22

Numerics

The purpose of computing is insight, not numbers.
— R.W. Hamming

... but for the student,
numbers are often the best road to insight.

— A. Ralston

Introduction— numeric limits— mathematical functions- valarray — vector opera-
tions — slices — slice_array — elimination of temporaries— gslice array —
mask_array — indirect_array — complex — generalized algorithms- random num-
bers— advice— exercises.

22.1 Introduction [num.intro]

It is rare to write any real code without doing some calculation. However, most code requires little
mathematics beyond simple arithmetic. This chapter presents the facilities the standard library
offers to people who go beyond that.

Neither C nor €+ were designed primarily with numeric computation in mind. However,
numeric computation typically occurs in the context of other woskich as database access, net-
working, instrument control, graphics, simulation, financial analysis,—e&0 G-+ becomes an
attractive vehicle for computations that are part of a larger system. Furthermore, numeric methods
have come a long way from being simple loops over vectors of floating-point numbers. Where
more complex data structures are needed as part of a computatits sttengths become rele-
vant. The net effect is thatt€ is increasingly used for scientific and engineering computation
involving sophisticated numerics. Consequently, facilities and techniques supporting such compu-
tation have emerged. This chapter describes the parts of the standard library that support numerics
and presents a few techniques for dealing with issues that arise when people express numeric

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

http://store.awl.com/catalog/cepub_detail.mhtml?isbn=0-201-88954-4

658 Numerics Chapter 22

computations in €+. | make no attempt to teach numeric methods. Numeric computation is a fas-
cinating topic in its own right. To understand it, you need a good course in humerical methods or
at least a good textboeknot just a language manual and tutorial.

22.2 Numeric Limits [num.limits]

To do anything interesting with numbers, we typically need to know something about general prop-
erties of built-in numeric types that are implementation-defined rather than fixed by the rules of the
language itself (84.6). For example, what is the lar#3t What is the smalledibat? Is adou-
ble rounded or truncated when assigned fimat? How many bits are there irchar?

Answers to such questions are provided by the specializations ntitieric_limits template
presented ixlimits>. For example:

void f(double d, int i)
{

if (numeric_limits<char>: : digits!= 8) {
/1 unusual bytes (number of bits not 8)
}

if (i<numeric_limits<short>:: min() || numeric_limits<short>:: max()< i) {
/1 icannot be stored in a short without loss of precision
}

if (0<d && d<numeric_limits<double>: : epsilon()) d=0;

if (numeric_limits<Quad>: : is_specialized) {
/1 limits information available for type Quad
}

}

Each specialization provides the relevant information for its argument type. Thus, the general
numeric_limits template is simply a notational handle for a set of constants and inline functions:

template<class T> class mumeric_limits {
public:
static const bool is_specialized = false // is information available for numeriimits<T>?

/1 uninteresting defaults

k

The real information is in the specializations. Each implementation of the standard library provides
a specialization ohumeric_limits for each fundamental type (the character types, the integer and
floating-point types, antbool) but not for any other plausible candidates suckioid, enumera-
tions, or library types (such asmplex<double>).

For an integral type such a&har, only a few pieces of information are of interest. Here is
numeric_limits<char> for an implementation in whichehar has 8 bits and is signed:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 22.2 Numeric Limits 659

class mumeric_limits<char> {
public:
static const bool is_specialized=true;, / / yes, we have information

static const int digits = 8; /| number of bits (“binary digits™)
static const bool is_signed = true; / I this implementation has char signed
static const bool is_integer = true; /| char is an integral type

inline static char min() throw() { return-128; } / / smallest value
inline static char max() throw() { return 127; } / / largest value

/1 lots of declarations not relevant to a char
3
Most members ohumeric_limits are intended to describe floating-point numbers. For example,
this describes one possible implementatioficsit:

class mumeric_limits<float> {
public:
static const bool is_specialized = true;

static const int radix = 2; /| base of exponent (in this case, binary)
static const int digits=24; / / number radix digits in mantissa
static const int digitsl0=6; / / number of base 10 digits in mantissa

static const bool is_signed = true;
static const bool is_integer = false
static const bool is_exact = false

inline static float min() throw() { return 1 17549435E- 38F; }
inline static float max() throw() { return 3. 40282347E+38F; }

inline static float epsilon() throw() { return 1. 19209290E- O7F; }
inline static float round_error() throw() { return 0. 5F; }

inline static float infinity() throw() { return/* some valué/; }

inline static float quiet NaN() throw() { return/* some valué/; }
inline datic float signaling NaN() throw() { return/* some valué&/; }
inline static float denorm_min() throw() { return min() ; }

static const int min_exponent = - 125;
static const int min_exponent10 = - 37,
static const int max_exponent = +128;
static const int max_exponent10 = +38;

static const bool has infinity = true;

static const bool has quiet NaN = true;

static const bool has signaling_NaN = true;

static const float_denorm_style as _denorm = denorm_absent; / / enum fronxlimits>
static const bool has denorm_loss= false

static const bool is iec559 = true; / / conforms to IEC-559
static const bool is_bounded = true;
static const bool is_modulo = false

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

660 Numerics Chapter 22

static const bool traps= true
static const bool tinyness before = true

static const float_round_style round_style = round _to _nearest, / / enum fronxlimits>

k

Note thatmin() is the smallespositivenormalized number and thepsilon is the smallest posi-
tive floating-point number such thitepsilon- 1 is representable.

When defining a scalar type along the lines of the built-in ones, it is a good idea also to provide
a suitable specialization efumeric_limits. For example, if | wrote a quadruple-precision type
Quad or if a vendor provided an extended-precision intdgag long, a user could reasonably
expectnumeric_limits<Quad> andnumeric_limits<long long> to be supplied.

One can imagine specializationsrafmeric_limits describing properties of user-defined types
that have little to do with floating-point numbers. In such cases, it is usually better to use the gen-
eral technique for describing properties of a type than to speamilireric_limits with properties
not considered in the standard. Latinl...UL floknom style

Floating-point values are represented as inline functions. Integral valuesneric limits,
however, must be represented in a form that allows them to be used in constant expressions. That
implies that they must have in-class initializers (810.4.6.2). If youstatie const members rather
than enumerators for that, remember to definestéiics.

22.2.1 Limit Macros [num.limit.c]

From C, G+ inherited macros that describe properties of integers. These are fogoliinnits>
and <limits. h> and have names such @$1AR BIT and INT_MAX. Similarly, <cfloat> and
<float. h> define macros describing properties of floating-point numbers. They have names such
asDBL_MIN_EXP, FLT_RADIX, andLDBL_MAX.
As ever, macros are best avoided.

22.3 Standard Mathematical Functiongnum.math]

The headerscmath> and<math. h> provide what is commonly referred to as “the usual mathe-
matical functions:”

double abs(double);
double fabs(double);

double ceil(double d);
double floor(double d);

double sgrt(double d);

double jpow(double d double €; / / dtothe power of e,
/1 error if d==0 and e<=0 or if d<0 and e isn’t an integer.
double pow(double d, int i); !/ dto the power of i; notin C

absolute value; not in C, same as fabs()
absolute value

smallest integer not less than d
largest integer not greater than d

~ - ~ —~
~ ~

-~
-~

square root of d, d must be non-negative

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 22.3 Standard Mathematical Functions 661

double cos(double);
double sin(double);
double tan(double);

double acos(double);
double asin(double);
double atan(double);
double atan2(double x double y);

/ | cosine
/
/
/
/
/
/
double sinh(double); /
/
/
/
/
/
/
/

sine
tangent

arc cosine
arc sine
arc tangent
atan(x/y)

/

/

/

/

/

/

/

/ hyperbolic sine
double cosh(double); / hyperbolic cosine
double tanh(double); | hyperbolic tangent
/

/
/
/
/
/
/
/

double eq(double);
double log(double d);
double log10(double d);

double modf(double d, double* p);
double frexp(double d int* p);

exponential, base e
natural (base e) logarithm, d must b®
base 10 logarithm, d must bed

return fractional part of d, place integral part in *p
find x in [.5,1) and y so that d = x*pow(2,y),
return x and store y in *p

floating-point remainder, same sign as d
d*pow(2,i)

/
double fmod(double d, double m); /
double Idexp(double d, int i); /

In addition,<cmath> and<math. h> supply these functions féloat andlong double arguments.
Where several values are possible resules withasin() — the one nearest @is returned.
The result obcog() is non-negative.
Errors are reported by settirgrno from <cerrno> to EDOM for a domain error and to
ERANGE for a range error. For example:

void f()
{

emrno=0; // clear old error state

sgrt(- 1);

if (erno==EDOM) cerr << "sgrt() not defined for negative argument";

pow(numeric_limits<double>: : max() , 2);

if (errno == ERANGE) cerr << "result of pow() too large to represent as a double’;
}

For historical reasons, a few mathematical functions are found wcttdlib> header rather than
in <cmath>:

int abs(int); / | absolute value
long abg(long); / | absolute value (notin C)
long labs(long); / / absolute value

struct div_t { implementation defined quot, rem };
struct Idiv_t { implementation defined quot, rem };

div_t div(int n, int d); /| divide n by d, return (quotient,remainder)
Idiv_t div(long int n, long int d); / / divide n by d, return (quotient,remainder) (not in C)
Idiv_t Idiv(long int n, long int d);/ / divide n by d, return (quotient,remainder)

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

662 Numerics Chapter 22

22.4 Vector Arithmetic [num.valarray]

Much numeric work relies on relatively simple single-dimensional vectors of floating-point values.

In particular, such vectors are well supported by high-performance machine architectures, libraries
relying on such vectors are in wide use, and very aggressive optimization of code using such
vectors is considered essential in many fields. Consequently, the standard library provides a vector
— calledvalarray — designed specifically for speed of the usual numeric vector operations.

When looking at thealarray facilities, it is wise to remember that they are intended as a rela-
tively low-level building block for high-performance computation. In particular, the primary
design criterion wasn’'t ease of use, but rather effective use of high-performance computers when
relying on aggressive optimization techniques. If your aim is flexibility and generality rather than
efficiency, you are probably better off building on the standard containers from Chapter 16 and
Chapter 17 than trying to fit into the simple, efficient, and deliberately traditional framework of
valarray.

One could argue thamalarray should have been callegctor because it is a traditional mathe-
matical vector and thatector (816.3) should have been callagay. However, this is not the way
the terminology evolved. Aalarray is a vector optimized for numeric computationjestor is a
flexible container designed for holding and manipulating objects of a wide variety of types, and an
array is a low-level, built-in type.

Thevalarray type is supported by four auxiliary types for specifying subsetvalaaray:

— dlice_array andgdlice _array represent the notion of slices (822.4.6, §22.4.8),

— mask _array specifies a subset by marking each element in or out (§22.4.9), and

— indirect_array lists the indices of the elements to be considered (§22.4.10).

22.4.1 Valarray Construction [num.valarray.ctor]

The valarray type and its associated facilities are defined in namessgtdcand presented in
<valarray>:

template<class T> class std: : valarray {
/1 representation

public:
typedef T value type
valarray() ; [| valarray with size()==0
explicit valarray(size t n); /I n elements with value T()
valarray(const T& val, size t n); /I n elements with value val
valarray(const T* p, size t n); /I n elements with values p[0], p[1], ...
valarray(const valarray& v); [| copy of v
valarray(const slice_array<T>&); | | see §22.4.6
valarray(const gslice array<T>&); | | see §22.4.8
valarray(const mask array<T>&); | | see 8§22.4.9
valarray(const indirect_array<T>&); | | see §22.4.10
~valarray() ;
..

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 22.4.1 Valarray Construction 663

This set of constructors allows us to initialzaarrays from the auxiliary numeric array types and
from single values. For example:

valarray<double> v0;
valarray<float> v1(1000);

valarray<int> v2(- 1, 2000);
valarray<double> v3(100, 9. 8064);

valarray<double> v4 = v3; ! | v4 has v3.size() elements

/ placeholder, we can assign to vO later
/ 1000 elements with value float()==0.0F

/ 2000 elements with valuel
/ bad mistake: floating-point valarray size

In the two-argument constructors, the value comes before the number of elements. This differs
from the convention for other standard containers (816.3.4).

The number of elements of an argumeatiarray to a copy constructor determines the size of
the resultingvalarray.

Most programs need data from tables or input; this is supported by a constructor that copies ele-
ments from a built-in array. For example:

const double wd[] ={ 0, 1, 2, 3, 4};
const int vifj ={ 0, 1, 2, 3, 4},

valarray<double> v3(vd, 4); / / 4 elements: 0,1,2,3
valarray<double> v4(vi, 4); / / type error: vi is not pointer to double
valarray<double> v5(vd, 8); / / undefined: too few elements in initializer

This form of initialization is important because numeric software that produces data in the form of
large arrays is common.

The valarray and its auxiliary facilities were designed for high-speed computing. This is
reflected in a few constraints on users and by a few liberties granted to implementers. Basically, an
implementer ofvalarray is allowed to use just about every optimization technique you can think
of. For example, operations may be inlined andvédarray operations are assumed to be free of
side effects (except on their explicit arguments of course). #ddarrays are assumed to be alias
free, and the introduction of auxiliary types and the elimination of temporaries is allowed as long as
the basic semantics are maintained. Thus, the declaratiewvalarray> may look somewhat dif-
ferent from what you find here (and in the standard), but they should provide the same operations
with the same meaning for code that doesn’t go out of the way to break the rules. In particular, the
elements of aalarray should have the usual copy semantics (8§17.1.4).

22.4.2 Valarray Subscripting and Assignment [num.valarray.sub]

Forvalarrays, subscripting is used both to access individual elements and to obtain subarrays:

template<class T> class valarray {

public:
/...
valarrayé& operator=(const valarray&v); / / copyv
valarrayé& operator=(const T& val); /| assign val to every element

T operator[](size t) const
T& operator[](size t);

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

664 Numerics Chapter 22

valarray operator[](slice) const | | see 8§22.4.6
slice_array<T> operator[](slice);

valarray operator[](const gslice) const | | see §22.4.8
gdlice_array<T> operator[](const gslice&);

valarray operator[](const valarray<bool>&) const; | | see 8§22.4.9
mask _array<T> operator[](const valarray<bool>&);

valarray operator[](const valarray<size t>&) const | | see §22.4.10
indirect_array<T> operator[](const valarray<size t>&);

valarray& operator=(const slice_array<T>&); | | see §22.4.6
valarray& operator=(const gdlice array<T>&); | | see §22.4.8
valarray& operator=(const mask array<T>&); | | see §22.4.9
valarrayé& operator=(const indirect_array<T>&); | | see §22.4.10

" ..
h

A valarray can be assigned to another of the same size. As one would edpa@copies every
element ofv2 into its corresponding position wil. If valarrays have different sizes, the result of
assignment is undefined. Becauss#array is designed to be optimized for speed, it would be
unwise to assume that assigning withalarray of the wrong size would cause an easily compre-
hensible error (such as an exception) or other “reasonable” behavior.

In addition to this conventional assignment, it is possible to assign a scalaléoray. For
example,v=7 assigns7 to every element of thealarray v. This may be surprising, and is best
understood as an occasionally useful degenerate case of the operator assignment operations
(822.4.3).

Subscripting with an integer behaves conventionally and does not perform range checking.

In addition to the selection of individual elemenalarray subscripting provides four ways of
extracting subarrays (822.4.6). Conversely, assignment (and constructors §22.4.1) accepts such
subarrays as operands. The set of assignmentalaaray ensures that it is not necessary to con-
vert an auxiliary array type, such slice_array, to valarray before assigning it. An implementa-
tion may similarly replicate other vector operations, such asd*, to assure efficiency. In addi-
tion, many powerful optimization techniques exist for vector operations invoslices and the
other auxiliary vector types.

22.4.3 Member Operations [num.valarray.member]

The obvious, as well as a few less obvious, member functions are provided:

template<class T> class valarray {

public:
/...
valarray& operator*=(const T& arg); [| v[i]*=arg for every element
[1 similarly: /=, %=, +=, —=, "=, &=, [F, <<=, and>>=
T sum() const, /| sum of elements

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 22.4.3 Member Operations 665

valarray shift(int i) const ! I logical shift (left for &i, right for i<0)
valarray cshift(int i) const | | cyclic shift (left for &i, right for i<0)
valarray apply(T f(T)) const /| result[i] = f(v[i]) for every element
valarray apply(T f(const T&)) const,
valarray operator-() const; /I result[i] = -v[i] for every element
valarray operator+() const /I result[i] = +V][i] for every element
valarray operator~() const; /I result[i] = "V[i] for every element
!

valarray operator!() const result[i] = Iv[i] for every element

T min() const, // smallest value using for comparison; if size()==0 the value is undefined
T max() const, // largest value using for comparison; if size()==0 the value is undefined

size t size() const /| number of elements
void resize(size t n, const T&val=T()) ; / / nelements with value val

h

For example, i is avalarray, it can be scaled like this*=. 2, and thisv/= 1. 3. That is, apply-
ing a scalar to a vector means applying the scalar to each element of the vector. As usual, it is eas-
ier to optimize uses ¢E than uses of a combination’®ofand= (§11.3.1).

Note that the non-assignment operations construct avalarray. For example:

double incr(double d) { return d+1; }

void f(valarray<double>& v)
{

}

This does not change the valuewof Unfortunately,apply() does not accept a function object
(818.4) as an argument (822.9[1]).
The logical and cyclic shift functionshift() andcshift() , return a newalarray with the ele-
ments suitably shifted and leave the original one unchanged. For example, the cyclic shift
v2=v. cshift(n) produces avalarray so thatv?] i]== V[(i+n)%v. size))] . The logical shift
v3=v. shift(n) produces aalarray so thatv3[i] is V[i+n] if i+nis a valid index fow. Other-
wise, the result is the default element value. This implies thatdhift§) andcshift() shift left
when given a positive argument and right when given a negative argument. For example:

valarray<double> v2 = v. apply(incr); /| produce incremented valarray

void f()

{
int alpha]] ={1, 2, 3 4 5,6, 7, 8};
valarray<int> v(alpha, 8); / 11,2,34,5,6,7,8
valarray<int> v2 = v. shift(2); !/ 13,45/6,7,8,0,0
valarray<int> v3 = v<<2; /1 4,8,12, 16, 20, 24, 28, 32
valarray<int> v4 = v. shift(- 2); / 10,0,1,23,45,6
valarray<int> v5 = v>>2; //10001,1,1,1,2
valarray<int> v6 = v. cshift(2); / | 3,4,5/6,7,8,1,2
valarray<int> v7 = v. cshift(- 2); /17,81,2,3,4,5,6

}
For valarrays, >> and << are bit shift operators, rather than element shift operators or /O

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

666 Numerics Chapter 22

operators (822.4.4). Consequently,= and>>= can be used to shift bits within elements of an
integral type. For example:

void f(valarray<int> vi, valarray<double> vd)

{

Vi <<= 2;/ [vi[i] <<=2 for all elements of vi
vd <<= 2; // error: shift is not defined for floating-point values

}

It is possible to change the size ofaarray. However,resize() is not an operation intended to
makevalarray into a data structure that can grow dynamically the wagckor and astring can.
Instead resize() is a re-initialize operation that replaces the existing contentsvalaaray by a
set of default values. The old values are lost.

Often, a resizedalarray is one that we created as an empty vector. Consider how we might
initialize avalarray from input:

void f()
{

int n=0;

cin>>n; / | read array size

if (n<=0) emor(" bad array bound") ;

valarray<double> v(n); /| make an array of the right size
int i =0;

while (i<n &&cin>>V[i++]) ; [1 fill array

if (i'=n) emor(" too few elements on input") ;

I ..
}

If we want to handle the input in a separate function, we might do it like this:

void initialize from_input(valarray<double>& v)

{
int n=0;
cin>> n; / | read array size
if (n<=0) emror(" bad array bound") ;
v. resize(n); /| make v the right size
int i =0;
while (i<n &&cin>>V[i++]) ; /1 fill array
if (i'=n) emor(" too few elements on input”) ;
}
void g()
{
valarray<double> v; /| make a default array
initialize from input(v); /| give v the right size and elements
..
}

This avoids copying large amounts of data.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 22.4.3 Member Operations 667

If we want avalarray holding valuable data to grow dynamically, we must use a temporary:

void grow(valarray<int>& v, size t n)

{
if (n<=v. size)) return;
valarray<int> tmp(n); / | ndefault elements
copy(& V[0] ,& V[v. size()] ,&tmp[O]) ; / / copy algorithm from §18.6.1
v. resize(n);
copy(& tmp[0] ,& tmp[v. size)] ,& V[Q]) ;
}

This isnot the intended way to usealarray. A valarray is intended to have a fixed size after
being given its initial value.

The elements of walarray form a sequence; that ig, 0].. Vv[n- 1] are contiguous in mem-
ory. This implies thaf™ is a random-access iterator (§19.2.1)alarray<T> so that standard
algorithms, such asopy() , can be used. However, it would be more in the spintatdrray to
express the copy in terms of assignment and subarrays:

void grow2(valarray<int>& v, size t n)

{
if (n<=v. sizg))) return;
valarray<int>tmp(n); / / ndefault elements
slice 50O, v. size() , 1); / / subarray of v.size() elements (see §22.4.5)
tmp[5] =v;
v. resize(n);
V[s =tmp;
}

If for some reason input data is organized so that you have to count the elements before knowing
the size of vector needed to hold them, it is usually best to read the inpuvéatora(§16.3.5) and
then copy the elements intovalarray.

22.4.4 Nonmember Operations [valarray.ops]
The usual binary operators and mathematical functions are provided:

template<class T> valarray<T> operator*(const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> operator*(const valarray<T>&, const T&);
template<class T> valarray<T> operator*(const T&, const valarray<T>&);

/1 similarly: /, %, +,—, ", &, 0 <<, >>, &&, 1] ==, I=, <, >, <=, >=, atan2, and pow
template<class T> valarray<T> abs(const valarray<T>&);
/1 similarly: acos, asin, atan, cos, cosh, exp, log, log10, sin, sinh, sqrt, tan, and tanh

The binary operations are defined f@arrays and for combinations of\alarray and its scalar
type. For example:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

668 Numerics Chapter 22

void f(valarray<double>& v, valarray<double>& v2, double d)

{
valarray<double> v3=v*v2;, [[/ v3[i] = v[i]*v2[i] for all i
valarray<double> v4 = v* d, [1 vA[i] = v[i]*d for all i
valarray<double> v5 = d*v2;, / / v5[i] = d*v2[i] for all i
valarray<double> v6 = cos(v); / / v6[i] = cos(v][i]) for all i
}

These vector operations all apply their operations to each element of their operand(s) in the way
indicated by ther andcos() examples. Naturally, an operation can be used only if the corre-
sponding operation is defined for the template argument type. Otherwise, the compiler will issue
an error when trying to specialize the template (§13.5).

Where the result is walarray, its length is the same as ualarray operand. If the lengths of
the two arrays are not the same, the result of a binary operator walamays is undefined.

Curiously enough, no I/0O operations are providedvidarray (822.4.3);<< and>> are shift
operations. However, 1/O versions>t and<< for valarray are easily defined (822.9[5]).

Note that theswalarray operations return newalarrays rather than modifying their operands.
This can be expensive, but it doesn’t have to be when aggressive optimization techniques are
applied (e.g., see §22.4.7).

All of the operators and mathematical functions welarrays can also be applied to
slice arrays (822.4.6), gdlice arrays (822.4.8), mask arrays (822.4.9), indirect_arrays
(822.4.10), and combinations of these types. However, an implementation is allowed to convert an
operand that is not\alarray to avalarray before performing a required operation.

22.4.5 Slices [num.slice]

A slice is an abstraction that allows us to manipulate a vector efficiently as a matrix of arbitrary
dimension. It is the key notion of Fortran vectors and of the BLAS (Basic Linear Algebra Subpro-
grams) library, which is the basis for much numeric computation. Basically, a slice isndvery
element of some part ofvalarray:

class std:: slice{
/1 starting index, a length, and a stride

public:
slice() ;
slice(size t start, size t size size t stride);
size t start() const /| index of first element
size t size() const; /| number of elements

size t stride() const; | | element n is at start()+n*stride()

h

A strideis the distance (in number of elements) between two elements slidke Thus, aslice
describes a sequence of integers. For example:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 22.4.5 Slices 669

size t slice_index(const slice& s, size t i) // map i to its corresponding index

{
return s start()+ i*s. stride() ;
}
void print_seq(const slice&s) / / print the elements of s
{
for (int i=0; i<s. siz) ; i++) cout << slice_index(s, i) <<" "
}
void f()
{
print_seq(slice(0, 3, 4)) ;/ / row 0
cout<< " "
print_seqy slice(1, 3, 4)) ;/ / row 1
cout<<", "
print_seq(slice(0, 4, 1)) ;/ / column 0
cout<<", "
print_seqy slice(4, 4, 1)) ;/ / column 1
}

prints048, 159, 0123, 4567

In other words, alice describes a mapping of non-negative integers into indices. The number
of elements (theize()) doesn't affect the mapping (addressing) but simply allows us to find the
end of a sequence. This mapping can be used to simulate two-dimensional arrays within a one-
dimensional array (such alarray) in an efficient, general, and reasonably convenient way. Con-
sider a 3-by-4 matrix the way we often think of it (8C.7):

00|01|02
10/11}12
20|21|22
30(31|32

Following Fortran conventions, we can lay it out in memory like this:

0 4 8
\oo\ 10\ 20\ 30\ 01\ 11\ 21\ 31\ 02\ 12\ 22\ 32\

This isnotthe way arrays are laid out in-€(see 8C.7). However, we should be able to present a
concept with a clean and logical interface and then choose a representation to suit the constraints of
the problem. Here, | have chosen to use Fortran layout to ease the interaction with numeric soft-
ware that follows that convention. | have not, however, gone so far as to start indexin from
rather tharD; that is left as an exercise (§22.9[9]). Much numeric computation is done and will
remain done in a mixture of languages and using a variety of libraries. Often the ability to manipu-
late data in a variety of formats determined by those libraries and language standards is essential.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

670 Numerics Chapter 22

Row x can be described bydlice(x, 3, 4) . That is, the first element of rowis thexth ele-
ment of the vector, the next element of the row is(tked) th, etc., and there a@elements in
each row. In the figureslice(0, 3, 4) describes the ro®0, 01, and02.

Columny can be described bslice(4*y, 4, 1) . That is, the first element of colunynis the
4* yth element of the vector, the next element of the column i§4hg+1) th, etc., and there ake
elements in each column. In the figurslice(0, 4, 1) describes the colun®0, 10, 20, and30.

In addition to its use for simulating two-dimensional arraysli@e can describe many other
sequences. It is a fairly general way of specifying very simple sequences. This notion is explored
further in §22.4.8.

One way of thinking of a slice is as an odd kind of iteratosliee allows us to describe a
sequence of indices forvalarray. We could build a real iterator based on that:

template<class T> class Sice iter {
valarray<T>* v;
slice s
size t curr; / / index of current element

T&ref(size t i) const{ return (* v)[s. start()+ i*s. stride()] ; }
public:
Slice iter(valarray<T>* wv, slice s : v(w), s(ss), curr(0) { }

Slice_iter end()

{
Slice iter t = *this;
t. curr = s. sizg) ; | | index of last-plus-one element
return t;

}

Slice _iter& operator++() { curr++; return * this; }
Slice iter operator++(int) { Slice iter t = *this; curr++; return t; }

T& operator[](size t i) { return ref(curr=i); } / | C style subscript
T& operator()(size t i) { return ref(curr=i); } / | Fortran-style subscript
T& operator*() { return ref(curr); } [| current element

"o
k

Since aslice has a size, we could even provide range checking. Here, | have taken advantage of
slice : size() to provide anend() operation to provide an iterator for the one-past-the-end ele-
ment of thevalarray.

Since aslice can describe either a row or a column, 8fiee iter allows us to traverse a
valarray by row or by column.

For Slice iter to be useful==, =, and< must be defined:

template<class T> bool operator==(const Slice iter<T>& p, const Sice iter<T>& ()
{

}

return p. curr==q. curr &&p. s. stride()== q. s. stride() &&p. s. start()== q. s. start() ;

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 22.4.5 Slices 671

template<class T> bool operator!=(const Sice iter<T>& p, const Slice iter<T>& ()

{
}

return !(p==q);

template<class T> bool operator<(const Sice iter<T>& p, const Slice iter<T>& Q)

{
}

return p. curr<g. curr &&p. s. stride()== q. s. stride() &&p. s. start()== q. s. start() ;

22.4.6 Slicearray [num.slicearray]

From avalarray and aslice, we can build something that looks and feels likeakarray, but
which is really simply a way of referring to the subset of the array described by the slice. Such a
slice_array is defined like this:

template <class T> class sid: : slice_array {
public:

typedef T value_type;
void operator=(const valarray<T>&);

void operator=(const T& val); / | assign val to each element
void operator*=(const valarray<T>&val); [| v[i]*=val for each element
/1 similarly: /=, %=, +=, —=, "=, &=, [F, <<=, >>=
~slice_array() ;

private:
slice_array() ; prevent construction

k

!
slice_array(const slice_array&); | | prevent copying
slice_array& operator=(const slice_array&); / / prevent copying

valarray<T>* p; /| implementation-defined representation
slice s

A user cannot directly createdlice array. Instead, the user subscriptvaarray to create a
slice_array for a given slice. Once thalice array is initialized, all references to it indirectly go to

the valarray for which it is created. For example, we can create something that represents every
second element of an array like this:

void f(valarray<double>& d)

{

}

slice_array<double>& v_even= d[slice(0, d. size))/ 2, 2)] ;
slice_array<double>& v_odd = d[slice(1, d. size()/ 2, 2)] ;

v_odd *= 2; /| double every odd element of d
v_even=0; / | assign 0 to every even element of d

The ban on copyinglice_arrays is necessary so as to allow optimizations that rely on absence of
aliases. It can be quite constraining. For example:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.

Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

672 Numerics Chapter 22

slice_array<double> row(valarray<double>& d, int i)

{
slice_array<double> v = d[slice(0, 2, d. size()/ 2)] ;/ / error: attempt to copy

return d slice(i%2, i, d. size))/ 2)] ; [| error: attempt to copy
}

Often copying aliceis a reasonable alternative to copyingliae_array.
Slices can be used to express a variety of subsets of an array. For example, we might use slices
to manipulate contiguous subarrays like this:

inline dice sub_array(size t first, size t count) // [first:first+count]

{
return dlice(first, count, 1);
}
void f(valarray<double>& v)
{
size t sz=v. sizg) ;
if (sz<2) return;
sizet n=sz 2;
size t n2=szn;
valarray<double> half1(n);
valarray<double> half2(n2);
halfl = v[sub_array(0, n)] ; | | copy of first half of v
half2 = v[sub_array(n, n2)] ; /| copy of second half of v
/...
}

The standard library does not provide a matrix class. Instead, the intentatafway andslice to
provide the tools for building matrices optimized for a variety of needs. Consider how we might
implement a simple two-dimensional matrix usingalarray andslice_arrays:

class Matrix {
valarray<double>* v;,
size t d1, d2;
public:
Matrix(size t x, size t y); /| note: no default constructor
Matrix& Matrix(const Matrix&);
Matrix& operator=(const Matrix&);
~Matrix() ;

size t size() const{ return di1*d2; }
size t diml() const{ return di; }
size t dim2() const{ return d2; }

Slice_iter<double> row(size t i);
Cdlice_iter<double> row(size t i) const;

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 22.4.6 Slicearray 673

Slice_iter<double> column(size t i);
Cdlice _iter<double> column(size t i) const

double& operator()(size t X, sizet y); / | Fortran-style subscripts
double aperator()(size t x, size t y) const

Slice_iter<double> operator()(size t i) { return row(i); }
Cdlice_iter<double> operator()(size t i) const{ return row(i); }

Slice_iter<double> operator[](size t i) { return row(i); } | | C-style subscript
Cdlice_iter<double> operator[](size t i) const{ return row(i); }

Matrix& operator*=(double);

valarray<double>& array() { return*v; }
h
The representation ofMatrix is avalarray. We impose dimensionality on that array through slic-
ing. When necessary, we can view that representation as having one, two, three, etc., dimensions in
the same way that we provide the default two-dimensional view thnomgf) and column() .
The Slice iters are used to circumvent the ban on copyshige arrays. | couldn't return a
slice _array:

slice_array<double> row(size t i) { return (* v)(slice(i, d1, d2)) ; }

so | returned an iterator containing a pointer to valarray and theslice itself instead of a
slice array.

We need an additional class “iterator for slice of constan@slice iter to express the distinc-
tion between a slice of@nst Matrix and a slice of a nocenst Matrix:

inline Sice_iter<double> Matrix: : row(size t i)

{
return Sice_iter<double>(v, slice(i, d1, d2)) ;
}
inline Cslice_iter<double> Matrix: : row(size t i) const
{
return Cslice iter<double>(v, slice(i, d1, d2)) ;
}

inline Sice_iter<double> Matrix: : column(size t i)

return Sice iter<double>(v, slice(i*d2, d2, 1)) ;

}
inline Csdlice_iter<double> Matrix: : column(size t i) const
{
return Cslice iter<double>(v, slice(i*d2, d2, 1)) ;
}

The definition ofCdlice _iter is identical to that oSlice_iter, except that it returnsonst references
to elements of its slice.
The rest of the member operations are fairly trivial:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

674 Numerics Chapter 22

Matrix: : Matrix(size t X, size t y)

/1 check that x and y are sensible

dl=x;
d2=vy;
v = new valarray<double>(x*y);
}
double& Matrix: : operator()(size t x, size t y)
{
return row(X)[y];
}

double mmui(const valarray<double>& v1, const valarray<double>& v2)

double res=0;
for (int i =0; i<vl. size) ; i++) rest=v1[i]* v2[i];

return res
}
valarray<double> operator*(const Matrix& m, const valarray<double>& v)
{
valarray<double> res(m. diml()) ;
for (int i =0; i<m. diml() ; i++) res(i) = mul(m. row(i), v);
return res
}
Matrix& Matrix: : operator*=(double d)
{
(V) *= d;
return * this;
}

| provided(i, j) to expresdMatrix subscripting becaudg is a single operator and because that
notation is the most familiar to many in the numeric community. The concept of a row provides
the more familiar (in the C andr€ communities) i][j] notation:

void f(Matrix& m)

{
m(1, 2) =5 / | Fortran-style subscripts
m. row(1)(2) =6;
m.row(1) 2] =7,
m[1](2) =8; /| undesirable mixed style (but it works)
m 1 2] =9; | | C++-style subscripts
}

The use oElice_arraysto express subscripting assumes a good optimizer.

Generalizing this to an-dimensional matrix of arbitrary elements and with a reasonable set of
operations is left as an exercise (§22.9[7]).

Maybe your first idea for a two-dimensional vector was something like this:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 22.4.6 Slicearray 675

class Matrix {

valarray< valarray<double> > v;
public:

/..

h

This would also work (8§22.9[10]). However, it is not easy to match the efficiency and compatibil-
ity required by high-performance computations without dropping to the lower and more conven-
tional level represented walarray plusslices.

22.4.7 Temporaries, Copying, and Loops [num.matrix]

If you build a vector or a matrix class, you will soon find that three related problems have to be
faced to satisfy performance-conscious users:

[1] The number of temporaries must be minimized.

[2] Copying of matrices must be minimized.

[3] Multiple loops over the same data in composite operations must be minimized.
These issues are not directly addressed by the standard library. However, | can outline a technique
that can be used to produce highly optimized implementations.

ConsidetU=M* V+W, whereU, V, andW are vectors anM is a matrix. A naive implementa-
tion introduces temporary vectors fM*V and M*V+W and copies the results &fi*V and
M* V+W. A smart implementation calls a functiond_add and assign(& U,& M,& V,& W) that
introduces no temporaries, copies no vectors, and touches each element of the matrices the mini-
mum number of times.

This degree of optimization is rarely necessary for more than a few kinds of expressions, so a
simple solution to efficiency problems is to provide functions suchuhsadd and assign() and
let the user call those where it matters. However, it is possible to deidigtmia so that such opti-
mizations are applied automatically for expressions of the right form. That is, we can treat
U=M*V+W as a use of a single operator with four operands. The basic technique was demon-
strated forostream manipulators (821.4.6.3). In general, it can be used to make a combination of
binary operators act like gm+1) -ary operator. Handlinty=M* V+W requires the introduction of
two auxiliary classes. However, the technique can result in impressive speedups (say, 30 times) on
some systems by enabling more-powerful optimization techniques.

First, we define the result of multiplyinghatrix by aVector:

struct MVmul {
const Matrix& m;
const Vector& v;

MVmul(const Matrix& mm, const Vector &wv) : m(mm), v(w) { }

operator Vector() ; / / evaluate and return result

h
inline MVmul operator*(const Matrix& mm, const Vector& wv)
{
return MVmul(mm, w);
}

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

676 Numerics Chapter 22

This “multiplication” does nothing except store references to its operands; the evaluakitirVof
is deferred. The object producedtys closely related to what is calleclmsure in many techni-
cal communities. Similarly, we can deal with what happens if we Atisttar:

struct MVmulVadd {
const Matrix& m;
const Vector& v;
const Vector& v,

MVmulVadd(const MVmul& mv, const Vector& vv) : m(mv. m), v(mv. v), v2(w) { }

operator Vector() ; / / evaluate and return result

h
inline MVmulVadd operator+(const MVmul& mv, const Vector& wv)
{
return MVmulVadd(mv, w);
}

This defers the evaluation M* V+W. We now have to ensure that it all gets evaluated using a
good algorithm when it is assigned t¥ector:

class Vector {
/...
public:
Vector(const MVmulVadd& m) /| initialize by result of m

/1 allocate elements, etc.
mul_add_and_assign(this,& m. m& m. v,& m. v2);

}
Vector& operator=(const MVmulVadd& m) | | assign the result of m to *this

mul_add and_assign(this,& m. m,& m. v,& m. v2);
return * this;

}
...

2
Now U=M* V+W s automatically expanded to

U. operator=(MVmulVadd(MVmul(M, V), W))
which because of inlining resolves to the desired simple call

mul_add _and_assign(& U,& M,& V,& W)
Clearly, this eliminates the copying and the temporaries. In addition, we might write
mul_add and assign() in an optimized fashion. However, if we just wrote it in a fairly simple
and unoptimized fashion, it would still be in a form that offered great opportunities to an optimizer.

| introduced a neWector (rather than using ealarray) because | needed to define assignment

(and assignment must be a member function; §11.2.2). Howalaay is a strong candidate for
the representation of th¥(ector.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 22.4.7 Temporaries, Copying, and Loops 677

The importance of this technique is that most really time-critical vector and matrix computa-
tions are done using a few relatively simple syntactic forms. Typically, there is no real gain in opti-
mizing expressions of half-a-dozen operators this way; more conventional techniques (§11.6) suf-
fice.

This technique is based on the idea of using compile-time analysis and closure objects to trans-
fer evaluation of subexpression into an object representing a composite operation. It can be applied
to a variety of problems with the common attribute that several pieces of information need to be
gathered into one function before evaluation can take place. | refer to the objects generated to defer
evaluation agomposition closure objecgtsr simplycompositors

22.4.8 Generalized Slices [num.gslice]

The Matrix example in 822.4.6 showed how tvelices could be used to describe rows and
columns of a two-dimensional array. In generadliee can describe any row or column of an
dimensional array (§22.9[7]). However, sometimes we need to extract a subarray that is not a row
or a column. For example, we might want to extract the 2-by-3 matrix from the top-left corner of a
3-by-4 matrix:

00|01 02
101112
20|21 22
30(31|32

Unfortunately, these elements are not allocated in a way that can be described by a single slice:

012
\oo\ 10\ 20\ 30\ 01\ 11\ 21\ 31\ 02\ 12\ 22\ 32\

A gdliceis a “generalized slice” that contains (almost) the information frostices:

class std: : gslice{
/1 instead of 1 stride and one size like slice, gslice holds n strides and n sizes

public:
gslice() ;
gdlice(size t s, const valarray<size t>& 1, const valarray<size t>& d);
size t start() const /| index of first element
valarray<size t> size) const; /| number of elements in dimension

valarray<size t> stride() const; | | stride for index[0], index[1], ...
3

The extra values allowgsliceto specify a mapping betwe@rintegers and an index to be used to
address elements of an array. For example, we can describe the layout of the 2-by-3 matrix by a
pair of (length,stride) pairs. As shown in §22.4.5, a lengt@ ahd a stride off describes two

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

678 Numerics Chapter 22

elements of a row of the 3-by-4 matrix, when Fortran layout is used. Similarly, a lerg#mdfa
stride of1 describes 3 elements of a column. Together, they describe every element of the 2-by-3
submatrix. To list the elements, we can write:

size t gdlice index(const gslice s, size t i, size t j)

{
return s start()+ i*s. stride()[O]+ j*s. stride()[1];
}
sizet len] ={2 3}; /I (len]0],str[0]) describes a row
sizet str[] ={ 4, 1}; /I (len[1],str[1]) describes a column

valarray<size t> lengths(len, 2);
valarray<size t> strideq(str, 2);
void ()
{
gdlice § 0, lengths, strides) ;
for (int i =0; i<s. size()[0]; i++) cout << gslice index(s, i, 0) <<" "/ [row
cout<< ", "
for (int j=0; j<s size)[1]; j++) cout << gslice_index(s, 0, j) <<" ";/ / column

This prints0 4,012

In this way, agdlice with two (length,stride) pairs describes a subarray of a 2-dimensional
array, agslice with three (length,stride) pairs describes a subarray of a 3-dimensional array, etc.
Using agslice as the index of avalarray yields agdlice array consisting of the elements
described by thgslice. For example:

void f(valarray<float>& v)

{
gdlice m(O, lengths, strides);
vim] =0; // assign 0 to v[0],v[1],v[2],v[4],V[5],v[6]

The gdlice _array offers the same set of membersslise array. In particular, agslice array
cannot be constructed directly by the user and cannot be copied (§22.4.6). Ingsiiad, array
is the result of using gslice as the subscript ofwalarray (§22.4.2).

22.4.9 Masks [num.maskK]

A mask_array provides yet another way of specifying a subsetwdlarray and making the result
look like avalarray. In the context ofalarrays, a mask is simply @alarray<bool>. When a
mask is used as a subscript foradarray, atrue bit indicates that the corresponding element of the
valarray is considered part of the result. This allows us to operate on a subsalarfray even if
there is no simple pattern (such aliee) that describes that subset. For example:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 22.4.9 Masks 679

void f(valarray<double>& v)

{
bool b[] ={ true, false false true false true};
valarray<bool> mask(b, 6); / | elements 0, 3, and 5
valarray<double> vv = cos(v[mask]) ; /| w[0]==cos(v[0]), vw[l]==cos(V[3]),
/1 wv[2]==cos(v[5])
}

The mask array offers the same set of memberssiee array. In particular, anask array can-

not be constructed directly by the user and cannot be copied (§22.4.6). Insieasit, array is

the result of using walarray<bool> as the subscript of walarray (§22.4.2). The number of ele-
ments of avalarray used as a mask must not be greater than the number of elements of the
valarray for which it is used as a subscript.

22.4.10 Indirect Arrays [num.indirect]

An indirect_array provides a way of arbitrarily subsetting and reorderimglarray. For exam-
ple:

void f(valarray<double>& v)

{
sizeti] ={3, 2, 1 0} | [first four elements in reverse order
valarray<size t> index(i, 4); / | elements 3, 2, 1, 0 (in that order)
valarray<double> vv = log(V[index]) ; / / vv[0]==log(v[3]), vv[1]==log(v[2]),
/1 wi[2]==log(v[1]), vv[3]==log(v[O])
}

If an index is specified twice, we have referred to an elemenvalaeray twice in the same opera-
tion. That's exactly the kind of aliasing thehlarrays do not allow, so the behavior of an
indirect_array is undefined if an index is repeated.

The indirect_array offers the same set of members slice array. In particular, a an
indirect_array cannot be constructed directly by the user and cannot be copied (822.4.6). Instead,
an indirect_array is the result of using aalarray<size t> as the subscript of aalarray
(822.4.2). The number of elements ofaarray used as a subscript must not be greater than the
number of elements of thalarray for which it is used as a subscript.

22.5 Complex Arithmetic[num.complex]

The standard library providescamplex template along the lines of titemplex class described in
811.3. The librancomplexneeds to be a template to serve the need for complex numbers based on
different scalar types. In particular, specializations are providedofoplex using float, double,
andlong double as its scalar type.

Thecomplextemplate is defined in namespate and presented ikcomplex>:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

680 Numerics Chapter 22

template<class T> class std: : complex {
T re im;
public:
typedef T value_type;
complex(const T&r =T() , const T&i =T()) : re(r), im(i) { }
template<class X> complex(const complex<X>& a) : re(a. re), im(a. im) { }

T real() const{ return re; }
T imag() const{ return im; }

complex<T>& operator=(const T& z); // assign complex(z,0)
template<class X> complex<T>& operator=(const complex<X>&);
/1 similarly: +=, —=, *=, /=

h

The representation and the inline functions are here for illustration. One-ctialetly— imagine
a standard librargomplex that used a different representation. Note the use of member templates
to ensure initialization and assignment of aognplextype with any other (§13.6.2).

Throughout this book, | have usedmplex as a class rather than as a template. This is feasible
because | assumed a bit of namespace magic to gertipbex of double that | usually prefer:

typedef std: : complex<double> complex
The usual unary and binary operators are defined:

template<class T> complex<T> operator+(const complex<T>&, const complex<T>&);
template<class T> complex<T> operator+(const complex<xT>&, const T&);
template<class T> complex<T> operator+(const T&, const complex<T>&);

[/ similarly: —, *, /, ==, and !=

template<class T> complex<T> operator+(const complex<T>&);

template<class T> complex<T> operator-(const complex<T>&);
The coordinate functions are provided:

template<class T> T real(const complex<T>&);
template<class T> T imag(const complex<T>&);

template<class T> complex<T> conj(const complex<T>&);

/1 construct from polar coordinates (abs(),arg()):
template<class T> complex<T> polar(const T& rho, const T& theta);

template<class T> T abs(const complex<T>&); / | sometimes called rho
template<class T> T arg(const complex<T>&); / | sometimes called theta

template<class T™> T norm(const complex<T>&); / / square of abs()

The usual set of mathematical functions is provided:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 22.5 Complex Arithmetic 681

template<class T> complex<T> sin(const complex<T>&);
/1 similarly: sinh, sqrt, tan, tanh, cos, cosh, exp, log, and log10

template<class T> complex<T> pow(const complex<T>&, int);

template<class T> complex<T> pow(const complex<T>&, const T&);
template<class T> complex<T> pow(const complex<T>&, const complex<T>&);
template<class T> complex<T> pow(const T&, const complex<T>&);

Finally, stream 1/O is provided:

template<class T, class Ch, class Tr>

basic_istream<Ch, Tr>& operator>>(basic_istream<Ch, Tr>&, complex<xT>&);
template<class T, class Ch, class Tr>

basic_ostream<Ch, Tr>& operator<<(basic_ostream<Ch, Tr>&, const complex<T>&);

A complex is written out in the formdtx, y) and can be read in the formats(x) , and(X, y)
(821.2.3, 821.3.5). The specializatiooamplex<float>, complex<double>, and complex<iong
double> are provided to restrict conversions (813.6.2) and to provide opportunities for optimized
implementations. For example:

class complex<double> {
double re, im;
public:
typedef double value type;
complex(double r=0. 0, double i=0.0) : re(r), im(i) {}
complex(const complex<float>& a) : re(a. real()) , im(a imag() {}
explicit complex(const complex<long double>& a) : re(a. real()) , im(a. imag()) { }

o
kh

Now acomplex<float> can be quietly converted tocamplex<double>, while acomplex< long

double> can’t. Similar specializations ensures thebmplex<float> and acomplex<double> can

be quietly converted to eomplex< long double> but that acomplex< long double> cannot be
implicitly converted to acomplex<double> or to acomplex<float> and acomplex<double> can-
not be implicitly converted to eomplex<float>. For example:

void f(complex<float> cf, complex<double> cd, complex<long double> cld)

{
complex<double> ¢ = cf; [| fine
c=cd / | fine
c=cld; | I error: possible truncation
¢ = complex<double>(cld); /| ok: you asked for truncation
cf = cld; [| error: possible truncation
cf=cd; /| error: possible truncation
cf = complex<float>(cld); /| ok: you asked for truncation
cf = complex<float>(cd); /| ok: you asked for truncation
}

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

682 Numerics Chapter 22

22.6 Generalized Numeric Algorithmgnum.general]

In <numeric>, the standard library provides a few generalized numeric algorithms in the style of
the non-numeric algorithms frogalgorithm> (Chapter 18) :

0 Generalized Numeric Algorithms<numeric> §
Eaccumdate() Accumulate results of operation on a sequence

rinner_product() Accumulate results of operation on two sequences]
Cpartial_sum() Generate sequence by operation on a sequence [

Fadjacent_difference() = Generate sequence by operation on a sequence H

These algorithms generalize common operations such as computing a sum by letting them apply to
all kinds of sequences and by making the operation applied to elements on those sequences a
parameter. For each algorithm, the general version is supplemented by a version applying the most
common operator for that algorithm.

22.6.1 Accumulate [num.accumulate]

Theaccumulate() algorithm can be understood as the generalization of a sum of the elements of a
vector. Theaccumulate() algorithm is defined in namespastd and presented irnumeric>:

template <class In, class T> T accumulate(In first, In last, T init)

while (first!= last) init = init + *first++; / / plus
return init;

}
template <class In, class T, class BinOp> T accumulate(In first, In last, T init, BinOp op)

while (first!= last) init = op(init,* first++); / / general operation
return init;

}

The simple version odccumulate() adds elements of a sequence using theaperator. For
example:

void f(vector<int>& price, list<float>& incr)

{
int i = accumulate(price. begin() , price. end() , 0); / / accumulate in int
double di= 0;
d = accumulate(incr. begin() , incr. end() , d); /| accumulate in double
...

}

Note how the type of the initial value passed determines the return type.

Not all items that we want to add are available as elements of a sequence. Where they are not,
we can often supply an operation faccumulate() to call in order to produce the items to be
added. The most obvious kind of operation to pass is one that extracts a value from a data struc-
ture. For example:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 22.6.1 Accumulate 683

struct Record {

/...

int unit_price

int number_of_units;
h

long price(long val, const Record&r)

return val + r. unit_price* r. number_of_units;

}
void f(const vector<Record>& v)
{
cout << " Total value " << accumulate(v. begin() , v. end() , 0, price) << \n;
}

Operations similar taccumulate are called-educe andreduction in some communities.

22.6.2 Inner product [num.inner]

Accumulating from a sequence is very common, while accumulating from a pair of sequences is
not uncommon. Thénner_product() algorithm is defined in namespastl and presented in
<numeric>:

template <class In, class In2, class T>
T inner_product(In first, In last, In2 first2, T init)

while (first!= last) init = init + * first++ * * first2++;
return init;

}

template <class In, class In2, class T, class BinOp, class BinOp2>
T inner_product(In first, In last In2 first2, T init, BinOp op, BinOp2 op2)

while (first!= last) init = op(init, op2(* first++,* first2++)) ;
return init;

}

As usual, only the beginning of the second input sequence is passed as an argument. The second
input sequence is assumed to be at least as long as the first.
The key operation in multiplying eatrix by avalarray is aninner_product;

valarray<double> operator*(const Matrix& m, const valarray<double>& v)

{
valarray<double> res(m. dimX()) ;
for (int i=0; i<m. diml() ; i++) {
Slice _iter<double>& ri = m. row(i);
reg i) = inner_product(ri. begin() , ri. end() ,& v[0], 0);
}
return res
}

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

684 Numerics Chapter 22

valarray<double> operator*(const valarray<double>& v, const Matrix& m)

{
valarray<double> res(m. dim2()) ;
for (int j=0; j<m. dim2) ; j++) {
Slice_iter<double>& c¢j = m. column(j);
req j) = inner_product(& v[0] ,& V[v. size)] , ¢j. begin() , 0);
}
return res
}

Some forms ofnner_product are often referred to as “dot product.”

22.6.3 Incremental Change [num.incremental]

The partial sum() and adjacent_difference() algorithms are inverses of each other and deal
with the notion of incremental change. They are defined in namestédand presented in
<numeric>:

template <class In, class Out> Out adjacent_difference(In first, In last, Out res);
template <class In, class Out, class BinOp>
Out adjacent_difference(In first, In last, Out res BinOp op);

Given a sequencg b, ¢, d, etc.,adjacent_difference() produces, b- a, ¢- b, d- ¢, etc.
Consider a vector of temperature readings. We could transform it into a vector of temperature
changes like this:

vector<double> temps;
void f()
{

}

For examplel7, 19, 20, 20, 17 turns intol17, 2,1, 0, - 3.

Conversely,partial_sum() allows us to compute the end result of a set of incremental
changes:

adjacent_difference(temps. begin() , temps. end() , temps. begin()) ;

template <class In, class Out, class BinOp>
Out partial_sum(In first, In last, Out res BinOp op)
{
if (first==last) return res
*res= *first;
T val = *first
while (++ first!= last) {
val = op(val,* first);
*++ res=val;
}

return ++res

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 22.6.3 Incremental Change 685

template <class In, class Out> Out partial_sum(In first, In last, Out res
{

}
Given a sequenca, b, c, d, etc. ,partial_sum() producesa, atb, at+b+c, at+b+c+d, etc. For
example:

void f()
{

return partial_sum(first, last, res plus); / / §18.4.3

partial_sum(temps. begin() , temps. end() , temps. begin()) ;

Note the waypartial_sum() incrementgesbefore assigning a new value through it. This allows
resto be the same sequence as its inpdjacent_difference() behaves similarly. Thus,

partial_sum(v. begin() , v. end() , v. begin()) ;
turns the sequenee b, ¢, dinto a, a+b, atb+c, atb+c+d, and
adjacent_difference(v. begin() , v. end() , v. begin()) ;

turns it back into the original. In particulgartial_sum() turns17, 2, 1, 0, - 3 back into17, 19,
20, 20, 17.

For people who think of temperature differences as a boring detail of meteorology or science
lab experiments, | point out that analyzing changes in stock prices involves exactly the same two
operations.

22.7 Random Numbergnum.random]

Random numbers are essential to many simulations and gamesstdlib> and<stdlib. h>, the
standard library provides a simple basis for the generation of random numbers:

#define RAND_MAX implementation_defined /* large positive integet/

int rand() ; /| pseudo-random number between 0 and RANBX
int srand(int i); / / seed random number generator by i

Producing a good random-number generator isn't easy, and unfortunately not all systems deliver a
goodrand() . In particular, the low-order bits of a random number are often suspeand{}¥o n
is not a good portable way of generating a random number bet@eamd n- 1. Often,
(double(rand())/) RAND_MAX)* n gives acceptable results.

A call of srand() starts a new sequence of random numbers frorsglbégiven as argument.
For debugging, it is often important that a sequence of random numbers from a given seed be
repeatable. However, we often want to start each real run with a new seed. In fact, to make games
unpredictable, it is often useful to pick a seed from the environment of a program. For such pro-
grams, some bits from a real-time clock often make a good seed.

If you must write your own random-number generator, be sure to test it carefully (§22.9[14]).

A random-number generator is often more useful if represented as a class. In that way,
random-number generators for different distributions are easily built:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

686 Numerics Chapter 22

class Randint { /| uniform distribution in the interval [0,max]
unsigned long randx;

public:
Randint(long s=0) { randx=s; }
void seed(long s) { randx=s; }

/1 magic numbers chosen to use 31 bits of a 32-bit long:

int abs(int x) { return x&Ox7fffffff; }
static double max() { return 2147483648. 0; } // note: a double
int draw() { return randx = randx* 1103515245 + 12345; }

double fdraw(){ return abs(draw())/ max() ; }
int operator()() { return abs draw()) ; }

2
class Urand: public Randint{/ / uniform distribution in the interval [0:n[
int n
public:
Urand(int nn) { n=nn; }
int operator()() { int r=n*fdraw() ; return(r==n) ?n-1:r; }
h
class Erand : public Randint{/ / exponential distribution random number generator
int mean;
public:
Erand(int m) { mean=m; }
int operator()() { return-mean* log((max()- draw())) max() +.5); }
%
Here is a simple test:
int main()
{

Urand draw(10);
map<int, int> bucket;
for (int i =0; i< 1000000; i++) bucket| draw()]++;
for(int j =0; j<10; j++) cout << bucket] j] << \n’;
}
Unless each bucket has approximately the value 10,000, there is a bug somewhere.
These random-number generators are slightly edited versions of what | shipped with the very
first C++ library (actually, the first “C with Classes” library; §1.4).

22.8 Advice[num.advice]

[1] Numerical problems are often subtle. If you are not 100% certain about the mathematical
aspects of a numerical problem, either take expert advice or experiment; §22.1.

[2] Usenumeric_limitsto determine properties of built-in types; §22.2.

[3] Specializenumeric_limits for user-defined scalar types; §22.2.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 22.8 Advice 687

[4] Usevalarray for numeric computation when run-time efficiency is more important than flexi-
bility with respect to operations and element types; §22.4.

[5] Express operations on part of an array in terms of slices rather than loops; §22.4.6.

[6] Use compositors to gain efficiency through elimination of temporaries and better algorithms;
§22.4.7.

[7] Usestd: : complexfor complex arithmetic; §22.5.

[8] You can convert old code that usesamplex class to use thstd: : complex template by
using atypedef; §22.5.

[9] Consider accumulate() , inner_product() , partial_sum() , and adjacent_difference()
before you write a loop to compute a value from a list; §22.6.

[10] Prefer a random-number class for a particular distribution over direct tad¢f ; §22.7.

[11] Be careful that your random numbers are sufficiently random; §22.7.

22.9 Exerciseghum.exercises]

1. (L.5) Write a function that behaves ligpply() from §22.4.3, except that it is a nonmember
function and accepts function objects.

2. (L.5) Write a function that behaves ligpply() from §22.4.3 , except that it is a nonmember
function, accepts function objects, and modifievéiarray argument.

3. (@) CompleteSlice iter (§22.4.5). Take special care when defining the destructor.

4. (L.5) Rewrite the program from 817.4.1.3 usitcgumulate() .

5. (@) Implement I/O operators< and>> for valarray. Implement gget_array() function that

creates aalarray of a size specified as part of the input itself.

((2.5) Define and implement a three-dimensional matrix with suitable operations.

((2.5) Define and implement amn dimensional matrix with suitable operations.

8. (.5) Implement aalarray-like class and implemenrtand* for it. Compare its performance
to the performance of your+& implementation’svalarray. Hint: Include x=0. 5(x+y)- z
among your test cases and try it with a variety of sizes for the vecigrandz.

9. (B) Implement a Fortran-style arrBprt_array where indices start frorh rather tharo.

10. (B) ImplementMatrix using avalarray member as the representation of the elements (rather
than a pointer or a reference tualarray).

11. (R.5) Use compositors (822.4.7) to implement efficient multidimensional subscripting using
the [] notation. For exampleyl[X], V2[X][y], v2 X], v3[X[VI[4, v3[X][y], and
v3[X] should all yield the appropriate elements and subarrays using a simple calculation of an
index.

12. (R) Generalize the idea from the program in §22.7 into a function that, given a generator as an
argument, prints a simple graphical representation of its distribution that can be used as a crude
visual check of the generator’s correctness.

13. (@) If nis anint, what is the distribution dfdouble(rand())) RAND_MAX)* n?

14. (.5) Plot points in a square output area. The coordinate pairs for the points should be gener-
ated byUrand(N) , whereN is the number of pixels on a side of the output area. What does
the output tell you about the distribution of numbers generat&dtdgd?

15. () Implement a Normal distribution generatdrand.

N o

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

688 Numerics Chapter 22

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

	Return to Contents
	22.1 Introduction
	22.2 Numeric Limits
	22.3 Standard Mathematical Functions
	22.4 Vector Arithmetic
	22.5 Complex Arithmetic
	22.6 Generalized Numeric Algorithms
	22.7 Random Numbers
	22.8 Advice
	22.9 Exercises

	buy now:

