A

Types and Declarations

Accept nothing short of perfection!
—anon

Perfection is achieved
only on the point of collapse.

— C. N. Parkinson

Types— fundamental types— Booleans— characters— character literals— integers
— integer literals— floating-point types— floating-point literals— sizes— void —

enumerations— declarations— names— scope— initialization — objects— typedefs

— advice— exercises.

4.1 Typeddcl.type]
Consider
x=y+f(2);

For this to make sense in &€program, the names y, andf must be suitably declared. That is,
the programmer must specify that entities nameg andf exist and that they are of types for
which = (assignment)+ (addition), and) (function call), respectively, are meaningful.

Every name (identifier) in a¥3 program has a type associated with it. This type determines
what operations can be applied to the name (that is, to the entity referred to by the name) and how
such operations are interpreted. For example, the declarations

float x; / | xis a floating-point variable
int y=7, / | yis an integer variable with the initial value 7
float f(int); / / fis a function taking an argument of type int and returning a floating-point number

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

http://store.awl.com/catalog/cepub_detail.mhtml?isbn=0-201-88954-4

70 Types and Declarations Chapter 4

would make the example meaningful. Becaysedeclared to be amt, it can be assigned to, used
in arithmetic expressions, etc. On the other h&igldeclared to be a function that takedrtras
its argument, so it can be called given a suitable argument.

This chapter presents fundamental types (84.1.1) and declarations (84.9). Its examples just
demonstrate language features; they are not intended to do anything useful. More extensive and
realistic examples are saved for later chapters after more+ofi# been described. This chapter
simply provides the most basic elements from whigkt @rograms are constructed. You must
know these elements, plus the terminology and simple syntax that goes with them, in order to com-
plete a real project in43 and especially to read code written by others. However, a thorough
understanding of every detail mentioned in this chapter is not a requirement for understanding the
following chapters. Consequently, you may prefer to skim through this chapter, observing the
major concepts, and return later as the need for understanding of more details arises.

4.1.1 Fundamental Types [dcl.fundamental]

Ct++ has a set of fundamental types corresponding to the most common basic storage units of a
computer and the most common ways of using them to hold data:

84.2 A Boolean typebpol)

84.3 Character types (suchcar)

84.4 Integer types (such i)

84.5 Floating-point types (such dsuble)

In addition, a user can define

84.8 Enumeration types for representing specific sets of vainas)
There also is

84.7 A typeyvoid, used to signify the absence of information
From these types, we can construct other types:

85.1 Pointer types (such ag*)

85.2 Array types (such abar[])

85.5 Reference types (suchdmible&)

85.7 Data structures and classes (Chapter 10)

The Boolean, character, and integer types are collectively datiegral types The integral and
floating-point types are collectively calledithmetic types Enumerations and classes (Chapter 10)

are calleduser-defined typelsecause they must be defined by users rather than being available for
use without previous declaration, the way fundamental types are. In contrast, other types are called
built-in types.

The integral and floating-point types are provided in a variety of sizes to give the programmer a
choice of the amount of storage consumed, the precision, and the range available for computations
(84.6). The assumption is that a computer provides bytes for holding characters, words for holding
and computing integer values, some entity most suitable for floating-point computation, and
addresses for referring to those entities. The findamental types together with pointers and
arrays present these machine-level notions to the programmer in a reasonably implementation-
independent manner.

For most applications, one could simply be®l for logical valueschar for charactersint for
integer values, andlouble for floating-point values. The remaining fundamental types are

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 4.1.1 Fundamental Types 71

variations for optimizations and special needs that are best ignored until such needs arise. They
must be known, however, to read old C and €ode.

4.2 Booleangdcl.bool]

A Boolean,bool, can have one of the two valugae or false A Boolean is used to express the
results of logical operations. For example:

void f(int a, int b)

bool bl = a==b; / | =is assignment, == is equality
/..
}

If aandb have the same valuk]l becomedrue; otherwisepl becomedgalse
A common use obool is as the type of the result of a function that tests some condition (a
predicate). For example:

bool is_open(File*) ;
bool greater(int a, int b) { return a>b; }

By definition, true has the valud when converted to an integer afadse has the valu®. Con-
versely, integers can be implicitly convertecbtwl values: nonzero integers convertrtae andO
converts tdfalse For example:

bool b=7;, / / bool(7)is true, so b becomes true
int i =true;, / / int(true) is 1, so i becomes 1

In arithmetic and logical expressior®ols are converted tints; integer arithmetic and logical
operations are performed on the converted values. If the result is converted baok #0 is
converted tdalseand a nonzero value is convertedrige.

void g()
{

bool a=true
bool b = true

bool x=a+b; / / at+bis 2, so x becomes true
bool y=a| b; / / albis 1, soy becomes true

}

A pointer can be implicitly converted tobmwol (8C.6.2.5). A nonzero pointer convertsttae;
zero-valued pointers convertfalse

4.3 Character Typegdcl.char]

A variable of typechar can hold a character of the implementation’s character set. For example:

char ch="a;

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

72 Types and Declarations Chapter 4

Almost universally, a&har has 8 bits so that it can hold one of 256 different values. Typically, the
character set is a variant of 1SO-646, for example ASCII, thus providing the characters appearing
on your keyboard. Many problems arise from the fact that this set of characters is only partially
standardized (8C.3).

Serious variations occur between character sets supporting different natural languages and also
between different character sets supporting the same natural language in different ways. However,
here we are interested only in how such differences affect the rulestofT@e larger and more
interesting issue of how to program in a multi-lingual, multi-character-set environment is beyond
the scope of this book, although it is alluded to in several places (§20.2, §21.7, §C.3.3).

It is safe to assume that the implementation character set includes the decimal digits, the 26
alphabetic characters of English, and some of the basic punctuation characters. It is not safe to
assume that there are no more than 127 characters in an 8-bit character set (e.g., some sets provide
255 characters), that there are no more alphabetic characters than English provides (most European
languages provide more), that the alphabetic characters are contiguous (EBCDIC leaves a gap
between i and”), or that every character used to writet@s available (e.g., some national
character sets do not provifle} [] | \; 8C.3.1). Whenever possible, we should avoid making
assumptions about the representation of objects. This general rule applies even to characters.

Each character constant has an integer value. For example, the vahiei®B8 in the ASCII
character set. Here is a small program that will tell you the integer value of any character you care
to input:

#include <iostream>

int main()
{
char c;
std: : cin>> c;
std: : cout << "the value of " <<c<<" is" <<int(c) << \n’;

}

The notatiornint(c) gives the integer value for a charaaterThe possibility of converting ehar

to an integer raises the question: ishar signed or unsigned? The 256 values represented by an
8-bit byte can be interpreted as the valQae 255 or as the values127 to 127. Unfortunately,
which choice is made for a plaghar is implementation-defined (8C.1, 8C.3.4)++(provides two
types for which the answer is definisigned char, which can hold at least the valuek27 to 127,
andunsigned char, which can hold at least the valu®t 255. Fortunately, the difference matters
only for values outside th&to 127 range, and the most common characters are within that range.

Values outside that range stored in a plhar can lead to subtle portability problems. See
8C.3.4 if you need to use more than one typehaf or if you store integers ichar variables.

A type wchar_t is provided to hold characters of a larger character set such as Unicode. Itis a
distinct type. The size ofichar_t is implementation-defined and large enough to hold the largest
character set supported by the implementation’s locale (see §21.7, 8C.3.3). The strange name is a
leftover from C. In Cwchar_t is atypedef (§84.9.7) rather than a built-in type. The suffixwas
added to distinguish standasgpedefs.

Note that the character types are integral types (84.1.1) so that arithmetic and logical operations

(86.2) apply.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 4.3.1 Character Literals 73

4.3.1 Character Literals [dcl.char.lit]

A character literal, often called a character constant, is a character enclosed in single quotes, for
example,” a” and” 0" . The type of a character literalé¢har. Such character literals are really
symbolic constants for the integer value of the characters in the character set of the machine on
which the @+ program is to run. For example, if you are running on a machine using the ASCII
character set, the value 00" is 48. The use of character literals rather than decimal notation
makes programs more portable. A few characters also have standard names that use the\backslash
as an escape character. For examyplés a newline andt is a horizontal tab. See 8C.3.2 for
details about escape characters.

Wide character literals are of the fodm ab” , where the number of characters between the
guotes and their meanings is implementation-defined to matckctier_t type. A wide character
literal has typevchar _t.

4.4 Integer Typeddcl.int]

Like char, each integer type comes in three forms: “plaimt, signed int, andunsigned int. In
addition, integers come in three sizshort int, “plain” int, andlong int. A long int can be
referred to as plaitong. Similarly, short is a synonym foshort int, unsigned for unsigned int,
andsigned for signed int.

The unsigned integer types are ideal for uses that treat storage as a bit array. Using an
unsigned instead of arnt to gain one more bit to represent positive integers is almost never a good
idea. Attempts to ensure that some values are positive by declaring vauadigred will typi-
cally be defeated by the implicit conversion rules (8C.6.1, 8C.6.2.1).

Unlike plainchars, plainints are always signed. The sigriatitypes are simply more explicit
synonyms for their plaimt counterparts.

4.4.1 Integer Literals [dcl.int.lit]
Integer literals come in four guises: decimal, octal, hexadecimal, and character literals. Decimal lit-
erals are the most commonly used and look as you would expect them to:
0 1234 976 12345678901234567890
The compiler ought to warn about literals that are too long to represent.

A literal starting with zero followed by (0x) is a hexadecimal (base 16) number. A literal
starting with zero followed by a digit is an octal (base 8) number. For example:

decimal: 0 2 63 83
octal: 00 02 077 0123
hexadecimal: 0x0 0x2 Ox3f 0x53

The lettersa, b, ¢, d, e, andf, or their uppercase equivalents, are used to repréfehl, 12, 13,

14, and15, respectively. Octal and hexadecimal notations are most useful for expressing bit pat-
terns. Using these notations to express genuine numbers can lead to surprises. For example, on a
machine on which amt is represented as a two’s complement 16-bit intéhéfff is the negative

decimal number 1. Had more bits been used to represent an integer, it would hav65&%38n

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

74 Types and Declarations Chapter 4

The suffixU can be used to write explicithmsigned literals. Similarly, the suffid. can be
used to write explicitlong literals. For example3 is anint, 3U is anunsigned int, and3L is a
long int. If no suffix is provided, the compiler gives an integer literal a suitable type based on its
value and the implementation’s integer sizes (8C.4).
It is a good idea to limit the use of nonobvious constants to a few well-comnoenstd§5.4)
or enumerator (84.8) initializers.

4.5 Floating-Point Typeddcl.float]

The floating-point types represent floating-point numbers. Like integers, floating-point types come
in three sizesfloat (single-precision),double (double-precision), andong double (extended-
precision).

The exact meaning of single-, double-, and extended-precision is implementation-defined.
Choosing the right precision for a problem where the choice matters requires significant under-
standing of floating-point computation. If you don’t have that understanding, get advice, take the
time to learn, or usdouble and hope for the best.

4.5.1 Floating-Point Literals [dcl.fp.lit]

By default, a floating-point literal is of typdouble. Again, a compiler ought to warn about
floating-point literals that are too large to be represented. Here are some floating-point literals:

1.23 .23 023 1 10 1210 12315

Note that a space cannot occur in the middle of a floating-point literal. For ex&Apil e 21
is not a floating-point literal but rather four separate lexical tokens (causing a syntax error):

65.43 e - 21

If you want a floating-point literal of typioat, you can define one using the suffiar F:
3. 14159265f 2. Of 2. 997925F

4.6 Sizegdcl.size]

Some of the aspects ofr€s fundamental types, such as the size ofrdnare implementation-
defined (8C.2). | point out these dependencies and often recommend avoiding them or taking steps
to minimize their impact. Why should you bother? People who program on a variety of systems or
use a variety of compilers care a lot because if they don't, they are forced to waste time finding and
fixing obscure bugs. People who claim they don'’t care about portability usually do so because they
use only a single system and feel they can afford the attitude that “the language is what my com-
piler implements.” This is a narrow and shortsighted view. If your program is a success, it is
likely to be ported, so someone will have to find and fix problems related to implementation-
dependent features. In addition, programs often need to be compiled with other compilers for the
same system, and even a future release of your favorite compiler may do some things differently
from the current one. It is far easier to know and limit the impact of implementation dependencies

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 4.6 Sizes 75

when a program is written than to try to untangle the mess afterwards.

It is relatively easy to limit the impact of implementation-dependent language features. Limit-
ing the impact of system-dependent library facilities is far harder. Using standard library facilities
wherever feasible is one approach.

The reason for providing more than one integer type, more than one unsigned type, and more
than one floating-point type is to allow the programmer to take advantage of hardware characteris-
tics. On many machines, there are significant differences in memory requirements, memory access
times, and computation speed between the different varieties of fundamental types. If you know a
machine, it is usually easy to choose, for example, the appropriate integer type for a particular vari-
able. Writing truly portable low-level code is harder.

Sizes of @+ objects are expressed in terms of multiples of the sizeché®| so by definition
the size of achar is 1. The size of an object or type can be obtained usingitesf operator
(86.2). This is what is guaranteed about sizes of fundamental types:

1 = sizeof(chark sizeof(shortk sizeof(int)< sizeof(long)
1 < sizeof(boolk sizeof(long)

sizeof(chark sizeof(wchart) < sizeof(long)
sizeof(floatx sizeof(doublek sizeof(long double)
sizeof(N) sizeof(signed N¥ sizeof(unsigned N)

whereN can bechar, short int, int, orlong int. In addition, it is guaranteed thathar has at least
8 bits, ashort at least 16 bits, and leng at least 32 bits. Achar can hold a character of the
machine’s character set.

Here is a graphical representation of a plausible set of fundamental types and a sample string:

char:

bool:

short: 756

int*: &cl
double: | 1234567e34
char[14]: ‘ Hello, world\O

On the same scale (.2 inch to a byte), a megabyte of memory would stretch about three miles (five
km) to the right.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

76 Types and Declarations Chapter 4

Thechar type is supposed to be chosen by the implementation to be the most suitable type for
holding and manipulating characters on a given computer; it is typically an 8-bit byte. Similarly,
theint type is supposed to be chosen to be the most suitable for holding and manipulating integers
on a given computer; it is typically a 4-byte (32-bit) word. It is unwise to assume more. For exam-
ple, there are machines with 32 tiars.

When needed, implementation-dependent aspects about an implementation can be found in
<limits> (§22.2). For example:

#include <limits>

int main()

{

cout << " largest float ==" << numeric_limits<float>: : max()
<<", char is signed==" << numeric_limits<char>:: is_signed<< " \n’;

}

The fundamental types can be mixed freely in assignments and expressions. Wherever possible,
values are converted so as not to lose information (§8C.6).

If a valuev can be represented exactly in a variable of fijpa conversion o¥ to T is value-
preserving and no problem. The cases where conversions are not value-preserving are best avoided
(8C.6.2.6).

You need to understand implicit conversion in some detail in order to complete a major project
and especially to understand real code written by others. However, such understanding is not
required to read the following chapters.

4.7 Void[dcl.void]

The typevoid is syntactically a fundamental type. It can, however, be used only as part of a more
complicated type; there are no objects of typm. It is used either to specify that a function does
not return a value or as the base type for pointers to objects of unknown type. For example:

void x / | error: there are no void objects
void f() ; /| function f does not return a value (87.3)
void* pv; / | pointer to object of unknown type (85.6)

When declaring a function, you must specify the type of the value returned. Logically, you would
expect to be able to indicate that a function didn't return a value by omitting the return type. How-
ever, that would make the grammar (Appendix A) less regular and clash with C usage. Conse-
qguently,void is used as a “pseudo return type” to indicate that a function doesn't return a value.

4.8 Enumerations|dcl.enum]

An enumerations a type that can hold a set of values specified by the user. Once defined, an enu-
meration is used very much like an integer type.
Named integer constants can be defined as members of an enumeration. For example,

enum{ ASM, AUTO, BREAK };

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 4.8 Enumerations 77

defines three integer constants, called enumerators, and assigns values to them. By default, enu-
merator values are assigned increasing fdoso ASME=0, AUTO==1, andBREAK==2. An enu-
meration can be named. For example:

enum keyword { ASM, AUTO, BREAK };

Each enumeration is a distinct type. The type of an enumerator is its enumeration. For example,
AUTO is of typekeyword.

Declaring a variabl&eyword instead of plairint can give both the user and the compiler a hint
as to the intended use. For example:

void f(keyword key)

{
switch (key) {
case ASM:
/1 do something
break;
case BREAK:
/1 do something
break;
}
}

A compiler can issue a warning because only two out of #eyeord values are handled.

An enumerator can be initialized bycanstant-expressiof§C.5) of integral type (84.1.1). The
range of an enumeration holds all the enumeration’s enumerator values rounded up to the nearest
larger binary power minuk. The range goes down @af the smallest enumerator is non-negative
and to the nearest lesser negative binary power if the smallest enumerator is negative. This defines
the smallest bit-field capable of holding the enumerator values. For example:

enum €l{ dark, light}; / | range 0:1
enum €2{ a=3, b=9}; /| range 0:15
enum €3{ min =- 10, max=1000000}; / / range -1048576:1048575

A value of integral type may be explicitly converted to an enumeration type. The result of such a
conversion is undefined unless the value is within the range of the enumeration. For example:

enum flag{ x=1, y=2, z=4, e=8}; / / range 0:15

flag f1=5; | | type error: 5 is not of type flag
flag f2=flag(5); / / ok:flag(5) is of type flag and within the range of flag

flag f3=flag(z e); / / ok: flag(12) is of type flag and within the range of flag
flag f4 =flag(99); / / undefined: 99 is not within the range of flag

The last assignment shows why there is no implicit conversion from an integer to an enumeration;
most integer values do not have a representation in a particular enumeration.

The notion of a range of values for an enumeration differs from the enumeration notion in the
Pascal family of languages. However, bit-manipulation examples that require values outside the set
of enumerators to be well-defined have a long history in C ard C

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

78 Types and Declarations Chapter 4

The sizeof an enumeration is theizeof some integral type that can hold its range and not larger
thansizeof(int) , unless an enumerator cannot be representedias @nas arunsigned int. For
example sizeof(e1) could bel or maybe4 but not8 on a machine whersizeof(int)== 4.

By default, enumerations are converted to integers for arithmetic operations (86.2). An enumer-
ation is a user-defined type, so users can define their own operations, stcanak< for an enu-
meration (811.2.3).

4.9 Declarationgdcl.dcl]

Before a name (identifier) can be used int& @rogram, it must be declared. That is, its type must
be specified to inform the compiler to what kind of entity the name refers. Here are some examples
illustrating the diversity of declarations:

char ch;

string s

int count = 1;

const double pi = 3. 1415926535897932385;

extemn int emor_number;

char* name=" Njal";

char* season]] ={ "spring’, "summer”, "fall", "winter" };
struct Date{ int d, m, y; };

int day(Date* p) { return p>d; }

double sgrt(double);

template<class T>T abg(T a) { return a<0?-a: a; }

typedef complex<short> Point;
struct User;
enum Beer { Carlsberg, Tuborg, Thor };

namespace NS{ int a; }

As can be seen from these examples, a declaration can do more than simply associate a type with a
name. Most of thesdeclarationsare alsodefinitions that is, they also define an entity for the

name to which they refer. Fach, that entity is the appropriate amount of memory to be used as a
variable— that memory will be allocated. Fday, it is the specified function. For the constpit

it is the value3. 1415926535897932385. For Date, that entity is a new type. F@oint, it is the

type complex<short> so thatPoint becomes a synonym feomplex<short>. Of the declarations

above, only

double sqrt(double);
extern int emror_number;
struct User;

are not also definitions; that is, the entity they refer to must be defined elsewhere. The code (body)
for the functionsgrt must be specified by some other declaration, the memory fanthariable
emror_number must be allocated by some other declaratiorerér_number, and some other
declaration of the typdser must define what that type looks like. For example:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 4.9 Declarations 79

double sqrt(double d) { /* ...*/ }
int error_number = 1;

struct User{ /* ..* }
There must always be exactly one definition for each name itgpfogram (for the effects of

#include, see §89.2.3). However, there can be many declarations. All declarations of an entity must
agree on the type of the entity referred to. So, this fragment has two errors:

int count;
int count; // error: redefinition

exten int emror_number;
extern short emror_number; / / error: type mismatch

and this has none (for the usecafern see §9.2):

extern int emror_number;
extern int emror_number;

Some definitions specify a “value” for the entities they define. For example:

struct Date{ int d, m, y; };

typedef complex<short> Point;

int day(Date* p) { return p>d; }

const double jpi = 3. 1415926535897932385;

For types, templates, functions, and constants, the “value” is permanent. For nonconstant data
types, the initial value may be changed later. For example:

void f()

{
int count = 1;
char* name=" Bjarne";
/...
count = 2;
name=" Marian";

}

Of the definitions, only
char ch;
string s

do not specify values. See 84.9.5 and 8§10.4.2 for explanations of how and when a variable is
assigned a default value. Any declaration that specifies a value is a definition.

4.9.1 The Structure of a Declaration [dcl.parts]

A declaration consists of four parts: an optional “specifier,” a base type, a declarator, and an
optional initializer. Except for function and namespace definitions, a declaration is terminated by a
semicolon. For example:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

80 Types and Declarations Chapter 4

char* kings] ={ "Antigonus', " Seleucus', " Ptolemy' };

Here, the base type d¢har, the declarator iskingg] , and the initializer is{...}

A specifier is an initial keyword, such estual (82.5.5, §12.2.6) anextern (8§9.2), that speci-
fies some non-type attribute of what is being declared.

A declarator is composed of a name and optionally some declarator operators. The most com-
mon declarator operators are (8A.7.1):

* pointer prefix
* const constant pointer prefix
& reference prefix
1 array postfix
0 function positfix

Their use would be simple if they were all either prefix or postfix. Howeévdi, , and() were
designed to mirror their use in expressions (86.2). Thus,prefix and[] and() are postfix.
The postfix declarator operators bind tighter than the prefix ones. Conseqéidimilyy] is a
vector of pointers to something, and we have to use parentheses to express types such as “pointer
to function;” see examples in 85.1. For full details, see the grammar in Appendix A.
Note that the type cannot be left out of a declaration. For example:

const c=7; / [error: no type

gt(int a, int b) { return(a>b) ? a: b; } // error: no return type
unsigned ui; / / ok: ‘unsigned’ is the type ‘unsigned int’

long Ii; / | ok:‘long’ is the type ‘long int’

In this, standard €+ differs from earlier versions of C and€that allowed the first two examples
by consideringnt to be the type when none were specified (§B.2). This “imgpilitit rule was a
source of subtle errors and confusion.

4.9.2 Declaring Multiple Names [dcl.multi]

It is possible to declare several names in a single declaration. The declaration simply contains a list
of comma-separated declarators. For example, we can declare two integers like this:

int x, y; [| intx;inty;

Note that operators apply to individual names ennd not to any subsequent names in the same
declaration. For example:

int* p, y, [| int* p; inty; NOT int*y;
int X, *q; [intx; int*q;
int V[10], *pv, / | intv[10]; int* pv;

Such constructs make a program less readable and should be avoided.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 4.9.3 Names 81

4.9.3 Names [dcl.name]

A name (identifier) consists of a sequence of letters and digits. The first character must be a letter.
The underscore characteiis considered a letter. +€ imposes no limit on the number of charac-

ters in a name. However, some parts of an implementation are not under the control of the com-
piler writer (in particular, the linker), and those parts, unfortunately, sometimes do impose limits.
Some run-time environments also make it necessary to extend or restrict the set of characters
accepted in an identifier. Extensions (e.g., allowing the charfidtela name) yield nonportable
programs. A €+ keyword (Appendix A), such asew andint, cannot be used as a name of a
user-defined entity. Examples of names are:

hello this_is a most_unusually long_name
DEFINED foO bAr u_name HorseSense
varQ varl CLASS _class

Examples of character sequences that cannot be used as identifiers are:

012 a fool $sys dass 3var
pay. due foo~bar . name iif

Names starting with an underscore are reserved for special facilities in the implementation and the
run-time environment, so such names should not be used in application programs.

When reading a program, the compiler always looks for the longest string of characters that
could make up a name. Heneerl0is a single name, not the naver followed by the number
10. Also, elseif is a single name, not the keywaidefollowed by the keywordf.

Uppercase and lowercase letters are distincCamt and count are different names, but it is
unwise to choose names that differ only by capitalization. In general, it is best to avoid names that
differ only in subtle ways. For example, the uppercas@)@fd zero@) can be hard to tell apart,
as can the lowercase L) @nd one). Consequentiyi0, 10, 11, andll are poor choices for identi-
fier names.

Names from a large scope ought to have relatively long and reasonably obvious names, such as
vector, Window_with_border, andDepartment_number. However, code is clearer if names used
only in a small scope have short, conventional names such,andp. Classes (Chapter 10) and
namespaces (88.2) can be used to keep scopes small. It is often useful to keep frequently used
names relatively short and reserve really long names for infrequently used entities. Choose names
to reflect the meaning of an entity rather than its implementation. For exghphe book is bet-
ter thannumber_list even if the phone numbers happen to be storedist g3.7). Choosing good
names is an art.

Try to maintain a consistent naming style. For example, capitalize nonstandard library user-
defined types and start nontypes with a lowercase letter (for exa8ipjge and current_token).

Also, use all capitals for macros (if you must use macros; for exabhAleK) and use underscores

to separate words in an identifier. However, consistency is hard to achieve because programs are
typically composed of fragments from different sources and several different reasonable styles are
in use. Be consistent in your use of abbreviations and acronyms.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

82 Types and Declarations Chapter 4

4.9.4 Scope [dcl.scope]

A declaration introduces a name into a scope; that is, a name can be used only in a specific part of
the program text. For a name declared in a function (often caltedlaname, that scope extends

from its point of declaration to the end of the block in which its declaration occubtockis a

section of code delimited by{a} pair.

A name is callegjlobal if it is defined outside any function, class (Chapter 10), or namespace
(88.2). The scope of a global name extends from the point of declaration to the end of the file in
which its declaration occurs. A declaration of a name in a block can hide a declaration in an
enclosing block or a global name. That is, a name can be redefined to refer to a different entity
within a block. After exit from the block, the name resumes its previous meaning. For example:

int x; /I global x

void f()

{
int x; /I local x hides global x
x=1, / | assign to local x
{

int x; / | hides first local x
X=2; / | assign to second local x

}
xX=3; / | assign to first local x
}
int* p=&x; | | take address of global x

Hiding names is unavoidable when writing large programs. However, a human reader can easily
fail to notice that a name has been hidden. Because such errors are relatively rare, they can be very
difficult to find. Consequently, name hiding should be minimized. Using names suahdsfor
global variables or for local variables in a large function is asking for trouble.

A hidden global name can be referred to using the scope resolution operakar example:

int x;

void 2()

{
int x=1;/ / hide global x
1:x=2; | / assign to global x
X=2; / | assign to local x
/.

}

There is no way to use a hidden local name.

The scope of a name starts at its point of declaration; that is, after the complete declarator and
before the initializer. This implies that a name can be used even to specify its own initial value.
For example:

int x;

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 4.9.4 Scope 83

void 13()
{

}

This is not illegal, just silly. A good compiler will warn if a variable is used before it has been set
(see also 85.9[9)).

It is possible to use a single name to refer to two different objects in a block without using the
.. operator. For example:

int x=x;/ / perverse: initialize x with its own (uninitialized) value

int x=11;
void f4() | | perverse:
{
int y=x; / | useglobal x:y =11
int x=22,
y=X; / | uselocal x:y =22
}
Function argument names are considered declared in the outermost block of a function, so
void f5(int X)
{
int x; / | error
}

is an error becauseis defined twice in the same scope. Having this be an error allows a not
uncommon, subtle mistake to be caught.

4.9.5 Initialization [dcl.init]

If an initializer is specified for an object, that initializer determines the initial value of an object. If
no initializer is specified, a global (84.9.4), namespace (88.2), or local static object (§7.1.2, §10.2.4)
(collectively calledstatic objectsis initialized to0 of the appropriate type. For example:

int a; / | means “inta=0;"
double d / | means “double d = 0.0;”

Local variables (sometimes calladtomatic objecsand objects created on the free store (some-
times calleddynamic objectsr heap objectsare not initialized by default. For example:

void f()
{

int X [| x does not have a well-defined value
Il ...

}

Members of arrays and structures are default initialized or not depending on whether the array or
structure is static. User-defined types may have default initialization defined (810.4.2).

More complicated objects require more than one value as an initializer. This is handled by ini-
tializer lists delimited by{ and} for C-style initialization of arrays (85.2.1) and structures (85.7).
For user-defined types with constructors, function-style argument lists are used (§2.5.2, §10.2.3).

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

84 Types and Declarations Chapter 4

Note that an empty pair of parenthegpsin a declaration always means “function” (87.1).
For example:
inta] ={1 2} /| array initializer
Point 7z(1, 2); /I function-style initializer (initialization by constructor)
int f() ; /| function declaration

4.9.6 Objects and Lvalues [dcl.objects]

We can allocate and use “variables” that do not have names, and it is possible to assign to
strange-looking expressions (e.fp[a+10]= 7). Consequently, there is a need for a name for
“something in memory.” This is the simplest and most fundamental notion of an object. That is,
anobijectis a contiguous region of storage;laalueis an expression that refers to an object. The
word Ivalue was originally coined to mean “something that can be on the left-hand side of an
assignment.” However, not every Ivalue may be used on the left-hand side of an assignment; an
Ivalue can refer to a constant (85.5). An Ivalue that has not been dexbastds often called a
modifiable Ivalue This simple and low-level notion of an object should not be confused with the
notions of class object and object of polymorphic type (§15.4.3).

Unless the programmer specifies otherwise (§7.1.2, §10.4.8), an object declared in a function is
created when its definition is encountered and destroyed when its name goes out of scope (810.4.4).
Such objects are called automatic objects. Objects declared in global or namespace sstape and
ics declared in functions or classes are created and initialized once (only) and “live” until the pro-
gram terminates (810.4.9). Such objects are called static objects. Array elements and nonstatic
structure or class members have their lifetimes determined by the object of which they are part.

Using thenew and delete operators, you can create objects whose lifetimes are controlled
directly (86.2.6).

4.9.7 Typedef [dcl.typedef]

A declaration prefixed by the keywotgpedef declares a new name for the type rather than a new
variable of the given type. For example:

typedef char* Pchar;
Pchar p1, p2; / | pland p2 are char*s
char* p3=p1;

A name defined like this, usually called atypedef,” can be a convenient shorthand for a type
with an unwieldy name. For examplansigned char is too long for really frequent use, so we
could define a synonynuchar:

typedef unsigned char uchar;
Another use of gypedefis to limit the direct reference to a type to one place. For example:

typedef int int32;
typedef short intl6;

If we now useint32 wherever we need a potentially large integer, we can port our program to a
machine on whiclsizeof(int) is 2 by redefining the single occurrenceinfin our code:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 4.9.7 Typedef 85

typedef long int32;

For good and badypedefs are synonyms for other types rather than distinct types. Consequently,
typedefs mix freely with the types for which they are synonyms. People who would like to have
distinct types with identical semantics or identical representation should look at enumerations
(84.8) or classes (Chapter 10).

4.10 Advice[dcl.advice]

[1] Keep scopes small; §4.9.4.

[2] Don't use the same name in both a scope and an enclosing scope; §4.9.4.

[3] Declare one name (only) per declaration; §4.9.2.

[4] Keep common and local names short, and keep uncommon and nonlocal names longer; §4.9.3.

[5] Avoid similar-looking names; §4.9.3.

[6] Maintain a consistent naming style; 84.9.3.

[7] Choose names carefully to reflect meaning rather than implementation; 84.9.3.

[8] Use atypedef to define a meaningful name for a built-in type in cases in which the built-in
type used to represent a value might change; §4.9.7.

[9] Usetypedefs to define synonyms for types; use enumerations and classes to define new types;
84.9.7.

[10] Remember that every declaration must specify a type (there is no “iniptigit§4.9.1.

[11] Avoid unnecessary assumptions about the numeric value of characters; 84.3.1, 8§C.6.2.1.

[12] Avoid unnecessary assumptions about the size of integers; 84.6.

[13] Avoid unnecessary assumptions about the range of floating-point types; 8§4.6.

[14] Prefer a plainnt over ashort int or along int; §4.6.

[15] Prefer adouble over afloat or along double; §4.5.

[16] Prefer plairchar oversigned char andunsigned char; 8C.3.4.

[17] Avoid making unnecessary assumptions about the sizes of objects; §4.6.

[18] Avoid unsigned arithmetic; §4.4.

[19] View signed to unsigned andunsigned to signed conversions with suspicion; §C.6.2.6.

[20] View floating-point to integer conversions with suspicion; 8C.6.2.6.

[21] View conversions to a smaller type, suclirigo char, with suspicion; 8C.6.2.6.

4.11 EXxercises [dcl.exercises]

1. (@) Get the “Hello, world!" program (83.2) to run. If that program doesn’t compile as writ-
ten, look at §B.3.1.

2. (1) For each declaration in 84.9, do the following: If the declaration is not a definition, write a
definition for it. If the declaration is a definition, write a declaration for it that is not also a defi-
nition.

3. (L.5) Write a program that prints the sizes of the fundamental types, a few pointer types, and a
few enumerations of your choice. Use simeof operator.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

86 Types and Declarations Chapter 4

4. ((1.5) Write a program that prints out the lettees ..” Z and the digits 0" ..” 9" and their
integer values. Do the same for other printable characters. Do the same again but use hexa-
decimal notation.

5. (@) What, on your system, are the largest and the smallest values of the followinglapes:
short, int, long, float, double, long double, andunsigned.

6. () What is the longest local name you can use iffap@ogram on your system? What is the
longest external name you can use int& frogram on your system? Are there any restrictions
on the characters you can use in a name?

7. () Draw a graph of the integer and fundamental types where a type points to another type if
all values of the first can be represented as values of the second on every standards-conforming
implementation. Draw the same graph for the types on your favorite implementation.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

	Return to Contents
	4.1 Types
	4.2 Booleans
	4.3 Character Types
	4.4 Integer Types
	4.5 Floating Point Types
	4.6 Sizes
	4.7 Void
	4.8 Enumerations
	4.9 Declarations
	4.10 Advice
	4.11 Exercises

	buy now:

