18

Algorithms and Function Objects
NOW!

u Form is liberating.

— engineers” proverb

Introduction— overview of standard algorithms- sequences— function objects—
predicates— arithmetic objects— binders— member function objects- for_each —
finding elements— count — comparing sequences- searching— copying— trans-
form — replacing and removing elements filling a sequence— reordering— swap
— sorted sequences- binary_search — merge — set operations— min and max—
heaps— permutations— C-style algorithms— advice— exercises.

18.1 Introduction [algo.intro]

A container by itself is really not that interesting. To be genuinely useful, a container must be sup-
ported by basic operations such as finding its size, iterating, copying, sorting, and searching for ele-
ments. Fortunately, the standard library provides algorithms to serve the most common and basic
needs that users have of containers.

This chapter summarizes the standard algorithms and gives a few examples of their uses, a pre-
sentation of the key principles and techniques used to express the algorithirts @amdCa more
detailed explanation of a few key algorithms.

Function objects provide a mechanism through which a user can customize the behavior of the
standard algorithms. Function objects supply key information that an algorithm needs in order to
operate on a user’s data. Consequently, emphasis is placed on how function objects can be defined
and used.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

http://store.awl.com/catalog/cepub_detail.mhtml?isbn=0-201-88954-4

508 Algorithms and Function Objects Chapter 18

18.2 Overview of Standard Library Algorithms [algo.summary]

At first glimpse, the standard library algorithms can appear overwhelming. However, there are just
60 of them. | have seen classes with more member functions. Furthermore, many algorithms share
a common basic behavior and a common interface style that eases understanding. As with lan-
guage features, a programmer should use the algorithms actually needed and understiomaly

those. There are no awards for using the highest number of standard algorithms in a program. Nor
are there awards for using standard algorithms in the most clever and obscure way. Remember, a
primary aim of writing code is to make its meaning clear to the next person readimadt that

person just might be yourself a few years hence. On the other hand, when doing something with
elements of a container, consider whether that action could be expressed as an algorithm in the style
of the standard library. That algorithm might already exist. If you don’t consider work in terms of
general algorithms, you will reinvent the wheel.

Each algorithm is expressed as a template function (§13.3) or a set of template functions. In
that way, an algorithm can operate on many kinds of sequences containing elements of a variety of
types. Algorithms that return an iterator (819.1) as a result generally use the end of an input
sequence to indicate failure. For example:

void f(list<string>& Is)

{
list<string>: : const_iterator p = find(Is. begin() , Is. end() ," Fred') ;
if (p==1ls end()) {
/1 didn’t find "Fred"
}
else{
/1 here, p points to "Fred"
}
}

The algorithms do not perform range checking on their input or output. Range errors must be pre-
vented by other means (818.3.1, §19.3). When an algorithm returns an iterator, that iterator is of
the same type as one of its inputs. In particular, an algorithm’s arguments control whether it
returns aconst_iterator or a noneonst iterator. For example:

void f(list<int>& li, const list<string>& Is)

list<int>: : iterator p = find(li. begin() , li. end() , 42);
list<string>: : const_iterator q = find(Is. begin() , Is. end() ," Ring") ;
}
The algorithms in the standard library cover the most common general operations on containers
such as traversals, sorting, searching, and inserting and removing elements. The standard algo-
rithms are all in thestd namespace and their declarations are fourndalgorithm>. Interestingly,
most of the really common algorithms are so simple that the template functions are typically inline.
This implies that the loops expressed by the algorithms benefit from aggressive per-function opti-
mization.
The standard function objects are also in namesgtabebut their declarations are found in

<functional>. The function objects are designed to be easy to inline.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 18.2 Overview of Standard Library Algorithms 509

Nonmodifying sequence operations are used to extract information from a sequence or to find
the positions of elements in a sequence:

U Nonmodifying Sequence Operations (§18.5algorithm> 0
Eor_eacho Do operation for each element in a sequence. S
(find() Find first occurrence of a value in a sequence. 0
(find_if() Find first match of a predicate in a sequence. O
Lind_first_of() Find a value from one sequence in another. U

djacent find() Find an adjacent pair of values. B
reount() Count occurrences of a value in a sequence. 0
rcount if() Count matches of a predicate in a sequence. 0
Cmismatch() Find the first elements for which two sequences differ. O
Lequal() True if the elements of two sequences are pairwise equal

ch() Find the first occurrence of a sequence as a subsequen

ind_end() Find the last occurrence of a sequence as a subsequencg.

rsearch _n() Find thenth occurrence of a value in a sequence. 0

Most algorithms allow a user to specify the actual action performed for each element or pair of ele-
ments. This makes the algorithms much more general and useful than they appear at first glance.
In particular, a user can supply the criteria used for equality and difference (§18.4.2). Where rea-
sonable, the most common and useful action is provided as a default.

Modifying sequence operations have little in common beyond the obvious fact that they might
change the values of elements of a sequence:

U Modifying Sequence Operations (818.&algorithm> U
Bransform() Apply an operation to every element in a sequence. S
ceopy() Copy a sequence starting with its first element. 0
Ccopy_backward() Copy a sequence starting with its last element. O
Cowap() Swap two elements. g

ter_swap() Swap two elements pointed to by iterators. E
rswap_ranges() Swap elements of two sequences. 0
[replace() Replace elements with a given value. 0
Creplace if() Replace elements matching a predicate. O
Lreplace copy() Copy sequence replacing elements with a given value. U

eplace copy if() Copy sequence replacing elements matching a predicat%

ilnQ Replace every element with a given value. 0
fill_n() Replace firsh elements with a given value. 0
Cgenerate() Replace every element with the result of an operation. 0O

enerate n() Replace firsh elements with the result of an operation. U

emove() Remove elements with a given value. E
remove if() Remove elements matching a predicate. 0

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

510 Algorithms and Function Objects Chapter 18

U Modifying Sequence Operations (continued) (818.&algorithm > g
H’elmve_copyo Copy a sequence removing elements with a given value. S
rremove copy_if() Copy a sequence removing elements matching a predicatg;
Cunique() Remove equal adjacent elements. O
Lunique_copy() Copy a sequence removing equal adjacent elements. U

Reverse the order of elements. g
Teverse copy() Copy a sequence into reverse order. 0
[rotate() Rotate elements. 0
Crotate_copy() Copy a sequence into a rotated sequence. O

min|

Handom shuffle() Move elements into a uniform distribution.

Every good design shows traces of the personal traits and interests of its designer. The containers
and algorithms in the standard library clearly reflect a strong concern for classical data structures
and the design of algorithms. The standard library provides not only the bare minimum of contain-
ers and algorithms needed by essentially every programmer. It also includes many of the tools used
to provide those algorithms and needed to extend the library beyond that minimum.

The emphasis here is not on the design of algorithms or even on the use of any but the simplest
and most obvious algorithms. For information on the design and analysis of algorithms, you
should look elsewhere (for example, [Knuth,1968] and [Tarjan,1983]). Instead, this chapter lists
the algorithms offered by the standard library and explains how they are expressed ifh{s
focus allows someone who understands algorithms to use the library well and to extend it in the
spirit in which it was built.

The standard library provides a variety of operations for sorting, searching, and manipulating
sequences based on an ordering:

U Sorted Sequences (§18.Zplgorithm> O
E§on() Sort with good average efficiency. S
[stable_sort() Sort maintaining order of equal elements. 0O
Cpartial_sort() Get the first part of sequence into order. O
artial_sort_copy() Copy getting the first part of output into order. U
th_element() Put the nth element in its proper place. B
ower_bound() Find the first occurrence of a value. 0
upper_bound() Find the first element larger than a value. 0O
Cequal_range() Find a subsequence with a given value. O
Chinary_search() Is a given value in a sorted sequence? U
erge() Merge two sorted sequences. B
rinplace_merge() Merge two consecutive sorted subsequences.
[partition() Place elements matching a predicate first. 0O
[stable partition() Place elements matching a predicate first, O
preserving relative order. H

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 18.2 Overview of Standard Library Algorithms 511

O Set Algorithms (§18.7.5xalgorithm > O
anludes() True if a sequence is a subsequence of anothe%
rset_union() Construct a sorted union. 0
(bet_intersection() Construct a sorted intersection. O
Cset_difference() Construct a sorted sequence of elements U
B in the first but not the second sequence. g
rset_symmetric_difference() Construct a sorted sequence of elements 0
0 in one but not both sequences. 0

Heap operations keep a sequence in a state that makes it easy to sort when necessary:

U Heap Operations (818.8xalgorithm> S
Hnii(e_heapo Make sequence ready to be used as a heap
rpush_heap() = Add element to heap. 0
Cpop_heap() Remove element from heap. O
Fsort_heap() Sort the heap. H
The library provides a few algorithms for selecting elements based on a comparison:
0 Minimum and Maximum (§18.9) <algorithm> S
cmin() Smaller of two values. 0
rmax() Larger of two values. 0
Cmin_element() Smallest value in sequence. O
Limax_element() Largest value in sequence. g
Hexicographical_compare() Lexicographically first of two sequences. H
Finally, the library provides ways of permuting a sequence:
U Permutations (§18.10)xalgorithm > S
Hwext_pelmutation() Next permutation in lexicographical order. 0
[prev_permutation() Previous permutation in lexicographical order.

In addition, a few generalized numerical algorithms are providedumeric> (822.6).

In the description of algorithms, the template parameter names are signifrcaut, For, Bi,
and Ran mean input iterator, output iterator, forward iterator, bidirectional iterator, and random-
access iterator, respectively (§819.2.Pred means unary predicatBjnPred means binary predi-
cate (818.4.2)Cmp means a comparison function (§17.1.4.1, 818.Dp)means unary operation,
and BinOp means binary operation (818.4). Conventionally, much longer names have been used
for template parameters. However, | find that after only a brief acquaintance with the standard
library, those long names decrease readability rather than enhancing it.

A random-access iterator can be used as a bidirectional iterator, a bidirectional iterator as a for-
ward iterator, and a forward iterator as an input or an output iterator (819.2.1). Passing a type that
doesn’t provide the required operations will cause template-instantiation-time errors (8C.13.7).
Providing a type that has the right operations with the wrong semantics will cause unpredictable
run-time behavior (§17.1.4).

