7

Functions

To iterate is human,
to recurse divine.
— L. Peter Deutsch

Function declarations and definitioars argument passing- return values— function
overloading— ambiguity resolution— default arguments— stdargs — pointers to
functions— macros— advice— exercises.

7.1 Function Declarationgfct.dcl]

The typical way of getting something done inta-@rogram is to call a function to do it. Defining

a function is the way you specify how an operation is to be done. A function cannot be called

unless it has been previously declared.

A function declaration gives the name of the function, the type of the value returned (if any) by
the function, and the number and types of the arguments that must be supplied in a call of the func-

tion. For example:

Elent next_elem() ;
char* strcpy(char* to, const char* from);
void exit(int);

The semantics of argument passing are identical to the semantics of initialization. Argument types

are checked and implicit argument type conversion takes place when necessary. For example:
double sgrt(double);

double @2 = sqgrt(2); /I call sgrt() with the argument double(2)
double sq3 = sqrt(" three") ; / / error: sqrt() requires an argument of type double

The value of such checking and type conversion should not be underestimated.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

http://store.awl.com/catalog/cepub_detail.mhtml?isbn=0-201-88954-4

144 Functions Chapter 7

A function declaration may contain argument names. This can be a help to the reader of a pro-
gram, but the compiler simply ignores such names. As mentioned inved7as a return type
means that the function does not return a value.

7.1.1 Function Definitions [fct.def]

Every function that is called in a program must be defined somewhere (once only). A function def-
inition is a function declaration in which the body of the function is presented. For example:

extemn void swap(int*, int*) ; / / a declaration
void swap(int* p, int* Q) /| a definition

{
int t="*p;
*p:*q;
*q:t;

}

The type of the definition and all declarations for a function must specify the same type. The argu-
ment names, however, are not part of the type and need not be identical.
It is not uncommon to have function definitions with unused arguments:

void search(table* t, const char* key, const char*)

{
}

As shown, the fact that an argument is unused can be indicated by not naming it. Typically,
unnamed arguments arise from the simplification of code or from planning ahead for extensions. In
both cases, leaving the argument in place, although unused, ensures that callers are not affected by
the change.

A function can be defined to lmline. For example:

/1 no use of the third argument

inline iint fac(int n)

{
}

The inline specifier is a hint to the compiler that it should attempt to generate code for a call of
fac() inline rather than laying down the code for the function once and then calling through the
usual function call mechanism. A clever compiler can generate the cori2@eot a callfac(6) .

The possibility of mutually recursive inline functions, inline functions that recurse or not depending
on input, etc., makes it impossible to guarantee that every call iiliae function is actually

inlined. The degree of cleverness of a compiler cannot be legislated, so one compiler might gener-
ate720, anothe6* fac(5) , and yet another an un-inlined cit(6) .

To make inlining possible in the absence of unusually clever compilation and linking facilities,
the definition— and not just the declaration of an inline function must be in scope (§9.2). An
inline specifier does not affect the semantics of a function. In particular, an inline function still has
a unique address and so Istatic variables (87.1.2) of an inline function.

return (n<2) ? 1: n*fac(n-1);

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 7.1.2 Static Variables 145

7.1.2 Static Variables [fct.static]

A local variable is initialized when the thread of execution reaches its definition. By default, this
happens in every call of the function and each invocation of the function has its own copy of the
variable. If a local variable is declarsthtic, a single, statically allocated object will be used to
represent that variable in all calls of the function. It will be initialized only the first time the thread
of execution reaches its definition. For example:

void f(int a)
while (a--) {
static int n=0; / | initialized once
int x=0; / [/ initialized n times
cout<<"n==" <<+ <<", Xx==" << x++ << '\n;
}
}
int main()
f(3);
}
This prints:
n== 0, Xx==0
n==1, x==0
n==2, x==0

A static variable provides a function with “a memory” without introducing a global variable that
might be accessed and corrupted by other functions (see also §10.2.4).

7.2 Argument Passingfct.arg]

When a function is called, store is set aside for its formal arguments and each formal argument is
initialized by its corresponding actual argument. The semantics of argument passing are identical
to the semantics of initialization. In particular, the type of an actual argument is checked against

the type of the corresponding formal argument, and all standard and user-defined type conversions
are performed. There are special rules for passing arrays (87.2.1), a facility for passing unchecked
arguments (87.6), and a facility for specifying default arguments (§87.5). Consider:

void f(int val, int&ref)
{

val++;

ref++;

}

Whenf() is called,val++ increments a local copy of the first actual argument, whenefas-
increments the second actual argument. For example,

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

146 Functions Chapter 7

void g()

{
int i=1;
int j=1;

f(i, J);

will incrementj but noti. The first argumenti, is passedy value the second argumerijt, is
passedy reference As mentioned in 85.5, functions that modify call-by-reference arguments can
make programs hard to read and should most often be avoided (but see §21.2.1). It can, however,
be noticeably more efficient to pass a large object by reference than to pass it by value. In that
case, the argument might be declaredst to indicate that the reference is used for efficiency rea-
sons only and not to enable the called function to change the value of the object:

void f(const Large& arg)

/1 the value of "arg" cannot be changed without explicit use of type conversion

}

The absence afonst in the declaration of a reference argument is taken as a statement of intent to
modify the variable:

void g(Large& arg); // assume that g() modifies arg

Similarly, declaring a pointer argumeranst tells readers that the value of an object pointed to by
that argument is not changed by the function. For example:

int strlen(const char*) ; /| number of characters in a C-style string
char* strcpy(char* to, const char* from); /| copy a C-style string
int stremp(const char*, const char*) ; /| compare C-style strings

The importance of usingpnst arguments increases with the size of a program.

Note that the semantics of argument passing are different from the semantics of assignment.
This is important forconst arguments, reference arguments, and arguments of some user-defined
types (810.4.4.1).

A literal, a constant, and an argument that requires conversion can be passenst @rgu-
ment, but not as a na®nst argument. Allowing conversions forcanst T& argument ensures that
such an argument can be given exactly the same set of valu&saaguenent by passing the value
in a temporary, if necessary. For example:

float fsqrt(const float&);/ / Fortran-style sqrt taking a reference argument
void g(double d)

{

float r = fsqrt(2. Of); | | pass ref to temp holding 2.0f

r =fsgrt(r); | | passreftor

r = fsqrt(d); | | pass ref to temp holding float(d)
}

Disallowing conversions for nooenst reference arguments (85.5) avoids the possibility of silly
mistakes arising from the introduction of temporaries. For example:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 7.2 Argument Passing 147

void update(float& i);
void g(double d float r)

{
update(2. Of); / / error: const argument
update(r); | | passreftor
update(d); / | error: type conversion required
}

Had these calls been allowagydate() would quietly have updated temporaries that immediately
were deleted. Usually, that would come as an unpleasant surprise to the programmer.
7.2.1 Array Arguments [fct.array]

If an array is used as a function argument, a pointer to its initial element is passed. For example:
int strlen(const char*) ;

void f()

{
char v[] ="an array’;
int i = strlen(v);

int j = strlen(" Nicholas') ;
}

That is, an argument of typH] will be converted to &* when passed as an argument. This
implies that an assignment to an element of an array argument changes the value of an element of
the argument array. In other words, arrays differ from other types in that an array is not (and can-
not be) passed by value.

The size of an array is not available to the called function. This can be a nuisance, but there are
several ways of circumventing this problem. C-style strings are zero-terminated, so their size can
be computed easily. For other arrays, a second argument specifying the size can be passed. For
example:

void computel(int* vec ptr, int vec size); / | one way
struct Vec{
int* ptr;
int size
3
void compute?(const Vec& Vv); /| another way

Alternatively, a type such a®ctor (83.7.1, 816.3) can be used instead of an array.
Multidimensional arrays are trickier (see 8C.7), but often arrays of pointers can be used instead,
and they need no special treatment. For example:
char* day]] ={
"mon’, "tue', "wed', "thu', "fri", "sat’, "sun"

h
Again, vector and similar types are alternatives to the built-in, low-level arrays and pointers.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

148 Functions Chapter 7

7.3 Value Return[fct.return]

A value must be returned from a function that is not decheoti(howevermain() is special; see
83.2). Conversely, a value cannot be returned frewidifunction. For example:

int 10 {}
void 20) { }

int f30) { return 1; }
void f4()) { return 1; }

int f5() { return; }
void f6() { return; }

/ error: no value returned
ok

/
| ok

[error: return value in void function
/

/

error: return value missing

/
/
/
/
/
[| ok

A return value is specified by a return statement. For example:
int fac(int n) { return(n>1) ? n*fac(n-1) : 1; }
A function that calls itself is said to becursive

There can be more than one return statement in a function:

int fac2(int n)

{
if (n>1) return n*fac2(n- 1);
return 1;

}

Like the semantics of argument passing, the semantics of function value return are identical to the
semantics of initialization. A return statement is considered to initialize an unnamed variable of the
returned type. The type of a return expression is checked against the type of the returned type, and
all standard and user-defined type conversions are performed. For example:

double f{) { return 1; } / / 1is implicitly converted to double(1)

Each time a function is called, a new copy of its arguments and local (automatic) variables is cre-
ated. The store is reused after the function returns, so a pointer to a local variable should never be
returned. The contents of the location pointed to will change unpredictably:

int* fp() { int local=1; /* ...*/ return&ocal; } / / bad
This error is less common than the equivalent error using references:
int&fr() { int local=1; /* ..*/ return local; } / / bad

Fortunately, a compiler can easily warn about returning references to local variables.

A void function cannot return a value. However, a call vb@ function doesn't yield a value,
so avoid function can use a call of wid function as the expression inreturn statement. For
example:

void g(int* p);
void h(int* p) { /* ...*/ return g(p); }/ / ok:return of “no value”

This form of return is important when writing template functions where the return type is a tem-
plate parameter (see §18.4.4.2).

