A Tour of the Standard Library

Why waste time learning
when ignorance is instantaneous?
— Hobbes

Standard libraries— output— strings— input — vectors— range checking— lists —
maps— container overview— algorithms— iterators— 1/O iterators— traversals and
predicates— algorithms using member functiors algorithm overview— complex
numbers— vector arithmetie— standard library overview advice.

3.1 Introduction [tour2.lib]

No significant program is written in just a bare programming language. First, a set of supporting
libraries are developed. These then form the basis for further work.

Continuing Chapter 2, this chapter gives a quick tour of key library facilities to give you an idea
what can be done usingr€and its standard library. Useful library types, suclstaag, vector,
list, andmap, are presented as well as the most common ways of using them. Doing this allows me
to give better examples and to set better exercises in the following chapters. As in Chapter 2, you
are strongly encouraged not to be distracted or discouraged by an incomplete understanding of
details. The purpose of this chapter is to give you a taste of what is to come and to convey an
understanding of the simplest uses of the most useful library facilities. A more detailed introduc-
tion to the standard library is given in §16.1.2.

The standard library facilities described in this book are part of every compteienflemen-
tation. In addition to the standard<library, most implementations offer “graphical user inter-
face” systems, often referred to as GUIs or window systems, for interaction between a user and a
program. Similarly, most application development environments provide “foundation libraries”
that support corporate or industrial “standard” development and/or execution environments. | do
not describe such systems and libraries. The intent is to provide a self-contained description of C

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

http://store.awl.com/catalog/cepub_detail.mhtml?isbn=0-201-88954-4

46 A Tour of the Standard Library Chapter 3

as defined by the standard and to keep the examples portable, except where specifically noted. Nat-
urally, a programmer is encouraged to explore the more extensive facilities available on most sys-
tems, but that is left to exercises.

3.2 Hello, world! [tour2.hello]
The minimal G+ program is
int main() { }

It defines a function callemhain, which takes no arguments and does nothing.

Every G-+ program must have a function nanmadin() . The program starts by executing that
function. Theint value returned byain() , if any, is the program’s return value to “the system.”
If no value is returned, the system will receive a value indicating successful completion. A nonzero
value frommain() indicates failure.

Typically, a program produces some output. Here is a program that writdelbmt world! :

#include <iostream>
int main()

{

}

The line#include <iostream> instructs the compiler tmcludethe declarations of the standard
stream 1/O facilities as found instream. Without these declarations, the expression

std: : cout << " Hello, world! \n";

std: : cout << " Hello, world! \n"

would make no sense. The operatar(“put to”) writes its second argument onto its first. In this

case, the string literdlHello, world! \n" is written onto the standard output strestdh : cout. A

string literal is a sequence of characters surrounded by double quotes. In a string literal, the back-
slash charactdrfollowed by another character denotes a single special character. In thimdsse,

the newline character, so that the characters writteHelle, world! followed by a newline.

3.3 The Standard Library Namespacegtour2.name]

The standard library is defined in a namespace (82.4, §8.2) a#fledThat is why | wrote
std: : cout rather than plaircout. | was being explicit about using tistandard cout, rather than
some othecout.

Every standard library facility is provided through some standard header simiiastaeam>.
For example:

#include<string>
#include<list>

This makes the standastting andlist available. To use them, tistd: : prefix can be used:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 3.3 The Standard Library Namespace 47

std: : string s="Four legs Good; two legs Baaad'";
std: : list<std: : string> slogans;

For simplicity, | will rarely use thestd:: prefix explicitly in examples. Neither will | always
#include the necessary headers explicitly. To compile and run the program fragments here, you
must#include the appropriate headers (as listed in §3.7.5, §3.8.6, and Chapter 16). In addition,
you must either use ttstd: : prefix or make every name frostd global (§88.2.3). For example:

#include<string> / | make the standard string facilities accessible
using namespace sd; /| make std names available without std:: prefix

string s="Ignorance is bliss"; / / ok: string is std::string

It is generally in poor taste to dump every name from a namespace into the global nhamespace.
However, to keep short the program fragments used to illustrate language and library features, |
omit repetitive#includes andstd: : qualifications. In this book, | use the standard library almost
exclusively, so if a name from the standard library is used, it either is a use of what the standard
offers or part of an explanation of how the standard facility might be defined.

3.4 Output[tour2.ostream]

The iostream library defines output for every built-in type. Further, it is easy to define output of a
user-defined type. By default, values outputaoat are converted to a sequence of characters. For
example,

void f()
{

cout << 10;
}

will place the charactek followed by the charactéron the standard output stream. So will
void g()

int i = 10;
cout << i;
}
Output of different types can be combined in the obvious way:
void h(int i)
{
cout << "the value of i is";
cout << i;
cout <<’ \n’;
}

If i has the valudQ, the output will be
the value of i is 10

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

48 A Tour of the Standard Library Chapter 3

A character constant is a character enclosed in single quotes. Note that a character constant is out-
put as a character rather than as a numerical value. For example,

void k()

{ Y v
cout<<’ ' a’;
cout<<’'b’;
cout <<’ C’;

}

will output abc.

People soon tire of repeating the name of the output stream when outputting several related
items. Fortunately, the result of an output expression can itself be used for further output. For
example:

void h2(int i)
{

}
This is equivalent th() . Streams are explained in more detail in Chapter 21.

cout << "the value of i is" <<i<<’'\n’;

3.5 Strings[tour2.string]

The standard library providessiring type to complement the string literals used earlier. The
string type provides a variety of useful string operations, such as concatenation. For example:

string s1="Hello";
string s2="world";

void mi()
{
string s3=s1+", " +s2+" \n";

cout << s3,

}
Here,s3is initialized to the character sequence
Hello, world!

followed by a newline. Addition of strings means concatenation. You can add strings, string liter-
als, and characters to a string.

In many applications, the most common form of concatenation is adding something to the end
of a string. This is directly supported by the operation. For example:

void m2(string& s1, string& s2)

{
sl=s1+"\n";/ / append newline
s2+="\n"; | /| append newline

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 3.5 Strings 49

The two ways of adding to the end of a string are semantically equivalent, but | prefer the latter
because it is more concise and likely to be more efficiently implemented.
Naturally,strings can be compared against each other and against string literals. For example:
string incantation;

void respond(const string& answer)

{ if (answer == incantation) {
/1 perform magic
else if (answer == "yes') {
/..
}
/..
}

The standard library string class is described in Chapter 20. Among other useful features, it pro-
vides the ability to manipulate substrings. For example:

string name= " Niels Sroustrup";

void m3()

{
string s= name substr(6, 10);
name replace(0, 5," Nicholas') ;

s = "Stroustrup”

I
/| name becomes "Nicholas Stroustrup"

}

The substr() operation returns a string that is a copy of the substring indicated by its arguments.
The first argument is an index into the string (a position), and the second argument is the length of
the desired substring. Since indexing starts fépsgets the valuStroustrup.

Thereplace() operation replaces a substring with a value. In this case, the substring starting at
0 with length5 is Niels; it is replaced byNicholas. Thus, the final value afiame is Nicholas
Stroustrup. Note that the replacement string need not be the same size as the substring that it is
replacing.

3.5.1 C-Style Strings [tour2.cstring]

A C-style string is a zero-terminated array of characters (85.2.2). As shown, we can easily enter a
C-style string into &tring. To call functions that take C-style strings, we need to be able to extract
the value of atring in the form of a C-style string. Thestr() function does that (§20.4.1). For
example, we can print thameusing the C output functigprintf() (821.8) like this:

void f()
{

}

printf(" name %\n", name c_str()) ;

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

50 A Tour of the Standard Library Chapter 3

3.6 Input [tour2.istream]

The standard library offelistreams for input. Likeostreams, istreams deal with character string
representations of built-in types and can easily be extended to cope with user-defined types.

The operator> (“get from”) is used as an input operatain is the standard input stream.
The type of the right-hand operand>ef determines what input is accepted and what is the target
of the input operation. For example,

void f()

{
int i;
cin>>i; / / read an integer into i
double d

cin>>d;/ / read a double-precision, floating-point number into d

}

reads a number, such 4234, from the standard input into the integer variabsnd a floating-
point number, such d@®. 34€5, into the double-precision, floating-point varialdle

Here is an example that performs inch-to-centimeter and centimeter-to-inch conversions. You
input a number followed by a character indicating the unit: centimeters or inches. The program
then outputs the corresponding value in the other unit:

int main()

{
const float factor = 2. 54; // 1 inch equals 2.54 cm
float x, in, cm;
char ch=0;

cout << " enter length: ";

cin>> Xx; / | read a floating-point number
cin>> ch; I I read a suffix
switch (ch) {
case’ i’: / I inch
in=x;
cm= x* factor;
break;
case’ C’: /[| cm
in = x/ factor;
cm=x;
break;
default:
in=cm=0;
break;
}

cout<<in<<" in=" <<cm<<" cm\n";

}
The switch-statemertests a value against a set of constants. bréak-statementare used to exit

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 3.6 Input 51

the switch-statementThe case constants must be distinct. If the value tested does not match any of
them, thedefault is chosen. The programmer need not providefault.
Often, we want to read a sequence of characters. A convenient way of doing that is to read into
astring. For example:
int main()
{
string sfr;

cout << " Please enter your name\n";
cin >> str;
cout << "Hello, " << sftr <<"! \n"

}
If you type in
Eric
the response is
Hello, Eric!
By default, a whitespace character (85.2.2) such as a space terminates the read, so if you enter
Eric Bloodaxe
pretending to be the ill-fated king of York, the response is still
Hello, Eric!
You can read a whole line using thetling() function. For example:
int main()
{ string sSfr;
cout << " Please enter your name\n";
getling(cin, str);

cout << "Hello, " << sir << "! \n";

}

With this program, the input
Eric Bloodaxe

yields the desired output:

Hello, Eric Bloodaxe!

The standard strings have the nice property of expanding to hold what you put in them, so if you
enter a couple of megabytes of semicolons, the program will echo pages of semicolons back at you
— unless your machine or operating system runs out of some critical resource first.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

52 A Tour of the Standard Library Chapter 3

3.7 Containerstour2.stl]

Much computing involves creating collections of various forms of objects and then manipulating
such collections. Reading characters into a string and printing out the string is a simple example.
A class with the main purpose of holding objects is commonly caltemht@iner Providing suit-
able containers for a given task and supporting them with useful fundamental operations are impor-
tant steps in the construction of any program.

To illustrate the standard library’s most useful containers, consider a simple program for keep-
ing names and telephone numbers. This is the kind of program for which different approaches
appear “simple and obvious” to people of different backgrounds.

3.7.1 Vector [tour2.vector]

For many C programmers, a built-in array of (name,number) pairs would seem to be a suitable
starting point:

struct Entry {
string name
int number;
b

Entry phone_book{ 1000] ;

void print_entry(int i) / / simple use
{

}

However, a built-in array has a fixed size. If we choose a large size, we waste space; if we choose a
smaller size, the array will overflow. In either case, we will have to write low-level memory-
management code. The standard library providestar (§16.3) that takes care of that:

cout << phone_book[i]. name<<" ~ << phone_book{ i]. number << \n’;

vector<Entry> phone_book(1000);

void print_entry(int i) / / simple use, exactly as for array

{

}
void add entries(int n) // increase size by n

cout << phone_book[i]. name<<” ~ << phone_book i]. number << " \n’;

phone_book. resize(phone_book. size)+ n);

}

Thevector member functiorsize() gives the number of elements.

Note the use of parentheses in the definitioplwine book. We made a single object of type
vector<Entry> and supplied its initial size as an initializer. This is very different from declaring a
built-in array:

vector<Entry> book(1000); / | vector of 1000 elements
vector<Entry> bookg 1000]; / / 1000 empty vectors

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 3.7.1 Vector 53

Should you make the mistake of usfhgwhere you mear() when declaring aector, your com-
piler will almost certainly catch the mistake and issue an error message when you try to use the
vector.

A vedtor is a single object that can be assigned. For example:

void f(vector<Entry>& v)

{
vector<Entry> v2 = phone_book;
V=V2,
/..

}

Assigning avector involves copying its elements. Thus, after the initialization and assignment in
f() , vandv2 each holds a separate copy of evéngry in the phone book. Whenwector holds

many elements, such innocent-looking assignments and initializations can be prohibitively expen-
sive. Where copying is undesirable, references or pointers should be used.

3.7.2 Range Checking [tour2.range]

The standard libraryector does not provide range checking by default (816.3.3). For example:

void f()

{
int i = phone_book] 1001]. number; / / 1001 is out of range

...
}

The initialization is likely to place some random value rather than giving an error. This is
undesirable, so | will use a simple range-checking adaptatieectulr, calledVeg, in the following
chapters. AVecis like avector, except that it throws an exception of typé_of rangeif a sub-
script is out of range.

Techniques for implementing types such\Vee and for using exceptions effectively are dis-
cussed in 811.12, 8§8.3, and Chapter 14. However, the definition here is sufficient for the examples
in this book:

template<class T> class Vec: public vector<T> {
public:

Ver() : vecor<T>() {}

Vec(int s) : vector<T>(s) { }

T& operator[](int i) { return at(i); } / | range-checked
const T& operator[](int i) const{ return at(i); } / / range-checked
h

Theat() operation is avector subscript operation that throws an exception of gyieof range
if its argument is out of theector’s range (816.3.3).

Returning to the problem of keeping names and telephone numbers, we can novease a
ensure that out-of-range accesses are caught. For example:

Vec<Entry> phone_book(1000);

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

54 A Tour of the Standard Library Chapter 3

void print_entry(int i) / / simple use, exactly as for vector

{
cout << phone_book[i]. name<<” *~ << phone_book{ i]. number << " \n’;
}
An out-of-range access will throw an exception that the user can catch. For example:
void f()
{
try {
for (int i = 0; i<10000; i++) print_entry(i);
catch (out_of_range) {
cout << "range aror\n";
}
}

The exception will be thrown, and then caught, wpkone book] i] is tried withi==1000.
If the user doesn’t catch this kind of exception, the program will terminate in a well-defined manner
rather than proceeding or failing in an undefined manner. One way to minimize surprises from
exceptions is to useraain() with atry-blockas its body:
int main()
try {
/1 your code

catch (out_of_range) {
cerr << "range @ror\n”;

}
catch(...) {

cerr << " unknown exception thrown\n';
}

This provides default exception handlers so that if we fail to catch some exception, an error mes-
sage is printed on the standard error-diagnostic output sterar(§21.2.1).

3.7.3 List [tour2.list]

Insertion and deletion of phone book entries could be common. Therefore, a list could be more
appropriate than a vector for representing a simple phone book. For example:

list<Entry> phone_book;

When we use a list, we tend not to access elements using subscripting the way we commonly do for
vectors. Instead, we might search the list looking for an element with a given value. To do this, we
take advantage of the fact thdistis a sequence as described in §3.8:

void print_entry(const string& s)

typedef list<Entry>: : const iterator LI;

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 3.7.3 List 55

for (LI i = phone_book. begin() ; i !'= phone_book end() ; ++i) {
Entry& e=*i; / | reference used as shorthand
if (s== e name) cout<< e name<< ~ << e number <<’ \n’;

}

The search fos starts at the beginning of the list and proceeds until eitieefound or the end is
reached. Every standard library container provides the fundiisgig() andend() , which return

an iterator to the first and to one-past-the-last element, respectively (§16.3.2). Given ani,terator
the next element is+i. Given an iterator, the element it refers to 14.

A user need not know the exact type of the iterator for a standard container. That iterator type is
part of the definition of the container and can be referred to by name. When we don’t need to mod-
ify an element of the containezonst_iterator is the type we want. Otherwise, we use the plain
iterator type (816.3.1).

Adding elements to st is easy:

void add_entry(Entry& e, list<Entry>:: iterator i)

{

phone_book. push front(e); / / add at beginning

phone_book. push back(e); / / add atend

phone_book. insert(i, €); | | add before the element ‘i’ refers to
}

3.7.4 Map [tour2.map]

Writing code to look up a name in a list of (name,number) pairs is really quite tedious. In addition,
a linear search is quite inefficient for all but the shortest lists. Other data structures directly support
insertion, deletion, and searching based on values. In particular, the standard library provides the
map type (817.4.1). Anapis a container of pairs of values. For example:

map<string, int> phone_book;

In other contexts, map is known as an associative array or a dictionary.
When indexed by a value of its first type (calledkbg a map returns the corresponding value
of the second type (called thalueor themapped type For example:

void print_entry(const string& s)
{

}

If no match was found for the key a default value is returned from theone book. The default
value for an integer type inmapis 0. Here, | assume th@tisn't a valid telephone number.

if (int i = phone_book] s]) cout<<s<<’ ~ <<i<<’\n;

3.7.5 Standard Containers [tour2.stdcontainer]

A map, alist, and avector can each be used to represent a phone book. However, each has
strengths and weaknesses. For example, subscriptwegtar is cheap and easy. On the other
hand, inserting an element between two elements tends to be expendist.hds exactly the

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

56 A Tour of the Standard Library Chapter 3

opposite properties. Aap resembles &ist of (key,value) pairs except that it is optimized for find-
ing values based on keys.

The standard library provides some of the most general and useful container types to allow the
programmer to select a container that best serves the needs of an application:

U Standard Container Summary U
rvector<T> A variable-sized vector (§16.3) S
fist<T> A doubly-linked list (8§17.2.2) 0
(ueue<T> A queue (817.3.2) O
Lstack<T> A stack (8§17.3.1) 0

eque<T> A double-ended queue (817.2.3) B
rpriority_queue<T> A queue sorted by value (817.3.3) 0
Cset<T> A set (§17.4.3) 0
Chultiset<T> A set in which a value can occur many times (817. 4]4)
Cimap<key,val> An associative array (§17.4.1)

Bnultlmap<key,val> A map in which a key can occur many times (817. ABZ)

The standard containers are presented in 816.2, 816.3, and Chapter 17. The containers are defined
in namespacstd and presented in headengector>, <list>, <map>, etc. (§16.2).

The standard containers and their basic operations are designed to be similar from a notational
point of view. Furthermore, the meanings of the operations are equivalent for the various contain-
ers. In general, basic operations apply to every kind of container. For expogbiehack() can
be used (reasonably efficiently) to add elements to the endvedter as well as for dist, and
every container hassize() member function that returns its number of elements.

This notational and semantic uniformity enables programmers to provide new container types
that can be used in a very similar manner to the standard ones. The range-checkeWeg=ctor,
(83.7.2), is an example of that. Chapter 17 demonstrates Hwshamap can be added to the
framework. The uniformity of container interfaces also allows us to specify algorithms indepen-
dently of individual container types.

3.8 Algorithms [tour2.algorithms]

A data structure, such as a list or a vector, is not very useful on its own. To use one, we need oper-
ations for basic access such as adding and removing elements. Furthermore, we rarely just store
objects in a container. We sort them, print them, extract subsets, remove elements, search for
objects, etc. Consequently, the standard library provides the most common algorithms for contain-
ers in addition to providing the most common container types. For example, the following sorts a
vector and places a copy of each unicyeetor element on éist

void f(vector<Entry>& ve, list<Entry>& le)

{
sort(ve. begin() , ve. end()) ;
unique_copy(ve. begin() , ve. end() , le. begin()) ;

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 3.8 Algorithms 57

The standard algorithms are described in Chapter 18. They are expressed in terms of sequences of
elements (82.7.2). A sequence is represented by a pair of iterators specifying the first element and
the one-beyond-the-last element. In the exangod() sorts the sequence frowe. begin() to
ve end() — which just happens to be all the elements wéaor. For writing, you need only to
specify the first element to be written. If more than one element is written, the elements following
that initial element will be overwritten.

If we wanted to add the new elements to the end of a container, we could have written:

void f(vector<Entry>& ve, list<Entry>& le)

{
sort(ve. begin() , ve. end()) ;
unique_copy(ve. begin() , ve. end() , back inserter(le)) ; / / append to le

}

A back inserter() adds elements at the end of a container, extending the container to make room
for them (819.2.4). C programmers will appreciate that the standard containers plus
back inserter() s eliminate the need to use error-prone, explicit C-style memory management
using realloc() (816.3.5). Forgetting to use kzack inserter() when appending can lead to
errors. For example:

void f(list<Entry>& ve, vector<Entry>& le)

{
copy(ve. begin() , ve. end() , le); /| error: le not an iterator
copy(ve. begin() , ve. end() , le. end()) ; / / bad: writes beyond the end
copy(ve. begin() , ve. end() , le. begin()) ;/ / overwrite elements

}

3.8.1 Use of Iterators [tour2.iteruse]

When you first encounter a container, a few iterators referring to useful elements can be obtained;
begin) andend() are the best examples of this. In addition, many algorithms return iterators.
For example, the standard algoritffimd looks for a value in a sequence and returns an iterator to
the element found. Usinfind, we can write a function that counts the number of occurrences of a
character in atring:

int count(const string& s, char c)

{
string: : const_iterator i = find(s. begin() , s. end() , ¢);
int n=0;
while (i!= s. end() {
++n;
i =find(i+1, s. end() , ©);
}
return n;
}

The find algorithm returns an iterator to the first occurrence of a value in a sequence or the one-
past-the-end iterator. Consider what happens for a simple callof:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

58 A Tour of the Standard Library Chapter 3

void f()

{
string m="Mary had a little lamb’;
int a_count = count(m,” a’) ;

The first call tofind() finds the” @” in Mary. Thus, the iterator points to that character and not to
s. end() , so we enter the loop. In the loop, we start the searchlathat is, we start one past
where we found théa . We then loop finding the other threa” s. That donefind() reaches
the end and returrss end() so that the conditiori= s. end() fails and we exit the loop.

That call ofcount() could be graphically represented like this:

| | V Voo

M[a[r[y[[h[a[d] [a[[T]i]t]t]I]e] [I]afm[b] :

The arrows indicate the initial, intermediate, and final values of the itérator
Naturally, thefind algorithm will work equivalently on every standard container. Conse-
qguently, we could generalize theunt() function in the same way:

template<class C, class T> int count(const C&v, T val)

{
typename C.: const_iterator i = find(v. begin() , v. end() , val); / / "typename;" see §C.13.5
int n=0;
while (i != v. end()) {
++n;
++i; // skip past the element we just found
i =find(i, v. end() , val);
}
return n;
}

This works, so we can say:

void f(list<complex>& Ic, vector<string>& vc, string s)

{
int i1 = count(Ic, complex(1, 3)) ;
int i2 = count(vc," Chrysippus’) ;
int i3 =count(s,” X) ;

}

However, we don't have to definecaunt template. Counting occurrences of an element is so gen-
erally useful that the standard library provides that algorithm. To be fully general, the standard
library count takes a sequence as its argument, rather than a container, so we would say:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 3.8.1 Use of Iterators 59

void f(list<complex>& Ic, vector<string>& vs, string s

{
int i1 = count(lc. begin() , lc. end() , complex(1, 3)) ;
int i2 = count(vs. begin() , vs. end() ," Diogenes’) ;
int i3 = count(s. begin() , s. end() ,” X)) ;

}

The use of a sequence allows us to amt for a built-in array and also to count parts of a con-
tainer. For example:

void g(char cq] , int s2

{
int i1=count(&cq 0],&cq s4, Z); [| 'Z’sin array
int i2=count(&cq 0],&cq sz 2],” Z); [/ [/ 'Z'sin first half of array

3.8.2 Iterator Types [tour2.iter]

What are iterators really? Any particular iterator is an object of some type. There are, however,
many different iterator types because an iterator needs to hold the information necessary for doing
its job for a particular container type. These iterator types can be as different as the containers and
the specialized needs they serve. For examplegtar’s iterator is most likely an ordinary pointer
because a pointer is quite a reasonable way of referring to an elemenectura

iterator: p

vector: ‘P‘i‘e‘t‘ ‘H‘e‘i‘n‘

Alternatively, avector iterator could be implemented as a pointer tovéator plus an index:

iterator: (start == p, position == 3)

vector: ‘P‘i‘e‘t‘ ‘H‘e‘i‘n‘

Using such an iterator would allow range checking (819.3).

A list iterator must be something more complicated than a simple pointer to an element because
an element of a list in general does not know where the next element of that list is. Thus, a list iter-
ator might be a pointer to a link:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

60 A Tour of the Standard Library Chapter 3

iterator: p

list: link |-—="link |-——="link %
b

elements: P i e t

What is common for all iterators is their semantics and the naming of their operations. For exam-
ple, applying++ to any iterator yields an iterator that refers to the next element. Simtlariglds

the element to which the iterator refers. In fact, any object that obeys a few simple rules like these
is an iterator (819.2.1). Furthermore, users rarely need to know the type of a specific iterator; each
container “knows” its iterator types and makes them available under the conventionalitexrazes

tor and const iterator. For example list<Entry>:: iterator is the general iterator type for
list<Entry>. | rarely have to worry about the details of how that type is defined.

3.8.3 lIterators and I/O [tour2.ioiterators]

Iterators are a general and useful concept for dealing with sequences of elements in containers.
However, containers are not the only place where we find sequences of elements. For example, an
input stream produces a sequence of values and we write a sequence of values to an output stream.
Consequently, the notion of iterators can be usefully applied to input and output.

To make arostream iterator, we need to specify which stream will be used and the type of
objects written to it. For example, we can define an iterator that refers to the standard output
streamcout:

ostream iterator<string> 00(cout);
The effect of assigning tooo is to write the assigned valuedout. For example:

int main()

{
*00="Hello, "; / / meaning couk< "Hello, "
++00;
*o0o0="world!' \n"; / / meaning cout< "world\n"

}

This is yet another way of writing the canonical message to standard output+dde done to
mimic writing into an array through a pointer. This way wouldn’t be my first choice for that simple
task, but the utility of treating output as a write-only container will soon be obwidug isn’t
already.

Similarly, anistream iterator is something that allows us to treat an input stream as a read-
only container. Again, we must specify the stream to be used and the type of values expected:

istream _iterator<string> ii(cin);

Because input iterators invariably appear in pairs representing a sequence, we must provide an

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 3.8.3

lterators and I/O 61

istream _iterator to indicate the end of input. This is the defasiiteam iterator:

istream iterator<string> eos;

We could now reatflello, world! from input and write it out again like this:

int main()

{
string s1= *ii;
++il;
string s2= *ii;
cout<< sl<<’ ~ <<s2<<’\n;

}

Actually, istream iterators andostream iterators are not meant to be used directly. Instead, they
are typically provided as arguments to algorithms. For example, we can write a simple program to
read a file, sort the words read, eliminate duplicates, and write the result to another file:

int main()

{
string from, to;
cin >> from>> to;

ifstream is(from. c_str()) ;
istream _iterator<string> ii(is);
istream iterator<string> eos,

vector<string> b(ii, eos);
sort(b. begin() , b. end()) ;

ofstream os(to. c_str()) ;
ostream iterator<string> 0o(0s," \n") ;

unique_copy(b. begin() , b. end() , 00);

return! is. eof() &&! os
}

~ —~ — ~

~ ~ ~ ~

get source and target file names

input stream (cstr(); see §3.5)
input iterator for stream
input sentinel

b is a vector initialized from input
sort the buffer

output stream
output iterator for stream

copy buffer to output,
discard replicated values

return error state (83.2, §21.3.3)

An ifstreamis anistreamthat can be attached to a file, andofstream is anostream that can be
attached to a file. Thestream iterator’'s second argument is used to delimit output values.

3.8.4 Traversals and Predicates [tour2.traverse]

Iterators allow us to write loops to iterate through a sequence. However, writing loops can be
tedious, so the standard library provides ways for a function to be called for each element of a

sequence.

Consider writing a program that reads words from input and records the frequency of their
occurrence. The obvious representation of the strings and their associated frequemeaps is a

map<string, int> histogram;

The obvious action to be taken for each string to record its frequency is:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

62 A Tour of the Standard Library Chapter 3

void record(const string& s)
{

}

Once the input has been read, we would like to output the data we have gathereap Tbmesists
of a sequence of (string,int) pairs. Consequently, we would like to call

histogram] s]++; / / record frequency of “s”

void print(const pair<const string, int>&r)

{
}

for each element in the map (the first element phix is calledfirst, and the second element is
calledsecond). The first element of thpair is aconst string rather than a plaistring because all
map keys are constants.

Thus, the main program becomes:

cout <<r. first<<” * <<r. second << " \n’;

int main()
{

istream _iterator<string> ii(cin);

istream _iterator<string> eos,

for_each(ii, eos, record);

for_each(histogram begin() , histogram end() , print);
}

Note that we don’t need to sort thaap to get the output in order. fnap keeps its elements
ordered so that an iteration traversesrtiap in (increasing) order.

Many programming tasks involve looking for something in a container rather than simply doing
something to every element. For example,fihd algorithm (8§18.5.2) provides a convenient way
of looking for a specific value. A more general variant of this idea looks for an element that fulfills
a specific requirement. For example, we might want to seamudipdor the first value larger than
42. A map is a sequence of (key,value) pairs, so we search that listp@ir econst string, int>
where thdnt is greater thad2:

bool gt_42(const pair<const string, int>&r)
{

}
void f(map<string, int>& m)

return r. second>42,

typedef map<string, int>: : const_iterator MI;
MI i = find_if(m. begin() , m. end() , gt_42);
/...

}

Alternatively, we could count the number of words with a frequency higher than 42:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 3.8.4 Traversals and Predicates 63

void g(const map<string, int>& m)

int c42 = count_if(m. begin() , m. end() , gt_42);
/..
}

A function, such agt_42() , that is used to control the algorithm is callqotedicate A predicate
is called for each element and returns a Boolean value, which the algorithm uses to perform its
intended action. For examplénd_if() searches until its predicate retutnse to indicate that an
element of interest has been found. Similactynt_if() counts the number of times its predicate
is true.

The standard library provides a few useful predicates and some templates that are useful for cre-
ating more (818.4.2).

3.8.5 Algorithms Using Member Functions [tour2.memp]

Many algorithms apply a function to elements of a sequence. For example, in 83.8.4
for_each(ii, eos, record);

callsrecord() to read strings from input.

Often, we deal with containers of pointers and we really would like to call a member function of
the object pointed to, rather than a global function on the pointer. For example, we might want to
call the member functiostmape: : draw() for each element of Hst<Sape*>. To handle this
specific example, we simply write a nonmember function that invokes the member function. For
example:

void draw(Sthape* p)
{

p-> draw() ;

void f(list<Shape*>& sh)

for_each(sh. begin() , sh. end() , draw);
}

By generalizing this technique, we can write the example like this:
void ¢(list<Shape*>& sh)
{

for_each(sh. begin() , sh. end() , mem_fun(& Sthape: : draw)) ;
}

The standard librargnem _fun() template (§18.4.4.2) takes a pointer to a member function (815.5)
as its argument and produces something that can be called for a pointer to the member’s class. The
result of mem fun(& Shape : draw) takes a Shape* argument and returns whatever
Stape: : draw() returns.

The mem fun() mechanism is important because it allows the standard algorithms to be used
for containers of polymorphic objects.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

64 A Tour of the Standard Library Chapter 3

3.8.6 Standard Library Algorithms [tour2.algolist]

What is an algorithm? A general definition of an algorithm is “a finite set of rules which gives a
sequence of operations for solving a specific set of problems [and] has five important features:
Finiteness ... Definiteness ... Input ... Output ... Effectiveness” [Knuth,1968,81.1]. In the context of
the G-+ standard library, an algorithm is a set of templates operating on sequences of elements.

The standard library provides dozens of algorithms. The algorithms are defined in namespace
std and presented in thaalgorithm> header. Here are a few | have found particularly useful:

U Selected Standard Algorithms g
Efor_eacho Invoke function for each element (§18.5.1) S
rfind() Find first occurrence of arguments (§18.5.2) 0
(find_if() Find first match of predicate (§18.5.2) a
Leount() Count occurrences of element (§18.5.3) g
ount_if() Count matches of predicate (818.5.3) E
Teplace() Replace element with new value (818.6.4) 0
replace if() Replace element that matches predicate with new value (81836.4)
Ctopy() Copy elements (818.6.1) O
Lunique copy() Copy elements that are not duplicates (§18.6.1) U
0 Sort elements (§18.7.1) E
requal_range() Find all elements with equivalent values (818.7.2) 0
merge() Merge sorted sequences (§18.7.3) 0

These algorithms, and many more (see Chapter 18), can be applied to elements of containers,
strings, and built-in arrays.

3.9 Math [tour2.math]
Like C, C-+ wasn't designed primarily with numerical computation in mind. However, a lot of
numerical work is done in#3, and the standard library reflects that.

3.9.1 Complex Numbers [tour2.complex]

The standard library supports a family of complex number types along the lines cuintplex

class described in 82.5.2. To support complex numbers where the scalars are single-precision,
floating-point numbersflpats), double precision numbemdogbles), etc., the standard libracpm-

plexis a template:

template<class scalar> class complex{

public:
complex(scalar re, scalar im);
/..

h

The usual arithmetic operations and the most common mathematical functions are supported for
complex numbers. For example:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 3.9.1 Complex Numbers 65

/1 standard exponentiation function froraomplex:
template<class C> complex<C> pow(const complex<C>&, int);

void f(complex<float> fl, complex<double> db)

{
complex<long double> Id = fl+sgrt(db);
db += fI* 3;
fl = pow(V/ fl, 2);
/...
}

For more details, see §22.5.

3.9.2 Vector Arithmetic [tour2.valarray]

The vector described in 83.7.1 was designed to be a general mechanism for holding values, to be
flexible, and to fit into the architecture of containers, iterators, and algorithms. However, it does
not support mathematical vector operations. Adding such operatimesttw would be easy, but

its generality and flexibility precludes optimizations that are often considered essential for serious
numerical work. Consequently, the standard library provides a vector, caligday, that is less
general and more amenable to optimization for numerical computation:

template<class T> class valarray {
/...
T& operator[](size t);
/..
k
The typesize t is the unsigned integer type that the implementation uses for array indices.
The usual arithmetic operations and the most common mathematical functions are supported for
valarrays. For example:

/1 standard absolute value function fremalarray>:
template<class T> valarray<T> abg(const valarray<T>&);

void f(valarray<double>& al, valarray<double>& a2)

{
valarray<double> a = al* 3. 14+a2/ al;
a2 +=al* 3. 14,
a=abg(a);
double d=a2[7];
/...
}

For more details, see §22.4.

3.9.3 Basic Numeric Support [tour2.basicnum]

Naturally, the standard library contains the most common mathematical funetiueh adog() |,
pow() , andcos() — for floating-point types; see §22.3. In addition, classes that describe the
properties of built-in types such as the maximum exponent dfaat — are provided; see §22.2.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

66 A Tour of the Standard Library Chapter 3

3.10 Standard Library Facilities [tour2.post]

The facilities provided by the standard library can be classified like this:

[1] Basic run-time language support (e.g., for allocation and run-time type information); see
816.1.3.

[2] The C standard library (with very minor modifications to minimize violations of the type
system); see §16.1.2.

[3] Strings and I/O streams (with support for international character sets and localization); see
Chapter 20 and Chapter 21.

[4] A framework of containers (such &ector, list, andmap) and algorithms using containers
(such as general traversals, sorts, and merges); see Chapter 16, Chapter 17, Chapter 18, and
Chapter 19.

[5] Support for numerical computation (complex numbers plus vectors with arithmetic opera-
tions, BLAS-like and generalized slices, and semantics designed to ease optimization); see
Chapter 22.

The main criterion for including a class in the library was that it would somehow be used by almost
every G+ programmer (both novices and experts), that it could be provided in a general form that
did not add significant overhead compared to a simpler version of the same facility, and that simple
uses should be easy to learn. Essentially, thestandard library provides the most common fun-
damental data structures together with the fundamental algorithms used on them.

Every algorithm works with every container without the use of conversions. This framework,
conventionally called the STL [Stepanov,1994], is extensible in the sense that users can easily pro-
vide containers and algorithms in addition to the ones provided as part of the standard and have
these work directly with the standard containers and algorithms.

3.11 Adviceltour2.advice]

[1] Don't reinvent the wheel; use libraries.

[2] Don't believe in magic; understand what your libraries do, how they do it, and at what cost
they do it.

[3] When you have a choice, prefer the standard library to other libraries.

[4] Do not think that the standard library is ideal for everything.

[5] Remember téincludethe headers for the facilities you use; §3.3.

[6] Remember that standard library facilities are defined in namesfh@&s.3.

[7] Usestringrather tharchar*; §3.5, §3.6.

[8] Ifin doubt use a range-checked vector (sucWex3; 83.7.2.

[9] Prefervector<T>, list<T>, andmap<key, value>to T[] ; 83.7.1, 83.7.3, §3.7.4.

[10] When adding elements to a container,jussh back() orback inserter() ; 83.7.3, §3.8.

[11] Usepush back() on avector rather tharrealloc() on an array; 83.8.

[12] Catch common exceptionsimain() ; 83.7.2.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

	Return to Contents
	3.1 Introduction
	3.2 Hello, world!
	3.3 The Standard Library Namespace
	3.4 Output
	3.5 Strings
	3.6 Input
	3.7 Containers
	3.8 Algorithms
	3.9 Math
	3.10 Standard Library Facilities
	3.11 Advice

	buy now:

