key set and key bag
collections.

A flat collection can have an equality relation defined for its elements. The default
equality relation is based on the element as a whole, not just on one or more of its
data members (for example, the key). For two elements to be equal, all data
members of both elements must be equal. The equality relation is needed for
functions such as those that locate or remove a given element. A flat collection that
has an equality relation has element equality.

The ISet and ISortedSet collections check element uniqueness using the less-than
operator (operator<). However, you have to define the less-than operator so that it
compares all the major parts of an element according to the requirements of your
application. For example, suppose that you have an employee database. Each
element in this database is a structure that contains three fields: employee name,
employee serial number, and employee status report. To differentiate elements in
this database you would compare the fields employee name and employee serial
number, but you would not compare the employee status report field. Therefore
for this database you would define a less-than operator that would compare only
the employee name and the employee serial number fields.

Uniqueness of Entries
The terms unique and multiple relate to the key, in the case of collections with a
key. For collections with no key, unique and multiple relate to the element.

In some flat collections, such as map, key set, and set, no two elements are equal
or have equal keys. Such collections are called unique collections. Other collections,
including relation, key bag, bag, and heap, can have two equal elements or
elements with equal keys. Such collections are called multiple collections.

For those multiple collections that have keys with element equality (relation and
sorted relation), elements are always unique while keys can occur multiple times.
In other words, if element equality is defined for a multiple collection with key,
element equality is tested before inserting a new element.

A unique collection with no keys and no element equality is not provided because
a containment function cannot be defined for such a collection. A containment
function determines whether a collection contains a given element.

The behavior during element insertion (when one of the add... methods is applied
to a collection) distinguishes unique and multiple collections. In unique collections,
the add function does not add an element that is equal to an element that is
already in the collection. In multiple collections, the add function adds elements
regardless of whether they are equal to any existing elements or not.

Chapter 1. Collection Classes Overview 3

“Chapter 1. Collection Classes Overview” on page 1
Hierarchy and Design of the Collection Classes
Types of Collections
“Examples of Using the Collection Classes” on page 6

“Chapter 2. Instantiate the Collection Classes” on page 25

Types of Collections
There are two types of collections, categorized by their internal structures: flat
collections and trees.

Flat Collections
Flat collections have no hierarchy of elements or recursive structure. A flat
collection is like an array with added functionality. The following flat collections
are provided by the Collection Class Library:
v sets: key sets, sorted sets, key sorted sets
v bags: key bags, sorted bags, key sorted bags
v queues: priority queues
v deques
v heaps
v maps: sorted maps, relations, sorted relations
v sequences and equality sequences
v stacks

Combinations of Properties for Flat Collections
The figure below shows the flat collection that results from each combination of
properties. For example, Map appears in the Unique, Unordered column for the
Key, Element Equality row. This means that a map is unordered, each element is
unique, keys are defined, and element equality is defined. This implies that there
are no flat collections that have all of the following properties:
v The collection is ordered
v The collection is sequential
v The collection allows an element to appear more than once
v Keys are defined for elements in the collection

The rationale for not implementing collections with these combinations of
properties is that there is no reason to choose them over another collection that is
already available. For example, for an ordered collection that is sequential and
offers access by key, the key access would only have advantages if the elements are
stored in a position depending on their key. Because they are not, there is no flat
collection with key access that maintains a sequential order.

Unordered Ordered

Sorted Sequential

Unique Multiple Unique Multiple Multiple

v Key*

v Element
Equality

Map Relation Sorted map
Sorted

relation
N/A

4 IBM Open Class: Collections

v Key*

v No
Element
Equality

Key set Key bag
Key sorted

set
Key sorted

bag
N/A

v No Key

v Element
Equality

Set Bag Sorted set Sorted bag
Equality
sequence

v No Key

v No
Element
Equality

N/A Heap N/A N/A Sequence

*Key equality must be defined.

For example, the default set collection:
v does not allow an item to be added if it is already present in the collection,

ensuring that elements are unique
v is not sorted
v cannot locate elements by key

Trees
Trees can be described either as structures whose elements have a hierarchy or as a
special form of recursive structure. Recursively a tree can be described as a node
(parent) with pointers to other nodes (children). Every node has a fixed number of
pointers, which are set to null at initialization time. Insertion of a new node
involves setting a pointer in the parent so that it points to the inserted child. The
figure below illustrates the structure of an n-ary tree.

One node is the entry point to the tree. This node is designated as the root. Nodes
without any pointers to other nodes are called leaf nodes or terminal nodes.

The Structure of N-ary Trees

Similarly, you can obtain tree-like or recursive structures by implementing the
array of children of a node as a flat collection of nodes. This will give you different
functionality for the children, for example, the ability to locate a child with a given
value.

Chapter 1. Collection Classes Overview 5

Trees in general are more useful for searching elements than for adding and
deleting elements. For this reason, they are often called search trees. The
descriptions of AVL and B* trees explain why trees are well-suited for searching.
Generally, you can locate and insert elements in collections implemented as trees
faster than you can in collections implemented as lists. However, if you only want
to iterate through elements in a collection, it is faster to iterate through the
elements of a list.

Collection Classes Overview
Hierarchy and Design of the Collection Classes
Collection Characteristics
Examples of Using Collection Classes

Choose One of the Provided Implementation Variants

Examples of Using the Collection Classes
Bag
An example of using a bag is a program for entering observations on species of
plants and animals found in a river. Each time you spot a plant or animal in the
river, you enter the name of the species into the collection. If you spot a species
twice during an observation period, the species is added twice, because a bag
supports multiple elements. You can locate the name of a species that you have
observed, and you can determine the number of observations of that species, but
you cannot sort the collection by species, because a bag is an unordered collection.
If you want to sort the elements of a bag, use a sorted bag instead.

Sorted Bag
An example of using a sorted bag is a program for entering observations on the
types of stones found in a riverbed. Each time you find a stone on the riverbed,
you enter the stone’s mineral type into the collection. You can enter the same
mineral type for several stones, because a sorted bag supports multiple elements.
You can search for stones of a particular mineral type, and you can determine the
number of observations of stones of that type. You can also display the contents of
the collection, sorted by mineral type, if you want a complete list of observations
made to date.

Key Bag
An example of using a key bag is a program that manages the distribution of
combination locks to members of a fitness club. The element key is the number
that is printed on the back of each combination lock. Each element also has data
members for the club member’s name, member number, and so on. When you join
the club, you are given one of the available combination locks, and your name,
member number, and the number on the combination lock are entered into the
collection. Because a given number on a combination lock may appear on several
locks, the program allows the same lock number to be added to the collection
multiple times. When you return a lock because you are leaving the club, the
program finds the elements whose key matches your lock’s serial number, and
deletes the matching element that has your name associated with it.

Key Sorted Bag
An example of using a key sorted bag is a program that maintains a list of
families, sorted by the number of family members in each family. The key is the

6 IBM Open Class: Collections

number of family members. You can add an element whose key is already in the
collection (because two families can have the same number of members), and you
can generate a list of families sorted by size. You cannot locate a family except by
its key, because a key sorted bag does not support element equality.

Heap and Stack
You can compare using a heap collection to managing the scrap metal entering a
scrap yard. Pieces of scrap are placed in the heap in an arbitrary location, and an
element can be added multiple times (for example, the rear left fender from a
particular kind of car). When a customer requests a certain amount of scrap,
elements are removed from the heap in an arbitrary order until the required
amount is reached. You cannot search for a specific piece of scrap except by
examining each piece of scrap in the heap and manually comparing it to the piece
you are looking for.

An example of using a stack is a program that keeps track of daily tasks that you
have begun to work on but that have been interrupted. When you are working on
a task and something else comes up that is more urgent, you enter a description of
the interrupted task and where you stopped it into your program, and the task is
pushed onto the stack. Whenever you complete a task, you ask the program for
the most recently saved task that was interrupted. This task is popped off the
stack, and you resume your work where you left off. When you attempt to pop an
item off the stack and no item is available, you have completed all your tasks.

Map
An example of using a map is a program that translates integer values between the
ranges of 0 and 20 to their written equivalents, from their written forms to their
numeric forms. Two maps are created, one with the integer values as keys, one
with the written equivalents as keys. You can enter a number, and that number is
used as a key to locate the written equivalent. You can enter a written equivalent
of a number, and that text is used as a key to locate the value. A given key always
matches only one element. You cannot add an element with a key of 1 or “one” if
that element is already present in the collection.

Sorted Map
An example of using a sorted map is a program that matches the names of rivers
and lakes to their coordinates on a topographical map. The river or lake name is
the key. You cannot add a lake or river to the collection if it is already present in
the collection. You can display a list of all lakes and rivers, sorted by their names,
and you can locate a given lake or river by its key, to determine its coordinates.

Queue
An example of using a queue is a program that processes requests for parts at the
cash sales desk of a warehouse. A request for a part is added to the queue when
the customer’s order is taken, and is removed from the queue when an order
picker receives the order form for the part. Using a queue collection in such an
application ensures that all orders for parts are processed on a first-come,
first-served basis.

Deque
An example of using a deque is a program for managing a lettuce warehouse.
Cases of lettuce arriving into the warehouse are registered at one end of the queue
(the “fresh” end) by the receiving department. The shipping department reads the
other end of the queue (the “old” end) to determine which case of lettuce to ship

Chapter 1. Collection Classes Overview 7

next. However, if an order comes in for very fresh lettuce, which is sold at a
premium, the shipping department reads the “fresh” end of the queue to select the
freshest case of lettuce available.

Priority Queue
An example of a priority queue is a program used to assign priorities to service
calls in a heating repair firm. When a customer calls with a problem, a record with
that person’s name and the seriousness of the situation is placed in a priority
queue. When a service person becomes available, customers are chosen by the
program beginning with those whose situation is most severe. In this example, a
serious problem such as a nonfunctioning furnace would be indicated by a low
value for the priority, and a minor problem such as a noisy radiator would be
indicated by a high value for the priority.

Relation
An example of using a relation is a program that maintains a list of all your
relatives, with an individual’s relationship to you as the key. You can add an aunt,
uncle, grandmother, daughter, father-in-law, and so on. You can add an aunt even
if an aunt is already in the collection, because you can have several relatives who
have the same relationship to you. (For unique relationships such as mother or
father, your program would have to check the collection to make sure it did not
already contain a family member with that key, before adding the family member.)
You can locate a member of the family, but the family members are not in any
particular order.

Sorted Relation
An example of using a sorted relation is a program used by telephone operators to
provide directory assistance. The computerized directory is a sorted relation whose
key is the name of the individual or business associated with a telephone number.
When a caller requests the number of a given person or company, the operator
enters the name of that person or company to access the phone number. The
collection can have multiple identical keys, because two individuals or companies
might have the same name. The collection is sorted alphabetically, because once a
year it is used as the source material for a printed telephone directory.

Sorted Set
An example of using a sorted set is a program that tests numbers to see if they are
prime. Two complementary sorted sets are used, one for prime numbers, and one
for nonprime numbers. When you enter a number, the program first looks in the
set of nonprime numbers. If the value is found there, the number is nonprime. If
the value is not found there, the program looks in the set of prime numbers. If the
value is found there, the number is prime. Otherwise the program determines
whether the number is prime or nonprime, and places it in the appropriate sorted
set. The program can also display a list of prime or nonprime numbers, beginning
at the first prime or nonprime following a given value, because the numbers in a
sorted set are sorted from smallest to largest.

Key Set
An example of using a key set is a program that allocates rooms to patrons
checking into a hotel. The room number serves as the element’s key, and the
patron’s name is a data member of the element. When you check in at the front
desk, the clerk pulls a room key from the board, and enters that key’s number and
your name into the collection. When you return the key at check-out time, the
record for that key is removed from the collection. You cannot add an element to
the collection that is already present, because there is only one key for each room.

8 IBM Open Class: Collections

Key Sorted Set
An example of using a key sorted set is a program that keeps track of canceled
credit card numbers and the individuals to whom they are issued. Each card
number occurs only once, and the collection is sorted by card number. When a
merchant enters a customer’s card number into a point-of-sale terminal, the
collection is checked to see if that card number is listed in the collection of
canceled cards.

Sequence
An example of a sequence is a program that maintains a list of the words in a
paragraph. The order of the words is obviously important, and you can add or
remove words at a given position, but you cannot search for individual words
except by iterating through the collection and comparing each word to the word
you are searching for. You can add a word that is already present in the sequence,
because a given word may be used more than once in a paragraph.

Equality Sequence
An example of using an equality sequence is a program that calculates, and places
in a collection, members of the Fibonacci series, which is a series of integers in
which each integer is equal to the sum of the two preceding integers. Multiple
elements of the same value are allowed. For example, the sequence begins with
two instances of the value 1. Element equality allows you to search for a given
element, for example 8, and find out what element follows it in the sequence.

“Chapter 1. Collection Classes Overview” on page 1
Types of Collections

“Chapter 2. Instantiate the Collection Classes” on page 25

IBag
ISortedBag
IKeyBag
IKeySortedBag
IHeap
IStack
IMap
ISortedMap
IQueue
IDeque
IPriorityQueue
IRelation
ISortedRelation
ISortedSet
IKeySet
IKeySortedSet
ISequence
IEqualitySequence

Chapter 1. Collection Classes Overview 9

Hierarchy and Design of the Collection Classes
Collection Class Hierarchy
The classes in the Collection Classes are all related through the hierarchy of
abstract classes shown in the figure below:

Notification .
IStandardNotifier

Exceptions .
IOutOfMemory

Exceptions .
IException

IAEqualitySortedCollectionEquality
Sequence

IVCollection

Applicators

IMetaCollection

Pointers

IAOrderedCollection

Tree

Sorted
Map

Sorted
Relation

IACollectionStreamer

Key Bag

Key Set

IACollectionBase

Sorted Bag

Sorted SetKey
Sorted Bag

Key
Sorted Set

Queue

Priority
Queue

Deque

Stack Exceptions

IASequentialCollection

IAKeySortedCollection

IVCollectionImpl

IACollection

Sequence

IAKeyCollection

Cursors

IARestrictedAccessCollection

IASortedCollection

IAEqualityCollection

IAEqualityKeySortedCollection

Map

RelationSet

Bag

IAEqualityKeyCollection

Heap

Collection

Overall Implementation Structure
The abstract collection classes represent a concept, and classes derived from it
represent implementations of the concept. You cannot create any objects from the
abstract classes. The names of the abstract collection classes start with the letters
IA.

Three abstract collection classes inherit directly from IACollection, the abstract
class that defines the base interfaces for the collection
classes:

Abstract Class Description

IAEqualityCollection Defines the interfaces for
the property of element equality (whether
equality is defined for the element).

IAKeyCollection Defines the interfaces for the key property
(whether you use part of an element (a key)
to access an element in the collection).

IAOrderedCollection Defines the interfaces for
the property of ordered elements (whether a
next or previous relationship exists between
elements).

10 IBM Open Class: Collections

Two abstract collection classes inherit from IAOrderedCollection:

Abstract Class Description

IASortedCollection Defines the interfaces for ordered collections
that are sorted.

IASequentialCollection Defines the interfaces for ordered collections
that are not sorted.

More abstract collection classes are derived by inheriting from a combination of the
above abstract classes. Concrete classes have the properties of the abstract classes
that they inherit from:

Abstract Classes Derived Abstract Class Derived Concrete Classes

IAEqualityCollection ISet
IBag

IAKeyCollection IKeyBag
IKeySet

IASequentialCollection ISequence

IAEqualityCollection
IASequentialCollection

IEqualitySequence

IAEqualityCollection
IAKeyCollection

IAEqualityKeyCollection IMap
IRelation

IAEqualityCollection
IASortedCollection

IAEqualitySortedCollection ISortedBag
ISortedSet

IAKeyCollection
IASortedCollection

IAKeySortedCollection IKeySortedBag
IKeySortedSet

IAEqualityCollection
IAKeyCollection
IASortedCollection

IAEqualityKeySortedCollection ISortedMap
ISortedRelation

The IARestrictedAccessCollection abstract class defines defines the interfaces for
the restricted access collections. Restricted access collections let you use only a
subset of functions of an existing collection. The IBM Open Class provides you
with the following collections with restricted access:
v IStack, IDeque, and IQueue, which are all based on ISequence
v IPriorityQueue, which is based on IKeySortedBag

Each abstract collection type has several possible implementations. Some of these
implementations are basic; that is, the collection class is implemented directly as a
concrete class. These basic implementations include the following:
v AVL trees
v Hash tables
v Linked sequences
v Tabular sequences

Variant implementations of the same collection behave externally in the same way
but may offer improved performance for a particular application, depending on the
collection’s characteristics. Sets can be implemented, for example, as AVL trees,
lists, or hash tables.

Default implementations are provided for every collection. Two default classes are
provided for each abstract data type: a class that is instantiated only with the

Chapter 1. Collection Classes Overview 11

element type (and possibly the key type) and one that is instantiated by passing in
element-specific functions. In many cases, you do not need to concern yourself
with the choice of implementation. If you choose not to specify one, the Collection
Classes will use a reasonable default implementation class.

For example, the class ISet uses an AVL tree as the default implementation. The
other implementation variants are linked list and diluted table. The three
implementation variants ISetAsAvlTree (a set implemented as an AVL tree),
ISetAsList (a set implemented as a linked list), and ISetAsDilTable (a set
implemented as a diluted table) are subclasses of IASet. If you do not want to deal
with implementation variants, you can just use the default class ISet.

With abstract classes, you can program to a more generalized interface without
knowing what specific collection type your code will operate on. Implementation
details can be left for later. For example, when working with a set, you can write
your program to use the interfaces of the abstract classes IASet or
IAEqualityCollection, rather than the concrete classes ISet, IGSet, ISetAsBstTree,
and so on.

The Based-On Concept
The Collection Classes achieve a high degree of implementation flexibility by
basing several collection class implementations on other abstract classes, rather
than by implementing them directly through a concrete implementation variant of
the class. This design feature results in an implementation path rather than the
selection of an implementation in a single step. The Collection Classes contain type
definitions for the most common implementation paths.

The element functions that are needed by a particular implementation depend on
all collection class templates that participate in the implementation. For example,
while ISet requires at least element equality to be defined, an AVL tree
implementation of this set also requires the element type to provide a comparison
function. A hash table implementation also requires the element type to have a
hash function. The required element functions for all predefined implementation
variants are listed for individual collection types.

For a concrete implementation, such as a set based on a key-sorted set that is in
turn based on a tabular sequence, these class templates are plugged together so
that the elements only need to define the operations that are needed for the
specific type of collection being used.

Element Functions and Key-Type Functions
The member functions of the Collection Classes call other functions to manipulate
elements and keys. These functions are called element functions and key-type
functions, respectively. Member functions of the Collection Classes may, for
example, use the element’s assignment or copy constructors for adding an element,
or they may use the element’s equality operator for locating an element in the
collection.

Collection Class Polymorphism
Polymorphic use of collections differs from polymorphism of the element type.
Polymorphic use of collections means that a function can specify an abstract
collection type for its argument, for example IACollection, and then accept any
concrete collection given as its actual argument. Element polymorphism means that
you can use the collections with any elements that provide basic operations like
assignment and equality. This section deals with the polymorphic use of collections
rather than elements.

12 IBM Open Class: Collections

Each abstract class is defined by its functions and their behavior. The most abstract
view of a collection is a container without any ordering or any specific element or
key properties. Elements can be added to a collection, and a collection can be
iterated over. A polymorphic function on collections that uses only properties of
the most abstract view might be to print all elements.

Collections with more specialized element properties, such as equality or key
equality, also provide functions for retrieving element occurrences by a given
element or key value. Ordered collections provide the notion of a well-defined
ordering of element occurrences, either by an element ordering relation or by
explicit positioning of elements within a sequence. Ordered collections define
operations for positional element access. Sorted collections provide no further
functions, but define a more specific behavior, namely that the elements or their
keys are sorted.

The properties represented by abstract collection classes are combined through
multiple inheritance. For example, the abstract collection class
IAEqualitySortedCollection, for example, combines the properties of element
equality and element sorting, which implies being ordered. If a polymorphic
function uses IAEqualitySortedCollection as its argument type, the argument will
be sorted, and the function can use functions such as contains that are only defined
for collections with element equality.

Default and Variant Implementations
Each collection provides a default implementation. You can easily replace the
default implementation of a collection by an implementation variant of the same
collection that behaves externally in the same way but may offer improved
performance for your application.

Collection Classes Overview
Types of Collections
Class Template Naming Conventions

Instantiate the Collection Classes
Implement Element- and Key-Type Functionality

Class Template Naming Conventions
All class templates begin with an uppercase I. The table below shows the naming
conventions used to distinguish between different types of class templates, given a
default class template of ISet:

Class name Meaning of letters

ISet Default class template.

ISetImpl Typeless implementation class.

ICSetImpl Typeless implementation class that implements additional checks.

IGSet Default generic class template. The element operations class can
be specified as template argument.

IASet Abstract class template.

IVSet Default notification-enabled class.

Chapter 1. Collection Classes Overview 13

Class name Meaning of letters

ISetAsAvlTree
ISetAsBstTree
ISetAsList
ISetAsDilTable
ISetAsHshTable
ISetAsTable

Variant class templates.

IGSetAsBstTree
IGSetAsList
IGSetAsDilTable
IGSetAsHshTable
IGSetAsTable

Variant generic class templates.

IVSetAsAvlTree
IVSetAsDilTable
IVSetAsHshTable
IVSetAsTable
IVSetAsList
IVSetAsBstTree

Variant notification-enabled classes.

“Chapter 1. Collection Classes Overview” on page 1
Types of Collections
Possible Implementation Paths

“Choose One of the Provided Implementation Variants” on page 23

Implementation Variants

AVL Tree
AVL trees are a special form of binary tree. You can better understand AVL trees if
you know how a binary tree is structured.

Trees are binary trees when all nodes have either zero, one, or two children. Binary
trees are often used in applications where you want to store elements in a certain
order. In such cases, the left child always points to an element that comes earlier in
the order than the parent node, and the right child points to an element that comes
later than the parent. A search through a binary tree begins at the root node. The
search then continues downward until the desired element is found, by
determining whether a node comes before or after the searched-for node, and then
following the appropriate branch. For example, the binary tree shown in the figure
below has elements added in the following sequence: 8 - 10 - 5 - 1 - 9 - 6 - 11. A
search for element 9 begins at the root node (element 8). Assuming that the
element value defines the ordering relation, the search would take the right node
from element 8 (because 9 is greater than 8) and would arrive at element 10. The
search would take the left node from element 10 (because 9 is smaller than 10) and
would arrive at element 9, the desired element.

The following figures show you a binary search tree and an unbalanced binary
search tree.

14 IBM Open Class: Collections

Balanced Binary Search Tree Unbalanced Binary Search Tree

One drawback of a binary search tree is that the tree can easily become
unbalanced. The figure shows how unbalanced the tree becomes when the
elements 12 through 15 are added. The unbalanced binary tree looks almost like a
list, without the performance advantage of a normal binary search tree. To obtain
this performance advantage, a binary search tree should always remain balanced.
The AVL Tree is a special form of binary search tree that maintains balance.

AVL trees are useful for collections containing a large number of small elements.
An AVL tree implementation is even suitable for adding and deleting, because the
performance overhead for the rebalancing that sometimes occurs when an element
is added or deleted is still less expensive than searching through the elements of a
sequence to find the position at which to add or delete an element.

If you use a set collection and do not choose an implementation variant, you are
automatically using an AVL tree. If you use a set and are not aware that the set is
implemented as an AVL tree, you may be surprised that a set requires an ordering
relation, when a set is an unordered collection. The reason a set requires an
ordering relation is that an AVL tree requires an ordering relation to determine
where to add new elements or where to find elements to be accessed or deleted.
As this example shows, required element and key-type functions are determined
by two factors:
v Some functions are required because of the properties of the collection.
v Some properties are required because of the implementation variant you choose.

“Chapter 1. Collection Classes Overview” on page 1
Types of Collections
Possible Implementation Paths
“Class Template Naming Conventions” on page 13
“B* Tree” on page 16
“Diluted Table” on page 17
“Hash Table” on page 18
“List” on page 19
“Table” on page 20

“Choose One of the Provided Implementation Variants” on page 23
“Chapter 2. Instantiate the Collection Classes” on page 25

Chapter 1. Collection Classes Overview 15

B* Tree
A B* tree is a search tree that may have more than two references per node.The
figure below shows a B* tree with up to five children per node:

A B* tree combines the advantages of binary search and sequential access upon the
same set of keys. B* trees are based on two simple ideas:
v The internal nodes are used only for storing the keys, with all real data stored at

the leaves. A B* tree takes into consideration the page or block size of the
operating system’s virtual memory structure, and is suitable for applications
where paging or memory thrashing is a constraint.

v The leaves of a B* tree are chained together in logical sequence to support
sequential access.

A B* tree implementation variant is suitable when you have many large elements
that are accessed by key. Because keys and their data are separated, the keys in the
tree structure are used for a quick search and the pointers are used for quick access
to the data.

In contrast to a B* tree, keys and data in an AVL tree are both stored in the nodes.
This means that searching through elements could cause page faults if the elements
are large, because the various keys may be spread across several pages along with
the data they refer to.

In the figure below, the B* tree has an order of 5 (which means that each internal
node has a maximum of five references):

The data is stored only in the leaves. A leaf block is built to hold one element. A
leaf block may be larger than one page. The B* tree implementation uses the keys
in the nodes for quick access to a required page (leaf), or it uses the keys for a
quick sequential access to all pages, and hence to all elements.

16 IBM Open Class: Collections

“Chapter 1. Collection Classes Overview” on page 1
Types of Collections
Possible Implementation Paths
“Class Template Naming Conventions” on page 13
“AVL Tree” on page 14
“Diluted Table”
“Hash Table” on page 18
“List” on page 19
“Table” on page 20

“Choose One of the Provided Implementation Variants” on page 23
“Chapter 2. Instantiate the Collection Classes” on page 25

Diluted Table
A diluted table, like a table sequence, is an array implementation of a list.
However, when you delete an element from a diluted table, it is not actually
deleted, but only flagged as deleted. This provides a performance advantage, in
that elements following a deleted element do not need to be shifted. The additional
overhead of using a dilution flag is trivial.

If you want to add a new element at a certain position, only those elements
between that position and the next element flagged as deleted need to be shifted.
(If no elements later in the list are flagged as deleted, then all elements beyond the
insertion position must be shifted.)

Use a diluted table rather than a table if your application will be doing much
adding or deleting of elements after the collection is established.

The figure below shows a diluted table implementation variant.

Diluted Table Implementation Variant

“Chapter 1. Collection Classes Overview” on page 1
Types of Collections
Possible Implementation Paths
“Class Template Naming Conventions” on page 13
“AVL Tree” on page 14
“B* Tree” on page 16
“Hash Table” on page 18
“List” on page 19
“Table” on page 20

Chapter 1. Collection Classes Overview 17

“Choose One of the Provided Implementation Variants” on page 23
“Chapter 2. Instantiate the Collection Classes” on page 25

Hash Table
Hashing is another important and widely used technique for implementing
collections. Conceptually, hashing involves calculating an index from the key or
other parts of an element, and then using that index to look for matches in a hash
table. The function that calculates the index is called a hash function.

A hash-table implementation variant is suitable for nearly all applications with a
balanced mix of operations. Such an implementation is quick for retrieving
elements. It can also add and delete elements quickly, because, unlike an AVL tree,
it does not need to be rebalanced. The efficiency of a hash-table implementation is
largely dependent on the hash function implementation.

You cannot use a hash-table implementation variant when you require your
elements to appear in main storage in sorted order (where elements earlier in the
sorting order have lower addresses than elements later in the sorting order). On
the other hand, you must use a hash table if you have a complex key (one
composed, for example, of several attributes of an element), and either you cannot
find a reasonable way to compare keys, or the comparison would be expensive.

For collections that do not provide access by key, but that support a hash-table
implementation variant, the complete element is used as the input to the hash
function.

Hashing, as implemented in the collection classes, allows elements to be stored in a
potentially unlimited space, and therefore imposes no limit on the size of the
collection. The figure below shows a hash-table implementation variant.

Hash-Table Implementation Variant

The hash function that calculates the index 3 from abcd is implemented as follows:
1. Each character is transformed into an integer according to its position in the

alphabet.
2. The resulting integers are added together.
3. The result is divided by the hash table size. The remainder is the hash.

The principal behind a hash table is that the possibly infinite set of elements in
your collection is partitioned into a finite number of hash values (1, 2, 3, ...). Your
hash function is called with a key and a modulo value, and you use the key and
the modulo value to arrive at an integer hash value. If for two different keys the
hash function returns the same hash value (as for xyz and yyy in the previous

18 IBM Open Class: Collections

figure), a hash collision occurs. In such cases, a hash implementation constructs a
collision list where all keys returning the same hash value are linked.

In the best case, for each different key, your hash function should return a different
hash value. At the very least, it is desirable for the collision lists to remain small so
that access time is fast. This means that hash values should be evenly distributed.
Your hash function should randomly hash the key so that the hash value is not
dependent on the key value in any trivial way. Your hash function should always
return the same hash value for a given key and modulo provided to it.

“Chapter 1. Collection Classes Overview” on page 1
Types of Collections
Possible Implementation Paths
“Class Template Naming Conventions” on page 13
“AVL Tree” on page 14
“B* Tree” on page 16
“Diluted Table” on page 17
“List”
“Table” on page 20

“Choose One of the Provided Implementation Variants” on page 23
“Chapter 2. Instantiate the Collection Classes” on page 25

List
A list uses pointers to link each element to its predecessor and successor. This
implementation does not require contiguous memory for storing an array, which
means that elements do not have to be shifted to make room for new elements or
to close up gaps created by deleted elements.

Because storage is dynamically allocated and freed, this implementation variant is
a good choice in applications that add or delete many elements, particularly where
you cannot predict the amount of storage required. The figure below shows a list
implementation variant.

List Implementation Variant

“Chapter 1. Collection Classes Overview” on page 1
Types of Collections
Possible Implementation Paths
“Class Template Naming Conventions” on page 13
“AVL Tree” on page 14
“B* Tree” on page 16
“Diluted Table” on page 17
“Hash Table” on page 18
“Table” on page 20

Chapter 1. Collection Classes Overview 19

“Choose One of the Provided Implementation Variants” on page 23
“Chapter 2. Instantiate the Collection Classes” on page 25

Table
A table is an array implementation of a sequence. The elements are stored in
contiguous cells of an array. In this representation, a list can easily be traversed,
and new elements can easily be added to the tail of the list. If an element needs to
be inserted into the middle of the list, however, all following elements need to be
shifted to make room for the new element. Similarly, if an element needs to be
removed from the list, and the element is not the last element in the list, all
elements following the element to be deleted must be shifted in to close up the
gap.

A table can access all elements quickly because all elements can be stored in a
single storage block. If all of the following conditions hold true for your use of a
collection, a table is a suitable implementation variant to use:
v The elements to be stored are small.
v You can predict with some accuracy how many elements your application will

have to handle.
v Few or no elements will need to be added or deleted once the collection is first

created.

Note that memory is statically allocated for tables, at the beginning of your
program.

The figure below shows a table implementation variant.

Table Implementation Variant

“Chapter 1. Collection Classes Overview” on page 1
Types of Collections
Possible Implementation Paths
“Class Template Naming Conventions” on page 13
“AVL Tree” on page 14
“B* Tree” on page 16
“Diluted Table” on page 17
“Hash Table” on page 18
“List” on page 19

“Choose One of the Provided Implementation Variants” on page 23
“Chapter 2. Instantiate the Collection Classes” on page 25

20 IBM Open Class: Collections

Possible Implementation Paths
The figure below lists the basic and based-on implementations provided by the
Collection Classes. The upper left corner of each cell contains the name of the
(abstract) collection class; basic implementations are written in smaller letters in
bold face, while based-on implementations are described by arrows starting from
the class that they implement and ending in the (abstract) class on which they are
based. An implementation choice for a given class must use either a basic
implementation for this class or follow a based-on implementation path that
ultimately leads to a basic implementation.

Take the example of the Set abstraction. The Set is not implemented directly. (You
can tell this from the figure because no implementation variant name appears in
bold in the box containing Set.) To determine the possible implementation variants
for Set, follow the arrows out of the Set box:
v One arrow leads to the KeySet box. The KeySet box contains an implementation

variant, Hash Table, so this is one possibility. An arrow also points from the
KeySet Box to the KeySortedSet box, which allows the following possibilities:
– AVL Tree (appears in KeySortedSet box)
– B* Tree (appears in KeySortedSet box)
– An arrow leads from KeySortedSet to Sequence, which contains the following

implementation variants:
- List

- Table

- Diluted Table

A Set can therefore be implemented using any of the six implementation variants
cited in bold face above.

The following tables describes the Implementation variants provided for each flat
collection. The letter “D” identifies the default implementations; “I” identifies
implementation variants. If the space is blank, the feature is not supported.

Implemen-
tation
variant Bag Sorted Bag Key Bag Key Sorted Bag

AVL Tree

B* Tree

Hash Table I D

List D D I D

Table I I I I

Chapter 1. Collection Classes Overview 21

Implemen-
tation
variant Bag Sorted Bag Key Bag Key Sorted Bag

Diluted Table I I I I

Implemen-
tation
variant Set Sorted Set Key Set Key Sorted Set

AVL Tree D D D D

B* Tree I I I I

Hash Table I I

List I I I I

Table I I I I

Diluted Table I I I I

Implemen-
tation
variant Map Sorted Map Relation Sorted Relation

AVL Tree D D

B* Tree I I

Hash Table I D

List I I I D

Table I I I I

Diluted Table I I I I

Implemen-
tation
variant Sequence Equality Sequence Heap

AVL Tree

B* Tree

Hash Table

List D D D

Table I I I

Diluted Table I I I

Collection Classes Overview
Examples of Using Collection Classes

Choose One of the Provided Implementation Variants

IBag
ISortedBag

22 IBM Open Class: Collections

IKeyBag
IKeySortedBag
IHeap
IStack
IMap
ISortedMap
IQueue
IDeque
IPriorityQueue
IRelation
ISortedRelation
ISortedSet
IKeySet
IKeySortedSet
ISequence
IEqualitySequence

Choose One of the Provided Implementation Variants
When you are developing a program that uses a collection, you should begin by
using the default implementation and go on to a final tuning phase where you
choose implementations according to the actual requirements of your application.
You can determine these requirements by profiling or by using other measurement
tools. You need to choose between a variety of implementations provided by the
Collection Classes as well as how to create your own implementation classes.

The collection implementations can be based on other collection classes. The
based-on concept provides a systematic framework for choosing the most
appropriate implementations. It is also useful for extending the Collection Classes
with other basic implementations, such as specific kinds of search trees, and for
using these implementations as the basis for other data abstractions such as sets,
maps, and bags.

You can implement a given collection type (bag, key sorted set, etc.) in a number
of different ways. The Collection Classes provide multiple implementation variants
for collections because different variants have different performance and storage
use characteristics. After you have coded and debugged an application that uses
the Collection Classes, you can change an implementation to a variant that is
well-suited to the ways in which you use the collection. For example, six
implementation variants are listed for key set, including the default key set. These
variants are implemented using the following concrete techniques:
v Sequences

– List
– Table
– Diluted table

v Trees
– AVL tree (the technique used for the default key set)
– B* tree

v Hash table

As it turns out, the implementation variants for key set encompass all the concrete
techniques used by the Collection Classes. Other collections may only use some of

Chapter 1. Collection Classes Overview 23

the techniques in the list above. If you want to choose the best implementation
variant for your program, you need to know the advantages of each concrete
technique.

“Chapter 1. Collection Classes Overview” on page 1
Possible Implementation Paths
“Class Template Naming Conventions” on page 13
“AVL Tree” on page 14
“B* Tree” on page 16
“Diluted Table” on page 17
“Hash Table” on page 18
“List” on page 19“Table” on page 20

“Chapter 2. Instantiate the Collection Classes” on page 25

Replace the Default Implementation
By using typedefs to define the collection classes you use, you can easily replace
the default implementation with another implementation. Suppose that you have a
key set class called MyType that has been defined with the default implementation
IKeySet. The definition of this class would look like this:
typedef IKeySet<Element, Key> MyType;

If you want to replace the default implementation, which uses an AVL tree, with a
hash table implementation, you can replace the above implementation with the
following definition:
typedef IHashKeySet<Element, Key> MyType;

If you replace a collection’s default implementation with one of its implementation
variants, you must determine what element functions and key-type functions need
to be provided for the variant. You must then provide those functions. The list of
required functions is not always the same for a collection’s default implementation
as for particular implementation variants.

“Chapter 1. Collection Classes Overview” on page 1
Hierarchy and Design of the Collection Classes
Types of Collections
Possible Implementation Paths

“Chapter 4. Copy and Reference Collections” on page 33

24 IBM Open Class: Collections

Chapter 2. Instantiate the Collection Classes

To use a collection class, you normally follow these three steps:
1. Instantiate a collection class template and provide arguments for the formal

template arguments.
2. Define one or more objects of this instantiated class, possibly providing

constructor arguments.
3. Apply functions to these objects.

The following example describes instantiation for the default implementation.
Consider the following example header file for a class Person:
//person.h - Header file containing class Person
#include <iostream.h>
#include <istring.hpp>
class Person
{

IString PersonName;
IString TNumber;

public:
//constructor
Person () : PersonName(“”), TNumber(“”) {}
//copy constructor
Person(IString Name, IStringNumber)

: PersonName(Name), TNumber(Number)
{
}
IString const& GetPersonName() const { return PersonName; }
IString const& GetTNumber() const { return TNumber; }
IBoolean operator==(Person const& A) const
{

return (PersonName == A.GetPersonName())
&& (TNumber==A.GetTNumber());

}
IBoolean operator<(Person const& A) const
{

return (PersonName < A.GetPersonName());
}

};

For a given class, such as ISet, and a given element type, such as a class named
Person, the instantiation for a new class that represents sets of persons could look
like this:
//main.cpp - main file
#include <iset.h>
#include <iostream.h>
#include “person.h” //person.h from the previous example
typedef ISet<Person> AddressList;
void main()
{

AddressList Business;
Person A(“Sarah Vandewater”, “90210”);
Business.add(A);
cout << “\nThe set now contains ”

<< Business.numberOfElements() <<“ entries!\n”;
}

Once the AddressList collection is defined, you can define AddressList objects
Family, Business, and Sportclub as follows:

© Copyright IBM Corp. 1998, 2000 25

AddressList Family, Business, Sportclub;

You can also define the objects without introducing a new type name
(AddressList):

ISet<Person> Family, Business, Sportclub;

However, you should begin by explicitly defining a named class, such as
AddressList, that uses the default implementation. It is then easier to replace the
default implementation with a better implementation later on.

“Chapter 1. Collection Classes Overview” on page 1

Implement Bounded Collections
In the current implementation of the Collection Classes, all collections are
unbounded. The concept of bounded collections is supported so that you can
create your own bounded collection implementations. There are no bounded
collections in the Collection Classes.

A bounded collection limits the number of elements it can contain. When a
bounded collection contains the maximum number of elements (its bound), the
collection is said to be full. This condition can be tested by the function isFull. If
elements are added to a full collection, the exception IFullException is thrown. This
behavior is useful for collections that are to have their storage allocated completely
on the runtime stack.

You can determine the maximum number of elements in a bounded collection by
calling the function maxNumberOfElements(). You can only call this function if the
collection is bounded. You can determine whether a collection is bounded by
calling the function isBounded().

The functions isBounded() and isFull() always return false. The function
maxNumberOfElements() throws the exception INotBoundedException.

“Chapter 1. Collection Classes Overview” on page 1
“Chapter 10. Collection Class Library Exceptions” on page 71

“Chapter 2. Instantiate the Collection Classes” on page 25

26 IBM Open Class: Collections

Chapter 3. Addition, Removal, and Replacement of Elements

Adding Elements
The add function places the element identified by its argument into the collection.
It has two general properties:
v All elements that are contained in the collection before an element is added are

still contained in the collection after the element is added.
v The element that is added will be contained in the collection after it is added.

Operations that contradict these properties are not valid. You cannot add an
element to a map or sorted map that has the same key as an element that is
already contained in the collection, but is not equal to this element (as a whole). In
the case of a map and sorted map, an exception is thrown. Note that both map and
sorted map are unique collections. The functions locateOrAddElementWithKey and
addOrReplaceElementWithKey specify what happens if you try to add an element
to a collection that already contains an element with the same key.

The figure below shows the result of adding a series of four elements to a map, a
relation, a key set, and a key bag. The elements are pairs of a character and an
integer. The character in the pair is the key. An element equality relation, if
defined, holds between two elements if both the character and the integer in each
pair are equal. The first row shows what each collection looks like after the
element <a,1> has been added to each collection. Each following row shows what
the collections look like after the element in the leftmost column is added to each.

Behavior of add for Unique and Multiple Collections

add Map or sorted
map

Relation or
sorted relation

Key set or key
sorted set

Key bag or key
sorted bag

<a,1> <a,1> <a,1> <a,1> <a,1>

<b,1> <a,1>, <b,1> <a,1>, <b,1> <a,1>, <b,1> <a,1>, <b,1>

<a,1> <a,1>, <b,1> <a,1>, <b,1> <a,1>, <b,1> <a,1>, <b,1>,
<a,1>

<a,2> exception: Key
Already Exists

<a,1>, <b,1>,
<a,2>

<a,1>, <b,1> <a,1>, <b,1>,
<a,1>, <a,2>

The add function behaves differently depending on the properties of the collection:
v In unique collections, an element is not added if it is already contained in the

collection.
v In sorted collections, an element is added according to the ordering relation of

the collection.
v In sequential collections, an element is added to the end of the collection.

For sequential collections, elements can be added at a given position using add
functions other than add, such as addAtPosition, addAsFirst, and addAsNext.
Elements after and including the given position are shifted. Positions can be
specified by a number, with 1 for the first element, by using the addAtPosition
function. Positions can also be specified relative to another element by using the

© Copyright IBM Corp. 1998, 2000 27

addAsNext or addAsPrevious functions, or relative to the collection as a whole by
using the addAsFirst or addAsLast functions.

Removing Elements
In the Collection Classes, you can remove an element that is pointed to by a given
cursor by using the removeAt function. All other removal functions operate on the
model of first generating a cursor that refers to the desired position and then
removing the element to which the cursor refers. There is an important difference
between element values and element occurrences. An element value may, for
non-unique collections, occur more than once. The basic remove function always
removes only one occurrence of an element.

For collections with key equality or element equality, removal functions remove
one or all occurrences of a given key or element. These functions include remove,
removeElementWithKey, removeAllOccurrences, and removeAllElementsWithKey.
Ordered collections provide functions for removing an element at a given
numbered position. Ordered collections also allow you to remove the first or last
element of a collection using the removeFirst or removeLast functions.

After you have removed one element with the property, the entire collection would
have to be searched for the next element with the property. Because all cursors of
the collection become undefined when elements are removed, removing all
elements with a given property from a collection cannot be done efficiently using
cursors. If you want to remove all of the elements in a collection that have a given
property, you should use the function removeAll and provide a predicate function
as its argument. This predicate function has an element as argument and returns a
value of type bool. The bool result tells whether the element is to be removed.

Sometimes you may want to pass more information to the predicate function. You
can use an additional argument of type void*. The pointer then can be used to
access a structure containing further information.

Replacing Elements
It is possible to modify collections by replacing the value of an element occurrence.
Adding and removing elements usually changes the internal structure of the
collection. Replacing an element leaves the internal structure unchanged. If an
element of a collection is replaced, the cursors in the collection do not become
undefined.

For collections that are organized according to element properties, such as an
ordering relation or a hash function, the replace function must not change this
element property. For key collections, the new key must be equal to the key that is
replaced. For non-key collections with element equality, the new element must be
equal to the old element as defined by the element equality relation. The key or
element value that must be preserved is called the positioning property of the
element in the given collection type.

Sequential collections and heaps do not have a positioning property. Element
values in sequences and heaps can be changed freely. Replacing element values
involves copying the whole value. If only a small part of the element is to be
changed, it is more efficient to use the elementAt access function . The replaceAt
function checks whether the replacing element has the same positioning property
as the replaced element. (See “Chapter 10. Collection Class Library Exceptions” on
page 71 for more details on preconditions.) When you use the elementAt function
to replace part of the element value, this check is not performed. If you want to

28 IBM Open Class: Collections

ensure safe replacement (a replacement that does not change the positioning
property), use replaceAt rather than elementAt.

“Chapter 1. Collection Classes Overview” on page 1
Types of Collections
“Chapter 10. Collection Class Library Exceptions” on page 71

“Chapter 2. Instantiate the Collection Classes” on page 25
“Add an Element to a Collection”“Remove an Element from a Collection”

Add an Element to a Collection
To add an element to a collection, call the add function. Consider the following
example:
// main.cpp - main file
#include <iset.h>
#include <iostream.h>
#include “person.h” //person.h from the previous examples
typedef ISet<Person> AddressList;
void main()
{

AddressList Business;
Person A(“Peter Black”,“714-50706”);
Person B(“Carl Render”,“714-540321”);
Person C(“Sandra Summers”,“214-660012”);
Business.add(A);
Business.add(B);
Business.add(C);
Business.add(A); //Person A is added for the second time
cout << “\nThe set now contains ” << Business.numberOfElements()

<<“ entries!\n”;
}

If you run the program, the set will only contain 3 different entries. In a set, each
element is unique. No two elements can be the same. To illustrate the difference
between sets and bags, run the program using a bag rather than a set.

“Chapter 1. Collection Classes Overview” on page 1
Addition, Removal, and Replacement of Elements

“Remove an Element from a Collection”

Remove an Element from a Collection
Consider the following example:
//main.cpp - main file
#include <iset.h>
#include <iostream.h>
#include “person.h” //person.h from the previous examples
typedef ISet <Person> AddressList;
IBoolean noPhone(Person const& P,void*) //predicate function
{

Chapter 3. Addition, Removal, and Replacement of Elements 29

return P.GetTNumber()==“x”;
}
void main()
{

AddressList business;
Person A(“Peter Black”,“714-50706”);
Person B(“Carl Render”,“714-540321”);
Person C(“Sandra Summers”,“x”);
Person D(“Mike Summers”,“x”);
business.add(A);
business.add(B);
business.add(C);
business.add(D);
business.add(A); //Person A is added for the second time
cout << “\nThe set now contains ” << business.numberOfElements()

<<“ entries!\n”;
business.removeAll(noPhone); //Person B is removed from the set
cout << “\nThe set now contains ” << business.numberOfElements()

<<“ entries!\n”;
}

If you run the program, the set will only contain 2 elements as a result of the the
remove function. Try modifying the program so that all persons with a telephone
number are removed when the program is run.

“Chapter 1. Collection Classes Overview” on page 1
“Chapter 3. Addition, Removal, and Replacement of Elements” on page 27

“Add an Element to a Collection” on page 29

Add and Overload Member Functions
Typically you will not derive from any of the Collection Classes. When you must
derive classes from the Collection Classes be aware of the following:
1. The derived class only adds new member functions
2. The derived class overloads existing member functions. The derived collection

class will not be used in polymorphic way.

Collection classes do not have virtual functions. You cannot override the member
functions of a collection class.

For example, suppose you want to implement a set of integers that can give you
information about the sum of integers contained in the collection. You create a
class IntSet that is derived from ISet<int>. This class does the following:
1. Introduces the data member ivSum to hold the current sum.
2. Adds the member function sum, which returns the current sum.
3. Overloads the add member function so that it updates ivSum each time an

integer is added to the collection.

In a real application, any add, replace or remove member function would have to
be overloaded in order to update the sum of integers. For simplicity, this is not
done in the example below:
#include <iset.h>
class IntSet: public ISet<int> {

typedef ISet<int> Inherited;
public:

30 IBM Open Class: Collections

IntSet(INumber n = 100)
: ISet<int> (n), ivSum (0)

{
}
bool add(int const& i)
{

ivSum += i;
return Inherited::add(i);

}
int sum() const
{

return ivSum;
}

private:
int ivSum;

};
//...
IntSet anIntSet;
anIntSet.add(1);
anIntSet.add(2);
cout << anIntSet.sum () << endl;

The output of this program is 3.

“Chapter 1. Collection Classes Overview” on page 1
Hierarchy and Design of the Collection Classes

“Example: Abstract Class Hierarchy”

Example: Abstract Class Hierarchy
The following example defines a universal printer class that accepts an arbitrary
collection of jobs and prints their IDs. The elements are printed in the iteration
order that is defined for the given collection. The key set running can be used as
argument to the universal printer.
class JobPrinter {
public:

print (IACollection <Job*> const& jobs)
{

cout << “ID ...”
ICursor *cursor = jobs.newCursor ();
cout << “{ ”;
forICursor (*cursor) {

cout << jobs.elementAt (*cursor)->id() &l2. ' ';
}
cout << “}\n”;
delete cursor;

}
};
// ...
typedef IKeySet <Job*, JobId> JobSet;
JobSet running;
// ...
JobPrinter jobPrinter;
jobPrinter.print(running);

Chapter 3. Addition, Removal, and Replacement of Elements 31

“Chapter 1. Collection Classes Overview” on page 1
Hierarchy and Design of the Collection Classes

“Chapter 4. Copy and Reference Collections” on page 33“Add and Overload
Member Functions” on page 30

32 IBM Open Class: Collections

Chapter 4. Copy and Reference Collections

The Collection Classes implement no structure sharing between different collection
objects. The assignment operator and the copy constructor for collections are
defined to copy all elements of the given collection into the assigned or
constructed collection. You should remember this point if you are using collection
types as arguments to functions. If the argument type is not a reference or pointer
type, the collection is passed by the copy constructor, and changes made to the
collection within the called function do not affect the collection in the calling
function.

If you want a function to modify a collection, pass the collection as a reference:
void removeListMember (AddressList aList) { /* ... */ } // wrong
void removeListMember (AddressList & aList) { /* ... */ } // right

For the sake of efficiency, avoid having a collection type as the return type of a
function:
AddressList f()
{

AddressList aList;
// ...
return aList;

}
Business=f(); //Very inefficient

In this program Business becomes a reference argument to the assignment
operation, which would again copy the set. A better approach is:
void f(AddressList& aList) { /* ... */ }
// ...
f(Business);

“Chapter 1. Collection Classes Overview” on page 1
Hierarchy and Design of the Collection Classes

“Replace the Default Implementation” on page 24

© Copyright IBM Corp. 1998, 2000 33

34 IBM Open Class: Collections

Chapter 5. Implement Element- and Key-Type Functionality

The member functions of the Collection Class Library call other functions to
manipulate elements and keys. These functions are called element functions and
key-type functions, respectively.

Member functions of the Collection Class Library may, for example, use the
element’s assignment or copy constructors for adding an element, or they may use
the element’s equality operator for locating an element in the collection. In
addition, Collection Class functions use memory management functions for the
allocation and deallocation of dynamically created internal objects (such as nodes
in a tree or a linked list).

A given collection may require the following element functions:
v Default and copy constructor
v Destructor
v Assignment operator
v Equality test
v Ordering relation
v Key access
v Hash function

This list is the superset of all element functions and key-type functions that a
Collection Class can ever require. For example, a collection without keys does not
require any key-type functions, and a collection without element equality does not
require an equality test.

A given collection may require the following key-type functions:
v Equality test
v Ordering relation
v Hash function

Where possible, these functions are already defined by the Collection Class Library.
Default memory management functions are provided for usage with any element
and key type. For the standard C++ data types int and char*, defaults are offered
for all element and key-type functions. For all other element and key types, you
must provide these functions.

For implementation variants where both equality test and ordering relation are
required element functions (or where both are required key-type functions), the
library does not define which of the two is used to determine element or key
equality.

You can define these functions in three ways:
v Defining member functions of the element object type.
v Defining separate global functions.
v Using or defining an element operations class.

Some collections may require allocation and deallocation functions. The second and
third methods can also be used to replace the default memory management
functions for some of the collections.

© Copyright IBM Corp. 1998, 2000 35

Define Member Functions of the Element Object Type
The easiest way to provide the required element or key-type functions is to use
member functions. For assignment, equality, and ordering relation, operator=,
operator==, and operator< are used, respectively. Certain element functions and
key-type functions must be defined as member functions. Others cannot be defined
as member functions, but must be defined as separate functions.

You must define these functions using member functions:
v Constructors
v Destructors

Except for assignment, you must define member functions of a class as const. You
will get a compile-time error if you do not include const in these definitions.

The following example shows how member functions must be defined as const:
class Element {
public:

Element& operator= (Element const&);
IBoolean operator== (Element const&) const;
IBoolean operator< (Element const&) const;

};

The Collection Class Library does not check or use the return type of operator=().
The return type of equality and ordering relation must be compatible with type
IBoolean.

Define Separate Global Functions
You can use global functions to provide the required element and key functions. A
global function is a function that is not a member of any class. Use global
functions when, in instantiating the Collection Class, you have no control over the
element class and the element class does not define the appropriate functions.

The following functions must be defined as global functions that are not members
of any class:
v Functions for key access
v Functions for hashing
v Functions for memory management

The following shows what the declarations for these global functions must look
like:
void assign (Element&, Element const&);
IBoolean equal (Element const&, Element const&);
long compare (Element const&, Element const&);
Key const& key (Element const&);
unsigned long hash (Element const&, unsigned long);
IBoolean equal (Key const&, Key const&);
long compare (Key const&, Key const&);
unsigned long hash (Key const&, unsigned long);

You can also use global functions for the standard memory management functions,
as defined by the C++ language:
void* operator new (size_t);
void operator delete (void*);

The compare function must return a value that is less than, equal to, or greater
than zero, depending on whether the first argument is less than, equal to, or
greater than the second argument.

36 IBM Open Class: Collections

The hash function must return a value that is less than the second argument; this
value may be achieved, for example, by computing the remainder (operator%) with
the second argument. The hash function should evenly distribute over the range
between zero and the second argument. For equal elements or keys, the hash
element must yield equal results.

An efficient hash function is very important to the performance of your program.

For assign, equal, and compare, template functions are defined that will be
instantiated unless otherwise specified. The default for assign uses the assignment
operator, the default for equal uses the equality operator, and the default for
compare uses two comparisons with operator<. It is therefore advisable to define
your own compare function if the given element type has a more efficient
implementation available. Such definitions are already provided for integer types
using operator- and for char* using strcmp. By default, the standard memory
management functions are used. (Using operator- works for integer types because
the result of a-b can be used to determine whether a<b evaluates to true.)

The following examples demonstrate the use of a global function for the definition
of the key access. The element class is Person, its data member PersonName is the
key, and its member function GetPersonName is used to access the key.

Header File
The example below is the header file:
//person.h - header file containing class Person
#include <iostream.h>
#include <istring.hpp>
class Person {

IString PersonName; //This will be used as the key
IString TNumber;

public:
//constructor
Person() : PersonName(“”), TNumber(“”) {}
//copy constructor
Person(IString Name, IString Number)

: PersonName(Name), TNumber(Number)
{
}
IString const& GetPersonName() const { return PersonName; }
IString const& GetTNumber() const { return TNumber; }
IBoolean operator== (Person const& A) const
{

return (PersonName == A.GetPersonName()) &&
(TNumber == A.GetTNumber());

}
IBoolean operator<(Person const& A) const
{

return (PersonName < A.GetPersonName());
}

};
ostream& operator<<(ostream& os,Person A);
// Use separate function Key const& key (Element const&);
inline IString const& key (Person const& A) //Key access
{

return A.GetPersonName();
}

Main File
The example below is the main file.

Chapter 5. Implement Element- and Key-Type Functionality 37

//main.cpp - main file
#include “person.h” //person.h from the previous example
#include <ikeyset.h>
typedef IKeySet <Person,IString> AddressList;
ostream& operator<<(ostream& os,Person A)
{

return (os << endl << A.GetPersonName() << “ ” <<
A.GetTNumber());

}
void main()
{

AddressList Business;
AddressList::Cursor myCursor(Business);
Person A(“Peter Black”,“714-50706”);
Person B(“Carl Render”,“714-540321”);
Person C(“Sandra Summers”,“x”);
Person D(“Mike Summers”,“x”);
Business.add(A);
Business.add(B);
Business.add(C);
Business.add(D);
Business.removeElementWithKey(“Carl Render”);
forICursor(myCursor) {

cout<<Business.elementAt(myCursor);
}

}

Use or Define an Element Operation Class
You can use element operation classes in cases where you want to place elements
of one type into more than one collection, and where the element or key-type
functions are different for each collection. For example, suppose you require an
element type that is used to instantiate employee records that can be sorted either
by name or by salary. You can declare an element class Person, and then place
references to each Person instance into each of two collections. In one collection,
the key is the name; in the other, the key is the salary. In your program, you need
to define different element and key-type functions for hashing, comparison, and so
on. Because these functions are not identical for both collections, you cannot define
them within the class Person.

You can provide different sets of element and key-type functions for a given
element type and multiple collections, by using the IG... class template for the
collection you want to use. This class template lets you define element functions
separately from the element class. In the case of the employee program, you can
declare two classes as follows:
IGKeySortedSet <PersonPtr, int, SalaryOps> SalaryKSet;
IGKeySortedSet <PersonPtr, IString, NameOps> NameKSet;

You then need to define two other classes, SalaryOps and NameOps, which must
contain appropriate element and key-type functions.

When you do not provide element or key operations by using an IG... collection,
the standard class template (I... as opposed to IG...) defines default operations.
These default operations are declared in istdops.h.

The following excerpt shows the definition of the class templates for
ISequenceAsList and IGSequenceAsList:
template < class Element, class ElementOps >
class IGSequenceAsList { /* ... */ };
template < class Element >
class ISequenceAsList

38 IBM Open Class: Collections

: public IGSequenceAsList<Element, IStdOps<Element>>
{

/* ... */
};

The advantage of passing the arguments using an extra class instead of passing
them as function pointers is that the class solution allows inlining.

The following is a skeleton for operation classes. The keyOps member must only
be present for key collections. Note that all element and key operations must be
defined as const.
template <class Element, class Key>
class ...Ops {
public:

void* allocate (size_t) const;
void deallocate (void*) const;
void assign (Element&, Element const&) const;
IBoolean equal (Element const&, Element const&) const;
long compare (Element const&, Element const&) const;
Key const& key (Element const&) const;
unsigned long hash (Element const&, unsigned long) const;
class KeyOps
{

IBoolean equal (Key const&, Key const&) const;
long compare (Key const&, Key const&) const;
unsigned long hash (Key const&, unsigned long) const;

} keyOps;
};

You can inherit from the following class templates when you define your own
operation classes. Templates with argument type T can be used for both the
element and the key type.
class IStdMemOps {
public:

void* allocate (size_t) const;
void deallocate (void*) const;

};
template < class T >
class IStdAsOps
{

void assign (T&, T const&) const;
};
template < class T >
class IStdEqOps
{

IBoolean equal (T const&, T const&) const;
};
template < class T >
class IStdCmpOps
{

long compare (T const&, T const&) const;
};
template < class Element, class Key >
class IStdKeyOps
{

Key const& key (Element const&) const;
};
template < class T >
class IStdHshOps
{

unsigned long hash (T const&, unsigned long) const;
};

Chapter 5. Implement Element- and Key-Type Functionality 39

The file istdops.h defines the above templates. It also defines other templates that
combine the properties of one or more of the templates.

Things to Watch Out For
One of the C++ language rules states that function template instantiations are
considered before conversions. Because the Collection Classes define default
templates for element functions, functions such as equal or compare, defined for a
class, will not be considered for that class’s derived classes; the default template
functions will be instantiated instead. In the following example, the compiler
would attempt to instantiate the template compare function for class B, instead of
inheriting the compare function of class A and converting B to A:
class A {

// ...
};
long compare(A const&, A const&);
class B : public A {

// ...
};
ISortedSet BSet;

The instantiated default compare function for class B uses the operator< of B. If no
operator< for B can be found, a compilation error occurs. You must define
standard functions such as equal or compare for the actual element type B to
prevent the template instantiation of those functions, in case you want to provide a
class-specific equal or compare function for B.

“Chapter 1. Collection Classes Overview” on page 1
Hierarchy and Design of the Collection Classes
“Collection Characteristics” on page 2

“Define Equality Relation”
“Define Key or Element Equality” on page 41
“Define an Operations Class” on page 42
“Manage Memory with Element Operation Classes” on page 44

Define Equality Relation
A flat collection can have an equality relation defined for its elements. The default
equality relation is based on the element as a whole, not just on one or more of its
data members (for example, the key). For two elements to be equal, all data
members of both elements must be equal. The equality relation is needed for
functions such as those that locate or remove a given element. A flat collection that
has an equality relation has element equality.

For collections containing non-built-in types, you can define your own equality
relation to behave differently. For example, your equality relation could test only
certain data members of two elements to determine element equality. In such cases,
element equality may apply to two elements even when the elements are not
exactly equal.

The equality relation for keys may be different than the equality relation for
elements. Consider, for example, a job control block that has a priority and a job
identifier that defines equality for jobs. You could choose to implement a job
collection as unordered, with the job ID as key, or as sorted by priority, with the

40 IBM Open Class: Collections

priority as key. In the first case, you have fast access through the job ID but not
through the priority; in the second case, you have fast access through the priority
but not through the job ID. The ordering relation on the priority key in the second
case does not yield a job equality, because two jobs can have equal priorities
without being the same.
typedef unsigned long JobId;
typedef int Priority;
class Job {

JobId ivId; // These are private data members.
Priority ivPriority;

public:
JobId id () const { return ivId; }
Priority priority () { return ivPriority; }

};
// If ivId is the key:
JobId const& key (Job const& t)
{ return t.id (); }
// If ivPriority is the key:
Priority const& key (Job const& t)
{ return t.priority (); }
// ...

Functions like locateElementWithKey use the equality relation on keys to locate
elements within a collection. A collection that defines key equality may also define
element equality. Functions that are based on equality (such as locate) are only
provided for collections that define element equality. Collections that define neither
key equality nor element equality, such as heaps and sequences, provide no
functions for locating elements by their values or testing for containment. Elements
can be added and retrieved from such collections by iteration. For sequences,
elements can also be added and retrieved by position.

“Chapter 1. Collection Classes Overview” on page 1
Hierarchy and Design of the Collection Classes
“Collection Characteristics” on page 2

“Chapter 5. Implement Element- and Key-Type Functionality” on page 35
“Define Key or Element Equality”
“Define an Operations Class” on page 42
“Manage Memory with Element Operation Classes” on page 44

Define Key or Element Equality
A sorted collection must define either key equality or element equality. A sorted
collection that does not have a key defined must have an ordering relation defined
for the element type. This relation implicitly defines element equality.

Keys can be used to access a particular element in a collection. The alternative to
defining element equality as equality of all data members is to define it as equality
of keys only. (In the example below, this means defining job equality as equality of
the job ID.) Use this alternative only when you are sure that keys are unique.
When you use this alternative, you can locate an element only with the key (using
locateElementWithKey(key) instead of locate(element). Locating elements by key
improves performance, particularly if the complete element is large or difficult to
construct in comparison to the key alone. Consider the two alternatives in the
following example:

Chapter 5. Implement Element- and Key-Type Functionality 41

// First solution
JobId const& key (Job const& t) { return t.id; }
KeySet < Job, int > jobs;
// ...
jobs.locateElementWithKey (1);
// Second solution
IBoolean operator== (Job const& t1, Job const& t2)
{ return t1.id == t2.id; }
Set < Job > jobs;
// ...
Job t1;
t1.id = 1;
jobs.locate (t1);

The first solution is superior, if job construction (Job (t1) requires a significant
proportion of the total system resources used by the program.

The Collection Class Library provides sorted and unsorted versions of maps and
relations, for which both key and element equality must be defined. These
collections are similar to key set and key bag, except that they define functions
based on element equality, namely union and intersection. The add function
behaves differently toward maps and relations than it does toward key set and key
bag.

“Chapter 1. Collection Classes Overview” on page 1
Hierarchy and Design of the Collection Classes
“Collection Characteristics” on page 2

“Chapter 5. Implement Element- and Key-Type Functionality” on page 35
“Define Equality Relation” on page 40
“Define an Operations Class”
“Manage Memory with Element Operation Classes” on page 44

Define an Operations Class
To define an operations class, use the predefined templates for standard functions,
and define the specific functions individually.

Consider, for example, a person’s name (PersonName) and phone number
(TNumber). The name serves as the key for an address list, while the phone
number serves as the key for a phone list. Because the key function is already
defined to yield the person’s name, the phone list has to be instantiated in the
following way:

Header File
This is the header file:
//person.h - header file containing class Person
#include <iostream.h>
#include <istring.hpp>
#include <istdops.h>
class Person {

IString PersonName;
IString TNumber;

public:
//constructor
Person()

42 IBM Open Class: Collections

: PersonName(“”), TNumber(“”)
{
}
//copy constructor
Person(IString name, IString number)

: PersonName(name), TNumber(number)
{
}
IString const& GetPersonName() const { return PersonName; }
IString const& GetTNumber() const { return TNumber; }
IBoolean operator==(Person const& A) const
{

return (PersonName == A.GetPersonName()) &&
(TNumber==A.GetTNumber());

}
IBoolean operator<(Person const& A) const
{

return (PersonName < A.GetPersonName());
}

};
ostream& operator<<(ostream& os, Person A);
class PhoneOps : public IStdMemOps, public IStdAsOps<Person> {
public:

IString const& key(Person const& A) const
{

return A.GetTNumber();
}
IStdCmpOps <IString> keyOps;

};
inline IString const& key(Person const& A) //Key access
{

return A.GetPersonName();
}

Main File
This is the main file:
//main.cpp - main file
#include “person.h” //person.h from the previous example
#include <istdops.h>
#include <ikeyset.h>
typedef IKeySet <Person,IString> AddressList;
typedef IGKeySet <Person,IString,PhoneOps> PhoneList;
ostream& operator<<(ostream& os,Person A)
{

return (os << endl << A.GetPersonName() <<
“ ” << A.GetTNumber());

}
void main()
{

AddressList Business;
PhoneList PhoneBook;
AddressList::Cursor myCursor1(Business);
PhoneList::Cursor myCursor2(PhoneBook);
Person A(“Peter Black”,“714-50706”);
Person B(“Carl Render”,“714-540321”);
Person C(“Sandra Summers”,“x”);
Person D(“Mike Summers”,“x”);
Business.add(A);
Business.add(B);
Business.add(C);
Business.add(D);
PhoneBook.add(A);
PhoneBook.add(B);
PhoneBook.add(C);
PhoneBook.add(D);
cout << “\n\nPhoneBook before removing an element: ”;

Chapter 5. Implement Element- and Key-Type Functionality 43

forICursor(myCursor2) {
cout<<PhoneBook.elementAt(myCursor2);

}
cout << “\n\nPhoneBook after removing an element: ”;
PhoneBook.removeElementWithKey(“714-50706”);
forICursor(myCursor2) {

cout<<PhoneBook.elementAt(myCursor2);
}
cout << “\n\nBusiness before removing an element: ”;
forICursor(myCursor1) {

cout<<Business.elementAt(myCursor1);
}
cout << “\n\nBusiness after removing an element: ”;
Business.removeElementWithKey(“Peter Black”);
forICursor(myCursor1) {

cout<<Business.elementAt(myCursor1);
}

}

The functions that are required for a particular Collection Class depend not only
on the abstract class but also on the concrete implementation choice. If you choose
a set to be implemented through a hash table, the elements require a hash function.
If you choose a (sorted) AVL tree implementation, elements need a comparison
function. Even the default implementations may require more functions to be
provided than would be necessary for the collection interface.

“Chapter 1. Collection Classes Overview” on page 1
Hierarchy and Design of the Collection Classes
“Collection Characteristics” on page 2

“Chapter 5. Implement Element- and Key-Type Functionality” on page 35
“Define Equality Relation” on page 40
“Define Key or Element Equality” on page 41
“Manage Memory with Element Operation Classes”

Manage Memory with Element Operation Classes
The following illustrates the use of memory management with element operation
classes.

Suppose you want to use your own element operation class to provide a special
form of memory management. For example, you want an entire collection (the
collection body plus the elements) to reside in a database, or in shared memory. To
do this you can code:
IGSequenceAsList<Element, MyOperationsClass>

where MyOperationsClass is an element operations class you have coded, which
provides your own element allocate and deallocate operations. This class may or
may not inherit from previously described template classes, except that it must
inherit from IStdMemOps.

A certain instance of your collection is instantiated together with an instance of
your MyOperationsClass. You can retrieve the this pointer of this instance of
MyOperationsClass to find out where the collection is instantiated, and you can

44 IBM Open Class: Collections

use this address in your implementation of the allocate element function to allocate
your elements in the same memory pool where your collection resides.

“Chapter 1. Collection Classes Overview” on page 1
Hierarchy and Design of the Collection Classes
“Collection Characteristics” on page 2

“Chapter 5. Implement Element- and Key-Type Functionality” on page 35
“Define Equality Relation” on page 40
“Define Key or Element Equality” on page 41
“Define an Operations Class” on page 42

Chapter 5. Implement Element- and Key-Type Functionality 45

46 IBM Open Class: Collections

Chapter 6. Iteration

Iterating over all or some of elements of a collection is a common operation. The
Collection Classes give you two methods of iteration:
v Using cursors
v Using the allElementsDo function together with applicators or applicator

functions

Ordered (including sorted) collections have a well-defined ordering of their
elements, while unordered collections have no defined order in which the elements
are visited in an iteration. However, in both cases, each element is visited exactly
once.

You cannot add or remove elements from a collection while you are iterating over
a collection, or all elements may not be visited once. You cannot use any of the
iterations described in this section if you want to remove all of the elements of a
collection that have a certain property. Instead, use the function removeAll that
takes a predicate function as an argument.

Iteration with Cursors
A cursor is a reference to the position of an element in a collection. If the position
of that element changes, the cursor is invalidated. A cursor is always associated
with a collection. The collection is specified when the cursor is created. Each
collection function that takes a cursor argument has a precondition that the cursor
actually belongs to the collection. Simple functions, such as advancing the cursor,
are functions of the cursor itself.

With cursors the Collection Classes provide:
v An iteration scheme that is simpler than using applicators.
v The ability to define functions that return cursors. Such functions can give you

fast access to an element if it exists, or indicate the non-existence of an element
by returning an invalid cursor.

Cursors are only temporarily defined. As soon as elements are added to or
removed from the collection, existing cursors become undefined. When a cursor
becomes undefined, one of the three following situations occur:
1. The cursor is invalidated (isValid will return false).
2. The cursor remains valid and points to an element of the collection; however, it

may point to a different element than before.
3. The cursor remains valid but no longer points to an element of the collection.

Do not use an undefined cursor as an argument to a function that requires the
cursor to point to an element of the collection. The Collection Classes do not
provide any methods to determine whether or not a cursor is undefined.

Each concrete collection class, such as ISet<int>, has an inner definition of a class
Cursor that can be accessed as ISet<int>::Cursor.

Because abstract classes declare functions on cursors just as concrete classes do,
there is a base class ICursor for these specific cursor classes. To allow for the
creation of specific cursors for all kinds of collections, every abstract class has a
virtual member function newCursor, which creates an appropriate cursor for the
given collection object.

© Copyright IBM Corp. 1998, 2000 47

Iteration with allElementsDo
Cursor iteration has two possible drawbacks:
v For unordered collections, the explicit notion of an (arbitrary) ordering may be

undesirable for stylistic reasons. For example, it could mislead you (or another
programmer) into perceiving or exploiting an order where in fact the order does
not exist or is not guaranteed.

v Iteration in an arbitrary order might be done more efficiently using something
other than cursors. For example, with tree representations, a recursive descent
iteration may be faster than the cursor navigation, even though the time for
extra function calls must be considered.

The Collection Classes provide the allElementsDo function that addresses both
drawbacks by calling a function that is applied to all elements. The function
returns a value of type bool that tells whether the iteration should be continued or
not. For ordered collections, the function is applied in this order. Otherwise the
order is unspecified.

The function that is applied in each iteration step can be given in two ways:
directly as a C++ function, or by defining the function as a method of a
user-defined applicator class:
v As a C++ function: Code the function that you want to be applied to all

elements as a C++ function, then use allElementsDo to apply the function to the
elements.

v As an object of an applicator class: Derive your own class from one of the
applicator classes, IApplicator or IConstantApplicator. Redefine the virtual
function applyTo(). When you call allElementsDo(), the program will apply the
code in applyTo() to all the elements of your collection.

The second possibility is more flexible. You can add additional arguments to
applyTo() if needed. You can also reuse the applicator class.

“Chapter 1. Collection Classes Overview” on page 1

“Use Cursors to Locate and Access Elements”
“Use Cursors to Iterate Over a Collection” on page 50
“Use allElementsDo and Applicators to Iterate Over a Collection” on page 51

Use Cursors to Locate and Access Elements
Cursors provide a basic mechanism for accessing elements of collection classes. For
each collection, you can define one or more cursors, and you can use these cursors
to access elements. Collection Class functions such as elementAt, locate and
removeAt use cursors.

The elementAt function lets you access an element using a cursor. The elementAt
function returns a reference to an element, thereby avoiding copying the elements.
Suppose that an element had a size of 20KB and you want to access a 2-byte data
member of that element. If you use elementAt to return a reference to this element,
you avoid having to copy the entire element to a local variable.

48 IBM Open Class: Collections

Several other functions, such as firstElement or elementWithKey, return a reference
to an element. They can be thought of as first executing a corresponding cursor
function, such as setToFirst or locateElementWithKey, and then accessing the
element using the cursor.

You must determine if the element exists before trying to access it. If its existence
is not known from the context, it must first be checked.

To save the extra effort of locating the desired element twice (once for checking
whether it exists and then for actually retrieving its reference), use the cursor that
is returned by the locate function for fast element access:
//main.cpp - main file
#include <iset.h>
#include <iostream.h>
#include “person.h” //person.h from the previous examples
typedef ISet <Person> AddressList;
void main()
{

AddressList business;
AddressList::Cursor myCursor(Business); //Cursor definition
Person A(“Peter Black”,“714-50706”);
Person B(“Carl Render”,“714-540321”);
Person C(“Sandra Summers”,“x”);
Person D(“Mike Summers”,“x”);
Person E;
business.add(A);
business.add(B);
business.add(C);
business.add(D);
if (business.locate(B, myCursor)){

E=business.elementAt(myCursor) ;
}
else {

cout << “\nElement not in set !”;
}
business.remove(B); //myCursor is no longer valid
if (business.locate(B, myCursor)) {

E=business.elementAt(myCursor);
}
else {

cout << “\nElement not in set !”;
}

}

The elementAt function can also be used to replace the value of the referenced
element. You must ensure that the positioning property of the element is not
changed with respect to the given collection.

There are two versions of elementAt:

Element const& elementAt (ICursor const&) const
Element& elementAt (ICursor const&)

Use the first version of elementAt if you want to ensure that the located element
cannot be changed by any subsequent function.

“Chapter 1. Collection Classes Overview” on page 1
“Chapter 6. Iteration” on page 47

Chapter 6. Iteration 49

“Use Cursors to Iterate Over a Collection”
“Use allElementsDo and Applicators to Iterate Over a Collection” on page 51
“Use allElementsDo and Applicators to Iterate Over a Collection” on
page 51“Handle Exceptions with Cursors” on page 74

Use Cursors to Iterate Over a Collection
Cursor iteration can be done with a for loop. Consider the following example:
//main.cpp - main file
#include <iset.h>
#include <iostream.h>
#include “person.h” //person.h from the previous examples
typedef ISet <Person> AddressList;
ostream& operator<<(ostream& os,Person A)
{

return (os << endl << A.GetPersonName() << “ ” <<
A.GetTNumber());

}
void main()
{

AddressList Business;
AddressList::Cursor myCursor(Business);
Person A(“Peter Black”,“714-50706”);
Person B(“Carl Render”,“714-540321”);
Person C(“Sandra Summers”,“x”);
Person D(“Mike Summers”,“x”);
Person E;
Business.add(A);
Business.add(B);
Business.add(C);
Business.add(D);
//List of all elements in the set
for (myCursor.setToFirst();

myCursor.isValid();
myCursor.setToNext())

{
cout << Business.elementAt(myCursor);

}
}

AddressList::Cursor is the Cursor class that is nested within the class AddressList.
Its constructor takes a Business object as an argument. The name of the cursor
object in the example above is myCursor.

The Collection Classes define a macro forICursor that lets you write a cursor
iteration even more elegantly:
#define forICursor(c) \

for ((c).setToFirst(); \
(c).isValid(); \
(c).setToNext())

Use it like this:
forICursor(myCursor) {

cout << Business.elementAt(myCursor);
}

If the element is used read-only, a function of the cursor can be used instead of
elementAt(myCursor):

50 IBM Open Class: Collections

forICursor(myCursor) {
cout << myCursor.element(); //myCursor is associated to Business

}

The function element above is a function of the Cursor class. It returns a const
reference to the element currently pointed at by the cursor. The element returned
might therefore not be modified. Otherwise it would be possible to manipulate a
constant collection by using cursors.

To remove multiple elements from a collection, use the removeAll function with a
predicate function as an argument. Using cursor iteration to identify the elements
to remove causes the first element removed to invalidate the cursor.

“Chapter 1. Collection Classes Overview” on page 1
“Chapter 6. Iteration” on page 47

“Use Cursors to Locate and Access Elements” on page 48
“Use allElementsDo and Applicators to Iterate Over a Collection”
“Use allElementsDo and Applicators to Iterate Over a Collection”“Handle
Exceptions with Cursors” on page 74

Use allElementsDo and Applicators to Iterate Over a Collection
The following example shows the use of the allElementsDo function and
applicators.
//main.cpp - main file
#include <iset.h>
#include <iostream.h>
#include “person.h” //person.h from the previous examples
typedef ISet<Person> AddressList;
ostream& operator<<(ostream& os, Person A)
{

return (os << endl << A.GetPersonName() << “ ” <<
A.GetTNumber());

}
class ListApplicator: public IConstantApplicator<Person> {
public:

IBoolean applyTo(Person const& A)
{

cout << A;
return true;

}
};
void ListFunction(AddressList const& List)
{

ListApplicator LA;
List.allElementsDo (LA);

}
void main()
{

AddressList Business;
AddressList::Cursor myCursor(Business);
Person A(“Peter Black”,“714-50706”);
Person B(“Carl Render”,“714-540321”);
Person C(“Sandra Summers”,“x”);
Person D(“Mike Summers”,“x”);
Person E;
Business.add(A);

Chapter 6. Iteration 51

Business.add(B);
Business.add(C);
Business.add(D);
//List of all elements in the set
ListFunction(Business);

}

This time you get the address listing using an applicator.

“Chapter 1. Collection Classes Overview” on page 1
“Chapter 6. Iteration” on page 47

“Use Cursors to Locate and Access Elements” on page 48
“Use Cursors to Iterate Over a Collection” on page 50
“Use allElementsDo and Applicators to Iterate Over a Collection” on
page 51“Handle Exceptions with Cursors” on page 74

52 IBM Open Class: Collections

Chapter 7. Smart Pointers

In C++, variables and function arguments have their values copied when they are
assigned. This copying can decrease a program’s efficiency, especially when the
objects are large. To improve efficiency, pointers or references are often used for
common objects. For example, a pointer or reference to the object can be copied,
instead of the object itself.

For efficiency, pointers to elements can be used as collection element types, rather
than the elements themselves. References are not allowed as collection element
types.

The Collection Classes define five pointer classes, called smart pointers. You can
store these smart pointers, as well as standard C++ pointers, as elements in any
collection:
v IElemPointer
v IAutoPointer
v IAutoElemPointer
v IMngPointer
v IMngElemPointer

Smart Element Pointers
IElemPointer, IAutoElemPointer and IMngElemPointer are special smart pointers
that are designed to be kept as elements in a collection. If you store standard C++
pointers in a collection, the collection performs all element and key-type functions,
except assignment, on the pointers themselves rather than on the object to which
the pointer refers. This is not always what you intend. If you want the collections
to perform element functions, such as equality test, on the referenced elements
instead, use one of the smart element pointers (one of the classes named
IxxxElemPointer). They are objects which behave as pointers to the actual element.
With the element pointers, the elements themselves are not stored in the collection,
although information from the elements is used by Collection Classes functions.

Automatic Storage Management
IAutoPointer, IAutoElemPointer, IMngPointer and IMngElemPointer perform
storage management, which means that under certain conditions they
automatically delete the object to which they refer. Automatic pointers
(IAutoPointer and IAutoElemPointer) automatically delete the referenced object
when the automatic pointer instance is destructed or the automatic pointer is used
to point to another object. Managed pointers (IMngPointer and IMngElemPointer)
keep a reference count for each referenced object. The referenced object of a
managed pointer is deleted only when the last managed pointer to the object is
destructed.

IElemPointer does not provide automatic storage deallocation.

Automatic storage management is particularly useful when functions return
pointers or references to objects that they have created (dynamically allocated), and
the last user of the object is responsible for cleaning up.

To exploit the advantage of memory management, you can use non-element smart
pointers (IAutoPointer and IMngPointer), instead of standard C++ pointers,

© Copyright IBM Corp. 1998, 2000 53

without storing them in a collection. They behave similarly to standard C++
pointers. For example, if you check the equality of two such pointers from your
collection of pointers, true is only returned if the pointers point to the same
address (this is the same behavior as you would expect for native C++ pointers).

The auto_ptr Template Class
The Standard Template Library (STL) provides the auto_ptr template class. This
template class has the equivalent functionality of the IAutoPointer class, but does
not have any dependencies on the IBM Open Class. The auto_ptr template class is
defined in <memory>.

For more information about the auto_ptr template class refer to Bjarne Stroustrup’s
The C++ Programming Language, Chapter 14, “Exception Handling,” section 14.4.2.
This reference is included in the VisualAge C++ PDF files.

Collection Classes Overview

Construct Smart Pointers
Choose the Appropriate Smart Pointer Class
Use Automatic Pointers
Use Element Pointers
Use Managed Pointers

The C++ Programming Language: Exception Handling

Construct Smart Pointers
All smart pointers have two constructors: a default constructor that initializes the
pointer to NULL, and a constructor taking a C++ pointer to an element that you
must have created before (using new).

Implicit conversions from a C++ pointer to a managed or automatic pointer are
dangerous: elements might be implicitly deleted without your being aware that
this has happened. Therefore, the conversion functions for these classes take an
extra argument IINIT to make the construction explicit. Hence, the notation for
creating a managed or automatic pointer is:
IAutoPointer < E > ePtr (new E, IINIT);

After you have constructed a managed or automatic pointer from a C++ pointer,
you should no longer use the C++ pointer. You should only access the element
through the pointer of the given class. Otherwise, the element could be implicitly
destructed while a C++ pointer still refers to it. In particular, you must not
construct two managed pointers or two automatic pointers from the same C++
pointer, because this would cause the managed pointers to keep two separate
reference counts, and to implicitly delete the referenced element twice. For
example:
IString* s = new IString(“...”);
IMngPointer < IString > p1 (s, IINIT); // OK
IMngPointer < IString > p2 (s, IINIT); // NO!
// Do not use s a second time, because the compiler may try to
// delete the IString object referred to by s, p1, and p2 twice.

54 IBM Open Class: Collections

You should keep the following rule in mind when using managed or automatic
pointers created from standard pointers: Never use the C++ pointer once the
managed or automatic pointer has been created from it, because this may interfere
with the automatic storage management. For example, the object that is referenced
by a C++ pointer and by an automatic pointer created from this C++ pointer, is
deleted as soon as the automatic pointer gets out of scope. The C++ pointer then
points to undefined storage.

The extra IINIT argument is introduced to make such situations explicit and
especially to avoid the usage of the constructor as an implicit conversion operator.
The IINIT argument is defined as follows:
enum IExplicitInit {IINIT};

Basic Types
The smart pointers do not work with basic types such as int, long, and char.

Key Collections
If you implement a key collection containing element pointers, you must define
your key function with the element as input, not the pointer to the element, for
example:
typedef IKeySortedSet<IMngElemPointer<Element>,int> keySortedSetOfPointers;
int const& key(Element const& element)
{

return element.elementKey();
}

where elementKey returns the element’s key.

“Chapter 1. Collection Classes Overview” on page 1
Smart Pointers

“Choose the Appropriate Smart Pointer Class”
Use Automatic Pointers
“Use Element Pointers” on page 58
“Use Managed Pointers” on page 61

Choose the Appropriate Smart Pointer Class
The following features of Collection Classes pointer types give you the choices
shown in the table below. (Standard C++ pointers are included for comparison.)

Destruction of Pointed Objects

Not managed When out-of-scope Reference counted

Collections call
element operations
on pointer

Standard C++ pointer IAutoPointer IMngPointer

Collections call
element operations
on referenced object

IElemPointer IAutoElemPointer IMngElemPointer

Chapter 7. Smart Pointers 55

Smart pointers can only take arguments of type class or struct. This is because the
overloaded operator-> needs to return an object of such a type. You can apply
pointer objects from these five classes in the same way you use ordinary C++
pointers, with the * and -> operators. Elements are implicitly deleted except in the
case of IElemPointer. To delete an element referred to by an IElemPointer you must
use an explicit conversion to the referenced element type:
IElemPointer<E> ptr;
// ...
delete (E*) ptr;

Element Functions and Elements Referenced by Pointers
If you want element functions to work on the elements referenced by the pointers,
the Collection Classes offer the IElemPointer, IAutoElemPointer and
IMngElemPointer pointer classes, which are instantiated with the element type.
Pointers of these classes automatically apply all element functions, except for
assignment, to the referenced object. Element pointers are constructed from C++
pointers. The C++ dereferencing operators * and -> are defined, for element
pointers, to refer to the referenced objects.

The dynamically created elements are not automatically deleted when they are
removed from the collection.

“Chapter 1. Collection Classes Overview” on page 1
Smart Pointers

“Construct Smart Pointers” on page 54
Use Automatic Pointers
“Use Element Pointers” on page 58“Use Managed Pointers” on page 61

Use Automatic Pointers
Automatic pointers should be used when the lifetime of the element is the same as
the lifetime of the pointer, but when an explicit deletion of the element is awkward
or even impossible. This applies in particular to pointers to objects that are
dynamically created within a function, and whose lifetime is the scope of the
function. The function may be left through several return statements or through an
exception being thrown from some other function being called.

Assign One Automatic Pointer to Another
Using the assignment operator, the automatic pointer is used to point to another
element (which is implicitly a new element). The assigned pointer is set to NULL.

Hold Automatic Pointers in a Collection
If you define a collection taking automatic pointers as elements, the elements are
automatically deleted when the collection is destructed, when an element is
removed, or, if the element was not added to the collection, when the variable or
temporary holding the pointer is destructed. The following example deletes all
pointers that were added previously to the set with the destruction of the set:
#include “person.h” // Declaration of Person class
#include <istdops.h>
#include <iset.h>
typedef IAutoElemPointer<Person> AEPointer;
typedef ISet<AEPointer> AddressList;

56 IBM Open Class: Collections

ostream& operator<<(ostream& os,Person A)
{

return (os << endl << A.GetPersonName() <<“ ”<<A.GetTNumber());
}
void main()
{

AddressList Business;
AddressList::Cursor myCursor1(Business);
Business.add(AEPointer (new Person(“Peter Black”,“714-50706”),IINIT));
Business.add(AEPointer (new Person(“Carl Render”,“714-540321”),IINIT));
Business.add(AEPointer (new Person(“Sandra Summers”,“x”),IINIT));
Business.add(AEPointer (new Person(“Mike Summers”,“x”),IINIT));
//The temporary automatic pointer variables were set to NULL
//when the pointer was copied to the collection.
//The following deletes the second Person (“Sandra ...”), because it
//was not added (note that in a set, each element occurs only once).
{

Business.add(AEPointer (new Person(“Sandra Summers”,“x”),IINIT));
}
forICursor(myCursor1) {

cout << *Business.elementAt(myCursor1);
}

}

Transfer Automatic Pointers Between Functions
You should be aware of the implementation details described below when
transferring automatic pointers between functions. Consider the following cases:

Case 1: A calling function passes an automatic pointer to a called function and
the pointer is returned.

The following code passes an automatic pointer to a called function and the
pointer is returned.
IAutoPointer<Int> someFunc(IAutoPointer<Int> autoIntPtr)
{

return autoIntPtr;
}
...
main ()
{

IAutoPointer<Int> myIntPtr(new Int(5), IINIT);
cout << *someFunc(myIntPtr) << endl;

}

This program results in the following taking place at runtime:
v The main function constructs an IAutoPointer object autoIntPtr and initializes it

with the address of Int object 5 (where Int is a class that wraps an int).
v On invocation of someFunc, the copy constructor of IAutoPointer is called and

the new constructed auto pointer is initialized with the address of the given
input pointer. The given pointer is set to NULL. On return from someFunc, the
copy constructor of IAutoPointer constructs a new auto pointer in main and
initializes it with the address of the auto pointer object returned from someFunc,
which then is destructed.

v When main exits, it calls the destructors for all auto pointer objects and the
destructor for Int object 5.

Case 2: A called function has no input, but returns an object that has been
dynamically created using an automatic pointer.

The following code returns an object that has been dynamically created using an
automatic pointer.

Chapter 7. Smart Pointers 57

Int someFunc()
{

IAutoPointer<Int> autoIntPtr(new Int(6), IINIT);
return *autoIntPtr;

}
...
main()
{

cout << someFunc() << endl;
}

This program results in the following taking place at runtime:
v On invocation of someFunc, this function constructs an IAutoPointer object,

constructs an Int(6) object, and initializes the auto pointer with the address of
Int(6).

v On return from someFunc, the copy constructor of Int constructs a new Int(6)
object in main. The auto pointer object and the Int(6) object in someFunc are
destructed.

v On exit from main, the Int(6) object is destructed.

Automatic Pointer Copy Constructor and Assignment Operator
An automatic pointer’s copy constructor and assignment operator are defined in a
way that resets the source pointer to NULL. This prevents multiple automatic
pointers from pointing to the same element. In the following example, p2 is
implicitly set to NULL:
IAutoPointer<SomeType> p1, p2;
...
p1 = p2;

However, the copy constructor and assignment operator still take a const argument
(using a const cast-away) to maintain compliance with the standard interface for
these operations. This standard interface is required, for example, when you use
these types as element types in collections, because the copy constructor and
assignment operator are required to have such an interface. (Otherwise, the
collection’s add function could not take a const argument.)

“Chapter 1. Collection Classes Overview” on page 1
Smart Pointers

“Choose the Appropriate Smart Pointer Class” on page 55
“Construct Smart Pointers” on page 54
“Use Element Pointers”“Use Managed Pointers” on page 61

Use Element Pointers
If you create a collection of C++ pointers or pointers of type IMngPointer or
IAutoPointer, Collection Classes methods that use element comparison functions
will do the comparison on the elements’ pointers instead of on the elements
themselves.

Directing Element Functions to the Referenced Element
The classes IElemPointer, IMngElemPointer, and IAutoElemPointer internally use a
function called elementForOps to direct functions such as equal and compare to
the referenced element, so that they are not applied to the pointer itself and so that

58 IBM Open Class: Collections

instantiations such as ISet <IElemPointer <Person>> perform the functions on the
elements. This indirection is usually transparent but you must consider it when
you derive classes from the IElemPointer class. The standard operation classes first
apply a function elementForOps to the element before they apply the
corresponding non-member (equal, ...) function. By default, a corresponding
template function is instantiated for elementForOps which takes an element as
input and returns that element. For pointer classes that perform operations on the
pointers themselves (IAutoPointer, IMngPointer), this function takes the pointer as
input and returns the same pointer. For pointer classes that perform the operations
on the referenced elements (IElemPointer, IAutoElemPointer, IMngElemPointer),
this function takes the pointer as input and returns the referenced element. If a
class derived from IElemPointer<E> is used as a collection element type, the
default template functions must be instantiated before a conversion will be
considered. A derived class must therefore explicitly redefine the elementForOps
function, as shown in the following example, where class PersonPtr redefines both
versions of elementForOps by calling the default elementForOps with a PersonPtr
as argument. Both versions are then made to return a cast to Person reference.
//person.h - header file containing class Person
#include <iostream.h>
#include <istring.hpp>
#include <iptr.h>
class Person
{

IString PersonName; //This will be used as the key
IString TNumber;

public:
//constructor
Person () : PersonName(“”), TNumber(“”) {}
//copy constructor
Person(IString Name, IString Number)

: PersonName(Name), TNumber(Number)
{
}
IString const& GetPersonName() const { return PersonName; }
IString const& GetTNumber() const { return TNumber; }
IBoolean operator==(Person const& A) const
{

return (PersonName == A.GetPersonName()) &&
(TNumber==A.GetTNumber());

}
IBoolean operator<(Person const& A) const
{

return (PersonName < A.GetPersonName());
}

};
class PersonPtr : public IElemPointer<Person> {

friend inline Person& elementForOps (PersonPtr& A)
{

return (Person&)elementForOps((IElemPointer<Person>&)A);
}
friend inline Person const& elementForOps(PersonPtr const& A)
{

return (Person const&)elementForOps((IElemPointer<Person>&)A);
}

public:
PersonPtr() : IElemPointer<Person>() {}
PersonPtr(Person* ptr,IExplicitInit IINIT)

: IElemPointer<Person>(ptr,IINIT) {}
};
ostream& operator<<(ostream& os,Person A);

Chapter 7. Smart Pointers 59

inline IString const& key(Person const& A) //Key access
{

return A.GetPersonName();
};

This is the main file.
//main.cpp - main file
#include “person.h” //person.h from the previous example
#include <istdops.h>
#include <iset.h>
typedef ISet <PersonPtr> AddressList;
ostream& operator<<(ostream& os,Person A)
{

return (os << endl << A.GetPersonName() << “ ” <<
A.GetTNumber());

}
void main()
{

AddressList Business;
AddressList::Cursor myCursor1(Business);
PersonPtr Aptr (new Person(“Peter Black”,“714-50706”),IINIT);
PersonPtr Bptr (new Person(“Carl Render”,“714-540321”),IINIT);
PersonPtr Cptr (new Person(“Sandra Summers”,“x”),IINIT);
PersonPtr Dptr (new Person(“Mike Summers”,“x”),IINIT);
PersonPtr CopyCptr (new Person(“Sandra Summers”,“x”),IINIT);
Business.add(Aptr);
Business.add(Bptr);
Business.add(Cptr);
Business.add(Dptr);
Business.add(CopyCptr);
forICursor (myCursor1) {

cout << *Business.elementAt(myCursor1);
}

}

CopyCptr and Cptr refer to different memory addresses, so both of them could be
put into the set. Using element pointers rather than regular pointers, all collection
functions are done on the elements to which the pointers point. That is why a
pointer pointing on Sandra Summers is only entered once into the list.

Element Functions That Work on the Pointers Instead of the Referenced
Elements
If you do want element functions to work on the pointers instead of the referenced
elements, you do not need to implement equality and ordering relation for the
chosen pointer type (IAutoPointer, IMngPointer or C++ pointers). The compiler can
instantiate the default element function templates in such cases. If necessary, you
can implement your element functions for the referenced element type.

In the following example, adding, locating, and other functions are based on
pointer equality and ordering, and not on the equality defined for the Person type.
//main.cpp - main file
#include “person.h” //person.h from the previous example
#include <istdops.h>
#include <iset.h>
typedef IMngPointer <Person> ManagedPersonPtr;
typedef ISet <ManagedPersonPtr> AddressList;
ostream& operator<<(ostream& os,Person A)
{

return (os << endl << A.GetPersonName()
<< “ ” << A.GetTNumber());

}
void main()
{

60 IBM Open Class: Collections

AddressList Business;
AddressList::Cursor myCursor1(Business);
ManagedPersonPtr ptrA(new Person(“Peter Black”,

“714-50706”), IINIT);
ManagedPersonPtr ptrB(new Person(“Carl Render”,

“714-540321”), IINIT);
ManagedPersonPtr ptrC(new Person(“Sandra Summers”,

“x”), IINIT);
ManagedPersonPtr ptrD(new Person(“Mike Summers”,

“x”), IINIT);
ManagedPersonPtr copyPtrC(new Person(“Sandra Summers”,

“x”), IINIT);
Business.add(ptrA);
Business.add(ptrB);
Business.add(ptrC);
Business.add(ptrD);
Business.add(copyPtrC);
forICursor (myCursor1) {

cout << *Business.elementAt(myCursor1);
}

}

The variables copyPtrC and ptrC refer to different memory addresses, so both of
them are entered into the set even if the element they point to is identical. This is
because equality now refers to the pointers even though it is also defined for
Person.

“Chapter 1. Collection Classes Overview” on page 1
Smart Pointers

Implement Element- and Key-Type Functionality
“Choose the Appropriate Smart Pointer Class” on page 55
“Construct Smart Pointers” on page 54Use Automatic Pointers
“Use Managed Pointers”

Use Managed Pointers
Managed pointers keep a reference count for each referenced object (element).
When the last managed pointer to the object is destructed, the object is
automatically deleted. You should use managed pointers when you are unsure
who is responsible for deleting an object. This may occur where several pointers to
an object are introduced over time, and the order in which the pointers are
released is not known.

The following example shows how to use pointers from the IMngElemPointer
class:
//main.cpp - main file
#include “person.h” //person.h from the previous examples
#include <istdops.h>
#include <iset.h>
typedef IMngElemPointer <PersonPtr> MEPersonPtr;
typedef ISet <MEPersonPtr> AddressList;
ostream& operator<<(ostream& os,Person A)
{

return (os << endl << A.GetPersonName() << “ ” <<
A.GetTNumber());

}
void main()

Chapter 7. Smart Pointers 61

{
AddressList Business;
AddressList::Cursor myCursor1(Business);
MEPersonPtr Aptr (new Person(“Peter Black”,“714-50706”),IINIT);
MEPersonPtr Bptr (new Person(“Carl Render”,“714-540321”),IINIT);
MEPersonPtr Cptr (new Person(“Sandra Summers”,“x”),IINIT);
MEPersonPtr Dptr (new Person(“Mike Summers”,“x”),IINIT);
MEPersonPtr CopyCptr (new Person(“Sandra Summers”,“x”),IINIT);
Business.add(Aptr);
Business.add(Bptr);
Business.add(Cptr);
Business.add(Dptr);
Business.add(CopyCptr);
forICursor (myCursor1) {

cout << *Business.elementAt(myCursor1);
}
Business.remove(Cptr); //Remove pointer from collection

}

After removing the pointer from the collection, the managed pointer is
automatically deleted. In the example, the allocated Person will automatically be
deleted by the remove function unless it is referenced through another PersonPtr.

Managed Pointers and Copying Elements
If you want to create managed pointers for a collection and copy in elements from
a second collection that already contains managed pointers, you cannot use IINIT
because it will destroy the managed pointers in the second collection. To avoid this
situation, you can use the following notation:
typedef IMngElemPointer<PersonPtr> MyClassPtr;
typedef IKeySet<MyClassPtr> MyAddressList;
MyClassPtr pMyClass;
pMyClass = Business.elementWithKey(...);

In the above notation, Business is the collection from the previous examples, but
here it is an IKeySet collection rather than an ISet collection so that
elementWithKey can be used.

“Chapter 1. Collection Classes Overview” on page 1
Smart Pointers

“Choose the Appropriate Smart Pointer Class” on page 55
“Construct Smart Pointers” on page 54Use Automatic Pointers
“Use Element Pointers” on page 58

62 IBM Open Class: Collections

Chapter 8. Thread Safety and the Collection Classes

Like most of the IBM Open Class classes, the collection classes require thread safe
operation of multithreaded access to global data. The collections may be used in a
multithreaded environment, but any single instance of a collection may be
referenced by only one thread at a time. Different collections may be accessed
concurrently. For example, thread 1 references collection A concurrently with
thread 2 referencing collection B.

The collection classes offer built-in Guard objects to simplify the explicit
serialization needed to protect the collection instance. While serialization for global
data is still necessary, the built-in support helps to reduce the amount of
programming required. Note, however, that the locking of elements stored within a
collection is the responsibility of the user and is not provided as part of collection
class thread safety.

Restrictions
The current implementation does not provide any means to support users who
want to program in a multiprocessing environment with the Collection Classes.
These classes provide no built-in serialization support for multiple processes. As a
result, you cannot share collection objects between multiple processes without
adding your own serialization mechanism. The Collection Classes only support
thread safety within a single process.

“Chapter 1. Collection Classes Overview” on page 1
Open Class Threading Model

Insure Thread Safety with Guard Objects
“Instantiate a Guard Object” on page 64
“Use Guard Objects” on page 65
Start a Thread

Insure Thread Safety with Guard Objects
For each different collection abstraction, a Guard class similar to IResourceLock has
been defined and a corresponding typedef added:
template <class Element> class ICollectionGuard { ... };
typedef ICollectionGuard<Element> guard;

Essentially, a Guard object is an object created on a stack that is used to lock some
other object. Guard objects are useful in C++ because they respond properly to
exceptions. When an exception is thrown while still in the scope of the Guard
object, its destructor is called as the exception passes through the stack frame and
the destructor unlocks the target object. As a result, the exception can be caught
and dealt with by code further up the call chain without leaving the locked object
in an unusable locked state.

The Guard typedef can be used as if it was a nested class of a particular collection:

© Copyright IBM Corp. 1998, 2000 63

template <class Element>
class ICollectionGuard
{
public:

ICollectionGuard(
IACollection<Element>&, long timeout = -1);
xICollectionGuard();

private:
IACollection<Element>& ivCollection;

};

“Chapter 1. Collection Classes Overview” on page 1
“Chapter 8. Thread Safety and the Collection Classes” on page 63
Open Class Threading Model

“Instantiate a Guard Object”
“Use Guard Objects” on page 65

Instantiate a Guard Object
ICollectionGuard<Element> Constructor and Destructor
The Guard constructor takes the collection object to be locked and an optional
timeout value as parameters. The timeout value is specified in milliseconds. If a
lock request cannot be resolved within the specified range of time, an exception is
thrown. The timeout value defaults to -1 to indicate an indefinite wait. The value 0
informs the constructor to throw an exception if the lock is not immediately
available.

This parameter is only supported on non-POSIX (Windows) platforms. Other
platform implementations ignore the specification of this value.

The Guard destructor unlocks the Collection specified within the constructor of the
Guard.

Guard Copy Constructor
The Guard copy constructor is made private in order to prevent the user from
copying Guard objects.

Collection Constructor and Destructor
The collection does not keep track of all possible Guard objects currently in use
with the target collection. Guards for a collection must be destructed before the
collection itself is destructed. This is normally accomplished by declaring the
Guard within a compound statement so that it is automatically destructed when
the statement passes out of scope.

Collection Copy Constructor
If a new collection is created from an existing collection instance, the guards of the
existing collection have no effect on the new collection.

Return Codes and Exceptions
Since the Guard is constructed, there are no return codes. The Collection classes
use exceptions to indicate that a lock cannot be obtained. The user must code the

64 IBM Open Class: Collections

Guard constructor within a try/catch clause. When the Guard constructor fails and
the lock was not obtained for any reason, a C++ exception is thrown.

Deadlocks
In either of the above cases, you are responsible for the proper sequence of
obtaining the locks. There is no special code within the collection classes to prevent
the user from producing deadlocks.

“Chapter 1. Collection Classes Overview” on page 1
“Chapter 8. Thread Safety and the Collection Classes” on page 63
Open Class Threading Model

Insure Thread Safety with Guard Objects
“Use Guard Objects”

Use Guard Objects
In a user program, a Guard is used in the following way to obtain a lock on a
specific collection:

ISet<char> my_set;
try
{

ISet<char>::Guard g(my_set);
my_set.add('x');

}
catch (IException& e)
{

// handle exception
}

The critical region, in this case the add method invoked on the ISet<char>, must be
specified within a C++ compound statement. On entry to the block, the Guard
constructor locks the collection that is specified as the Guard constructor
parameter. The destructor is executed when the scope of the block is left at the
time the collection is unlocked. The specified name of the Guard object (g in the
above example) is arbitrary and plays no role in the locking.

Depending on the number of threads of a particular user application, multiple
Guard objects may exist that work with the same collection object.

For the Restricted Access Collections and the Tree Collections, two similar Guard
classes and corresponding typedefs are added. They are exposed to the user
through the following typedefs on the level of appropriate concrete collections:
typedef IRestrictedAccessCollectionGuard<Element> guard;
typedef ITreeGuard<Element> guard;

In the event that the user invokes a Collection method that involves two or even
three collections, code such as the following must be used in order to achieve
thread-safe execution:

try
{

ISet<char>::Guard l1(my_set1);
ISet<char>::Guard l2(my_set2);
my_set1.addAllFrom(my_set2);

}

Chapter 8. Thread Safety and the Collection Classes 65

catch (IException& e)
{

// handle exception
}

In the case of three involved collections, the following code must be used:
try
{

ISet<char>::Guard l1(my_set1);
ISet<char>::Guard l2(my_set2);
ISet<char>::Guard l3(my_set3);
my_set1.addInterSection(my_set2,my_set3);

}
catch (IException& e)
{

// handle exception
}

In cases such as these, where multiple locks must be acquired, it is important that
each section of code that acquires the locks do so in the same order. Not doing so
can result in deadlocks.

The programmer does not need to include any new header files. The typedef for
the ISet coding samples illustrated above is provided by the standard include file
iset.h.

“Chapter 1. Collection Classes Overview” on page 1
“Chapter 8. Thread Safety and the Collection Classes” on page 63
Open Class Threading Model

Insure Thread Safety with Guard Objects
“Instantiate a Guard Object” on page 64

66 IBM Open Class: Collections

Chapter 9. Support for Notifications

The Collection Classes include special classes that support notifications. For every
concrete flat collection class (for example ISequence), there is a corresponding
notification-enabled collection class (for example IVSequence).

All collection methods that modify a collection send notifications to observers. The
class IVCollection defines four notification IDs for collection classes:

Notification ID Description

addId Sent if an element is added to the collection.

removeId Sent if an element is removed from the
collection.

replaceId Sent if an element is replaced in the
collection.

modifyId Sent if a collection is changed in any way
other than those mentioned above.

For notifications addId, removeId and replaceId, you can use
INotificationEvent::eventData to access event data generated by collections. This
event data is an object that includes a cursor method to access a collection cursor.
The cursor points to the element referred to by the modification method. For
example, if addId is the notification, the cursor points to the added element. The
replaceId notification also gives you access to a copy of the element that was
replaced.

Collection notifications addId, removeId and replaceId pass a pointer to the class
IVCollectionEventData.

For the notifications addId and modifyId, the library sends notification after the
modification occurs. For the notification removedId and replaceId the library sends
notification before the collection is changed, otherwise you would not be able to
use the cursor to refer to the element being removed.

Notifications are only sent if the collection is changed by the method. The
following methods do not create a notification:
v removeAll() for an empty collection
v add(), when add() does not actually add an element (for example, because the

element already exists in a unique collection, or because the collection is full)
v remove() if the element is not in the collection
v locateOrAdd() if the element is already in the collection

“Chapter 1. Collection Classes Overview” on page 1
“Chapter 3. Addition, Removal, and Replacement of Elements” on page 27
Event Notification

© Copyright IBM Corp. 1998, 2000 67

“Use Collection Notification”
“Remove an Element from a Collection” on page 29Notify Observers
Synchronously

Use Collection Notification
The following example demonstrates the use of collection event data for a
sequence of IString objects. IString is the main string handling class provided by
the IBM Open Class Library.
#include <iobservr.hpp>
#include <inotifev.hpp>
#include <iseq.h>
#include <iostream>
template <class Notifier>
class Observer : public IObserver
{
public:

Observer(Notifier* notifier)
: ivNotifier(notifier)

{
handleNotificationsFor(*ivNotifier);

}
xObserver()
{

if (ivNotifier != 0)
stopHandlingNotificationsFor(*ivNotifier);

}
IObserver&
dispatchNotificationEvent(INotificationEvent const& event)
{

if (event.notificationId() == IVCollection::removeId)
{

std::cout << “IVCollection::removeId received” << std::endl;
}
else if (event.notificationId() == IVCollection::replaceId)
{

std::cout << “IVCollection::replaceId received” << std::endl;
}
else if (event.notificationId() == IVCollection::addId)
{

std::cout << “IVCollection::addId received” << std::endl;
}
else {

std::cout << “Unknown event received” << std::endl;
}
return *this;

}
private:

Notifier* ivNotifier;
};
int
main(int argc, char **argv)
{

IVSequence<long> seq;
IVSequence<long>::Cursor c(seq);
Observer<IVSequence<long> > observer(&seq);
seq.enableNotification();
seq.add(123,c);
std::cout << “element in collection: ”

<< seq.elementAt(c) << std::endl;
seq.replaceAt(c,456);
std::cout << “element in collection: ”

<< seq.elementAt(c) << std::endl;
seq.removeAt(c);

68 IBM Open Class: Collections

std::cout << “Number of elements in collection: ”
<< seq.numberOfElements() << std::endl;

return 0;
}

“Chapter 1. Collection Classes Overview” on page 1
“Chapter 9. Support for Notifications” on page 67
Event Notification

Notify Observers Synchronously

Chapter 9. Support for Notifications 69

70 IBM Open Class: Collections

Chapter 10. Collection Class Library Exceptions

Exceptions Defined and Used by the Collection Classes
The following is a hierarchy of the exceptions defined and used in the Collection
Classes. They all derive from IException, directly or indirectly.
v IException

– ICollectionResourceException
– ICollectionLockException
– ICollectionUnlockException
– ICollectionLockTimeOutException*
– IPreconditionViolation

- IChildAlreadyExistsException
- ICursorInvalidException
- ICyclicAttachException
- IEmptyException
- IFullException
- IIdenticalCollectionException
- IInvalidReplacementException
- IKeyAlreadyExistsException
- INotBoundedException
- INotContainsKeyException
- IPositionInvalidException
- IRootAlreadyExistsException

– IResourceExhausted
- IOutOfMemory

v IOutOfCollectionMemory

* This exception is not available on AIX. Due to inherent POSIX limitations,
the IBM Open Class collection classes do not support time-out processing in the AIX
environment. (Time-out processing allows you to specify a time limit for acquiring
a resource lock.)

Exception Causes
A precondition of a called function is a condition that the function requires to be
true when it is called. The calling function must assure that this condition holds.
The called function implementation may assume that the condition holds without
further checking it. If a precondition does not hold, the called function’s behavior
is undefined.

If you want to make your programs more robust and to locate errors in the test
phase, the functions your program calls should check to ensure that their
preconditions hold. The Collection Class Library enables this checking through
macro definitions. Because this checking often requires significant overhead, it is
turned off by default. You need only use it while you are testing the system and
verifying that preconditions are always met. See “Enable Exception Checking” on
page 74 in the Tasks section to learn how to turn this checking on and off.

© Copyright IBM Corp. 1998, 2000 71

A call to a function that violates the function’s preconditions has two possible
results:
v If the called function checks its preconditions, the function will throw an

exception.
v If the function does not check its preconditions, the behavior of the function is

undefined.

Precondition-Violations
The Collection Classes include the following precondition-violation exceptions:

Exception Description

IChildAlreadyExistsException Occurs when you try to add a child to a tree
using addAsChild at a position that already
contains a child.

ICursorInvalidException Two cursor properties may lead to the
ICursorInvalidException:

1. Every time a cursor is created, you must
specify the collection that it belongs to. If
a function takes a cursor as an argument
(such as add, setToFirst, and locate), the
function can only be applied to the
collection that the cursor belongs to. If
the function is applied to another
collection, the ICursorInvalidException
results.

2. If a function takes a cursor as an input
argument (such as elementAt, removeAt,
and replaceAt), the cursor must be valid.
A cursor is valid if it actually refers to
some element contained in the collection.
You can use the isValid function to
determine if a cursor is valid.

ICyclicAttachException Occurs when a function tries to attach a
child or a subtree at a position of a tree
(using the functions attachAsChild or
attachSubtreeAsChild, respectively) while
that child or subtree is the tree itself.

IEmptyException Occurs when a function tries to access an
element of an empty collection. Functions
that might cause this exception include
firstElement and removeFirstElement.

IFullException Occurs when a function tries to add an
element to a bounded collection that is
already full. Functions that might cause this
exception include add and addAsFirst.

IIdenticalCollectionException Occurs when the function addAllFrom is
called with the source collection being the
same as the target collection.

IInvalidReplacementException Occurs when, during a replaceAt function,
the replacing element has different
positioning properties than the positioning
properties of the element to be replaced.

72 IBM Open Class: Collections

Exception Description

IKeyAlreadyExistsException Occurs when a function attempts to add an
element to a map or sorted map that already
has a different element with the same key.
Functions that might cause this exception
include add and addAllFrom.

INotBoundedException Occurs when the function
maxNumberOfElements is applied to a
collection that is not bounded.

INotContainsKeyException Occurs when the function elementWithKey
is applied to a collection that does not
contain an element with the specified key.

Other Exceptions
The following lists the causes of the other exceptions defined or used by the
Collection Classes:

Exception Description

IOutOfCollectionMemory Occurs when the collection classes cannot
allocate any memory for its data structures,
including pointers and cursors. This class
inherits from IOutOfMemory.

IPositionInvalidException Occurs when a function specifies a position
that is not valid in a collection. The
functions that might cause this exception
include elementAtPosition,
removeAtPosition, and setToPosition.

IRootAlreadyExistsException Occurs when the function addAsRoot is
called for a tree that already has a root.

ICollectionResourceException Occurs when the Collection is constructed
and the creation of the internal Resource
object fails.

ICollectionLockException Occurs when an internal lock request fails.

ICollectionUnlockException Occurs when an internal unlock request
fails.

ICollectionLockTimeOutException Occurs when a time-out value is specified
during the construction of a Guard object
and the lock cannot be obtained within the
specified period of time.

Exceptions Caused by System Failures and Restrictions
System failures and restrictions are different from precondition violations. You
cannot usually anticipate them, and you have no opportunity to verify that such
situations, for example storage overflow, will not occur. These exceptions need to
be checked for, and an exception should be thrown if they occur.

“Chapter 1. Collection Classes Overview” on page 1
Exceptions in the IBM Open Class

Chapter 10. Collection Class Library Exceptions 73

“Enable Exception Checking”
“Chapter 11. Troubleshoot Collection Class Problems” on page 77

Enable Exception Checking
Some preconditions are more difficult to check than others. Consider the following
possible preconditions:
1. A cursor for a linked collection implementation still points to an element of a

given collection.
2. A collection is not empty.

In the production version of a program, it may be less efficient to check the first
precondition than the second.

The Collection Class Library provides three levels of precondition checking. They
are selected by the following C-preprocessor macro definitions:

Macro Description

Default Perform all precondition checks, except the
check that a cursor actually points to an
element of the collection.

INO_CHECKS Check for memory overflow. Other checks
may be eliminated to improve performance.

IALL_CHECKS Perform all precondition checks, including
the (costly) check that a cursor actually
points to an element of the collection. This
extra check can only fail for undefined
cursors.

Define the C-preprocessor macro to use them. You typically define them with the
appropriate compiler options. For example, you could include the following
directive in your project’s configuration file:
define(“INO_CHECKS”)

“Chapter 1. Collection Classes Overview” on page 1
“Chapter 10. Collection Class Library Exceptions” on page 71
Exceptions in the IBM Open Class

“Enable Exception Checking”
“Handle Exceptions with Cursors”
“Chapter 11. Troubleshoot Collection Class Problems” on page 77

Handle Exceptions with Cursors
Exceptions are not generally used to change the flow of control of a program
under normal circumstances. An example of using exceptions under normal
circumstances is a function that iterates through a collection, and exits from the
iteration by checking for the exception that is thrown when an invalid cursor is
used to access elements. When the iteration is complete, the cursor will no longer
be valid, and this exception will be thrown. This is not a good programming

74 IBM Open Class: Collections

practice. A function should explicitly test for the cursor being valid. To make this
possible, a function must efficiently test this condition (isValid, for the cursor
example).

There are situations where the test for a condition can be done more efficiently in
combination with performing the actual function. In such cases, it is appropriate,
for performance reasons, to make the situation regular (that is, not exceptional)
and return the condition as a IBoolean result.

Consider a function that first tests whether an element exists with a given key, and
then accesses it if it exits:
if (c.containsElementWithKey (key)) {

// ...
myElement = c.elementWithKey (key); // inefficient
// ...

}
else {

// ...
}

This solution is inefficient because the element is located twice, once to determine
if it is in the collection and once to access it. Consider the following example:
try {

// ...
myElement = c.elementWithKey (key); // bad: exception expected
// ...

}
catch (INotContainsKeyException) {

// ...
}

This solution is undesirable because an exception is used to change the flow of
control of the program. The correct solution is to obtain a cursor together with the
containment test, and then to use the cursor for a fast element access:
if (c.locateElementWithKey (key, cursor)) {

// ...
myElement = c.elementAt (cursor); // most efficient
// ...

}
else {

//...
}

“Chapter 1. Collection Classes Overview” on page 1
“Chapter 10. Collection Class Library Exceptions” on page 71
Exceptions in the IBM Open Class
“Chapter 6. Iteration” on page 47

“Enable Exception Checking” on page 74
“Handle Exceptions with Cursors” on page 74
“Chapter 11. Troubleshoot Collection Class Problems” on page 77
“Use Cursors to Locate and Access Elements” on page 48
“Use Cursors to Iterate Over a Collection” on page 50
“Use allElementsDo and Applicators to Iterate Over a Collection” on page 51

Chapter 10. Collection Class Library Exceptions 75

76 IBM Open Class: Collections

Chapter 11. Troubleshoot Collection Class Problems

The following table provides a short summary of problems you may encounter
when you use the Collection Class Library, and directs you to a section containing
hints for a solution.

Problem effect Problem area

“Compilation Errors Indicating a Problem with
Constructors”

Default constructor is missing

“Compilation Errors Indicating that an Element
Type or Function is not Declared” on page 78

Declaration of template arguments
and element functions not recognized

“Compilation Errors about Multiple Definitions” on
page 78

Header files may be included more
than once

“Compiler Warning of an Error in istdops.h” on
page 79

Global key function return value
incorrect

“Link or Bind Errors about Multiple Definitions” on
page 80

Header files may be included more
than once

“Link or Bind Error Indicating istdops.h” on
page 80

No declaration of global key function

“Unexpected Exception Tracing Output” on page 81 Trace function write is called whether
or not the related exception is caught

“Unexpected Results when Adding an Element to a
Unique Key Collection” on page 82

Global key function return value
incorrect

“Unexpected Results when Using Cursors” on
page 82

Undefined cursor used

“Chapter 1. Collection Classes Overview” on page 1

Compilation Errors Indicating a Problem with Constructors
Effect
You get a compiler error about a constructor. The errors you encounter may not be
exactly the same as the following:

The following is the message text from OS/2®:
itbseq.h(25:1) : (E) EDC3222:
“IGTabularSequence<ToyString,IStdOps<ToyString> >::Node” needs a
constructor because class member “ivElement” needs a constructor
initializer.
Names namesOfExtinct(animals.numberOfDifferentKeys());
animals.cpp(55:57) : informational EDC3207:
The previous message applies to the definition of template
“ITabularSequence<ToyString>”.

The following is the message text from AIX:

© Copyright IBM Corp. 1998, 2000 77

“/usr/vacpp/include/itbseq.h”, line 25.1: 1540-222:
(S) “IGTabularSequence<ToyString,IStdOps<ToyString> >::Node”
needs a constructor because class member “ivElement” needs a
constructor initializer.

“animals.cpp”, line 55.1: 1540-207:
(I) The previous message applies to the definition of template
“ITabularSequence<ToyString>”.

Reason
Compiler error messages indicating a problem with constructors for a collection are
typically related to the constructors defined for your element. Here the default
constructor for the element is missing.

Solution
Define the default constructor for the element class.

“Chapter 1. Collection Classes Overview” on page 1
Hierarchy and Design of the Collection Classes

“Chapter 11. Troubleshoot Collection Class Problems” on page 77

Compilation Errors Indicating that an Element Type or Function is not
Declared

Effect
You get compiler messages when processing templates indicating that an element
type or one of its required element functions is not declared.

Reason
The element type or element function is defined locally to the source file that
contains the template instantiation with the element type as its argument. The
prelink or prebind phase is executed only by using the header files. Therefore,
your declaration local to a source file is not recognized and causes these
compilation errors.

Solution
Move the corresponding declarations to a separate header file and include the
header file from the source file.

“Chapter 1. Collection Classes Overview” on page 1
Hierarchy and Design of the Collection Classes

“Chapter 11. Troubleshoot Collection Class Problems” on page 77

Compilation Errors about Multiple Definitions
Effect
You get compilation errors from symbols being defined multiple times.

78 IBM Open Class: Collections

Reason
The template instantiation needs to include the type declarations it received as
arguments. Your header files containing type declarations used in template classes
may automatically be included several times.

Solution
Protect your header files against multiple inclusion by using the following
preprocessor macros at the beginning and end of your header files:
#ifndef _MYHEADER_H_
#define _MYHEADER_H_ 1
...
#endif

Where _MYHEADER_H_ is a string, unique to each header file, representing the
header file’s name.

“Chapter 1. Collection Classes Overview” on page 1
Hierarchy and Design of the Collection Classes

“Chapter 11. Troubleshoot Collection Class Problems” on page 77

Compiler Warning of an Error in istdops.h
Effect
You get a compiler warning indicating a problem in istdops.h (the errors you
encounter may not be exactly the same as the following):

The following is the message text from OS/2:
j:\...\include\istdops.h(166:1) : warning EDC3285:

The address of a local variable or compiler temporary is being used
in a return expression.

j:\...\include\istdops.h(160:1) : informational EDC3207:
The previous message applies to the definition of template
“IStdKeyOps<Word,int>::key(const Word&) const”.

The following is the message text from AIX:
“/usr/vacpp/include/istdops.h”, line 166.1: 1540-151:

(I) auto compiler temporary of type “int” has been generated.
“/usr/vacpp/include/istdops.h”, line 160.1: 1540-207:

(I) The previous message applies to the definition of template
“IStdKeyOps<Word,int>::key(const Word&) const”.

Reason
Compiler error messages indicating a problem in istdops.h are related to the
element and key-type functions that you must define for your elements. These
functions depend on the collection and implementation variant you are using.

Your global-name-space function key returns the key by value instead of by
reference. A temporary variable is created for the key within the operator-class

Chapter 11. Troubleshoot Collection Class Problems 79

function key. The operator class function key returns the key by reference.
Returning a reference to a temporary variable causes unpredictable results.

The key function must return a reference and must also take a reference argument.
If the key function calls other functions to access the key, it must call those
functions with a reference to the object as an argument, and those functions must
return a reference to the key.

Solution
Verify that the global name-space function key correctly returns a key const&
instead of key.

“Chapter 1. Collection Classes Overview” on page 1
Hierarchy and Design of the Collection Classes

“Chapter 11. Troubleshoot Collection Class Problems” on page 77

Link or Bind Errors about Multiple Definitions
Effect
You get link or bind errors from symbols being defined multiple times.

Reason
The template instantiation needs to include the type declarations it received as
arguments. Your header files containing type declarations used in template classes
might automatically be included several times.

Solution
Verify that you did not define functions in the header files that declare types used
in templates. If you did, you must move them from the header file into a separate
source file or make them inline.

“Chapter 1. Collection Classes Overview” on page 1
Hierarchy and Design of the Collection Classes

“Chapter 11. Troubleshoot Collection Class Problems” on page 77

Link or Bind Error Indicating istdops.h
Effect
You are using a collection class with a key, and you get an error message during
the link or bind step indicating a problem in istdops.h (Note: the errors you
encounter may not be exactly the same as the following):

The message text for OS/2 is:
istdops.h(176): (E) EDC3013: “key” function is undefined.

80 IBM Open Class: Collections

The message text for AIX is:
“:/usr/lpp/xlC/include/istdops.h”, line 176:
1540-3013:

(S) “key” is undefined.

The message text for Solaris is:
“/.../.../include/istdops.h”, line 176:

(S) “key” is undefined.

Reason
You are using a collection class that requires the element class to provide a key and
you chose to use the method of using a global key function. You are using
collection class methods in a source file but the header file with the same name as
the source file does not contain a declaration (prototype) of the global key function.

While compiling the source file, which uses methods of the collection class, the
compiler has created or modified a temporary source file in the tempinc directory.
During the link or bind step, bind step, this source file is compiled to resolve
references to template code. The error message you encounter refers to this
compilation. The source file in the tempinc directory contains include directives for
the collection class template code. It also contains include directives for a header
file of the same name as the source file that uses the collection class methods. The
template code in istdops.h requires that the global key function be known at
compilation time. The only file that is included at this time is the header file with
the same name as your source file. The problem is that the source file is not
included at this time, so a definition or declaration of the global key function in
this file is not recognized by the compiler.

Solution
You must declare the global key function in the header file with the same name as
the source file that uses the collection class methods. The definition of the global
key function should be in the source file. If you are not sure which header file is
meant by the message, look in the source file found in the tempinc directory.

“Chapter 1. Collection Classes Overview” on page 1
Hierarchy and Design of the Collection Classes

“Chapter 11. Troubleshoot Collection Class Problems” on page 77

Unexpected Exception Tracing Output
Effect
You get unexpected exception tracing output on standard error, even though the
related exception causing the output is caught.

Reason
For each exception raised, the write function of class IException::TraceFn is called
and writes information about the raised exception to standard error. This trace
function write is called whether the related exception is caught or not.

Chapter 11. Troubleshoot Collection Class Problems 81

Solution
To suppress the trace output, provide your own IException::TraceFn::write tracing
function by subclassing IException::TraceFn and register the subclass with
setTraceFunction.

“Chapter 1. Collection Classes Overview” on page 1
Hierarchy and Design of the Collection Classes
Exceptions in the IBM Open Class

“Chapter 11. Troubleshoot Collection Class Problems” on page 77
Trace Exceptions

Unexpected Results when Adding an Element to a Unique Key
Collection

Effect
You are adding an element into a unique key collection, such as a key set or a
map, and you are sure that the collection does not yet contain an element with the
same key. Nevertheless, you get unexpected results: IKeyAlreadyExistsException,
or the element is not added and the cursor is positioned to a different element.

Reason
This problem has the same cause as the problem described for “Compiler Warning
of an Error in istdops.h” on page 79. However, you did not get the warning
message described above, because you compiled with a lower warning level.

Solution
Verify that the global key function correctly returns a key const& instead of key.

“Chapter 1. Collection Classes Overview” on page 1
Hierarchy and Design of the Collection Classes
“Chapter 3. Addition, Removal, and Replacement of Elements” on page 27

“Chapter 11. Troubleshoot Collection Class Problems” on page 77
“Add an Element to a Collection” on page 29

Unexpected Results when Using Cursors
Effect
You get unexpected results when using cursors. For example, the elementAt
function fails for the given cursor or returns an unexpected element.

Reason
You have used an undefined cursor. Cursors become undefined when an element
is added to or removed from the collection.

Solution
Cursors that become undefined must be rebuilt with an appropriate operation (for
example, locate) before they are used again. Rebuilding is especially important for

82 IBM Open Class: Collections

removing all elements with a given property from a collection. Elements cannot be
removed by coding a cursor iteration. Use the removeAll function that takes a
predicate function as its argument.

“Chapter 1. Collection Classes Overview” on page 1
Hierarchy and Design of the Collection Classes
“Chapter 6. Iteration” on page 47

“Chapter 11. Troubleshoot Collection Class Problems” on page 77
“Use Cursors to Locate and Access Elements” on page 48
“Use Cursors to Iterate Over a Collection” on page 50

Chapter 11. Troubleshoot Collection Class Problems 83

	Contents
	Notices
	Programming Interface Information
	Trademarks and Service Marks
	Industry Standards

	About This Book
	Chapter 1. Collection Classes Overview
	Collection Characteristics
	Types of Collections
	Examples of Using the Collection Classes
	Hierarchy and Design of the Collection Classes
	Class Template Naming Conventions
	Implementation Variants
	AVL Tree
	B* Tree
	Diluted Table
	Hash Table
	List
	Table

	Possible Implementation Paths
	Choose One of the Provided Implementation Variants
	Replace the Default Implementation

	Chapter 2. Instantiate the Collection Classes
	Implement Bounded Collections

	Chapter 3. Addition, Removal, and Replacement of Elements
	Add an Element to a Collection
	Remove an Element from a Collection
	Add and Overload Member Functions
	Example: Abstract Class Hierarchy

	Chapter 4. Copy and Reference Collections
	Chapter 5. Implement Element- and Key-Type Functionality
	Define Equality Relation
	Define Key or Element Equality
	Define an Operations Class
	Manage Memory with Element Operation Classes

	Chapter 6. Iteration
	Use Cursors to Locate and Access Elements
	Use Cursors to Iterate Over a Collection
	Use allElementsDo and Applicators to Iterate Over a Collection

	Chapter 7. Smart Pointers
	Construct Smart Pointers
	Choose the Appropriate Smart Pointer Class
	Use Automatic Pointers
	Use Element Pointers
	Use Managed Pointers

	Chapter 8. Thread Safety and the Collection Classes
	Insure Thread Safety with Guard Objects
	Instantiate a Guard Object
	Use Guard Objects

	Chapter 9. Support for Notifications
	Use Collection Notification

	Chapter 10. Collection Class Library Exceptions
	Enable Exception Checking
	Handle Exceptions with Cursors

	Chapter 11. Troubleshoot Collection Class Problems
	Compilation Errors Indicating a Problem with Constructors
	Compilation Errors Indicating that an Element Type or Function is notDeclared
	Compilation Errors about Multiple Definitions
	Compiler Warning of an Error in istdops.h
	Link or Bind Errors about Multiple Definitions
	Link or Bind Error Indicating istdops.h
	Unexpected Exception Tracing Output
	Unexpected Results when Adding an Element to a Unique KeyCollection
	Unexpected Results when Using Cursors