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 7.4 Overloaded Function Names 149

7.4 Overloaded Function Namegct.over]

Most often, it is a good idea to give different functions different names, but when some functions
conceptually perform the same task on objects of different types, it can be more convenient to give
them the same name. Using the same name for operations on different types mvesibedling
The technique is already used for the basic operations+n That is, there is only one name for
addition,+, yet it can be used to add values of integer, floating-point, and pointer types. This idea
is easily extended to functions defined by the programmer. For example:

void print(int); [| printanint

void print(const char*) ;/ / print a C-style character string

As far as the compiler is concerned, the only thing functions of the same name have in common is
that name. Presumably, the functions are in some sense similar, but the language does not con-
strain or aid the programmer. Thus overloaded function names are primarily a notational conve-
nience. This convenience is significant for functions with conventional names ssutt, gsint,
andopen. When a name is semantically significant, this convenience becomes essential. This hap-
pens, for example, with operators suchta$, and<<, in the case of constructors (811.7), and in
generic programming (82.7.2, Chapter 18). When a fundtisrcalled, the compiler must figure
out which of the functions with the narhis to be invoked. This is done by comparing the types of
the actual arguments with the types of the formal arguments of all functionsfcalled idea is to
invoke the function that is the best match on the arguments and give a compile-time error if no
function is the best match. For example:

void print(double);

void print(long);

void f()

{

print(1L); /I print(long)

print(1. 0); / / print(double)

print(1); /| error, ambiguous: print(long(1)) or print(double(1))?
}

Finding the right version to call from a set of overloaded functions is done by looking for a best
match between the type of the argument expression and the parameters (formal arguments) of the
functions. To approximate our notions of what is reasonable, a series of criteria are tried in order:
[1] Exact match; that is, match using no or only trivial conversions (for example, array name to
pointer, function name to pointer to function, antb const T)
[2] Match using promotions; that is, integral promotiobed{ to int, char to int, short to int,
and theirunsigned counterparts; 8C.6.1float to double, anddouble to long double
[3] Match using standard conversions (for examigieto double, double to int, Derived* to
Base* (§12.2), T* tovoid* (85.6),int to unsigned int; 8C.6)
[4] Match using user-defined conversions (§11.4)
[5] Match using the ellipsis. in a function declaration (87.6)
If two matches are found at the highest level where a match is found, the call is rejected as ambigu-
ous. The resolution rules are this elaborate primarily to take into account the elaboratet@ and C
rules for built-in numeric types (8C.6). For example:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

150 Functions Chapter 7

void print(int);

void print(const char*) ;
void print(double);
void print(long);

void print(char);

void h(char c, int i, short s, float f)

{
print(c); [| exact match: invoke print(char)
print(i); / | exact match: invoke print(int)
print(s); /I integral promotion: invoke print(int)
print(f); /I float to double promotion: print(double)
print(" &) ; / / exact match: invoke print(char)
print(49); /| exact match: invoke print(int)
print(0); | | exact match: invoke print(int)
print(" @) ; / [/ exact match: invoke print(const char*)
}

The call print(0) invokes print(int) because0O is an int. The call print(" a") invokes
print(char) becausé a’ is achar (84.3.1). The reason to distinguish between conversions and
promotions is that we want to prefer safe promotions, suchaso int, over unsafe conversions,
such asnt to char.

The overloading resolution is independent of the order of declaration of the functions consid-
ered.

Overloading relies on a relatively complicated set of rules, and occasionally a programmer will
be surprised which function is called. So, why bother? Consider the alternative to overloading.
Often, we need similar operations performed on objects of several types. Without overloading, we
must define several functions with different names:

void print_int(int);
void print_char(char);
void print_string(const char*) ; // C-style string

void g(int i, char ¢, const char* p, double d)

{
print_int(i); [| ok
print_char(c); [| ok
print_string(p); / / ok
print_int(c); /1 ok? calls printint(int(c))
print_char(i); /| ok? calls printchar(char(i))
print_string(i); | | error
print_int(d); /1 ok? calls printint(int(d))
}

Compared to the overloadgdiint() , we have to remember several names and remember to use

those correctly. This can be tedious, defeats attempts to do generic programming (82.7.2), and gen-
erally encourages the programmer to focus on relatively low-level type issues. Because there is no
overloading, all standard conversions apply to arguments to these functions. It can also lead to

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 7.4 Overloaded Function Names 151

errors. In the previous example, this implies that only one of the four calls with a “wrong” argu-
ment is caught by the compiler. Thus, overloading can increase the chances that an unsuitable
argument will be rejected by the compiler.

7.4.1 Overloading and Return Type [fct.return]

Return types are not considered in overload resolution. The reason is to keep resolution for an indi-
vidual operator (811.2.1, §11.2.4) or function call context-independent. Consider:

float sqrt(float);
double sgrt(double);

void f(double da, float fla)

{
float fl = sqrt(da); / / call sqrt(double)
double d=sqgrt(da); // call sqrt(double)
fl = sart(fla); /I call sgrt(float)
d=sqgt(fla); [| call sgrt(float)

}

If the return type were taken into account, it would no longer be possible to look at asgel()of
in isolation and determine which function was called.

7.4.2 Overloading and Scopes [fct.scope]

Functions declared in different non-namespace scopes do not overload. For example:
void f(int);
void g()

void f(double);
f(1); /| call f(double)
}

Clearly,f(int) would have been the best matchfipt) , but onlyf(double) is in scope. In such

cases, local declarations can be added or subtracted to get the desired behavior. As always, inten-
tional hiding can be a useful technique, but unintentional hiding is a source of surprises. When
overloading across class scopes (815.2.2) or namespace scopes (88.2.9.2) is usanged,
declarationsor using- directivescan be used (88.2.2). See also §8.2.6 and §8.2.9.2.

7.4.3 Manual Ambiguity Resolution [fct.man.ambig]

Declaring too few (or too many) overloaded versions of a function can lead to ambiguities. For
example:

void f1(char);
void f1(long);

void f2(char*) ;
void f2(int*) ;

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

152 Functions Chapter 7

void k(int i)
{
f1(i); / / ambiguous: f1l(char) or f1(long)
f2(0); / | ambiguous: f2(char*) or f2(int*)
}

Where possible, the thing to do in such cases is to consider the set of overloaded versions of a func-
tion as a whole and see if it makes sense according to the semantics of the function. Often the
problem can be solved by adding a version that resolves ambiguities. For example, adding

inline void f1(int n) { f1(long(n)) ; }

would resolve all ambiguities similar fa(i) in favor of the larger typbong int.
One can also add an explicit type conversion to resolve a specific call. For example:

f2(static_cast<int*>(0)) ;

However, this is most often simply an ugly stopgap. Soon another similar call will be made and
have to be dealt with.

Some @+ novices get irritated by the ambiguity errors reported by the compiler. More experi-
enced programmers appreciate these error messages as useful indicators of design errors.

7.4.4 Resolution for Multiple Arguments [fct.fct.res]

Given the overload resolution rules, one can ensure that the simplest algorithm (function) will be
used when the efficiency or precision of computations differs significantly for the types involved.
For example:

int pow(int, int);
double pow(double, double);

complex pow(double, complex);
complex pow(complex, int);
complex pow(complex, double);
complex pow(complex, complex);

void k(complex 2)
{

int i = pow(2, 2);

double d= pow(2.0, 2. 0);
complex 22 = pow(2, 2);
complex zZ3= pow(z, 2);
complex z4 = pow(z, 2);

invoke pow(int,int)

invoke pow(double,double)
invoke pow(double,complex)
invoke pow(complex,int)
invoke pow(complex,complex)

~—~ ~ ~
~ — — — —

}

In the process of choosing among overloaded functions with two or more arguments, a best match
is found for each argument using the rules from §7.4. A function that is the best match for one

argument and a better than or equal match for all other arguments is called. If no such function
exists, the call is rejected as ambiguous. For example:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 7.4.4 Resolution for Multiple Arguments 153

void g()
{

double d=pow(2. 0, 2); / / error: pow(int(2.0),2) or pow(2.0,double(2))?
}

The call is ambiguous becaus2 0 is the best match for the first argument of
pow(double, double) and2 is the best match for the second argumeipiowf(int, int) .

7.5 Default Arguments]fct.defarg]

A general function often needs more arguments than are necessary to handle simple cases. In par-
ticular, functions that construct objects (810.2.3) often provide several options for flexibility. Con-
sider a function for printing an integer. Giving the user an option of what base to print it in seems
reasonable, but in most programs integers will be printed as decimal integer values. For example:

void print(int value, int base=10);/ / default base is 10

void f()

{
print(31);
print(31, 10);
print(31, 16);
print(31, 2);
}

might produce this output:
31 31 1f 11111
The effect of a default argument can alternatively be achieved by overloading:

void print(int value, int base);
inline void print(int value) { print(value, 10); }

However, overloading makes it less obvious to the reader that the intent is to have a single print
function plus a shorthand.

A default argument is type checked at the time of the function declaration and evaluated at the
time of the call. Default arguments may be provided for trailing arguments only. For example:

int f(int, int=0, char* =0); / / ok
int g(int=0, int=0, char*); / / error
int h(int=0, int, char* =0); / / error
Note that the space between thand the= is significant {= is an assignment operator; §6.2):
int nasty(char*=0); / | syntax error

A default argument can be repeated in a subsequent declaration in the same scope but not changed.
For example:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

154 Functions Chapter 7

void f(int x=7);

void f(int=7); / | ok

void f(int=8); / | error: different default arguments
void g()

{

void f(int x=19); / / ok: this declaration hides the outer one
/...

}

Declaring a name in a nested scope so that the name hides a declaration of the same name in an
outer scope is error prone.

7.6 Unspecified Number of Argumentgfct.stdarg]

For some functions, it is not possible to specify the number and type of all arguments expected in a
call. Such a function is declared by terminating the list of argument declarations with the ellipsis
(...), which means “and maybe some more arguments.” For example:

int printf(const char* ...) ;

This specifies that a call of the C standard library fungbiontf() (821.8) must have at least one
argument, &har* , but may or may not have others. For example:

printf(" Hello, world! \n") ;
printf(" My name is % %8\n", first name second name);
printf("% d + %d = %@\n", 2, 3, 5);

Such a function must rely on information not available to the compiler when interpreting its argu-
ment list. In the case gfrintf() , the first argument is a format string containing special character
sequences that alloprintf() to handle other arguments correcty means “expect ahar*
argument” and¥g means “expect aint argument.” However, the compiler cannot in general

know that, so it cannot ensure that the expected arguments are really there or that an argument is of
the proper type. For example,

#include <stdio. h>

int main()

{
}

will compile and (at best) cause some strange-looking output (try it!).

Clearly, if an argument has not been declared, the compiler does not have the information
needed to perform the standard type checking and type conversion for it. In thatclesegraa
short is passed as ant and afloat is passed as double. This is not necessarily what the pro-
grammer expects.

A well-designed program needs at most a few functions for which the argument types are not
completely specified. Overloaded functions and functions using default arguments can be used to

printf(" My name is % %s\n", 2);

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 7.6 Unspecified Number of Arguments 155

take care of type checking in most cases when one would otherwise consider leaving argument
types unspecified. Only when both the number of argunsmishe type of arguments vary is the
ellipsis necessary. The most common use of the ellipsis is to specify an interface to C library func-
tions that were defined before€provided alternatives:

rom <cstdio>

int fprintf(FILE*, const char* ...) ; [/ /
/ | from UNIX header

int exed(const char* ...) ;

— —h

A standard set of macros for accessing the unspecified arguments in such functions can be found in
<cstdarg>. Consider writing an error function that takes one integer argument indicating the
severity of the error followed by an arbitrary number of strings. The idea is to compose the error
message by passing each word as a separate string argument. The list of string arguments should
be terminated by a null pointer ¢bar:

extern void emor(int...) ;
extem char* itoa(int, char[]) ; /| see 86.6[17]
const char* Null_cp=0;

int main(int argc, char* argv(])

{
switch (argc) {
case 1L
emror(0, argv] 0], Null_cp);
break;
case 2
emror(0, argv] 0], argv] 1], Null_cp);
break;
default:
char buffer| 8];
emor(1, argv 0], "with", itoa(argc- 1, buffer)," arguments’, Null_cp);
}
Il ..
}

The functionitoa() returns the character string representing its integer argument.

Note that using the integéras the terminator would not have been portable: on some imple-
mentations, the integer zero and the null pointer do not have the same representation. This illus-
trates the subtleties and extra work that face the programmer once type checking has been sup-
pressed using the ellipsis.

The error function could be defined like this:

void error(int sewerity...) // "severity" followed by a zero-terminated list of char*s

{
va list ap;
va_start(ap, severity); / / arg startup

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

156 Functions Chapter 7

for () {
char* p=va_arg(ap, char*) ;
if (p==0) break;
car << p<<’ 7
}
va_end(ap); / | arg cleanup
cerr << \n;
if (severity) exit(severity);

}

First, ava list is defined and initialized by a call & start() . The macrova_start takes the

name of theva list and the name of the last formal argument as arguments. The vaaarg()

is used to pick the unnamed arguments in order. In each call, the programmer must supply a type;
va arg() assumes that an actual argument of that type has been passed, but it typically has no way
of ensuring that. Before returning from a function in whiehstart() has been useda end()

must be called. The reason is that start() may modify the stack in such a way that a return
cannot successfully be dongg_end() undoes any such modifications.

7.7 Pointer to Function]fct.pf]

There are only two things one can do to a function: call it and take its address. The pointer
obtained by taking the address of a function can then be used to call the function. For example:

void emor(string s) { /* ..* }
void (* efct)(string); /| pointer to function

void f()
efct = &error; / | efct points to error
efct(" emror”) ; /1 call error through efct
}

The compiler will discover thagfct is a pointer and call the function pointed to. That is, derefer-
encing of a pointer to function usirigis optional. Similarly, using: to get the address of a func-
tion is optional:

void (* f1)(string) = &emror; / / ok
void (* f2)(string) = ermror; / / also ok; same meaning as &error
void g()

{
f1(" Vasa') ; [| ok
(* f1)(" Mary Rose") ; / / also ok

Pointers to functions have argument types declared just like the functions themselves. In pointer
assignments, the complete function type must match exactly. For example:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 7.7 Pointer to Function 157

void (* pf)(string); / / pointer to void(string)
void f1(string); /I void(string)

int f2(string); /| int(string)

void f3(int*) ; /1 void(int*)

void f()

{
pf = &f1; / | ok
pf = &f2; / | error: bad return type
pf = &f3; /| error: bad argument type
pf(" Hera") ; [| ok
pf(1); /| error: bad argument type
int i = pf(" Zeus") ; / / error: void assigned to int

}

The rules for argument passing are the same for calls directly to a function and for calls to a func-
tion through a pointer.

It is often convenient to define a name for a pointer-to-function type to avoid using the some-
what nonobvious declaration syntax all the time. Here is an example from a UNIX system header:

typedef void (* SIG_TYP)(int); /| from<signal.t>
typedef void (* SIG_ARG_TYP)(int);
SIG_TYP signal(int, SIG_ARG TYP);

An array of pointers to functions is often useful. For example, the menu system for my mouse-
based editor is implemented using arrays of pointers to functions to represent operations. The sys-
tem cannot be described in detail here, but this is the general idea:

typedef void (* PF)() :

PF edit_opg] ={ / | edit operations
&cut, &paste, ©, &search

h

PF file_ opg] ={ / | file management
&open, &append, &close &write

h

We can then define and initialize the pointers that control actions selected from a menu associated
with the mouse buttons:

PF* button2 = edit_ops,
PF* button3 = file_ops,

In a complete implementation, more information is needed to define each menu item. For example,

a string specifying the text to be displayed must be stored somewhere. As the system is used, the
meaning of mouse buttons changes frequently with the context. Such changes are performed
(partly) by changing the value of the button pointers. When a user selects a menu item, such as
item 3 for button 2, the associated operation is executed:

button2[2]() ;/ / call button2’s 3rd function

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

158 Functions Chapter 7

One way to gain appreciation of the expressive power of pointers to functions is to try to write such
code without them— and without using their better-behaved cousins, the virtual functions
(812.2.6). A menu can be modified at run-time by inserting new functions into the operator table.
It is also easy to construct new menus at run-time.

Pointers to functions can be used to provide a simple form of polymorphic routines, that is, rou-
tines that can be applied to objects of many different types:

typedef int (* CFT)(const void*, const void*) ;

void ssort(void* base sizet n, sizet sz CFT cmp)

/*
Sort the "n" elements of vector "base" into increasing order
using the comparison function pointed to by "cmp".
The elements are of size "sz".

Shell sort (Knuth, Vol3, pg84)
*/

for (int gap=n/ 2; O<gap; gap/= 2)
for (int i=gap; i<n; i++)
for (int j=i- gap; 0<=j; j-=gap) {
char* b = static_cast<char*>(base);/ / necessary cast
char* pj = b+j* sz [| &base[j]
char* pjg = b+(j+gap)* sz I | &base[j+gap]

if (cmp(pj, pig)< 0) { /| swap base[j] and base[j+gap]:
for (int k=0; k<sz k++) {
char temp=pj[K];
pPil KI = pigl Kl;
pig[K| = temp;

}

Thessort() routine does not know the type of the objects it sorts, only the number of elements (the
array size), the size of each element, and the function to call to perform a comparison. The type of
ssort() was chosen to be the same as the type of the standard C library sort qsotife,. Real
programs use@sort() , the G+ standard library algorithreort (§18.7.1), or a specialized sort rou-
tine. This style of code is common in C, but it is not the most elegant way of expressing this algo-
rithm in C++ (see §13.3, §13.5.2).

Such a sort function could be used to sort a table such as this:

struct User {
char* name
char* id;
int dept;

b

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 7.7 Pointer to Function 159

User heads] ={

" Ritchie D. M", " dmr', 11271,
" Sethi R, " rawvi", 11272,
"Szyymanski T. G."," tgs', 11273,
"Schryer N.L.", " nls’, 11274,
"Schryer N.L.", " nls’, 11275,
" Kemighan B. W.", " bwk', 11276
h
void print_id(User* v, int n)
{
for (int i=0; i<n; i++)
cout << V[i]. name<< Wt << V[i]. id<< " Wt" << V[i]. dept<< \n’;
}

To be able to sort, we must first define appropriate comparison functions. A comparison function
must return a negative value if its first argument is less than the second, zero if the arguments are
equal, and a positive number otherwise:

int cmpl(const void* p, const void* q) / / Compare name strings

return stremp(static_cast<const User*>(p)-> name, static_cast<const User*>(g)-> name);
}

int cmp2(const void* p, const void* q) / / Compare dept numbers
{

}
This program sorts and prints:

return static_cast<const User*>(p)-> dept - static_cast<const User*>(q)-> dept;

int main()

{
cout << "Heads in alphabetical order: \n";
ssort(heads, 6, sizeof(User), cmpl);
print_id(heads, 6);
cout << "\n'";

cout << " Heads in order of department number: \n";
ssort(heads, 6, sizeof(User), cmp2);
print_id(heads, 6);

}

You can take the address of an overloaded function by assigning to or initializing a pointer to func-
tion. In that case, the type of the target is used to select from the set of overloaded functions. For
example:

void f(int);

int f(char);

void (* pfl)(int) =& / / void f(int)

int (* pf2)(char) =&f; / / intf(char)

void (* pf3)(char) = &f;, / [/ error: no void f(char)

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

160 Functions Chapter 7

A function must be called through a pointer to function with exactly the right argument and return
types. There is no implicit conversion of argument or return types when pointers to functions are
assigned or initialized. This means that

int cmp3(const mytype*, const mytype*) ;

is not a suitable argument fesort() . The reason is that accepticgp3 as an argument to
ssort() would violate the guarantee tranp3 will be called with arguments of typaytype* (see
also §9.2.5).

7.8 Macrosjfct.macro]

Macros are very important in C but have far fewer usestih The first rule about macros is:
Don’t use them unless you have to. Almost every macro demonstrates a flaw in the programming
language, in the program, or in the programmer. Because they rearrange the program text before
the compiler proper sees it, macros are also a major problem for many programming tools. So
when you use macros, you should expect inferior service from tools such as debuggers, cross-
reference tools, and profilers. If you must use macros, please read the reference manual for your
own implementation of the+G preprocessor carefully and try not to be too clever. Also to warn
readers, follow the convention to name macros using lots of capital letters. The syntax of macros is
presented in 8A.11.

A simple macro is defined like this:

#define NAME rest of line
WhereNAME is encountered as a token, it is replaceddsy of line. For example,
named = NAME
will expand into
named = rest of line
A macro can also be defined to take arguments. For example:
#define MAC(x, y) argumentl: x argument2: y

When MAC is used, two argument strings must be presented. They will replandy when
MAC() is expanded. For example,

expanded = MAC(foo bar, yuk yuk)
will be expanded into
expanded = argumentl: foo bar argument2: yuk yuk
Macro names cannot be overloaded, and the macro preprocessor cannot handle recursive calls:

#define PRINT(a, b) cout<<(a)<<(b)
#define PRINT(a, b, ¢) cout<<(a)<<(b)<<(c) /* trouble?: redefines, does not overlodd

#define FAC(n) (n>1)? n* FAC(n-1): 1 [* trouble: recursive macrd/

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 7.8 Macros 161

Macros manipulate character strings and know little abstitsgntax and nothing about-€types
or scope rules. Only the expanded form of a macro is seen by the compiler, so an error in a macro
will be reported when the macro is expanded, not when it is defined. This leads to very obscure
error messages.

Here are some plausible macros:

#define CASE break; case
#define FOREVER for(;;)

Here are some completely unnecessary macros:

#define PI 3. 141593
#define BEGIN {
#define END }

Here are some dangerous macros:

#define SQUARE(a) a*a
#define INCR _xx (xx)++

To see why they are dangerous, try expanding this:
int xx=0; / | global counter

void f()
{

int xx=0; / 1 local variable
int y=SQUARE(xx+2); / | y=xx+2*xx+2; that is y=xx+(2*xx)+2
INCR_xx; / | increments local xx

}

If you must use a macro, use the scope resolution operatathen referring to global names
(84.9.4) and enclose occurrences of a macro argument name in parentheses whenever possible. For
example:

#define MIN(a, b) (((a)<(b))?(a):(b))

If you must write macros complicated enough to require comments, it is wise fo dse com-
ments because C preprocessors that do not know Abaeimments are sometimes used as part of
Ct+tools. For example:

#define M2(a) something(a) /* thoughtful comment

Using macros, you can design your own private language. Even if you prefer this “enhanced lan-
guage” to plain &+, it will be incomprehensible to most-€ programmers. Furthermore, the C
preprocessor is a very simple macro processor. When you try to do something nontrivial, you are
likely to find it either impossible or unnecessarily hard to do. ddrest, inline, template, and
namespace mechanisms are intended as alternatives to many traditional uses of preprocessor con-
structs. For example:

const int answer = 42;
template<class T>inline T min(T a, T b) { return (a<b)? a: b; }

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

162 Functions Chapter 7

When writing a macro, it is not unusual to need a new name for something. A string can be created
by concatenating two strings using ¥ macro operator. For example,

#define NAME2(a, b) a##b
int NAME2(hack, cah)() ;

will produce
int hackcah() ;

for the compiler to read.
The directive

#undef X

ensures that no macro callédis defined— whether or not one was before the directive. This
affords some protection against undesired macros. However, it is not always easy to know what the
effects ofX on a piece of code were supposed to be.

7.8.1 Conditional Compilation [fct.cond]

One use of macros is almost impossible to avoid. The diregifdef identifier conditionally
causes all input to be ignored unti#eandif directive is seen. For example,

int f(int a

#ifdef arg_two

,int b

#endif

)
produces

int f(int a
)
for the compiler to see unless a macro cadlegl two has beertdefined. This example confuses
tools that assume sane behavior from the programmer.
Most uses oftifdef are less bizarre, and when used with restréifidef does little harm. See
also §9.3.3.
Names of the macros used to conttifdef should be chosen carefully so that they don’t clash
with ordinary identifiers. For example:

struct Call_info {
Node* arg_one
Node* arg_two;
/..

h
This innocent-looking source text will cause some confusion should someone write;
#define arg_two x

Unfortunately, common and unavoidable headers contain many dangerous and unnecessary macros.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 7.9 Advice 163

7.9
[1]

(2]
3]
[4]
[5]
[6]
[7]
(8]
9]

[10]

Advice[dcl.advice]

Be suspicious of nooenst reference arguments; if you want the function to modify its argu-
ments, use pointers and value return instead; 85.5.

Useconst reference arguments when you need to minimize copying of arguments; 85.5.
Useconst extensively and consistently; §7.2.

Avoid macros; 8§7.8.

Avoid unspecified numbers of arguments; §7.6.

Don't return pointers or references to local variables; §7.3.

Use overloading when functions perform conceptually the same task on different types; §7.4.
When overloading on integers, provide functions to eliminate common ambiguities; §7.4.3.
When considering the use of a pointer to function, consider whether a virtual function
(82.5.5) or a template (82.7.2) would be a better alternative; §7.7.

If you must use macros, use ugly names with lots of capital letters; §7.8.

7.10 Exercisegfct.exercises]

1. (L) Write declarations for the following: a function taking arguments of type pointer to charac-
ter and reference to integer and returning no value; a pointer to such a function; a function tak-
ing such a pointer as an argument; and a function returning such a pointer. Write the definition
of a function that takes such a pointer as an argument and returns its argument as the return
value. Hint: Usaypedef.

2. () What does the following mean? What would it be good for?

typedef int (& rifii) (int, int);

3. (L.5) Write a program like “Hello, world!” that takes a name as a command-line argument
and writes “Hello,name! ”. Modify this program to take any number of names as arguments
and to say hello to each.

4, (L.5) Write a program that reads an arbitrary number of files whose names are given as
command-line arguments and writes them one after anotheouin Because this program
concatenates its arguments to produce its output, you might catll it

5. (®) Convert a small C program ta-€ Modify the header files to declare all functions called
and to declare the type of every argument. Where possible, réefimes with enum, const,
or inline. Removeextemn declarations from c files and if necessary convert all function defi-
nitions to G+ function definition syntax. Replace callsrmélloc() andfree) with newand
delete. Remove unnecessary casts.

~N O

. (@) Implementssort() (87.7) using a more efficient sorting algorithm. Hugort() .
. (2.5) Consider:

struct Tnode{
string word;
int count;
Tnode* left;
Tnode* right;
h

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

164 Functions Chapter 7

Write a function for entering new words into a tre€Tobdes. Write a function to write out a

tree of Tnodes. Write a function to write out a tree ©hodes with the words in alphabetical

order. Modify Tnode so that it stores (only) a pointer to an arbitrarily long word stored as an

array of characters on free store usimegy. Modify the functions to use the new definition of

Tnode.

(C2.5) Write a function to invert a two-dimensional array. Hint: 8C.7.

9. (2) Write an encryption program that reads frcimand writes the encoded charactersdut.

You might use this simple encryption scheme: the encrypted form of a charmotékey i] ,
wherekey is a string passed as a command-line argument. The program uses the characters in
key in a cyclic manner until all the input has been read. Re-encrypting encoded text with the
same key produces the original text. If no key (or a null string) is passed, then no encryption is
done.

10. ((B.5) Write a program to help decipher messages encrypted with the method described in
§7.10[9] without knowing the key. Hint: See David Kafirhe CodebreakersMacmillan,

1967, New York, pp. 207-213.

11. (B) Write anerror function that takes arintf-style format string containings, %, and%d
directives and an arbitrary number of arguments. Don’tpwaef() . Look at §21.8 if you
don’t know the meaning éfs, %, and%a. Use<cstdarg>.

12. () How would you choose names for pointer to function types defined typiedef?

13. (@) Look at some programs to get an idea of the diversity of styles of names actually used.
How are uppercase letters used? How is the underscore used? When are short names such as
andx used?

14. () What is wrong with these macro definitions?

#define PI = 3. 141593,

#define MAX(a, b) a>b?a: b
#define fac(a) (a)* fac((a)- 1)

©

15. ((B) Write a macro processor that defines and expands simple macros (like the C preprocessor
does). Read froncin and write tocout. At first, don't try to handle macros with arguments.
Hint: The desk calculator (86.1) contains a symbol table and a lexical analyzer that you could
modify.

16. (R) Implementprint() from 8§7.5.

17. () Add functions such asgt() , log() , andsin() to the desk calculator from §6.1. Hint:
Predefine the names and call the functions through an array of pointers to functions. Don't for-
get to check the arguments in a function call.

18. (1) Write a factorial function that does not use recursion. See also 8§11.14[6].

19. ((2) Write functions to add one day, one month, and one yeabD#iesas defined in §5.9[13].

Write a function that gives the day of the week for a gDate. Write a function that gives the
Date of the first Monday following a giveDBate.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

	Return to Contents
	7.1 Function Declarations
	7.2 Argument Passing
	7.3 Value Return
	7.4 Overloaded Function Names
	7.5 Default Arguments
	7.6 Unspecified Number of Arguments
	7.7 Pointer to Function
	7.8 Macros
	7.9 Advice
	7.10 Exercises

	buy now:

