
VisualAge® C++ Professional for AIX®

IBM® Open Class™: Application Control
Version 5.0

���

Edition Notice

This edition applies to Version 5.0 of IBM VisualAge C++ and to all subsequent releases and modifications until
otherwise indicated in new editions. Make sure you are using the correct edition for the level of the product.

© Copyright International Business Machines Corporation 1998, 2000. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Note!
Before using this information and the product it supports, be sure to read the general
information under “Notices” on page v.

Contents

Notices v
Programming Interface Information vii
Trademarks and Service Marks vii
Industry Standards viii

About This Book. ix

Chapter 1. Open Class Threading Model 1
Behavior of IBM Open Class Threads 2
Resources and Conditions 3
Thread-Specific Data. 4
Thread Scheduling 5
Multi-Processing Interface 5
Start a Thread 6

Chapter 2. Reference Counting 9
Use Reference Counted Objects 9
Use Counted Pointers 11

Chapter 3. Event Notification 17
Notification Classes. 19
Notification Structure 20
Notify Observers Synchronously 21
Notify Observers Asynchronously 25
Pass Data Along with Event Notification 29

Chapter 4. Application Resources . . . 31

© Copyright IBM Corp. 1998, 2000 iii

iv IBM Open Class: Application Control

Notices

Note to U.S. Government Users Restricted Rights -- use, duplication or disclosure
restricted by GSA ADP Schedule Contract with IBM Corp.

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION ″AS IS″
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1998, 2000 v

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Lab Director
IBM Canada Ltd.
1150 Eglinton Avenue East
Toronto, Ontario M3C 1H7
Canada

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

® (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. ® Copyright IBM Corp. 1998, 2000. All rights reserved.

vi IBM Open Class: Application Control

Programming Interface Information
Programming interface information is intended to help you create application
software using this program.

General-use programming interface allow the customer to write application
software that obtain the services of this program’s tools.

However, this information may also contain diagnosis, modification, and tuning
information. Diagnosis, modification, and tuning information is provided to help
you debug your application software.

Warning: Do not use this diagnosis, modification, and tuning information as a
programming interface because it is subject to change.

Trademarks and Service Marks
The following terms are trademarks of the International Business Machines
Corporation in the United States, or other countries, or both:

AIX
AS/400
DB2
CICS
C Set ++
IBM
Network Station
Object Connection
OS/2
OS/390
OS/400
Open Class
Operating System/2
Operating System/400
PowerPC 403
PowerPC 601
PowerPC 603
PowerPC 604
Presentation Manager
RS/6000
S/390
SAA
Systems Application Architechture
TeamConnection
VisualAge
WebSphere
Workplace Shell

Lotus, Lotus Notes, and Domino are trademarks or registered trademarks of the
Lotus Development Corporation in the United States, or other countries, or both.

Tivoli Management Environment, TME 10, and Tivoli Module Designer are
trademarks of Tivoli Systems Inc. in the United States, or other countries, or both.

Encina and DCE Encina Lightweight Client are trademarks of Transarc Corporation
in the United States, or other countries, or both.

Notices vii

Microsoft, Win32, Windows, Windows NT, and the Windows logo are trademarks
or registered trademarks of Microsoft Corporation in the United States, or other
countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

UNIX is a registered trademark in the U.S. and other countries licensed exclusively
through X/Open Company Limited.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks or registered
trademarks of Intel Corporation in the United States, or other countries, or both.

C-bus is a registered trademark of Corollary, Inc.

PC Direct is a registered tradmark of Ziff Communicatoins Company and is used
by IBM Corporation under license

Other company, product, and service names, which may be denoted by a double
asterisk(**), may be trademarks or service marks of others.

Industry Standards
VisualAge C++ Professional for AIX, Version 5.0 supports the following standards:
v The C language is consistent with the International Standard C (ANSI/ISO-IEC

9899–1990 [1992]). This standard has officially replaced American National
standard for Information Systems-Programming Language C (X3.159–1989) and
is technically equivalent to the ANSI C standard. VisualAge C++ supports the
changes adopted into the C Standard by ISO/IEC 9899:1990/Amendment 1:1994.

v The IBM Systems Application Architecture (SAA) C Level 2 language definition.
v The C++ language is consistent with the International Standard for Information

Systems-Programming Language C++ (ISO/IEC 14882:1998).
v The ISO/IEC 9945–1:1990/IEEE POSIX 1003.-1990 standard.
v The X/Open Common Applications Environment Specifications, System

Interfaces and Headers, Issue 4.

viii IBM Open Class: Application Control

About This Book

The information in this PDF document is also available in the online help.

To find this information, or any topics listed in this document as Related Concepts,
Related Tasks, or Related References, simply type the topic title into the search bar
in the top frame of your browser in the online help.

For some topics, the suggested references may already be contained in this
document. In such cases, there is a cross-reference to the page on which the related
topic appears.

© Copyright IBM Corp. 1998, 2000 ix

x IBM Open Class: Application Control

Chapter 1. Open Class Threading Model

A typical application is a single-threaded process. The path of execution enters the
main() function, runs the application and library methods, and terminates as it
exits main(). Within a process, the thread runs your code.

However, many threads may execute simultaneously within a single process,
independent to each other and to the main thread. Processes running more than
one thread are multi-threaded. Multiple processes running concurrently may also be
multi-threaded.

The operating systems that support IBM Open Class are themselves
multi-threaded. Therefore multi-threaded applications can take advantage of
hardware platforms that have multiple CPU devices. Threaded Open Class
applications can achieve tremendous performance gains over the default,
single-threaded, applications.

You must apply multiple threads programmatically. Each thread can run your
application’s global methods and objects’ methods. Sometimes two or more threads
are calling methods on the same object simultaneously. Several threads may
simultaneously call the same method or multiple methods that access the same
data belonging to the application object. When multiple threads contend for access
to the same data, you must synchronize, or serialize, their access.

To protect application data from simultaneous access by multiple threads of
execution, the Open Class library provides mutex locks, referred to as resources, and
event locks, referred to as conditions. Open Class classes and/or member functions
that are themselves protected from simultaneous access to multiple threads of
execution are thread-safe. Open Class classes and member functions are thread-safe
unless documented otherwise.

Open Class application objects typically use thread objects; unlike objects in other
threading models, they do not derive from a thread object or implement a
threading interface.

GUI and Non-GUI Threads
Open Class has two concrete base thread classes:
v INonGUIThread
v IThread

INonGUIThread is the basic thread class; however, IThread, which is derived from
INonGUIThread, offers additional threaded behavior for graphical user interface
situations. To start a thread within a process, you must explicitly use an object of
either INonGUIThread or IThread.

These two thread classes have no application state of their own. They share access
to the application objects’ data.

© Copyright IBM Corp. 1998, 2000 1

“Behavior of IBM Open Class Threads”
“Resources and Conditions” on page 3
“Thread-Specific Data” on page 4
“Thread Scheduling” on page 5

“Start a Thread” on page 6

Behavior of IBM Open Class Threads
The behavior of a multi-threaded process is non-deterministic; you do not know
the following:
v When a thread may run a member function.
v How many threads may be running the same member function concurrently.
v How many threads may be concurrently running member functions that access

the same data.

When C++ data is only accessible through member functions, synchronizing the
access to those member functions synchronizes access to the data. To ensure that
no more than one-thread-at-a-time is modifying the same data or that data is not
being read by one thread while another is modifying it, you can either do the
following:
v Bracket the accessing code with a static resource lock that can only be owned by

a single thread at a time.
v Protect the accessing code with a condition that blocks all threads from the

accessing code until that condition triggers either one or all the waiting threads
to access the code.

It is recommended that you not synchronize IThread objects, because they are
graphical user interface (GUI) threads. If IThread objects block, or sleep, they
might delay the response of the graphical user interface, depending upon the
operating system. For extended operations by an IThread object, that object should
launch an INonGUIThread object which can be synchronized instead.

The Thread Currently Running an Application Object’s Member Function
For GUI applications, call the IThread::current member function to obtain a
reference to the ICurrentThread object that represents the currently executing
thread. For non-GUI applications, call INonGUIThread::current to obtain a
reference to the ICurrentNonGUIThread object that represents the currently
executing thread.

The ICurrentThread class represents the current thread of execution for a GUI
application. The IBM Open Class allows only a single object of this class. The
ICurrentThread class lets you do the following:
v Call application member functions that only the current thread of execution can

invoke
v Set/query attributes for the currently executing thread
v Start event processing
v Suspend the current thread until another thread has terminated

The ICurrentNonGUIThread class represents the current thread of execution for a
non-GUI application. The IBM Open Class allows only a single object of this class.

2 IBM Open Class: Application Control

The ICurrentNonGUIThread has the functionality of ICurrentThread without the
GUI support, such as the ability to start event processing.

“Chapter 1. Open Class Threading Model” on page 1
“Resources and Conditions”
“Thread-Specific Data” on page 4
“Thread Scheduling” on page 5

“Start a Thread” on page 6

Resources and Conditions
Resource Locking
An IResource object is a lock you can use to serialize thread access to code.
Typically, a class declares a single static IResource object that is shared by all the
objects of this class. IResource is an abstract base class. IResource objects are
instances of either subclass:
v IPrivateResource (synchronizing within the same process)
v ISharedResource (synchronizing among concurrent processes)

An application object must have a lock in every public and protected method that
accesses the same data. You would not need to put a lock in private methods, as
long as all the public/protected methods which call that private method have locks
in their body that precede the call. The following method is structured for the first
thread entering the method’s body to lock the static resource, thereby blocking any
other threads from calling this code until the owning thread exits this method:
class myClass
{

IPrivateResource myLock;
myClass::myLockedMethod()
{

IResourceLock mySetLock(myLock);
// locking for the remainder of
// myLockedMethod occurs here
// ...
// single-threaded access assured for the remainder
// of myLockedMethod

}
// mySetLock is deleted and myLock is unlocked when
// myLockedMethod goes out of scope

}

The IResourceLock object implicitly calls the functions IPrivateResource::lock and
IPrivateResource::unlock. Open Class automatically calls the IResourceLock
destructor if either the thread exits the bracketing method or if an exception is
thrown. IResourceLock saves you from explicitly calling its destructor or from
using try/catch blocks for exceptions which depend upon destroying the
IResourceLock object.

Event Monitoring
Class ICondition monitors for an event. An ICondition object blocks all threads

Chapter 1. Open Class Threading Model 3

from access to the subsequent code. The ICondition object can signal the first
waiting thread to run the protected code, or it can broadcast to unblock all of the
waiting threads.

“Chapter 1. Open Class Threading Model” on page 1
“Behavior of IBM Open Class Threads” on page 2
“Thread-Specific Data”
“Thread Scheduling” on page 5

“Start a Thread” on page 6

Thread-Specific Data
Per-thread data never needs to be synchronized. You can create thread-specific data
(per-thread instance data) using the following steps:
1. Derive your application object from IThreadFn.
2. Create the data variables you want within your derived class.
3. Implement the virtual IThreadFn::run() method to use that data.

Application objects derived from IThreadFn must also use an INonGUIThread or
IThread object to start a thread’s execution.

Open Class provides another technique for creating per-thread data. You can use
the template class IThreadLocalStorage to create per-thread global variables that
may be needed by a library or application.These variable serve as thread-specific
global pointers. An IThreadLocalStorage object cannot be instanced by new(), nor
can be declared by any object or within the main() function. An
IThreadLocalStorage object must be declared globally.

An IThreadLocalStorage object can access a single type of data, which will have an
initial value of 0. If you want many types of data referenced by an
IThreadLocalStorage object, create a helper class that contains all the desired data
types, and then pass it to the IThreadLocalStorage template construction. For
optimal performance, do not create a separate IThreadLocalStorage object for every
type of data you want this thread to store.

In previous versions of Open Class, IThread handled thread-local storage (which is
still supported). However, IThreadLocalStorage improves the implementation.

“Behavior of IBM Open Class Threads” on page 2
“Resources and Conditions” on page 3
“Chapter 1. Open Class Threading Model” on page 1“Thread Scheduling” on
page 5

“Start a Thread” on page 6

4 IBM Open Class: Application Control

Thread Scheduling
Often an application creates more threads than the hardware had processors. You
can designate some threads to be run before considering running other threads by
assigning relative priorities to the threads; this is how you can schedule the
multi-threaded execution. In previous versions of Open Class, thread scheduling
was based on the OS/2® model (which is still supported). However, new
scheduling application code is portable to Windows NT® and AIX as well as OS/2.

Open Class prioritizes execution using a priority class and a priority level. In the
OS/2 model, both processes and threads had their own priority classes and their
own priority levels. Priority classes were specified with an enum, and priority
levels were specified with integers (available in the OS/2 system’s scheduling).

Scheduling in this release uses the Windows NT model: processes can only have a
priority class, and threads can only have a priority level. Thus, the process
automatically sets the priority class for all of its threads, but each thread can
set/reset its own priority within the process. Both process priorities and thread
priorities are specified as enumerated types.

Process scheduling uses the following enum:

enum INonGUIApplication::EProcessPriority

Thread scheduling uses the following enum:

enum INonGUIThread::EThreadPriority

“Chapter 1. Open Class Threading Model” on page 1
“Behavior of IBM Open Class Threads” on page 2
“Resources and Conditions” on page 3
“Thread-Specific Data” on page 4

“Start a Thread” on page 6

Multi-Processing Interface
Just as a user can interactively launch additional processes while one process is
already running, a process itself can programmatically spawn secondary processes.
IBM Open Class’s process API is both object-oriented and open, allowing you to
spawn external processes on Windows NT, OS/2, and AIX with the same source
code.

These components constitute the process API:

Component Description

IExternalProcess Use to spawn a new process

INonGUIApplication Use to control the external process

IApplication Use to control a GUI process

ICurrentNonGUIApplication Use to access the current active process

ICurrentApplication Use to access the current active GUI process

Chapter 1. Open Class Threading Model 5

Component Description

IProcessId Use to identify a process

enum EProcessPriority Use to set the priority for running a process
relative to other concurrent processes

Each process can spin multiple threads to run within it. Therefore, an Open Class
application can be both multi-process and multi-threaded.

“Chapter 1. Open Class Threading Model” on page 1

“Start a Thread”

Start a Thread
To start a thread within a process, use either INonGUIThread or IThread to
represent the thread. Pass the code you want the thread to run to either the
thread’s constructor or to its start() method. You can wrap your thread code as a
global function, as a class method, or as an object reference.

These examples pass a user-defined function, mythreadedFunction(), to a thread to
run when it calls start(). Functions passed to thread constructors must be declared
to be of type _Optlink or type _System (_Optlink and _System functions return
void).
void _Optlink myThreadedFunction()
{

// Your code, to be executed in
// the new thread, goes here.

}

If you want to thread a function that has arguments, choose from the following
types:
v _Optlink functions take a void* argument type
v _System functions take an unsigned long argument type

void* threadArgs;

The following examples illustrate how to launch a thread to run your user-defined
function:
v Pass the code you want threaded to the constructor of IThread or

INonGUIThread; the new thread waits for the object’s call to start() to begin
execution.
void main()
{

INonGUIThread myThread(myThreadedFunction, threadArgs);
// ...
myThread.start();

}

v Call the default constructor for either IThread or INonGUIThread; pass the code
that you want threaded to start().

6 IBM Open Class: Application Control

void main()
{

IThread *myThread = new IThread();
// ...
myThread->start(myThreadedFunction, threadArgs);

}

v Pass a pointer to an object of a class derived from IThreadFn, in which you have
implemented run(), to either an IThread or INonGUIThread constructor.

// Assume myThreadFn is a subclass of IThreadFn
IThread myThread(myThreadFn,threadArgs);
// ...
myThread.start();
// myThread.start() automatically executes
// myThreadFn::run()

You must create the IThreadFn* pointer with operator new; the IBM Open Class
thread classes will delete this pointer after the thread has been started.

v Pass a pointer to an object of a class derived from IThreadFn, in which you have
implemented run(), to either the start() function of an IThread or
INonGUIThread object.

IThread myThread();
// ...
// Assume myThreadFn is a subclass of IThreadFn
myThread.start(myThreadFn,threadArgs);
// myThread.start() automatically executes
// myThreadFn::run()

You must create the IThreadFn* pointer with operator new; the IBM Open Class
thread classes will delete this pointer after the thread has been started.

The following example code demonstrates the use of the INonGUIThread class. It
creates two classes derived from IThreadFn. Each of these classes overrides the
IThreadFn::run() member function. The main function creates a thread for each of
these classes, then starts both threads:
#include <ingthrd.hpp>
int done_1 = 0;
int done_2 = 0;
class TestFn : public IThreadFn
{
public:

virtual void run()
{

cout << “First line, TestFn” << endl;
INonGUIThread::current().sleep(10);
cout << “Second line, TestFn” << endl;
INonGUIThread::current().sleep(10);
cout << “Third line, TestFn” << endl;
INonGUIThread::current().sleep(10);
cout << “Fourth line, TestFn” << endl;
INonGUIThread::current().sleep(10);
cout << “Fifth line, TestFn” << endl;
done_1 = 1;

}
};
class TestFn2 : public IThreadFn
{
public:

virtual void run()
{

cout << “First line, TestFn2” << endl;
cout << “Second line, TestFn2” << endl;
cout << “Third line, TestFn2” << endl;
cout << “Fourth line, TestFn2” << endl;

Chapter 1. Open Class Threading Model 7

cout << “Fifth line, TestFn2” << endl;
done_2 = 1;

}
};
void main()
{

TestFn *aThreadObj1 = new TestFn;
TestFn2 *aThreadObj2 = new TestFn2;
INonGUIThread myThread1;
INonGUIThread myThread2;
myThread1.start(aThreadObj1);
myThread2.start(aThreadObj2);
while (1)
{

if (done_1 && done_2)
break;

}
}

The following is the output of the above code:
First line, TestFn
First line, TestFn2
Second line, TestFn2
Third line, TestFn2
Fourth line, TestFn2
Fifth line, TestFn2
Second line, TestFn
Third line, TestFn
Fourth line, TestFn
Fifth line, TestFn

“Chapter 1. Open Class Threading Model” on page 1
“Behavior of IBM Open Class Threads” on page 2
“Resources and Conditions” on page 3
“Thread-Specific Data” on page 4
“Thread Scheduling” on page 5
“Multi-Processing Interface” on page 5

8 IBM Open Class: Application Control

Chapter 2. Reference Counting

Reference counting is the technique of keeping track of how many pointers refer to a
given object. This technique helps prevent memory errors. For example, suppose
you have several pointers referring to a given object. If you delete all those
pointers and forget to delete the object, your program will leak memory. Reference
counting alleviates this by deleting an object automatically when no pointers refer
to it.

A reference counted object is an object that keeps track of the number of pointers that
refer to it. This number is called the reference count. When the reference count
reaches zero, the reference counted object is automatically deleted. You create
reference counted objects with the IMRefCounted class. This class has two member
functions that change the reference count:
v addRef() increments the reference count by one
v removeRef() decrements the reference count by one

The IMRefCounted class is similar to the IRefCounted class provided by the IBM
Open Class library in the past. This version of IMRefCounted differs in two ways:
v IMRefCounted is thread safe. That is, its addRef(), removeRef(), and count()

member functions can be called from multiple threads simultaneously without
causing data corruption.

v When an IMRefCounted object is created, its initial reference count is set to 0
rather than 1, which is what IRefCounted uses. An initial count of 0 makes
IMRefCounted work much more cleanly with counted pointer classes such as
ICountedPointerTo.

Counted pointers are objects that behave like C++ pointers that you use for reference
counting. Use the ICountedPointerTo templatized class when creating counted
pointers. You can use this class for reference counting both IMRefCounted objects
and objects that do not descend from IMRefCounted.

The ICountedPointerTo class automatically calls addRef() and removeRef() on the
object to which it points. In contrast, you have to remember to call addRef() and
removeRef() yourself whenever you create and throw away a regular C++ pointer
to a reference counted object. This is a large source of potential errors. If you forget
to call removeRef(), your program will leak memory. If you forget to call addRef(),
an object might be deleted while you are using it.

When you use ICountedPointerTo for reference counting objects that do not
descend from IMRefCounted, you must follow some rules that are described in the
task Use Counted Pointers.

“Use Counted Pointers” on page 11
“Use Reference Counted Objects”

Use Reference Counted Objects
You cannot use the IMRefCounted class directly; you must derive a new class from
it. To enforce this, its constructors and destructor are all declared protected.

© Copyright IBM Corp. 1998, 2000 9

When using an IMRefCounted subclass, you can call the following public
functions:

Function Description

addRef() Increments the object’s reference count by
one. Use this method when you create a
new pointer that aliases a reference counted
object.

removeRef() Decrements the object’s reference count by
one. Use this method when you are finished
using a pointer that aliases the object.

count() Return the object’s current reference count.
This is useful when you want to implement
copy-on-write semantics, because it allows
you to find out if anyone else is using the
object.

When you are using IMRefCounted objects with raw C++ pointers, you must
remember to call addRef and removeRef at the appropriate times, as in the
following example:
class Foo : public IMRefCounted
{

// ...
};
//...

Foo *fooPtr = new Foo();
// Added a pointer, so increase the ref count
fooPtr->addRef();
// Could increase the ref count if it needs to.
functionCall(fooPtr);
// Finished using fooPtr
fooPtr->removeRef();

}

To implement copy-on-write semantics for a class, you typically use an internal
implementation object that is reference counted and copied only when needed, as
in the following example:
class Bar
{

public:
void setValue(int i);

private:
// BarImp is IMRefCounted
BarImp *fImp;

};

void Bar::setValue(int i)
{

if (fImp->count() > 1)
{

// My implementation is shared,
// so make my own private copy
BarImp *temp = new BarImp(*fImp);
fImp->removeRef();
fImp = temp;
fImp->addRef();

}
fImp->assign(i);

}

10 IBM Open Class: Application Control

Deriving a Class from IMRefCounted
When deriving your own class of IMRefCounted, the only real issue is whether
you want to force clients to use your class in a reference-counted manner, or
whether you want to allow them to use the class with normal stack or heap
allocation semantics. If you want to force clients to do reference counting, make the
destructor protected. This will prevent clients from allocating your class on the
stack and from deleting heap objects of that class; they will instead have to call the
removeRef() method that it inherits from IMRefCounted.

“Chapter 2. Reference Counting” on page 9

“Use Counted Pointers”

Use Counted Pointers
The ICountedPointerTo is the counted pointer class provided by the IBM Open
Class. The ICountedPointerTo class automatically calls addRef() and removeRef()
on the object to which it points. In contrast, you have to remember to call addRef()
and removeRef() yourself whenever you create and throw away a regular C++
pointer to a reference counted object. The following is an ICountedPointerTo
equivalent to the first example in the task Use Reference Counted Objects:
class Foo : public IMRefCounted
{

// ...
};
// ...

ICountedPointerTo<Foo> fooPtr = new Foo(); // Calls addRef()
functionCall(fooPtr);
// removeRef called automatically by fooPtr's destructor()

Implementing copy-on-write semantics for a class is easier with the
ICounterPointedTo class. The following example is equivalent to the second
example in the task Use Reference Counted Objects:
class Bar
{

public:
void setValue(int i);

private:
// BarImp is IMRefCounted
ICountedPointerTo<BarImp> fImp;

};
void Bar::setValue(int i)
{

if (fImp->count() > 1)
{

// My implementation is shared,
// so make my own private copy
fImp = new BarImp(*fImp);

}
fImp->setValue(i);

}

The statement fImp = new BarImp(*fImp); works because ICountedPointerTo’s
assignment operator is smart enough to call removeRef and addRef on the old and
new objects that are pointed to by the ICountedPointerTo object. For details, see
the Assignment and Copying section below.

Chapter 2. Reference Counting 11

Use Reference Counting with Non-IMRefCounted Objects
Sometimes you want to use reference counting on objects of an existing class that
does not inherit from IMRefCounted. ICountedPointerTo allows you to do this
easily. ICountedPointerTo takes one of your existing classes as its template
argument. If this class does not inherit from IMRefCounted, ICountedPointerTo
adds a reference-counted wrapper around your objects to enable reference
counting. For example, the following code will still work even though Foo does not
inherit from IMRefCounted:
class Foo
{

// ...
};
// ...

// The ICountedPointerTo constructor will create a
// reference-counted wrapper around the Foo object.
ICountedPointerTo<Foo> fooPtr = new Foo();
functionCall(fooPtr);
// removeRef called automatically by fooPtr's destructor

In order for this to work, you must always use ICountedPointerTo rather than raw
C++ pointers to ensure that there is only one wrapper object for each object you
want to reference count. Because ICountedPointerTo automatically calls addRef
and removeRef for you,

ICountedPointerTo<Foo> fooPtr = new Foo();
// Create a raw, “unwrapped” pointer...
Foo *rawPtr = fooPtr.getAlias();
// This line will create a second smart pointer with its own wrapper
// around the Foo object.
ICountedPointerTo<Foo> fooPtr2 = rawPtr;
// This assignment statement will call removeRef on the original
// wrapper, which will cause the Foo object to be deleted.
fooPtr = 0;
// Since the Foo object has been deleted, this will crash
fooPtr2->function();

To do this correctly, simply omit the raw Foo* pointer and use ICountedPointerTo
throughout your code:

ICountedPointerTo<Foo> fooPtr = new Foo();
// Create a second smart pointer that uses the same wrapper.
ICountedPointerTo<Foo> fooPtr2 = fooPtr;
// Calls removeRef on the wrapper, so its count will now be 1
fooPtr = 0;
// The Foo object has not been deleted yet, so this will work
fooPtr2->function();

Assignment and Copying methods
All of the ICountedPointerTo constructors and assignment operators will perform
reference counting correctly. The following table describes the constructors and
assignment operators:

Constructor or Operator Description

ICountedPointerTo (AType* adopt) This constructor will “adopt” the object
passed in and will increment its reference
count. All further references to the object
should be made through the
ICountedPointerTo object; the raw pointer
that was passed in to this constructor should
be discarded.

12 IBM Open Class: Application Control

Constructor or Operator Description

ICountedPointerTo (const
ICountedPointerTo<AType>& share)

The copy constructor will create another
ICountedPointerTo object that aliases the
same object. It will, of course, increment the
object’s reference count by 1.

operator = (AType* adopt) Assigning a raw pointer into an
ICountedPointerTo will “adopt” the object
passed in and will increment its reference
count by 1. All further references to the
object should be made through the
ICountedPointerTo object; the raw pointer
that was passed in to this constructor should
be discarded. If this ICountedPointerTo
already pointed to an object before the
assignment took place, the old object’s
reference count will decremented by 1 and
the object will be deleted if the reference
count reaches 0.

operator = (const
ICountedPointerTo<AType>& share)

This assignment operator causes the counted
pointer to refer to the same object as the
ICountedPointerTo that is passed in. That
object’s reference count is incremented by 1.
If this ICountedPointerTo already pointed to
an object before the assignment took place,
the old object’s reference count will
decremented by 1 and the object will be
deleted if the reference count reaches zero.
This operator handles self-assignment
properly.

xICountedPointerTo() If the counted pointer refers to an object, the
destructor will decrement the object’s
reference count. If the reference count
reaches zero, the object will be deleted.

Streaming Functions
ICountedPointerTo provides streaming operators that let you stream it to and from
data streams. Writing an ICountedPointerTo to a stream does not write the pointer
itself; it writes the object to which the ICountedPointerTo points. If you stream out
several different counted pointers to the same object, the object will only be
streamed out the first time, and aliases to it will be streamed out after that. For
example:

IDataStream *stream =;
ICountedPointerTo<Foo> foo1 = new Foo();
ICountedPointerTo<Foo> foo2 = foo1;
foo1 >>= *stream; // Streams out the Foo object
foo2 >>= *stream; // Just streams out an alias
// ...
ICountedPointerTo<Foo> foo3, foo4;
foo3 <<= *stream; // Streams in the Foo object
foo4 <<= *stream; // Creates an alias to the same Foo object
// foo3 and foo4 now point to the same Foo object.

These streaming methods will only work if the object being pointed to inherits
from IMStreamable.

Chapter 2. Reference Counting 13

The following example demonstrates how to create and use a counted pointer, as
well as how to stream objects pointed to by counted pointers in and out of data
streams:
// Counted pointer example
#include <icntptr.hpp>
#include <istrmmod.hpp>
// IStreamModules are used with IDataStreams. They provide
// a name-space like facility to help avoid conflicts
// between the names of classes that may be written to a
// stream.
IStreamModule myModule(“myName”);
class MyDatabase : public virtual IMStreamable, public IMRefCounted
{

// All non-abstract classes deriving from IMStreamable
// must include the StreamableDeclarations and
// StreamableDefinitions macros.
StreamableDeclarationsMacro(MyDatabase);
public:

float getName(void)
{ return name; }

void setName(float data)
{ name = data; }

protected:
virtual void writeToStream(IDataStream&) const;
virtual void readFromStream(IDataStream&);

private:
float name;

};
// All subclasses of IMStreamable must override
// the writeToStream() and readFromStream()
// functions.
void MyDatabase::writeToStream(IDataStream& toWhere) const
{

name >>= toWhere;
}
void MyDatabase::readFromStream(IDataStream& fromWhere)
{

name <<= fromWhere;
}
// All non-abstract classes deriving from IMStreamable
// must include the StreamableDeclarations and
// StreamableDefinitions macros.
StreamableDefinitionsMacro(MyDatabase, myModule);
int main(void)
{

cout << “Create first counted pointer...” << endl;
ICountedPointerTo<MyDatabase> firstUser = new MyDatabase();
cout << “The count of the first counted pointer: ”

<< firstUser->count() << endl << endl;
cout << “Create two more counted pointers...” << endl;
ICountedPointerTo<MyDatabase> secondUser(firstUser);
ICountedPointerTo<MyDatabase> thirdUser = secondUser;
cout << “The count of the first counted pointer: ”

<< firstUser->count() << endl << endl;
cout << “Put data into object pointed to by the first counted pointer...” << endl;
firstUser->setName(123456);
cout << “Data in object pointed to by second counted pointer: ”

<< secondUser->getName() << endl << endl;
cout << “Remove third counted pointer...” << endl;
thirdUser = 0;
cout << “The count of the first counted pointer: ”

<< firstUser->count() << endl << endl;
// The remaining code demonstrates how to stream
// ICountedPointerTo ojects in and out of data
// streams.
cout << “Create memory stream...” << endl;

14 IBM Open Class: Application Control

IDataStream *stream = IDataStream::createMemoryStream();
cout << “Stream out the MyDatabase object...” << endl;
firstUser >>= *stream;
cout << “Reset the stream...” << endl;
stream->reset();
cout << “Stream in the MyDatabase object into a fourth counted pointer...” << endl;
ICountedPointerTo<MyDatabase> fourthUser;
fourthUser <<= *stream;
cout << “Data in object pointed to by fourth counted pointer: ”

<< fourthUser->getName() << endl << endl;
cout << “The count of the first counted pointer: ”

<< firstUser->count() << endl << endl;
cout << “The count of the fourth counted pointer: ”

<< fourthUser->count() << endl << endl;
}

Output
The following is the output of the above example:
Create first counted pointer...
The count of the first counted pointer: 1
Create two more counted pointers...
The count of the first counted pointer: 3
Put data into object pointed to by the first counted pointer...
Data in object pointed to by second counted pointer: 123456
Remove third counted pointer...
The count of the first counted pointer: 2
Create memory stream...
Stream out the MyDatabase object...
Reset the stream...
Stream in the MyDatabase object into a fourth counted pointer...
Data in object pointed to by fourth counted pointer: 123456
The count of the first counted pointer: 2
The count of the fourth counted pointer: 1

The above example creates three counted pointers, firstUser, secondUser, and
thirdUser, that point to the same MyDatabase object. The example then streams out
the object from firstUser and streams in that object to fourthUser. Note that
firstUser and fourthUser do not point to the same object.

Other Functions
ICountedPointerTo also provides the usual comparison operators, plus a number of
other useful functions:

Function Description

getAlias() Returns the underlying object to which this
ICountedPointerTo points. If it points to
nothing, 0 will be returned.

valid() Returns true if this ICountedPointerTo refers
to an object and false if it does not.

validate() This method is essentially an assertion that
the ICountedPointerTo is valid. If it is not,
an IInvalidRequest exception will be thrown
with its error code set to
IC_NULL_IREFERENCE.

count() Returns the current reference count of the
object to which this pointer refers. If there is
no object, it returns 0.

Chapter 2. Reference Counting 15

Function Description

copyPointer() This global function can be used to do a
polymorphic copy of an IMStreamable object
that is pointed to by an ICountedPointerTo.
If the object’s class does not inherit from
IMStreamable, you will get a compile-time
error. If there is no object being pointed to,
this function will return 0.

“Chapter 2. Reference Counting” on page 9

“Use Reference Counted Objects” on page 9

16 IBM Open Class: Application Control

Chapter 3. Event Notification

You use the Notification classes to enable an object to be notified by other objects
of any changes which it needs to know about. For example, in a compound
document application which uses the model/view/presenter design, whenever the
state of the data in a model changes, any views opened on the model that the
change affects need to be informed so that the views can present the change to the
user.

Your model should notify the view when the model’s data is modified so that the
view can redraw itself to reflect the change.

An object which issues notification to other objects of changes in its state is
referred to as a notifier. The objects which receive such change notifications are
referred to as observers. To become an observer, an object must register with the
object whose state it wishes to observe. (To register an observer, call its
IObserver::handleNotificationsFor member function.) Once registered, when that
object is modified, it issues notification to the registered observer objects, passing a
notification event.

© Copyright IBM Corp. 1998, 2000 17

Before you delete an observer object you must unregister with the notifier. (To
unregister an observer, call its IObserver::stopHandlingNotificationsFor member
function.)

Any application object can use a notifier to notify observers of particular events or
changes in its state.

In this example, the user interface can update the display whenever the model
completes a recalculation requested by the user.

For other examples, a stock market ticker-tape component that constantly monitors
stock reports needs to inform its associated view of changes to the incoming data,
while a clock component needs to keep its display constantly updated.

Notification Solutions
The notification classes implement three generic solutions:
v Synchronizing the states of two related objects
v Filtering notifications in an application where one source can generate many

events, such as might happen with a feature-rich user interface window
v Using asynchronous notification to eliminate one event’s blocking another, such

as a print or save request preventing further data entry

IBM Open Class extends its notification services in two important ways:
v It offers asynchronous, in addition to synchronous, notification
v It provides a filtering mechanism so that the client object can specify what types

of notification to receive

These enhancements lower the risk of application deadlocks, provide a more
flexible programming model, and facilitate scalability. They can be used for either
single-threaded or multithreaded applications.

“Notification Classes” on page 19“Notification Structure” on page 20

“Notify Observers Synchronously” on page 21
“Notify Observers Asynchronously” on page 25

18 IBM Open Class: Application Control

Notification Classes
When an event requiring notification occurs, the notifier constructs an
INotificationEvent object defining the type of event and sends it to any observers
registered for that type of event. Each observer is responsible for handling the
event as appropriate.

The following class objects establish a notification pattern between application
objects:
v Notifiers provide the protocol needed by a notifier object to issue change

messages to observer objects.
v Observers define the protocol used by observers to connect to, and receive

notifications from a notifier object.
v Interests are used by observers to identify the specific event for which they wish

notification.
v Notification Events identify the notification type and are passed from the notifier

to one or more observers.

Notifiers
The notifier classes provide two classes that support the creation of objects capable
of communicating changes in their state to other objects.
v INotifier is an abstract base class that defines the notifier.
v IStandardNotifier is a derived class that concretely implements the notifier.

Notifier objects are responsible for defining the list of their supported notification
events, for managing lists of observers, and for notifying registered observers when
an event of interest occurs.

Observers
Observer classes define the protocol used by observers to register for and receive
notifications. The abstract base class IObserver is templatized into two versions:
IObserverConnectionTo, which takes only the target notifier; and
IObserverForConnectionTo, which takes both the target notifier and a specific event
notification data type.

Interests
An observer uses the IInterest class to indicate the types of notification it wants to
receive. IInterest provides helper functions that notifiers use to notify observers of
the events they are interested in. A notifier uses IInterest and INotificationEventFor
to pass event data to observers.

You can streamline your notification mechanisms by filtering the types of
notification an observer receives. The notifier contains a set of notification IDs that
defines all the possible types of changes, and observers can register to be notified
only of the types of changes they care about. The following is the typedef provided
for notification IDs:

typedef const char *INotificationId;

You use INotificationId to create simple strings that uniquely describe a particular
type of change that might originate notifications. Interests and notification events
use this ID to identify the type.

Notification Event Types
INotificationEvent encapsulates a single notification event. Notification event

Chapter 3. Event Notification 19

objects identify the notification type, and are passed from the notifier to the
observers. INotificationEventFor is a templatized class used for passing event data
from a notifier to its observers.

“Chapter 3. Event Notification” on page 17
“Notification Structure”

“Notify Observers Synchronously” on page 21
“Notify Observers Asynchronously” on page 25

Notification Structure
Notification Implementation
When an event requiring notification occurs, the notifier constructs an
INotificationEvent object defining the type of event and sends it to any observers
registered for that type of event. Each observer is responsible for handling the
event as appropriate.

To implement your own notification mechanism your code must follow a basic
order, or sequence, of calls:
1. Create a notifier.
2. Create an observer.

a. Connect the observer to the notifier.
b. Register with the notifier with an interest for a change or event.

3. Use your notifier from the application object managing the data or event.

Asynchronous or Synchronous Notification
You can send notifications synchronously or asynchronously, depending on the
requirements of both the notifier and the observer. Some notifiers require that
notifications be handled synchronously so that all notification processing is
complete before returning to the notifier. A system shutdown service is an example
of this.

Other notifiers, such as a file server, might require that notifications be delivered
asynchronously so that they are not blocked for long periods of time, waiting for
observers to complete notification handling.

The Notification Framework provides two INotifier methods that you can use
depending on your needs. INotifier::notifyObservers() provides a synchronous
implementation and INotifier::notifyObserversAsync() provides one that is
asynchronous.

When you call INotifier::notifyObservers(), the notifier calls the notify member
function of all the connections interested in that notification in the same thread in
which INotifier::notifyObservers() was called. When the call completes, the notifier
is assured that all observers interested in the notification have received it.

However, this means that an observer can tie up the notifier by taking a long time
to process a notification.

When you call INotifier::notifyObserversAsync(), a request to perform the
notification is passed to a request processor. The notifier can then immediately

20 IBM Open Class: Application Control

continue to perform other work. When the request processor eventually delivers
the notification, receivers cannot make any assumptions about the state of the
notifier (even that it still exists).

Multi-threaded Notification
To register an observer, an observer’s handleNotificationFor() function is called. It,
in turn, chains into the notifier’s addObserver() function which can then record the
threadID associated with the observer.

When an event for which the observer is registered occurs, in the case of
synchronous multi-threaded notification, the notifier’s notifyObservers() function is
called.

The notification is dispatched on the same thread on which the observer was
created. This is basically the same behavior as if notifyObserversAsync() were
invoked instead of notifyObservers().

For asynchronous multi-threaded notification, when the notifier’s
notifyObserversAsync() function is called, it determines whether it needs to send a
notification to an observer in another thread. If so, it posts to the request queue
associated with the observer’s thread.

When using asynchronous notification, it is important to start the notification
dispatcher properly:
v For a GUI thread, one that uses IThread::current().processMsgs(), your main

function should have a processMsgs() loop to handle the GUI events for the
thread.

v If you create observers in a non-GUI thread, one that does not use
IThread::current().processMsgs(), and you want the observers to receive
asynchronous notifications, then you should use ICrossThreadNotificationLoop()
in the non-GUI thread to dispatch to asynchronous notification-aware observers.
You would include code similar to the following:

ICrossThreadNotificationLoop theLoop(anObserver);
theLoop.run();

“Chapter 3. Event Notification” on page 17
“Notification Classes” on page 19

“Notify Observers Synchronously”
“Notify Observers Asynchronously” on page 25

Notify Observers Synchronously
Notification requires a notifier and at least one observer. Your code must
instantiate these objects:
1. A notifier derived from IStandardNotifier
2. An observer derived from IObserver

In the notifier, perform the following steps:

Chapter 3. Event Notification 21

1. Define your interests. Interests are data members of type IInterest that you want
to observe.

2. Define your getters. Getters are member functions that serve as an interface for
your interests. Each getter should return a reference to one of your interests.

3. Define your setters. Setters are the member functions that will notify the
observers by sending them the appropriate interest. In each setter, call
notifyObservers(). The argument for notifyObervers() should be an
INotificationEvent object instantiated with the corresponding getter.

4. In the notifier’s constructor, call enableNotification().

In the observer, for each interest you wish to observe, perform the following steps:
1. Create a handler for each interest that you wish to observe. These handlers take

an INotificationEvent object as an argument.
2. For each handle, create an IObserverConnectionTo object. These objects are

your connections.
3. In the constructor for the observer, register each connection with the

handleNotificationsFor() member function. Use the corresponding getter for the
argument.

4. In the destructor, be sure to unregister the connection with the
stopHandlingNotificationsFor() function.

The following sample demonstrates the use of interest-based, synchronous
notification.
// Synchronous notification example
#include <istdntfy.hpp>
#include <iobservr.hpp>
#include <inotifev.hpp>
class MyCustomer : public IStandardNotifier
{
public:

// The constructor creates the three supported
// interests and enables notification. Any
// observer interested in a name change, address
// change, or home phone change will register with
// these interests.
MyCustomer() :

fNameChangedInterest (*this, nameId),
fAddressChangedInterest (*this, addressId),
fHomePhoneChangedInterest(*this, homePhoneId)
{

enableNotification();
}
virtual xMyCustomer() {};
virtual IString name() {return fName;}
virtual IString address() {return fAddress;}
virtual IString homePhone() {return fHomePhone;}
// These are the setters for MyCustomer. The
// setters will make the requested change and then
// notify observers by sending the appropriate
// interest via an INotificationEvent.
virtual void setName(IString newname)
{

fName = newname;
notifyObservers

(INotificationEvent(nameChangedInterest()));
}
virtual void setAddress (IString newaddress)
{

fAddress = newaddress;
notifyObservers

(INotificationEvent(addressChangedInterest()));

22 IBM Open Class: Application Control

}
virtual void setHomePhone(IString newphone)
{

fHomePhone = newphone;
notifyObservers

(INotificationEvent(homePhoneChangedInterest()));
}
// These are the getters for the three supported
// interests. Any observer interested in a name
// change, address change, or home phone change
// will register with these interests.
IInterest& nameChangedInterest ()
{

return fNameChangedInterest;
}
IInterest& addressChangedInterest ()
{

return fAddressChangedInterest;
}
IInterest& homePhoneChangedInterest ()
{

return fHomePhoneChangedInterest;
}

private:
// Our data members
IString fName;
IString fAddress;
IString fHomePhone;
// These are interest members corresponding to the
// observable data members
IInterest fNameChangedInterest;
IInterest fAddressChangedInterest;
IInterest fHomePhoneChangedInterest;
// Declare the NotificationIds
static INotificationId const

nameId,
addressId,
homePhoneId;

};
// Define the INotificationIds
const INotificationId MyCustomer::nameId

= “MyCustomer::name”;
const INotificationId MyCustomer::addressId

= “MyCustomer::address”;
const INotificationId MyCustomer::homePhoneId

= “MyCustomer::homePhone”;

class MyObserver
{
public:

// constructor for observer
MyObserver (MyCustomer& aCustomer);
virtual xMyObserver();
// handler method to handle any change in the customer
virtual void

handleAnyChange(const INotificationEvent& anEvent)
{

printf(“>> Why hello, MyObserver::handleAnyChange ”);
printf(“just received the event: %s \n”,

anEvent.notificationId());
}
// handler method to handle just name changes
// in the customer
virtual void

handleNameChange(const INotificationEvent& anEvent)
{

printf(“>> Why hello, MyObserver::handleNameChange ”);
printf(“just received the event: %s \n”,

Chapter 3. Event Notification 23

anEvent.notificationId());
}

private:
// for each event you are interested in, create
// a connection object
IObserverConnectionTo<MyObserver>

fAnyChangeConnection;
IObserverConnectionTo<MyObserver>

fNameChangeConnection;
MyCustomer& fCustomer;

};

// connect this observer to the given customer notifier

MyObserver::MyObserver(MyCustomer& aCustomer) :
fCustomer(aCustomer),
// all events trigger this method
fAnyChangeConnection

(*this, MyObserver::handleAnyChange),
// only name change events trigger this method
fNameChangeConnection

(*this, MyObserver::handleNameChange)
{

// this connection handles all notifications
// from aNotifier
fAnyChangeConnection.handleNotificationsFor(fCustomer);
// this connection handles only name change
// notifications from aNotifier
fNameChangeConnection.handleNotificationsFor

(fCustomer.nameChangedInterest());
}
// unregister from receiving events from the customer
MyObserver::xMyObserver()
{

fAnyChangeConnection.stopHandlingNotificationsFor(fCustomer);
fNameChangeConnection.stopHandlingNotificationsFor(fCustomer);

}

void main()
{

MyCustomer theCustomer;
MyObserver theObserver(theCustomer);

// should trigger handleAnyChange/handleNameChange
theCustomer.setName(“Raymond the IOC Writer”);

// should only trigger handleAnyChange
theCustomer.setAddress(“1150 Eglington Ave.”);

}

The class MyCustomer is an example of deriving from an IStandardNotifier. The
class MyCustomer encapsulates a name, address, and home phone number. It
supports getting and setting its fields and notifies any registered observers when
the name, address, or home phone number changes.

The MyObserver class receives notifications. It uses IObserverConnections to direct
notifications to specific methods. In this example, it receives notifications from a
customer object.

Here is the output from the program:
>> Why hello, MyObserver::handleAnyChange just received the event:

MyCustomer::name
>> Why hello, MyObserver::handleNameChange just received the event:

MyCustomer::name
>> Why hello, MyObserver::handleAnyChange just received the event:

MyCustomer::address

24 IBM Open Class: Application Control

“Chapter 3. Event Notification” on page 17
“Notification Classes” on page 19
“Notification Structure” on page 20

“Notify Observers Asynchronously”
“Pass Data Along with Event Notification” on page 29

Notify Observers Asynchronously
To notify asynchronously, follow the same steps as for synchronous notification,
substituting a call to notifyObserversAsync for notifyObservers. You can
implement truly asynchronous notification by putting the notifier and the observer
in different threads.

The following procedures show you how to notify asynchronously by putting each
observer on a non-GUI thread:
v Asynchronous notification requires a notifier and at least one observer.

Instantiate the following objects in your code:
1. A notifier derived from IStandardNotifier
2. For each observer, a class derived from IObserver that inherits publicly

from IThreadFn
v In the notifier, perform the following steps:

1. Define your interests. Interests are data members of type IInterest that you
want to observe.

2. Define your getters. Getters are member functions that serve as an
interface for your interests. Each getter should return a reference to one of
your interests.

3. Define your setters. Setters are the member functions that will notify the
observers by sending them the appropriate interest. In each setter, call
notifyObserversAsync. The argument for notifyOberversAsync should be
an INotificationEvent object instantiated with the corresponding getter.

4. In the notifier’s constructor, call enableNotification().
v In each observer, perform the following steps:

1. Create a handler the interest the observer will observe. This handler is a
member function that takes an INotificationEvent object as an argument.

2. Override the IThreadFn::run() member function as follows:
a. Create an IObserverConnectionTo object from the interest you want to

observe. This object is a connection.
b. Register the connection with the handleNotificationsFor() member

function. Use the corresponding getter for the argument.
c. Create an ICrossThreadNotificationLoop object from the connection.
d. Call the ICrossThreadNotificationLoop::run() member function.

v In the main function, perform the following steps:
1. Create your observers.
2. Create an INonGUIThread object for each observer.
3. Start each thread with a reference to its corresponding observer.

Chapter 3. Event Notification 25

The following example code demonstrates the use of interest-based, asynchronous
notification. The output of this program is the same as the example code presented
in the “Notify Synchronously” task:
// Notify Asynchronously
#include <istdntfy.hpp>
#include <iobservr.hpp>
#include <inotifev.hpp>
#include <ithread.hpp>
// Define the INotificationIds
const INotificationId MyCustomer::nameId

= “MyCustomer::name”;
const INotificationId MyCustomer::addressId

= “MyCustomer::address”;
const INotificationId MyCustomer::homePhoneId

= “MyCustomer::homePhone”;
class MyCustomer : public IStandardNotifier
{
public:

// The constructor creates the three supported
// interests and enables notification. Any
// observer interested in a name change, address
// change, or home phone change will register with
// these interests.
MyCustomer();
virtual xMyCustomer() {};
virtual IString name() {return fName;}
virtual IString address() {return fAddress;}
virtual IString homePhone() {return fHomePhone;}

// These are the setters for MyCustomer. The
// setters will make the requested change and then
// notify observers by sending the appropriate
// interest via an INotificationEvent.
virtual void setName(IString newname)
{

fName = newname;
notifyObserversAsync

(INotificationEvent(nameChangedInterest()));
}
virtual void setAddress (IString newaddress)
{

fAddress = newaddress;
notifyObserversAsync

(INotificationEvent(addressChangedInterest()));
}
virtual void setHomePhone(IString newphone)
{

fHomePhone = newphone;
notifyObserversAsync

(INotificationEvent
(homePhoneChangedInterest()));

}
// These are the getters for the three supported
// interest. Any observer interested in a name
// change, address change, or home phone change
// will register with these interests.
IInterest& nameChangedInterest ()
{

return fNameChangedInterest;
}
IInterest& addressChangedInterest ()
{

return fAddressChangedInterest;
}
IInterest& homePhoneChangedInterest ()
{

return fHomePhoneChangedInterest;

26 IBM Open Class: Application Control

}
private:

// Our data members
IString fName;
IString fAddress;
IString fHomePhone;
// These are interest members corresponding to the
// observable data members
IInterest fNameChangedInterest;
IInterest fAddressChangedInterest;
IInterest fHomePhoneChangedInterest;
// Declare the NotificationIds
static INotificationId const

nameId,
addressId,
homePhoneId;

};
class MyNameChangeObserver: public IThreadFn
{

public:
// Constructor:
MyNameChangeObserver::MyNameChangeObserver

(MyCustomer& aCustomer): fCustomer(aCustomer)
{}
// handler function to handle any change in the customer
virtual void

handleNameChange(const INotificationEvent& anEvent)
{

printf(“>> Why hello, myObserver::handleNameChange ”);
printf(“just received the event:\n %s \n”,

anEvent.notificationId());
}
virtual void run();

private:
// for each event you are interested in, create
// a connection object
MyCustomer& fCustomer;

};
class MyAnyChangeObserver : public IThreadFn
{
public:

// constructor for observer
MyAnyChangeObserver::MyAnyChangeObserver(MyCustomer& aCustomer) :

fCustomer(aCustomer)
{}
// handler method to handle any change in the customer
virtual void

handleAnyChange(const INotificationEvent& anEvent)
{

printf(“>> Why hello, myObserver::handleAnyChange ”);
printf(“just received the event:\n %s \n”,

anEvent.notificationId());
}
// handler method to handle just name changes
// in the customer
virtual void run();

private:
// for each event you are interested in, create
// a connection object
MyCustomer& fCustomer;

};
// MyCustomer constructor:
MyCustomer::MyCustomer()

: fNameChangedInterest (*this, nameId)
, fAddressChangedInterest (*this, addressId)
, fHomePhoneChangedInterest(*this, homePhoneId)

{

Chapter 3. Event Notification 27

enableNotification();
}
// Overriding IThreadFn::run() defines the
// code to be executed in a thread
void MyNameChangeObserver::run()
{

// for each event you are interested in, create
// a connection object
IObserverConnectionTo<MyNameChangeObserver>

fNameChangeConnection
(*this, &MyNameChangeObserver::handleNameChange);

// this connection handles only name change
// notifications from aNotifier
fNameChangeConnection.handleNotificationsFor

(fCustomer.nameChangedInterest());
// Start the notification dispatcher
ICrossThreadNotificationLoop

loopNameChange(fNameChangeConnection);
loopNameChange.run();

}
// Overriding IThreadFn::run() defines the
// code to be executed in a thread
void MyAnyChangeObserver::run()
{

// for each event you are interested in, create
// a connection object
IObserverConnectionTo<MyAnyChangeObserver>

fAnyChangeConnection
(*this, &MyAnyChangeObserver::handleAnyChange);

// this connection handles only name change
// notifications from aNotifier
fAnyChangeConnection.handleNotificationsFor

(fCustomer);
// Start the notification dispatcher
ICrossThreadNotificationLoop

loopAnyChange(fAnyChangeConnection);
loopAnyChange.run();

}
void main()
{

MyCustomer theCustomer;
MyNameChangeObserver *theNameChangeObserver =

new MyNameChangeObserver(theCustomer);
MyAnyChangeObserver *theAnyChangeObserver =

new MyAnyChangeObserver(theCustomer);
INonGUIThread threadAnyChange;
INonGUIThread threadNameChange;
threadAnyChange.start(theNameChangeObserver);
threadNameChange.start(theAnyChangeObserver);
// should trigger handleAnyChange/handleNameChange
INonGUIThread::current().sleep(1000);
theCustomer.setName(“Chester the Dog”);
// should only trigger handleAnyChange
INonGUIThread::current().sleep(1000);
theCustomer.setAddress(“Colchester, Ontario”);

}

“Chapter 3. Event Notification” on page 17
“Notification Classes” on page 19
“Notification Structure” on page 20

“Notify Observers Synchronously” on page 21

28 IBM Open Class: Application Control

Pass Data Along with Event Notification
To pass event data along with a notification of the event, follow the same steps as
described in Notify Synchronously with these exceptions:
1. In your notifier, pass an INotificationEventFor object to notifyObservers instead

of an INotificationEvent object. That is, use this:
notifyObservers(INotificationEventFor

(myAlertInterestFunction(),
data));

// data is of type MyEventDataClass

instead of:
notifyObservers(INotificationEvent

(myAlertInterestFunction());

The constructor for an INotificationEventFor object takes two arguments: your
interest, and the event data you want to pass along with the notification of
your event.

2. In your observer, instead of creating connection objects of type
IObserverConnectionTo, use the connection template class
IObserverForConnectionTo. That is, use this:

IObserverForConnectionTo<MyEventDataClass, MyObserver>
myDataChangeConnection;

instead of:
IObserverConnectionTo<MyObserver>

myDataChangeConnection;

Notice that the constructor for IObserverForConnectionTo takes two data types
in its constructor: the type of the event data that you want to pass, and the
type of your observer.

3. The observer methods that are registered to handle the notification events have
a INotificationEventFor object parameter corresponding to the one used by the
notifier’s notifyObservers method. Use this form of handleNotification():

void handleNotification
(const INotificationEventFor<MyEventDataClass>& event);

instead of:
void handleNotification(const INotificationEvent& event);

4. INotificationEventFor<MyEventDataClass> has the following member function:
const MyEventDataClass& eventData() const;

that provides a mechanism to get the event data back from the notification
event.

“Chapter 3. Event Notification” on page 17
“Notification Classes” on page 19
“Notification Structure” on page 20

“Notify Observers Synchronously” on page 21

Chapter 3. Event Notification 29

30 IBM Open Class: Application Control

Chapter 4. Application Resources

A resource library is the file, such as an executable, dynamic link library (Windows
and OS/2) or shared library (AIX), with a compiled resource file bound to it.

The IDLLModule class supports the loading, unloading, and addressing of entry
points in a dynamic link library (DLL) or shared library. These classes make it
easier and safer to track loaded DLLs. It provides access to module information for
those loaded DLLs, such as entry point addresses and the file name of the module.

Search for Resource Files
You may specify how your application searches for resources libraries with the
IDynamicLinkLibrary of IDLLModule constructor. The enumerated type
ESearchLocation defines the following search methods:

Search Method Description

kOSDefaultSearch Finds a resource library using the PATH or
LIBPATH environment variables following
the search rules of the native operating
system. This is the default search method.

kNLSPathSearch Finds the dynamic link library using the
NLSPATH environment variable after
substituting %L with the users’ current
locale.

v

On these platforms, it is the LANG
environment variable.

v

Instead of using the LANG environment,
the user’s current locale is retrieved from
a call to setlocale(LC_MESSAGES, NULL).
Therefore, IBM Open Class applications
should call setlocale() properly if they
want to load their libraries (and their
message catalogues) from the NLSPATH

Loading a resource library from NLSPATH
allows you to have multiple languages of
your resource libraries on a single system.

When loading a shared library using IDLLModule these classes will search paths
specified in the header section of the executable in addition to the NLSPATH or the
LIBPATH environment variables.

© Copyright IBM Corp. 1998, 2000 31

	Contents
	Notices
	Programming Interface Information
	Trademarks and Service Marks
	Industry Standards

	About This Book
	Chapter 1. Open Class Threading Model
	Behavior of IBM Open Class Threads
	Resources and Conditions
	Thread-Specific Data
	Thread Scheduling
	Multi-Processing Interface
	Start a Thread

	Chapter 2. Reference Counting
	Use Reference Counted Objects
	Use Counted Pointers

	Chapter 3. Event Notification
	Notification Classes
	Notification Structure
	Notify Observers Synchronously
	Notify Observers Asynchronously
	Pass Data Along with Event Notification

	Chapter 4. Application Resources

