21

Streams

What you see is all you get.
— Brian Kernighan

Input and output— ostreams — output of built-in types— output of user-defined types
— virtual output functions— istreams — input of built-in types— unformatted input
— stream state— input of user-defined types- /O exceptions— tying of streams—
sentries— formatting integer and floating-point output fields and adjustments—
manipulators— standard manipulators- user-defined manipulators- file streams—
closing streams— string streams— stream buffers— locale — stream callbacks—
printf() — advice— exercises.

21.1 Introduction [io.intro]

Designing and implementing a general input/output facility for a programming language is notori-
ously difficult. Traditionally, 1/O facilities have been designed exclusively to handle a few built-in
data types. However, a nontriviak€program uses many user-defined types, and the input and
output of values of those types must be handled. An I/O facility should be easy, convenient, and
safe to use; efficient and flexible; and, above all, complete. Nobody has come up with a solution
that pleases everyone. It should therefore be possible for a user to provide alternative I/O facilities
and to extend the standard I/O facilities to cope with special applications.

C++ was designed to enable a user to define new types that are as efficient and convenient to
use as built-in types. It is therefore a reasonable requirement that an 1/O facility-felhd@iild be
provided in @+ using only facilities available to every programmer. The stream 1/O facilities pre-
sented here are the result of an effort to meet this challenge:

§21.2 Output: What the application programmer thinks of as output is really the conversion of

objects of types, such ast, char*, and Employee record, into sequences of charac-
ters. The facilities for writing built-in and user-defined types to output are described.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

http://store.awl.com/catalog/cepub_detail.mhtml?isbn=0-201-88954-4

606 Streams Chapter 21

8§21.3 Input: The facilities for requesting input of characters, strings, and values of other built-
in and user-defined types are presented.

821.4 Formatting: There are often specific requirements for the layout of the output. For
example,ints may have to be printed in decimal and pointers in hexadecimal or
floating-point numbers must appear with exactly specified precision. Formatting con-
trols and the programming techniques used to provide them are discussed.

821.5 Files and StreamsBy default, every €+ program can use standard streams, such as
standard outputcfut), standard inputcfn), and error outputc@rr). To use other
devices or files, streams must be created and attached to those files or devices. The
mechanisms for opening and closing files and for attaching streams to filetiagd
are described.

8§21.6 Buffering: To make 1/O efficient, we must use a buffering strategy that is suitable for
both the data written (read) and the destination it is written to (read from). The basic
techniques for buffering streams are presented.

§21.7 Locale:A localeis an object that specifies how numbers are printed, what characters are
considered letters, etc. It encapsulates many cultural differences. Locales are implicitly
used by the I/O system and are only briefly described here.

8§21.8 C I/O: Theprintf() function from the CG<stdio. h> library and the C library’s relation
to the G+ <iostreanm library are discussed.

Knowledge of the techniques used to implement the stream library is not needed to use the library.
Also, the techniques used for different implementations will differ. However, implementing 1/O is

a challenging task. An implementation contains examples of techniques that can be applied to
many other programming and design tasks. Therefore, the techniques used to implement 1/O are
worthy of study.

This chapter discusses the stream 1/O system to the point where you should be able to appreci-
ate its structure, to use it for most common kinds of 1/O, and to extend it to handle new user-
defined types. If you need to implement the standard streams, provide a new kind of stream, or
provide a new locale, you need a copy of the standard, a good systems manual, and/or examples of
working code in addition to what is presented here.

The key components of the stream 1/O systems can be represented graphically like this:

ios base basic_streambuf<>;

locale independent format state buffering

basic_ios<>:
locale dependent format state

stream state locale:

A format information
basic iostream<>: character buffer |
formatting <, >>, etc.)
setup/cleanup | real destination/source

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 21.1 Introduction 607

The dotted arrow fronbasic_iostream<> indicates thabasic_ios<> is a virtual base class; the
solid arrows represent pointers. The classes marked<witare templates parameterized by a
character type and containindozale.

The streams concept and the general notation it provides can be applied to a large class of com-
munication problems. Streams have been used for transmitting objects between machines
(825.4.1), for encrypting message streams (821.10[22]), for data compression, for persistent storage
of objects, and much more. However, the discussion here is restricted to simple character-oriented
input and output.

Declarations of stream I/O classes and templates (sufficient to refer to them but not to apply
operations to them) and standaypedefs are presented wiosfwd>. This header is occasionally
needed when you want to include some but not all of the I/O headers.

21.2 Output [io.out]

Type-safe and uniform treatment of both built-in and user-defined types can be achieved by using a
single overloaded function name for a set of output functions. For example:

put(cerr,” x="); // cerris the error output stream
put(cerr, X);
put(cerr,” \n") ;

The type of the argument determines whpeit function will be invoked for each argument. This
solution is used in several languages. However, it is repetitive. Overloading the oger&or

mean “put to” gives a better notation and lets the programmer output a sequence of objects in a
single statement. For example:

car <<"x=" <<x<<’'\n’;

If xis anint with the valuel23, this statement would print
x=123

followed by a newline onto the standard error output stream, Similarly, if x is of typecom-
plex(822.5) with the valu¢ 1, 2. 4) , the statement will print

x=(1,2 4)

oncerr. This style can be used as longkas of a type for which operate is defined and a user
can trivially define operatot< for a new type.

An output operator is needed to avoid the verbosity that would have resulted from using an out-
put function. But why<<? It is not possible to invent a new lexical token (811.2). The assign-
ment operator was a candidate for both input and output, but most people seemed to prefer to use
different operators for input and output. Furthermerdinds the wrong way; that isput=a=b
meanscout=(a=b) rather than(cout=a)= b (86.2). | tried the operators and>, but the mean-
ings “less than” and “greater than” were so firmly implanted in people’s minds that the new 1/O
statements were for all practical purposes unreadable.

The operators< and>> are not used frequently enough for built-in types to cause that prob-
lem. They are symmetric in a way that can be used to suggest “to” and “from.” When they are

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

608 Streams Chapter 21

used for 1/O, | refer ta<< asput toand to>> asget from People who prefer more technical-
sounding names call themmsertersand extractors respectively. The precedence ©of is low
enough to allow arithmetic expressions as operands without using parentheses. For example:

cout << " a*b+c=" << a*b+c<<’\n’;

Parentheses must be used to write expressions containing operators with precedence lower than
<<’s. For example:

cout << " a'b| c=" << (a*blc) << \n’;

The left shift operator (§6.2.4) can be used in an output statement, but of course it, too, must appear
within parentheses:

cout << " a<<b=" << (a<<b) <<’ \n’;

21.2.1 Output Streams [io.ostream]

An ostream is a mechanism for converting values of various types into sequences of characters.
Usually, these characters are then output using lower-level output operations. There are many
kinds of characters (820.2) that can be characterizethawy traits (820.2.1). Consequently, an
ostreamis a specialization for a particular kind of character of a gebasit_ostream template:

template <class Ch, class Tr = char_traits<Ch> >
class std: : basic_ostream: virtual public basic_ios<Ch, Tr> {

public:
virtual ~basic_ostream() ;
/...

I3

This template and its associated output operations are defined in namstdpaue presented by
<ostream>, which contains the output-related partsmistream>.

Thebasic_ostream template parameters control the type of characters that is used by the imple-
mentation; they do not affect the types of values that can be output. Streams implemented using
ordinary chars and streams implemented using wide characters are directly supported by every
implementation:

typedef basic_ostream<char> ostream;
typedef basic_ostream<wchar_t> wostream;

On many systems, it is possible to optimize writing of wide characters thiwostheam to an
extent that is hard to match for streams using bytes as the unit of output.

It is possible to define streams for which the physical 1/0 is not done in terms of characters.
However, such streams are beyond the scope oftthet@ndard and beyond the scope of this book
(821.10[15)).

The basic_ios base class is presented<ios>. It controls formatting (821.4), locale (§21.7),
and access to buffers (821.6). It also defines a few types for notational convenience:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 21.2.1 Output Streams 609

template <class Ch, class Tr = char_traits<Ch> >
class sid: : basic_ios: public ios base{
public:
typedef Ch char_type
typedef Tr traits type;
typedef typename Tr:: int_type int_type; / / type of integer value of character
typedef typename Tr:: pos_type |pos type;/ / position in buffer
typedef typename Tr:: off_type off_type; / / offset in buffer

/1 ...see also §21.3.3, §21.3.7, §21.4.4, §21.6.3, and §21.7.1 ...
h

Theios basebase class contains information and operations that are independent of the character
type used, such as the precision used for floating-point output. It therefore doesn’t need to be a
template.

In addition to thetypedefs in ios base the stream 1/O library uses a signed integral type
streamsize to represent the number of characters transferred in an 1/0 operation and the size of I/O
buffers. Similarly, atypedef called streamoff is supplied for expressing offsets in streams and
buffers.

Several standard streams are declaredostream>:

ostream cout; / | standard output stream of char
ostream cerr; / | standard unbuffered output stream for error messages
ostream dog; /| standard output stream for error messages

wostream wcout; / / wide stream corresponding to cout
wostream wcerr; / / wide stream corresponding to cerr
wostream wclog; / / wide stream corresponding to clog

The car andclog streams refer to the same output destination; they simply differ in the buffering
they provide. Thecout writes to the same destination as &dout (821.8), whilecerr and clog

write to the same destination as Gtderr. The programmer can create more streams as needed
(see §21.5).

21.2.2 Output of Built-In Types [io.out.builtin]
The clas®streamis defined with the operater (“put to”) to handle output of the built-in types:

template <class Ch, class Tr = char_traits<Ch> >
class hasic_ostream: virtual public basic_ios<Ch, Tr> {
public:

...

basic_ostreams& operator<<(short n);
basic_ostreams. operator<<(int n);
basic_ostream& operator<<(long n);

basic_ostreamg& operator<<(unsigned short n);
basic_ostream& operator<<(unsigned int n);
basic_ostream& operator<<(unsigned long n);

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

610 Streams Chapter 21

basic_ostream& operator<<(float f);
basic_ostream& operator<<(double f);
basic_ostream& operator<<(long double f);

basic_ostream& operator<<(bool n);
basic_ostream& operator<<(const void* p); /| write pointer value

basic_ostream& put(Ch ¢); [| write c
basic_ostreamg& write(const Ch* p, streamsize m); / / p[0]..p[n-1]

1o
h

An operator<<() returns a reference to tlstreamfor which it was called so that anothapera-
tor<<() can be applied to it. For example,

car <<"x=" <<x;
wherex is anint, will be interpreted as:
(cerr. operator<<(" x=")). operator<<(x);

In particular, this implies that when several items are printed by a single output statement, they will
be printed in the expected order: left to right. For example:

void val(char c)

{
cout<<"int("" <<c<<") =" <<int(c) <<'\n’;
}
int main()
{
val(" A);
val(" Z) ;
}
On an implementation using ASCII characters, this will print:
int(A) =65
intC Z) =90

Note that a character literal has tyghar (84.3.1) so thatout<<” Z" will print the letterZ and not
the integer valu80.
A bool value will be output a® or 1 by default. If you don't like that, you can set the format-
ting flag boolalpha from <iomanip> (821.4.6.2) and gdtue or false For example:
int main()
{

cout << true<<’ ’~ << false<< " \n’;
cout << boolalpha; / | use symbolic representation for true and false
cout << true<<’”~ ~ << false<< " \n’;

}
This prints:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 21.2.2 Output of Built-In Types 611

10
true false

More preciselyboolalpha ensures that we get a locale-dependent representatlmmobf/alues.
By setting my locale (821.7) just right, | can get:

10
sandt falsk

Formatting floating-point numbers, the base used for integers, etc., are discussed in §21.4.
The functionostream: : operator<<(const void*) prints a pointer value in a form appropriate
to the architecture of the machine used. For example,

int main()
{
int i =0;
int* p=new int;
cout<<"local " << & <<", free store" << p<<’\n;

}

printed
local Ox7fffeadO, free store @x500c

on my machine. Other systems have different conventions for printing pointer values.

Theput() andwrite() functions simply write characters. Consequently tkdor outputting
characters need not be a member. dperator<<() functions that take a character operand can
be implemented as nhonmembers ugntf) :

template<class Ch, class Tr>

basic_ostream<Ch, Tr>& operator<<(basic_ostream<Ch, Tr>&, Ch);
template<class Ch, class Tr>

basic_ostream<Ch, Tr>& operator<<(basic_ostream<Ch, Tr>&, char);
template<class Tr>

basic_ostream<char, Tr>& operator<<(basic_ostream<char, Tr>&, char);
template<class Tr>

basic_ostream<char, Tr>& operator<<(basic_ostream<char, Tr>&, signed char);
template<class Tr>

basic_ostream<char, Tr>& operator<<(basic_ostream<char, Tr>&, unsigned char);

Similarly, << is provided for writing out zero-terminated character arrays:

template<class Ch, class Tr>

basic_ostream<Ch, Tr>& operator<<(basic_ostream<Ch, Tr>&, const Ch*) ;
template<class Ch, class Tr>

basic_ostream<Ch, Tr>& operator<<(basic_ostream<Ch, Tr>&, const char*) ;
template<class Tr>

basic_ostream<char, Tr>& operator<<(basic_ostream<char, Tr>&, const char*) ;
template<class Tr>

basic_ostream<char, Tr>& operator<<(basic_ostream<char, Tr>&, const signed char*) ;
template<class Tr>

basic_ostream<char, Tr>& operator<<(basic_ostream<char, Tr>&, const unsigned char*) ;

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

612 Streams Chapter 21

21.2.3 Output of User-Defined Types [io.out.udt]

Consider a user-defined typemplex (§11.3):

class complex {

public:
double real() const{ return re; }
double imag() const{ return im; }
/..

h
Operator< can be defined for the new typemplex like this:

ostreamé& operator<<(ostream&s, complex 2
{

}

return s<<’(" <<zreal() <<’/ <<z imag() <<’);

This << can then be used exactly like for a built-in type. For example,

int main()
complex x(1, 2);
cout<<"x=" <<x<<’'\n’;
}
produces
x=(1 2

Defining an output operation for a user-defined type does not require modification of the declara-
tion of classostream. This is fortunate becausmstream is defined in<iostream>, which users

cannot and should not modify. Not allowing addition@s$tream also provides protection against
accidental corruption of that data structure and makes it possible to change the implementation of
anostream without affecting user programs.

21.2.3.1 Virtual Output Functions [io.virtual]

The ostream members are natirtual. The output operations that a programmer can add are not
members, so they cannot tietual either. One reason for this is to achieve close to optimal perfor-
mance for simple operations such as putting a character into a buffer. This is a place where run-
time efficiency is crucial and where inlining is a must. Virtual functions are used to achieve flexi-
bility for the operations dealing with buffer overflow and underflow only (§21.6.4).

However, a programmer sometimes wants to output an object for which only a base class is
known. Since the exact type isn’'t known, correct output cannot be achieved simply by defining a
<< for each new type. Instead, a virtual output function can be provided in the abstract base:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 21.2.3.1 Virtual Output Functions 613

class My _base{

public:
/...
virtual ostream®& put(ostream& s) const=0; / / write *thisto s
h
ostream& operator<<(ostream& s, const My _base& r)
{
return r. put(s); / / use the right put()
}

That is,put() is a virtual function that ensures that the right output operation is used in
Given that, we can write:

class Sometype: public My base{
public:
/..

ostream& put(ostream& s) const, /I the real output function: override Miase::put()
h
void f(const My base&. r, Sometype& s) / / use<< which calls the right put()
{

}

This integrates the virtuglut() into the framework provided bgstream and<<. The technique
is generally useful to provide operations that act like virtual functions, but with the run-time selec-
tion based on their second argument.

cout << r << s;

21.3 Input [io.in]

Input is handled similarly to output. There is a clesteeam that provides an input operator
(“get from”) for a small set of standard types. Aperator>>() can then be defined for a user-
defined type.

21.3.1 Input Streams [io.istream]

In parallel tobasic_ostream (§21.2.1) basic_istream is defined in<istream>, which contains the
input-related parts ofiostream>, like this:

template <class Ch, class Tr = char_traits<Ch> >
class sd: : basic_istream: virtual public basic_ios<Ch, Tr> {

public:
virtual ~basic_istream() ;
..

3

The base cladsasic_iosis described in §21.2.1.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

614 Streams Chapter 21

Two standard input streami andwcin are provided irkiostream>:

typedef basic_istream<char> istream;
typedef basic_istream<wchar_t> wistream;

istream cin; / / standard input stream of char
wistream wein; // standard input stream of wchar

Thecin stream reads from the same source astdin (§21.8).

21.3.2 Input of Built-In Types [io.in.builtin]
An istream provides operatoe> for the built-in types:

template <class Ch, class Tr = char_traits<Ch> >
class lbasic_istream: virtual public basic_ios<Ch, Tr> {
public:

/...

/1 formatted input:

basic_istreamg& operator>>(short& n); / | readinton
basic_istreamg& operator>>(int& n);
basic_istream& operator>>(long& n);

basic_istream& operator>>(unsigned short& u);/ / read into u
basic_istream& operator>>(unsigned int& u);

basic_istream& operator>>(unsigned long& u);

basic_istream& operator>>(float& f) ; [| readinto f
basic_istream& operator>>(double& f);

basic_istream& operator>>(long double& f);

read into b

basic_istream& operator>>(bool& b); /
/ read pointer value into p

basic_istream& operator>>(void*& p);

1o
kh

Theoperator>>() input functions are defined in this style:

istreamg. istream : operator>>(T&tvar) / / Tis a type for which istream::operater is declared

/1 skip whitespace, then somehow read a T into ‘tvar’
return * this;
}

Because>> skips whitespace, you can read a sequence of whitespace-separated integers like this:

int read_ints(vector<int>&v) / / fill v, return number of ints read

{
inti=0;
while (i<v. size() &&cin>>V[i]) i++;
return i;

}

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 21.3.2 Input of Built-In Types 615

A non-nt on the input will cause the input operation to fail and thus terminate the input loop. For
example, the input:

12345678

will haveread ints() read in the five integers
12345

and leave the dot as the next character to be read from input. Whitespace is defined as the standard
C whitespace (blank, tab, newline, formfeed, and carriage return) by a issjsaoe() as defined
in <cctype> (§20.4.2).

The most common mistake when usistyeams is to fail to notice that input didn’t happen as
expected because the input wasn’t of the expected format. One should either check the state of an
input stream (821.3.3) before relying on values supposedly read in or use exceptions (§21.3.6).

The format expected for input is specified by the current locale (§21.7). By defaldpdhe
valuestrue and false are represented by and 0, respectively. Integers must be decimal and
floating-point numbers of the form used to write them int& @rogram. By settindase field
(821.4.2), it is possible to redd23 as an octal number with the decimal va8BandOxff as a
hexadecimal number with the decimal vah. The format used to read pointers is completely
implementation-dependent (have a look to see what your implementation does).

Surprisingly, there is no membep for reading a character. The reason is simply #xafor
characters can be implemented usinggef) character input operations (821.3.4), so it doesn’t
need to be a member. From a stream, we can read a character into the stream’s character type. If
that character type char, we can also read intosigned char andunsigned char:

template<class Ch, class Tr>
basic_istream<Ch, Tr>& operator>>(basic_istream<Ch, Tr>&, Ch&);

template<class Tr>
basic_istream<char, Tr>& operator>>(basic_istream<char, Tr>&, unsigned char&);

template<class Tr>
basic_istream<char, Tr>& operator>>(basic_istream<char, Tr>&, signed char&);

From a user’s point of view, it does not matter whetther & a member.
Like the other>> operators, these functions first skip whitespace. For example:

void f()

{
char c;
cin >> ¢
/...

}

This places the first non-whitespace character ftiminto c.
In addition, we can read into an array of characters:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

616 Streams Chapter 21

template<class Ch, class Tr>

basic_istream<Ch, Tr>& operator>>(basic_istream<Ch, Tr>&, Ch*) ;
template<class Tr>

basic_istream<char, Tr>& operator>>(basic_istream<char, Tr>&, unsigned char*) ;
template<class Tr>

basic_istream<char, Tr>& operator>>(basic_istream<char, Tr>&, signed char?*) ;

These operations first skip whitespace. Then they read into their array operand until they encounter
a whitespace character or end-of-file. Finally, they terminate the string vdithGlearly, this

offers ample opportunity for overflow, so reading intstrdng (820.3.15) is usually better. How-

ever, you can specify a maximum for the number of characters to be reae s/ width(n)

specifies that the next> onis will read at mosh- 1 characters into an array. For example:

void g()

char v[4];

cin. width(4);

cin>>v;

cout<<"v=" << v<<end,

}

This will read at most three characters mtnd add a terminating
Settingwidth() for anistream affects only the immediately following> into an array and
does not affect reading into other types of variables.

21.3.3 Stream State [io.state]

Every streamigtream or ostream) has astateassociated with it. Errors and nonstandard condi-
tions are handled by setting and testing this state appropriately.
The stream state is foundiasic_istream's basebasic_iosfrom <ios>:

template <class Ch, class Tr = char_traits<Ch> >
class lbasic_ios: public ios base{
public:

/..

bool good() const, / / next operation might succeed
bool eof() const / / end of input seen

bool fail() const; / / nextoperation will fail

bool bad() const / / stream is corrupted

iostate rdstate() const; / | getio state flags
void clear(iostate f= goodbit); | | setio state flags
void setstate(iostate f) { clear(rdstate()] f); } // add fto io state flags
operator void*() const /1 nonzero if !fail()
bool operator!() const{ return fail() ; }

..

2
If the state iggood() the previous input operation succeeded. If the stajedad() , the next input

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 21.3.3 Stream State 617

operation might succeed; otherwise, it will fail. Applying an input operation to a stream that is not
in thegood() state is a null operation. If we try to read into a variatéad the operation fails,
the value ofv should be unchanged (it is unchangedis a variable of one of the types handled by
istream or ostream member functions). The difference between the st@®g andbad() is
subtle. When the state fiail() but not alsdbad() , it is assumed that the stream is uncorrupted
and that no characters have been lost. When the shsd()s, all bets are off.
The state of a stream is represented as a set of flags. Like most constants used to express the
behavior of streams, these flags are defindshsic_ios baseios base

class ios_base{
public:
/..

typedef implementation defined? iostate;
static const iostate badbit, / / stream is corrupted
eofbit, / / end-of-file seen
failbit, / / next operation will fail
goodbit; / / goodbit==0
/...
h

The I/O state flags can be directly manipulated. For example:

void f()
{
ios base : iostate s= cin. rdstate() ; / / returns a set of iostate bits
if (s &ios_base : badbit) {
/1 cin characters possibly lost
}

/..
cin. setstate(ios_base : failbit) ;
/..

}

When a stream is used as a condition, the state of the stream is tesiatdtgr void*() or
operator!() . The test succeeds only if the statgaed() . For example, a general copy function
can be written like this:

template<class T> void iocopy(istream& is, ostream& 0s)

{
T buf;
while (is>>buf) os<< buf << " \n’;

}

The is>>buf returns a reference ts, which is tested by a call d§:: operator void*() . For
example:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

618 Streams Chapter 21

void f(istream& il, istream& i2, istream& i3, istream& i4)

{
iocopy<complex>(i1, cout); / / copy complex numbers
iocopy<double>(i2, cout); / | copy doubles
iocopy<char>(i3, cout); / | copy chars
iocopy<string>(i4, cout); /| copy whitespace-separated words
}

21.3.4 Input of Characters [io.in.unformatted]

The >> operator is intended for formatted input; that is, reading objects of an expected type and
format. Where this is not desirable and we want to read characters as characters and then examine
them, we use thget() functions:

template <class Ch, class Tr = char_traits<Ch> >
class lbasic_istream: virtual public basic_ios<Ch, Tr> {
public:

/..

/1 unformatted input:

streamsize gcount() const; /| number of char read by last get()
int_type get() ; /| read one Ch (or Tr::eof())
basic_istream& get(Ch& c); [| read one Chinto ¢

basic_istreamg& get(Ch* p, streamsize m); /| newline is terminator
basic_istream& get(Ch* p, streamsize m, Ch term);

basic_istream& getling(Ch* p, streamsize m); / / newline is terminator
basic_istream& getlineg{ Ch* p, streamsize m Ch term);
basic_istream& ignore(streamsize m= 1, int_type t=Tr:: eof()) ;
basic_istream& read(Ch* p, streamsize m); / | read at most n char
Il ...

3

Theget() andgetling() functions treat whitespace characters exactly like other characters. They
are intended for input operations, where one doesn't make assumptions about the meanings of the
characters read.
The functionistream: : get(char&) reads a single character into its argument. For example, a
character-by-character copy program can be written like this:
int main()
{
char c;
while(cin. get(c)) cout. put(c);
}

The three-argumerg get(p, n, term) reads at at most- 1 characters int@[0].. p[n-2]. A
call of get() will always place @ at the end of the characters (if any) it placed in the buffep, so

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 21.3.4 Input of Characters 619

must point to an array of at leastharacters. The third argumeterm, specifies a terminator. A
typical use of the three-argumeget() is to read a “line” into a fixed-sized buffer for further
analysis. For example:

void f()
{
char buf[100];
cin >> buf; / | suspect: will overflow some day
cin. get(buf, 100,” \n") ; / / safe
/...
}

If the terminator is found, it is left as the first unread character on the stream. Negat(gall
twice without removing the terminator. For example:

void subtle_infinite_loop()

char buf] 256];
while (cin) {

cin. get(buf, 256); / / read aline

cout << buf; /I print a line. Oops: forgot to remove '\n’ from cin
}

}

This example is a good reason to prejetiine() overget() . A getling() behaves like its corre-
spondingget() , except that it removes its terminator from isteeam. For example:

void f()
{
char word[100][MAX];
int i =0;
while(cin. getline(word[i++], 100, \n) &&i<MAX);
...

}

When efficiency isn't paramount, it is better to read instrimg (83.6, §20.3.15). In that way, the
most common allocation and overflow problems cannot occur. Howevegetf)e, getling() |,
andread() functions are needed to implement such higher-level facilities. The relatively messy
interface is the price we pay for speed, for not having to re-scan the input to figure out what termi-
nated the input operation, for being able to reliably limit the number of characters read, etc.

A call read(p, n) reads at mogt characters int@[0].. p[n- 1] . The read function does not
rely on a terminator, and it doesn’t put a terminafinigto its target. Consequently, it really can
readn characters (rather than justl). In other words, it simply reads characters and doesn't try
to make its target into a C-style string.

Theignore() function reads characters likead() , but it doesn’t store them anywhere. Like
read() , it really can read characters (rather tham 1). The default number of characters read by
ignore() is 1, so a call ofgnore() without an argument means “throw the next character away.”
Like getling() , it optionally takes a terminator and removes that terminator from the input stream
if it gets to it. Note thaignore() 's default terminator is end-of-file.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

620 Streams Chapter 21

For all of these functions, it is not immediately obvious what terminated the-raad it can
be hard even to remember which function has what termination criterion. However, we can always
inquire whether we reached end-of-file (§21.3.3). Atgmunt() gives the number of characters
read from the stream by the most recent, unformatted input function call. For example:

void read_a_ling(int max)

{
/..

if (cin. fail()) { / / Oops: bad input format
cin. clear() ; ! | clear the input flags (821.3.3)
cin. ignore(max,”;") ; / / skip to semicolon

if (! cin) {
/1 oops: we reached the end of the stream

else iif (cin. gcount()== max) {
/1 oops: read max characters
}

else{
// found and discarded the semicolon
}

}

Unfortunately, if the maximum number of characters are read there is no way of knowing whether
the terminator was found (as the last character).

Theget() that doesn’t take an argument is #iestream> version of the<cstdio> getchar()
(821.8). It simply reads a character and returns the character’'s numeric value. In that way, it
avoids making assumptions about the character type used. If there is no input character to return,
get() returns a suitable “end-of-file” marker (that is, the streatnaits type : eof()) and sets
theistream into eof-state (§21.3.3). For example:

void f(unsigned char* p)

{
int i
while((i = cin. get()) &&il= EOF) {
*p++ =i
...
}
}

EOF is the value okof() from the usuathar_traits for char. EOF is presented ixiostream>.
Thus, this loop could have been writtead(p, MAX_INT) , but presumably we wrote an explicit
loop because we wanted to look at each character as it came in. It has been said that C's greatest
strength is its ability to read a character and decide to do nothing witimid to do this fast. Itis
indeed an important and underrated strength, and onetthaii@s to preserve.

The standard headetcctype> defines several functions that can be useful when processing
input (820.4.2). For example, aatwhite() function that reads whitespace characters from a
stream could be defined like this:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 21.3.4 Input of Characters 621

istream& eatwhite(istream& is)

{
char c;
while (is. get(¢c)) {
if (! isspace(c)) { / / iscawhitespace character?
is. putback(c);/ / put c back into the input buffer
break;
}
} -
return is;
}

The callis. putback(c) makesc be the next character read from the strés(621.6.4).

21.3.5 Input of User-Defined Types [io.in.udt]

An input operation can be defined for a user-defined type exactly as an output operation was. How-
ever, for an input operation, it is essential that the second argument be otensbreference
type. For example:

istream& operator>>(istream& s, complex& a)

/*
input formats for a complex ("f* indicates a floating-point number):
f
(f)
(f.f)
*/
{
double re=0, im=0;
char ¢c=0;
S>> C;
if(c=="() {
S>> re>> G,
if(c==") s>im>>g;
if(c!= ")) s clear(ios base: badbit);/ / set state
}
else{
S. putback(c);
S>> re;
}
if (s) a=complex(re, im);
return s
}

Despite the scarcity of error-handling code, this will actually handle most kinds of errors. The local
variablec is initialized to avoid having its value accidentally’fe after a failed first>> opera-

tion. The final check of the stream state ensures that the value of the argusemanged only if
everything went well.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

622 Streams Chapter 21

The operation for setting a stream state is calledr() because its most common use is to
reset the state of a stream good() ; ios base : goodbit is the default argument value for
ios base : clear() (§21.3.3).

21.3.6 Exceptions [io.except]

It is not convenient to test for errors after each 1/O operation, so a common cause of error is failing
to do so where it matters. In particular, output operations are typically unchecked, but they do
occasionally fail.

The only function that directly changes the state of a strealear) . Thus, an obvious way
of getting notified by a state change is to elgar() to throw an exception. Thes base mem-
berexceptions() does just that:

template <class Ch, class Tr = char_traits<Ch> >
class lbasic_ios: public ios base{

public:
/..
class failure; / / exception class (see §14.10)
iostate exceptions() const; | | get exception state
void exceptions(iostate except); | | set exception state
/..

h

For example,

cout. exceptions(ios_base : badbit| ios_base : failbit| ios_base : eofbit);

requests thatlear() should throw arios base : failure exception ifcout goes into statebad,
fail, oreof — in other words, if any output operation cout doesn’t perform flawlessly. Similarly,

cin. exceptions(ios_base : badbit| ios_base : failbit);

allows us to catch the not-too-uncommon case in which the input is not in the format we expected,
so an input operation didn't return a value from the stream.

A call of exceptions() with no arguments returns the set of I/O state flags that triggers an
exception. For example:

void print_exceptions(ios_base ios)

{
ios base : iostate s= ios. exceptions() ;
if (s&ios_base : badbit) cout << " throws for bad";
if (s&ios_base : failbit) cout << " throws for fail";
if (s&ios_base : eofbit) cout << " throws for eof";
if (s==0) cout << "doesn' t throw";

}

The primary use of 1/0 exceptions is to catch unlikeland therefore often forgotten errors.
Another is to control 1/0. For example:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 21.3.6 Exceptions 623

void readints(vector<int>& s) / | not my favorite style!
{
ios base : iostate ald_state = cin. exceptions() ;/ / save exception state
cin. exceptions(ios_base : eofbit); /I throw for eof
for (;;)
try {
int i;
cin>>i;
s. push_back(i);

}
catch(ios _base : eaf) {

/1 ok: end of file reached
}

cin. exceptions(old_state); | | reset exception state

}

The question to ask about this use of exceptions is, “Is that an error?” or “Is that really excep-
tional?” (814.5). Usually, | find that the answer to either question is no. Consequently, | prefer to
deal with the stream state directly. What can be handled with local control structures within a func-
tion is rarely improved by the use of exceptions.

21.3.7 Tying of Streams [io.tie]

The basic_ios functiontie() is used to set up and break connections betweésiream and an
ostream

template <class Ch, class Tr = char_traits<Ch> >
class sd: : basic_ios: public ios base{
/..

basic_ostream<Ch, Tr>* tie() const / | get pointer to tied stream
basic_ostream<Ch, Tr>* tie(basic_ostream<Ch, Tr>* s); [/ / tie *thisto s
/..

h

Consider:
?lring get_passwd()

string s
cout << " Password: "
cin>>s;
/1 ...
}

How can we be sure thRassword: appears on the screen before the read operation is executed?
The output oncout is buffered, so iftin and cout had been independeRtassword: would not

have appeared on the screen until the output buffer was full. The answercauthattied tocin

by the operatiowin. tie(& cout) .

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

624 Streams Chapter 21

When anostream is tied to anistream, theostream is flushed whenever an input operation on
the istream causes underflow; that is, whenever new characters are needed from the ultimate input
source to complete the input operation. Thus,

cout << " Password: ";
cin>>s;

is equivalent to:

cout << " Password: ";
cout. flush() ;
cin>>s;

A stream can have at most oostream at a time tied to it. A calb. tie(0) unties the streara
from the stream it was tied to, if any. Like most other stream functions that set atielge,
returns the previous value; that is, it returns the previously tied stre@mpocall without an argu-
ment,tie() , returns the current value without changing it.

Of the standard streamsput is tied tocin andwcout is tied towcin. The cerr streams need
not be tied because they are unbuffered, whilehhgstreams are not meant for user interaction.

21.3.8 Sentries [io.sentry]

When | wrote operators< and>> for complex, | did not worry about tied streams (821.3.7) or
whether changing stream state would cause exceptions (821.3.6). | assuoregctly— that the
library-provided functions would take care of that for me. But how? There are a couple of dozen
such functions. If we had to write intricate code to handle tied stréacates (§21.7), exceptions,
etc., in each, then the code could get rather messy.

The approach taken is to provide the common code throsghtry class. Code that needs to
be executed first (the “prefix code™ such as flushing a tied streasris provided as theentry's
constructor. Code that needs to be executed last (the “suffix cedslfh as throwing exceptions
caused by state changess provided as theentry’s destructor:

template <class Ch, class Tr = char_traits<Ch> >

class hasic_ostream: virtual public basic_ios<Ch, Tr> {
/..
class sentry;
/..

k

template <class Ch, class Tr = char_traits<Ch> >
class basic_ostream<Ch, Tr>: : sentry {

public:
explicit sentry(basic_ostream<Ch, Tr>& s);
~sentry() ;
operator bool() ;
/...
2

Thus, common code is factored out and an individual function can be written like this:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 21.3.8 Sentries 625

template <class Ch, class Tr = char_traits<Ch> >
basic_ostream<Ch, Tr>& basic_ostream<Ch, Tr>: : operator<<(int i)
{
sentry s(* this);
if (! s) { / / check whether all is well for output to start
setstate(failbit) ;
return * this;

}

/1 output the int
return * this;

}

This technigue of using constructors and destructors to provide common prefix and suffix code
through a class is useful in many contexts.
Naturally,basic_istream has a similasentry member class.

21.4 Formatting[io.format]

The examples in §21.2 were all of what is commonly callgdrmatted output That is, an object

was turned into a sequence of characters according to default rules. Often, the programmer needs
more detailed control. For example, we need to be able to control the amount of space used for an
output operation and the format used for output of numbers. Similarly, some aspects of input can
be explicitly controlled.

Control of I/O formatting resides in clabasic_ios and its basés base For example, class
basic_ios holds the information about the base (octal, decimal, or hexadecimal) to be used when
integers are written or read, the precision of floating-point numbers written or read, etc. It also
holds the functions to set and examine these per-stream control variables.

Classbasic_iosis a base obasic_istream andbasic_ostream, so format control is on a per-
stream basis.

21.4.1 Format State [io.format.state]

Formatting of I/O is controlled by a set of flags and integer values in the stiesnbase

class ios_base{
public:
/...
/1 names of format flags:

typedef implementation definedl1 fmiflags;
static const fmtflags

skipws, /I skip whitespace on input

left, /| field adjustment: pad after value
right, / | pad before value

intemal, / | pad between sign and value

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

626 Streams Chapter 21

boolalpha, /| use symbolic representation of true and false

dec, / | integer base: base 10 output (decimal)

hex, / | base 16 output (hexadecimal)

oct, /| base 8 output (octal)

scientific, / | floating-point notation: d.ddddddEdd

fixed, / |/ dddd.dd

showbase, /1 on output prefix oct by 0 and hex by 0x

showpoint, /I print trailing zeros

showpos, /| explicit '+ for positive ints

uppercase [| 'E’, "X rather than 'e’, 'X’

adjustfield, ! 1 flags related to field adjustment (821.4.5)

basefield, | | flags related to integer base (§21.4.2)

floatfield; | | flags related to floating-point output (§21.4.3)

fmtflags wnitbuf;, / / flush output after each output operation
fmtflags flags() const /I read flags
fmtflags flags(fmtflags f); I | setflags
fmitflags setf(fmiflags f) { return flagy(flags()| f); } / | add flag
fmtflags setf(fmtflags f, fmtflags mask) { return flags(flags()|(f&mask)) ; } / add flag
void unsetf(fmtflags mask) { flags(flags()&~ mask); } [| clear flags

/...
I3
The values of the flags are implementation-defined. Use the symbolic names exclusively, rather
than specific numeric values, even if those values happen to be correct on your implementation
today.
Defining an interface as a set of flags, and providing operations for setting and clearing those
flags is a time-honored if somewhat old-fashioned technique. Its main virtue is that a user can
compose a set of options. For example:

const ios base : fmtflags my_opt = ios base : left| ios _base : oct| ios base : fixed;
This allows us to pass options around and install them where needed. For example:
void your_function(ios_base : fmiflags opt)

{
ios base : fmiflags ald_options = cout. flags(opt); / / save oldoptions and set new ones
/..
cout. flags(old_options); / / reset options
}
void my_function()
{
your_function(my_opt);
...
}

Theflags() function returns the old option set.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 21.4.1 Format State 627

Being able to read and set all options allows us to set an individual flag. For example:
myostream. flags(myostream flags()| ios base : showpos);

This makesmystream display an explicit- in front of positive numbers without affecting other
options. The old options are read, ahdwposis set by or-ing it into the set. The functisetf()
does exactly that, so the example could equivalently have been written:

myostream. setf(ios_base : showpos);

Once set, a flag retains its value until it is unset.

Controlling 1/0 options by explicitly setting and clearing flags is crude and error-prone. For
simple cases, manipulators (§21.4.6) provide a cleaner interface. Using flags to control stream state
is a better study in implementation technique than in interface design.

21.4.1.1 Copying Format State [io.copyfmt]

The complete format state of a stream can be copiedgymt() :

template <class Ch, class Tr = char_traits<Ch> >
class lbasic_ios: public ios base{

public:
/...
basic_ios& copyfmt(const basic_i0s& f);
...

h

The stream’s buffer (821.6) and the state of that buffer isn't copiedgyymt() . However, all of
the rest of the state is, including the requested exceptions (821.3.6) and any user-supplied additions
to that state (§21.7.1).

21.4.2 Integer Output [io.out.int]

The technique of or-ing in a new option witags() or setf() works only when a single bit con-
trols a feature. This is not the case for options such as the base used for printing integers and the
style of floating-point output. For such options, the value that specifies a style is not necessarily
represented by a single bit or as a set of independent single bits.

The solution adopted iriostream> is to provide a version ofetf() that takes a second
“pseudo argument” that indicates which kind of option we want to set in addition to the new value.
For example,

cout. setf(ios _base : oct, ios_base : basefield); / / octal
cout. setf(ios_base : dec, ios_base : basefield); / / decimal
cout. setf(ios_base : hex, ios_base : basefield); / / hexadecimal

sets the base of integers without side effects on other parts of the stream state. Once set, a base is
used until reset. For example,

cout<< 1234<<’ ~ << 1234<<” 7; [| default: decimal

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

628 Streams Chapter 21

cout. setf(ios _base : oct, ios_base : basefield); / / octal
cout<< 1234 <<’ " << 1234<<” 7

cout. setf(ios_base : hex, ios_base : basefield); / / hexadecimal
cout<< 1234 <<’ 7 << 1234<<”

producesl234 1234 2322 2322 4d2 4d2.
If we need to be able to tell which base was used for each number, we slowbzise Thus,
adding

cout. setf(ios_base : showbase);

before the previous operations, we 4234 1234 02322 02322 0x4d2 O0x4d2. The standard
manipulators (§21.4.6.2) provide a more elegant way of specifying the base of integer output.

21.4.3 Floating-Point Output [io.out.float]

Floating-point output is controlled byfarmatand aprecision

— Thegeneralformat lets the implementation choose a format that presents a value in the style
that best preserves the value in the space available. The precision specifies the maximum
number of digits. It correspondspaintf() 's %g (821.8).

— Thescientificformat presents a value with one digit before a decimal point and an exponent.
The precision specifies the maximum number of digits after the decimal point. It corre-
sponds tgrintf() 's %e.

— Thefixedformat presents a value as an integer part followed by a decimal point and a frac-
tional part. The precision specifies the maximum number of digits after the decimal point.
It corresponds tprintf() 's %.

We control the floating-point output format through the state manipulation functions. In particular,
we can set the notation used for printing floating-point values without side effects on other parts of
the stream state. For example,

cout << " default: \t" << 1234. 56789 << " \n’;

cout. setf(ios_base : scentific, ios base : floatfield); / / use scientific format
cout << " scentific: \t" << 1234. 56789 << " \n’;

cout. setf(ios_base : fixed, ios_base : floatfield); | | use fixed-point format
cout << " fixed \t" << 1234. 56789 << " \n’;

cout. setf(0, ios base : floatfield); /| reset to default (that is, general format)
cout << " default; \t" << 1234. 56789 << " \n’;

produces

default: 1234. 57
scientific: 1. 234568e+03
fixedt 1234. 567890
default: 1234. 57

The default precision (for all formats) & The precision is controlled by aas base member
function:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 21.4.3 Floating-Point Output 629

class ios_base{

public:
/...
streamsize precision() const; / | get precision
streamsize precision(streamsize m); / / set precision (and get old precision)
/...
I

A call of precision() affects all floating-point 1/0O operations for a stream up until the next call of
precision() . Thus,

cout. precision(8);

cout << 1234. 56789 <<~ ~ << 1234. 56789 <<~ ~ << 123456 << "\n’;

cout. precision(4);
cout << 1234. 56789 <<~ ~ << 1234. 56789 <<~ ~ << 123456 << " \n’;

produces

1234. 5679 1234. 5679 123456
1235 1235 123456

Note that floating-point values are rounded rather than just truncated ampdeitision() doesn't
affect integer output.

Theuppercaseflag (§21.4.1) determines whetheor E is used to indicate the exponents in the
scientific format.

Manipulators provide a more elegant way of specifying output format for floating-point output
(821.4.6.2).

21.4.4 Output Fields [io.fields]

Often, we want to fill a specific space on an output line with text. We want to use axeltlyac-
ters and not fewer (and more only if the text does not fit). To do this, we specify a field width and a
character to be used if padding is needed:

class ios base{

public:
/...
streamsize width() const / | get field width
streamsize width(streamsize wide); / / set field width
/..

h

template <class Ch, class Tr = char_traits<Ch> >
class basic_ios: public ios base{

public:
/..
Ch fill() const, I | getfiller character
Ch fill(Ch ch); /| setfiller character
..

h

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

630 Streams Chapter 21

Thewidth() function specifies the minimum number of characters to be used for the next standard
library << output operation of a numeric valumol, C-style string, character, pointer (821.2.1),
string (820.3.15), andbitfield (§17.5.3.3). For example,

cout. width(4);
cout << 12;

will print 12 preceded by two spaces.
The “padding” or “filler” character can be specified by tffil() function. For example,

cout. width(4);
cout. fill('#) ;
cout << " ab";

gives the output#ab.
The default fill character is the space character and the default field 8jzaésaning “as many
characters as needed.” The field size can be reset to its default value like this:

cout. width(0); // "“as many characters as needed”

A call width(n) function sets the minimum number of charactem. téf more characters are pro-
vided, they will all be printed. For example,

cout. width(4);
cout << " abcdef";

producesabcdef rather than jusabed. It is usually better to get the right output looking ugly than
to get the wrong output looking just fine (see also §21.10[21]).
A width(n) call affects only the immediately followirgg output operation:

cout. width(4);
cout. fill('#) ;
cout<< 12<< "’ << 13

This producesgt#12: 13, rather tham# 12###:## 13, as would have been the case tadih(4)
applied to subsequent operations. Had all subsequent output operations been affeadét)by
we would have had to explicitly specifyidth() for essentially all values.
The standard manipulators (821.4.6.2) provide a more elegant way of specifying the width of an
output field.

21.4.5 Field Adjustment [io.field.adjust]

The adjustment of characters within a field can be controllestfy calls:
cout. setf(ios_base : left, ios_base : adjustfield); [] left
cout. seiff(ios _base : right, ios_base : adjustfield); / / right

cout. setf(ios_base : intemal, ios_base : adjustfield); / / internal

This sets the adjustment of output within an output field definem$®\base : width() without
side effects on other parts of the stream state.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 21.4.5 Field Adjustment 631

Adjustment can be specified like this:

cout. fill('#) ;

cout << "(;
cout. width(4);
cout << - 12<<") ("

cout. width(4);
cout. seif(ios base : left, ios base : adjustfield);
cout << - 12<<") ("

cout. width(4);
cout. setf(ios _base : intemal, ios_base : adjustfield);
cout << - 12<<")";

This produces{#- 12), (- 12#), (-# 12). Internal adjustment places fill characters between the
sign and the value. As shown, right adjustment is the default.

21.4.6 Manipulators [io.manipulators]

To save the programmer from having to deal with the state of a stream in terms of flags, the stan-
dard library provides a set of functions for manipulating that state. The key idea is to insert an
operation that modifies the state in between the objects being read or written. For example, we can
explicitly request that an output buffer be flushed:

cout << x << flush<< y << flush;

Here,cout. flush() is called at the appropriate times. This is done by a versigr ttiat takes a
pointer to function argument and invokes it:

template <class Ch, class Tr = char_traits<Ch> >
class hasic_ostream: virtual public basic_ios<Ch, Tr> {
public:

/...

basic_ostream& operator<<(basic_ostream& (* f)(basic_ostream&)) { return f(* this); }
basic_ostream& operator<<(ios_base% (* f)(ios_base)) ;
basic_ostreamg& operator<<(basic_ios<Ch, Tr>& (* f)(basic_ios<Ch, Tr>&)) ;
/...
h

For this to work, a function must be a nonmember or static-member function with the right type. In
particular,flush() is defined like this:

template <class Ch, class Tr = char_traits<Ch> >
basic_ostream<Ch, Tr>& flush(basic_ostream<Ch, Tr>& s)
{

}

return s flush() ; / / call ostream’s member flush()

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

632 Streams Chapter 21

These declarations ensure that
cout << flush;
is resolved as
cout. operator<<(flush);
which calls
flush(cout);
which then invokes

cout. flush() ;

The whole rigmarole is done (at compile time) to allbasic_ostream : flush() to be called
using thecout<<flush notation.

There is a wide variety of operations we might like to perform just before or just after an input
or output operation. For example:

cout << X;
cout. flush() ;
cout <<y,

cin. noskipws() ; / / don’t skip whitespace
cin >> x;

When the operations are written as separate statements, the logical connections between the opera-
tions are not obvious. Once the logical connection is lost, the code gets harder to understand. The
notion of manipulators allows operations sucHlash() andnoskipws() to be inserted directly

in the list of input or output operations. For example:

cout << x << flush << y << flush;
cin >> noskipws >> X;

Naturally, clasdasic_istream provides>> operators for invoking manipulators in a way similar to
classbasic_ostream:

template <class Ch, class Tr = char_traits<Ch> >
class lbasic_istream: virtual public basic_ios<Ch, Tr> {
public:

/...

basic_istream& operator>>(basic_istream& (* pf)(basic_istream&)) ;
basic_istream& operator>>(basic_ios<Ch, Tr>& (* pf)(basic_ios<Ch, Tr>&)) ;
basic_istream& operator>>(ios_base& (* pf)(ios_base)) ;

Il ...

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 21.4.6.1 Manipulators Taking Arguments 633

21.4.6.1 Manipulators Taking Arguments [io.manip.arg]

Manipulators that take arguments can also be useful. For example, we might want to write
cout << setprecision(4) << angle;

to print the value of the floating-point varialaiagle with four digits.

To do this, setprecision must return an object that is initialized By and that calls
cout: : setprecision(4) when invoked. Such a manipulator is a function object that is invoked by
<< rather than by) . The exact type of that function object is implementation-defined, but it
might be defined like this:

struct smanip {
ios_base& (* f)(ios_baset, int); /| function to be called
int i;
smanip(ios_base& (* ff)(ios_base, int), int ii) : f(ff), i(ii) {}
h
template<cladd Ch, class Tr>
ostream<Ch, Tr>& operator<<(ostream<Ch, Tr>& os, smanip& m)

{
}

The smanip constructor stores its argumentsfiandi, andoperator<< callsf(i) . We can now
definesetprecision() like this:

return m f(os m. i);

ios_base® set_precision(ios base s, int n) / | helper

{
return s setprecision(n);/ / call the member function
}
inline smanip setprecision(int n)
{
return smanip(set_precision, n); /I make the function object
}

We can now write:
cout << setprecision(4) << angle;

A programmer can define new manipulators in the stykamainip as needed (§21.10[22]). Doing
this does not require modification of the definitions of standard library templates and classes such
asbasic_istream, basic_ostream, basic_ios, andios_base

21.4.6.2 Standard I/O Manipulators [io.std.manipulators]

The standard library provides manipulators corresponding to the various format states and state
changes. The standard manipulators are defined in namestgaddanipulators takindo_base,

istream, andostreamarguments are presentediins>, <ostream>, and<iostream>, respectively.

The rest of the standard manipulators are presentsiomanip>.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Chapter 21

symbolic representation of true and false (input and output)

on output prefix oct by 0 and hex by 0x

floating-point format dddd.dd (§21.4.3)

/ | put\n’ and flush

/ | eat whitespace

| clear flags (821.4)

set flags (§21.4)

output integers in base b
make c the fill character

n digits after decimal point
next field is n char

634 Streams

ios_base® boolalpha(ios bases); [/ /
ios_base& noboolalpha(ios base% s); // s.unsetf(iosbase::boolalpha)
ios_base® showbase ios_baseX); [
ios_base® noshowbase(ios baset s);/ / s.unsetf(ioshbase::showbase)
ios_base& showpoint(ios_baset);
ios_base& noshowpoint(ios_base& s); // s.unsetf(iosbase::showpoint)
ios_base& showpos(ios_baset);
ios_base® noshowpos(ios baset s); / / s.unsetf(ioshase::showpos)
ios_base& skipws(ios_base); | | skip whitespace
ios_basef noskipws(ios base& s); / / s.unsetf(ioshase::skipws)
ios_baseX uppercase(ios base); / / X and E rather than x and e
ios_base& nouppercase(ios base); / / x and e rather than X and E
ios_base® intemal(ios_baset); / | adjust §21.4.5
ios_baset left(ios_base); / | pad after value
ios_base& right(ios_baset); /| pad before value
ios_base® deq(ios_basel); /I integer base is 10 (§21.4.2)
ios_base® hex(ios_base); | | integer base is 16
ios_base® oct(ios_base); | | integer base is 8
ios_base fixed(ios_base%); /!
ios_base& scdentific(ios_baset); /| scientific format d.ddddEdd
template <class Ch, class Tr>

basic_ostream<Ch, Tr>& endl(basic_ostream<Ch, Tr>&);
template <class Ch, class Tr>

basic_ostream<Ch, Tr>& ends(basic_ostream<Ch, Tr>&); / / put \0’ and flush
template <class Ch, class Tr>

basic_ostream<Ch, Tr>& flush(basic_ostream<Ch, Tr>&); / / flush stream
template <class Ch, class Tr>

basic_istream<Ch, Tr>& wg(basic_istream<Ch, Tr>&);
smanip resetiosflags(ios base : fmiflags f); /
smanip setiosflags(ios_base : fmtflags f); /]
smanip setbase(int b); !
smanip seffill(int c); [
smanip setprecision(int n); !
smanip setw(int n); /1

For example,

cout << 1234 <<’/
producesl234, 4d2, 2322 and

cout << (" << setw(4) << seffill('#")
produces## 12) (12).

<< hex<< 1234 << "/’

<< oct << 1234 << endl;

<< 12 << n) (n << 12 << u) \n“;

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 21.4.6.2 Standard I/O Manipulators 635

When using manipulators that do not take argumebotsiotadd parentheses. When using stan-
dard manipulators that take arguments, remembénidude <iomanip>. For example:

#include <iostream>

int main()
{
std: : cout << setprecision(4) / / error: setprecision undefined (forgetomanip>)
<< sdentific() /| error: ostreanx<ostreamé& (spurious parentheses)
<< d<< endl;

21.4.6.3 User-Defined Manipulators [io.ud.manipulators]

A programmer can add manipulators in the style of the standard ones. Here, | present an additional
style that | have found useful for formatting floating-point numbers.

The precision used persists for all output operations, bwidth() operation applies to the
next numeric output operation only. What | want is something that makes it simple to output a
floating-point number in a predefined format without affecting future output operations on the
stream. The basic idea is to define a class that represents formats, another that represents a format

plus a value to be formatted, and then an operatdhat outputs the value to astream accord-
ing to the format. For example:

Form gemd(4); // general format, precision is 4
void f(double d)

{
Form sci8 = ger;
sci8. scentific(). predision(8);/ / scientific format, precision 8
cout<<d<<’ ~ <<ge(d) <<’ ~ <<sd8(d) <<’ <<d<<’\n;
}

A call f(1234. 56789) writes
1234. 57 1235 1. 23456789e+03 1234. 57

Note how the use of Borm doesn'’t affect the state of the stream so that the last outdutas the
same default format as the first.

Here is a simplified implementation:

class Bound form; / / Form plus value

class Form {
friend ostream& operator<<(ostream&, const Bound form&);
int prc; / / precision
int wdt; / / width, 0 means as wide as necessary

int fmt; / / general, scientific, or fixed (§21.4.3)
/...

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

636 Streams Chapter 21

public:
explicit Form(int p=6) : prc(p) / / default precision is 6
{
fmt=0; / / general format (§21.4.3)
wdt=0; / / as wide as necessary
}

Bound_form aperator()(double d) const // make a Boundorm for *this and d

Form& scientific() { fmt= ios_base : scientific; return * this; }
Form& fixed() { fmt= ios base : fixed return *this; }
Form& general() { fmt=0; return * this; }

Form& uppercasg() ;
Form& lowercase() ;

Form& precision(int p) { prc = p; return * this; }

Form& width(int w) { wdt=w; return * this; } / | applies to all types
Form& fill(char);

Form& plus(bool b = true); ! | explicit plus
Form& trailing_zeros(bool b = true); [| print trailing zeros
/...

h

The idea is that &orm holds all the information needed to format one data item. The default is
chosen to be reasonable for many uses, and the various member functions can be used to reset indi-
vidual aspects of formatting. Tlfe operator is used to bind a value with the format to be used to
output it. ABound_form can then be output to a given stream by a suitablinction:

struct Bound_form {
const Form& f;
double val;

Bound_form(const Form& ff, double v) : f(ff), val(v) { }
I3
Bound_form Form: : operator()(double d) { return Bound_form(* this, d); }
ostream& operator<<(ostream& 0s, const Bound_form& bf)

{
ostringstream § | | string streams are described in §21.5.3
s. predision(bf. f. prc);
s. seff(bf. f. fmt, ios_base : floatfield);
s << bf. val; / | compose string in s
return os<<s. str() ; / | output s to os
}

Writing a less simplistic implementation ek is left as an exercise (§21.10[21]). TRerm and
Bound form classes are easily extended for formatting integers, strings, etc. (see §21.10[20]).

Note that these declarations make the combinatior<ofand () into a ternary operator;
cout<<sci4(d) collects theostream, the format, and the value into a single function before doing
any real computation.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 21.5 File Streams and String Streams 637

21.5 File Streams and String Streamgo.files]

When a @+ program starts;out, cerr, clog, cin, and their wide-character equivalents (821.2.1) are
available for use. These streams are set up by default and their correspondence with 1/0O devices or
files is determined by “the system.” In addition, you can create your own streams. In this case,
you must specify to what the streams are attached. Attaching a stream to a filestring &

common enough so as to be supported directly by the standard library. Here is the hierarchy of
standard stream classes:

ios_base

W
10S<>

isteam<> ostream<>
istringstream<> ifstream<> iostream<> ofstream<> ostringstream<>

fstream<> stringstream<>

The classes suffixed bs> are templates parameterized on the character type, and their names have
abasic_ prefix. A dotted line indicates a virtual base class (§15.2.4).

Files and strings are examples of containers that you can both read from and write to. Conse-
guently, you can have a stream that supports othnd>>. Such a stream is called astream,
which is defined in namespastel and presented ixiostreanm>:

template <class Ch, class Tr = char_traits<Ch> >
class lbasic_iostream: public basic_istream<Ch, Tr>, public basic_ostream<Ch, Tr> {
public:
explicit basic_iostream(basic_streambuf<Ch, Tr>* sh);
virtual ~basic_iostream() ;
3
typedef basic_iostream<char> iostream;
typedef basic_iostream<wchar_t> wiostream;

Reading and writing from aiostream is controlled through the put-buffer and get-buffer opera-
tions on thdostream's streambuf (§21.6.4).

21.5.1 File Streams [io.filestream]

Here is a complete program that copies one file to another. The file names are taken as command-
line arguments:

#include <fstream>
#include <cstdlib>

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

638

Streams Chapter 21

void eror(const char* p, const char* p2="")

{

}

car << p<<’ ~ <<p2<<’\n;
std: : exit(1);

int main(int argc, char* argv(])

{

}

if (argc!= 3) emor(" wrong number of arguments’) ;

std: : ifstream from(argv{ 1]) ; /| open input file stream
if (! from) emror(" cannot open input file", argv 1)) ;

std: : ofstream to(argV 2]) ; / | open output file stream
if (! to) emror(" cannot open output file", argv 2]) ;

char ch;
while (from. get(ch)) to. put(ch);

if (! from eof() || !to) emor(" something strange happened’) ;

A file is opened for input by creating an object of cldskeam (input file stream) with the file
name as the argument. Similarly, a file is opened for output by creating an object ofstiessn

(output file stream) with the file name as the argument. In both cases, we test the state of the cre-

ated object to see if the file was successfully opened.
A basic_ofstreamis declared like this irfstream>:

template <class Ch, class Tr = char_traits<Ch> >
class Ibasic_ofstream: public basic_ostream<Ch, Tr> {
public:

h

basic_ofstream() ;
explicit basic_ofstream(const char* p, openmode m= out);

basic_filebuf<Ch, Tr>* rdbuf() const;

bool is_open() const,
void open(const char* p, openmode m= out);
void close() ;

As usualtypedefs are available for the most common types:

typedef basic_ifstream<char> ifstream;
typedef basic_ofstream<char> ofstream;
typedef basic_fstream<char> fstream;

typedef basic_ifstream<wchar_t> wifstream;
typedef basic_ofstream<wchar_t> wofstream;
typedef basic_fstream<wchar_t> wfstream;

An ifstreamis like anofstream, except that it is derived froistream and is by default opened for
reading. In addition, the standard library offerdstream, which is like arofstream, except that it
is derived fronmiostream and by default can be both read from and written to.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.

Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 21.5.1 File Streams 639

File stream constructors take a second argument specifying alternative modes of opening:

class ios base{
public:
/..

typedef implementation defined3 openmode;
static openmode app, / / append

ate, /| open and seek to end of file (pronounced “at end”)
binary, / / 1/O to be done in binary mode (rather than text mode)
in, /| open for reading

out, [| open for writing

trunc; / / truncate file to O-length

..
h
The actual values adpenmodes and their meanings are implementation-defined. Please consult
your systems and library manual for detailand do experiment. The comments should give some
idea of the intended meaning of the modes. For example, we can open a file so that anything writ-
ten to it is appended to the end:

ofstream mystream(name c_str() , ios_base : app);
It is also possible to open a file for both input and output. For example:

fstream dictionary(" concordance’, ios base : in| ios base : out);

21.5.2 Closing of Streams [io.close]

A file can be explicitly closed by callingjose() on its stream:

void f(ostream& mystream)

{
/..

mystream close() ;
}

However, this is implicitly done by the stream’s destructor. So an explicit callosf) is
needed only if the file must be closed before reaching the end of the scope in which its stream was
declared.

This raises the question of how an implementation can ensure that the predefinedcsiptams
cin, cear, andclog are created before their first use and closed (only) after their last use. Naturally,
different implementations of theiostream> stream library can use different techniques to achieve
this. After all, exactly how it is done is an implementation detail that should not be visible to the
user. Here, | present just one technique that is general enough to be used to ensure proper order of
construction and destruction of global objects of a variety of types. An implementation may be
able to do better by taking advantage of special features of a compiler or linker.

The fundamental idea is to define a helper class that is a counter that keeps track of how many
times<iostream> has been included in a separately compiled source file:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

640 Streams Chapter 21

class ios base : Init {
static int count;

public:
Init() ;
~Init() ;

namespace { /| in <iostrean®, one copy in each file #includirgostrean»
ios_base : Init __joinit;

}

int ios_base : Init:: count = 0; [| in some .cfile

Each translation unit (89.1) declares its own object calléoinit. The constructor for the ioinit
objects usetos base : Init:: count as a first-time switch to ensure that actual initialization of the
global objects of the stream 1/O library is done exactly once:

ios_base : Init: : Init()

{

}

Conversely, the destructor for theioinit objects usedos base : Init:: count as a last-time
switch to ensure that the streams are closed:

if (count++ == Q) { /* Iinitialize cout, cerr, cin, etct/ }

ios_base : Init: :~ Init()

{
}

This is a general technique for dealing with libraries that require initialization and cleanup of global
objects. In a system in which all code resides in main memory during execution, the technique is
almost free. When that is not the case, the overhead of bringing each object file into main memory
to execute its initialization function can be noticeable. When possible, it is better to avoid global
objects. For a class in which each operation performs significant work, it can be reasonable to test
a first-time switch (likeios_base : Init: : count) in each operation to ensure initialization. How-
ever, that approach would have been prohibitively expensive for streams. The overhead of a first-
time switch in the functions that read and write single characters would have been quite noticeable.

if (- count==0) { /* clean up cout (flush, etc.), cerr, cin, ett. }

21.5.3 String Streams [io.stringstream]

A stream can be attached tstang. That is, we can read fromstring and write to astring using
the formatting facilities provided by streams. Such streams are cadlethgstreams. They are
defined in<ssiream>:

template <class Ch, class Tr=char_traits<Ch> >
class lbasic_stringstream: public basic_iostream<Ch, Tr> {
public:
explicit basic_stringstream(ios_base : openmode m= out| in);
explicit basic_stringstream(const basic_string<Ch>& s, openmode m= out| in);

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 21.5.3 String Streams 641

basic_string<Ch> str() const /| get copy of string
void sir(const basic_string<Ch>& s); / | setvalue to copy of s

basic_stringbuf<Ch, Tr>* rdbuf() const;
I8

typedef basic_istringstream<char> istringstream;
typedef basic_ostringstream<char> ostringstream;
typedef basic_stringstream<char> stringstream;

typedef basic_istringstream<wchar_t> wistringstrean;
typedef basic_ostringstream<wchar_t> wostringstream;
typedef basic_stringstream<wchar_t> wstringstream;

For example, apstringstream can be used to format messatiéngs:
extern const char* std_message]] ;
string compose(int n, const string& cs)

{
ostringstream ost;
ost<<"emor(" <<n<<") " <<std messagel n] <<" (user comment: " << cs<<’);
return ost str() ;

}

There is no need to check for overflow becanstds expanded as needed. This technique can be
most useful for coping with cases in which the formatting required is more complicated than what
is common for a line-oriented output device.

An initial value can be provided for astringstream, so we could equivalently have written:

string compose2(int n, const string& cs)
ostringstream ost(" emror(") ;
ost<< n<<") " << std messagel n] <<" (user comment. " << cs<<’)’;

return ost str() ;
}

An istringstreamis an input stream reading fronstaing:
#include <sstream>

void word_per_line(const string& s)/ / prints one word per line

{
istringstream ist(s);
string w;
while (ist>>w) cout << w<<’"\n’;
}
int main()
{
word_per_line(" If you think C++ is difficult, try English’) ;
}

The initializerstring is copied into théstringstream. The end of the string terminates input.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

642 Streams Chapter 21

It is possible to define streams that directly read from and write to arrays of characters
(821.10[26]). This is often useful when dealing with older code, especially sinostistream
andistrstream classes doing that were part of the original streams library.

21.6 Buffering[io.buf]

Conceptually, an output stream puts characters into a buffer. Some time later, the characters are
then written to wherever they are supposed to go. Such a buffer is csiifednabuf (821.6.4). Its
definition is found in<streambuf>. Different types ofstreambufs implement different buffering
strategies. Typically, thstreambuf stores characters in an array until an overflow forces it to write

the characters to their real destination. Thusystmeam can be represented graphically like this:

ostream: — /{ real destination
——

g

streambuf: | begin-
current,
end 1

character buffer

The set of template arguments forastream and itsstreambuf must be the same and determines
the type of character used in the character buffer.

An istreamis similar, except that the characters flow the other way.

Unbuffered 1/O is simply I/O where the streambuf immediately transfers each character, rather
than holding on to characters until enough have been gathered for efficient transfer.

21.6.1 Output Streams and Buffers [io.ostreambuf]

An ostream provides operations for converting values of various types into character sequences
according to conventions (821.2.1) and explicit formatting directives (821.4). In addition, an
ostream provides operations that deal directly withstseambuf:

template <class Ch, class Tr = char_traits<Ch> >
class lbasic_ostream: virtual public basic_ios<Ch, Tr> {

public:
/..
explicit basic_ostream(basic_streambuf<Ch, Tr>* b);
pos type tellp() ; | | get current position
basic_ostreams: seekp(pos_type); / | set current position
basic_ostream& seekp(off_type, ios base : seekdir); / / set current position
basic_ostreamg flush() ; / | empty buffer (to real destination)

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 21.6.1 Output Streams and Buffers 643

basic_ostream& operator<<(basic_streambuf<Ch, Tr>* b);/ / write from b
h

An ostream is constructed with atreambuf argument, which determines how the characters writ-
ten are handled and where they eventually go. For examplestdngstream (821.5.3) or an
ofstream (§21.5.1) are created by initializing asiream with a suitablestreambuf (§21.6.4).

Theseekp() functions are used to position estream for writing. Thep suffix indicates that
it is the position used fgoutting characters into the stream. These functions have no effect unless
the stream is attached to something for which positioning is meaningful, such as a file. The
pos_type represents a character position in a file, andthdype represents an offset from a point
indicated by anos_base : seekdir:

class ios_base{
/...

typedef implementation defined4 seekdir;
static const seekdir beg, / / seek from beginning of current file
cur,/ | seek from current position
end, // seek backwards from end of current file
/..
I3

Stream positions start @t so we can think of a file as an arraynatharacters. For example:

int f(ofstream& fout)

{
fout. seekp(10);
fout << "#;
fout. seekp(- 2, ios base : cur);
fout << *;
}

This places & into file] 10] and a* in file[8] . There is no similar way to do random access on
elements of a plaiistream or ostream (see §21.10[13]).

Theflush() operation allows the user to empty the buffer without waiting for an overflow.

It is possible to use< to write astreambuf directly into anostream. This is primarily handy
for implementers of I/O mechanisms.

21.6.2 Input Streams and Buffers [io.istreambuf]

An istream provides operations for reading characters and converting them into values of various
types (§21.3.1). In addition, astream provides operations that deal directly withstisieambuf:

template <class Ch, class Tr = char_traits<Ch> >
class lbasic_istream: virtual public basic_ios<Ch, Tr> {
public:

/..

explicit basic_istream(basic_streambuf<Ch, Tr>* b);

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

644 Streams Chapter 21

pos_type tellg() ; / | get current position
basic_istream& seekg(pos_type); / | set current position
basic_istream& seekg(off_type, ios base : seekdir); / / set current position
basic_istreamg& putback(Ch c);/ / put c back into the buffer

basic_istream& unget() ; /| putback most recent char read
int_type peek() ; /I look at next character to be read

int sync() ; / / clear buffer (flush input)

basic_istream& operator>>(basic_streambuf<Ch, Tr>* b); / / read into b
basic_istream& get(basic_streambuf<Ch, Tr>& b, Ch t=Tr:: newling()) ;

streamsize readsome(Ch* p, streamsize m); / / read at most n char
3

The positioning functions work like theastream counterparts (821.6.1). Thesuffix indicates
that it is the position used fgettingcharacters from the stream. Tp@&ndg suffixes are needed
because we can createiastream derived from bothistream andostream and such a stream needs
to keep track of both a get position and a put position.

The putback() function allows a program to put an unwanted character back to be read some
other time, as shown in §21.3.5. Timget() function puts the most recently read character back.
Unfortunately, backing up an input stream is not always possible. For example, trying to back up
past the first character read will $es_base: : failbit. What is guaranteed is that you can back up
one character after a successful read. péek() reads the next character but leaves it in the
streambuf so that it can be read again. Thospeek() is equivalent tq c=get() , unget() , c)
and to(putback(c=get()) , ¢) . Note that settingailbit might trigger an exception (821.3.6).

Flushing anistreamis done usingync() . This cannot always be done right. For some kinds
of streams, we would have to reread characters from the real soantkthat is not always possi-
ble or desirable. Consequentigync() returns O if it succeeded. If it failed, it sets
ios_base : badbit (§21.3.3) and returns1. Again, settingbadbit might trigger an exception
(821.3.6).

The>> andget() operations that targetsireambuf are primarily useful for implementers of
I/O facilities. Only such implementers should manipuiiteambufs directly.

Thereadsome() function is a low-level operation that allows a user to peek at a stream to see
if there are any characters available to read. This can be most useful when it is undesirable to wait
for input, say, from a keyboard. See discavail() (8§21.6.4).

21.6.3 Streams and Buffers [io.rdbuf]

The connection between a stream and its buffer is maintained in the sthaait’'sos.

template <class Ch, class Tr = char_traits<Ch> >
class hasic_ios: public ios base{
public:

/...

basic_streambuf<charT, traits>* rdbuf() const, [| get buffer
basic_streambuf<charT, traits>* rdbuf(basic_streambuf<Ch, Tr>* b);/ / set buffer

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 21.6.3 Streams and Buffers 645

locale imbue(const locale& loc); / | setlocale (and get old locale)
char narrow(char_type ¢ char d) const, / | make char value from chaype c
char_type widen(char c) const, /| make chartype value from char ¢
/...

protected
basic_ios() ;
void init(basic_streambuf<Ch, Tr>* b); /| setinitial buffer

k

In addition to reading and setting the streastreambuf (§21.6.4) basic_ios providesimbue() to
read and re-set the stream’s locale (§21.7) by calimbue() on its ios base (§21.7.1) and
pubimbue() on its buffer (§21.6.4).

The narrow() and widen() functions are used to convethars to and from a buffer's
char_type. The second argument narrow(c, d) is thechar returned if there isn't ahar corre-
sponding to thehar_typevaluec.

21.6.4 Stream Buffers [io.streambuf]

The I/O operations are specified without any mention of file types, but not all devices can be
treated identically with respect to buffering strategies. For examplestieeam bound to astring
(821.5.3) needs a different kind of buffer than doe®stream bound to a file (§21.5.1). These
problems are handled by providing different buffer types for different streams at the time of initial-
ization. There is only one set of operations on these buffer types, estris@am functions do not
contain code distinguishing them. The different types of buffers are derived fronstoéssabuf.
Classstreambuf provides virtual functions for operations where buffering strategies differ, such as
the functions that handle overflow and underflow.

The basic_streambuf class provides two interfaces. The public interface is aimed primarily at
implementers of stream classes suclstieam, ostream, fstream, stringstream, etc. In addition,

a protected interface is provided for implementers of new buffering strategies strehofbufs for
new input sources and output destinations.

To understand atreambuf, it is useful first to consider the underlying model of a buffer area
provided by the protected interface. Assume thatstheambuf has aput areainto which <<
writes, and ayet areafrom which>> reads. Each area is described by a beginning pointer, current
pointer, and one-past-the-end pointer. These pointers are made available through functions:

template <class Ch, class Tr = char_traits<Ch> >
class hasic_streambuf {

protected:
Ch* eback() const; | | start of get-buffer
Ch* gptr() const, /| next filled character (next char read comes from here)
Ch* egptr() const /| one-past-end of get-buffer
void gbump(int n); / | add n to gptr()

void setg(Ch* begin, Ch* next, Ch* end); // set eback(), gptr(), and egptr()

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

646 Streams Chapter 21

Ch* pbase() const / | start of put-buffer
Ch* pptr() const; / | next free char (next char written goes here)
Ch* epptr() const, / | one-past-end of put-buffer

void pbump(int n); / | add n to pptr()
void setp(Ch* begin, Ch* end); | | set pbase() and pptr() to begin, and epptr() to end
/..

2
Given an array of charactesetg() andsetp() can set up the pointers appropriately. An imple-
mentation might access its get area like this:

template <class Ch, class Tr = char_traits<Ch> >
basic_streambuf<Ch, Tr>:: int_type basic_streambuf<Ch, Tr>:: snextc() // read next character

{

if (gptr()== 0) return uflow() ; /1 no input buffering

gbump(1); / | move to next character

if (gptr()>= egptr()) return underflow() ; // re-fill buffer

return * gptr() ; /| return the now current character

}
The public interface of sireambuf looks like this:

template <class Ch, class Tr = char_traits<Ch> >
class Ibasic_streambuf {
public:

/1 usual typedefs (§21.2.1)

basic_streambuf() ;

virtual ~basic_streambuf() ;

locale pubimbue(const locale &loc); / | setlocale (and get old locale)
locale getioc() const; /| getlocale

basic_streambuf* pubsetbuf(Ch* p, streamsize m); / / set buffer space

/1 position (821.6.1):
pos_type pubseekoff(off_type off, ios base : seekdir way,
ios_base : openmode m= ios_base : in| ios_base : out);
pos_type jpubseekpos(pos type p, ios base : openmode m= ios base : in| ios_base : out);

int pubsync() ; /1 sync() input (8§21.6.2)
int_type snextc() ; /| get next character
int_type sbumpc() ; /| advance gptr() by 1

int_type sgetc() ; / | get current char
streamsize sgetn(Ch* p, streamsize m); / / getinto p[0]..p[n-1]

int_type sputbackc(Ch c¢); / / putc back into buffer (§21.6.2)
int_type sungetc() ; /| unget last char

int_type sputc(Ch ©); / | putc
streamsize sputn(const Ch* p, streamsize m); / / put p[0]..p[n-1]

streamsize in_avail() ; [| isinput ready?

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 21.6.4 Stream Buffers 647

"o
h

The public interface contains functions for inserting characters into the buffer and extracting char-
acters from the buffer. These functions are simple and easily inlined. This is crucial for efficiency.

Functions that implement parts of a specific buffering strategy invoke corresponding functions
in the protected interface. For examppebsetbuf() calls setbuf() , which is overridden by a
derived class to implement that class’ notion of getting memory for the buffered characters. Using
two functions to implement an operation suchsetbuf() allows aniostream implementer to do
some “housekeeping” before and after the user’s code. For example, an implementer might wrap
a try-block around the call of the virtual function and catch exceptions thrown by the user code.
This use of a pair of public and protected functions is yet another general technique that just hap-
pens to be useful in the context of 1/O.

By default,setbuf(0, 0) means “unbuffered” andetbuf(p, n) means use[0].. p[n-1]
to hold buffered characters.

A call toin_avail() is used to see how many characters are available in the buffer. This can be
used to avoid waiting for input. When reading from a stream connected to a keylmagei(c)
might wait until the user comes back from lunch. On some systems and for some applications, it
can be worthwhile taking that into account when reading. For example:

if (cin. rdbuf(). in_avail()) {/ / get() will not block

cin. get(c);
/1 do something

}
else{ /1 get() might block

/1 do something else
}

In addition to the public interface used bgsic_istream and basic_ostream, basic_streambuf
offers a protected interface to implementerstoéambufs. This is where the virtual functions that
determine policy are declared:

template <class Ch, class Tr = char_traits<Ch> >
class Ibasic_streambuf {
protected:

/...

virtual void imbue(const locale &oc); ! | setlocale
virtual basic_streambuf* setbuf(Ch* p, streamsize m);

virtual pos_type seekoff(off_type off, ios base : seekdir way,
ios_base : openmode m= ios_base : in| ios_base : out);
virtual pos type seekpos(pos type p,
ios_base : openmode m= ios_base : in| ios_base : out);

virtual int sync() ; /1 sync() input (821.6.2)

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

648 Streams Chapter 21

virtual int showmanyc() ;

virtual streamsize xsgetn(Ch* p, streamsize m); / | getn chars
virtual int_type underflow() ; | | get area empty
virtual int_type wflow() ;

virtual int_type pbackfail(int_type c=Tr:: eof()) ; /| putback failed

virtual streamsize xsputn(const Ch* p, streamsize m); / / putnchars
virtual int_type overflow(int_type c=Tr:: eof()) ; /| putarea full
I8

The underflow() anduflow() functions are called to get the next character from the real input
source when the buffer is empty. If no more input is available from that source, the stream is set
into eof state (§21.3.3). If doing that doesn’t cause an exceptiaits_type: : eof() is returned.
Unbuffered input usesflow() ; buffered input useanderflow() . Remember that there typically

are more buffers in your system than the ones introduced ligdineam library, so you can suffer
buffering delays even when using unbuffered stream 1/O.

Theoverflow() function is called to transfer characters to the real output destination when the
buffer is full. A call overflow(c) outputs the contents of the buffer plus the charactdf no
more output can be written to that target, the stream is puedéfitstate (§21.3.3). If doing that
doesn’t cause an exceptidraits_type: : eof() is returned.

The showmanyc() - “show how many characters> function is an odd function intended to
allow a user to learn something about the state of a machine’s input system. It returns an estimate
of how many characters can be read “soon,” say, by emptying the operating system’s buffers
rather than waiting for a disc read. A calslowwmanyc() returns- 1if it cannot promise that any
character can be read without encountering end-of-file. This is (necessarily) rather low-level and
highly implementation-dependent. Don’t tdl®wmanyc() without a careful reading of your sys-
tem documentation and a few experiments.

By default, every stream gets the global locale (§21.7pulfimbue(loc) or imbue(loc) call
makes a stream utac as its locale.

A streambuf for a particular kind of stream is derived frdoasic_streambuf. It provides the
constructors and initialization functions that connectdineambuf to a real source of (target for)
characters and overrides the virtual functions that determine the buffering strategy. For example:

template <class Ch, class Tr = char_traits<Ch> >
class basic_filebuf : public basic_streambuf<Ch, Tr> {
public:

basic_filebuf() ;

virtual ~basic_filebuf() ;

bool is_open() const
basic_filebuf* open(const char* p, ios_base : openmode mode);
basic_filebuf* close) ;

protected:
virtual int showmanyc() ;
virtual int_type underflow() ;
virtual int_type uflow() ;

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 21.6.4 Stream Buffers 649

h

virtual int_type pbackfail(int_type c=Tr:: eof()) ;
virtual int_type overflow(int_type c=Tr:: eof()) ;

virtual basic_streambuf<Ch, Tr>* setbuf(Ch* p, streamsize m);
virtual pos type seekoff(off_type off, ios base : seekdir way,
ios_base : openmode m= ios_base : in| ios_base : out);
virtual pos_type seekpos(pos_type |p,
ios_base : openmode m= ios_base : in| ios_base : out);
virtual int sync() ;
virtual void imbue(const locale& loc);

The functions for manipulating buffers, etc., are inherited unchangedfasia streambuf. Only
functions that affect initialization and buffering policy need to be separately provided.
As usual, the obviouypedefs and their wide stream counterparts are provided:

typedef basic_streambuf<char> streambuf;

typedef basic_stringbuf<char> stringbuf;

typedef basic_filebuf<char> filebuf;

typedef basic_streambuf<wchar_t> wstreambuf;

typedef basic_stringbuf<wchar_t> wstringbuf;

typedef basic_filebuf<wchar_t> wfilebuf;

21.7 Local€io.locale]

A locale is an object that controls the classification of characters into letters, digits, etc.; the colla-
tion order of strings; and the appearance of numeric values on input and output. Most commonly a
locale is used implicitly by théostreams library to ensure that the usual conventions for some nat-
ural language or culture is adhered to. In such cases, a programmer nevelosabes abject.
However, by changing stream's locale, a programmer can change the way the stream behaves to
suit a different set of conventions

A locale is an object of clasacale defined in namespastd presented irlocale>:

class locale {
public:
/...
locale() throw() ; /| copy of current global locale
explicit locale(const char* name); / | construct locale using C locale name
basic_string<char> name() const; / | give name of this locale
locale(const locale&) throw() ; / | copy locale
const locale& operator=(const locale&) throw() ; / / copy locale
static locale global(const locale&); | | set the global locale (get the previous locale)
static const locale& classic() ; | | getthe locale that C defines

h

Here, | omitted all of the interesting pieces and left only what is needed to switch from one existing
locale to another. For example:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.

Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

650 Streams Chapter 21

void f()
std: : locale loc(" POSIX") ; / | standard locale for POSIX
cin. imbue(loc); / | letcin use loc
/...

cin. imbue(std: : locale: : global()) ; / / reset cin to use the default locale
}

Theimbue() function is a member dfasic_ios(§21.7.1).

As shown, some fairly standard locales have character string names. These tend to be shared
with C.

It is possible to set tHecale that is used by all newly constructed streams:

void g(const locale& loc = locale()) /| use current global locale by default

locale ald_global = locale: : global(loc); / / make loc the default locale
/...

}

Setting the globdlocale does not change the behavior of existing streams that are using the previ-
ous value of the globdbcale. In particular,cin, cout, etc., are not affected. If they should be
changed, they must be expliciimpbue() d.

Imbuing a stream with bbcale changes facets of its behavior. It is possible to use members of
a locale directly, to define newocales, and to extentbcales with new facets. For example, a
locale can also be used explicitly to control the appearance of monetary units, dates, etc., on input
and output (821.10[25]) and conversion between codesets. However, discussion of that is beyond
the scope of this book. Please consult your implementation’s documentation.

The C-style locale is presented<iolocale> and<locale. h>.

21.7.1 Stream Callbacks [io.callbacks]

Sometimes, people want to add to the state of a stream. For example, one might want a stream to
“know” whether a complex should be output in polar or Cartesian coordinates. Gtesbase

provides a functiorxalloc() to allocate space for such simple state information. The value
returned byalloc() identifies a pair of locations that can be accessawbsd() andpword() :

class ios base{

public:
/..
~ios_base() ;
locale imbue(const locale& loc); / / getand set locale
locale getloc() const; / | getlocale

static int xalloc() ; / | get an integer and a pointer (both initialized to 0)
long& iword(int i); | | access the integer iword(i)
void*& pword(int i); /| access the pointer pword(i)

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 21.7.1 Stream Callbacks 651

/1 callbacks:
enum event { erase event, imbue_event, copyfmt event};/ / eventtype

typedef void (* event_callback)(event, ios _baseX, int i);
void register_callback(event_callback f, int i); /| attach f to word(i)
h

Sometimes, an implementer or a user needs to be notified about a change in a stream’s state. The
register_callback() function “registers” a function to be called when its “event” occurs. Thus,
a call of imbue) , copyfmt() , or ~ios base() will call a function “registered” for an
imbue_event, copyfmt_event, or erase event, respectively. When the the state changes, registered
functions are called with the argumésupplied by theiregister callback() .

This storage and callback mechanism is fairly obscure. Use it only when you absolutely need to
extend the low-level formatting facilities.

21.8 C Input/Output [io.c]

Because €+ and C code are often intermixedt+stream 1/O is sometimes mixed with the C
printf() family of I/O functions. The C-style I/O functions are presented<bgtdio> and
<stdio. h>. Also, because C functions can be called frott €ome programmers may prefer to
use the more familiar C I/O functions. Even if you prefer stream I/O, you will undoubtedly
encounter C-style I/O at some time.

C and @+ I/O can be mixed on a per-character basis. A cadyné with_stdio() before the
first stream I/O operation in the execution of a program guarantees that the C-styleteasigleC
I/O operations share buffers. A call nc_with_stdio(false) before the first stream 1/O opera-
tion prevents buffer sharing and can improve I/O performance on some implementations.

class ios_base{

/...

static bool sync_with_stdio(bool sync=true); / / get and set
h

The general advantage of the stream output functions over the C standard library fanmtfOn
is that the stream functions are type safe and have a common style for specifying output of objects
of built-in and user-defined types.

The general C output functions

int printf(const char* format...) ; /| write to stdout
int fprintf(FILE*, const char* format...) ; / / write to “file” (stdout, stderr)
int sprintf(char* p, const char* format...) ; / / write to p[O]..

produce formatted output of an arbitrary sequence of arguments under control of the format string
format. The format string contains two types of objects: plain characters, which are simply copied
to the output stream, and conversion specifications, each of which causes conversion and printing
of the next argument. Each conversion specification is introduced by the chéaEtarexample:

printf(" there were % members present.”, no_of members);

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

652

Streams Chapter 21

Here % specifies thano_of_members is to be treated as ant and printed as the appropriate
sequence of decimal digits. Witio_of _members==127, the output is

there were 127 members present.

The set of conversion specifications is quite large and provides a great degree of flexibility. Fol-
lowing the%, there may be:

+

#

%

an optional minus sign that specifies left-adjustment of the converted value in the field;

an optional plus sign that specifies that a value of a signed type will always begintwith a

or- sign;

an optional# that specifies that floating-point values will be printed with a decimal point

even if no nonzero digits follow, that trailing zeroes will be printed, that octal values will

be printed with an initiaD, and that hexadecimal values will be printed with an intbal

or 0X;

an optional digit string specifying a field width; if the converted value has fewer characters

than the field width, it will be blank-padded on the left (or right, if the left-adjustment indi-

cator has been given) to make up the field width; if the field width begins with a zero,
zero-padding will be done instead of blank-padding;

an optional period that serves to separate the field width from the next digit string;

an optional digit string specifying a precision that specifies the number of digits to appear

after the decimal point, for e- and f-conversion, or the maximum number of characters to

be printed from a string;

a field width or precision may b instead of a digit string. In this case an integer argu-

ment supplies the field width or precision;

an optional charactdr, specifying that a followingl, o, X, or u corresponds to a short inte-

ger argument;

an optional charactér specifying that a followingl, o, x, or u corresponds to a long inte-

ger argument;

indicating that the charact®is to be printed; no argument is used;

a character that indicates the type of conversion to be applied. The conversion characters

and their meanings are:

d The integer argument is converted to decimal notation;

The integer argument is converted to octal notation;

The integer argument is converted to hexadecimal notation with an @xitial

The integer argument is converted to hexadecimal notation with an @\tial

Thefloat or double argument is converted to decimal notation in the $tjdeld.ddd

The number off's after the decimal point is equal to the precision for the argument.

If necessary, the number is rounded. If the precision is missing, six digits are given;

if the precision is explicith@ and# isn’t specified, no decimal point is printed;

e Thefloat or double argument is converted to decimal notation in the scientific style
[-]d.ddde+dd or [-]d.ddde-dd where there is one digit before the decimal point and
the number of digits after the decimal point is equal to the precision specification for
the argument. If necessary, the number is rounded. If the precision is missing, six
digits are given; if the precision is explicitljand# isn’t specified, no digits and no
decimal point are printed;

- %X O

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.

Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 21.8 C Input/Output 653

E Ase but with an uppercadeused to identify the exponent;

g Thefloat or double argument is printed in style d, in style f, or in style e, whichever
gives the greatest precision in minimum space;

G Asg, but with an uppercadeused to identify the exponent.

¢ The character argument is printed. Null characters are ignored;

s The argument is taken to be a string (character pointer), and characters from the string

are printed until a null character or until the number of characters indicated by the
precision specification is reached; however, if the precision is 0 or missing, all charac-
ters up to a null are printed.
p The argument is taken to be a pointer. The representation printed is implementation-
dependent.
u The unsigned integer argument is converted to decimal notation;
In no case does a nonexistent or small field width cause truncation of a field; padding takes
place only if the specified field width exceeds the actual width.
Here is a more elaborate example:

char* line format = " \n#line %d \"%s\' \n";
int main()
{
int line=13;
char* file_ name=" C++/ main. c";
printf(" int & \n") ;
printf(line_format, line, file_name);
printf(" int b; \n") ;
}
which produces:
int a;
#line 13" C++/ main. c"
int b;
Using printf() is unsafe in the sense that type checking is not done. For example, here is a well-
known way of getting unpredictable output, a core dump, or worse:
char x;

/...
printf(" bad input char: %', Xx); ! | %s should have been %c

Theprintf() does, however, provide great flexibility in a form that is familiar to C programmers.
Similarly, getchar() provides a familiar way of reading characters from input:
int i
while ((i=getchar())!= EOF) {// C character input
/] usei
}

Note that to be able to test for end-of-file againstitite’alue EOF, the value ofjetchar() must
be put into annt rather than into ahar.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

654 Streams Chapter 21

For further details of C I/0, see your C reference manual or Kernighan and Ritohi€: Pro-
gramming Language [Kernighan,1988].

21.9 AdviceJio.advice]

[1] Define<< and>> for user-defined types with values that have meaningful textural representa-
tions; §21.2.3, §21.3.5.

[2] Use parentheses when printing expressions containing operators of low precedence; §21.2.

[3] You don't need to modifystream or ostreamto add new<< and>> operators; §21.2.3.

[4] You can define a function so that it behaves astaial function based on itsecond/or sub-
sequent) argument; §21.2.3.1.

[5] Remember that by defauit- skips whitespace; §21.3.2.

[6] Use lower-level input functions such gat() andread() primarily in the implementation of
higher-lever input functions; 821.3.4.

[7] Be careful with the termination criteria when usged() , getling() , andread() ; §21.3.4.

[8] Prefer manipulators to state flags for controlling I/O; §21.3.3, §21.4, §21.4.6.

[9] Use exceptions to catch rare 1/O errors (only); 821.3.6.

[10] Tie streams used for interactive 1/O; §21.3.7.

[11] Use sentries to concentrate entry and exit code for many functions in one place; §21.3.8.

[12] Don’t use parentheses after a no-argument manipulator; §21.4.6.2.

[13] Remember t&include <iomanip> when using standard manipulators; §21.4.6.2.

[14] You can achieve the effect (and efficiency) of a ternary operator by defining a simple function
object; §21.4.6.3.

[15] Remember thawidth specifications apply to the following I/O operation only; §21.4.4.

[16] Remember thaprecision specifications apply to all following floating-point output opera-
tions; §21.4.3.

[17] Use string streams for in-memory formatting; 821.5.3.

[18] You can specify a mode for a file stream ; §21.5.1.

[19] Distinguish sharply between formattirigftreams) and buffering<treambufs) when extend-
ing the 1/O system; §21.1, §21.6.

[20] Implement nonstandard ways of transmitting values as stream buffers; §21.6.4.

[21] Implement nonstandard ways of formatting values as stream operations; §21.2.3, §21.3.5.

[22] You can isolate and encapsulate calls of user-defined code by using a pair of functions;
§21.6.4.

[23] You can usén_avail() to determine whether an input operation will block before reading;
§21.6.4.

[24] Distinguish between simple operations that need to be efficient and operations that implement
policy (make the formanline and the lattevirtual); §21.6.4.

[25] Uselocale to localize “cultural differences;” §21.7.

[26] Use sync_with_stdio(X) to mix C-style and €t+-style 1/0O and to disassociate C-style and
Ct++-style I/O; §21.8.

[27] Beware of type errors in C-style I/O; §21.8.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 21.10 Exercises 655

21.10 Exercisefio.exercises]

1. (.5) Read a file of floating-point numbers, make complex numbers out of pairs of numbers
read, and write out the complex numbers.

2. (AL.5) Define a typeName and address Define << and >> for it. Copy a stream of
Name_and_addressobijects.

3. (@2.5) Copy a stream dame_and_addressobjects in which you have inserted as many errors
as you can think of (e.g., format errors and premature end of string). Handle these errors in a
way that ensures that the copy function reads most of the correctly formatted
Name_and_addresses, even when the input is completely messed up.

4. (2.5) Redefine the I/O formd&ame and _addressto make it more robust in the presence of
format errors.

5. (®2.5) Design some functions for requesting and reading information of various types. ldeas:
integer, floating-point number, file name, mail address, date, personal information, etc. Try to
make them foolproof.

6. ((L.5) Write a program that prints (a) all lowercase letters, (b) all letters, (c) all letters and dig-
its, (d) all characters that may appear in+a @entifier on your system, (e) all punctuation
characters, (f) the integer value of all control characters, (g) all whitespace characters, (h) the
integer value of all whitespace characters, and finally (i) all printing characters.

7. () Read a sequence of lines of text into a fixed-sized character buffer. Remove all whitespace
characters and replace each alphanumeric character with the next character in the alphabet
(replacez by a and9 by 0). Write out the resulting line.

8. (B) Write a “miniature” stream I/O system that provides clagstream, osiream, ifstream,
ofstream providing functions such agperator<<() andoperator>>() for integers and oper-
ations such agpen() andclose() for files.

9. (®) Implement the C standard I/O librargstdio. h>) using the €+ standard I/O library
(<iostream>).

10. (%) Implement the €+ standard 1/O library {iostream>) using the C standard 1/O library
(<stdio. h>).

11. (&) Implement the C and+@ libraries so that they can be used simultaneously.

12. (2) Implement a class for whidh is overloaded to implement random reading of characters
from a file.

13. (B) Repeat §21.10[12] but maKe useful for both reading and writing. Hint: MaKe return
an object of a “descriptor type” for which assignment means “assign through descriptor to
file” and implicit conversion tachar “means read from file through descriptor.”

14. (2) Repeat §21.10[13] but It index objects of arbitrary types, not just characters.

15. ((B.5) Implement versions @stream and ostream that read and write numbers in their binary
form rather than converting them into a character representation. Discuss the advantages and
disadvantages of this approach compared to the character-based approach.

16. (B.5) Design and implement a pattern-matching input operation. pds#f-style format
strings to specify a pattern. It should be possible to try out several patterns against some input
to find the actual format. One might derive a pattern-matching input classshream.

17. *) Invent (and implement) a much better kind of pattern for pattern matching. Be specific
about what is better about it.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

656 Streams Chapter 21

18. (2) Define an output manipulatbased that takes two argumentsa base and aimt value—
and outputs the integer in the representation specified by the base. For ekasede?, 9)
should print1001.

19. ((2) Write manipulators that turn character echoing on and off.

20. 2) ImplemenBound_form from §21.4.6.3 for the usual set of built-in types.

21. (@) Re-implemenBound_form from §21.4.6.3 so that an output operation never overflows its
width() . It should be possible for a programmer to ensure that output is never quietly trun-
cated beyond its specified precision.

22. (B) Implement arencrypt(k) manipulator that ensures that output orogseamis encrypted
using the keyk. Provide a similadecrypt(k) manipulator for anstream. Provide the means
for turning the encryption off for a stream so that further I/O is cleartext.

23. () Trace a character’s route through your system from the keyboard to the screen for a simple:

char c;
cin>>c;
cout << ¢ << endl;

24. ([2) Modify readints() (821.3.6) to handle all exceptions. Hint: Resource acquisition is
initialization.

25. (2.5) There is a standard way of reading, writing, and representing dates under control of a
locale. Find it in the documentation of your implementation and write a small program that
reads and writes dates using this mechanism. btimict tm.

26. (2.5) Define arostream calledostrstream that can be attached to an array of characters (a C-
style string) in a way similar to the wagtringstream s attached to atring. However, do not
copy the array into or out of thestrstream The ostrstream should simply provide a way of
writing to its array argument. It might be used for in-memory formatting like this:

char buf[message_size ;

ostrstream aost(buf, message size);

do_something(arguments, ost); /| output to buf through ost
cout << buf; /| ost adds terminating O

An operation such ado_something() can write to the streawst, passost on to its subopera-
tions, etc., using the standard output operations. There is no need to check for overflow because
ost knows its size and will go intfail() state when it is full. Finally, display() operation
can write the message to a “real” output stream. This technique can be most useful for coping
with cases in which the final display operation involves writing to something more complicated
than a traditional line-oriented output device. For example, the textdsboould be placed in
a fixed-sized area somewhere on a screen. Similarly, defineisizteeam as an input string
stream reading from a zero-terminated string of characters. Interpret the terminating zero char-
acter as end-of-file. Thestrstreams were part of the original streams library and can often be
found in<strstream. h>.

27. (2.5) Implement a manipulatgeneral() that resets a stream to its original (general) format
in the same way scientific() (821.4.6.2) sets a stream to use scientific format.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

	Return to Contents
	21.1 Introduction
	21.2 Output
	21.3 Input
	21.4 Formatting
	21.5 File Streams and String Streams
	21.6 Buffering
	21.7 Locale
	21.8 C Input/Output
	21.9 Advice
	21.10 Exercises

	buy now:

