20

Strings

Prefer the standard to the offbeat.
— Strunk & White

Strings— characters— char_traits — basic_sitring — iterators— element access-
constructors— error handling— assignment— conversions— comparisons— inser-
tion — concatenation— find and replace— size and capacity— string 1/0— C-style
strings— character classificatior- C library functions— advice— exercises.

20.1 Introduction [string.intro]

A string is a sequence of characters. The standard listrang provides string manipulation oper-
ations such as subscripting (820.3.3), assignment (820.3.6), comparison (§20.3.8), appending
(820.3.9), concatenation (820.3.10), and searching for substrings (§20.3.11). No general substring
facility is provided by the standard, so one is provided here as an example of standard string use
(820.3.11). A standard string can be a string of essentially any kind of character (§20.2).
Experience shows that it is impossible to design the pestigng. People’s taste, expectations,
and needs differ too much for that. So, the standard lilstginyg isn’t ideal. | would have made
some design decisions differently, and so would you. However, it serves many needs well, auxil-
iary functions to serve further needs are easily providedstahdstring is generally known and
available. In most cases, these factors are more important than any minor improvement we could
provide. Writing string classes has great educational value (811.12, §13.2), but for code meant to
be widely used, the standard libratying is the one to use.
From C, G+ inherited the notion of strings as zero-terminated arragharfand a set of func-
tions for manipulating such C-style strings (§20.4.1).

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

http://store.awl.com/catalog/cepub_detail.mhtml?isbn=0-201-88954-4

580 Strings Chapter 20

20.2 Charactergstring.char]

“Character” is itself an interesting concept. Consider the chard&&tefrhe C that you see as a
curved line on the page (or screen), | typed into my computer many months ago. There, it lives as
the numeric valué7 in an 8-bit byte. It is the third letter in the Latin alphabet, the usual abbrevia-
tion for the sixth atom (Carbon), and, incidentally, the name of a programming language (81.6).
What matters in the context of programming with strings is that there is a correspondence between
squiggles with conventional meaning, called characters, and numeric values. To complicate mat-
ters, the same character can have different numeric values in different character sets, not every
character set has values for every character, and many different character sets are in common use.
A character set is a mapping between a character (some conventional symbol) and an integer value.

C++ programmers usually assume that the standard American character set (ASCII) is available,
but Cr+ makes allowances for the possibility that some characters may be missing in a
programmer’s environment. For example, in the absence of characters $uahd{s, keywords
and digraphs can be used (8C.3.1).

Character sets with characters not in ASCII offer a greater challenge. Languages such as Chi-
nese, Danish, French, Icelandic, and Japanese cannot be written properly using ASCIl only.
Worse, the character sets used for these languages can be mutually incompatible. For example, the
characters used for European languages using Latin alplzimetstfit into a 256-character char-
acter set. Unfortunately, different sets are still used for different languages and some different
characters have ended up with the same integer value. For example, French (using Latinl) doesn’t
coexist well with Icelandic (which therefore requires Latin2). Ambitious attempts to present every
character known to man in a single character set have helped a lot, but even 16-bit character sets
such as Unicode are not enough to satisfy everyone. The 32-bit character sets that-casiidr
as | know~ hold every character are not widely used.

Basically, the €+ approach is to allow a programmer to use any character set as the character
type in strings. An extended character set or a portable numeric encoding can be used (§C.3.3).

20.2.1 Character Traits [string.traits]

As shown in 813.2, a string can, in principle, use any type with proper copy operations as its char-
acter type. However, efficiency can be improved and implementations can be simplified for types
that don’t have user-defined copy operations. Consequently, the statdagirequires that a
type used as its character type does not have user-defined copy operations. This also helps to make
I/O of strings simple and efficient.

The properties of a character type are defined bghis_traits. A char_traitsis a specializa-
tion of the template:

template<class Ch> struct char_traits{ };

All char_traits are defined irstd, and the standard ones are presentedsiring>. The general
char_traits itself has no properties; onghar_traits specializations for a particular character type
have. Considechar_traits<char>:

template<> struct char_traits<char> {
typedef char char_type; / | type of character

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 20.2.1 Character Traits 581

static void assign(char_type&, const char_type&); | | =for char_type
/1 integer representation of characters:
typedef int int_type; [| type of integer value of character

static char_type to_char_type(const int_type&); /I int to char conversion
static int_type to_int_type(const char_type&); / | char to int conversion
static bool eq int_type(const int_type&, const int_type&); //

/1 char_type comparisons:

static bool eg(const char_type&, const char_type&); I
static bool It(const char_type&, const char_type&); I

AN

/1 operations on s[n] arrays:

static char_type* move(char_type* s, const char_type* s2, size t n);
static char_type* copy(char_type* s, const char_type* s2, size t n);
static char_type* assign(char_type* s, size t n, char_type a);

static int compare(const char_type* s, const char_type* s2, size t n);
static size t length(const char_type*) ;

static const char_type* find(const char_type* s, int n, const char_type&);
/1 10O related:

typedef streamoff off_type; | | offsetin stream
typedef streampos |pos_type; / / position in stream
typedef mbstate t state type; / / multi-byte stream state
static int_type eof() ; /| end-of-file
static int_type mot_eof(const int_type&i); // iunless i equals eof(); if not any value!=eof()
static state_type get state(pos_type p); / / multibyte conversion state of character in p
h
The implementation of the standard string templadsic_string (§820.3), relies on these types and
functions. A type used as a character typebfsic_string must provide ahar_traits specializa-
tion that supplies them all.

For a type to be ahar_type, it must be possible to obtain an integer value corresponding to
each character. The type of that integerink type, and the conversion between it and the
char_typeis done byto _char_type() andto_int type() . For achar, this conversion is trivial.

Both move(s, s2 n) and copy(s, s2 n) copy n characters froms2 to s using
assign(§ i], sZ i]) . The difference is thahove() works correctly even i§2is in the[s, stn[
range. Thuscopy() can be faster. This mirrors the standard C library functioemcpy() and
memmove() (819.4.6). A callssign(s, n, X) assigna copies ofx into susingassign(9 i], X) .

Thecompare() function usedt() andeq() to compare characters. It returnsiap whereO
represents an exact match, a negative number means that its first argument comes lexicographically
before the second, and a positive number means that its first argument comes after its second. This
mirrors the standard C library functistrcmp() (820.4.1).

The 1/0O-related functions are used by the implementation of low-level I/O (§21.6.4).

A wide character that is, an object of typerchar_t (84.3)— is like achar, except that it takes
up two or more bytes. The properties afchar_t are described bghar_traits<wchar_t>:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

582 Strings Chapter 20

template<> struct char_traits<wchar_t> {
typedef wchar_t char_type;
typedef wint_t int_type
typedef wstreamoff off type;
typedef wstreampos jpos_type;
/1 like char traits<char>

kh

A wechar _t is typically used to hold characters of a 16-bit character set such as Unicode.

20.3 Basicstring [string.string]

The standard library string facilities are based on the temipésie_string that provides member
types and operations similar to those provided by standard containers (§16.3):

template<class Ch, class Tr = char_traits<Ch>, class A= allocator<Ch> >
class std: : basic_string {
public:
/..
h

This template and its associated facilities are defined in namesidao®l presented bystring>.
Two typedefs provide conventional names for common string types:

typedef basic_string<char> string;
typedef basic_string<wchar_t> wstring;

Thebasic_string is similar tovector (§16.3), except thdiasic_string provides some typical string
operations, such as searching for substrings, instead of the complete set of operations offered by
vector. A stringis unlikely to be implemented by a simple arraweetor. Many common uses of
strings are better served by implementations that minimize copying, use no free store for short
strings, allow for simple modification of longer strings, etc. (see §20.6[12]). The numsteingf
functions reflects the importance of string manipulation and also the fact that some machines pro-
vide specialized hardware instructions for string manipulation. Such functions are most easily uti-
lized by a library implementer if there is a standard library function with similar semantics.

Like other standard library typesbasic_string<T> is a concrete type (82.5.3, §10.3) without
virtual functions. It can be used as a member when designing more sophisticated text manipulation
classes, but it is not intended to be a base for derived classes (825.2.1; see also §20.6[10]).

20.3.1 Types [string.types]

Like vector, basic_string makes its related types available through a set of member type names:

template<class Ch, class Tr = char_traits<Ch>, class A= allocator<Ch> >
class bbasic_string {
public:

/1 types (much like vector, list, etc.: §16.3.1):

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 20.3.1 Types 583

typedef Tr traits type /| specific to basicstring
typedef typename Tr:: char_type value type;

typedef A allocator_type;

typedef typename A : size type size type;

typedef typename A : difference type difference type
typedef typename A : reference reference;

typedef typename A : const_reference const reference;
typedef typename A : pointer pointer;

typedef typename A : const_pointer const pointer;

typedef implementation defined iterator;
typedef implementation defined const_iterator;

typedef std: : reverse iterator<iterator> reverse iterator;
typedef std: : reverse iterator<const _iterator> const rewverse iterator;

"o
k

The basic_string notion supports strings of many kinds of characters in addition to the simple
basic_string<char> known asstring. For example:

typedef basic_string<unsigned char> Usltring;

struct Jchar { /* ...* }; /| Japanese character type
typedef basic_string<Jchar> Jstring;

Strings of such characters can be used just like stringsaofas far as the semantics of the charac-
ters allows. For example:

Ustring first_ word(const Ustring& us)

{
Ustring: : size type pos=us. find(" ") ; / / see §20.3.11
return Ustring(us, O, pos); | | see 820.3.4
}
Jstring first_ word(const Jstring& js)
{
Jstring: : size type pos=js. find(" ") ; [/ / see §20.3.11
return Jstring(js, 0, pos); | | see §20.3.4
}

Naturally, templates that take string arguments can also be used:

template<class S> S first word(const S& s)

{
typename S : size type pos=s. find(" ") ; // see §20.3.11
return §s, 0, pos); | | see 820.3.4

}

A basic_string<Ch> can contain any character of the €& In particular,string can contain &
(zero).

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

584 Strings Chapter 20

20.3.2 Iterators [string.begin]

Like other containers, string provides iterators for ordinary and reverse iteration:

template<class Ch, class Tr = char_traits<Ch>, class A= allocator<Ch> >
class hasic_string {
public:

/...

/1 iterators (like vector, list, etc.: §16.3.2):

iterator begin() ;
const_iterator begin() const
iterator end() ;
const_iterator end() const

reverse iterator rbegin() ;
const_reverse iterator rbegin() const
reverse iterator rend() ;
const_reverse iterator rend() const

" ..
h

Becausestring has the required member types and the functions for obtaining itesitimgs can
be used together with the standard algorithms (Chapter 18). For example:

void f(string& s)
{

string: : iterator p = find(s. begin() , s. end() ,” &) ;
/...
}

The most common operations sinings are supplied directly bstring. Hopefully, these versions
will be optimized forstrings beyond what would be easy to do for general algorithms.

The standard algorithms (Chapter 18) are not as useful for strings as one might think. General
algorithms tend to assume that the elements of a container are meaningful in isolation. This is typi-
cally not the case for a string. The meaning of a string is encoded in its exact sequence of charac-
ters. Thus, sorting a string (that is, sorting the characters in a string) destroys its meaning, whereas
sorting a general container typically makes it more useful.

Thestring iterators are not range checked.

20.3.3 Element Access [string.elem]
Individual characters of string can be accessed through subscripting:

template<class Ch, class Tr = char_traits<Ch>, class A= allocator<Ch> >
class bbasic_string {
public:

/..

/1 element access (like vector: §16.3.3):

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 20.3.3 Element Access 585

k

const_reference operator[](size type m) const, // unchecked access
reference aoperator[](size _type m);

const_reference at(size type m) const, | | checked access
reference ai(size type m);

..

Out-of-range access caus#§ to throw anout_of range.

Compared taovector, string lacksfront() andback() . To refer to the first and the last charac-
ter of astring, we must say 0] andq| s. length()- 1], respectively. The pointer/array equiva-
lence (85.3) doesn't hold fatrings. If sis astring, &3] 0] is not the same as

20.3.4 Constructors [string.ctor]

The set of initialization and copy operations fostdng differs from what is provided for other
containers (816.3.4) in many details:

template<class Ch, class Tr = char_traits<Ch>, class A= allocator<Ch> >
class hasic_string {
public:

b

/...
/1 constructors, etc. (a bit like vector and list: 8§16.3.4):

explicit basic_string(const A& a= A()) ;
basic_string(const basic_string& s,

size type pos= 0, size type m= npos, const A& a=A() ;
basic_string(const Ch* p, size type m, const A& a=A()) ;
basic_string(const Ch* p, const A& a=A() ;
basic_string(size type m, Ch ¢, const A& a= A() ;
template<class In> basic_string(In first, In last, const A& a= A()) ;

~basic_string() ;
static const size type mpos, / / “all characters” marker
/..

A string can be initialized by a C-style string, by anotsieing, by part of a C-style string, by part
of astring, or from a sequence of characters. Howevstriag cannot be initialized by a charac-
ter or an integer:

void f(char* p, vector<char>&v)

{

string sO; /| the empty string

string s00=""; /| also the empty string

string s1="a’; /| error: no conversion from char to string
string s2=7, /| error: no conversion from int to string

string s3(7); /| error: no constructor taking one int argument

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.

Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

586 Strings Chapter 20

string s4(7,” &) ; /| 7 copies of 'a’; that is "aaaaaaa"

string s5=" Frodo"; /| copy of "Frodo"

string s6=s5; / copy of s5

string s7(s5, 3, 2); / s5[3] and s5[4]; that is "do"

string s8(p+7, 3); /- p[7], p[8], and p[9]

string s9(p, 7, 3); | string(string(p),7,3), possibly expensive

string s10(v. begin() , v. end()) ; / / copy all characters from v

/
/
/
/

}

Characters are numbered starting at posfliso that a string is a sequence of characters numbered
0tolength()- 1.

Thelength() of a string is simply a synonym for isize() ; both functions return the number
of characters in the string. Note that they do not count a C-string-style, zero-terminator character
(820.4.1). An implementation dasic_string stores its length rather than relying on a terminator.

Substrings are expressed as a character position plus a number of characters. The default value
nposis initialized to the largest possible value and used to mean “all of the elements.”

There is no constructor for creating a stringrafinspecified characters. The closest we come to
that is the constructor that makes a string obpies of a given character. The length of a string is
determined by the number of characters it holds at any give time. This allows the compiler to save
the programmer from silly mistakes such as the definitios2 ahds3in the previous example.

The copy constructor is the constructor taking four arguments. Three of those arguments have
defaults. For efficiency, that constructor could be implemented as two separate constructors. The
user wouldn’t be able to tell without actually looking at the generated code.

The constructor that is a template member is the most general. It allows a string to be initial-
ized with values from an arbitrary sequence. In particular, it allows a string to be initialized with
elements of a different character type as long as a conversion exists. For example:

void f(string 9

wstring ws(s. begin() , s. end()) ; / / copy all characters from s
/...

}
Eachwchar_t in wsis initialized by its correspondinthar from s.

20.3.5 Errors [string.error]

Often, strings are simply read, written, printed, stored, compared, copied, etc. This causes no prob-
lems, or, at worst, performance problems. However, once we start manipulating individual sub-
strings and characters to compose new string values from existing ones, we sooner or later make
mistakes that could cause us to write beyond the end of a string.

For explicit access to individual charactea) checks and throwsut_of range() if we try
to access beyond the end of the strihgdoes not.

Most string operations take a character position plus a number of characters. A position larger
than the size of the string throws aat_of range exception. A “too large” character count is
simply taken to be equivalent to “the rest” of the characters. For example:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 20.3.5 Errors 587

void f()

{
string s=" Smobol4";
string s2(s, 100, 2); // character position beyond end of string: throw aitrange()
string s3(s, 2, 100); // character count too large: equivalent to s3(s,2,s.siZ&))
string s4(s, 2, string:: npos); / / the characters starting from s[2]

}

Thus, “too large” positions are to be avoided, but “too large” character counts are useful. In fact,
nposis really just the largest possible value $ize type.
We could try to give a negative position or character count:

void g(string& s)

string s5(s,- 2, 3); / / large position!: throw outof range()
string s6(s, 3,- 2); / / large character count!: ok
}

However, thesize type used to represent positions and counts isire@igned type, so a hegative
number is simply a confusing way of specifying a large positive number (§16.3.4).

Note that the functions used to find substrings sfrimg (8§20.3.11) returmpos if they don’t
find anything. Thus, they don’t throw exceptions. However, later ugdog as a character posi-
tion does.

A pair of iterators is another way of specifying a substring. The first iterator identifies a posi-
tion, and the difference between two iterators is a character count. As usual, iterators are not range
checked.

Where a C-style string is used, range checking is harder. When given a C-style string (a pointer
to char) as an argumeniasic_string functions assume the pointer is @otWhen given character
positions for C-style strings, they assume that the C-style string is long enough for the position to
be valid. Be careful! In this case, being careful means being paranoid, except when using character
literals.

All strings havelength()< npos. In a few cases, such as inserting one string into another
(820.3.9), it is possible (although not likely) to construct a string that is too long to be represented.
In that case, bength_error is thrown. For example:

string §(string:: npos” a’) ; / / throw lengtherror()

20.3.6 Assignment [string.assign]

Naturally, assignment is provided for strings:

template<class Ch, class Tr = char_traits<Ch>, class A= allocator<Ch> >
class hasic_string {
public:

/..

/1 assignment (a bit like vector and list: §16.3.4):

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

588 Strings Chapter 20

basic_string& operator=(const basic_string& s);
basic_string& operator=(const Ch* p);
basic_string& operator=(Ch ¢);
basic_string& assign(const basic_string&);
basic_string& assign(const basic_string& s, size type jpos, size type m);
basic_string& assign(const Ch* p, size type m);
basic_string& assign(const Ch* p);
basic_string& assign(size type m, Ch c);
template<class In> basic_string& assign(In first, In last);
/..

h

Like other standard containestrings have value semantics. That is, when one string is assigned
to another, the assigned string is copied and two separate strings with the same value exist after the
assignment. For example:

void g)
{
string s1="Knold";
string s2=""Tot";
sl=s2, / | two copies of "Tot"

s 1] ="u; / [/ s2is"Tut", slis still "Tot"
}

Assignment with a single character to a string is supported even though initialization by a single
character isn't:

void f()
{
string s="a’; // error: initialization by char
s="a’; / | ok: assignment
s="a"
S=s;

}

Being able to assign éhar to astring isn’t much use and could even be considered error-prone.
However, appending ehar using+= is at times essential (§20.3.9), and it would be odd to be able
to says+=" ¢" but nots=s+” ¢’ .

The nameassign() is used for the assignments, which are the counterparts to multiple argu-
ment constructors (816.3.4, §20.3.4).

As mentioned in 811.12, it is possible to optimizstréng so that copying doesn’t actually take
place until two copies of string are needed. The design of the standi#nishg encourages imple-
mentations that minimize actual copying. This makes read-only uses of strings and passing of
strings as function arguments much cheaper than one could naively have assumed. However, it
would be equally naive for programmers not to check their implementations before writing code
that relied orstring copy being optimized (§20.6[13]).

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 20.3.7 Conversion to C-Style Strings 589

20.3.7 Conversion to C-Style Strings [string.conv]

As shown in §20.3.4, atring can be initialized by a C-style string and C-style strings can be
assigned tetrings. Conversely, it is possible to place a copy of the characterstrahg into an
array:

template<class Ch, class Tr = char_traits<Ch>, class A= allocator<Ch> >
class bbasic_string {
public:

/...

/1 conversion to C-style string:

const Ch* c_str() const,
const Ch* data() const
size type copy(Ch* p, size type m, size type pos= 0) const,
..
h

Thedata() function writes the characters of the string into an array and returns a pointer to that
array. The array is owned by thiing, and the user should not try to delete it. The user also can-
not rely on its value after a subsequent call on aagomst function on the string. The_str()

function is likedata() , except that it adds a O (zero) at the end as a C-string-style terminator. For
example:

void f()
{
string s=" equinox’; /| s.length()==7
const char* pl=s.data(); / / pl pointsto seven characters
printf(" pl=9%\n", pl); /| bad: missing terminator
pl2] ="a; [| error: pl points to a const array
s2] ="a;
char c=p1[1]; / | bad: access of s.data() after modification of s

const char* p2=s.c_str(); / / p2 points to eight characters
printf(" p2=9%s\n", p2); /| ok: c_str() adds terminator
}

In other wordsdata() produces an array of characters, whemeatr() produces a C-style string.
These functions are primarily intended to allow simple use of functions that take C-style strings.
Consequentlyc_str() tends to be more useful thdata() . For example:

void f(string s

int i = atoi(s. c_str()) ; / / getintvalue of digits in string (820.4.1)
/..

}

Typically, it is best to leave characters istdng until you need them. However, if you can't use
the characters immediately, you can copy them into an array rather than leave them in the buffer
allocated byc str() ordata() . Thecopy() function is provided for that. For example:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

590 Strings Chapter 20

char* c_string(const string& s)

char* p=new char| s. length()+ 1];/ / note: +1

S. copy(p, string: : npos);

p[s. length()] =0; /| note: add terminator
return p;

}

A call s. copy(p, n, m) copies at mosh characters tg starting withs[m] . If there are fewer
thann characters isto copy,copy() simply copies all the characters there are.

Note that astring can contain thé character. Functions manipulating C-style strings will
interprete such aB as a terminator. Be careful to pdg into a string only if you don't apply C-
style functions to it or if you put tH@there exactly to be a terminator.

Conversion to a C-style string could have been provided opesator const char*() rather
thanc str() . This would have provided the convenience of an implicit conversion at the cost of
surprises in cases in which such a conversion was unexpected.

If you find c_str() appearing in your program with great frequency, it is probably because you
rely heavily on C-style interfaces. Often, an interface that reliestrimgs rather than C-style
strings is available and can be used to eliminate the conversions. Alternatively, you can avoid most
of the explicit calls ot _str() by providing additional definitions of the functions that caused you
to write thec _str() calls:

exten " C" int atoi(const char*) ;

int atoi(const string& s)
{

}

return atoi(s. c_str()) ;

20.3.8 Comparisons [string.compare]

Strings can be compared to strings of their own type and to arrays of characters with the same char-
acter type:

template<class Ch, class Tr = char_traits<Ch>, class A= allocator<Ch> >
class basic_string {
public:

/...

int compare(const basic_string& s) const, // combined> and ==
int compare(const Ch* p) const,

int compare(size type |pos, size type m const basic_string& s) const,
int compare(size type |pos, size type m
const basic_siring& s, size type jpos2, size type m2) const
int compare(size type pos size type m const Ch* p, size type m2 = npos) const,

/..

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 20.3.8 Comparisons 591

When an argumemtis supplied, only tha first characters will be compared. The comparison cri-
terion used igchar_traits<Ch>'s compare() (820.2.1). Thuss. compare(s2) returnso if the
strings have the same value, a negative numtisilexicographically befors2, and a positive
number otherwise.

A user cannot supply a comparison criterion the way it was done in §13.4. When that degree of
flexibility is needed, we can udexicographical_compare() (818.9), define a function like the
one in 813.4, or write an explicit loop. For example,tdupper() function (820.4.2) allows us to
write case-insensitive comparisons:

int cmp_nocase(const string& s, const string& s2)
{
string: : const_iterator p = s. begin() ;
string: : const_iterator p2 = s2 begin() ;
while (p'=s. end() &&p2'=s2 end()) {
if (toupper(* p)!= toupper(* p2)) return (toupper(* p)< toupper(* p2) ?-1: 1,
++p;
++p2;
}
return (s2 size)== s. size))) ?0: (s size)< s2 size)) ?-1: 1;/ / sizeis unsigned
}

void f(const siring& s, const string& s2)

if (s==s2) { / | case sensitive compare of s and s2
/1

}

if (cmp_nocase(s, s2== 0) { | | case insensitive compare of s and s2
I ...
}

..
}

The usual comparison operaters, |= , >, <, >=, and<= are provided fobasic_strings:

template<class Ch, class Tr, class A>
bool operator==(const basic_string<Ch, Tr, A>&, const basic_string<Ch, Tr, A>&);

template<class Ch, class Tr, class A>
bool operator==(const Ch*, const basic_string<Ch, Tr, A>&);

template<class Ch, class Tr, class A>
bool operator==(const basic_string<Ch, Tr, A>&, const Ch*) ;

/1 similar declarations for |=>, <, >=, and<=
Comparison operators are nonmember functions so that conversions can be applied in the same way

to both operands (811.2.3). The versions taking C-style strings are provided to optimize compar-
isons against string literals. For example:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

592 Strings Chapter 20

void f(const string& name
{
if (name==" Obélix" || "Asterix'==name) { / / use optimized ==
/...
}

20.3.9 Insert [string.insert]

Once created, a string can be manipulated in many ways. Of the operations that modify the value
of a string, is one of the most common is appending totftat is, adding characters to the end.
Insertion at other points of a string is rarer:

template<class Ch, class Tr = char_traits<Ch>, class A= allocator<Ch> >
class hasic_string {
public:

/..

/1 add characters after (*this)[length{iL]:

basic_string& operator+=(const basic_string& s);

basic_string& operator+=(const Ch* p);

basic_string& operator+=(Ch c);

void push_back(Ch ¢);

basic_string& append(const basic_string& s);

basic_string& append(const basic_string& s, size type jpos, size type m);
basic_string& append(const Ch* p, size type m);

basic_string& append(const Ch* p);

basic_string& append(size type m, Ch ¢©);

template<class In> basic_string& append(In first, In last);

/1 insert characters before (*this)[pos]:

basic_string& insert(size type jpos, const basic_string& s);

basic_string& insert(size type ppos, const basic_string& s, size type |pos2, size type m);
basic_string& insert(size type pos, const Ch* p, size type m);

basic_string& insert(size type jpos, const Ch* p);

basic_string& insert(size type pos, size type m, Ch ¢);

/1 insert characters before p:

iterator insert(iterator p, Ch ¢);
void insert(iterator p, size type m, Ch ¢);
template<class In> void insert(iterator p, In first, In last);
/...
I3
Basically, the variety of operations provided for initializing a string and assigning to a string is also
available for appending and for inserting characters before some character position.
The += operator is provided as the conventional notation for the most common forms of
append. For example:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 20.3.9 Insert 593

string complete_name(const string& first name const string& family_name)

{
string s= first_name
g4z
s += family_name:
return s

}

Appending to the end can be noticeably more efficient than inserting into other positions. For
example:

string complete_name2(const string& first name, const string& family_name)/ / poor algorithm
{

string s= family_name

s. insert(s. begin() ,”) ;

return s insert(O, first_name);
}

Insertion usually forces thatring implementation to do extra memory management and to move
characters around.

Becausestring has apush back() operation (816.3.5), dack inserter can be used for a
string exactly as for general containers.

20.3.10 Concatenation [string.cat]

Appending is a special form of concatenatid@oncatenation- constructing a string out of two
strings by placing one after the otheis provided by the- operator:

template<class Ch, class Tr, class A>

basic_string<Ch, Tr, A>

operator+(const basic_string<Ch, Tr, A>&, const basic_string<Ch, Tr, A>&);
template<class Ch, class Tr, class A>

basic_string<Ch, Tr, A> operator+(const Ch*, const basic_string<Ch, Tr, A>&);

template<class Ch, class Tr, class A>

basic_string<Ch, Tr, A> operator+(Ch, const basic_string<Ch, Tr, A>&);
template<class Ch, class Tr, class A>

basic_string<Ch, Tr, A> operator+(const basic_string<Ch, Tr, A>&, const Ch*) ;
template<class Ch, class Tr, class A>

basic_string<Ch, Tr, A> operator+(const basic_string<Ch, Tr, A>&, Ch);

As usual,+ is defined as a nonmember function. For templates with several template parameters,
this implies a notational disadvantage, since the template parameters are mentioned repeatedly.
On the other hand, use of concatenation is obvious and convenient. For example:

string complete_name3(const string& first name const string& family_name)
{

}

return first name+ "~ °~ + family_name

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

594 Strings Chapter 20

This notational convenience may be bought at the cost of some run-time overhead compared to
complete name() . One extra temporary (811.3.2) is neededomplete_name3() . In my expe-

rience, this is rarely important, but it is worth remembering when writing an inner loop of a pro-
gram where performance matters. In that case, we might even consider avoiding a function call by
makingcomplete name() inline and composing the result string in place using lower-level opera-
tions (820.6[14]).

20.3.11 Find [string.find]

There is a bewildering variety of functions for finding substrings:

template<class Ch, class Tr = char_traits<Ch>, class A= allocator<Ch> >
class hasic_siring {
public:

/...

/1 find subsequence (like search() §18.5.5):

size type find(const basic_string& s, size type i = 0) const
size type find(const Ch* p, size type i, size type m) const
size type find(const Ch* p, size type i= 0) const

size type find(Ch c, size type i=0) const

/1 find subsequence searching backwards from the end (like=fidg), §18.5.5):

size type rfind(const basic_string& s, size type i = npos) const,
size type rfind(const Ch* p, size type i, size type m) const
size type rfind(const Ch* p, size type i = npos) const;

size type rfind(Ch c, size type ii= npos) const

/1 find character (like findfirst_of() in §18.5.2):

size type find first of(const basic_string& s, size type i= 0) const,
size type find_first of(const Ch* p, size type i, size type m) const,
size type find first of(const Ch* p, size type i=0) const

size type find first of(Ch ¢, size type i=0) const,

/1 find character from argument searching backwards from the end:
size type find_last_of(const basic_string& s, size type i = npos) const
size type find_last of(const Ch* p, size type i, size type m) const
size type find last of(const Ch* p, size type i = npos) const,

size type find_last of(Ch c, size type i = npos) const

/1 find character not in argument:

size type find first not_of(const basic_string& s, size type ii=0) const;
size type find first not_of(const Ch* p, size type i, size type m) const
size type find_first_not_of(const Ch* p, size type i=0) const,

size type find_first not_of(Ch c, size type i=0) const,

/1 find character not in argument searching backwards from the end:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 20.3.11 Find 595

size type find_last not_of(const basic_string& s, size type i = npos) const,
size type find_last not_of(const Ch* p, size type i, size type m) const
size type find_last _not_of(const Ch* p, size type i = npos) const
size type find_last not_of(Ch c, size type i= npos) const,
/...

3

These are altonst members. That is, they exist to locate a substring for some use, but they do not
change the value of the string to which they are applied.

The meaning of théasic_string: : find functions can be understood from their general algo-
rithm equivalents. Consider an example:

void f()

{
string s="accdcde";
string: : size type il = s. find(" cd") ;
string: : size type i2 = s. rfind(" cd") ;
string: : size type i3 = s. find_first_of(" cd") ;
string: : size type i4 = s. find_last of(" cd") ;
string: : size type i5 = s. find_first_not_of(" cd") ;
string: : size type i6 = s. find_last_not_of(" cd") ;

i1=2 s[2]=="c’ && s[3]=="d’
i2=4 s[4]=="c' && s[5]=="d’
i3=1 s[1]=="c

i4=5 s[5]=="d

i5=0 s[0]!="c’ && s[0]!="d’
i6=6 s[6]l="c’ && s[6]!="d

~ — — — ~— —
~ Y~ Y~~~ —~

}

If a find() function fails to find anything, it returnspos, which represents an illegal character
position. Ifnposis used as a character positicange _error will be thrown (820.3.5).
Note that result of find() is anunsigned value.

20.3.12 Replace [string.replace]

Once a position in a string is identified, the value of individual character positions can be changed
using subscripting or whole substrings can be replaced with new charactenepkiog) :

template<class Ch, class Tr = char_traits<Ch>, class A= allocator<Ch> >
class hasic_string {
public:

/...

/1 replace [(*this)[i], (*this)[i+n] [with other characters:

basic_string& replace(size type i, size type m const basic_string& s);
basic_string& replace(size type i, size type m,

const basic_string& s, size type i2, size type m2);
basic_string& replace(size type i, size type m const Ch* p, size type m2);
basic_string& replace(size type i, size type m const Ch* p);
basic_string& replace(size type i, size type m size type m2, Ch ¢);

basic_string& replace(iterator i, iterator i2, const basic_string& s);
basic_string& replace(iterator i, iterator i2, const Ch* p, size type m);
basic_string& replace(iterator i, iterator i2, const Ch* p);

basic_string& replace(iterator i, iterator i2, size type m, Ch ¢);
template<class IIn> basic_string& replace(iterator i, iterator i2, In j, In j2);

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

596 Strings Chapter 20

/1 remove characters from string (“‘replace with nothing”):
basic_string& erase(size type ii= 0, size type m= npos);
iterator erase(iterator i);

iterator erase(iterator first, iterator last);

"o
b

Note that the number of new characters need not be the same as the number of characters previ-
ously in the string. The size of the string is changed to accommodate the new substring. In particu-
lar, erase() simply removes a substring and adjusts its size accordingly. For example:

void f()
{

string s="but | have heard it works even if you don t believe in it";
s. erase(0, 4); [| erase initial "but "
s. replace(s. find(" even’) , 4" only") ;
s. replace(s. find(" don" t") , 5"") ;/ [/ erase by replacing with "™
}

The simple callerase() , with no argument, makes the string into an empty string. This is the
operation that is calleclear() for general containers (816.3.6).

The variety ofreplace() functions matches that of assignment. After edplace() is an
assignment to a substring.

20.3.13 Substrings [string.sub]

Thesubstr() function lets you specify a substring as a position plus a length:

template<class Ch, class Tr = char_traits<Ch>, class A= allocator<Ch> >
class hasic_string {
public:

/...

/1 address substring:

basic_string substr(size type ii= 0, size type m= npos) const,
/..
h

Thesubstr() function is simply a way of reading a part of a string. On the other hepldce()

lets you write to a substring. Both rely on the low-level position plus number of characters nota-
tion. Howeverfind() lets us find substrings by value. Together, they allow us to define a sub-
string that can be used for both reading and writing:

template<class Ch> class Basic_substring {
public:
typedef typename basic_string<Ch>: : size type size type

Basic_substring(basic_string<Ch>& s, size type i, size type m); /I s[i]..s[li+n-1]
Basic_subsiring(basic_string<Ch>& s, const basic_string<Ch>& s2); / / s2ins
Basic_substring(basic_string<Ch>& s, const Ch* p); / | *pins

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 20.3.13 Substrings 597

Basic_substring& operator=(const basic_string<Ch>&); /| write through to *ps
Basic_substring& operator=(const Basic_substring<Ch>&);

Basic_substring& operator=(const Ch*) ;

Basic_substring& operator=(Ch);

operator basic_string<Ch>() const; /| read from *ps
operator Ch* () const;
private:
basic_string<Ch>* ps;
size type jpos,
size type m;

The implementation is largely trivial. For example:

template<class Ch>
Basic_substring<Ch>: : Basic_substring(basic_string<Ch>& s, const basic_string<Ch>& s2)
:ps(&s), n(s2 length())

pos=-s. find(s2);
}

template<class Ch>
Basic_substring<Ch>& Basic_substring<Ch>: : operator=(const basic_string<Ch>& s)
{

ps> replace(pos, n, s); / / write through to *ps

return * this;

}
template<class Ch> Basic_substring<Ch>: : operator basic_string<Ch>() const

return basic_string<Ch>(* ps, pos, n); / / copy from *ps
}

If s2 isn’t found ins, pos will be npos. Attempts to read or write it will throwange error
(820.3.5).
This Basic_substring can be used like this:

typedef Basic_substring<char> Substring;

void f()

{

string s="Mary had a little lamb’;

Swbstring(s," lamb") =" fun";

Swbstring(s," a little") ="no";

string s2="Jo€" + Substring(s, s. find(") , string:: npos);
}

Naturally, this would be much more interestingSibstring could do some pattern matching
(820.6[7]).

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

598 Strings Chapter 20

20.3.14 Size and Capacity [string.capacity]

Memory-related issues are handled much as they avedtnr (§16.3.8):

template<class Ch, class Tr = char_traits<Ch>, class A= allocator<Ch> >
class hasic_string {

public:
/..
/1 size, capacity, etc. (like §16.3.8):
size type size() const, /| number of characters (820.3.4)
size type max_size() const; /| largest possible string

size type length() const{ return size() ; }
bool empty() const{ return size()== O; }
void resize(size type m Ch ©);

void resize(size type m) { resize(n, Ch()) ; }

size type capacity() const /
void reserve(size type res arg = 0); /

/ like vector: 816.3.8
/ like vector: §16.3.8

allocator_type get allocator() const;
2

A call reserve(res arg) throwslength_error if res arg>max_size() .
20.3.15 1/O Operations [string.io]

One of the main uses sirings is as the target of input and as the source of output:

template<class Ch, class Tr, class A>
basic_istream<Ch, Tr>& operator>>(basic_istream<Ch, Tr>&, basic_string<Ch, Tr, A>&);

template<class Ch, class Tr, class A>
basic_ostream<Ch, Tr>& operator<<(basic_ostream<Ch, Tr>&, const basic_string<Ch, Tr, A>&);

template<class Ch, class Tr, class A>
basic_istream<Ch, Tr>& getline(basic_istream<Ch, Tr>&, basic_string<Ch, Tr, A>&, Ch eol);

template<class Ch, class Tr, class A>
basic_istream<Ch, Tr>& getline(basic_istream<Ch, Tr>&, basic_string<Ch, Tr, A>&);

The << operator writes a string to asstream (821.2.1). The>> operator reads a whitespace-

terminated word (83.6, 821.3.1) to its string, expanding the string as needed to hold the word. Ini-

tial whitespace is skipped, and the terminating whitespace character is not entered into the string.
Thegetling) function reads a line terminated bgl to its string, expanding string as needed

to hold the line (83.6). If neol argument is provided, a newlindn” is used as the delimiter. The

line terminator is removed from the stream but not entered into the string. Becatismga

expands to hold the input, there is no reason to leave the terminator in the stream or to provide a

count of characters read in the wgst() andgetling() do for character arrays (§21.3.4).

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 20.3.16 Swap 599

20.3.16 Swap [string.swap]

As for vectors (816.3.9), awap() function for strings can be much more efficient than the general
algorithm, so a specific version is provided:

template<class Ch, class Tr, class A>
void swap(basic_string<Ch, Tr, A>&, basic_string<Ch, Tr, A>&);

20.4 The C Standard Library[string.cstd]

The G+ standard library inherited the C-style string functions from the C standard library. This
section lists some of the most useful C string functions. The description is not meant to be exhaus-
tive; for further information, check your reference manual. Beware that implementers often add
their own nonstandard functions to the standard header files, so it is easy to get confused about
which functions are guaranteed to be available on every implementation.

The headers presenting the standard C library facilities are listed in §16.1.2. Memory manage-
ment functions can be found in §19.4.6, C I/O functions in §21.8, and the C math library in §22.3.
The functions concerned with startup and termination are described in 83.2 and §9.4.1.1, and the
facilities for reading unspecified function arguments are presented in §7.6. C-style functions for
wide character strings are found<dowchar> and<wchar. h>.

20.4.1 C-Style Strings [string.c]
Functions for manipulating C-style strings are foundstring. h> and<cstring>:

char* strcpy(char* p, const char* q); / | copy from g into p (incl. terminator)
char* strcat(char* p, const char* q); /| append from g to p (incl. terminator)
char* strncpy(char* p, const char* g, int n);/ / copy n char from qinto p
char* strncat(char* p, const char* g, int n); / / append n char from qto p

size t strlen(const char* p); / / length of p (not counting the terminator)

int strcemp(const char* p, const char* q); /| compare: pand q
int strncmp(const char* p, const char* g, int n); / / compare first n char
char* strchr(char* p, int c); [| find firstcinp

const char* strchr(const char* p, int c);

char* strrchr(char* p, int c); / [/ findlastcinp

const char* strrchr(const char* p, int c);

char* strstr(char* p, const char* q); [| find firstginp

const char* strstr(const char* p, const char* q);

char* strpbrk(char* p, const char* q); /I find first char from g in p
const char* strpbrk(const char* p, const char* q);

size t strspn(const char* p, const char* q); / / number of char in p before any charin q
size t strespn(const char* p, const char* q); / / number of char in p before a char not in q

A pointer is assumed to be nonzero, and the arrafanfthat it points to is assumed to be termi-
nated by0. Thestrn-functions pad witlD if there are noh characters to copy. String comparisons

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

600 Strings Chapter 20

returnO if the strings are equal, a negative number if the first argument is lexicographically before
the second, and a positive humber otherwise.

Naturally, C doesn't provide the pairs of overloaded functions. However, they are needed in
C++ for const safety. For example:

void f(const char* pcc, char* pc) / /| C++

{

*strchr(pecc,” @) ="b’;/ [/ error: cannot assign to const char
*strchr(pc,” @) ="b’; / [/ ok, but sloppy: there might not be an 'a’ in pc
}

The G+ strchr() does not allow you to write to eonst. However, a C program may “take
advantage” of the weaker type checking in thsti©€hr() :

char* strchr(const char* p, int c); /* C standard library function, not C+%/

void g(const char* pcc, char* pc) /* C, will not compile in C++/

{

strchr(pee,” @) ="b’;/ converts const to non-const: ok in C, error in C#+
strchr(pc,” @) ="b’; /¥ okin Cand C++/
}

Whenever possible, C-style strings are best avoided in favsirinfjs. C-style strings and their
associated standard functions can be used to produce very efficient code, but even experienced C
and G+ programmers are prone to make uncaught “silly errors” when using them. However, no
C++ programmer can avoid seeing some of these functions in old code. Here is a nonsense exam-
ple illustrating the most common functions:

void f(char* p, char* q)

{
if (p==q) return; / | pointers are equal
if (stremp(p, 9==0) { / / string values are equal
int i =strlen(p); / / number of characters (not counting the terminator)
/...
}
char buf 200];
strepy(buf, p); /I copy p into buf (including the terminator)
/1 sloppy: will overflow some day.
strncpy(buf, p, 200); / | copy 200 char from p into buf
/1 sloppy: will fail to copy the terminator some day.
/...
}

Input and output of C-style strings are usually done usingriimf family of functions (§21.8).
In <stdlib. h> and <cstdlib>, the standard library provides useful functions for converting
strings representing numeric values into numeric values:

double atof(const char* p); / / convert p to double
int atoi(const char* p); /| convert p toint
long atol(const char* p); / | convert p to long

Leading whitespace is ignored. If the string doesn't represent a number, zero is returned. For

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 20.4.1 C-Style Strings 601

example, the value aitoi(" seven’) is 0. If the string represents a number that cannot be repre-
sented in the intended result tymerno (816.1.2, §22.3) is set 8BRANGE and an appropriately
huge or tiny value is returned.

20.4.2 Character Classification [string.isalpha]

In <ctype. h> and<cctype>, the standard library provides a set of useful functions for dealing with
ASCII and similar character sets:

int isalpha(int); / / letter:’a’..’z’ 'A’.."”Z" in C locale (§20.2.1, §21.7)

int isupper(int); / / upper case letter: 'A’.."Z" in C locale (820.2.1, 821.7)
int islower(int); / / lower case letter: 'a’..’z’ in C locale (820.2.1, §21.7)
int isdigit(int); /1°0.09

int isxdigit(int); / / '0.."9" or letter

int isspace(int); / / '’’\t'"'W return newline formfeed

int isentrl(int); /| control character (ASCII 0..31 and 127)

int ispunct(int); / / punctuation: none of the above

int isalnum(int); / / isalpha()disdigit()
int isprint(int); [| printable: ascii ' "..”™
int isgraph(int); / / isalpha()Qisdigit() Cispunct()

int toupper(int c); / / uppercase equivalent to c
int tolower(int c); / / lowercase equivalentto c

~ e e Y~ e~ e~ e~ — ——~

~

All are usually implemented by a simple lookup, using the character as an index into a table of
character attributes. This means that constructs such as:

if ((a<=c&&c<="7) || (A<=c&&c<="Z)) { [/| alphabetic
/...
}

are inefficient in addition to being tedious to write and error-prone (on a machine with the EBCDIC
character set, this will accept nonalphabetic characters).

These functions taként arguments, and the integer passed must be representable as an
unsigned char or EOF (which is most often 1). This can be a problem on systems wtlehar is
signed (see §20.6[11]).

Equivalent functions for wide characters are founddwtype> and<wtype. h>.

20.5 Advice]string.advice]

[1] Preferstring operations to C-style string functions; §20.4.1.

[2] Usestrings as variables and members, rather than as base classes; §20.3, §25.2.1.

[3] You can passtrings as value arguments and return them by value to let the system take care
of memory management; §20.3.6.

[4] Useat() rather than iterators ¢f when you want range checking; §20.3.2, §20.3.5.

[5] Use iterators anfl rather tharat() when you want to optimize speed; §20.3.2, §20.3.5.

[6] Directly or indirectly, usesubstr() to read substrings aneeplace() to write substrings;
§20.3.12, §20.3.13.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

602 Strings Chapter 20

[7] Use thefind() operations to localize values irstiing (rather than writing an explicit loop);
§20.3.11.

[8] Append to astring when you need to add characters efficiently; §20.3.9.

[9] Usestrings as targets of non-time-critical character input; §20.3.15.

[10] Usestring: : nposto indicate “the rest of thstring;” §20.3.5.

[11] If necessary, implement heavily-usstilings using low-level operations (rather than using
low-level data structures everywhere); §20.3.10.

[12] If you usestrings, catclrange _ermror andout_of_range somewhere; §20.3.5.

[13] Be careful not to passchar* with the valued to a string function; §20.3.7.

[14] Usec_str rather to produce a C-style string representationstifing only when you have to;
§20.3.7.

[15] Useisalpha() , isdigit() , etc., when you need to know the classification of a character rather
that writing your own tests on character values; §20.4.2.

20.6 Exercises$string.exercises]

The solutions to several exercises for this chapter can be found by looking at the source text of an
implementation of the standard library. Do yourself a favor: try to find your own solutions before
looking to see how your library implementer approached the problems.

1. (@) Write a function that takes twsrings and returns siring that is the concatenation of the
strings with a dot in the middle. For example, gide and write, the function returns
file. write. Do the same exercise with C-style strings using only C facilities sucialboc()
andstrlen() . Compare the two functions. What are reasonable criteria for a comparison?

2. (@) Make a list of differences betweeector andbasic_string. Which differences are impor-
tant?

3. (@) The string facilities are not perfectly regular. For example, you can assigr & a
string, but you cannot initialize string with achar. Make a list of such irregularities. Which
could have been eliminated without complicating the use of strings? What other irregularities
would this introduce?

4. ({L.5) Classhasic_string has a lot of members. Which could be made nonmember functions

without loss of efficiency or notational convenience?

((L.5) Write a version dback _inserter() (819.2.4) that works fdpasic_string.

((2) CompleteBasic_substring from §20.3.13 and integrate it withSiring type that overloads

() to mean “substring of” and otherwise acts ligteing.

7. (@2.5) Write afind() function that finds the first match for a simple regular expression in a
string. Use? to mean “any character,* to mean any number of characters not matching the
next part of the regular expression, grabc] to mean any character from the set specified
between the square braces (h&rb, andc). Other characters match themselves. For example,
find(s" name") returns a pointer to the first occurrence ofame in s
find(s"[nN] ame") returns a pointer to the first occurrencenafme or Name in s; and
find(s"[nN] ame(*)") returns a pointer to the first occurenceNzime or name followed
by a (possibly empty) parenthesized sequences of characsers in

8. (2.5) What operations do you find missing from the simple regular expression function from

IS

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 20.6 Exercises 603

820.6[7]? Specify and add them. Compare the expressiveness of your regular expression
matcher to that of a widely distributed one. Compare the performance of your regular expres-
sion matcher to that of a widely distributed one.

9. (.5) Use a regular expression library to implement pattern-matching operationSironga
class that has an associaguibstring class.

10. (2.5) Consider writing an “ideal” class for general text processing. Calt. What facili-
ties should it have? What implementation constraints and overheads are imposed by your set of
“ideal” facilities?

11. (.5) Define a set of overloaded versionsigalpha() , isdigit() , etc., so that these functions
work correctly forchar, unsigned char, andsigned char.

12. (R.5) Write aString class optimized for strings having no more than eight characters. Com-
pare its performance to that of tBfing from §11.12 and your implementation’s version of the
standard librangtring. |s it possible to design a string that combines the advantages of a string
optimized for very short strings with the advantages of a perfectly general string?

13. (2) Measure the performance of copyingtrings. Does your implementation’s implementa-
tion of string adequately optimize copying?

14. (2.5) Compare the performance of the thcemplete name() functions from §20.3.9 and
§20.3.10. Try to write a version ecbmplete name() that runs as fast as possible. Keep a
record of mistakes found during its implementation and testing.

15. (2.5) Imagine that reading medium-long strings (most are 5 to 25 characters longjriiem
the bottleneck in your system. Write an input function that reads such strings as fast as you can
think of. You can choose the interface to that function to optimize for speed rather than for con-
venience. Compare the result to your implementatisn’$or strings.

16. (1L.5) Write a functiontos(int) that returns atring representing itent argument.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

604 Strings Chapter 20

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

	Return to Contents
	20.1 Introduction
	20.2 Characters
	20.3 Basic_string
	20.4 The C Standard Library
	20.5 Advice
	20.6 Exercises

	buy now:

