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lterators and Allocators

The reason that data structures and algorithms
can work together seamlessly is ... that they
do not know anything about each other.
— Alex Stepanov

Iterators and sequences operations on iterators- iterator traits— iterator categories
— inserters— reverse iterators— stream iterators— checked iterators— exceptions
and algorithms— allocators— the standardallocator — user-defined allocators—
low-level memory functions— advice— exercises.

19.1 Introduction [iter.intro]

Iterators are the glue that holds containers and algorithms together. They provide an abstract view
of data so that the writer of an algorithm need not be concerned with concrete details of a myriad of
data structures. Conversely, the standard model of data access provided by iterators relieves con-
tainers from having to provide a more extensive set of access operations. Similarly, allocators are
used to insulate container implementations from details of access to memory.

Iterators support an abstract model of data as sequences of objects (§19.2). Allocators provide a
mapping from a lower-level model of data as arrays of bytes into the higher-level object model
(819.4). The most common lower-level memory model is itself supported by a few standard func-
tions (819.4.4).

Iterators are a concept with which every programmer should be familiar. In contrast, allocators
are a support mechanism that a programmer rarely needs to worry about and few programmers will
ever need to write a new allocator.
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19.2 Iterators and Sequencefger.iter]

An iterator is a pure abstraction. That is, anything that behaves like an iterator is an iterator
(83.8.2). An iterator is an abstraction of the notion of a pointer to an element of a sequence. Its key
concepts are
“the element currently pointed to” (dereferencing, represented by opetatord-> ),
“point to next element” (increment, represented by operatgr and
— equality (represented by operator).
For example, the built-in typat* is an iterator for amt[] and the clashst<int>:: iterator is an
iterator for dist class.
A sequence is an abstraction of the notion “something where we can get from the beginning to
the end by using a next-element operation:”

begin() end()

‘ eIem[O]‘ — ‘ elem[l]‘ — ‘ e|em[2]‘ — ‘ ‘ = ‘elem[n-l] . ...........

Examples of such sequences are arrays (85.2), vectors (816.3), singly-linked lists (817.8[17]),
doubly-linked lists (817.2.2), trees (§817.4.1), input (821.3.1), and output (§21.2.1). Each has its
own appropriate kind of iterator.

The iterator classes and functions are declared in namestdaaoel found ir<iterator>.

An iterator isnota general pointer. Rather, it is an abstraction of the notion of a pointer into an
array. There is no concept of a “null iterator.” The test to determine whether an iterator points to
an element or not is conventionally done by comparing it againsnithef its sequence (rather
than comparing it againstraull element). This notion simplifies many algorithms by removing the
need for a special end case and generalizes nicely to sequences of arbitrary types.

An iterator that points to an element is said tov&led and can be dereferenced (using] , or
-> appropriately). An iterator can be invalid either because it hasn't been initialized, because it
pointed into a container that was explicitly or implicitly resized (§16.3.6, 816.3.8), because the con-
tainer into which it pointed was destroyed, or because it denotes the end of a sequence (§18.2). The
end of a sequence can be thought of as an iterator pointing to a hypothetical element position one-
past-the-last element of a sequence.

19.2.1 lterator Operations [iter.oper]

Not every kind of iterator supports exactly the same set of operations. For example, reading
requires different operations from writing, andrector allows convenient and efficient random
access in a way that would be prohibitively expensive to provide list ar anistream. Conse-
guently, we classify iterators into five categories according to the operations they are capable of
providing efficiently (that is, in constant time; §17.1):
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0 Iterator Operations and Categories N
- - —— ]
Epategory. O output  input forward  bidirectional ~random-access
Abbreviation: EOut In For Bi Ran 0
[Read: 0 =*p =*p =*p =*p E
ccess: O -> -> -> > ] 0
rite: O*p= *p= *p= *p= 0
[Jteration: Utt ++ ++ ++ -- ++ - + - += -= 0
g:omparison: n ==Il= === == I= === <> >=<= @

Both read and write are through the iterator dereferencéd by

*p=x; [ [/ write x through p
x=*p; [ [/ read through p into x

To be an iterator type, a type must provide an appropriate set of operations. These operations must
have their conventional meanings. That is, each operation must have the same effect it has on an
ordinary pointer.

Independently of its category, an iterator can altmmst or nonconst access to the object it
points to. You cannot write to an element using an iteratoomst — whatever its category. An
iterator provides a set of operators, but the type of the element pointed to is the final arbiter of what
can be done to that element.

Reads and writes copy objects, so element types must have the conventional copy semantics
(817.1.4).

Only random-access iterators can have an integer added or subtracted for relative addressing.
However, except for output iterators, the distance between two iterators can always be found by
iterating through the elements, sdistance() function is provided:

template<class In> typename iterator_traits<In>: : difference type distance( In first, In last)

{
typename iiterator_traits<In>: : difference_type d= 0;
while ( first++!= last) d++;
return d

}

An iterator_traits<In>: : difference_typeis defined for every iteratdn to hold distances between
elements (§19.2.2).

This function is calledlistance() rather tharoperator-() because it can be expensive and
the operators provided for an iterator all operate in constant time (817.1). Counting elements one
by one is not the kind of operation | would like to invoke unwittingly for a large sequence. The
library also provides a far more efficient implementationlistance() for a random-access itera-
tor.

Similarly, advance() is provided as a potentially slotw:

template <class In, class Dist> void advance(In i, Dist n); / / i+=n
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19.2.2 lterator Traits [iter.traits]

We use iterators to gain information about the objects they point to and the sequences they point
into. For example, we can dereference an iterator and manipulate the resulting object and we can
find the number of elements in a sequence, given the iterators that describe it. To express such
operations, we must be able to refer to types related to an iterator such as “the type of the object
referred to by an iterator” and “the type of the distance between two iterators.” The related types
of an iterator are described by a small set of declarationsiterator_traits template class:

template<class lter> struct iterator_traits {
typedef typename liter: : iterator_category iterator_category;
typedef typename lter: : value type value_type
typedef typename liter: : difference type difference type;
typedef typename lter: : pointer pointer; /| return type of operater>()
typedef typename lter: : reference reference; /I return type of operator*()

§19.2.3

I
[ | type of element

kh

The difference type is the type used to represent the difference between two iterators, and the
iterator_category is a type indicating what operations the iterator supports. For ordinary pointers,
specializations (§13.5) farT*> and<const T*> are provided. In particular:

template<class T> struct iterator_traits<T*> { | | specialization for pointers
typedef random_access iterator_tag iterator_category;

typedef T value_type;
typedef ptrdiff_t difference_type;

typedef T* pointer;
typedef T& reference;

kh

That is, the difference between two pointers is represented by the standard librapyrdifibet
from <cstddef> (86.2.1) and a pointer provides random access (§19.2.3). @arator_traits,
we can write code that depends on properties of an iterator parameterount@ algorithm is
the classical example:

template<class In, class T>
typename iiterator_traits<In>: : difference_type count( In first, In last, const T& val)

{
typename iiterator_traits<In>: : difference_type res= 0;
while (first!= last) if (* first++ == val) ++res
return res

}

Here, the type of the result is expressed in terms dterator_traits of the input. This technique
is necessary because there is no language primitive for expressing an arbitrary type in terms of
another.

Instead of usingterator_traits, we might have specializedunt() for pointers:

template<class In, class T>
typename In: : difference type count(In first, In last, const T&val);

template<class In, class T> ptrdiff_t count<T*, T>( T* first, T* last, const T&val);
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However, this would have solved the problemdount() only. Had we used this technique for a
dozen algorithms, the information about distance types would have been replicated a dozen times.
In general, it is better to represent a design decision in one place (§823.4.2). In that way, the deci-
sion can- if necessary- be changed in one place.

Becauseiterator _traits<Iterator> is defined for every iterator, we implicitly define an
iterator_traits whenever we design a new iterator type. If the default traits generated from the
generaliterator_traits template are not right for our new iterator type, we provide a specialization
in a way similar to what the standard library does for pointer types.itéator_traits that are
implicitly generated assume that the iterator is a class with the memberdiffegence type,
value type, etc. In<iterator>, the library provides a base type that can be used to define those
member types:

template<class Cat, class T, class Dist = ptrdiff_t, class Ptr = T*, class Ref=T&>
struct iterator {

typedef Cat iterator_category; / / §19.2.3

typedef T value type; | I type of element

typedef Dist difference type; / / type of iterator difference

typedef Ptr pointer; [ | return type for>

typedef Ref reference; [ | return type for *
b

Note thatreference andpointer are not iterators. They are intended to be the return typesesf
ator*() andoperator->() , respectively, for some iterator.

The iterator_traits are the key to the simplicity of many interfaces that rely on iterators and to
the efficient implementation of many algorithms.

19.2.3 lterator Categories [iter.cat]

The different kinds of iterators usually referred to as iterator categorefit into a hierarchical
ordering:

Input
Forward <-Bidirectional Random access
Output

This is not a class inheritance diagram. An iterator category is a classification of a type based on
the operations it provides. Many otherwise unrelated types can belong to the same iterator cate-
gory. For example, both ordinary pointers (§19.2.2) @hecked iters (819.3) are random-access
iterators.

As noted in Chapter 18, different algorithms require different kinds of iterators as arguments.
Also, the same algorithm can sometimes be implemented with different efficiencies for different
kinds of iterators. To support overload resolution based on iterator categories, the standard library
provides five classes representing the five iterator categories:
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struct input_iterator_tag {};

struct output_iterator_tag {};

struct forward_iterator_tag: public input_iterator_tag {};

struct bidirectional_iterator_tag: public forward iterator_tag {};

struct random_access iterator_tag: public bidirectional_iterator_tag {};

Looking at the operations supported by input and forward iterators (§819.2.1), we would expect
forward iterator_tagto be derived fronoutput_iterator_tag as well as froninput_iterator_tag.
The reasons that it is not are obscure and probably invalid. However, | have yet to see an example
in which that derivation would have simplified real code.

The inheritance of tags is useful (only) to save us from defining separate versions of a function
where several but not all- kinds of iterators can use the same algorithms. Consider how to
implementdistance:

template<class In>
typename iiterator_traits<In>: : difference_type distance( In first, In last);

There are two obvious alternatives:

[1] If Inis a random-access iterator, we can subfiestifrom last

[2] Otherwise, we must increment an iterator friorst to last and count the distance.
We can express these two alternatives as a pair of helper functions:

template<class In>
typename iterator_traits<In>: : difference_type
dist_helper( In first, In last, input_iterator_tag)

{
typename iiterator_traits<In>: : difference_type d= 0;
while ( first++!= last) d++; /| use increment only
return d

}

template<class Ran>
typename iterator_traits<Ran>: : difference_type
dist_helper( Ran first, Ran last, random access iterator_tag)

{

}

The iterator category tag arguments make it explicit what kind of iterator is expected. The iterator
tag is used exclusively for overload resolution; the tag takes no part in the actual computation. Itis
a purely compile-time selection mechanism. In addition to automatic selection of a helper function,
this technigue provides immediate type checking (§13.2.5).

It is now trivial to definedistance() by calling the appropriate helper function:

return last- first / / rely on random access

template<class In>
typename iterator_traits<in>: : difference_type distance( In first, In last)

{
}

return dist_helper( first, last, iterator_traits<in>: : iterator_category()) ;

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.



Section 19.2.3 Iterator Categories 555

For adist_helper() to be called, theterator_traits<in>:: iterator_category used must be a
input_iterator_tag or arandom_access iterator_tag. However, there is no need for separate ver-
sions ofdist_helper() for forward or bidirectional iterators. Thanks to tag inheritance, those cases
are handled by thdist_helper() which takes amnput_iterator_tag. The absence of a version for
output_iterator_tag reflects the fact thatistance() is not meaningful for output iterators:

void f( vector<int>& vi,
list<double>& Id,
istream iterator<string>& isl1, istream iterator<string>& is2,
ostream iterator<char>& 0sl, ostream iterator<char>& 0s2)

{

distance( vi. begin() , vi. end()) ; /| use subtraction algorithm

distance( Id. begin() , Id. end()) ; /| use increment algorithm

distance( isl, is2); / | use increment algorithm

distance( 0sl, 0s2); / / error: wrong iterator category, dishelper() argument type mismatch
}

Calling distance() for anistream iterator probably doesn’t make much sense in a real program,
though. The effect would be to read the input, throw it away, and return the number of values
thrown away.

Using iterator_traits<T>: : iterator_category allows a programmer to provide alternative
implementations so that a user who cares nothing about the implementation of algorithms automati-
cally gets the most appropriate implementation for each data structure used. In other words, it
allows us to hide an implementation detail behind a convenient interface. Inlining can be used to
ensure that this elegance is not bought at the cost of run-time efficiency.

19.2.4 Inserters [iter.insert]

Producing output through an iterator into a container implies that elements following the one
pointed to by the iterator can be overwritten. This implies the possibility of overflow and conse-
qguent memory corruption. For example:

void f( vector<int>& vi)

fill_n( vi. begin() , 200, 7); / | assign 7 to vi[0]..[199]
}

If vi has fewer thaR00 elements, we are in trouble.
In <iterator>, the standard library provides three iterator template classes to deal with this
problem, plus three functions to make it convenient to use those iterators:

template <class Cont> back_insert_iterator<Cont> back_inserter( Cont& c);
template <class Cont> front_insert_iterator<Cont> front_inserter( Cont& c);
template <class Cont, class Out> insert_iterator<Cont> inserter( Cont& ¢, Out p);

The back_inserter() causes elements to be added to the end of the contixomtr,inserter()
causes elements to be added to the front, and “plaasérter() causes elements to be added
before its iterator argument. Fmserter( ¢, p) , p must be a valid iterator far. Naturally, a con-
tainer grows each time a value is written to it through an insert iterator.
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When written to, an inserter inserts a new element into a sequence pusimdack() ,
push _front() , orinsert() (816.3.6) rather than overwriting an existing element. For example:

void g( vector<int>& vi)

fill_n( back_inserter( vi), 200, 7); / / add 200 7s to the end of vi
}

Inserters are as simple and efficient as they are useful. For example:

template <class Cont>
class insert_iterator : public iterator<output_iterator_tag, void, void, void, void> {

protected
Cont& container; / | container to insert into
typename Cont: : iterator iter; / / points into the container
public:

explicit insert_iterator( Cont& X, typename Cont: : iterator i)
. container( x), iter(i) {}

insert_iterator& operator=( const typename Cont: : value_type& val)
{
iter = container. insert( iter, val);
++iter;
return * this;
}
insert_iterator& operator*() { return * this; }

insert_iterator& operator++() { return * this; }
insert_iterator operator++( int) { return * this; }

refix ++

I Ip
| | postfix ++

h
Clearly, inserters are output iterators.

An insert_iterator is a special case of an output sequence. In parallel isefpérom §18.3.1,
we might define:

template<class Cont>
insert_iterator<Cont>
oseq( Cont& ¢, typename Cont: : iterator first, typename Cont: : iterator last)

{

}

In other words, an output sequence removes its old elements and replaces them with the output.
For example:

return insert_iterator<Cont>( c, c. erase( first, last)) ; // erase is explained in §16.3.6

void f( list<int>& li, vector<int>& vi) / / replace second half of vi by a copy of li

{
}

The container needs to be an argument toseq because it is not possible to decrease the size of a
container, given only iterators into it (818.6, §18.6.3).

copy( li. begin() , li. end() , oseq( Vi, vi+vi. size)/ 2, vi. end()))
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19.2.5 Reverse lterators [iter.reverse]

The standard containers provideegin() andrend() for iterating through elements in reverse
order (816.3.2). These member functions retewerse iterators:

template <class Iter>
class reverse iterator : public iterator<iterator_traits<iter>:: iterator_category,
iterator_traits<Iter>: : value type,
iterator_traits<Iter>: : difference type,
iterator_traits<Iter>: : pointer,
iterator_traits<Iter>: : reference> {
protected:
Iter current; / / current points to the element after the one *this refers to.
public:
typedef Iter iterator_type;

reverse iterator() : current() { }
explicit reverse iterator( Iter x) : current(x) { }
template<class U> reverse iterator( const reverse iterator<U>& x) : current( x. base()) { }

Iter base() const{ return current; } // current iterator value

reference operator*() const{ Iter tmp= current; return*-- tmp; }
pointer operator->() const
reference operator[]( difference_type m) const

reverse iterator& operator++() { -- current; return *this; } / / note: not ++
reverse iterator operator++( int) { reverse iterator t = current; -- current; return t; }
reverse iterator& operator--() { ++current; return *this; } / / note: not——
reverse iterator operator--( int) { reverse iterator t = current; ++current; return t; }

reverse iterator operator+( difference_type m) const,

reverse iterator& operator+=( difference_type m);

reverse iterator operator-( difference type m) const

reverse _iterator& operator-=( difference_type m);

I3

A reverse jterator is implemented using dterator calledcurrent. Thatiterator can (only) point
to the elements of its sequence plus its one-past-the-end element. Howenemerde iterator’s
one-past-the-end element is the original sequence’s (inaccessible) one-before-the-beginning ele-
ment. Thus, to avoid access violatioreyrrent points to the element after the one the
reverse iterator refers to. This implies that returns the valug( current- 1) and that++ is
implemented using on current.
A reverse iterator supports the operations that its initializer supports (only). For example:

void f( vector<int>& v, list<char>& Ist)

{
reverse iterator(v. end())[ 3] =7; / | ok: random-access iterator
reverse iterator( Ist end())] 3] =" 4"; [/ [/ error: bidirectional iterator doesn't support []
*(++++++ reverse jterator(Ist end())) ="4"; // ok!
}
In addition, the library provides=, =, <, <=, >, >=, + and- for reverse iterators.
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19.2.6 Stream lterators [iter.stream]

Ordinarily, 1/0 is done using the streams library (Chapter 21), a graphical user-interface system
(not covered by the+3 standard), or the C I/O functions (821.8). These I/O interfaces are primar-
ily aimed at reading and writing individual values of a variety of types. The standard library pro-
vides four iterator types to fit stream 1/O into the general framework of containers and algorithms:

— ostream iterator: for writing to anostream (§3.4, §21.2.1).

— istream iterator: for reading from aistream (83.6, §21.3.1).

— ostreambuf _iterator: for writing to a stream buffer (§21.6.1).

— istreambuf_iterator: for reading from a stream buffer (§21.6.2).
The idea is simply to present input and output of collections as sequences:

template <class T, class Ch= char, class Tr = char_traits<Ch> >
class ostream iterator : public iterator<output_iterator_tag, void, void, void, void> {
public:

typedef Ch char_type

typedef Tr traits_type

typedef basic_ostream<Ch, Tr> ostream_type;

ostream _iterator( ostream _type& s);

ostream iterator( ostream type& s, const Ch* delim); // write delim after each output value
ostream iterator( const ostream iterator&);

~ostream iterator() ;

ostream iterator& operator=( const T& val); /| write val to output

ostream iterator& operator*() ;
ostream _iterator& operator++() ;
ostream _iterator& operator++( int);

h

This iterator accepts the usual write and increment operations of an output iterator and converts
them into output operations on astream. For example:

void f()
{
ostream iterator<int> os( cout); /| write ints to cout through os
*0s=7, / | output7
++0s; / | get ready for next output
*0s=79; / | output 79
}

The ++ operation might trigger an actual output operation, or it might have no effect. Different
implementations will use different implementation strategies. Consequently, for code to be port-
able a++ must occur between every two assignments tosiream iterator. Naturally, every
standard algorithm is written that way or it would not work for avector. This is why
ostream iterator is defined this way.

An implementation obstream iterator is trivial and is left as an exercise (§19.6[4]). The stan-
dard I/O supports different character typesar_traits (§20.2) describes the aspects of a character
type that can be important for I/O asirings.
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An input iterator folistreams is defined analogously:

template <class T, class Ch = char, class Tr = char_traits<Ch>, class Dist = ptrdiff_t>
class istream iterator : public iterator<input_iterator_tag, T, Dist, const T*, const T&>{
public:

typedef Ch char_type

typedef Tr traits type

typedef basic_istream<Ch, Tr> istream_ type;

istream iterator() ; /I end of input
istream _iterator( istream type& s);

istream _iterator( const istream iterator&);

~istream _iterator() ;

const T& operator*() const,
const T* operator->() const;
istream iterator& operator++() ;
istream _iterator operator++( int);

h

This iterator is specified so that what would be conventional use for a container triggers input from
anistream. For example:

void f()
{
istream _iterator<int> is( cin); / I read ints from cin through is
int i1="*is; / | read an int
++is; / | getready for next input
int i2="*is; / I read anint
}

The defaulistream iterator represents the end of input so that we can specify an input sequence:

void f( vector<int>& v)
{

}

copy( istream _iterator<int>( cin), istream iterator<int>() , back inserter( v)) ;

To make this work, the standard library suppfiesand!= for istream iterators.
An implementation ofstream iterator is less trivial than amstream iterator implementa-
tion, but it is still simple. Implementing asiream iterator is also left as an exercise (819.6[5]).

19.2.6.1 Stream Buffers [iter.streambuf]

As described in §21.6, stream 1/O is based on the idestr@ams andistreams filling and empty-

ing buffers from and to which the low-level physical I/O is done. It is possible to bypass the stan-
dard iostreams formatting and operate directly on the stream buffers (821.6.4). That ability is also
provided to algorithms through the notionistfeambuf iterators andostreambuf_iterators:
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template<class Ch, class Tr = char_traits<Ch> >
class istreambuf_iterator

: public iterator<input_iterator_tag, Ch, typename Tr:: off_type, Ch*, Ch&> {
public:

typedef Ch char_type

typedef Tr traits _type;

typedef typename Tr:: int_type int_type;

typedef basic_streambuf<Ch, Tr> streambuf_type;

typedef basic_istream<Ch, Tr> istream _type;

class jproxy;, [ | helper type

istreambuf_iterator() throw() ; /| end of buffer
istreambuf_iterator( istream type& is) throw() ; / / read from is’s streambuf
istreambuf_iterator( streambuf_type*) throw() ;

istreambuf_iterator( const proxy& p) throw() ; / / read from p’s streambuf

Ch operator*() const

istreambuf_iterator& operator++() ; | | prefix
proxy operator++( int); | | postfix
bool equal( istreambuf_iterator&); /I both or neither streambuf at eof

k

In addition,== and!= are supplied.

Reading from astreambuf is a lower-level operation than reading fromistteam Conse-
quently, theistreambuf_iterator interface is messier than tlisiream iterator interface. How-
ever, once théstreambuf_iterator is properly initialized*, ++, and= have their usual meanings
when used in the usual way.

The proxy type is an implementation-defined helper type that allows the pastfis be imple-
mented without imposing constraints on steeambuf implementation. Aproxy holds the result
value while the iterator is incremented:

template<class Ch, class Tr = char_traits<Ch> >
class istreambuf_iterator<Ch, Tr>: : proxy {

Ch val;

basic_istreambuf<Ch, Tr>* buf;

proxy( Ch v, basic_istreambuf<Ch, Tr>* b) : val(v), buf(b) { }
public:

Ch operator*() { return val; }
3

An ostreambuf _iterator is defined similarly:

template <class Ch, class Tr = char_traits<Ch> >
class ostreambuf_iterator : public iterator<output_iterator_tag, void, void, void, void>{
public:

typedef Ch char_type;

typedef Tr traits type
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typedef basic_streambuf<Ch, Tr> streambuf_type;
typedef basic_ostream<Ch, Tr> ostream type;

ostreambuf_iterator( ostream _type& os) throw() ; /| write to 0s’s streambuf
ostreambuf_iterator( streambuf_type*) throw() ;
ostreambuf_iterator& operator=( Ch);

ostreambuf_iterator& operator*() ;
ostreambuf_iterator& operator++() ;
ostreambuf_iterator& operator++( int);

bool failed() const throw() ; /I true if Tr::eof() seen

19.3 Checked Iteratorditer.checked]

A programmer can provide iterators in addition to those provided by the standard library. This is
often necessary when providing a new kind of container, and sometimes a new kind of iterator is a
good way to support a different way of using existing containers. As an example, | here describe
an iterator that range checks access to its container.

Using standard containers reduces the amount of explicit memory management. Using standard
algorithms reduces the amount of explicit addressing of elements in containers. Using the standard
library together with language facilities that maintain type safety dramatically reduces run-time
errors compared to traditional C coding styles. However, the standard library still relies on the pro-
grammer to avoid access beyond the limits of a container. If by accident ei¢mesize()+ 7]
of some containex is accessed, then unpredictableand usually bad- things happen. Using a
range-checkegtector, such asvec (83.7.1), helps in some cases. More cases can be handled by
checking every access through an iterator.

To achieve this degree of checking without placing a serious notational burden on the program-
mer, we need checked iterators and a convenient way of attaching them to containers. To make a
Checked iter, we need a container and an iterator into that container. As for binders (818.4.4.1),
inserters (§19.2.4), etc., | provide functions for makithecked iter:

template<class Cont, class lter> Checked iter<Cont, Iter> make _checked( Cont& c, Iter i)
{

}

template<class Cont> Checked iter<Cont, typename Cont: : iterator> make_checked( Cont& c)
{

}

return Checked iter<Cont, Iter>( c, i);

return Checked iter<Cont, typename Cont: : iterator>( c, c. begin()) ;

These functions offer the notational convenience of deducing the types from arguments rather than
stating those types explicitly. For example:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.



562 Iterators and Allocators Chapter 19

void f( vector<int>& v, const vector<int>& vc)

{
typedef Checked iter<vector<int>, vector<int>: : iterator> ClI;
Cl pl=make checked( v, v. begin()+ 3);
Cl p2= make _checked( v); / | by default: point to first element
typedef Checked iter<const vector<int>, vector<int>:: const_iterator> CIC;
CIC p3 = make_checked vc, vc. begin()+ 3);
CIC p4 = make_checked vc);
const vector<int>& v =v;
CIC p5= make checked( v, w. begin()) ;
}

By default,const containers haveonst iterators, so thei€hecked iters must also be constant iter-
ators. The iteratgp5 shows one way of gettingcanst iterator for a noreconst iterator.

This demonstrates wh@hecked iter needs two template parameters: one for the container type
and one to express tleenst/non-const distinction.

The names of thesghecked iter types become fairly long and unwieldy, but that doesn’t mat-
ter when iterators are used as arguments to a generic algorithm. For example:

template<class Iter> void mysort( Iter first, Iter last);
void f( vector<int>& c)

{
try {
mysort( make_checked( ¢), make _checked( c, c. end()) ;
catch (out_of_bounds) {
cemr<<"oops. bug in mysort() \n";
abort() ;
}
}

An early version of such an algorithm is exactly where | would most suspect a range error so that
using checked iterators would make sense.

The representation of @hecked iter is a pointer to a container plus an iterator pointing into
that container:

template<class Cont, class lter = typename Cont: : iterator>
class Checked iter : public iterator_traits<iter> {

Iter curr; // iterator for current position

Cont* c; / / pointer to current container

"o
k

Deriving from iterator_traits is one technique for defining the desirggbedefs. The obvious
alternative — deriving from iterator — would be verbose in this case (as it was for
reverse iterator; §19.2.5). Just as there is no requirement that an iterator should be a class, there
is no requirement that iterators that are classes should be deriveiicrator.
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The Checked iter operations are all fairly trivial:
template<class Cont, class lter = typename Cont: : iterator>
class Checked iter : public iterator_traits<iter> {
/..
public:
void valid( Iter p)
{
if (c->end() ==p) return;
for (Iter pp=c-> begin() ; pp!=c->end() ; ++pp) if (pp==p) return;
throw out_of _bounds()
}
friend bool operator==( const Checked iter& i, const Checked iter& j)
{
return i. c==j. ¢ &&i. curr==j. curr;
}
/1 no default initializer.
/1 use default copy constructor and copy assignment.
Checked iter( Cont& x, Iter p) : ¢(&x), curr(p) { valid(p); }
reference_type operator*()
{
if (curr==c-> end()) throw out_of bounds() ;
return * curr;
}
pointer_type operator->()
{
return &* curr; / | checked by *
}
Checked iter operator+( Dist d) / | for random-access iterators only
{
if (c->end()- curr<=d) throw out_of bounds) ;
return Checked iter( ¢, curr+d);
}
reference_type agperator[]( Dist d) / | for random-access iterators only
if (c->end()- curr<=d) throw out_of _bounds() ;
return ¢ d];
}
Checked iter& operator++() [ | prefix ++
{
if (curr == c->end()) throw out_of bounds() ;
++curr;
return * this;
}
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Checked iter operator++( int) /| postfix ++
Checked iter tmp = * this;
++* this; / | checked by prefix ++
return tmp;
}
Checked iter& operator--() /| prefix --
{
if (curr == c-> begin()) throw out_of bounds() ;
-- curr;
return * this;
}
Checked iter operator--( int) ! | postfix --
Checked iter tmp = * this;
--* this; ! | checked by prefix --
return tmp;
}

difference_type index() { return curr- c. begin() ; } / / random-access only
Iter unchecked() { return curr; }

/1 +, - <, etc. (§19.6[6])
h

A Checked iter can be initialized only for a particular iterator pointing into a particular container.

In a full-blown implementation, a more efficient version \@lid() should be provided for
random-access iterators (819.6[6]). OnceChecked iter is initialized, every operation that
changes its position is checked to make sure the iterator still points into the container. An attempt
to make the iterator point outside the container causesitanf_bounds exception to be thrown.

For example:

void f( list<string>& Is)
{
int count = 0;
try {
Checked iter< list<string> > p( Is, Is. begin()) ;
while ( true) {
++p; / | sooner or later this will reach the end
++count;

}

catch( out_of_bounds) {
cout << " overrun after " << count<<" tries\n";
}

}

A Checked iter knows which container it is pointing into. This allows it to catch some, but not all,
cases in which iterators into a container have been invalidated by an operation on it (§16.3.8). To
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protect against all such cases, a different and more expensive iterator design would be needed (see
819.6[7]).
Note that postincrement (postfix¢) involves a temporary and preincrement does not. For this
reason, it is best to prefet-p overp++ for iterators.
Because &hecked iter keeps a pointer to a container, it cannot be used for a built-in array
directly. When necessarygcaarray (§817.5.4) can be used.
To complete the notion of checked iterators, we must make them trivial to use. There are two
basic approaches:
[1] Define a checked container type that behaves like other containers, except that it provides
only a limited set of constructors andlegin() , end() , etc., supply\Checked iters rather
than ordinary iterators.
[2] Define a handle that can be initialized by an arbitrary container and that provides checked
access functions to its container (819.6[8]).
The following template attaches checked iterators to a container:

template<class C> class Checked: public C{
public:
explicit Checked(size t n) : C(n) { }
Checked() : C() {}
typedef Checked iter<C> iterator;
typedef Checked iter<C, C:: const_iterator> const_iterator;
typename C. : iterator begin() { return iterator(* this, C:: begin()) ; }
typename C.: iterator end() { return iterator(* this, C:: end()) ; }

typename C:: const_iterator begin() const{ return const iterator(* this, C:: begin()) ; }
typename C.: const _iterator end() const{ return const iterator(* this, C:: end()) ; }

typename C.: reference_type aperator[[( size t n) { return Checked iter<C>(* this)[ n]; }
C&base() { return static_cast<C&>(* this); } / / get hold of the base container
3
This allows us to write:

Checkedk vector<int> > vec( 10);
Checkedk list<double> > Ist;

void f()

{
int vl=ved 5]; | | ok
int v2=ved 15]; [ | throws outof bounds
...

Ist. push_back( v2);

mysort( vec. begin() , vec. end()) ;
copy( vec. begin() , vec. end() , Ist. begin() , Ist. end()) ;

}

If a container is resized, iteratorsincluding Checked iters — into it may become invalid. In that
case, th&Checked iter can be re-initialized:
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void g()
{

Checked iter<int> p( vi);

/..

int i =p. index) ; / | get current position

vi. resize( 100); / | p becomes invalid

p = Checked _iter<int>( vi, vi. begin()+ i); / | restore current position

}

The old— and invalid— current position is lost. | provideshdex() as a means of storing and
restoring &Checked iter. If necessary, a reference to the container used as the bas€hécked
container can be extracted usheape() .

19.3.1 Exceptions, Containers, and Algorithms [iter.except]

You could argue that using both standard algorithms and checked iterators is like wearing both belt
and suspenders: either should keep you safe. However, experience shows that for many people and
for many applications a dose of paranoia is reasoralglgpecially during times when a program

goes through frequent changes that involve several people.

One way of using run-time checks is to keep them in the code only while debugging. The
checks are then removed before the program is shipped. This practice has been compared to wear-
ing a life jacket while paddling around close to the shore and then removing it before setting out
onto the open sea. However, some uses of run-time checks do impose significant time and space
overheads, so insisting on such checks at all times is not realistic. In any case, it is unwise to opti-
mize without measurements, so before removing checks, do an experiment to see if worthwhile
improvements actually emerge from doing so. To do such an experiment, we must be able to
remove run-time checks easily (see §824.3.7.1). Once measurements have been done, we could
remove the run-time testing from the most run-time criticahd hopefully most thoroughly tested
— code and leave the rest of the code checked as a relatively cheap form of insurance.

Using aChecked iter allows us to detect many mistakes. It does not, however, make it easy to
recover from these errors. People rarely write code that is 100% robust againstigvery *,

[1 ,->,and= potentially throwing an exception. This leaves us with two obvious strategies:

[1] Catch exceptions close to the point from which they are thrown so that the writer of the
exception handler has a decent chance of knowing what went wrong and can take appropri-
ate action.

[2] Catch the exception at a high level of a program, abandon a significant portion of a compu-
tation, and consider all data structures written to during the failed computation suspect
(maybe there are no such data structures or maybe they can be sanity checked).

It is irresponsible to catch an exception from some unknown part of a program and proceed under
the assumption that no data structure is left in an undesirable state, unless there is a further level of
error handling that will catch subsequent errors. A simple example of this is when a final check (by
computer or human) is done before the results are accepted. In such cases, it can be simpler and
cheaper to proceed blithely rather than to try to catch every error at a low level. This would be an
example of a simplification made possible by a multilevel error recovery scheme (§14.9).
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19.4 Allocatorsiiter.alloc]

An allocator is used to insulate implementers of algorithms and containers that must allocate mem-
ory from the details of physical memory. An allocator provides standard ways of allocating and
deallocating memory and standard names of types used as pointers and references. Like an iterator,
an allocator is a pure abstraction. Any type that behaves like an allocator is an allocator.

The standard library provides a standard allocator intended to serve most users of a given imple-
mentation well. In addition, users can provide allocators that represent alternative views of mem-
ory. For example, we can write allocators that use shared memory, garbage-collected memory,
memory from preallocated pools of objects (§19.4.2), etc.

The standard containers and algorithms obtain and access memory through the facilities pro-
vided by an allocator. Thus, by providing a new allocator we provide the standard containers with
a way of using a new and different kind of memory.

19.4.1 The Standard Allocator [iter.alloc.std]

The standardallocator template from<memory> allocates memory usingperator new()
(86.2.6) and is by default used by all standard containers:

template <class T> class allocator {
public:
typedef T value type
typedef size t size type;
typedef ptrdiff_t difference_type

typedef T* pointer;
typedef const T* const_pointer;

typedef T& reference;
typedef const T& const_reference;

pointer addresy reference r) const{ return &r; }
const_pointer address const _reference r) const{ return &r; }

allocator() throw() ;
template <class U> allocator( const allocator<U>&) throw() ;
~allocator() throw() ;

pointer allocate( size type m, allocator<void>: : const_pointer hint=0);/ / space forn Ts
void deallocate( pointer p, size type m); / / deallocate n Ts, don't destroy

void construct( pointer p, const T&val) { new( p) T(val); } / / initialize *p by val
void destroy( pointer p) { p->~T() ; } / | destroy *p but don't deallocate

size type max_size() const throw() ;

template <class U>
struct rebind { typedef allocator<U> other; }; / / in effect: typedef allocate®J> other

kh

template<class T> bool operator==( const allocator<T>&, const allocator<T>&) throw() ;
template<class T> bool operator!=( const allocator<T>&, const allocator<T>&) throw() ;
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An allocate( n) operation allocates space foobjects that can be deallocated by a corresponding
call of deallocate( p, n). Note thatdeallocate() also takes a number-of-elements argument
This allows for close-to-optimal allocators that maintain only minimal information about allocated
memory. On the other hand, such allocators require that the user always provide thevhght
theydeallocate() .

The default allocator uses operator new( size t) to obtain memory andoperator
delete( void*) to free it. This implies that thenew handler() might be called and
out_of_memory might be thrown in case of memory exhaustion (§6.2.6.2).

Note thatallocate() is not obliged to call a lower-level allocator each time. Often, a better
strategy is for the allocator to maintain a free list of space ready to hand out with minimal time
overhead (§19.4.2).

The optionahint argument taallocate() is completely implementation-dependent. However,
it is intended as a help to allocators for systems where locality is important. For example, an allo-
cator might try to allocate space for related objects on the same page in a paging system. The type
of thehint argument is th@ointer from the ultra-simplified specialization:

template <> class allocator<void> {
public:
typedef void* pointer;
typedef const void* const_pointer;
/1 note: no reference

typedef void value type;
template <class U>
struct rebind { typedef allocator<U> other; }; // in effect: typedef allocatetJ> other

k

Theallocator<void>: : pointer type acts as a universal pointer type anebisst void* for all stan-
dard allocators.

Unless the documentation for an allocator says otherwise, the user has two reasonable choices
when callingallocate() :

[1] Don't give a hint.

[2] Use a pointer to an object that is frequently used together with the new object as the hint; for

example, the previous element in a sequence.

Allocators are intended to save implementers of containers from having to deal with raw memory
directly. As an example, consider howeitor implementation might use memory:

template <class T, class A= allocator<T> > class vector {
public:

typedef typename A : pointer iterator;

/..

private:
A alloc; / | allocator object
iterator v; / | pointer to elements
/...

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.



Section 19.4.1 The Standard Allocator 569

public:

explicit vector( size type m, const T&val = T() , const A& a = A())
: alloc( a)

{
v = alloc. allocate( n);
for( iterator p =v; p<v+n; ++p) alloc. construct( p, val);
/...

}

void reserve( size type m)

{
if ( n<=capacity()) return;
iterator p = alloc. allocate( n);
iterator q=v;
while ( g<v+size))) { /| copy existing elements

alloc. construct( p++,* q);
alloc. destroy( g++) ;

}
alloc. deallocate( v, capacity()) ; /| | free old space
vV=p;
/...

}

..

h

The allocator operations are expressed in termgainter andreference typedefs to give the user

a chance to supply alternative types for accessing memory. This is very hard to do in general. For
example, it is not possible to define a perfect reference type withintthéaguage. However,
language and library implementers can use tlysedefs to support types that couldn’t be pro-
vided by an ordinary user. An example would be an allocator that provided access to a persistent
store. Another example would be a “long” pointer type for accessing main memory beyond what
a default pointer (usually 32 bits) could address.

The ordinary user can supply an unusual pointer type to an allocator for specific uses. The
equivalent cannot be done for references, but that may be an acceptable constraint for an experi-
ment or a specialized system.

An allocator is designed to make it easy to handle objects of the type specified by its template
parameter. However, most container implementations require objects of additional types. For
example, the implementer oflist will need to allocatéd.ink objects. Usually, suchinks must be
allocated using thelist's allocator.

The curiousrebind type is provided to allow an allocator to allocate objects of arbitrary type.
Consider:

typedef typename A : rebind<Link>:: other Link alloc;

If Aiis anallocator, thenrebind<Link>: : other is typedefd to meanallocator<Link>, so the pre-
vioustypedef is an indirect way of saying:

typedef allocator<Link> Link_alloc;
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The indirection frees us from having to mentalhocator directly. It expresses theink_alloc
type in terms of a template parameferFor example:

template <class T, class A= allocator<T> > class list {
private:
class Link{ /* ..* }

typedef typename A : rebind<Link>:: other Link alloc; / / allocator<Link>

Link alloc a; / / link allocator

A alloc; /1 list allocator
/..
public:
typedef typename A: : pointer iterator;
/..

iterator insert( iterator pos, const T& x)

Link alloc: : pointer p = a. allocate(1); / / getaLink
...

}
I ...

h

Becausd.ink is a member ofist, it is parameterized by an allocator. Consequeniiyks from
lists with different allocators are of different types, just likelists themselves (§17.3.3).

19.4.2 A User-Defined Allocator [iter.alloc.user]

Implementers of containers oftallocate() anddeallocate() objects one at a time. For a naive
implementation ofallocate() , this implies lots of calls of operataew, and not all implementa-
tions of operatonew are efficient when used like that. As an example of a user-defined allocator, |
present a scheme for using pools of fixed-sized pieces of memory from which the allocator can
allocate() more efficiently than can a conventional and more geopexator new() .

| happen to have a pool allocator that does approximately the right thing, but it has the wrong
interface (because it was designed years before allocators were inventedPodiigiass imple-
ments the notion of a pool of fixed-sized elements from which a user can do fast allocations and
deallocations. Itis a low-level type that deals with memory directly and worries about alignment:

class Pool {
struct Link{ Link* next; };

struct Chunk {
enum{ size= 8*1024- 16},
Chunk* next;
char men size ;

k
Chunk* chunks;

const unsigned int esize
Link* head;
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Pool( Pool&); / | copy protection
void operator=( Pool&); / / copy protection
void grow() ; /| make pool larger
public:
Pool( unsigned int n); / / nis the size of elements
~Pool() ;
void* alloc() ; /| allocate one element
void free( void* b); /| put an element back into the pool

k

inline woid* Pool: : alloc()

if ( head==0) grow() ;

Link* p = head; / | return first element
head = p-> next;
return p;
}
inline woid Pool: : free void* b)
{
Link* p = static_cast<Link*>( b);
p-> next = head; / | put b back as first element
head = p;
}

Pool: : Pool( unsigned int s2)
. esize( sxsizeof( Link*)? sizeof( Link*): s2)

{
head = O;
chunks = 0;
}
Pool: :~ Pool()/ / free all chunks
{
Chunk* n = chunks,
while (n) {
Chunk* p =n;
n = n-> next;
delete
}
}

void Pool:: grow() / / allocate new ‘chunk,” organize it as a linked list of elements of size ’'esize’

Chunk* n = new Chunk;
n-> next = chunks;
chunks = n;

const int nelem= Chunk: : size/ esize
char* start = n-> mem
char* last = &start[( nelem 1)* esize ;
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for (char* p = start; p<last, p+=esize) / | assume sizeof(Link¥esize
reinterpret_cast<Link*>( p)-> next = reinterpret_cast<Link*>( p+esize);
reinterpret_cast<Link*>( last)-> next = 0;
head = reinterpret_cast<Link*>( start);
}

To add a touch of realism, I'll udeool unchanged as part of the implementation of my allocator,
rather than rewrite it to give it the right interface. The pool allocator is intended for fast allocation
and deallocation of single elements and that is whaPawo) class supports. Extending this imple-
mentation to handle allocations of arbitrary numbers of objects and to objects of arbitrary size (as
required byrebind() ) is left as an exercise (819.6[9]).

GivenPool, the definition ofPool_alloc is trivial;

template <class T> class Pool_alloc {
private:

static Pool memy / / pool of elements of sizeof(T)
public:

/1 like the standard allocator (§19.4.1)
h
template <class T> Pool Pool_alloc<T>: : mem( sizeof( T)) ;
template <class T> Pool_alloc<T>:: Pool_alloc() { }

template <class T>
T* Pool_alloc<T>:: allocate( size type m, void* = 0)

if (n==1) return satic_cast<T*>( mem alloc()) ;
/...
}

template <class T>
void Pool_alloc<T>:: deallocate( pointer p, size type m)

if(n==1) {
mem free( p);
return;

}

...

}
This allocator can now be used in the obvious way:

vector<int, Pool_alloc> v;
map<siring, number, Pool_alloc> m;

/1 use exactly as usual

vector<int>v2=v; / |/ error: different allocator parameters

| chose to make thBool for a Pool_alloc static because of a restriction that the standard library
imposes on allocators used by the standard containers: the implementation of a standard container
is allowed to treat every object of its allocator type as equivalent. This can lead to significant
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performance advantages. For example, because of this restriction, memory need not be set aside for
allocators inLink objects (which are typically parameterized by the allocator of the container for
which they ard.inks; §19.4.1), and operations that may access elements of two sequences (such as
swap() ) need not check whether the objects manipulated all have the same allocator. However,
the restriction does imply that such allocators cannot use per-object data.

Before applying this kind of optimization, make sure that it is necessary. | expect that many
defaultallocators will implement exactly this kind of classig-€optimization— thus saving you
the bother.

19.4.3 Generalized Allocators [iter.general]

An allocator is a simplified and optimized variant of the idea of passing information to a container
through a template parameter (813.4.1, §16.2.3). For example, it makes sense to require that every
element in a container is allocated by the container’'s allocator. However, lifistw®f the same

type were allowed to have different allocators, thplice() (817.2.2.1) couldn’t be implemented
through relinking. Insteadplice() would have to be defined in terms of copying of elements to
protect against the rare cases in which we want to splice elementslistrwith one allocator into

another with a different allocator of the same allocator type. Similarly, if allocators were allowed

to be perfectly general, threbind mechanism that allows an allocator to allocate elements of arbi-
trary types would have to be more elaborate. Consequently, a standard allocator is assumed to hold
no per-object data and an implementation of a standard may take advantage of that.

Surprisingly, the apparently Draconian restriction against per-object information in allocators is
not particularly serious. Most allocators do not need per-object data and can be made to run faster
without such data. Allocators can still hold data on a per-allocator-type basis. If separate data is
needed, separate allocator types can be used. For example:

template<class T, class D> class My _alloc{ / / allocator for T implemented using D
D d; / | data needed for Mwalloc<T,D>
/...

I8

typedef My_alloc<int, Persistent_info> Persistent;

typedef My_alloc<int, Stared_info> Shared;

typedef My_alloc<int, Default_info> Default;

list<int, Persistent> Ist1,;
list<int, Shared> Ist2;
list<int, Default> Ist3;

The listslstl, Ist2, andIst3 are of different types. Therefore, we must use general algorithms
(Chapter 18) when operating on two of these lists rather than specialized list operations (817.2.2.1).
This implies that copying rather than relinking is done, so having different allocators poses no
problems.

The restriction against per-object data in allocators is imposed because of the stringent demands
on the run-time and space efficiency of the standard library. For example, the space overhead of
allocator data for a list probably wouldn’t be significant. However, it could be serious if each link
of a list suffered overhead.
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Consider how the allocator technique could be used when the efficiency constraints of the stan-
dard library don't apply. This would be the case for a nonstandard library that wasn’'t meant to
deliver high performance for essentially every data structure and every type in a program and for
some special-purpose implementations of the standard library. In such cases, an allocator can be
used to carry the kind of information that often inhabits universal base classes (816.2.2). For exam-
ple, an allocator could be designed to answer requests about where its objects are allocated, present
data representing object layout, and answer questions such as “is this element in this container?”
It could also provide controls for a container that acts as a cache for memory in permanent storage,
provide association between the container and other objects, etc.

In this way, arbitrary services can be provided transparently to the ordinary container opera-
tions. However, it is best to distinguish between issues relating to storage of data and issues of the
use of data. The latter do not belong in a generalized allocator, but they could be provided through
a separate template argument.

19.4.4 Uninitialized Memory [iter.memory]

In addition to the standarallocator, the <memory> header provides a few functions for dealing
with uninitialized memory. They share the dangerous and occasionally essential property of using
a type namd to refer to space sufficient to hold an object of t¥fpather than to a properly con-
structed object of typ€.

The library provides three ways to copy values into uninitialized space:

template <class In, class For>
For uninitialized copy( In first, In last, For res) / / copy into res

{
typedef typename iterator_traits<For>:: value type V,
while ( first!= last)
new ( static_cast<void*>(&* rest+)) V(* first++); / / constructinres (810.4.11)
return res
}

template <class For, class T>
void uninitialized fill( For first, For last, const T& val)

{
typedef typename iterator_traits<For>:: value type V.

while ( first!= last) new ( static_cast<void*>(&* first++)) V(val); / / constructin first
}
template <class For, class Sze class T>

void uninitialized fill_n( For first, Size m const T& val)

{
typedef typename iterator_traits<For>: : value_type V;

while (n--) new ( static_cast<void*>(&* first++)) V(val); // construct in first

}

These functions are intended primarily for implementers of containers and algorithms. For exam-
ple, reserve() and resize)) (816.3.8) are most easily implemented using these functions
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(819.6[10]). It would clearly be most unfortunate if an uninitialized object escaped from the inter-
nals of a container into the hands of general users.

Algorithms often require temporary space to perform acceptably. Often, such temporary space
is best allocated in one operation but not initialized until a particular location is actually needed.
Consequently, the library provides a pair of functions for allocating and deallocating uninitialized
space:

template <class T> pair<T*, ptrdiff_t> get_temporary_buffer( ptrdiff_t);/ / allocate, don't initialize
template <class T> void return_temporary_buffer( T*) ; /| deallocate, don’t destroy

A get_temporary_buffer<X>( n) operation tries to allocate space foor more objects of typX.

If it succeeds in allocating some memory, it returns a pointer to the first uninitialized space and the
number of objects of typX that will fit into that space; otherwise, tBecond value of the pair is

zero. The idea is that a system may keep a number of fixed-sized buffers ready for fast allocation
so that requesting space foobjects may yield space for more thanlt may also yield less, how-

ever, so one way of usirget temporary buffer() is to optimistically ask for a lot and then use
what happens to be available.

A buffer obtained byget temporary buffer() must be freed for other use by a call of
return_temporary buffer() . Just asget temporary buffer() allocates without constructing,
return_temporary buffer() frees without destroying. Becauget temporary buffer() is low-
level and likely to be optimized for managing temporary buffers, it should not be used as an alter-
native tonew or allocator: : allocate() for obtaining longer-term storage.

The standard algorithms that write into a sequence assume that the elements of that sequence
have been previously initialized. That is, the algorithms use assignment rather than copy construc-
tion for writing. Consequently, we cannot use uninitialized memory as the immediate target of an
algorithm. This can be unfortunate because assignment can be significantly more expensive than
initialization. Besides, we are not interested in the values we are about to overwrite anyway (or we
wouldn’t be overwriting them). The solution is to useasv_storage iterator from <memory>
that initializes instead of assigns:

template <class Out, class T>

class raw_storage iterator : public iterator<output_iterator_tag, void, void, void, void> {
Out p;

public:
explicit raw_storage iterator( Out pp) : p(pp) { }

raw_storage iterator& operator*() { return*p; }
raw_storage _iterator& operator=( const T& val)

{
T pp=&p;
new( pp) T(val); / / place valin pp (§10.4.11)
return p;

}

raw_storage iterator& operator++() { return ++p; }
raw_storage iterator operator++( int) { return p++; }
h

For example, we might write a template that copies the contentgedfart into a buffer:;
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template<class T, class A> T* temporary_dup( vector<T, A>& V)

{
T* p = get_temporary_buffer<T>( v. sizg()). first,
if (p==0) return O;
copy( v. begin() , v. end() , raw_storage iterator<T*, T>(p)) ;
return p;
}

Had new been used instead gfet temporary buffer() , initialization would have been done.
Once initialization is avoided, theaw_storage iterator becomes necessary for dealing with the
uninitialized space. In this example, the callertexiyporary dup() is responsible for calling
destroy temporary_buffer() for the pointer it received.

19.4.5 Dynamic Memory [iter.dynamic]

The functions used to implement thew anddelete operators are declared smew> together with
a few related facilities:

class bad_alloc: public exception{ /* ...*/ };
struct nothrow_t {};
extern const nothrow_t nothrow; / / indicator for allocation that doesn’t throw exceptions

typedef void (* new_handler)() ;
new_handler set_ new_handler( new_handler new_p) throw() ;

void* operator new( size t) throw( bad_alloc);
void operator delete( void*) throw() ;

void* operator new( size t, const nothrow_t&) throw() ;
void operator delete( void*, const nothrow_t&) throw() ;

void* operator new{]( size t) throw( bad_alloc);
void operator delete[]( void*) throw() ;

void* operator new{]( size t, const nothrow_t&) throw() ;
void operator delete[]( void*, const nothrow_t&) throw() ;

void* operator new ( size t, void* p) throm() { return p; } / / placement (§10.4.11)
void operator delete ( void* p, void*) throw() { }

void* operator new{]( size t, void* p) throw() { return p; }
void operator delete[]( void* p, void*) throw() { }

The nothrow versions ofoperator new() allocate as usual, but if allocation fails, they retQrn
rather than throwintpad_alloc. For example:

void f()

{
int* p=new int[ 100000]; // may throw badalloc
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if (int* q = new( nothrow) int[ 100000]) {/ / will not throw exception
/1 allocation succeeded
}

else{
// allocation failed
}

}
This allows us to use pre-exception error-handling strategies for allocation.

19.4.6 C-Style Allocation [iter.c]

From C, G+inherited a functional interface to dynamic memory. It can be fourdstulib>:

void* malloc( size t s); /| allocate s bytes
void* calloc(sizet n, sizet s); / / allocate ntimes s bytes initialized to 0
void free( void* p); / | free space allocated by malloc() or calloc()
void* realloc( void* p, sizet s); / / change the size of the array pointed to by p to s;
/1 if that cannot be done, allocate s bytes, copy
/1 the array pointed to by p to it, and free p

These functions should be avoided in favonei, delete, and standard containers. These func-
tions deal with uninitialized memory. In particuldree)) does not invoke destructors for the
memory it frees. An implementation oéw and delete may use these functions, but there is no
guarantee that it does. For example, allocating an object nemgnd deleting it usinfreg() is
asking for trouble. If you feel the need to wealloc() , consider relying on a standard container
instead; doing that is usually simpler and just as efficient (§16.3.5).
The library also provides a set of functions intended for efficient manipulation of bytes.

Because C originally accessed untyped bytes throhgit pointers, these functions are found in
<cstring>. Thevoid* pointers are treated as if they wehar* pointers within these functions:

void* memcpy( void* p, const void* g, sizet n); / / copy non-overlapping areas
void* memmove( void* p, const void* g, size t n); / / copy potentially overlapping areas

Like strepy() (820.4.1), these functions copybytes fromq to p and returrp. The ranges copied
by memmove() may overlap. Howevememcpy() assumes that the ranges do not overlap and is
usually optimized to take advantage of that assumption. Similarly:

void* memchr( const void* p, int b, size t n);/ / like strchr() (§20.4.1): find b in p[0]..p[n-1]
int memcmp( const void* p, const void* q, size t n); // like strcmp(): compare byte sequences
void* memset( void* p, int b, size t n); / | setn bytesto b, return p

Many implementations provide highly optimized versions of these functions.

19.5 Advice]iter.advice]

[1] When writing an algorithm, decide which kind of iterator is needed to provide acceptable effi-
ciency and express the algorithm using the operators supported by that kind of iterator (only);
§19.2.1.
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(2]

3]
[4]
[5]
[6]

[7]
(8]

[9]
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Use overloading to provide more-efficient implementations of an algorithm when given as
arguments iterators that offer more than minimal support for the algorithm; §19.2.3.
Useiterator_traitsto express suitable algorithms for different iterator categories; §19.2.2.
Remember to use+ between accessesisfream iterators andostream iterators; 819.2.6.

Use inserters to avoid container overflow; §19.2.4.

Use extra checking during debugging and remove checking later only where necessary;
§19.3.1.

Prefer++pto p++; §19.3.

Use uninitialized memory to improve the performance of algorithms that expand data struc-
tures; 819.4.4.

Use temporary buffers to improve the performance of algorithms that require temporary data
structures; 819.4.4.

[10] Think twice before writing your own allocator; §19.4.
[11] Avoid malloc() , freg() , realloc() , etc.; §19.4.6.
[12] You can simulate typedef of a template by the technique usedriebind; §19.4.1.

19

©NOoO O~

10.

.6 EXxercisegiter.exercises]

(.5) Implementeverse() from §18.6.7. Hint: See §19.2.3.

((L.5) Write an output iteratoSnk, that doesn’t actually write anywhere. When &imk be

useful?

() Implementrewverse iterator (§19.2.5).

(.5) Implemenbstream iterator (§19.2.6).

(@) Implementstream iterator (§19.2.6).

(2.5) CompleteChecked iter (819.3).

((2.5) RedesigiChecked iter to check for invalidated iterators.

(2) Design and implement a handle class that can act as a proxy for a container by providing a
complete container interface to its users. Its implementation should consist of a pointer to a
container plus implementations of container operations that do range checking.

((2.5) Complete or reimplemeRiol_alloc (§19.4.2) so that it provides all of the facilities of

the standard libraryallocator (819.4.1). Compare the performance allocator and
Pool_allocto see if there is any reason to ugeoal_alloc on your system.

(2.5) Implemenvector using allocators rather thavew anddelete.
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