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

512 Algorithms and Function Objects Chapter 18

18.3 Sequences and Containefsigo.seq]

It is a good general principle that the most common use of something should also be the shortest,
the easiest to express, and the safest. The standard library violates this principle in the name of
generality. For a standard library, generality is essential. For example, we can find the first two
occurrences o42in a list like this:

void f(list<int>& li)

{
list<int>: : iterator p = find(li. begin() , li. end() , 42); /I first occurrence
if(p!= li.end)) {
list<int>: : iterator q = find(++ p, li. end() , 42); /| second occurrence
/...
}
/...
}

Hadfind() been expressed as an operation on a container, we would have needed some additional
mechanism for finding the second occurrence. Importantly, generalizing such an “additional
mechanism” for every container and every algorithm is hard. Instead, standard library algorithms
work on sequences of elements. That is, the input of an algorithm is expressed as a pair of iterators
that delineate a sequence. The first iterator refers to the first element of the sequence, and the sec-
ond refers to a point one-beyond-the-last element (83.8, §19.2). Such a sequence is called “half
open” because it includes the first value mentioned and not the second. A half-open sequence
allows many algorithms to be expressed without making the empty sequence a special case.

A sequence- especially a sequence in which random access is possilgeoften called a
range Traditional mathematical notations for a half-open rangé¢ first, last) and| first, last] .
Importantly, a sequence can be the elements of a container or a subsequence of a container. Fur-
ther, some sequences, such as I/O streams, are not containers. However, algorithms expressed in
terms of sequences work just fine.

18.3.1 Input Sequences [algo.range]

Writing x. begin() , x. end() to express “all the elements ®f is common, tedious, and can even
be error-prone. For example, when several iterators are used, it is too easy to provide an algorithm
with a pair of arguments that does not constitute a sequence:

void f(list<string>& fruit, list<string>& citrus)

{
typedef list<string>: : const_iterator LlI;
LI pl=find(fruit. begin() , citrus. end() ," apple”) ; / / wrong! (different sequences)
LI p2 = find(fruit. begin() , fruit. end() ," apple”) ; / / ok
LI p3=find(citrus. begin() , citrus. end() ," pear") ; / / ok
Ll p4=find(p2, p3," peach’) ; /| wrong! (different sequences)
/..

}

In this example there are two errors. The first is obvious (once you suspect an error), but it isn’t

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 18.3.1 Input Sequences 513

easily detected by a compiler. The second is hard to spot in real code even for an experienced pro-

grammer. Cutting down on the number of explicit iterators used alleviates this problem. Here, |

outline an approach to dealing with this problem by making the notion of an input sequence

explicit. However, to keep the discussion of standard algorithms strictly within the bounds of the

standard library, | do not use explicit input sequences when presenting algorithms in this chapter.
The key idea is to be explicit about taking a sequence as input. For example:

template<class In, class T> In find(In first, In last, const T&v) / / standard

while (first!= last && * firsti= v) ++first;

return first
}
template<class In, class T> In find(Iseq<In>r, const T& V) | | extension
{
return find(r. first, r. second, v);
}

In general, overloading (813.3.2) allows the input-sequence version of an algorithm to be preferred
when anlseqargument is used.
Naturally, an input sequence is implemented as a pair (§817.4.1.2) of iterators:

template<class In> struct Iseq: public pair<in, In> {
Iseg In i1, In i2) : pair<in, In>(il,i2) { }
h

We can explicitly make thiseqneeded to invoke the second versioffimnd() :
LI p = find(Iseg(fruit. begin() , fruit. end()) ," apple") ;

However, that is even more tedious than calling the oridind() directly. Simple helper func-
tions relieve the tedium. In particular, trseq of a container is the sequence of elements from its
begin() toitsend() :

template<class C> Iseg<C: : iterator_type> iseq C& c) / | for container
{

}

This allows us to express algorithms on containers compactly and without repetition. For example:
void f(list<string>& Is)

return Iseg<C:: iterator_type>(c. begin() , c. end()) ;

{
list<string>: : iterator p = find(Is. begin() , Is. end() ," standard") ;
list<string>: : iterator q = find (iseq(Is)," extension") ;
..

}

It is easy to define versions isleg() that producdsegs for arrays, input streams, etc. (§18.13[6]).

The key benefit ofseqis that it makes the notion of an input sequence explicit. The immediate
practical effect is that use a$eq() eliminates much of the tedious and error-prone repetition
needed to express every input sequence as a pair of iterators.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

514 Algorithms and Function Objects Chapter 18

The notion of an output sequence is also useful. However, it is less simple and less immedi-
ately useful than the notion of an input sequence (818.13[7]; see also §19.2.4).

18.4 Function Objectdalgo.fct]

Many algorithms operate on sequences using iterators and values only. For example, we can
find() the first element with the valugin a sequence like this:

void f(list<int>& c)

{
list<int>: : iterator p = find(c. begin() , c. end() , 7);
/..

}

To do more interesting things we want the algorithms to execute code that we supply (83.8.4). For
example, we can find the first element in a sequence with a value of le§ditteathis:

bool less than 7(int v)

{
return 7,

}

void f(list<int>& c)

{
list<int>: : iterator p = find_if(c. begin() , c. end() , less than 7);
/..

}

There are many obvious uses for functions passed as arguments: logical predicates, arithmetic oper-
ations, operations for extracting information from elements, etc. It is neither convenient nor effi-
cient to write a separate function for each use. Nor is a function logically sufficient to express all
that we would like to express. Often, the function called for each element needs to keep data
between invocations and to return the result of many applications. A member function of a class
serves such needs better than a free-standing function does because its object can hold data. In
addition, the class can provide operations for initializing and extracting such data.

Consider how to write a function or rather a function-like classto calculate a sum:

template<class T> class Sum{

T res
public:
Sum(T i=0) : reqi) {} /I initialize
void operator()(T X) { res+=x; } / | accumulate

T result() const{ return res } [| return sum
K

Clearly,Sumis designed for arithmetic types for which initialization®gnd+= are defined. For
example:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 18.4 Function Objects 515

void f(list<double>& Id)

{
Sum<double> s;
s=for_each(Id. begin() , Id. end() , 9); /| invoke s() for each element of Id
cout << "the sum is' << s. result() << \n;

}

Here,for_each() (818.5.1) invokeSum<double>: : operator()(double) for each element dd
and returns the object passed as its third argument.

The key reason this works is tifat_each() doesn't actually assume its third argument to be a
function. It simply assumes that its third argument is something that can be called with an appro-
priate argument. A suitably-defined object serves as well @isd often better than a function.

For example, it is easier to inline the application operator of a class than to inline a function passed
as a pointer to function. Consequently, function objects often execute faster than do ordinary func-
tions. An object of a class with an application operator (811.9) is cafiedction-like objecta

functor, or simply afunction object

18.4.1 Function Object Bases [algo.bases]

The standard library provides many useful function objects. To aid the writing of function objects,
the library provides a couple of base classes:

template <class Arg, class Res> struct unary_function {
typedef Arg argument_type;
typedef Res result_type;
J2
template <class Arg, class Arg2, class Res> struct binary_function {
typedef Arg first_argument_type;
typedef Arg2 second argument_type;
typedef Res result_type,
The purpose of these classes is to provide standard names for the argument and return types for use
by users of classes derived framary_function andbinary_function. Using these bases consis-
tently the way the standard library does will save the programmer from discovering the hard way
why they are useful (§18.4.4.1).

18.4.2 Predicates [algo.pred]

A predicate is a function object (or a function) that returimal. For example<functional>
defines:

template <class T> struct logical_not : public unary_function<T, bool> {
bool operator()(const T&Xx) const{ return!x; }

I3

template <class T> struct less: public binary_function<T, T, bool> {
bool operator()(const T& X, const T&y) const{ return x<y; }

3

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

516 Algorithms and Function Objects Chapter 18

Unary and binary predicates are often useful in combination with algorithms. For example, we can
compare two sequences, looking for the first element of one that is not less than its corresponding
element in the other:

void f(vector<int>& vi, list<int>& Ii)

{
typedef list<int>:: iterator LlI;
typedef vector<int>:: iterator VI,
pair<VI, LI> p1 = mismatch(vi. begin() , vi. end() , li. begin() , less<int>()) ;
/...
}

The mismatch() algorithm applies its binary predicate repeatedly to pairs of corresponding ele-
ments until it fails (818.5.4). It then returns the iterators for the elements that failed the compari-
son. Because an object is needed rather than alegssint>() (with the parentheses) is used
rather than the temptirgss<int>.

Instead of finding the first elememiot less than its corresponding element in the other
sequence, we might like to find the first elemhsss than its corresponding element. We can do
this by presenting the sequencesiismatch() in the opposite order:

pair<LI, VI> p2 = mismatch(li. begin() , li. end() , vi. begin() , less<int>()) ;
or we can use the complementary prediga¢ater equal:
p1 = mismatch(vi. begin() , vi. end() , li. begin() , greater_equal<int>()) ;

In 818.4.4.4, | show how to express the predicate “not less.”

18.4.2.1 Overview of Predicates [algo.pred.std]

In <functional>, the standard library supplies a few common predicates:

g Predicates<functional> 0
equal_to Binary argl==arg2 %
not_equal_to Binary argl!=arg2 0
Cgreater Binary argtarg2 O
Uess Binary argkarg2 U
reater equal Binary argb=arg2 B
ess equal Binary argk=arg2 0
rlogical_and Binary argl&&arg2 [
(ogical_or Binary argllarg2 O
Hogical_not Unary larg H

The definitions ofessandlogical_not are presented in §18.4.2.

In addition to the library-provided predicates, users can write their own. Such user-supplied
predicates are essential for simple and elegant use of the standard libraries and algorithms. The
ability to define predicates is particularly important when we want to use algorithms for classes
designed without thought of the standard library and its algorithms. For example, consider a vari-
ant of theClub class from §10.4.6:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 18.4.2.1 Overview of Predicates 517

class Person{ /* ..* 1},

struct Club{
string name
list<Person*> members;
list<Person*> officers;
/...
Club(const name& n);

k

Looking for aClub with a given name in lst<Club> is clearly a reasonable thing to do. How-
ever, the standard library algorithiimd if() doesn’t know abou€lubs. The library algorithms
know how to test for equality, but we don't want to findClub based on its complete value.
Rather, we want to usglub: : nameas the key. So we write a predicate to reflect that:

class Club_eq: public unary_function<Club, bool> {
string s

public:
explicit Club_eq(const string& ss) : s(ss { }

bool operator()(const Club& c) const{ return c. name==s; }

b

Defining useful predicates is simple. Once suitable predicates have been defined for user-defined
types, their use with the standard algorithms is as simple and efficient as examples involving con-
tainers of simple types. For example:

void f(listi<Club>& Ic)

{
typedef list<Club>: : iterator LCI;
LCI p = find_if(lc. begin() , Ic. end() , Club_eq(" Dining Philosophers")) ;
...

}

18.4.3 Arithmetic Function Objects [algo.arithmetic]

When dealing with numeric classes, it is sometimes useful to have the standard arithmetic functions
available as function objects. Consequentlyfimctional> the standard library provides:

UArithmetic Operations <functional> U
Plus Binary argl+arg2
Cminus Binary argtarg2
Cultiplies Binary argl*arg2
Ldivides Binary argl/arg2
odulus Binary argl%arg2
[(hegate Unary —arg

We might usanuitipliesto multiply elements in two vectors, thereby producing a third:

Oooooooog

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

518 Algorithms and Function Objects Chapter 18

void discount(vector<double>& a, vector<double>& b, vector<double>& res)
{

}

transform(a. begin() , a. end() , b. begin() , back_inserter(res), multiplies<double>()) ;

Theback_inserter() is described in §19.2.4. A few numerical algorithms can be found in §22.6.

18.4.4 Binders, Adapters, and Negaters [algo.adapter]

We can use predicates and arithmetic function objects we have written ourselves and rely on the
ones provided by the standard library. However, when we need a new predicate we often find that
the new predicate is a minor variation of an existing one. The standard library supports the compo-
sition of function objects:
§18.4.4.1 Abinder allows a two-argument function object to be used as a single-argument
function by binding one argument to a value.
§18.4.4.2 Amember function adaptedlows a member function to be used as an argument to
algorithms.
§18.4.4.3 Apointer to function adapteallows a pointer to function to be used as an argument
to algorithms.
§18.4.4.4 Anegaterallows us to express the opposite of a predicate.
Collectively, these function objects are referred tadapters. These adapters all have a common
structure relying on the function object baseary_function andbinary_function (§18.4.1). For
each of these adapters, a helper function is provided to take a function object as an argument and
return a suitable function object. When invoked byoperator()() , that function object will
perform the desired action. That is, an adapter is a simple form of a higher-order function: it takes
a function argument and produces a new function from it:

U Binders, Adapters, and Negatersfunctional> g
E bind2nd(y) binder2nd Call binary function wigtas 2nd argument%
rbind1st(x) binderlst Call binary function withx as 1st argument.]
Cmem_fun() mem fun t Call 0-arg member through pointer. O
0 mem funl t Call unary member through pointer. g
B const mem fun t Call 0-arg const member through pointer.

0 const mem funl t Call unary const member through pointer.;
rmem fun ref) mem fun ref t Call 0-arg member through reference. 0
O mem funl ref t Call unary member through reference. O
0 const mem fun_ref t Call 0-arg const member through referencé.
B const mem funl ref t Call unary const member through referen(%
cptr_fun() pointer_to unary function Call unary pointer to function. 0
rptr_fun() pointer_to binary function Call binary pointer to function. 0
Chot1() unary_negate Negate unary predicate. O
Hhot2() binary_negate Negate binary predicate. H

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 18.4.4.1 Binders 519

18.4.4.1 Binders [algo.binder]

Binary predicates such #ess (818.4.2) are useful and flexible. However, we soon discover that
the most useful kind of predicate is one that compares a fixed argument repeatedly against a con-
tainer element. Théess than 7() function (§18.4) is a typical example. Thess operation

needs two arguments explicitly provided in each call, so it is not immediately useful. Instead, we
might define:

template <class T> class less than: public unary_function<T, bool> {
T arg2

public:
explicit less than(const T& x) : arg2(x) { }
bool operator()(const T& x) const{ return x<arg2; }

h

We can now write:
void f(list<int>& c)

list<int>: : const_iterator p = find_if(c. begin() , c. end() , less than<int>(7)) ;
/...
}

We must writdess than<int>(7) rather tharless than(7) because the template argumsirit>
cannot be deduced from the type of the constructor argyrdgni§13.3.1).

Theless than predicate is generally useful. Importantly, we defined it by fixing or binding the
second argument déss Such composition by binding an argument is so common, useful, and
occasionally tedious that the standard library provides a standard class for doing it:

template <class BinOp>
class hinder2nd : public unary function<BinOp: : first_argument_type, BinOp:: result_type> {
protected
BinOp op;
typename BinOp:: second_argument_type arg2,
public:
binder2nd(const BinOp& X, const typename BinOp: : second_argument_type& v)
cop(x), arg2(v) { }
result_type aperator()(const argument_type& x) const{ return op(x, arg2); }
h
template <class BinOp, class T> binder2nd<BinOp> bind2nd(const BinOp& op, const T& V)
{

}

return binder2nd<BinOp>(op, V);

For example, we can udsind2nd() to create the unary predicate “less th@&nfrom the binary
predicate “less” and the valu#

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

520 Algorithms and Function Objects Chapter 18

void f(list<int>& c)

{
list<int>: : const_iterator p = find_if(c. begin() , c. end() , bind2nd(less<int>() , 7)) ;
/...

}

Is this readable? Is this efficient? Given an averatje i@plementation, this version is actually
more efficient in time and space than is the original version using the fulesothan 7() from
§18.4! The comparison is easily inlined.

The notation is logical, but it does take some getting used to. Often, the definition of a named
operation with a bound argument is worthwhile after all:

template <class T> struct less than: public binder2nd<less<T>, T> {
explicit less than(const T&x) : binder2nd(less<T>() , x) { }

h

void f(list<int>& c)

{
list<int>: : const_iterator p = find_if(c. begin() , c. end() , less than<int>(7)) ;
...

}

It is important to defindess than in terms ofless rather than using< directly. That way,
less than benefits from any specializations thessmight have (§13.5, §19.2.2).

In parallel tobind2nd() andbinder2nd, <functional> providesbindlst() andbinderlst for
binding the first argument of a binary function.

By binding an argumenhindlst)) andbind2nd() perform a service very similar to what is
commonly referred to &urrying.

18.4.4.2 Member Function Adapters [algo.memfct]

Most algorithms invoke a standard or user-defined operation. Naturally, users often want to invoke
a member function. For example (83.8.5):

void draw_all(list<Shape*>& Isp)

for_each(c. begin() , c. end() ,& Stape: : draw);/ / oops! error
}

The problem is that a member functio{) needs to be invoked for an objept> mf{() . How-

ever, algorithms such der_each() invoke their function operands by simple applicatif{:.
Consequently, we need a convenient and efficient way of creating something that allows an algo-
rithm to invoke a member function. The alternative would be to duplicate the set of algorithms:
one version for member functions plus one for ordinary functions. Worse, we'd need additional
versions of algorithms for containers of objects (rather than pointers to objects). As for the binders
(818.4.4.1), this problem is solved by a class plus a function. First, consider the common case in
which we want to call a member function taking no arguments for the elements of a container of
pointers:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 18.4.4.2 Member Function Adapters 521

template<class R class T> class mem fun_t: public unary function<T*, R> {
R(T:* pmf)() ;

public:
explicit mem fun t(R(T::* p)()) :pmf(p) {
R operator()(T* p) const{ return (p->* pmf)() ; }/ / call through pointer

2
template<class R class T> mem fun_t<R, T> mem fun(R (T::* f)())
{
return mem fun_t<R, T>(f);
}

This handles th&tmape: : draw() example:
void draw_all(list<Stape*>& Isp) / / call 0-argument member through pointer to object

for_each(Isp. begin() , Isp. end() , mem_fun(& Sthape: : draw)) ; / / draw all shapes
}

In addition, we need a class ancham fun() function for handling a member function taking an
argument. We also need versions to be called directly for an object rather than through a pointer;
these are namadem fun_ref() . Finally, we need versions foonst member functions:

template<class R class T> mem fun_t<R, T> mem fun(R(T::* f)()) ;

/1 and versions for unary member, for const member, and const unary member (see table in §18.4.4)

template<class R class T> mem fun_ref t<R, T> mem fun ref(R(T::* f)()) ;
/1 and versions for unary member, for const member, and const unary member (see table in §18.4.4)

Given these member function adapters frdenctional>, we can write:

void f(list<string>&Is) / / use member function that takes no argument for object
{

typedef list<string>: : iterator LSI;

LSI p = find_if(Is. begin() , Is. end() , mem fun_ref(& string: : empty)) ;/ / find "
}
void rotate_all(list<Shape*>& |s, int angle)

/1 use member function that takes one argument through pointer to object
{

}

The standard library need not deal with member functions taking more than one argument because
no standard library algorithm takes a function with more than two arguments as operands.

for_each(Is. begin() , Is. end() , bind2nd(mem fun(& Stape: : rotate), angle)) ;

18.4.4.3 Pointer to Function Adapters [algo.ptof]

An algorithm doesn’t care whether a “function argument” is a function, a pointer to function, or a
function object. However, a binder (§18.4.4.1) does care because it needs to store a copy for later
use. Consequently, the standard library supplies two adapters to allow pointers to functions to be
used together with the standard algorithmsfanctional>. The definition and implementation

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

522 Algorithms and Function Objects Chapter 18

closely follows that of the member function adapters (§18.4.4.2). Again, a pair of functions and a
pair of classes are used:

template <class A class R> pointer_to_unary function<A, R> ptr_fun(R (* f)(A)) ;

template <class A class A2, class R>
pointer_to_binary_function<A, A2, R> ptr_fun(R (* f)(A, A2) ;

Given these pointer to function adapters, we can use ordinary functions together with binders:

class Record { /* ...*/ };

bool name key eq(const Record&, const Record&);/ / compare based on names
bool ssn key eq(const Record&, const Record&); / / compare based on number

void f(list<Record>&Ir) / / use pointer to function

{
typedef typename list<Record>: : iterator LlI;
LI p = find_if(Ir. begin() , Ir. end() , bind2nd(ptr_fun(name key eq,"” John Brown")) ;
LI q=find_if(Ir. begin() , Ir. end() , bind2nd(ptr_fun(ssn_key eq), 1234567890)) ;
/...

}

This looks for elements of the listthat match the keydohn Brown and1234567890.

18.4.4.4 Negaters [algo.negate]

The predicate negaters are related to the binders in that they take an operation and produce a related
operation from it. The definition and implementation of negaters follow the pattern of the member
function adapters (818.4.4.2). Their definitions are trivial, but their simplicity is obscured by the
use of long standard names:

template <class Pred>
class unary_negate : public unary function<typename Pred : argument_type, bool> {

unary_function<argument_type, bool> op;
public:
explicit unary_negate(const Pred& p) : op(p) { }
bool operator()(const argument_type& x) const{ return! op(x); }
b
template <class Pred>
class hinary negate : public binary_function<typename Pred : first_argument_type,
typename Pred : second_argument_type, bool> {

typedef first_argument_type Arg;

typedef second_argument_type Arg2;

binary_function<Arg, Arg2, bool> op;
public:

explicit binary_negate(const Pred& p) : op(p) { }
bool operator()(const Arg& x, const Arg2&y) const{ return! op(Xx,Yy); }

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 18.4.4.4 Negaters 523

template<class Pred> unary_negate<Pred> not1(const Pred& p); / | negate unary
template<class Pred> binary_negate<Pred> not2(const Pred& p); / / negate binary

These classes and functions are declareafimctional>. The namedfirst argument_type,
second_argument_type, etc., come from the standard base clasamary function and
binary_function.

Like the binders, the negaters are most conveniently used indirectly through their helper func-
tions. For example, we can express the binary predicate “not less than” and use it to find the first
corresponding pair of elements whose first element is greater than or equal to its second:

void f(vector<int>& vi, list<int>&li) // revised example from §18.4.2

{
I ...
p1 = mismatch(vi. begin() , vi. end() , li. begin() , not2(less<int>()))
/..

}

That is,plidentifies the first pair of elements for which the prediceteless than failed.

Predicates deal with Boolean conditions, so there are no equivalents to the bitwise opgrators
& ", and-~.

Naturally, binders, adapters, and negaters are useful in combination. For example:

extern " C" int strcemp(const char*, const char*) ; / / from<cstdlib>

void f(list<char*>& Is) / / use pointer to function

{
typedef typename list<char*>: : const iterator LlI;
LI p =find_if(Is. begin() , Is. end() , not1(bind2nd(ptr_fun(strcmp),” funny"))) ;

}

This finds an element of the i that contains the C-style strifigunny’. The negater is needed
becausestremp() returnsO when strings compare equal.

18.5 Nonmodifying Sequence Algorithmglgo.nonmodifying]

Nonmodifying sequence algorithms are the basic means for finding something in a sequence with-
out writing a loop. In addition, they allow us to find out things about elements. These algorithms
can take const-iterators (819.2.1) andvith the excetion ofor_each() — should not be used to
invoke operations that modify the elements of the sequence.

18.5.1 For each [algo.foreach]

We use a library to benefit from the work of others. Using a library function, class, algorithm, etc.,
saves the work of inventing, designing, writing, debugging, and documenting something. Using
the standard library also makes the resulting code easier to read for others who are familiar with
that library, but who would have to spend time and effort understanding home-brewed code.

A key benefit of the standard library algorithms is that they save the programmer from writing
explicit loops. Loops can be tedious and error-prone. fdhesach() algorithm is the simplest

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

524 Algorithms and Function Objects Chapter 18

algorithm in the sense that it does nothing but eliminate an explicit loop. It simply calls its operator
argument for a sequence:

template<class In, class Op> Op for_each(In first, In last, Op f)

while (first!= last) f(* first++);
return f;
}

What functions would people want to call this way? If you want to accumulate information from
the elements, considaccumulate() (822.6). If you want to find something in a sequence, con-
siderfind() andfind_if() (818.5.2). If you change or remove elements, congidpiace()
(818.6.4) oremove() (818.6.5). In general, before usif@_each() , consider if there is a more
specialized algorithm that would do more for you.

The result offor_each() is the function or function object passed as its third argument. As
shown in theSum example (818.4), this allows information to be passed back to a caller.

One common use dbr_each() is to extract information from elements of a sequence. For
example, consider collecting the names of any of a numbi@ubs:

void extract(const list<Club>& Ic, list<Person*>& off) // place the officers from ‘Ic’ on ‘off’

for_each(Ic. begin() , Ic. end() , Extract_officers(off)) ;
}

In parallel to the examples from §18.4 and §18.4.2, we define a function class that extracts the
desired information. In this case, the names to be extracted are folistkFerson*>s in our
list<Club>. ConsequentlyExtract officers needs to copy the officers fromClub'’s officers list

to our list:

class Extract_officers {
list<Person*>& Ist;
public:
explicit Extract_officers(list<Person*>& x) : Ist(x) { }

void operator()(const Club& c)
{ copy(c. officers. begin() , c. officers. end() , back_inserter(Ist)) ; }
3

We can now print out the names, again usorgeach() :
void extract and_print(const list<Club>& Ic)

{

list<Person*> off;

extract(Ic, off);

for_each(off. begin() , off. end() , Print_name(cout)) ;
}

Writing Print_nameis left as an exercise (818.13[4]).

Thefor_each() algorithm is classified as nonmodifying because it doesn’t explicitly modify a
sequence. However, if applied to a ramst sequencdor_each() 's operation (its third argu-
ment) may change the elements of the sequence. For an exampiEetegtr() in §18.6.2.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 18.5.2 The Find Family 525

18.5.2 The Find Family [algo.find]

Thefind() algorithms look through a sequence or a pair of sequences to find a value or a match on
a predicate. The simple versionfiofd() look for a value or for a match with a predicate:

template<class In, class T> In find(In first, In last const T&val);

template<class In, class Pred> In find_if(In first, In last, Pred p);
The algorithmdind() andfind if() return an iterator to the first element that matches a value and
a predicate, respectively. In fafind() can be understood as the versiorfinfl if() with the
predicate==. Why aren’t they both callefind() ? The reason is that function overloading cannot
always distinguish calls of two template functions with the same number of arguments. Consider:

bool pred(int);

void f(vector<bool(* f)(int)>& v1, vector<int>& v2)

ind ‘pred’

find(v1. begin() , v1. end() , pred); I
/| find int for which pred() returns true

find_if(v2. begin() , v2. end() , pred);

— —h

}

If find() andfind_if() had had the same name, surprising ambiguities would have resulted. In
general, theif suffix is used to indicate that an algorithm takes a predicate.

Thefind first of() algorithm finds the first element of a sequence that has a match in a second
sequence:

template<class For, class For2>
For find first of(For first, For last, For2 first2, For2 last?);

template<class For, class For2, class BinPred>
For find first of(For first, For last, For2 first2, For2 last2, BinPred p);

For example:
int] ={1,3,4}
int y ={ 0,2 3, 4,5
void f()
{
int* p = find_first_of(x, x+3, y, y+5); [1 p=8&x[1]
int* q=find_first of(p+1, x+3,y, y+5); [/ / q=&x[2]

}

The pointerp will point to x| 1] becausea is the first element at with a match iry. Similarly, q
will pointto X[2] .
Theadjacent_find() algorithm finds a pair of adjacent matching values:

template<class For> For adjacent_find(For first, For last);
template<class For, class BinPred> For adjacent_find(For first, For last, BinPred p);

The return value is an iterator to the first matching element. For example:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

526 Algorithms and Function Objects Chapter 18

void f(vector<string>& text)

{
vector<string>: : iterator p = adjacent_find(text. begin() , text. end() ," the") ;
if (p!= text. end()) {
/1 1 duplicated "the" again!
}
}

18.5.3 Count [algo.count]

Thecount() andcount_if() algorithms count occurrences of a value in a sequence:

template<class In, class T>
iterator_traits<In>: : difference_type count(In first, In last, const T& val);

template<class In, class Pred>
iterator_traits<in>: : difference_type count_if(In first, In last, Pred p);

The return type ofount() is interesting. Consider an obvious and somewhat simple-minded ver-
sion ofcount() :

template<class In, class T> int count(In first, In last const T& val)

{
int res=0;
while (first!= last) if (* first++ == val) ++res
return res

}

The problem is that aimt might not be the right type for the result. On a machine with dmtall
there might be too many elements in the sequenatmt() to fit in anint. Conversely, a high-
performance implementation on a specialized machine might prefer to keep the cahurin a

Clearly, the number of elements in the sequence cannot be larger than the maximum difference
between its iterators (§19.2.1). Consequently, the first idea for a solution to this problem is to
define the return type as

typename In: : difference_type

However, a standard algorithm should be applicable to built-in arrays as well as to standard con-
tainers. For example:

void f(const char* p, int size)

{
}

Unfortunately,int*: : difference typeis not valid G+. This problem is solved by partial special-
ization of aniterator_traits (§19.2.2).

int n=count(p, pt+size” €) ; / / count the number of occurrences of the letter 'e’

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 18.5.4 Equal and Mismatch 527

18.5.4 Equal and Mismatch [algo.equal]

Theequal() andmismatch() algorithms compare two sequences:

template<class In, class In2> bool equal(In first, In last, In2 first2);

template<class In, class In2, class BinPred>
bool equal(In first, In last, In2 first2, BinPred p);

template<class In, class In2> pair<in, In2> mismatch(In first, In last, In2 firs2);

template<class In, class In2, class BinPred>
pair<in, In2> mismatch(In first, In last, In2 first2, BinPred p);

Theequal() algorithm simply tells whether all corresponding pairs of elements of two sequences
compare equakismatch() looks for the first pair of elements that compares unequal and returns
iterators to those elements. No end is specified for the second sequence; that is, thiast2s no
Instead, it is assumed that there are at least as many elements in the second sequence as in the first
andfirst2+(last- first) is used adast2. This technique is used throughout the standard library,
where pairs of sequences are used for operations on pairs of elements.

As shown in 818.5.1, these algorithms are even more useful than they appear at first glance
because the user can supply predicates defining what it means to be equal and to match.

Note that the sequences need not be of the same type. For example:

void f(list<int>& li, vector<double>& vd)

bool b = equal(li. begin() , li. end() , vd. begin()) :
}

All that is required is that the elements be acceptable as operands of the predicate.
The two versions afismatch() differ only in their use of predicates. In fact, we could imple-
ment them as one function with a default template argument:

template<class In, class In2, class BinPred>
pair<in, In2> mismatch(In first, In last, In2 first2,
BinPred p = equal_to<In:: value_type, In2:: value_type>())/ / §18.4.2.1

while (first!= last && p(* first* first2)) {
++first,
++first2;

}
return pair<in, In2>(first, first2);

}

The difference between having two functions and having one with a default argument can be
observed by someone taking pointers to functions. However, thinking of many of the variants of
the standard algorithms as simply “the version with the default predicate” roughly halves the num-
ber of template functions that need to be remembered.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

528 Algorithms and Function Objects Chapter 18

18.5.5 Search [algo.search]

The search() , search n() , andfind_end() algorithms find one sequence as a subsequence in
another:

template<class For, class For2>
For search(For first, For last, For2 first2, For2 last?);

template<class For, class For2, class BinPred>
For search(For first, For last, For2 first2, For2 last2, BinPred p);

template<class For, class For2>
For find end(For first For last, For2 first2, For2 last?);

template<class For, class For2, class BinPred>
For find_end(For first, For last, For2 first2, For2 last2, BinPred p);

template<class For, class Size, class T>
For search n(For first, For last, Size m, const T&val);

template<class For, class Sze class T, class BinPred>
For search _n(For first, For last, Size m const T& val, BinPred p);

Thesearch() algorithm looks for its second sequence as a subsequence of its first. If that second
sequence is found, an iterator for the first matching element in the first sequence is returned. The
end of sequencdast) is returned to represent “not found.” Thus, the return value is always in the

[first, last] sequence. For example:

string quote(" Why waste time learning, when ignorance iis instantaneous?") ;
bool in_quote(const string& s)

{
char* p = search(quote. begin() , quote. end() , s. begin() , s. end()) ;/ / find s in quote
return p'= quote. end() ;
}
void g()
{
bool bl=in_quote(" learning") ; / / bl =true
bool b2=in_quote(" lemming”) ; / / b2 =false
}

Thus,search() is an operation for finding a substring generalized to all sequences. This implies
thatsearch() is a very useful algorithm.

The find_end() algorithm looks for its second input sequence as a subsequence of its first
input sequence. If that second sequence is foind,end() returns an iterator pointing to the
last match in its first input. In other wordind_end() is search() “backwards.” It finds the
last occurrence of its second input sequence in its first input sequence, rather than the first occur-
rence of its second sequence.

Thesearch_n() algorithm finds a sequence of at leashatches for itwalue argument in the
sequence. It returns an iterator to the first element of the sequemosatthes.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 18.6 Modifying Sequence Algorithms 529

18.6 Modifying Sequence Algorithmsalgo.modifying]

If you want to change a sequence, you can explicitly iterate through it. You can then modify val-
ues. Wherever possible, however, we prefer to avoid this kind of programming in favor of simpler
and more systematic styles of programming. The alternative is algorithms that traverse sequences
performing specific tasks. The nonmodifying algorithms (§18.5) serve this need when we just read
from the sequence. The modifying sequence algorithms are provided to do the most common
forms of updates. Some update a sequence, while others produce a new sequence based on infor-
mation found during a traversal.

Standard algorithms work on data structures through iterators. This implies that inserting a new
element into a container or deleting one is not easy. For example, given only an iterator, how can
we find the container from which to remove the element pointed to? Unless special iterators are
used (e.g., inserters, §3.8, 819.2.4), operations through iterators do not change the size of a con-
tainer. Instead of inserting and deleting elements, the algorithms change the values of elements,
swap elements, and copy elements. Eremove() operates by overwriting the elements to be
removed (818.6.5). In general, the fundamental modifying operations produce outputs that are
modified copies of their inputs. The algorithms that appear to modify a sequence are variants that
copy within a sequence.

18.6.1 Copy [algo.copy]

Copying is the simplest way to produce one sequence from another. The definitions of the basic
copy operations are trivial:

template<class In, class Out> Out copy(In first, In last, Out res

while (first!= last) * res++ = * first++;
return res
}

template<class Bi, class Bi2> Bi2 copy _backward(Bi first, Bi last, Bi2 res

while (first!= last) *-- res=*- last
return res
}

The target of a copy algorithm need not be a container. Anything that can be described by an out-
put iterator (819.2.6) will do. For example:

void f(list<Club>& Ic, ostream& o0s)
{

}

To read a sequence, we need a sequence describing where to begin and where to end. To write, we
need only an iterator describing where to write to. However, we must take care not to write beyond
the end of the target. One way to ensure that we don’t do this is to use an inserter (819.2.4) to grow
the target as needed. For example:

copy(Ic. begin() , Ic. end() , ostream _iterator<Club>(09)) ;

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

530 Algorithms and Function Objects Chapter 18

void f(vector<char>& vs)

{

vector<char> v;

copy(vs. begin() , vs. end() , v. begin()) ; /| might overwrite end of v

copy(vs. begin() , vs. end() , back_inserter(v)) ;/ / add elements from vs to end of v
}

The input sequence and the output sequence may overlap. \Wepy§e when the sequences do
not overlap or if the end of the output sequence is in the input sequence. We use
copy_backward() when the beginning of the output sequence is in the input sequence. In that
way, no element is overwritten until after it has been copied. See also §18.13[13].

Naturally, to copy something backwards we need a bidirectional iterator (§19.2.1) for both the
input and the output sequences. For example:

void f(vector<char>& vc)

{
vector<char> v(vc. sizg()) ;
copy_backward(vc. begin() , vc. end() , output_iterator<char>(cout)) ; // error
copy_backward(vc. begin() , vc. end() , v. end()) ; [| ok
copy(v. begin() , v. end() , ostream _iterator<char>(09)) ;

}

Often, we want to copy only elements that fulfill some criterion. Unfortunatefyy if() was
somehow dropped from the set of algorithms provided by the standard library (mea culpa). On the
other hand, it is trivial to define:

template<class In, class Out, class Pred> Out copy if(In first, In last, Out res Pred p)

while (first!= last) {
if (p(* first)) *rest+ = *first
++first;

}
return res

}

Now if we want to print elements with a value larger thawe can do it like this:

void f(list<int>&|ld, int n, ostream& 0s)

{
copy_if(Id. begin() , Id. end() , ostream iterator<int>(0s), bind2nd(greater<int>() , n)) ;

See alsoemove_copy if() (818.6.5).

18.6.2 Transform [algo.transform]

Somewhat confusinglytransform() doesn’t necessarily change its input. Instead, it produces an
output that is a transformation of its input based on a user-supplied operation:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 18.6.2 Transform 531

template<class In, class Out, class Op>
Out transform(In first, In last, Out res Op op)

while (first!= last) *res+t+ = op(* first++);
return res
}

template<class In, class In2, class Qut, class BinOp>
Out transform(In first In last, In2 first2, Out res BinOp op)

while (first!= last) *rest++ = op(* first++,* first2++);
return res
}

The transform() that reads a single sequence to produce its output is rather simiiapy(® .
Instead of writing its element, it writes the result of its operation on that element. Thus, we could
have defineatopy() astransform() with an operation that returns its argument:

template<class T> T identity(const T&x) { return x; }
template<class In, class Out> Out copy(In first, In last, Out res
{

}

Another way to viewransform() is as a variant dior_each that explicitly produces output. For
example, we can produce a list of nastréngs from a list ofClubs usingtransform() :

string nameof(const Club&c) / / extract name string

return transform(first, last, res identity);

return c. name
}
void f(list<Club>& Ic)
{
transform(Ic. begin() , Ic. end() , ostream iterator<string>(cout), nameof) ;
}

One reasonransform() is called “transform” is that the result of the operation is often written
back to where the argument came from. As an example, consider deleting the objects pointed to by
a set of pointers:

template<class T> T* delete ptr(T* p) { delete p return O; }
void purge(deque<Stape>& s)
{

transform(s. begin() , s. end() , s. begin() , delete_ptr);
/..

}

Thetransform() algorithm always produces an output sequence. Here, | directed the result back
to the input sequence so tlisete ptr(p) has the effegp=delete ptr(p) . This was why | chose
to returnO from delete_ptr() .

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

532 Algorithms and Function Objects Chapter 18

The transform() algorithm that takes two sequences allows people to combine information
from two sources. For example, an animation may have a routine that updates the position of a list
of shapes by applying a translation:

Siape* move_shape(Stape* s, Point p) / / *s+=p
{

s> move_to(s> center()+ p);

return s
}

void update_positions(list<Shape*>& Is, vector<Point>& oper)

/1 invoke operation on corresponding object:
transform(Is. begin() , Is. end() , oper. begin() , Is. begin() , move_shape);
}

| didn’t really want to produce a return value fromove_shape() . However transform() insists
on assigning the result of its operation, so Ineve shape() return its first operand so that |
could write it back to where it came from.

Sometimes, we do not have the freedom to do that. For example, an operation that | didn’t write
and don’t want to modify might not return a value. Sometimes, the input sequerarestis In
such cases, we might define a two-sequéoceeach() to match the two-sequentransform() :

template<class In, class In2, class BinOp>
BinOp for_each(In first, In last, In2 first2, BinOp op)

while (first!= last) op(* first++* first2++);
return op;

}
void update positions(list<Shape*>& |s, vector<Point>& oper)

for_each(Is. begin() , Is. end() , oper. begin() , move_shape);
}

At other times, it can be useful to have an output iterator that doesn’t actually write anything
(819.6[2)).

There are no standard library algorithms that read three or more sequences. Such algorithms are
easily written, though. Alternatively, you can usgnsform() repeatedly.

18.6.3 Unique [algo.unique]

Whenever information is collected, duplication can occur. Uihique() and unique copy()
algorithms eliminate adjacent duplicate values:

template<class For> For unique(For first, For last);
template<class For, class BinPred> For unique(For first, For last, BinPred p);

template<class In, class Out> Out unique_copy(In first, In last, Out res);
template<class In, class Out, class BinPred>
Out unique_copy(In first, In last, Out res BinPred p);

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 18.6.3 Unique 533

Theunique() algorithm eliminates adjacent duplicates from a sequaemigue copy() makes a
copy without duplicates. For example:

void f(list<string>& Is, vector<string>& vs)

Is. sort() ; // list sort (§17.2.2.1)
unique_copy(Is. begin() , Is. end() , back_inserter(vs)) ;
}

This copiesls to vs, eliminating duplicates in the process. Témt() is needed to get equal
strings adjacent.

Like other standard algorithmanique() operates on iterators. It has no way of knowing the
type of container these iterators point into, so it cannot modify that container. It can only modify
the values of the elements. This implies mique() does not eliminate duplicates from its input
sequence in the way we naively might expect. Rather, it moves unique elements towards the front
(head) of a sequence and returns an iterator to the end of the subsequence of unique elements:

template <class For> For unique(For first, For last)

{
first = adjacent_find(first, last); / | 8185.2
return unique_copy(first, last, first);

}

The elements after the unique subsequence are left unchanged. Therefore, this does not eliminate
duplicates in a vector:

void f(vector<string>& vs) / | warning: bad code!

{
sort(vs. begin() , vs. end()) ; /| sort vector
unique(vs. begin() , vs. end()) ; /| eliminate duplicates (no it doesn't!)

}

In fact, by moving the last elements of a sequence forward to eliminate duplicitpe() can
introduce new duplicates. For example:
int main()
{
char v[] =" abbcccde’;

char* p = unique(v, v+strlen(v)) ;
cout<<v<<’ ’~ <<p-v<<'\n;

}

produced
abcdecde 5

That is,p points to the seconel

Algorithms that might have removed elements (but can’t) generally come in two forms: the
“plain” version that reorders elements in a way similautdque() and a version that produces a
new sequence in a way similar unique_copy() . The_copy suffix is used to distinguish these
two kinds of algorithms.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

534 Algorithms and Function Objects Chapter 18

To eliminate duplicates from a container, we must explicitly shrink it:

template<class C> void eliminate_duplicates(C& c)

{
sort(c. begin() , c. end()) ; / | sort
typename C.: iterator p = unique(c. begin() , c. end()) ; / / compact
c. erasg p, ¢c. end()) ; /| shrink

}

Note thateliminate_duplicates) would make no sense for a built-in array, yrique() can still
be applied to arrays.
An example oinique_copy() can be found in §3.8.3.

18.6.3.1 Sorting Criteria [algo.criteria]

To eliminate all duplicates, the input sequences must be sorted (818.7.1)uriiqub() and
unique_copy() use== as the default criterion for comparison and allow the user to supply alterna-

tive criteria. For instance, we might modify the example from §18.5.1 to eliminate duplicate

names. After extracting the names of @lab officers, we were left with Hst<Person*> called
off (§18.5.1). We could eliminate duplicates like this:

eliminate_duplicates(off) ;

However, this relies on sorting pointers and assumes that each pointer uniquely identifies a person.

In general, we would have to examine Berson records to determine whether we would consider
them equal. We might write:

bool operator==(const Person& x, const Person&y)/ / equality for object
{

}

bool operator<(const Person& x, const Person&y) / / less than for object
{

}

bool Person eq(const Person* x, const Person* y) / / equality through pointer

{
}

bool Person |t(const Person* x, const Person* y) / / less than through pointer

{
}

/1 compare x and y for equality

/1 compare x and y for order

return * x == *vy,

return *x < *vy;

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 18.6.3.1 Sorting Criteria 535

void extract_and print(const list<Club>& Ic)

{
list<Person*> off;
extract(Ic, off);
sort(off. begin() , off. end() , Person_lt);
list<Club>: : iterator p = unique(off. begin() , off. end() , Person_eq);
for_each(off. begin() , p, Print_name(cout)) ;
}

It is wise to make sure that the criterion used to sort matches the one used to eliminate duplicates.
The default meanings of and == for pointers are rarely useful as comparison criteria for the
objects pointed to.

18.6.4 Replace [algo.replace]

Thereplace() algorithms traverse a sequence, replacing values by other values as specified. They
follow the patterns outlined bfynd/ find_if andunique/ unique_copy, thus yielding four variants
in all. Again, the code is simple enough to be illustrative:

template<class For, class T>
void replace(For first, For last, const T& val, const T& new val)

while (first!= last) {
if (* first==val) *first= new val;
++first;

}

template<class For, class Pred, class T>
void replace if(For first, For last, Pred p, const T& new val)

while (first!= last) {
if (p(* first)) *first= new val,;
++first;

}

template<class In, class Out, class T>
Out replace copy(In first, In last, Out res const T&val, const T& new val)

while (first!= last) {
rest+ = (first==val) ? new val : *first
++first,

}
return res

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

536 Algorithms and Function Objects Chapter 18

template<class In, class Out, class Pred, class T>
Out replace copy_if(In first, In last, Out res Pred p, const T& new val)

while (first!= last) {
rest+ = p(first) ? new val : *first;
++first;

}
return res

}

We might want to go through a list sfrings, replacing the usual English transliteration of the
name of my home town Aarhus with its proper narmieuA:

void f(list<string>& towns)
{

}

This relies on an extended character set (8C.3.3).

replace(towns. begin() , towns. end() ," Aarhus'" Arhus) ;

18.6.5 Remove [algo.remove]

Theremove() algorithms remove elements from a sequence based on a value or a predicate:
template<class FFor, class T> For remove(For first, For last, const T& val);
template<class For, class Pred> For remove if(For first, For last, Pred p);

template<class In, class Out, class T>
Out remove_copy(In first, In last, Out res const T&val);

template<class In, class Out, class Pred>
Out remove copy_if(In first, In last, Out res Pred p);

Assuming that £lub has an address, we could produce a li€labs located in Copenhagen:

class located in {
string town;
public:
located in(const string& ss) : town(ss) { }
bool operator()(const Club&c) const{ return c. town == town; }

h
void f(list<Club>& Ic)
{
remove_copy_if(Ic. begin() , Ic. end() ,
output_iterator<Club>(cout), notl(located in(" Kgtbenhavn")))
}

Thus,remove _copy_if() is copy_if() (818.6.1) with the inverse condition. That is, an element is
placed on the output lnemove copy_if() if the element does not match the predicate.

The “plain” remove() compacts non-matching elements at the beginning of the sequence and
returns an iterator for the end of the compacted sequence (see also §18.6.3).

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 18.6.6 Filland Generate 537

18.6.6 Fill and Generate [algo.fill]

Thefill() andgenerate() algorithms exist to systematically assign values to sequences:

template<class For, class T> void fill(For first, For last, const T&val);
template<class Out, class Sze class T> void fill_n(Out res Size m, const T&val);

template<class For, class Gen> void generate(For first, For last, Gen g);
template<class Out, class Size class Gen> void generate n(Out res Size m Gen g);

Thefill() algorithm assigns a specified value; themerate() algorithm assigns values obtained
by calling its function argument repeatedly. THil() is simply the special case génerate()
in which the generator function returns the same value repeatedly. N sions assign to the
first n elements of the sequence.
For example, using the random-number gener&anglint andUrand from 822.7:

int vi[900];

int v2[900];

vector v3;

void f()

{
fill(v1,& v1] 900], 99); / | setall elements of v1 to 99

generate(v2,& v2[900], Randint); / / setto random values (§22.7)

/1 output 200 random integers in the interval [0..99]:
generate_n(ostream _iterator<int>(cout), 200, Urand(100)) ;

fill_n(back inserter(v3), 20, 99); / / add 20 elements with the value 99 to v3
}

The generate() andfill() functions assign rather than initialize. If you need to manipulate raw
storage, say to turn a region of memory into objects of well-defined type and state, you must use an
algorithm likeuninitialized fill() from <memory> (§19.4.4) rather than algorithms fronalgo-

rithms>.

18.6.7 Reverse and Rotate [algo.reverse]

Occasionally, we need to reorder the elements of a sequence:

template<class Bi> void reverse(Bi first, Bi last);
template<class Bi, class Out> Out reverse copy(Bi first Bi last, Out res);

template<class For> void rotate(For first, For middle, For last);
template<class FFor, class Qut> Out rotate_copy(For first, For middle, For last, Out res);

template<class Ran> void random_shuffle(Ran first, Ran last);
template<class Ran, class Gen> void random_shuffle(Ran first, Ran last Gen& g);

Therewverse() algorithm reverses the order of the elements so that the first element becomes the
last, etc. Theeverse copy() algorithm produces a copy of its input in reverse order.

The rotate() algorithm considers it§first, lasff sequence a circle and rotates its elements
until its formermiddle element is placed where fisst element used to be. That is, the element in

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

538 Algorithms and Function Objects Chapter 18

position first+i moves to positiorfirst+(i+(last- middle))%(last- first) . The % (modulo) is
what makes the rotation cyclic rather than simply a shift to the left. For example:

void f()

{
string V[] ={ "Frog', "and'," Peach" };
reversg(v, v+3); / | Peach and Frog
rotate(v, v+1, v+3); / | and Frog Peach

}

Therotate_copy() algorithm produces a copy of its input in rotated order.

By default, random_shuffle() shuffles its sequence using a uniform distribution random-
number generator. That is, it chooses a permutation of the elements of the sequence in such a way
that each permutation has the same chance of being chosen. If you want a different distribution or
simply a better random-number generator, you can supply one. For example, uklnanihgen-
erator from §22.7 we might shuffle a deck of cards like this:

void f(deque<Card>& dc)

{
random_shuffle(dc. begin() , dc. end() , Urand(52)) ;

..
}

The movement of elements donerioyate() , etc., is done usingwap() (818.6.8).

18.6.8 Swap [algo.swap]

To do anything at all interesting with elements in a container, we need to move them around. Such
movement is best expressedhat is, expressed most simply and most efficienthsswap() s:

template<class T> void swap(T& a, T&b)

{
T tmp=a;
a=b;
b = tmp;
}

template<class For, class For2> void iter_swap(For x, For2 y);
template<class For, class For2> For2 swap_ranges For first, For last, For2 first2)

while (first!= last) iter_swap(first++, first2++);
return first2;
}

To swap elements, you need a temporary. There are clever tricks to eliminate that need in special-
ized cases, but they are best avoided in favor of the simple and obviouswafile algorithm is
specialized for important types for which it matters (816.3.9, §13.5.2).

Theiter_swap() algorithm swaps the elements pointed to by its iterator arguments.

Theswap rangesalgorithm swaps elements in its two input ranges.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 18.7 Sorted Sequences 539

18.7 Sorted Sequencedsigo.sorted)]

Once we have collected some data, we often want to sort it. Once the sequence is sorted, our
options for manipulating the data in a convenient manner increase significantly.

To sort a sequence, we need a way of comparing elements. This is done using a binary predi-
cate (§818.4.2). The default comparisotess(818.4.2), which in turn usesby default.

18.7.1 Sorting [algo.sort]

The sort() algorithms require random-access iterators (819.2.1). That is, they work best for
vectors (816.3) and similar containers:

template<class Ran> void sort(Ran first, Ran last);
template<class Ran, class Cmp> void sort(Ran first, Ran last, Cmp cmp);

template<class Ran> void stable sort(Ran first, Ran last);
template<class Ran, class Cmp> void stable sort(Ran first, Ran last, Cmp cmp);

The standardist (§817.2.2) does not provide random-access iteratotistssshould be sorted using
the specifidist operations (817.2.2.1).
The basicsort() is efficient— on averagd\N* log(N) — but its worst-case performance is poor
— O(N*N). Fortunately, the worst case is rare. If guaranteed worst-case behavior is important or
a stable sort is requiredtable_sort() should be used; that is, &t log(N)* log(N) algorithm
that improves towards* log(N) when the system has sufficient extra memory. The relative order
of elements that compare equal is preservestdiyle sort() but not bysort() .
Sometimes, only the first elements of a sorted sequence are needed. In that case, it makes sense
to sort the sequence only as far as is needed to get the first part in order. That is a partial sort:

template<class Ran> void partial_sort(Ran first, Ran middle, Ran last);
template<class Ran, class Cmp>
void partial_sort(Ran firstt Ran middle, Ran last, Cmp cmp);

template<class In, class Ran>

Ran partial_sort_copy(In first, In last Ran first2, Ran last?);
template<class In, class Ran, class Cmp>

Ran partial_sort_copy(In first, In last, Ran firs2, Ran last2, Cmp cmp);

The plainpartial_sort() algorithms put the elements in the rarfigst to middle in order. The
partial_sort_copy() algorithms producd elements, wher#\ is the lower of the number of ele-

ments in the output sequence and the number of elements in the input sequence. We need to spec-
ify both the start and the end of the result sequence because that’'s what determines how many ele-
ments we need to sort. For example:

class Compare_copies sold {
public:
int operator()(const Book& b1, const Book& b2) const
{ return bl. copies sold()< b2. copies sold() ; }

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

540 Algorithms and Function Objects Chapter 18

void f(const vector<Book>& sales) / / find the top ten books

{
vector<Book> bestsellers(10) ;
partial_sort_copy(sales begin() , sales end() ,
bestsellers. begin() , bestsellers. end() , Compare_copies sald()) ;
copy(bestsellers. begin() , bestsellers. end() , ostream iterator<Book>(cout)) ;
}

Because the target gfartial_sort_copy() must be a random-access iterator, we cannot sort
directly tocout.

Finally, algorithms are provided to sort only as far as is necessary to déthteeement to its
proper place with no element comparing less thalNthelement placed after it in the sequence:

template<class Ran> void nth_element(Ran first, Ran nth, Ran last);
template<class Ran, class Cmp> void nth_element(Ran first, Ran nth, Ran last, Cmp cmp);

This algorithm is particularly useful for peoplesuch as economists, sociologists, and teachers
who need to look for medians, percentiles, etc.

18.7.2 Binary Search [algo.bsearch]

A sequential search such find() (818.5.2) is terribly inefficient for large sequences, but it is
about the best we can do without sorting or hashing (817.6). Once a sequence is sorted, however,
we can use a binary search to determine whether a value is in a sequence:

template<class FFor, class T> bool binary search(For first, For last, const T& val);

template<class For, class T, class Cmp>
bool binary_search(For first, For last const T& value, Cmp cmp);

For example:
void f(list<int>& c)

if (binary_search(c. begin() ,c.end() ,7)) { / /is7inc?
/...
}

..
}

A binary _search() returns abool indicating whether a value was present. As \fitid() , we
often also want to know where the elements with that value are in that sequence. However, there
can be many elements with a given value in a sequence, and we often need to find either the first or
all such elements. Consequently, algorithms are provided for finding a range of equal elements,
equal_range() , and algorithms for finding thewer_bound() andupper_bound() of that range:

template<class For, class T> For lower_bound(For first, For last, const T&val);
template<class For, class T, class Cmp>
For lower_bound(For first, For last, const T& val, Cmp cmp);

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 18.7.2 Binary Search 541

template<class For, class T> For upper_bound(For first, For last, const T& val);
template<class For, class T, class Cmp>
For upper_bound(For first, For last, const T&val, Cmp cmp);

template<class [For, class T> pair<For, For> equal_range(For first, For last, const T&val);
template<class For, class T, class Cmp>
pair<For, For> equal_range(For first, For last, const T&val, Cmp cmp);

These algorithms correspond to the operationsnuitimaps (817.4.2). We can think of
lower_bound() as a fasfind() andfind_if() for sorted sequences. For example:

void g(vector<int>& c)

{
typedef vector<int>:: iterator VI,
VI p=find(c. begin() , c. end() , 7); /| probably slow: O(N); c needn'’t be sorted
VI g = lower_bound(c. begin() , c. end() , 7); / / probably fast: O(log(N)); c must be sorted
/..

}

If lower_bound(first, last, k) doesn't findk, it returns an iterator to the first element with a key

greater thark, or last if no such greater element exists. This way of reporting failure is also used
by upper_bound() andequal_range() . This means that we can use these algorithms to deter-
mine where to insert a new element into a sorted sequence so that the sequence remains sorted.

18.7.3 Merge [algo.merge]

Given two sorted sequences, we can merge them into a new sorted sequenceengsf)g or
merge two parts of a sequence usmpjace_merge() :

template<class In, class In2, class Out>

Out merge(In first, In last, In2 first2, In2 last2, Out res);
template<class In, class In2, class Out, class Cmp>

Out merge(In first, In last, In2 first2, In2 last2, Out res Cmp cmp);

template<class Bi> void inplace_merge(Bi first, Bi middle, Bi last);
template<class Bi, class Cmp> void inplace merge(Bi first, Bi middle, Bi last, Cmp cmp);

Note that these merge algorithms differ fréist's merge (817.2.2.1) bpot removing elements
from their input sequences. Instead, elements are copied.

For elements that compare equal, elements from the first range will always precede elements
from the second.

The inplace_merge() algorithm is primarily useful when you have a sequence that can be
sorted by more than one criterion. For example, you might haeetar of fish sorted by species
(for example, cod, haddock, and herring). If the elements of each species are sorted by weight, you
can get the whole vector sorted by weight by applimplace merge() to merge the information
for the different species (818.13[20]).

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

542 Algorithms and Function Objects Chapter 18

18.7.4 Partitions [algo.partition]

To partition a sequence is to place every element that satisfies a predicate before every element that
doesn’'t. The standard library providesstable partition() , which maintains relative order

among the elements that do and do not satisfy the predicate. In addition, the librarpastiers

tion() which doesn’t maintain relative order, but which runs a bit faster when memory is limited:

template<class Bi, class Pred> Bi partition(Bi first, Bi last, Pred p);
template<class Bi, class Pred> Bi stable partition(Bi first, Bi last, Pred p);

You can think of a partition as a kind of sort with a very simple sorting criterion. For example:
void f(list<Club>& Ic)

list<Club>: : iterator p = partition(Ic. begin() , lc. end() , located in(" Kghbenhavn")) ;
...
}

This “sorts” the list so thatClubs in Copenhagen comes first. The return value (pemoints
either to the first element that doesn't satisfy the predicate or to the end.

18.7.5 Set Operations on Sequences [algo.set]

A sequence can be considered a set. Looked upon that way, it makes sense to provide set opera-
tions such as union and intersection for sequences. However, such operations are horribly ineffi-
cient unless the sequences are sorted, so the standard library provides set operations for sorted
sequences only. In particular, the set operations work wellsdtsr (§817.4.3) andmultisets
(817.4.4), both of which are sorted anyway.

If these set algorithms are applied to sequences that are not sorted, the resulting sequences will
not conform to the usual set-theoretical rules. These algorithms do not change their input
sequences, and their output sequences are ordered.

Theincludes() algorithm tests whether every member of the first sequence is also a member of
the second:

template<class In, class In2>

bool includeg(In first, In last, In2 first2, In2 last2);
template<class In, class In2, class Cmp>

bool includeg In first, In last, In2 first2, In2 last2, Cmp cmp);

Theset_union() andset intersection() produce their obvious outputs as sorted sequences:

template<class In, class In2, class Out>

Out set_union(In first, In last, In2 first2, In2 last2, Out res);
template<class In, class In2, class Out, class Cmp>

Out set_union(In first, In last, In2 first2, In2 last2, Out res Cmp cmp);

template<class In, class In2, class Out>

Out set_intersection(In first, In last, In2 first2, In2 last2, Out res);
template<class In, class In2, class QOut, class Cmp>

Out set _intersection(In first, In last, In2 first2, In2 last2, Out res Cmp cmp);

Theset_difference() algorithm produces a sequence of elements that are members of its first, but

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 18.7.5 Set Operations on Sequences 543

not its second, input sequence. et symmetric_difference() algorithm produces a sequence
of elements that are members of either, but not of both, of its input sequences:

template<class In, class In2, class Out>

Out set_difference(In first, In last, In2 first2, In2 last2, Out res);
template<class In, class In2, class Out, class Cmp>

Out set difference(In first, In last, In2 first2, In2 last2, Out res Cmp cmp);

template<class In, class In2, class Out>

Out set_symmetric_difference(In first, In last, In2 first2, In2 last2, Out res);
template<class In, class In2, class Qut, class Cmp>

Out set symmetric_difference(In first, In last, In2 first2, In2 last2, Out res Cmp cmp);

For example:
char v1[] =" abcd";
char v2[] =" cdef"

void f(char v3[])

set_difference(v1, v1+4, v2, v2+4, v3); / [v3="ab"
set_symmetric_difference(v1, vi+4, v2, v2+4,v3); [/ | v3 ="abef"

18.8 Heapgalgo.heap]

The wordheapmeans different things in different contexts. When discussing algorithms, “heap”
often refers to a way of organizing a sequence such that it has a first element that is the element
with the highest value. Addition of an element (ugmugh heap()) and removal of an element
(usingpop_heap()) are reasonably fast, with a worst-case performan€ édg(N)) , whereN

is the number of elements in the sequence. Sorting (gemgheap()) has a worst-case perfor-
mance ofO(N*log(N)) . A heap is implemented by this set of functions:

template<class Ran> void push_heap(Ran first, Ran last);
template<class Ran, class Cmp> void push _heap(Ran first Ran last, Cmp cmp);

template<class Ran> void pop_heap(Ran first, Ran last);
template<class Ran, class Cmp> void pop_heap(Ran first, Ran last, Cmp cmp);

template<class Ran> void make heap(Ran first Ran last); / / turn sequence into heap
template<class Ran, class Cmp> void make heap(Ran first, Ran last, Cmp cmp);

template<class Ran> void sort_heap(Ran first, Ran last); [| turn heap into sequence
template<class Ran, class Cmp> void sort_heap(Ran first, Ran last, Cmp cmp);

The style of the heap algorithms is odd. A more natural way of presenting their functionality would
be to provide an adapter class with four operations. Doing that would yield something like a
priority_queue (817.3.3). In fact, priority_queueis almost certainly implemented using a heap.

The value pushed byush heap(first, last) is *(last-1). The assumption is that
[first, last- 1] is already a heap, sush _heap() extends the sequence[tbirst, lasti by includ-
ing the next element. Thus, you can build a heap from an existing sequence by a series of

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

544 Algorithms and Function Objects Chapter 18

push _heap() operations. Converselyop_heap(first, last) removes the first element of the
heap by swapping it with the last elemeiftlast- 1)) and makind first, last- 1] into a heap.

18.9 Min and Max][algo.min]

The algorithms described here select a value based on a comparison. It is obviously useful to be
able to find the maximum and minimum of two values:

template<class T> const T& max(const T& a, const T& b)
{

}

template<class T, class Cmp> const T& max(const T& a, const T& b, Cmp cmp)
{

}
template<class T> const T& min(const T& a, const T&b);

return (a<b) ? b: a;

return (cmp(a, b)) ?b: g

template<class T, class Cmp> const T& min(const T&a, const T& b, Cmp cmp);
Themax() andmin() operations can be generalized to apply to sequences in the obvious manner:

template<class For> For max_element(For first For last);
template<class For, class Cmp> For max_element(For first, For last, Cmp cmp);

template<class For> For min_element(For first, For last);
template<class For, class Cmp> For min_element(For first, For last, Cmp cmp);

Finally, lexicographical ordering is easily generalized from strings of characters to sequences of
values of a type with comparison:

template<class In, class In2>
bool lexicographical_compare(In first, In last, In2 first2, In2 last?);

template<class In, class In2, class Cmp>
bool lexicographical_compare(In first, In last, In2 first2, In2 last2, Cmp cmp)

while (first!= last &&first2 1= last?) {
if (cmp(* first* first2)) return true
if (cmp(* first2++,* first++)) return false

}
return first == last &&first2 '= last?;

}

This is very similar to the function presented for general strings in (813.4.1). However,
lexicographical_compare() compares sequences in general and not just strings. It also returns a
bool rather than the more usefimt. The result igrue (only) if the first sequence compareghe
second. In particular, the resulfédsewhen the sequences compare equal.

C-style strings andtrings are sequences, seicographical_compare() can be used as a
string compare function. For example:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 18.9 Min and Max 545

char vi[] ="yes’
char v2[] ="no"
string s1="Yes
string s2="No";

void f()

bool bl = lexicographical_compare(v1, vl+strien(v1), v2, v2+strien(v2)) ;
bool b2 = lexicographical_compare(s1 begin() , sL end() , s2 begin() , s2 end()) ;

bool b3 = lexicographical_compare(v1, vi+strlen(v1), sl begin() , s1 end()) ;
bool b4 = lexicographical_compare(s1 begin() , sl end() , v1, vl+strlen(v1), Nocase);
}

The sequences need not be of the same-tyglewe need is to compare their elementand the
comparison criterion can be supplied. This mdksicographical compare() more general and
potentially a bit slower thastring's compare. See also §20.3.8.

18.10 Permutationgalgo.perm]

Given a sequence of four elements, we can order them in 4*3*2 ways. Each of these orderings is
called apermutation For example, from the four charactabed we can produce 24 permutations:

abcd abdc acbd acdb adbc adcb bacd badc
bcad becda bdac bdca cabd cadb cbad cbda
cdab cdba dabc dacb dbac dbca dcab dcba

The next permutation() and prev_permmutation() functions deliver such permutations of a
sequence:

template<class Bi> bool next_permutation(Bi first, Bi last);
template<class Bi, class Cmp> bool next_permutation(Bi first, Bi last, Cmp cmp);

template<class Bi> bool prev_permutation(Bi first, Bi last);
template<class Bi, class Cmp> bool prev_pemmutation(Bi first, Bi last, Cmp cmp);

The permutations adbed were produced like this:

int main()
{

char v[] ="abcd";

cout << v<< “\t’;

while(next_permutation(v, v+4)) cout << v << \t’;
}

The permutations are produced in lexicographical order (818.9). The return value of
next permutation() indicates whether a next permutation actually exists. Iffatsgeis returned
and the sequence is the permutation in which the elements are in lexicographical order.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

546 Algorithms and Function Objects Chapter 18

18.11 C-Style Algorithmgalgo.c]

From the C standard library, the-€standard library inherited a few algorithms dealing with C-
style strings (8§20.4.1), plus a quicksort and a binary search, both limited to arrays.

Thegsort() andbsearch() functions are presented #tstdlib> and<stdlib. h>. They each
operate on an array afelements of sizelem sizeusing a less-than comparison function passed as
a pointer to function. The elements must be of a type without a user-defined copy constructor, copy
assignment, or destructor:

typedef int(* __cmp)(const void*, const void*) ; / / typedef for presentation only

void qsort(void* p, size t n, size t elem size __cmp); [| sortp
void* bsearch(const void* key, void* p, size t n, size t elem size __cmp);/ / find key in p

The use ofjsort() is described in 8§7.7.
These algorithms are provided solely for C compatibilggrt() (818.7.1) andsearch()
(818.5.5) are more general and should also be more efficient.

18.12 Advicgalgo.advice]

[1] Prefer algorithms to loops; §18.5.1.

[2] When writing a loop, consider whether it could be expressed as a general algorithm; §18.2.

[3] Regularly review the set of algorithms to see if a new application has become obvious; §18.2.

[4] Be sure that a pair of iterator arguments really do specify a sequence; §18.3.1.

[5] Design so that the most frequently-used operations are simple and safe; §18.3, §18.3.1.

[6] Express tests in a form that allows them to be used as predicates; §18.4.2.

[7] Remember that predicates are functions and objects, not types; §18.4.2.

[8] You can use binders to make unary predicates out of binary predicates; §18.4.4.1.

[9] Usemem fun() andmem fun ref() to apply algorithms on containers; §18.4.4.2.

[10] Useptr_fun() when you need to bind an argument of a function; §18.4.4.3.

[11] Remember thadtremp() differs from== by returning0 to indicate “equal;” §18.4.4.4.

[12] Usefor_each() andtransform() only when there is no more-specific algorithm for a task;
§18.5.1.

[13] Use predicates to apply algorithms using a variety of comparison and equality criteria;
§18.4.2.1, §18.6.3.1.

[14] Use predicates and other function objects so as to use standard algorithms with a wider range
of meanings; §18.4.2.

[15] The default= and< on pointers are rarely adequate for standard algorithms; §18.6.3.1.

[16] Algorithms do not directly add or subtract elements from their argument sequences; §18.6.

[17] Be sure that the less-than and equality predicates used on a sequence match; §18.6.3.1.

[18] Sometimes, sorted sequences can be used to increase efficiency and elegance; §18.7.

[19] Useqsort() andbsearch() for compatibility only; §18.11.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 18.13 Exercises 547

18.13 Exercisegalgo.exercises]

The solutions to several exercises for this chapter can be found by looking at the source text of an
implementation of the standard library. Do yourself a favor: try to find your own solutions before
looking to see how your library implementer approached the problems.

1. (®) LearnO() notation. Give a realistic example in which @ON* N) algorithm is faster
than anO(N) algorithm for somaN>10.

2. (@) Implement and test the fomem fun() andmem fun_ref() functions (§18.4.4.2).

3. () Write an algorithmmatch() that is likemismatch() , except that it returns iterators to the

first corresponding pair that matches the predicate.

(CL.5) Implement and teftrint_namefrom §18.5.1.

(1) Sort dist using only standard library algorithms.

((».5) Define versions ofseq() (818.3.1) for built-in arraysistream, and iterator pairs.

Define a suitable set of overloads for the nonmodifying standard algorithms (818.$égfr

Discuss how best to avoid ambiguities and an explosion in the number of template functions.

7. () Define anoseq() to complemeniseq() . The output sequence given as the argument to
oseq) should be replaced by the output produced by an algorithm using it. Define a suitable
set of overloads for at least three standard algorithms of your choice.

8. (L.5) Produce aector of squares of numbers 1 through 100. Print a table of squares. Take
the square root of the elements of thedtor and print the resulting vector.

9. () Write a set of functional objects that do bitwise logical operations on their operands. Test
these objects on vectorsakar, int, andbitset<67>.

10. () Write abinder3() that binds the second and third arguments of a three-argument function
to produce a unary predicate. Give an example wiader3() is a useful function.

11. (L.5) Write a small program that that removes adjacent repeated words from from a file file.
Hint: The program should removatat, afrom, and dile from the previous statement.

12. (2.5) Define a format for records of references to papers and books kept in a file. Write a pro-
gram that can write out records from the file identified by year of publication, name of author,
keyword in title, or name of publisher. The user should be able to request that the output be
sorted according to similar criteria.

13. (®) Implement amove() algorithm in the style o€opy() in such a way that the input and
output sequences can overlap. Be reasonably efficient when given random-access iterators as
arguments.

14. (L.5) Produce all anagrams of the wéodd. That is, all four-letter combinations of the letters
f, 0, 0, andd. Generalize this program to take a word as input and produce anagrams of that
word.

15. (IL.5) Write a program that produces anagrams of sentences; that is, a program that produces all
permutations of the words in the sentences (rather than permutations of the letters in the words).

16. (..5) Implemenfind_if() (818.5.2) and then implemefihd() usingfind_if() . Find a way
of doing this so that the two functions do not need different names.

17. (@) Implemensearch() (818.5.5). Provide an optimized version for random-access iterators.

18. (2) Take a sort algorithm (such sert() from your standard library or the Shell sort from
813.5.2) and insert code so that it prints out the sequence being sorted after each swap of ele-
ments.

o ok

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

548 Algorithms and Function Objects Chapter 18

19. () There is ncsort() for bidirectional iterators. The conjecture is that copying to a vector
and then sorting is faster than sorting a sequence using bidirectional iterators. Implement a gen-
eral sort for bidirectional iterators and test the conjecture.

20. (2.5) Imagine that you keep records for a group of sports fishermen. For each catch, keep a
record of species, length, weight, date of catch, name of fisherman, etc. Sort and print the
records according to a variety of criteria. Himplace merge() .

21. (2) Create lists of students taking Math, English, French, and Biology. Pick about 20 names
for each class out of a set of 40 names. List students who take both Math and English. List stu-
dents who take French but not Biology or Math. List students who do not take a science course.
List students who take French and Math but neither English nor Biology.

22. ([.5) Write aremove() function that actually removes elements from a container.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

	Return to Contents
	18.1 Introduction
	18.2 Overview of Standard Library Algorithms
	18.3 Sequences and Containers
	18.4 Function Objects
	18.5 Nonmodifying Sequence Algorithms
	18.6 Modifying Sequence Algorithms
	18.7 Sorted Sequences
	18.8 Heaps
	18.9 Min and Max
	18.10 Permutations
	18.11 C Style Algorithms
	18.12 Advice
	18.13 Exercises

	buy now:

