
_ __ _______________________________________

25
_ __ _______________________________________

Roles of Classes

Some things better change ...
but fundamental themes

should revel in persistence.
– Stephen J. Gould

Kinds of classes— concrete types— abstract types— nodes— changing interfaces—
object I/O— actions— interface classes— handles— use counts— application frame-
works— advice— exercises.

25.1 Kinds of Classes[role.intro]

The C++ class is a programming language construct that serves a variety of design needs. In fact, I
find that the solution to most knotty design problems involves the introduction of a new class to
represent some notion that had been left implicit in the previous draft design (and maybe the elimi-
nation of other classes). The great variety of roles that a class can play leads to a variety of kinds of
classes that are specialized to serve a particular need well. In this chapter, a few archetypical kinds
of classes are described, together with their inherent strengths and weaknesses:

§25.2 Concrete types
§25.3 Abstract types
§25.4 Nodes
§25.5 Operations
§25.6 Interfaces
§25.7 Handles
§25.8 Application frameworks

These ‘‘kinds of classes’’ are design notions and not language constructs. The unattained, and
probably unattainable, ideal is to have a minimal set of simple and orthogonal kinds of classes from
which all well-behaved and useful classes could be constructed. It is important to note that each of

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

http://store.awl.com/catalog/cepub_detail.mhtml?isbn=0-201-88954-4

766 Roles of Classes Chapter 25

these kinds of classes has a place in design and none is inherently better than the others for all uses.
Much confusion in discussions of design and programming comes from people trying to use only
one or two kinds of classes exclusively. This is usually done in the name of simplicity, yet it leads
to contorted and unnatural uses of the favored kinds of classes.

The description here emphasizes the pure forms of these kinds of classes. Naturally, hybrid
forms can also be used. However, a hybrid ought to appear as the result of a design decision based
on an evaluation of the engineering tradeoffs and not a result of some misguided attempt to avoid
making decisions. ‘‘Delaying decisions’’ is too often a euphemism for ‘‘avoiding thinking.’’ Nov-
ice designers will usually do best by staying away from hybrids and also by following the style of
an existing component with properties that resemble the desired properties for the new component.
Only experienced programmers should attempt to write a general-purpose component or library,
and every library designer should be ‘‘condemned’’ to use, document, and support his or her cre-
ation for some years. Also, please note §23.5.1.

25.2 Concrete Types[role.concrete]

Classes such asv ve ec ct to or r (§16.3), l li is st t (§17.2.2), D Da at te e (§10.3), andc co om mp pl le ex x (§11.3, §22.5) are
concretein the sense that each is the representation of a relatively simple concept with all the oper-
ations essential for the support of that concept. Also, each has a one-to-one correspondence
between its interface and an implementation and none are intended as a base for derivation. Typi-
cally, concrete types are not fitted into a hierarchy of related classes. Each concrete type can be
understood in isolation with minimal reference to other classes. If a concrete type is implemented
well, programs using it are comparable in size and speed to programs a user would write using a
hand-crafted and specialized version of the concept. Similarly, if the implementation changes sig-
nificantly the interface is usually modified to reflect the change. In all of this, a concrete type
resembles a built-in type. Naturally, the built-in types are all concrete. User-defined concrete
types, such as complex numbers, matrices, error messages, and symbolic references, often provide
fundamental types for some application domain.

The exact nature of a class’ interface determines what implementation changes are significant in
this context; more abstract interfaces leave more scope for implementation changes but can com-
promise run-time efficiency. Furthermore, a good implementation does not depend on other classes
more than absolutely necessary so that the class can be used without compile-time or run-time over-
heads caused by the accommodation of other ‘‘similar’’ classes in a program.

To sum up, a class providing a concrete type aims:
[1] to be a close match to a particular concept and implementation strategy;
[2] to provide run-time and space efficiency comparable to ‘‘hand-crafted’’ code through the

use of inlining and of operations taking full advantage of the properties of the concept and
its implementation;

[3] to have only minimal dependency on other classes; and
[4] to be comprehensible and usable in isolation.

The result is a tight binding between user code and implementation code. If the implementation
changes in any way, user code will have to be recompiled because user code almost always con-
tains calls of inline functions or local variables of a concrete type.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 25.2 Concrete Types 767

The name ‘‘concrete type’’ was chosen to contrast with the common term ‘‘abstract type.’’ The
relationship between concrete and abstract types is discussed in §25.3.

Concrete types cannot directly express commonality. For example,l li is st t andv ve ec ct to or r provide sim-
ilar sets of operations and can be used interchangeably by some template functions. However, there
is no relationship between the typesl li is st t<i in nt t> and v ve ec ct to or r<i in nt t> or betweenl li is st t<S Sh ha ap pe e*> and
l li is st t<C Ci ir rc cl le e*> (§13.6.3), even thoughw we ecan discern their similarities.

For naively designed concrete types, this implies that code using them in similar ways will look
dissimilar. For example, iterating through aL Li is st t using an ne ex xt t() operation differs dramatically
from iterating through aV Ve ec ct to or r using subscripting:

v vo oi id d m my y(L Li is st t& s sl l)
{

f fo or r (T T* p p = s sl l. f fi ir rs st t() ; p p; p p = s sl l. n ne ex xt t()) { / / ‘‘natural’’ list iteration
/ / my stuff

}
/ / ...

}

v vo oi id d y yo ou ur r(V Ve ec ct to or r& v v)
{

f fo or r (i in nt t i i = 0 0; i i<v v. s si iz ze e() ; i i++) { / / ‘‘natural’’ vector iteration
/ / your stuff

}
/ / ...

}

The difference in iteration style is natural in the sense that a get-next-element operation is essential
to the notion of a list (but not that common for a vector) and subscripting is essential to the notion
of a vector (but not for a list). The availability of operations that are ‘‘natural’’ relative to a chosen
implementation strategy is often crucial for efficiency and important for ease of writing the code.

The obvious snag is that the code for fundamentally similar operations, such as the previous two
loops, can look dissimilar, and code that uses different concrete types for similar operations cannot
be used interchangeably. In realistic examples, it takes significant thought to find similarities and
significant redesign to provide ways of exploiting such similarities once found. The standard con-
tainers and algorithms are an example of a thorough rethinking that makes it possible to exploit
similarities between concrete types without losing their efficiency and elegance benefits (§16.2).

To take a concrete type as an argument, a function must specify that exact concrete type as an
argument type. There will be no inheritance relationships that can be used to make the argument
declaration less specific. Consequently, an attempt to exploit similarities between concrete types
will involve templates and generic programming as described in §3.8. When the standard library is
used, iteration becomes:

t te em mp pl la at te e<c cl la as ss s C C> v vo oi id d o ou ur rs s(c co on ns st t C C& c c)
{

f fo or r (C C: : c co on ns st t_ _i it te er ra at to or r p p = c c. b be eg gi in n() ; p p!= c c. e en nd d() ; ++p p) { / / standard library iteration
/ / ...

}
}

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

768 Roles of Classes Chapter 25

The fundamental similarity between containers is exploited, and this in turn opens the possibility
for further exploitation as done by the standard algorithms (Chapter 18).

To use a concrete type well, the user must understand its particular details. There are (typically)
no general properties that hold for all concrete types in a library that can be relied on to save the
user the bother of knowing the individual classes. This is the price of run-time compactness and
efficiency. Sometimes that is a price well worth paying; sometimes it is not. It can also be the case
that an individual concrete class is easier to understand and use than is a more general (abstract)
class. This is often the case for classes that represent well-known data types such as arrays and
lists.

Note, however, that the ideal is still to hide as much of the implementation as is feasible without
seriously hurting performance. Inline functions can be a great win in this context. Exposing mem-
ber variables by making them public or by providing set and get functions that allow the user to
manipulate them directly is almost never a good idea (§24.4.2). Concrete types should still be
types and not just bags of bits with a few functions added for convenience.

25.2.1 Reuse of Concrete Types [role.reuse]

Concrete types are rarely useful as bases for further derivation. Each concrete type aims at provid-
ing a clean and efficient representation of a single concept. A class that does that well is rarely a
good candidate for the creation of different but related classes through public derivation. Such
classes are more often useful as members or private base classes. There, they can be used effec-
tively without having their interfaces and implementations mixed up with and compromised by
those of the new classes. Consider deriving a new class fromD Da at te e:

c cl la as ss s M My y_ _d da at te e : p pu ub bl li ic c D Da at te e {
/ / ...

};

Is it ever valid forM My y_ _d da at te e to be used as a plainD Da at te e? Well, that depends on whatM My y_ _d da at te e is,
but in my experience it is rare to find a concrete type that makes a good base class without modifi-
cation.

A concrete type is ‘‘reused’’ unmodified in the same way as built-in types such asi in nt t are
(§10.3.4). For example:

c cl la as ss s D Da at te e_ _a an nd d_ _t ti im me e {
p pr ri iv va at te e:

D Da at te e d d;
T Ti im me e t t;

p pu ub bl li ic c:
/ / ...

};

This form of use (reuse?) is usually simple, effective, and efficient.
Maybe it was a mistake not to designD Da at te e to be easy to modify through derivation? It is some-

times asserted thateveryclass should be open to modification by overriding and by access from
derived class member functions. This view leads to a variant ofD Da at te ealong these lines:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 25.2.1 Reuse of Concrete Types 769

c cl la as ss s D Da at te e2 2 {
p pu ub bl li ic c:

/ / public interface, consisting primarily of virtual functions
p pr ro ot te ec ct te ed d:

/ / other implementation details (possibly including some representation)
p pr ri iv va at te e:

/ / representation and other implementation details
};

To make writing overriding functions easy and efficient, the representation is declaredp pr ro ot te ec ct te ed d.
This achieves the objective of makingD Da at te e2 2 arbitrarily malleable by derivation, yet keeping its
user interface unchanged. However, there are costs:

[1] Less efficient basic operations. A C++ virtual function call is a fraction slower than an ordi-
nary function call, virtual functions cannot be inlined as often as non-virtual functions, and a
class with virtual functions typically incurs a one-word space overhead.

[2] The need to use free store. The aim ofD Da at te e2 2 is to allow objects of different classes derived
from D Da at te e2 2 to be used interchangeably. Because the sizes of these derived classes differ,
the obvious thing to do is to allocate them on the free store and access them through pointers
or references. Thus, the use of genuine local variables dramatically decreases.

[3] Inconvenience to users. To benefit from the polymorphism provided by the virtual func-
tions, accesses toD Da at te e2 2s must be through pointers or references.

[4] Weaker encapsulation. The virtual operations can be overridden and protected data can be
manipulated from derived classes (§12.4.1.1).

Naturally, these costs are not always significant, and the behavior of a class defined in this way is
often exactly what we want (§25.3, §25.4). However, for a simple concrete type, such asD Da at te e2 2,
the costs are unnecessary and can be significant.

Finally, a well-designed concrete type is often the ideal representation for a more malleable
type. For example:

c cl la as ss s D Da at te e3 3 {
p pu ub bl li ic c:

/ / public interface, consisting primarily of virtual functions
p pr ri iv va at te e:

D Da at te e d d;
};

This is the way to fit concrete types (including built-in types) into a class hierarchy when that is
needed. See also §25.10[1].

25.3 Abstract Types[role.abstract]

The simplest way of loosening the coupling between users of a class and its implementers and also
between code that creates objects and code that uses such objects is to introduce an abstract class
that represents the interface to a set of implementations of a common concept. Consider a naive
S Se et t:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

770 Roles of Classes Chapter 25

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s S Se et t {
p pu ub bl li ic c:

v vi ir rt tu ua al l v vo oi id d i in ns se er rt t(T T*) = 0 0;
v vi ir rt tu ua al l v vo oi id d r re em mo ov ve e(T T*) = 0 0;

v vi ir rt tu ua al l i in nt t i is s_ _m me em mb be er r(T T*) = 0 0;

v vi ir rt tu ua al l T T* f fi ir rs st t() = 0 0;
v vi ir rt tu ua al l T T* n ne ex xt t() = 0 0;

v vi ir rt tu ua al l ~S Se et t() { }
};

This defines an interface to a set with a built-in notion of iteration over its elements. The absence
of a constructor and the presence of a virtual destructor is typical (§12.4.2). Several implementa-
tions are possible (§16.2.1). For example:

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s L Li is st t_ _s se et t : p pu ub bl li ic c S Se et t<T T>, p pr ri iv va at te e l li is st t<T T> {
/ / ...

};

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s V Ve ec ct to or r_ _s se et t : p pu ub bl li ic c S Se et t<T T>, p pr ri iv va at te e v ve ec ct to or r<T T> {
/ / ...

};

The abstract class provides the common interface to the implementations. This means we can use a
S Se et t without knowing which kind of implementation is used. For example:

v vo oi id d f f(S Se et t<P Pl la an ne e*>& s s)
{

f fo or r (P Pl la an ne e** p p = s s. f fi ir rs st t() ; p p; p p = s s. n ne ex xt t()) {
/ / my stuff

}
/ / ...

}

L Li is st t_ _s se et t<P Pl la an ne e*> s sl l;
V Ve ec ct to or r_ _s se et t<P Pl la an ne e*> v v(1 10 00 0) ;

v vo oi id d g g()
{

f f(s sl l) ;
f f(v v) ;

}

For concrete types, we required a redesign of the implementation classes to express commonality
and used a template to exploit it. Here, we must design a common interface (in this caseS Se et t), but
no commonality beyond the ability to implement the interface is required of the classes used for
implementation.

Furthermore, users ofS Se et t need not know the declarations ofL Li is st t_ _s se et t andV Ve ec ct to or r_ _s se et t, so users
need not depend on these declarations and need not be recompiled or in any way changed if
L Li is st t_ _s se et t or V Ve ec ct to or r_ _s se et t changes or even if a new implementation ofS Se et t – say T Tr re ee e_ _s se et t – is

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 25.3 Abstract Types 771

introduced. All dependencies are contained in functions that explicitly use a class derived fromS Se et t.
In particular, assuming the conventional use of header files the programmer writingf f(S Se et t&) needs
only includeS Se et t. h h and notL Li is st t_ _s se et t. h h or V Ve ec ct to or r_ _s se et t. h h. An ‘‘implementation header’’ is needed
only where aL Li is st t_ _s se et t or aV Ve ec ct to or r_ _s se et t, respectively, is created. An implementation can be further
insulated from the actual classes by introducing an abstract class that handles requests to create
objects (‘‘a factory;’’ §12.4.4).

This separation of the interface from the implementations implies the absence of access to oper-
ations that are ‘‘natural’’ to a particular implementation but not general enough to be part of the
interface. For example, because aS Se et t doesn’t have a notion of ordering we cannot support a sub-
scripting operator in theS Se et t interface even if we happen to be implementing a particularS Se et t using
an array. This implies a run-time cost due to missed hand optimizations. Furthermore, inlining
typically becomes infeasible (except in a local context, when the compiler knows the real type), and
all interesting operations on the interface become virtual function calls. As with concrete types,
sometimes the cost of an abstract type is worth it; sometimes it is not. To sum up, an abstract type
aims to:

[1] define a single concept in a way that allows several implementations of it to coexist in a pro-
gram;

[2] provide reasonable run-time and space efficiency through the use of virtual functions;
[3] let each implementation have only minimal dependency on other classes; and
[4] be comprehensible in isolation.

Abstract types are not better than concrete types, just different. There are difficult and important
tradeoffs for the user to make. The library provider can dodge the issue by providing both, thus
leaving the choice to the user. The important thing is to be clear about to which world a class
belongs. Limiting the generality of an abstract type in an attempt to compete in speed with a con-
crete type usually fails. It compromises the ability to use interchangeable implementations without
significant recompilation after changes. Similarly, attempting to provide ‘‘generality’’ in concrete
types to compete with the abstract type notion also usually fails. It compromises the efficiency and
appropriateness of a simple class. The two notions can coexist– indeed, theymustcoexist because
concrete classes provide the implementations for the abstract types– but they must not be muddled
together.

Abstract types are often not intended to be bases for further derivation beyond their immediate
implementation. Derivation is most often used just to supply implementation. However, a new
interface can be constructed from an abstract class by deriving a more extensive abstract class from
it. This new abstract class must then in turn be implemented through further derivation by a non-
abstract class (§15.2.5).

Why didn’t we deriveL Li is st t andV Ve ec ct to or r classes fromS Se et t in the first place to save the introduction
of L Li is st t_ _s se et t andV Ve ec ct to or r_ _s se et t classes? In other words, why have concrete types when we can have
abstract types?

[1] Efficiency. We want to have concrete types such asv ve ec ct to or r and l li is st t without the overheads
implied by decoupling the implementations from the interfaces (as implied by the abstract
type style).

[2] Reuse. We need a mechanism to fit types designed ‘‘elsewhere’’ (such asv ve ec ct to or r and l li is st t)
into a new library or application by giving them a new interface (rather than rewriting
them).

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

772 Roles of Classes Chapter 25

[3] Multiple interfaces. Using a single common base for a variety of classes leads to fat inter-
faces (§24.4.3). Often, it is better to provide a new interface to a class used for new pur-
poses (such as aS Se et t interface for av ve ec ct to or r) rather than modify its interface to serve multiple
purposes.

Naturally, these points are related. They are discussed in some detail for theI Iv va al l_ _b bo ox x example
(§12.4.2, §15.2.5) and in the context of container design (§16.2). Using theS Se et t base class would
have resulted in a based-container solution relying on node classes (§25.4).

Section §25.7 describes a more flexible iterator in that the binding of the iterator to the imple-
mentation yielding the objects can be specified at the point of initialization and changed at run
time.

25.4 Node Classes[role.node]

A class hierarchy is built with a view of derivation different from the interface/implementer view
used for abstract types. Here, a class is viewed as a foundation on which to build. Even if it is an
abstract class, it usually has some representation and provides some services for its derived classes.
Examples of node classes areP Po ol ly yg go on n (§12.3), the initialI Iv va al l_ _s sl li id de er r (§12.4.1), andS Sa at te el ll li it te e
(§15.2).

Typically, a class in a hierarchy represents a general concept of which its derived classes can be
seen as specializations. The typical class designed as an integral part of a hierarchy, anode class,
relies on services from base classes to provide its own services. That is, it calls base class member
functions. A typical node class provides not just an implementation of the interface specified by its
base class (the way an implementation class does for an abstract type). It also adds new functions
itself, thus providing a wider interface. ConsiderC Ca ar r from the traffic-simulation example in
§24.3.2:

c cl la as ss s C Ca ar r : p pu ub bl li ic c V Ve eh hi ic cl le e {
p pu ub bl li ic c:

C Ca ar r(i in nt t p pa as ss se en ng ge er rs s, S Si iz ze e_ _c ca at te eg go or ry y s si iz ze e, i in nt t w we ei ig gh ht t, i in nt t f fc c)
: V Ve eh hi ic cl le e(p pa as ss se en ng ge er rs s, s si iz ze e, w we ei ig gh ht t) , f fu ue el l_ _c ca ap pa ac ci it ty y(f fc c) { /* ... */ }

/ / override relevant virtual functions from Vehicle:

v vo oi id d t tu ur rn n(D Di ir re ec ct ti io on n) ;
/ / ...

/ / add Car-specific functions:

v vi ir rt tu ua al l a ad dd d_ _f fu ue el l(i in nt t a am mo ou un nt t) ; / / a car needs fuel to run
/ / ...

};

The important functions are the constructor through which the programmer specifies the basic prop-
erties that are relevant to the simulation and the (virtual) functions that allow the simulation rou-
tines to manipulate aC Ca ar r without knowing its exact type. AC Ca ar r might be created and used like
this:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 25.4 Node Classes 773

v vo oi id d u us se er r()
{

/ / ...
C Ca ar r* p p = n ne ew w C Ca ar r(3 3, e ec co on no om my y, 1 15 50 00 0, 6 60 0) ;
d dr ri iv ve e(p p, b bs s_ _h ho om me e, M MH H) ; / / enter into simulated traffic pattern
/ / ...

}

A node class usually needs constructors and often a nontrivial constructor. In this, node classes dif-
fer from abstract types, which rarely have constructors.

The operations onC Ca ar r will typically use operations from the base classV Ve eh hi ic cl le e in their imple-
mentations. In addition, the user of aC Ca ar r relies on services from its base classes. For example,
V Ve eh hi ic cl le eprovides the basic functions dealing with weight and size so thatC Ca ar r doesn’t have to:

b bo oo ol l B Br ri id dg ge e: : c ca an n_ _c cr ro os ss s(c co on ns st t V Ve eh hi ic cl le e& r r)
{

i if f (m ma ax x_ _w we ei ig gh ht t<r r. w we ei ig gh ht t()) r re et tu ur rn n f fa al ls se e;
/ / ...

}

This allows programmers to create new classes such asC Ca ar r andT Tr ru uc ck k from a node classV Ve eh hi ic cl le e
by specifying and implementing only what needs to differ fromV Ve eh hi ic cl le e. This is often referred to as
‘‘programming by difference’’ or ‘‘programming by extension.’’

Like many node classes, aC Ca ar r is itself a good candidate for further derivation. For example, an
A Am mb bu ul la an nc ce eneeds additional data and operations to deal with emergencies:

c cl la as ss s A Am mb bu ul la an nc ce e : p pu ub bl li ic c C Ca ar r, p pu ub bl li ic c E Em me er rg ge en nc cy y {
p pu ub bl li ic c:

A Am mb bu ul la an nc ce e() ;

/ / override relevant Car virtual functions:

v vo oi id d t tu ur rn n(D Di ir re ec ct ti io on n) ;
/ / ...

/ / override relevant Emergency virtual functions:

v vi ir rt tu ua al l d di is sp pa at tc ch h_ _t to o(c co on ns st t L Lo oc ca at ti io on n&) ;
/ / ...

/ / add Ambulance-specific functions:

v vi ir rt tu ua al l i in nt t p pa at ti ie en nt t_ _c ca ap pa ac ci it ty y() ; / / number of stretchers
/ / ...

};

To sum up, a node class
[1] relies on its base classes both for its implementation and for supplying services to its users;
[2] provides a wider interface (that is, an interface with more public member functions) to its

users than do its base classes;
[3] relies primarily (but not necessarily exclusively) on virtual functions in its public interface;
[4] depends on all of its (direct and indirect) base classes;

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

774 Roles of Classes Chapter 25

[5] can be understood only in the context of its base classes;
[6] can be used as a base for further derivation; and
[7] can be used to create objects.

Not every node class will conform to all of points 1, 2, 6, and 7, but most do. A class that does not
conform to point 6 resembles a concrete type and could be called aconcrete node class. For exam-
ple, a concrete node class can be used to implement an abstract class (§12.4.2) and variables of such
a class can be allocated statically and on the stack. Such a class is sometimes called aleaf class.
However, any code operating on a pointer or reference to a class with virtual functions must take
into account the possibility of a further derived class (or assume without language support that fur-
ther derivation hasn’t happened). A class that does not conform to point 7 resembles an abstract
type and could be called anabstract node class. Because of unfortunate traditions, many node
classes have at least somep pr ro ot te ec ct te ed d members to provide a less restricted interface for derived
classes (§12.4.1.1).

Point 4 implies that to compile a node class, a programmer must include the declarations of all
of its direct and indirect base classes and all of the declarations that they, in turn, depend on. In
this, a node class again provides a contrast to an abstract type. A user of an abstract type does not
depend on the classes used to implement it and need not include them to compile.

25.4.1 Changing Interfaces [role.io]

By definition, a node class is part of a class hierarchy. Not every class in a hierarchy needs to offer
the same interface. In particular, a derived class can provide more member functions, and a sibling
class can provide a completely different set of functions. From a design perspective,d dy yn na am mi ic c_ _c ca as st t
(§15.4) can be seen as a mechanism for asking an object if it provides a given interface.

As an example, consider a simple object I/O system. Users want to read objects from a stream,
determine that they are of the expected types, and then use them. For example:

v vo oi id d u us se er r()
{

/ / ... open file assumed to hold shapes, and attach ss as an istream for that file ...

I Io o_ _o ob bj j* p p = g ge et t_ _o ob bj j(s ss s) ; / / read object from stream

i if f (S Sh ha ap pe e* s sp p = d dy yn na am mi ic c_ _c ca as st t<S Sh ha ap pe e*>(p p)) {
s sp p-> d dr ra aw w() ; / / use the Shape
/ / ...

}
e el ls se e {

/ / oops: non-shape in Shape file
}

}

The functionu us se er r() deals with shapes exclusively through the abstract classS Sh ha ap pe e and can there-
fore use every kind of shape. The use ofd dy yn na am mi ic c_ _c ca as st t is essential because the object I/O system
can deal with many other kinds of objects and the user may accidentally have opened a file contain-
ing perfectly good objects of classes that the user has never heard of.

This object I/O system assumes that every object read or written is of a class derived from
I Io o_ _o ob bj j. ClassI Io o_ _o ob bj j must be a polymorphic type to allow us to used dy yn na am mi ic c_ _c ca as st t. For example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 25.4.1 Changing Interfaces 775

c cl la as ss s I Io o_ _o ob bj j {
p pu ub bl li ic c:

v vi ir rt tu ua al l I Io o_ _o ob bj j* c cl lo on ne e() c co on ns st t =0 0; / / polymorphic
v vi ir rt tu ua al l ~I Io o_ _o ob bj j() {}

};

The critical function in the object I/O system isg ge et t_ _o ob bj j() , which reads data from ani is st tr re ea am m and
creates class objects based on that data. Assume that the data representing an object on an input
stream is prefixed by a string identifying the object’s class. The job ofg ge et t_ _o ob bj j() is to read that
string prefix and call a function capable of creating and initializing an object of the right class. For
example:

t ty yp pe ed de ef f I Io o_ _o ob bj j* (* P PF F)(i is st tr re ea am m&) ; / / pointer to function returning an Io_obj*

m ma ap p<s st tr ri in ng g, P PF F> i io o_ _m ma ap p; / / maps strings to creation functions

b bo oo ol l g ge et t_ _w wo or rd d(i is st tr re ea am m& i is s, s st tr ri in ng g& s s) ; / / read a word from is into s

I Io o_ _o ob bj j* g ge et t_ _o ob bj j(i is st tr re ea am m& s s)
{

s st tr ri in ng g s st tr r;
b bo oo ol l b b = g ge et t_ _w wo or rd d(s s, s st tr r) ; / / read initial word into str
i if f (b b == f fa al ls se e) t th hr ro ow w N No o_ _c cl la as ss s() ; / / io format problem

P PF F f f = i io o_ _m ma ap p[s st tr r] ; / / lookup ‘str’ to get function
i if f (f f == 0 0) t th hr ro ow w U Un nk kn no ow wn n_ _c cl la as ss s() ; / / no match for ‘str’

r re et tu ur rn n f f(s s) ; / / construct object from stream
}

Them ma ap p called i io o_ _m ma ap p holds pairs of name strings and functions that can construct objects of the
class with that name.

We could define classS Sh ha ap pe e in the usual way, except for deriving it fromI Io o_ _o ob bj j as required by
u us se er r() :

c cl la as ss s S Sh ha ap pe e : p pu ub bl li ic c I Io o_ _o ob bj j {
/ / ...

};

However, it would be more interesting (and in many cases more realistic) to use a definedS Sh ha ap pe e
(§2.6.2) unchanged:

c cl la as ss s I Io o_ _c ci ir rc cl le e : p pu ub bl li ic c C Ci ir rc cl le e, p pu ub bl li ic c I Io o_ _o ob bj j {
p pu ub bl li ic c:

I Io o_ _c ci ir rc cl le e* c cl lo on ne e() c co on ns st t { r re et tu ur rn n n ne ew w I Io o_ _c ci ir rc cl le e(* t th hi is s) ; } / / using copy constructor
I Io o_ _c ci ir rc cl le e(i is st tr re ea am m&) ; / / initialize from input stream
s st ta at ti ic c I Io o_ _o ob bj j* n ne ew w_ _c ci ir rc cl le e(i is st tr re ea am m& s s) { r re et tu ur rn n n ne ew w I Io o_ _c ci ir rc cl le e(s s) ; }
/ / ...

};

This is an example of how a class can be fitted into a hierarchy using an abstract class with less
foresight than would have been required to build it as a node class in the first place (§12.4.2,
§25.3).

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

776 Roles of Classes Chapter 25

The I Io o_ _c ci ir rc cl le e(i is st tr re ea am m&) constructor initializes an object with data from itsi is st tr re ea am m argument.
The n ne ew w_ _c ci ir rc cl le e() function is the one put into thei io o_ _m ma ap p to make the class known to the object
I/O system. For example:

i io o_ _m ma ap p[" I Io o_ _c ci ir rc cl le e"]=& I Io o_ _c ci ir rc cl le e: : n ne ew w_ _c ci ir rc cl le e;

Other shapes are constructed in the same way:

c cl la as ss s I Io o_ _t tr ri ia an ng gl le e : p pu ub bl li ic c T Tr ri ia an ng gl le e, p pu ub bl li ic c I Io o_ _o ob bj j {
/ / ...

};

If the provision of the object I/O scaffolding becomes tedious, a template might help:

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s I Io o : p pu ub bl li ic c T T, p pu ub bl li ic c I Io o_ _o ob bj j {
p pu ub bl li ic c:

I Io o* c cl lo on ne e() c co on ns st t { r re et tu ur rn n n ne ew w I Io o(* t th hi is s) ; } / / override Io_obj::clone()

I Io o(i is st tr re ea am m&) ; / / initialize from input stream

s st ta at ti ic c I Io o* n ne ew w_ _i io o(i is st tr re ea am m& s s) { r re et tu ur rn n n ne ew w I Io o(s s) ; }
/ / ...

};

Given this, we can defineI Io o_ _c ci ir rc cl le e:

t ty yp pe ed de ef f I Io o<C Ci ir rc cl le e> I Io o_ _c ci ir rc cl le e;

We still need to defineI Io o<C Ci ir rc cl le e>: : I Io o(i is st tr re ea am m&) explicitly, though, because it needs to know
about the details ofC Ci ir rc cl le e.

The I Io o template is an example of a way to fit concrete types into a class hierarchy by providing
a handle that is a node in that hierarchy. It derives from its template parameter to allow casting
from I Io o_ _o ob bj j. Unfortunately, this precludes usingI Io o for a built-in type:

t ty yp pe ed de ef f I Io o<D Da at te e> I Io o_ _d da at te e; / / wrap concrete type
t ty yp pe ed de ef f I Io o<i in nt t> I Io o_ _i in nt t; / / error: cannot derive from built-in type

This problem can be handled by providing a separate template for built-in types or by using a class
representing a built-in type (§25.10[1]).

This simple object I/O system may not do everything anyone ever wanted, but it almost fits on a
single page and the key mechanisms have many uses. In general, these techniques can be used to
invoke a function based on a string supplied by a user and to manipulate objects of unknown type
through interfaces discovered through run-time type identification.

25.5 Actions[role.action]

The simplest and most obvious way to specify an action in C++ is to write a function. However, if
an action has to be delayed, has to be transmitted ‘‘elsewhere’’ before being performed, requires its
own data, has to be combined with other actions (§25.10[18,19]), etc., then it often becomes attrac-
tive to provide the action in the form of a class that can execute the desired action and provide other
services as well. A function object used with the standard algorithms is an obvious example

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 25.5 Actions 777

(§18.4), and so are the manipulators used withi io os st tr re ea am ms (§21.4.6). In the former case, the actual
action is performed by the application operator, and in the latter case, by the<< or >> operators. In
the case ofF Fo or rm m (§21.4.6.3) andM Ma at tr ri ix x (§22.4.7), compositor classes were used to delay execu-
tion until sufficient information had been gathered for efficient execution.

A common form of action class is a simple class containing just one virtual function (typically
called something like ‘‘do_it’’):

c cl la as ss s A Ac ct ti io on n {
p pu ub bl li ic c:

v vi ir rt tu ua al l i in nt t d do o_ _i it t(i in nt t) = 0 0;
v vi ir rt tu ua al l ~A Ac ct ti io on n() { }

};

Given this, we can write code– say a menu– that can store actions for later execution without
using pointers to functions, without knowing anything about the objects invoked, and without even
knowing the name of the operation it invokes. For example:

c cl la as ss s W Wr ri it te e_ _f fi il le e : p pu ub bl li ic c A Ac ct ti io on n {
F Fi il le e& f f;

p pu ub bl li ic c:
i in nt t d do o_ _i it t(i in nt t) { r re et tu ur rn n f f. w wr ri it te e(). s su uc cc ce ee ed d() ; }

};

c cl la as ss s E Er rr ro or r_ _r re es sp po on ns se e : p pu ub bl li ic c A Ac ct ti io on n {
s st tr ri in ng g m me es ss sa ag ge e;

p pu ub bl li ic c:
i in nt t d do o_ _i it t(i in nt t) ;

};

i in nt t E Er rr ro or r_ _r re es sp po on ns se e: : d do o_ _i it t(i in nt t)
{

R Re es sp po on ns se e_ _b bo ox x d db b(m me es ss sa ag ge e. c c_ _s st tr r() , " c co on nt ti in nu ue e"," c ca an nc ce el l"," r re et tr ry y") ;

s sw wi it tc ch h (d db b. g ge et t_ _r re es sp po on ns se e()) {
c ca as se e 0 0:

r re et tu ur rn n 0 0;
c ca as se e 1 1:

a ab bo or rt t() ;
c ca as se e 2 2:

c cu ur rr re en nt t_ _o op pe er ra at ti io on n. r re ed do o() ;
r re et tu ur rn n 1 1;

}
}

A Ac ct ti io on n* a ac ct ti io on ns s[] = {
n ne ew w W Wr ri it te e_ _f fi il le e(f f) ,
n ne ew w E Er rr ro or r_ _r re es sp po on ns se e(" y yo ou u b bl le ew w i it t a ag ga ai in n") ,
/ / ...

};

A user of A Ac ct ti io on n can be completely insulated from any knowledge of derived classes such as
W Wr ri it te e_ _f fi il le eandE Er rr ro or r_ _r re es sp po on ns se e.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

778 Roles of Classes Chapter 25

This is a powerful technique that should be treated with some care by people with a background
in functional decomposition. If too many classes start looking likeA Ac ct ti io on n, the overall design of the
system may have deteriorated into something unduly functional.

Finally, a class can encode an operation for execution on a remote machine or for storage for
future use (§25.10[18]).

25.6 Interface Classes[role.interface]

One of the most important kinds of classes is the humble and mostly overlooked interface class.
An interface class doesn’t do much– if it did, it wouldn’t be an interface class. It simply adjusts
the appearance of some service to local needs. Because it is impossible in principle to serve all
needs equally well all the time, interface classes are essential to allow sharing without forcing all
users into a common straitjacket.

The purest form of an interface doesn’t even cause any code to be generated. Consider the
V Ve ec ct to or r specialization from §13.5:

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s V Ve ec ct to or r<T T*> : p pr ri iv va at te e V Ve ec ct to or r<v vo oi id d*> {
p pu ub bl li ic c:

t ty yp pe ed de ef f V Ve ec ct to or r<v vo oi id d*> B Ba as se e;

V Ve ec ct to or r() : B Ba as se e() {}
V Ve ec ct to or r(i in nt t i i) : B Ba as se e(i i) {}

T T*& o op pe er ra at to or r[](i in nt t i i) { r re et tu ur rn n s st ta at ti ic c_ _c ca as st t<T T*&>(B Ba as se e: : o op pe er ra at to or r[](i i)) ; }

/ / ...
};

This (partial) specialization turns the unsafeV Ve ec ct to or r<v vo oi id d*> into a much more useful family of
type-safe vector classes. Inline functions are often essential for making interface classes affordable.
In cases such as this, when an inline forwarding function does only type adjustment, there is no
added overhead in time or space.

Naturally, an abstract base class representing an abstract type implemented by concrete types
(§25.2) is a form of interface class, as are the handles from §25.7. However, here we will focus on
classes that have no more specific function than adjusting an interface.

Consider the problem of merging two hierarchies using multiple inheritance. What can be done
if there is a name clash, that is, two classes have used the same name for virtual functions perform-
ing completely different operations? For example, consider a Wild-West videogame in which user
interactions are handled by a general window class:

c cl la as ss s W Wi in nd do ow w {
/ / ...
v vi ir rt tu ua al l v vo oi id d d dr ra aw w() ; / / display image

};

c cl la as ss s C Co ow wb bo oy y {
/ / ...
v vi ir rt tu ua al l v vo oi id d d dr ra aw w() ; / / pull gun from holster

};

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 25.6 Interface Classes 779

c cl la as ss s C Co ow wb bo oy y_ _w wi in nd do ow w : p pu ub bl li ic c C Co ow wb bo oy y, p pu ub bl li ic c W Wi in nd do ow w {
/ / ...

};

A C Co ow wb bo oy y_ _w wi in nd do ow w represents the animation of a cowboy in the game and handles the
user/player’s interactions with the cowboy character. We would prefer to use multiple inheritance,
rather than declaring either theW Wi in nd do ow w or theC Co ow wb bo oy y as members, because there will be many
service functions defined for bothW Wi in nd do ow ws and C Co ow wb bo oy ys. We would like to pass a
C Co ow wb bo oy y_ _w wi in nd do ow w to such functions without special actions required by the programmer. However,
this leads to a problem definingC Co ow wb bo oy y_ _w wi in nd do ow w versions of C Co ow wb bo oy y: : d dr ra aw w() and
W Wi in nd do ow w: : d dr ra aw w() .

There can be only one function defined inC Co ow wb bo oy y_ _w wi in nd do ow w calledd dr ra aw w() . Yet because ser-
vice functions manipulateW Wi in nd do ow ws and C Co ow wb bo oy ys without knowledge ofC Co ow wb bo oy y_ _w wi in nd do ow ws,
C Co ow wb bo oy y_ _w wi in nd do ow w must override bothC Co ow wb bo oy y’s d dr ra aw w() andW Wi in nd do ow w’s d dr ra aw w() . Overriding both
functions by a singled dr ra aw w() function would be wrong because, despite the common name, the
d dr ra aw w() functions are unrelated and cannot be redefined by a common function.

Finally, we would also likeC Co ow wb bo oy y_ _w wi in nd do ow w to have distinct, unambiguous names for the
inherited functionsC Co ow wb bo oy y: : d dr ra aw w() andW Wi in nd do ow w: : d dr ra aw w() .

To solve this problem, we need to introduce an extra class forC Co ow wb bo oy y and an extra class for
W Wi in nd do ow w. These classes introduce the two new names for thed dr ra aw w() functions and ensure that a
call of thed dr ra aw w() functions inC Co ow wb bo oy y andW Wi in nd do ow w calls the functions with the new names:

c cl la as ss s C CC Co ow wb bo oy y : p pu ub bl li ic c C Co ow wb bo oy y { / / interface to Cowboy renaming draw()
p pu ub bl li ic c:

v vi ir rt tu ua al l i in nt t c co ow w_ _d dr ra aw w() = 0 0;
v vo oi id d d dr ra aw w() { c co ow w_ _d dr ra aw w() ; } / / override Cowboy::draw()

};

c cl la as ss s W WW Wi in nd do ow w : p pu ub bl li ic c W Wi in nd do ow w { / / interface to Window renaming draw()
p pu ub bl li ic c:

v vi ir rt tu ua al l i in nt t w wi in n_ _d dr ra aw w() = 0 0;
v vo oi id d d dr ra aw w() { w wi in n_ _d dr ra aw w() ; } / / override Window::draw()

};

We can now compose aC Co ow wb bo oy y_ _w wi in nd do ow w from the interface classesC CC Co ow wb bo oy y andW WW Wi in nd do ow w and
overridec co ow w_ _d dr ra aw w() andw wi in n_ _d dr ra aw w() with the desired effect:

c cl la as ss s C Co ow wb bo oy y_ _w wi in nd do ow w : p pu ub bl li ic c C CC Co ow wb bo oy y, p pu ub bl li ic c W WW Wi in nd do ow w {
/ / ...
v vo oi id d c co ow w_ _d dr ra aw w() ;
v vo oi id d w wi in n_ _d dr ra aw w() ;

};

Note that this problem was serious only because the twod dr ra aw w() functions have the same argu-
ment type. If they have different argument types, the usual overloading resolution rules will ensure
that no problem manifests itself despite the unrelated functions having the same name.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

780 Roles of Classes Chapter 25

For each use of an interface class, one could imagine a special-purpose language extension that
could perform the desired adjustment a little bit more efficiently or a little more elegantly. How-
ever, each use of an interface class is infrequent and supporting them all with specialized language
constructs would impose a prohibitive burden of complexity. In particular, name clashes arising
from the merging of class hierarchies are not common (compared with how often a programmer
will write a class) and tend to arise from the merging of hierarchies generated from dissimilar cul-
tures– such as games and window systems. Merging such dissimilar hierarchies is not easy, and
resolving name clashes will more often than not be the least of the programmer’s problems. Other
problems include dissimilar error handling, dissimilar initialization, and dissimilar memory-
management strategies. The resolution of name clashes is discussed here because the technique of
introducing an interface class with a forwarding function has many other applications. It can be
used not only to change names, but also to change argument and return types, to introduce run-time
checking, etc.

Because the forwarding functionsC CC Co ow wb bo oy y: : d dr ra aw w() and W WW Wi in nd do ow w: : d dr ra aw w() are virtual
functions, they cannot be optimized away by simple inlining. It is, however, possible for a com-
piler to recognize them as simple forwarding functions and then optimize them out of the call
chains that go through them.

25.6.1 Adjusting Interfaces [role.range]

A major use of interface functions is to adjust an interface to match users’ expectations better, thus
moving code that would have been scattered throughout a user’s code into an interface. For exam-
ple, the standardv ve ec ct to or r is zero-based. Users who want ranges other than0 0 to s si iz ze e- 1 1 must adjust
their usage. For example:

v vo oi id d f f()
{

v ve ec ct to or r v v<i in nt t>(1 10 0) ; / / range [0:9]

/ / pretend v is in the range [1:10]:

f fo or r (i in nt t i i = 1 1; i i<=1 10 0; i i++) {
v v[i i- 1 1] = 7 7; / / remember to adjust index
/ / ...

}
}

A better way is to provide av ve ec ct to or r with arbitrary bounds:

c cl la as ss s V Ve ec ct to or r : p pu ub bl li ic c v ve ec ct to or r<i in nt t> {
i in nt t l lb b;

p pu ub bl li ic c:
V Ve ec ct to or r(i in nt t l lo ow w, i in nt t h hi ig gh h) : v ve ec ct to or r<i in nt t>(h hi ig gh h- l lo ow w+1 1) { l lb b=l lo ow w; }

i in nt t& o op pe er ra at to or r[](i in nt t i i) { r re et tu ur rn n v ve ec ct to or r<i in nt t>: : o op pe er ra at to or r[](i i- l lb b) ; }

i in nt t l lo ow w() { r re et tu ur rn n l lb b; }
i in nt t h hi ig gh h() { r re et tu ur rn n l lb b+s si iz ze e()- 1 1; }

};

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 25.6.1 Adjusting Interfaces 781

A V Ve ec ct to or r can be used like this:

v vo oi id d g g()
{

V Ve ec ct to or r v v(1 1, 1 10 0) ; / / range [1:10]

f fo or r (i in nt t i i = 1 1; i i<=1 10 0; i i++) {
v v[i i] = 7 7;
/ / ...

}
}

This imposes no overhead compared to the previous example. Clearly, theV Ve ec ct to or r version is easier
to read and write and is less error-prone.

Interface classes are usually rather small and (by definition) do rather little. However, they crop
up wherever software written according to different traditions needs to cooperate because then there
is a need to mediate between different conventions. For example, interface classes are often used to
provide C++ interfaces to non-C++ code and to insulate application code from the details of
libraries (to leave open the possibility of replacing the library with another).

Another important use of interface classes is to provide checked or restricted interfaces. For
example, it is not uncommon to have integer variables that are supposed to have values in a given
range only. This can be enforced (at run time) by a simple template:

t te em mp pl la at te e<i in nt t l lo ow w, i in nt t h hi ig gh h> c cl la as ss s R Ra an ng ge e {
i in nt t v va al l;

p pu ub bl li ic c:
c cl la as ss s E Er rr ro or r { }; / / exception class

R Ra an ng ge e(i in nt t i i) { A As ss se er rt t<E Er rr ro or r>(l lo ow w<=i i&&i i<h hi ig gh h) ; v va al l = i i; } / / see §24.3.7.2
R Ra an ng ge e o op pe er ra at to or r=(i in nt t i i) { r re et tu ur rn n * t th hi is s=R Ra an ng ge e(i i) ; }

o op pe er ra at to or r i in nt t() { r re et tu ur rn n v va al l; }
/ / ...

};

v vo oi id d f f(R Ra an ng ge e<2 2, 1 17 7>) ;
v vo oi id d g g(R Ra an ng ge e<- 1 10 0, 1 10 0>) ;

v vo oi id d h h(i in nt t x x)
{

R Ra an ng ge e<0 0, 2 20 00 01 1> i i = x x; / / might throw Range::Error
i in nt t i i1 1 = i i;

f f(3 3) ;
f f(1 17 7) ; / / throws Range::Error
g g(- 7 7) ;
g g(1 10 00 0) ; / / throws Range::Error

}

TheR Ra an ng ge e template is easily extended to handle ranges of arbitrary scalar types (§25.10[7]).
An interface class that controls access to another class or adjusts its interface is sometimes

called aw wr ra ap pp pe er r.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

782 Roles of Classes Chapter 25

25.7 Handle Classes[role.handle]

An abstract type provides an effective separation between an interface and its implementations.
However, as used in §25.3 the connection between an interface provided by an abstract type and its
implementation provided by a concrete type is permanent. For example, it is not possible to rebind
an abstract iterator from one source– say, a set– to another– say, a stream– once the original
source becomes exhausted.

Furthermore, unless one manipulates an object implementing an abstract class through pointers
or references, the benefits of virtual functions are lost. User code may become dependent on details
of the implementation classes because an abstract type cannot be allocated statically or on the stack
(including being accepted as a by-value argument) without its size being known. Using pointers
and references implies that the burden of memory management falls on the user.

Another limitation of the abstract class approach is that a class object is of fixed size. Classes,
however, are used to represent concepts that require varying amounts of storage to implement them.

A popular technique for dealing with these issues is to separate what is used as a single object
into two parts: a handle providing the user interface and a representation holding all or most of the
object’s state. The connection between the handle and the representation is typically a pointer in
the handle. Often, handles have a bit more data than the simple representation pointer, but not
much more. This implies that the layout of a handle is typically stable even when the representa-
tion changes and also that handles are small enough to move around relatively freely so that point-
ers and references need not be used by the user.

Handle Representation. .

The S St tr ri in ng g from §11.12 is a simple example of a handle. The handle provides an interface to,
access control for, and memory management for the representation. In this case, both the handle
and the representation are concrete types, but the representation class is often an abstract class.

Consider the abstract typeS Se et t from §25.3. How could one provide a handle for it, and what
benefits and cost would that involve? Given a set class, one might simply define a handle by over-
loading the-> operator:

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s S Se et t_ _h ha an nd dl le e {
S Se et t<T T>* r re ep p;

p pu ub bl li ic c:
S Se et t<T T>* o op pe er ra at to or r->() { r re et tu ur rn n r re ep p; }

S Se et t_ _h ha an nd dl le e(S Se et t<T T>* p pp p) : r re ep p(p pp p) { }
};

This doesn’t significantly affect the wayS Se et ts are used; one simply passesS Se et t_ _h ha an nd dl le es around
instead ofS Se et t&s orS Se et t* s. For example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 25.7 Handle Classes 783

v vo oi id d f f(S Se et t_ _h ha an nd dl le e<i in nt t> s s)
{

f fo or r (i in nt t* p p = s s-> f fi ir rs st t() ; p p; p p = s s-> n ne ex xt t())
{

/ / ...
}

}

v vo oi id d u us se er r()
{

S Se et t_ _h ha an nd dl le e<i in nt t> s sl l(n ne ew w L Li is st t_ _s se et t<i in nt t>) ;
S Se et t_ _h ha an nd dl le e<i in nt t> v v(n ne ew w V Ve ec ct to or r_ _s se et t<i in nt t>(1 10 00 0)) ;

f f(s sl l) ;
f f(v v) ;

}

Often, we want a handle to do more than just provide access. For example, if theS Se et t class and the
S Se et t_ _h ha an nd dl le e class are designed together it is easy to do reference counting by including a use count
in eachS Se et t. In general, we do not want to design a handle together with what it is a handle to, so
we will have to store any information that needs to be shared by a handle in a separate object. In
other words, we would like to have non-intrusive handles in addition to the intrusive ones. For
example, here is a handle that removes an object when its last handle goes away:

t te em mp pl la at te e<c cl la as ss s X X> c cl la as ss s H Ha an nd dl le e {
X X* r re ep p;
i in nt t* p pc co ou un nt t;

p pu ub bl li ic c:
X X* o op pe er ra at to or r->() { r re et tu ur rn n r re ep p; }

H Ha an nd dl le e(X X* p pp p) : r re ep p(p pp p) , p pc co ou un nt t(n ne ew w i in nt t(1 1)) { }
H Ha an nd dl le e(c co on ns st t H Ha an nd dl le e& r r) : r re ep p(r r. r re ep p) , p pc co ou un nt t(r r. p pc co ou un nt t) { (* p pc co ou un nt t)++; }

H Ha an nd dl le e& o op pe er ra at to or r=(c co on ns st t H Ha an nd dl le e& r r)
{

i if f (r re ep p == r r. r re ep p) r re et tu ur rn n * t th hi is s;
i if f (--(* p pc co ou un nt t) == 0 0) {

d de el le et te e r re ep p;
d de el le et te e p pc co ou un nt t;

}
r re ep p = r r. r re ep p;
p pc co ou un nt t = r r. p pc co ou un nt t;
(* p pc co ou un nt t)++;
r re et tu ur rn n * t th hi is s;

}

~H Ha an nd dl le e() { i if f (--(* p pc co ou un nt t) == 0 0) { d de el le et te e r re ep p; d de el le et te e p pc co ou un nt t; } }

/ / ...
};

Such a handle can be passed around freely. For example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

784 Roles of Classes Chapter 25

v vo oi id d f f1 1(H Ha an nd dl le e<S Se et t>) ;

H Ha an nd dl le e<S Se et t> f f2 2()
{

H Ha an nd dl le e<S Se et t> h h(n ne ew w L Li is st t_ _s se et t<i in nt t>) ;
/ / ...
r re et tu ur rn n h h;

}

v vo oi id d g g()
{

H Ha an nd dl le e<S Se et t> h hh h = f f2 2() ;
f f1 1(h hh h) ;
/ / ...

}

Here, the set created inf f2 2() will be deleted upon exit fromg g() – unlessf f1 1() held on to a copy;
the programmer does not need to know.

Naturally, this convenience comes at a cost, but for many applications the cost of storing and
maintaining the use count is acceptable.

Sometimes, it is useful to extract the representation pointer from a handle and use it directly.
For example, this would be needed to pass an object to a function that does not know about han-
dles. This works nicely provided the called function does not destroy the object passed to it or
store a pointer to it for use after returning to its caller. An operation for rebinding a handle to a new
representation can also be useful:

t te em mp pl la at te e<c cl la as ss s X X> c cl la as ss s H Ha an nd dl le e {
/ / ...

X X* g ge et t_ _r re ep p() { r re et tu ur rn n r re ep p; }

v vo oi id d b bi in nd d(X X* p pp p)
{

i if f (p pp p != r re ep p) {
i if f (--* p pc co ou un nt t == 0 0) {

d de el le et te e r re ep p;
* p pc co ou un nt t = 1 1; / / recycle pcount

}
e el ls se e

p pc co ou un nt t = n ne ew w i in nt t(1 1) ; / / new pcount
r re ep p = p pp p;

}
}

};

Note that derivation of new classes fromH Ha an nd dl le e isn’t particularly useful. It is a concrete type
without virtual functions. The idea is to have one handle class for a family of classes defined by a
base class. Derivation from this base class can be a powerful technique. It applies to node classes
as well as to abstract types.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 25.7 Handle Classes 785

As written,H Ha an nd dl le e doesn’t deal with inheritance. To get a class that acts like a genuine use-
counted pointer,H Ha an nd dl le eneeds to be combined withP Pt tr r from §13.6.3.1 (see §25.10[2]).

A handle that provides an interface that is close to identical to the class for which it is a handle
is often called aproxy. This is particularly common for handles that refer to an object on a remote
machine.

25.7.1 Operations in Handles [role.handle.op]

Overloading-> enables a handle to gain control and do some work on each access to an object.
For example, one could collect statistics about the number of uses of the object accessed through a
handle:

t te em mp pl la at te e <c cl la as ss s T T> c cl la as ss s X Xh ha an nd dl le e {
T T* r re ep p;
i in nt t n no o_ _o of f_ _a ac cc ce es ss se es s;

p pu ub bl li ic c:
T T* o op pe er ra at to or r->() { n no o_ _o of f_ _a ac cc ce es ss se es s++; r re et tu ur rn n r re ep p; }

/ / ...
};

Handles for which work needs to be done both beforeandafter access require more elaborate pro-
gramming. For example, one might want a set with locking while an insertion or a removal is
being done. Essentially, the representation class’ interface needs to be replicated in the handle
class:

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s S Se et t_ _c co on nt tr ro ol ll le er r {
S Se et t<T T>* r re ep p;
L Lo oc ck k l lo oc ck k;
/ / ...

p pu ub bl li ic c:
v vo oi id d i in ns se er rt t(T T* p p) { L Lo oc ck k_ _p pt tr r x x(l lo oc ck k) ; r re ep p-> i in ns se er rt t(p p) ; } / / see §14.4.1
v vo oi id d r re em mo ov ve e(T T* p p) { L Lo oc ck k_ _p pt tr r x x(l lo oc ck k) ; r re ep p-> r re em mo ov ve e(p p) ; }

i in nt t i is s_ _m me em mb be er r(T T* p p) { r re et tu ur rn n r re ep p-> i is s_ _m me em mb be er r(p p) ; }

T T g ge et t_ _f fi ir rs st t() { T T* p p = r re ep p-> f fi ir rs st t() ; r re et tu ur rn n p p ? * p p : T T() ; }
T T g ge et t_ _n ne ex xt t() { T T* p p = r re ep p-> n ne ex xt t() ; r re et tu ur rn n p p ? * p p : T T() ; }

T T f fi ir rs st t() { L Lo oc ck k_ _p pt tr r x x(l lo oc ck k) ; T T t tm mp p = * r re ep p-> f fi ir rs st t() ; r re et tu ur rn n t tm mp p; }
T T n ne ex xt t() { L Lo oc ck k_ _p pt tr r x x(l lo oc ck k) ; T T t tm mp p = * r re ep p-> n ne ex xt t() ; r re et tu ur rn n t tm mp p; }

/ / ...
};

Providing these forwarding functions is tedious (and therefore somewhat error-prone), although it is
neither difficult nor costly in run time.

Note that only some of thes se et t functions required locking. In my experience, it is typical that a
class needing pre- and post-actions requires them for only some member functions. In the case of
locking, locking on all operations– as is done for monitors in some systems– leads to excess lock-
ing and sometimes causes a noticeable decrease in concurrency.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

786 Roles of Classes Chapter 25

An advantage of the elaborate definition of all operations on the handle over the overloading of
-> style of handles is that it is possible to derive from classS Se et t_ _c co on nt tr ro ol ll le er r. Unfortunately, some
of the benefits of being a handle are compromised if data members are added in the derived class.
In particular, the amount of code shared (in the handled class) decreases compared to the amount of
code written in each handle.

25.8 Application Frameworks[role.framework]

Components built out of the kinds of classes described in §25.2– §25.7 support design and reuse of
code by supplying building blocks and ways of combining them; the application builder designs a
framework into which these common building blocks are fitted. An alternative, and sometimes
more ambitious, approach to the support of design and reuse is to provide code that establishes a
common framework into which the application builder fits application-specific code as building
blocks. Such an approach is often called anapplication framework. The classes establishing such
a framework often have such fat interfaces that they are hardly types in the traditional sense. They
approximate the ideal of being complete applications, except that they don’t do anything. The spe-
cific actions are supplied by the application programmer.

As an example, consider a filter, that is, a program that reads an input stream, (maybe) performs
some actions based on that input, (maybe) produces an output stream, and (maybe) produces a final
result. A naive framework for such programs would provide a set of operations that an application
programmer might supply:

c cl la as ss s F Fi il lt te er r {
p pu ub bl li ic c:

c cl la as ss s R Re et tr ry y {
p pu ub bl li ic c:

v vi ir rt tu ua al l c co on ns st t c ch ha ar r* m me es ss sa ag ge e() { r re et tu ur rn n 0 0; }
};

v vi ir rt tu ua al l v vo oi id d s st ta ar rt t() { }
v vi ir rt tu ua al l i in nt t r re ea ad d() = 0 0;
v vi ir rt tu ua al l v vo oi id d w wr ri it te e() { }
v vi ir rt tu ua al l v vo oi id d c co om mp pu ut te e() { }
v vi ir rt tu ua al l i in nt t r re es su ul lt t() = 0 0;

v vi ir rt tu ua al l i in nt t r re et tr ry y(R Re et tr ry y& m m) { c ce er rr r << m m. m me es ss sa ag ge e() << ´ \ \n n´; r re et tu ur rn n 2 2; }

v vi ir rt tu ua al l ~F Fi il lt te er r() { }
};

Functions that a derived class must supply are declared pure virtual; other functions are simply
defined to do nothing.

The framework also provides a main loop and a rudimentary error-handling mechanism:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 25.8 Application Frameworks 787

i in nt t m ma ai in n_ _l lo oo op p(F Fi il lt te er r* p p)
{

f fo or r(;;) {
t tr ry y {

p p-> s st ta ar rt t() ;
w wh hi il le e (p p-> r re ea ad d()) {

p p-> c co om mp pu ut te e() ;
p p-> w wr ri it te e() ;

}
r re et tu ur rn n p p-> r re es su ul lt t() ;

}

c ca at tc ch h (F Fi il lt te er r: : R Re et tr ry y& m m) {
i if f (i in nt t i i = p p-> r re et tr ry y(m m)) r re et tu ur rn n i i;

}

c ca at tc ch h (...) {
c ce er rr r << " F Fa at ta al l f fi il lt te er r e er rr ro or r\ \n n";
r re et tu ur rn n 1 1;

}
}

}

Finally, I could write my program like this:

c cl la as ss s M My y_ _f fi il lt te er r : p pu ub bl li ic c F Fi il lt te er r {
i is st tr re ea am m& i is s;
o os st tr re ea am m& o os s;
i in nt t n nc ch ha ar r;

p pu ub bl li ic c:
i in nt t r re ea ad d() { c ch ha ar r c c; i is s. g ge et t(c c) ; r re et tu ur rn n i is s. g go oo od d() ; }
v vo oi id d c co om mp pu ut te e() { n nc ch ha ar r++; }
i in nt t r re es su ul lt t() { o os s << n nc ch ha ar r << " c ch ha ar ra ac ct te er rs s r re ea ad d\ \n n"; r re et tu ur rn n 0 0; }

M My y_ _f fi il lt te er r(i is st tr re ea am m& i ii i, o os st tr re ea am m& o oo o) : i is s(i ii i) , o os s(o oo o) , n nc ch ha ar r(0 0) { }
};

and activate it like this:

i in nt t m ma ai in n()
{

M My y_ _f fi il lt te er r f f(c ci in n, c co ou ut t) ;
r re et tu ur rn n m ma ai in n_ _l lo oo op p(& f f) ;

}

Naturally, for a framework to be of significant use, it must provide more structure and many more
services than this simple example does. In particular, a framework is typically a hierarchy of node
classes. Having the application programmer supply leaf classes in a deeply nested hierarchy allows
commonality between applications and reuse of services provided by such a hierarchy. A frame-
work will also be supported by a library that provides classes that are useful for the application pro-
grammer when specifying the action classes.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

788 Roles of Classes Chapter 25

25.9 Advice[role.advice]

[1] Make conscious decisions about how a class is to be used (both as a designer and as a user);
§25.1.

[2] Be aware of the tradeoffs involved among the different kinds of classes; §25.1.
[3] Use concrete types to represent simple independent concepts; §25.2.
[4] Use concrete types to represent concepts where close-to-optimal efficiency is essential; §25.2.
[5] Don’t derive from a concrete class; §25.2.
[6] Use abstract classes to represent interfaces where the representation of objects might change;

§25.3.
[7] Use abstract classes to represent interfaces where different representations of objects need to

coexist; §25.3.
[8] Use abstract classes to represent new interfaces to existing types; §25.3.
[9] Use node classes where similar concepts share significant implementation details; §25.4.
[10] Use node classes to incrementally augment an implementation; §25.4.
[11] Use Run-time Type Identification to obtain interfaces from an object; §25.4.1.
[12] Use classes to represent actions with associated state; §25.5.
[13] Use classes to represent actions that need to be stored, transmitted, or delayed; §25.5.
[14] Use interface classes to adapt a class for a new kind of use (without modifying the class);

§25.6.
[15] Use interface classes to add checking; §25.6.1.
[16] Use handles to avoid direct use of pointers and references; §25.7.
[17] Use handles to manage shared representations; §25.7.
[18] Use an application framework where an application domain allows for the control structure to

be predefined; §25.8.

25.10 Exercises [role.exercises]

1. (∗1) TheI Io o template from §25.4.1 does not work for built-in types. Modify it so that it does.
2. (∗1.5) TheH Ha an nd dl le e template from §25.7 does not reflect inheritance relationships of the classes

for which it is a handle. Modify it so that it does. That is, you should be able to assign a
H Ha an nd dl le e<C Ci ir rc cl le e*> to aH Ha an nd dl le e<S Sh ha ap pe e*> but not the other way around.

3. (∗2.5) Given aS St tr ri in ng g class, define another string class using it as the representation and provid-
ing its operations as virtual functions. Compare the performance of the two classes. Try to find
a meaningful class that is best implemented by publicly deriving from the string with virtual
functions.

4. (∗4) Study two widely used libraries. Classify the library classes in terms of concrete types,
abstract types, node classes, handle classes, and interface classes. Are abstract node classes and
concrete node classes used? Is there a more appropriate classification for the classes in these
libraries? Are fat interfaces used? What facilities– if any – are provided for run-time type
information? What is the memory-management strategy?

5. (∗2) Use theF Fi il lt te er r framework (§25.8) to implement a program that removes adjacent duplicate
words from an input stream but otherwise copies the input to output.

6. (∗2) Use theF Fi il lt te er r framework to implement a program that counts the frequency of words on

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 25.10 Exercises 789

an input stream and produces a list of (word,count) pairs in frequency order as output.
7. (∗1.5) Write aR Ra an ng ge e template that takes both the range and the element type as template

parameters.
8. (∗1) Write aR Ra an ng ge e template that takes the range as constructor arguments.
9. (∗2) Write a simple string class that performs no error checking. Write another class that

checks access to the first. Discuss the pros and cons of separating basic function and checking
for errors.

10. (∗2.5) Implement the object I/O system from §25.4.1 for a few types, including at least integers,
strings, and a class hierarchy of your choice.

11. (∗2.5) Define a classS St to or ra ab bl le e as an abstract base class with virtual functionsw wr ri it te e_ _o ou ut t() and
r re ea ad d_ _i in n() . For simplicity, assume that a character string is sufficient to specify a permanent
storage location. Use classS St to or ra ab bl le e to provide a facility for writing objects of classes derived
from S St to or ra ab bl le e to disk, and for reading such objects from disk. Test it with a couple of classes
of your own choice.

12. (∗4) Define a base classP Pe er rs si is st te en nt t with operationss sa av ve e() and n no o_ _s sa av ve e() that control
whether an object is written to permanent storage by a destructor. In addition tos sa av ve e() and
n no o_ _s sa av ve e() , what operations couldP Pe er rs si is st te en nt t usefully provide? Test classP Pe er rs si is st te en nt t with a
couple of classes of your own choice. IsP Pe er rs si is st te en nt t a node class, a concrete type, or an abstract
type? Why?

13. (∗3) Write a classS St ta ac ck k for which it is possible to change implementation at run time. Hint:
‘‘Every problem is solved by yet another indirection.’’

14. (∗3.5) Define a classO Op pe er r that holds an identifier of typeI Id d (maybe as st tr ri in ng g or a C-style string)
and an operation (a pointer to function or some function object). Define a classC Ca at t_ _o ob bj je ec ct t that
holds a list ofO Op pe er rs and av vo oi id d* . ProvideC Ca at t_ _o ob bj je ec ct t with operationsa ad dd d_ _o op pe er r(O Op pe er r) ,
which adds anO Op pe er r to the list; r re em mo ov ve e_ _o op pe er r(I Id d) , which removes anO Op pe er r identified by I Id d
from the list; and ano op pe er ra at to or r()(I Id d, a ar rg g) , which invokes theO Op pe er r identified by I Id d. Imple-
ment a stack ofC Ca at ts by aC Ca at t_ _o ob bj je ec ct t. Write a small program to exercise these classes.

15. (∗3) Define a templateO Ob bj je ec ct t based on classC Ca at t_ _o ob bj je ec ct t. UseO Ob bj je ec ct t to implement a stack of
S St tr ri in ng gs. Write a small program to exercise this template.

16. (∗2.5) Define a variant of classO Ob bj je ec ct t calledC Cl la as ss s that ensures that objects with identical oper-
ations share a list of operations. Write a small program to exercise this template.

17. (∗2) Define aS St ta ac ck k template that provides a conventional and type-safe interface to a stack
implemented by theO Ob bj je ec ct t template. Compare this stack to the stack classes found in the pre-
vious exercises. Write a small program to exercise this template.

18. (∗3) Write a class for representing operations to be shipped to another computer to execute
there. Test it either by actually sending commands to another machine or by writing commands
to a file and then executing the commands read from the file.

19. (∗2) Write a class for composing operations represented as function objects. Given two func-
tion objectsf f andg g, C Co om mp po os se e(f f, g g) should make an object that can be invoked with an argu-
mentx x suitable forg g and returnf f(g g(x x)) , provided the return value ofg g() is an acceptable
argument type forf f() .

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

790 Roles of Classes Chapter 25

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

	Return to Contents
	25.1 Kinds of Classes
	25.2 Concrete Types
	25.3 Abstract Types
	25.4 Node Classes
	25.5 Actions
	25.6 Interface Classes
	25.7 Handle Classes
	25.8 Application Frameworks
	25.9 Advice
	25.10 Exercises

	buy now:

