17

Standard Containers

Now is a good time to put your work
on a firm theoretical foundation.
— Sam Morgan

Standard containers- container and operation summariesefficiency — representa-
tion — element requirements- sequences— vector — list — deque — adapters—
stack — queue — priority_queue — associative containers- map — comparisons—
muitimap — set — multiset — “almost containers”— bitset — arrays— hash tables
— implementing éhash_map — advice— exercises.

17.1 Standard Containergcont.intro]

The standard library defines two kinds of containers: sequences and associative containers. The
sequences are all much likector (§16.3). Except where otherwise stated, the member types and
functions mentioned fovector can also be used for any other container and produce the same
effect. In addition, associative containers provide element access based on keys (83.7.4).

Built-in arrays (85.2)strings (Chapter 20)yalarrays (822.4), anditsets (817.5.3) hold ele-
ments and can therefore be considered containers. However, these types are not fully-developed
standard containers. If they were, that would interfere with their primary purpose. For example, a
built-in array cannot both hold its own size and remain layout-compatible with C arrays.

A key idea for the standard containers is that they should be logically interchangeable wherever
reasonable. The user can then choose between them based on efficiency concerns and the need for
specialized operations. For example, if lookup based on a key is commap,(§17.4.1) can be
used. On the other hand, if general list operations dominést,(817.2.2) can be used. If many
additions and removals of elements occur at the ends of the contaiegquea(double-ended
queue, 817.2.3), stack (817.3.1), or ajueue (817.3.2) should be considered. In addition, a user
can design additional containers to fit into the framework provided by the standard containers

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

http://store.awl.com/catalog/cepub_detail.mhtml?isbn=0-201-88954-4

462 Standard Containers Chapter 17

(817.6). By default, aector (816.3) should be used; it will be implemented to perform well over a
wide range of uses.

The idea of treating different kinds of containerand more generally all kinds of information
sources- in uniform ways leads to the notion of generic programming (82.7.2, 83.8). The standard
library provides many generic algorithms to support this idea (Chapter 18). Such algorithms can
save the programmer from having to deal directly with details of individual containers.

17.1.1 Operations Summary [cont.operations]

This section lists the common and almost common members of the standard containers. For more
details, read your standard headengettor>, <list>, <map>, etc.; §16.1.2).

U Member Types (§16.3.1) O
rvalue_type Type of element. %
rallocator_type Type of memory manager. 0
[size type Type of subscripts, element counts, etc. O
Ldifference_type Type of difference between iterators. 0
terator Behaves likevalue_type* . B
Cconst_iterator Behaves likeconst value_type* . 0
[Teverse iterator View container in reverse order; likalue_type*. 0
Cconst_reverse iterator View container in reverse order; likenst value_type*. ad
Lreference Behaves likevalue_types. 0
onst_reference Behaves likeconst value_type&. B
ey type Type of key (for associative containers only). 0
mapped_type Type ofmapped _value (for associative containers only). [
Fkey compare Type of comparison criterion (for associative containers oriy).

A container can be viewed as a sequence either in the order defined by the coiiteratisor in
reverse order. For an associative container, the order is based on the container’'s comparison crite-
rion (by defaulk):

. lterators (§16.3.2) O
cbegin() Points to first element. S
rend() Points to one-past-last element. 0
(rbegin() Points to first element of reverse sequence. O
Hend() Points to one-past-last element of reverse sequence.

Some elements can be accessed directly:

U Element Access (§16.3.3) g
: : 0
front() First element. O
rback() Last element. 0

] Subscripting, unchecked access (not for ligt).
Fat() Subscripting, checked access (not for list)H

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 17.1.1 Operations Summary 463

Most containers provide efficient operations at the end (back) of their sequence of elements. In
addition, lists and deques provide the equivalent operations on the start (front) of their sequences:

0 Stack and Queue Operations (§16.3.5, §17.2.2.2) U
“hush back) _ Add to end. .
pop_back() Remove last element. 0
Cpush front() Add new first element (for list and deque only).
Hpop_front() Remove first element (for list and deque onlygl

Containers provide list operations:

O List Operations (§16.3.6) §
cinsert(p,X) Add x beforep. S
rinsert(p,n,x) Add n copies ofx beforep. 0
Cinsert(p,firstlast) Add elements fromfirstlast beforep. O
Lerase(p) Remove element gt g
Eérase(firstlast) Erase firstlasy. E
(clear() Erase all elements. 0

All containers provide operations related to the number of elements and a few other operations:

U Other Operations (§16.3.8, §16.3.9, §16.3.10) S
Csize() Number of elements. 0
rempty() Is the container empty? 0
Cmax_size() Size of the largest possible container. a
Leapacity() Space allocated farector (for vector only). g
eserve() Reserve space for future expansion (for vector only). O
Tesize() Change size of container (for vector, list, and deque orly).
rswap() Swap elements of two containers. 0
Chet allocator() Get a copy of the container’s allocator. a
= Is the content of two containers the same? g
O Is the content of two containers different? 0
a . .) O
< Is one container lexicographically before another? 0
Containers provide a variety of constructors and assignment operations:
g Constructors, etc. (§16.3.4) U
= = = O
rcontainer() Empty container. 0
rcontainer(n) n elements default value (not for associative containgrs).
Ctontainer(n,x) n copies ofx (not for associative containers). O
Leontainer(firstlast) Initial elements fromfjrstlast]. U
ontainer(x) Copy constructor; initial elements from contairer g
[]container() Destroy the container and all of its elements. 0

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

464 Standard Containers Chapter 17

O Assignments (§16.3.4) 0
Epperatorz(x) Copy assignment; elements from contaixer S
rassign(n,x) Assignn copies ofx (not for associative containersy)
Fasggn(firstlast) Assign from firstlast. g

Associative containers provide lookup based on keys:

U Associative Operations (§17.4.1) U
roperator[] (k) Access the element with kdy(for containers with unique keys)%
rfind(k) Find the element with kel 0
Oower_bound(k) Find the first element with ke O
Lupper_bound(k) Find the first element with key greater tHan 0
al_range(k) Find thelower_bound andupper_bound of elements with kek. O

X - O

ey _comp() Copy of the key comparison object. 0
value_comp() Copy of themapped value comparison object. 0

In addition to these common operations, most containers provide a few specialized operations.
17.1.2 Container Summary [cont.summary]

The standard containers can be summarized like this:

0 Standard Container Operations 0
E 1 List Front Back (Stack) Iterator%
O Operations Operations Operations 0
0 §16.3.3 816.3.6 §17.2.2.2 816.3.5 §19.21
O §17.4.1.3 §20.3.9 §20.3.9 §20.3.12 0
ﬁlector const O(n)+ const+ Ran B
rlist const const const Bi 0
Cdeque const O(n) const const Ran 0O
ck const+ B
flueue const const+ 0
Cpriority_queue O(log(n)) O(log(n)) O
Lmap O(log(n)) O(log(n))+ Bi O
%nultimap O(log(n))+ Bi B
rset O(log(n))+ Bi 0
[Mmultiset O(log(n))+ Bi O
Lstring const o(n)+ o(n)+ const+ Ran U
rray const Ran B
valarray const Ran
[bitset const 0

In theiterators column,Ran means random-access iterator 8idneans bidirectional iterator; the
operations for a bidirectional operator are a subset of those of a random-access iterator (§19.2.1).

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 17.1.2 Container Summary 465

Other entries are measures of the efficiency of the operatiortangk entry means the operation
takes an amount of time that does not depend on the number of elements in the container. Another
conventional notation foconstant timas O(1) . An O(n) entry means the entry takes time pro-
portional to the number of elements involved.+Auffix indicates that occasionally a significant
extra cost is incurred. For example, inserting an element iisbteas a fixed cost (so it is listed as
const), whereas the same operation oveetor involves moving the elements following the inser-
tion point (so it is listed a®(n)). Occasionally, all elements must be relocated (so | add@d a
The “big O” notation is conventional. | added thefor the benefit of programmers who care
about predictability in addition to average performance. A conventional tern®(faj+ is
amortized linear time

Naturally, if a constant is large it can dwarf a small cost proportional to the number of elements.
However, for large data structuresnst tends to mean “cheap,0(n) to mean “expensive,” and
O(log(n)) to mean “fairly cheap.” For even moderately large values,@(log(n)) is closer
to constant time than ©(n) . People who care about cost must take a closer look. In particular,
they must understand what elements are counted to get tHe basic operation is “very expen-
sive,” that is,O(n* n) or worse.

Except forstring, the measures of costs listed here reflect requirements in the standard. The
string estimates are my assumptions.

These measures of complexity and cost are upper bounds. The measures exist to give users
some guidance as to what they can expect from implementations. Naturally, implementers will try
to do better in important cases.

17.1.3 Representation [cont.rep]

The standard doesn’t prescribe a particular representation for each standard container. Instead, the
standard specifies the container interfaces and some complexity requirements. Implementers will
choose appropriate and often cleverly optimized implementations to meet the general requirements.
A container will almost certainly be represented by a data structure holding the elements accessed
through a handle holding size and capacity information. Pectar, the element data structure is

most likely an array:

size
rep

vector:

N [clemens | i spacd

s

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

466 Standard Containers Chapter 17

A map is most likely implemented as a (balanced) tree of nodes pointing to (key,value) pairs:

. rep
map: T

(key,value) pairs:Dj |

A string might be implemented as outlined in 811.12 or maybe as a sequence of arrays holding a
few characters each:

sing
T ‘ segment descriptofs
P

string segments:‘ ‘ ‘ ‘ ‘ ‘

17.1.4 Element Requirements [cont.elem]

Elements in a container are copies of the objects inserted. Thus, to be an element of a container, an
object must be of a type that allows the container implementation to copy it. The container may
copy elements using a copy constructor or an assignment; in either case, the result of the copy must
be an equivalent object. This roughly means that any test for equality that you can devise on the
value of the objects must deem the copy equal to the original. In other words, copying an element
must work much like an ordinary copy of built-in types (including pointers). For example,

X& X:: operator=(const X&a) / / proper assignment operator
{

/1 copy all of a’s members to *this
return * this;
}

makesX acceptable as an element type for a standard container, but

void Y:: operator=(const Y& a) // improper assignment operator

{

}

rendersY unsuitable becausés assignment has neither the conventional return type nor the con-
ventional semantics.

/] zero out all of a’s members

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 17.1.4 Element Requirements 467

Some violations of the rules for standard containers can be detected by a compiler, but others
cannot and might then cause unexpected behavior. For example, a copy operation that throws an
exception might leave a partially copied element behind. It could even leave the container itself in
a state that could cause trouble later. Such copy operations are themselves bad design (§814.4.6.1).

When copying elements isn't right, the alternative is to put pointers to objects into containers
instead of the objects themselves. The most obvious example is polymorphic types (82.5.4,
812.2.6). For example, we usector<Shape*> rather tharvector<Siape> to preserve polymor-
phic behavior.

17.1.4.1 Comparisons [cont.comp]

Associative containers require that their elements can be ordered. So do many operations that can
be applied to containers (for examart()). By default, the< operator is used to define the
order. If<is not suitable, the programmer must provide an alternative (817.4.1.5, §18.4.2). The
ordering criterion must define strict weak ordering Informally, this means that both less-than
and equality must be transitive. That is, for an ordering criteriam

[1] cmp(X, X) is false

[2] If cmp(%, y) andcmp(y, 2) , thencmp(X, 2) .

[3] Define equiv(x, y) to be!(cmp(X, y)|| cmp(y, X)) . If equiv(X, y) andequiv(y, 2),

thenequiv(X, 2) .

Consider:

template<class Ran> void sort(Ran first, Ran last); / | use<for comparison
template<class Ran, class Cmp> void sort(Ran first, Ran last, Cmp cmp);/ / use cmp

The first version uses and the second uses a user-supplied compacispn For example, we
might decide to sorruit using a comparison that isn't case-sensitive. We do that by defining a
function object (§811.9, §18.4) that does the comparison when invoked for a §iaings:

class Nocase{ / | case-insensitive string compare
public:
bool operator()(const string&, const string&) const;
h
bool Nocase : operator()(const string& X, const string& y) const
/1 return true if x is lexicographically less than y, not taking case into account
{

string: : const_iterator p = x. begin() ;

string: : const_iterator q =y. begin() ;

while (p!'=x. end() &&q!'=y. end() &&toupper(* p)== toupper(* q)) {
++p;
++q;

}

if(p==x.end()) return q!= y. end() ;

return toupper(* p) < toupper(* q);

}

We can calkort() using that comparison criterion. For example, given:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

468 Standard Containers Chapter 17

fruit:
apple pear Apple Pear lemon

Sorting usingsort(fruit. begin() , fruit. end() , Nocase()) would yield:

fruit:
Apple apple lemon Pear pear

whereas plaisort(fruit. begin() , fruit. end()) would give:

fruit:
Apple Pear apple lemon pear

assuming a character set in which uppercase letters precede lowercase letters.

Beware that< on C-style strings (that ischar*) does not define lexicographical order
(813.5.2). Thus, associative containers will not work as most people would expect them to when
C-style strings are used as keys. To make them work properly, a less-than operation that compares
based on lexicographical order must be used. For example:

struct Csiring_less{
bool operator()(const char* p, const char* q) const{ return strcmp(p, qQ)<0; }
h

map<char*, int, Cstring_less>m; / / map that uses strcmp() to compare const char* keys

17.1.4.2 Other Relational Operators [cont.relops]

By default, containers and algorithms usahen they need to do a less-than comparison. When
the default isn’t right, a programmer can supply a comparison criterion. However, no mechanism is
provided for also passing an equality test. Instead, when a programmer supplies a corppyison
equality is tested using two comparisons. For example:

if (x==1y) // not done where the user supplied a comparison

if ! cmp(x, y) &&! cmp(y, x))/ / done where the user supplied a comparison cmp

This saves us from having to add an equality parameter to every associative container and most
algorithms. It may look expensive, but the library doesn’t check for equality very often, and in
50% of the cases, only a single calcodp() is needed.

Using an equivalence relationship defined by less-than (by defaudither than equality (by
default ==) also has practical uses. For example, associative containers (817.4) compare keys
using an equivalence tégtcmp(x, y)|| cmp(y, X)) . This implies that equivalent keys need not
be equal. For example,naultimap (817.4.2) that uses case-insensitive comparison as its compari-
son criteria will consider the stringsast, last, IAst, laSt, andlasT equivalent, even though= for
strings deems them different. This allows us to ignore differences we consider insignificant when
sorting.

Given< and==, we can easily construct the rest of the usual comparisons. The standard library
defines them in the namespate: : rel_opsand presents them iutility>:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 17.1.4.2 Other Relational Operators 469

template<class T> bool rel_ops : operator!=(const T&x, const T&y) { return!(x==y); }
template<class T> bool rel_ops : operator>(const T& x, const T&Yy) { return y<x; }

template<class T> bool rel_ops : operator<=(const T& x, const T&y) { return!(y<x); }
template<class T> bool rel_ops. : operator>=(const T& X, const T&y) { return!(x<y); }

Placing these operations fiel_ops ensures that they are easy to use when needed, yet they don't
get created implicitly unless extracted from that namespace:

void f()
{
using namespace std;
/1 =, >, etc., not generated by default

}
void g()
{
using namespace sd;
using namespace std: : rel_ops
/1 '=, >, etc., generated by default
}

The !=, etc., operations are not defined directlystd because they are not always needed and
sometimes their definition would interfere with user code. For example, if | were writing a general-
ized math library, | would wamhyrelational operators and not the standard library versions.

17.2 Sequencesont.seq]

Sequences follow the pattern describedvéator (§16.3). The fundamental sequences provided by
the standard library are:

vector list deque
From these,
stack queue priority_queue

are created by providing suitable interfaces. These sequences arecoallather adapters
sequence adapterer simplyadapters(817.3).

17.2.1 Vector [cont.vector]

The standardrector is described in detail in 816.3. The facilities for reserving space (816.3.8) are
unique tovector. By default, subscripting usirffy is not range checked. If a check is needed, use
at() (816.3.3), a checked vector (83.7.1), or a checked iterator (819.3)ectar provides
random-access iterators (§19.2.1).

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

470 Standard Containers Chapter 17

17.2.2 List [cont.list]

A list is a sequence optimized for insertion and deletion of elements. Comparectato (and
deque 817.2.3), subscripting would be painfully slow, so subscripting is not providelistor
Consequentlylist provides bidirectional iterators (819.2.1) rather than random-access iterators.
This implies that dist will typically be implemented using some form of a doubly-linked list (see
§17.8[16]).

A list provides all of the member types and operations offerestebtor (§16.3), with the
exceptions of subscriptingapacity() , andreserve() :

template <class T, class A= allocator<T> > class std: : list {

public:
/1 types and operations like vector’s, except [], at(), capacity(), and reserve()
/...

h

17.2.2.1 Splice, Sort, and Merge [cont.splice]

In addition to the general sequence operatiisbprovides several operations specially suited for
list manipulation:

template <class T, class A= allocator<T> > class list {
public:

/..

/1 list-specific operations:

void splice(iterator pos, list& x); /1 move all elements from x to before
/1 pos in this list without copying.
void splice(iterator pos, list& x, iterator p); / / move *p from x to before
/1 pos in this list without copying.
void splice(iterator pos, list& x, iterator first, iterator last);

void merge(list&); /| merge sorted lists
template <class Cmp> void merge(list&, Cmp);
void sort() ;
template <class Cmp> void sort(Cmp);
/...

I3

Theselist operations are alitable that is, they preserve the relative order of elements that have
equivalent values.

The fruit examples from §16.3.6 work witfruit defined to be dist In addition, we can
extract elements from one list and insert them into another by a single “splice” operation. Given:

fruit:
apple pear

citrus
orange grapefruit lemon

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 17.2.2.1 Splice, Sort, and Merge 471

we can splice therange from citrusinto fruit like this:

list<string>: : iterator p = find_if(fruit. begin() , fruit. end() , initial(" p’)) ;
fruit. splice(p, citrus, citrus begin()) ;

The effect is to remove the first element froitrus (citrus. begin()) and place it just before the
first element ofruit with the initial letterp, thereby giving:

fruit:
apple orange |pear

citrus.
grapefruit lemon

Note thatsplice() doesn’t copy elements the wisert() does (816.3.6). It simply modifies the
list data structures that refer to the element.
In addition to splicing individual elements and ranges, wesphce() all elements of &ist

fruit. splice(fruit. begin() , citrus);
This yields:

fruit:
grapefruit lemon apple arange pear

citrus:

<empty>

Each version o$plice() takes as its second argumentlilséfrom which elements are taken. This
allows elements to be removed from their origitist. An iterator alone wouldn’t allow that
because there is no general way to determine the container holding an element given only an itera-
tor to that element (818.6).

Naturally, an iterator argument must be a valid iterator fotigténto which it is supposed to
point. That is, it must point to an element of tliat or be thelists end() . If not, the result is
undefined and possibly disastrous. For example:

list<string>: : iterator p = find_if(fruit. begin() , fruit. end() , initial(" p’)) ;

fruit. splice(p, citrus, citrus. begin()) ; / / ok

fruit. splice(p, citrus, fruit. begin()) ; /| error: fruit.oegin() doesn't point into citrus
citrus. splice(p, fruit, fruit. begin()) ; /| error: p doesn't point into citrus

The firstsplice() is ok even thoughitrusis empty.
A merge() combines two sorted lists by removing the elements fromlishend entering
them into the other while preserving order. For example,

f1:

apple quince |pear
f2:
lemon grapefruit orange lime

can be sorted and merged like this:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

472 Standard Containers Chapter 17

f1. sort() ;
f2. sort() ;

f1. merge(2);
This yields:

f1:

apple grapefruit lemon lime aorange pear quince
f2:

<empty>

If one of the lists being merged is not sortedyge() will still produce a list containing the union

of elements of the two lists. However, there are no guarantees made about the order of the result.
Like splice() , merge() refrains from copying elements. Instead, it removes elements from

the source list and splices them into the target list. After amerge(y) , they list is empty.

17.2.2.2 Front Operations [cont.front]

Operations that refer to the first element distare provided to complement the operations refer-
ring to the last element provided by every sequence (816.3.6):

template <class T, class A= allocator<T> > class list {
public:

/...

/1] element access:

reference front() ; /| reference to first element
const_reference front() const

void push front(const T&); / / add new first element
void pop_front() ; ! | remove first element

"o
h

The first element of a container is calledfisnt. For alist, front operations are as efficient and
convenient as back operations (816.3.5). When there is a choice, back operations should be pre-
ferred over front operations. Code written using back operations can be useddior as well as

for alist So if there is a chance that the code written usiligtavill ever evolve into a generic
algorithm applicable to a variety of containers, it is best to prefer the more widely available back
operations. This is a special case of the rule that to achieve maximal flexibility, it is usually wise to
use the minimal set of operations to do a task (§17.1.4.1).

17.2.2.3 Other Operations [cont.list.etc]

Insertion and removal of elements are particularly efficienti#s. This, of course, leads people
to preferlists when these operations are frequent. That, in turn, makes it worthwhile to support
common ways of removing elements directly:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 17.2.2.3 Other Operations 473

template <class T, class A= allocator<T> > class list{
public:
/..

void remove(const T& val);
template <class Pred> void remove if(Pred p);

void unique() ; | | remove duplicates using ==
template <class BinPred> void unique(BinPred b); / / remove duplicates using b

void reverse() ; /| reverse order of elements

3
For example, given

fruit:
apple orange grapefruit lemon orange lime pear quince

we can remove all elements with the valwrange' like this:
fruit. remove(" orange”) ;
yielding:

fruit:
apple grapefruit lemon lime pear quince

Often, it is more interesting to remove all elements that meet some criterion rather than simply all
elements with a given value. Themove if() operation does that. For example,

fruit. remove_if(initial(" 1)) ;
removes every element with the initidl from fruit giving:

fruit:
apple grapefruit pear quince

A common reason for removing elements is to eliminate duplicates.ufiiqae() operation is
provided for that. For example:

fruit. sort() ;
fruit. unique() ;

The reason for sorting is thamique removes only duplicates that appear consecutively. For exam-
ple, had fruit contained:

apple pear apple apple |pear
a simplefruit. unique() would have produced
apple pear apple pear
whereas sorting first gives:
apple pear
If only certain duplicates should be eliminated, we can provide a predicate to specify which

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

474 Standard Containers Chapter 17

duplicates we want to remove. For example, we might define a binary predicate (§18.4.2)
initial2(x) to comparestrings that have the initiat but yield false for everystring that doesn't.
Given:

pear pear apple apple

we can remove consecutive duplicates of efruig with the initialp by a call
fruit. unique(initial2(" p’)) ;

This would give
pear apple apple

As noted in §16.3.2, we sometimes want to view a container in reverse orderliskait & possi-
ble to reverse the elements so that the first becomes the last, etc., without copying the elements.
Therewverse() operation is provided to do that. Given:

fruit:
banana cherry lime strawberry

fruit. reverse() produces:

fruit:
strawberry lime cherry banana

An element that is removed from a list is destroyed. However, note that destroying a pointer does
not imply that the object it points to deleted. If you want a container of pointers tlukletes ele-

ments pointed to when the pointer is removed from the container or the container is destroyed, you
must write one yourself (§17.8[13]).

17.2.3 Deque [cont.deque]

A deque (it rhymes with check) is a double-ended queue. Thatdegaeis a sequence optimized
so that operations at both ends are about as efficient adistyr\@hereas subscripting approaches
the efficiency of avector:

template <class T, class A= allocator<T> > class std: : deque {
/1 types and operations like vector (§16.3.3, §16.3.5, §16.3.6)
/1 plus front operations (8§17.2.2.2) like list

k

Insertion and deletion of elements “in the middle” hawettor-like (in)efficiencies rather than
list-like efficiencies. Consequently,deque is used where additions and deletions take place “at
the ends.” For example, we might useleque to model a section of a railroad or to represent a
deck of cards in a game:

deque<car> siding_no_3;
deque<Card> bonus;

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 17.3 Sequence Adapters 475

17.3 Sequence Adapterigont.adapters]

The vector, list, anddegue sequences cannot be built from each other without loss of efficiency.
On the other handstacks andqueues can be elegantly and efficiently implemented using those
three basic sequences. Therefatack and queue are defined not as separate containers, but as
adaptors of basic containers.

A container adapter provides a restricted interface to a container. In particular, adapters do not
provide iterators; they are intended to be used only through their specialized interfaces.

The techniques used to create a container adapter from a container are generally useful for non-
intrusively adapting the interface of a class to the needs of its users.

17.3.1 Stack [cont.stack]

The stack container adapter is defined<stack>. It is so simple that the best way to describe it is
to present an implementation:

template <class T, class C= deque<T> > class std: : stack {
protected:

Cg
public:

typedef typename C.: value type value_type

typedef typename C.: size type size type;

typedef C container_type;

explicit stack(const C&a=C()) : c(a) {}

bool empty() const{ return c. empty() ; }
size type size() const{ return c. size) ; }

value type& top() { return c. back() ; }
const value type& top() const{ return c. back() ; }

void push(const value_type& x) { c. push_back(x); }
void pop() { c. pop_back() ; }
3

That is, astack is simply an interface to a container of the type passed to it as a template argument.
All stack does is to eliminate the non-stack operations on its container from the interface and give
back() , push_back() , andpop_back() their conventional namew®p() , push() , andpop() .

By default, astack makes adequeto hold its elements, but any sequence that provdel() ,
push_back() , andpop_back() can be used. For example:

stack<char> s1,; / | uses a dequehar> to store elements of type char
stack< int, vector<int> >s2, / / uses a vectatint> to store elements of type int

It is possible to supply an existing container to initialize a stack. For example:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

476 Standard Containers Chapter 17

void print_backwards(vector<int>& v)

{
stack<int> state(v); / / initialize state from v
while (state. size()) {
cout << state. top() ;
state. pop() ;
}
}

However, the elements of a container argument are copied, so supplying an existing container can
be expensive.

Elements are added tcstack usingpush_back() on the container that is used to store the ele-
ments. Consequently,stack cannot overflow as long as there is memory available on the machine
for the container to acquire (using its allocator; see §19.4).

On the other hand, stack can underflow:

void f()
{

stack<int> s;

s. push(2);

if (s. empty()) { /| underflow is preventable
/1 don’t pop

}

else{ / | but not impossible

s. pop() ;/ [fine: s.size() becomes 0
s. pop() ;/ / undefined effect, probably bad

}

Note that one does ngiop() an element to use it. Instead, ttap() is accessed and then
pop() 'd when it is no longer needed. This is not too inconvenient, and it is more efficient when
thepop() isn’t necessary:

void f(stack<char>& s)
if (s. top()==" ¢) s.pop(); / / remove optional initial 'c’
/1

}

Unlike fully developed containerstack (like other container adapters) doesn’t have an allocator
template parameter. Instead, stack and its users rely on the allocator from the container used to
implement thestack.

17.3.2 Queue [cont.queue]

Defined in<queue>, aqueue is an interface to a container that allows the insertion of elements at
theback() and the extraction of elements at fhant() :

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 17.3.2 Queue 477

template <class T, class C= deque<T> > class std: : queue {
protected:

Cc
public:

typedef typename C.: value type value_type

typedef typename C.: size type size type;

typedef C container_type;

explicit queue(const C&a=C()) : c(a) {}

bool empty() const{ return c. empty() ; }
size type size() const{ return c. sizg) ; }

value type& front() { return c. front() ; }
const value type& front() const{ return c. front() ; }

value_type& back() { return c. back() ; }
const value type& back() const{ return c. back() ; }

void push(const value type& x) { c. push back(x); }
void pop() { c. pop_front() ; }
h
By default, aqueue makes adeque to hold its elements, but any sequence that proviuhed() ,
back() , push back() , and pop_front() can be used. Becausevactor does not provide
pop_front() , avector cannot be used as the underlying container for a queue.
Queues seem to pop up somewhere in every system. One might define a server for a simple

message-based system like this:

struct Message {
/...

I3
void server(queue<Message>& Q)

while(! q. empty()) {
Message& m=d. front() ; / / get hold of message
m. service() ; /I call function to serve request
g. pop() ; | | destroy message

}

Messages would be put on tipgeue usingpush() .
If the requester and the server are running in different processes or threads, some form of syn-
chronization of the queue access would be necessary. For example:

void server2(queue<Message>& g, Lock& Ick)

while(! q. empty()) {
Message m
{ LockPtr h(lIck); /1 hold lock only while extracting message (see §14.4.7)
if (g. empty()) return; / / somebody else got the message

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

478 Standard Containers Chapter 17

m= q. front() ;
q. pop() ;

m. service() ; /I call function to serve request
}

There is no standard definition of concurrency or lockingtit @ in the world in general. Have a
look to see what your system has to offer and how to access it from C++ (817.8[8]).

17.3.3 Priority Queue [cont.pqueue]

A priority_queue is a queue in which each element is given a priority that controls the order in
which the elements get to bap() :

template <class T, class C= vector<T>, class Cmp = less<typename C.: value type> >
class std: : priority_queue{
protected
Cg
Cmp cmp;
public:
typedef typename C.: value_type value_type
typedef typename C.: size type size type
typedef C container_type

explicit priority_queue(const Cmp& al = Cmp() , const C& a2 = C())
: c(a2), cmp(al) {}

template <class In>
priority_queue(In first, In last, const Cmp& = Cmp() , const C& = C()) ;

bool empty() const{ return c. empty() ; }
size type size() const{ return c. size) ; }

const value type& top() const{ return c. front() ; }

void push(const value type&);

void pop() ;
b

The declaration gbriority_queueis found in<queue>.
By default, thepriority_queue simply compares elements using theoperator andoop()
returns the largest element:

struct Message {
int priority;
bool operator<(const Message& x) const{ return priority < x. priority; }
/..

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 17.3.3 Priority Queue 479

void server(priority_queue<Message>& ¢, Lock& Ick)

while(! q. empty()) {

Message m

{ LockPtr h(Ick); /1 hold lock only while extracting message (see §14.4.7)
if (g. empty()) return; / / somebody else got the message
m=q. top() ;
g. pop() ;

m. service() ; / [/ call function to serve request

}

This example differs from thgueue example (817.3.2) in thahessages with higher priority will
get served first. The order in which elements with equal priority come to the head of the queue is
not defined. Two elements are considered of equal priority if neither has higher priority than the
other (817.4.1.5).

An alternative to< for comparison can be provided as a template argument. For example, we
could sort strings in a case-insensitive manner by placing them in

priority_queue<string, Nocase> pq; / / use Nocase::operator()() for comparisons (§17.1.4.1)

usingpqg. push() and then retrieving them usipg. top() andpg. pop() .
Objects defined by templates given different template arguments are of different types
(813.6.3.1). For example:

void f(priority_queue<string>& pql)
{
pq=pqgl;/ / error: type mismatch

We can supply a comparison criterion without affecting the typepofoaity queue by providing
a comparison object of the appropriate type as a constructor argument. For example:

struct String_cmp{ / / type used to express comparison criteria at run time
String_cmp(int N=0); / / use comparison criteria n

/..
h
void g(priority_queue<string, String_cmp>& pq)
{

priority_queue<string> pg2(String_cmp(nocase)) ;
pq=pg2;/ / ok: pqand pg2 are of the same type, pq now also uses_Simpgnocase)

Keeping elements in order isn't free, but it needn’t be expensive either. One useful way of imple-
menting apriority_queue is to use a tree structure to keep track of the relative positions of ele-
ments. This gives a@(log(n)) cost of bothpush() andpop() .

By default, apriority_queue makes avector to hold its elements, but any sequence that pro-
videsfront() , push_back() , pop_back() , and random iterators can be usedpriority_queue
is most likely implemented usingheeap (818.8).

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

480 Standard Containers Chapter 17

17.4 Associative Containergont.assoc]

An associative arrayis one of the most useful general, user-defined types. In fact, it is often a
built-in type in languages primarily concerned with text processing and symbolic processing. An
associative array, often callednaap and sometimes called dictionary, keeps pairs of values.
Given one value, called they, we can access the other, calledriepped value An associative

array can be thought of as an array for which the index need not be an integer:

template<class K, class V> class Assoc {

public:
V& operator[](const K&); // return a reference to the V corresponding to K
/..

k

Thus, a key of typ& names a mapped value of tyye

Associative containers are a generalization of the notion of an associative arrapapliisea
traditional associative array, where a single value is associated with each uniquerkaltimap
is an associative array that allows duplicate elements for a given kegetaart multiset can be
seen as degenerate associative arrays in which no value is associated with a key.

17.4.1 Map [cont.map]

A map is a sequence of (key,value) pairs that provides for fast retrieval based on the key. At most
one value is held for each key; in other words, each keymapas unique. Amap provides bidi-
rectional iterators (§19.2.1).

Themap requires that a less-than operation exist for its key types (817.1.4.1) and keeps its ele-
ments sorted so that iteration ovemap occurs in order. For elements for which there is no obvi-
ous order or when there is no need to keep the container sorted, we might consider using a
hash_map (817.6).

17.4.1.1 Types [cont.map.types]
A map has the usual container member types (816.3.1) plus a few relating to its specific function:

template <class Key, class T, class Cmp = less<Key>,
class A= allocator< pair<const Key, T> > >
class std: : map {
public:
/1 types:

typedef Key key type;
typedef T mapped type;

typedef pair<const Key, T> value type

typedef Cmp key_compare;
typedef A allocator_type

typedef typename A : reference reference;
typedef typename A : const reference const reference;

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 17.4.1.1 Types 481

typedef implementation definedl iterator;
typedef implementation defined2 const _iterator;

typedef typename A : size type size type

typedef typename A: : difference type difference _type;

typedef std:: reverse iterator<iterator> reverse iterator;

typedef std: : reverse iterator<const_iterator> const_reverse iterator;
/..

h
Note that thevalue_type of amap is a (key,valuepair. The type of the mapped values is referred
to as themapped _type. Thus, amap is a sequence qhair<const Key, mapped_type> elements.
As usual, the actual iterator types are implementation-defined. Sinuapanost likely is
implemented using some form of a tree, these iterators usually provide some form of tree traversal.
The reverse iterators are constructed from the stamewerse iterator templates (§19.2.5).

17.4.1.2 lterators and Pairs [cont.map.iter]

A map provides the usual set of functions that return iterators (816.3.2):
template <class Key, class T, class Cmp = less<Key>,
class A= allocator< pair<const Key, T> > > class map {
public:
/..
/1 iterators:

iterator begin() ;
const_iterator begin() const;

iterator end() ;
const_iterator end() const

reverse _iterator rbegin() ;
const_reverse iterator rbegin() const;

reverse iterator rend() ;
const_reverse iterator rend() const;

..
h
Iteration over anap is simply an iteration over a sequencepair<const Key, mapped _type> ele-
ments. For example, we might print out the entries of a phone book like this:

void f(map<string, number>& phone_book)

typedef map<string, number>: : const_iterator ClI;
for (Cl p = phone_book. begin() ; p!= phone_book. end() ; ++p)
cout << p->first<< " \t" << p->second << " \n’;

}

A map iterator presents the elements in ascending order of its keys (817.4.1.5). Therefore, the
phone_book entries will be output in lexicographical order.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

482 Standard Containers Chapter 17

We refer to the first element of amair asfirst and the second ascond independently of
what types they actually are:

template <class T1, class T2> struct std:: pair {
typedef T1 first_type
typedef T2 second_type;

T1 first,
T2 second;

pair() :first(T1() , second(T2()) {}
pair(const T1& x, const T2&y) : first(x), second(y) { }
template<class U, class V>
pair(const pair<U, V>& p) : first(p. first), second(p. second) { }
2

The last constructor exists to allow conversions in the initializer (§13.6.2). For example:

pair<int, double> f(char c, int i)

{
}

In amap, the key is the first element of the pair and the mapped value is the second.

The usefulness gair is not limited to the implementation afap, so it is a standard library
class in its own right. The definition @fir is found in<utility>. A function to make it conve-
nient to creatgairs is also provided:

return pair<int, double>(c, i); / / conversions required

template <class T1, class T2> pair<T1, T2> std:: make pair(T1 t1, T2 t2)
{

}

A pair is by default initialized to the default values of its element types. In particular, this implies
that elements of built-in types are initializedd¢85.1.1) andstrings are initialized to the empty
string (820.3.4). A type without a default constructor can be an elemepiairf anly provided the

pair is explicitly initialized.

return pair<Tl, T2>(tl, t2);

17.4.1.3 Subscripting [cont.map.element]
The characteristimap operation is the associative lookup provided by the subscript operator:

template <class Key, class T, class Cmp = less<Key>,
class A= allocator< pair<const Key, T> > >
class map {
public:
/..
mapped _type& operator[](const key type& k); / / access element with key k

...

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 17.4.1.3 Subscripting 483

The subscript operator performs a lookup on the key given as an index and returns the correspond-
ing value. If the key isn't found, an element with the key and the default valueroagped type
is inserted into thenap. For example:

void f()

{
map<string, int>m; / / map starting out empty
int x=m[" Henry"] ; // create new entry for "Henry", initialize to 0, return 0
m[" Harry'] =7, [/ | create new entry for "Harry", initialize to 0, and assign 7
int y=m[" Henry"] ; // return the value from "Henry"s entry
m[" Harry'] =9; / / change the value from "Harry"s entry to 9

As a slightly more realistic example, consider a program that calculates sums of items presented as
input in the form of (item-name,value) pairs such as

nail 100 hammer 2 saw 3 saw 4 hammer 7 nail 1000 nail 250

and also calculates the sum for each item. The main work can be done while reading the (item-
name,value) pairs intoraap:

void readitems(map<string, int>& m)

{

string word;

int val = 0;

while (cin >> word >> val) m[word] += val;
}

The subscript operatiom[word] identifies the appropriatéstring, int) pair and returns a refer-
ence to itdnt part. This code takes advantage of the fact that a new element gettsalsie set to
0 by default.

A map constructed byeaditems() can then be output using a conventional loop:

int main()
{
map<string, int> tbl;
readitems(tbl);
int total = O;
typedef map<string, int>: : const_iterator ClI;

for (Cl p=tbl. begin() ; p'=tbl. end() ; ++p) {
total += p-> second;
cout << p->first<< " \t" << p->second << " \n’;

Cout << "-mmmmmmmmeeee- \ntotal\t" << total << " \n’;

return ! cin;

}

Given the input above, the output is:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

484 Standard Containers Chapter 17

hammer 9
nail 1350
saw 7
total 1366

Note that the items are printed in lexical order (§17.4.1, 817.4.1.5).

A subscripting operation must find the key in thap. This, of course, is not as cheap as sub-
scripting an array with an integer. The cosOElog(size of_map)) , which is acceptable for
many applications. For applications for which this is too expensive, a hashed container is often the
answer (817.6).

Subscripting anap adds a default element when the key is not found. Therefore, there is no
version ofoperator[]() for const maps. Furthermore, subscripting can be used only if the
mapped _type (value type) has a default value. If the programmer simply wants to see if a key is
present, théind() operation (§817.4.1.6) can be used to locdteyavithout modifying themap.

17.4.1.4 Constructors [cont.map.ctor]

A map provides the usual complement of constructors, etc. (816.3.4) :

template <class Key, class T, class Cmp =less<Key>,
class A=allocator<pair<const Key, T> > >

class map {
public:
/...
/1 construct/copy/destroy:

explicit map(const Cmp& = Cmp() , const A& =A() ;
template <class In> map(In first, In last, const Cmp& = Cmp() , const A& = A() ;
map(const map&,);

~map() ;
mapé& operator=(const map&);

"o
h

Copying a container implies allocating space for its elements and making copies of each element
(816.3.4). This can be very expensive and should be done only when necessary. Consequently,
containers such asaps tend to be passed by reference.

The member template constructor takes a sequenuairsfconst Key, T>s described by a pair
input iteratorn. Itinsert() s (817.4.1.7) the elements from the sequence intméipe

17.4.1.5 Comparisons [cont.map.comp]

To find an element in map given a key, thenap operations must compare keys. Also, iterators
traverse amap in order of increasing key values, so insertion will typically also compare keys (to
place an element into a tree structure representinuapg

By default, the comparison used for keys i@ess than), but an alternative can be provided as a

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 17.4.1.5 Comparisons 485

template parameter or as a constructor argument (see 817.3.3). The comparison given is a compari-
son of keys, but thealue type of amap is a (key,value) pair. Consequentiglue comp() is
provided to compare such pairs using the key comparison function:

template <class Key, class T, class Cmp = less<Key>,
class A= allocator< pair<const Key, T> > >
class map {
public:
/..

typedef Cmp key compare;

class value_compare : public binary_function<value type, value type, bool> {
friend class map;
protected:
Cmp cmp;
value_compare(Cmp ¢) : cmp(c) {}
public:
bool operator()(const T& X, const T&y) const{ return cmp(x. first, y. first); }
b

key_compare key comp() const
value_compare value_comp() const;

/...
b
For example:
map<siring, int> m1;
map<string, int, Nocase> m2, /| specify comparison type (817.1.4.1)
map<string, int, String_cmp> m3, | | specify comparison type (817.1.4.1)

map<string, int> m4(String_cmp(literary)) ; / / pass comparison object

The key comp() andvalue_comp() member functions make it possible to quemnap for the
kind of comparisons used for keys and values. This is usually done to supply the same comparison
criterion to some other container or algorithm. For example:

void f(map<string, int>& m)

{
map<string, int> mm / | compare using by default
map<string, int> mmm(m. key_ comp()) ; / / compare the way m does
/..

}

See §17.1.4.1 for an example of how to define a particular comparison and §18.4 for an explanation
of function objects in general.
17.4.1.6 Map Operations [cont.map.map]

The crucial idea fomaps and indeed for all associative containers is to gain information based on a
key. Several specialized operations are provided for that:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

486 Standard Containers Chapter 17

template <class Key, class T, class Cmp = less<Key>,
class A= allocator< pair<const Key, T> > >
class map {
public:
/...
/1 map operations:

iterator find(const key type& k) ; [I find element with key k
const_iterator find(const key type& k) const,

size type count(const key type& k) const; [| find number of elements with key k

iterator lower_bound(const key type& K); [| find first element with key k
const_iterator lower_bound(const key type& k) const;
iterator upper_bound(const key type& K); /| find first element with key greater than k

const_iterator upper_bound(const key type& k) const;

pair<iterator, iterator> equal_range(const key type& K);
pair<const_iterator, const_iterator> equal_range(const key type& k) const,
/...

3

A m. find(k) operation simply yields an iterator to an element with thelkkely there is no such
element, the iterator returnedns end() . For a container with unique keys, suchrap andset,
the resulting iterator will point to the unique element with the key-or a container with non-
unique keys, such asultimap andmultiset, the resulting iterator will point to the first element that
has that key. For example:

void f(map<string, int>& m)

{
map<string, int>: : iterator p=m. find(" Gold") ;
if (p!l=m end()) { /| if "Gold" was found
/..
}
else if (m. find(" Siver)'= m.end()) { / / look for "Silver"
/..
}
/..
}

For a multimap (817.4.2), finding the first match is rarely as useful as finding all matches;
m. lower_bound(k) andm. upper_bound(k) give the beginning and the end of the subsequence
of elements ofm with the keyk. As usual, the end of a sequence is an iterator to the one-past-the-
last element of the sequence. For example:

void f(multimap<string, int>& m)

multimap<string, int>: : iterator Ib = m. lower_bound(" Gold") ;
multimap<string, int>: : iterator ub = m. upper_bound(" Gold") ;

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 17.4.1.6 Map Operations 487

for (multimap<string, int>: : iterator p = |b; p!= ub; ++p) {
/...
}

}

Finding the upper bound and lower bound by two separate operations is neither elegant nor effi-
cient. Consequently, the operatiequal_range() is provided to deliver both. For example:

void f(multimap<string, int>& m)

typedef multimap<string, int>: : iterator MlI;

pair<MI, MI> g = m. equal_range(" Gold") ;

for (Ml p =g. first; p!=g. second; ++p) {
..

}

}

If lower_bound(k) doesn't findk, it returns an iterator to the first element that has a key greater
thank, orend() if no such greater element exists. This way of reporting failure is also used by

upper_bound() andequal_range() .

17.4.1.7 List Operations [cont.map.modifier]

The conventional way of entering a value into an associative array is simply to assign to it using
subscripting. For example:

phone_book{" Order department’] = 8226339;

This will make sure that the Order department has the desired entry phahe book indepen-
dently of whether it had a prior entry. It is also possiblmsert() entries directly and to remove
entries usingrase() :

template <class Key, class T, class Cmp = less<Key>,
class A= allocator< pair<const Key, T> > >
class map {
public:
/...
/1 list operations:

pair<iterator, bool> insert(const value type&val); / / insert (key,value) pair
iterator insert(iterator pos, const value type&val);/ / posis just a hint
template <class In> void insert(In first, In last); / / insert elements from sequence

void erase(iterator pos); | | erase the element pointed to

size type erase(const key type& k); | | erase element with key k (if present)
void erase iterator first, iterator last); / / erase range

void clear() ;

/...

I3
The operationm. insert(val) attempts to add &Key, T) pair val to m. Sincemaps rely on

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

488 Standard Containers Chapter 17

unique keys, insertion takes place only if there is not already an elementnmwitib that key.
The return value of. insert(val) is apair<iterator, bool>. Thebool is trueif val was actually
inserted. The iterator refers to the elememndiolding the keyk. For example:

void f(map<sftring, int>& m)

{
pair<string, int> p99(" Paul", 99);
pair<map<siring, int>: : iterator, bool> p = m. insert(p99);
if (p. second) {
/1 "Paul" was inserted
}
else{
/1 "Paul" was there already
}
map<string, int>: : iterator i = p. first, /| points to m["Paul"]
..
}

Usually, we do not care whether a key is newly inserted or was present nimaphieefore the
insert() . When we are interested, it is often because we want to register the fact that a value is in
amap somewhere else (outside tmap). The other two versions aisert() do not return an indi-
cation of whether a value was actually inserted.

Specifying a positionjnsert(pos, val) , is simply a hint to the implementation to start the
search for the keyal at pos. If the hint is good, significant performance improvements can result.
If the hint is bad, you'd have done better without it both notationally and efficiency-wise. For
example:

void f(map<string, int>& m)

m[" Dilbert'] =3; / / neat, possibly less efficient
m. insert(m. begin() , make pair(const string(" Dogbert") ,99)) ; / / ugly
}

In fact,[] is little more than a convenient notation fnsert() . The result ofn[k] is equivalent
to the result of*(m. insert(make pair(k, V())). first)). second, whereV() is the default
value for the mapped type. When you understand that equivalence, you probably understand asso-
ciative containers.

Becausd] always use¥() , you cannot use subscripting omap with a value type that does
not have a default value. This is an unfortunate limitation of the standard associative containers.
However, the requirement of a default value is not a fundamental property of associative containers
(see §17.6.2).

You can erase elements specified by a key. For example:

void f(map<string, int>& m)

{
int count = phone_book. erase(" Ratbert") ;
/...

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 17.4.1.7 List Operations 489

The integer returned is the number of erased elements. In partemuat s O if there was no ele-

ment with the key Ratbert" to erase. For enultimap or multiset, the value can be larger than
Alternatively, one can erase an element given an iterator pointing to it or a range of elements given
a sequence. For example:

void g(map<string, int>& m)

m. erase(m. find(" Catbert")) ;
m. erase(m. find(" Alice") , m. find(" Wally")) ;
}

Naturally, it is faster to erase an element for which you already have an iterator than to first find the
element given its key and then erase it. A@mase() , the iterator cannot be used again because
the element to which it pointed is no longer there. Eraamdg) is harmless.

17.4.1.8 Other Functions [cont.map.etc]

Finally, amap provides the usual functions dealing with the number of elements and a specialized
swap() :

template <class Key, class T, class Cmp = less<Key>,
class A= allocator< pair<const Key, T> > >
class map {
public:
/...
/1 capacity:

size type size() const /| number of elements
size type max_size() const; / / size of largest possible map
bool empty() const{ return size)== O; }

void swap(map&);
h
As usual, a value returned bizge() or max_size) is a number of elements.
In addition,map provides==, I= , <, >, <=, >=, andswap() as nonmember functions:

template <class Key, class T, class Cmp, class A>
bool operator==(const map<Key, T, Cmp, A>&, const map<Key, T, Cmp, A>&);

/1 similarly 1=, <, >, <=, and>=

template <class Key, class T, class Cmp, class A>
void swap(map<Key, T, Cmp, A>&, map<Key, T, Cmp, A>&);

Why would anyone want to compare twaps? When we specifically compare twaps, we usu-

ally want to know not just if thenaps differ, but also how they differ if they do. In such cases, we
don't use== or !=. However, by providing-=, <, andswap() for every container, we make it
possible to write algorithms that can be applied to every container. For example, these functions
allow us tosort() avector of maps and to have set of maps.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

490 Standard Containers Chapter 17

17.4.2 Multimap [cont.multimap]

A multimap is like amap, except that it allows duplicate keys:

template <class Key, class T, class Cmp = less<Key>,
class A= allocator< pair<const Key, T> > >
class std: : multimap {
public:
/1 like map, except:

iterator insert(const value type&); / / returns iterator, not pair

/1 no subscript operator []

h
For example (usin@string_lessfrom 817.1.4.1 to compare C-style strings):

void f(map<char*, int, Cstring_less>& m, multimap<char*, int, Cstring_less>& mm)
{
m. insert(make pair(" x', 4)) ;
m. insert(make_pair(" x', 5)) ;/ / no effect: there already is an entry for "x" (8§17.4.1.7)
/1 now m["x"] == 4
mm insert(make pair(" x", 4)) ;
mm insert(make pair(" x', 5)) ;
/1 mm now holds both ("x",4) and ("x",5)
}

This implies thamultimap cannot support subscripting by key values in the map does. The
equal_range() , lower bound() , and upper_bound() operations (§817.4.1.6) are the primary
means of accessing multiple values with the same key.

Naturally, where several values can exist for a single keyjlimap is preferred over anap.
That happens far more often than people first think when they hearratltimap. In some ways,
amultimap is even cleaner and more elegant thanmap.

Because a person can easily have several phone numbers, a phone book is a good example of a
muitimap. | might print my phone numbers like this:

void print_numbers(const multimap<string, int>& phone_book)

{

typedef multimap<string, int>:: const_iterator I;

pair<l, 1> b = phone_book. equal_range(" Stroustrup") ;

for (1 i =b. first i!= b. second;, ++i) cout << i-> second << " \n’;
}

For a multimap, the argument toinsert() is always inserted. Consequently, the
multimap: : insert() returns an iterator rather thampair<iterator, bool> like map does. For uni-
formity, the library could have provided the general forninsert() for both map and multimap

even though thdool would have been redundant formmiltimap. Yet another design alternative
would have been to provide a simpmsert() that didn't return @ool in either case and then sup-
ply users ofmap with some other way of figuring out whether a key was newly inserted. This is a
case in which different interface design ideas clash.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 17.4.3 Set 491

17.4.3 Set [cont.set]

A set can be seen asnaap (817.4.1), where the values are irrelevant, so we keep track of only the
keys. This leads to only minor changes to the user interface:

template <class Key, class Cmp = less<Key>, class A= allocator<Key> >
class sid: : set {
public:

/1 like map except:

typedef Key value type; /I the key itself is the value

typedef Cmp value_compare;
/1 no subscript operator []

b
Defining value type as thekey type type is a trick to allow code that usemps andsets to be
identical in many cases.
Note thatset relies on a comparison operation (by defajltrather than equality=E). This
implies that equivalence of elements is defined by inequality (817.1.4.1) and that iteration through
aset has a well-defined order.
Like map, set provides==, |=, <, >, <=, >=, andswap() .

17.4.4 Multiset [cont.multiset]
A multiset is aset that allows duplicate keys:

template <class Key, class T, class Cmp= less<Key>, class A= allocator<Key> >
class std: : multiset {
public:

/1 like set, except:

iterator insert(const value type&); / / returns iterator, not pair

3
Theequal_range() , lower_bound() , andupper_bound() operations (§17.4.1.6) are the primary
means of accessing multiple occurrences of a key.

17.5 Almost Containergcont.etc]

Built-in arrays (85.2)strings (Chapter 20)valarrays (§22.4), anditsets (817.5.3) hold elements

and can therefore be considered containers for many purposes. However, each lacks some aspect or
other of the standard container interface, so these “almost containers” are not completely inter-
changeable with fully developed containers sucheator andlist.

17.5.1 String [cont.string]

A basic_string provides subscripting, random-access iterators, and most of the notational conve-
niences of a container (Chapter 20). Howebasic_string does not provide as wide a selection of
types as elements. It also is optimized for use as a string of characters and is typically used in ways
that differ significantly from a container.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

492 Standard Containers Chapter 17

17.5.2 Valarray [cont.valarray]

A valarray (822.4) is a vector for optimized numeric computation. Consequentrplasray
doesn't attempt to be a general containervafarray provides many useful numeric operations.
However, of the standard container operations (§17.1.1), it offersime{y and a subscript oper-
ator (822.4.2). A pointer to an element ofadarray is a random-access iterator (§19.2.1).

17.5.3 Bitset [cont.bitset]

Often, aspects of a system, such as the state of an input stream (§21.3.3), are represented as a set of
flags indicating binary conditions such as good/bad, true/false, and on#affsu@ports the notion
of small sets of flags efficiently through bitwise operations on integers (86.2.4). These operations
include& (and),| (or),” (exclusive or)<< (shift left), and>> (shift right). Clasditset<N> gen-
eralizes this notion and offers greater convenience by providing operations on aNsdlitef
indexed from0 throughN- 1, whereN is known at compile time. For sets of bits that don't fit into
along int, using abitset is much more convenient than using integers directly. For smaller sets,
there may be an efficiency tradeoff. If you want to name the bits, rather than numbering them,
using aset (§817.4.3), an enumeration (84.8), or a bitfield (§C.8.1) are alternatives.

A bitset<N> is an array oN bits. A bitset differs from avector<bool> (§16.3.11) by being of
fixed size, fromset (§17.4.3) by having its bits indexed by integers rather than associatively by
value, and from botkiector<bool> andset by providing operations to manipulate the bits.

It is not possible to address a single bit directly using a built-in pointer (85.1). Consequently,
bitset provides a reference-to-bit type. This is actually a generally useful technique for addressing
objects for which a built-in pointer for some reason is unsuitable:

template<size t N> class std: : bitset {

public:
class reference { / | reference to a single bit:
friend class hitset;
reference() ;
public: /1 bJi] refers to the (i+1)'th bit:
~reference() ;
reference& operator=(bool x); [| for b[i] = x;
reference& operator=(const reference&); / / for b[i] = b[j];
bool operator~() const; /I return "b[i]
operator bool() const; [| for x =DbJi];
referenced flip() ; [1 bli].flip();
h
/...
b

Thebitset template is defined in namespate and presented inbitset>.

For historical reasonsitset differs somewhat in style from other standard library classes. For
example, if an index (also known adi& position) is out of range, aput_of _range exception is
thrown. No iterators are provided. Bit positions are numbered right to left in the same way bits
often are in a word, so the valuehbjfi] is pow(i, 2) . Thus, a bitset can be thought of ad\ahit
binary number:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 17.5.3 Bitset 493

position: 9 87 6543210
bitsek10>: \1\1\1\1\0\1\1\1\0\1\

17.5.3.1 Constructors [cont.bitset.ctor]

A bitset can be constructed with default values, from the bits inrsigned long int, or from a
string:

template<size t N> class hitset {

public:
/...
/] constructors:
bitset() ; / | N zero-bits
bitset(unsigned long val); /I bits from val
template<class Ch, class Tr, class A> /| Tris a character trait (820.2)

explicit bitset(const basic_string<Ch, Tr, A>& str, / / bits from string str
basic_string<Ch, Tr, A>:: size type pos= 0,
basic_string<Ch, Tr, A>:: size type m= basic_string<Ch, Tr, A>:: npos);
Il ...
2

The default value of a bit 8. When anunsigned long int argument is supplied, each bit in the
integer is used to initialize the corresponding bit in the bitset (if anyjask_string (Chapter 20)
argument does the same, except that the chafetegives the bitvalu®, the characterl” gives
the bitvaluel, and other characters causdrawalid_argument exception to be thrown. By default,
a complete string is used for initialization. However, in the style bésic_string constructor
(820.3.4), a user can specify that only the range of characterpé®io the end of the string or to
postn are to be used. For example:

void f()
{
bitset<10> bl; / / all0
bitset<16> b2 = Oxaaaa; / / 1010101010101010
bitset<32> b3 = Oxaaaa; // 00000000000000001010101010101010
bitset<10> b4(" 1010101010") ; / / 1010101010
bitset<10> b5(" 10110111011110", 4); / / 0111011110
bitset<10> b6(" 10110111011110", 2, 8); / / 0011011101
bitset<10> b7(" n0g00d") ; /[invalid_argument thrown
bitset<10> b8 = " n0g00d"; [| error: no char* to bitset conversion

}

A key idea in the design difitset is that an optimized implementation can be provided for bitsets
that fit in a single word. The interface reflects this assumption.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

494 Standard Containers Chapter 17

17.5.3.2 Bit Manipulation Operations [cont.bitset.oper]

A bitset provides the operators for accessing individual bits and for manipulating all bits in the set:

template<size t N> class sid: : bitset {

public:
/..
/1 bitset operations:
reference aoperator[](size t pos); /1 Db[i]
bitset& operator&=(const bitset& s); / | and
bitset& operator|=(const bitset& s); [I or
bitset& operator"=(const bitset& s); | | exclusive or
bitset& operator<<=(size t n); /I logical left shift (fill with zeros)
bitset& operator>>=(size t n); [| logical right shift (fill with zeros)
bitset& set() ; | | seteverybitto 1
bitset& set(size t pos, int val = 1); /I b[pos]=val
bitset& reset() ; | | setevery bitto 0
bitset& reset(size t pos); [| b[pos]=0
bitset& flip() ; / | change the value of every bit
bitset& flip(size t pos); / | change the value of b[pos]

bitset operator~() const{ return bitset<N>(* this). flip() ; } / / make complement set
bitset operator<<(size t n) const{ return bitset<N>(* this)<<=n; }/ / make shifted set
bitset operator>>(size t n) const{ return bitset<N>(* this)>>=n; }/ / make shifted set

I
h

The subscript operator throwesit_of_range if the subscript is out of range. There is no unchecked
subscript operation.

The bitset& returned by these operations*ithis. An operator returning hitset (rather than a
bitset&) makes a copy ofthis, applies its operation to that copy, and returns the result. In particu-
lar, >> and<< really are shift operations rather than I/O operations. The output operatdoifer a
setis a<< that takes aostream and abitset (§17.5.3.3).

When bits are shifted, a logical (rather than cyclic) shift is used. That implies that some bits
“fall off the end” and that some positions get the default value 0. Note that besizageis an
unsigned type, it is not possible to shift by a negative number. It does, however, impky<that
shifts by a very large positive value, thus leaving every bhit obitset b with the value0. Your
compiler should warn against this.

17.5.3.3 Other Operations [cont.bitset.etc]

A bitset also supports common operations suchizef) , ==, /O, etc.:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 17.5.3.3 Other Operations 495

template<size t N> class hitset {
public:
/...

unsigned long to_ulong() const;
template <class Ch, class Tr, class A> basic_string<Ch, Tr, A> to_string() const

size t count() const, /| number of bits with value 1
size t size() const{ return N; } / / number of bits

bool operator==(const bitset& s) const;
bool operator!=(const bitset& s) const;

bool test(size t pos) const / [true if b[pos] is 1
bool any() const / | true if any bitis 1
bool none() const; / I true if no bitis 1

h

The operationso_ulong() andto_string() provide the inverse operations to the constructors. To
avoid nonobvious conversions, named operations were preferred over conversion operations. If the
value of thebitset has so many significant bits that it cannot be represented urssigmed long,
to_ulong() throwsoverflow_error.

Theto _string() operation produces a string of the desired type holding a sequen@e ahd
"1 charactershasic_string is the template used to implement strings (Chapter 20). We could use
to_string to write out the binary representation ofiah

void binary(int i)

{
bitset<8* sizeof(int)> b =i; | | assume 8-bit byte (see also §22.2)
cout << b. template to_string<char>() << \n’;

}

Unfortunately, invoking an explicitly qualified member template requires a rather elaborate and
rare syntax (8C.13.6).

In addition to the member functiortstset provides binang (and),| (or),” (exclusive or), and
the usual I/O operators:

template<size t N> bitset<N>& std: : operator&(const bitset<N>&, const bitset<N>&);
template<size t N> bitset<N>& std: : operator|(const bitset<N>&, const bitset<N>&);
template<size t N> bitset<N>& std: : operator”(const bitset<N>&, const bitset<N>&);

template <class charT, class Tr, size t N>

basic_istream<charT, Tr>& std: : operator>>(basic_istream<charT, Tr>&, bitset<N>&);
template <class charT, class Tr, size t N>

basic_ostream<charT, Tr>& std: : operator<<(basic_ostream<charT, Tr>&, const bitset<N>&);

We can therefore write out a bitset without first converting it to a string. For example:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

496 Standard Containers Chapter 17

void binary(int i)

bitset<8* sizeof(int)> b =i; | | assume 8-bit byte (see also §22.2)
cout << b <<’ \n’;

}

This prints the bits representedlasandOs left-to-right, with the most significant bit leftmost.
17.5.4 Built-In Arrays [cont.array]

A built-in array supplies subscripting and random-access iterators in the form of ordinary pointers
(82.7.2). However, an array doesn’t know its own size, so users must keep track of that size. In
general, an array doesn'’t provide the standard member operations and types.

It is possible, and sometimes useful, to provide an ordinary array in a guise that provides the
notational convenience of a standard container without changing its low-level nature:

template<class T, int max> struct c_array {
typedef T value type

typedef T* iterator;
typedef const T* const_iterator;

typedef T& reference;
typedef const T& const _reference

T vV max;
operator T*() { return v, }

reference operator[](size t i) { return i]; }
const_reference operator[](size t i) const{ return v i]; }

iterator begin() { return v; }
const_iterator begin() const{ return v; }

iterator end() { return wvrmax; }
const _iterator end() const{ return vrmax; }

ptrdiff_t size() const{ return max; }
h

Thec_array template is not part of the standard library. It is presented here as a simple example of
how to fit a “foreign” container into the standard container framework. It can be used with stan-
dard algorithms (Chapter 18) usibggin() , end() , etc. It can be allocated on the stack without

any indirect use of dynamic memory. Also, it can be passed to a C-style function that expects a
pointer. For example:

void f(int* p, int s2); [/ / C-style

void g()
{

c_array<int, 10> a;

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 17.5.4 Built-In Arrays 497

f(a, a. size)) ; / | C-style use
c_array<int, 10>:: iterator p = find(a. begin() , a. end() , 777); / / C++/STL style use
/...

17.6 Defining a New Containefcont.hash]

The standard containers provide a framework to which a user can add. Here, | show how to provide
a container in such a way that it can be used interchangeably with the standard containers wherever
reasonable. The implementation is meant to be realistic, but it is not optimal. The interface is cho-
sen to be very close to that of existing, widely-available, and high-quality implementations of the
notion of ahash map. Use thehash map provided here to study the general issues. Then, use a
supportechash_map for production use.

17.6.1 Hashmap [cont.hash.map]

A map is an associative container that accepts almost any type as its element type. It does that by
relying only on a less-than operation for comparing elements (817.4.1.5). However, if we know
more about a key type we can often reduce the time needed to find an element by providing a hash
function and implementing a container as a hash table.

A hash function is a function that quickly maps a value to an index in such a way that two dis-
tinct values rarely end up with the same index. Basically, a hash table is implemented by placing a
value at its index, unless another value is already placed there, and “nearby” if one is. Finding an
element placed at its index is fast, and finding one “nearby” is not slow, provided equality testing
is reasonably fast. Consequently, it is not uncommon fash map to provide five to ten times
faster lookup than anap for larger containers, where the speed of lookup matters most. On the
other hand, dash_map with an ill-chosen hash function can be much slower thaam

There are many ways of implementing a hash table. The interfdwslofmap is designed to
differ from that of the standard associative containers only where necessary to gain performance
through hashing. The most fundamental difference betwesapand ahash map is that amap
requires & for its element type, while hash map requires arr= and a hash function. Thus, a
hash_map must differ from amap in the non-default ways of creating one. For example:

map<siring, int> m1;
map<string, int, Nocase> m2,

/ compare strings using
/ compare strings using Nocase() (§17.1.4.1)

hash_map<string, int, hfct> hm2; ! hash using hfct(), compare using ==

/
/
hash_map<string, int> hmi, /| hash using Haststring>() (817.6.2.3), compare using ==
/
hash_map<string, int, hfct, egl> hm3;/ / hash using hfct(), compare using eq|

A container using hashed lookup is implemented using one or more tables. In addition to holding
its elements, the container needs to keep track of which values have been associated with each
hashed value (“index” in the prior explanation); this is done using a “hash table.” Most hash
table implementations seriously degrade in performance if that table gets “too full,” say 75% full.
Consequently, theash_ map defined next is automatically resized when it gets too full. However,
resizing can be expensive, so it is useful to be able to specify an initial size.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

498 Standard Containers Chapter 17

Thus, a first approximation offeash_map looks like this:

template<class Key, class T, class H = Hash<Key>,
class EQ = equal_to<Key>, class A= allocator<T> >
class lhash_map {
/1 like map, except:

typedef H Hasher;
typedef EQ key equal;
hash_map(const T& dv=T() , size type m=101, const H& hf =H() , const EQ& =EQ()) ;
template<class In> hash_map(In first, In last,
const T& dv=T() , size type m=101, const H& hf =H() , const EQ& =EQ()) ;
3

Basically, this is thenap interface (817.4.1.4), witk replaced by== and a hash function.

The uses of anap in this book so far (83.7.4, 86.1, §17.4.1) can be converted to use a
hash_map simply by changing the nanmeap to hash map. Often, a change betweemap and a
hash_map can be eased by usitypedef. For example:

typedef hash_map<string, record> Map;
Map dictionary;

Thetypedef is also useful to further hide the actual type of the dictionary from its users.

Though not strictly correct, | think of the tradeoff betweanap and ahash_map as simply a
space/time tradeoff. If efficiency isn’t an issue, it isn’t worth wasting time choosing between them:
either will do well. For large and heavily used tablessh map has a definite speed advantage
and should be used unless space is a premium. Even then, | might consider other ways of saving
space before choosing a “plaimhap. Actual measurement is essential to avoid optimizing the
wrong code.

The key to efficient hashing is the quality of the hash function. If a good hash function isn’t
available, anap can easily outperformlaash_map. Hashing based on a C-style stringtréng, or
an integer is usually very effective. However, it is worth remembering that the effectiveness of a
hash function critically depends on the actual values being hashed (817.8[3tgsh Anap must
be used where is not defined or is unsuitable for the intended key. Conversely, a hash function
does not define an ordering the wagoes, so aap must be used when it is important to keep the
elements sorted.

Like map, hash_map providesfind() to allow a programmer to determine whether a key has
been inserted.

17.6.2 Representation and Construction [cont.hash.rep]

Many different implementations ofteash_map are possible. Here, | use one that is reasonably fast
and whose most important operations are fairly simple. The key operations are the constructors, the
lookup (operatof]), the resize operation, and the operation removing an eleerase(j).

The simple implementation chosen here relies on a hash table thaedtorof pointers to
entries. Eactentry holds akey, avalue, a pointer to the nexEntry (if any) with the same hash
value, and aerased bit :

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 17.6.2 Representation and Construction 499

T key | val |enext

T | k.(.e.y | val |enext

Expressed as declarations, it looks like this:

template<class Key, class T, class H = Hash<Key>,
class EQ = equal_to<Key>, class A= allocator<T> >
class hash_map {

..
private: /| representation
struct Entry {
key_type key,
mapped type val;
Entry* next; / / hash overflow link
bool erased
Entry(key type k mapped type v, Entry* n)
: key(Kk), val(v), next(n), erased(false { }
h

vector<Entry>v, / / the actual entries
vector<Entry*> b; / / the hash table: pointers into v

/..
h

Note theerased bit. The way several values with the same hash value are handled here makes it
hard to remove an element. So instead of actually removing an elemenerabgh is called, |
simply mark the elememrased and ignore it until the table is resized.

In addition to the main data structurehash map needs a few pieces of administrative data.
Naturally, each constructor needs to set up all of this. For example:

template<class Key, class T, class H = Hash<Key>,
class EQ = equal_to<Key>, class A= allocator<T> >
class hash _map {
/..

hash_map(const T& dv=T() , size type m=101, const H& h=H() , const EQ& e =EQ())
. default_value(dv), b(n), no_of erased(0), hash(h), eq(e)

{
set_load() ; | | defaults
v. reserve(max_load* b. sizg)) ; | | reserve space for growth
}
void set load(float m=0. 7, float g=1. 6) { max load=m; grow=g; }
/...

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

500 Standard Containers Chapter 17

private:
float max_load; | | keep v.sizef=b.size()*maxload
float grow; /| when necessary, resize(buclegtunt()*grow)

size type mo_of erased;

Hasher hash;
key equal eq

const T default_value

number of entries in v occupied by erased elements

hash function
equality

-~ ~ —~ ~
~ ~ ~ ~

default value used by []
h

The standard associative containers require that a mapped type have a default value (817.4.1.7).
This restriction is not logically necessary and can be inconvenient. Making the default value an
argument allows us to write:

hash_map<string, Number> phone_book1,

[| default: Number()
hash_map<string, Number> phone_book2(Number(411)) ; /

/
/ default: Number(411)

17.6.2.1 Lookup [cont.hash.lookup]

Finally, we can provide the crucial lookup operations:

template<class Key, class T, class H = Hash<Key>,
class EQ = equal_to<Key>, class A= allocator<T> >
class lhash_map {
/...

mapped _type& operator[](const key type& k);
iterator find(const key type&);

const_iterator find(const key type&) const,
/..

2
To find avalue, operator[]() uses a hash function to find an index in the hash table fdweghe

It then searches through the entries until it finds a matdkégg The value in thatEntry is the
one we are seeking. If itis not found, a default value is entered:

template<class Key, class T, class H = Hash<Key>,

class EQ = equal_to<Key>, class A= allocator<T> >
mapped_type& hash_map: : operator[](const key type& k)
{

size type i = hash(k)%b. size() ; / | hash
for(Entry* p=b[i]; p; p=p->next) // search among entries hashed to i
if (eq(k, p-> key)) { /| found
if (p-> erased) { [| re-insert

p-> erased = false
no_of_erased-;
return p-> val = default_value

}
return p->val;

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 17.6.2.1 Lookup 501

/1 not found:
if (b. size()* max load<v. sizg)) {// if “too full”

resize(b. size()* grow); / | grow
return operator[](K); / | rehash
}
v. push_back(Entry(k, default_value, b[i])) ; / / add Entry
b[i] = &v. back() ; /| point to new element

return bf i]-> val;
}

Unlike map, hash_map doesn’t rely on an equality test synthesized from a less-than operation
(817.1.4.1). This is because of the callegf) in the loop that looks through elements with the
same hash value. This loop is crucial to the performance of the lookup, and for common and obvi-
ous key types such ating and C-style strings, the overhead of an extra comparison could be sig-
nificant.

| could have used set<Entry> to represent the set of values that have the same hash value.
However, if we have a good hash functibagh()) and an appropriately-sized hash table nost
such sets will have exactly one element. Consequently, | linked the elements of that set together
using thenext field of Entry (817.8[27]).

Note thatb keeps pointers to elements wfand that elements are addedvto In general,
push_back() can cause reallocation and thus invalidate pointers to elements (§16.3.5). However,
in this case constructors (817.6.2) aedize() carefullyreserve() enough space so that no unex-
pected reallocation happens.

17.6.2.2 Erase and Rehash [cont.hash.erase]

Hashed lookup becomes inefficient when the table gets too full. To lower the chance of that hap-
pening, the table is automaticaligsize() d by the subscript operator. Thet load() (817.6.2)
provides a way of controlling when and how resizing happens. Other functions are provided to
allow a programmer to observe the state bash map:

template<class Key, class T, class H = Hash<Key>,
class EQ = equal_to<Key>, class A= allocator<T> >
class lhash_map {

/..
void resize(size type m); /| make the size of the hash table n
void erase(iterator position); | | erase the element pointed to

size type size() const{ return v. size()- no_of erased, } / / number of elements

size type bucket count() const{ return b. size)) ; } | | size of hash table
Hasher hash fun() const{ return hash; } /| hash function used
key equal key eq() const{ return eq } | | equality used

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

502 Standard Containers Chapter 17

"o
h

Theresize() operation is essential, reasonably simple, and potentially expensive:

template<class Key, class T, class H = Hash<Key>,
class EQ = equal_to<Key>, class A= allocator<T> >
void hash map: : resize(size type 9
{
if (s<=h. size)) return;
b. resize(s); / [/ add s-b.size() pointers
b. clear() ;
v. reserve(s* max_load); / / if v needs to reallocate, let it happen now

if (no_of_erased) { / / really remove erased elements
for (size type i=v. size)- 1; 0<=i; i--)
if (V[i]. erased) {
v. erase& V[i]) ;
if (- no_of erased == 0) break;

}

for (' size type ii=0; i<v. sizg() ; i++) { /| rehash:
size type ii = hash(V[i]. key)%b. size() ; /I hash
V[i]. next=b[ii]; /1 link
bl ii] =&V[i];

}

If necessary, a user can “manually” cedisize() to ensure that the cost is incurred at a predictable
time. | have found aesize() operation important in some applications, but it is not fundamental
to the notion of hash tables. Some implementation strategies don’t need it.
All of the real work is done elsewhere (and only Hash_map is resized) , serase() is triv-

ial:

template<class Key, class T, class H = Hash<Key>,

class EQ = equal_to<Key>, class A= allocator<T> >
void hash map:: erase(iterator p) / / erase the element pointed to

{
if (p-> erased == false) no_of erased++;

p-> erased = true;

17.6.2.3 Hashing [cont.hasher]

To completehash map: : operator[]() , we need to definbash() andeq() . For reasons that
will become clear in §18.4, a hash function is best definegpeator()() for a function object:

template <class T> struct Hash: unary_function<T, size t> {
size t operator()(const T& key) const;
h

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 17.6.2.3 Hashing 503

A good hash function takes a key and returns an integer so that different keys yield different inte-
gers with high probability. Choosing a good hash function is an art. However, exclusive-or’ing the
bits of the key’s representation into an integer is often acceptable:

template <class T> size t Hash<T>:: operator()(const T& key) const

{
size t res=0;
size t len= sizeof(T);
const char* p = reinterpret_cast<const char*>(& key);
while (len-) res=(res<<1l)™* p++; // use bytes of key’s representation
return res
}

The use ofeinterpret_cast (§6.2.7) is a good indication that something unsavory is going on and
that we can do better in cases when we know more about the object being hashed. In particular, if
an object contains a pointer, if the object is large, or if the alignment requirements on members
have left unused space (“holes”) in the representation, we can usually do better (see §17.8[29]).

A C-style string is a pointer (to the characters), asttiag contains a pointer. Consequently,
specializations are in order:

size t Hash<char*>: : operator()(const char* key) const

{
size t res=0;
while (* key) res= (res<<1)™* key++; [/ / useintvalue of characters
return res

}

template <class C>
size t Hash< basic_string<C> >:: operator()(const basic_string<C>& key) const
{

size t res=0;

typedef basic_string<C>:: const iterator ClI;
Cl p = key. begin() ;
Cl end = key. end() ;

while (p!= end) res= (res<<1)™* p++; /[/ use intvalue of characters
return res

}

An implementation ohash_map will include hash functions for at least integer and string keys.
For more adventurous key types, the user may have to help out with suitable specializations.
Experimentation supported by good measurement is essential when choosing a hash function. Intu-
ition tends to work poorly in this area.

To complete thdnash_map, we need to define the iterators and a minor host of trivial functions;
this is left as an exercise (817.8[34]).

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

504 Standard Containers Chapter 17

17.6.3 Other Hashed Associative Containers [cont.hash.other]

For consistency and completeness, thmash map should have matchinghash set,
hash_muitimap, andhash _multiset. Their definitions are obvious from thosehaish_map, map,
multimap, set, andmulitiset, so | leave these as an exercise (§817.8[34]). Good public domain and
commercial implementations of these hashed associative containers are available. For real pro-
grams, these should be preferred to locally concocted versions, such as mine.

17.7 Advicecont.advice]

[1] By default, usevector when you need a container; §17.1.

[2] Know the cost (complexity, big-O measure) of every operation you use frequently; §17.1.2.

[3] The interface, implementation, and representation of a container are distinct concepts. Don't
confuse them; §17.1.3.

[4] You can sort and search according to a variety of criteria; §17.1.4.1.

[5] Do not use a C-style string as a key unless you supply a suitable comparison criterion;
§17.1.4.1.

[6] You can define a comparison criteria so that equivalent, yet different, key values map to the
same key; §17.1.4.1.

[7]1 Prefer operations on the end of a sequebaekfioperations) when inserting and deleting ele-
ments; §17.1.4.1.

[8] Uselist when you need to do many insertions and deletions from the front or the middle of a
container; 817.2.2.

[9] Usemap or multimap when you primarily access elements by key; §17.4.1.

[10] Use the minimal set of operations to gain maximum flexibility; §17.1.1

[11] Prefer amap to ahash map if the elements need to be kept in order; §17.6.1.

[12] Prefer ehash_ map to amap when speed of lookup is essential; §17.6.1.

[13] Prefer ehash map to amap if no less-than operation can be defined for the elements; §17.6.1.

[14] Usefind() when you need to check if a key is in an associative container; §17.4.1.6.

[15] Useequal _range() to find all elements of a given key in an associative container; §17.4.1.6.

[16] Usemultimap when several values need to be kept for a single key; §17.4.2.

[17] Useset or multiset when the key itself is the only value you need to keep; §17.4.3.

17.8 Exercisegcont.exercises]

The solutions to several exercises for this chapter can be found by looking at the source text of an

implementation of the standard library. Do yourself a favor: try to find your own solutions before

looking to see how your library implementer approached the problems. Then, look at your

implementation’s version of the containers and their operations.

1. (@®.5) Understand th®() notation (817.1.2). Do some measurements of operations on stan-
dard containers to determine the constant factors involved.

2. () Many phone numbers don't fit intolang. Write aphone_number type and a class that
provides a set of useful operations on a containphafie_numbers.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 17.8 Exercises 505

3. (@) Write a program that lists the distinct words in a file in alphabetical order. Make two ver-
sions: one in which a word is simply a whitespace-separated sequence of characters and one in
which a word is a sequence of letters separated by any sequence of non-letters.

(2.5) Implement a simple solitaire card game.

(1.5) Implement a simple test of whether a word is a palindrome (that is, if its representation is

symmetric; examples asala, otto, andtut). Implement a simple test of whether an integer is a

palindrome. Implement a simple test of a whether sentence is a palindrome. Generalize.

((L.5) Define a queue using (only) twtacks.

7. (OL.5) Define a stack similar tstack (§17.3.1), except that it doesn’t copy its underlying con-
tainer and that it allows iteration over its elements.

8. (1B) Your computer will have support for concurrent activities through the concept of a thread,
task, or process. Figure out how that is done. The concurrency mechanism will have a concept
of locking to prevent two tasks accessing the same memory simultaneously. Use the machine’s
locking mechanism to implement a lock class.

9. (.5) Read a sequence of dates sudbexs885, Decb0, Jan76, etc., from input and then output
them so that later dates come first. The format of a date is a three-letter month followed by a
two-digit year. Assume that all the years are from the same century.

10. (2.5) Generalize the input format for dates to allow dates suddee®985, 12/ 3/ 1990,

(Dec, 30, 1950) , 3/ 6/ 2001, etc. Modify exercise §17.8[9] to cope with the new formats.

11. (.5) Use aitset to print the binary values of some numbers, including, - 1, 18, - 18, and
the largest positivint.

12. (1L.5) Usebitset to represent which students in a class were present on a given day. Read the
bitsets for a series of 12 days and determine who was present every day. Determine which stu-
dents were present at least 8 days.

13. (IL.5) Write aList of pointers thatleletes the objects pointed to when it itself is destroyed or if
the element is removed from thést.

14. (AL.5) Given astack object, print its elements in order (without changing the value of the stack).

15. (2.5) Completdhash map (§17.6.1). This involves implementifimd() andequal_range()
and devising a way of testing the completed template. Haesbt map with at least one key
type for which the default hash function would be unsuitable.

16. (2.5) Implement and test a list in the style of the stanlisitd

17. (2) Sometimes, the space overhead tican be a problem. Write and test a singly-linked
list in the style of a standard container.

18. (2.5) Implement a list that is like a stand&st, except that it supports subscripting. Compare
the cost of subscripting for a variety of lists to the cost of subscriptivegtar of the same
length.

19. (@) Implement a template function that merges two containers.

20. (1..5) Given a C-style string, determine whether it is a palindrome. Determine whether an ini-
tial sequence of at least three words in the string is a palindrome.

21.[@2) Read a sequence ofname value) pairs and produce a sorted list of
(name total, mean, median) 4-tuples. Print that list.

22. (2.5) Determine the space overhead of each of the standard containers on your implementation.

23. ([B.5) Consider what would be a reasonable implementation strategy Hashamap that
needed to use minimal space. Consider what would be a reasonable implementation strategy for

ok

o

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

506 Standard Containers Chapter 17

a hash_map that needed to use minimal lookup time. In each case, consider what operations
you might omit so as to get closer to the ideal (no space overhead and no lookup overhead,
respectively). Hint: There is an enormous literature on hash tables.

24. ([2) Devise a strategy for dealing with overflowhash map (different values hashing to the
same hash value) that malegmial_range() trivial to implement.

25. ([2.5) Estimate the space overhead bBsh map and then measure it. Compare the estimate
to the measurements. Compare the space overhead of hasir map and your
implementation’smap.

26. [2.5) Profile yourhash map to see where the time is spent. Do the same for your
implementation’snap and a widely-distributetiash_map.

27.(2.5) Implement éhash map based on aector<map<kK, V>*> so that eacimap holds all
keys that have the same hash value.

28. (B) Implement eéhash_map using Splay trees (see D. Sleator and R. E. Tafeli:Adjusting
Binary Search TreegsACM, Vol. 32. 1985).

29. () Given a data structure describing a string-like entity:

struct St {
int size
char type_indicator;
char* buf; /| point to size characters
st(const char* p); / / allocate and fill buf

h

Create 100(8ts and use them as keys fohash map. Devise a program to measure the per-
formance of thdhash_ map. Write a hash function (dash; 817.6.2.3) specifically fostkeys.

30. (R) Give at least four different ways of removing #rased elements from dash map. You
should use a standard library algorithm (83.8, Chapter 18) to avoid an explicit loop.

31. (B) Implement dash_map that erases elements immediately.

32. (2) The hash function presented in §17.6.2.3 doesn't always consider all of the representation
of a key. When will part of a representation be ignored? Write a hash function that always con-
siders all of the representations of a key. Give an example of when it might be wise to ignore
part of a key and write a hash function that computes its value based only on the part of a key
considered relevant.

33. (R.5) The code of hash functions tends to be similar: a loop gets more data and then hashes it.
Define aHash (817.6.2.3) that gets its data by repeatedly calling a function that a user can
define on a per-type basis. For example:

size t res= 0,
while (size t v = hash(key)) res= (res<<3)"v;

Here, a user can defifrash(K) for each typ& that needs to be hashed.

34. ([B) Given some implementation diash map, implementhash muitimap, hash set, and
hash _muitiset.

35. [2.5) Write a hash function intended to map uniformly distribimdalues into hash values
intended for a table size of about 1024. Given that function, devise a set of 1024 key values, all
of which map to the same value.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

	Return to Contents
	17.1 Standard Containers
	17.2 Sequences
	17.3 Sequence Adapters
	17.4 Associative Containers
	17.5 Almost Containers
	17.6 Defining a New Container
	17.7 Advice
	17.8 Exercises

	buy now:

