
VisualAge® C++ Professional for AIX®

Debugging with the Integrated
Development Environment
Version 5.0

���

Edition Notice

This edition applies to Version 5.0 of IBM® VisualAge C++ and to all subsequent releases and modifications until
otherwise indicated in new editions. Make sure you are using the correct edition for the level of the product.

© Copyright International Business Machines Corporation 1998, 2000. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Note!
Before using this information and the product it supports, be sure to read the general
information under “Notices” on page v.

Contents

Notices v
Programming Interface Information vii
Trademarks and Service Marks vii
Industry Standards viii

About This Book. ix

Chapter 1. Debugging with VisualAge
C++ 1
No Special Debugging Options 1
Breakpoints Can Be Set Any Time 1
Bugs Can Be Corrected from Within the Debug Pages 1
You can debug multiple processes simultaneously . . 2

Chapter 2. Prepare a program for
debugging. 3
Set Breakpoints Before Debugging 3
Establish a debug environment 3

Specify Arguments to Your Program 3
Write Programs for Debugging 4
Debugging Optimized Code 4

Debug Optimized Code. 5

Chapter 3. Start or stop debugging a
program. 7
Start a Program Under Debug Control 7
Start Debugging a DLL or Shared Library 7

Chapter 4. Debug logic and program
flow 9
View Disassembly Code for a Process 9
Change Default Settings for the Disassembly View. . 9
View Source Code for a Process 10
Types of Breakpoints 10
Breakpoint Conditions 12
Control breakpoints 12

Set a Statement Breakpoint 12
Set a Statement Entry Breakpoint 13
Set a Statement Exit Breakpoint. 13
Set a Statement Initializer Breakpoint 14
Set a Function Breakpoint 14
Set a Virtual Function Breakpoint 15
Set a Template Class Breakpoint 15
Set a Class Breakpoint 16
Set a Class Instance Breakpoint 16
Set an Instruction Breakpoint 17
Set Conditions on Breakpoints 18
Enable Breakpoints That Have Been Disabled . . 18
Disable Breakpoints 19
Remove Breakpoints 19
Remove Conditions from Breakpoints 20

Step Commands: Overview 21
Source-Level Step Commands 22

Jump to Location 23
Step through, run, or halt a program 23

Step through Source Code 23
Step through Machine Language (Disassembly)
Instructions 24
Step Over or Into Functions 25
Run to the End of the Current Function, Then
Return 25
Run a Program Under Debug Control 25
Jump over Code without Executing It 26
Halt Execution of a Process 26
Terminate a Program Under Debug Control . . 27

Debug Child Processes 27
Debug Exception-Handling Code 28

Determine Causes of System Exceptions 28
Handle Signals for User-Defined Exceptions . . 29

Chapter 5. Debug variable contents and
memory 31
Expression and Value Monitors 31
Debug local variables 31

Obtain a Local Variables View 31
Obtain a Details View of a Variable 32
Add a Variable to the Monitored Expressions
View 32
Change the Representation of a Variable 32
Change the Contents of a Variable 33

Debug Global Variables 34
Debug program storage 34

View a Different Address in a Storage View . . 34
Change the Representation of Storage in a
Storage View 35
Change the Contents of Program Storage . . . 35
Add a Value to the Monitored Values View. . . 35

Debug memory allocation (heap) problems 36
Set Incorporation Options for Heap Debugging 36
Check Heap for Corruption After Each Step
Command 37

Debug processor registers 37
Choose Which Registers Display in a Registers
View 37
Change the Representation of Register Contents 37
Change the Contents of Registers 38

Appendix A. Available Representations
for Variables 39

Appendix B. Debugger commands . . . 41
Machine Step Into Command 41
Machine Step Over Command 41
Debug Step Into Command 41
Step Into Command 42
Step Over Command 42
Return Step Command 43

© Copyright IBM Corp. 1998, 2000 iii

Contacting IBM 45

iv Debugging with the Integrated Development Environment

Notices

Note to U.S. Government Users Restricted Rights -- use, duplication or disclosure
restricted by GSA ADP Schedule Contract with IBM Corp.

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION ″AS IS″
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1998, 2000 v

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Lab Director
IBM Canada Ltd.
1150 Eglinton Avenue East
Toronto, Ontario M3C 1H7
Canada

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

® (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. ® Copyright IBM Corp. 1998, 2000. All rights reserved.

vi Debugging with the Integrated Development Environment

Programming Interface Information
Programming interface information is intended to help you create application
software using this program.

General-use programming interface allow the customer to write application
software that obtain the services of this program’s tools.

However, this information may also contain diagnosis, modification, and tuning
information. Diagnosis, modification, and tuning information is provided to help
you debug your application software.

Warning: Do not use this diagnosis, modification, and tuning information as a
programming interface because it is subject to change.

Trademarks and Service Marks
The following terms are trademarks of the International Business Machines
Corporation in the United States, or other countries, or both:

AIX
AS/400
DB2
CICS
C Set ++
IBM
Network Station
Object Connection
OS/2
OS/390
OS/400
Open Class
Operating System/2
Operating System/400
PowerPC 403
PowerPC 601
PowerPC 603
PowerPC 604
Presentation Manager
RS/6000
S/390
SAA
Systems Application Architechture
TeamConnection
VisualAge
WebSphere
Workplace Shell

Lotus, Lotus Notes, and Domino are trademarks or registered trademarks of the
Lotus Development Corporation in the United States, or other countries, or both.

Tivoli Management Environment, TME 10, and Tivoli Module Designer are
trademarks of Tivoli Systems Inc. in the United States, or other countries, or both.

Encina and DCE Encina Lightweight Client are trademarks of Transarc Corporation
in the United States, or other countries, or both.

Notices vii

Microsoft, Win32, Windows, Windows NT, and the Windows logo are trademarks
or registered trademarks of Microsoft Corporation in the United States, or other
countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

UNIX is a registered trademark in the U.S. and other countries licensed exclusively
through X/Open Company Limited.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks or registered
trademarks of Intel Corporation in the United States, or other countries, or both.

C-bus is a registered trademark of Corollary, Inc.

PC Direct is a registered tradmark of Ziff Communicatoins Company and is used
by IBM Corporation under license

Other company, product, and service names, which may be denoted by a double
asterisk(**), may be trademarks or service marks of others.

Industry Standards
VisualAge C++ Professional for AIX, Version 5.0 supports the following standards:
v The C language is consistent with the International Standard C (ANSI/ISO-IEC

9899–1990 [1992]). This standard has officially replaced American National
standard for Information Systems-Programming Language C (X3.159–1989) and
is technically equivalent to the ANSI C standard. VisualAge C++ supports the
changes adopted into the C Standard by ISO/IEC 9899:1990/Amendment 1:1994.

v The IBM Systems Application Architecture (SAA) C Level 2 language definition.
v The C++ language is consistent with the International Standard for Information

Systems-Programming Language C++ (ISO/IEC 14882:1998).
v The ISO/IEC 9945–1:1990/IEEE POSIX 1003.-1990 standard.
v The X/Open Common Applications Environment Specifications, System

Interfaces and Headers, Issue 4.

viii Debugging with the Integrated Development Environment

About This Book

The information in this PDF document is also available in the online help.

To find this information, or any topics listed in this document as Related Concepts,
Related Tasks, or Related References, simply type the topic title into the search bar
in the top frame of your browser in the online help.

For some topics, the suggested references may already be contained in this
document. In such cases, there is a cross-reference to the page on which the related
topic appears.

References to VisualAge or VisualAge C++ in this book should be interpreted as
VisualAge C++, Version 5.0.

© Copyright IBM Corp. 1998, 2000 ix

x Debugging with the Integrated Development Environment

Chapter 1. Debugging with VisualAge C++

You debug your programs in the VisualAge C++ Integrated Development
Environment (IDE) in a substantially different way from the traditional
edit/compile/link/debug methodology. The VisualAge IDE is designed to make
the entire development process easier and more efficient. Debugging tasks are
simplified in the following ways:

No Special Debugging Options
When you build your application within the IDE you do not need to specify
special compiler or linker options for debugging. Because the IDE maintains a
database or “codestore” of information about the functions, classes, variables,
statements, and other information in your program, the IDE uses this codestore to
access any required debugging information. The executable you debug can be the
same executable you ship to customers. Because it does not contain debug
information, it is more compact.

Batch compiled programs must still be compiled with debug information in order
use the IDE debugger.

Breakpoints Can Be Set Any Time
You can set a breakpoint on any statement, function, virtual function, or class,
before you start debugging. You can only set a breakpoint on a statement in
functions that you build. As you add new capabilities to your program, you can
set breakpoints in your new code so that the next time you debug your program,
execution stops in your new code, allowing you to narrow down the scope of
debugging.

Breakpoints are stored in your project in relation to your source code, not to
executable addresses. If you add code to your program and rebuild it, the context
of existing breakpoints is preserved. Each time you start debugging a process, the
breakpoints you have set for the project are set at the appropriate addresses in the
process. Once a process has started, you can disable or remove breakpoints for that
process without affecting those breakpoints in other concurrent or subsequent
debugging runs of the program.

Bugs Can Be Corrected from Within the Debug Pages
You can correct a bug in any source view within a debug page, and quickly
rebuild your application. This causes all processes for the project that are running
under debug control to terminate, but the time required to rebuild the application
given a minor change is considerably less than with a traditional compiler, and
from the time you enter the change to the time you start a new debug session for
the application may be a matter of a few seconds or a minute, compared to much
longer for the same change in a traditional environment.

For batch compiled programs, changes you make in the source code will not be
picked up until the next time you compile your program.

© Copyright IBM Corp. 1998, 2000 1

You can debug multiple processes simultaneously
The IDE lets you start more than one process under debug control, and you can
easily switch between running processes to compare, for example, how your
application behaves given different inputs. The processes under debug control can
also be different executables, which may help you to debug a distributed
application.

You can run these multiple processes without cluttering your windowing
workspace with countless windows; all debugging windows (other than the
windows created by your application) are now views within the IDE, and are
organized within pages under a process tab for each process you are debugging.

“Start a Program Under Debug Control” on page 7
“Set Breakpoints Before Debugging” on page 3
Set Breakpoints Within Debug Pages

2 Debugging with the Integrated Development Environment

Chapter 2. Prepare a program for debugging

Set Breakpoints Before Debugging
You can set most types of breakpoints in a project before you even start debugging,
for example as soon as you have written the code for a function and have rebuilt
the project. When you start a debug process for the project, these breakpoints affect
that process. Note that an entry point breakpoint is automatically set at the entry
point to the main function of your executable.

To set a breakpoint before debugging, do the following:
1. In the view containing the object (function, statement, class, or variable) you

want to set a breakpoint on, click mouse button 2 over that object.
2. If a choice to set the appropriate breakpoint is shown on the resulting popup

menu, select that choice. Otherwise:
3. Select the menu item that identifies the object; a cascading menu is displayed.

If a breakpoint can be set for the object, a breakpoint or watchpoint menu
choice appears. Select this.

Note that class instance breakpoints and watchpoints cannot be set before starting
a debug session.

Each breakpoint is enabled when you set it, even when you have disabled the “All
breakpoints” breakpoint in a Breakpoints view.

Further information on setting specific types is available in the Procedures help for
each type of breakpoint.

“Chapter 1. Debugging with VisualAge C++” on page 1
“Types of Breakpoints” on page 10

Enable, Disable, or Delete Breakpoints from the Breakpoints View
“Set a Template Class Breakpoint” on page 15
“Set a Class Breakpoint” on page 16
“Set a Class Instance Breakpoint” on page 16
“Set a Function Breakpoint” on page 14
“Set a Statement Breakpoint” on page 12
“Set a Virtual Function Breakpoint” on page 15
“Set an Instruction Breakpoint” on page 17

Establish a debug environment

Specify Arguments to Your Program
You can specify arguments to a program you want to run or debug by entering
those arguments in the Argumentsentry field of the program’s run specification
before you start running or debugging the program. To set arguments for your
program, do the following:
1. In the IDE, select the Debug page for your project.

© Copyright IBM Corp. 1998, 2000 3

2. Go to the Run Specifications view. If you do not see a Run Specifications view,
you can set another project pane to show this view by clicking on the view
name near the right hand side of the pane title bar, and selecting Run
Specifications.

3. Select the Arguments entry field in the Run Specifications view by clicking
mouse button 1 on it.

4. Enter your program arguments.

Now when you start running or debugging your program using this run
specification, the arguments you entered are provided to your program.

If you want to set up several run specifications so that you can run or debug your
program with different sets of arguments, click the New button to create a new,
blank run specification for the project. If you want to duplicate an existing run
specification, including its arguments, so that you can modify those arguments,
select that run specification, click mouse button 2, and select Duplicate.

“Start a Program Under Debug Control” on page 7

Write Programs for Debugging
You will find it easier to debug your programs if you follow these guidelines:
1. Do not do any hand-tuning for performance until you have all the logic in

place and fully debugged.
2. Use meaningful names for loop counter variables and other temporary

variables. This helps you quickly relate the variable names, when they appear
in Stack frame or other Variables views, to the code to which they apply.

3. Use lvalues as array indices, rather than expressions that have a side effect, if
you want to be able to determine what the value of an array index is at a given
point. For example, statements such as a[i++]=b[j++]; make it more difficult for
you to observe the effect of the statement on the affected variables and arrays.
Instead, try using a compound statement:
a[i]=b[j];
i++;
j++;

4. Break complex function calls into several simpler ones, as long as breaking up
the call does not cause one function call’s side effects to change the result of
another function call. This makes it easier to step into or over the individual
functions inolved, without having to switch to or open a disassembly view.

“Debug Optimized Code” on page 5

Debugging Optimized Code
When you debug optimized code, information in debugger panes may lead you to
suspect logic problems that do not actually exist. Consider the following points:
v Do not rely on panes such as stack frame panes to show the current values of

variables. Numeric and char values may be kept in processor registers, as may
pointers to other types of variables such as strings and class objects. In the
optimized program, these values and pointers are not always written out to
memory; in some cases, they may be discarded because they are not needed.

4 Debugging with the Integrated Development Environment

v Static or external variables can be monitored at function entry and exit points
but their value as displayed by the debugger during debugging of a function
may not be valid. The debugger displays the storage allocated to the static or
external variable, but in optimized code, changes to a variable may not be
written out to storage immediately.

v The register and storage panes are correct. Unlike panes that show actual
variables, such as the stack frame, the registers and storage panes are always
up-to-date as of the last time execution stopped.

v Use the Disassembly view of your program to see whether source statements
whose result you were relying on have been eliminated during optimization (via
dead code elimination, where code that performs no useful work is removed).
You may find, for example, that an assignment to a variable in your source code
does not result in any disassembly code being produced; this may indicate that
the variable’s value is never used after the assignment.

“Debug Optimized Code”

Debug Optimized Code
Problems that only surface during optimization are often an indication of logic
errors that are exposed by optimization; for example, using a variable that has not
been initialized. If you encounter an error in your program that only occurs in the
optimized version, you can usually find the cause of the error using a binary
search technique to find the failing module:
1. Begin by optimizing half the modules and see if the error persists.
2. After each change in the number of optimized modules, if the error persists,

optimize fewer modules; if the error goes away, optimize more modules.
Eventually you will have narrowed the error down to a single module or a
small number of modules.

3. Debug the failing module. If possible, turn off the instruction scheduling
optimizations for that module. Look for problems such as reading from a
variable before it has been written to, and pointers or array indices exceeding
the bounds of storage allocated for the pointer or array.

See the Reference information below for tips on uncovering problems with
optimized code you are debugging.

“Debugging Optimized Code” on page 4

Chapter 2. Prepare a program for debugging 5

6 Debugging with the Integrated Development Environment

Chapter 3. Start or stop debugging a program

Start a Program Under Debug Control
From within your project, you can start debugging a program as follows:
1. If the project has not been built since you last made changes, rebuild the

project.
2. Choose the Debug page of the project tab.
3. In the Run Specification view, select the run specification you want to debug.

You can enter program arguments in the arguments entry field to pass to your
program. You can select different environments for program to run in. You can
create multiple run specifications for a project, for example, to specify different
arguments to different versions.

4. Choose the environment that program will.
5. Click on the Debug button in the Run Specification view.

You can also start debugging a program by pressing CTRL+Shift+D at any time.
The program will run using the most recently selected run specification. If you did
not select a run specification, the program will run using the first run specification
listed in the Run Specification view.

Either of these methods starts your program running in a new process under
debug control. You can start multiple processes for the same program and debug
them at the same time. Just return to the Debug page of the project tab, select the
run specification you want from the Run Specification view, and click on Debug
again. You can then switch between debugging one process and another by
selecting the appropriate process tab.

If you are debugging multiple processes, the process toolbar buttons and Debug
menu items that appear when you start debugging the first process apply to
whichever process has its workbook section in the foreground, or to the process
whose workbook section was most recently selected, if a different type of
workbook section is the foreground section.

You can change which process the process toolbar and Debug menu items control
by selecting a different process object in the Process Log view or the Debuggable
Processes view in the Debug page.

“Specify Arguments to Your Program” on page 3
Start Debugging an Already Running Process

Start Debugging a DLL or Shared Library
You can debug a DLL or Shared Library in the VisualAge C++ Integrated
Development Environment the same way you debug executables. Follow these
steps to set breakpoints in DLL or Shared Library functions so that execution stops
when your DLL or Shared Library is called:
1. From the Debug page of the Project tab, start the program running under

debug control.
2. Turn to the Modules page of the Process tab

© Copyright IBM Corp. 1998, 2000 7

3. Expand the DLL or Shared Library module you want to debug.
4. Expand the Exported Symbols section for the DLL or Shared Library.
5. For each function you want to set a breakpoint on, click mouse button 2 over

the function name and choose Set Function Breakpoint from the popup menu.
6. If the DLL or Shared Library is not part of the current codestore, the exported

symbols list does not include functions. Instead, a link symbol is shown for the
mangled name of each function. To set an instruction breakpoint on the entry
point to such a function, click mouse button 2 over the address shown for the
function, and select Set Instruction Breakpoint.

7. If you do not want to stop in main, disable the Entry point main breakpoint in
the Breakpoints view.

8. Run your program. Execution stops in the first DLL or Shared Library function
called by your program.

“Disable Breakpoints” on page 19
“Run a Program Under Debug Control” on page 25
“Set a Function Breakpoint” on page 14
“Set an Instruction Breakpoint” on page 17
“Start a Program Under Debug Control” on page 7

8 Debugging with the Integrated Development Environment

Chapter 4. Debug logic and program flow

View Disassembly Code for a Process
To view the disassembly code for the current execution point of a process under
debug control:
1. Switch to the process tab for the process being debugged if you have not

already done so, or start a new debug session.
2. Select the Disassembly page. By default this page includes a Disassembly view.

If you want a disassembly view from the Source page or another page that does
not contain such a view, you can change the Source view on that page to a
Disassembly view, and later you can change it back by selecting Page > Reset Page
from the main menu. Or you can create a new pane, change the input object to the
thread being debugged, and change its view to Disassembly.

“Step Commands: Overview” on page 21

“Start a Program Under Debug Control” on page 7
“Step through Machine Language (Disassembly) Instructions” on page 24

“Debugging Optimized Code” on page 4
“View Source Code for a Process” on page 10

Change Default Settings for the Disassembly View
You can change the default appearance of the Disassembly view from the View
Settings page of the Workbook tab. Follow these steps:
1. Select the Workbook tab.
2. Select the View Settings page.
3. In the Views with Settings pane, select Disassembly. The righthand pane

updates to show the settings you can change for the Disassembly view.
4. Change any settings here.

Changes you make to the defaults do not affect disassembly views that have
already been created. For example, if you start a process under debug control, go
to the Disassembly page for that process, then to the View Settings page of the
Workbook tab to change the defaults for the Disassembly view, your changes do
not affect the existing Disassembly page. However, if you start the process, then
change the defaults, then view the Disassembly page for the process, the
Disassembly view is created only then, and the new defaults take effect.

“View Disassembly Code for a Process”

© Copyright IBM Corp. 1998, 2000 9

View Source Code for a Process
To view the source code for a thread and stack frame of a process running under
debug control:
1. Switch to the process tab for the process being debugged if you have not

already done so, or start a new debug session.
2. Select the Source page. By default this page includes a Source view.
3. If the thread whose source you want to see is not the current thread, select the

thread from the Threads pane. If the function whose source you want to see is
not on top of the stack frame, select the stack frame of the function whose
source you wish to see.

4. If you want a Source view from the Disassembly page or another page that
does not contain such a view, you can create a new pane containing that view,
or change another pane to show that view. To do this, set the input object of
the pane to the process object, then change the view to Source view.

“Source-Level Step Commands” on page 22

“Start a Program Under Debug Control” on page 7
“Step through Source Code” on page 23

“Debugging Optimized Code” on page 4
“View Disassembly Code for a Process” on page 9

Types of Breakpoints
You can set the following types of breakpoints in your program:

statement breakpoints
Breakpoints that apply to any source language statement that has
executable code associated with it. These include compound statements
such as for loop blocks. Statement breakpoints that apply to compound
statements may be set at both the entry and exit points of the statement. If
the compound statement is a constructor with an explicit initialization list,
a breakpoint may be set on the initializer.

function breakpoints
Breakpoints that apply to the entry of a function. Execution stops on entry
to the function each time it is called.

virtual function breakpoints
Breakpoints that apply to any virtual class method. When you set a virtual
function breakpoint, the breakpoint applies to the selected function, and to
any overrides of this function in any derived classes. Execution stops each
time the method is invoked on a derived class object, whether or not the
derived class redefines the virtual function. Execution also stops in
methods invoked on instances of the class for which the breakpoint was
set.

template class breakpoints
Breakpoints that apply to all methods of a template class. When you set a
breakpoint on a template class, a function breakpoint is set for each

10 Debugging with the Integrated Development Environment

nonvirtual function of the template, and a virtual function breakpoint is set
for each virtual function of the template. Breakpoints are also set for the
functions in each instance of template.

class breakpoints
Breakpoints that apply to all methods of a class. When you set a
breakpoint on a class, a function breakpoint is set for each nonvirtual
function of the class, and a virtual function breakpoint is set for each
virtual function of the class. The virtual function breakpoints also apply to
virtual function overrides in any derived classes.

class instance breakpoints
Similar to class breakpoints, but a class instance breakpoint applies only to
a particular instance of the class. For example, given the class Bicycle and
the declaration of an instance of it, Bicycle ModelZ, if you set an instance
breakpoint on the ModelZ instance, any time a Bicycle member function is
called for the ModelZ object, a breakpoint is encountered. However, these
member function breakpoints do not apply to other objects of class Bicycle.

instruction breakpoints
Breakpoints that apply to a disassembly instruction. You set instruction
breakpoints in a disassembly view. Execution stops when the instruction at
the specified address is encountered.

Two additional breakpoints are automatically created and enabled for you. An
entry point breakpoint applies to the start of the main function of your program.
This breakpoint causes execution to stop in main when you start debugging your
program. A terminate breakpoint applies to the termination of your program. This
breakpoint causes execution to stop when the process ends (for example, through a
return from main or a call to exit) but before the console window for the process
has closed, if a console window exists.

When you remove, enable, or disable a breakpoint that has child breakpoints (for
example, a class breakpoint, which has breakpoints set on each of its methods), the
change affects the parent breakpoint as well as its children.

“Set a Template Class Breakpoint” on page 15
“Set a Class Breakpoint” on page 16
“Set a Class Instance Breakpoint” on page 16
“Set a Function Breakpoint” on page 14
“Set an Instruction Breakpoint” on page 17
“Set a Statement Breakpoint” on page 12
“Set a Statement Entry Breakpoint” on page 13
“Set a Statement Initializer Breakpoint” on page 14
“Set a Statement Exit Breakpoint” on page 13
“Set a Virtual Function Breakpoint” on page 15
Enable, Disable, or Delete Breakpoints from a Breakpoints View

Tree Structure of the Breakpoints View

Chapter 4. Debug logic and program flow 11

Breakpoint Conditions
Every breakpoint, including watchpoints, can have a condition. This condition is
an expression evaluated when the breakpoint is hit to produce a true or false
result. If the expression is true or evaluation of the expression fails, execution of
the program you are debugging halts. If the expression is false, the program you
are debugging keeps executing.

Breakpoint conditions are inherited. For example, setting a condition on a class
breakpoint sets the same condition on the all the child class instance breakpoints.

Setting conditions on a breakpoint overrides any conditions that breakpoint may
have inherited.

When setting a condition on breakpoint that may have some ambiguity, like an
entry poitn breakpoint, you must select a condition scope. The condition scope is
the codestore that the breakpoint condition is set in. This prevents the condition
from applying to the same breakpoint set in a different codestore.

There are two special variables which may be used in breakpoint condition
expressions:

__hitCount
This is the number of times the breakpoint has been encountered. This
variable is always incremented before the condition is evaluated.
__hitCount is not incremented if the breakpoint is disabled.

__threadId
This is the ordinal number of the thread in which the breakpoint is being
evaluated.

Note that both variables start with two (2) underscores. These variables are integer
types.

“Types of Breakpoints” on page 10
Expressions Supported by the Debugger

“Set Conditions on Breakpoints” on page 18
“Remove Conditions from Breakpoints” on page 20

Control breakpoints

Set a Statement Breakpoint
You can set a statement breakpoint from any view that displays source language
statements, including source views and token stream views. To set a statement
breakpoint, follow these steps:
1. Position the pointer over the statement you want to set a breakpoint on.
2. Click mouse button 2.
3. From the resulting popup menu, select Set breakpoint, if that choice appears.

The statement breakpoint is now set.

12 Debugging with the Integrated Development Environment

4. If the Set breakpoint choice does not appear, select the object on the
popup menu.

5. From the cascading menu that appears beside the object, select Set
statement breakpoint.

If no Set breakpoint or Set statement breakpoint choice appears, or if an error
message is displayed in the message area when you try to set the breakpoint, you
may not be able to set a statement breakpoint on the statement. For example, you
cannot set a statement breakpoint on a function declaration, because the function
declaration is never executed.

“Types of Breakpoints” on page 10

“Set a Statement Entry Breakpoint”
“Set a Statement Initializer Breakpoint” on page 14
“Set a Statement Exit Breakpoint”
Enable, Disable, or Delete Breakpoints from a Breakpoints View
“Set Breakpoints Before Debugging” on page 3
Set Breakpoints Within Debug Pages

Set a Statement Entry Breakpoint
You can set a statement entry breakpoint from any view that displays source
language statements, including source views and token stream views.

To set a statement entry breakpoint:
1. Right-click on the part of the compound statement you want to set an entry

breakpoint on.
2. Select Set statement entry breakpoint from the popup menu. The statement

entry breakpoint is now set.

No Set statement entry breakpoint choice will be available if a statement entry
breakpoint can not be set on the compound statement.

“Types of Breakpoints” on page 10

“Set a Statement Initializer Breakpoint” on page 14
“Set a Statement Exit Breakpoint”
Enable, Disable, or Delete Breakpoints from a Breakpoints View
“Set Breakpoints Before Debugging” on page 3
Set Breakpoints Within Debug Pages

Set a Statement Exit Breakpoint
You can set a statement exit breakpoint from any view that displays source
language statements, including source views and token stream views.

To set a statement exit breakpoint:

Chapter 4. Debug logic and program flow 13

1. Position the pointer over the compound statement you want to set an exit
breakpoint on.

2. Click mouse button 2.
3. From the resulting popup menu, select Set statement exit breakpoint. The

statement breakpoint is now set.

No Set statement exit breakpoint choice will be available if a statement exit
breakpoint can not be set on the compound statement.

“Types of Breakpoints” on page 10

“Set a Statement Entry Breakpoint” on page 13
“Set a Statement Initializer Breakpoint”
Enable, Disable, or Delete Breakpoints from a Breakpoints View
“Set Breakpoints Before Debugging” on page 3
Set Breakpoints Within Debug Pages

Set a Statement Initializer Breakpoint
You can set a statement initializer breakpoint from any view that displays source
language statements, including source views and token stream views. Statement
initializer breakpoints only apply to compound statements containing an explicit
initialization list.

To set a statement initializer breakpoint:
1. Position the pointer over the compound statement you want to set an initializer

breakpoint on.
2. Click mouse button 2.
3. From the resulting popup menu, select Set Statement Initializer Breakpoint.

The statement initializer breakpoint is now set.

No Set initializer breakpoint choice will be available if a statement initializer
breakpoint can not be set on the compound statement.

“Types of Breakpoints” on page 10

“Set a Statement Entry Breakpoint” on page 13
“Set a Statement Exit Breakpoint” on page 13
Enable, Disable, or Delete Breakpoints from a Breakpoints View
“Set Breakpoints Before Debugging” on page 3
Set Breakpoints Within Debug Pages

Set a Function Breakpoint
You can set a function breakpoint, so that execution stops whenever the function is
called, from any view that displays function names, declarations, definitions, or
statements containing function calls. Such views include declarations views, class
details views, stack views, source views, and token stream views. To set a function
breakpoint, follow these steps:

14 Debugging with the Integrated Development Environment

1. Position the pointer over the function you want to set a breakpoint on, or over
the object that represents the function in that view.

2. Click mouse button 2.
3. From the resulting popup menu, select Set function breakpoint, if that choice

appears. The function breakpoint is now set. (If the function is a class virtual
function, choose Set virtual function breakpoint).

4. If the Set function breakpoint choice does not appear, select the object on
the popup menu.

5. From the cascading menu that appears beside the object, select Set function
breakpoint.

When you set a function breakpoint, a breakpoint marker is shown in the source
view containing the function definition. The marker is not shown on declarations
of the function.

“Types of Breakpoints” on page 10

Enable, Disable, or Delete Breakpoints from a Breakpoints View

Set a Virtual Function Breakpoint
You can set a virtual function breakpoint from any view that displays the virtual
function as a declaration or definition, or in a statement, including declaration
views, class details views, stack views, source views, and token stream views.
When you set a virtual function breakpoint, a breakpoint is set both in the function
in the class itself, and in any overrides of that function in derived classes. To set a
virtual function breakpoint, follow these steps:
1. Right-click on the virtual function you want to set a breakpoint on, or the

object that represents the virtual function in that view.
2. Select Set virtual function breakpoint from the popup menu, if that choice

appears. The function breakpoint is now set.

3. If the Set virtual function breakpoint choice does not appear, select the
object on the popup menu. Then, select Set virtual function breakpoint from
the casacading menu.

“Types of Breakpoints” on page 10

Enable, Disable, or Delete Breakpoints from a Breakpoints View
“Set a Function Breakpoint” on page 14

Set a Template Class Breakpoint
You can set a template class breakpoint from any view that displays class names,
declarations, definitions, or declarations of objects of the template class, including
declarations views, class details views, class hierarchy views, source views, and
token stream views. When you set a template class breakpoint, a breakpoint is set

Chapter 4. Debug logic and program flow 15

for each method of the template class and each method of each instance of the
template class , including constructors and the destructor. To set a template class
breakpoint, follow these steps:
1. Position the pointer over thetemplate class you want to set a breakpoint on, or

over the object that represents the template class in that view, and click mouse
button 2.

2. Select Set class breakpoint from the popup menu, or from the object’s
cascading menu.

“Types of Breakpoints” on page 10

Enable, Disable, or Delete Breakpoints from a Breakpoints View

Set a Class Breakpoint
You can set a class breakpoint from any view that displays class names,
declarations, definitions, or declarations of objects of the class, including
declarations views, class details views, class hierarchy views, source views, and
token stream views. When you set a class breakpoint, a breakpoint is set for each
method of the class, including constructors and the destructor. To set a class
breakpoint, follow these steps:
1. Right-click on the class you want to set a breakpoint on, or the object that

represents the class in that view.

2. Select Set class breakpoint from the popup menu, or from the object’s
cascading menu.

“Types of Breakpoints” on page 10

Enable, Disable, or Delete Breakpoints from a Breakpoints View

Set a Class Instance Breakpoint
You can set an instance breakpoint on an instance of a class, so that execution
stops each time a member function is called for that instance, from any view that
displays the value of the class instance. This includes the local variables view and
any details view of the instance. When you set an instance breakpoint, a
breakpoint is set for each method of the instance’s class, including constructors and
the destructor, but the breakpoint only applies to that particular instance of the
class (that is, the breakpoint only applies to the method when it is called for that
particular instance).

To set an instance breakpoint from a source view, follow these steps:
1. Position the pointer over the class instance you want to set a breakpoint on,

and click mouse button 2. Follow the object on the popup menu to the
cascading menu, and select Show Variable Value.

2. In the resulting view of the class instance, click mouse button 2 over the
address field.

3. From the resulting popup menu, select Set Instance Breakpoint.

16 Debugging with the Integrated Development Environment

If the instance is already visible in a local variables view, follow these steps:

1. In the local variables view, position the pointer over the or icon, or the
equals sign (=), for the class instance .

2. From the resulting popup menu, select Set Instance Breakpoint.

“Types of Breakpoints” on page 10

Enable, Disable, or Delete Breakpoints from a Breakpoints View

Set an Instruction Breakpoint
You can set an instruction breakpoint (a breakpoint that is triggered when the
instruction at a particular address is executed) from any view that displays that
instruction address, including disassembly views and stack views. You can also set
an instruction breakpoint on an arbitrary instruction address from any view that
displays a process object.

To set an instruction breakpoint from a view that displays instruction addresses:
1. Right-click on the address of the instruction you want to set a breakpoint on.

For example, in the disassembly view, right-click on an address in the first
column of numbers; in a stack view, right-click on the entry point address for
the module.

2. Select Set instruction breakpoint from the popup menu.

In a Stack view, you can set an instruction breakpoint on the point of execution
address for modules for which there is only disassembly code available. If source
code is available, you can only set a function breakpoint for the function in the
stack frame.

In a Disassembly view, you can also set an instruction breakpoint by clicking on
the small circle to the left of an instruction’s address, or right-clicking on the small
circle and selecting Set instruction breakpoint from the popup menu. The small
circle changes to a large red octagon, indicating that the breakpoint has been set.

To set an instruction breakpoint on an arbitrary instruction address:
1. Right-click on the process object you want to set a breakpoint in.
2. Select View Instruction Address from the popup menu.
3. Enter an instruction address. A floating pane displaying the details of the

instruction address appears. Addresses will be converted according the prefixes
given to the address entered:
v address starting with “0x” will be treated as a hexadecimal address
v addresses starting with “0b” will be treated as a binary address
v addresses starting with “0” will be treated as an octal address
v all other addresses will be treated as a binary address

4. Expand the Disassembly section of the Details view.
5. Right-click on the address you want to set a breakpoint on.
6. Select Set Instruction Breakpoint from the popup menu.

Chapter 4. Debug logic and program flow 17

“Types of Breakpoints” on page 10

Enable, Disable, or Delete Breakpoints from a Breakpoints View
“Set a Function Breakpoint” on page 14

Set Conditions on Breakpoints
You can change the effect a breakpoint has on the execution of your program
during debugging by setting a condition on the breakpoint.

To set a condition on a breakpoint:
1. Obtain a details view for the breakpoint you want to set a condition on.
2. Enter a C++ expression supported by the debugger in the Condition field.
3. If available, select the codestore from the Condition scope field. This prevents

the condition from applying to the same breakpoint set in a different codestore.

If the condition is valid, two new lines are added to the details view of the
breakpoint : Condition Owner and Expression.

Condition Owner indicates the breakpoint from which the condition is inherited. If
the breakpoint does not inherit any conditions, the owner is “self”.

Expression shows the expression you just entered.

If the breakpoint is one that will be triggered when you are debugging your
program, a Last Evaluation line will appear. This field will say either
“Unevaluated”, “true”, or “false”, depending on the result of the conditions.

“Breakpoint Conditions” on page 12
Expressions Supported by the Debugger

Enable, Disable, or Delete Breakpoints from a Breakpoints View
Set Breakpoints Within Debug Pages
“Set Breakpoints Before Debugging” on page 3
“Remove Conditions from Breakpoints” on page 20

Enable Breakpoints That Have Been Disabled
You enable breakpoints that have been disabled in the source view, the token
stream view, the disassembly view, and the breakpoints view. You can enable
groups of breakpoints, or all breakpoints, at once.

To enable an disabled breakpoint in a source view, click on the breakpoint marker.
The breakpoint marker normally appears as green highlighting behind a token in a
source view. Do not double-click on the breakpoint marker. Double-clicking on the
breakpoint marker will delete the breakpoint.

To disable a breakpoint that is displayed in a token stream or disassembly view,
click on the green octagon that represents the breakpoint.

18 Debugging with the Integrated Development Environment

To disable a breakpoint from the breakpoints view:
1. Expand the breakpoint tree in the breakpoints view until you see the disabled

breakpoint you want to enable. Disabled breakpoints are shown with a green
octagon.

2. Click on the green octagon. Its color changes to red to indicate that the
breakpoint has been disabled.

If you want to enable all breakpoints, or a group of breakpoints (for example, all
the method breakpoints that were automatically set when a class breakpoint was
set), click on the green octagon for the parent breakpoint for the group in the
breakpoints view, and enable that breakpoint. If that breakpoint is already enabled,
disable it and then enable it.

“Set Breakpoints Before Debugging” on page 3
Set Breakpoints Within Debug Pages
“Disable Breakpoints”

Disable Breakpoints
You can disable breakpoints so that execution does not stop when the breakpoint is
encountered. This is useful if you want to temporarily suspend the use of a
breakpoint, but you may need to use the breakpoint later. You can disable
breakpoints in the source view, the token stream view, the disassembly view, and
the breakpoints view.

To disable an enabled breakpoint in a source view, click on the breakpoint marker.
The breakpoint marker normally appears as red highlighting behind a token in a
source view. Do not double-click on the breakpoint marker. Double-clicking on the
breakpoint marker will delete the breakpoint.

To disable a breakpoint that is displayed in a token stream or disassembly view,
click on the red octagon that represents the breakpoint.

To disable a breakpoint from the breakpoints view:
1. Expand the breakpoint tree in the breakpoints view until you see the enabled

breakpoint you want to disable. Enabled breakpoints are shown with a red
octagon.

2. Click on the red octagon. Its color changes to green to indicate that the
breakpoint has been disabled.

If you want to disable all breakpoints, or a group of breakpoints (for example, all
the method breakpoints that were automatically set when a class breakpoint was
set), click on the red octagon for the parent breakpoint for the group in the
breakpoints view, and disable that breakpoint. If that breakpoint is already
disabled, enable it and then disable it again.

“Enable Breakpoints That Have Been Disabled” on page 18
“Remove Breakpoints”

Remove Breakpoints
Note: You may want to consider disabling a breakpoint, rather than removing it.
When you disable a breakpoint it has the same effect as removing the breakpoint

Chapter 4. Debug logic and program flow 19

temporarily. You can enable it later from the Breakpoints view with less effort than
it takes to set a new breakpoint at the same location.

You can remove a breakpoint from any view that displays the object the breakpoint
applies to, including the source view, the token stream view, the disassembly view,
and the breakpoints view. You can remove groups of breakpoints, or all
breakpoints, at once.

To remove a breakpoint from a Source view, follow these steps:
1. Find the breakpoint marker in the source view. This marker is shown as a red

or green background behind the first letter of a statement. A red marker
indicates an enabled breakpoint; a green marker indicates a disabled
breakpoint.

2. Double-click on the breakpoint marker. If you only click on the marker, you
will only toggle the breakpoint’s state between enabled and disabled.

To remove a breakpoint from a Disassembly or Token Stream view, follow these
steps:
1. Find the breakpoint marker for the breakpoint you want to remove. This

marker is a red or green circle to the left of the line of disassembly code or
token stream information.

2. Click mouse button 2 over this marker.

3. Select the object from the popup menu.
4. Select Remove Breakpoint from the cascading menu.

To remove a breakpoint from the Breakpoints view, follow these steps:
1. Expand the breakpoint tree in the breakpoints view until you see the

breakpoint you want to remove.
2. Click mouse button 2 over the breakpoint.
3. Select Remove Breakpoint.

To remove all breakpoints, follow these steps:
1. Go to a Breakpoints view.
2. Select the parent “All Breakpoints” breakpoint, and delete that breakpoint.

“Disable Breakpoints” on page 19

Remove Conditions from Breakpoints
To remove a condition from a breakpoint:
1. Obtain a details view for the breakpoint you want to remove the condition

from.
2. Clear the expression in the Condition field.

The condition on the breakpoint will be replaced by an inherited condition or no
condition if there are no conditions to inherit.

“Breakpoint Conditions” on page 12

“Set Conditions on Breakpoints” on page 18

20 Debugging with the Integrated Development Environment

Step Commands: Overview
Each step command operates either at the source statement level, or at the machine
(or assembly code) level. Once you know what step command you want to use,
select the appropriate one from the Debug menu or by using the appropriate
toolbar button on the debugger toolbar.

Here is a brief summary of available step commands:

step into
Executes the current statement. If the current statement contains a function
call, execution stops at the first statement or instruction of the first called
function in the statement. Otherwise, execution stops at the statement that
logically follows the current statement within the same function.

step over
Executes the current statement. Execution stops at the statement that
logically follows the current statement within the same function, or in the
calling function if the statement you step over is a return statement.
Function calls within the statement are stepped over and execution does
not stop within them, unless the debugger encounters a breakpoint within
a called function.

step debug
Executes from the current statement up to the next statement for which
debugging information is available. This statement may be in the current
function, or in any function called while the statement is executed. For
example, if the statement stepped over is a call to func1, where func1 calls
func2 and func2 calls func3, and debug information is only available for
func3, execution would stop in the first statement of func3. Use step debug
instead of step into when you want to step into only those functions that
have source code views available.
Step debug has a time-out feature. If a function with debug information is
not found in approximately 20 seconds, a step over command is performed
instead of a step debug command.

machine step into
Executes the current machine language instruction. If the current
instruction is a call, execution stops at the first instruction within the called
function or routine. Otherwise, execution stops at the instruction that
logically follows the current instruction.

machine step over
Executes the current machine language instruction. Execution stops at the
instruction that logically follows the current instruction. Calls within the
statement are stepped over and execution does not stop within them,
unless the debugger encounters a breakpoint within the called code.

return step
Executes from the current statement or instruction, through the return from

Chapter 4. Debug logic and program flow 21

the current function. Execution stops at the statement or instruction
following the call to the function that you just returned from. If the view
on return is a source view, execution may stop at the same statement that
issued the original call, if that statement contains multiple function calls.
You can use a combination of Step into and Step return commands to step
into each function in a statement containing multiple function calls.

Note that, for all step commands except machine step into, execution stops before
the command completes if an enabled breakpoint is encountered.

If a function terminates on a signal or exception when stepping through function
calls, you may not always stop at the expected point.

Step over a Function
“Step through Machine Language (Disassembly) Instructions” on page 24

“Machine Step Into Command” on page 41
“Machine Step Over Command” on page 41

Source-Level Step Commands
If the statements you want to step through do not contain any function calls, the
following three step commands work in exactly the same way: they execute the
current statement, and execution stops at the statement that logically follows the
current statement:
v “Step Into Command” on page 42
v “Step Over Command” on page 42
v “Debug Step Into Command” on page 41

The three commands work differently for statements that do contain function calls.
See “Step over a Function” below for information on the differences.

You can use the fourth step command, “Return Step Command” on page 43, to run
through the remainder of the current function. Execution stops at the source code
statement that logically follows the statement that called the function you are
currently in. If the function you are currently in was called as part of a complex
statement (for example, the compound function call func1(func2(),obj->func3());),
execution may stop within the compound statement, if only part of the statement
was executed.

“Step Commands: Overview” on page 21

Step over a Function

“Step Into Command” on page 42
Step Over Command
“Debug Step Into Command” on page 41
“Return Step Command” on page 43

22 Debugging with the Integrated Development Environment

Jump to Location
You can use Jump to Location commands to jump over a section of code that may
be causing problems, without executing that code. However, jumping over implicit
function calls such as constructors or destructors may produce umpredictable
results.

Consider the following code excerpt:
MyType a=func1();
MyType b=func2();
a+=b;
if (a.mem==True) {

// ...
} else {

// ...
}

Suppose you have noted that the addition of object b to object a is resulting in the
execution of the if block, whereas you expected the else block to execute. You
suspect that the statement a+=b; may be in error (or perhaps that the operator+=
you have defined is not working as expected). To test your theory, you want to see
whether skipping over the addition of b to a solves the problem. This is called
jumping over, because the code you jump over does not get executed. To jump
over the statement a+=b;do the following:
1. Step over the definitions and assignments for a and b.
2. Click mouse button 2 over the if statement. A popup menu appears.

3. Select the object, and, from the cascading menu, Jump to This Statement.

The if statement is now the next statement to be executed, but the statement a+=b;
was not executed. From here you can determine whether the suspect statement
was indeed causing the problem.

“Step Commands: Overview” on page 21

“Jump over Code without Executing It” on page 26
Step over a Function

Step through, run, or halt a program

Step through Source Code
You can step through source code, one statement at a time, by using Step
commands. (A related set of debugger commands, called Machine step commands,
let you step through assembly language or machine code one instruction at a time).

To use a source step command, do one of the following:
v Click on one of the source step buttons in the process toolbar. See the References

section below for information on these buttons.
v Select a source step command from the Debug title bar menu.
v Click mouse button 2 over the process tab for the process you want, and select a

source step command from the popup menu.

Chapter 4. Debug logic and program flow 23

If you have multiple processes running under debug control, source step
commands issued from the process toolbar or the Debug title bar menu apply to
the debuggable process whose process tab is the foreground tab, or, if a different
type of tab is the foreground tab, to the process you most recently selected.

“Source-Level Step Commands” on page 22
“Step Commands: Overview” on page 21

“Step Over Command” on page 42
“Step Into Command” on page 42
“Debug Step Into Command” on page 41
“Return Step Command” on page 43

“Step through Machine Language (Disassembly) Instructions”

Step through Machine Language (Disassembly) Instructions
You can step through machine language or disassembly code, one instruction at a
time, by using machine step commands. (A related set of debugger commands,
source-code-based step commands, let you step through source code one statement
at a time). Note that you can use machine step commands even when no
disassembly view is open for the process running under debug control. When you
machine step through a process, and a source view is visible, you may notice that
it takes several machine step commands for the current source statement to
completely execute.

To use a machine step command, do one of the following:
v Click on one of the machine step buttons in the process toolbar. See the

References section below for information on these buttons.
v Select a machine step command from the Debug title bar menu.
v Right-click the process tab for the process you want, and select a machine step

command from the popup menu.

If you have multiple processes running under debug control, machine step
commands issued from the process toolbar or the Debug title bar menu apply to
the debuggable process whose process tab is the foreground tab, or, if a different
type of tab is the foreground tab, to the process you most recently selected.

“Step Commands: Overview” on page 21

“Machine Step Over Command” on page 41
“Machine Step Into Command” on page 41

“Step through Source Code” on page 23

24 Debugging with the Integrated Development Environment

Step Over or Into Functions
You can choose from among several options when debugging function calls:
v You can step over all function calls. In this case, use Step Over commands each

time you want to step over a function call in the current statement within your
program.

v You can step into all function calls. In this case, use Step Into commands each
time you want to step into a function call in the current statement within your
program. If you step into a function that does not have source code information,
you must bring up a disassembly view of the code if you want to see what is
being stepped through. If you inadvertently step into a function that does not
have source code, issue a Step Return command to return to the calling code.

v You can step into only those functions that contain source code information. In
this case, use Step Debug commands each time you want to step within your
program. Execution stops at the next source statement encountered, whether that
statement is in the same function, a called function, or a function called by the
called function.

“Run to the End of the Current Function, Then Return”
“Step through Source Code” on page 23
Step Over a Function That Has No Source Information

Run to the End of the Current Function, Then Return
You can run to the end of the current function, return to the calling function, and
have execution stop automatically, by issuing a Return Step command. To issue
this command, do one of the following:
v Select Return Step from the Debug title bar menu..
v Click on the Return Step button in the process toolbar.
v Click mouse button 2 over the process tab for the process you want, and select

Return Step from the popup menu.

If you have multiple processes running under debug control, a Return step
command issued from the process toolbar or the Debug title bar menu applies to
the debuggable process whose process tab is the foreground tab, or, if a different
type of tab is the foreground tab, to the process you most recently selected.

Execution stops at the machine instruction right after the instruction that called the
current function. In a source view, execution may appear to stop at the statement
following the call, or within the statement that issued the call, if the statement
contains multiple function calls.

“Step Over or Into Functions”

Run a Program Under Debug Control
To run your program, you must first have started up a debug process within
which your program will run. You will probably also want to set breakpoints
before you run, otherwise your program will simply run to completion or an
exception.

When you are ready to run your program, you can issue a run command in any
one of the following ways:

Chapter 4. Debug logic and program flow 25

v Choose Debug->Run from the title bar menu.
v Click on the Run toolbar button
v Click mouse button 2 over the process in the Debuggable Processes view, or over

the process tab, and select Run from the resulting popup menu.

“Start a Program Under Debug Control” on page 7
“Halt Execution of a Process”

Jump over Code without Executing It
To jump over a section or block of code without executing it, you must first
execute up to but excluding the start of the block, in one of the following ways:
v Select the first statement you want to jump over and issue the Run to this

statement command.
v Set a breakpoint at the first statement you want to jump over, and issue the Run

command.
v Step over the statements up to but excluding the first statement you want to

jump over.

Once the current execution point is the first statement of the block you want to
jump over, do the following:
1. Right-click on the statement you want to jump to. This is the first statement

that logically follows the block of code you want to jump over. This statement
should be in the same function as the current execution point, otherwise you
may corrupt the stack of your debug process.

2. Select the object, and from its cascading menu, select Jump to This
Statement.

“Jump to Location” on page 23

Run to a Specific Statement or Instruction

Halt Execution of a Process
To halt execution of a process running under debug control, so that you can debug
it, follow these steps:
1. If the process you want to halt is one of several running under debug control,

select the process tab for the process you want to halt.
2. Select the stop button on the process toolbar, or click mouse button 2 over the

process tab and select stop.
3. If the process still does not halt, it may be waiting for console input. Switch to

the console window, and enter the required input. Switch back to the IDE and
issue a Debug Step Into command. Execution then stops at the source code
statement following the one that requested input.

You can also set breakpoints in your program so that execution stops at
predetermined instruction addresses or statements, when specific functions are
called, specific storage is written to, and so on.

26 Debugging with the Integrated Development Environment

“Terminate a Program Under Debug Control”
“Set Breakpoints Before Debugging” on page 3
Set Breakpoints Within Debug Pages

Terminate a Program Under Debug Control
To terminate a process running under debug control, do one of the following:
v Select Debug->Terminate from the titlebar menu.
v Click the Terminate button in the process toolbar.
v Click mouse button 2 on the process tab for the process you want to halt, and

select Terminate from the resulting popup menu. Note that if you remove the
process tab without terminating the process, the process remains, and you can
later attach a new process tab to it from the Debuggable Processes pane of the
Project section of the workbook.

If you have multiple processes running under debug control, a Terminate
command issued from the process toolbar or the Debug title bar menu applies to
the debuggable process whose process tab is the foreground tab, or, if a different
type of tab is the foreground tab, to the process you most recently selected.

If you think your program has stalled in an endless loop, and you want to debug
it, do not terminate the program, halt its execution instead and use step commands
to determine where the program is stalling..

“Halt Execution of a Process” on page 26

Debug Child Processes
When you start debugging a program, you can set an option from the Run
Specifications view so that a process tab opens for any child process started by the
program. You can then switch between the process tab for the parent process, and
those for any child processes, and view information for each process. However,
you cannot use step or run commands in the parent process if the child process
causes the parent process to suspend, for example when using system, or _spawnl
with a MODEFLAG argument of PWAIT. Follow these steps to debug child
processes:
1. In the Run Specifications view, select Debug child processes.
2. Click the Debug button.
3. Run the parent process.
4. A child process tab opens for each child process created. You can debug a child

process (provided it is not suspended) by selecting its tab.

Each time the parent process starts a child process, a breakpoint is set on entry to
the main function of the child process, or, if the main function cannot be found, a
breakpoint is set at the entry point for the child process. If the child process is an
application created by the IDE and a codestore is available for it, all breakpoints
contained in the codestore are also set for it. Execution stops at the first
encountered breakpoint.

If the child process was created in suspend mode, step and run commands in the
thread of the parent process that created the child process have no effect until the
child process terminates.

Chapter 4. Debug logic and program flow 27

Fork Handling

Exec Handling

“Start a Program Under Debug Control” on page 7

Debug Exception-Handling Code
You can debug C++ exception-handling code that you wrote.

To debug exception-handling code that you wrote (code inside a C++ catch block),
follow these steps:
1. Start your program under debug control and turn on signal handling for

user-defined exceptions.
2. Run your program. When a user-defined exception occurs, execution stops and

a floating pane opens showing the process log, with the type of exception
thrown as the last object in the process log.

3. Issue a Step Exception command. This causes the code leading up to your
exception handler to be executed.

4. Issue a Debug Step Into command. Execution stops in the first source code
statement for the catch block that caught the exception. You can now debug
your exception-handling code.

“Handle Signals for User-Defined Exceptions” on page 29
“Determine Causes of System Exceptions”

Determine Causes of System Exceptions
When an exception is raised in your program by operating system or runtime
library functions, you can use the Step Exception command (not availabe on AIX)
to step into the exception-handling code for that exception. You cannot view source
for this exception-handling code, which makes debugging it difficult. It is usually
easier to determine which source statement caused the exception, set a breakpoint
on that statement, and run the program again under debug control to examine the
statement and likely causes of the exception.

Follow these steps to determine which source statement caused an exception:
1. Disable the “All Breakpoints” breakpoint in the Breakpoints view for the

project.
2. Find the Stack view in the Source page of the Process tab for the process that

caused the exception.
3. In the Stack view, look down the list of stack frames to the first one containing

the name of a function within your program. Set a breakpoint on this function.
4. Terminate the process, start another debug process, and run it. Make sure that

you provide the same program arguments and input as before. Execution
should stop when the function you set the breakpoint on is called. Use Step
Over commands to move through the function, until the exception is thrown.

28 Debugging with the Integrated Development Environment

5. Set a breakpoint on the statement causing the exception, and remove the
function breakpoint you set earlier.

6. Terminate the process, start another debug process, and run it. Execution stops
at the statement that previously caused the exception. From here you can
examine the context of the problem statement, to determine possible reasons for
the error. For example, you may be copying a string to a null pointer or past
the allocated bounds of an array.

“Handle Signals for User-Defined Exceptions”
“Debug Exception-Handling Code” on page 28
“Set a Function Breakpoint” on page 14
“Set a Statement Breakpoint” on page 12

Handle Signals for User-Defined Exceptions
If you want to debug your own C++ exception-handling code, you can enable
signal handling for user-defined exceptions, so that whenever an exception is
thrown, execution stops before your code handles the exception. Follow these steps
to enable signal handling for user-defined exceptions:
1. Start debugging your program. A process workbook section appears and

becomes the foreground section. Execution stops at the start of the main
function.

2. Select the Details page for the process.

3. Expand the icon for the signals object. The first signal, SIGUSR1, is the
signal for user-defined exceptions. If the octagon to its right is green, click on it
to turn it red. This enables the signal for user-defined exceptions.

If your exception-handling code occurs in only a few places, you can also force
execution to stop whenever an exception is thrown by setting a statement
breakpoint at the start of each catch block.

“Debug Exception-Handling Code” on page 28
“Determine Causes of System Exceptions” on page 28

Chapter 4. Debug logic and program flow 29

30 Debugging with the Integrated Development Environment

Chapter 5. Debug variable contents and memory

Expression and Value Monitors
The Monitored Expressions view and the Monitored Values view can both be used
to display the contents of variables. Consider the following points when choosing
where to monitor the variable. You can always place the variable in both views.
v The Monitored Expressions view displays type and name information about

each variable, but not the variable’s address. The Monitored Values view shows
type and the address of the variable, but not the variable’s name.

v The Monitored Expressions view displays the actual value of the variable at all
times. If the variable passes out of scope, its contents are displayed as “Not in
scope”. The Monitored Values view displays the storage that was allocated for
the variable. If the variable passes out of scope, its contents continue to be
displayed, even though the storage shown may no longer be allocated to the
variable and may, over time, become allocated to another variable.

v The Monitored Expressions view keeps track of the expressions you add to it,
even between builds and between different debug processes. The Monitored
Values view is cleared for each debug process, because it shows physical
addresses.

The Monitored Values view is useful for viewing the contents of objects allocated
on the heap, particularly objects that are not easily accessible via an expression. For
example, consider the case where you step into a class method. You can add the
this pointer to the Monitored Expressions view to see its contents, but as soon as
you return from the method, the expression is no longer valid, so no value is
shown. But the storage that was pointed to by the this pointer is still valid, and
you may still want to monitor the object. By adding the object to the Monitored
Values view, you can keep track of the object contents even when there is no
pointer name that explicitly and consistently points to it.

“Add a Variable to the Monitored Expressions View” on page 32
“Add a Value to the Monitored Values View” on page 35
“Change the Contents of a Variable” on page 33
“Change the Representation of a Variable” on page 32

Debug local variables

Obtain a Local Variables View
To obtain a Local Variables view, do the following:
1. Go to the Source page of the Process tab for the process running under debug

control
2. In the Stack view, select the function on the stack frame whose variables you

want to see. If the function has been recursively called, (it appears several times
in the Stack view) be sure to select the correct stack frame for the function.

3. If a Local variables view is still not displayed, change the view type in the
Stack Frame view to a Local Variables view.

© Copyright IBM Corp. 1998, 2000 31

The Local Variables view has two sections, and you can collapse or expand each
section. The first section is for function parameters, and the second is for local
variables defined within the function.

You cannot obtain a Local Variables view for a function that is not on the stack,
because a stack frame is only allocated for these local variables when the function
is entered, and this stack frame is freed on return.

“Change the Contents of a Variable” on page 33
“Change the Representation of a Variable”

Obtain a Details View of a Variable
To obtain a Details view of a variable, follow these steps:
1. From any view that displays the name of the variable, right-click on the

variable name. A popup menu appears.

2. If the resulting popup menu shows a object for the variable, click on that
object.

3. Select Show Variable Value.

“Change the Contents of a Variable” on page 33
“Change the Representation of a Variable”

Add a Variable to the Monitored Expressions View
To add a variable to the Monitored Expressions view, follow these steps:
1. From any view that displays the name of the variable, right-click on the

variable name. A popup menu appears.

2. If the resulting popup menu shows a object for the variable, click on that
object.

3. Select Add to Expression Monitor.

“Change the Contents of a Variable” on page 33
“Change the Representation of a Variable”
“Add a Value to the Monitored Values View” on page 35

“Expression and Value Monitors” on page 31

Change the Representation of a Variable
You can change the representation of a variable in any view that lets you edit the
variable’s contents, for example in a Local Variables view or in a Monitored
Expressions view. Follow these steps to change a variable’s representation in such a
view:
1. Click mouse button 1 on the arrow to the right of the variable’s contents.
2. Select one of the available representations from the list.

32 Debugging with the Integrated Development Environment

For compound variables such as class objects and arrays, you can expand the
variable (object or array) to display components, and then change the
representation of individual components.

You can change the representation of a class between flattened (in which the
members of all inherited classes are shown, without the information for their class)
and nested (in which each inherited class is shown as a separate, expandable entry
within the class).

You can change the representation of a pointer to show a pointer, the object
pointed to, or to show an array of objects. The representation of pointers to char
and wchar can also be changed to show a string.

“Add a Variable to the Monitored Expressions View” on page 32
“Add a Value to the Monitored Values View” on page 35
“Change the Contents of a Variable”

“Appendix A. Available Representations for Variables” on page 39

Change the Contents of a Variable
To change the contents of a variable, the variable must first be visible in a view
that displays the variable’s contents:
v The Local Variables view
v The Monitored Expressions view
v The Monitored Values view
v A floating pane for the variable’s value

If no such view is available, click mouse button 1 on the variable, select the
object for the variable from the popup menu, and select Show Variable Value or
Add to Expression Monitor from the cascading menu.

Follow these steps once the variable is visible in such a view:

1. If the variable’s contents are not visible, click on the icon beside the
variable’s name to display its contents.

2. Click mouse button 1 over the variable’s contents.
3. Edit the current contents, or delete them and enter a new value. For numeric

values, the value you enter must indicate its representation according to C++
language rules. For example, precede a hexadecimal value with 0x0. For a
variable of type char, enter the character in single quotes. For a character array,
enter the string without its enclosing double quotes. For a member of an
enumeration, you can enter the enumeration name.

4. Press Enter or select a different pane with the mouse to update. If the value
you entered was invalid, a warning beep sounds and the original value is
restored.

Expressions Supported by the Debugger

Chapter 5. Debug variable contents and memory 33

“Add a Variable to the Monitored Expressions View” on page 32

Debug Global Variables
To debug a global variable, you must first add the global variable to a Monitored
Expressions view or to a floating pane that shows the variable’s runtime value.

To add a global variable to a floating pane, follow these steps:
1. Right-click on the variable.

2. Select the object representing the variable from the popup menu
3. Select Show Variable Value from the cascading menu.

To add a global variable to a Monitored Expressions view, follow these steps:
1. Right-click on the variable.

2. Select the object representing the variable from the popup menu.
3. Select Add to Expression Monitor from the cascading menu select

Once the global variable is visible in a floating pane or a Monitored Expressions
view, you can edit its contents or change its representation. If the variable is a
compound variable such as a class object or an array, you can also change the level

of detail shown for the variable, by clicking on the expander by the variable
name and any expanders of subparts.

“Add a Variable to the Monitored Expressions View” on page 32
“Change the Contents of a Variable” on page 33
“Change the Representation of a Variable” on page 32

Debug program storage

View a Different Address in a Storage View
To change the address being viewed in a storage view, do one of the following:
v Enter a new address in a line of the storage view:

1. Click on an address (an entry in the leftmost block of the storage view)
2. The current address is selected. You can enter a new address, or you can use

the cursor keys to deselect the current address and edit it. The new address
is interpreted using the number system set for the column. For example, if
you enter a hexadecimal value, but the number system indicated is decimal,
the address will be considered invalid.

3. Press Enter. If the address you enter is valid, the Storage view updates to
show the new location.

v Click on the scroll keys on the left of the storage view. The single arrows scroll
storage up or down one row at a time. The double arrows scroll storage up or
down one screenful at a time.

You can also change the address being viewed to an address pointed to within the
current view, by chasing that address.

34 Debugging with the Integrated Development Environment

Chase an Address in Storage
Find Memory Allocation (Heap) Problems

Change the Representation of Storage in a Storage View
To change the representation of storage in a Storage view, do the following:
1. Click on the arrow beside the block heading for a block in the view.
2. From the expandable/collapsible list that displays, choose the desired

characteristics of the representation. For example, you can change the base of
the number system, and you can set the number of bytes (size of units) for the
column..

Chase an Address in Storage
“View a Different Address in a Storage View” on page 34

Change the Contents of Program Storage
To change the contents of storage for a process from a Storage view, do the
following:
1. Make sure the range of storage you want to change is displayed in the view.

See the related topics below for help on scrolling through storage or choosing a
new storage location to view.

2. Position the pointer on the line of storage you want to change and click mouse
button 1.

3. If you press the left or right cursor keys before you enter text, you can edit the
current text. If you start typing without using the cursor keys, the current text
is replaced by what you enter.

4. When you have made the desired change, press Enter, select another object in
the view, or make a different view the foreground view.

If the storage you tried to change was writeable by the process being debugged,
and the change you entered was a valid expression for the current representation
in the storage view, the storage is updated. Otherwise an error message displays
on the status line.

Expressions Supported by the Debugger

“Change the Representation of Storage in a Storage View”
“Check Heap for Corruption After Each Step Command” on page 37
“View a Different Address in a Storage View” on page 34
Chase an Address in Storage
Find Memory Allocation (Heap) Problems

Add a Value to the Monitored Values View
To add a value to the Monitored Values view, you must first view the value in a
view that shows its contents, for example in the Monitored Expressions view or in
the Local Variables view.

Once the value’s contents are visible, follow these steps:
1. Click mouse button 2 over the value.

Chapter 5. Debug variable contents and memory 35

2. Select Add to Value Monitor.

Use the Monitored Values view when you want to display the storage for a
particular variable, pointer, class member, or expression, even after the expression
that yielded that value has changed. Use the Monitored Expressions view when
you want to view the result of an expression, and the result of the expression may
change over time.

“Change the Contents of a Variable” on page 33
“Change the Representation of a Variable” on page 32
“Add a Variable to the Monitored Expressions View” on page 32

“Expression and Value Monitors” on page 31

Debug memory allocation (heap) problems

Set Incorporation Options for Heap Debugging
If you want to debug your program’s use of the heap (storage you allocate and
deallocate explicitly using new, delete, and C Library functions such as malloc and
free), you may want the heap to be automatically checked after each step
command, breakpoint encountered, or halt command. If so, you need to set heap
checking options before the module you want to debug is incorporated. These
options cause heap debugging versions of the memory management functions to
be used, so that heap usage can be tracked and heap usage errors found.

To set the appropriate options for incremental compiler:
1. Select the Configuration section of your project.
2. Select either the Options or the Subproject Options page of the Configuration

section.
3. In the Options or Subproject Options view, expand the C++ Compiler Options

entry if it is not already expanded.
4. Expand the Miscellaneous Options entry if it is not already expanded.
5. Expand the Common C/C++ Miscellaneous options entry.
6. Under Common C/C++ Miscellaneous Options, turn on the Enable debug

version of memory management functions setting.
7. Reincorporate your project.

To set the appropriate options for the batch compiler, specify the heap debug
option of the batch compiler.

You can also set this option by using Live Find from within the Options or
Subproject Options page. To use Live Find, select the pane the view is in, then
press Ctrl+F.

“Check Heap for Corruption After Each Step Command” on page 37
Find Memory Allocation (Heap) Problems

36 Debugging with the Integrated Development Environment

Check Heap for Corruption After Each Step Command
You can check the heap for corruption after each step or run to command if you
have built your program with heap checking enabled. The check can be performed
manually or automatically.

Checking the heap may take a non-trivial amount of time. Consider your method
of heap checking carefully if you are going to be stepping through your program.

To check the heap for corruption manually:
1. Select Debug > Check the Heap from the title bar menu. The heap status

appears in the message area.

To start checking the heap for corruption automatically:
1. Select Debug > Enable Automatic Heap Checking. The heap status message

will be updated after each step or run to command.

To stop automatic heap checking:
1. Select Debug > Disable Automatic Heap Checking.

“Set Incorporation Options for Heap Debugging” on page 36
“Change the Representation of Storage in a Storage View” on page 35
Chase an Address in Storage
Find Memory Allocation (Heap) Problems
“View a Different Address in a Storage View” on page 34

Debug processor registers

Choose Which Registers Display in a Registers View
You can change the default appearance of a Registers view by expanding or
collapsing branches of the Registers view tree. For example, you may not want to
see floating-point registers if your program does not perform floating-point
arithmetic. Expanding or collapsing branches in one Registers view does not affect
other Register views.

The Registers view displays processor registers and flags in groups or branches.

You can collapse a branch of the list by clicking on the minus () to the left of

the topmost entry for that branch. This then becomes a . You can expand a

collapsed branch by clicking on the .

“Change the Contents of Registers” on page 38
“Change the Representation of Register Contents”

Change the Representation of Register Contents
To change the representation of a register’s contents, do the following:
1. Make sure the register is displayed in a Registers view. You may need to

expand a branch of the Registers view tree to view the register.
2. Click mouse button 1 on the arrow to the right of the register contents.
3. Choose the desired representation from the list of available representations.

Chapter 5. Debug variable contents and memory 37

“Change the Contents of Registers”
“Choose Which Registers Display in a Registers View” on page 37

Change the Contents of Registers
To change the contents of a register in the Registers view, do the following:
1. If the register you want to alter is not visible in the view, expand the

appropriate category of registers until the register is displayed.
2. Click on the contents of the register.
3. Enter the new contents and press Enter.

The value you enter must be a valid C++ representation of a hexadecimal, decimal,
octal, binary, or character value. For example, to enter a hexadecimal value,
precede the value with 0x0.

“Change the Representation of Register Contents” on page 37
“Choose Which Registers Display in a Registers View” on page 37

38 Debugging with the Integrated Development Environment

Appendix A. Available Representations for Variables

You can change the representation of a variable in any view that lets you edit the
variable’s contents. The following list provides details on available representations
for different categories of variables:

Numeric types
You can change the number system (binary, octal, decimal, hexadecimal)
used to represent numeric types, and you can change between fixed and
scientific notation.

Pointers
You can dereference the pointer or dereference the pointer as an array. In
addition, the representation of pointers to char and wchar can be changed
to show a string.

Classes
You can change the representation of a class between flattened (in which
the members of all inherited classes are shown, without the information for
their class) and nested (in which each inherited class is shown as a
separate, expandable entry within the class).

Enumerations
You can change the representation of enumeration members to show their
integer values or their names.

“Change the Contents of a Variable” on page 33
“Change the Representation of a Variable” on page 32

© Copyright IBM Corp. 1998, 2000 39

40 Debugging with the Integrated Development Environment

Appendix B. Debugger commands

Machine Step Into Command
The Machine step into command steps through disassembly instructions in the
current function, and into any called code. If you issue a Machine step into from a
source view, and the function stepped into does not have source code available, the
source view will become blank. Use a Step return command to return to the source
view, or change the view to a disassembly view to see the current execution point.

“Step Commands: Overview” on page 21
“Source-Level Step Commands” on page 22

Step Into a Function
“Step through Machine Language (Disassembly) Instructions” on page 24
“View Disassembly Code for a Process” on page 9
“View Source Code for a Process” on page 10

“Step Into Command” on page 42

Machine Step Over Command
The Machine step over command steps through disassembly instructions in the
current function, without stepping into any called code.

“Step Commands: Overview” on page 21
“Source-Level Step Commands” on page 22

Step Over a Function
“Step through Machine Language (Disassembly) Instructions” on page 24
“View Disassembly Code for a Process” on page 9
“View Source Code for a Process” on page 10

“Step Over Command” on page 42

Debug Step Into Command
The Debug step into command steps through statements in the current function,
and into any called functions, provided such called functions have debug
information available (that is, can be debugged at the source code level by
VisualAge C++). After each Debug step into command, execution stops at the first
point the debugger encounters that matches one of the following criteria:

© Copyright IBM Corp. 1998, 2000 41

v The statement that logically follows the statement from which the Debug step
into command was issued

v The first debuggable statement encountered within a called function, after the
Debug step into command was issued

v The first enabled breakpoint.

Use Debug step into to debug your own code without wasting time stepping
through machine language code in modules that you did not develop.

For shared libraries, the Debug step into command will be treated as a Step over
command.

“Step Commands: Overview” on page 21
“Source-Level Step Commands” on page 22

Step Over a Function That Has No Source Information

Step Into Command
The Step Into command executes the current statement. If the current statement
contains a function call, execution stops at the first statement or instruction of the
first called function in the statement. Otherwise, execution stops at the statement
that logically follows the current statement within the same function.

“Step Commands: Overview” on page 21
“Source-Level Step Commands” on page 22

Step Into a Function

“Machine Step Into Command” on page 41

Step Over Command
The Step over command executes the current statement. Execution stops at the
statement that logically follows the current statement within the same function, or
in the calling function if the statement you step over is a return statement.
Function calls within the statement are stepped over and execution does not stop
within them, unless the debugger encounters a breakpoint within a called function.

Stepping over a call to exec()results in the process stopping at the entry point of
the new process image, if one is loaded.

“Step Commands: Overview” on page 21
“Source-Level Step Commands” on page 22

42 Debugging with the Integrated Development Environment

Step Over a Function
Step Over a Function That Has No Source Information

“Machine Step Over Command” on page 41

Return Step Command
The Return step command executes from the current statement or instruction,
through the point at which the current function returns to its calling function.
Execution stops at the statement or instruction following the call to the function
that you just returned from. If the view on return is a source view, execution may
stop at the same statement that issued the original call, if that statement contains
multiple function calls. You can use a combination of Step into and Step return
commands to step into each function in a statement containing multiple function
calls.

“Step Commands: Overview” on page 21

Appendix B. Debugger commands 43

44 Debugging with the Integrated Development Environment

Contacting IBM

We’re delighted to offer a solid cornerstone for your application development:
IBM’s comprehensive support services. Whether you are an occasional user with a
simple question, a power user with many complex technical questions, or someone
who requires application design assistance and consulting, IBM Support can meet
your needs.

Comments on This Help

Please let us know about any errors or omissions in this online help or in the
hardcopy Getting Started book, or our PDF documents. Send your e-mail to:
torrcf@ca.ibm.com

Fee Support

Developers on the VisualAge C++ for AIX Service and Support team handle
everything from simple how-to’s to complex technical problems. Solutions may
take the form of a brief explanation, a workaround, a fix to the current product, or
a fix to the next release.

http://www.ibm.com/support/ describes IBM Support Offerings on all platforms,
worldwide.

http://www.ibm.com/rs6000/support/ describes support offerings on the
RS/6000® platform, in your country. It also indicates whether your country
provides support electronically over the Internet in addition to telephone support.

http://www.lotus.com/passport describes the IBM and Lotus® Passport
Advantage™ contracting option.

The IBM Software Support Handbook, accessible from
http://www.ibm.com/software/support, also lists worldwide support contacts.

Phone numbers for information on Support Line offerings are:
v United States: 1-888-426-4343 (IBM Global Services), option 3 as of December

1999. Should this number change, IBM general information at 1-800-IBM-4YOU
(1-800-426-4968) can route you to the appropriate group.

v Canada: 1-800-465-9600, option 3 as of December 1999. Should this number
change, you can also contact IBM general information at 1-800-IBM-4YOU
(1-800-426-4968).

Please call 1-800-266-8720 in the U.S. and Canada for information on Passport
Advantage offerings.
v Elsewhere, please contact your local IBM office.

If you contact support, please have the following information available:
v The product name
v The product version
v The hardware configuration and software (product names and versions you are

using)
v What happened and what you were doing when the problem occurred

© Copyright IBM Corp. 1998, 2000 45

v Whether you tried to solve the problem and how
v The exact wording of any messages displayed

Consulting Services

VisualAge and WebSphere™ Product Affinity Services Group is a core group of
technical specialists from the IBM development labs that created the IBM
VisualAge and WebSphere products. With access to a network of IBM product area
experts, IBM and industry business partners, and some of the best resources in the
industry, we can put the optimal team in place to meet the challenge of absorbing
new technology. Our goal is to enable organizational success with VisualAge and
WebSphere — ensuring that our products are used effectively within your
development team.

For more information, visit http://www.ibm.com/software/ad/vaws-services/ or
contact the Product Affinity Services Team at:

AIM_SERVICES@us.ibm.com

46 Debugging with the Integrated Development Environment

	Contents
	Notices
	Programming Interface Information
	Trademarks and Service Marks
	Industry Standards

	About This Book
	Chapter 1. Debugging with VisualAge C++
	No Special Debugging Options
	Breakpoints Can Be Set Any Time
	Bugs Can Be Corrected from Within the Debug Pages
	You can debug multiple processes simultaneously

	Chapter 2. Prepare a program for debugging
	Set Breakpoints Before Debugging
	Establish a debug environment
	Specify Arguments to Your Program

	Write Programs for Debugging
	Debugging Optimized Code
	Debug Optimized Code

	Chapter 3. Start or stop debugging a program
	Start a Program Under Debug Control
	Start Debugging a DLL or Shared Library

	Chapter 4. Debug logic and program flow
	View Disassembly Code for a Process
	Change Default Settings for the Disassembly View
	View Source Code for a Process
	Types of Breakpoints
	Breakpoint Conditions
	Control breakpoints
	Set a Statement Breakpoint
	Set a Statement Entry Breakpoint
	Set a Statement Exit Breakpoint
	Set a Statement Initializer Breakpoint
	Set a Function Breakpoint
	Set a Virtual Function Breakpoint
	Set a Template Class Breakpoint
	Set a Class Breakpoint
	Set a Class Instance Breakpoint
	Set an Instruction Breakpoint
	Set Conditions on Breakpoints
	Enable Breakpoints That Have Been Disabled
	Disable Breakpoints
	Remove Breakpoints
	Remove Conditions from Breakpoints

	Step Commands: Overview
	Source-Level Step Commands
	Jump to Location

	Step through, run, or halt a program
	Step through Source Code
	Step through Machine Language (Disassembly) Instructions
	Step Over or Into Functions
	Run to the End of the Current Function, Then Return
	Run a Program Under Debug Control
	Jump over Code without Executing It
	Halt Execution of a Process
	Terminate a Program Under Debug Control

	Debug Child Processes
	Debug Exception-Handling Code
	Determine Causes of System Exceptions
	Handle Signals for User-Defined Exceptions

	Chapter 5. Debug variable contents and memory
	Expression and Value Monitors
	Debug local variables
	Obtain a Local Variables View
	Obtain a Details View of a Variable
	Add a Variable to the Monitored Expressions View
	Change the Representation of a Variable
	Change the Contents of a Variable

	Debug Global Variables
	Debug program storage
	View a Different Address in a Storage View
	Change the Representation of Storage in a Storage View
	Change the Contents of Program Storage
	Add a Value to the Monitored Values View

	Debug memory allocation (heap) problems
	Set Incorporation Options for Heap Debugging
	Check Heap for Corruption After Each Step Command

	Debug processor registers
	Choose Which Registers Display in a Registers View
	Change the Representation of Register Contents
	Change the Contents of Registers

	Appendix A. Available Representations for Variables
	Appendix B. Debugger commands
	Machine Step Into Command
	Machine Step Over Command
	Debug Step Into Command
	Step Into Command
	Step Over Command
	Return Step Command

	Contacting IBM

