8

Namespaces and Exceptions

The year is 787!
A.D.?
— Monty Python

No rule is so general,

which admits not some exception.
— Robert Burton

Modularity, interfaces, and exceptionrs namespaces- using — using namespace —
avoiding name clashes- name lookup— namespace compositief namespace aliases
— namespaces and C code exceptions— throw and catch — exceptions and pro-
gram structure— advice— exercises.

8.1 Modularization and Interfaces[name.module]

Any realistic program consists of a number of separate parts. For example, even the simple “Hello,
world!” program involves at least two parts: the user code reqtielte, world! to be printed,
and the I/O system does the printing.

Consider the desk calculator example from 86.1. It can be viewed as being composed of five
parts:

[1] The parser, doing syntax analysis

[2] The lexer, composing tokens out of characters

[3] The symbol table, holding (string,value) pairs

[4] The driver,main()

[5] The error handler
This can be represented graphically:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

http://store.awl.com/catalog/cepub_detail.mhtml?isbn=0-201-88954-4

166 Namespaces and Exceptions Chapter 8

driver
parser

symbol table
eror handiey

where an arrow means “using.” To simplify the picture, | have not represented the fact that every
part relies on error handling. In fact, the calculator was conceived as three parts, with the driver
and error handler added for completeness.

When one module uses another, it doesn’t need to know everything about the module used.
Ideally, most of the details of a module are unknown to its users. Consequently, we make a distinc-
tion between a module and its interface. For example, the parser directly relies on the lexer’s inter-
face (only), rather than on the complete lexer. The lexer simply implements the services advertised
in its interface. This can be presented graphically like this:

driver

parser interface< - - - - - - - parser implementatiqn

lexer interfac {Iexer implementatiqn

symbol table interfacee- - - - {symbol table implementatiqn

error handler

Dashed lines means “implements.” | consider this to be the real structure of the program, and our
job as programmers is to represent this faithfully in code. That done, the code will be simple, effi-
cient, comprehensible, maintainable, etc., because it will directly reflect our fundamental design.

The following sections show how the logical structure of the desk calculator program can be
made clear, and §9.3 shows how the program source text can be physically organized to take advan-
tage of it. The calculator is a tiny program, so in “real life” | wouldn’t bother using namespaces
and separate compilation (82.4.1, 89.1) to the extent | do here. It is simply used to present tech-
nigues useful for larger programs without our drowning in code. In real programs, each “module”
represented by a separate namespace will often have hundreds of functions, classes, templates, etc.

To demonstrate a variety of techniques and language features, | develop the modularization of

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 8.1 Modularization and Interfaces 167

the calculator in stages. In “real life,” a program is unlikely to grow through all of these stages.
An experienced programmer might pick a design that is “about right” from the start. However, as
a program evolves over the years, dramatic structural changes are not uncommon.

Error handling permeates the structure of a program. When breaking up a program into mod-
ules or (conversely) when composing a program out of modules, we must take care to minimize
dependencies between modules caused by error handhrgpr@vides exceptions to decouple the
detection and reporting of errors from the handling of errors. Therefore, the discussion of how to
represent modules as namespaces (88.2) is followed by a demonstration of how we can use excep-
tions to further improve modularity (88.3).

There are many more notions of modularity than the ones discussed in this chapter and the next.
For example, we might use concurrently executing and communicating processes to represent
important aspects of modularity. Similarly, the use of separate address spaces and the communica-
tion of information between address spaces are important topics not discussed here. | consider
these notions of modularity largely independent and orthogonal. Interestingly, in each case, sepa-
rating a system into modules is easy. The hard problem is to provide safe, convenient, and efficient
communication across module boundaries.

8.2 Namespacemame.namespace]

A namespace is a mechanism for expressing logical grouping. That is, if some declarations logi-
cally belong together according to some criteria, they can be put in a common namespace to
express that fact. For example, the declarations of the parser from the desk calculator (86.1.1) may
be placed in a namespdearser:
namespace [Parser {
double expr(bool);
double prim(bool get) { /* ...*/ }
double term(bool get) { /* ...*/ }
double expr(bool get) { /* ...* }
}
The functionexpr() must be declared first and then later defined to break the dependency loop

described in 86.1.1.
The input part of the desk calculator could be also placed in its own namespace:

namespace LLexer {
enum Token value {

NAME, NUMBER, END,
PLUS='+, MINUS="-", MUL="*, DIV="/,
PRINT=";, ASSIGN="=", LP="(, RP="Y

L

Token value curr_tok;
double mumber_value;
string string_value;

Token value get token() { /* ..*/ }

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

168 Namespaces and Exceptions Chapter 8

This use of namespaces makes it reasonably obvious what the lexer and the parser provide to a
user. However, had | included the source code for the functions, this structure would have been
obscured. If function bodies are included in the declaration of a realistically-sized namespace, you
typically have to wade through pages or screenfuls of information to find what services are offered,
that is, to find the interface.

An alternative to relying on separately specified interfaces is to provide a tool that extracts an
interface from a module that includes implementation details. | don’t consider that a good solution.
Specifying interfaces is a fundamental design activity (see §23.4.3.4), a module can provide differ-
ent interfaces to different users, and often an interface is designed long before the implementation
details are made concrete.

Here is a version of thiearser with the interface separated from the implementation:

namespace Parser {
double prim(bool);
double term(bool);

double expr(bool);
}

double Parser:: prim(bool get) { /* ...*/ }
double Parser:: term(bool get) { /* ...*/ }
double Parser:: expr(bool get) { /* ..*/ }

Note that as a result of separating the implementation of the interface, each function now has
exactly one declaration and one definition. Users will see only the interface containing declarations.
The implementatior in this case, the function bodieswill be placed “somewhere else” where a
user need not look.

As shown, a member can be declared within a namespace definition and defined later using the
namespace-name member-namaotation.

Members of a namespace must be introduced using this notation:

namespace mamespace- name {
/! declaration and definitions
}

We cannot declare a new member of a namespace outside a namespace definition using the quali-
fier syntax. For example:

void Parser:: logical(bool); / / error: no logical() in Parser

The idea is to make it reasonably easy to find all names in a nhamespace declaration and also to
catch errors such as misspellings and type mismatches. For example:

double Parser:: trem(bool); / / error: no trem() in Parser
double Parser:: prim(int); /| error: Parser::prim() takes a bool argument

A namespace is a scope. Thus, “namespace” is a very fundamental and relatively simple concept.
The larger a program is, the more useful namespaces are to express logical separations of its parts.
Ordinary local scopes, global scopes, and classes are namespaces (8C.10.3).

Ideally, every entity in a program belongs to some recognizable logical unit (“module”).
Therefore, every declaration in a nontrivial program should ideally be in some namespace named to

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 8.2 Namespaces 169

indicate its logical role in the program. The exceptioman() , which must be global in order
for the run-time environment to recognize it as special (88.3.3).

8.2.1 Qualified Names [name.qualified]

A namespace is a scope. The usual scope rules hold for namespaces, so if a name is previously
declared in the namespace or in an enclosing scope, it can be used without further fuss. A name
from another namespace can be used when qualified by the name of its namespace. For example:

double Parser:: term(bool get) / | note Parser:: qualification
double left = prim(get); /I no qualification needed
for (3;)
switch (Lexer: : curr_tok) { /| note Lexer:: qualification
case Lexer:: MUL: /| note Lexer:: qualification
left *= prim(true); /1 no qualification needed
/..
/..
}

The Parser qualifier is necessary to state that ttean() is the one declared iRarser and not
some unrelated global function. Becatemn() is a member oParser, it need not use a qualifier
for prim() . However, had theexer qualifier not been preserayrr_tok would have been consid-
ered undeclared because the members of namelsgxareare not in scope from within thRarser
namespace.

8.2.2 Using Declarations [name.using.dcl]

When a name is frequently used outside its namespace, it can be a bother to repeatedly qualify it
with its namespace name. Consider:

double Parser:: prim(bool get) / | handle primaries

{
if (get) Lexer:: get token() ;

switch (Lexer: : curr_tok) {

case Lexer:: NUMBER /I floating-point constant
Lexer: : get_token() ;
return Lexer:: number_value

case Lexer:: NAME:

{ doubleg v = table[Lexer: : string_value) ;
if (Lexer:: get_token() == Lexer:: ASSIGN) v = expr(true);
return v

}

case Lexer:: MINUS /| unary minus
return - prim(true);

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

170 Namespaces and Exceptions Chapter 8

case lLexer:: LP:
{ double e= expr(true);
if (Lexer:: curr_tok!= Lexer:: RP) return Error:: emror(") expected’) ;

Lexer: : get_token() ; /| eat’)
return e
}
case Lexer:: END:
return 1,
default:
return Error:: error(" primary expected’) ;
}

}

The repeated qualificatiobexer is tedious and distracting. This redundancy can be eliminated by
ausing-declaratiorto state in one place that thet tokenused in this scope lsexer’'s get token.
For example:

double Parser: : prim(bool get) / |/ handle primaries

{

using Lexer:: get token; / / use Lexer’s getoken

using Lexer:: curr_tok; / / use Lexer’s currtok

using Error:: error; / | use Error's error

if (get) get token() ;

switch (curr_tok) {

case Lexer:: NUMBER I I floating-point constant
get_token() ;
return Lexer:: number_value

case Lexer:: NAME:

{ double& v = table[Lexer: : string_value] ;
if (get_token() == Lexer:: ASSIGN) v = expr(true);
return v,

}

case Lexer:: MINUS /| unary minus
return - prim(true);

case Lexer:: LP:

{ double e= expr(true);
if (curr_tok!= Lexer:: RP) return emror(") expected') ;
get_token() ; [| eat’)
return €

}

case lLexer:: END:
return 1;

default:
return emror(" primary expected’) ;

}

}

A using-declaratiorintroduces a local synonym.
It is often a good idea to keep local synonyms as local as possible to avoid confusion.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 8.2.2 Using Declarations 171

However, all parser functions use similar sets of names from other modules. We can therefore
place theusing-declaratios in theParser's namespace definition:

namespace Parser {
double prim(bool);
double term(bool);
double expr(bool);

using Lexer:: get token; / / use Lexer’'s getoken
using Lexer:: curr_tok; / / use Lexer’s currtok
using Error:: error; | | use Error’s error

}
This allows us to simplify thParser functions almost to our original version (86.1.1):

double Parser:: term(bool get) /| multiply and divide

double left = prim(gef);

for (;;)
switch (curr_tok) {
case Lexer:: MUL:
left *= prim(true);
break;
case Lexer:: DIV:
if (double d= prim(true)) {
left /= d;
break;
}
return eror(" divide by 0") ;
default:
return left;
}

}

| could have introduced the token names into Plagser's namespace. However, | left them
explicitly qualified as a reminder &farser's dependency ohexer.

8.2.3 Using Directives [name.using.dir]

What if our aim were to simplify thParser functions to beexactlyour original versions? This
would be a reasonable aim for a large program that was being converted to using hamespaces from
a previous version with less explicit modularity.

A using-directivemakes names from a hamespace available almost as if they had been declared
outside their namespace (88.2.8). For example:

namespace Parser {
double prim(bool);
double term(bool);
double expr(bool);

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

172 Namespaces and Exceptions Chapter 8

using namespace Lexer; / / make all names from Lexer available
using namespace Etror; / / make all names from Error available

}
This allows us to writ@arser’s functions exactly as we originally did (86.1.1):
double Parser:: term(bool get) /| multiply and divide

double left = prim(gef);

for (3;)
switch (curr_tok) { | | Lexer's curr tok
case MUL: /| Lexer's MUL
left *= prim(true);
break;
case DIV: ! | Lexer's DIV
if (double di= prim(true)) {
left /= d;
break;
}
return error(" divide by 0") ; / / Error’s error
default:
return left;
}

}

Globalusing-directive are a tool for transition (88.2.9) and are otherwise best avoided. In a name-
space, ausing- directive is a tool for namespace composition (88.2.8). In a function (only), a
using- directive can be safely used as a notational convenience (§8.3.3.1).

8.2.4 Multiple Interfaces [name.multi]

It should be clear that the namespace definition we evolveddaiser is not the interface that the
Parser presents to its users. Instead, it is the set of declarations that is needed to write the individ-
ual parser functions conveniently. TRarser's interface to its users should be far simpler:

namespace Parser {
double expr(bool);
}

Fortunately, the twaamespace-definitieanfor Parser can coexist so that each can be used where it
is most appropriate. We see the namespatser used to provide two things:

[1] The common environment for the functions implementing the parser

[2] The external interface offered by the parser to its users
Thus, the driver codenain() , should see only:

namespace Parser { / | interface for users
double expr(bool);
}

The functions implementing the parser should see whichever interface we decided on as the best for
expressing those functions’ shared environment. That is:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 8.2.4 Multiple Interfaces 173

namespace Parser { /I interface for implementers
double prim(bool);
double term(bool);
double expr(bool);

using Lexer:: get token; / / use Lexer’s getoken
using Lexer:: curr_tok; / / use Lexer’s currtok
using Error:: error; | | use Error's error

}
or graphically:

Parser Parser

Parser implementation ‘

The arrows represent “relies on the interface provided by” relations.

Parser’ is the small interface offered to users. The n®amser” (Parser prime) is not at€
identifier. It was chosen deliberately to indicate that this interface doesn’t have a separate nhame in
the program. The lack of a separate hame need not lead to confusion because programmers natu-
rally invent different and obvious names for the different interfaces and because the physical layout
of the program (see 8§9.3.2) naturally provides separate (file) names.

The interface offered to implementers is larger than the interface offered to users. Had this
interface been for a realistically-sized module in a real system, it would change more often than the
interface seen by users. It is important that the users of a module (in thisnar¥g, using
Parser) are insulated from such changes.

We don't need to use two separate namespaces to express the two different interfaces, but if we
wanted to, we could. Designing interfaces is one of the most fundamental design activities and one
in which major benefits can be gained and lost. Consequently, it is worthwhile to consider what we
are really trying to achieve and to discuss a humber of alternatives.

Please keep in mind that the solution presented is the simplest of those we consider, and often
the best. Its main weaknesses are that the two interfaces don't have separate names and that the
compiler doesn’t necessarily have sufficient information to check the consistency of the two defini-
tions of the namespace. However, even though the compiler doesn't always get the opportunity to
check the consistency, it usually does. Furthermore, the linker catches most errors missed by the
compiler.

The solution presented here is the one | use for the discussion of physical modularity (89.3) and
the one | recommend in the absence of further logical constraints (see also §8.2.7).

8.2.4.1 Interface Design Alternatives [name.alternatives]

The purpose of interfaces is to minimize dependencies between different parts of a program. Mini-
mal interfaces lead to systems that are easier to understand, have better data hiding properties, are
easier to modify, and compile faster.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

174 Namespaces and Exceptions Chapter 8

When dependencies are considered, it is important to remember that compilers and program-
mers tend to take a somewhat simple-minded approach to them: “If a definition is in scope at point
X, then anything written at point X depends on anything stated in that definition.” Typically,
things are not really that bad because most definitions are irrelevant to most code. Given the defi-
nitions we have used, consider:

namespace Parser { /| interface for implementers
/..
double expr(bool);
/..

}

int main()

{
/..
Parser: : expr(false);
/..

}

The functionmain() depends orParser:: expr() only, but it takes time, brain power, computa-
tion, etc., to figure that out. Consequently, for realistically-sized programs people and compilation
systems often play it safe and assume that where there might be a dependency, there is one. This is
typically a perfectly reasonable approach.

Thus, our aim is to express our program so that the set of potential dependencies is reduced to
the set of actual dependencies.

First, we try the obvious: define a user interface to the parser in terms of the implementer inter-
face we already have:

namespace Parser { /I interface for implementers
/..
double expr(bool);
/...

}

namespace Parser_interface { /| interface for users

using Parser: : expr;

}

Clearly, users oParser_interface depend only, and indirectly, dParser: : expr() . However, a
crude look at the dependency graph gives us this:

Parser

Parser_interface

' Parser implementation

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 8.2.4.1 Interface Design Alternatives 175

Now thedriver appears vulnerable to any change in Paeser interface from which it was sup-

posed to be insulated. Even this appearance of a dependency is undesirable, so we explicitly
restrict Parser_interface's dependency oParser by having only the relevant part of the imple-
menter interface to parser (that was callPdrser’ earlier) in scope where we define
Parser_interface

namespace [Parser { / | interface for users
double expr(bool);
}

namespace Parser_interface{ / / separately named interface for users
using Parser: : expr;
}
or graphically:

Parser Parser

Parser_interface

Parser implementation '

Driver

To ensure the consistency Barser and Parser’ , we again rely on the compilation system as a
whole, rather than on just the compiler working on a single compilation unit. This solution differs
from the one in §8.2.4 only by the extra namespRarser_interface. If we wanted to, we could

give Parser_interface a concrete representation by giving it its oexpr() function:

namespace Parser_interface {
double expr(bool);
}

Now Parser need not be in scope in order to deffarser_interface. It needs to be in scope only
whereParser_interface: : expr() is defined:

double Parser_interface: : expr(bool get)
{

}

return Parser:: expr(get);

This last variant can be represented graphically like this:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

176 Namespaces and Exceptions Chapter 8

Parser_interface Parser

\/

Parser_interface
implementation

Driver | Parser implementation '

Now all dependencies are minimized. Everything is concrete and properly named. However, for
most problems | face, this solution is also massive overkill.

8.2.5 Avoiding Name Clashes [name.clash]

Namespaces are intended to express logical structure. The simplest such structure is the distinction
between code written by one person vs. code written by someone else. This simple distinction can
be of great practical importance.

When we use only a single global scope, it is unnecessarily difficult to compose a program out
of separate parts. The problem is that the supposedly-separate parts each define the same names.
When combined into the same program, these names clash. Consider:

/1 my.h:

char f(char);

int f(int);

class Sring{ /* ..* }
/1 your.h:

char f(char);

double f{ double);
class Sring{ /* ...* }

Given these definitions, a third party cannot easily use fogtth andyour. h. The obvious solu-
tion is to wrap each set of declarations in its own namespace:

namespace My {

char f(char);

int f(int);

class Sring{ /* ...* };
}
namespace Your {

char f(char);

double f{ double);

class Sring{ /* ...* };
}

Now we can use declarations fratly and Your through explicit qualification (88.2.1)ysing-
declarationg(88.2.2), omusing-directive$88.2.3).

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 8.2.5.1 Unnamed Namespaces 177

8.2.5.1 Unnamed Namespaces [name.unnamed]

It is often useful to wrap a set of declarations in a namespace simply to protect against the possibil-
ity of name clashes. That is, the aim is to preserve locality of code rather than to present an inter-
face to users. For example:

#include " header. h"
namespace Mine {
int a;
void f) {/* ..* }
int g) {/* ..* }

Since we don’'t want the nanMine to be known outside a local context, it simply becomes a
bother to invent a redundant global name that might accidentally clash with someone else’s names.
In that case, we can simply leave the namespace without a name:

#include " header. h"
namespace {
int a
vod f) {/* ..* }
intg) {/* ..* }

Clearly, there has to be some way of accessing members of an unnamed namespace from the out-
side. Consequently, an unnamed namespace has an ingiligddirective The previous declara-
tion is equivalent to

namespace 3 {
int a;
void) { /* ..* }
int g0 { /* ..* }

using namespace $$$;

where$$$ is some name unique to the scope in which the namespace is defined. In particular,
unnamed namespaces in different translation units are different. As desired, there is no way of
naming a member of an unnamed namespace from another translation unit.

8.2.6 Name Lookup [name.koenig]

A function taking an argument of ty@eis more often than not defined in the same namespace as
T. Consequently, if a function isn’t found in the context of its use, we look in the namespaces of its
arguments. For example:

namespace Chrono {
class Date{ /* ...* }

bool operator==(const Date&, const std:: string&);

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

178 Namespaces and Exceptions Chapter 8

std: : string format(const Date&); / / make string representation
/...

}
void f(Chrono:: Date d, int i)

std: : string s= format(d); / | Chrono::format()
std: : string t= format(i); /I error: no format() in scope

}

This lookup rule saves the programmer a lot of typing compared to using explicit qualification, yet
it doesn’t pollute the namespace the waysang-directive(§8.2.3) can. It is especially useful for
operator operands (811.2.4) and template arguments (8C.13.8.4), where explicit qualification can
be quite cumbersome.

Note that the namespace itself needs to be in scope and the function must be declared before it
can be found and used.

Naturally, a function can take arguments from more than one namespace. For example:

void f(Chrono:: Date d std:: string)

if(d==9) {
" ..

}

else if (d ==" August 4, 1914") {
/..

}

}

In such cases, we look for the function in the scope of the call (as ever) and in the namespaces of
every argument (including each argument’s class and base classes) and do the usual overload reso-
lution (87.4) of all functions we find. In particular, for the addi=s, we look foroperator== in
the scope surroundinff) , in the std namespace (where= is defined forstring), and in the
Chrono namespace. There isstd: : operator==() , but it doesn't take ®ate argument, so we
useChrono: : operator==() , which does. See also §11.2.4.

When a class member invokes a function, other members of the same class and its base classes
are preferred over functions potentially found based on the argument types (811.2.4).

8.2.7 Namespace Aliases [name.alias]

If users give their namespaces short names, the names of different namespaces will clash:

namespace A{/ / short name, will clash (eventually)
/..
}

A:: String s1="Grieg’;
A:: Sfring s2 =" Nielsen'’;

However, long namespace names can be impractical in real code:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 8.2.7 Namespace Aliases 179

namespace American_Telephone_and Telegraph{ / / toolong
/..
}

American_Telephone_and_Telegraph: : Siring s3=" Grieg’;
American_Telephone_and_Telegraph: : String s4=" Nielsen';

This dilemma can be resolved by providing a short alias for a longer namespace name:
/1 use namespace alias to shorten names:
namespace ATT = American_Telephone_and_Telegraph;

ATT:: String s3=" Grieg’;
ATT:: String s4=" Nielsen'",

Namespace aliases also allow a user to refer to “the library” and have a single declaration defining
what library that really is. For example:

namespace Lib = Foundation _library _v2r11;
/..

Lib:: set s;
Lib: : String s5=" Sibelius’;

This can immensely simplify the task of replacing one version of a library with another. By using
Lib rather tharFoundation_library v2r11 directly, you can update to version “v3r02” by chang-

ing the initialization of the aliakib and recompiling. The recompile will catch source level incom-
patibilities. On the other hand, overuse of aliases (of any kind) can lead to confusion.

8.2.8 Namespace Composition [name.compose]
Often, we want to compose an interface out of existing interfaces. For example:

namespace His_string {
class Sring{ /* ..* }
String operator+(const String&, const String&);
String operator+(const Siring&, const char®) ;
void fill(char);
..

}

namespace Her_vector {
template<class T> class Vector { /* ...*/ };
/...

}

namespace My lib {
using namespace His string;
using namespace Her_vector;
void my fct(String&);

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

180 Namespaces and Exceptions Chapter 8

Given this, we can now write the program in termMyf lib:

void f()

My_lib:: String s="Byron"; / / finds My lib::His_string::String
/..
}

using namespace My lib;
void g(Vector<String>& vs)

{
..
my_fct(ve 5)) ;
..

}

If an explicitly qualified name (such ady lib:: String) isn’t declared in the namespace men-
tioned, the compiler looks in namespaces mentioneding-directive (such aslis_string).
Only if we need to define something, do we need to know the real namespace of an entity:

void My _lib:: fill() /| error: no fill() declared in Mylib
{

/..
}
void His string:: fill() / / ok: fill() declared in Hisstring
{

/..
}
void My_lib:: my fct(My_lib: : Vector<My_lib: : String>& v) // ok
{

/..
}

Ideally, a namespace should

[1] express a logically coherent set of features,

[2] not give users access to unrelated features, and

[3] not impose a significant notational burden on users.
The composition techniques presented here and in the following subsectiogsther with the
#include mechanism (89.2.1 provide strong support for this.

8.2.8.1 Selection [name.select]

Occasionally, we want access to only a few names from a namespace. We could do that by writing
a namespace declaration containing only those names we want. For example, we could declare a
version ofHis_string that provided th&tring itself and the concatenation operator only:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 8.2.8.1 Selection 181

namespace His string { / | part of His string only
class Sring{ /* ...* }
String operator+(const String&, const String&);
String operator+(const String&, const char*) ;

}

However, unless | am the designer or maintaineH& string, this can easily get messy. A
change to the “real” definition oHis_string will not be reflected in this declaration. Selection of
features from a namespace is more explicitly made wsithg-declaratios:

namespace My_string {
using His_string: : String;
using His_string: : operator+; / / use any + from Hisstring

}

A using-declaratiorbrings every declaration with a given name into scope. In particular, a single
using-declaratiorcan bring in every variant of an overloaded function.

In this way, if the maintainer diis_string adds a member function &ring or an overloaded
version of the concatenation operator, that change will automatically become available to users of
My_string. Conversely, if a feature is removed frddis_string or has its interface changed,
affected uses d¥ly_string will be detected by the compiler (see also §15.2.2).

8.2.8.2 Composition and Selection [name.comp]

Combining composition (bysing-directive) with selection (byusing-declaratios) yields the
flexibility needed for most real-world examples. With these mechanisms, we can provide access to
a variety of facilities in such a way that we resolve name clashes and ambiguities arising from their
composition. For example:

namespace His lib {
class Sring{ /* ..* }
template<class T> class Vector { /* ..*/ };
/..

}

namespace Her_lib {
template<class T> class Vector { /* ..*/ };
class Sring{ /* ..* };
/..

}

namespace My lib {
using namespace His lib; // everything from Hislib
using namespace Her_lib; // everything from Hedib

using His lib:: String; / / resolve potential clash in favor of High
using Her_lib:: Vector; / / resolve potential clash in favor of Héib

template<class T> class List{ /* ...*/ }; // additional stuff
/...

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

182 Namespaces and Exceptions Chapter 8

When looking into a namespace, names explicitly declared there (including names declared by
using-declaratios) take priority over names made accessible in another scopesinygadirective

(see also 8C.10.1). Consequently, a uséyflib will see the name clashes fétring andVector
resolved in favor oHis lib:: String andHer _lib: : Vector. Also, My lib:: List will be used by

default independently of whethHlis lib or Her_lib are providing d.ist.

Usually, | prefer to leave a name unchanged when including it into a new namespace. In that
way, | don't have to remember two different names for the same entity. However, sometimes a
new name is needed or simply nice to have. For example:

namespace Lib2 {
using namespace His lib; // everything from Higlib
using namespace Her_lib; // everything from Hedib
using His lib:: String; / / resolve potential clash in favor of Hig
using Her_lib:: Vector; / / resolve potential clash in favor of Héib

typedef Her_lib:: String Her_string; ! | rename

template<class T> class His vec /1 “rename”
: public His lib:: Vector<T>{ /* ..* };

template<class T> class List{ /* ...*/ }; // additional stuff

...
}

There is no specific language mechanism for renaming. Instead, the general mechanisms for defin-
ing new entities are used.

8.2.9 Namespaces and Old Code [name.get]

Millions of lines of C and &€+ code rely on global names and existing libraries. How can we use
namespaces to alleviate problems in such code? Redesigning existing code isn’t always a viable
option. Fortunately, it is possible to use C libraries as if they were defined in a namespace. How-
ever, this cannot be done for libraries written #+@89.2.4). On the other hand, nhamespaces are
designed so that they can be introduced with minimal disruption into an elti@rayram.

8.2.9.1 Namespaces and C [name.c]
Consider the canonical first C program:
#include <stdio. h>

int main()
{
printf(" Hello, world! \n") ;

Breaking this program wouldn’t be a good idea. Making standard libraries special cases isn't a
good idea either. Consequently, the language rules for namespaces are designed to make it rela-
tively easy to take a program written without namespaces and turn it into a more explicitly struc-
tured one using namespaces. In fact, the calculator program (86.1) is an example of this.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 8.2.9.1 Namespaces and C 183

Theusing-directives the key to achieving this. For example, the declarations of the standard C
I/O facilities from the C headsidio. h are wrapped in a namespace like this:

/1 stdio.h:
namespace std {
/1

int";.)rintf(const char* ...);
/...

}
using namespace std;

This achieves backwards compatibility. Also, a new headecdittio is defined for people who
don’t want the names implicitly available:

/] cstdio:

namespace std {
...
int printf(const char* ...);
/..

}

C++ standard library implementers who worry about replication of declarations will, of course,
definestdio. h by includingcstdio:

/1 stdio.h:

#include<cstdio>
using namespace std;

| consider nonlocalising-directive primarily a transition tool. Most code referring to names from
other namespaces can be expressed more clearly with explicit qualificatiosisgrdieclaratios.
The relationship between namespaces and linkage is described in §9.2.4.

8.2.9.2 Namespaces and Overloading [name.over]

Overloading (87.4) works across namespaces. This is essential to allow us to migrate existing
libraries to use namespaces with minimal source code changes. For example:

/1 old A.h:

void f(int);
/...

/1 old B.h:

void f(char);
/...

// old user.c:

#include" A. h"
#include" B. h"

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

184 Namespaces and Exceptions Chapter 8

void g()
{

f(C a); [/ [callsthe f() from B.h
}

This program can be upgraded to a version using namespaces without changing the actual code:

/1 new A.h:
namespace A{
void f(int);
/...
}
/1 new B.h:
namespace B{
void f(char);
/...
}

/] new user.c:

#include" A. h"
#include" B. h"

using namespace A
using namespace B;
void g()

{

f(C a); [/ [/ callsthe f() from B.h
}

Had we wanted to keayser. c completely unchanged, we would have placeduing-directive
in the header files.

8.2.9.3 Namespaces Are Open [name.open]

A namespace is open; that is, you can add names to it from several namespace declarations. For
example:

namespace A{
int 1) ; // now A has member f()
}

namespace A{
int g) ; // now A has two members, f() and g()

In this way, we can support large program fragments within a single namespace the way an older
library or application lives within the single global namespace. To do this, we must distribute the

namespace definition over several header and source code files. As shown by the calculator exam-
ple (88.2.4), the openness of namespaces allows us to present different interfaces to different kinds

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 8.2.9.3 Namespaces Are Open 185

of users by presenting different parts of a namespace. This openness is also an aid to transition.
For example,

/1 my header:
void () ; // my function
/...
#include<stdio. h>
int g() ; // my function
/...

can be rewritten without reordering of the declarations:
/1 my header:

namespace Mine {
void () ; // my function
Il ...

}

#include<stdio. h>

namespace Mine {
int g() ; // my function
/..

}

When writing new code, | prefer to use many smaller namespaces (see §8.2.8) rather than putting
really major pieces of code into a single namespace. However, that is often impractical when con-
verting major pieces of software to use namespaces.

When defining a previously declared member of a namespace, it is safer to Mimethesyn-
tax than to re-opeMine. For example:

void Mine : ff() /| error: no ff() declared in Mine

{
}

A compiler catches this error. However, because new functions can be defined within a namespace,
a compiler cannot catch the equivalent error in a re-opened namespace:

/..

namespace Mine{ // re-opening Mine to define functions

void ff() / / oops! no ff() declared in Mine; ff() is added to Mine by this definition
{

}
/..

/...

}

The compiler has no way of knowing that you didn’t want that fi@w.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

186 Namespaces and Exceptions Chapter 8

8.3 Exceptiongname.except]

When a program is composed of separate modules, and especially when those modules come from
separately developed libraries, error handling needs to be separated into two distinct parts:

[1] The reporting of error conditions that cannot be resolved locally

[2] The handling of errors detected elsewhere
The author of a library can detect run-time errors but does not in general have any idea what to do
about them. The user of a library may know how to cope with such errors but cannot detect them
or else they would be handled in the user’s code and not left for the library to find.

In the calculator example, we bypassed this problem by designing the program as a whole. By
doing that, we could fit error handling into our overall framework. However, when we separate the
logical parts of the calculator into separate namespaces, we see that every nhamespace depends on
namespacé&rror (88.2.2) and that the error handling Enror relies on every module behaving
appropriately after an error. Let's assume that we don’t have the freedom to design the calculator as
a whole and don’t want the tight coupling betw&snor and all other modules. Instead, assume
that the parser, etc., are written without knowledge of how a driver might like to handle errors.

Even thougterror() was very simple, it embodied a strategy for error handling:

namespace Eror {
int no_of_errors;

double @ror(const char* s)

{
std: : car << "emor: " << s<<’\n’;
no_of_errors++;
return 1;

}

Theerror() function writes out an error message, supplies a default value that allows its caller to
continue a computation, and keeps track of a simple error state. Importantly, every part of the pro-
gram knows thaerror() exists, how to call it, and what to expect from it. For a program com-
posed of separately-developed libraries, that would be too much to assume.

Exceptions are €+-'s means of separating error reporting from error handling. In this section,
exceptions are briefly described in the context of their use in the calculator example. Chapter 14
provides a more extensive discussion of exceptions and their uses.

8.3.1 Throw and Catch [name.throw]
The notion of arexceptioris provided to help deal with error reporting. For example:
struct Range_error {

int i;
Range emor(int ii) { i =ii; } / / constructor (82.5.2, 810.2.3)

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 8.3.1 Throw and Catch 187

char to_char(int i)

{
if (i<numeric_limits<char>:: min() || numeric_limits<char>:: max()< i)/ / see §22.2
throw Range Error() ;
return c;
}

Theto_char() function either returns thehar with the numeric value or throws aRange_error.

The fundamental idea is that a function that finds a problem it cannot copthmeitis an excep-

tion, hoping that its (direct or indirect) caller can handle the problem. A function that wants to han-
dle a problem can indicate that it is willingdatchexceptions of the type used to report the prob-
lem. For example, to catb_char() and catch the exception it might throw, we could write:

void g(int i)

try {
char c¢=to_char(i);
/..

catch (Range_error) {
cerr << " oopsin”;
}

}

The construct

catch(/* ..*) {
/...
}

is called arexception handlerlt can be used only immediately after a block prefixed with the key-
word try or immediately after another exception handtatch is also a keyword. The parentheses
contain a declaration that is used in a way similar to how a function argument declaration is used.
That is, it specifies the type of the objects that can be caught by this handler and optionally names
the object caught. For example, if we wanted to know the value dRahge error thrown, we
would provide a name for the argument#tch exactly the way we name function arguments. For
example:

void h(int i)

{

try {
char c=to_char(i);
/...

catch (Range_error x) {
cemr << "oops to_char(" <<x i<<")\n"
}

}
If any code in dry-block— or called from it- throws an exception, the try-block’s handlers will be

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

188 Namespaces and Exceptions Chapter 8

examined. If the exception thrown is of a type specified for a handler, that handler is executed. If
not, the exception handlers are ignored andrihblockacts just like an ordinary block.

Basically, G+ exception handling is a way to transfer control to designated code in a calling
function. Where needed, some information about the error can be passed along to the caller. C
programmers can think of exception handling as a well-behaved mechanism replacing
setimp/longjmp (816.1.2). The important interaction between exception handling and classes is
described in Chapter 14.

8.3.2 Discrimination of Exceptions [name.discrimination]

Typically, a program will have several different possible run-time errors. Such errors can be
mapped into exceptions with distinct names. | prefer to define types with no other purpose than
exception handling. This minimizes confusion about their purpose. In particular, | never use a
built-in type, such agnt, as an exception. In a large program, | would have no effective way to
find unrelated uses dft exceptions. Thus, | could never be sure that such other uses didn't inter-
fere with my use.

Our calculator (86.1) must handle two kinds of run-time errors: syntax errors and attempts to
divide by zero. No values need to be passed to a handler from the code that detects an attempt to
divide by zero, so zero divide can be represented by a simple empty type:

struct Zero_divide{ };

On the other hand, a handler would most likely prefer to get an indication of what kind of syntax
error occurred. Here, we pass a string along:

struct Syntax_error {

const char* p;

Syntax_error(const char* q) { p=¢; }
h

For notational convenience, | added a constructor (§2.5.2, §10.2.3)stnuitte

A user of the parser can discriminate between the two exceptions by adding handlers for both to
atry block. Where needed, the appropriate handler will be entered. If we “fall through the bot-
tom” of a handler, the execution continues at the end of the list of handlers:

try {
/...
expr(false) ;
/1 we get here if and only if expr() didn’t cause an exception
/..
}

catch (Syntax_error) {
/1 handle syntax error
}

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 8.3.2 Discrimination of Exceptions 189

catch (Zero_divide) {
/1 handle divide by zero
}

/1 we get here if expr didn’t cause an exception or if a Syptaar
/1 or Zero divide exception was caught (and its handler didn’t return,
/1 throw an exception, or in some other way alter the flow of control).

A list of handlers looks a bit like switch statement, but there is no needlioeak statements. The
syntax of a list of handlers differs from the syntax of a list of cases partly for that reason and partly
to indicate that each handler is a scope (§84.9.4).

A function need not catch all possible exceptions. For example, the prémjicaleck didn’t
try to catch exceptions potentially generated by the parser’s input operations. Those exceptions
simply “pass through,” searching for a caller with an appropriate handler.

From the language’s point of view, an exception is considered handled immediately upon entry
into its handler so that any exceptions thrown while executing a handler must be dealt with by the
callers of thdry-block For example, this does not cause an infinite loop:

class input_overflow{ /* ...*/ };

void f()
{
try {
/...
}
catch (input_overflow) {
/I ...
throw input_overflow() ;
}
}

Exception handlers can be nested. For example:

class XXll { /* ...* };

void f()

{
/"
try {

/...

}
catch (XXIl) {

try {
/1 something complicated

}
catch (XXII) {

/1 complicated handler code failed
}

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

190 Namespaces and Exceptions Chapter 8

However, such nesting is rare in human-written code and is more often than not an indication of
poor style.

8.3.3 Exceptions in the Calculator [name.calc]

Given the basic exception-handling mechanism, we can rework the calculator example from 8§6.1 to
separate the handling of errors found at run-time from the main logic of the calculator. This will
result in an organization of the program that more realistically matches what is found in programs
built from separate, loosely connected parts.

First,emror() can be eliminated. Instead, the parser functions know only the types used to sig-
nal errors:

namespace Eror {
struct Zero_divide{ };

struct Syntax_error {
const char* p;
Syntax_error(const char* q) { p=q; }

}
The parser detects three syntax errors:

Token_value Lexer: : get_token()

{
using namespace std; / / to use cin, isalpha(), etc.
/..
default: ! | NAME, NAME =, or error
if (isalpha(ch)) {
cin. putback(ch);
cin >> string_value;
return curr_tok=NAME;
}
throw Error:: Syntax_emror(" bad token’) ;
}
}
double Parser:: prim(bool get) / | handle primaries
{
I ..

case lLexer:: LP:

{ double e= expr(true);
if (curr_tok != Lexer:: RP) throw Error:: Syntax_emor(")” expected’) ;
get_token() ; | | eat’y
return e

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 8.3.3 Exceptions in the Calculator 191

case lLexer:: END:
return 1,
default:
throw Error:: Syntax_emror(" primary expected’) ;
}
}

When a syntax error is detectatirow is used to transfer control to a handler defined in some
(direct or indirect) caller. Thihrow operator also passes a value to the handler. For example,

throw Syntax_error(" primary expected’) ;

passes &yntax_error object containing a pointer to the stripgmary expected to the handler.
Reporting a divide-by-zero error doesn’t require any data to be passed along:

double Parser:: term(bool get) /| multiply and divide

{
/...
case lLexer:: DIV:
if (double d= prim(true)) {
left /= d;
break;
}
throw Error:: Zero_divide() ;
/...
}

The driver can now be defined to handro_divide andSyntax_error exceptions. For example:
int main(int argc, char* argv(])

{
/...
while (* input) {
try {
Lexer: : get_token() ;
if (Lexer:: curr_tok == Lexer:: END) break;
if (Lexer:: curr_tok == Lexer:: PRINT) continue;
cout << Parser: : expr(false) << \n’;
catch(Error: : Zero_divide) {
cerr << " attempt to divide by zero\n';
} skip() ;
catch(Error: : Syntax_error e) {
car << "syntax emror:" <<e p<<"\n"
skip() ;
}
}
if (input '= &cin) delete input;
return no_of_errors;
}

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

192 Namespaces and Exceptions Chapter 8

The functionskip() tries to bring the parser into a well-defined state after an error by skipping
tokens until it finds an end-of-line or a semicolon.nly, of_errors, andinput are obvious candi-
dates for @river namespace:

namespace Driver {
int no_of_errors;
std: : istrean’ input;
void skip() ;

void Driver: : skip()
{

no_of_errors++;
while (* input) {
char ch;
input-> get(ch);
switch (ch) {
case’ \n":
case’;":
input-> get(ch);
return;

}

The code foskip() is deliberately written at a lower level of abstraction than the parser code so as
to avoid being caught by exceptions from the parser while handling parser exceptions.

| retained the idea of counting the number of errors and reporting that number as the program’s
return value. It is often useful to know if a program encountered an error even if it was able to
recover from it.

| did not putmain() in the Driver namespace. The globadain() is the initial function of a
program (83.2); anain() in another namespace has no special meaning.

8.3.3.1 Alternative Error-Handling Strategies [name.strategy]

The original error-handling code was shorter and more elegant than the version using exceptions.
However, it achieved that elegance by tightly coupling all parts of the program. That approach
doesn’t scale well to programs composed of separately developed libraries.

We could consider eliminating the separate error-handling funskipf) by introducing a
state variable imain() . For example:

int main(int argc, char* argv]) / / example of poor style

{
I ..

bool in_error = false

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 8.3.3.1 Alternative Error-Handling Strategies 193

while (* Driver: : input) {
try {
Lexer: : get_token() ;
if (Lexer:: curr_tok == Lexer:: END) break;
if (Lexer:: curr_tok == Lexer: : PRINT) {
in_error = false
continue;
}
if (in_ermror == false) cout << Parser:: expr(false) << \n";
}
catch(Error:: Zero_divide) {
carr << " attempt to divide by zero\n';
in_error = true;

}

catch(Error:: Syntax_error €) {
carr << "syntax eror:" <<e p<<"\n%
in_error = true;

}

if (Driver:: input != std:: cin) delete Driver:: input;
return Driver:: no_of _errors;

}

| consider this a bad idea for several reasons:

[1] State variables are a common source of confusion and errors, especially if they are allowed
to proliferate and affect larger sections of a program. In particular, | consider the version of
main() usingin_error less readable than the version usskip() .

[2] It is generally a good strategy to keep error handling and “normal” code separate.

[3] Doing error handling using the same level of abstraction as the code that caused the error is
hazardous; the error-handling code might repeat the same error that triggered the error han-
dling in the first place. | leave it as an exercise to find how that can happen for the version
of main() usingin_error (88.5[7]).

[4] It is more work to modify the “normal” code to add error-handling code than to add sepa-
rate error-handling routines.

Exception handling is intended for dealing with nonlocal problems. If an error can be handled

locally, it almost always should be. For example, there is no reason to use an exception to handle
the too-many-arguments error:

int main(int argc, char* argv(])
{
using namespace std;
using namespace Driver;
switch (argc) {
case 1 / | read from standard input
input = &cin;
break;

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

194 Namespaces and Exceptions Chapter 8

case 2 / | read argument string
input = new istringstream(argV{ 1)) ;
break;
default:
cermr << "too many argumentsin”;
return 1,
}

/] as before

}

Exceptions are discussed further in Chapter 14.

8.4 Advice[name.advice]

[1] Use namespaces to express logical structure; 8§8.2.
[2] Place every nonlocal name, exca@in() , in some namespace; 88.2.
[3] Design a namespace so that you can conveniently use it without accidentally gaining access to

unrelated namespaces; §8.2.4.

[4] Avoid very short names for namespaces; §8.2.7.

[5] If necessary, use namespace aliases to abbreviate long namespaces names; §8.2.7.

[6] Avoid placing heavy notational burdens on users of your namespaces; §88.2.2, §8.2.3.

[7] Use theNamespace : member notation when defining namespace members; §8.2.8.

[8] Useusing namespace only for transition or within a local scope; §8.2.9.

[9] Use exceptions to decouple the treatment of “errors” from the code dealing with the ordinary

processing; 88.3.3.

[10] Use user-defined rather than built-in types as exceptions; §8.3.2.
[11] Don’t use exceptions when local control structures are sufficient; 88.3.3.1.

8.5 Exercisegname.exercises]

1

ok

. (2.5) Write a doubly-linked list o$tring module in the style of th8tack module from §2.4.
Exercise it by creating a list of names of programming languages. Prosat)a function

for that list, and provide a function that reverses the order of the strings in it.

((2) Take some not-too-large program that uses at least one library that does not use name-
spaces and modify it to use a namespace for that library. Hint: §8.2.9.

(C2) Modify the desk calculator program into a module in the style of 82.4 using namespaces.
Don't use any globalising-directive. Keep a record of the mistakes you made. Suggest ways
of avoiding such mistakes in the future.

(C1) Write a program that throws an exception in one function and catches it in another.

(C2) Write a program consisting of functions calling each other to a calling depth of 10. Give
each function an argument that determines at which level an exception is thrown. Have
main() catch these exceptions and print out which exception is caught. Don't forget the case
in which an exception is caught in the function that throws it.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 8.5 Exercises 195

6. () Modify the program from §8.5[5] to measure if there is a difference in the cost of catching

exceptions depending on where in a class stack the exception is thrown. Add a string object to

each function and measure again.

(M) Find the error in the first version olain() in §8.3.3.1.

8. () Write a function that either returns a value or that throws that value based on an argument.
Measure the difference in run-time between the two ways.

9. (@) Modify the calculator version from §8.5[3] to use exceptions. Keep a record of the mis-
takes you make. Suggest ways of avoiding such mistakes in the future.

10. (2.5) Write plus() , minus() , multiply() , anddivide() functions that check for possible
overflow and underflow and that throw exceptions if such errors happen.

11. () Modify the calculator to use the functions from §8.5[10].

~

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

196 Namespaces and Exceptions Chapter 8

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

	Return to Contents
	8.1 Modularization and Interfaces
	8.2 Namespaces
	8.3 Exceptions
	8.4 Advice
	8.5 Exercises

	buy now:

