
VisualAge® C++ Professional for AIX®

Getting Started
Version 5.0

���

First Edition (February 2000)

This edition applies to Version 5.0 of IBM VisualAge C++ and to all subsequent releases and modifications until
otherwise indicated in new editions. Make sure you are using the correct edition for the level of the product.

© Copyright International Business Machines Corporation 1998, 2000. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Note!
Before using this information and the product it supports, be sure to read the
general information under “Notices” on page vii.

Contents

Notices vii
Programming Interface Information ix
Trademarks and Service Marks ix
Industry Standards xi

About This Book. xiii

VisualAge C++, Version 5.0 Getting
Started 1

Chapter 1. Getting Started with VisualAge
C++ 3

Chapter 2. What’s New in VisualAge C++? . 5
New Tools and Features 5
Improvements to the Incremental Compiler . . 7
Enhancements to the Integrated Development
Environment 7

Chapter 3. What Is VisualAge C++? . . . 11
Compilers. 12

Batch Compiler 13
Incremental Compiler 13
Fast Incremental Builds 13
Reduced Drudgery. 14
Eliminate Makefiles 16
Automatic Instantiations of Templates . . 18

Choosing the Right Compiler 18
Features at a Glance 18
Recommendations Based on Code You
Have to Maintain 20

Integrated Development Environment . . . 21
Code Development. 21
Tightly Integrated and Object-Oriented . . 22
Program Understanding Made Easy . . . 22
Highly Customizable 23

Stand-Alone Debugger 23
Visual Programming Environments 24

Visual Builder 24
Data Access Builder 24

Class Libraries 25
Help System 26

Chapter 4. Installing VisualAge C++ . . . 27

System Requirements 27
Introduction to Installing VisualAge C++ . . 27
Installing and Configuring License Use
Management 28
Installing VisualAge C++. 29
Enrolling Licenses with LUM 30
Accessing the Online Documentation. . . . 32
Installing Fixes for VisualAge C++ 32
Uninstall VisualAge C++. 33

Chapter 5. Tour VisualAge C++ 35
About the Tour 35
Tour the Integrated Development
Environment 35
Workbook (IDE). 37
A Closer Look at Panes 38
What’s in a Project? 40
Create a Configuration 40
Looking at Your Subproject 43
Adding Content to a Source File 44
Build Your Project 45
Addressing Compilation Errors 46
Run Your Program 47
More on the IDE 47
About Incremental Compilation 48
More on Editing Source Files 49
Searching a Project 50
Configuration Files. 51
Setting Build Options 52
Symbols Used in the IDE 52
Linking Between Panes 53
Toolbar Buttons 54
Menu Descriptions 56

Chapter 6. Try VisualAge C++ 59
Introduction to VisualAge C++
Configurations and Subprojects 59
Tutorial 1: Configuration Files (.icc) 59

Copy Source Files for the Sample Project 61
Create a Configuration File 61
Configuration Directives 63
Setting Options 65
Codestores 67
Summing Up Tutorial 1 67

Tutorial 2: Introducing Projects 68

© Copyright IBM Corp. 1998, 2000 iii

Create a New Project in the IDE 69
Examine a Basic Project 71
The Project File 73
A Closer Look at Subprojects 74
Set up Dependencies Among Subprojects 75
Summing up Tutorial 2 76

Tutorial 3: Build a Subproject 76
Optimizing Subprojects 77
Find Included Sources in the IDE 77
Organize the Project 80
Create a New File 81
Create a Custom Page. 82
Group Common Options in a Separate
Configuration File 84
Summing up Tutorial 3 86

Tutorial 4: Builds 86
Create a Build 87
Add Conditional Processing to options.icc 88
Set Build Variables in the Default Build . . 89
Build the Project 89
Environments 91
Browse an Environment 92
Summing up Tutorial 4 93

VisualAge C++, Version 5.0
Migration Guide. 95

Chapter 7. Prepare to Migrate to Version
5.0 97

Chapter 8. Migrate to Incremental
Compilation. 99
Create a Configuration File for Migration 101

A. Creating an Empty Configuration File
with the IDE and SmartGuides 101
B. Copying an Existing Configuration File
from the Samples Provided with
VisualAge C++. 101

Preparation for Grouping Source Files for
Migration 102
Create Source Group Directives for
Migration 103
Convert Compile and Link Options to
Configuration Options 105
Add Source Files to the Project for Migration 106

Adding Source Files Using the IDE . . . 107
Adding a Source File by Editing the
Configuration File 107

Example: Configuration File with Source
File Added 108
Build Errors You May Encounter After
Adding Source Files 108

Promote Included System and User Header
Files 109
Add Another Target to your Project for
Migration 110
Migrate Other Commands 111

Using the run Directive to Call Other
Tools 111
Syntax of the run Directive. 112
Example: run Directive 112
Notes on the Example 113

Arrange Options in Groups 113

Chapter 9. Migrate from Version 4.0 to
Version 5.0 115
Combine Multiple Codestores in One Project 115
Divide a Single-Codestore Project into
Multiple Codestores 116

Chapter 10. Migrate to Version 5.0 Batch
Compilation 119

Chapter 11. Troubleshooting References 121
Common Errors when Migrating. 121
Errors Due to Changes in the C++ Language 122

bool, true, and false Keywords 122
Changes to Digraphs in the C++
Language 122

Errors Due to Changes in Compiler Behavior 122
Access-checking errors 122
typedefs 123
Overloading Ambiguities 123
Syntax errors with new 124

Coding Adjustments for Orderless
Programming 125

Overload Resolution is Handled
Differently 125
Resolution to an Unexpected Declaration 125
Solution 126
Unexpected Results With Macro Source
Files 126

Common Template Problems 127
Changes in Name Resolution 127
Changes to friend Declarations 128
Changes to the friend Declarator 128

Common Errors due to Duplicate Symbols 129
Solution 130

iv VisualAge C++: Getting Started

Adjust for Using the IBM Open Class
Library 131

Chapter 12. Special Considerations for
Migrating to Incremental Compilation . . 133
Application Requires Multiple Targets . . . 133
Application Uses Meta Source Files 135
Application Uses Meta Header Files . . . 136

Example: Meta Header Files 137
Application Needs to Maintain
Compatibility with a Batch Compiler . . . 137
Application Uses Both C and C++ Source 139

Chapter 13. Migration Concepts 141
Promoting Source Files to the Configuration
File 141

Macro Source Files 142
Using Macros Which Expand to Different
Values in Different Source Files 143

Meta Source Files 143
Considerations When Using C++ I/O . . . 144

Example 145
Migration of Resource Files 145

Resource Conversion Utilities for
Cross-Platform Development 145

Chapter 14. Other Migration References 147
Options for Compatibility with Previous
Versions of VisualAge C++. 147

Compile Options from Earlier Versions of
VisualAge C++ and Equivalent
Configuration Options (AIX) 153
Link Options from Earlier Versions of
VisualAge C++ (AIX) 171
New Standard C++ Library Header Files . . 172

The Language Support Library 172
The Diagnostics Library. 172
The General Utilities Library 173
The Standard String Templates 173
Localization Classes and Templates . . . 173
The Containers, Iterators and Algorithms
Libraries (the Standard Template Library) . 174
The Standard Numerics Library 174
The Standard Input/Output Library . . 175

Use the Standard Iostreams Library and the
Compatibility Iostreams Library 177
Use the Standard Iostreams Library with the
IBM Open Class Library 177
Makefile Rules Mapped to Configuration
File Directives 178

Contact Us 181

Contacting IBM 183

Contents v

vi VisualAge C++: Getting Started

Notices

Note to U.S. Government Users Restricted Rights -- use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

This information was developed for products and services offered in the
U.S.A. IBM may not offer the products, services, or features discussed in this
document in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give
you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the
IBM Intellectual Property Department in your country or send inquiries, in
writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow
disclaimer of express or implied warranties in certain transactions, therefore,
this statement may not apply to you.

© Copyright IBM Corp. 1998, 2000 vii

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will
be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s)
described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

Lab Director
IBM Canada Ltd.
1150 Eglinton Avenue East
Toronto, Ontario M3C 1H7
Canada

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Program License Agreement or any equivalent
agreement between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include
the names of individuals, companies, brands, and products. All of these
names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

viii VisualAge C++: Getting Started

This information contains sample application programs in source language,
which illustrates programming techniques on various operating platforms.
You may copy, modify, and distribute these sample programs in any form
without payment to IBM, for the purposes of developing, using, marketing or
distributing application programs conforming to the application programming
interface for the operating platform for which the sample programs are
written. These examples have not been thoroughly tested under all conditions.
IBM, therefore, cannot guarantee or imply reliability, serviceability, or function
of these programs. You may copy, modify, and distribute these sample
programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs
conforming to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work,
must include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM
Corp. Sample Programs. © Copyright IBM Corp. 1998, 2000. All rights
reserved.

Programming Interface Information

Programming interface information is intended to help you create application
software using this program.

General-use programming interface allow the customer to write application
software that obtain the services of this program’s tools.

However, this information may also contain diagnosis, modification, and
tuning information. Diagnosis, modification, and tuning information is
provided to help you debug your application software.

Warning: Do not use this diagnosis, modification, and tuning information as
a programming interface because it is subject to change.

Trademarks and Service Marks

The following terms are trademarks of the International Business Machines
Corporation in the United States, or other countries, or both:

AIX
AS/400
DB2
CICS
C Set ++
IBM

Notices ix

Network Station
Object Connection
OS/2
OS/390
OS/400
Open Class
Operating System/2
Operating System/400
PowerPC 403
PowerPC 601
PowerPC 603
PowerPC 604
Presentation Manager
RS/6000
S/390
SAA
Systems Application Architechture
TeamConnection
VisualAge
WebSphere
Workplace Shell

Lotus, Lotus Notes, and Domino are trademarks or registered trademarks of
the Lotus Development Corporation in the United States, or other countries,
or both.

Tivoli Management Environment, TME 10, and Tivoli Module Designer are
trademarks of Tivoli Systems Inc. in the United States, or other countries, or
both.

Encina and DCE Encina Lightweight Client are trademarks of Transarc
Corporation in the United States, or other countries, or both.

Microsoft, Win32, Windows, Windows NT, and the Windows logo are
trademarks or registered trademarks of Microsoft Corporation in the United
States, or other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

UNIX is a registered trademark in the U.S. and other countries licensed
exclusively through X/Open Company Limited.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks or
registered trademarks of Intel Corporation in the United States, or other
countries, or both.

x VisualAge C++: Getting Started

C-bus is a registered trademark of Corollary, Inc.

PC Direct is a registered tradmark of Ziff Communicatoins Company and is
used by IBM Corporation under license

Other company, product, and service names, which may be denoted by a
double asterisk(**), may be trademarks or service marks of others.

Industry Standards

VisualAge C++ Professional for AIX, Version 5.0 supports the following
standards:
v The C language is consistent with the International Standard C

(ANSI/ISO-IEC 9899–1990 [1992]). This standard has officially replaced
American National standard for Information Systems-Programming
Language C (X3.159–1989) and is technically equivalent to the ANSI C
standard. VisualAge C++ supports the changes adopted into the C Standard
by ISO/IEC 9899:1990/Amendment 1:1994.

v The IBM Systems Application Architecture (SAA) C Level 2 language
definition.

v The C++ language is consistent with the International Standard for
Information Systems-Programming Language C++ (ISO/IEC 14882:1998).

v The ISO/IEC 9945–1:1990/IEEE POSIX 1003.-1990 standard.
v The X/Open Common Applications Environment Specifications, System

Interfaces and Headers, Issue 4.

Notices xi

xii VisualAge C++: Getting Started

About This Book

Much of the information in this book is also available in the online help.

To find this information, or any topics listed in this book as Related Concepts,
Related Tasks, or Related References, simply type the topic title into the search
bar in the top frame of your browser in the online help.

For some topics, the suggested references may already be contained in this
book. In such cases, there is a cross-reference to the page on which the related
topic appears.

© Copyright IBM Corp. 1998, 2000 xiii

xiv VisualAge C++: Getting Started

VisualAge C++, Version 5.0 Getting Started

© Copyright IBM Corp. 1998, 2000 1

2 VisualAge C++: Getting Started

Chapter 1. Getting Started with VisualAge C++

Welcome to Getting Started with VisualAge C++. This book is meant to help you
get up and running with VisualAge C++ and give you an idea of what
VisualAge C++ can do.

This book is divided into five sections:
v What’s New in VisualAge C++

This portion outlines changes made to VisualAge C++ since the previous
release. See “Chapter 2. What’s New in VisualAge C++?” on page 5.

v What Is VisualAge C++?

What is VisualAge C++? introduces the overall capabilities of the VisualAge
C++. It tells you about the tools available to you and some of their features.
It will take you 20 to 30 minutes to read all of the sections. See “Chapter 3.
What Is VisualAge C++?” on page 11

v Installing VisualAge C++

This section will guide you through installing VisualAge C++. It includes
information about system requirements, installing and licensing VisualAge
C++. This section starts with “Introduction to Installing VisualAge C++” on
page 27.

v Tour VisualAge C++

Tour VisualAge C++ gets you working with the new integrated
development environment (IDE). In 20 to 30 minutes, the tour will guide
you step-by-step through some basic tasks to create and run a small
program. This is a good way to prepare for the more in-depth tutorial, or
learn to navigate before starting your own projects. This section starts with
“About the Tour” on page 35.

v Try VisualAge C++

This is an introduction to configuration files and features of the new
Integrated Development Environment. In four modules of about 20 minutes
each, you will create a configuration and a project, learn about
configuration language and project language, and optimize a subproject.
The tutorials start with “Introduction to VisualAge C++ Configurations and
Subprojects” on page 59.

This book also includes the Migration Guide for VisualAge C++ Professional
for AIX, Version 5.0. The Migration Guide helps you to move projects from
your present compiler to either the incremental compiler or the batch compiler
that are part of the VisualAge C++ suite of tools. The Migration Guide starts
with “Chapter 7. Prepare to Migrate to Version 5.0” on page 97.

© Copyright IBM Corp. 1998, 2000 3

4 VisualAge C++: Getting Started

Chapter 2. What’s New in VisualAge C++?

This release of VisualAge C++ Professional Version 5.0 includes:
v “New Tools and Features”
v “Improvements to the Incremental Compiler” on page 7
v “Enhancements to the Integrated Development Environment” on page 7

New Tools and Features

A Batch Compiler

VisualAge C++ now includes a traditional, makefile-based compiler that is
fully ANSI/ISO compliant. The new batch compiler supports both 32- and
64-bit architecture and optimization technology. SMP architecture is supported
through C OpenMP support, SMP explicit directives and automatic
parallelization.

64-Bit Support

Compilers
VisualAge C++ now offers full support for creating 64-bit programs.
Both the batch and incremental compilers each support both 32- and
64-bit optimization technology.

Debugging
Both the stand-alone debugger and the IDE debugger have seamless
64-bit debugging. Debugging your 64-bit application is the same as
debugging a 32-bit application. No special steps are needed to start
either debugger. You can also debug a 32-bit process and start
debugging another 64-bit debug process at the same time. Views will
show 32- or 64-bit addresses as appropriate.

IBM Open Class
IBM® Open Class™ applications that do not use user interface or 2D
graphics classes can now be built in 64-bit mode as well.

Detailed Help for Upgrading to VisualAge C++ Version 5.0

The Migration Guide for VisualAge C++ Version 5.0 provides help on moving
to either the batch compiler or the incremental compiler that are part of
VisualAge C++ Professional Version 5.0. It provides information on migrating
your existing programs to VisualAge C++ Professional Version 5.0 from any of
the following compilers:

© Copyright IBM Corp. 1998, 2000 5

v VisualAge C++ Professional Version 4.0 (incremental compiler)
v IBM C and C++ Compilers Version 3.6 (batch compiler)
v C Set ++® for AIX Version 3.1 (batch compiler)

We strongly encourage you to read the migration guide before trying to
migrate your existing projects to VisualAge C++ Professional Version 5.0.

For your convenience, we have included a copy of the Migration Guide for
VisualAge C++ Version 5.0 in this book. See “Chapter 7. Prepare to Migrate to
Version 5.0” on page 97.

A Stand-Alone Debugger

A stand-alone debugger, the Distributed Debugger, is shipped with VisualAge
C++. The Distributed Debugger lets you debug applications containing
traditional debug information. You can debug programs running on your local
machine or a remote machine accessible from a TCP/IP network.

A Performance Analyzer

Now you can use the VisualAge C++ IDE to analyze the performance of
programs by tracing the execution of a program and creating a trace file. The
trace file contains trace analysis data that can be examined in several views.
Using these views, you can improve the performance of a program, examine a
sequence of calls leading up to an exception, and in general, understand what
happens when a program runs. The IDE can trace and analyze applications
generated by the VisualAge C++ Version 5.0 compiler. You cannot use the IDE
to trace files produced by other compilers.

Improved Run-Time Performance

A new C++ object model improves run-time performance. You save space
with virtual bases and virtual calls are faster when using the IBM object
model.

Extension APIs

The incremental compiler internals are now available to users via a full
featured set of interfaces. Customized tools such as a lint-like style checker
can be easily written to your own specifications and integrated with the
compilation process as extensions or made as stand-alone tools.

Four types of extension interfaces are available:
v Observer extensions let you register observers that are notified when specific

events in the compile cycle are encountered

6 VisualAge C++: Getting Started

v Incorporation extensions let you add to or modify compilation phases
v Dependency graph extensions let you add data to the codestore, with

incremental update
v User interface extensions let you add views, buttons, and menu items to the

VisualAge C++ IDE

Improvements to the Incremental Compiler

Easier Maintenance of Source Code Compatibility

VisualAge C++ now allows you to take advantage of the productivity gains of
using the incremental compiler while maintaining code compatibility with
other traditional C++ compilers. The ordered name lookup option makes the
compiler try to resolve all names to the same declarations that a traditional
compiler would. In other words, the option helps you write portable code by
maintaining all the #include directives and forward declarations necessary to
compile your source with a compiler other than VisualAge C++.

Multiple Codestores In A Single Project

The new structure of projects allows you to group many codestores in a single
project. You can debug, browse, and build code for your executables and
shared libraries at the same time. This allows you better scaling, so you can
manage programs in smaller chunks. Rebuilds are quicker since
dependencies between codestores are tracked at a different level than
dependencies within codestores. The debugger for executables is very useful,
because when your executable calls for a function in another shared library,
you can access another codestore for that shared library.

Enhancements to the Integrated Development Environment

Easier Transition from Makefiles

Configuration Smart Guide
The Configurations page has a check box to disable configuration
directives, which makes migration easier. Migration help is always
close at hand, thanks to the new Browse Migration Guide button.
Even when you are in the middle of the SmartGuide, you can jump
directly to the most relevant information on the task in the online
version of the Migration Guide for VisualAge C++ Version 5.0. For
your convenience, the Migration Guide is also included in this book.
It starts with “Chapter 7. Prepare to Migrate to Version 5.0” on
page 97.

Chapter 2. What’s New in VisualAge C++? 7

Change Configuration Options View
You can now easily locate the batch equivalents of configuration
options and vice versa through the VisualAge C++ IDE.

Configuration Views
Configuration views now allow you to select directives to enable or
disable. For example, if you are having migration problems with
particular source files, you can select the source directives in a
configuration view and disable them until you are ready to include
the files in the build.

Convert Batch Options View
Use the Convert Batch Options View to convert or display equivalent
batch and incremental options. You no longer need to look through
lengthy reference tables to find equivalent options.

Source Code Control

It’s now easy to check files into or out of virtually any source control system.
Both IBM CMVC and IBM VisualAge TeamConnection™ are supported with
custom interfaces within the VisualAge C++ IDE, but you can issue
commands to any other version control software from within the development
environment. Updated file management views let you see which files are
locked for easy, safe collaboration with other members of your development
team.

Expanded Selection of Editors

In addition to the default LPEX editor, you can customize Source views in the
IDE to adopt the style and command set of your favorite keyboard mapping
editors. The two new keyboard mappings are vi and emacs, which are widely
used editors, common for AIX.

If you prefer to work with a stand-alone editor, rather than using the Source
views in the IDE, you can set the IDE to update its views from your editor.
You can also choose to launch the external editor whenever a page containing
a Source view is displayed or a Source view is updated.

Better File Management Support

Now you can use the Host section of the IDE workbook to take care of
file-oriented tasks without leaving the development environment: create,
delete, copy or rename files and directories and preview the contents of your
files in a simple, graphical interface.

Quick Context Finder

8 VisualAge C++: Getting Started

The Containing Objects menu item makes it very easy to see at any time
where any function, object, or file fits into the bigger picture. For example, for
a function, you can see what class it is in, the namespace, the codestore, the
subproject, the build and the project.

Improved Support for Creating Classes

The new Class SmartGuide enables you to create a skeleton for a new class
and use the information that already exists in the codestores. This saves you
from having to create declarations and remember the names for this section.
For example, you can pick the base classes for your new class from a list
generated from information in the codestore and not have to worry about
remembering their exact spellings. You can even tell the SmartGuide to imitate
your personal coding style.

Chapter 2. What’s New in VisualAge C++? 9

10 VisualAge C++: Getting Started

Chapter 3. What Is VisualAge C++?

VisualAge C++ is a flexible, innovative suite of tools designed to offer a rich
environment for object-oriented application development. It is especially
valuable for high-performance and heavily computational applications.

The VisualAge C++ suite of tools consists of:

ANSI/ISO Compliant Batch and Incremental Compilers

Two compilers offer you incredible flexibility. You can use the batch compiler
to move projects up to the ANSI/ISO 1998 C++ standard, including STL, with
no project delays or disruptions. The incremental compiler offers you the
ability to move up to the new standards while taking advantage of the
productivity gains from compiling only parts of program affected by changes
made since the last compile and the tight integration between the incremental
compiler and the IDE. The incremental compiler lets you do this while still
maintaining source code compatibility with your makefile-based projects.

A Highly Customizable Integrated Development Environment

The VisualAge C++ IDE is a powerful development environment that takes
advantage of a database of program information, the codestore, to give you
greater understanding of your programs. This architecture allows you to set
breakpoints from within the editor, instantly browse the class hierarchy,
modify the source code as you debug, and easily find references for a method
inside a complete project as you edit, compile and debug your code in one
spot.

A Stand-Alone Debugger

Both the debugger in the VisualAge C++ IDE and the stand-alone debugger
allow you to debug programs compiled with traditional debug information.
The stand-alone debugger, the Distributed Debugger, also lets you debug
programs running on remote machines accessible through a TCP/IP network.
You can use the Distributed Debugger when you want to debug a program,
but do not need access to the full range of information the VisualAge C++
IDE debugger provides.

Visual Programming Environments

The VisualAge C++ visual programming environments, Visual Builder and
Data Access Builder, let you build programs from parts. Using Visual Builder,

© Copyright IBM Corp. 1998, 2000 11

you simply drag and drop, and connect visual parts. Visual Builder creates
the code for you. With Data Access Builder, you can use the drag-and-drop
interface to create your database mappings, and Data Access Builder creates
the source code for you. Any parts you create in Data Access Builder can then
be used in Visual Builder. Source code generated by Visual Builder and Data
Access Builder can be compiled by both the incremental and the batch
compilers.

Class Libraries

The IBM Open Class Library provides advanced class libraries and
frameworks to build rich and robust applications. It is fully ANSI compliant
and you can use the ANSI Standard Template Library (STL) containers in an
IBM Open Class application.

A Comprehensive Help System

Using the VisualAge C++ comprehensive, online help system can significantly
reduce your learning curve when starting to use VisualAge C++. Our online,
HTML-based help provides you with information on every component in
VisualAge C++ and includes tutorials on how to use many of the tools. It is
optimized for fast access to information, and provides fuzzy and precise
full-text search. Most information is also provided in the Adobe Acrobat PDF
format.

For more information on these tools, see:
v “Compilers”

v “Integrated Development Environment” on page 21

v “Stand-Alone Debugger” on page 23

v “Visual Programming Environments” on page 24

v “Class Libraries” on page 25

v “Help System” on page 26

Compilers

VisualAge C++ gives you two compilers: a batch compiler and an incremental
compiler. This offers you the flexibility to maintain legacy projects with the
batch compiler, while taking advantages of the productivity gains offered by
the incremental compiler for new projects.

Both VisualAge C++ compilers support the ANSI/ISO 1998 C++ standard.

12 VisualAge C++: Getting Started

While adhering to the new C++ standard, the VisualAge C++ compilers
provide options that allow for non-standard legacy C++ features. As a result,
you can easily move your applications to the new standards.

Batch Compiler
The VisualAge C++ batch compiler is a traditional, makefile-based compiler
that is fully ANSI/ISO 1998 compliant. The batch compiler is compatible with
previous IBM C/C++ batch compilers, making migration and porting to the
VisualAge C++ batch compiler easy.

The batch compiler also supports both 32 and 64 bit optimization
technology. SMP architecture is supported through C OpenMP support, SMP
explicit directives and automatic parallelization.

Incremental Compiler
The VisualAge C++ incremental compiler uses new program understanding
technology to increase your productivity. Using the incremental compiler
offers you the following advantages:
v Fast Incremental compilation
v Reduced drudgery
v Elimination of makefiles
v Automatic instantiation of templates

While taking advantage of the productivity gains of using the incremental
compiler, the VisualAge C++ incremental compiler allows you to maintain
code compatibility with other traditional C++ compilers. The ordered name
lookup option makes the incremental compiler resolve all names to the same
declarations that a traditional, makefile-based compiler would. In other words,
the option helps you write portable code by maintaining all the #include
directives and forward declarations necessary to compile your source with a
compiler other than VisualAge C++.

The VisualAge C++ incremental compiler is compliant to ANSI/ISO 1998
standard including the most complete implementation of STL. It also supports
both 32 and 64 bit optimization technology.

Fast Incremental Builds
With the VisualAge C++ incremental compiler you no longer have to wait for
an entire project rebuild each time you make a change. You only have to wait
as long as necessary for the parts of your program affected by the change to
be rebuilt.

Incremental Builds
Every time you build, the VisualAge C++ incremental compiler rebuilds only
what it needs to rebuild. With traditional compilers, header files are
recompiled every time a source file that includes them is recompiled. With the

Chapter 3. What Is VisualAge C++? 13

VisualAge C++ incremental compiler, changes to a source file do not require
recompilation of the header files that the source file includes. It does not even
require the whole changed file to be recompiled, only the changed part of the
file and the parts of the program that depend on that changed section.

Database of Program Information
Databases, or codestores of information about your program, make up the core
of the VisualAge C++ incremental compiler.

When you first build your program, a codestore is created. A codestore
contains information consisting of, for example, the signatures and contents of
functions, and the names and types of variables.

Builds using the VisualAge C++ incremental compiler can be extremely fast. If
you add one line of code to a function, the update happens almost
instantaneously. While a traditional makefile-based system has to rebuild all
source files that have changed, along with all object files that depend on those
source files, the VisualAge C++ codestore records exactly which functions
need rebuilding, and rebuilds only those particular functions.

Early Error Feedback
Because of incremental compilation, the VisualAge C++ incremental compiler
can provide rapid feedback. The compiler checks all interfaces before
compiling function bodies and variable definitions. The result is a much faster
error-reporting process than that of conventional compilers.

Freedom from Dependencies
All compilation dependencies are maintained automatically in the codestore.
You no longer have to worry about maintaining complex header files and
makefiles.

Reduced Drudgery
With the VisualAge C++ incremental compiler you can avoid mundane
programming tasks such as:
v Typing and maintaining multiple copies of essentially the same declarations

in multiple places
v Organizing header files
v Having to avoid circularities in header file inclusions, especially when

using inline functions
v Organizing header files to minimize recompiling when header files are

changed

With the VisualAge C++ incremental compiler, you can organize source code
into files in any order. By default, the VisualAge C++ incremental compiler
uses orderless parsing, which means that the computer sorts the declarations,

14 VisualAge C++: Getting Started

not you. You can disable this feature to maintain code compatibility with
conventional, batch compilers by using the ordered name lookup option.

The VisualAge C++ incremental compiler also takes care of header files.
Typically, header files require you to use various mechanisms to sort
declarations for the compiler.

To realize how much productivity you will gain by letting VisualAge C++ do
the work for you, take a look at a simple example that has a main() function
and two classes, A and B, organized into files in this manner:

File A.h File B.h File main.cpp

#ifndef A_H
#define A_H
#include “B.h”
class A : public B
{
public:
B* f() {return new B;}
};
#endif

#ifndef B_H
#define B_H
#include “A.h”
class B
{
public:
A* g() {return new A;}
};
#endif

#include “B.h”

int main()
{
B b;
return 0;
}

This code follows the standard method for organizing header files. Even this
simple code will not compile when organized in this way. (Trace by hand the
macro processing to see why.) To fix the code, you have to add forward
declarations (for example, class A in B.h), and move the inline function
definitions into separate files. But this is a tedious process, even for this
simple example, and becomes a coding nightmare in a large project.

With VisualAge C++, you can organize your code in this way:

File A.h File B.h File main.cpp

class A : public B
{
public:
B* f() {return new B;}
};

class B
{
public:
A* g() {return new A;}
};

int main()
{
B b;
return 0;
}

Or, if you prefer, you can put all of the code in a single file in whatever order
makes sense to you:

Chapter 3. What Is VisualAge C++? 15

File main.cpp

class A : public B
{
public:
B* f() {return new B;}
};
class B
{
public:
A* g() {return new A;}
};
int main()
{
B b;
return 0;
}

Notice that there are no forward declarations, macro guards, or #include
statements. VisualAge C++ eliminates the need for such tedious programming
practices by maintaining a codestore database for your program, and by
replacing makefiles with a configuration file that defines, among other things,
the source and header files needed to compile your project.

Eliminate Makefiles
Makefiles are another source of drudgery for C++ programmers. On large
projects, makefiles are difficult to manage and frequently become out-of-date,
so you often need to resort to automatic dependency generators.

The VisualAge C++ incremental compiler makes the computer serve the
programmer, not the other way around. When you tell VisualAge C++
incremental compiler what to build, the compiler figures out how to build it.

A project consists of one or more related C++ object files, libraries, and
executables, together with the corresponding source files, processing rules,
and processing options. The output object files, libraries, and executables are
called targets, and the source files are called sources. A project will often
contain different configurations, which are different versions of the same
project, but with different sets of options.

A configuration file defines a project’s configurations. The configuration file is
different from a makefile in that you do not need to specify processing and
inter-file dependencies for C++ files. You only need to specify source-to-target
dependencies. Therefore, where a makefile says:

“Call the C++ compiler with this source, these options, producing this
target, when these header files change.”

16 VisualAge C++: Getting Started

a configuration file says:

“This is a C++ source and here are its options; this is a C++ target and
here are its options; here is the list of which sources map to which
targets.”

Here is a simple example of a configuration file annotated with comments:
option
link(linkwithmultithreadlib), // Use multi-threaded library
link(linkwithsharedlib) // Use shared library

{
target “carlot” // Produce an executable

{
option
lang(offsetofnonpodclasses), // Backward compatibility for old code
lang(digraphs, no),
incl(searchpath, “.”),
lang(nokeyword, “true”),
lang(nokeyword, “false”)

{
source type(cpp) “carlot.C” // List of C++ sources
source type(cpp) “car.h”
source type(cpp) “car.C”
source type(cpp) “truck.h”
source type(cpp) “truck.C”
source type(cpp) “vehicle.h”
source type(cpp) “vehicle.C”
source type(cpp) “vlist.h”
source type(cpp) “vlist.C”
}

}
}

This configuration file specifies that a batch of C++ source is to be compiled
and linked to produce an executable file. Some options are specified for
compatibility with pre-ANSI/ISO 1998 C++ standard (for example, true and
false are not treated as keywords). However, the configuration file does not
indicate that vehicle.o depends on vehicle.C, vehicle.h, and so forth. In fact,
because the target is an executable file, no object files are even produced.

You can build a project using different configuration files, or by processing
configuration files conditionally.

The IDE provides a simple interface for creating and maintaining
configuration files, so that you do not have to write or edit the files yourself.
The IDE can handle any configuration file, whether it is coded by hand or
generated by the IDE.

Chapter 3. What Is VisualAge C++? 17

Automatic Instantiations of Templates
VisualAge C++ automatically instantiates templates, without creating the
excessive code characteristic of current automatic schemes.

The VisualAge C++ incremental compiler method of instantiating templates
has the following advantages:
v It stores the program in the codestore, which contains both templates and

their instantiations, and holds them accessible to the compiler.
v It instantiates only the templates that are needed.
v You can browse the templates and their instantiations as a compiler would

browse regular declarations, because the codestore is available to the user
interface.

Many compilers support explicit instantiation under programmer control and
automatic schemes. However, because of their effect on build times, code size,
and dependency management with makefiles, these automatic schemes are
not practical for programming projects that rely heavily on templates. You can
make the manual scheme work, but the process is inconvenient. If you have
tried to browse through the C++ standard template library with any
development system, you probably discovered that the systems you were
using could not handle the uninstantiated templates that make up most of the
library. VisualAge C++, however, can.

Choosing the Right Compiler

VisualAge C++ Version 5.0 features both a fully incremental compiler and a
new batch compiler. The Integrated Development Environment (IDE) operates
with the incremental compiler. The batch compiler is run from the command
line. Both compilers support the latest ANSI/ISO C++ language standard, and
the latest version (Version 5) of the IBM Open Class library.

Here are some considerations to help you choose the right setup for your
needs.

Features at a Glance

Features Benefits Incremental
Compiler

Batch Compiler

Compilation Supports the latest
language standard

Uses configuration
files

Uses makefiles

Ease of migration
for makefile-based
projects

Allow existing
projects to take
advantage of new
standards and
compiler
technologies

Requires creation of
configuration files

Little or no work
required

18 VisualAge C++: Getting Started

Features Benefits Incremental
Compiler

Batch Compiler

IDE with real-time
updates

Assists in rapid
application
development;
integrated editing,
browsing and
debugging

Yes No

Incremental
compilation

Speeds compilation,
especially with
larger projects

Yes No

Visual Builder Speeds
development with
visual application
assembly from
predefined parts
and automatically
generated code.

Yes Yes

Compiles Visual
Builder generated
code

Yes Yes

Data Access Builder Speeds
development with
visual mapping
from relational
database tables into
reusable parts,
ready for use with
the Visual Builder

Yes Yes

Compiles Data
Access Builder
generated code

Yes Yes

Integrated debugger Permits debugging
without leaving the
IDE

Yes Yes1

Stand-alone
debugger

Allows you to
debug programs
running a remote
machine as well as
any programs
compiled with
traditional debug
information

Yes2 Yes

Chapter 3. What Is VisualAge C++? 19

Features Benefits Incremental
Compiler

Batch Compiler

Libraries ANSI/ISO Standard
C++ library,
including the
Standard Template
Library

Yes Yes

IBM Open Class
Library, V5.0

Compatible with
Standard Template
Library

Yes Yes

Performance
Analysis

Examine how your
program uses
system resources

Yes Yes

1 The IDE debugger allows you to debug programs that have been compiled
with traditional debug information (TDI).

2 Stand-alone debugging requires that you enable the export debugging
information feature in your configuration file.

Recommendations Based on Code You Have to Maintain

If you are... IBM recommends:

writing new code incremental compiler

maintaining projects developed with
VisualAge C++ Version 4.0

incremental compiler

maintaining existing code from a batch
environment

batch compiler

porting existing code from another IBM
platform

incremental compiler

porting existing code from a non-IBM
platform

batch compiler

developing applications for deployment
on multiple flavors of UNIX®

batch compiler

developing applications using C OpenMP
support, SMP explicit directives or
automatic parallelization

batch compiler

20 VisualAge C++: Getting Started

Integrated Development Environment

The VisualAge C++ Integrated Development Environment (IDE) will improve
the way you program. The design of the IDE allows you to focus on the
programming task, rather than on trying to get around the development
environment.

The IDE is tightly integrated and customizable to your needs. The IDE,
organized in a workbook style with tabs, will make it easy for you to:
v Navigate through your code
v Find all the uses of any declaration
v See how C++ resolves overloading
v Debug at the source or at the annotated assembly level
v Set breakpoints on classes
v Add new views and tools
v View class and include hierarchies graphically
v Customize the way you build and run your projects

The new help system has been categorized into easily accessible categories of
information. A powerful search engine helps you to quickly locate the
information you need.

For setting up a build, connecting to a database, or performing a number of
other routine tasks, VisualAge provides SmartGuides to lead you through the
process. SmartGuides help you create projects, configurations, targets, and
classes.

Code Development
Now, with the new Integrated Development Environment (IDE), you can
develop and maintain code much more easily than ever before.

In the IDE, you can navigate through your program structure looking for type
definitions, function locations, calling relationships, declaration usage, and
other program elements. The IDE displays your program from any viewpoint
you choose. Using the quick-search and filtering capabilities of the panes, you
can quickly narrow in on the information you need.

When you want to add a member to a class or add code to a function, you do
not have to search a directory of your file system to find the file containing
the class declaration or function. Instead, you can select the appropriate class
or function object to see the source code in a linked pane. You can choose to
work with files or objects, or both.

When you build, the views of the IDE are updated to reflect the structure and
relationships of your program.

Chapter 3. What Is VisualAge C++? 21

You can debug multiple processes concurrently in the IDE. In other words,
you can have two processes running at the same time, and debug the way
they interact with each other.

In the IDE, you can fix errors quickly. When you click on an error message,
the IDE displays a view of the source code causing the error. You can correct
the error immediately, and then rebuild your application.

Tightly Integrated and Object-Oriented
Now, with the editor and debugger integrated, you can set breakpoints as you
edit your code, and you can modify your source as you debug. In the tightly
integrated IDE, access to files on your system is simply a click away.

The IDE’s object-based environment allows you to view and manipulate
objects, such as classes, source files, and functions, while you work on your
application. As an object-based environment, the IDE forces information to be
grouped in a useful, meaningful manner, and hides information that is not
immediately important; the visual setup of the IDE allows you to access
information, and interact with data quickly.

The IDE treats program entities as objects, and keeps information about them,
so that when you select a source file, function, class, method, object, or
variable, information specific to that object is available. The IDE also displays
other objects related to that object, along with information specific to them.

Program Understanding Made Easy
The views of the IDE are updated to reflect the structure and relationships of
your program, as you build. Do you need to know how a type is defined, or
how a function is implemented? You will discover that the answers are only a
click or two away.

You can easily navigate through your program structure to look for type
definitions, function locations, calling relationships, declaration usage, and
other program elements.

For example, you can navigate to the source for a particular method by
selecting first the Classes page of the Project section of the workbook, then the
class code, and then the method from the view that is displayed for that class.
The source code for the selected method is displayed in the Source view.

The IDE displays your program from any viewpoint you choose. Using the
quick-search and filtering capabilities of the panes, you can quickly narrow in
on the information you need.

22 VisualAge C++: Getting Started

Highly Customizable
After extensive testing with C++ programmers, we designed the IDE based on
programmers’ feedback. You will find the new IDE an extremely powerful
environment to work in. And you can modify the IDE to make it work
according to your personal preferences.

When you open the IDE, you see five major sections:
v Workbook: Examine and set options that control the IDE itself.
v Host: Browse through files on your system.
v Project: Define your project file and control the build behavior for your

project.
v Configuration: Define a configuration file. A configuration file is used to

specify options, targets and source files.
v Codestore: Work with code at the source level.

Each section of the project workbook has a number of pages associated with
it. When you click on a section tab, you see a page showing a “snapshot” of
your system, of a project, or of a component of that project (such as a source
file or a process running under debug control).

Each page in the project workbook is divided into panes. You can divide a
page into any number of panes, add or remove panes, change which objects
are viewed in a pane, link the panes together so that objects flow the way you
want them to flow, and select among the views for any kind of object. You
can also add your own pages.

Stand-Alone Debugger

VisualAge C++ includes a stand-alone debugger, the IBM Distributed
Debugger, that can be used debug programs compiled with traditional debug
information outside of the VisualAge C++ IDE. Use the Distributed Debugger
when you do not need access to all of the views the IDE debugger supplies.

The Distributed Debugger is especially useful for remote debugging of your
applications. You can debug your program running on a remote machine
accessible through a TCP/IP network from your machine.

The Distributed Debugger offers an improved user interface over stand-alone
debuggers previously available for AIX. This improved user interface lets you
debug multiple applications from a single debugger session. Each program
you debug is shown on a separate program page with a tab on each page
displaying program identification information such as the name of the
program being debugged.

Chapter 3. What Is VisualAge C++? 23

Visual Programming Environments

Using the Visual Builder, you can visually create object-oriented programs
using C++, often without having to write a single line of source code. You
simply drag and drop, and connect the visual parts. Visual Builder creates the
code for you.

With the Data Access Builder, you can create database access classes
customized for your existing relational database tables. You use the drag and
drop interface to create your database mappings, and the Data Access Builder
creates the source code for you.

Through easy-to-use drag and drop interfaces, visual programming reduces
your programming time and improves your code quality.

Visual Builder
Visual Builder provides an extensive library of prefabricated GUI parts that
you can use to build your applications. However, you are not limited to these
parts; you can extend the Visual Builder by creating and adding your own
reusable parts to the parts palette. You can even import or export parts from
other applications. Visual Builder parts represent actual classes. When you
generate code through the Visual Builder, the parts are created as classes. You
can then add your own class definitions or import them from other
applications.

Visual Builder works well not only for creating interfaces, but for prototyping
designs. Whether prototyping or creating an interface for your application, the
process is the same: you arrange the parts, make the necessary connections,
and let the Visual Builder generate the C++ code for you.

With a library of reusable components, the Visual Builder helps you to reduce
programming time and improve code quality.

Data Access Builder
You can visually create mappings of database tables to C++ classes, and then
let the Data Access Builder generate the C++ code for you. A quickmap
feature allows you to do a column-to-attribute direct mapping. You can
customize your classes to suit your needs.

You can use the classes, generated by the Data Access Builder, directly in your
C++ programs. Besides generating the C++ source for your mappings, you
can generate parts for your mappings, and use the mapping parts in the
Visual Builder. The Visual Builder allows you to wire together database
applications quickly, and efficiently.

The Data Access Builder also provides the following:
v Separate services for connecting and disconnecting from your databases

24 VisualAge C++: Getting Started

v Commit and rollback operations to handle transaction services
v Selection and retrieval of a group of objects from a datastore, which you

can manipulate using the IBM Open Class Library collection classes
v Classes that support multiple connections to the datastores
v Direct support for DB2® using embedded SQL or the DB2 Call Level

Interface
v Open Database Connectivity support for access to many database products

using the ODBC CLI and appropriate database driver.

Because the Data Access Builder generates classes customized to your data,
you can perform common database tasks, such as adding, retrieving,
updating, and deleting data.

Class Libraries

Whether you are a novice programmer or an experienced developer, the IBM
Open Class Library can help reduce your programming effort. The IBM Open
Class Library offers you a comprehensive set of classes, ranging from basic
input/output operations and string handling to user interface support.

VisualAge C++ offers you a wide variety of reusable classes to combine to
create powerful applications:
v User Interface classes that provide support for building the graphical user

interface of an application.
v Application Control classes that provide support for multi-threaded

execution environments.
v Collection Classes that provide a set of commonly used abstract data types

used to build collections.
v Streams and Storage classes that implement persistent storage mechanisms

for Open Class components.
v Error Handling and Testing classes that provide support for building robust

and well-behaved applications.
v 2D Graphics Framework that supports the platform-independent creation,

manipulation, and rendering of 2D graphic objects.
v Text and International Frameworks that provide support for Unicode text

strings and for building easily localizable components.

All IBM Open Classes are 64-bit compatible, except for the user interface and
2D graphics classes.

To find out about changes in the IBM Open Class Library, refer to the
following pages in the online help:
v Changes in Version 4 of IBM Open Class
v Changes in Version 5 of IBM Open Class

Chapter 3. What Is VisualAge C++? 25

Help System

Our online, HTML-based help is organized to help you quickly find the
information you need. Use the navigation pane to see where you are in the
information structure, and move easily from topic to topic.

The interface for the main online help uses three frames for fast and easy
navigation:
1. The upper frame contains a search bar that lets you search the online help

with a full-text search engine. You can get to the VisualAge C++ website
by clicking on the VisualAge C++ icon (if you are connected to the
internet).

2. The left frame contains an expandable index of topics.
3. The right frame displays the information for the topic you have selected.

If you know exactly what you are looking for, use the full-text search engine
in the upper frame. You can use text processing, wildcards, and logical
modifiers to find the information you need. You can also specify what types
of information you want to search: concepts, tasks, reference, interface help, or
examples.

You can browse the online help outside the tools, or from within the tools’
windows. F1 always gives you context-sensitive help. All of the product’s
information is available from the Help menus located within the tools’
windows.

Navigation through our samples has never been easier or better organized.
We have provided information with each sample to help you determine which
sample will best suit your needs. You can navigate to the samples with two or
three quick clicks of your mouse button.

You will also find the “Chapter 7. Prepare to Migrate to Version 5.0” on
page 97 in our online help and in this book. This guide provides you with
help moving your projects from your present compiler to either the
incremental or the batch compiler, as well as detailed reference information on
changes you should be aware of.

Much of the online documentation is also available in Adobe Portable
Document Format (PDF) format. You can view and print this information
using the Adobe Acrobat** reader. If you do not already have the Acrobat
reader program installed, you can download it free from Adobe’s website at
http://www.adobe.com. The Adobe PDF files are in the /usr/vacpp/pdf
directory after you install VisualAge C++ Professional Version 5.0.

26 VisualAge C++: Getting Started

Chapter 4. Installing VisualAge C++

System Requirements

Hardware

Display
SVGA 800x600 (1024x764 recommended)

CD-ROM drive
Required

Mouse or pointing device
Required

Memory (RAM)
96MB minimum (128MB or higher recommended)

Disk space
Up to 750MB

Software

Operating System
IBM AIX Version 4.2 or higher

On AIX 4.3 or higher, you must have the Motif 1.2 compatibility
libraries installed. They can be found in the X11.compat.adt.Motif12
fileset.

Prerequisites for the Data Access Class Builder
A database with the appropriate ODBC database driver, or DB2
V2.1.2, or later.

To access the online help
A frames-capable browser such as Netscape Communicator Version
4.04 (or later).

Introduction to Installing VisualAge C++

VisualAge C++ Professional for AIX Version 5.0 uses License Use Management
to control the license for the product. You will need to install and configure
License Use Management before installing VisualAge C++. After installing
VisualAge C++, you will need to enroll your license with License Use
Management.

Follow these steps to install VisualAge C++ Professional for AIX Version 5.0:

© Copyright IBM Corp. 1998, 2000 27

1. “Installing and Configuring License Use Management”
2. “Installing VisualAge C++” on page 29
3. “Enrolling Licenses with LUM” on page 30

Installing and Configuring License Use Management

VisualAge C++ Professional for AIX Version 5.0 uses License Use Management
(LUM) to control the license for the product. LUM is supported on AIX
Version 4.1 and higher.

Note: VisualAge C++ Professional Version 5.0 requires the you are using AIX
Version 4.2 or higher.

LUM is a component of the Base Operating System (BOS) in AIX Version 4.3
or higher. For systems running AIX Version 4.1 or AIX Version 4.2, LUM must
be installed manually.

LUM only needs to be installed and configured once. If your system already
has LUM installed and configured, you can skip to “Installing VisualAge
C++” on page 29.

If you need to install LUM manually, you can obtain the installation images
from the following sources:
v On the web at http://www.ibm.com/software/is/lum. This is the official

web site and preferred source. It contains the latest version of the LUM
Administration Runtime Kit (ARK) along with the documentation.

v Anonymous FTP from ftp.software.ibm.com. Log in with userid anonymous
and enter your e-mail address as the password. Change the directory to
software/lum/aix. The LUM ARK installation images are contained in the
sub-directory ark. The LUM documentation is contained in the
sub-directory doc.

v A version of LUM is available on the CD-ROM for VisualAge C++ for AIX,
Version 5. This version consists of the smallest number of filesets required
to install and run LUM, but may not be the most current supported version
available. We recommend obtaining a complete installation of LUM from
the official web site.

Once you have the filesets, install and configure LUM according to the
instructions in the LUM documentation. The documentation for LUM, Using
License Use Management Runtime for AIX, SH19-4346, is available in Adobe PDF
form at http://www.ibm.com/software/is/lum/library.html. After you have
installed VisualAge C++, you can find simplified instructions for installing
and configuring LUM in the README.password file in the /usr/vacpp
directory.

28 VisualAge C++: Getting Started

Installing VisualAge C++

You can install VisualAge C++ Professional Version 5.0 in one of two ways:
v Select the individual filesets you wish to install on your machine. This

allows you to control which components of VisualAge C++ are installed.
v Use the _all_latest install option. This option installs all the components

found on a CD, giving you the most complete installation of VisualAge
C++ Version 5.0 possible.

If you are upgrading an existing installation of VisualAge C++, we
recommend that you uninstall your existing version of VisualAge C++ before
installing VisualAge C++ Professional Version 5.0.

Note: If you are installing VisualAge C++ Professional Version 5.0 on a
machine running AIX Version 4.3, ensure that the Motif 1.2 compatibility
fileset, X11.compat.adt.Motif12, is installed on that system. The Motif 1.2
compatibility library is part of the AIX Version 4.3 Base Operating System
(BOS). It is a prerequisite for VisualAge C++ Professional Version 5.0.

You must have root user access to install VisualAge C++.

To install VisualAge C++ by selecting filesets:
1. Insert the first CD into your CD-ROM device.
2. At a command prompt, enter smit install_latest.
3. Press PF4 or click List to display a list of devices.
4. Select the CD-ROM device, then click OK.
5. Press PF4 or click List to select the filesets you wish to install.

Some of the VisualAge C++ filesets are specific to the AIX version and
language environments on your machine. If you select filesets that do not
match your version of AIX or your language environments, you will
receive a failed install message. We recommend that you read the fileset
descriptions closely.
Important: When fileset names differ only by the AIX version that
supports them, only select the fileset supported by the AIX version equal
to or lower than the version of AIX running on your machine. For
example, if you are running AIX Version 4.2, and both thisfileset.aix41 and
thisfileset.aix43 are available from the list of filesets, choose thisfileset.aix41.

6. Follow the on-screen instructions to complete this installation.
7. If you want to install the source code for the IBM Open Class libraries or

the documentation for the Japanese or Simplified Chinese language
environments, repeat the above steps using the second CD.

To install all the components of VisualAge C++:
1. Insert the first CD into your CD-ROM device.

Chapter 4. Installing VisualAge C++ 29

2. At a command prompt, enter smit install_latest.
3. Press PF4 or click List to display a list of devices.
4. Select the CD-ROM device, then click OK.
5. Click OK

6. Follow the on-screen instructions to complete this installation.
Some of the VisualAge C++ filesets are specific to the AIX version and
language environments on your machine. You may receive an error
message at the end of the install process.
If you receive an error message at the end of the install process, check the
names and descriptions of the filesets that did not install. Filesets not
intended for your version of AIX are expected failures. In addition, filesets
which require language environments not available on your system are
also expected failures.

7. If you want to install the source code for the IBM Open Class libraries or
the documentation for the Japanese or Simplified Chinese language
environments, repeat the above steps using the second CD.

Once you have installed VisualAge C++ Professional Version 5.0, you will
need to enroll your licence for the product before using it. For help on
enrolling your licence see “Enrolling Licenses with LUM”.

Enrolling Licenses with LUM

Before starting to use VisualAge C++, you must enroll your VisualAge C++
license with the License Use Management software you installed and
configured earlier. Two LUM license certificates are provided with this
product: a concurrent nodelock license certificate and a concurrent network
license certificate. You should enroll the appropriate certificate for the type of
license server you have configured.

Before enrolling a license certificate, ensure that you have LUM installed and
configured on your machine. If you have not yet installed and configured
LUM, refer to “Installing and Configuring License Use Management” on
page 28.

The license certificates for VisualAge C++ for AIX, Version 5.0 can be found in
the /usr/vacpp directory after you have installed VisualAge C++:
v The concurrent nodelock license certificate file name is vac50_cn.lic.
v The concurrent network license certificate file name is vac50_c.lic.

The LUM Basic License Tool runs either from a GUI or a command line
interface. You must have root user access to enroll your VisualAge C++ license
with LUM.

To enroll a license certificate using the LUM Basic License Tool GUI:

30 VisualAge C++: Getting Started

1. At a command prompt, enter /var/ifor/i4blt to invoke the LUM Basic
License Tool.

2. Select Products > Enroll Product from the main menu. The Enroll
Product dialog box appears.

3. Click Import. The Import dialog box opens.
4. In the Filter field, enter /usr/vacpp/*.lic.
5. Select either vac50_cn.lic or vac50_c.lic from the Files field, then click

OK. Information about your VisualAge C++ license should now be
displayed in the Enroll Product window.

6. Click OK. The Enroll Licenses window opens.
7. (Optional) Fill in the Administrator Information part of the Enroll

Licenses window.
8. Fill in the number of valid purchased licenses of the product in the

Product Information part of the Enroll License dialog box.
9. Click OK. The product should be successfully enrolled.

10. Exit the LUM Basic License Tool by selecting Products > Exit.
11. If you have enrolled concurrent network licenses, you must distribute the

licenses before starting to use VisualAge C++ Version 5.0. For instructions
on how to distribute licenses, see Using License Use Management Runtime
for AIX, SH19-4346. Simplified instructions for distributing licenses can
also be found in the README.password file which can be found in
/usr/vacpp.

To enroll a license certificate using the LUM Basic License Tool command line
interface:
1. Extract the i4blt command from the top of the product license file:

v If you are enrolling a concurrent nodelock license, extract the command
from vac50_cn.lic.

v If you are enrolling a concurrent network license, extract the command
from vac50_c.lic.

2. Replace number_of_lics in the command with the number of valid
purchased licenses of the product.

3. (Optional) Replace admin_name in the command with the name of the
administrator.

4. Invoke the updated command from the /var/ifor directory. The product
should be successfully enrolled.

5. If you have enrolled concurrent network licenses, you must distribute the
licenses before starting to use VisualAge C++ Version 5.0. For instructions
on how to distribute licenses, see Using License Use Management Runtime for
AIX, SH19-4346. Simplified instructions for distributing licenses can also
be found in the README.password file which can be found in /usr/vacpp.

Chapter 4. Installing VisualAge C++ 31

Accessing the Online Documentation

VisualAge C++ Version 5.0 provides you with extensive online documentation.
To view the online help you need to have a frames-capable browser such as
Netscape Communicator Version 4.04 (or later) installed on your system.

Much of the online documentation is also available in Adobe Portable
Document Format (PDF) format. You can view and print this information
using the Adobe Acrobat** reader. If you do not already have the Acrobat
reader program installed, you can download it free from Adobe’s website at
http://www.adobe.com. The Adobe PDF files are in the /usr/vacpp/pdf files
after installing VisualAge C++ Professional Version 5.0.

If you are using AIX CDE as your window manager, you can access the
VisualAge C++ online documentation by selecting Help Home Page from the
VisualAge C++ Professional 5.0 group in the Application Manager.

If you are new to VisualAge C++, we recommend that you take the “Tour the
Integrated Development Environment” on page 35 and try some of the
tutorials.

To find out about new features and improvements to VisualAge C++ since the
last release, see “Chapter 2. What’s New in VisualAge C++?” on page 5.

If you are planning to migrate existing projects to VisualAge C++ Professional
Version 5.0, we strongly recommend that you read the “Chapter 7. Prepare to
Migrate to Version 5.0” on page 97. It contains information to help you:
v Migrate to the VisualAge C++, Version 5.0 batch compiler from your

presenet batch compiler.
v Migrate to the VisualAge C++, Version 5.0 incremental compiler from your

present batch compiler.
v Migrate from VisualAge C++, Version 4.0 to VisualAge C++, Version 5.0.

Installing Fixes for VisualAge C++

You can install any available PTF fixes that apply to VisualAge C++
Professional Version 5.0 by installing over your existing program.

You must have root user access to install fixes for VisualAge C++.
1. Insert the latest IBM VisualAge C++ AIX CD-ROM into your CD-ROM

device.
2. On the command line, type smit install_latest and press Enter.
3. Press PF4 to display a list of devices.
4. Select the CD-ROM device, then press Enter.

32 VisualAge C++: Getting Started

5. To install the full product, press Enter. You can also press PF4 to select the
filesets you wish to install.

6. Follow the instructions to complete the installation.

Uninstall VisualAge C++

You must have root user access to uninstall this product.
1. At the command line, type smit install_remove and press Enter. The

Remove Installed Software window opens.
2. On the SOFTWARE Name line, press PF4. A list of the available software

filesets appears.
3. Select all VisualAge C++ filesets and VisualAge tools, then press Enter.

Some filesets may not uninstall if they are required by other, installed
products.

Chapter 4. Installing VisualAge C++ 33

34 VisualAge C++: Getting Started

Chapter 5. Tour VisualAge C++

About the Tour

This tour is designed to give you an introduction to the development
environment.

In the first half of the tour, we suggest you read the pages in sequence.
Follow the links at the bottom of each page to learn how to perform a series
of basic tasks:
v Open and close projects
v Create and edit source files
v Run your program
v Respond to error messages

This portion of the tour should take about 20 minutes.

The second half of the tour, “More on the IDE”, invites you to explore further
some of the concepts introduced in the first half, in any order.

In the second half, you can also follow links to some more detailed online
reference information.

Tour the Integrated Development Environment

This tour uses a sample program to introduce you to the VisualAge C++
Integrated Development Environment (called the IDE).

1. Start the IDE by double-clicking on the VisualAge IDE icon in the
Application Manager.

2. The first screen offers you a choice of creating a new project or working
on an existing one. Select Open an Existing Project, and the Sample
projects radio button. From the list of samples, select A Basic C++

© Copyright IBM Corp. 1998, 2000 35

Application:

3. Click OK.
4. You are asked if you want to build the project. Click Yes.

If you already have the IDE open, follow these steps:

1. Click the Open Projectbutton .
2. Browse through the Drives and Folders fields to find the idesamp/payroll

directory in the main folder where VisualAge C++ is installed.
3. Select payroll.icc and click Open.
4. You are asked if you want to build the project. Click Yes.

The payroll project is displayed as a workbook with four sections. Each
section is represented as a tab. Your screen should look like this:

36 VisualAge C++: Getting Started

Workbook (IDE)

The workbook consists of five major sections:

v Workbook: For examining and setting development environment options
that control the IDE itself.

v Host: For browsing through files on your system.
v Project: For browsing the subprojects that make up your project and the

project file (.icp) in which builds, subprojects, and variables are defined.
v Codestore: For working with your C++ code. This tab only appears once

you have opened a subproject.
v Configuration: For setting options, or for adding and removing files from a

subproject. This tab only appears once you have opened a subproject.

Click each tab to look at the different sections.

There is a row of buttons below each tab:

Chapter 5. Tour VisualAge C++ 37

For each tab, you will see a different selection of buttons. Each button
displays a different page.

Each page is further divided into mini-windows, or panes:

When you are finished looking through the different tabs and pages, click the
Project tab again, and make sure the Overview page button is selected.

A Closer Look at Panes

To see a configuration overview, click the Codestore tab and the Overview
page button.

On the Overview page there are three panes.

You use panes to look at objects. You can look at objects in different ways.
Each different way of looking at an object is referred to as a view. For
example, the object in the upper left pane is the Payroll project. The view in
the upper left pane is a Declarations view.

You can change the focus to different panes with the mouse or by pressing F6.
Change the focus to the upper left pane now.

Explore the Panes

38 VisualAge C++: Getting Started

There are three down-arrows () across the top of each pane. You now have
the focus in the upper left pane. Click on the left-most arrow with the mouse
pointer.

The menu that appears when you click this arrow controls the pane. You can
move or resize the pane, or change the way in which it is connected (linked)
to other panes.

The middle arrow displays the object menu. With this menu you can select
the object you want to view. For example, the object being viewed in the
upper left pane is the codestore for the Payroll project.

The right-most arrow allows you to select a view. There are different sets of
views available for the different objects you select in the object menu. For
example, in the upper left pane you are seeing a Source Files view of the
Payroll codestore object.

Changing the views in the panes will not affect the contents of your project.
Views are simply tools to help you browse through the project.

Pressing F1 takes you to the Help for more detailed information about the
view for the pane in focus.

See How the Panes Work Together

The linking between the panes allows for powerful browsing and easy
editing.

Change the focus back to the upper right pane, which shows a Declarations
view of the file object selected in the upper left pane (or a Details view, if you
have selected the configuration file). This view shows a list of all the
declarations in the file. Select payroll.cpp in left pane. In the right pane, the
main function will be highlighted by default. (If your file has no main
function, the first declaration is selected.)

Now, select payclass.hpp in the left pane. In the right pane, select the
manager class. Notice that the source view at the bottom changes as you do
this.

When you select a class in the Declarations view with your mouse, two things
happen:
1. If you had any other pane selected before doing this, the upper left pane

now becomes the pane in focus (the border is darker).
2. The lower pane now displays the source code for the class object you

selected.

Chapter 5. Tour VisualAge C++ 39

Now, try the same action in the left pane. If you select any of the source file
objects listed, the source view in the lower pane will update to show the file
object selected. The immediate updating is made possible by links between
the panes.

When you are more familiar with the IDE, you can customize the way the
panes are linked to select the objects, views, and linking patterns that are
most useful to you. The linking between panes is explained in greater detail
later in this tour.

What’s in a Project?

Each application you create in VisualAge C++ must be set up as a project.

Every project consists of the following files:
v one project file (*.icp)

This controls your project at the highest level. In it, you define subprojects
and builds.

v one or more configuration files (*.icc)
.icc stands for Incremental C++ Configuration. Each subproject consists of a
configuration and a codestore. A configuration file contains all the
information about how the source files are processed. It is like an
encapsulation of the subproject: it holds all options, lists all input libraries
and other source files, and defines your targets. The compiler uses the
configuration file to generate the codestore. If a source file is not listed in
the configuration file or #included in another source file, then it is not part
of the subproject or the project. You do not have to create the
configuration file, but you can edit it.

v one or more source files (*.cpp, *.hpp, *.c, *.h, etc.)
These are the files you provide or create. Source files can contain more than
C++.

v a codestore (*.ics)
The codestore is a database that contains the full information about a
configuration. It is created the first time you build your subproject. You do
not have to write this file; it is created for you, and updated automatically
every time you build.

The tabs, pages, and panes you see in the workbook offer various ways to
view and work with all of these components.

Create a Configuration

SmartGuides will step you through the process of creating a subproject:
1. First, close the sample project. Pull down the Project Workbook menu

and select Close Project.

40 VisualAge C++: Getting Started

2. From the Project Workbook menu, select Create Configuration.
The Configuration SmartGuide opens.

3. Click Next until the Configuration page is displayed.
First, you are prompted to create the configuration file. This is a plan for
the new subproject. You do not need to decide all of the details yet. You
can always modify the configuration file later.
Type a name, such as helloworld, to name your configuration file. The
default suffix is .icc. It will be added by the SmartGuide if you do not
type it.
Choose a directory where this file and the codestore (.ics) will be located
for this project. This is not necessarily where your source files (.cpp, .hpp,
.c, .h, etc.) will be located. If you choose a directory that does not
currently exist, the SmartGuide will create it for you. You can type a
specific path, or click Browse to select a directory.

4. Click Next.
The Target Type page is displayed.

5. From the pull-down list on this page, choose the type of target you want
to create. Select Executable, and click Add Target (rather than Next).
The Target SmartGuide opens.

6. Click Next until the Target Name page is displayed.
7. On the Target Name page, type helloworld to name your target file and

select a directory where it will be stored. (The program type, in the lower
part of the window, will remain “Default”).

8. Click Next to get to the Source Files page.
9. On the Source Files page, you can specify new or existing source files to

include in your project in the field Files to add or create:

Chapter 5. Tour VisualAge C++ 41

Source files can come from any directory.
10. Type a source file name, such as helloworld.cpp. At the bottom of the

window, pull down the Type menu and select cpp as your source type.
11. Click Add to add it to the project. It doesn’t matter if the file already

exists or not. The file name appears in the Source files added list, on the
right side of the window.

12. For now, we are only creating one source file, so click OK.
The dialog closes, and you are taken back to the Target Type SmartGuide.
Now the target you defined is listed in the Current targets list.

13. Click Finish.
A message window appears, and asks if you want to open your project
in the IDE. Click Yes.

14. Finally, you are asked whether you would like to build the new
configuration. Since you haven’t added any code yet, click No.
The IDE display has now added two new tabs: a Codestore tab and a
Configuration tab. The panes are mostly blank because no code has been
entered and compiled yet.

You have created a configuration, and you are ready to add content to your
source file. Now, we will look at what you just created.

42 VisualAge C++: Getting Started

Looking at Your Subproject

As you went through the steps to create your configuration, you set no
options, and you included no header files. You supplied only two file names
(the target and the source), but that information was enough to create the
basic outline for a subproject. We only need one subproject for this exercise,
because we are creating only one executable. We do not need to create a
project file (.icp) because this executable will have no dependencies on other
targets.

Before you add any content to your source files, look at what you have so far.

Look at the Overview of the Configuration

Make sure that you are in the Codestore section, with the Overview page
selected. Click in the white space in the upper right pane. The pane shows the
Declarations view. There are no declarations yet.

In the upper left pane, your configuration file (helloworld.icc) is listed. This is
the configuration file you named when you used the SmartGuides. Your
source file is not listed, because you have not yet built the project. Select the
configuration file by clicking it.

In the lower pane, you can see the contents of the configuration file. The
Source view shows that you have defined a target and a source of type cpp.
In this case, the type listed matches the suffix you have added to your source
file name, but you could also have assigned a source file type of cpp to your
file even if you named it helloworld.c, for example, or helloworld without
any suffix. The file type can even be one you define yourself.

Click the Configuration tab to see more detailed information about
helloworld.icc.

In the Configuration section, click the Options button. In the upper left pane
of this page, you can see:

v , a target directive, or a statement to specify the file that will be produced
when you build, and

v , a source specifier, or a statement to direct the IDE to use helloworld.cpp
as input to a build. With your cursor, select the helloworld.cpp source

specifier .

The right pane shows a list of options. You did not set any particular options
when you created the project, and you used the default program type in the
Target SmartGuide, so only the option defaults apply. You can look at them
here.

Chapter 5. Tour VisualAge C++ 43

Click the plus sign (+) to expand Optimization Options, then expand
Common C/C++ Optimization Options. A list of options appears, and you
can see that they are in the default state. For example, optimization is turned
off (the ’no’ radio button is greyed) and the code you generate from this
source file will be compiled for the most generic level of the PowerPC
processor.

All the settings you see in this pane on the Options page are options applied
only to the source or target file you have highlighted in the left pane on this page.

Now, go to the Subroject Options page by clicking the Subproject Options
page button (also in the Configuration section).

The Subproject Options page looks very similar to the Options page, but the
options here will be applied to all files in the project.

As you click through the other pages, you will see that each one presents a
different emphasis on the configuration file.

Now that you have an overview of the framework of your project, you can
add some content.

Adding Content to a Source File

VisualAge C++ has a built-in editor that you can use from any page in the
workbook.

You can work on the same file simultaneously on one or more pages. You do
not need to worry about your file relationships becoming outdated: changes
made in source code on one page will immediately be reflected in every other
page displaying the same section of code.

You have just finished creating a new project, but you have no content in your
source files to edit yet.

To open and edit a source file:

1. From any tab, pull down the Project Workbook menu, and select Open or
Create File.

2. In the Open or Create File dialog box, the file you specified when you
created the project (helloworld.cpp) is selected in the File name field. (If it
is not, browse through the Directories and Files areas to find it, and select
it.)

3. Click Open to open helloworld.cpp. A source view of your empty file is
opened.

44 VisualAge C++: Getting Started

4. Click anywhere inside the editor pane, and type or paste this short
sample:
#include <iostream.h>
int main()
{
cout << “Hello World” << endl;
return 0;
}

You have just edited a source file. You do not have to explicitly save this file
because all modified files in the subproject are saved when you start to build.

Build Your Project

In a typical development environment, some actions, such as changes to
global header files, result in a complete rebuild. VisualAge C++ changes only
what has been updated.

Usually, your first build will be the longest and every subsequent build will
be shorter. Build time can be affected by the options you set, the number and
complexity of your source files, and the type of linking you have chosen.

The first build is called the initial build. Every build after the initial build is
an incremental build. The initial build for your sample will be very quick,
because you have only one source file, and it is very small.

Click the Build button .

If there were no errors in your Helloworld program, you should see the build
result displayed in the message field at the bottom of your screen:
Last Compile completed successfully on [date] in [time]

If you see this message, congratulations! You have successfully created, edited,
and compiled your project. Click the Overview button on the Project tab
again. The Declarations view in the upper left pane now shows the main
function,

and the Source view below shows the source code for this object, with int
main highlighted.

Chapter 5. Tour VisualAge C++ 45

If your compilation was not successful, the IDE can make the process of
correcting your errors simple and fast.

Addressing Compilation Errors

If your Helloworld program was error-free, you saw how the IDE informed
you of the status of your successful compilation: a message appeared in the
status bar at the bottom of the screen.

Let’s introduce an error to see how the IDE will handle it:

Place the cursor in the editor, or Source pane, and click into this line:
cout << “Hello World” << endl;

Change the semicolon (;) at the end of the line to a colon (:).

Now try rebuilding. Click the Build button .

This time, two things happen:

1. The status line at the bottom of the screen displays a message:
Last Compile terminated with errors on [date] in [time]

2. The page displayed has changed.

You now have the Messages page displayed.

On this page, the top pane lists the errors that were encountered during the
rebuild, with a short description of each. The bottom pane shows your source
code and has highlighted the point where the error occurred:

Place the cursor into this line and replace the semicolon.

Rebuild by clicking the build button again. It’s that simple!

46 VisualAge C++: Getting Started

Run Your Program

Once you have successfully compiled your program, running it is simple.

You do not need to go to any particular page, tab, or view. You do not need to
save the results of your build. From any page, pull down the Project
Workbook menu. Select Run.

A command-line window appears briefly, displaying your output (“Hello
World”, or whatever words you used in the sample).

You have completed the tour of the IDE.

By now, you already know how to perform several important tasks in the
IDE:
v Open or close a project
v Create a project
v View and set options for your project
v Edit and compile code
v Run your program

You can return to any part of the tour and try the tasks again if you’re unsure
about any of the steps.

If you’re ready to learn more, you can continue to explore the IDE in a little
more detail. The next portion of the tour offers more detail on some of the
concepts you have already learned. You can explore them in any order.

More on the IDE

For some of the following topics, you’ll need to have the payroll sample open.
If you’re not sure how to open it, read “Tour the Integrated Development
Environment” on page 35.

Choose a topic:
v “About Incremental Compilation” on page 48
v “More on Editing Source Files” on page 49
v “Searching a Project” on page 50
v “Configuration Files” on page 51
v “Setting Build Options” on page 52
v “Symbols Used in the IDE” on page 52
v “Linking Between Panes” on page 53
v “Toolbar Buttons” on page 54

Chapter 5. Tour VisualAge C++ 47

v “Menu Descriptions” on page 56

More detailed information is available in the online documentation. Some
suggested references:
v How Configuration Files are Processed
v Codestore
v Build Options
v Links Between Panes
v Editor Shortcut Keys

About Incremental Compilation

With VisualAge C++, the method of separate compilation managed through
makefiles is no longer necessary.

When you make a change anywhere, only the affected functions are
recompiled and linked, not the included header files, not the entire file where
the functions are located. Build time is significantly reduced, and you are free
from managing dependencies. You no longer have to maintain and sort
complex header files and makefiles.

With the codestore, the IDE can provide information about your objects that
other compilers cannot, and it provides the information to the various views
of an object quickly. It also can give you early error feedback by checking all
interfaces before compiling function bodies and variable definitions. If an
error is found, you will be notified immediately.

How does Incremental Compilation Impact Build Times?

In general, the more files you have, the greater the improvement you notice
over conventional compilers, within certain guidelines:
v Build time should be proportional to the changes made in the source code

since the last build.
– Changing a comment requires no recompiling
– Changing the body of a non-inlined function only requires recompiling

that function
– Changing the body of an inline function requires recompiling all of the

function’s callers
– Changing a declaration in a header file only requires recompilation of

affected functions (instead of all functions in all source files that include
the header file). This is a major advantage in moderate and large
projects, where all source files tend to include most header files.

48 VisualAge C++: Getting Started

v Linking should take time proportional to the size of functions recompiled,
not proportional to the program’s size. For moderate-sized programs (a few
tens-of-thousands of lines of code), VisualAge C++ takes a few seconds to
do incremental builds that involve recompiling a few functions.

Incremental Compiling from the VisualAge C++ Command Line

VisualAge C++ is incremental all the time; no options to set, no trade-offs to
make. If you invoke the incremental compiler from the command line, you
still get full incrementality, but you must perform debugging through the IDE.

More on Editing Source Files

The IDE maintains a single codestore for each subproject. Even if you have
several subprojects open, whenever you open a view of a source file, only one
codestore will be updated with your changes.

This means that no matter where or when you choose to edit your source file,
or how many views you use, there will always be only one version of that
code.

Errors in Your Source

The live parsing editor is active in all source views, whenever you are
working on a file with a .c, .cpp, .h, or .hpp extension. Simple lexical errors
will be detected before you have to rebuild your source.

The Messages page displays any errors that occur. By default, there are two
panes: a Messages view and a Source view. If an error occurs during a build,
you will automatically be taken to the Messages page. Each time you select an
error message in the Messages view, the Source view will be updated with the
location where the error occurred. You can edit the file here, and then build
again.

Types of Source You Can Use
Source files can consist of more than C++. VisualAge C++ supports the
following types of files:
v cpp
v cxx
v hpp
v h
v c
v rc
v lib

Chapter 5. Tour VisualAge C++ 49

v vbf
v vbe
v dax
v mak
v ipf
v loc
v msg
v sqc
v sqx

Searching a Project

There are three ways to search a project:
v Live Find is a dynamic search available in most views. It can be accessed

with shortcut keys, and works like most other dynamic searches by finding
text strings to match your criteria in the body of your code. It is also useful
for locating strings that are not necessarily in your source code, for
example, to search for an option in the Options page, you can type a part of
the option name or category in the Live Find entry field and avoid scrolling
many long lists of options.

v The Search page searches within any object, from a single class to the entire
project.

v You can search semantically using the Find Uses page. Searching
semantically means searching for an object, such as a class, rather than a
text string.

Try performing a Live Find using the payroll project.
1. Select the Codestore tab.
2. Select the Classes page button.

3. Click the Live Find toolbar button or:
Click mouse button 2 on any part of the background (white space) in the
view.
Select Find (Live) from the pop-up menu.
A text entry field appears at the bottom of the view.

4. Select the next to the employee class to start the search at the top of the
view’s contents.

5. In the text entry box, slowly type ’pa’:
v As you type the ’p’, the employee class is highlighted. The Source view

also updates with the corresponding code.

50 VisualAge C++: Getting Started

v As you type ’a’, the virtual function pay() is highlighted, and the
function definition is displayed in the Source view.

6. In the text entry box, remove the ’a’. The results are updated again, but

there is now a pull-down key to the right of the text entry box that will
take you back to previous searches without retyping your search string.

7. You can move through the list of strings that contain the letter p by
pressing Enter or Ctrl-N to move forward to the next match and Ctrl-U to
move backwards to the previous match.

8. Press Esc, or click the small flashlight icon next to the entry field and
select Close from the popup menu.

Configuration Files

A VisualAge C++ project must have at least one configuration file. Each
subproject contains one configuration file, and often represents one target.

When you build a subproject, VisualAge C++ uses the configuration file to
figure out how to do the build. A configuration file is similar to a makefile,
but with some important differences:
v Configuration files are easier to create and maintain than makefiles.

VisualAge C++ can create the configuration file for you.
v Configuration files do not require any C++ file dependency information or

processing commands.

Using the SmartGuides and views in the Configuration section, you can create
and edit configuration files in the IDE without necessarily learning any
syntax.

While it is possible to build several targets in a single configuration file, this is
not always the best approach. You must have multiple configurations to build
the following targets:
v More than one executable from the same set of source files
v A DLL and a static library from the same set of source files

For example, one subproject might have a debug configuration with debug
options, and another may have a production configuration with optimization
options. Each configuration will produce only one codestore.

The default extension for a configuration file is .icc, but any extension can be
used. The configuration file can reside in any directory.

Chapter 5. Tour VisualAge C++ 51

Setting Build Options

Build options are a part of each configuration file (.icc). You can set build
options through the views in the Configuration section of the workbook. You
do not need to know configuration file syntax to edit these views.

Options can be set globally for your entire subproject, or applied only to a list
of files.

To set options for an entire project:

1. Go to the Configuration section.
2. Click the Project Options page button.
3. Set the options for the project. Click the Apply button.

Project options applied to all files that are part of the project when the options
are set.

To set build options on a file or group of files:

1. Go to the Configuration tab.
2. Click the Options page button.

There are two panes on this page: a Sources and Targets view and a
Change Options view.

3. Select a source file or target from the Sources and Targets view.
4. Set the options for that source file or target in the Change Options view.
5. Click the Apply button.

Some options are set automatically when you define your application type on
the Target Name page of the Target SmartGuide.

Symbols Used in the IDE

You may have seen that some views in the IDE contain colored circles with
letters. These are some of the symbols used to represent the various objects
displayed in the IDE.

If you look at the tabs in the workbook, you will see four of the symbols:

v Workbook

v Host

v Project

v Configuration

v Codestore

52 VisualAge C++: Getting Started

There are many other symbols also used. Some common examples are:

v Included file (one that is #included in a source file)

v Class

v Function

v Variable assignment

To see the various types of symbols and the relationships among the objects
they represent:
1. Select the Workbook tab.
2. Select the Schema Overview page button.

Three panes are displayed:
v A Descriptors view, which lists all the types of objects that can be

represented in the IDE. Expand the descriptor to see how the selected
descriptor relates to others.

v A View Types view, which lists the types of views available. Expand the
views to see which descriptors are allowed in each type of view.

v A Page Types view, which lists the types of pages available. Expand the
page types to see the types of descriptors available on a page.

Linking Between Panes

One of the most powerful features of the VisualAge IDE is the linking
between the panes.

To see how the panes on a page are linked:

Pull down the Page menu, and select Show Link Diagram. A Help Tips
window may appear: click OK to continue to the linking diagram.

Chapter 5. Tour VisualAge C++ 53

An example of a linking diagram:

You can see there are two types of symbols on the link diagram:

(automatic link) and (manual link).
v If a pane has an automatic link, the input varies with the pane that has

focus. In other words, in the example above, the bottom pane will take
input from whichever pane in the top row is active.

v With a manual link, the input comes from the same pane regardless of
which pane has focus. For example, the centre pane in the top row in the
example above will not change when a different pane becomes active.

You can customize linking by clicking on the link symbol to change the link
type. The online help includes more information on the links and how you
can work with them.

You do not need to change the linking diagram in order to work with the
IDE, but understanding it will help you to customize your work environment.

While the linking diagram is displayed, all other functions within the IDE are
suspended.

To go back to the IDE, select Hide Link Diagram from the Page menu, or
press Esc.

Toolbar Buttons

The IDE toolbar contains icons for frequently used actions. The default
selection of icons is:

54 VisualAge C++: Getting Started

v The first two buttons are for saving and building the currently
loaded project.

v The third button is for loading a new project, and closing the existing
project.

v The next two buttons are for adding and removing bookmarks
on the pages in the IDE.

v The next two buttons are pane-specific. The pane with the
current focus is the recipient of these two actions. Use the first icon to
choose the next object in the pane history, and the second icon to choose
the previous object in the pane history.

v The last button starts a Live Find. It will open the Live Find window
for the pane currently in focus.

Other buttons that appear are view-specific. For example, when a source view
is active, buttons for recording macro keystrokes or printing will also appear
on the toolbar.

To find out what any button does, place your cursor over it without clicking.
A flyover label will appear.

To customize your toolbar:

1. Select the Workbook tab.
2. Select the Settings page.
3. Select the Toolbar Configuration push button in the Settings view.

The Toolbar Configuration window opens (shown below).

Chapter 5. Tour VisualAge C++ 55

To add and remove buttons from the toolbar, select them from the scrolling
lists and click on the Add or Remove buttons.

Menu Descriptions

Project Workbook
Use this menu to perform actions on the project as a whole, such as
starting a build, removing sections, and opening new projects and
files.

Page Use this menu to perform actions on a page, such as adding and
removing pages, viewing a linking diagram, saving and removing
page descriptions, and quickly accessing other pages in the workbook.

Pane Use this menu to perform actions on a selected pane, such as
changing the object displayed, changing the view of the object in the
pane, adding and removing panes, maximizing a pane, changing
settings, and setting filters.

Selected
Use this menu to perform actions on the selected object in a view.

Debug
Use this menu to initiate debug actions, such as debugging, running,
stopping, stepping and terminating.

56 VisualAge C++: Getting Started

Bookmarks
Use this menu to set a bookmark on any page in the IDE when you
want to be able to quickly flip between commonly used pages.

Help Use this menu to access the online documentation provided for
VisualAge C++, start a tutorial, or browse the samples.

Dynamic Menus
These menus are associated with a particular tab and a particular
view. As you change the pane focus, the fourth menu changes to
reflect your selection. Use these menus to perform actions relating to
the view and object selected.

Chapter 5. Tour VisualAge C++ 57

58 VisualAge C++: Getting Started

Chapter 6. Try VisualAge C++

Introduction to VisualAge C++ Configurations and Subprojects

These short tutorials will introduce you to the concepts of projects and
subprojects in VisualAge C++ Version 5.0. You will use the code for a sample
3-D modelling application to construct a project, make some modifications to
the build setup, and build the application.

The tutorials will each take approximately 20 minutes to complete. You will
learn:
v The basic setup of projects and subprojects
v The language of project files and configuration files
v How to set variables and use directives to control the build environment
v How to improve subproject build times
v How to organize projects for easy maintenance

As you go through the pages, you can bookmark a page in your browser at
any time, and return to it later. To do this, right-click on the background of
the page and select Add Bookmark for frame from the pop-up menu.

The Sample Application

The sample project, model3d, allows you to create and manipulate
three-dimensional objects. The project consists of four subprojects:
1. A library for processing basic operations such as transformations from

three dimensions to two dimensions, shape creation, and object hierarchies
2. A library for displaying the models in the user interface using the IBM

OpenClass 2d graphics classes
3. A user interface
4. A specific implementation of a polygonal, three-dimensional object

If you are already familiar with VisualAge C++ Version 4.0 configuration files,
you can go directly to Tutorial 2.

Tutorial 1: Configuration Files (.icc)

Configuration files are the key to using the incremental compiler, in the same
way that makefiles are essential to using any other compiler.

The .icc file extension stands for Incremental C++ Configuration. A
configuration file contains all of the information needed for processing source

© Copyright IBM Corp. 1998, 2000 59

files. It holds all options applied to the source files and targets, lists all input
libraries, and defines all targets (outputs). If a source file is not listed in a
configuration file, or included by a file that is listed in the configuration file,
it is not a part of the project.

Here is an example of a configuration file:
option link(export,all)
{

target type(exe) “Helloworld”
{

source “Helloworld.cpp”
}

}

The file consists of directives and specifiers. A directive declares an object of a
certain type, and the specifier names it.

Option directive
The word option is an option directive. It introduces one or more
options and can also name a group of options. The option applies to
everything within the opening brace and its corresponding closing
brace.

Target directive
The word target is a target directive. It indicates the object file to be
created when the sources are built. The opening brace following the
target directive signals that everything between this brace and the
corresponding closing brace is used to build the target.

Source directive
The word source is the source directive. It introduces a source file, a
list of source files, or the name of a source group. The name
Helloworld.cpp is the source specifier.

This basic configuration file means: Use Helloworld.cpp to build
Helloworld.exe, and apply the export linking option to all symbols when
building.

Together, this information is one configuration. When you build this
configuration, there are two results:
1. The output, the ’Helloworld’ executable, is created.
2. A database of information about the output, the input, and the options is

created. This database is called a codestore. The file name of the codestore
is the same as the file name of the configuration file, with the extension
.ics.

60 VisualAge C++: Getting Started

In the next part you will create a directory to contain copies of the sample
code used in the tutorials, and create a configuration file with the help of the
VisualAge C++ SmartGuides.

Copy Source Files for the Sample Project
The source files for the 3D modeler sample are located in the following
directories:
v /usr/vacpp/tutorial/
v /usr/vacpp/tutorial/util/
v /usr/vacpp/tutorial/poly/
v /usr/vacpp/tutorial/base/

To ensure that you will be able to make code changes and create files as
necessary in the tutorial, you should copy the files in these directories to a
directory of your own, maintaining the same directory structure. That is,
within your writeable directory, you should also create sudirectories called
/poly, /base, and /util.

For Tutorial 1, you will use only the files from the /util subdirectory. To copy
the files for the /util subdirectory:

1. Go to the Host section ()of the workbook.
2. In the File Tree view, locate a directory to which you have write access.
3. Right-click on the directory, and select Create directory from the pop-up

menu.
4. In the Create Directory dialog, enter util as the name for the new

directory.
5. Click OK.
6. In the File Tree view, locate /usr/vacpp/tutorial.
7. In the Files view (to the right of the File Tree view), click on the first file in

the list, hold down the Shift key, and click on the last file. This selects all
of the files.

8. Right-click on the selected files, and select Copy from the pop-up menu.
9. In the File Tree view, select your new directory, right-click on it, and paste

the sample files you copied.

Repeat these steps for each of the directories listed at the top of this page.

Now you are ready to do the first tutorial, in which you will create a
configuration.

Create a Configuration File
A configuration file loosely replaces a makefile, in the sense that it organizes
dependencies between build outputs (targets) and sources. It has advantages
over a makefile, however:

Chapter 6. Try VisualAge C++ 61

v You do not have to explicitly state or maintain dependencies: you merely
have to list your sources for each target. VisualAge C++ will automatically
track the relationships between sources and targets.

v A configuration file is much easier to read. In addition, you do not need to
learn the syntax in order to create configuration files: the SmartGuides
provided with VisualAge C++ create the files for you.

To create a configuration file, you will use the source files in the /util
directory. These files provide the low-level function (the utilities) for the 3D
modeler.

Identifying your target

1. From the Project Workbook menu, select Create configuration.
2. Click Next on the first page of the SmartGuide. You can turn this page off

by clicking the Show this page next time check box, to clear it.
3. On the Configuration page, enter:

a. util.icc, as the name for the configuration file. Whether or not you type
the extension, the file will automatically be saved with the extension
.icc.

b. a location for the configuration file. In the Location field, browse to or
type the path for the directory to which you copied the sample source
files, for example, /home/joe/sample.

Ignore the check box labelled Disable created target. This is used only
when you are creating a configuration for migrating a project that has not
been built in VisualAge C++ Version 4.0 or 5.0 before.

4. Click Next.
5. On the Target Type page, you can select whether the output will be a

library or an executable. For this sample, select Shared library (SHR) from
the pull-down list.

6. Click Add target.

Identifying options

1. The introductory page for the Target SmartGuide appears. Again, you can
turn this page off by clicking the Show this page next time check box, to
clear it. Click Next.

2. On the Target Name page, util.a appears in the first field.
3. Make sure that the target directory listed is one to which you have write

access.
4. For this sample, you will make use of the IBM Open Class library. Select

IOC in the Program type list.
5. Click Next.

Adding sources to the target

62 VisualAge C++: Getting Started

1. On the Source Files page, use the directory tree to locate the following
source files:
v vector.hpp
v vector.cpp
v matrix.hpp
v matrix.cpp
v except.hpp
v notifier.hpp
v notifier.cpp
v observer.hpp

2. Select all the files in the list above. Click on the first file and hold down
the Ctrl key to select the rest.

3. Select cpp from the pull-down Type menu, below the browse window:

4. Click Add>>. All the file names should appear in the window on the
right, with cpp appearing under Type for each file.

5. Click Next.
6. On the target type page, click Finish to complete the configuration and

exit the SmartGuide.
7. When you are prompted to open the project in the IDE, click Yes.
8. When you are prompted to build the subproject, click Yes.
9. When you are prompted to optimize your configuration, click No.

In the next step, we will examine the configuration file that the SmartGuide
created.

Configuration Directives
In the previous step, you defined a configuration by telling the SmartGuide
what kind of target you wanted to produce, and which source files to use. In
this step, we will examine what the SmartGuide created with your input.

In the IDE, three new workbook sections have appeared:

v The Project section

v The Configuration section

v The Codestore section

Chapter 6. Try VisualAge C++ 63

In creating a configuration, you did not create a project. In VisualAge C++
Version 4.0, a project consisted of only one configuration. Therefore, only the
configuration file was needed to control a project. However, in Version 5.0,
your project is controlled with a project file (.icp file), which must list the
configurations that make up the project. Because you have not yet created a
project, the Project section is empty.

The Codestore section displays the results of the build in various different
views.

The Configuration section displays all the information about the configuration
file. To see the contents of the configuration file:

1. Select the Configuration section by clicking on the workbook tab.

2. Select the Source page button to see the contents of the
configuration file.

You should see the following:
option SubprojectOptions = gen(rtti, yes)
{

options defaults(“xlC_r”), link(linkwithsharedlib, yes), define(“USE_IPF”, “1”)
{

target type(shr) “util.so”
{
source type(cpp) “matrix.cpp”
source type(cpp) “notifier.cpp”
source type(cpp) “vector.cpp”
source type(cpp) “vector.hpp”
source type(cpp) “matrix.hpp”
source type(cpp) “except.hpp”
source type(cpp) “notifier.hpp”
source type(cpp) “observer.hpp”
option macros(global, yes)
{

source “pthread.h”
}

}
}

}

The target directive declares the target to be a shared library, and “util.so”
specifies its name.

The source directives all declare sources that are C++ files, and name the source
files individually. One directive can also name several sources. For example,
the source directives above have the same meaning as the following:
source type(cpp) “matrix.cpp”, “notifier.cpp”, “vector.cpp”...etc

64 VisualAge C++: Getting Started

In the next part of this tutorial, you will also add an option directive to set
build options for this shared library.

Setting Options
In the previous steps, you created a basic configuration, and learned that a
configuration can consist of sources, targets, and options.

In this part you will:
v Use the Change Options view to set an option
v Use the Live Find feature to quickly search through the available options

for one specific option
v Learn how to read the option display to determine if a setting is turned on

or off by default, or explicitly set in the configuration file

There are several types of options for compiling and linking. They are all set
in configuration files. If you know the name and syntax of an option, you can
type it directly in the configuration file to set it. However, there are hundreds
of options available. The technique below is the fastest way to find and set
options when you do not know their spelling.

The syntax of an option directive in a configuration file is:
option option_type(option_name, setting)

In this example, the option is a link type of option, named ’exportall’, set to
’yes’.

The link(exportall) option is used to export all defined, external symbols in
C++ source from the target being built. We will use this option because it is
the simplest way of making symbols externally visible so that other modules
can access them.

1. Select the Configuration section .

2. Select the Options page .

3. In the left pane, select the target object ().
4. Click into the Change Options view (the right pane).
5. Click into the Live Find field at the bottom of the pane.

Chapter 6. Try VisualAge C++ 65

6. Type export all. The view scrolls to the first match. Press Enter until
you see Export all defined external symbols :

7. Currently, the check box next to Export all defined external symbols is
hashed with grey lines. This means it is in the default state. Click on the
plus symbol next to the checkbox to see more details about the option:

8. From this, you can see that:
v The full spelling of this option is link(exportall).
v The equivalent option for the batch compiler is -bexpall.
v The default state is false (i.e., by default, the option is off).

9. Click the hashed check box until a check mark appears:

After you do this, and the option is explicitly set (turned on), the option
description is displayed in green, and a check mark appears in the box
next to it. The option also appears in your configuration file.

10. At the bottom of the pane, click Apply. This copies the option to your
configuration file.

The text option link(exportall, “yes”) is added to your configuration file.
This has the same meaning as link(exportall). By default, if no setting appears
after a Boolean option, and the option appears in the configuration file, the
setting is assumed to be yes.

Check the Source page in the Configuration section () to see how your
configuration file was updated.

66 VisualAge C++: Getting Started

Codestores
The codestore (.ics file) is a database that contains the full information about a
configuration. It holds information about:
v Your sources (the filenames, locations, and types)
v Your targets (the filenames, locations, and types)
v All settings used to build the target (options you have set, variables you

have defined, and their values, if calculated)

The codestore is created the first time you build a configuration, and is
updated automatically every time you rebuild. This is what makes
incremental compilation faster: since all of the information is saved when each
source file is compiled, only the parts that have changed need to be
recompiled.

There is another benefit to having a codestore: it means that you can browse
all of this information as you maintain and develop your code. You can
instantly see the relationships that exist among source files, and even among
functions and declarations.

While you cannot view the contents of a codestore in the same way you can
view the source text of a configuration file, you can see what it contains in the

Codestore section () of the IDE. Every view in this section is a view into
the codestore.

For example, go the Codestore section of the configuration you built in the
previous pages, and try these features:
v Select the Source Files page and look at the Source Files view. You can see

all of the sources you listed in your configuration file.
v Select the Classes page and look at the Classes view. You can see all the

classes defined in all of the source files. Select any class object () to see
its source.

v Select the Declarations page and look at the Declarations view. If the
declaration of the namespace util is not expanded, click the plus sign next
to it. You can see the declarations of all the classes and functions in all of
the sources.

Summing Up Tutorial 1
In this tutorial you learned that a configuration file, which loosely
corresponds to a makefile, is a text file that defines targets (output), source
files (input), and options.

What have you learned so far?

This tutorial introduced the concepts of:

Chapter 6. Try VisualAge C++ 67

v Configurations, and how they replace makefiles
v Codestores, and how incremental compilation is made possible
v Configuration options, and how to set them
v Views in the IDE, and how information from the codestore is displayed

In VisualAge C++ Version 4.0, a project consisted only of a single
configuration, that is, one configuration file and the associated codestore.

In Version 5.0, many configurations can be grouped in each project. The
project is divided into subprojects in order to make this possible.

In the next tutorial you will get a closer look at how subprojects fit together to
form a project.

If you are interested in learning more about the concepts introduced in this
tutorial, try reading some of the following pages in the online help:
v Codestore
v Configuration Files
v Configuraion File Directives

Tutorial 2: Introducing Projects

In this tutorial, you will use the Project SmartGuide to help you set up a small
project, then examine the project to understand its structure.

Each application you create in VisualAge C++ must be set up as a project:

68 VisualAge C++: Getting Started

Every project is managed from a single project file (.icp file), where you
control your project at the most general level. At the project level, you can
organize the subprojects, arrange them in different combinations for different
types of builds, and set build variables.

At the subproject level, you define source files, outputs, and the options for
compiling and linking specific targets. A project can contain any number of
subprojects.

In the next step, you will use the Project SmartGuide to help you set up a
project.

Create a New Project in the IDE
In this tutorial, you will launch the Project SmartGuide, which will take you
through the steps necessary to combine four existing pieces of the sample
application into one project.

Before you start these steps, ensure you have write access to a directory, so
that you can copy the sample files you will be using. If you have not done
Tutorial 1, please follow the steps in “Copy Source Files for the Sample
Project” on page 61 before you continue with this part.

When you have copied the source files, create your project:
1. Select Create Project from the Project Workbook menu. This will launch

a SmartGuide to step you through the process of creating a new project.

Chapter 6. Try VisualAge C++ 69

2. When the introductory page of the Project SmartGuide appears, click
Next>> to begin creating the project. If you do not want to see this page
each time you start the SmartGuide, clear the radio button labelled Show
this screen next time, in the lower left corner of the dialog box.

3. The Project page asks you to name the project, and choose the directory
where the .icp file (project file) will be stored. Enter a name for the
project, for example, Model3d. Choose the directory you created as a
location for the file.

4. Click the Browse button to locate a directory for which you have write
access.

5. When you have selected a directory, select the second radio button below
the Project directory field, labelled Create a new project using new and
existing configuration files.

6. Click Next>>.
7. On the Configurations page, browse through the file system to the

directory and subdirectories you created (for example,
/home/joe/sample):
v in the root of the directory, select Model3d.icc, and click Add>>.

v in the /util subdirectory, select util.icc, and click Add>> .
v in the /base subdirectory, select base.icc and click Add>> .
v in the /poly subdirectory, select poly.icc and click Add>>.

8. When these four files appear in the Added Configurations list box, click
Finish.

70 VisualAge C++: Getting Started

9. To confirm, click Yes.

10. In IDE, the Overview page of the Project section is displayed by default.

You have created a simple project consisting of four subprojects.

In the next section, you will examine the project file that was generated by the
Project SmartGuide.

Examine a Basic Project

In the previous step, you created a project. Now the Project section () of
the IDE workbook contains information about the project.

The Overview page of the Project section describes how the project is divided
into subprojects. The description looks like this:

Chapter 6. Try VisualAge C++ 71

This summary shows that the project consists of four subprojects (),
which were given the names of the configuration files that were used. The

subprojects each contain a configuration file (or .icc file) and a codestore

(or .ics file), however, you cannot see the details of these files. Although
the subprojects were created, they are not currently open in memory: the
Status line for each subproject shows it is Closed.

When you clicked Yes to open the project in the IDE, only the project file (.icp
file) was opened in memory. To load each of the subprojects listed in this
project file, you must select them in this view and click Open. A subproject is
only open in memory when the Status line indicates a status other than
Closed, such as Building, Built, Unbuilt, or Built with errors.

In the next step you will examine how the project file language works.

72 VisualAge C++: Getting Started

The Project File
To see the contents of the project file, from the Project page click on the

Source page button .

The contents of the file are as follows:
subproject Model3dSubproject icc “model.icc”, ics “model.ics”
{
}
subproject utilSubproject icc “util/util.icc”, ics “util/util.ics”
{
}
subproject baseSubproject icc “base/base.icc”, ics “base/base.ics”
{
}

subproject polySubproject icc “poly/poly.icc”, ics “poly/poly.ics”
{
}
build buildAll
{
use Model3dSubproject
use utilSubproject
use baseSubproject
use polySubproject
}

Project file language is similar to configuration file language. The project is
described using directives and specifiers. A directive declares an object to be of
a certain type, and the specifier names it.

Subproject directive
The word subproject is the subproject directive. In effect, it declares
that a subproject object exists. The directive’s icc and ics files must
follow it: they declare that the subproject consists of a configuration
file and a corresponding codestore. The specifier, or name, of the first
subproject is modelSubproject.

The opening and closing braces ({ and }) are intended to enclose
environment variables, if any are set, or to list dependencies on other
subprojects. They are not necessary if you do not intend to set any
project variables, or if the subproject has no dependencies.

Build directive
The word build is the build directive. It begins a description of a
build, which can combine any number of subprojects to be compiled
together. The name of the default build created by the SmartGuide is
buildAll.

Chapter 6. Try VisualAge C++ 73

Between the { and } for the build directive, the components of a build
are listed, within use directives. The default build includes all of the
subprojects.

Use directive
The word use is a directive to include the subproject in a build. If the
subproject is not identified with a use directive, inside the { and the }
of a build directive, it will not be processed when the build is
launched.

In the next step, you will examine the subproject.

A Closer Look at Subprojects
A project consists of one or more subprojects. The relationships among
subprojects are defined in the project file.

Each subproject is essentially a combination of:
v A configuration, defined by a configuration file (.icc)
v A codestore (.ics), which is like a database containing the compiled code

from all sources in the configuration, as well as all options and other
settings

v An environment (), which is the sum of the environment variables set
at the system level and any variables you have defined to supplement or
replace these

A subproject is represented in the IDE as .

As you saw in the previous part of the tutorial, each subproject has a
definition, such as:
subproject Model3dSubproject icc “Model3d.icc” ics “model3d.ics”

You currently have four subprojects in your project, but there is not yet a way
to determine the order in which they should be built. While VisualAge C++
automatically tracks dependencies between sources and targets within a
configuration, you still need to specify relationships between subprojects.To
specify order, you need to set up dependencies. Dependencies are defined using
depends on directives. For example, the following subproject definition states
that Model3dSubproject is dependent on the other three subprojects:
subproject Model3dSubproject icc “Model3d.icc” ics “model3d.ics”
{

depends on polySubproject
depends on baseSubproject
depends on utilSubproject

}

74 VisualAge C++: Getting Started

This definition ensures that the libraries needed to build the executable
model3d are available before the compiler attempts to build
Model3dSubproject.

In the next part, you will set up dependencies in your project file.

Set up Dependencies Among Subprojects
As you saw in the previous part, dependencies between subprojects need to
be defined in the project file.

The main part of the modeler sample, Model3dSubproject, uses the targets of
the other three subprojects as sources for its own target. It therefore depends
on the other three subprojects. Similarly, each of the other subprojects has a
dependency on one or more subprojects, as follows:
v the target libbase.so requires libutil.so as a source
v the target libpoly.so requires libbase.so as a source
v the target model3d requires libbase.so, libutil.so and libpoly.so as sources

The dependency relationships among the subprojects can be described in the
project file in two ways. Either:
subproject Model3dSubproject icc “Model3d.icc”, ics “Model3d.ics”
{

depends on polySubproject
}
subproject polySubproject icc “poly/poly.icc”, ics “poly/poly.ics”
{

depends on baseSubproject
}
subproject baseSubproject icc “base/base.icc”, ics “base/base.ics”
{

depends on utilSubproject
}
subproject utilSubproject icc “util/util.icc”, ics “util/util.ics”
{
}

or:
subproject Model3dSubproject icc “Model3d.icc”, ics “Model3d.ics”
{

depends on polySubproject
depends on baseSubproject
depends on utilSubproject

}
subproject polySubproject icc “poly/poly.icc”, ics “poly/poly.ics”
{

depends on baseSubproject
depends on utilSubproject

}
subproject baseSubproject icc “base/base.icc”, ics “base/base.ics”
{

Chapter 6. Try VisualAge C++ 75

depends on utilSubproject
}
subproject utilSubproject icc “util/util.icc”, ics “util/util.ics”
{
}

Go to the Source page in the Project section now to type or paste in these
directives, before advancing to the next tutorial.

Summing up Tutorial 2
What have you learned so far?

In this tutorial you were introduced to the basic concepts of projects in
VisualAge C++ Version 5.0. You learned that:
v Configurations and codestores form subprojects
v The subprojects are organized in a project file
v Project file language is descriptive, easy to read, and similar to

configuration file language

In the next tutorial you will get a closer look at how subprojects are grouped
into builds, to give you flexibility in choosing compiling and linking
scenarios.

If you want to learn more about project file directives, read some of these
references in the online help:
v Projects
v How Project Files are Processed

Tutorial 3: Build a Subproject

In this tutorial you will try building the subproject utilSubproject, then
optimize it and structure the rest of the project to make it easier to maintain.

Along the way, you will also be introduced to the basics of customizing pages
in the IDE, creating files, and editing.

First, build the subproject utilSubproject:
1. Go to the Overview page in the Project section.

2. Select the subproject graphic () for utilSubproject.
3. Click Build (at the bottom of the page).

You may see a message warning you that the subproject needs to be
optimized, and listing the numbers of primary and non-primary sources. The
message asks if you want to stop the current build. For this tutorial, click No.
We will address this message in the next step.

76 VisualAge C++: Getting Started

The status line at the bottom of the window shows the progress and the
outcome of the build.

Optimizing Subprojects
In the previous part of the tutorial, you built the subproject utilSubproject. At
this or other times, a message may have appeared when you started the build,
suggesting that you optimize the configuration. In the next part you will learn
how to do that.

Optimizing a configuration means reducing the amount of superfluous
processing that takes place when header files are included by more than one
source file.

With the incremental compiler, there is no need to repeatedly include header
files. Each time you launch a build, the compiler first checks the configuration
file to see which sources are listed there. Sources listed in the configuration
file are called primary sources. Secondary sources are those files that are used
in the build, but do not appear in the configuration file. That is, they are
included by other files. When you optimize, you reduce the number of
secondary sources and increase the number of primary sources.

Why are primary sources more efficient? Since the compiler checks for these
first, it “knows” about them. That is, it processes them once and saves the
information in the codestore. If it encounters these files again, even in an
#include directive, it does not bother processing them again. However, if it
finds an #include directive for a file that is not already “known” to be a
primary source, it follows the instruction, even if the file has already been
processed several times.

The IDE provides some handy features for identifying secondary sources.

Find Included Sources in the IDE
When you built utilSubproject you may have seen a message like the
following:

Chapter 6. Try VisualAge C++ 77

The message indicated that your subproject should be optimized. In this step
we will do as the message suggests, and promote the secondary sources in
utilSubproject to the configuration file.

Locate the Included Sources

Go to the Codestore section for utilSubproject. Select the Source Files view on
the Source Files page.

This view shows a list of sources (). Files listed with this glyph are those
that appear in a source directive in the configuration file. In other words, they
are primary sources.

All other files that have been used in a build are usually displayed as , or

included files. The configuration file is displayed as .

However, the Source Files view does not currently show the included files. By
default, a filter suppresses the system files to simplify the view.

Change the filter by pulling down the filter menu (the in the title bar) and
selecting Show All from the list of filters:

78 VisualAge C++: Getting Started

Now scroll to the bottom of the pane: you should see a much longer list of
included files.

Promote the Included Files

Promoting a file means adding it to the configuration file in a source directive.
To do this:
1. Select the following included files. Select the first one, then hold down the

Ctrl key, and select the others. (Note: you will have to release the Ctrl key
in order to scroll up or down.)

v usr/vacpp/include/iostream
v usr/vacpp/include/list
v usr/vacpp/include/math.h
v usr/vacpp/include/stdlib.h
v usr/vacpp/include/string

1. Right-click on the selected files.
2. Select Add Source to Configuration from the pop-up menu:

3. In the Add to Source dialog, select the Add Source to Source Directive
radio button. Select the directive that currently includes pthread.h.

Chapter 6. Try VisualAge C++ 79

4. Click Apply.

5. To update the view, select Refresh Configuration Viewsfor the util.icc
object from the Project Workbook menu.

To see the changes, switch to the Source page in the Configuration section.
Now, in addition to the original sources (.hpp and .cpp files), you will also see
source directives for the system header files you specified. The Source files

view should also list more objects as , and fewer objects as .

Promoting included sources is the most important way to improve build
efficiency. If you are interested in exploring other ways, you can bookmark
this page, and read “Chapter 8. Migrate to Incremental Compilation” on
page 99 before continuing the tutorial.

In the next part of this tutorial, you will learn how to organize the subprojects
within a project to improve maintainability.

Organize the Project
In the previous section, you improved the performance of a single
configuration file by reducing the amount of reprocessing of included files. In
this section, you will organize your project file by identifying common options
that are processed repeatedly in a project, and grouping them in a separate
configuration.

The configuration files for the four subprojects in your project all require some
of the same options:
v gen(rtti, yes)
v link(linkwithsharedlib, yes)
v defaults(xlC_r)
v define(“USE_IPF”, “1”)

We will remove these options from each configuration file, paste them into a
new configuration file, and replace them with an include directive and the
name of a new options group in the original four configuration files.

To make this process easier, and to introduce some of the customization
features of the IDE, you will also rearrange one of the views in the Host
section so that you can view two different sources in one page, and cut and
paste between them.

Why Separate the Options?

80 VisualAge C++: Getting Started

Grouping the common options in a single file will make your project easier to
maintain. With the options in one place, you will only have to make changes
once if you later decide to change the options, or apply conditional processing
to the options.

Create a New File
Before you can remove the common options, you will need a new file to paste
them into.

Go to the Host section, and click on the File System page. There are currently
three views:
v The upper left pane, the File Tree view shows the directory structure of the

host machine.
v The upper right pane, the Files view, is linked to the first pane, and shows

the files contained in each directory as it is selected in the File Tree view.
v The lower pane is linked to the Files view; as soon as a file is selected in

the Files view, the lower view defaults to a Source view and displays the
file contents. If you select a directory in the Files view, the lower view
defaults to a Details view.

Before starting the steps on this page and the next page, it is a good idea to
maximize the screen space, so that there is room to see the contents in your
Source views clearly. To do this, click the Maximize button in the upper right
corner of the IDE (it is located on the same bar as the menus, at the far right
end). The section tabs and page buttons will temporarily disappear, leaving
more space for the panes.

Later, if you want to return the tabs, you can click the same button again. To
temporarily see the tabs, hold the mouse pointer over the area where they are
normally displayed.

Create a New File

1. First, select the lower pane on the File System page, even if it is currently
empty. The file you create will be opened in the pane that is currently
selected.

2. From the Project Workbook menu, select Open or Create File.
3. In the Open or Create File dialog, browse to the directory you created for

your copy of the tutorial files. In the Selection field, type the name of the
new file: options.icc. The full path of the file should appear in the
Selection field.

4. In the File open location part of this dialog, ensure that the Current pane
radio button is selected.

5. Click Open.

The new, empty file appears in the lower pane. Notice that:

Chapter 6. Try VisualAge C++ 81

v The arrow in the pane title bar appears broken. This is because the pane is
no longer displaying an object from a linked view: it is displaying an
object you created, so the link is temporarily disconnected. As a result, the
contents of this pane will not change when you select other objects in the
Files view.

v The object representing the new file does not appear as an or object.

It is an (file) object. This is because this new file has not been added to
any configuration. It is not yet recognized as a source.

In the next section, you will create a page layout that makes it easy to browse
through the other configuration files and paste into this one.

Create a Custom Page
You have now created a new file, in which you will collect common options
from the four subprojects to make the project easier to maintain.

To cut and paste the options, it would be handy to have two Source views
open. However, no default pages in the IDE offer two Source views. In this
section, you will customize a page in the Host section and give the new page
a new name.

Create a New Pane

1. Select the lower pane, which is currently displaying your new file.
2. Hold down the Ctrl key, and move the mouse pointer to the right edge of

the view.
3. When the pointer changes to a large arrow, drag the arrow toward the

centre of the view and release the mouse.

You have just created a new pane. It is empty, and has no view type. By
default, whenever you create a new pane, the new pane is linked to the last
pane that had focus.

In this case, the Source view was selected when you created the new pane.
However, you want this new view to show the source for a different file.

Change the Input to the New Pane

As you browse for the configuration file for each subproject in the File Tree
view, the files in each directory are listed in the Files view. In order for the
new pane to show a source view of a file, it must be linked to a pane in
which you select individual files. We will move the link for this pane so that
it connects the new pane to the pane containing the Files view.

First, take a look at the current layout of the page. Select Show Link Diagram
from the Page menu. The links between the panes look like this:

82 VisualAge C++: Getting Started

The link for the new pane originates in the lower left pane.

Moving the Link

1. Clear the link diagram by pressing Esc. (You can also move links in the
link diagram, but the method you will use here saves time).

2. Hold the mouse pointer over the linking arrow in the title bar of the new
pane (), click, and begin dragging it toward the pane directly above.

The mouse pointer becomes a chain link . (If it does not, release the
mouse and try again: dragging by any other part of the title bar will move
the pane).

3. Release the mouse when the link is anywhere inside the upper right pane.

That’s all! Your new pane is now linked to the Files view. If the view type is
not Source, change it now by selecting Source from the View Type menu:

Chapter 6. Try VisualAge C++ 83

Now you can edit each configuration file by simply selecting the file in the
Files view.

Save the New Page Layout

You can easily save this new page layout for future use:
1. Select Save Page Description as from the Page menu.
2. Type a name for the new layout in the Page Description Name field. The

name can be several words if necessary, such as Browse and Edit.
3. Make sure the first radio button, Add as New Page Description, is

selected.
4. Click OK.

A new page button with the name you typed appears. The original page
layout for the File System page remains intact, and you can switch between
them easily. If you want to change the name later, simply repeat the steps
above, but select the second radio button, Replace Existing Page Description,
instead.

In the next section, you will use the new page layout to find each of the four
configuration files and move the common options into the new file.

Group Common Options in a Separate Configuration File
Now that you have set up a handy layout for moving content across two
open files, you can use it to cut the common options from the four
configuration files in your subprojects, and paste them into the new file,
options.icc.

In your new page, Edit and Browse (or the name you chose), locate the first
configuration file, util.icc, in the /util subdirectory. The contents are shown in
the lower right pane.
1. Highlight the following information from util.icc, with the mouse, the Shift

+ arrow keys, or editor shortcuts:

84 VisualAge C++: Getting Started

option SubprojectOptions = gen(rtti, yes)
{

option defaults(xlC_r), link(linkwithsharedlib, yes),
define(“USE_IPF”, “1”)

2. Cut this from util.icc, and paste it into options.icc.
3. In options.icc, create a group for these options, named ProjectOptions, as

follows:
option ProjectOptions = gen(rtti, yes), defaults(xlC_r),

link(linkwithsharedlib, yes), define(“UES_IPF”, “1”)

4. Now, in util.icc, add ProjectOptions into the current option directive
applied to the target, as follows:
option ProjectOptions,link(exportAll)
{
target type(shr) “until.a”

{....
5. At the top of util.icc, add an include directive to include the file containing

the definition of the options group ProjectOptions:
include “../options.icc”

6. Now remove the same options from each of the remaining three
configuration files, replace them with the name of the ProjectOptions
group in each file, and add the include directive to each file. The
remaining configuration files are:
v poly/poly.icc
v base/base.icc
v model3d.icc

(note that in model3d.icc, the relative path will be different:
“options.icc”)

To save the changes, launch a new build. Press Ctrl+Shift+B or click Build.

Why is the New File a .icc File?

You could just as easily save the new file as a text file or any other kind of
header file. As long as the contents of the file can be recognized and
interpreted as configuration directives when the include directive is processed,
you can give the file any extension that is convenient for you. In this scenario,
we have chosen to call the new options file a configuration file for two
reasons:
v When the file is opened in a Source view in the IDE, it is parsed as a

configuration file. That is, any errors in syntax or spelling of directives will
be caught immediately.

v Future maintenance will be easy: it will be obvious that the contents are
configuration directives, even if the file is not opened.

Chapter 6. Try VisualAge C++ 85

Summing up Tutorial 3
In this tutorial you were introduced to the concepts of build optimization, and
project organization.
You learned that:
v Promoting secondary source files optimizes your build’s performance
v Grouping common options in a single file makes your project easier to

maintain
v The IDE can be easily customized to suite your needs

In the next tutorial you will set up different build scenarios, create a new
build and adjust a configuration file to handle conditional processing.

To learn more about optimizing configuration files, try reading “Chapter 8.
Migrate to Incremental Compilation” on page 99. The complete Migration
Guide is also available in PDF form, in the /pdf/ subdirectory of the
VisualAge installation directory. Look for migrate.pdf.

Tutorial 4: Builds

So far in these tutorials, you have created a project that consists of four
subprojects, but you only have one build scenario defined for these
subprojects. That scenario, the default BuildAll object created by the
SmartGuides, sets only the normal options required for development.

A build is a group of one or more subprojects, environments and variables,
associated by use directives in a project file.

A subproject is only compiled and linked if it appears in a build. A build
takes the general form:
build name_of_build
{
use name_of_subproject1
use name_of_subproject2
.
.
}

When you set up a project using a SmartGuide, unless you use the Advanced
setup to define your own builds, the SmartGuide creates a default build that
assumes all the subprojects will be compiled and linked. Builds can also use
variables. For example, if you want to define two scenarios (such as an
optimized build and a normal build) for building the model3d subproject, you
can set up two different builds this way:

86 VisualAge C++: Getting Started

build optimized
{

use Model3d
opt=1

}

build default
{

use Model3d
opt=0

}

Each scenario can make use of a different set of options. When you want to
build for one scenario, all you have to do is:

1. Select a object, either the default build or the optimized build, from
the Overview page.

2. Click Build at the bottom of the view.

That’s it! From one easy-to-read text file, you can now set up a complete
range of testing, development, and production scenarios.

In the next part, you will create a build for the optimization scenario, and
create build variables to control which options are used with each scenario.

Create a Build
In this section, you will set up a new build scenario, or create a new build,
and adjust the options.icc configuration file to handle conditional processing
for choosing one build or the other.

To create a new build and create variables for it:
1. Go to the Project File page in the Project section. This page provides a

variety of views for editing your project file.
2. In the upper left pane, the Builds view shows a schematic diagram of your

project file, organized by builds. The object at the highest level is the build

object (). Select this and right-click on it.
3. From the pop-up menus, select Add directive after and Build, to add a

new build directive after this build directive in the project file.
4. In the Add Build after dialog, type optimized in theName field.
5. In the Subprojects area of the dialog, select each one of the four

subprojects in turn from the pull-down list. Click Add after selecting each
subproject.

6. In the Variables area, select the Create assignment radio button. In the
Name and Value fields, type optimize as the name of the variable, and
assign it the value of 1.

7. Click Add.

Chapter 6. Try VisualAge C++ 87

8. Click Apply to update the project file.

You now have a second build scenario defined for the project. However, at
this point there is no effective difference between this scenario and the default
scenario, BuildAll.

Next, you will edit the options.icc configuration file to select different options
based on the value of the optimize variable.

Add Conditional Processing to options.icc
Now that you have the facility to choose one of two builds, you need to
ensure that the options applied for each scenario are appropriate for each
build.

If you recently finished the previous tutorial, you should still have options.icc
displayed in a Source view either in the File System page or the custom page
you created in the Host section. However, this view is small, and it would be
difficult to edit the file in it.

To open the file in the largest possible viewing area, you can do either of the
following:
v Maximize the Source view in the File System page or in your custom page

by clicking the maximize control (), a small raised square at the far right
end of the pane title bar.

v Open the file into its own workbook section. Select the file in the Files view
or File Tree view, right-click, and select View as and Section from the
pop-up menus.

First, you will define which options will be applied when the optimized build
is selected. Type or paste the following at the top of options.icc:
if $optimize==1

option opt_build=opt(level,2)
else

option opt_build=null

The value of opt will be evaluated each time a build object is selected and a
build is begun. However, we have still not connected the outcome of this
processing to the targets of the subprojects.

Currently, all four subprojects include the configuration file options.icc, which
in turn contains the definition of the options group ProjectOptions. To make
sure this group includes the optimize option group, you must add it to the
defintion, as follows:
option ProjectOptions=opt_build,

gen(rtti, yes),
defaults(xlC_r),
link(linkwithsharedlib, yes), define(“USE_IPF”, “1”)

88 VisualAge C++: Getting Started

In the next part of the tutorial, you will set the opt variable in your original
build, to ensure your builds are consistent.

Set Build Variables in the Default Build
You have now defined a new build, and created a mechanism for passing
information about the build to the subprojects, using conditional processing in
the options.icc file. However, one last task remains: you must set the value of
the build variable in the original build.

To do this:
1. Go to the Project section, and select the Project File page.
2. In the Builds view, select the original build (BuildAll).
3. When you select this object, the linked view on the right side of the page

becomes a Change Build view.
4. In the Variables area of this view, create the same variable you created in

the new build, but with a zero value:
a. Select the Create assignment radio button.
b. In the Name field, type optimize.
c. In the Value field, type 0.
d. Click Add.
e. Click Apply.

The project file is now updated, and both builds contain a value for the build
variable, optimize, that controls whether the build makes use of optimization
options.

Now, no matter which build object you select, the appropriate options will be
applied to the build. You will not have to change the options again, and
adding a new scenario is easy:
v create a new build directive
v select the subprojects you want to use
v create a variable to identify the new scenario
v add conditional processing to the common configuration file, if new options

are needed for this scenario

Build the Project
Now that you have created two builds in your project, you can test the build
process and see how easy it is to launch compilation and linking for two
scenarios from one view, and then to check to ensure the options you
expected to use were applied.

Build the Optimized Scenario

Chapter 6. Try VisualAge C++ 89

Before starting to compile the build you set up earlier in this tutorial, you
must close any subprojects that were opened in memory in the default build.

Select each open subproject and click Close. When the and graphics
disappear from the subproject description, and the status reads Closed, the
subproject is closed. If the subprojects are not closed in this build, you will get
an error message when you try to build the optimized build.

1. On the Overview page of the Project section, select the build object ()
for the optimized build you created.

2. Click the Build button at the bottom of the view.

When the build is complete, all the subprojects are open in memory. To see
how the configuration file for any subproject was interpreted, open a
configuration file as a section:
1. Select any of the open configurations.
2. Right-click on the configuration, and select View as - Section from the

pop-up menus.

A workbook section is opened. In this section, select the Advanced page.

The right pane of the Advanced page shows the Interpreted Configuration
view. This view shows you exactly how the file was interpreted, and shows
how conditional processing was evaluated. For example, your view of the
utilSubproject configuration file looks like this:

You can see that the directive “if $optimize == 1” has been evaluated to “if 1
== 1”. As a result, the definition of the option group opt_build is
opt(optimize, yes), and the text is displayed in green. The definition “option
opt_build=null” is gray, indicating that it was not chosen.

90 VisualAge C++: Getting Started

The Interpreted Configuration view is a simple but effective way to trace
suspected errors in a configuration file: it is easy to see exactly how the logic
was followed in a build.

Sometimes, your build scenarios require no different options than a normal
build, but may need a different set of environment variable settings. This can
also be controlled easily through use directives in the project file. The next
part of the tutorial shows you how to see which build variables have been
assigned to your subprojects in each of the builds you have set up.

Environments
In the previous part of the tutorial, you learned how to create build variables
and control the options used for individual build scenarios.

When you set a variable at the project file level of a project, VisualAge C++
understands the variable as part of the total environment for each subproject.

There are various ways of representing environments and parts of
environments in the IDE and in project file language:

an assignment is a single variable, which you create. The variable you
created in this tutorial is an example of an assignment. In the project file, it
takes the form assignment=value. It can have a numeric or string value, for
example:
opt=1
opt='yes'

a variables object represents a group of assignments. Like a group of
options or a group of source files, it can have a name, and can contain any
number of assignments. Variables objects are associated with builds in the
project file by use directives. For example, here is a build that makes use of
the variables group called opt_settings:
build optimized

{
use subproject 1
use subproject 2
use opt_settings
}

an environment is the total collection of the values inherited from the
system environment, the values set or overridden by assignments you created,

Chapter 6. Try VisualAge C++ 91

and values contained in variables groups. Like a variables group, environment
objects are named. Environments are not selected in the project file, however.
They are associated with run specifications, when you run or debug your
application.

In the next part of the tutorial, you will use the Environments view to get a
quick overview of what information about environment variables and build
variables is applied to each subproject.

Browse an Environment
Go to the Project section, and select the Environments page.

Currently, the Environments view shows eight environment objects ():

Each environment object represents the environment — the sum of the system
environment plus any variables set within the project — as it is interpreted for
each subproject, each time a subproject is used in a build. In your project,
there is a default build that uses all four subprojects, and a build for
optimization, which you created.

Select any one of the environments for the Optimized build. On the right, the
Change Environments view shows all the values that are interpreted:
v The variables and values under Evaluation context are those in the system

92 VisualAge C++: Getting Started

v The variables under Environment variables are those you have set within
the project, in the Optimized build:

An environment can also be explicitly created. When you create an
environment, you can use it to set up the conditions for running an
executable, and then apply it to a run specification when you are ready to run
or debug. Creating an environment is simple:
1. In the Environments View, click Create. An object named Unnamed

Environment x is added to the list of environments.

2. In the Change Environments view, edit the field to name the
environment.

3. If you want your environment to use the values of another predefined
environment, select the environment from the list under Inherited
Environments.

4. To add additional assignment variables, enter them in the fields under
Name and Value.

5. Click Change.

Now you can easily associate this with a run specification:
1. Switch to the Project section.
2. On the Overview page, open the Model3dSubproject codestore. Select the

codestore object () and double-click or click Open.
3. In the Codestore section, select the Debug page.
4. In the Run Specifications view, pull down the list next to Environment.

Select the new environment from the pull-down list. It will be interpreted
when you click Debug or Run.

Summing up Tutorial 4
In this tutorial you were introduced to the concepts of builds, build variables,
and environments.
You learned how to:
v Set up different build scenarios
v Edit a configuration file to handle conditional processing for choosing

between build scenarios
v Quickly see how a configuration file was interpreted in a build
v Quickly see a list of all the build variables applied to any subproject

Other Useful References
Here are some recommendations if you are interested in learning more, or
looking for more detailed information.

Chapter 6. Try VisualAge C++ 93

In the online help, you can find the following:

Equivalent Batch Compile-Link and Incremental Build Options can be found
in the Reference section, under Build References.

“Chapter 7. Prepare to Migrate to Version 5.0” on page 97 is also available in
PDF format, and is included in this book. Online, this page can be found in
the Concepts section, under Build References. This can be a useful reference
whether you are moving from VisualAge C++ Version 4.0, or from a batch
compiler.

Other tutorials are available in the online documentation. Look for The
VisualAge C++ Version 5.0 Tutorials in the navigation. For more detailed
information on some of the concepts introduced, try reading some of these
topics in the online Concepts section:

Projects and Subprojects
Incremental Configuration Files
Targets
Types of Source Files

94 VisualAge C++: Getting Started

VisualAge C++, Version 5.0 Migration Guide

© Copyright IBM Corp. 1998, 2000 95

96 VisualAge C++: Getting Started

Chapter 7. Prepare to Migrate to Version 5.0

If you have not installed VisualAge C++, Version 5.0 yet, and you are not sure
whether you should use the batch compiler or make the change to an
incremental environment, please read “Choosing the Right Compiler” on
page 18.

Migrating From a Batch Compiler Such as C Set ++ to Incremental
Compilation

Lots of things have changed since the last release of C Set ++ and VisualAge
C++ Version 3.5:

The Technology
VisualAge features an incremental compiler. The implications for your
code and your productivity are impressive, but if you are moving
from a batch environment, you will need to spend some time to
adapt your applications before you can can take advantage of the
changes. For example, makefiles cannot be processed by the
incremental compiler. Following the migration process will reduce the
amount of time and memory required to do each build, as well as the
time you spend rebuilding when you make changes to source files.

The C++ Language
VisualAge C++, Version 5.0 implements the 1998 approved C++
language standard. To help you make the transition, we have
provided a number of compatibility options, but you still need to be
aware of the many differences.

The VisualAge Development Environment
The interface was redesigned in Version 4.0 with a host of helpful
features. If you have not worked with VisualAge C++, Version 4.0,
take time to familiarize yourself with the new Integrated Development
Environment before you begin the process of migrating your
applications. Several tutorials are included with the online help and in
the Getting Started book.

You do not have to migrate fully in order to begin using VisualAge C++. You
can migrate an application in stages, and take advantage of Version 5.0
features before your application is completely migrated. This approach makes
sense for large applications.

In the initial phases of moving your applications to the new build paradigm,
you may not see immediate improvement in build times, especially with

© Copyright IBM Corp. 1998, 2000 97

newly created configuration files. Once you have invested the time to create
an efficient build setup, however, you will find build performance increased,
and the configuration file much easier to read than a traditional makefile.

The information in this document will help you make the transition and learn
the new paradigm quickly.

Migrating From Version 4.0 to Version 5.0

While such features as incremental compilation and the Integrated
Development Environment are familiar to users of Version 4.0, there are some
changes you should be aware of. For example, VisualAge C++ now supports
multiple codestores in a single project. We recommend you try the tutorials to
learn about the new shape of projects. For a list of new features and
capabilities, read What’s New in the online help or in the Getting Started book.

Migrating to the New Batch Compiler

The new batch compiler included in VisualAge C++, Version 5.0 allows you to
continue using makefiles. You may have to make some adjustments for
changes in the C++ language, however. See “Chapter 10. Migrate to Version
5.0 Batch Compilation” on page 119.

98 VisualAge C++: Getting Started

Chapter 8. Migrate to Incremental Compilation

For most projects, the task of migration follows this general pattern:

Each of the following steps is explained in greater detail in this book:
1. Create a configuration file, with one target, using the IDE’s Project

SmartGuide, or by copying a configuration file from one of the samples.
2. Ensure the target directive in your configuration file is disabled or

commented, if you did not use the SmartGuide to do this automatically,
so that the link phase is not invoked.

© Copyright IBM Corp. 1998, 2000 99

3. Create groups for your source files. In a later step, you will add source
files to the configuration in these groups.

4. Using your current makefile and compiler, run a make and save the log
to a text file. Open the file in the IDE. Locate the compile and link
options, and convert them to configuration options.

5. Add source files to the configuration. Choose one that includes the
majority of your header files, if possible.

6. Build the project and correct any errors.
7. Promote included system and user header files and rebuild the project.
8. Add the next source file, and repeat steps 5, 6, and 7 until all of the

source files for this target have been added. Once you have have added
several source files, you can make steps 5, 6, and 7 faster by adding a
number of source files, rather than a single file, with each repetition of
the steps.

9. Remove the comments from the target, and perform a clean build by
selecting Clean from the Project Workbook menu, or by deleting the
codestore (.ics file) and rebuilding. You may encounter build failures. You
may need to add template source files or missing libraries, or address
problems with virtual function tables not being defined. Do this before
going to the next step.

10. For any pre-build and post-build targets your makefile called for, add the
necessary run before or run after directives to invoke make. See “Migrate
Other Commands” on page 111 for more details.

11. If your application requires more than one target, repeat steps 1 through
8 for each target. You can add several targets to a single configuration, or
create a separate configuration for each target. The choices are described
in “Application Requires Multiple Targets” on page 133.

12. When you have created a working configuration for each of your targets,
you can combine all of the configuration files into one project.

Before you begin migrating, please read the Special Considerations to learn if
there are any changes you should make to the process outlined here.

While migrating your project you may find that making significant changes to
a configuration file results in a slow rebuild. You may achieve better
performance by performing a clean build after you make extensive changes.

How Configuration Files Are Processed
“Migration of Resource Files” on page 145
“Promoting Source Files to the Configuration File” on page 141
Sources

100 VisualAge C++: Getting Started

“Chapter 12. Special Considerations for Migrating to Incremental
Compilation” on page 133

Create a Configuration File for Migration

Creating a basic, skeletal configuration file is the first step in migrating your
application to the VisualAge C++ incremental compiler.

There are two ways to do this:

A. Creating an Empty Configuration File with the IDE and SmartGuides
1. Create a new configuration using the IDE’s Configuration SmartGuide

(select Create Configuration from the Project Workbook menu).
2. On the Configuration page of the SmartGuide (the title bar reads Create

a configuration), give your configuration a name and choose a directory
where the configuration file (.icc file) will be created.

3. On the same page, check the box labelled Disable created target and
source directives.

4. Click Next.
5. On the Target Type page, select the type of target your configuration will

build (an executable, shared library or static library), and click the Add
Target button.

6. Click Next on the first page of the Target SmartGuide.
7. On the Target Name page, specify a name for your executable, library or

shared library, and select a program type from the list in the lower half of
the page.

8. Click OK, rather than Next (if you click Next accidentally, simply click
Back on the next page).

9. Click Finish.
10. When you are prompted to open the project in the IDE, click Yes.
11. When you are asked if you wish to begin a build, click No.

Once you have created a configuration file, you can begin creating groups in
the configuration. Later, when you add source files, they will be placed in the
groups you create. Proceed to “Preparation for Grouping Source Files for
Migration” on page 102.

B. Copying an Existing Configuration File from the Samples Provided with
VisualAge C++

1. Browse the Samples section of the online help. Choose a sample project
that resembles your application in function. There are also samples to
illustrate changes to the language standard, using database access, and
using the Standard Template Libraries.

Chapter 8. Migrate to Incremental Compilation 101

2. Locate the sample you want in the idesamp or samples directory, copy the
.icc file to your working directory, and rename it.

3. Start the IDE and open this project by selecting Open an Existing Project
and clicking the Browse button to locate the renamed .icc file.

4. When you are prompted to begin a build, click No.
5. Switch to a Source view in your Configuration section.
6. Remove the file name listed in the target directive and replace it with the

name of your target (.exe, .so or .a file).
7. Comment out the target directive, using C++-style double slashes (//), so

that the link phase is not invoked (otherwise there may be many
unresolved reference errors after each build). Ensure the open brace (’{’)
following the target directive is not commented out (i.e., it should be on a
separate line).

8. Delete any source files listed for the sample project.
9. Save and rename the updated .icc file by selecting Save As from the

Source menu.

Once you have created a configuration file, you can begin creating groups in
the configuration. Later, when you add source files, they will be placed in the
groups you create. Proceed to “Preparation for Grouping Source Files for
Migration”.

Configuration Files
Incremental C++ Builds
Macros in C++ Source Files

“Chapter 8. Migrate to Incremental Compilation” on page 99

Configuration File Syntax

Preparation for Grouping Source Files for Migration

If you have just finished using the Configuration SmartGuide to create a
configuration, you will have a configuration file that resembles the following:
disable target type(exe) “test2.exe”
{

disable source “afile.cpp”
disable source “main.cpp”

}

102 VisualAge C++: Getting Started

Now that you have created a basic configuration file for your first target, you
will create groups in order to organize the source files used as input. At this
stage, you have not yet added any source files. There are several reasons for
creating groups for your source files at this stage, rather than adding all the
source files in one group:
v When you add source files later, you will be able to add them in a

methodical fashion.
v You will be able to easily maintain the configuration if you need to make

changes after migration.
v When you have to apply options later, it will be easier to apply the options

to a group of source files than to list the files inside each option directive.

You will create empty groups like the following, where applicable to your
application:
v A group called PRIMARY_SOURCES, which will list your own .cpp, .cxx or

.C files.
v A group called MACRO_SOURCES, which will list any of your own .cpp,

.cxx or .C files which contain macros that need to be visible outside the file.
Macro sources can be your own files, or system include files. If you wish to
keep the different types of files separate, you could create two groups,
MACRO_SOURCES and SYSTEM_INCLUDES, instead of one.

v If necessary, a group to collect any source files that do not fall into the
previous three categories, for example, PRIMARY_SPECIAL_GROUP.

These group names are given as examples. You can use any descriptive name
that helps you to organize your source files.

When you are ready to start creating groups for your sources, proceed to
“Create Source Group Directives for Migration”.

“Chapter 8. Migrate to Incremental Compilation” on page 99

Create Source Group Directives for Migration

You can add a group directive by using objects in the IDE or by editing the
configuration file.

Creating Source Group Directives in the IDE

1. Switch to the Configuration section of the IDE and select the Source and
Groups page.

2. Select the Source and Groups view on this page (the upper left pane).
Right-click on the background (white space) of the view.

3. Select Add Group from the pop-up menu.

Chapter 8. Migrate to Incremental Compilation 103

4. In the Group field of the dialog box, type the name you want to give the
group (PRIMARY_SOURCES, MACRO_SOURCES, or
SYSTEM_INCLUDES. These example names are explained in the previous
step, “Preparation for Grouping Source Files for Migration” on page 102).

5. Click Apply. The new group directive is added to the configuration file.
The views in the Configuration section are refreshed to show the new
directive. Currently the directive is empty. It contains no files (source
specifiers). Views in other sections will not be updated until you build the
project.

6. To make sure the group is considered a source, you must add the new
group directive into a source directive.

Creating Source Group Directives in the Configuration File

1. Switch to the Configuration section of the IDE and select a Source view.
2. Move the insertion point to the location in the file where you want to

insert a group. A group should be defined before it is called by your target
and source directives.

3. Type group groupname= ’’ (empty string enclosed in single quotes), to
create an empty group. Replace groupname with the names of each group
you want to create, for example, PRIMARY_SOURCES,
MACRO_SOURCES, or SYSTEM_INCLUDES (These example names are
explained in the previous step, “Preparation for Grouping Source Files for
Migration” on page 102).

4. Make sure that each group name you create also appears later in a source
directive, for example:
source type(cpp) PRIMARY_SOURCES
If the group name does not appear in a source directive, the files in the
group will not be considered part of the build.

When you have created the groups for your source files, your configuration
file should resemble the following example :

group SYSTEM_INCLUDES = ''
group MACRO_SOURCES = ''
group PRIMARY_SOURCES = ''
disable target targetname
{
option macros(global)
{
source type(cpp) SYSTEM_INCLUDES, MACRO_SOURCES
}
source type(cpp) PRIMARY_SOURCES
}

The next step in the migration process is to “Convert Compile and Link
Options to Configuration Options” on page 105.

104 VisualAge C++: Getting Started

Configuration Files

“Preparation for Grouping Source Files for Migration” on page 102
“Chapter 8. Migrate to Incremental Compilation” on page 99

group Configuration File Directive
macros global Miscellaneous Build Option (C++)

Convert Compile and Link Options to Configuration Options

Follow these steps in order to identify the options that were set for your
application in your makefile:
1. Run a make and generate a make log file, using your current batch

compiler.
2. Save the log as a text file.
3. Open the log file as a section in the IDE. To do this, locate the file name in

the Host section of the Workbook, right-click over it, and select Open as a
Workbook Section from the pop-up menu.

4. For now, disregard any options and commands that are not related to
compilation (for example, options and commands for tools or
preprocessors). You will need to refer to these commands later. Now you
need to convert only the remaining compile and link options to
configuration options.

5. In the remaining options, check to see if any sets of options are applied
only to specific targets, or only to specific groups of source files. If there
are sets of options like this, you may want to create option groups later, in
order to make it easier to apply multiple options, and to maintain the
setup after migration. Details are provided in the Related Tasks below.

Once you have identified which compile and link options applied to your
project from your make log, you can use the Convert Batch Options view in
the IDE to determine their equivalent configuration options and insert them
into your configuration file. Option tables are also provided in the online
documentation and in this book.

To convert the options in the IDE

1. Select the Configuration section of the IDE.
2. In the Configuration section, select the Options page.

Chapter 8. Migrate to Incremental Compilation 105

3. Change the view in the right-hand pane. In the View Types menu, select
Convert Batch Options.

4. In the upper left-hand pane (Source and Targets view), highlight the

source file (), or target () to which you want to apply the compile
and link options.

5. In the right-hand pane (now the Convert Batch Options view), click in the
Batch Options entry field.

6. Type in the first compile or link option you identified in your make log, in
the format it appears (for example, -O).

7. Click Add. If the option has a valid equivalent in VisualAge C++, Version
5, the equivalent configuration option is displayed under Converted
options.

8. When you have finished converting all the options identified in your
makefile log, click Apply. The options are applied to the object you
selected in the Source and Targets view.

When you have converted all the compile and link options and applied them
to the correct sources, groups, or targets, you can proceed to “Add Source
Files to the Project for Migration”. For further optimization of your options,
you may wish to create groups for the options in the same way you created
groups of sources. See Arrange Options in Groups for more information on
doing this.

“Arrange Options in Groups” on page 113
“Chapter 8. Migrate to Incremental Compilation” on page 99
“Migrate Other Commands” on page 111
Setting Build Options

Compile Options from Earlier Versions of VisualAge C++

Add Source Files to the Project for Migration

Once you have created a configuration file and set up source groups, you can
insert source files into your source groups.

Even if your application is very large, do not add a long list of source files
immediately. Adding one source file that includes many header files early in
the migration process will make the rest of the process much faster. In most
applications, a few source files will include the majority of header files that

106 VisualAge C++: Getting Started

are needed by the application. It is best to avoid adding multiple files at once
until you have done this part of the process several times, without
encountering new errors.

Start by adding one of your .cpp, .cxx or .C files to the PRIMARY_SOURCES
group you created in Step 3 of the migration process.

You can add source files using views in the IDE, or by editing the
configuration file.

Adding Source Files Using the IDE
1. In the IDE, select the Host tab, and the File System page button. This

view allows you to browse your system.
2. Locate a source file from your application and right-click on it.
3. To add the source to your configuration file, select Add Source to Source

Directive from the pop-up menu.
4. In the Add to Source Directive dialog, select the PRIMARY_SOURCES

source group, which you created in “Create Source Group Directives for
Migration” on page 103.

5. Click Apply.

6. Build the project by clicking the Build button or by pressing
Ctrl+Shift+B.

If there are build errors, use the Messages page of theProject section in the
IDE to locate and resolve them.

Adding a Source File by Editing the Configuration File
1. In the IDE, select the Configuration tab, and the Source page button.
2. Add a source file to the PRIMARY_SOURCES group directive, by typing

the filename inside the empty string (’ ’)you inserted when you created the
groups:
group PRIMARY_SOURCES ='filename'

where filename is the name of the source file. When you add more files to
the same group, separate them with commas.

3. Build the project by clicking the Build button or by pressing
Ctrl+Shift+B.

If there are build errors, use the Messages page of theProject section in the
IDE to locate and resolve them.

Chapter 8. Migrate to Incremental Compilation 107

Example: Configuration File with Source File Added
If you created the groups used as examples in the previous step, your
configuration file would now resemble the following:
group SYSTEM_INCLUDES = 'firstfile.cpp'
group MACRO_SOURCES = ''
group PRIMARY_SOURCES = ''
disable target targetname
{
option macros(global)
{
source type(cpp) SYSTEM_INCLUDES, MACRO_SOURCES
}
source type(cpp) PRIMARY_SOURCES
}

When you build this configuration file, firstfile.cpp is compiled, but as the
target is currently disabled, it will not be linked.

Build Errors You May Encounter After Adding Source Files
Some errors may be due to changes in the C++ language, which were not
enforced by older compilers. You may need to either modify your source to
conform to the new standard, or use compatibility options to mimic old C++
language semantics. See the Troubleshooting References for compatibility
options and information about common errors.

Other errors may occur because a header file which was previously promoted
to be a PRIMARY_SOURCE file contains a macro which was not used by
other source files, but is used in this newly added source file. You may need
to convert the header file from a primary source to a macro source by adding
the header file name to the MACRO_SOURCES group and removing it from
the PRIMARY_SOURCES group. More information on macro and non-macro
sources is provided in Migration Concepts.

Once you have completed a build with no errors, the next step is to promote
the files that were included by this file to your configuration, rebuild, and
correct any further errors, before you add any more source files. Proceed to
Promote Included System and User Header Files.

Sources
“Promoting Source Files to the Configuration File” on page 141

“Chapter 8. Migrate to Incremental Compilation” on page 99

108 VisualAge C++: Getting Started

Options for Compatibility with Previous Versions of VisualAge C++
“Common Errors when Migrating” on page 121

Promote Included System and User Header Files

Each time you add a source file to your PRIMARY_SOURCES group, the next
step is to promote any files that were included by that file.

To locate the included files in the IDE and add them to the configuration file:
1. Go to the Codestore section of the workbook. Select the Source Files

page, and the Source Files view on that page.
2. In the pane showing the Source Files view, pull down the Filter menu (

) and select Show All from the list of filters.
3. The view will now display all the files used to build the codestore: those

that are listed in the configuration file are displayed as , and those

that are included are displayed as .

4. Highlight one or more system files identified by the glyph. As a
general rule, it is better to avoid promoting system files from the
/usr/include directory until after you have promoted other system files,
such as those in /usr/vacpp/include.

5. Right-click on the selection, and select Add Source to Source Directive
from the pop-up menu.

6. In the Add to Source Directive dialog box, select one of the groups you
created in an earlier stage of the Migration Process. For example, if you
created only one group for macro sources, select it. Otherwise, select
SYSTEM_INCLUDES.

7. Build the project, and correct any errors.
8. Return to the Source Files view. You should no longer see the system file

you promoted displayed as an object.
9. If there are still included files to promote in this view, repeat step 4 to

step 7. Add your application’s included files to the PRIMARY_SOURCES
group, system files to the SYSTEM_INCLUDES group, and so on.

10. Build again. You may encounter some build errors that are due to macros
in your application include files. If this is the case, move the files
containing macros to the MACRO_SOURCES group, instead of the
PRIMARY_SOURCES group.

11. Return to the Source Files view again. This time, you should see no more
application header files displayed as secondary sources. If there are any,
add them to the PRIMARY_SOURCES or the MACRO_SOURCES group.

Chapter 8. Migrate to Incremental Compilation 109

Once you have corrected any errors, you can return to Add Source Files to the
Project for Migration, to add the next source file. If you have already added a
number of source files, you can modify Step 5 of the migration process by
adding a number of files in each iteration. The steps are described in
“Chapter 8. Migrate to Incremental Compilation” on page 99.

When you have no more source files to add for this target, you have finished
creating the configuration. You have several choices now:
v If you have not already done so, you can refine your configuration by

creating groups for your options, as you did for your source files. This will
not impact build times, but will make your configuration file easier to read.
The steps are described in Arrange Options in Groups.

v If your project contains other targets, you can add the remaining targets.
See Add Another Target to your Project for Migration for details.

v If you have finished creating configurations for all the targets in your
project, remove the disable keyword (or comments, //) from the
configuration file for each target, to enable the linking phase. Optionally,
you can also create a project and add each configuration to the project as a
subproject. This is described in Combine Multiple Codestores in One
Project.

v Finally, when all of your targets have been migrated, you can migrate any
parts of your former make process that were not related to compiling and
linking (for example, code generation phases). See “Migrate Other
Commands” on page 111 for information on doing this.

“Promoting Source Files to the Configuration File” on page 141

“Add Source Files to the Project for Migration” on page 106

Add Another Target to your Project for Migration

If you have already gone through the migration process described in
“Chapter 8. Migrate to Incremental Compilation” on page 99, you have created
a configuration file and added a number of sources to it.

If you have more than one target in your project (for example, multiple
executable files, or an executable file and several libraries), you do not have to
repeat the first three steps of the migration process to add another target. You
can add another target to the same configuration file, or create a separate
configuration for each target. Considerations for either option are described in
“Application Requires Multiple Targets” on page 133.

110 VisualAge C++: Getting Started

To create a new configuration for each target, simply repeat the migration
process for each target.

To add a target to an existing configuration, follow the steps described in Add
or Remove a Target in the online help.

When you have created a configuration for every target, you can remove the
disable keyword (or comments, //) from the target directive in each
configuration file, to enable the linking phase. Optionally, you can also create
a project and add each configuration to the project as a subproject. This is
described in “Combine Multiple Codestores in One Project” on page 115.

Finally, when all of your targets have been migrated, you can migrate any
parts of your former make process that were not related to compiling and
linking (for example, code generation phases). See “Migrate Other
Commands” for information on doing this.

“Chapter 8. Migrate to Incremental Compilation” on page 99

Migrate Other Commands

In general, when you migrate an application, the only portions of your
makefile that will have an equivalent in a configuration file are the commands
directly related to compilation. Tools and preprocessors or post-processors can
still be called using make. The command to launch the make process can be
inserted in your configuration file with run directives (run before, run after
and run cleanup, described below).

If your makefile contains commands which call other tools, a roughly
equivalent configuration file would follow this format:
v run before make setup

v target and source directives (i.e. equivalent of everything in the makefile
that has to do with compilation)

v run after make post_compile_commands

Grouping common commands in the run before and run after directives will
help minimize the dual maintenance of the makefile and configuration file.

Using the run Directive to Call Other Tools
Use the run directive to execute system commands at different times during a
build. Typical uses of the run directive include:

Chapter 8. Migrate to Incremental Compilation 111

v Invoking other compilers such as an assembler or previous version of
VisualAge C++.

v Invoking external utilities such as gencat, perl, or cppfilt.
v Setting file permissions of generated files.
v Invoking VisualAge C++ recursively to perform preprocessing.
v Calling make to perform portions of a build that have not yet been

converted to VisualAge C++.

Syntax of the run Directive
run [before | after | cleanup] [sources (string_list)] [targets
(string_list)] string_list

The parameters of the run directive are system commands that are run
synchronously as child processes at one of three points in the build. run
before and run after directives execute commands either before or after the
compile and link phase of the build is performed. run cleanup executes the
commands only when Clean is selected from the IDE Project Workbook
menu. Run directives normally execute during every build, in the order in
which they appear in the configuration file. The exception to this is when a
list of file sources and targets are specified. In this case, the sources and
targets determine the order in which the directives are executed so that
dependencies between directives are satisfied. The timestamps of the sources
and targets also determine whether or not the commands are run. The rules
are as follows:
v If any sources are missing or have timestamps that are later than the

previous build then the commands are run.
v If any targets are missing or have timestamps that are later than the

previous build then the commands are run.
v If any sources have timestamps that are later than any targets then the

commands are run.
v If no sources or targets are specified then the commands are run.

Example: run Directive
The following configuration file copies a text file from another directory and
then uses it to generate a message catalog using the gencat utility:
//run directive #1:
run before
sources(“/home/project/messages/catalog.txt”)
targets(“mycatalog.txt”)
“cp /home/project/messages/catalog.txt /home/build/mycatalog.txt”

//run directive #2:
run before
sources(“mycatalog.txt”)
targets(“mycatalog.cat”)

112 VisualAge C++: Getting Started

“cd /home/build”,
“-chmod -f +w mycatalog.cat”,
“usr/bin/gencat mycatalog.cat mycatalog.txt”,
“-chmod -f -w mycatalog.cat”

Notes on the Example
1. Run directive#1 will execute before run directive#2 because run directive#2

lists “mycatalog.txt” as one of its targets and run directive#1 lists
“mycatalog.txt” as one of its sources. That is, the order of appearance
alone does not determine the order in which the commands are executed.

2. The use of the “-” preceding the chmod commands indicates that a
nonzero return code from the command should not matter. If you omit the
“-” then the build will fail if the command returns a nonzero return code.

If you have completed the migration process described in “Chapter 8. Migrate
to Incremental Compilation” on page 99, you may wish to further optimize
your code for the new environment. See the Related References below for
more details.

run Configuration File Directive

“Coding Adjustments for Orderless Programming” on page 125
“Makefile Rules Mapped to Configuration File Directives” on page 178

Arrange Options in Groups

If you are applying the same set of options to more than one source file,
source group, or target, you may find it easier to create groups of options
than to repeatedly list the same options in your configuration file.

For example, if you have an ungrouped set of options that appear in several
places in your configuration file, like this:
target “mytarget”

{
option lang(signedbitfields), lang(digraphs,no), alloc(debug)

{
source mysource1.C
}

}

you can create a group for the options, and use only the group name, instead
of the list of options, in every part of the configuration where you need to
repeat the same options.

Chapter 8. Migrate to Incremental Compilation 113

Here is an example of defining an options group, using the options from the
example above:
option common_options = lang(signedbitfields), lang(digraphs,no), alloc(debug)

Using the example of the configuration file above, the file would now
resemble this:
target “mytarget”
{
option common_options
{
source mysource1.C
}

}

option Configuration File Directive

Migrate to Incremental Compilation

114 VisualAge C++: Getting Started

Chapter 9. Migrate from Version 4.0 to Version 5.0

If you are already using VisualAge C++ Version 4.0 incremental compilation
and have set up your application’s configuration file or files, migrating to
Version 5.0 is relatively simple. You have three possible approaches to choose
from:
1. Keep the divisions in your application as they are currently. In this case,

you do not necessarily need to create project files to organize your
configuration files, but you may wish to do so in order to make it easier to
define multiple build scenarios.

2. Create a new project, using a project file, in order to bring together several
different codestores into one project. See “Combine Multiple Codestores in
One Project” for details on doing this.

3. Create a new project, using a project file with several subprojects, in order
to split up a large application that contains multiple targets currently in
one configuration file. For information on doing this, read “Divide a
Single-Codestore Project into Multiple Codestores” on page 116.

Some considerations when deciding whether to combine multiple codestores
in one project are listed in “Application Requires Multiple Targets” on
page 133.

“Application Requires Multiple Targets” on page 133

Combine Multiple Codestores in One Project

To create a VisualAge C++, Version 5.0 project that includes several projects
created in Version 4.0, or several configurations created in the migration
process, do the following:
1. Start the Project SmartGuide, either by selecting Create a new project from

the Welcome dialog, or selecting Create project from the Project Workbook
menu in the IDE.

2. On the first page of the SmartGuide, the Project page, enter a name and
working directory for the project. The name you enter here will be used to
name the project file (an .icp file) which will contain the definition of your
project, in much the same way the configuration file contains a definition
of your targets and sources.

© Copyright IBM Corp. 1998, 2000 115

3. On the same page, in the Project setup area, select the second radio
button, Create a new project using new or existing configuration files. (If
you have already advanced to the next page, click Back to return).

4. Click Next.
5. On the next page, Configurations, browse to find each configuration file

(.icc file) that you want to bring into the new project. Highlight each file or
several files, and click Add. If you also want to create a new configuration,
click the Create configuration button. This will launch the Configuration
SmartGuide.

6. When you have located or created all the configuration files you need,
click the Finish button. An .icp file will be created, listing all the
configurations you selected as individual subprojects, and containing the
outline of a default build similar to a make all.

7. You will be prompted to open the project in the IDE. To see how the new
project was set up, click Yes to open it.

If your Version 4.0 project made use of IBM Open Class, read “Adjust for
Using the IBM Open Class Library” on page 131 for information on other
changes you may have to make.

“Adjust for Using the IBM Open Class Library” on page 131

Divide a Single-Codestore Project into Multiple Codestores

If your project was developed in VisualAge C++ Version 4.0 and contained
multiple targets in a single configuration, you can divide this configuration
into several subprojects in Version 5.0. Considerations for doing this are listed
in “Application Requires Multiple Targets” on page 133.

If you choose to do this, the following steps can help maintain readability and
reusability of your project setup as you create subprojects:
1. Create a configuration file (.icc file) that contains only the options you

previously had listed in your Version 4.0 configuration.
2. In this new file, create a named options group to list the options.
3. In your original configuration file, remove the options, include the new

.icc file, and name the option group contained in the new file in place of
the options you removed.

4. Cut and paste each target out of the original file, into a new configuration
file (use a separate file for each target). Make sure to include all the source
directives for each target.

5. Cut and paste the include directive for the options file and the option
group name into each new file you create.

116 VisualAge C++: Getting Started

Once you have created a separate configuration for each target, follow the
steps in Combine Multiple Codestores in One Project to create a project that
consists of a subproject for each configuration.

“Chapter 9. Migrate from Version 4.0 to Version 5.0” on page 115

Chapter 9. Migrate from Version 4.0 to Version 5.0 117

118 VisualAge C++: Getting Started

Chapter 10. Migrate to Version 5.0 Batch Compilation

You can use IBM VisualAge C++ in batch mode as a C compiler for files with
a .c (small c) suffix, or as a C++ compiler for files with a .C (capital C), .cc,
.cpp, or .cxx suffix. The compiler processes your text-based program source
files to create an executable object module, in the same manner as most
traditional batch compilers.

However, the Version 5.0 batch compiler supports the new C++ language
standard (ISO/IEC 14882:1998). You may have to make some changes in your
code to reflect this. See “Errors Due to Changes in the C++ Language” on
page 122 for more information on source-related changes you may have to
make.

VisualAge C++ Batch Compilers

Common Errors When Migrating
Common Template Problems

Equivalent Batch Compile and Incremental Build Options
List of Batch Compiler Options and Their Defaults
New Standard C++ Library Header Files

© Copyright IBM Corp. 1998, 2000 119

120 VisualAge C++: Getting Started

Chapter 11. Troubleshooting References

Common Errors when Migrating

You may encounter situations in which code that compiles without errors in
versions of VisualAge C++ prior to Version 4.0 produces warnings or error
messages in VisualAge C++ Version 4.0 and 5.0. This can be due to changes in
the language, or due to differences in the compiler behavior.

If you are migrating from any version of VisualAge C++ prior to Version 4.0,
you should be aware of potential syntax errors with new. Versions of
VisualAge C++ prior to Version 4.0 treated the following two statements as
semantically equivalent:
new (int *) [1];
new int* [1];

The first statement is syntactically incorrect even in older versions of the C++
standard. However, previous versions of VisualAge C++ accepted it. This
inconsistency with the language standard was corrected in VisualAge C++
Version 4.0. The first statement will produce a compilation error in Version 4.0
and 5.0.

Examples of changes to the language that may affect your code are provided
in “Errors Due to Changes in the C++ Language” on page 122.

If you are migrating from a batch environment to the incremental compiler,
some of the examples in “Errors Due to Changes in Compiler Behavior” on
page 122 may be applicable to you.

“Chapter 8. Migrate to Incremental Compilation” on page 99

“Coding Adjustments for Orderless Programming” on page 125“Common
Template Problems” on page 127
“Errors Due to Changes in Compiler Behavior” on page 122
Errors Due to Changes in the C++ Language.

© Copyright IBM Corp. 1998, 2000 121

Errors Due to Changes in the C++ Language

bool, true, and false Keywords
The C++ standard now defines as keywords the tokens bool, true, and false.
In versions of VisualAge C++ prior to Version 4.0, these keywords were not
defined. When you migrate programs that define these keywords, you will
encounter compilation errors. You can either remove your definitions, or use
the ’lang(nokeyword)’ option for each of these keywords that you want to
undefine for compatibility purposes. For example, with the incremental
compiler, to disable all three keywords, add the following to your
configuration:
option lang(nokeyword, “bool”),

lang(nokeyword, “true”),
lang(nokeyword, “false”)

To make the same change with the batch compiler, use the
-qnokeyword=true|false|bool option.

Changes to Digraphs in the C++ Language
The C++ standard now defines and, bitor, or, xor, compl, bitand, and_eq,
or_eq, xor_eq, not and not_eq as alternate tokens for &&, |, ||, |, x, &, &=,
|=, |=, ! and !=. If any of these alternate tokens are used as variable, function
or type names then you can set lang(digraph, no), or -qnodigraph to suppress
the parsing of these tokens as digraphs.

Note: the lang(nokeyword) option cannot be used to disable the digraph.

“Common Errors when Migrating” on page 121
“Common Template Problems” on page 127

Errors Due to Changes in Compiler Behavior

The following are examples of code which compiles without errors in versions
of VisualAge C++ prior to Version 4.0, but which will produce errors or
warnings with the incremental compiler.

Access-checking errors
class A {

class B {
void f(A::B);
// A::B is private and can not be accessed from B
// void f(B); <—- this is the appropriate change which
// works for both compilers.

};
};

122 VisualAge C++: Getting Started

The following code would result in the error 1540-0413: “A::B” is already
declared with a different access:

class A {
public:
class B;
const B& foo();
private:
class B {};

};

This can be solved by either moving the definition of class B to the
public part of class A (before the declaration of foo()) or moving the
declaration of the member function foo to the private of class A (after
the class B definition)

typedefs
This code will generate error 1540-0193: A typedef name cannot be used in
this context. Do not use the typedef-name: instead, use the name of the
class:
class A { };
typedef A B;
class C {
friend class B; // Should be friend class A;
};

Overloading Ambiguities
There are now floating point and long double overloads of the standard math
functions. For example, the following, which would generate no errors in a
previous version of VisualAge C++, will produce the error message
1540-0219: The call to “pow” has no best match on Version 5.0:

#include <math.h>
int main()
{

float a = 137;
float b;
b = pow(a, 2.0); //The call to “pow” has no best match.
return 0;

}

The solution is to cast the arguments to pow, or use the compatMath
language option, which removes the float and long double overloads. In
this example casting 2.0 to be of type float solves the problem:
b = pow(a, (float)2.0);

Chapter 11. Troubleshooting References 123

The following generates a number of errors:
1540-0216: An expression of type “B” cannot be converted to “A”.
1540-0219: The call to “A::A” has no best match.
1540-1228: Argument number 1 is an lvalue of type “B”.
1540-1202: No candidate is better than “A::A(const A&)”.
1540-1231: The conversion from argument number 1 to “const A &” uses
the user-defined conversion “B::operator A() const” followed by an
lvalue-to-rvalue transformation.
1540-1202: No candidate is better than “A::A(const C &)”.
1540-1231: The conversion from argument number 1 to “const C &” uses
the user-defined conversion “B::operator C() const”.

e.C
—-
struct C {};
struct A {

A();
A(const C &);
A(const A &);

};
struct B {

operator A() const { A a ; return a;};
operator C() const { C c ; return c;};

};
void f(A x) {};
int main(){

B b;
f((A)b);

// The call matches two constructors for A instead of calling “operator A()
return 0;

}

Solutions include (depending on your access to classes A, B, and C):
v changing f((A)b) to the explicit call f(b.operator A())

v removing the constructor A(const C &)

v adding a constructor A(B)

v removing either operator A() or operator C()

Syntax errors with new
Versions of VisualAge C++ prior to Version 4.0 treated the following two
statements as semantically equivalent:
new (int *) [1];
new int* [1];

The first statement is syntactically incorrect even in older versions of the C++
standard. However, previous versions of VisualAge C++ accepted it. This
inconsistency with the language standard was corrected in VisualAge C++
Version 4.0. The first statement will produce a compilation error in Version 4.0
and 5.0.

124 VisualAge C++: Getting Started

“Coding Adjustments for Orderless Programming”
“Common Errors when Migrating” on page 121
“Errors Due to Changes in Compiler Behavior” on page 122

Coding Adjustments for Orderless Programming

Orderless programming may introduce changes to the semantics of a program
migrated into the VisualAge C++, Version 5.0 incremental compilation
environment. You should be aware of the effects of orderless programming
described below, and make the necessary adjustments to your code.

If you are concerned about maintaining compatibility with batch compilation
environments, consider using the lang(orderednamelookup) configuration
option. This option can force builds to use an ordered programming model so
that potential errors relating to orderless programming are detected and
diagnosed within VisualAge C++, Version 5.0. However, builds may be slower
when you use this option.

Overload Resolution is Handled Differently
VisualAge C++, Version 5.0 resolves an overloaded function call to the best
available match, based on all known declarations of the function. In a
traditional compiler, only those declarations that have been encountered at the
point where the call occurs are used to determine the best match. In the
following example, traditional compilers would resolve the call of foo to
foo(int), since foo(double) has not yet been seen. The VisualAge C++
incremental compiler, however, knows about both declarations of foo, and
will resolve the call to foo(double).
void foo (int);
void bar() { foo(1.2); } // call to foo matches which overload?
void foo(double);

Resolution to an Unexpected Declaration
A variable of class or struct type whose name is the same as that of the class
or struct may result in a different interpretation in VisualAge C++, Version
5.0. In the following example, stat is both a type of struct, and an instance
variable of that struct. A traditional compiler treats the int f(stat);
declaration as a declaration of a function f that takes an argument of type
stat. In VisualAgeC ++ Version 5.0, the declaration is treated as that of an
integer variable that is initialized by the int operator of struct stat:
struct stat {

operator int();
};

int f(stat); // function declaration or variable initalizer?
struct stat stat;

Chapter 11. Troubleshooting References 125

Solution
struct stat {

operator int();
};

int f(struct stat);
// the elaborated type (with the keyword struct) ensures that
// the struct stat is introduced as a declaration and so it can
// not be an expression.
struct stat stat;

Unexpected Results With Macro Source Files
Do not rely on the order of listing of macro source files in the configuration
file when any of the files have include directives. If a macro source includes
another macro source that is listed after it in the configuration file, or includes
a non-macro source that is included in the configuration file, the included file
will be preprocessed and compiled before any non-macro source files (in other
words, it will be treated as part of the macro source that includes it). This
may cause unexpected results if there are dependencies between the macro
source files. For example, consider the following source files and macro source
statement in a configuration file:
// a.hpp
#include “c.hpp”
//...

// b.hpp
#define DEFINED_IN_B

// c.hpp
#ifdef DEFINED_IN_B
//...
#endif

// Configuration file
//...
option macros(global) {

“a.hpp”,
“b.hpp”,
“c.hpp”

}
//...

The macro source a.hpp includes c.hpp, however c.hpp contains a conditional
preprocessor directive based on a macro defined in b.hpp. Because neither
a.hpp nor c.hpp includes b.hpp, the macro DEFINED_IN_B will be treated as
false in c.hpp, because c.hpp is preprocessed before b.hpp. If you add
#include “b.hpp” to either a.hpp or c.hpp, the problem is solved.

The best way to prevent this from happening is to ensure that macro source
files only define macros, and do not include any non-macro source files.A file
can become a macro source even if you do not list it in a macros(global)

126 VisualAge C++: Getting Started

option, if it is included by another file that is listed in a macros(global) option.
The only way to force a macro to not be global is to make it a secondary
source file (a file not listed in the configuration file), and to ensure that no
macro source files include the file. This can be a difficult task, requiring many
primary source files to be changed to secondary source files, and potentially
resulting in slower rebuild times.

“Common Errors when Migrating” on page 121

Common Template Problems

If your code makes use of templates, you will be affected by various changes
to the way the C++ language handles templates.

Changes in Name Resolution
v A template definition must be parseable (previous compilers would skip the

definition and only parse the template as it was instantiated). To control the
way the compiler handles template definitions, use the
lang(templatedefimpls) option. To make the compiler follow the behavior of
previous versions, set this option to dontparse.

v A name not found by name lookup and not indicated to be a type by the
typename keyword, is assumed to not name a type.

v Name lookup does not consider template-dependent base classes.
v The keyword typename must be used to mark a dependent name as a type.

The following example illustrates this:
template <class T> struct A
{
typedef int X;
};
template <class T> struct B:A <T>
{
T::Y b1; // error Y is not found
A <T>::X b2; // error X is not found
void foo(X); // error X is not found
};

The errors can be fixed by changing the definition of B to:
template <class T> struct B : A <T>
{
typename T::Y b1;

// keyword “typename” tells parser Y is a type
typename A<T>::X b2;

// keyword “typename” tells parser X is a type
void foo(typename A<T>::X);

// keyword “typename” tells parser X is a type
};

Chapter 11. Troubleshooting References 127

Changes to friend Declarations
With VisualAge C++, Version 4.0 and 5.0, friend declarations in templates may
not have the same meaning they did with previous versions. For example,
the following code will generate a warning message:
struct A {} a;

template <class T> struct S;

template <class T> void f(T&, S<T>&) {}

template <class T> A& operator << (A&, S<T>&) { return a;}

template <class T> struct S
{
friend void f (T&, S&); // no explicit arguments
friend A& operator << (A&, S&); // no explicit arguments
};

To migrate this code, the friend declarations should be changed to include
explicit template arguments:
template <class T> struct S
{
friend void f<T> (T&, S&); // explicit argument T
friend A& operator << <T> (A&, S&); // explicit argument T
};

Without the explicit arguments, the friend declarations will introduce
nontemplate functions f(int&, S&)’ and ’operator <<(A&, S&)’ into global
scope and these nontemplate functions (which have no corresponding
definition) will be the friends of S.

With the template argument added explicitly, an instantiation of S, such as
S<int>, will make the template instantiations f<int>(int&, S<int>&) and
operator << <int> (A&, S<int>&) friends of S.

Previous versions of VisualAge C++ would not accept explicit template
arguments on friend declarations. If you wish to maintain compatibility with
previous versions of the compiler, the explicit template arguments should be
added with the use of a macro.

Changes to the friend Declarator
friend no longer prototypes the function. It simply implies that a function of
the specified signature is granted friend access:

g.C
—-
class A {
friend int lib_func1(int); // This function is from a library.
};
int f(){

return lib_func1(1);
}

128 VisualAge C++: Getting Started

The solution is to add the following line:
int lib_func1(int);

“Chapter 10. Migrate to Version 5.0 Batch Compilation” on page 119
“Chapter 8. Migrate to Incremental Compilation” on page 99

“Common Errors when Migrating” on page 121
templateDefImpls Language Option

Common Errors due to Duplicate Symbols

The VisualAge C++, Version 5.0 incremental compiler enforces the
one-definition rule across all the source files listed in a configuration file.
Traditional compilers are not able to enforce this rule, so it will not be
uncommon to encounter some error messages associated with duplicate
symbols while migrating to the incremental compiler, even if you did not
encounter such errors with any other or previous compilers.

You may encounter unexpected error messages if:
v Two different classes are defined with the same name at global scope in

two different source files.
v A function is defined in a header file which is processed more than once.

Usually the messages associated with a duplicate-definition error will indicate
where the original and conflicting definitions appear. Wherever possible, it is
best to rename one of the declarations. When the error is the result of header
files which are processed more than once, it is best to promote the header files
to the configuration file.

In the case of a class with multiple definitions, if you cannot rename either of
the definitions, you can use namespaces to overcome the problem, as follows:
1. If the source file defining the class appears in the configuration file,

remove it.
2. For each source file you remove, add a new source file to the

configuration. This new source file should define a unique namespace,
and should include the original source file between the opening and
closing braces of the namespace.

3. Each time you reference the class, qualify the class name with the
enclosing namespace, or precede the reference with a using namespace
statement.

Example: Multiple Definitions of a Class

Chapter 11. Troubleshooting References 129

// one.hpp
class TooMany {

public:
int x,y;

};

// two.hpp
class TooMany {

public:
int a,b;

};

// main.cpp
int main(void) {

TooMany One;
TooMany Two;
One.x=3;
Two.a=4;

}

// toomany.icc
target “problem.exe”
{

source “one.hpp”,
“two.hpp”,
“main.cpp”

}

A build of this project fails with two messages:
x is not a member of class “TooMany”
“TooMany” is already defined.

Solution
To solve the problem, make one.hpp and two.hpp into secondary sources,
included by the new primary sources ns_one.hpp and ns_two.hpp. (Do this by
changing the sources “one.hpp” and “two.hpp” in the configuration to
“ns_one.hpp” and “ns_two.hpp”.) Each of these new files defines a
namespace within which it includes its near-namesake. In main, explicitly
reference the appropriate namespace. The solution is shown below (the
contents of one.hpp and two.hpp do not change):
// ns_one.hpp
namespace ns_One {

#include “one.hpp”
}

// ns_two.hpp
namespace ns_Two {

#include “two.hpp”
}

// main.cpp
int main(void) {

ns_One::TooMany One;
using namespace ns_Two;

130 VisualAge C++: Getting Started

TooMany Two;
One.x=3;
Two.a=4;

}

// toomany.icc
target “problem.exe”
{

source “ns_one.hpp”,
“ns_two.hpp”,
“main.cpp”

}

“Promote Included System and User Header Files” on page 109

The One-Definition Rule

Adjust for Using the IBM Open Class Library

If your project was built in VisualAge C++ Version 4.0, you needed to set
several language options so that bool, false and true would not be treated as
keywords.

A different version of the IBM Open Class is included in VisualAge C++,
Version 5.0, and this version does not require those options to be set. To
migrate your project to Version 5.0, you should remove the following options
from your configuration files:
v lang(nokeyword, bool)
v lang(nokeyword, false)
v lang(nokeyword, true)

More detailed information on changes to the IBM Open Class is included in
Changes in Version 5 of the IBM Open Class in the online help.

For examples of configuration files for applications using IBM Open Class,
browse the ioc/samples subdirectory in the VisualAge installation directory.

Changes in Version 5 of the IBM Open Class
Changes in Version 4 of the IBM Open Class

Chapter 11. Troubleshooting References 131

“Chapter 8. Migrate to Incremental Compilation” on page 99
“Chapter 10. Migrate to Version 5.0 Batch Compilation” on page 119

132 VisualAge C++: Getting Started

Chapter 12. Special Considerations for Migrating to
Incremental Compilation

If VisualAge C++ incremental compilation is to become the only development
environment for your application, the migration path will resemble closely the
steps outlined in “Chapter 8. Migrate to Incremental Compilation” on page 99.
The following describe special situations that may require you to change the
steps described there.

Application Requires Multiple Targets
The resulting project may have to consist of multiple smaller projects.

Application Uses Meta Source Files or Application Uses Meta Header Files
The meta source model reduces duplicate preprocessing and
compilation in a traditional environment, and is easily translated into
an efficient configuration for your VisualAge C++, Version 5.0 project.

Application Needs to Maintain Compatibility With a Batch Compiler
You must avoid using some Version 5.0 features and features of the
new C++ language standard.

Application Uses both C and C++ Source
C and C++ can be combined in the incremental compilation
environment with little effort. There are some debugging
considerations, however.

When you have determined the considerations for your application, you are
ready to begin the migration process.

“Chapter 8. Migrate to Incremental Compilation” on page 99
Migrate a Simple Application to VisualAge C++, Version 5.0
Incremental Compilation

Application Requires Multiple Targets

In VisualAge C++ Version 4.0, the only way to debug across targets was to
combine them in a single codestore. This is no longer necessary. With
VisualAge C++, Version 5.0, you can create a project to produce multiple
executables or shared libraries. Typically, a project like this will consist of a
subproject for each executable or library. You can also combine several targets
in a single subproject. Considerations for both approaches are outlined here.

Multiple Targets in a Single Codestore

© Copyright IBM Corp. 1998, 2000 133

Here are some reasons for choosing to produce all targets from a single
configuration file with a single codestore:
v Build times for changes made to shared interfaces will be reduced. For

example, if three libraries and two executables make use of the same class,
changes to the class interface need only be rebuilt once. If the same libraries
and executables were in separate codestores, changes to the class interface
would need to be rebuilt five times.

v Less disk space will be required to save the codestore.

Within a single codestore, you cannot break the one-definition rule (defining
the same function or type more than once). You can, however, define the
function main() more than once. This support for multiple main functions
allows you to develop and debug multiple executables using the same
libraries in the same codestore.

A Separate Codestore for Each Target

There are several reasons to distribute your targets among several subprojects.
If your application meets any of the following conditions, you should set up
your project to consist of several subprojects, one for each target:
v Producing all targets from a single codestore may result in too large a

codestore, or excessive build times or memory usage.
v You have multiple definitions of a name. However, if you can rename one

of the conflicting definitions, or make use of namespaces to separate the
conflicting definitions, and recode, you can produce all targets from a single
codestore.

v You can confine code changes to implementations, not interfaces. If you are
only making changes to the internal implementations of individual targets,
having targets in different codestores may result in faster build times and
less memory usage.

v If you expect to make frequent changes to a specific target, you will not
have to rebuild any other targets when you make updates.

If you are ready to begin migrating your application to the incremental
compilation environment, proceed to “Chapter 8. Migrate to Incremental
Compilation” on page 99.

Configurations
The One-Definition Rule

134 VisualAge C++: Getting Started

Build in a Team Environment
“Divide a Single-Codestore Project into Multiple Codestores” on page 116
Produce Multiple Targets from One Build

“Chapter 12. Special Considerations for Migrating to Incremental
Compilation” on page 133

Application Uses Meta Source Files

The meta source model eliminates much of the duplicate preprocessing and
compilation that the migration process attempts to reduce. Therefore, if your
application already makes use of meta source with a batch compiler, you may
see only a small improvement when you initially migrate to the incremental
compiler. However, with this model, every change requires the entire meta
source file to be recompiled. With the incremental compiler, subsequent builds
should be significantly faster.

To migrate an application that uses a meta source file, follow these steps in
place of the steps outlined in Migrate to VisualAge C++, Version 5.0
Incremental Compilation:
1. “Create a Configuration File for Migration” on page 101, with one target,

using the IDE’s Project SmartGuide, or by copying a configuration file
from one of the samples directories.

2. Comment out the “target” directive in your configuration file, if you did
not already do so when creating the configuration file, so that the link
phase is not invoked.

3. Add each file listed in the meta-source file to your configuration, inside a
macros(global) option. Use the same order in the configuration file as in
the meta source file. Do not include any header files in the configuration
unless they are only included by the meta source file itself. For example:
//target “prog.exe”

{
option macros(global)
{

source “src1.cpp”
source “src2.cpp”
...
source “srcN.cpp”

}
}

Chapter 12. Special Considerations for Migrating to Incremental Compilation 135

4. Build the application and fix any errors. Repeat this step until all errors
are fixed.

5. If your application requires more than one target, “Add Another Target to
your Project for Migration” on page 110 to your configuration file, and
repeat Steps 1 through 4.

6. Remove the comments from the targets, and perform a clean build by
selecting Clean from the Project Workbook menu, or by deleting the
codestore (.ics file) and building.

7. Add the necessary run before or run after directives to invoke make for
any any pre-build and post-build targets your makefile called for. See
“Migrate Other Commands” on page 111 for more details on doing this.

“Application Uses Meta Header Files”
“Meta Source Files” on page 143

“Chapter 12. Special Considerations for Migrating to Incremental
Compilation” on page 133

Application Uses Meta Header Files

It is not uncommon for an application to have one header file, for example
“glob.h”, that includes all or most of the application’s header files. If your
application fits this description, you should follow these steps to migrate the
application:
1. “Create a Configuration File for Migration” on page 101, with one target,

using the IDE’s Project SmartGuide, or by copying a configuration file
from one of the samples directories.

2. Comment out the “target” directive in your configuration file, if you did
not already do so when creating the configuration file, so that the link
phase is not invoked.

3. Using your current, makefile-based setup, run a make and save the log to
a text file. Open the file as a section in the IDE. Separate the options for
tools other than the compiler, and “Convert Compile and Link Options to
Configuration Options” on page 105.

4. Add the meta header file to the configuration, and apply the
macros(global) option to it. For more information on adding source files,
see the Related Task below.

5. Build the project and correct any errors.
6. Add other source files, several at a time, or all at once.
7. Build and correct any errors. Repeat this step until all errors have been

fixed.

136 VisualAge C++: Getting Started

8. If your application requires more than one target, “Add Another Target
to your Project for Migration” on page 110, and repeat Steps 1 through 7.

9. Remove the comments from the targets, and perform a clean build by
selecting Clean from the Project Workbook menu, or by deleting the
codestore (.ics file) and building.

10. Add the necessary run before or run after directives to invoke make for
any any pre-build and post-build targets your original makefile called for.
See “Migrate Other Commands” on page 111 for more details on doing
this.

Example: Meta Header Files
target “test.exe”

{
option macros(global), define(“MAIN”, “”) //or define(MAIN, “1”),

//depending on how MAIN
//is defined
{
// macros(global) is used to make macros defined in glob.h
// visible in each “srcX.cpp” file.
// MAIN is an example of a macro that might be used to
// conditionally define variable and functions declared in
// the header file.

source “glob.h”
}

source “src1.cpp”
source “src2.cpp”
...
source “srcN.cpp”

}

“Application Uses Meta Source Files” on page 135
“Meta Source Files” on page 143

“Add Source Files to the Project for Migration” on page 106

“Chapter 12. Special Considerations for Migrating to Incremental
Compilation” on page 133

Application Needs to Maintain Compatibility with a Batch Compiler

The following migration considerations apply if the target platforms for your
application do not all support a version of the VisualAge C++, Version 5.0
incremental compiler:

Chapter 12. Special Considerations for Migrating to Incremental Compilation 137

v You may have to maintain a list of your sources in both your makefiles and
your configuration files. Other commands, however, can be kept in their
current state in a makefile. For more informations on which types of
commands to migrate, read “Migrate Other Commands” on page 111.

v You will need to maintain #include directives and forward declarations.
Otherwise you may encounter preprocessor errors, or syntactic or semantic
errors, when compiling changed code in the old environment.
The lang(orderednamelookup) configuration option can force builds to use
an ordered programming model so that potential errors relating to orderless
programming are detected and diagnosed within VisualAge C++, Version
5.0.

v If you are using a version of Visual Age C++ or C Set ++ prior to Version
4.0, or if your compiler does not support the new (1998) language standard,
you should use appropriate compatibility options and minimize use of
language features such as:
– for-loop counter variables scoped to the for statement. Set the

lang(ansiForStatementScopes) option to “no” if you need to build your
code with a compiler that does not support this change to the language.

– New keywords such as true, false, bool. You can use the
lang(nokeyword,“name”) option for each such keyword so that a compile
error occurs when you try to use such a keyword and you have not
defined it somewhere in your program.

– Enhancements to templates in the new standard. Template partial
specializations and explicit instantiations are new. Avoid partial
specializations, and use #pragma define instead of explicit instantiations.
You can use macros for handling typename and template name qualifiers
and for the header of a template specialization.

– Namespaces
– The Standard C++ Library, as declared in the namespace std, and which

includes header files listed in “New Standard C++ Library Header Files”
on page 172.

See the information in Options for Compatibility with Previous Versions of
VisualAge C++ for options that can help you maintain compatibility with
earlier releases.

v In the case where new constructs must be used (for example, you may need
to conditionally use “typename” to allow your template code to compile in
both environments), you can use a set of preprocessor directives to define
macros such as the following, and make the source file containing this code
a macro source file in your configuration file. The macro used in this
example, __IBMCPP__, is a predefined preprocessor macro that can be
used to manipulate source based on the level of IBM compiler that is being
used. __IBMCPP__ is set to the value of 400 for IBM VisualAge Version 4.0
and later, and can be used as follows:

138 VisualAge C++: Getting Started

#if __IBMCPP__ >= 400
#define TYPENAME typename
#else

#define TYPENAME
#endif

This provides backwards compatibility while allowing you to use new
keywords as keywords. Where possible, use compatibility options instead.

“Chapter 8. Migrate to Incremental Compilation” on page 99

nokeyword Language Option
Options for Compatibility with Previous Releases
orderednamelookup Language Option
“Chapter 12. Special Considerations for Migrating to Incremental
Compilation” on page 133

Application Uses Both C and C++ Source

You can use the IDE to develop both C code and C++ code. However, there
are some special considerations when migrating an application using both C
and C++ source files.

Features Supporting C Development

v The incremental compiler does not generate object files unless you
specifically request them. If you need to generate object files (.a or .obj
files), you can use the file(genObject, path) option to generate C object files
to a specified directory. This can be useful for developing projects that use
multiple directories.

v In a configuration file, you can explicitly specify whether each source file
contains C or C++ source code, or accept the default type set by the file
extension. VisualAge C++ runs the C compiler for C source files (i.e., for
files with the extension .c)

v If you build with mixed source in the IDE, messages generated from
compilation of both types of source are displayed in the Messages view.

Limitations with C Development

v You will need to specify the link(debug) option for targets containing C and
you will need to specify gen(debug) for C source files. If all of your source
is C++, and you are using the IDE is for debugging, these options should
not be used.

v The C compiler is not incremental. A VisualAge C++ build from C source
files records the include hierarchy and information from the configuration

Chapter 12. Special Considerations for Migrating to Incremental Compilation 139

file in the codestore. It stores no other information about your C source
code. Each time you rebuild, every C source file is recompiled if it or a file
that it includes has a later timestamp than on the previous build.

v You cannot use incremental compilation for C source files or use
incremental linking on code generated from C source code. If you have
both C and C++ source files in one build, the linker links the object files
compiled from C source files with the code in the codestore generated from
C++ source files.

v You must include header files in every C source file that requires them, and
ensure that functions, variables, etc., are declared before they are used. You
do not have to take these precautions with C++ source code.

v C symbols are not exported by the option link(exportAll). C symbols need
to be explicitly exported using the link(export, symbol) option.

If you are ready to begin migrating your application to the incremental
compilation environment, proceed to “Chapter 8. Migrate to Incremental
Compilation” on page 99.

Sources

debug Link Option
exportAll Link Option
export Link Option
Special Considerations for Migrating to Incremental Compilation

140 VisualAge C++: Getting Started

Chapter 13. Migration Concepts

Promoting Source Files to the Configuration File

When a secondary source file is added directly to the configuration file (i.e.,
made primary), it is promoted. Promoting a source file can significantly
improve build performance, although not every source file can safely be
promoted.

The compiler only compiles source files that are listed in the configuration file
once; any #include preprocessor directives in source files that include the
primary source file are ignored. You can safely promote a source file to the
configuration file provided the promotion does not change how the promoted
file or other source files are transformed during preprocessing. For example, a
source file containing conditional preprocessor directives based on a macro
definition should not be promoted, if the source file is included by several
other source files that define the macro differently. Consider the following
three files, one.cpp, two.cpp, and condsrc.hpp:

one.cpp
#define CONDITION1
#include “condsrc.hpp”

two.cpp
#define CONDITION2
#include “condsrc.hpp”

condsrc.hpp
#ifdef CONDITION1
// Source code...
#endif
#ifdef CONDITION2
// Different source code...
#endif

Given these three files, it would probably not be safe to promote condsrc.hpp
to your configuration, because the files one.cpp and two.cpp include
differently preprocessed versions of the file. Making condsrc.hpp a primary
source would be an error because the preprocessed code seen by the compiler
would be different than if condsrc.hpp were not promoted. However, if the
two sections of code in condsrc.hpp are not mutually exclusive (that is, there
is no harm if both sections are compiled for both .cpp files) the best approach
would be to define both macros within the configuration file, and to promote

© Copyright IBM Corp. 1998, 2000 141

condsrc.hpp to the configuration file as a macro source file. The configuration
file would contain the following macro definitions:
option define(“CONDITION1”),

define(“CONDITION2”),
macros(“global”) {

source “condsrc.hpp”
}

Another situation where promoting a source file may not be safe is one in
which the source file defines a macro whose name is also used in a different
way elsewhere in your program. For example, consider the following two
files, three.cpp and three.hpp:

three.cpp
int A=4; // Line 1
int x=A; // Line 2
#include “three.hpp”
x++;

three.hpp
#define A 3

If three.hpp is made a macro source in the configuration (so that it is visible
to all non-macro sources in the project), then A will be defined as the integer
literal 3, resulting in two problems:
v A compilation error at line1 of three.cpp (because the statement int A=4;

becomes int 3=4;)
v The literal value 3 assigned to x at line 2, instead of the variable A, whose

value would have been 4.

This situation is usually easy to detect during migration, as compile errors
often result. In this example the best solution would be to remove the
ambiguity by renaming either the variable A or the macro A, and promoting
three.hpp to the configuration file as a macro source file.

Macro Source Files
When you promote a source file to the configuration file, you should
determine whether the source file should be a macro source file. Macro source
files are treated differently from other primary source files in two ways:
v Macro source files are preprocessed before compilation begins, and any

macros defined in them are visible to all primary source files
v Macro source files are guaranteed to be preprocessed in the order in which

they appear in the configuration file, so macros defined by one
configuration file are defined in all subsequently listed macro source files
unless redefined or undefined later.

142 VisualAge C++: Getting Started

If a header file defines macros used by other sources, and is listed as a source
in a configuration file, it should be enclosed in the macros(global) option.

Using Macros Which Expand to Different Values in Different Source Files
Here is an example,
—-global.hpp—-
....
extern int i
#ifdef MAIN
= 1
#endif
;

——-t.icc——
target “t.exe”

{
option define(“MAIN”, “”) //or define(MAIN, “1”), depending

//on how MAIN is defined

{
source “global.hpp”, “other.hpp”
}
source “t.cpp”
...
...
}

In this application, global.hpp is included by many .cpp files but the macro
MAIN is only defined when compiling one of the .cpp files. global.hpp can
be manually promoted by enclosing it with option define(MAIN, “”) {
global.hpp }.

Sources

“Promote Included System and User Header Files” on page 109

Meta Source Files

A meta source file is a file that includes other source files to improve the
performance of full builds in a traditional compiler environment. For example,
if you have ten source files that all make use of a group of common header
files, you can reduce the time taken for a full build of your application by
compiling a single meta file that includes these ten source files, instead of
compiling each source file separately, as follows:

Chapter 13. Migration Concepts 143

// meta.cpp
#include “src1.cpp”
#include “src2.cpp”
...
#include “srcN.cpp”

Headers used by more than one source file in the group are compiled only
once when the meta source file is compiled (provided the header files use
macro guards), instead of being compiled up to ten times. This build
improvement in full builds is offset by slower builds when a single source file
included by the meta source file is changed, because the meta source file itself
is the compilation unit that must be recompiled.

When you migrate meta source files to configuration files for the VisualAge
C++, Version 5.0 incremental compiler, you can gain some performance
benefits (because, as with a traditional compiler, your included files will be
compiled fewer times). However, the difference in build times may not be as
significant as the difference achieved when migrating from individual source
files to a configuration file. The meta source model has already reduced the
build time.

“Application Uses Meta Source Files” on page 135
“Application Uses Meta Header Files” on page 136

Considerations When Using C++ I/O

Two implementations of the iostreams input/output library are included in
VisualAge C++, Version 5.0:
v The first implementation conforms to the specification of the iostreams

library as it appears in the ISO C++ standard. Types and functions
associated with this implementation are declared in the standard header
files <iosfwd>, <iostream>, <ios>, <streambuf>, <istream>, <fstream>,
<ostream>, <iomanip>, <sstream> and <strstream>. Use this
implementation of iostreams for conformance to the C++ standard, or when
using other components of the Standard C++ Library.

v The second implementation is provided for compatibility with versions of
VisualAge C++ prior to Version 4.0. Types and functions associated with
this implementation are declared in the non-standard header files
<iostream.h>, <fstream.h>, <iomanip.h>, <strstream.h>, <stream.h> and
<stdiostr.h>.

The standard iostreams library declares all names in the standard namespace
std, while the compatibility iostreams library declares all names in the global
namespace. In a project that uses both iostreams implementations, if the

144 VisualAge C++: Getting Started

using-directive using namespace std; appears in any scope that encloses the
use of a name which is declared by both implementations of iostreams, a
compile-time error will result.

Example
#include <iostream>
#include <iostream.h>
using namespace std; // Line 1
int main(void) {

cout << “I can hear music\n”; // Line 2 - which cout?
}

The header file <iostream> declares the static object std::cout and the header
file <iostream.h> declares the static object ::cout. Because of the using-directive
at line 1, both of these objects will be considered when name lookup attempts
to resolve the identity of the cout named at line 2. The compiler will halt with
a diagnostic message. If the using-declaration at line 1 is deleted, the source of
ambiguity is removed and the example will compile successfully. The cout
named at line 2 will then resolve to the compatibility iostream library’s cout,
which is declared in the global scope in the header file <iostream.h>.

It is possible to use the two implementations of iostreams together.

“Use the Standard Iostreams Library and the Compatibility Iostreams Library”
on page 177
“Use the Standard Iostreams Library with the IBM Open Class Library” on
page 177

Migration of Resource Files

Resource Conversion Utilities for Cross-Platform Development
Because resource files are unique to the environment they were developed in,
resources cannot simply be inherited by similar applications developed under
different environments. To create the same application and use the same
resources for a different platform, the format of the resource must be
converted to suit the operating environment. The resource conversion utilities
enable resources to be ported to other platforms without having to re-create
the objects for similar applications.

< Resource Conversion Utility

The Resource Conversion Utility converts Windows-specific resource files for
use with AIX. VisualAge C++, Version 5.0 for AIX can accept Windows-format
icons, bitmaps, and cursors without conversion.

Chapter 13. Migration Concepts 145

“Chapter 10. Migrate to Version 5.0 Batch Compilation” on page 119
“Chapter 8. Migrate to Incremental Compilation” on page 99

146 VisualAge C++: Getting Started

Chapter 14. Other Migration References

Options for Compatibility with Previous Versions of VisualAge C++

Three predefined option groups are provided with VisualAge C++, Version 5.0
to allow for greater compatibility with IBM C and C++ Compilers, Version 3.6
and later, and with the C++ language standard.

The option groups can be set in a configuration file by including the option
group name in an option directive. The available groups are lang_compat366,
lang_strict98 or lang_ansi, and lang_extended. The options and settings
included in each group are listed in the tables below.

To use these option groups with the batch compiler, use the -qlanglvl option,
with the settings -qlanglvl=compat366, -qlanglvl=strict98 or -qlanglvl=ansi,
and -qlanglvl=extended, respectively.

Note: the lang_strict98 and lang_ansi groups are identical.

Options Group names

Configuration Option Batch Option compat366 strict98/
ansi

extended

gen (rtti) -qrtti no yes no

Options Group names

Configuration Option Batch Option compat366 strict98/
ansi

extended

gen
(compatNestedTemplateAlignmentRule)

-qlanglvl=oldtmplalign yes no no

Options Group names

Configuration Option Batch Option compat366 strict98/
ansi

extended

lang (allowTypedefAsClassName) -qlanglvl=typedefclass yes no no

© Copyright IBM Corp. 1998, 2000 147

Options Group names

Configuration Option Batch Option compat366 strict98/
ansi

extended

lang (anonymousStructs) -qlanglvl=anonstruct no no yes

Options Group names

Configuration Option Batch Option compat366 strict98/
ansi

extended

lang (ansiForStatementScopes) -qlanglvl=ansifor no yes yes

Options Group names

Configuration Option Batch Option compat366 strict98/
ansi

extended

lang (compatFriendDeclarations) -qlanglvl=oldfriend yes no no

Options Group names

Configuration Option Batch Option compat366 strict98/
ansi

extended

lang (compatMath) -qlanglvl=oldmath yes no no

Options Group names

Configuration Option Batch Option compat366 strict98/
ansi

extended

lang
(compatTempAccessChecking)

-qlanglvl=oldtempacc yes no no

148 VisualAge C++: Getting Started

Options Group names

Configuration Option Batch Option compat366 strict98/
ansi

extended

lang
(compatTemplateSpecialization)

-qlanglvl=oldtmplspec yes no no

Options Group names

Configuration Option Batch Option compat366 strict98/
ansi

extended

lang
(extendedAnonymousUnions)

-qlanglvl=anonunion yes no yes

Options Group names

Configuration Option Batch Option compat366 strict98/
ansi

extended

lang (illformedPointerToMember) -qlanglvl=illptom yes no yes

Options Group names

Configuration Option Batch Option compat366 strict98/
ansi

extended

lang (implicitInt) -qlanglvl=implicitint yes no yes

Options Group names

Configuration Option Batch Option compat366 strict98/
ansi

extended

lang (longlong) -qlonglong yes no yes

Chapter 14. Other Migration References 149

Options Group names

Configuration Option Batch Option compat366 strict98/
ansi

extended

lang (offsetOfNonPODClasses)) -qlanglvl=offsetnonpod yes no yes

Options Group names

Configuration Option Batch Option compat366 strict98/
ansi

extended

lang (oldDigraphs) -qlanglvl=olddigraph no yes yes

Options Group names

Configuration Option Batch Option compat366 strict98/
ansi

extended

lang (staticConstLinkage) N/A yes yes no

Options Group names

Configuration Option Batch Option compat366 strict98/
ansi

extended

lang (templateDefImpl,
dontparse|parsewithwarnings)

dontparse parsewithwarnings parsewithwarnings

-qtmplparse=
no|parse|warn

no warn warn

Options Group names

Configuration Option Batch Option compat366 strict98/
ansi

extended

lang (trailingEnumCommas) -qlanglvl=trailenum yes no yes

150 VisualAge C++: Getting Started

Options Group names

Configuration Option Batch Option compat366 strict98/
ansi

extended

lang (zeroExtentArrays) -qlanglvl=zeroextarray no no yes

Options Group names

Configuration Option Batch Option compat366 strict98/
ansi

extended

link (nameMangling) -qnamemangling=compat|ansi compat ansi ansi

Options Group names

Configuration Option Batch Option compat366 strict98/
ansi

extended

macros (redefine) -qlanglvl=redefine no no no

Options Group names

Configuration Option Batch Option compat366 strict98/
ansi

extended

lang (keyword,bool) -qkeyword=bool no yes yes

Options Group names

Configuration Option Batch Option compat366 strict98/
ansi

extended

lang (keyword,explicit) -qkeyword=
explicit

no yes yes

Chapter 14. Other Migration References 151

Options Group names

Configuration Option Batch Option compat366 strict98/
ansi

extended

lang (keyword,export) -qkeyword=export no yes yes

Options Group names

Configuration Option Batch Option compat366 strict98/
ansi

extended

lang (keyword,false) -qkeyword=false no yes yes

Options Group names

Configuration Option Batch Option compat366 strict98/
ansi

extended

lang (keyword,mutable) -qkeyword=
mutable

no yes yes

Options Group names

Configuration Option Batch Option compat366 strict98/
ansi

extended

lang (keyword,namespace) -qkeyword=
namespace

no yes yes

Options Group names

Configuration Option Batch Option compat366 strict98/
ansi

extended

lang (keyword,true) -qkeyword=true no yes yes

152 VisualAge C++: Getting Started

Options Group names

Configuration Option Batch Option compat366 strict98/
ansi

extended

lang (keyword,typename) -qkeyword=
typename

no yes yes

Options Group names

Configuration Option Batch Option compat366 strict98/
ansi

extended

lang (keyword,using) -qkeyword=using no yes yes

Equivalent Batch Compile and Incremental Build Options

Compile Options from Earlier Versions of VisualAge C++ and Equivalent
Configuration Options (AIX)

With the VisualAge C++ incremental compiler, the old form of options are no
longer used. For both C and C++, you control the compile and link stages of
build by specifying options in a configuration file.

The syntax of configuration file options indicates whether the option relates to
code generation, optimization, the C or C++ language, the link stage, or other
features of builds.

The table below gives the configuration file option equivalent to compile
options of C Set ++, Version 3.1.4. In an incremental C++ compile, not all the
old options are meaningful, some are automatic, and the functionality of
others is provided in a different way. An entry of N/A in the table indicates
that an equivalent new option is not available. Whether the new option
applies only to C or only to C++ code in this version of VisualAge C++ is
indicated in the description column.

In the option syntax, the characters [and] enclose optional items, and the
character | indicates alternatives.

Chapter 14. Other Migration References 153

Old Option Description Configuration File Option

-# Display language commands but
do not invoke them; output goes
to stdout.

N/A

-+ Treat .c files as C++ source code. N/A

-a Produce test coverage
information; output goes to .d
file.

N/A

-ae Produce test coverage
information for C++ exception
handling; output goes to .d file.

N/A

-B Construct alternate
compiler/assembler/linkage
editor program names.

N/A

-bbigtoc

-bnobigtoc

Generates extra code when the
size of the table of contents
(TOC) grows to a size greater
than 64KB.

link(bigTOC, yes)
link(bigTOC, no)

-bD:number
-bmaxdata:number

Set the size of the heap in bytes.
The first number specifies the
total virtual address space to
reserve. The second number the
amount of physical memory to
commit initially.

link(heap, number)

-bdynamic
-bstatic

Determines which types of
library files are searched by
linkage editor.

link(linkWithSharedLib
[,yes])
link(linkWithSharedLib,no)

-bI:filename supported as a source in the
configuration:
source type(imp) “filename”
or
source “filename.imp”

-blibpath:string Override search path. link(libPathOut, string)

-bnoentry Specify that the address of the
symbol is the start address of the
executable module being built.

link(entry,no)

-bnso or -bnautoimp
-bso or -bautoimp

Specifies if unstripped, shared
objects are statically linked as
ordinary object files.

link(static, yes)
link(static, no)

-brtl Tells the linkage editor to accept
both .so and .a library file types.

N/A

-c Do not send object files to the
linkage editor.

N/A

154 VisualAge C++: Getting Started

Old Option Description Configuration File Option

-C Preserve comments in
preprocessed output.

pp(preprocessOnly)
pp(preserveComments)

-D<name>[=<def>] Define <name> as in #define
directive. If <def> is not
specified, 1 is assumed.

define(...)

-Dname[=[value]] Define preprocessor macro. define(macro_name[, string])

-Wl,-Dnumber Set the starting address for the
data section of the output file to
number.

link(dataStart, number)

-E Preprocess but do not compile.
Output goes to stdout.

pp(preprocessOnly)
pp(stdout)

-ename Specify that the address of the
symbol is the start address of the
executable module being built.

link(entry, string)

-F Use alternate configuration file,
etc.

supported as a vacbld command
option

-F<x>[:<stanza>] Use alternate configuration file,
etc.

supported as a vacbld command
option
stanzas also supported by
defaults(stanza)

-g Include traditional debug option. link(debug[, yes])
link(debug, no)

-Hnumber Set the address alignment for all
loadable segments so that the
start of each segment is aligned
at a multiple of the specified
number of bytes.

link(alignAddr, number)

-I Specify #include search paths. incl(searchpath, path)

-I<dir> Search in directory <dir> for
include files that do not start
with an absolut path.

include(searchPath,string)

-I<key> Search the specified library file,
where <key> selects the file
lib<key>.a.

N/A

-K

-z

N/A

-lname N/A

-Lstring Specify search path for library
files.

link(libSearchPath,string)

Chapter 14. Other Migration References 155

Old Option Description Configuration File Option

-ma Generate inline calls to the
“alloca” function as if “#pragma
alloca” directives were in the
source file.

N/A

-M Generate information to be
included in a “make” description
file; output goes to .u file.

file(makeDep[,yes])

-o Name generated executable or
object file.

N/A

-o<name> Name generated executable or
object file.

file(genObject[,yes])
file(genObject,string)
file(genObject,no)

-O
-O2
-O3

Optimize code. opt(level, number)

-O4 Equivalent to -O3 -qipa with
automatic detection of
architecture and tuning option.

N/A

-p

-pq

Enable code for performance
analysis.

gen(profile[, yes])

-pg Generate profiling support code
including BSD profiling support.

gen(profile, bsd)
link(debug[,yes])

-P Preprocess but do not compile.
Output goes to .i file.

pp(preprocessOnly[,yes])

-Q Inline specified user functions. opt(inline[, yes])
opt(inline, no)
opt(autoInline[, yes])
opt(autoInline, no)
opt(autoInlineLimit)

-Q!
-qnoinline

Do not inline any function. opt(inline, no)
opt(autoInline, no)

-Q=<lc>

-qinline=<lc>

Inline if number of source
statement in function is less than
the number specified in <lc>.

opt(inline)
opt(autoInline)
opt(autoInlineLimit)

-Q-<nm>

-qinline-<nm>

Not inline function listed by
names in <nm>.

opt(inline[, yes])
opt(autoInline)
opt(noInlineFunc,name)

-Q+<nm>

-qinline+<nm>

Attempt to inline funtion listed
by names in <nm>.

opt(inline[, yes])
opt(inlineFunc,name)

156 VisualAge C++: Getting Started

Old Option Description Configuration File Option

-qalias=<typ|allp|addr|ansi>

Specifies the aliasing assertion to
be applied to your compilation
unit. The available options are:
typ= Pointers to different types
are never aliased.
allp= Pointers are never aliased.
addr= Variables are disjoint from
pointers unless their address is
taken.
ansi= Pointers can only point to
an object of the same type.
Require -O option.

opt(alias,...)

-qalign=option Specify alignment of data items. gen(align, option)

-qansialias

-qnoansialias

Specify which aliasing rules can
be used during optimization.

opt(alias, ...)

-qarch=name

-qarch=<com|pwr|pwr2|
pwrx|ppc|ppcgr>

Specifies the architecture on
which the executable program
will be run. The available options
are:
com= Produce an object that
contains instructions that will
run on all the POWER and
PowerPC hardware platforms.
pwr= Produce an object that
contains instructions that will
run on the POWER hardware
platform.
pwr2= Produce an object that
contains instructions that will
run on the POWER2 hardware
platform.
pwrx= Same as pwr2.
ppc= Produce an object that
contains instructions that will
run on any of the 32-bit
PowerPC hardware platforms.
ppcgr= Produce an object that
contains optional graphics
instructions for PowerPC
processors.
The default is -qarch=com. If the
-qarch option is specified without
the -qtune=<option>, the
compiler uses -qtune=pwr.

gen(arch, name)
gen(arch,...)

Chapter 14. Other Migration References 157

Old Option Description Configuration File Option

-qassert=option

-qassert=<typ|allp|addr>

Specifies the aliasing assertion to
be applied to your compilaton
unit. The available options are:
typ= Pointers to different types
are never aliased.
allp= Pointers are never aliased.
addr= Variables are disjoint from
pointers unless their address is
taken.

opt(alias, option)
opt(aliasAssert,typ[,yes])
opt(aliasAssert,typ,no)
opt(aliasAssert,allp[,yes])
opt(aliasAssert,allp,no)
opt(aliasAssert,addr[,yes])
opt(aliasAssert,addr,no)

-qattr Produce an attribute listing;
output goes to .lst file.

list(attr[,yes])

-qattr=full Produce an attribute listing
containing all names, whether
referenced or not; output goes to
.lst file.

list(attr, full)

-qbitfields=signed
-qbitfields=unsigned

Specify whether bitfields will be
signed or unsigned.

lang(signedBitfields[,yes])
lang(singedBitfields,no)

-qbrowse Produce information for the
source code browser; output goes
to .brs file.

N/A

-qchars=signed
-qchars=unsigned

Treat plain char variables as
signed or unsigned.

lang(signedChars[, yes])
lang(signedChars, no)

-qcheck
-qnocheck

-qcheck=suboptions

The suboptions are:
all= Switches on all of the
following suboptions.
nullptr= Performs run-time
checking of addresses contained
in pointer variables used to
reference storage.
bounds= Performs run-time
checking of addresses when
subscipting within an object of
known size.
divzero= Performs run-time
checking of integer division.

gen(check, zeroDivide[, yes])
gen(check, zeroDivide, no)
gen(check, nullPointer[,yes])
gen(check, nullPointer,no)
gen(check, bounds[,yes])
gen(check, bounds,no)

-qcinc=<prefix>

-qnocinc=prefix

Includes files form/user/include
by inserting
extern “C” {
before each <prefix> and
inserting } after it.

incl(externC, prefix)
incl(noExternC, prefix)

-qcompact
-qnocompact

Optimize code for size. opt(size[, yes])
opt(size, no)

158 VisualAge C++: Getting Started

Old Option Description Configuration File Option

-qcpluscmt

-qnocpluscmt

Permit “//” to introduce
comment that lasts until the end
of the current source line, as in
C++.

lang(slashSlashComment
[,yes])
lang(slashSlashComment,no)

-qdataimported
-qdataimported=string

-qdataimported=
<name1>:<name2>:...

Specify which data items are
imported. If no names are
specified, all data items are
assumed to be imported. This is
the default.

link(dataImported, none)
link(dataImported, all)
link(dataImported, names)
link(dataImportedNames, string)

-qdatalocal

-qdatalocal=string

-qdatalocal=
<name1>:<name2>:...

Specify which data items are
local. If no names are specified,
all data items are assumed to be
local.

link(dataLocal, none)
link(dataLocal, all)
link(dataLocal, names)
link(dataLocalNames, string)

-qdbcs

-qnodbcs

Allow use of DBCS. lang(dbcs[,yes])
lang(dbcs,no)

-qdbxextra

-nodbxextra

Produce symbol table for
unreferenced variables.

gen(debugunreferenced[, yes])

-qdigraph

-qnodigraph

Permit ANSI digraph and
keyword operators.

lang(digraphs[, yes])
lang(digraphs, no)

-qdisjoint=<disjointSpec> Tell the optimizer that certain
aliases are impossible.

N/A

-qdollar

-qnodollar

Allow user to specify dollar sign
(’$’) in identifier names.

lang(allowDollarInNames[, yes])
lang(allowDollarInNames, no)

Chapter 14. Other Migration References 159

Old Option Description Configuration File Option

-qenum=enumopt

-qenum=<small|int|1|2|4>

Specify whether minimum-sized
enumerated types will be
produced or not. <enumopt> can
be either small, int, 1, 2 or 4.
small denotes that either one,
two or four bytes of storage will
be allocated for enum variables
based on the range of the enum
constants.
int is the default, and causes
enum variables to be treated as
though they were of type signed
int for C or either signed or
unsigned int for C++ depending
on the range of the enum
constants.
1 will cause enum variables to be
packed into 1 byte.
2 will cause enum variables to be
packed into 2 bytes.
4 will cause enum variables to be
packed into 4 bytes.

gen(enumSize, ...)

-qextchk

-qnoextchk

Perform external name
type-checking and function call
checking.

link(typeCheck[, yes])
link(typeCheck, no)

-qfdpr

-qnofdpr

Collect information about
programs for use with the AIX
fdpr (Feedback Directed Program
Restructuring)
performance-tuning utility.

N/A

-qflag Set minimum severity level. report(level, ...)

-qflag=<sev> Specify severity level of
diagnostics to be reported in
source listing adn stderr; the
severity level is one of
<i,w,e,s,u>.

list(reportLevel, sev)
report(level,sev)

-qflag=<sev1>:<sev2> Specify severity level of
diagnostics to be reported in
source listing (<sev1>), adn
stderr (<sev2>); the severity
levels are one of <i,w,e,s,u>.

list(reportLevel, sev1)
report(level, sev2)

160 VisualAge C++: Getting Started

Old Option Description Configuration File Option

-qfloat

-qfloat=<opt1>:<opt2>:
...:<optN>

The available options are:
emulate Function calls are emitted
in place of PowerPC
floating-point instructions.
fltint Do range checking of
floating point to integer
conversions.
hsflt Never round
single-precision expressions, and
do not perform range checking
for floating-point to integer
conversions.
hssngl Round single-precision
expressions only when the
results are stored into REAL*4
memory locations.
nans Detect conversion of
single-precision NaNS to double
precision call checking.
nomaf Suppress generation of
multiply-add instructions.
nofold Suppress compile-time
evaluation of constant
floating-point expressions.
rndsngl Ensure strict adherence to
IEEE standard. Results of
operations on single-precision
values remain in single precision.
rrm Specify run-time rounding
mode.
rsqrt Specify whether a division
by the result of a square root can
be replaced with a multiple by
the reciprocal of the square root.
spnans Generate extra
instructions to detect signalling
NaN of conversion from single
precision to double precision.
(Obsolete; use the equivalent
-qfloat=nans option.)

gen(float, ...)
gen(float, string[,yes])
gen(float, string,no)

-qflttrap
-qflttrap=option

-qflttrap=
<opt1>:<opt2>:...:<optN>

-qnoflttrap

Generate calls to detect and trap
floating point. The available
options are: overflow, underflow,
zerodivide, invalid, inexact,
enable, imprecise.

gen(floatTrap, option[, yes])
gen(floatTrap,option, no)

Chapter 14. Other Migration References 161

Old Option Description Configuration File Option

-qfold
-qnofold

Specifies that constant
floating-point expressions are to
be evaluated at compile time.

gen(float, fold[, yes])
gen(float, fold, no)

-qfullpath
-qnofullpath

Specify path information. link(debugFullPath[, yes])
link(debugFullPath, no)

-qfuncsect

-qnofuncsect

Place instructions for each
function in a separate cset.

gen(funcSect[, yes])
gen(funcSect, no)

-qgenpcomp Generate pretokenized include
files.

N/A

-qgenpcomp[=dirname] Generate pretokenized include
files.

file(genPCH[, yes])
file(genPCH, string)
file(genPCH, no)

-qgenproto Generate ANSI prototypes form
K&R function definitions.

N/A

-qgenproto=<parmnames>

Produces ANSI prototypes from
K&R function definitions.

file(genProto[, yes])
file(genProto, no)

-qhalt

-qhalt=<w|e|s|u>

Stop compiler after first phase if
severity of errors detected equals
or exceeds <sev>; the severity
lievel is one of w, e, s, u.

N/A

-qhd Generate additional information
for use with the Heapview
debugger.

N/A

-qheapdebug

-qnoheapdebug

Enables debug versions of
memory management functions.

alloc(debug[,yes])
alloc(debug,no)

-qidirfirst
-qnoidirfirst

Specify search order for files. incl(searchpathfirst[, yes])
incl(searchpathfirst, no)

-qignerrno
-qnoignerrno

Tell optimizer that program will
never refer to or set errno.

opt(ignErrno)
opt(ignErrno, no)

-qignprag

-qignprag=disjoint

-qignprag=isolated

-qignprag=all

Honor or ignore references to
#pragma disjoint and/or
isolated_call.

opt(pragmaDisjoint[, yes])
opt(pragmaDisjoint, no)
opt(pragmaIsolatedCall[, yes])
opt(pragmaIsolatedCall, no)

-qinfo=infoopt
-qinfo=<class>

Produce additional lint-like
messages based on <class>.

info()

162 VisualAge C++: Getting Started

Old Option Description Configuration File Option

-qinitauto=value

-qinitauto=<hh>

Initialize automatic storage to
<hh>. <hh> is a hexadecimal
value. This generates extra code
and should only be used for
error determination.

gen(initAuto[, yes])
gen(initAuto, number)
gen(initAuto, no)

-qinlglue
-qnoinlglue

Generate fast external linkage by
inlining the code (pointer glue
code) necessary at calls via a
function pointer and calls to
external procedures.

gen(inlinePointerGlue[, yes])
gen(inlinePointerGlue, no)

-qinline

-qnoinline

Determine whether functions in
your code qualified with the
_Inline or inline keywords are
candidates for inlining.

opt(inline[, yes])
opt(inline, no)

-qipa

-qnoipa

-qipa=option

Turn the IPA optimizer on or off. opt(ipa)
opt(ipa, no)
opt(ipaoption, option)

-qipa[=<ipa_options>] Turn on inter-procedural
analysis.

N/A

-qisolated_call=
<name1>:<name2>:...

Specify that the calls to the
functios listed have no side
effcts. <name1> and <name2>
are function names. The user
may specify as many function
names as necessary.

opt(isolatedCall,...)

-qlanglvl Set language level. N/A

-qlanglvl=<ansi|saa12|saa|
extended|classic>

Specify language level to be used
during compilation. <langlvl>
can be ansi, saa12, saa, extended,
or classic.

lang(level,...)

-qldbl128
-qnoldbl128
-qlongdouble
-qnolongdouble

Represent long doubles as 80 bit
values on OS/2® and Windows®,
or as 128 bit values on AIX.

gen(longDouble[, yes])
gen(longDouble, no)

-qlibansi
-qnolibansi

Process ANSI C library names as
system functions.

gen(libansi)
gen(libansi, no)

-qlinedebug

-qnolinedebug

Generates abbreviated line
number and source file name
information for the debugger.

gen(lineOnlyDebug[,yes])
gen(lineOnlyDebug,no)

-qlist

-qnolist

Produce an object listing; output
goes to .lst file.

list(listing[,yes])
list(listing,no)

Chapter 14. Other Migration References 163

Old Option Description Configuration File Option

-qlistopt

-qnolistopt

Display the settings of all
options; output goes to .lst file.

list(options[, yes])

-qlonglong
-qnolonglong

Processor disallow long long int. lang(longlong)
lang(longlong, no)

-qmacpstr

-qnomacpstr

Allow ’\p’ as the first character
of a string constant.

lang(macPStr[, yes])
lang(macPStr, no)

-qmakedep

-qnomakedep

Creates an output file that
contains targets suitable for
inclusion in a description file for
the AIX make command.

file(makeDep[,yes])
file(makeDep,no)

-qmaxerr Instructs the compiler to halt
compilation when a specified
number of errors of specified or
greater severity is reached.

debug(maxErrors, number)

-qmaxmen=<num> Limit the amount of memory
used by space intensive
ooptimization to <num>. <num>
specified in kilobytes.
priority=NNN

opt(maxMem, number)

-qmbcs

-qnombcs

Allow use of DBCS. lang(dbcs[, yes])
lang(dbcs, no)

-qnoprint Direct listing to /dev/null. list(listing, no)

-qnostdinc

-qstdinc

Specify which files are included
with the #include “file_name”
and #include <file_name>
directives. If -qnostdinc is
specified, the /usr/include
directory is not searched.

incl(standardInclude, no)

-qonce

-qnoonce

Process #include files only once. file(once[, yes])
file(once, no)

-qpascal

-nopascal

Accept and ignore the keyword
’pascal’ as a type modifier.

lang(pascal[, yes])
lang(pascal, no)

-qpdf1

-qpdf2

Perform aggressive optimizations
with profile directed feedback.

N/A

-qphsinfo Produce compiler phase
information

N/A

-qpriority=<num> Specifies the priority level for
initialization of static
constructors.

link(sharedLibPriority, number)

164 VisualAge C++: Getting Started

Old Option Description Configuration File Option

-qproclocal

-qproclocal=
<name1>:<name2>:...

Specify which functions are local.
If no filenames are specified, all
invoked functions are assumed
to be defined within the current
file. The last explicit specification
for a function takes precedence.

link(procLocal,<none|all|
names>)
link(procLocalName, string)

-qprocimported

-qprocimported=
<name1>:<name2>:...

Specify which functions are
imported. If no filenames are
specified, all invoked functions
are assumed to be defined
outside the current file. The last
explicit specification for a
function takes precedence.

link(procImport,<nome|all|
names>)
link(procImportName,string)

-qprocunknown

-qprocunknown=
<name1>:<name2>:...

Specify which functions are
unknown to be local or
imported. If no filenames are
specified, all functions called are
assumed to be unknown. This is
the default when no user options
are specified. The last explicit
specification for a function takes
precedence.

link(procUnknown,<none|all|
names>)
link(procUnknownName, string)

-qproto

-qnoproto

Assert that procedure call points
agree with their declarations
even if the procedure has not
been prototyped. This allows the
caller to pass floating point
arguments floating point
registers instead of general
purpose registers.

lang(checkNonProto[,yes])
lang(checkNonProto,no)

-qro
-qnoro

Put string literals in read only
area.

gen(readonly[, yes])
gen(readonly, no)

-qroconst
-qnoroconst

Put constant values in read only
area.

gen(readonlyconst)
gen(readonlyconst, no)

-qrwvftable

-qnorwvftable

Place virtual function tables into
read/write memory.

N/A

-qshowinc

-qnoshowinc

Include the source for all
included files in the source
listing, if the -qsource option is
in effect.

list(expAllInc[,yes])
list(expAllInc,no)

-qsom Turn on implicit SOM mode. N/A

Chapter 14. Other Migration References 165

Old Option Description Configuration File Option

-qsomgs Disable direct access to SOM
attributes.

N/A

-qsominc Include or exclude files in
implicit SOM mode.

N/A

-qsomro Write the release order of the
specified class to stdout.

N/A

-qsource

-qnosource

Produce a source listing; output
goes to.lst file.

list(incSource[,yes])
list(incSource,no)

-qspill=number
-qspill=<size>

Specify the size of the register
allocation spill area.

opt(registerSpillSize, number)

-qsrcmsg

-qnosrcmsg

Reconstruct source lines in error
along with the diagnostic
messages.

report(srcMsg[, yes])
report(srcMsg, no)

-qstatsym
-qnostatsym

Adds user-defined, nonexternal
names that have a persistent
storage class, such as initialized
and uninitialized static variables,
to the name list (the symbol table
of xcoff objects).

link(staticSymbols)
link(staticSymbols, no)

-qstrict
-qnostrict

Valid only at -03. This option
turns off aggresive optimizations
which have the potential to alter
the semantics of a user’s
program. This option also sets
-qfloat=nofltint:norsqrt.

opt(strict)
opt(strict, no)

-qsyntaxonly

-qnosyntaxonly

Causes the compiler to perform
syntax checking without
generating an object file.

file(syntaxOnly[,yes])
file(syntaxOnly,no)

-qtabsize=<size> Change the length of tabs in
your source file.

file(tabSize, number)

166 VisualAge C++: Getting Started

Old Option Description Configuration File Option

-qtbtable=option
-qtbtable=<option>

Generate a traceback table for
each function and place it in the
text segment at the end of the
function code.
The available options are:
none= No traceback table is
generated.
full= A full traceback table is
generated. This is the default
with -g specified.
small= A traceback table is
generated with no name or
parameter information. This is
the default when -g is NOT
specified.

gen(traceBackTable,option)
link(traceBackTable,
<none|full|small>)

-qtempinc
-qtempinc=<directory>

-qnotempinc

Automatically generate template
functions in the specified
directory. Use the “notempinc”
option to suppress this
behaviour.

N/A

-qtempmax Specify the maximum number of
files to be created in the tempinc
directory for each template file.

N/A

Chapter 14. Other Migration References 167

Old Option Description Configuration File Option

-qtune=name

-qtune=<403|601|603|604|
pwr|pwr2|pwr2s>

Specifies the architecture system
for which the executable
program is optimized. The
available options are:
403= Produce an object
optimized for all the PowerPC
403™ processors. Use
-qfloat=emulate to emulate the
floating-pointing instructions
omitted by the 403 processor.
601= Produce an object
optimized for all the PowerPC
601® processors.
603= Produce an object
optimized for all the Power PC
603® processors.
604= Produce an object
optimized for all the PowerPC
604™ processors.
pwr= Produce an object
optimized for the POWER
hardware platform.
pwr2= Produce an object
optimized for the POWER2
hardware platform.
pwr2s= Produce an object
optimized for the POWER2
hardware platform, avoiding
certain quadruple-precision
instructions that would slow
program performance.
pwrx= Same as pwr2.

opt(tune, name)
opt(tune,...)

-qtwolink

-qnotwolink

Link twice in order to minimize
the number of static constructors
included form libraries (default
with langlvl=compat).

N/A

-qunique
-qnounique

Generates unique names for
static constuctor/descructor file
ocmpilation units.

link(uniqueNames[, yes])
link(uniqueNames, no)

-qunroll

-qunroll=number
-qnounroll

-qunroll[=n]

Allow the optimizer to unroll
loops.

opt(loopUnroll[, yes])
opt(loopUnroll, number)
opt(loopUnroll, no)

168 VisualAge C++: Getting Started

Old Option Description Configuration File Option

-qupconv
-qnoupconv

Preserves the unsigned
specification when performing
integral promotions.

lang(preserveUnsigned
Promotion[, yes])
lang(preserveUnsigned
Promotion, no)

-qusepcomp Use pretokenized include files. N/A

-qusepcomp[=dirname] Use pretokenized include files. file(usePCH[,yes])
file(usePCH,string)
file(usePCH,no)

-qvftable
-qnovftable

Determine whether the virtual
function table is included in the
module that is the target of the
build.

gen(vft[, yes])
gen(vft, no)

-qwait

-qwait[=<seconds>]

Specify the number of seconds to
wait for a NetLS license to
become available. The default is
to wait forever.

N/A

-qxcall

-qnoxcall

Generate code to static routines
within a compilation unit as if
they were external routines.

gen(externStaticLinkage[, yes])
gen(externStaticLinkage, no)

-qxref

-noxref

Produce a cross-reference listing;
output goes to .lst file.

list(minXRef[, yes])
list(minXRef, no)

-qxref=full Produce a cross-reference listing
containing all names, whether
referenced or not; output goes to
.lst file.

list(fullXRef[, yes])
list(fullXRef, no)

-r Permits the output file to be
produced even if it contains
unresolved symbols.

link(force)

-s link(strip[, yes])
link(strip, no)

-S Generate an assembler language
(.s) file

file(genAsm[,yes])

-Snumber Set the total size of the program
stack in bytes.

Windows NT® and OS/2 only:
link(stack, number)

-t Apply prefix from the -B option
to the specified program.

N/A

Chapter 14. Other Migration References 169

Old Option Description Configuration File Option

-t<p/c/b/i/a/l/m/f/I> Apply prefix form the -B option
to the specified program <x>,
where x can be on or more of the
following:
p= preprocessor
c= compiler frontend
b= compiler backend
i= compiler inliner
a= assembler
l= linkage editor
m= ’munch’ utility
I= inter procedural analysis

N/A

-Tnumber Sets the start address of the text
section of the output file to
number.

link(textStart, number)

-U<name> Undefine name as in #undef
directive.

undefine(name)

-v Display language processing
commands as they are invoked
by xIC; output goes to stdout.

N/A

-w Suppress information,
language-level, and warning
messages.

report(level, ...)

-W Give specified options to
specidied compiler program.

N/A

-W<x,y> Give the options <y> to the
compiler program <c> where x
can be one or more of the
following:
<p,c,b,i,a,l,I,m>

N/A

-y<option> Specifies compile-time rounding
of constant floating-point
expressions. (is this the right
description?)

gen(roundConstFp, option)

-Y<x> Specify compile-time rounding of
constant floating-point
expressions, where <x> can be
one of the following:
n= round to nearest
m= round toward minus infinity
p= round toward positive infinity
z= round toward zero.

gen(roundConstFp, option)

-Zstring Prefix the names of the library
search paths with the string.

link(libsearchpathprefix, string)

170 VisualAge C++: Getting Started

Incremental C++ Build
C Compilation
Configuration Files
Setting Build Options

Build

Build Options

Build Options for ANSI C++ Compliance

Build Options for Compatibitility with Old C++ Compilers

Link Options from Earlier Versions of VisualAge C++ (AIX)

VisualAge C++ includes an incremental linker that replaces the traditional AIX
linker (ld). Much of the same link functionality is provided, but you specify
options in the configuration file for your project rather than as command line
options for the linker.

In previous versions of VisualAge C++, we recommended that you issue all
link edit commands to ld through the xlC command. Therefore, the table in
Compile Options from Earlier Versions of VisualAge C++(AIX) provides the
new equivalents to the earlier link options.

Incremental C++ Build
C Compilation
Set Build Options

Build

Compile Options from Earlier Versions of VisualAge C++ (AIX)

Chapter 14. Other Migration References 171

New Standard C++ Library Header Files

The Standard C++ Library is composed of eight special-purpose libraries:
v The Language Support Library
v “The Diagnostics Library”
v “The General Utilities Library” on page 173
v “The Standard String Templates” on page 173
v “Localization Classes and Templates” on page 173
v “The Containers, Iterators and Algorithms Libraries (the Standard Template

Library)” on page 174
v “The Standard Numerics Library” on page 174
v “The Standard Input/Output Library” on page 175
v C++ Headers for the Standard C Library (page 175)

C++ implementations that do not conform to the C++ International Standard,
including versions of VisualAge C++ prior to Version 4.0, may not provide
support for the Standard C++ Library. To maintain compatibility between such
a product and VisualAge C++, Version 5.0, do not use the Standard C++
Library.

The Language Support Library
The Language Support Library defines types and functions that will be used
implicitly by C++ programs that employ such C++ language features as
operators new and delete, exception handling and runtime type information
(RTTI). To maintain compatibility with versions of this product prior to
Version 4.0, do not use the standard headers in the left column of the table
below. Instead, use the non-standard headers in the right column, which have
been provided with VisualAge C++, Version 5.0. for compatibility with
previous releases.

Standard C++ header Equivalent in previous versions

<exception> <stdexcept.h>

<stdexcpt.h>

<limits> no equivalent

<new> <new.h>

<typeinfo> <typeinfo.h>

The Diagnostics Library
The Diagnostics Library is used to detect and report error conditions in C++
programs. To maintain compatibility with versions of this product prior to

172 VisualAge C++: Getting Started

Version 4.0, do not use the standard headers in the left column of the table
below. Instead, use the non-standard headers in the right column, which have
been provided with VisualAge C++, Version 5.0. for compatibility with
previous releases.

Standard C++ header Equivalent in previous versions

<stdexcept> <stdexcept.h>

<stdexcpt.h>

The General Utilities Library
The General Utilities Library is used by other components of the Standard
C++ Library, especially the Containers, Iterators and Algorithms Libraries (the
Standard Template Library). C++ implementations that do not conform to the
C++ International Standard, including versions of this product prior to
Version 4.0, may not provide support for the General Utilities Library. To
maintain compatibility between such a product and VisualAge C++, Version
5.0, do not use this library.

Standard C++ header Equivalent in previous versions

<utility> no equivalent

<functional> no equivalent

<memory> no equivalent

The Standard String Templates
The Strings Library is a facility for the manipulation of character sequences.
C++ implementations that do not conform to the C++ International Standard,
including versions of this product prior to Version 4.0, may not provide
support for the Strings Library. To maintain compatibility between such a
product and VisualAge C++, Version 5.0, do not use this library.

Standard C++ header Equivalent in previous versions

<string> no equivalent

Localization Classes and Templates
The Localization Library permits a C++ program to address the cultural
differences of its various users. C++ implementations that do not conform to

Chapter 14. Other Migration References 173

the C++ International Standard, including versions of this product prior to
Version 4.0, may not provide support for the Localization Library. To maintain
compatibility between such a product and VisualAge C++, Version 5.0, do not
use this library.

Standard C++ header Equivalent in previous versions

<locale> no equivalent

The Containers, Iterators and Algorithms Libraries (the Standard Template
Library)

The Standard Template Library (STL) is a facility for the management and
manipulation of collections of objects. C++ implementations that do not
conform to the C++ International Standard, including versions of this
product prior to Version 4.0, may not provide support for the STL. To
maintain compatibility between such a product and VisualAge C++, Version
5.0, do not use this library.

Standard C++ header Equivalent in previous versions

<algorithm> no equivalent

<bitset> no equivalent

<deque> no equivalent

<iterator> no equivalent

<list> no equivalent

<map> no equivalent

<queue> no equivalent

<set> no equivalent

<stack> no equivalent

<vector> no equivalent

The Standard Numerics Library
The Numerics Library is a facility for performing seminumerical operations.
C++ implementations that do not conform to the C++ International Standard,
including versions of this product prior to Version 4.0, may not provide
support for the Numerics Library. To maintain compatibility between such a
product and VisualAge C++, Version 5.0, do not use this library.

Users who require library facilities for complex arithmetic but wish to
maintain compatibility with older compilers may use the compatibility
complex numbers library whose types are defined in the non-standard header

174 VisualAge C++: Getting Started

file <complex.h>. Although the header files <complex> and <complex.h> are
similar in purpose, they are mutually incompatible.

Standard C++ header Equivalent in previous versions

<complex> no equivalent

<numeric> no equivalent

<valarray> no equivalent

The Standard Input/Output Library
The standard iostreams library differs from the compatibility iostreams in a
number of important respects. C++ implementations that do not conform to
the C++ International Standard, including versions of this product prior to
Version 4.0, may not provide support for the standard iostreams library. To
maintain compatibility between such a product and VisualAge C++, Version
5.0, use instead the compatibility iostreams library. More information on
iostreams is provided in Special Considerations When Using C++ I/O.

Standard C++ header Equivalent in previous versions

<fstream> no equivalent

<iomanip> no equivalent

<ios> no equivalent

<iosfwd> no equivalent

<iostream> no equivalent

<istream> no equivalent

<ostream> no equivalent

<streambuf> no equivalent

<sstream> no equivalent

C++ Headers for the Standard C Library

The C International Standard specifies 18 headers which must be provided by
a conforming hosted implementation. The name of each of these headers is of
the form name.h. The C++ Standard Library includes the C Standard Library
and, hence, includes these 18 headers. Additionally, for each of the 18 headers
specified by the C International Standard, the C++ standard specifies a
corresponding header that is functionally equivalent to its C library
counterpart, but which locates all of the declarations that it contains within

Chapter 14. Other Migration References 175

the std namespace. The name of each of these C++ headers is of the form
cname, where name is the string that results when the .h extension is removed
from the name of the equivalent C Standard Library header. For example, the
header files <stdlib.h> and <cstdlib> are both provided by the C++ Standard
Library and are equivalent in function, with the exception that all declarations
in <cstdlib> are located within the std namespace.

C++ implementations which do not conform to the C++ International
Standard may not support the “cname” headers. To maintain source code
compatibility between such an implementation and VisualAge C++, Version
5.0, do not use these headers. Instead, use the corresponding C Standard
Library header whose name is of the form “name.h.”

Standard C++ Header Corresponding Standard C & C++
Header

<cassert> <assert.h>

<cctype> <ctype.h>

<cerrno> <errno.h>

<cfloat> <float.h>

<ciso646> <iso646.h>

<climits> <limits.h>

<clocale> <locale.h>

<cmath> <math.h>

<csetjmp> <setjmp.h>

<csignal> <signal.h>

<cstdarg> <stdarg.h>

<cstddef> <stddef.h>

<cstdio> <stdio.h>

<cstdlib> <stdlib.h>

<cstring> <string.h>

<ctime> <time.h>

<cwchar> <wchar.h>

<cwctype> <wctype>

Special Considerations When Using C/C++ I/O

176 VisualAge C++: Getting Started

Use the Standard Iostreams Library and the Compatibility Iostreams Library

It is possible to use the standard iostreams library and the compatibility
iostreams library together. To do so, it is better to fully qualify the standard
iostreams library names that are needed, than to use C++ using directives to
access the standard iostreams library. For example:
#include <iostream>
#include <iostream.h>
int main(void) {

cout << “I can hear music\n”; // Line 1
std::cout << “Sweet, sweet music\n”; // Line 2

}

In this example, line 1 will use the compatibility iostreams library, which is
declared in the global namespace, while line 2 will use the standard iostreams
library, which is declared in the std namespace.

Special Considerations When Using C/C++ I/O

Use the Standard Iostreams Library with the IBM Open Class Library

Version 5 of the IBM Open Class library includes a new header, istream.hpp.
This header allows you to choose the iostream library you want to use
through a macro, __IOC_ANSI_STREAM. For example, a truly portable IBM
Open Class application is written this way:
#include <iostream>
#include <istring.hpp>
#ifdef __IOC_ANSI_STREAM
using namespace std;
#endif
IString is(“I can hear music”);
cout << is << endl;

In your makefile or configuration file, simply define __IOC_ANSI_STREAM if
you want to use the ANSI stream library. By default, the IBM Open Class
library uses the USL library to preserve existing behavior.
IOC libraries are iostream independent. This means that you can use either
iostream library, with one exception: the File stream library. Version 5 of the
IBM Open Class library includes two File stream libraries: one compiled with
the ANSI stream library (libvacfastrm.a on AIX platforms, or cpposi50.dll on
OS/2 or Windows) and the other compiled with the USL stream library
(libvacfstrm.a or cppofi50.dll).

Special Considerations when Using C/C++ I/O

Chapter 14. Other Migration References 177

“Use the Standard Iostreams Library and the Compatibility Iostreams Library”
on page 177

Makefile Rules Mapped to Configuration File Directives

The following table shows configuration file directives and equivalent
makefile rules.

Makefile rule Equivalent Configuration file directive

run_before_rules: <previous run before
targets> run_before__X
run_before__X:

command

run (before|after) command

run_target_rules: <previous targets>
run__X
run__X:

command

run command

run_target_rules: <previous targets>
run__X
run__X: gram.y

command

run source(“gram.y”) command

run_target_rules: <previous targets>
run__X
run__X: ytab.h
ytab.h: gram.y

command

run target(“ytab.h”) source(“gram.y”)
command

run_target_rules: <previous targets> a.out
a.out: a.o

link command
a.o: a.C

compile command

target “a.out” {
source “a.C”

}

run_target_rules: <previous targets> a.out
a.out: b.o

link command

target “a.out” {
source “b.o”

}

run_target_rules: <previous targets> a.out
a.out: a.o b.o

link command
a.o: a.C

compile command

target “a.out” {
source “a.C”, “b.o”

}

run_target_rules: <previous targets> a.o
a.o: a.C

compile command

target “a.o” {
source “a.C”

}

178 VisualAge C++: Getting Started

Makefile rule Equivalent Configuration file directive

run_target_rules: <previous targets> a.res
a.res:a.rc

irc command

source “a.rc”

Configuration Files

Chapter 14. Other Migration References 179

180 VisualAge C++: Getting Started

Contact Us

© Copyright IBM Corp. 1998, 2000 181

182 VisualAge C++: Getting Started

Contacting IBM

We’re delighted to offer a solid cornerstone for your application development:
IBM’s comprehensive support services. Whether you are an occasional user
with a simple question, a power user with many complex technical questions,
or someone who requires application design assistance and consulting, IBM
Support can meet your needs.

Comments on This Help

Please let us know about any errors or omissions in this online help or in the
hardcopy Getting Started book, or our PDF documents. Send your e-mail to:
torrcf@ca.ibm.com

Fee Support

Developers on the VisualAge C++ for AIX Service and Support team handle
everything from simple how-to’s to complex technical problems. Solutions
may take the form of a brief explanation, a workaround, a fix to the current
product, or a fix to the next release.

http://www.ibm.com/support/ describes IBM Support Offerings on all
platforms, worldwide.

http://www.ibm.com/rs6000/support/ describes support offerings on the
RS/6000® platform, in your country. It also indicates whether your country
provides support electronically over the Internet in addition to telephone
support.

http://www.lotus.com/passport describes the IBM and Lotus® Passport
Advantage™ contracting option.

The IBM Software Support Handbook, accessible from
http://www.ibm.com/software/support, also lists worldwide support
contacts.

Phone numbers for information on Support Line offerings are:
v United States: 1-888-426-4343 (IBM Global Services), option 3 as of

December 1999. Should this number change, IBM general information at
1-800-IBM-4YOU (1-800-426-4968) can route you to the appropriate group.

© Copyright IBM Corp. 1998, 2000 183

v Canada: 1-800-465-9600, option 3 as of December 1999. Should this number
change, you can also contact IBM general information at 1-800-IBM-4YOU
(1-800-426-4968).

Please call 1-800-266-8720 in the U.S. and Canada for information on Passport
Advantage offerings.
v Elsewhere, please contact your local IBM office.

If you contact support, please have the following information available:
v The product name
v The product version
v The hardware configuration and software (product names and versions you

are using)
v What happened and what you were doing when the problem occurred
v Whether you tried to solve the problem and how
v The exact wording of any messages displayed

Consulting Services

VisualAge and WebSphere™ Product Affinity Services Group is a core group
of technical specialists from the IBM development labs that created the IBM
VisualAge and WebSphere products. With access to a network of IBM product
area experts, IBM and industry business partners, and some of the best
resources in the industry, we can put the optimal team in place to meet the
challenge of absorbing new technology. Our goal is to enable organizational
success with VisualAge and WebSphere — ensuring that our products are
used effectively within your development team.

For more information, visit http://www.ibm.com/software/ad/vaws-
services/ or contact the Product Affinity Services Team at:

AIM_SERVICES@us.ibm.com

184 VisualAge C++: Getting Started

	Contents
	Notices
	Programming Interface Information
	Trademarks and Service Marks
	Industry Standards

	About This Book
	VisualAge C++, Version 5.0 Getting Started
	Chapter 1. Getting Started with VisualAge C++
	Chapter 2. What's New in VisualAge C++?
	New Tools and Features
	Improvements to the Incremental Compiler
	Enhancements to the Integrated Development Environment

	Chapter 3. What Is VisualAge C++?
	Compilers
	Batch Compiler
	Incremental Compiler
	Fast Incremental Builds
	Reduced Drudgery
	Eliminate Makefiles
	Automatic Instantiations of Templates

	Choosing the Right Compiler
	Features at a Glance
	Recommendations Based on Code You Have to Maintain

	Integrated Development Environment
	Code Development
	Tightly Integrated and Object-Oriented
	Program Understanding Made Easy
	Highly Customizable

	Stand-Alone Debugger
	Visual Programming Environments
	Visual Builder
	Data Access Builder

	Class Libraries
	Help System

	Chapter 4. Installing VisualAge C++
	System Requirements
	Introduction to Installing VisualAge C++
	Installing and Configuring License Use Management
	Installing VisualAge C++
	Enrolling Licenses with LUM
	Accessing the Online Documentation
	Installing Fixes for VisualAge C++
	Uninstall VisualAge C++

	Chapter 5. Tour VisualAge C++
	About the Tour
	Tour the Integrated Development Environment
	Workbook (IDE)
	A Closer Look at Panes
	What's in a Project?
	Create a Configuration
	Looking at Your Subproject
	Adding Content to a Source File
	Build Your Project
	Addressing Compilation Errors
	Run Your Program
	More on the IDE
	About Incremental Compilation
	More on Editing Source Files
	Searching a Project
	Configuration Files
	Setting Build Options
	Symbols Used in the IDE
	Linking Between Panes
	Toolbar Buttons
	Menu Descriptions

	Chapter 6. Try VisualAge C++
	Introduction to VisualAge C++ Configurations and Subprojects
	Tutorial 1: Configuration Files (.icc)
	Copy Source Files for the Sample Project
	Create a Configuration File
	Configuration Directives
	Setting Options
	Codestores
	Summing Up Tutorial 1

	Tutorial 2: Introducing Projects
	Create a New Project in the IDE
	Examine a Basic Project
	The Project File
	A Closer Look at Subprojects
	Set up Dependencies Among Subprojects
	Summing up Tutorial 2

	Tutorial 3: Build a Subproject
	Optimizing Subprojects
	Find Included Sources in the IDE
	Organize the Project
	Create a New File
	Create a Custom Page
	Group Common Options in a Separate Configuration File
	Summing up Tutorial 3

	Tutorial 4: Builds
	Create a Build
	Add Conditional Processing to options.icc
	Set Build Variables in the Default Build
	Build the Project
	Environments
	Browse an Environment
	Summing up Tutorial 4
	Other Useful References

	VisualAge C++, Version 5.0 Migration Guide
	Chapter 7. Prepare to Migrate to Version 5.0
	Chapter 8. Migrate to Incremental Compilation
	Create a Configuration File for Migration
	A. Creating an Empty Configuration File with the IDE and SmartGuides
	B. Copying an Existing Configuration File from the Samples Provided withVisualAge C++

	Preparation for Grouping Source Files for Migration
	Create Source Group Directives for Migration
	Convert Compile and Link Options to Configuration Options
	Add Source Files to the Project for Migration
	Adding Source Files Using the IDE
	Adding a Source File by Editing the Configuration File
	Example: Configuration File with Source File Added
	Build Errors You May Encounter After Adding Source Files

	Promote Included System and User Header Files
	Add Another Target to your Project for Migration
	Migrate Other Commands
	Using the run Directive to Call Other Tools
	Syntax of the run Directive
	Example: run Directive
	Notes on the Example

	Arrange Options in Groups

	Chapter 9. Migrate from Version 4.0 to Version 5.0
	Combine Multiple Codestores in One Project
	Divide a Single-Codestore Project into Multiple Codestores

	Chapter 10. Migrate to Version 5.0 Batch Compilation
	Chapter 11. Troubleshooting References
	Common Errors when Migrating
	Errors Due to Changes in the C++ Language
	bool, true, and false Keywords
	Changes to Digraphs in the C++ Language

	Errors Due to Changes in Compiler Behavior
	Access-checking errors
	typedefs
	Overloading Ambiguities
	Syntax errors with new

	Coding Adjustments for Orderless Programming
	Overload Resolution is Handled Differently
	Resolution to an Unexpected Declaration
	Solution
	Unexpected Results With Macro Source Files

	Common Template Problems
	Changes in Name Resolution
	Changes to friend Declarations
	Changes to the friend Declarator

	Common Errors due to Duplicate Symbols
	Solution

	Adjust for Using the IBM Open Class Library

	Chapter 12. Special Considerations for Migrating toIncremental Compilation
	Application Requires Multiple Targets
	Application Uses Meta Source Files
	Application Uses Meta Header Files
	Example: Meta Header Files

	Application Needs to Maintain Compatibility with a Batch Compiler
	Application Uses Both C and C++ Source

	Chapter 13. Migration Concepts
	Promoting Source Files to the Configuration File
	Macro Source Files
	Using Macros Which Expand to Different Values in Different Source Files

	Meta Source Files
	Considerations When Using C++ I/O
	Example

	Migration of Resource Files
	Resource Conversion Utilities for Cross-Platform Development

	Chapter 14. Other Migration References
	Options for Compatibility with Previous Versions of VisualAge C++
	Compile Options from Earlier Versions of VisualAge C++ and EquivalentConfiguration Options (AIX)
	Link Options from Earlier Versions of VisualAge C++ (AIX)
	New Standard C++ Library Header Files
	The Language Support Library
	The Diagnostics Library
	The General Utilities Library
	The Standard String Templates
	Localization Classes and Templates
	The Containers, Iterators and Algorithms Libraries (the Standard TemplateLibrary)
	The Standard Numerics Library
	The Standard Input/Output Library

	Use the Standard Iostreams Library and the Compatibility Iostreams Library
	Use the Standard Iostreams Library with the IBM Open Class Library
	Makefile Rules Mapped to Configuration File Directives

	Contact Us
	Contacting IBM

