5

Pointers, Arrays, and Structures

The sublime and the ridiculous

are often so nearly related that

it is difficult to class them separately.
— Tom Paine

Pointers— zero— arrays— string literals— pointers into arrays— constants— point-
ers and constants- references— void* — data structures— advice— exercises.

5.1 Pointers[ptr.ptr]

For a typeT, T* is the type “pointer tal.” That is, a variable of typ@* can hold the address of
an object of typd. For example:

char c="a;
char* p = &c; / | p holds the address of ¢

or graphically:

Pl & .
c:

Unfortunately, pointers to arrays and pointers to functions need a more complicated notation:

int* pi; / | pointer to int

char** ppc; / | pointer to pointer to char

int* ap[15]; /| array of 15 pointers to ints

int (* fp)(char*) ; / / pointer to function taking a char* argument; returns an int
int* f(char*) ; / I function taking a char* argument; returns a pointer to int

See 84.9.1 for an explanation of the declaration syntax and Appendix A for the complete grammar.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

http://store.awl.com/catalog/cepub_detail.mhtml?isbn=0-201-88954-4

88 Pointers, Arrays, and Structures Chapter 5

The fundamental operation on a pointedéeferencingthat is, referring to the object pointed
to by the pointer. This operation is also caliedirection The dereferencing operator is (prefix)
unary*. For example:

char c="a;
char* p=&c; / / p holds the address of ¢
char c2=*p; / |/ c2=="a

The variable pointed to hyis ¢, and the value stored s~ a’ , so the value of p assigned t@2
is"a .

It is possible to perform some arithmetic operations on pointers to array elements (85.3). Point-
ers to functions can be extremely useful; they are discussed in §7.7.

The implementation of pointers is intended to map directly to the addressing mechanisms of the
machine on which the program runs. Most machines can address a byte. Those that can’t tend to
have hardware to extract bytes from words. On the other hand, few machines can directly address
an individual bit. Consequently, the smallest object that can be independently allocated and
pointed to using a built-in pointer type i<har. Note that &ool occupies at least as much space
as achar (84.6). To store smaller values more compactly, you can use logical operations (86.2.4)
or bit fields in structures (§C.8.1).

5.1.1 Zero [ptr.zero]

Zero Q) is anint. Because of standard conversions (8C.6.D.8gn be used as a constant of any
integral (84.1.1), floating-point, pointer, or pointer-to-member type. The type of zero will be deter-
mined by context. Zero will typically (but not necessarily) be represented by the bit dittern
zerosof the appropriate size.

No object is allocated with the addréss ConsequentlyQ acts as a pointer literal, indicating
that a pointer doesn’t refer to an object.

In C, it has been popular to define a mabildLL to represent the zero pointer. Because of
C++'s tighter type checking, the use of pl@nrather than any suggestdB#JLL macro, leads to
fewer problems. If you feel you must defiN®JLL, use

const int NULL = 0;

The const qualifier (85.4) prevents accidental redefinitionNWLL and ensures th&ULL can be
used where a constant is required.

5.2 Arrays [ptr.array]

For a typeT, T[sizg] is the type “array okize elements of typd.” The elements are indexed
from O to size 1. For example:

float v[3]; / / an array of three floats: v[0], v[1], v[2]
char* a[32]; / / an array of 32 pointers to char: a[0] .. a[31]

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 5.2 Arrays 89

The number of elements of the array, the array bound, must be a constant expression (8C.5). If you
need variable bounds, us&extor (83.7.1, §16.3). For example:

void f(int i)
{

int vi[i]; / | error: array size not a constant expression
vector<int>v2(i); / [/ ok
}

Multidimensional arrays are represented as arrays of arrays. For example:

int d2[10][20]; // d2is an array of 10 arrays of 20 integers

Using comma notation as used for array bounds in some other languages gives compile-time errors
because comma) is a sequencing operator (86.2.2) and is not allowed in constant expressions
(8C.5). For example, try this:

int bad[5, 2]; / | error: comma not allowed in a constant expression

Multidimensional arrays are described in 8C.7. They are best avoided outside low-level code.

5.2.1 Array Initializers [ptr.array.init]

An array can be initialized by a list of values. For example:
int vi] ={ 1, 2, 3, 4};
char v2[] ={"a, b, "¢, 0}

When an array is declared without a specific size, but with an initializer list, the size is calculated
by counting the elements of the initializer list. Consequenilyandv2 are of typeint] 4] and

char[4] , respectively. If a size is explicitly specified, it is an error to give surplus elements in an
initializer list. For example:

char v3[2] ={ "a’, b, 0} /| error: too many initializers
char v4 3] ={ "a, b, 0} /1 ok

If the initializer supplies too few elemen®,is assumed for the remaining array elements. For
example:

int v5[8] ={ 1, 2, 3, 4};
is equivalent to
int vo[] ={1, 2 3, 4,0 0 0 0};
Note that there is no array assignment to match the initialization:
void f()
} va={"c, “d, 0}; // error: no array assignment

When you need such assignments, ugector (§16.3) or avalarray (§22.4) instead.
An array of characters can be conveniently initialized by a string literal (85.2.2).

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

90 Pointers, Arrays, and Structures Chapter 5

5.2.2 String Literals [ptr.string.literal]

A string literal is a character sequence enclosed within double quotes:
"this is a string"

A string literal contains one more character than it appears to have; it is terminated by the null char-
acter’ \0" , with the valued. For example:

sizeof(" Bohr")==

The type of a string literal is “array of the appropriate numberookt characters,” sdBohr” is
of typeconst char[5] .

A string literal can be assigned talkar*. This is allowed because in previous definitions of C
and G+, the type of a string literal wazhar*. Allowing the assignment of a string literal to a
char* ensures that millions of lines of C and+#remain valid. It is, however, an error to try to
modify a string literal through such a pointer:

void f()
{

char* p =" Plato";
pl4] ="¢; /| error: assignment to const; result is undefined

This kind of error cannot in general be caught until run-time, and implementations differ in their
enforcement of this rule. Having string literals constant not only is obvious, but also allows imple-
mentations to do significant optimizations in the way string literals are stored and accessed.

If we want a string that we are guaranteed to be able to modify, we must copy the characters
into an array:

void f()

{
char p[] ="Zeno"; [| pisan array of 5 char
p[0] =" R; ! | ok

A string literal is statically allocated so that it is safe to return one from a function. For example:

const char* emror_message(int i)

{
..

return " range emor";

}

The memory holdingange emror will not go away after a call afiror_message() .
Whether two identical character literals are allocated as one is implementation-defined (§C.1).
For example:

const char* p =" Heraclitus’;
const char* q =" Heraclitus’,

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 5.2.2 String Literals 91

void g()
{

if (p==q) cout<<"one \n"; / / resultis implementation-defined
/...

}

Note that== compares addresses (pointer values) when applied to pointers, and not the values
pointed to.

The empty string is written as a pair of adjacent double qudtes,(and has the typeonst
char[1]).

The backslash convention for representing nongraphic characters (8C.3.2) can also be used
within a string. This makes it possible to represent the double dupsnd the escape character
backslash {) within a string. The most common such character by far is the newline character,
“\n" . For example:

cout<<" beep at end of messagela\n’;

The escape characteYa” is the ASCII characteBEL (also known aslert), which causes some
kind of sound to be emitted.
It is not possible to have a “real” newline in a string:

"this is mot a string
but a syntax emror"

Long strings can be broken by whitespace to make the program text neater. For example:

char alpha[] =" abcdefghijklmnopgrstuvwxyz'
" ABCDEFGHIJKLMNOPQRSITUVWXYZ';

The compiler will concatenate adjacent stringsakpha could equivalently have been initialized
by the single string:
" abcdefghijkimnopgrstuvwxyzZABCDEFGHIJKLMNOPQRSITUVWXYZ';

It is possible to have the null character in a string, but most programs will not suspect that there
are characters after it. For example, the stt@nsil000Munk” will be treated asJens™ by stan-
dard library functions such atrcpy() andstrlen() ; see §20.4.1.

A string with the prefixd., such ad." angst', is a string of wide characters (84.3, §C.3.3). Its
type isconst wchar_t[] .

5.3 Pointers into Arrays|ptr.into]

In C++, pointers and arrays are closely related. The name of an array can be used as a pointer to its
initial element. For example:

int v[] ={1, 2, 3, 4};

int* pl=v; / | pointer to initial element (implicit conversion)
int* p2=&v[0]; / / pointer to initial element
int* p3=&v[4]; / | pointer to one beyond last element

or graphically:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

92 Pointers, Arrays, and Structures Chapter 5

Taking a pointer to the element one beyond the end of an array is guaranteed to work. This is
important for many algorithms (8§2.7.2, 818.3). However, since such a pointer does not in fact point
to an element of the array, it may not be used for reading or writing. The result of taking the
address of the element before the initial element is undefined and should be avoided. On some
machine architectures, arrays are often allocated on machine addressing boundaries, so “one before
the initial element” simply doesn’t make sense.

The implicit conversion of an array name to a pointer to the initial element of the array is exten-
sively used in function calls in C-style code. For example:

extern " C" int strlen(const char*) ; // from<string.h>

void f()

{
char v[] ="Annemarie";
char* p=v; [/ / implicit conversion of char[] to char*
strien(p);
strlen(v); / 1 implicit conversion of char[] to char*
vV=p; / | error: cannot assign to array

}

The same value is passed to the standard library fursttlem() in both calls. The snag is that it
is impossible to avoid the implicit conversion. In other words, there is no way of declaring a func-
tion so that the array is copied when the function is called. Fortunately, there is no implicit or
explicit conversion from a pointer to an array.

The implicit conversion of the array argument to a pointer means that the size of the array is lost
to the called function. However, the called function must somehow determine the size to perform a
meaningful operation. Like other C standard library functions taking pointers to characters,
strlen() relies on zero to indicate end-of-strirsgiglen(p) returns the number of characters up to
and not including the terminating This is all pretty low-level. The standard libravector
(816.3) andstring (Chapter 20) don't suffer from this problem.

5.3.1 Navigating Arrays [ptr.navigate]

Efficient and elegant access to arrays (and similar data structures) is the key to many algorithms
(see 83.8, Chapter 18). Access can be achieved either through a pointer to an array plus an index or
through a pointer to an element. For example, traversing a character string using an index,

void fi(char v[])
{

for (int i=0; v[i]'= 0; i++) use(V[i]) ;

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 5.3.1 Navigating Arrays 93

is equivalent to a traversal using a pointer:
void fp(char V[])
{

for (char* p=v; *p!=0; p++) use(* p);
}

The prefix* operator dereferences a pointer so thatis the character pointed to lpy and ++
increments the pointer so that it refers to the next element of the array.

There is no inherent reason why one version should be faster than the other. With modern com-
pilers, identical code should be generated for both examples (see 85.9[8]). Programmers can
choose between the versions on logical and aesthetic grounds.

The result of applying the arithmetic operat#rs , ++, or-- to pointers depends on the type
of the object pointed to. When an arithmetic operator is applied to a ppiofetype T*, p is
assumed to point to an element of an array of objects ofTtypel points to the next element of
that array, angd- 1 points to the previous element. This implies that the integer valpelofvill
besizeof(T) larger than the integer value @f For example, executing

#include <iostream>
int main ()

int vi[10];

short vy 10];

Std: : cout << &vi[0] <<~ 7~ << &vi[1] << " \n;

std:: cout << &g 0] <<’ ~ << &g 1] << "\n;
}

produced

Ox7fffaef0 Ox7fffaefd
Ox7fffaedc Ox7fffaede

using a default hexadecimal notation for pointer values. This shows that on my implementation,
sizeof(short) is 2 andsizeof(int) is 4.

Subtraction of pointers is defined only when both pointers point to elements of the same array
(although the language has no fast way of ensuring that is the case). When subtracting one pointer
from another, the result is the number of array elements between the two pointers (an integer). One
can add an integer to a pointer or subtract an integer from a pointer; in both cases, the result is a
pointer value. If that value does not point to an element of the same array as the original pointer or
one beyond, the result of using that value is undefined. For example:

void f()

{
int vi[10];
int v2[10];

int i1=8&v1[5]-& v1[3];/ /i1=2
int i2=&v1[5-& v2[3];/ / result undefined

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

94 Pointers, Arrays, and Structures Chapter 5

int* pl=v2+2; [1 pl=&v2[2]
int* p2=v2- 2, / | *p2 undefined
}

Complicated pointer arithmetic is usually unnecessary and often best avoided. Addition of pointers
makes no sense and is not allowed.

Arrays are not self-describing because the number of elements of an array is not guaranteed to
be stored with the array. This implies that to traverse an array that does not contain a terminator the
way character strings do, we must somehow supply the number of elements. For example:

void fp(char v[] , unsigned int size)
{

for (int i=0; i<size i++) use(V[i]) ;
const int N=7;

char v2[NJ;
for (int i=0; i<N; i++) use(vZ[i]) ;

}

Note that most €+ implementations offer no range checking for arrays. This array concept is
inherently low-level. A more advanced notion of arrays can be provided through the use of classes;
see 8§3.7.1.

5.4 Constantgptr.const]

C++ offers the concept of a user-defined constaoarst, to express the notion that a value doesn't
change directly. This is useful in several contexts. For example, many objects don’t actually have
their values changed after initialization, symbolic constants lead to more maintainable code than do
literals embedded directly in code, pointers are often read through but never written through, and
most function parameters are read but not written to.

The keywordconst can be added to the declaration of an object to make the object declared a
constant. Because it cannot be assigned to, a constant must be initialized. For example:

const int model = 90; / | model is a const
const int v[] ={ 1, 2, 3, 4}; /I Vv[i]is a const
const int X; / | error: no initializer

Declaring somethingonst ensures that its value will not change within its scope:

void f()

{
model = 200; / / error

V[2)++; [| error

Note thatconst modifies a type; that is, it restricts the ways in which an object can be used, rather
than specifying how the constant is to be allocated. For example:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 5.4 Constants 95

void g(const X* p)

{
/1 can’t modify *p here
}
void h()
{
X val; [/ [/ val can be modified
g(&val);
/...
}

Depending on how smart it is, a compiler can take advantage of an object being a constant in sev-
eral ways. For example, the initializer for a constant is often (but not always) a constant expression
(8C.5); if it is, it can be evaluated at compile time. Further, if the compiler knows every use of the
const, it need not allocate space to hold it. For example:

const int c1=1;

const int c2=2;

const int c3=my f(3); / / don't know the value of c3 at compile time
extern const int c4; [| don’t know the value of c4 at compile time
const int* p=&c2; /| need to allocate space for c2

Given this, the compiler knows the valuexfandc2 so that they can be used in constant expres-
sions. Because the valuesoXandc4 are not known at compile time (using only the information
available in this compilation unit; see §9.1), storage must be allocated &mdc4. Because the
address ot2 is taken (and presumably used somewhere), storage must be allocat2d Tdre

simple and common case is the one in which the value of the constant is known at compile time and
no storage needs to be allocatetlijs an example of that. The keywoestem indicates that4 is

defined elsewhere (89.2).

It is typically necessary to allocate store for an array of constants because the compiler cannot,
in general, figure out which elements of the array are referred to in expressions. On many
machines, however, efficiency improvements can be achieved even in this case by placing arrays of
constants in read-only storage.

Common uses faronsts are as array bounds and case labels. For example:

const int a=42
const int b=99;
const int max = 128;
int v max ;

void f(int i)
switch (i) {

case @
...

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

96 Pointers, Arrays, and Structures Chapter 5

case
/...
}

}

Enumerators (84.8) are often an alternativeoists in such cases.
The wayconst can be used with class member functions is discussed in 810.2.6 and §10.2.7.
Symbolic constants should be used systematically to avoid “magic numbers” in code. If a
numeric constant, such as an array bound, is repeated in code, it becomes hard to revise that code
because every occurrence of that constant must be changed to make a correct update. Using a sym-
bolic constant instead localizes information. Usually, a numeric constant represents an assumption
about the program. For exampfemay represent the number of bytes in an intet28,the num-
ber of characters needed to buffer input, &n84 the exchange factor between Danish kroner and
U.S. dollars. Left as numeric constants in the code, these values are hard for a maintainer to spot
and understand. Often, such numeric values go unnoticed and become errors when a program is
ported or when some other change violates the assumptions they represent. Representing assump-
tions as well-commented symbolic constants minimizes such maintenance problems.

5.4.1 Pointers and Constants [ptr.pc]

When using a pointer, two objects are involved: the pointer itself and the object pointed to. “Pre-
fixing” a declaration of a pointer witikonst makes the object, but not the pointer, a constant. To
declare a pointer itself, rather than the object pointed to, to be a constant, we use the declarator
operator* constinstead of plairf. For example:

void f1(char* p)

{
char §[] ="Gorm";
const char* pc=s; /| pointer to constant
pc 3] =g /| error: pc points to constant
pc=p; / | ok
char *const cp= s / | constant pointer
cp[3] =" a; ! | ok
cp=p; /| error: cp is constant
const char * const cpc=s; / | const pointer to const
cpe 3] =" a; /| error: cpc points to constant
cpc=p; /| error: cpc is constant
}

The declarator operator that makes a pointer constantosst There is noconst* declarator
operator, so aonst appearing before theis taken to be part of the base type. For example:

char * const cp; / | const pointer to char
char const* pc; / | pointer to const char
const char* pc2;, / / pointerto const char

Some people find it helpful to read such declarations right-to-left. For examgpds ‘a const
pointer to achar” and *“ pc2is a pointer to &har const.”

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 5.4.1 Pointers and Constants 97

An object that is a constant when accessed through one pointer may be variable when accessed
in other ways. This is particularly useful for function arguments. By declaring a pointer argument
const, the function is prohibited from modifying the object pointed to. For example:

char* strcpy(char* p, const char* q); // cannot modify *q

You can assign the address of a variable to a pointer to constant because no harm can come from
that. However, the address of a constant cannot be assigned to an unrestricted pointer because this
would allow the object’s value to be changed. For example:

void f4()

int a=1,;
const int c=2;
const int* p1=&c; / / ok
const int* p2=&a; / / ok
int* p3=&c; /| error: initialization of int* with const int*
*p3=17, /I try to change the value of ¢
}

It is possible to explicitly remove the restrictions on a pointeotest by explicit type conversion
(810.2.7.1 and 815.4.2.1).

5.5 Referencegptr.ref]

A referencds an alternative name for an object. The main use of references is for specifying argu-
ments and return values for functions in general and for overloaded operators (Chapter 11) in par-
ticular. The notatiorX& meangeference toXX For example:

void f()
{
int i=1;
int&r =1i; / | randinow refer to the same int
int x=r; /I x=1
r=2 [[i=2
}

To ensure that a reference is a name for something (that is, bound to an object), we must initialize
the reference. For example:

int i=1;

int&rl=i; [| ok:rl initialized

int& r2; /I error: initializer missing
extern int&r3; [| ok: r3initialized elsewhere

Initialization of a reference is something quite different from assignment to it. Despite appear-
ances, no operator operates on a reference. For example:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

98 Pointers, Arrays, and Structures Chapter 5

void g()
{
int ii =0;
int&rr = ii;
m++; / [/ iiis incremented to 1
int* pp = &rr; / | pp points to ii
}

This is legal, butr++ does not increment the refereneerather,++ is applied to annt that hap-
pens to bdi. Consequently, the value of a reference cannot be changed after initialization; it
always refers to the object it was initialized to denote. To get a pointer to the object denoted by a
referencear, we can write&rr.

The obvious implementation of a reference is as a (constant) pointer that is dereferenced each
time it is used. It doesn’t do much harm thinking about references that way, as long as one remem-
bers that a reference isn’'t an object that can be manipulated the way a pointer is:

pp:

In some cases, the compiler can optimize away a reference so that there is no object representing
that reference at run-time.

Initialization of a reference is trivial when the initializer is an Ivalue (an object whose address
you can take; see 84.9.6). The initializer for a “plaii& must be an Ivalue of typk

The initializer for aconst T& need not be an Ivalue or even of typeln such cases,

[1] first, implicit type conversion td is applied if necessary (see §C.6);

[2] then, the resulting value is placed in a temporary variable offtyped

[3] finally, this temporary variable is used as the value of the initializer.
Consider:

double& dr = 1; [| error: lvalue needed
const double& cdr=1; / / ok

The interpretation of this last initialization might be:

double temp = double(1);/ / first create a temporary with the right value
const double& cdr = temp; // then use the temporary as the initializer for cdr

A temporary created to hold a reference initializer persists until the end of its reference’s scope.
References to variables and references to constants are distinguished because the introduction of
a temporary in the case of the variable is highly error-prone; an assignment to the variable would
become an assignment to thesoon to disappear temporary. No such problem exists for refer-
ences to constants, and references to constants are often important as function arguments (811.6).
A reference can be used to specify a function argument so that the function can change the
value of an object passed to it. For example:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 5.5 References 99

void increment(int& aa) { aat++; }

void f()
{

int x=1,

increment(x); [| x=2
}

The semantics of argument passing are defined to be those of initialization, so when called,
increment's argumentaa became another name far To keep a program readable, it is often best
to avoid functions that modify their arguments. Instead, you can return a value from the function
explicitly or require a pointer argument:

int next(int p) { return p+1; }

void incr(int* p) { (* p)++; }

void g()
{ -
int x=1;
increment(x) ; /I x=2
X = next(x); [| x=3
incr(&x); [| x=4
}

Theincrement(X) notation doesn’t give a clue to the reader tistvalue is being modified, the

way x=next(x) andincr(&x) does. Consequently “plain” reference arguments should be used

only where the name of the function gives a strong hint that the reference argument is modified.
References can also be used to define functions that can be used on both the left-hand and

right-hand sides of an assignment. Again, many of the most interesting uses of this are found in the

design of nontrivial user-defined types. As an example, let us define a simple associative array.

First, we define strudeair like this:

struct Pair {
string name
double val;
3

The basic idea is thatsiring has a floating-point value associated with it. It is easy to define a
function, value() , that maintains a data structure consisting of Raie for each different string

that has been presented to it. To shorten the presentation, a very simple (and inefficient) implemen-
tation is used:

vector<Pair> pairs;

double& value(const string& s)
/*
maintain a set of Pairs:
search for s, return its value if found; otherwise make a new Pair and return the default value 0
*/
{

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

100 Pointers, Arrays, and Structures Chapter 5

for (int i = 0; i < pairs. size() ; i++)

if (s== pairs[i]. name return pairs[i]. val;
Pair p={s 0}
pairs. push _back(p); // add Pair at end (83.7.3)

return pairs| pairs. size)- 1]. val;
}

This function can be understood as an array of floating-point values indexed by character strings.
For a given argument stringalug() finds the corresponding floating-point objenb{the value
of the corresponding floating-point object); it then returns a reference to it. For example:

int main() // count the number of occurrences of each word on input

{
string buf;
while (cin>>buf) value(buf)++;
for (vector<Pair>: : const_iterator p = pairs. begin() ; p!= pairs. end() ; ++p)
cout << p-> name<<": " << p->val <<’ \n’;
}

Each time around, thehile-loop reads one word from the standard input streimnmto the string
buf (§3.6) and then updates the counter associated with it. Finally, the resulting table of different
words in the input, each with its number of occurrences, is printed. For example, given the input

aa bb bb aa aa bb aa aa
this program will produce:

aa 5
bb: 3

It is easy to refine this into a proper associative array type by using a template class with the selec-
tion operatof] overloaded (811.8). Itis even easier just to use the standard lbapr§g17.4.1).

5.6 Pointer to Void|ptr.ptrtovoid]

A pointer of any type of object can be assigned to a variable of/ojge, avoid* can be assigned

to anothewoid* , void* s can be compared for equality and inequality, amidt can be explicitly
converted to another type. Other operations would be unsafe because the compiler cannot know
what kind of object is really pointed to. Consequently, other operations result in compile-time
errors. To use woid* , we must explicitly convert it to a pointer to a specific type. For example:

void f(int* pi)
{
void* pv=pi; / / ok:implicit conversion of int* to void*

pv, / | error: can’t dereference void
pv++; [| error: can’'t increment void* (the size of the object pointed to is unknown)

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 5.6 Pointer to Void 101

int* pi2 = static_cast<int*>(pv); /| explicit conversion back to int*
double* pdl = pv, / | error
double* pd2 = pi; [| error

double* pd3 = static_cast<double*>(pv); / / unsafe

In general, it is not safe to use a pointer that has been converted (“cast”) to a type that differs from
the type the object pointed to. For example, a machine may assume thalaubbeyis allocated

on an 8-byte boundary. If so, strange behavior could arggiepdinted to arint that wasn't allo-

cated that way. This form of explicit type conversion is inherently unsafe and ugly. Consequently,
the notation usedtatic_cast, was designed to be ugly.

The primary use fowoid* is for passing pointers to functions that are not allowed to make
assumptions about the type of the object and for returning untyped objects from functions. To use
such an object, we must use explicit type conversion.

Functions usingoid* pointers typically exist at the very lowest level of the system, where real
hardware resources are manipulated. For example:

void* my alloc(size t n); // allocate n bytes from my special heap

Occurrences ofoid* s at higher levels of the system should be viewed with suspicion because they
are likely indicators of design errors. Where used for optimizawaid® can be hidden behind a
type-safe interface (§13.5, §24.4.2).

Pointers to functions (87.7) and pointers to members (§15.5) cannot be assigidtiso

5.7 Structuresiptr.struct]

An array is an aggregate of elements of the same typstruét is an aggregate of elements of
(nearly) arbitrary types. For example:

struct address{

char* name / 1 "Jim Dandy"

long int number; / / 61

char* street; / | "South St"

char* town; / | "New Providence"
char state] 2]; /[| 'N"'Y

long zp; [| 7974

h

This defines a new type calledidress consisting of the items you need in order to send mail to
someone. Note the semicolon at the end. This is one of very few placeswhe€re it is neces-
sary to have a semicolon after a curly brace, so people are prone to forget it.

Variables of typeaddress can be declared exactly as other variables, and the individual
membergan be accessed using thgdot) operator. For example:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

102 Pointers, Arrays, and Structures Chapter 5

void f()
address jd;
jd. name="Jim Dandy’";
jd. number = 61;

}

The notation used for initializing arrays can also be used for initializing variables of structure types.
For example:

address jd = {
" Jim Dandy',
61, " South St',
"New Providence’, {" N',” J}, 7974
h
Using a constructor (§10.2.3) is usually better, however. Notédhstate could not be initialized
by the string'NJ". Strings are terminated by the charactdY . Hence,"NJ" has three characters
— one more than will fit intgd. state.
Structure objects are often accessed through pointers using tfstructure pointer derefer-
ence) operator. For example:

void print_addr(address* p)

cout << p-> name<< " \n’
<< p-> number <<~ << p->street << " \n’
<< p->town<<’\n
<< p->state] 0] << p->state 1] <<~ ~ << p->zip<<’'\n;
}

Whenp is a pointerp-> mis equivalent t¢* p). m.
Objects of structure types can be assigned, passed as function arguments, and returned as the
result from a function. For example:

address current;

address set_current(address mext)

{
address prev = current;
current = next;
return prev,

}

Other plausible operations, such as comparisenand!=), are not defined. However, the user
can define such operators (Chapter 11).

The size of an object of a structure type is not necessarily the sum of the sizes of its members.
This is because many machines require objects of certain types to be allocated on architecture-
dependent boundaries or handle such objects much more efficiently if they are. For example, inte-
gers are often allocated on word boundaries. On such machines, objects are said to have to be
aligned properly. This leads to “holes” in the structures. For example, on many machines,

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 5.7 Structures 103

sizeof(address) is 24, and not22 as might be expected. You can minimize wasted space by sim-
ply ordering members by size (largest member first). However, it is usually best to order members
for readability and sort them by size only if there is a demonstrated need to optimize.

The name of a type becomes available for use immediately after it has been encountered and not
just after the complete declaration has been seen. For example:

struct Link {
Link* previous,
Link* successor;

k

It is not possible to declare new objects of a structure type until the complete declaration has been
seen. For example:

struct No_good {
No_good member; / / error: recursive definition
}

This is an error because the compiler is not able to determine the dipegdod. To allow two
(or more) structure types to refer to each other, we can declare a name to be the name of a structure
type. For example:

struct List; / | to be defined later

struct Link {
Link* pre;
Link* suc;
List* member_of;
h
struct List {
Link* head;
k

Without the first declaration dfist, use ofListin the declaration dfink would have caused a syn-
tax error.

The name of a structure type can be used before the type is defined as long as that use does not
require the name of a member or the size of the structure to be known. For example:

class § / / 'S’is the name of some type

extem S &
S f) ;
void g(S);
S h(S);
However, many such declarations cannot be used unless thgitygefined:

void k(S* p)

Sa [| error: S not defined; size needed to allocate

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

104 Pointers, Arrays, and Structures Chapter 5

fO ; [| error: S not defined; size needed to return value
g(a); / | error: S not defined; size needed to pass argument
p>m=7; / | error: S not defined; member name not known

St q=h(p); / / ok:pointers can be allocated and passed
g>m=7, [| error: S not defined; member name not known

}

A struct is a simple form of alass(Chapter 10).
For reasons that reach into the pre-history of C, it is possible to decdtmecband a non-
structure with the same name in the same scope. For example:

struct stat{ /* ...*/ };
int stat(char* name struct stat* buf);

In that case, the plain namstat) is the name of the non-structure, and the structure must be
referred to with the prefistruct. Similarly, the keywordslass union (§8C.8.2), andenum (84.8)

can be used as prefixes for disambiguation. However, it is best not to overload names to make that
necessary.

5.7.1 Type Equivalence [ptr.equiv]

Two structures are different types even when they have the same members. For example,

struct S1{ int a; };
struct S2{ int a; };

are two different types, so

S1 x;
S2 y=x;/ | error: type mismatch

Structure types are also different from fundamental types, so

S1 x
int i =x;/ / error: type mismatch

Everystruct must have a unique definition in a program (89.2.3).

5.8 Advice[ptr.advice]

[1] Avoid nontrivial pointer arithmetic; 85.3.

[2] Take care not to write beyond the bounds of an array; §85.3.1.

[3] UseOrather tharNULL; 85.1.1.

[4] Usevector andvalarray rather than built-in (C-style) arrays; 8§5.3.1.

[5] Usestringrather than zero-terminated array<hér; §5.3.

[6] Minimize use of plain reference arguments; §5.5.

[7] Avoid void* except in low-level code; §5.6.

[8] Avoid nontrivial literals (*magic numbers”) in code. Instead, define and use symbolic con-
stants; §4.8, §5.4.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 5.9 Exercises 105

5.9 Exercises [ptr.exercises]

1.

9.

(C) Write declarations for the following: a pointer to a character, an array of 10 integers, a ref-
erence to an array of 10 integers, a pointer to an array of character strings, a pointer to a pointer
to a character, a constant integer, a pointer to a constant integer, and a constant pointer to an
integer. Initialize each one.

(C1.5) What, on your system, are the restrictions on the pointer ¢{ya€s, int*, andvoid* ?

For example, may amt* have an odd value? Hint: alignment.

(1) Usetypedef to define the typesinsigned char, const unsigned char, pointer to integer,

pointer to pointer tehar, pointer to arrays athar, array of 7 pointers tmt, pointer to an array

of 7 pointers tant, and array of 8 arrays of 7 pointersnd

(C1) Write a function that swaps (exchanges the values of) two integersnttsss the argu-

ment type. Write another swap function usintf as the argument type.

(C1.5) What is the size of the arrsly in the following example:

char str[] ="a short string’;

What is the length of the strif@ short string"?

((1) Define functiond(char) , g(char&) , andh(const char&) . Call them with the arguments

“a’, 49, 3300, c, uc, andsc, wherec is achar, uc is anunsigned char, andsc is a signed

char. Which calls are legal? Which calls cause the compiler to introduce a temporary variable?
((L.5) Define a table of the names of months of the year and the number of days in each month.
Write out that table. Do this twice; once using an arraghaf for the names and an array for

the number of days and once using an array of structures, with each structure holding the name
of a month and the number of days in it.

(C2) Run some tests to see if your compiler really generates equivalent code for iteration using
pointers and iteration using indexing (85.3.1). If different degrees of optimization can be
requested, see if and how that affects the quality of the generated code.

(C1L.5) Find an example where it would make sense to use a name in its own initializer.

10. () Define an array of strings in which the strings contain the names of the months. Print those

strings. Pass the array to a function that prints those strings.

11. (R) Read a sequence of words from input. Qsi#it as a word that terminates the input. Print

the words in the order they were entered. Don't print a word twice. Modify the program to sort
the words before printing them.

12. (R) Write a function that counts the number of occurrences of a pair of lettestringaand

another that does the same in a zero-terminated arrelyapia C-style string). For example,
the pair "ab" appears twice in "xabaacbaxabb".

13. (L.5) Define astruct Date to keep track of dates. Provide functions that rBates from

input, writeDates to output, and initialize Bate with a date.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

106 Pointers, Arrays, and Structures Chapter 5

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 5.9 Exercises 107

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

	Return to Contents
	5.1 Pointers
	5.2 Arrays
	5.3 Pointers into Arrays
	5.4 Constants
	5.5 References
	5.6 Pointer to Void
	5.7 Structures
	5.8 Advice

	buy now:

