
VisualAge® C++ Professional for AIX®

Incremental Compilation
Version 5.0

���

Edition Notice

This edition applies to Version 5.0 of IBM® VisualAge C++ and to all subsequent releases and modifications until
otherwise indicated in new editions. Make sure you are using the correct edition for the level of the product.

© Copyright International Business Machines Corporation 1998, 2000. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Note!
Before using this information and the product it supports, be sure to read the general
information under “Notices” on page v.

Contents

Notices v
Programming Interface Information vii
Trademarks and Service Marks vii
Industry Standards viii

About This Book. ix

Chapter 1. Incremental Compilation
Concepts 1
Incremental C++ Builds. 1
Incremental Configuration Files 2

Basic Configuration Files 3
More Complex Configuration Files 3

Configuration File Directives 4
Configuration File Syntax 6
Example: Configuration File 7
How Configuration Files are Processed 8
Sources 9

Primary vs Secondary Sources 11
Macro vs Non-macro Sources 11

Targets 12
Variables and Environments 14
Environment Variables in Configuration Files . . . 15

Chapter 2. About Projects and
Subprojects 17

Build in a Team Environment 17
Projects and Subprojects 17
Project Files 19

How Project Files Are Processed 19
Example: Project File 20

Related Configuration Files 20
Project File Syntax 21

Chapter 3. Using the Incremental
Compiler 27
Build 27
Build from the Command Line 28
Build Executable Programs 29
Group Source Files in a Configuration 29
Compile and Bind Resources 30
Macros in C++ Source Files 30
Search Paths for Included Source Files (AIX) . . . 32
Cleaning Up After Builds 33
When to Use Makefiles 35

Chapter 4. Related References 37
Equivalent Batch Compile-Link and Incremental
Build Options (AIX) 37
The One-Definition Rule (C++) 52

Contacting IBM 55

© Copyright IBM Corp. 1998, 2000 iii

iv Incremental Compilation Concepts and Tasks

Notices

Note to U.S. Government Users Restricted Rights -- use, duplication or disclosure
restricted by GSA ADP Schedule Contract with IBM Corp.

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION ″AS IS″
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1998, 2000 v

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Lab Director
IBM Canada Ltd.
1150 Eglinton Avenue East
Toronto, Ontario M3C 1H7
Canada

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

® (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. ® Copyright IBM Corp. 1998, 2000. All rights reserved.

vi Incremental Compilation Concepts and Tasks

Programming Interface Information
Programming interface information is intended to help you create application
software using this program.

General-use programming interface allow the customer to write application
software that obtain the services of this program’s tools.

However, this information may also contain diagnosis, modification, and tuning
information. Diagnosis, modification, and tuning information is provided to help
you debug your application software.

Warning: Do not use this diagnosis, modification, and tuning information as a
programming interface because it is subject to change.

Trademarks and Service Marks
The following terms are trademarks of the International Business Machines
Corporation in the United States, or other countries, or both:

AIX
AS/400
DB2
CICS
C Set ++
IBM
Network Station
Object Connection
OS/2
OS/390
OS/400
Open Class
Operating System/2
Operating System/400
PowerPC 403
PowerPC 601
PowerPC 603
PowerPC 604
Presentation Manager
RS/6000
S/390
SAA
Systems Application Architechture
TeamConnection
VisualAge
WebSphere
Workplace Shell

Lotus, Lotus Notes, and Domino are trademarks or registered trademarks of the
Lotus Development Corporation in the United States, or other countries, or both.

Tivoli Management Environment, TME 10, and Tivoli Module Designer are
trademarks of Tivoli Systems Inc. in the United States, or other countries, or both.

Encina and DCE Encina Lightweight Client are trademarks of Transarc Corporation
in the United States, or other countries, or both.

Notices vii

Microsoft, Win32, Windows, Windows NT, and the Windows logo are trademarks
or registered trademarks of Microsoft Corporation in the United States, or other
countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

UNIX is a registered trademark in the U.S. and other countries licensed exclusively
through X/Open Company Limited.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks or registered
trademarks of Intel Corporation in the United States, or other countries, or both.

C-bus is a registered trademark of Corollary, Inc.

PC Direct is a registered tradmark of Ziff Communicatoins Company and is used
by IBM Corporation under license

Other company, product, and service names, which may be denoted by a double
asterisk(**), may be trademarks or service marks of others.

Industry Standards
VisualAge C++ Professional for AIX, Version 5.0 supports the following standards:
v The C language is consistent with the International Standard C (ANSI/ISO-IEC

9899–1990 [1992]). This standard has officially replaced American National
standard for Information Systems-Programming Language C (X3.159–1989) and
is technically equivalent to the ANSI C standard. VisualAge C++ supports the
changes adopted into the C Standard by ISO/IEC 9899:1990/Amendment 1:1994.

v The IBM Systems Application Architecture (SAA) C Level 2 language definition.
v The C++ language is consistent with the International Standard for Information

Systems-Programming Language C++ (ISO/IEC 14882:1998).
v The ISO/IEC 9945–1:1990/IEEE POSIX 1003.-1990 standard.
v The X/Open Common Applications Environment Specifications, System

Interfaces and Headers, Issue 4.

viii Incremental Compilation Concepts and Tasks

About This Book

The information in this PDF document is also available in the online help.

To find this information, or any topics listed in this document as Related Concepts,
Related Tasks, or Related References, simply type the topic title into the search bar
in the top frame of your browser in the online help.

For some topics, the suggested references may already be contained in this
document. In such cases, there is a cross-reference to the page on which the related
topic appears.

References to VisualAge or VisualAge C++ in this book should be interpreted as
VisualAge C++, Version 5.0.

© Copyright IBM Corp. 1998, 2000 ix

x Incremental Compilation Concepts and Tasks

Chapter 1. Incremental Compilation Concepts

Incremental C++ Builds
VisualAge C++ gives you an incremental build paradigm that can greatly increase
your productivity, by reducing the time required to repeatedly compile and link
C++ code. When you perform an incremental build, only portions of code that are
affected by changes in your source are recompiled and relinked.

After you write or modify your source code, you initiate a build to create a target
module that is consistent with the current state of the C++ source code. VisualAge
C++ performs one of the following types of builds:
v Initial build

The initial build has only source files as input. The first build you perform from
a set of source files or any build that does not use an existing codestore is an
initial build.

v Incremental builds
Subsequent builds use both the source code and the results of the previous
build. Compile and link overhead is determined by how you changed the source
code since the previous build. For example, if you change the body of a
non-inlined function, only that function is recompiled and relinked. If you
change a declaration in a header file, only functions and data that use the
declared item are affected, rather than every file that includes the header.

To make incremental builds work, VisualAge C++ maintains a program database
called the codestore. The codestore contains information about source files, stored
so that source regions much smaller than the original source files can be
recompiled independently. A project may consist of multiple subprojects, each with
its own codestore. A codestore may represent more than one configuration file only
when one configuration file explicitly includes another configuration file with
include directives. The configuration file defines the source files, target files, and
options used during a build. VisualAge C++ also stores this information in the
codestore and uses it to determine how the configuration changes from one build
to the next.

In addition to greatly increasing the speed of builds, incremental builds give you
features that you can use to improve your productivity:
v Orderless programming

By default, the compiler processes all source files together, and declarations can
appear in any order within a namespace scope, including global scope. The
compiler finds declarations as it needs them, and you do not have to ensure that
objects, functions, and classes are declared before they are used. You can change
this default behavior by specifying the lang(orderednamelookup) which enforces
order and allows for code portability. You can define global macros. If you
specify which files contain global macros, those files are preprocessed first in the
order in which you list them in the configuration file.

v Header file flexibility
You do not need traditional header files. You can continue to use them, but you
can simplify them and supply them as ordinary source files, or include them
using #include directives in the traditional manner.

© Copyright IBM Corp. 1998, 2000 1

v The one-definition rule
VisualAge C++ enforces the rule of the C++ standard that a declaration with
external linkage cannot have more than one definition unless the definitions are
identical.

There are useful differences between building a codestore, a subproject, and a
project file.

v If you build a project object (), the project file (.icp file) will be built. This
initiates a build of all the subprojects associated with the project, in the order of
their dependencies.

v If you build a subproject object (), the subproject and any other subprojects
it depends on.

v If you build a codestore object (), only the configuration file associated with
the codestore will be built, regardless of dependencies. You can use your
knowledge of what you have changed since your previous build to skip the
expense of timestamp checking files that you know are unchanged.

“Projects and Subprojects” on page 17
“Incremental Configuration Files”
Codestore
C++ Source Files and Source Regions
“Macros in C++ Source Files” on page 30
“The One-Definition Rule (C++)” on page 52

Set Build Options
Convert Included Source Files to Primary Source Files
Build

Build Options

Incremental Configuration Files
A set of source files, input libraries, and processing options that are used to
generate one or more targets is called a configuration. Each configuration is defined
using a configuration file. A VisualAge C++ subproject must contain at least one
configuration, but not necessarily a configuration file.

A configuration file is similar to a makefile, but with some important differences.
Unlike a makefile, you do not need to specify any file-dependency or processing
information. A configuration file simply contains definitions of targets, the source
files used to build those targets, and the options used to process the source files
and targets. Once you tell VisualAge C++ what to build, it figures out how to do
the build.

A configuration file consists of a series of statements called directives. In its most
basic form, a subproject consists of source files and a target (e.g., a C++ file and a
header file are sources; they are used to build a target of an executable file).

2 Incremental Compilation Concepts and Tasks

Basic Configuration Files
This simple command invokes the compiler, and by default, the linker, to build an
executable named runme, using the source abc.cpp:

xlC -o runme abc.cpp

The equivalent configuration file looks like this:
target “runme”
{

source “abc.cpp”
}

This example reveals some essential aspects of configuration files:
v There is no explicit command to start the compiler. The build command is not

part of the configuration. The equivalent to icc is either to click the Build icon
in the IDE, or to type vacbld on the command line, followed by the name of
your configuration file.

v No command is needed to invoke the linking phase.
v The .shr suffix defines a target to be a shared library.
v The configuration file establishes a clear relationship between the source file and

the target file by using { and } (open and close braces) to mark which sources
are used to build a target.

More Complex Configuration Files
As the application grows more complex, you can add other directives to set
options, group sources together, or set up conditional processing.
v The target directive specifies the build’s output, such as an executable.
v The source directive specifies the source files for a project.
v You can use the group directive to define a group of source files. The group

directive does not specify source files for a project, so the source group still
needs to be listed in a source directive. The group directive makes dealing with
source files that are processed in the same manner easier than dealing with the
files individually.

v The option directive defines one or more build options. If you add a name to an
option directive, you define an options group. An options group can be used
like a variable to apply options that you commonly use together.

v if and for directives specify conditional processing.
v run directives launch processes other than the compiler as part of the build.

When you build an application, the configuration file is processed to create a new
codestore or to update an existing one. The processing of each configuration file
produces one updated codestore. The codestore is queried to determine changes
from build to build.

The default extension for a configuration file is .icc, but you can use any extension.
However, do not confuse these files with .cfg files used by the batch and
incremental compilers. Also, be aware that VisualAge C++ may expect the default
extension for configuration files, like in the Open dialog of the IDE. The
configuration file can reside in any directory.

You can create a configuration file for a project in any text editor, or follow the
Configuration SmartGuide to let the IDE create it for you. You can view, add,
change and remove target, group, source and option directives:
v Edit the file directly in a source view in the IDE or in your editor

Chapter 1. Incremental Compilation Concepts 3

v Manipulate the objects representing them in other IDE views

Example: Option Group Directive

“Example: Configuration File” on page 7

Configurations
“Sources” on page 9
“Targets” on page 12
“Projects and Subprojects” on page 17
Codestore
“How Configuration Files are Processed” on page 8
“When to Use Makefiles” on page 35
“Incremental C++ Builds” on page 1
Editor Overview

Create a Project
View a Build Setup (Configuration File)
Change a Build Setup (Configuration File)

“Equivalent Batch Compile-Link and Incremental Build Options (AIX)” on page 37
“Configuration File Syntax” on page 6

Configuration File Directives
Configuration files contain a sequence of directives that control the subproject
build process. The way target files relate to source files, and what options apply to
targets and sources, is determined by how directives are combined in the
configuration file.

Directives can stand alone or have blocks of subdirectives enclosed in braces, { and
}. The braces delimit a directive block and define the scope of a directive. Directive
blocks can be nested. The following example contains two directive blocks. The
source directive is a subdirective of the option directive and is the only directive in
its block. Together, the inner block and the option directive make an outer block.
Both the source directive and the option directive are subdirectives of the target
directive.

target “day.exe” {
option macros(global) {

source “am.hpp”, “am.cpp”, “pm.cpp”, “pm.hpp”
}

}

In the following example, lang(oldDigraphs) is an attribute of the option directive.
This attribute applies to source file day.cpp, but not to source file night.cpp

option lang(oldDigraphs) {
source “day.cpp”

}
source “night.cpp”

4 Incremental Compilation Concepts and Tasks

Directives often contain names of options used by processes that run during
builds. For example lang(oldDigraphs) in the code above is a language option that
applies to C++ sources. Directives can also contain the following elements:
v Data
v Variables
v Environment Variables
v Expressions

The directives used in configuration files are listed below:

= (assign) assigns values to variables

error terminates the build with a message

for processes directives repeatedly

group assigns a list of source files to a group

if conditionally processes directives

include includes textual content of other files
containing directives

option set options that control how targets are built
from sources

perform controls scope of variables

run runs programs during the build except for
built-in processes such as compile and link.

source names input files

target names and specifies types of output files

tool identifies a program that is to be loaded for
use like a built-in process

Any directive can be preceded by the disable keyword. When applied to an option
or target directive, this keyword disables the option or target part of the directive.
Directives within the associated block are not affected. In other cases, the keyword
disable deactivates the whole directive.

“Example: Configuration File” on page 7

“Incremental C++ Builds” on page 1
C Compilation
“Incremental Configuration Files” on page 2
“How Configuration Files are Processed” on page 8

Change a Build Setup
Build

“Equivalent Batch Compile-Link and Incremental Build Options (AIX)” on page 37
“Configuration File Syntax” on page 6
Data Elements in Configuration Files

Chapter 1. Incremental Compilation Concepts 5

Variables in Configuration Files
“Environment Variables in Configuration Files” on page 15
Expressions in Configuration Files

Configuration File Syntax
Configuration files contain text. You can modify configuration files from the
Configuration (Cfg) section of the IDE, or using a text editor. You can give
configuration files any name and extension you choose. By default, they have the
extension .icc.

The configuration file syntax follows these C and C++ rules:
v Spaces, tabs, and new line characters serve as separators between tokens. Lines

are free-format. There are no rules about indenting, but you should indent lines
to improve readability.

v Comments can appear anywhere. They follow the same rules as C++ comments.
Both the following forms are allowed:

// this comment runs to the end of the line
/* this comment is delimited at both ends
and can span lines */

The content of a configuration file is a sequence of directives and comments. For
example, the following lines contain one comment and the target, option, and
source directives.

// build an executable program
target “myprog” {

option lang(compatMath) {
source “mymain.cpp”, “myclasses.hpp”

}
}

Directives often contain names of options used by processes run during a build. In
the code above, lang(compatMath) is a language option that applies to C++
sources.

Unlike C and C++ statements, directives do not require a semicolon or other
termination character. Directive names are case-sensitive and must be in lowercase.
Option names are not case-sensitive.

Configuration files can also contain the following elements:
v Data
v Variables
v “Environment Variables in Configuration Files” on page 15
v Expressions

“Example: Configuration File” on page 7

“Incremental Configuration Files” on page 2
“How Configuration Files are Processed” on page 8

Change a Build Setup
Build

6 Incremental Compilation Concepts and Tasks

“Equivalent Batch Compile-Link and Incremental Build Options (AIX)” on page 37
“Configuration File Directives” on page 4
Build Options

Example: Configuration File
The following example builds a small application called styleChecker.
/*AIX version*/

if $__TOS_AIX__ {

targetName = “styleChecker”

/* compiler options */

option generalOpts = incl(searchPath, $VACPPMAIN “/extensionAPI/include/”),

link(libsearchpath,
$VACPPMAIN “/extensionAPI/lib/”),

link(heap,
0x60000000),

defaults(xlC128_r)

/* API libraries */

group libSrc = “libCS_common.a”,

“libCS_factory.a”,\

“libCS_tobeyIlGenerator.a”,

“tobeyData.exp”,

“tobeyData.o”

/* Windows version */

} else {

targetName = “styleChecker.exe”

/* compiler options */

option generalOpts = incl(searchPath, $VACPPMAIN “/private/include/”),

link(libsearchpath,
$VACPPMAIN “/private/lib/”)

/* API libraries */

group libSrc = “cscommon.lib”,

“csfactry.lib”

}

/* The rest is common to both Windows and Aix */

option generalOpts {

target targetName {

Chapter 1. Incremental Compilation Concepts 7

source type(cpp) “styleChecker.C”

source libSrc

}

}

“Incremental Configuration Files” on page 2
“How Configuration Files are Processed”

Change a Build Setup
Set Build Options
Build

“Configuration File Syntax” on page 6
Build Options

How Configuration Files are Processed
A configuration file defines a configuration for a subproject, rather than specifying
an ordered set of steps for a build. Unlike makefiles, which drive a make process
using ordered dependencies based on targets, most configuration file directives
establish a relationship between source files and target files.

When you build, VisualAge C++ processes directives in a configuration file. Targets
are built incrementally, and building targets drives the build process. Target
directives name the output files. Source directives supplied as subdirectives of a
target directive list the source files to use to create the target file. These files
determine whether C++ incremental compile, C compile, link, resource bind, or
other actions are performed during the build process.

Option directives apply options to the source and target files. The set of sources
and options can be built up before and within the target directive. Options that are
in effect when the target directive is processed, and that apply to the files used to
produce the target file, are passed to the processes that operate on those files.

For example, the directives below forward options that apply to C source files and
to the target executable to the C compiler and the linker. The group directive
creates a group name for the source files. When the source and target directives are
processed, the options defined as sourceopts and targetopts are applied to the
source and target files. Options that have no meaning for the target and source file
types are ignored. The following example ignores any source options that are
specific to C++ source files, resources, or any types of files other than C source
files. Any target options that do not apply to executable targets are also ignored.

option sourceopts = /* ... */
option targetopts = /* ... */
group MySourceList = myprog.c, myfunc1.c, myfunc2.c
option sourceopts, targetopts {

target myprog.exe { source MySourceList }
}

8 Incremental Compilation Concepts and Tasks

If an option is specified more than once for the same files, second and subsequent
uses of the option either append to the value of the setting or reset the option,
depending on the option. Similarly, some options implicitly set or override others.

Some steps in the build process do not require a target directive to be activated.
Build extensions add capabilities to the build process that are not necessarily
driven by target directives. To use a build extension specify a source file that the
build extension processes in a source directive, or use a tool directive. The
description of each build extension tells you what types of source files they are
associated with, and how to prepare your configuration file to use them.

Other factors can alter the order in which directives in configuration files are
handled:
v The if directive allows conditional processing of blocks of directives.
v The perform directive can limit the scope of variables to within blocks of

directives.
v The include directive textually embeds directives from another configuration file.
v The run directive schedules execution of command line programs. The targets,

sources, and other parameters of the run directive control whether execution
occurs before or after the compile stage, the link stage, and other run directives.

v A configuration file can start another build as a synchronous child process, using
a run directive.

v A non-zero return code from a run directive can terminate the build.
v Build errors suppress the processing of subsequent directives that depend on

targets of the build.
v The error directive stops processing of the configuration file.

“Example: Configuration File” on page 7

“Projects and Subprojects” on page 17
“Incremental Configuration Files” on page 2
Codestore
Build Extensions and Extension Specification Files

Add or Change Source Files
Change a Build Setup
Build

“Equivalent Batch Compile-Link and Incremental Build Options (AIX)” on page 37
“Configuration File Syntax” on page 6
“Configuration File Directives” on page 4
Build Options
Build Extensions Supplied with VisualAge C++

Sources
The source files for a build are specified in your configuration file. The source
directive controls the name and type of the sources for a build.

Chapter 1. Incremental Compilation Concepts 9

The default types recognized by VisualAge C++ are listed in the following table. If
a type is not recognized in the type clause on all platforms, the platforms to which
it applies are shown in the first column. The file extensions associated with each
source type are shown in the second column. Source files are recognized only by
their extension, unless you specify their type in a configuration file. To make your
configuration file compatible with many operating systems, types specified in the
type clause are mapped onto different file extensions if required by your operating
system.

A configuration file can list source files other than the standard .c, .cpp, .h and
.hpp file types. Examples of other source types are:

type Clause File Extension Type of Source

a a static library

C C C++ source

c c C source

cpp cpp C++ source

cxx cxx C++ source

exp exp export file

h h C++ source

hpj hpj Windows® help project file

hpp hpp C++ source

imp imp import file for shared library

ipf ipf source for Information
Processing Facility compiler

lib a
lib

static library

static or
import library

mak mak makefile

msgbind message file

mkmsgf text file in OS/2® message
format

o o object file for linking

obj o

obj

object file for linking

rbj rbj resource object file

rc rc resource source

res res resource binary for linking

so so shared object file for linking

sqc sqc C source with embedded
SQL

sqx sqx C++ source with embedded
SQL

10 Incremental Compilation Concepts and Tasks

When you list source files directly in the configuration file, you can view and
manipulate them as objects in the IDE.

Primary vs Secondary Sources
Source files that are listed directly in the configuration file, no matter what file
type they are, are considered primary sources. Secondary sources are any files that
are included by any other file in the project, but are not listed in the configuration
file. For example:
target “t.exe”
{

option macros(global)
{
source “stdio.h”, “string.h”, “other.h”
}

option macros(global), define(“MAIN”, “”)
{
source “myglobal.h”,
}

source “one.cpp” , “theRest.cpp”,
}

Any files which might be included by the .cpp or .h files in this configuration file
are considered secondary sources. When a secondary source file is added directly to
the configuration file (in other words, made primary), it is promoted.

Wherever possible, promote your secondary sources to primary ones because of
the following characteristics of secondary sources:
v The text of a secondary source file is included at each #include statement in any

other source, resulting in a larger codestore and potentially longer preprocessing
and compilation times.

v Options settings in effect at the point of the inclusion apply to the included file.
This means that the same secondary source may be compiled multiple times
with different or even unintended options settings. For example, if macros are
defined in the primary source file or the configuration file for the primary
source that includes the secondary source, they are also defined in the secondary
source. This may not have been your intent.

v Any macros defined in a secondary source file become global macros if a macro
source file includes the secondary source.

Macro vs Non-macro Sources
A macro source file defines macros used by other source files. C++ constructs such
as functions, classes, and variables do not need to be forward-declared before use
in the orderless programming environment of VisualAge C++. However, the order
in which the compiler encounters macros is important: a macro must be
encountered before it is used. If you promote a macro source file to your
configuration, you need to indicate to the compiler that the source file contains
macros used by other source files, and therefore should be processed before
non-macro source files.

To instruct the compiler to treat a file as a macro source, enclose the source name
in the option macros(global). For example:
//1. primary, macro source:
option macros(global)
{

Chapter 1. Incremental Compilation Concepts 11

source “tree.hpp”, “btree.hpp”
}
//2. primary, non-macro source:
source “one.cpp”, “two.cpp”

If your configuration includes more than one macro source file, pay attention to
the order in which these files are listed. The compiler follows that order to
preprocess macro source files and the macros within them. For example, if header
file btree.hpp depends on macros defined in header file tree.hpp, and both files
are identified as macro source files as in the above example, tree.hpp should
precede btree.hpp in the configuration file.

“Incremental Configuration Files” on page 2
“Targets”
C++ Source Files and Source Regions

Add or Change Source Files
Convert Included Sources to Primary Sources
“Group Source Files in a Configuration” on page 29

source Configuration File Directive
group Configuration File Directive
“Equivalent Batch Compile-Link and Incremental Build Options (AIX)” on page 37

Targets
In a configuration file, a target can be one of the following:
v executable file
v object file

v dynamic link library file

v shared library
v static library

The files produced by a VisualAge C++ build are specified in the configuration file.
The target directive controls the name and type of the target of a build.

A target is described with the target keyword followed by open and close braces,
usually listing the sources that must be used to created it.

target “test.exe”
{
// options and sources are usually listed here
}

A target is represented in the IDE with the symbol.

The following table shows the common target types that are recognized by
VisualAge C++ builds. If a type is not recognized in the type clause on all
platforms, the platforms to which it applies are shown in the first column. The file
extensions associated with each target type are shown in the second column. To

12 Incremental Compilation Concepts and Tasks

make your configuration file compatible with many platforms, types specified in
the type clause are mapped to different file extensions if required by the target
platform.

type Clause File Extension Type of Target

a a static library

dld dld dynamic loadable driver

dll dll

shr

dynamic
link library

shared library

exe exe

no extension or exe.

executable

lib lib

a

static library

o o object file

obj obj

o

object file

pdd pdd physical device driver

shr shr shared library

so so shared object

vdd vdd virtual device driver

OS/2 and Windows NT® operating systems use file extension .dll for DLLs
and file extension .exe for executable programs. You should not override these
types or use their file extensions for other kinds of targets.

“Incremental Configuration Files” on page 2
“Sources” on page 9

Change a Build Setup
Build
Produce Object Files from a Build
Produce Multiple Targets from One Build

target Configuration File Directive

Chapter 1. Incremental Compilation Concepts 13

Variables and Environments
Variables can be set at any level of your working environment:
v The system level (environment variables)
v The build level (in the project file)
v The subproject level (in the configuration file)

The variables discussed on this page are all set in the project file. See the Related
Concepts below for information on variables set in a configuration file.

There are various ways of representing environments and variables in the IDE:

an assignment is a single variable, which you create. In the project file, it takes
the form assignment=value, for example:
opt=1
opt='yes'

You can assign any kind of value (for example, a string or a number) to
assignment variables you create. When you want to refer to an assignment in a
configuration file, you must precede the assignment name with a ’$’.

a variables object represents a group of assignments. Like a group of options or
a group of source files, it must have a name, and can contain any number of
assignments.

The definition of a variables object takes the general form:
variables group_name
{
assignment1 = x
assignment2 = y
}

In the project file, variables objects are associated with builds or with subprojects,
by use directives. For example, here is a build that makes use of the variables
group called opt_settings:
build optimized

{
use opt_settings
use subproject_1
use subproject_2
}

Similarly, the definition of a subproject can include a use directive to associate it
with a variables object:
subproject sample1 icc “sample1.icc” ics “sample1.ics”
{
use opt_settings
}

an environment is the total collection of the values inherited from the system
environment, the values set or overridden by assignments you created, and values

14 Incremental Compilation Concepts and Tasks

contained in variables groups. Like a variables group, environment objects are
named. Environments are not defined in the project file, however. You can create
your own environments on the Environments page of the Project section of the
workbook. They can then be associated with run specifications, when you run or
debug your application.

Individual variables are set in the project file. These appear in the IDE as

assignment objects (), and you can create and modify them in the IDE just as
you can create and modify any other objects. A named group of these assignments

appears as a variables object: . A variables object behaves in the same way as
a named group of sources in a configuration file or a named group of subprojects
in a project file.

You can view the system environment variables in the Change Environment view.
The values set in the system are listed under the heading Evaluation context.

Variables in Configuration Files

“Environment Variables in Configuration Files”

Environment Variables in Configuration Files
In the project file, use environment variable names as they exist at the system
level. In the configuration file, put the character $ at the beginning of the names of
environment variables. For example, the if directive in the following line checks
whether an environment variable named TEST has been defined:

if defined($TEST) { /* ... */}

The value and type of environment variables are set by the environment and
cannot be changed within the configuration file. You can use various types of
environmental variables:
v Your own environment variables
v Those that are predefined by VisualAge C++
v Any that are set by other processes.

Use the operating system to define your own environment variables before starting
the build.

The most efficient way to use environment variables whose values are needed
more than once is to read them into a project variable, then use the project variable
from then on.

Environment variables can appear in expressions or in “Configuration File
Directives” on page 4 where string values are expected. You can test whether they
are defined and use them in a conditional expression to control the logic of the
configuration file. For example, the following if directive sets options only when an
environment variable named OS2 is set:

if $OS2 {
option generalopt = incl(searchPath, “.”)
option targetops = link(linkWithMultiThreadLib), opt(size)

}

Chapter 1. Incremental Compilation Concepts 15

Environment settings are represented in the IDE with the symbol.

“Incremental Configuration Files” on page 2
“How Configuration Files are Processed” on page 8Conditional Processing in
Builds

Change a Build Setup
Build

“Equivalent Batch Compile-Link and Incremental Build Options (AIX)” on page 37
Build Options
Variables in Configuration Files
Predefined Build Environment Variables

16 Incremental Compilation Concepts and Tasks

Chapter 2. About Projects and Subprojects

Build in a Team Environment
When several developers are working on the same project, their individual
configurations can be assembled into the overall application using project files (.icp).
With a project file, you can split up an application development effort into a
number of subprojects, each containing their own configuration file (.icc), codestore
(.ics), and environment. The project file is used by the IDE and the command line
driver to coordinate the building of the various configurations.

Your team may be able to take advantage of features for file change control that
allow the following actions on a central repository of source files:
v Check files in
v Check files out
v Extract files

The host section shows which files are currently checked out by other users.

“Projects and Subprojects”
“Incremental Configuration Files” on page 2
Codestore

Build
Check In, Check Out, or Extract a Source File

“Project File Syntax” on page 21
Build Options

Projects and Subprojects
A project is a collection of work done by a group of application developers. In
VisualAge C++, you can build entire complex applications by bringing together
various components or modules in a project file.

In previous versions of VisualAge C++, a project was a set of source files which
made up an application. Now, projects can include subprojects called
configurations, which can be built separately. Basically, what was a project in
previous versions is now a subproject. Subprojects can be specified as
configuration(.icc) files or as codestore (.ics) files.

© Copyright IBM Corp. 1998, 2000 17

Integral to any project is the environment you specify. A project file can include
environment variables, which set conditions that determine how the application is
built.

A project is represented in the IDE with the symbol.

A subproject consists of one to three elements. These elements are specified in the
project file to bring together multiple parts of an application and create a single
cohesive application:
v A configuration file (required)
v A codestore (which is a file if you are using a persistent codestore)
v A related environment (optional).

The most logical way to subdivide a project is to create subprojects that correspond
to the working groups that are assigned to the different parts of the project. For
example, a team working on the user interface might have one subproject and the
team working on the accounting logic might have a separate subproject. A project
file would be created to bring the two elements together in the finished
application.

A subproject is represented in the IDE with the symbol.

“Project Files” on page 19
Configurations
Integrated Development Environment (IDE) Workbook
Codestore

Create a Project
Create a Configuration
“Build in a Team Environment” on page 17

18 Incremental Compilation Concepts and Tasks

Project Files
The purpose of a project file is to describe one or more builds for your project. A
build generally contains one or more subprojects and some variables to control
how the processing of each subproject will proceed.

Project (.icp) files are text files that describe builds consisting of one or more
subprojects. A subproject consists of a configuration (.icc) file, a codestore, and an
environment. The IDE and command line driver use the project file to coordinate
the builds of different configurations. Aside from naming the configuration file and
codestore, each configuration names the following:
v Antecedents (those configurations that must be completed first, whose targets

become source for the current configuration).
v Environment variable settings that are passed into the IDE and are used to

process the individual configurations.

The .icp files are similar to the .icc files in a number of ways:
v Some directives in .icp files contain block-structured, named stanzas, of the form

directive-keyword stanza-name { directives }.
v The .icp files can be edited in both the IDE and as text files.
v Processing of .icp files is incremental. In this way builds can be modified and

the incorporations can be restarted directly from the IDE.

The syntax of project files is similar to that of configuration files. However, their
purpose is quite different, and so their semantics are different as well. In particular,
names are scoped so environment variables can be easily overridden.

How Project Files Are Processed
A project file brings together subprojects and describes how to build them.
Environments can be different, even on different builds of the same
subproject. Subprojects can also be mixed and matched in different build
directives.

A project file is processed in the following steps:
1. The project file is parsed, each token interpreted by the VisualAge C++ builder.
2. Subprojects are ordered by dependencies.
3. Independent subproject builds are started, with a separate environment

(options, environment variables, and so on) for each subproject.
4. If two subprojects are interdependent, one is picked and built as far as possible,

then the other is built.
5. Steps 2 to 4 are repeated until all the subprojects are complete or until no

further progress can be made.

“Example: Project File” on page 20

“Projects and Subprojects” on page 17
Codestore

Create a Project
View a Build Setup (Configuration File)
Change a Build Setup (Configuration File)

Chapter 2. About Projects and Subprojects 19

“Project File Syntax” on page 21

Example: Project File
// Builds even.so
subproject even icc “even.icc”{
depends on odd
}
// Builds odd.shr
subproject odd icc “odd.icc”{
depends on even
}
// builds console.o
subproject console icc “console.icc”{
depends on odd
depends on even
}
// builds proj (executable)
subproject all icc “all.icc”{
depends on odd
depends on even
depends on console
}
group pieces = even, odd, console, all
// Use this to build everything with no library
subproject simple icc “proj.icc”
build proj{
use pieces
}
build together{
use simple
}

Related Configuration Files
even.icc

option link(force),link(runtimelinking){
target type(so) “even.so” {

source type(cpp) “odd.h”
source type(cpp) “even.cpp”
source type(shr) “odd.shr”

}
}

odd.icc

option link(force),link(runtimelinking){
target type(shr) “odd.shr” {

source type(cpp) “odd.cpp”
source type(cpp) “even.h”

}
}

console.icc

20 Incremental Compilation Concepts and Tasks

target “console.o” {
source type(cpp) “console.cpp”
source type(cpp) “decl.h”
source type(cpp) “iostream”

}

all.icc

option link(runtimelinking),
link(libSearchPath,“.”) {

target “proj” {
source type(o) “console.o”
source type(so) “even.so”
source type(shr) “odd.shr”

}
}

“Project Files” on page 19
“Incremental Configuration Files” on page 2

Change a Build Setup
Set Build Options
Build

“Project File Syntax”
“Configuration File Syntax” on page 6
Build Options

Project File Syntax
Project files can have comments in them. You can use the standard C++ comment
style: //..newline, or /*..*/ pairs, just like you can in configuration files.

Project File Program

String Expressions

Many directives use string expressions. A string expression is a list of string
components. When a string expression is to be evaluated, all components are
evaluated and concatenated.

String Component

Chapter 2. About Projects and Subprojects 21

There are five types of string component:

Cpp-style-string is string specified in double quotes. Escape sequences within this
type of string are transformed into single-byte values.

Simple-string is specified in single quotes. The contents between the quotes is the
value of the string. There is no escape sequence transformation.

Integer is string containing one or more numerical characters 0 - 9.

$name is an environment variable. This string component evaluates to the value of
environment variable ’name’. If environment variable is not defined, it evaluates to
an empty string.

The last type of string component is a local variable. The value of a local variable
depends on the directives evaluated prior to variable evaluation. If the variable is
not known when its value is used in a string expression, an error message is
generated.

Local variables can be set individually, or they can be set in named stanzas, which
can then be reused. Environment variables can be set and reset.

Include Directive

Project files can be split into separate files, and combined with an include-directive.

An include directive is evaluated in two steps: the string expression is evaluated
first, then the file named by the expression value is opened and its content is
evaluated.

Assignment Directive

This directive assigns the value of a string expression to a local variable:

Variables Directive

Variables directive sets values to a set of local variables in a named stanza:

22 Incremental Compilation Concepts and Tasks

The name specified after keyword variables is the name of this stanza type
directive. Files included by an include-directive in this stanza may only contain
assignment-directives, use-variables-directives and other include-directives.

Use Directives

The use-directive provides a way to reuse the contents of a stanza type directive.

name refers to a variable or subproject directive. In this grammar we use
’use-variable-directive’ and ’use-subproject-directive’ to indicate what type of ’use’
directive we are dealing with.

Subproject Directive

The subproject-directive describes a single configuration. It contains .icc and
optionally .ics filenames . Additionally, environment variables can be defined and
variables-directives used. Files containing directives can be textually included, and
depends-on-directives can be supplied to order this configuration in the build.

icc-filename and ics-filename are string expressions. Note that the stanza is
optional.

Chapter 2. About Projects and Subprojects 23

Subproject Group Directive

The group-directive defines a named group of configurations. The group name can
be used in a use directive. The directive simplifies usage of configurations within
builds: a single use-group-directive replaces a list of use-subproject-directives.

subproject-name-list is a list of comma - separated configuration or group names.

Depends On Directive

The depends-on-directive is used to declare a dependency between configurations.
If a configuration, named Y, uses some results from configuration X , then the
depends-on-directive is used to describe this relation. Ideally, it would be nice to
have X completed before Y is started. In the most general case, however, two or
more configurations can be mutually dependent and simple ordering of
configurations is not possible. Dependency relationship makes possible planning of
configuration processing order, identification of configuration that may be executed
in parallel etc.

A depends-on directive may only appear in a ’subproject’ stanza. The specified
name is the name of another configuration.

Build Directive

The build-directive names all of the configurations that, taken together, comprise
the project itself. You must list all subprojects;when a subproject depends on
another subproject both subproject names must be in the build stanza.

“Example: Project File” on page 20

“Project Files” on page 19
Codestore
“Incremental Configuration Files” on page 2
“How Configuration Files are Processed” on page 8

24 Incremental Compilation Concepts and Tasks

Change a Build Setup
Build

“Equivalent Batch Compile-Link and Incremental Build Options (AIX)” on page 37
Project File Directives
Build Options

Chapter 2. About Projects and Subprojects 25

26 Incremental Compilation Concepts and Tasks

Chapter 3. Using the Incremental Compiler

Build
There are several ways to start a build in the IDE:

v Click the Build button on the Workbook toolbar.
v Select Build from the Project Workbookmenu, and select one of the objects from

the cascading menu.
v Press Ctrl+Shift+B to build the object currently identified in the information

area at the bottom of the IDE window.
v Click the Build button in the Overview page of the Project section to build the

object that is currently selected in the view.

The differences between building a complete project, building a subproject, and
building only a codestore are described in Incremental C++ Build, in the Related
Concepts below.

The information area at the bottom of the IDE window displays the object that is
being built:

You can change the object to be built with the selector arrow next to the object
name. If you are not sure which object will be built, hold the mouse pointer over
the Build toolbar button. The hover help shows the name of the object.

All of your source file changes are saved automatically before the build starts. It
does not matter which page is displayed when you start the build.

For performance reasons, the codestore is not saved to disk on every build by
default. You can adjust how often the codestore is automatically saved on the
Settings page in the Workbook section.

Progress messages and the results of your build are displayed in the information
area at the bottom of the IDE window. Build messages are displayed in a Messages
view.

Rebuilding After Moving Source Files

If you attempt to rebuild a subproject after deleting a source file or included source
file (e.g. a .cpp or .hpp file) from its original path, the build will fail. The build also
fails if you move a source file or included source file from its original location to a
path not searched elsewhere in the project. If you move a source file from its
original path to a path searched for any other source file in the project, the file will
be found and the subproject will build successfully.

© Copyright IBM Corp. 1998, 2000 27

Configuration Files
Codestore
Incremental C++ Build

View Build Messages
Control Build Messages
Build from the Command Line

Dynamic Default Build Setting

Build from the Command Line
Before you build with VisualAge C++, you must have a project file or
configuration that defines the sources or input files, targets or output files, and
options that apply to the build. To build, open the VisualAge C++ command line
window and issue the vacbld command.

The vacbld tool performs incremental builds for C++ sources. If you have an
existing codestore, vacbld updates it. If you do not have a codestore, vacbld
creates one.

You can also use vacbld to compile C code.

Specify the same project file, configuration file, or codestore for command line
builds that you use for builds started from the IDE. You can make changes to your
project file, configuration file, or source code with any text editor, even when the
IDE is open to that particular project. When you return to the IDE, you are asked if
you wish to reload the changed file. The next build, regardless of whether it is
launched by the Build button in the IDE or the vacbld command, synchronizes the
codestore with C++ source files and the configuration file.

To monitor the progress of a command line build, see all warning messages, or
select the level of error messages to detect, set options of the vacbld command.
Error messages are sent to the standard error stream, stderr.

“Project Files” on page 19
“Incremental Configuration Files” on page 2
“When to Use Makefiles” on page 35

Set Build Options
Build

Build Options
List of Batch Compiler Options and Their Defaults

28 Incremental Compilation Concepts and Tasks

Build Executable Programs
To build an executable program, make sure your target type is exe. Executable
files, by default, have no extension.

For example, this excerpt from a configuration file builds a program called
’myprog’ from three source files, including a library. The program is built with the
multithread version of the run-time library.

option link(linkWithMultiThreadLib) {
target “myprog” {

source “myprog.cpp”, “myprog.hpp”, “mylib.a”
}

}

“Incremental Configuration Files” on page 2

Change a Build Setup
Build

Build Options
Target Directive

Group Source Files in a Configuration
Grouping individual files makes it easier to deal with multiple source files that are
processed in the same manner. To make your configuration file easier to read, you
can group source files together and give the group a descriptive name. For
example, if your configuration includes a set of header files that contain functions
for data processing, you can group them under one group directive called
data_files, and reference data_files in the source directive later.

A group directive takes the general form:

group group_name = “source1”, “source2”, “source 3”...“sourcex”

To reference a group directive as a source, simply list group_name in place of the
names of the files:

source group_name

A group directive is represented in the IDE with the symbol.

Add a Group Directive

group Configuration File Directive

Chapter 3. Using the Incremental Compiler 29

Compile and Bind Resources
When using the incremental compiler, building an application that uses resources
is a simpler process than it was in earlier versions of VisualAge C++. Simply
specify your resource files as source files for a build. You can specify resource files
of the following forms:
v One or more resource source files (.rc) files.

The best way to supply more than one resource file is to use rcinclude resource
compiler statements in a single resource source file that you list in your
configuration file. If you list more than one resource source file directly, they are
merged into one temporary resource source file, but no check is made for
potential problems such as conflicting macro definitions.

v One compiled resource file (.res).

v One or more compiled resource file (.res) or resource object file (.rbj).
Resource object files are produced by the Windows resource compiler and you
do usually not work with them.

Here is an excerpt from a configuration file. These directives build myprog from
files mysource.c and myres.rc.

target “myprog” {
source “mysource.c”
source “myres.rc”

}

If you have shared or dynamic link libraries for resouces, you must load them
explicitly at run time. You can use the following API to dynamically load a library:

v The class IDynamicLinkLibrary from the IBM Open Class™ Library

v The function DosLoadModule in the OS/2 Toolkit

v The function loadlibrary in the Windows SKD

You can build shared or dynamic link libraries for resources in the same
configuration file that builds an executable file that uses those libraries.

“Incremental Configuration Files” on page 2

Use Resource Source Files as Sources for a Build
Build
“Build Executable Programs” on page 29

Build Extensions Supplied with VisualAge C++

Macros in C++ Source Files
You can include preprocessor macros in C++ source files, exactly like you do in
source files that you prepare for conventional C++ compilers.

30 Incremental Compilation Concepts and Tasks

Unlike conventional compilers, VisualAge C++ performs an orderless compile and
you can specify many source files in any order. Functions, classes, and variables do
not have to be declared before they are referenced, because the build process finds
the declarations as it needs them. However, preprocessor macros do have intrinsic
position dependencies. The order in which they are defined, undefined, or
redefined affects your code. For example, constructs such as the following are
common, especially in header files:

#ifndef MY_GUARD
#define MY_GUARD 1
...
#endif

Because of the ordering requirements of macros, changes to macros cause more
recompilation than changes to C++ code.

How VisualAge C++ treats a macro depends on whether the source file in which it
is defined is a macro source. A macro source is a C++ source file that is listed in
the configuration file and to which the option macros(global, yes) applies.

If a macro is defined in a source that is not a macro source, it is local to the source
file in which it is defined. The macro is visible only to code that appears after the
macro definition in the same file. The macro definition is not visible from other
source files.

Macros in macro sources are global. They are visible from the point of definition to
the end of the file and continue to be visible in all macro source files that are listed
subsequently in your configuration file. Global macros are visible to all sources
that are not macro sources.

When you convert a header file to a primary source file, you should also make it a
macro source if the header defines macros that are used by other source files.
Apply macros(global) to the header file, so that macros defined in it are visible in
other sources that previously included the header file.

You should specify source files that are not header files as primary sources and
either accept the default setting of macros(global, no) or explicitly apply
macros(global, no) to them. Do this to give code in these files the same behavior as
in regular C++ compilers.

The only difference between macro sources and other primary sources is in the
way macros are preprocessed. The order of macro sources in the configuration file
controls the scope of macros defined within them. For processing C++ declarations,
macro source files are treated exactly like other source files.

The following build options can affect how macros are processed:

Option Definition

macros(global[, yes])
macros(global, no)

Determines whether source files are macro
sources. By default, source files are not
macro sources.

macros(redefine[, yes])
macros(redefine, no)

Controls whether macros can be redefined
without using the #undef preprocessor
directive first.

define(macro_name[, string]) Defines macros that can be used in source
files to which this option applies.

Chapter 3. Using the Incremental Compiler 31

Option Definition

undefine(macro_name) Undefines a macro in the of source files to
which this option applies.

“Incremental Configuration Files” on page 2
Codestore
C++ Source Files and Source Regions
“The One-Definition Rule (C++)” on page 52

Convert Included Source Files to Primary Source Files

Search Paths for Included Source Files (AIX)
Included sources are C and C++ source files that are listed in #include
preprocessor directives, but not listed in a configuration file. If a file is named as a
primary source in your configuration file, as well as being included with a
preprocessor directive, VisualAge C++ treats it as a primary source and not as an
included source.

The search rules depend on whether the included files are system or user included
files.
v System include files are included when the #include directive takes the form

#include <fileName>.
v User include files are included when the #include directive takes the form

#include “fileName”.

Searches For System Included Files
For all system included files, VisualAge C++ searches in the following order:
1. The path or paths specified with incl(searchPath, path) are searched first.

2. If you build from C++ sources the directory /usr/vacpp/include is
searched next.

3. The directory /usr/include is searched last.

The last two directories are searched only if you build with the default setting of
incl(standardInclude). You can set incl(standardinclude, no) to search only the path
specified with incl(searchPath, path).

Searches for User Included Files
For user included files, the search path includes the directory in which the file that
contains the #include directive resides.

For C, the file containing the #include directive refers to the primary source
that directly or indirectly includes other files.

For C++, the file containing the #include directive refers to the
primary source that directly or indirectly includes other files only when you
build with incl(userStrategy, primary).

When you build with incl(userStrategy, including), the file containing
the #include directive is any C++ source file that directly includes other C++

32 Incremental Compilation Concepts and Tasks

sources. It may be an included file rather than a primary file, and may be in a
different directory from the primary file that included it.

VisualAge C++ follows this order when you build with the default setting of
incl(searchPathFirst, no):
1. The directory that contains the source file with the #include directive is

searched first.
2. The path or paths specified with incl(searchPath, path) is searched next.

3. If you build from C++ sources with the default setting of
incl(standardInclude), the directory /usr/vacpp/include is searched next.

4. If you build with the default setting of incl(standardInclude), the directory
/usr/include is searched last.

VisualAge C++ follows the order below when you build with incl(searchPathFirst,
yes):
1. The path or paths specified with incl(searchPath, path) is searched first.
2. The directory that contains the source file with the #include directive is

searched next.

3. If you build from C++ sources with the default setting of
incl(standardInclude), the directory /usr/vacpp/include is searched next.

4. If you build with the default setting of incl(standardInclude), the directory
/usr/include is searched last.

“Incremental C++ Builds” on page 1
C Compilation
C++ Source Files and Source Regions
Search Paths for Primary Source Files
Linker Searches

Add or Change Source Files
Set Build Options
Build

Miscellaneous Build Options

Cleaning Up After Builds
A clean build is a build that starts with no input other than source files, including
the configuration file. The first time you build a new project, VisualAge C++
performs a scratch build. Cleaning up the build environment after builds involves
removing all files produced by previous builds so that the next build is the
equivalent of the first build for the project.

By default, the build process creates a codestore. If the build is successful, the
target files specified in your configuration file are produced. Other intermediate or
temporary files may also be produced by the build process, build extensions that
you use, or by command line programs that you start with the run directive in
your configuration file.

Chapter 3. Using the Incremental Compiler 33

You can clean up the build environment after you have performed a number of
builds. This is analogous to including a “clean” directive block in makefiles in
traditional build environments.You may want clean up the build environment for a
number of reasons:
v To package the source files for archiving or distribution.
v During development, to eliminate any problems that you suspect may relate to

old information in the codestore or intermediate files.
v To determine how long it takes to rebuild your project from scratch, using the

final versions of the source files.

You can always delete the codestore file directly, but cleaning up the build
environment is preferable because it ensures that all files produced by a build are
deleted.

To clean up the environment, select Clean from the Project Workbook menu of the
IDE and choose the desired codestore from the cascaded menu.. The cleanup flag
is passed on to all steps in the build process, including build extensions. For
example the resource compiler removes old temporary resource source files during
a cleanup. You should take the following additional steps to make sure the
environment is completely reset:
v If your configuration file includes run directives that create files, move files, or

do other tasks from which you must recover, include one or more run directives
that take the form:

run cleanup command_string_list

The command_string_list contains commands that perform the recovery.
v If your build procedure includes steps that happen outside the VisualAge C++

build process, check whether these steps must be repeated or altered after the
cleanup.

For example, on OS/2 and Windows NT platforms you can use
the ilib command to add individual object modules to a library. You may need
to take some action if the files involved are affected by the cleanup.

When the cleanup is complete, the IDE displays a box that asks you whether you
want to build your project. If you reply yes, VisualAge C++ performs an initial
build as though you are building this project for the first time. If you reply no, a
small new codestore is created for the project because it remains open in the IDE.
A similar option called -clean is available when using the vacbld command.

“Projects and Subprojects” on page 17
“Incremental Configuration Files” on page 2
Codestore
Build Extensions and Extension Specification Files

Build
“Build from the Command Line” on page 28
Generate a New Codestore
Run Command Line Programs During Builds

34 Incremental Compilation Concepts and Tasks

Build Extensions Supplied with VisualAge C++
vacbld

When to Use Makefiles
You never have to use a makefile when you develop an application exclusively
with the incremental compiler in VisualAge C++. However, the batch compiler, C
for AIX, and OpenMP C require the use of makefiles. Therefore, the make utility is
available to process makefiles.

In VisualAge C++ configuration files perform much of the role played by makefiles
in traditional C and C++ development environments. The only way to perform an
incremental C++ build is to process a configuration file.

You may find that not only is it possible to do everything you require from
configuration files, but also that using configuration files is simpler and less
error-prone than maintaining makefiles. For example, the VisualAge C++ build
process implicitly runs the processes required to build the targets you specify in
your configuration file from sources you list in your configuration file.

There are two ways to combine processing makefiles with VisualAge C++ builds:
1. You can issue the vacbld command inside a makefile to perform a command

line build that processes a configuration file.
2. You can specify your makefile as a source in your configuration file. The

VisualAge C++ build process can run the make utility implicitly before the
compile and link step.

You may want to use makefiles in the following circumstances:
v To set up your build environment, you can set environment variables and run

programs from a makefile before processing your configuration file. Using a
makefile to set environment variables for the build works only if you start the
vacbld command from your makefile. When you process a makefile as a source
in your configuration file, the environment variable settings made from the
makefile are lost when you return to the main build process.

v If your build is complex and requires more than one configuration file, you can
issue a sequence of vacbld commands from your makefile.

v If you must create directories or move files at specific times during the build
process, or run tools that monitor the build, you can encode the necessary
commands in a makefile.

v For builds that do not involve any C or C++ code, you can eliminate the
overhead of loading the VisualAge C++ kernel by using the command line
utilities. For example, you can run the resource compiler directly from the
command line, from a makefile, or as part of a build.

If you use a configuration file for some steps in a build and a makefile for other
steps, the program database for your build, the codestore, may not accurately
reflect the state of your source files. This may cause problems for future builds.

For example, on OS/2 and Windows NT platforms you can run the
library manager from the command line or from a makefile to update libraries. If
the library was originally created by a build, the codestore is not updated to
incorporate changes made to the library outside the build process.

Chapter 3. Using the Incremental Compiler 35

“Incremental Configuration Files” on page 2
“Incremental C++ Builds” on page 1
VisualAge C++ Batch Compilers
C Compilation
Codestore

Change a Build Setup
Build
“Build from the Command Line” on page 28
Produce Multiple Targets from One Build
Run Command Line Programs During Builds
Use Makefiles as Sources for a Build

“Equivalent Batch Compile-Link and Incremental Build Options (AIX)” on page 37
Build Extensions Supplied with VisualAge C++

36 Incremental Compilation Concepts and Tasks

Chapter 4. Related References

Equivalent Batch Compile-Link and Incremental Build Options (AIX)
VisualAge C++ includes an incremental C++ compiler, with a C compiler
extension, and traditional C and C++ compilers. For both C and C++, you can
control the compile and link stages of a build by specifying options in a
configuration file or in a traditional makefile.

The syntax of configuration file options indicates whether the option relates to
code generation, optimization, the C or C++ language, the link stage, or other
features of builds.

The tables below give the configuration file option equivalents to compile options
of the traditional batch compiler. In an incremental C++ compile, not all the batch
options are meaningful. Some are automatic, and the functionality of others is
provided in a different way. An entry of N/A indicates that an equivalent
incremental option is not available. Whether the incremental option applies only to
C or only to C++ code in this version of VisualAge C++ is indicated in the
description line.

In the option syntax, the following rules apply:
v The characters [and] enclose optional items.
v The characters (and) enclose a list of alternatives.
v The character | indicates alternatives.
v The character * denotes zero or more items.

For example -qkeyword=string[:string]* is equivalent to -qkeyword=string,
-qkeyword=string1:string2, -qkeyword=string1:string2:string3 and so on. Another
example: -qtbtable=(none|small|full) is equivalent to -qtbtable=none, or
-qtbtable=small, or -qtbtable=full.

Batch Option Incremental Option

-# N/A

Display language commands but do not invoke them; output goes to stdout.

-+ Use the c++ source type
parameter on a source
directive.

Treat all source files as C++ source code.

-Bprefix N/A

Construct alternate program names.. The -t option determines which programs have
alternate names.

-bbigtoc
-bnobigtoc

link(bigTOC, yes)
link(bigTOC, no)

Generates extra code to allow the table of contents (TOC) to grow to a size greater than
64KB.

-bD:number
-bmaxdata:number

link(heap, number)

Set the size of the heap in bytes. The first number specifies the total virtual address space
to reserve. The second number the amount of physical memory to commit initially.

© Copyright IBM Corp. 1998, 2000 37

Batch Option Incremental Option

-bdynamic
-bstatic

N/A

Determines which types of library files are searched by the linkage editor and whether a
library is linked dynamically or statically.

-bI:filename supported as a source in the
configuration:
source type(imp) “filename”
or
source “filename.imp”

Names a file containing a list of imported symbols.

-blibpath:string link(libPathOut, string)

Override search path used at run time.

-bnoentry link(entry,no)

Specify that the address of the symbol is the start address of the executable module being
built.

-bnso or -bnautoimp
-bso or -bautoimp

link(static, yes)
link(static, no)

Specifies if unstripped, shared objects are statically linked as ordinary object files.

-brtl link(runtimeLinking)

Tells the linkage editor to search for both .so and .a library file types and to resolve
undefined symbols at run time.

-c Specify a target with type
object file

Do not send object files to the linkage editor.

-C

pp(preprocessOnly)

pp(preserveComments)

Preserve comments in preprocessed output.

-Dname[=[def]] define(name[, def])

Define preprocessor macro name as in #define directive. If def is not specified, 1 is assumed.

-Wl,-Dnumber,-bpD:number link(dataStart, number)

Set the starting address for the data section of the output file to number.

-E

pp(preprocessOnly)

pp(stdout)

Preprocess but do not compile. Output goes to stdout.

-ename link(entry, string)

Specify that the address of the symbol is the start address of the executable module being
built.

-Fx[:stanza] supported as a vacbld
command option
stanzas also supported by
defaults(stanza)

Use alternate configuration file or stanza, or both.

38 Incremental Compilation Concepts and Tasks

Batch Option Incremental Option

-g link(debug[, yes])
link(debug, no)

Include traditional debug information in the target.

-Hnumber link(alignAddr, number)

Set the address alignment for all loadable segments so that the start of each segment is
aligned at a multiple of the specified number of bytes.

-Idir incl(searchpath, path)

Search in directory dir for include files that do not start with an absolute path.

-K
-z

link(alignPage, yes)

Aligns the header, text, data, and loader sections of the output file so that each section
begins on a page boundary.

-lkey N/A

Search the specified library file, where key selects the file libkey.a, or libkey.so if the -rtl
option is used.

-Lstring link(libSearchPath,string)

Specify search path for library files.

-ma N/A

Generate inline calls to the “alloca” function as if “#pragma alloca” directives were in the
source file.

-M

file(makeDep[,yes])

Generate information to be included in a “make” description file; output goes to .u file.

-oname

file(genObject[,yes])

file(genObject,name)

file(genObject,no)
filename specified on target
directive

Name generated executable or object file.

-O
-O2
-O3

opt(level, number)

Optimize code.

-O4

-O5

opt(level, number)

Level 4 is equivalent to -O3 -qipa with automatic detection of architecture and tuning
option. At level 5, interprocedural calls are also optimized.

-p gen(profile[, yes])

Enable code for performance analysis. Enables profiling with prof.

-pg gen(profile, bsd)

Generate profiling support code including BSD profiling support. Enables profiling with
gprof.

-P pp(preprocessOnly[,yes])

Chapter 4. Related References 39

Batch Option Incremental Option

Preprocess but do not compile. Output goes to .i file.

-Q
-qinline

opt(inline[, yes])
opt(autoInline[, yes])

Consider any function for inlining. The default is to inline only those functions declared
inline.

-Q!
-qnoinline

opt(inline, no)
opt(autoInline, no)

Do not inline any function.

-Q=lc

-qinline=lc

opt(inline)
opt(autoInline)
opt(autoInline, lc)

Inline if number of source statements in function is less than the number specified in lc.

-Q-name[:name]*

-qinline-name[:name]*

opt(inline[, yes])
opt(noInlineFunc,name)

Do not inline function listed by names.

-Q+name[:name]*

-qinline+name[:name]* opt(inline[, yes])
opt(inlineFunc,name)

Attempt to inline funtions listed by names.

-qaggrcopy=[no]overlap N/A

Destructive aggregate copy.

-qalias=(typ|allp|addr|ansi) opt(alias,...)

Specifies the aliasing assertion to be applied to your compilation unit. The available
options are:
typ= Pointers to different types are never aliased.
allp= Pointers are never aliased.
addr= Variables are disjoint from pointers unless their address is taken.
ansi= Pointers can only point to an object of the same type. Requires -O option.

-qalign=name gen(align, name)

Specify alignment of data items.

-qansialias
-qnoansialias

opt(alias, ...)

Specify which aliasing rules can be used during optimization.

-qarch=name gen(arch, name)

Specifies the architecture on which the executable program will be run. See the AIX
processor types page for a list of valid names. The default is -qarch=com. If the -qarch
option is specified without the -qtune=<option>, the compiler uses -qtune=pwr.

-qassert=option

-qassert=(typ|allp|addr)

opt(alias, option)
opt(aliasAssert,typ[,yes])
opt(aliasAssert,typ,no)
opt(aliasAssert,allp[,yes])
opt(aliasAssert,allp,no)
opt(aliasAssert,addr[,yes])
opt(aliasAssert,addr,no)

40 Incremental Compilation Concepts and Tasks

Batch Option Incremental Option

Specifies the aliasing assertion to be applied to your compilaton unit. The available options
are:
typ= Pointers to different types are never aliased.
allp= Pointers are never aliased.
addr= Variables are disjoint from pointers unless their address is taken.

-qattr list(attr[,yes])

Produce an attribute listing; output goes to.lst file.

-qattr=full list(attr, full)

Produce an attribute listing containing all names, whether referenced or not; output goes to
.lst file.

-qbitfields=signed
-qbitfields=unsigned

lang(signedBitfields[,yes])
lang(signedBitfields,no)

Specify whether bitfields will be signed or unsigned.

-qcache

Specifies the hardware cache characteristics.

-qchars=signed
-qchars=unsigned

lang(signedChars[, yes])
lang(signedChars, no)

Treat plain char variables as signed or unsigned.

-qcheck
-qnocheck
-qcheck=suboptions

gen(check, zeroDivide[, yes])
gen(check, zeroDivide, no)
gen(check, nullPointer[,yes])
gen(check, nullPointer,no)
gen(check, bounds[,yes])
gen(check, bounds,no)

The suboptions are:
all= Switches on all of the following suboptions.
nullptr= Performs run-time checking of addresses contained in pointer variables used to
reference storage.
bounds= Performs run-time checking of addresses when subscipting within an object of
known size.
divzero= Performs run-time checking of integer division.

-qcinc=prefix

-qnocinc=prefix

incl(externC, prefix)
incl(noExternC, prefix)

Includes files from the subdirectory prefix and inserts extern “C” { at the beginning of the
file and } at the end.

-qcompact
-qnocompact

opt(size[, yes])
opt(size, no)

Optimize code for size.

-qcpluscmt

-qnocpluscmt lang(slashSlashComment[,yes])

lang(slashSlashComment,no)

Permit “//” to introduce comment that lasts until the end of the current source line, as in
C++.

Chapter 4. Related References 41

Batch Option Incremental Option

-qdataimported
-qdataimported=name[:name]*

link(dataImported, none)
link(dataImported, all)
link(dataImported, names)
link(dataImportedNames,
name)

Specify which data items are imported. If no names are specified, all data items are
assumed to be imported. This is the default.

-qdatalocal
-qdatalocal=name[:name]*

link(dataLocal, none)
link(dataLocal, all)
link(dataLocal, names)
link(dataLocalNames, name)

Specify which data items are local. If no names are specified, all data items are assumed to
be local.

-qdbcs
-qnodbcs

lang(dbcs[,yes])
lang(dbcs,no)

Allow use of DBCS.

-qdbxextra

-qnodbxextra

gen(debugunreferenced[,
yes])
gen(debugunreferenced,no)

Produce a symbol table for unreferenced variables.

-qdigraph
-qnodigraph

lang(digraphs[, yes])
lang(digraphs, no)

Permit ANSI digraph and keyword operators.

-qdollar
-qnodollar

lang(allowDollarInNames[,
yes])
lang(allowDollarInNames,
no)

Allow the dollar sign (’$’) in identifier names.

-qdpcl
-qnodpcl

link(dpcl[, yes])
link(dpcl, no)

-qeh

-qnoeh

gen(eh[, yes])

gen(eh, no)

Controls whether C++ exception handling is enabled in the module being built.

-qenum=(small|int|intlong|1|2|4|8) gen(enumSize, ...)

Small denotes that either one, two or four bytes of storage will be allocated for enum
variables based on the range of the enum constants.
int is the default, and causes enum variables to be treated as though they were of type
signed int for C and either signed or unsigned int for C++ depending on the range of the
enum constants.

intlong causes enum variables to be treated as though they were of type int or type long
depending on the range of enum constants. The sign of the type is determined in the
same way as for int.
1 will cause enum variables to be packed into 1 byte.
2 will cause enum variables to be packed into 2 bytes.
4 will cause enum variables to be packed into 4 bytes.

8 will cause enum variables to be packed into 8 bytes.

42 Incremental Compilation Concepts and Tasks

Batch Option Incremental Option

-qextchk
-qnoextchk

link(typeCheck[, yes])
link(typeCheck, no)

Perform external name type-checking and function call checking.

-qfdpr
-qnofdpr

gen(fdpr, yes)

Collect information about programs for use with the AIX fdpr (Feedback Directed Program
Restructuring) performance-tuning utility.

-qflag=sev1[:sev2] list(reportLevel, sev1)
report(level, sev2)

Specify severity level of diagnostics to be reported in source listing sev1, and stderr sev2;
the severity levels are one of i,w,e,s.

-qfloat=opt[:opt]* gen(float, ...)
gen(float, string[,yes])
gen(float, string,no)

Specifies various floating-point options. These options provide different strategies for
speeding up or improving the accuracy of floating-point calculations. They affect the
generated code, but not operations performed in library functions.

-qflttrap=opt[:opt]*
-qnoflttrap

gen(floatTrap, option[, yes])
gen(floatTrap,option, no)

Generate calls to detect and trap floating point exceptions. The available options are:
overflow, underflow, zerodivide, invalid, inexact, enable, imprecise.

-qfold
-qnofold

gen(float, fold[, yes])
gen(float, fold, no)

Specifies that constant floating-point expressions are to be evaluated at compile time.

-qfullpath
-qnofullpath

link(debugFullPath[, yes])
link(debugFullPath, no)

Specify path information.

-qfuncsect
-qnofuncsect

gen(funcSect[, yes])
gen(funcSect, no)

Place instructions for each function in a separate csect.

-qgenpcomp[=filename] N/A

Generate a precompiled header file; name can either be a directory containing the
precompiled header (named csetc.pch) or the name of the precompiled header.

-qgenproto

-qnogenproto

file(genProto[,
yes])

file(genProto, no)

Generate ANSI prototypes from K&R function definitions.

-qgenproto=parmnames file(genProto,
withParameterNames)

Produces ANSI prototypes from K&R function definitions with the names of parameters
included.

-qhalt=(i|w|e|s) N/A

Stop the compiler after the first phase if the severity of errors detected equals or exceeds
<sev>; the severity level is one of i, w, e, s, which stand for information, warning, error,
and severe.

-qhaltonmsg=message[:message]* report(treatAsError, message)

Chapter 4. Related References 43

Batch Option Incremental Option

Treats the specified message like an error message (preventing the creation of the target).

-qheapdebug
-qnoheapdebug

alloc(debug[,yes])
alloc(debug,no)

Enables debug versions of memory management functions.

-qidirfirst
-qnoidirfirst

incl(searchpathfirst[, yes])
incl(searchpathfirst, no)

Specify search order for files.

-qignerrno
-qnoignerrno

opt(ignErrno)
opt(ignErrno, no)

Tell the optimizer that the program will never refer to or set errno.

-qignprag=disjoint
-qignprag=isolated
-qignprag=all

opt(pragmaDisjoint[, yes])
opt(pragmaDisjoint, no)
opt(pragmaIsolatedCall[,
yes])
opt(pragmaIsolatedCall, no)

Honor or ignore references to #pragma disjoint and/or isolated_call.

-qinfo=class info(class)

Produce additional lint-like messages based on class.

-qinitauto=number gen(initAuto[, yes])
gen(initAuto, number)
gen(initAuto, no)

Initialize automatic storage to hh, where hh is a hexadecimal value. A number is a
hexadecimal number if it begins with 0x, an octal numbner if it begins with 0 or a decimal
number if it begins with 1-9. This option generates extra code and should only be used for
error determination

-qinlglue
-qnoinlglue

gen(inlinePointerGlue[, yes])
gen(inlinePointerGlue, no)

Generate fast external linkage by inlining the code (pointer glue code) necessary for calls
via a function pointer and calls to external procedures.

-qinline
-qnoinline

opt(autoInline[, yes])
opt(autoInline, no)
opt(inline[, yes])
opt(inline, no)

Determine whether functions in your code are candidates for inlining. See the various -Q
options.

-qipa

-qnoipa

-qipa=option

N/A

Turn the IPA optimizer on or off.

-qisolated_call=name[:name]* opt(isolatedCall,...)

Specify that the calls to the function name listed have no side effects.

-qkeyword=string[:string]*

-qnokeyword=string[:string]*

lang(keyword, string)

Controls whether the specified string is treated as a keyword or an identifier whenever it
appears in your C++ source.

44 Incremental Compilation Concepts and Tasks

Batch Option Incremental Option

-qlanglvl =[no]anonstruct

=[no]anonunion

=[no]ansifor

=[no]illptom

=[no]implicitint

=[no]newexcp

=[no]offsetnonprod

=[no]olddigraphs

=[no]oldfriend

=[no]oldmath

=[no]oldtmplacc

=[no]oldtmplalign

=[no]oldtmplspec

=[no]trailenum

=[no]typedefclass
=[no]ucs

=[no]zeroextarray

lang(anonymousStructs[,
yes])
lang(extendedAnonymousUnions[,
yes])
lang(ansiForStatementScopes[,
yes])
lang(illformedPointerToMember[,
yes])
lang(implicitInt[, yes])
lang(newThrowsException[,yes])
lang(offsetOfNonPODClasses[,
yes])
lang(oldDigraphs[, yes])
lang(compatFriendDeclarations[,
yes])
lang(compatMath[, yes])
lang(compatTempAccessChecking[,
yes])
gen(compatNestedTemplateAlignmentRule)
lang(compatTemplateSpecialization[,
yes])
lang(trailingEnumCommas[,
yes])
lang(allowTypedefAsClassName[,
yes])
lang(universalCharacterNames[,
yes])
lang(zeroExternArrays[, yes])

Set the language level option.

-qlanglvl=<compat366|strict98|ansi|extended> options for compatibility
with older C++ compilers
options for compatility with
the C++ standard

Specify the language level to be used during compilation.

-qlanglvl=<ansi|saa12|saa|extended|classic> lang(level,...)

Specify language level to be used during compilation.

-qldbl128
-qnoldbl128
-qlongdouble
-qnolongdouble

gen(longDouble[, yes])
gen(longDouble, no)

Represent long doubles as 128 bit or 64 bit values.

-qlibansi
-qnolibansi

gen(libansi)
gen(libansi, no)

Process functions with names that match ANSI C library names as being the ANSI C
functions. This allows the compiler to make certain assumptions about the behavior of
these functions.

-qlinedebug
-qnolinedebug

gen(lineOnlyDebug[,yes])
gen(lineOnlyDebug,no)

Generates abbreviated line number and source file name information for the debugger.

-qlist
-qnolist

list(listing[,yes])

list(listing,no)

Produce an object listing; output goes to .lst file.

Chapter 4. Related References 45

Batch Option Incremental Option

-qlistopt
-qnolistopt

list(options[, yes])

list(options, no)

Display the settings of all options; output goes to .lst file.

-qlonglong
-qnolonglong

lang(longlong)
lang(longlong, no)

Build process disallows long long int.

-qlonglit
-qnolonglit

N/A

Makes unsuffixed literals into the long type in 64-bit mode.

-qmacpstr

-qnomacpstr

lang(macPStr[,
yes])

lang(macPStr, no)

Allow ’\p’ as the first character of a string constant.

-qmakedep
-qnomakedep file(makeDep[,yes])

file(makeDep,no)

Creates an output file that contains targets suitable for inclusion in a description file for the
AIX make command.

-qmaxerr=number[:severity_level] debug(maxErrors,
number)

Instructs the compiler to halt compilation when a specified number of errors is reached.

-qmaxmem=num opt(maxMem, number)

Limit the amount of memory used by space intensive ooptimization to num. num is
specified in kilobytes.

-qmbcs
-qnombcs

lang(dbcs[, yes])
lang(dbcs, no)

Allow use of DBCS.

-qnamemangling=option link(nameMangling, ansi)
link(nameMangling, compat)

Choses the name mangling scheme for external symbol names generated from C++
source code.

-qnoprint list(listing, no)

Direct listing to /dev/null.

-qonce

-qnoonce

file(once[, yes])

file(once, no)

Process #include files only once.

-qobjmodel=(ibm|compat) gen(objectModel,
model)

Select the default C++ object model for the compilation unit.

-qpascal

-nopascal

lang(pascal[, yes])

lang(pascal, no)

46 Incremental Compilation Concepts and Tasks

Batch Option Incremental Option

Accept and ignore the keyword ’pascal’ as a type modifier.

-qpath=components:path N/A

Construct alternate program names. The programs in the directory path and specified by
components are used instead of the regular ones. components can a combination of any of
the following:
p= preprocessor
c= compiler frontend
b= compiler backend
i= compiler inliner
a= assembler
l= linkage editor
m= ’munch’ utility
E= create export list
I= inter procedural analysis

-qpdf1
-qpdf2

opt(profileDirectedFeedback[,
yes])

Perform aggressive optimizations with profile directed feedback.

-qphsinfo N/A

Produce compiler phase information

-qpriority=num
link(sharedLibPriority,
number)

Specifies the priority level for initialization of static constructors.

-qproclocal
-qproclocal=name[:name]*

link(procLocal,<none|all|names>)
link(procLocalNames, string)

Specify which functions are local. If no filenames are specified, all invoked functions are
assumed to be defined within the current file. The last explicit specification for a function
takes precedence.

-qprocimported
-qprocimported=name[:name]*

link(procImported,<nome|all|names>)
link(procImportedNames,string)

Specify which functions are imported. If no filenames are specified, all invoked functions
are assumed to be defined outside the current file. The last explicit specification for a
function takes precedence.

-qprocunknown
-qprocunknown=name[:name]*

link(procUnknown,<none|all|names>)
link(procUnknownNames,
string)

Specify which functions are unknown to be local or imported. If no filenames are specified,
all functions called are assumed to be unknown. This is the default when no user options
are specified. The last explicit specification for a function takes precedence.

-qprofile=ibm gen(profile, ibm)

Enables profiling with IBM’s Performance Analyzer.

-qproto

-qnoproto lang(checkNonProto[,yes])

lang(checkNonProto,no)

Assert that procedure call points agree with their declarations even if the procedure has
not been prototyped. This allows the caller to pass floating point arguments in floating
point registers instead of in general purpose registers.

Chapter 4. Related References 47

Batch Option Incremental Option

-qro
-qnoro

gen(readonly[, yes])
gen(readonly, no)

Put string literals in read only area.

-qroconst
-qnoroconst

gen(readonlyconst)
gen(readonlyconst, no)

Put constant values in read only area.

-qrtti

-qnortti

gen(rtti[, yes])

gen(rtti, all)

gen(rtti, typeInfo)

gen(rtti,
dynamicCast)

gen(rtti, no)

Generate run-time type identification (RTTI) information for the typeid operator and the
dynamic_cast operator.

-qshowinc
-qnoshowinc list(expAllInc[,yes])

list(expAllInc,no)

Include the source for all included files in the source listing, if the -qsource option is in
effect.

-qsource
-qnosource

list(incSource[,yes])
list(incSource,no)

Produce a source listing; output goes to.lst file.

-qspill=number opt(registerSpillSize, number)

Specify the size of the register allocation spill area.

-qsrcmsg

-qnosrcmsg

report(srcMsg[,
yes])

report(srcMsg, no)

Reconstruct source lines in error along with the diagnostic messages.

-qstaticinline
-qnostaticinline

lang(staticInlineLinkage[,
yes])
lang(staticInlineLinkage, no)

Controls whether inline functions are treated as static or extern.

-qstatsym
-qnostatsym

link(staticSymbols)
link(staticSymbols, no)

Adds user-defined, nonexternal names that have a persistent storage class, such as
initialized and uninitialized static variables, to the name list (the symbol table of xcoff
objects).

-qstdinc
-qnostdinc

incl(standardInclude[,yes])
incl(standardInclude, no)

If -qnostdinc is specified, the /usr/vacpp/include and /usr/include directories are not
searched for include files.

-qstrict
-qnostrict

opt(strict)
opt(strict, no)

48 Incremental Compilation Concepts and Tasks

Batch Option Incremental Option

Valid only at -03. This option turns off aggresive optimizations which have the potential to
alter the semantics of a user’s program. This option also sets -qfloat=nofltint:norsqrt.

-qstrict_induction
-qnostrict_induction

gen(strictinduction[, yes])
gen(strictinduction, no)

Disable loop induction variable optimizations that have the potential to alter the semantics
of the program.

-qsymtab=unref
-qsymtab=static gen(debugUnreferenced[,yes])

gen(debugUnreferenced,no)
link(staticSymbols)
link(staticSymbols,no)

Set certain back end options.

-qsyntaxonly

-qnosyntaxonly file(syntaxOnly[,yes])

file(syntaxOnly,no)

Causes the compiler to perform syntax checking without generating an object file.

-qtabsize=size file(tabSize, number)

Change the length of tabs in your source file.

-qtbtable(non|small|full) link(traceBackTable,<none|full|small>)

Generate a traceback table for each function and place it in the text segment at the end of
the function code.
The available options are:
none= No traceback table is generated.
full= A full traceback table is generated. This is the default with -g specified.
small= A traceback table is generated with no name or parameter information. This is the
default when -g is NOT specified.

-qtempinc[=directory]

-qnotempinc

N/A

Automatically generate template functions in the specified directory. Use the “notempinc”
option to suppress this behavior.

-qtempmax=number N/A

Specify the maximum number of files to be created in the tempinc directory for each
template file.

-qthreaded
-qnothreaded

N/A

Make sure only thread safe optimizations thread safe optimizations are performed.

-qtmplparse= no
-qtmplparse=
-qtmplparse=

lang(templateDefImpls,
parseWithWarnings)
lang(templateDefImpls,
parseWithErrors)
lang(templateDefImpls,
dontParse)

Controls whether parsing and semantic checking are applied to template definition
implementations or only to template instantiations.

-qtune=name opt(tune, name)
opt(tune,...)

Specifies the system architecture for which the executable program is optimized.

Chapter 4. Related References 49

Batch Option Incremental Option

-qtwolink

-qnotwolink

N/A

Link twice in order to minimize the number of static constructors included from libraries.

-qunique

-qnounique link(uniqueNames[, yes])

link(uniqueNames,
no)

Generates unique names for static constructor or destructor compilation units.

-qunroll
-qunroll=number
-qnounroll

opt(loopUnroll[, yes])
opt(loopUnroll, number)
opt(loopUnroll, no)

Allow the optimizer to unroll loops.

-qupconv

-qnoupconv lang(preserveUnsignedPromotion[,
yes])

lang(preserveUnsignedPromotion,
no)

Preserves the unsigned specification when performing integral promotions.

-qusepcomp[=name] N/A

Use precompiled header files. name can either be a directory containing then precompiled
header (named csetc.pch) or the name of the precompiled header.

-qvftable
-qnovftable

gen(vft[, yes])
gen(vft, no)

Determine whether the virtual function table is included in the module that is the target of
the build.

-qxcall
-qnoxcall

gen(externStaticLinkage[,
yes])
gen(externStaticLinkage, no)

Generate code to static routines within a compilation unit as if they were external routines.

-qxref
-noxref

list(minXRef[,
yes])

list(minXRef, no)

Produce a cross-reference listing; output goes to .lst file.

-qxref=full list(fullXRef[, yes])

list(fullXRef, no)

Produce a cross-reference listing containing all names, whether referenced or not; output
goes to .lst file.

-r link(force)

Permits the output file to be produced even if it contains unresolved symbols.

-s link(strip[, yes])
link(strip, no)

Strip the symbol table to save space.

50 Incremental Compilation Concepts and Tasks

Batch Option Incremental Option

-S file(genAsm[,yes])

file(genAsm, no)

Generate an assembler language (.s) file

-Wl, -Snumber link(stack,number)link(stack,
number)

Set the total size of the program stack in bytes.

-t(p|c|b|i|a|l|m|E|I) N/A

Apply the prefix from the -B option to the specified program, where the program can be
one or more of the following:
p= preprocessor
c= compiler frontend
b= compiler backend
i= compiler inliner
a= assembler
l= linkage editor
m= ’munch’ utility
E= create export list
I= inter procedural analysis

-Tnumber link(textStart, number)

Sets the start address of the text section of the output file to number.

-Uname undefine(name)

Undefine name as in #undef directive.

-v N/A

Display language processing commands as they are invoked by xlC; output goes to stdout.

-V N/A

Same as -v except format is similar to shell commands.

-w report(level, ...)

Suppress information, language-level, and warning messages.

-W N/A

Give specified options to specified compiler program.

-Wcomponents, option N/A

Give the option to the compiler program where components can be one or more of the
following:
p,c,b,i,a,l,I,m,E. See -t for component meanings.

-ymode gen(roundConstFp, mode)

Specify compile-time rounding of constant floating-point expressions, where mode can be
one of the following:
n= round to nearest
m= round toward minus infinity
p= round toward positive infinity
z= round toward zero.

-Zstring link(libsearchpathprefix,
string)

Prefix the names of the library search paths with the string.

Chapter 4. Related References 51

“Incremental C++ Builds” on page 1
C Compilation
“Incremental Configuration Files” on page 2

Set Build Options
Build

“Equivalent Batch Compile-Link and Incremental Build Options (AIX)” on page 37
Link Options from Earlier Versions of VisualAge C++
Build Options
Batch Compiler Options

Build Options for ANSI C++ Compliance

Build Options for Compatibitility with Old C++ Compilers

The One-Definition Rule (C++)
The one-definition rule is specified in the C++ standard. The one-definition rule
has two aspects:
1. A translation unit must not contain more than one definition of any variable,

function, class type, enumeration type, or template.
2. External definitions must not be redefined within a program.

Traditional C++ compilers enforce only the first part of the one-definition rule. The
incremental compiler enforces the full rule, to conform to the C++ standard and to
remove the possibility of two or more conflicting definitions being visible at the
same time during a build. As implemented in the incremental compiler, the
one-definition rule means that declarations with external linkage cannot be defined
in more than one source file. The one-definition rule allows some declarations,
such as class and enum definitions, templates, and inline functions, to be defined
in different source files as long as they consist of the same sequence of tokens. The
incremental compiler accepts these multiple definitions.

Because the incremental compiler performs C++ builds in which all source files are
considered at once, the one-definition rule applies to the set of C++ source files
that are input to one build. As a result, the incremental compiler may not accept
code that other compilers accept in some circumstances. The circumstances relate
to following constructs and are described in detail below:
v Classes, enums, Templates, and Inline Functions
v Enumerations and extern Variables
v typedef Statements

If your C++ sources are rejected by the incremental compiler due to the
one-definition rule, you should consider using one of the following methods to
correct the problem:
1. Change the name of one of the conflicting definitions.
2. Enclose the code that depends on each of the conflicting definitions in different

namespaces.
3. Split your source files so that each of the conflicting definitions is in a separate

codestore. Do this by creating a separate configuration file in the same project.
For example, you can build DLLs and your executable program from different
configuration files.

52 Incremental Compilation Concepts and Tasks

If you specify the same source file more than once in your configuration file, the
incremental compiler treats each occurrence of the file as a separate and unrelated
source file. The one-definition rule limits the way you can reuse C++ source files in
one codestore.

Classes, enums, Templates, and Inline Functions
The C++ language does not allow classes, enums, templates, and inline functions
to be defined more than once in a program, unless all three of the following
conditions are satisfied:
v The definitions appear in different source files.
v The definitions consist of the same sequence of identical tokens.
v The definitions are semantically identical.

Traditional compilers test for the first condition. For example, they make sure that
classes and enums are defined only once within a source file. the incremental
compiler tests for the first two conditions and lets you redefine classes and enums
only with definitions that are identical to the original definitions. Therefore, if a
class or enum name is used with different definitions in different source files, the
incremental compiler reports an error that traditional compilers do not find. While
traditional compilers only check this rule within a source file, the incremental
compiler checks it across all source files.

Enumerators and extern Variables
The C++ language allows only one definition of a given enumerator or variable
name with external linkage in namespace scope, which includes global scope, and
insists that multiple declarations of an external variable match. While traditional
compilers only check this rule within a source file, the incremental compiler checks
it across all source files.

typedef Statements
Standard C++ does not allow definitions with external linkage to be defined
differently in different translation units. The incremental compiler applies this rule
to types defined in typedef statements, which have no linkage according to
standard C++. Unlike traditional compilers, the incremental compiler does not let
you redefine a type with typedef statements in more than one source file unless
the typedef statements are identical.

If the incremental compiler rejects a typedef statement in your C++ source because
of the one-definition rule, you have an additional recovery technique to the three
methods listed above. You can tell the incremental compiler to treat all typedef
statements as local to the source file in which the type is defined, by building with
option lang(localTypedefs, yes).

“Incremental C++ Builds” on page 1
Codestore
“Incremental Configuration Files” on page 2
C++ Source Files and Source Regions

Add or Change Source Files
Convert Included Source Files to Primary Source Files
Produce Multiple Targets from One Build

Chapter 4. Related References 53

54 Incremental Compilation Concepts and Tasks

Contacting IBM

We’re delighted to offer a solid cornerstone for your application development:
IBM’s comprehensive support services. Whether you are an occasional user with a
simple question, a power user with many complex technical questions, or someone
who requires application design assistance and consulting, IBM Support can meet
your needs.

Comments on This Help

Please let us know about any errors or omissions in this online help or in the
hardcopy Getting Started book, or our PDF documents. Send your e-mail to:
torrcf@ca.ibm.com

Fee Support

Developers on the VisualAge C++ for AIX Service and Support team handle
everything from simple how-to’s to complex technical problems. Solutions may
take the form of a brief explanation, a workaround, a fix to the current product, or
a fix to the next release.

http://www.ibm.com/support/ describes IBM Support Offerings on all platforms,
worldwide.

http://www.ibm.com/rs6000/support/ describes support offerings on the
RS/6000® platform, in your country. It also indicates whether your country
provides support electronically over the Internet in addition to telephone support.

http://www.lotus.com/passport describes the IBM and Lotus® Passport
Advantage™ contracting option.

The IBM Software Support Handbook, accessible from
http://www.ibm.com/software/support, also lists worldwide support contacts.

Phone numbers for information on Support Line offerings are:
v United States: 1-888-426-4343 (IBM Global Services), option 3 as of December

1999. Should this number change, IBM general information at 1-800-IBM-4YOU
(1-800-426-4968) can route you to the appropriate group.

v Canada: 1-800-465-9600, option 3 as of December 1999. Should this number
change, you can also contact IBM general information at 1-800-IBM-4YOU
(1-800-426-4968).

Please call 1-800-266-8720 in the U.S. and Canada for information on Passport
Advantage offerings.
v Elsewhere, please contact your local IBM office.

If you contact support, please have the following information available:
v The product name
v The product version
v The hardware configuration and software (product names and versions you are

using)
v What happened and what you were doing when the problem occurred

© Copyright IBM Corp. 1998, 2000 55

v Whether you tried to solve the problem and how
v The exact wording of any messages displayed

Consulting Services

VisualAge and WebSphere™ Product Affinity Services Group is a core group of
technical specialists from the IBM development labs that created the IBM
VisualAge and WebSphere products. With access to a network of IBM product area
experts, IBM and industry business partners, and some of the best resources in the
industry, we can put the optimal team in place to meet the challenge of absorbing
new technology. Our goal is to enable organizational success with VisualAge and
WebSphere — ensuring that our products are used effectively within your
development team.

For more information, visit http://www.ibm.com/software/ad/vaws-services/ or
contact the Product Affinity Services Team at:

AIM_SERVICES@us.ibm.com

56 Incremental Compilation Concepts and Tasks

	Contents
	Notices
	Programming Interface Information
	Trademarks and Service Marks
	Industry Standards

	About This Book
	Chapter 1. Incremental Compilation Concepts
	Incremental C++ Builds
	Incremental Configuration Files
	Basic Configuration Files
	More Complex Configuration Files

	Configuration File Directives
	Configuration File Syntax
	Example: Configuration File
	How Configuration Files are Processed
	Sources
	Primary vs Secondary Sources
	Macro vs Non-macro Sources

	Targets
	Variables and Environments
	Environment Variables in Configuration Files

	Chapter 2. About Projects and Subprojects
	Build in a Team Environment
	Projects and Subprojects
	Project Files
	How Project Files Are Processed

	Example: Project File
	Related Configuration Files

	Project File Syntax

	Chapter 3. Using the Incremental Compiler
	Build
	Build from the Command Line
	Build Executable Programs
	Group Source Files in a Configuration
	Compile and Bind Resources
	Macros in C++ Source Files
	Search Paths for Included Source Files (AIX)
	Cleaning Up After Builds
	When to Use Makefiles

	Chapter 4. Related References
	Equivalent Batch Compile-Link and Incremental Build Options (AIX)
	The One-Definition Rule (C++)

	Contacting IBM

