16

Library Organization and Containers

It was new. It was singular.
It was simple. It must succeed!
— H. Nelson

Design criteria for the standard library library organization— standard headers-
language suppo#t container designh— iterators— based containers- STL containers
— vector — iterators— element access- constructors— modifiers— list operations
— size and capacity- vector<bool>— advice— exercises.

16.1 Standard Library Designorg.intro]

What ought to be in the standard+ibrary? One ideal is for a programmer to be able to find
every interesting, significant, and reasonably general class, function, template, etc., in a library.
However, the question here is not, “What ought to bgoimelibrary?” but “What ought to be in
thestandardlibrary?” The answer “Everything!” is a reasonable first approximation to an answer
to the former question but not to the latter. A standard library is something that every implementer
must supply so that every programmer can rely on it.

The G+ standard library:

[1]
(2]
3]
[4]

[5]

Provides support for language features, such as memory management (86.2.6) and run-
time type information (815.4).

Supplies information about implementation-defined aspects of the language, such as the
largestfloat value (§22.2).

Supplies functions that cannot be implemented optimally in the language itself for every
system, such asyrt() (822.3) andnemmove() (§19.4.6).

Supplies nonprimitive facilities that a programmer can rely on for portability, such as lists
(817.2.2), maps (817.4.1), sort functions (§818.7.1), and I/O streams (Chapter 21).

Provides a framework for extending the facilities it provides, such as conventions and
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support facilities that allow a user to provide I/O of a user-defined type in the style of I/O
for built-in types.

[6] Provides the common foundation for other libraries.

In addition, a few facilities- such as random-number generators (822.8re provided by the
standard library simply because it is conventional and useful to do so.

The design of the library is primarily determined by the last three roles. These roles are closely
related. For example, portability is commonly an important design criterion for a specialized
library, and common container types such as lists and maps are essential for convenient communi-
cation between separately developed libraries.

The last role is especially important from a design perspective because it helps limit the scope
of the standard library and places constraints on its facilities. For example, string and list facilities
are provided in the standard library. If they were not, separately developed libraries could commu-
nicate only by using built-in types. However, pattern matching and graphics facilities are not pro-
vided. Such facilities are obviously widely useful, but they are rarely directly involved in commu-
nication between separately developed libraries.

Unless a facility is somehow needed to support these roles, it can be left to some library outside
the standard. For good and bad, leaving something out of the standard library opens the opportu-
nity for different libraries to offer competing realizations of an idea.

16.1.1 Design Constraints [org.constraints]

The roles of a standard library impose several constraints on its design. The facilities offered by
the G-+ standard library are designed to be:

[1] Invaluable and affordable to essentially every student and professional programmer,
including the builders of other libraries.

[2] Used directly or indirectly by every programmer for everything within the scope of the
library.

[3] Efficient enough to provide genuine alternatives to hand-coded functions, classes, and tem-
plates in the implementation of further libraries.

[4] Either policy-free or give the user the option to supply policies as arguments.

[5] Primitive in the mathematical sense. That is, a component that serves two weakly related
roles will almost certainly suffer overheads compared to individual components designed
to perform only a single role.

[6] Convenient, efficient, and reasonably safe for common uses.

[7] Complete at what they do. The standard library may leave major functions to other
libraries, but if it takes on a task, it must provide enough functionality so that individual
users or implementers need not replace it to get the basic job done.

[8] Blend well with and augment built-in types and operations.

[9] Type safe by default.

[10] Supportive of commonly accepted programming styles.

[11] Extensible to deal with user-defined types in ways similar to the way built-in types and
standard-library types are handled.

For example, building the comparison criteria into a sort function is unacceptable because the same
data can be sorted according to different criteria. This is why the C standard digmet(y takes
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a comparison function as an argument rather than relying on something fixed, saypérator

(87.7). On the other hand, the overhead imposed by a function call for each comparison compro-
misesqsort() as a building block for further library building. For almost every data type, it is
easy to do a comparison without imposing the overhead of a function call.

Is that overhead serious? In most cases, probably not. However, the function call overhead can
dominate the execution time for some algorithms and cause users to seek alternatives. The tech-
nigue of supplying comparison criteria through a template argument described in 813.4 solves that
problem. The example illustrates the tension between efficiency and generality. A standard library
is not just required to perform its tasks. It must also perform them efficiently enough not to tempt
users to supply their own mechanisms. Otherwise, implementers of more advanced features are
forced to bypass the standard library in order to remain competitive. This would add a burden to
the library developer and seriously complicate the lives of users wanting to stay platform-
independent or to use several separately developed libraries.

The requirements of “primitiveness” and “convenience of common uses” appear to conflict.
The former requirement precludes exclusively optimizing the standard library for common cases.
However, components serving common, but nonprimitive, needs can be included in the standard
library in addition to the primitive facilities, rather than as replacements. The cult of orthogonality
must not prevent us from making life convenient for the novice and the casual user. Nor should it
cause us to leave the default behavior of a component obscure or dangerous.

16.1.2 Standard Library Organization [org.org]
The facilities of the standard library are defined in sttknamespace and presented as a set of
headers. The headers identify the major parts of the library. Thus, listing them gives an overview
of the library and provides a guide to the description of the library in this and subsequent chapters.
The rest of this subsection is a list of headers grouped by function, accompanied by brief expla-
nations and annotated by references to where they are discussed. The grouping is chosen to match
the organization of the standard. A reference to the standard (such as 8s.18.1) means that the facil-
ity is not discussed here.
A standard header with a name starting with the letiterequivalent to a header in the C stan-
dard library. For every headecX> defining names in thstd namespace, there is a head¥r h>
defining the same names in the global namespace (see §9.2.2).

U Containers O
5<vector> one-dimensional array of T §16.3 g
list> doubly-linked list ofl T 817.2.2
[(kdeque>  double-ended queue ®f T 8§17.2.30
[kqueue> queue oflT §17.3.20
Lestacks stack of T §17.3.1 B
C<map> associative array of T §17.4.1
<set> set ofTr 817.4.3
fkbitset>  array of booleans 8§17.5.3H

The associative containemsultimap and multiset can be found ikmap> and<set>, respectively.
Thepriority _queueis declared irkqueue>.
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U General Utilities U
5<utility> operators and pairs §17.1.4, §17.4.1.%
r<functional> function objects §18.4 0
Ckmemory> allocators for containers 8§19.4.4 a
Fxctime> C-style date and time ~ 8s.20.5 H

The <memory> header also contains tlaito_ptr template that is primarily used to smooth the
interaction between pointers and exceptions (814.4.2).

O lterators g
[Kiterator> iterators and iterator support Chapter 190

Iterators provide the mechanism to make standard algorithms generic over the standard containers
and similar types (82.7.2, §19.2.1).

0 Algorithms 5

5<a|gorithn> general algorithms  Chapter 18%
<cstdlib> bsearch() qgsort() §18.11 0

A typical general algorithm can be applied to any sequence (83.8, §18.3) of any type of elements.
The C standard library functiodsearch() andgsort() apply to built-in arrays with elements of
types without user-defined copy constructors and destructors only (87.7).

0 Diagnostics U
5<exception> exception class §14.10 J
[<stdexcept> standard exceptions 8§14.10 [
[kcassert> assert macro §24.3.7.20

Fxcemrno> C-style error handling §20.4.1 H

Assertions relying on exceptions are described in §24.3.7.1.

g Strings g
<string>  string of T Chapter 20%
[Rcctype> character classification 8§20.4.2 [
[(kewtype>  wide-character classification §204.2 O
Lkestring>  C-style string functions §204.1 U

cwchar>  C-style wide-character string functions §20.4 E
[xcstdlib>  C-style string functions §20.41 [

The <cstring> header declares ttsirlen() , strcpy() , etc., family of functions. Thecstdlib>
declaresatof() andatoi() that convert C-style strings to numeric values.
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g Input/Output N
H<ioslwd> forward declarations of I/O facilities §21.1 S
[Kiostream> standard iostream objects and operations§21.2.1 [
[kios> iostream bases §21.21 0O
Lkstreambuf>  stream buffers g21.6 U
0 istream> input stream template §21.3.1 E
[Fostream> output stream template §21.2.1 0
[Kiomanip> manipulators §21.4.6.2[
[ksstream> streams to/from strings §21.53 0O
Lkcstdlib> character classification functions §20.4.2 U
%fslreanb streams to/from files §21.5.1 E
CRcstdio> printf() family of /0 §21.8
<cwchar> printf() -style I/O of wide characters 8§21.8

Manipulators are objects used to manipulate the state of a stream (e.g., changing the format of
floating-point output) by applying them to the stream (§21.4.6).

g Localization g
5<Iocale> represent cultural differences 821.7

rclocale> represent cultural differences C-style §21.7 [

A locale localizes differences such as the output format for dates, the symbol used to represent cur-
rency, and string collation criteria that vary among different natural languages and cultures.

g Language Support U
limits> numeric limits §22.2 S
[climits> C-style numeric scalar-limit macros §22.2.1
[kcfloat> C-style numeric floating-point limit macros §22.2.1 [
Lknew> dynamic memory management §16.1.3 U
%typeinfo> run-time type identification support §15.4.1 g
[Fexception>  exception-handling support §14.10
[Kcstddef> C library language support 86.2.1 [
[kcstdarg> variable-length function argument lists §7.6 O
Lkcsetjmp> C-style stack unwinding §s.18.7 U

cstdlib> program termination §9.4.1.1 g
[<ctime> system clock 8s.18.7
[K<csignal> C-style signal handling 8s.18.7

The <cstddef> header defines the type of values returnedibgof() , size t, the type of the result
of pointer subtractiomptrdiff_t (86.2.1), and the infamo®ULL macro (85.1.1).
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0 Numerics 5

5<complex> complex numbers and operations§22.5 S
[rvalarray> numeric vectors and operations 8§22.4
Cknumeric>  generalized numeric operations §22.6 0
Ckcmath> standard mathematical functions §22.3 U
H<cstdlib> C-style random numbers §22.7 E

For historical reasongbs() , fabs() , anddiv() are found in<cstdlib> rather than inrkcmath>
with the rest of the mathematical functions (§822.3).

A user or a library implementer is not allowed to add or subtract declarations from the standard
headers. Nor is it acceptable to try to change the contents of headers by defining macros before
they are included or to try to change the meaning of the declarations in the headers by declarations
in their context (89.2.3). Any program or implementation that plays such games does not conform
to the standard, and programs that rely on such tricks are not portable. Even if they work today, the
next release of any part of an implementation may break them. Avoid such trickery.

For a standard library facility to be used its header must be included. Writing out the relevant
declarations yourself isot a standards-conforming alternative. The reason is that some implemen-
tations optimize compilation based on standard header inclusion and others provide optimized
implementations of standard library facilities triggered by the headers. In general, implementers
use standard headers in ways programmers cannot predict and shouldn’t have to know about.

A programmer can, however, specialize utility templates, suckhwap() (816.3.9), for
nonstandard-library, user-defined types.

16.1.3 Language Support [org.lang]

A small part of the standard library is language support; that is, facilities that must be present for a
program to run because language features depend on them.

The library functions supporting operatorew and delete are discussed in 86.2.6, §10.4.11,
814.4.4, and 815.6; they are presentednew>.

Run-time type identification relies on clagge _info, which is described in §15.4.4 and pre-
sented ir<typeinfo>.

The standard exception classes are discussed in §14.10 and presemew>in<typeinfo>,
<ios>, <exception>, and<stdexcept>.

Program start and termination are discussed in 83.2, §9.4, and §10.4.9.

16.2 Container Designorg.cont]

A container is an object that holds other objects. Examples are lists, vectors, and associative arrays.
In general, you can add objects to a container and remove objects from it.

Naturally, this idea can be presented to users in many different ways.+¥tsta@dard library
containers were designed to meet two criteria: to provide the maximum freedom in the design of an
individual container, while at the same time allowing containers to present a common interface to
users. This allows optimal efficiency in the implementation of containers and enables users to
write code that is independent of the particular container used.
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Container designs typically meet just one or the other of these two design criteria. The con-
tainer and algorithms part of the standard library (often called the STL) can be seen as a solution to
the problem of simultaneously providing generality and efficiency. The following sections present
the strengths and weaknesses of two traditional styles of containers as a way of approaching the
design of the standard containers.

16.2.1 Specialized Containers and Iterators [org.specialized]

The obvious approach to providing a vector and a list is to define each in the way that makes the
most sense for its intended use:

template<class T> class Vector { / / optimal
public:
explicit Vector(size t n);/ / initialize to hold n objects with value T()

T& operator[]( size t); / / subscripting
...

h
template<class T> class List{ / / optimal
public:
class Link{ /* ..* };
List() ; /[ initially empty
void put( T*) ; / / put before current element
T get() ; / | get current element
/..
h

Each class provides operations that are close to ideal for their use, and for each class we can choose
a suitable representation without worrying about other kinds of containers. This allows the imple-
mentations of operations to be close to optimal. In particular, the most common operations such as
put() for aListandoperator[]() for aVector are small and easily inlined.

A common use of most kinds of containers is to iterate through the container looking at the ele-
ments one after the other. This is typically done by defining an iterator class appropriate to the
kind of container (see §11.5 and §11.14[7]).

However, a user iterating over a container often doesn’t care whether data is stdrest an a
Vector. In that case, the code iterating should not depend on whetlstrax aVector was used.

Ideally, the same piece of code should work in both cases.

A solution is to define an iterator class that provides a get-next-element operation that can be

implemented for any container. For example:

template<class T> class Itor { / / common interface (abstract class §2.5.4, §12.3)
public:
/1 return O to indicate no-more-elements

virtual T* first) =0; / / pointer to first element
virtual T* next() =0; / / pointer to next element
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We can now provide implementations ¥ectors andLists:

template<class T> class Vector_itor : public Itor<T>{ / / Vector implementation
Vector<T>& v,
size t index / / index of current element
public:
Vector_itor( Vector<T>& w) : v(w), index(0) { }
T* first() { return (v. size()) ? &v[index=0] : O; }
T* next() { return (++ index<v. size()) ? &v[index : O; }

h
template<class T> class List itor : public Itor<T> { / | List implementation
List<T>& Ist;
List<T>:: Link p; / / points to current element
public:
List_itor( List<T>&);
T* first() ;
T next() ;
I3
Or graphically, using dashed lines to represent “implemented using:”
Vector List
0 Itor 0
: |
| |
Vector “itor List itor

The internal structure of the two iterators is quite different, but that doesn’t matter to users. We can
now write code that iterates over anything for which we can implemditbranFor example:

int count( Itor<char>& ii, char term)

{
int c=0;
for (char* p =ii. first)) ; p; p=ii. next()) if (* p==term) c++;
return c;

}

There is a snag, however. The operations oltariterator are simple, yet they incur the overhead

of a (virtual) function call. In many situations, this overhead is minor compared to what else is
being done. However, iterating through a simple container is the critical operation in many high-
performance systems and a function call is many times more expensive than the integer addition or
pointer dereferencing that implemenext() for avector and alist Consequently, this model is
unsuitable, or at least not ideal, for a standard library.

However, this container-and-iterator model has been successfully used in many systems. For
years, it was my favorite for most applications. Its strengths and weaknesses can be summarized
like this:

+ Individual containers are simple and efficient.

+ Little commonality is required of containers. Iterators and wrapper classes (825.7.1) can be

used to fit independently developed containers into a common framework.
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+ Commonality of use is provided through iterators (rather than through a general container
type; §16.2.2).

+ Different iterators can be defined to serve different needs for the same container.

+ Containers are by default type safe and homogeneous (that is, all elements in a container are
of the same type). A heterogeneous container can be provided as a homogeneous container
of pointers to a common base.

+ The containers are non-intrusive (that is, an object need not have a special base class or link
field to be a member of a container). Non-intrusive containers work well with built-in types
and withstructs with externally-imposed layouts.

— Each iterator access incurs the overhead of a virtual function call. The time overhead can be
serious compared to simple inlined access functions.

— A hierarchy of iterator classes tends to get complicated.

— There is nothing in common for every container and nothing in common for every object in
every container. This complicates the provision of universal services such as persistence
and object 1/0.

A + indicates an advantage and andicates a disadvantage.

| consider the flexibility provided by iterators especially important. A common interface, such
asltor, can be provided long after the design and implementation of containers\{éetog,and
List). When we design, we typically first invent something fairly concrete. For example, we
design an array and invent a list. Only later do we discover an abstraction that covers both arrays
and lists in a given context.

As a matter of fact, we can do this “late abstraction” several times. Suppose we want to repre-

sent a set. A set is a very different abstraction fiton, yet we can provide 8et interface to
Vector andListin much the same way that | providddr as an interface tdector andList

Vector List
7 PN

/ \ N\

!
4 v Set ltor_ N

/ \
/ \
. \ !
Vector set Vector “itor  List set Li \_itor

Thus, late abstraction using abstract classes allows us to provide different implementations of a
concept even when there is no significant similarity between the implementations. For example,
lists and vectors have some obvious commonality, but we could easily implemiaot &or an
istream

Logically, the last two points on the list are the main weaknesses of the approach. That is, even
if the function call overhead for iterators and similar interfaces to containers were eliminated (as is
possible in some contexts), this approach would not be ideal for a standard library.

Non-intrusive containers incur a small overhead in time and space for some containers com-
pared with intrusive containers. | have not found this a problem. Should it become a problem, an
iterator such alor can be provided for an intrusive container (816.5[11]).
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16.2.2 Based Containers [org.based]

One can define an intrusive container without relying on templates or any other way of parameter-
izing a type declaration. For example:

struct Link {
Link* pre;
Link* suc;
/...
b
class List{
Link* head;
Link* curr; / | current element
public:
Link* get() ; /| remove and return current element
void put( Link*) ; / / insert before current element
/..
h

A Listis now a list ofLinks, and it can hold objects of any type derived ftank. For example:
class Ship: public Link{ /* ..* };
void f( List* Ist)

while ( Link* po = Ist-> get()) {
if ( Ship* ps= dynamic_cast<Stip*>( po)) { / / Ship must be polymorphic (§15.4.1)

/1 use ship
}
else{

/1 Oops, do something else
}

}

Simula defined its standard containers in this style, so this approach can be considered the original
for languages supporting object-oriented programming. These days, a common class for all objects
is usually calledObject or something similar. ArmObject class typically provides other common
services in addition to serving as a link for containers.

Often, but not necessarily, this approach is extended to provide a common container type:

class Container : public Object {

public:
virtual Object* get() ; /| remove and return current element
virtual void put( Object*) ; /I insert before current element
virtual Object*& operator[]( size t); // subscripting
..

h

Note that the operations provided Ggntainer are virtual so that individual containers can over-
ride them appropriately:
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class List: public Container {

public:
Object* gek() ;
void put( Object*) ;
/..
h
class Vector : public Container {
public:
Object*& operator[]( size t);
..
h

One problem arises immediately. What operations do we Gantainer to provide? We could
provide only the operations that every container can support. However, the intersection of the sets
of operations on all containers is a ridiculously narrow interface. In fact, in many interesting cases
that intersection is empty. So, realistically, we must provide the union of essential operations on
the variety of containers we intend to support. Such a union of interfaces to a set of concepts is
called afat interface(§24.4.3).

We can either provide default implementations of the functions in the fat interface or force
every derived class to implement every function by making them pure virtual functions. In either
case, we end up with a lot of functions that simply report a run-time error. For example:

class Container : public Object {
public:
struct Bad op{// exception class
const char* p;
Bad_op( const char* pp) : p(pp) { }

virtual void put( Object*) { throw Bad_op(" put’) ; }
virtual Object* get() { throw Bad op(" get') ; }

virtual Object*& operator[]( int) { throw Bad op("[]") ; }
/...

h

If we want to protect against the possibility of a container that does not sgef{prt{ we must
catchContainer: : Bad_op somewhere. We could now write tBilip example like this:

class Ship: public Object{ /* ...*/ }
void f1( Container* pc)

try{
while ( Object* po = pc-> get()) {
if ( Ship* ps = dynamic_cast<Stip*>( po)) {
/1 use ship
}
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else{
/1 Oops, do something else
}

}

}
catch ( Container: : Bad_op& bad) {

/1 Oops, do something else
}

}

This is tedious, so the checking ad op will typically be elsewhere. By relying on exceptions
caught elsewhere, we can reduce the example to:

void f2( Container* pc)

while ( Object* po = pc-> get()) {
Ship& s = dynamic_cast<Ship&>(* po);
/1 use ship

}

However, | find unnecessary reliance on run-time checking distasteful and inefficient. In this kind
of case, | prefer the statically-checked alternative:

void f3( Itor<Ship>* i)

while ( Stip* ps=i-> next()) {
/1 use ship
}

}

The strengths and weakness of the “based object” approach to container design can be summarized
like this (see also §16.5[10]):

— Operations on individual containers incur virtual function overhead.

— All containers must be derived fro@ontainer. This implies the use of fat interfaces,
requires a large degree of foresight, and relies on run-time type checking. Fitting an inde-
pendently developed container into the common framework is awkward at best (see
§16.5[12]).

+ The common bas€ontainer makes it easy to use containers that supply similar sets of
operations interchangeably.

— Containers are heterogeneous and not type safe by default (all we can rely on is that ele-
ments are of typ©bject*). When desired, type-safe and homogeneous containers can be
defined using templates.

— The containers are intrusive (that is, every element must be of a type derivedbject).

Objects of built-in types and structs with externally imposed layouts cannot be placed
directly in containers.

— An element retrieved from a container must be given a proper type using explicit type con-
version before it can be used.

+ ClassContainer and clas©Object are handles for implementing services for every object or
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every container. This greatly eases the provision of universal services such as persistence
and object 1/0.
As before (816.2.1) indicates an advantage andéhdicates a disadvantage.

Compared to the approach using unrelated containers and iterators, the based-object approach
unnecessarily pushes complexity onto the user, imposes significant run-time overheads, and
restricts the kinds of objects that can be placed in a container. In addition, for many classes, to
derive fromODbject is to expose an implementation detail. Thus, this approach is far from ideal for
a standard library.

However, the generality and flexibility of this approach should not be underestimated. Like its
alternatives, it has been used successfully in many applications. Its strengths lie in areas in which
efficiency is less important than the simplicity afforded by a sikigatainer interface and ser-
vices such as object I/O.

16.2.3 STL Containers [org.stl]

The standard library containers and iterators (often called the STL framework, §3.10) can be under-
stood as an approach to gain the best of the two traditional models described previously. That
wasn’t the way the STL was designed, though. The STL was the result of a single-minded search
for uncompromisingly efficient and generic algorithms.

The aim of efficiency rules out hard-to-inline virtual functions for small, frequently-used access
functions. Therefore, we cannot present a standard interface to containers or a standard iterator
interface as an abstract class. Instead, each kind of container supports a standard set of basic opera-
tions. To avoid the problems of fat interfaces (§16.2.2, §24.4.3), operations that cannot be effi-
ciently implemented for all containers are not included in the set of common operations. For exam-
ple, subscripting is provided ferector but not forlist. In addition, each kind of container provides
its own iterators that support a standard set of iterator operations.

The standard containers are not derived from a common base. Instead, every container imple-
ments all of the standard container interface. Similarly, there is no common iterator base class. No
explicit or implicit run-time type checking is involved in using the standard containers and itera-
tors.

The important and difficult issue of providing common services for all containers is handled
through “allocators” passed as template arguments (819.4.3) rather than through a common base.

Before | go into details and code examples, the strengths and weaknesses of the STL approach
can be summarized:

+ Individual containers are simple and efficient (not quite as simple as truly independent con-

tainers can be, but just as efficient).

+ Each container provides a set of standard operations with standard names and semantics.
Additional operations are provided for a particular container type as needed. Furthermore,
wrapper classes (825.7.1) can be used to fit independently developed containers into a com-
mon framework (816.5[14]).

+ Additional commonality of use is provided through standard iterators. Each container pro-
vides iterators that support a set of standard operations with standard names and semantics.
An iterator type is defined for each particular container type so that these iterators are as
simple and efficient as possible.
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+ To serve different needs for containers, different iterators and other generalized interfaces
can be defined in addition to the standard iterators.

+ Containers are by default type-safe and homogeneous (that is, all elements in a container are
of the same type). A heterogeneous container can be provided as a homogeneous container
of pointers to a common base.

+ The containers are non-intrusive (that is, an object need not have a special base class or link
field to be a member of a container). Non-intrusive containers work well with built-in types
and withstructs with externally imposed layouts.

+ Intrusive containers can be fitted into the general framework. Naturally, an intrusive con-
tainer will impose constraints on its element types.

+ Each container takes an argument, calle@lbocator, which can be used as a handle for
implementing services for every container. This greatly eases the provision of universal ser-
vices such as persistence and object I/0O (§19.4.3).

— There is no standard run-time representation of containers or iterators that can be passed as a
function argument (although it is easy to define such representations for the standard con-
tainers and iterators where needed for a particular application; §19.3).

As before (816.2.1) indicates an advantage andéhdicates a disadvantage.

In other words, containers and iterators do not have fixed standard representations. Instead,
each container provides a standard interface in the form of a set of operations so that containers can
be used interchangeably. Iterators are handled similarly. This implies minimal overheads in time
and space while allowing users to exploit commonality both at the level of containers (as with the
based-object approach) and at the level of iterators (as with the specialized container approach).

The STL approach relies heavily on templates. To avoid excessive code replication, partial spe-
cialization to provide shared implementations for containers of pointers is usually required (§13.5).

16.3 Vector|org.vector]

Here,vector is described as an example of a complete standard container. Unless otherwise stated,
what is said aboutector holds for every standard container. Chapter 17 describes features peculiar
to lists, sets, maps, etc. The facilities offered yector — and similar containers are described in
some detail. The aim is to give an understanding both of the possible weetonfind of its role
in the overall design of the standard library.

An overview of the standard containers and the facilities they offer can be found in 817.1.
Below, vector is introduced in stages: member types, iterators, element access, constructors, stack
operations, list operations, size and capacity, helper functionseetati<bool>.

16.3.1 Types [org.types]

The standardrector is a template defined in namespasté and presented irvector>. It first
defines a set of standard names of types:

template <class T, class A= allocator<T> > class std: : vector {
public:
/1 types:
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typedef T value type / | type of element

typedef A allocator_type; / | type of memory manager
typedef typename A : size type size type

typedef typename A: : difference_type difference_type;

typedef implementation dependentliterator; [T
typedef implementation dependent2const_iterator; / / const T*
typedef std: : reverse iterator<iterator> reverse iterator;

typedef std:: reverse iterator<const_iterator> const_reverse iterator;

typedef typename A: : pointer pointer; / | pointer to element
typedef typename A : const_pointer const_pointer;

typedef typename A : reference reference | | reference to element
typedef typename A : const_reference const reference;

/...

b
Every standard container defines these typenames as members. Each defines them in the way most
appropriate to its implementation.

The type of the container’s elements is passed as the first template argument and is known as its
value type. The allocator_type, which is optionally supplied as the second template argument,
defines how thealue typeinteracts with various memory management mechanisms. In particular,
an allocator supplies the functions that a container uses to allocate and deallocate memory for its
elements. Allocators are discussed in 819.4. In gensigs, type specifies the type used for
indexing into the container, amifference typeis the type of the result of subtracting two iterators
for a container. For most containers, they corresposikéot andptrdiff t (86.2.1).

Iterators were introduced in 82.7.2 and are described in detail in Chapter 19. They can be
thought of as pointers to elements of the container. Every container provides a typierated
for pointing to elements. It also providesanst iterator type for use when elements don't need
to be modified. As with pointers, we use the safimst version unless there is a reason to do oth-
erwise. The actual types wéctor’s iterators are implementation-defined. The obvious definitions
for a conventionally-definedector would beT* andconst T*, respectively.

The reverse iterator types feector are constructed from the standaeverse iterator tem-
plates (819.2.5). They present a sequence in the reverse order.

As shown in 83.8.1, these member typenames allow a user to write code using a container with-
out having to know about the actual types involved. In particular, they allow a user to write code
that will work for any standard container. For example:

template<class C> typename C.: value _type sum( const C& c)

{
typename C. : value type s=0;
typename C.: const iterator p=c. begin() ; / / start at the beginning
while (p'= c. end()) { /| continue until the end
S+=*p; /| getvalue of element
++p; /| make p point to next element
}
return s
}
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Having to addypename before the names of member types of a template parameter is a nuisance.
However, the compiler isn’'t psychic. There is no general way for it to know whether a member of
a template argument type is a typename (8C.13.5).

As for pointers, prefiX means dereference the iterator (82.7.2, §19.2.1}antheans incre-
ment the iterator.

16.3.2 lterators [org.begin]

As shown in the previous subsection, iterators can be used to navigate containers without the pro-
grammers having to know the actual type used to identify elements. A few key member functions
allow the programmer to get hold of the ends of the sequence of elements:

template <class T, class A= allocator<T> > class wvector {

public:
/..
/1 iterators:
iterator begin() ; /| points to first element
const_iterator begin() const;
iterator end() ; / | points to one-past-last element
const_iterator end() const
reverse iterator rbegin() ; / | points to first element of reverse sequence
const_reverse iterator rbegin() const;
reverse iterator rend() ; / | points to one-past-last element of reverse sequence
const_reverse iterator rend() const;
/..

k

Thebegin()/ end() pair gives the elements of the container in the ordinary element order. That
is, elemen is followed by elemenl, element2, etc. Therbegin()/ rend() pair gives the ele-
ments in the reverse order. That is, elemert is followed by elemenh- 2, elementn- 3, etc.

For example, a sequence seen like this usiritesator:

begin() end()
\

can be viewed like this usingreverse iterator (§19.2.5):

rbegin() rend()

This allows us to use algorithms in a way that views a sequence in the reverse order. For example:
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template<class C>
typename C. : iterator find_last( const C& ¢, typename C.: value type v)
{

}

return find_first( c. rbegin() , c. rend() , v). base() ;

Thebasg) function returns arterator corresponding to theeverse iterator (819.2.5). Without
reverse iterators, we could have had to write something like:

template<class C>
typename C. : iterator find_last( const C&c, typename C.: value _type v)

{
typename C:: iterator p=c. end() ; / / search backwards from end
while ( p!= c. begin()) {
- p’
if (* p==v) return p;
return p;
}

A reverse iterator is a perfectly ordinary iterator, so we could have written:

template<class C>
typename C:: reverse iterator find last( const C& c, typename C.: value type v)
{
typename C.: reverse iterator p = c. rbegin() ; / / view sequence in reverse order
while ( p!'=c. rend()) {
if (* p==v) return p;
++p; / | note: not decrement (--)

}
return p;

16.3.3 Element Access [org.element]

One important aspect ofwaector compared with other containers is that one can easily and effi-
ciently access individual elements in any order:

template <class T, class A= allocator<T> > class wvector {
public:

/..

/1 element access:

reference aoperator[]( size _type m); /| unchecked access
const_reference operator[]( size type m) const,

reference ai( size type m); | | checked access
const_reference at( size type m) const;
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reference front() ; /| first element
const_reference front() const

reference Iback() ; ! | last element
const_reference back() const,

/...

k

Indexing is done byperator[]() andat() ; operator[]() provides unchecked access, whereas
at() does a range check and throowt_of rangeif an index is out of range. For example:

void f( vector<int>& v, int i1, int i2)

try {
for(int i =0; i <v. size) ; i++) {
/1 range already checked: use unchecked v[i] here
}
v. at(i1) =v. at(i2); // check range on access
/...
}

catch( out_of_range) {
/1 oops: out-of-range error
}

This illustrates one idea for use. That is, if the range has already been checked, the unchecked sub-
scripting operator can be used safely; otherwise, it is wise to use the range-@téckiohction.

This distinction is important when efficiency is at a premium. When that is not the case or when it

is not perfectly obvious whether a range has been correctly checked, it is safer to use a vector with a
checked] operator (such agecfrom §3.7.1) or a checked iterator (819.3).

The default access is unchecked to match arrays. Also, you can build a safe (checked) facility
on top of a fast one but not a faster facility on top of a slower one.

The access operations return values of tyeference or const reference depending on
whether or not they are applied t@anst object. A reference is some suitable type for accessing
elements. For the simple and obvious implementatioredtbr<X>, reference is simply X& and
const_reference is simply const X& The effect of trying to create an out-of-range reference is
undefined. For example:

void f( vector<double>& v)

double d=v[v. size()] ; / / undefined: bad index

list<char> Ist;
char c=lIst front() ; /| undefined: list is empty
}

Of the standard sequences, ovdgtor anddeque (817.2.3) support subscripting. The reason is the
desire not to confuse users by providing fundamentally inefficient operations. For example, sub-
scripting could have been provided fist (817.2.2), but doing that would have been dangerously
inefficient (that isO( n) ).

The memberd$ront() andback() return references to the first and last element, respectively.
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They are most useful where these elements are known to exist and in code where these elements are
of particular interest. Arector used as atack (§16.3.5) is an obvious example. Note thant()

returns a reference to the element to witiegin() returns an iterator. | often think &ont() as

the first element andbegin() as a pointer to the first element. The correspondence between
back() andend() is less simpleback() is the last element arehd() points to the last-plus-one
element position.

16.3.4 Constructors [org.ctor]

Naturally,vector provides a complete set (811.7) of constructors, destructor, and copy operations:

template <class T, class A= allocator<T> > class vector {
public:

/..

// constructors, etc.:

explicit vector( const A& = A()) ;

explicit vector( size type m const T&val =T() , const A&=A()) ; / / ncopies of val

template <class In> / 1 In must be an input iterator (819.2.1)
vector( In first, In last, const A& = A()) ;// copy from [first:last]

vector( const vector& x);

~vector() ;
vector& operator=( const vector& x);

template <class In> /1 In must be an input iterator (§19.2.1)
void assign( In first, In last); [ | copy from [first:last]

void assign( size type m const T&val); / / n copies of val

/...

h

A vedtor provides fast access to arbitrary elements, but changing its size is relatively expensive.
Consequently, we typically give an initial size when we creageiar. For example:

vector<Record> vr( 10000);

void f(int s1, int s2)
{

vector<int> vi( s1);

vector<double>* p = new vector<double>( s2);
}

Elements of a vector allocated this way are initialized by the default constructor for the element
type. That is, each ofi’'s 10000 elements is initialized biRecord() and each ofi’s s1 elements
is initialized byint() . Note that the default constructor for a built-in type performs initialization to
0 of the appropriate type (84.9.5, §10.4.2).

If a type does not have a default constructor, it is not possible to create a vector with elements
of that type without explicitly providing the value of each element. For example:
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class Num{ / / infinite precision
public:

Num( long);
/! no default constructor
/...

h
vector<Num> v1( 1000); [ | error: no default Num
vector<Num> v2( 1000, Num( 0)) ; / / ok

Since avector cannot have a negative number of elements, its size must be non-negative. This is
reflected in the requirement thaector's size type must be arunsigned type. This allows a
greater range of vector sizes on some architectures. However, it can also lead to surprises:

void f(int i)

{
vector<char> vcO(- 1); [/ / fairly easy for compiler to warn against
vector<char> vcl(i);

}
void g()

f(- 1); [/ [/ trick f() into accepting a large positive number!
}

In the callf(- 1), - 1is converted into a (rather large) positive integer (8C.6.3). If we are lucky,
the compiler will find a way of complaining.

The size of arector can also be provided implicitly by giving the initial set of elements. This is
done by supplying the constructor with a sequence of values from which to construetttine
For example:

void f( const list<X>& Ist)

{

vector<X> vi(Ist. begin() , Ist end()) ; / / copy elements from list

char p[] =" despair";

vector<char> v2( p,& p[ sizeof( p)- 1]) ; / / copy characters from C-style string
}

In each case, theector constructor adjusts the size of thector as it copies elements from its
input sequence.

Thevector constructors that can be invoked with a single argument are deelqliit to pre-
vent accidental conversions (§811.7.1). For example:

vector<int> v1( 10); / | ok: vector of 10 ints

vector<int> v2 = vector<int>( 10); / / ok: vector of 10 ints

vector<int> v3 = v2, / | ok:v3is a copy of v2

vector<int> v4 = 10; / | error: attempted implicit conversion of 10 to veetiot>

The copy constructor and the copy-assignment operators copy the elementectira For a
vector with many elements, that can be an expensive operatiseckws are typically passed by
reference. For example:
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void f1( vector<int>&); / | common style
void f2( const vector<int>&); / / common style
void f3( vector<int>); [ | rare style
void h()
{

vector<int> v( 10000);

/...

f1(v); pass a reference

}

/1
f2(v); | | pass areference
f3(v); / [/ copy the 10000 elements into a new vector for f3() to use

The assign functions exist to provide counterparts to the multi-argument constructors. They are
needed becausetakes a single right-hand operandassign() is used where a default argument
value or a range of values is needed. For example:

class Book {
/..
2
void f( vector<Num>& vn, vector<char>& vc, vector<Book>& vb, list<Book>& |b)
{
vn. assign( 10, Num( 0)) ; /| assign vector of 10 copies of Num(0) to vn
char s[] ="literal";
vc. assign( s,& 9 sizeof( s)- 1]) ; / | assign "literal" to vc
vb. assign( Ib. begin() , Ib. end()) ; / / assign list elements
/..
}

Thus, we can initialize @ector with any sequence of its element type and similarly assign any such
sequence. Importantly, this is done without explicitly introducing a multitude of constructors and
conversion functions. Note that assignment completely changes the elements of a vector. Concep-
tually, all old elements are erased and the new ones are inserted. After assignment, the size of a
vector is the number of elements assigned. For example:

void f()

{
vector<char> v( 10,” X) ; /| v.size()==10, each element has the value X’
v. assgn( 5, a) ; /| v.size()==5, each element has the value 'a’
/..

}

Naturally, whatassign() does could be done indirectly by first creating a suitaedtor and then
assigning that. For example:
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void f2( vector<Book>& vh, list<Book>& Ib)

{
vector<Boolc vi( Ib. begin() , Ib. end()) ;
vh=wt;
1l ...

}

However, this can be both ugly and inefficient.
Constructing avector with two arguments of the same type can lead to an apparent ambiguity:

vector<int> v( 10, 50); / / vector(size,value) or vector(iteratorl,iterator2)? vector(size,value)!
However, arintisn’t an iterator and the implementation must ensure that this actually invokes
vector( vector<int>: : size type, const int&, const vector<int>:: allocator_type&);
rather than
vector( vector<int>: : iterator, vector<int>:: iterator, const vector<int>:: allocator_type&);

The library achieves this by suitable overloading of the constructors and handles the equivalent
ambiguities forassign() andinsert() (816.3.6) similarly.

16.3.5 Stack Operations [org.stack]

Most often, we think of &ector as a compact data structure that we can index to access elements.
However, we can ignore this concrete notion and wegtor as an example of the more abstract
notion of a sequence. Looking atvector this way, and observing common uses of arrays and
vectors, it becomes obvious that stack operations make sensedcor

template <class T, class A= allocator<T> > class vector {
public:

/..

/1 stack operations:

void push_back( const T&x); / / add to end
void pop_back() ; / | remove last element
/..

3
These functions treatwector as a stack by manipulating its end. For example:

void f( vector<char>& s)
{
s. push back(" a) ;
s. push back(" b") ;
s. push_back(" ¢) ;
s. pop_back() ;
if (9 s size))- 1] '= b)) emor(" impossible!") ;
s. pop_back() ;
if (s. back() != "a’) emror(" should never happen") ;
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Each timepush_back() is called, thevector s grows by one element and that element is added at
the end. Scg s. size))- 1], also known as. back() (816.3.3), is the element most recently
pushed onto theector.

Except for the wordrector instead ofstack, there is nothing unusual in this. The suffback
is used to emphasize that elements are added to the endvettibrerather than to the beginning.
Adding an element to the end olvector could be an expensive operation because extra memory
needs to be allocated to hold it. However, an implementation must ensure that repeated stack oper-
ations incur growth-related overhead only infrequently.

Note thatpop_back() does not return a value. It just pops, and if we want to know what was
on the top of the stack before the pop, we must look. This happens not to be my favorite style of
stack (82.5.3, §2.5.4), but it's arguably more efficient and it's the standard.

Why would one do stack-like operations owextor? An obvious reason is to implement a
stack (817.3.1), but a more common reason is to constrwettar incrementally. For example,
we might want to read eector of points from input. However, we don’t know how many points
will be read, so we can't allocate a vector of the right size and then read into it. Instead, we might
write:

vector<Point> cities
void add_points( Point sentinel)

{
Point buf;
while ( cin >> buf) {
if ( buf == sentinel) return;
/1 check new point
cities push_back( buf);
}
}

This ensures that thector expands as needed. If all we needed to do with a new point were to put
it into the vector, we might have initializedities directly from input in a constructor (816.3.4).
However, it is common to do a bit of processing on input and expand a data structure gradually as a
program progressepush back() supports that.

In C programs, this is one of the most common uses of the C standard library fuealion
loc() . Thus,vector — and, in general, any standard contaiegprovides a more general, more
elegant, and no less efficient alternativeealloc() .

Thesize() of avector is implicitly increased byush back() so thevector cannot overflow
(as long as there is memory available to acquire; see §19.4.1). Howesetgrecan underflow:

void f()
{
vector<int> v;
v. pop_back() ; / | undefined effect: the state of v becomes undefined

v. push back(7); / / undefined effect (the state of v is undefined), probably bad
}

The effect of underflow is undefined, but the obvious implementatipomfback() causes mem-
ory not owned by theector to be overwritten. Like overflow, underflow must be avoided.
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16.3.6 List Operations [org.list]

Thepush _back() , pop_back() , andback() operations (§16.3.5) allow\aector to be used effec-
tively as a stack. However, it is sometimes also useful to add elements in the middiectof a
and to remove elements fronvector:

template <class T, class A= allocator<T> > class wvector {

public:
/...
/1 list operations:
iterator insert( iterator pos, const T&X); / | add x before 'pos’
void insert( iterator pos, size type m, const T& X);
template <class In> / 1 In must be an input iterator (819.2.1)

void insert( iterator pos, In first, In last); / / insert elements from sequence

iterator erase( iterator pos); / | remove element at pos
iterator erase( iterator first, iterator last); | | erase sequence
void clear() ; / | erase all elements
/...

h

To see how these operations work, let's do some (nonsensical) manipulativectfreof names
of fruit. First, we define thgector and populate it with some names:

vector<string> fruit;

fruit. push_back(" peach") ;
fruit. push_back(" apple") ;
fruit. push_back(" kiwifruit") ;
fruit. push_back(" pear") ;
fruit. push_back(" starfruit") ;
fruit. push_back(" grape") ;

If | take a dislike to fruits whose names start with the Igttéican remove those names like this:

sort( fruit. begin() , fruit. end()) ;

vector<string>: : iterator p1 = find_if( fruit. begin() , fruit. end() , initial(" p")) ;
vector<siring>: : iterator p2 = find_if( p1, fruit. end() , initial_not(" p’)) ;

fruit. erase( pl, p2);

In other words, sort theector, find the first and the last fruit with a name that starts with the letter
p, and erase those elements frivmit. How to write predicate functions suchiattial( x) (is the
initial letterx?) andinitial_not() (is the initial letter different fronp?) is explained in §18.4.2.

The erase( p1, p2) operation removes elements starting frpinup to and not including?2.
This can be illustrated graphically:

fruit[]:
pl p2
I I

v v
apple grape kiwifruit peach pear starfruit
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Theerase( p1, p2) removegeach andpear, yielding:
fruit[]:
apple grape lkiwifruit starfruit

As usual, the sequence specified by the user is from the beginning to one-past-the-end of the
sequence affected by the operation.
It would be tempting to write:

vector<string>: : iterator p1 = find_if( fruit. begin() , fruit. end() , initial(" p’)) ;
vector<string>: : reverse iterator p2 = find_if( fruit. rbegin() , fruit. rend() , initial(" p’)) ;
fruit. erasg( p1, p2+1); / / oops!: type error

However, vector<fruit>: ; iterator and vector<fruit>: : reverse iterator need not be the same
type, so we couldn’t rely on the call efase) to compile. To be used with aterator, a
reverse iterator must be explicitly converted:

fruit. erase( p1, p2. base()) ; / / extract iterator from reverséterator (§19.2.5)

Erasing an element fromwaector changes the size of tivector, and the elements after the erased
elements are copied into the freed positions. In this exafinpit,size) becomegl and thestar-
fruit that used to bfruit] 5] is nowfruit[ 3] .

Naturally, it is also possible &rase() a single element. In that case, only an iterator for that
element is needed (rather than a pair of iterators). For example,

fruit. erase( find( fruit. begin() , fruit. end() ," starfruit”)) ;
fruit. erase( fruit. begin()+ 1);

gets rid of thestarfruit and thegrape, thus leavindruit with two elements:
fruit[]:
apple kiwifruit
It is also possible to insert elements into a vector. For example:

fruit. insert( fruit. begin()+ 1," chemry") ;
fruit. insert( fruit. end() ," cranberry") ;

The new element is inserted before the position mentioned, and the elements from there to the end
are moved to make space. We get:

fruit[]:
apple cherry kiwifruit cranbery

Note thatf. insert( f. end() , X) is equivalent td. push_back( x) .
We can also insert whole sequences:

fruit. insert( fruit. begin()+ 2, citrus. begin() , citrus. end()) ;
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If citrusis a container
citrug]:
lemon grapefruit orange lime
we get:
fruit[]:
apple chery lemon grapefruit orange lime kiwifruit cranbery

The elements dfitrusare copied intdruit by insert() . The value otitrusis unchanged.
Clearly,insert() anderase) are more general than are operations that affect only the tail end
of avector (§16.3.5). They can also be more expensive. For example, to make room for a new ele-
ment,insert() may have to reallocate every element to a new part of memory. If insertions into
and deletions from a container are common, maybe that container shoulisbeather than a
vector. A listis optimized folinsert() anderase() rather than for subscripting (816.3.3).
Insertion into and erasure fronvector (but not alist or an associative container suchnzap)
potentially move elements around. Consequently, an iterator pointing to an elemevectdra
may after arinsert() or erase() point to another element or to no element at all. Never access an
element through an invalid iterator; the effect is undefined and quite likely disastrous. In particular,
beware of using the iterator that was used to indicate where an insertion tookimsext¢)
makes its first argument invalid. For example:

void duplicate_elements( vector<string>& f)
{

}

Just think of it (816.5[15]). Arector implementation would move all elemenrtor at least all ele-
ments aftep — to make room for the new element.

The operatiorclear() erases all elements of a container. Thuslear() is a shorthand for
c. erasg c. begin() , c. end()) . Afterc. clear() ,c. size() isO.

for( vector<string>: : iterator p =f. begin() ; p!=f. end() ; ++p) f. insert( p,* p);/ / No!

16.3.7 Addressing Elements [org.addressing]

Most often, the target of aerase() or insert() is a well-known place (such dmgin() or

end() ), the result of a search operation (sucliimd() ), or a location found during an iteration.

In such cases, we have an iterator pointing to the relevant element. However, we often refer to ele-
ments of avector by subscripting. How do we get an iterator suitable as an argumesrasaf)

or insert() for the element with indeX of a containec? Since that element is the 7th element
after the beginning;. begin()+ 7 is a good answer. Other alternatives that may seem plausible by
analogy to arrays should be avoided. Consider:

template<class C> void f( C& c)

{
c. erasg c. begin()+ 7); /| ok
c. erase&c[ 7)) ; /I not general
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c. erase( c+7); / | error: adding 7 to a container makes no sense

c. erasg c. back()) ; /I error: c.back() is a reference, not an iterator

c. erasg( c. end()- 2); /| ok (second to last element)

c. erasg c. rbegin()+ 2); [ | error: vector::reverseiterator and vector::iterator
/1 are different types

c. erasg(( c. rbegin()+ 2). base()) ; / / obscure, but ok (see §19.2.5)

}

The most tempting alternativ&g| 7] , actually happens to work with the obvious implementation
of vector, wherec[ 7] refers directly to the element and its address is a valid iterator. However,
this is not true for other containers. For examplstor map iterator is almost certainly not a
simple pointer to an element. Consequently, their iterators do not s@ippoftherefore&c[ 7]
would be an error that the compiler catches.

The alternatives+7 andc. back() are simple type errors. A container is not a numeric vari-
able to which we can add andc. back() is an element with a value likepear" that does not
identify the pear’s location in the contairger

16.3.8 Size and Capacity [org.size]

So far,vector has been described with minimal reference to memory managementtoA grows
as needed. Usually, that is all that matters. However, it is possible to ask directly about the way a
vector uses memory, and occasionally it is worthwhile to affect it directly. The operations are:

template <class T, class A= allocator<T> > class vector {

public:
/...
/1 capacity:
size type size() const /| number of elements
bool empty() const{ return size)== O; }
size type max_size() const; | | size of the largest possible vector

void resize( size type sz T val =T()) ; / / added elements initialized by val

size type capacity() const; | | size of the memory (in number of elements) allocated
void reserve( size type m); /| make room for a total of n elements; don't initialize
/1 throw a lengtherror if n>max size()
/...
5

At any given time, avector holds a number of elements. This number can be obtained by calling
size) and can be changed usingsize) . Thus, a user can determine the size of a vector and
change it if it seems insufficient or excessive. For example:

class Histogram {
vector<int> count;
public:
Histogram( int h) : count( max( h, 8)) {}
void record( int i);
/...
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void Histogram : record( int i)

{
if (i<0) i=0;
if ( count. size()<= i) count. resize(i+i); / / make lots of room
countf i]++;

}

Usingresize) on avector is very similar to using the C standard library functiealloc() on a
C array allocated on the free store.

When avector is resized to accommodate more (or fewer) elements, all of its elements may be
moved to new locations. Consequently, it is a bad idea to keep pointers to elemenetton that
might be resized; afteesize() , such pointers could point to deallocated memory. Instead, we can
keep indices. Note thaush back() , insert() , anderase() implicitly resize avector.

In addition to the elements held, an application may keep some space for potential expansion.
A programmer who knows that expansion is likely can telvdator implementation toeserve()
space for future expansion. For example:

struct Link {
Link* next;
Link( Link* n=0) : next(n) {}
/...

b

vector<Link> v;

void chain( size t n) // fill v with n Links so that each Link points to its predecessor

{
V. reserve( n);
v. push_back( Link( 0)) ;
for (int i =1; i<n; i++) v. push back( Link(& V[ i- 1])) ;
...
}

A call v. reserve( n) ensures that no allocation will be needed when the sizésahcreased until
v. size() exceeds.

Reserving space in advance has two advantages. First, even a simple-minded implementation
can then allocate sufficient space in one operation rather than slowly acquiring enough memory
along the way. However, in many cases there is a logical advantage that outweighs the potential
efficiency gain. The elements of a container are potentially relocated wheetongrows. Thus,
the links built between the elementswih the previous example are guaranteed only because the
call of reserve() ensures that there are no allocations while the vector is being built. That is, in
some caseseserve() provides a guarantee of correctness in addition to whatever efficiency
advantages it gives.

That same guarantee can be used to ensure that potential memory exhaustion and potentially
expensive reallocation of elements take place at predictable times. For programs with stringent
real-time constraints, this can be of great importance.

Note thatreserve() doesn’t change the size of/ector. Thus, it does not have to initialize any
new elements. In both respects, it differs fnesize() .
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In the same way asize() gives the current number of elemergapacity() gives the current
number of reserved memory slots;capacity()- c. size) is the number of elements that can be
inserted without causing reallocation.

Decreasing the size of\ector doesn't decrease its capacity. It simply leaves room for the
vector to grow into later. If you want to give memory back to the system, assign a new value to the
vector. For example:

v = vector<int>( 4, 99);

A vector gets the memory it needs for its elements by calling member functions of its allocator
(supplied as a template parameter). The default allocator, ell@mitor (§19.4.1), usesew to
obtain storage so that it will throlbad alloc if no more storage is obtainable. Other allocators can
use different strategies (see §19.4.2).

Thereserve() andcapacity() functions are unique teector and similar compact containers.
Containers such dist do not provide equivalents.

16.3.9 Other Member Functions [org.etc]

Many algorithms- including important sort algorithmsinvolve swapping elements. The obvious
way of swapping (813.5.2) simply copies elements. Howeveetdtar is typically implemented
with a structure that acts as a handle (813.5, §17.1.3) to the elements. Thuectos® can be
swapped much more efficiently by interchanging the handiestpr:: swap() does that. The
time difference between this and the defawidp() is orders of magnitude in important cases:

template <class T, class A= allocator<T> > class wvector {
public:
/..

void swap( vector&);
allocator_type get allocator() const
h
The get_allocator() function gives the programmer a chance to get holdactor’'s allocator

(816.3.1, 816.3.4). Typically, the reason for this is to ensure that data from an application that is
related to avector is allocated similarly to theector itself (§19.4.1).

16.3.10 Helper Functions [org.algo]

Two vectors can be compared using and<:

template <class T, class A>
bool std: : operator==( const vector<T, A>& X, const vector<T, A>&Y);

template <class T, class A>
bool std: : operator<( const vector<T, A>& X, const vector<T, A>&Y);

Two vedtors vl andv2 compare equal i¥l. size)== v2. size) andvl] n]J== v2[ n] for every
valid indexn. Similarly, < is a lexicographical ordering. In other wordsfor vectors could be
defined like this:
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template <class T, class A>
inline lbool std:: operator<( const vector<T, A>& X, const vector<T, A>&Y)

return lexicographical_compare( x. begin() , x. end() , y. begin() , y. end()) ;/ / see §18.9
}

This means that is less thary if the first elemenk[ i] that is not equal to the corresponding ele-
menty[ i] is less thany i], or x. size))< y. size() with everyx[ i] equal to its corresponding
yli].

The standard library also provides, <=, >, and>=, with definitions that correspond to those
of == and<.

Becauseswap() is a member, it is called using thg swap( v2) syntax. However, not every
type has awap() member, so generic algorithms use the conventiswap( a, b) syntax. To
make that work fowectors also, the standard library provides the specialization:

template <class T, class A> void std:: swap( vector<T, A>& x, vector<T, A>&Y)
{

}

X. swap(y);

16.3.11 Vectorbool> [org.vector.bool]

The specialization (§13.5pctor<bool> is provided as a compaeéctor of bool. A bool variable
is addressable, so it takes up at least one byte. However, it is easy to implestarrbool> so
that each element takes up only a bit.

The usualector operations work fovector<bool> and retain their usual meanings. In particu-
lar, subscripting and iteration work as expected. For example:

void f( vector<bool>& v)

for (int i =0; i<v. sizg) ; ++i) cin>> V[ i]; / | iterate using subscripting

typedef vector<bool>:: const_iterator VI;
for (VI p=v. begin() ; p'=v. end() ; ++p) cout<<*p; | | iterate using iterators
}

To achieve this, an implementation must simulate addressing of a single bit. Since a pointer cannot
address a unit of memory smaller than a byeetor<bool>: : iterator cannot be a pointer. In par-
ticular, one cannot rely dmool* as an iterator for wector<bool>:

void f( vector<bool>& v)

{
bool* p=v. begin() ; // error: type mismatch

/...
}

A technigue for addressing a single bit is outlined in §17.5.3.
The library also providedbitset as a set of Boolean values with Boolean set operations
(§17.5.3).
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16.4 Advice[org.advice]

[1] Use standard library facilities to maintain portability; §16.1.

[2] Don't try to redefine standard library facilities; 816.1.2.

[3] Don't believe that the standard library is best for everything.

[4] When building a new facility, consider whether it can be presented within the framework
offered by the standard library; §16.3.

[5] Remember that standard library facilities are defined in namesfth@&16.1.2.

[6] Declare standard library facilities by including its header, not by explicit declaration; §16.1.2.

[7] Take advantage of late abstraction; §16.2.1.

[8] Avoid fat interfaces; §16.2.2.

[9] Prefer algorithms with reverse iterators over explicit loops dealing with reverse order; §16.3.2.

[10] Usebase) to extract arterator from arewverse iterator; 816.3.2.

[11] Pass containers by reference; §16.3.4.

[12] Use iterator types, such hst<char>:: iterator, rather than pointers to refer to elements of a
container; §16.3.1.

[13] Useconstiterators where you don’t need to modify the elements of a container; §16.3.1.

[14] Useat() , directly or indirectly, if you want range checking; §16.3.3.

[15] Usepush back() orresize() on a container rather thaealloc() on an array; §16.3.5.

[16] Don't use iterators into a resizedctor; §16.3.8.

[17] Usereserve() to avoid invalidating iterators; §16.3.8.

[18] When necessary, useserve() to make performance predictable; §16.3.8.

16.5 Exercisesgorg.exercises]

The solutions to several exercises for this chapter can be found by looking at the source text of an
implementation of the standard library. Do yourself a favor: try to find your own solutions before
looking to see how your library implementer approached the problems.
1. (.5) Create aector<char> containing the letters of the alphabet in order. Print the elements

of that vector in order and in reverse order.
2. (L.5) Create aector<string> and read a list of names of fruits frazim into it. Sort the list

and print it.

3. (L.5) Using thevector from §16.5[2], write a loop to print the names of all fruits with the ini-
tial lettera.

4. () Using thevector from §16.5[2], write a loop to delete all fruits with the initial leter

5. (1) Using thevector from §16.5[2], write a loop to delete all citrus fruits.

6. ({L.5) Using thevector from §16.5[2], write a loop to delete all fruits that you don't like.

7. ((2) Complete th&/ector, List, andltor classes from §16.2.1.

8. (2.5) Given arltor class, consider how to provide iterators for forwards iteration, backwards

iteration, iteration over a container that might change during an iteration, and iteration over an
immutable container. Organize this set of containers so that a user can interchangeably use iter-
ators that provide sufficient functionality for an algorithm. Minimize replication of effort in the
implementation of the containers. What other kinds of iterators might a user need? List the
strengths and weaknesses of your approach.
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9. (@) Complete th€ontainer, Vector, andList classes from §16.2.2.

10. (2.5) Generate 10,000 uniformly distributed random numbers in the range 0 to 1,023 and store
them in (a) an standard libramector, (b) a Vector from 816.5[7], and (3) &/ector from
816.5[9]. In each case, calculate the arithmetic mean of the elements of the vector (as if you
didn’t know it already). Time the resulting loops. Estimate, measure, and compare the memory
consumption for the three styles of vectors.

11. (.5) Write an iterator to allowector from §16.2.2 to be used as a container in the style of
§16.2.1.

12. (L..5) Write a class derived fro@ontainer to allow Vector from §16.2.1 to be used as a con-
tainer in the style of §16.2.2.

13. (R) Write classes to allowector from §16.2.1 an®/ector from §16.2.2 to be used as standard
containers.

14. (2) Write a template that implements a container with the same member functions and member
types as the standavector for an existing (nonstandard, non-student-exercise) container type.
Do not modify the (pre)existing container type. How would you deal with functionality offered
by the nonstandangector but not by the standarector?

15. (L.5) Outline the possible behavior duplicate elements() from §16.3.6 for a
vedtor<string> with the three elemendon’ t do this.
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