14

Exception Handling

Don’t interrupt me
while I’'m interrupting.
— Winston S. Churchill

Error handling— grouping of exceptions— catching exceptions— catch all— re-
throw — resource management auto_ptr — exceptions andew — resource exhaus-
tion — exceptions in constructors- exceptions in destructoss- exceptions that are not
errors— exception specifications- unexpected exceptiors- uncaught exceptions-
exceptions and efficiency— error-handling alternatives— standard exceptions—
advice— exercises.

14.1 Error Handling [except.error]

As pointed out in 8§8.3, the author of a library can detect run-time errors but does not in general
have any idea what to do about them. The user of a library may know how to cope with such errors
but cannot detect them or else they would have been handled in the user’s code and not left for
the library to find. The notion of aexceptionis provided to help deal with such problems. The
fundamental idea is that a function that finds a problem it cannot copehndthis an exception,
hoping that its (direct or indirect) caller can handle the problem. A function that wants to handle
that kind of problem can indicate that it is willingdatchthat exception (§2.4.2, §8.3).

This style of error handling compares favorably with more traditional techniques. Consider the
alternatives. Upon detecting a problem that cannot be handled locally, the program could:

[1] terminate the program,

[2] return a value representing “error,”

[3] return a legal value and leave the program in an illegal state, or

[4] call a function supplied to be called in case of “error.”

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

http://store.awl.com/catalog/cepub_detail.mhtml?isbn=0-201-88954-4

356 Exception Handling Chapter 14

Case [1], “terminate the program,” is what happens by default when an exception isn’'t caught.
For most errors, we can and must do better. In particular, a library that doesn’t know about the pur-
pose and general strategy of the program in which it is embedded cannot exitly or

abort() . A library that unconditionally terminates cannot be used in a program that cannot afford
to crash. One way of viewing exceptions is as a way of giving control to a caller when no meaning-
ful action can be taken locally.

Case [2], “return an error value,” isn’'t always feasible because there is often no acceptable
“error value.” For example, if a function returns amt, everyint might be a plausible result.

Even where this approach is feasible, it is often inconvenient because every call must be checked
for the error value. This can easily double the size of a program (814.8). Consequently, this
approach is rarely used systematically enough to detect all errors.

Case [3], “return a legal value and leave the program in an illegal state,” has the problem that
the calling function may not notice that the program has been put in an illegal state. For example,
many standard C library functions set the global varigni@o to indicate an error (820.4.1,
§22.3). However, programs typically fail to testno consistently enough to avoid consequential
errors caused by values returned from failed calls. Furthermore, the use of global variables for
recording error conditions doesn’t work well in the presence of concurrency.

Exception handling is not meant to handle problems for which case [4], “call an error-handler
function,” is relevant. However, in the absence of exceptions, an error-handler function has
exactly the three other cases as alternatives forithoandles the error. For a further discussion of
error-handling functions and exceptions, see §14.4.5.

The exception-handling mechanism provides an alternative to the traditional techniques when
they are insufficient, inelegant, and error-prone. It provides a way of explicitly separating error-
handling code from “ordinary” code, thus making the program more readable and more amenable
to tools. The exception-handling mechanism provides a more regular style of error handling, thus
simplifying cooperation between separately written program fragments.

One aspect of the exception-handling scheme that will appear novel to C and Pascal program-
mers is that the default response to an error (especially to an error in a library) is to terminate the
program. The traditional response has been to muddle through and hope for the best. Thus, excep-
tion handling makes programs more “brittle” in the sense that more care and effort must be taken
to get a program to run acceptably. This seems preferable, though, to getting wrong results later in
the development processor after the development process is considered complete and the pro-
gram is handed over to innocent users. Where termination is unacceptable, we can catch all excep-
tions (814.3.2) or catch all exceptions of a specific kind (814.6.2). Thus, an exception terminates a
program only if a programmer allows it to terminate. This is preferable to the unconditional termi-
nation that happens when a traditional incomplete recovery leads to a catastrophic error.

Sometimes people have tried to alleviate the unattractive aspects of “muddling through” by
writing out error messages, putting up dialog boxes asking the user for help, etc. Such approaches
are primarily useful in debugging situations in which the user is a programmer familiar with the
structure of the program. In the hands of nondevelopers, a library that asks the (possibly absent)
user/operator for help is unacceptable. Also, in many cases error messages have no place to go
(say, if the program runs in an environment in whiglr doesn’t connect to anything a user
notices); they would be incomprehensible to an end user anyway. At a minimum, the error mes-
sage might be in the wrong natural language (say, in Finnish to a English user). Worse, the error

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 14.1 Error Handling 357

message would typically refer to library concepts completely unknown to a user (say, “bad argu-
ment to atan2,” caused by bad input to a graphics system). A good library doesn’t “blabber” in
this way. Exceptions provide a way for code that detects a problem from which it cannot recover to
pass the problem on to some part of the system that might be able to recover. Only a part of the
system that has some idea of the context in which the program runs has any chance of composing a
meaningful error message.

The exception-handling mechanism can be seen as a run-time analog to the compile-time type
checking and ambiguity control mechanisms. It makes the design process more important and can
increase the work needed to get an initial and buggy version of a program running. However, the
result is code that has a much better chance to run as expected, to run as an acceptable part of a
larger program, to be comprehensible to other programmers, and to be amenable to manipulation by
tools. Similarly, exception handling provides specific language features to support “good style” in
the same way othert@ features support “good style” that can be practiced only informally and
incompletely in languages such as C and Pascal.

It should be recognized that error handling will remain a difficult task and that the exception-
handling mechanism although more formalized than the techniques it repladesstill relatively
unstructured compared with language features involving only local control flow. Fhe C
exception-handling mechanism provides the programmer with a way of handling errors where they
are most naturally handled, given the structure of a system. Exceptions make the complexity of
error handling visible. However, exceptions are not the cause of that complexity. Be careful not to
blame the messenger for bad news.

This may be a good time to review 88.3, where the basic syntax, semantics, and style-of-use
aspects of exception handling are presented.

14.1.1 Alternative Views on Exceptions [except.views]

“Exception” is one of those words that means different things to different people. ¥he C
exception-handling mechanism is designed to support handling of errors and other exceptional con-
ditions (hence the name). In particular, it is intended to support error handling in programs com-
posed of independently developed components.

The mechanism is designed to handle only synchronous exceptions, such as array range checks
and /O errors. Asynchronous events, such as keyboard interrupts and certain arithmetic errors, are
not necessarily exceptional and are not handled directly by this mechanism. Asynchronous events
require mechanisms fundamentally different from exceptions (as defined here) to handle them
cleanly and efficiently. Many systems offer mechanisms, such as signals, to deal with asynchrony,
but because these tend to be system-dependent, they are not described here.

The exception-handling mechanism is a nonlocal control structure based on stack unwinding
(814.4) that can be seen as an alternative return mechanism. There are therefore legitimate uses of
exceptions that have nothing to do with errors (814.5). However, the primary aim of the
exception-handling mechanism and the focus of this chapter is error handling and the support of
fault tolerance.

Standard €+ doesn’t have the notion of a thread or a process. Consequently, exceptional cir-
cumstances relating to concurrency are not discussed here. The concurrency facilities available on
your system are described in its documentation. Here, I'll just note that+theexXZeption-

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

358 Exception Handling Chapter 14

handling mechanism was designed to be effective in a concurrent program as long as the program-
mer (or system) enforces basic concurrency rules, such as properly locking a shared data structure
while using it.

The G+ exception-handling mechanisms are provided to report and handle errors and excep-
tional events. However, the programmer must decide what it means to be exceptional in a given
program. This is not always easy (§14.5). Can an event that happens most times a program is run
be considered exceptional? Can an event that is planned for and handled be considered an error?
The answer to both questions is yes. “Exceptional” does not mean “almost never happens” or
“disastrous.” It is better to think of an exception as meaning “some part of the system couldn’t do
what it was asked to do.” Usually, we can then try something else. Excéptaws should be
infrequent compared to function calls or the structure of the system has been obscured. However,
we should expect most large programsiimw andcatch at least some exceptions in the course of
a normal and successful run.

14.2 Grouping of Exceptiongexcept.grouping]

An exception is an object of some class representing an exceptional occurrence. Code that detects
an error (often a librarydhrows an object (88.3). A piece of code expresses desire to handle an
exception by aatch clause. The effect of throw is to unwind the stack until a suitaldatch is
found (in a function that directly or indirectly invoked the function that threw the exception).

Often, exceptions fall naturally into families. This implies that inheritance can be useful to
structure exceptions and to help exception handling. For example, the exceptions for a mathemati-
cal library might be organized like this:

class Matherr { };

class Overflow. public Matherr { };
class Underflow: public Matherr { };
class Zerodivide: public Matherr { };
/...

This allows us to handle amatherr without caring precisely which kind it is. For example:

void f()

{

try {
/"

}
catch (Overflow) {
/1 handle Overflow or anything derived from Overflow

catch (Matherr) {
/1 handle any Matherr that is not Overflow
}

}

Here, anOverflow is handled specifically. All otheMatherr exceptions will be handled by the
general case.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 14.2 Grouping of Exceptions 359

Organizing exceptions into hierarchies can be important for robustness of code. For example,
consider how you would handle all exceptions from a library of mathematical functions without
such a grouping mechanism. This would have to be done by exhaustively listing the exceptions:

void g()
{

try {
/...

}

catch (Overflow) { /* ..*/ }

catch (Underflow) { /* ...*/ }

catch (Zerodivide) { /* ...*/ }
}

This is not only tedious, but a programmer can easily forget to add an exception to the list. Con-
sider what would be needed if we didn't group math exceptions. When we added a new exception
to the math library, every piece of code that tried to handle every math exception would have to be
modified. In general, such universal update is not feasible after the initial release of the library.
Often, there is no way of finding every relevant piece of code. Even when there is, we cannot in
general assume that every piece of source code is available or that we would be willing to make
changes if it were. These recompilation and maintenance problems would lead to a policy that no
new exceptions can be added to a library after its first rel¢fageywould be unacceptable for
almost all libraries. This reasoning leads exceptions to be defined as per-library or per-subsystem
class hierarchies (814.6.2).

Please note that neither the built-in mathematical operations nor the basic math library (shared
with C) reports arithmetic errors as exceptions. One reason for this is that detection of some arith-
metic errors, such as divide-by-zero, are asynchronous on many pipelined machine architectures.
The Matherr hierarchy described here is only an illustration. The standard library exceptions are
described in §14.10.

14.2.1 Derived Exceptions [except.derived]

The use of class hierarchies for exception handling naturally leads to handlers that are interested
only in a subset of the information carried by exceptions. In other words, an exception is typically
caught by a handler for its base class rather than by a handler for its exact class. The semantics for
catching and naming an exception are identical to those of a function accepting an argument. That
is, the formal argument is initialized with the argument value (87.2). This implies that the excep-
tion thrown is “sliced” to the exception caught (§12.2.3). For example:

class Matherr {

/...

virtual void debug_print() const{ cemr << " Math emror"; }
h
class Int_overflow. public Matherr {

const char* op;

int al, az;

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

360 Exception Handling Chapter 14

public:
Int_overflow(const char* p, int a, int b) { op=p; al=a, a2="b; }
virtual void debug_print() const{ cemr <<op<<’(" <<al<<’,/ <<a2<<’); 1}

/..
h
void f()
{
try {
90 ;
catch (Mather m) {
/..
}
}

When theMatherr handler is enteredn is a Matherr object— even if the call tog() threw
Int_overflow. This implies that the extra information found inlat overflow is inaccessible.

As always, pointers or references can be used to avoid losing information permanently. For
example, we might write:

int add(int x, int y)
if ((x>0 &&y>0 &&X>INT_MAX-y) || (x<0 &&Yy<0 &&x<INT_MIN- y))
throw Int_overflow("+", X, y);

return x+y; / / x+y will not overflow

}
void f()
{
try {
int i1=add(1, 2);
int i2 = add(INT_MAX;- 2);
int i3 =add(INT_MAX, 2); /| here we go!
}
catch (Matherr& m) {
/...
m. debug_print() ;
}
}

The last call ofadd() triggers an exception that causes_overflow: : debug_print() to be
invoked. Had the exception been caught by value rather than by reference,
Matherr: : debug_print() would have been invoked instead.

14.2.2 Composite Exceptions [except.composite]

Not every grouping of exceptions is a tree structure. Often, an exception belongs to two groups.
For example:

class Neffile_emr : public Network_ermr, public File system err { /* ...*/ };

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 14.2.2 Composite Exceptions 361

Such aNetfile_err can be caught by functions dealing with network exceptions:

void f()
{
try {
/1 something
}
catch(Network _emr& e) {
/...
}
}
and also by functions dealing with file system exceptions:
void g()
{
try {
/1 something else
}
catch(File_system emr& e) {
/..
}
}

This nonhierarchical organization of error handling is important where services, such as network-
ing, are transparent to users. In this case, the writgf) oinight not even be aware that a network
is involved (see also §14.6).

14.3 Catching Exceptiongexcept.catch]

Consider:

void f()

{

try {
throw E() ;

}
catch(H) {

/1 when do we get here?
}

}

The handler is invoked:

[1] If H is the same type &S

[2] If H is an unambiguous public basekof

[3] If H andE are pointer types and [1] or [2] holds for the types to which they refer.

[4] If His a reference and [1] or [2] holds for the type to whHctefers.
In addition, we can addonst to the type used to catch an exception in the same way that we can
add it to a function parameter. This doesn’t change the set of exceptions we can catch; it only
restricts us from modifying the exception caught.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

362 Exception Handling Chapter 14

In principle, an exception is copied when it is thrown, so the handler gets hold of a copy of the
original exception. In fact, an exception may be copied several times before it is caught. Conse-
guently, we cannot throw an exception that cannot be copied. The implementation may apply a
wide variety of strategies for storing and transmitting exceptions. It is guaranteed, however, that
there is sufficient memory to allomewto throw the standard out-of-memory exceptioag alloc
(814.4.5).

14.3.1 Re-Throw [except.rethrow]

Having caught an exception, it is common for a handler to decide that it can’t completely handle
the error. In that case, the handler typically does what can be done locally and then throws the
exception again. Thus, an error can be handled where it is most appropriate. This is the case even
when the information needed to best handle the error is not available in a single place, so that the
recovery action is best distributed over several handlers. For example:

void h()
{

try {
/1 code that might throw Math errors

}
catch (Matherr) {
if (can_handle_it_completely) {
// handle the Matherr

return;
}
else{
// do what can be done here
throw; / / re-throw the exception
}

A re-throw is indicated by throw without an operand. If a re-throw is attempted when there is no
exception to re-throwterminate() (814.7) will be called. A compiler can detect and warn about
some, but not all, such cases.

The exception re-thrown is the original exception caught and not just the part of it that was
accessible as Matherr. In other words, had dmt_overflow been thrown, a caller df() could
still catch arint_overflow thath() had caught as atherr and decided to re-throw.

14.3.2 Catch Every Exception [except.every]

A degenerate version of this catch-and-rethrow technique can be important. As for functions, the
ellipsis ... indicates “any argument” (87.6), scatch(...) means “catch any exception.”
For example:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 14.3.2 Catch Every Exception 363

void m()
{
try {
/1 something
catch(...) { / | handle every exception
/1 cleanup
throw;
}

}

That is, if any exception occurs as the result of executing the main paft ofthe cleanup action
in the handler is invoked. Once the local cleanup is done, the exception that caused the cleanup is
re-thrown to trigger further error handling. See 814.6.3.2 for a technique to gain information about
an exception caught by.a handler.

One important aspect of error handling in general and exception handling in particular is to
maintain invariants assumed by the program (824.3.7.1). For examp{g, it supposed to leave
certain pointers in the state in which it found them, then we can write code in the handler to give
them acceptable values. Thus, a “catch every exception” handler can be used to maintain arbitrary
invariants. However, for many important cases such a handler is not the most elegant solution to
this problem (see §14.4).

14.3.2.1 Order of Handlers [except.order]

Because a derived exception can be caught by handlers for more than one exception type, the order
in which the handlers are written irtry statement is significant. The handlers are tried in order.
For example:

void f()

{

try {
/1 ...

catch (std: : ios_base : failure) {
/1 handle any stream io error (814.10)

}
catch (std: : exception& e) {
/1 handle any standard library exception (§14.10)

}
catch (...) {

/1 handle any other exception (§14.3.2)
}

Because the compiler knows the class hierarchy, it can catch many logical mistakes. For example:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

364 Exception Handling Chapter 14

void g()
{
try {
/...
}
catch (...) {

/1 handle every exception (814.3.2)

}
catch (std: : exception& e) {
/1 handle any standard library exception (§14.10)

}
catch (std: : bad_cast) {
/1 handle dynamiccast failure (§15.4.2)
}
}

Here, theexception will never be considered. Even if we removed the “catch-all” handler,
bad cast wouldn't be considered because it is derived fexeption.

14.4 Resource Managemerixcept.resource]

When a function acquires a resourcéhat is, it opens a file, allocates some memory from the free
store, sets an access control lock, etdt,is often essential for the future running of the system that
the resource be properly released. Often that “proper release” is achieved by having the function
that acquired it release it before returning to its caller. For example:

void use file(const char* fn)

{
FILE* f = fopen(fn," w") ;
/] usef
fclose(f);

}

This looks plausible until you realize that if something goes wrong after the daperi) and
before the call offclose() , an exception may causese file() to be exited withoufclose()
being called. Exactly the same problem can occur in languages that do not support exception han-
dling. For example, the standard C library funcliongjmp() can cause the same problem. Even
an ordinaryreturn-statement could exitse file without closingf.
A first attempt to makese file() to be fault-tolerant looks like this:

void use file(const char* fn)

FILE* f = fopen(fn," r") ;

try {
/] usef
}

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 14.4 Resource Management 365

catch(...) {
fclose(f);

throw;,

}
fclose(f);
}

The code using the file is enclosed itryblock that catches every exception, closes the file, and
re-throws the exception.

The problem with this solution is that it is verbose, tedious, and potentially expensive. Further-
more, any verbose and tedious solution is error-prone because programmers get bored. Fortunately,
there is a more elegant solution. The general form of the problem looks like this:

void acquire()
{

/1 acquire resource 1
/...
/1 acquire resource n

/] use resources

/] release resource n
/...
/1 release resource 1

}

It is typically important that resources are released in the reverse order of their acquisition. This
strongly resembles the behavior of local objects created by constructors and destroyed by
destructors. Thus, we can handle such resource acquisition and release problems by a suitable use
of objects of classes with constructors and destructors. For example, we can definEibeclatss

that acts like &ILE* :

class Fle ptr {
FILE* p;
public:
File_ptr(const char* n, const char* a) { p=fopen(n, a); }
File ptr(FILE* pp) { p=pp; }
~File_ptr() { fclose(p); }

operator FILE*() { return p; }
3

We can construct Bile_ptr given either &ILE* or the arguments required fiopen() . In either
case, dile ptr will be destroyed at the end of its scope and its destructor will close the file. Our
program now shrinks to this minimum:

void use file(const char* fn)

File_ptr f(fn," ") ;
/] usef

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

366 Exception Handling Chapter 14

The destructor will be called independently of whether the function is exited normally or exited
because an exception is thrown. That is, the exception-handling mechanisms enable us to remove
the error-handling code from the main algorithm. The resulting code is simpler and less error-
prone than its traditional counterpart.

The process of searching “up through the stack” to find a handler for an exception is com-
monly called “stack unwinding.” As the call stack is unwound, the destructors for constructed
local objects are invoked.

14.4.1 Using Constructors and Destructors [except.using]

The technique for managing resources using local objects is usually referred to as “resource acqui-
sition is initialization.” This is a general technique that relies on the properties of constructors and
destructors and their interaction with exception handling.

An object is not considered constructed until its constructor has completed. Then and only then
will stack unwinding call the destructor for the object. An object composed of sub-objects is con-
structed to the extent that its sub-objects have been constructed. An array is constructed to the
extent that its elements have been constructed (and only fully constructed elements are destroyed
during unwinding).

A constructor tries to ensure that its object is completely and correctly constructed. When that
cannot be achieved, a well-written constructor resteras far as possible the state of the system
to what it was before creation. Ideally, naively written constructors always achieve one of these
alternatives and don’t leave their objects in some “half-constructed” state. This can be achieved
by applying the “resource acquisition is initialization” technique to the members.

Consider a clasX for which a constructor needs to acquire two resources: adibel a locky.

This acquisition might fail and throw an exception. ClMssconstructor must never return having
acquired the file but not the lock. Furthermore, this should be achieved without imposing a burden
of complexity on the programmer. We use objects of two claB#esptr andLock ptr, to repre-

sent the acquired resources. The acquisition of a resource is represented by the initialization of the
local object that represents the resource:

class X{
File_ptr ag;
Lock _ptr bb;
public:
X(const char* x, const char* y)
caa(x," rw"), // acquire ‘X’
bb(y) / | acquire 'y’
{
/...

k

Now, as in the local object case, the implementation can take care of all of the bookkeeping. The
user doesn'’t have to keep track at all. For example, if an exception occusaaftes been con-
structed but beforbb has been, then the destructordarbut not forbb will be invoked.

This implies that where this simple model for acquisition of resources is adhered to, the author
of the constructor need not write explicit exception-handling code.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 14.4.1 Using Constructors and Destructors 367

The most common resource acquired in an ad-hoc manner is memory. For example:

class Y{
int* p;
void init() ;

public:
Y(int s) { p=new int] 5]; init() ; }
~Y() { deletef] p; }
/...

2

This practice is common and can lead to “memory leaks.” If an exception is throwmitgy,

then the store acquired will not be freed; the destructor will not be called because the object wasn’t
completely constructed. A safe variant is:

class Z{
vector<int> p;
void init() ;

public:

Z(int s) : p(s) { init() ; }
Il ...

I3
The memory used bp is now managed byector. If init() throws an exception, the memory
acquired will be freed when the destructorgas (implicitly) invoked.

14.4.2 Auto ptr [except.autoptr]

The standard library provides the template céage_ptr, which supports the “resource acquisition

is initialization” technique. Basically, aauto_ptr is initialized by a pointer and can be derefer-
enced in the way that a pointer can. Also, the object pointed to will be implicitly deleted at the end
of theauto_ptr’'s scope. For example:

void f(Point pl, Point p2, auto_ptr<Circle> pc, Stape* pb) // remember to delete pb on exit

{
auto_ptr<Stape> p(new Rectangle(p1, p2)) ; / / p points to a rectangle

auto_ptr<Sthape> pbox(pb);
p-> rotate(45); // use autoptr<Shape exactly as a Shape*
/..

if (in_a_mess) throw Mess) ;
/...

}

Here theRectangle, the Sthape pointed to bypb, and theCircle pointed to bypc are deleted
whether or not an exception is thrown.

To achieve thi®wnership semantidalso calleddestructive copy semantjcauto ptrs have a
copy semantics that differs radically from that of ordinary pointers: Whermauatoeptr is copied
into another, the source no longer points to anything. Because copyaugoaptr modifies it, a
const auto_ptr cannot be copied.

Theauto ptr template is declared imemory>. It can be described by an implementation:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

368 Exception Handling Chapter 14

template<class X> class std: : auto_ptr {
template <class Y> struct auto_ptr_ref{ /* ...*/ }; / /| helper class
X* ptr;

public:
typedef X element_type;

explicit auto_ptr(X* p=0) throw() { ptr=0; }

auto_ptr(auto_ptr& a) throw() { ptr=a. ptr; a. ptr=0; } / / note: not const aut@tr&
template<class Y> auto_ptr(auto_ptr<Y>& a) throw() { ptr=a. ptr; a. ptr=0; }

auto_ptr& operator=(auto_ptr& a) throw() { ptr=a. ptr; a. ptr=0; }

template<class Y> auto_ptr& operator=(auto_ptr<Y>& a) throw() { ptr=a. ptr; a. ptr=0; }
~auto_ptr() throw() { delete pir; }

X& operator*() const throw() { return*ptr; }

X* operator->() const throw() { return ptr; }

X* get() const throw() { return ptr; } | | extract pointer

X* release() throw() { X* t=ptr; ptr=0; return t, } /I relinquish ownership
void reset(X* p=0) throw() { if (p!= ptr) { delete ptr; ptr=p; } }

auto_ptr(auto_ptr_ref<X>) throw() ; [| copy from autoptr_ref
template<class Y> operator auto_ptr_ref<Y>() throw() ; / / copy from autoptr_ref
template<class Y> operator auto_ptr<Y>() throw() ; /| destructive copy from autptr

h

The purpose chuto_ptr_refis to implement the destructive copy semantics for ordiaaty _ptrs
while making it impossible to copy eonst auto_ptr. The template constructor and template
assignment ensures thatauto_ptr<D> can be implicitly converted toauto_ptr if a D* can

be converted to B*. For example:

void g(Circle* pc)
{
auto_ptr<Circle> p2=pc;/ / now p2 is responsible for deletion
auto_ptr<Circle> p3=p2;/ / now p3 is responsible for deletion (and p2 isn’t)
p2->m=17, / | programmer error: p2.get()==0
Shape* ps=p3. get() ; / / extract the pointer from an autptr
auto_ptr<Shape> aps = p3; // transfer of ownership and convert type
auto_ptr<Circle> p4=p; / / programmer error: now p4 is also responsible for deletion

}

The effect of having more than oaato_ptr own an object is undefined; most likely the object will
be deleted twice (with bad effects).

Note thatauto ptr's destructive copy semantics means that it does not meet the requirements
for elements of a standard container or for standard algorithms ssoit(s. For example:

void h(vector< auto_ptr<Shape*> >&v) / / dangerous: use of autptr in container
{

}

Clearly,auto_ptr isn’t a general smart pointer. However, it provides the service for which it was
designed- exception safety for automatic pointersvith essentially no overhead.

sort(v. begin() , v.end()) ; / / Don't do this: The sort will probably mess up v

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 14.4.3 Caveat 369

14.4.3 Caveat [except.caveat]

Not all programs need to be resilient against all forms of failure, and not all resources are critical
enough to warrant the effort to protect them using ‘“resource acquisition is initialization,”
auto_ptr, andcatch(...) . For example, for many programs that simply read an input and run to
completion, the most suitable response to a serious run-time error is to abort the process (after pro-
ducing a suitable diagnostic). That is, let the system release all acquired resources and let the user
re-run the program with a more suitable input. The strategy discussed here is intended for applica-
tions for which such a simplistic response to a run-time error is unacceptable. In particular, a
library designer usually cannot make assumptions about the fault tolerance requirements of a pro-
gram using the library and is thus forced to avoid all unconditional run-time failures and to release
all resources before a library function returns to the calling program. The “resource acquisition is
initialization” strategy, together with the use of exceptions to signal failure, is suitable for many
such libraries.

14.4.4 Exceptions and New [except.new]

Consider:

void f(Arena& a, X* buffer)

{
X* pl=new X
X* p2=new X 10];
X* p3 = new(buffer[10]) X; /| place X in buffer (no deallocation needed)
X* p4 = new(buffer[11]) X[10];
X* p5=new(a) X; / I allocation from Arena a (deallocate from a)

X* p6=new(a) X[10];
}

What happens K" s constructor throws an exception? Is the memory allocated bgpérator
new() freed? For the ordinary case, the answer is yes, so the initializatigpisamid p2 don’t
cause memory leaks.

When the placement syntax (§10.4.11) is used, the answer cannot be that simple. Some uses of
that syntax allocate memory, which then ought to be released; however, some don’t. Furthermore,
the point of using the placement syntax is to achieve nonstandard allocation, so nonstandard freeing
is typically required. Consequently, the action taken depends on the allocator used. If an allocator
Z:: operator new() is used,Z:: operator delete() is invoked if it exists; otherwise, no
deallocation is attempted. Arrays are handled equivalently (815.6.1). This strategy correctly han-
dles the standard library placemewmt operator (810.4.11), as well as any case in which the pro-
grammer has provided a matching pair of allocation and deallocation functions.

14.4.5 Resource Exhaustion [except.exhaust]

A recurring programming problem is what to do when an attempt to acquire a resource fails. For
example, previously we blithely opened files (usiogen()) and requested memory from the free
store (using operatarew) without worrying about what happened if the file wasn’t there or if we

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

370 Exception Handling Chapter 14

had run out of free store. When confronted with such problems, programmers come up with two
styles of solutions:

Resumption Ask some caller to fix the problem and carry on.

Termination Abandon the computation and return to some caller.
In the former case, a caller must be prepared to help out with resource acquisition problems in
unknown pieces of code. In the latter, a caller must be prepared to cope with failure of the attempt
to acquire the resource. The latter is in most cases far simpler and allows a system to maintain a
better separation of levels of abstraction. Note that it is not the program that terminates when one
uses the termination strategy; only an individual computation terminates. “Termination” is the tra-
ditional term for a strategy that returns from a “failed” computation to an error handler associated
with a caller (which may re-try the failed computation), rather than trying to repair a bad situation
and resume from the point at which the problem was detected.

In C++, the resumption model is supported by the function-call mechanism and the termination
model is supported by the exception-handling mechanism. Both can be illustrated by a simple
implementation and use of the standard libgpgrator new() :

void* operator new(size t size)

for ;) {
if (void* p = malloc(size)) return p; /I try to find memory
if (_new_handler == 0) throw bad_alloc() ; / / no handler: give up
_new_handler() ; [| ask for help

}

}

Here, | use the standard C libranalloc() to do the real search for memory; other implementa-
tions ofoperator new() may choose other ways. If memory is fouaperator new() can return

a pointer to it. Otherwis@perator new() calls the_new_handler. If the_new handler can find
more memory fomalloc() to allocate, all is fine. If it can’t, the handler cannot returoperator
new() without causing an infinite loop. Thenew handler() might then choose to throw an
exception, thus leaving the mess for some caller to handle:

void my new_handler()

{
int no_of_bytes found = find_some_memory() ;
if (no_of_bytes found < min_allocation) throw bad alloc() ; / / give up
}
Somewhere, there ought to by blockwith a suitable handler:

try {
...

}
catch (bad_alloc) {

/1 somehow respond to memory exhaustion
}

The _new_handler used in the implementation operator new() is a pointer to a function main-
tained by the standard functieet new _handler() . If | wantmy new handler() to be used as

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 14.4.5 Resource Exhaustion 371

the_new_handler, | say:
set_new_handler(& my_new_handler);

If | also want to catchad alloc, | might say:

void f()
{
void(* oldnh)() = set new_handler(& my_new_handler);
try {
/...
catch (bad_alloc) {
/...
}
catch(...) {

set_new_handler(oldnh); / / re-set handler
throw;, / / re-throw

}
set_new_handler(oldnh); /I re-set handler
}
Even better, avoid theatch(...) handler by applying the “resource acquisition is initial-

ization” technique described in §14.4 to theew handler (§14.12[1]).

With the_new_handler, no extra information is passed along from where the error is detected
to the helper function. It is easy to pass more information. However, the more information that is
passed between the code detecting a run-time error and a function helping correct that error, the
more the two pieces of code become dependent on each other. This implies that changes to the one
piece of code require understanding of and maybe even changes to the other. To keep separate
pieces of software separate, it is usually a good idea to minimize such dependencies. The
exception-handling mechanism supports such separation better than do function calls to helper rou-
tines provided by a caller.

In general, it is wise to organize resource allocation in layers (levels of abstraction) and avoid
having one layer depend on help from the layer that called it. Experience with larger systems
shows that successful systems evolve in this direction.

Throwing an exception requires an object to throw. #& @nplementation is required to have
enough spare memory to be able to thimad allocin case of memory exhaustion. However, it is
possible that throwing some other exception will cause memory exhaustion.

14.4.6 Exceptions in Constructors [except.ctor]

Exceptions provide a solution to the problem of how to report errors from a constructor. Because a
constructor does not return a separate value for a caller to test, the traditional (that is, non-
exception-handling) alternatives are:
[1] Return an object in a bad state, and trust the user to test the state.
[2] Set a nonlocal variable (e.g#rno) to indicate that the creation failed, and trust the user to
test that variable.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

372 Exception Handling Chapter 14

[3] Don't do any initialization in the constructor, and rely on the user to call an initialization
function before the first use.
[4] Mark the object “uninitialized” and have the first member function called for the object do
the real initialization, and that function can then report an error if initialization fails.
Exception handling allows the information that a construction failed to be transmitted out of the
constructor. For example, a simplector class might protect itself from excessive demands on
memory like this:

class Vector {
public:
class Sze{ };

enum{ max = 32000 };

Vector: : Vector(int s2)

{
if (sz<0|| max<sz) throw Size() ;
..

}
"o
k

Code creatinyectors can now catcKector: : Sizeerrors, and we can try to do something sensible
with them:

Vector* f(int i)

{
try {
Vector* p = new Vector(i);
/..
return p;
}
catch(Vector: : Size) {
/1 deal with size error
}
}

As always, the error handler itself can use the standard set of fundamental techniques for error
reporting and recovery. Each time an exception is passed along to a caller, the view of what went
wrong changes. If suitable information is passed along in the exception, the amount of information
available to deal with the problem could increase. In other words, the fundamental aim of the
error-handling techniques is to pass information about an error from the original point of detection
to a point where there is sufficient information available to recover from the problem, and to do so
reliably and conveniently.

The “resource acquisition is initialization™ technique is the safest and most elegant way of han-
dling constructors that acquire more than one resource (814.4). In essence, the technique reduces
the problem of handling many resources to repeated application of the (simple) technique for han-
dling one resource.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 14.4.6.1 Exceptions and Member Initialization 373

14.4.6.1 Exceptions and Member Initialization [except.member]

What happens if a member initializer (directly or indirectly) throws an exception? By default, the
exception is passed on to whatever invoked the constructor for the member’s class. However, the
constructor itself can catch such exceptions by enclosing the complete function budyding

the member initializer list in atry-block For example:

class X{
Vector v,
/...

public:
X(int);
/...

h

X:: X(int)

try

{

:v(s) [/ [/ initialize vby s
/..

catch (Vector: : Size) { // exceptions thrown for v are caught here
/..
}

Copy constructors (810.4.4.1) are special in that they are invoked implicitly and because they often
both acquire and release resources. In particular, the standard library assumes- proper
exception-throwing- behavior of copy constructors. For these reasons, care should be taken that a
copy constructor throws an exception only in truly disastrous circumstances. Complete recovery
from an exception in a copy constructor is unlikely to be feasible in every context of its use. To be
even potentially safe, a copy constructor must leave behind two objects, each of which fulfills the
invariant of its class (§24.3.7.1).

Naturally, copy assignment operators should be treated with as much care as copy constructors.

14.4.7 Exceptions in Destructors [except.dtor]

From the point of view of exception handling, a destructor can be called in one of two ways:

[1] Normal calt As the result of a normal exit from a scope (§10.4.d¢lete (810.4.5), etc.

[2] Call during exception handlingDuring stack unwinding (814.4), the exception-handling

mechanism exits a scope containing an object with a destructor.

In the latter case, an exception may not escape from the destructor itself. If it does, it is considered
a failure of the exception-handling mechanism siad: terminate() (814.7) is called. After all,
there is no general way for the exception-handling mechanism or the destructor to determine
whether it is acceptable to ignore one of the exceptions in favor of handling the other.

If a destructor calls functions that may throw exceptions, it can protect itself. For example:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

374 Exception Handling Chapter 14

X~ X()
try {
fQ) ; // might throw

}
catch(...) {

/1 do something
}

The standard library functiomncaught_exception() returnstrueif an exception has been thrown
but hasn’t yet been caught. This allows the programmer to specify different actions in a destructor
depending on whether an object is destroyed normally or as part of stack unwinding.

14.5 Exceptions That Are Not Errors[except.not.error]

If an exception is expected and caught so that it has no bad effects on the behavior of the program,
then how can it be an error? Only because the programmer thinks of it as an error and of the
exception-handling mechanisms as tools for handling errors. Alternatively, one might think of the
exception-handling mechanisms as simply another control structure. For example:

void f(Queue<X>& Q)

{
try {
for ;) {
X m=q. get() ; / | throws ‘Empty’ if queue is empty
Il ...
} }
catch (Queue<X>:: Empty) {
returm;
}
}

This actually has some charm, so it is a case in which it is not entirely clear what should be consid-
ered an error and what should not.

Exception handling is a less structured mechanism than local control structures duahdas
for and is often less efficient when an exception is actually thrown. Therefore, exceptions should
be used only where the more traditional control structures are inelegant or impossible to use. Note
that the standard library offersjaeue of arbitrary elements without using exceptions (817.3.2).

Using exceptions as alternate returns can be an elegant technique for terminating search func-
tions— especially highly recursive search functions such as a lookup in a tree. For example:

void fnd(Tree* p, const string& s)

{
if (s== p->str) throw p; / | found s
if (p-> left) fnd(p-> left, 5);
if (p-> right) fnd(p-> right, s);

}

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 14.5 Exceptions That Are Not Errors 375

Tree* find(Tree* p, const string& s)

{
try {
fnd(p, s);
}
catch(Tree* q) { / / g—>str==s
return q
}
return O
}

However, such use of exceptions can easily be overused and lead to obscure code. Whenever rea-
sonable, one should stick to the “exception handling is error handling” view. When this is done,
code is clearly separated into two categories: ordinary code and error-handling code. This makes
code more comprehensible. Unfortunately, the real world isn’t so clear cut. Program organization
will (and to some extent should) reflect that.

Error handling is inherently difficult. Anything that helps preserve a clear model of what is an
error and how it is handled should be treasured.

14.6 Exception Specificationgexcept.spec]

Throwing or catching an exception affects the way a function relates to other functions. It can
therefore be worthwhile to specify the set of exceptions that might be thrown as part of the function
declaration. For example:

void f(int &) throw(x2, x3);

This specifies thaf) may throw only exceptiong2, x3, and exceptions derived from these types,
but no others. When a function specifies what exceptions it might throw, it effectively offers a
guarantee to its callers. If during execution that function does something that tries to abrogate the
guarantee, the attempt will be transformed into a cadtdf unexpected() . The default meaning
of unexpected() is std:: terminate() , which in turn normally callsabort() ; see §9.4.1.1 for
details.

In effect,

void f() throw (x2, x3)

/1 stuff
}

is equivalent to:

void f()
try

/] stuff

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

376 Exception Handling Chapter 14

catch (x2) { throw; } / / re-throw
catch (x3) { throw; } / / re-throw
catch(...) {
std: : unexpected() ; / / unexpected() will not return
}

The most important advantage is that the funatieclarationbelongs to an interface that is visible
to its callers. Functiodefinitions on the other hand, are not universally available. Even when we
do have access to the source code of all our libraries, we strongly prefer not to have to look at it
very often. In addition, a function with axception-specificatiors shorter and clearer than the
equivalent hand-written version.

A function declared without aaxception-specificatiors assumed to throw every exception.
For example:

int () ; / | can throw any exception
A function that will throw no exceptions can be declared with an empty list:

int g) throw() ; / / no exception thrown

One might think that the default should be that a function throws no exceptions. However, that
would require exception specifications for essentially every function, would be a significant cause
for recompilation, and would inhibit cooperation with software written in other languages. This
would encourage programmers to subvert the exception-handling mechanisms and to write spurious
code to suppress exceptions. It would provide a false sense of security to people who failed to
notice the subversion.

14.6.1 Checking Exception Specifications [except.check.spec]

It is not possible to catch every violation of an interface specification at compile time. However,
much compile-time checking is done. The way to think abgogption-specificatianis to assume
that a functionwill throw any exception it can. The rules for compile-time checkixception-
specificatiors outlaw easily detected absurdities.

If any declaration of a function has exrception-specificatigrevery declaration of that function
(including the definition) must have axception-specificatiowith exactly the same set of excep-
tion types. For example:

int f() throw (std:: bad_alloc);

int f) / [/ error: exception-specification missing

{

}

Importantly,exception-specificatianare not required to be checked exactly across compilation-unit
boundaries. Naturally, an implementation can check. However, for many large and long-lived sys-
tems, it is important that the implementation does-not, if it does, that it carefully gives hard
errors only where violations will not be caught at run time.

The point is to ensure that adding an exception somewhere doesn't force a complete update of
related exception specifications and a recompilation of all potentially affected code. A system can

...

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 14.6.1 Checking Exception Specifications 377

then function in a partially updated state relying on the dynamic (run-time) detection of unexpected
exceptions. This is essential for the maintenance of large systems in which major updates are
expensive and not all source code is accessible.

A virtual function may be overridden only by a function that has)aeption-specificatioat
least as restrictive as its own (explicit or implieRception-specificationFor example:

class B{

public:
virtual void f() ; / | can throw anything
virtual void g() throw(X, Y);
virtual void h() throw(X);

h
class D: public B{
public:
void f() throw(X); ! | ok
void g() throw(X); /I ok: D::g() is more restrictive than B::g()
void h() throw(X, Y); /I error: D::h() is less restrictive than B::h()
¥

This rule is really only common sense. If a derived class threw an exception that the original func-
tion didn’t advertise, a caller couldn’t be expected to catch it. On the other hand, an overriding
function that throws fewer exceptions clearly obeys the rule set out by the overridden function’s
exception-specification

Similarly, you can assign a pointer to function that has a more restrietigeption-
specificationto a pointer to function that has a less restrictiveeption-specificatiqrbut not vice
versa. For example:

void f() throw(X);
void (* pfl)() throw(X,Y) =&f;, /[/ ok
void (* pf2)() throw() = &f; [| error: () is less restrictive than pf2

In particular, you cannot assign a pointer to a function withougxaeption-specificatiomo a
pointer to function that has one:

void g() ; // might throw anything
void (* pf3)() throw(X) = &g; /| error: g() less restrictive than pf3

An exception-specificatiois not part of the type of a function andypedef may not contain one.
For example:

typedef void (* PF)() throw(X); / / error

14.6.2 Unexpected Exceptions [except.unexpected]

An exception-specificationan lead to calls tanexpected() . Such calls are typically undesirable
except during testing. Such calls can be avoided through careful organization of exceptions and
specification of interfaces. Alternatively, calls uoexpected() can be intercepted and rendered
harmless.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

378 Exception Handling Chapter 14

A well-defined subsystem Y will often have all its exceptions derived from a ¥&ss For
example, given

class Some Year : public Yar { /* ..* };
a function declared
void f() throw (Xerr, Year, exception);

will pass any¥er on to its caller. In particulaf() would handle &ame_Yerr by passing it on to
its caller. Thus, n&er in f() will trigger unexpected() .
All exceptions thrown by the standard library are derived from ebaseption (§14.10).

14.6.3 Mapping Exceptions [except.mapping]

Occasionally, the policy of terminating a program upon encountering an unexpected exception is
too Draconian. In such cases, the behavioureixpected)) must be modified into something
acceptable.

The simplest way of achieving that is to add the standard library excsfitiobad exception
to anexception-specificationln that caseunexpected() will simply throw bad_exception instead
of invoking a function to try to cope. For example:

class X{ };
class Y{ };

void f() throw(X, std: : bad_exception)
{

/..
throw Y() ; / / throw “bad” exception

}

The exception-specificatiowill catch the unacceptable excepti@nd throw an exception of type
bad exception instead.

There is actually nothing particularly bad abbatl exception; it simply provides a mecha-
nism that is less drastic than callitegminate() . However, it is still rather crude. In particular,
information about which exception caused the problem is lost.

14.6.3.1 User Mapping of Exceptions [except.user.mapping]

Consider a functiog() written for a non-networked environment. Assume further giat has
been declared with aexception-specificatioso that it will throw only exceptions related to its
“subsystem Y:”

void g() throw(Yer);

Now assume that we need to @)l in a networked environment.

Naturally,g() will not know about network exceptions and will invalmexpected() when it
encounters one. To ugé in a distributed environment, we must either provide code that handles
network exceptions or rewrigf) . Assuming a rewrite is infeasible or undesirable, we can handle
the problem by redefining the meaninguoiexpected() .

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 14.6.3.1 User Mapping of Exceptions 379

Memory exhaustion is dealt with by th@ew handler determined byset new_handler() .
Similarly, the response to an unexpected exception is determined_lunexpected handler set

by std: : set_unexpected() from <exception>:

typedef void(* unexpected _handler)() ;
unexpected _handler set unexpected(unexpected _handler);

To handle unexpected exceptions well, we first define a class to allow us to use the “resource
acquisition is initialization” technique famexpected() functions:

class STC{ / / store and reset class
unexpected _handler old;

public:
STC(unexpected handler f) { old = set_unexpected(f); }
~STC() { set unexpected(old); }

h

Then, we define a function with the meaning we wantf@xpected() in this case:

class Yunexpected: Yer { };
void throwY() throw(Yunexpected) { throw Yunexpected() ; }

Used as annexpected() function,throwY() maps any unexpected exception iNimexpected.
Finally, we provide a version @f) to be used in the networked environment:

void networked g() throw(Yerr)
{

STC xx(& throwY); / / now unexpected() throws Yunexpected

a0 ;
}

BecauseYunexpected is derived fromYer, the exception-specifications not violated. Had
throwY() thrown an exception that did violate tegception-specificatigriterminate() would
have been called.

By saving and restoring thainexpected _handler, we make it possible for several subsystems
to control the handling of unexpected exceptions without interfering with each other. Basically,
this technique for mapping an unexpected exception into an expected one is a more flexible variant
of what the system offers in the formhud exception.

14.6.3.2 Recovering the Type of an Exception [except.recover]

Mapping unexpected exceptions Yanexpected would allow a user ohetworked g() to know
that an unexpected exception had been mapped&imexpected However, such a user wouldn’t
know which exception had been mapped. That information was ltdstawY() . A simple tech-
nigue allows that information to be recorded and passed on:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

380 Exception Handling Chapter 14

class Yunexpected: public Yerr {
public:
Network_exception* pe;

Yunexpected(Network_exception* p) : pe(p) { }

h
void throwY() throw(Yunexpected)
{
try {
throw; // re-throw to be caught immediately!
}
catch(Network_exception& p) {
throw Yunexpected(& p); / / throw mapped exception
}
catch(...) {
throw Yunexpected(0);
}
}

Re-throwing an exception and catching it allows us to get a handle on any exception of a type we
can name. ThehrowY() function is called fromunexpected() , which is conceptually called

from acatch(...) handler. There therefore is definitely an exception to re-throw. It is not pos-
sible for anunexpected() function to ignore the exception and return. If it triesurtexpected()

itself will throw abad_exception (814.6.3).

14.7 Uncaught Exceptiongexcept.uncaught]

If an exception is thrown but not caught, the funcstth: terminate() will be called. Theermi-
nate() function will also be called when the exception-handling mechanism finds the stack cor-
rupted and when a destructor called during stack unwinding caused by an exception tries to exit
using an exception.

An unexpected exception is dealt with by thenexpected handler determined by
set unexpected() . Similarly, the response to an uncaught exception is determined by an
_uncaught_handler set bystd: : set terminate() from <exception>:

typedef void(* terminate_handler)() ;
terminate_handler set_terminate(terminate_handler) ;

The return value is the previous function givessdb terminate() .

The reason forerminate() is that exception handling must occasionally be abandoned for less
subtle error-handling techniques. For exampdaminate() could be used to abort a process or
maybe to re-initialize a system. The intent isteyminate() to be a drastic measure to be applied
when the error-recovery strategy implemented by the exception-handling mechanism has failed and
it is time to go to another level of a fault tolerance strategy.

By default, terminate() will call abort() (89.4.1.1). This default is the correct choice for
most users- especially during debugging.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 14.7 Uncaught Exceptions 381

An _uncaught_handler is assumed not to return to its caller. If it triesterminate() will
call abort() .

Note thatabort() indicates abnormal exit from the program. The funcéxit() can be used
to exit a program with a return value that indicates to the surrounding system whether the exit is
normal or abnormal (89.4.1.1).

It is implementation-defined whether destructors are invoked when a program is terminated
because of an uncaught exception. On some systems, it is essential that the destructors are not
called so that the program can be resumed from the debugger. On other systems, it is architec-
turally close to impossibleotto invoke the destructors while searching for a handler.

If you want to ensure cleanup when an uncaught exception happens, you can add a catch-all
handler (§14.3.2) tanain() in addition to handlers for exceptions you really care about. For
example:

int main()
try {
/...

catch (std: : range_error)
{

cerr << "range aror: Not again! \n";

}
catch (std: : bad_alloc)

{
cerr << "new ran out of memory\n";
}
catch(...) {
/...
}

This will catch every exception, except those thrown by construction and destruction of global vari-
ables. There is no way of catching exceptions thrown during initialization of global variables. The
only way of gaining control in case ¢firow from an initializer of a nonlocal static object is
set unexpected() (814.6.2). This is another reason to avoid global variables whenever possible.
When an exception is caught, the exact point where it was thrown is generally not known. This
represents a loss of information compared to what a debugger might know about the state of a pro-
gram. In some C++ development environments, for some programs, and for some people, it might
therefore be preferableot to catch exceptions from which the program isn’t designed to recover.

14.8 Exceptions and Efficiencyexcept.efficiency]

In principle, exception handling can be implemented so that there is no run-time overhead when no
exception is thrown. In addition, this can be done so that throwing an exception isn't all that
expensive compared to calling a function. Doing so without adding significant memory overhead
while maintaining compatibility with C calling sequences, debugger conventions, etc., is possible,
but hard. However, please remember that the alternatives to exceptions are not free either. It is not
unusual to find traditional systems in which half of the code is devoted to error handling.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

382 Exception Handling Chapter 14

Consider a simple functidif) that appears to have nothing to do with exception handling:

void g(int);

void f()
string s
/1 ...
g(1);
9(2);

}

However,g() may throw an exception, $§ must contain code ensuring ttst destroyed cor-

rectly in case of an exception. However, gl not thrown an exception it would have had to
report its error some other way. Consequently, the comparable code using ordinary code to handle
errors instead of exceptions isn't the plain code above, but something like:

bool g(int);
bool f()
{
string s
/...
if (g(1))
if (9(2)
return true
else
return false
else
return false
}

People don't usually handle errors this systematically, though, and it is not always critical to do so.
However, when careful and systematic handling of errors is necessary, such housekeeping is best
left to a computer, that is, to the exception-handling mechanisms.

Exception-specifications (814.6) can be most helpful in improving generated code. Had we
stated thag() didn’t throw an exception:

void g(int) throw() ;

the code generation féf) could have been improved. It is worth observing that no traditional C
function throws an exception, so in most programs every C function can be declared with the empty
throw specificatiorthrow() . In particular, an implementation knows that only a few standard C
library functions (such aatexit() andgsort()) can throw exceptions, and it can take advantage of
that fact to generate better code.

Before giving a “C function” an emptgexception-specificatiorthtow() , take a minute to
consider if it could possibly throw an exception. For example, it might have been converted to use
the G-+ operatornew, which can throwbad alloc, or it might call a €+ library that throws an
exception.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 14.9 Error-Handling Alternatives 383

14.9 Error-Handling Alternatives [except.alternatives]

The purpose of the exception-handling mechanisms is to provide a means for one part of a program
to inform another part of a program that an “exceptional circumstance” has been detected. The

assumption is that the two parts of the program are written independently and that the part of the
program that handles the exception often can do something sensible about the error.

To use handlers effectively in a program, we need an overall strategy. That is, the various parts
of the program must agree on how exceptions are used and where errors are dealt with. The
exception-handling mechanisms are inherently nonlocal, so adherence to an overall strategy is
essential. This implies that the error-handling strategy is best considered in the earliest phases of a
design. It also implies that the strategy must be simple (relative to the complexity of the total pro-
gram) and explicit. Something complicated would not be consistently adhered to in an area as
inherently tricky as error recovery.

First of all, the idea that a single mechanism or technique can handle all errors must be dis-
pelled; it would lead to complexity. Successful fault-tolerant systems are multilevel. Each level
copes with as many errors as it can without getting too contorted and leaves the rest to higher lev-
els. The notion oterminate() is intended to support this view by providing an escape if the
exception-handling mechanism itself is corrupted or if it has been incompletely used, thus leaving
exceptions uncaught. Similarly, the notioruoixpected() is intended to provide an escape when
the strategy usingxception-specificatianto provide firewalls fails.

Not every function should be a firewall. In most systems, it is not feasible to write every func-
tion to do sufficient checking to ensure that it either completes successfully or fails in a well-
defined manner. The reasons that this will not work varies from program to program and from pro-
grammer to programmer. However, for larger programs:

[1] The amount of work needed to ensure this notion of “reliability” is too great to be done

consistently.

[2] The overheads in time and space are too great for the system to run acceptably (there will be

a tendency to check for the same errors, such as invalid arguments, over and over again).
[3] Functions written in other languages won't obey the rules.
[4] This purely local notion of “reliability” leads to complexities that actually become a burden
to overall system reliability.
However, separating the program into distinct subsystems that either complete successfully or fail
in well-defined ways is essential, feasible, and economical. Thus, a major library, subsystem, or
key function should be designed in this way. Exception specifications are intended for interfaces to
such libraries and subsystems.

Usually, we don’t have the luxury of designing all of the code of a system from scratch. There-
fore, to impose a general error-handling strategy on all parts of a program, we must take into
account program fragments implemented using strategies different from ours. To do this we must
address a variety of concerns relating to the way a program fragment manages resources and the
state in which it leaves the system after an error. The aim is to have the program fragment appear
to follow the general error-handling strategy even if it internally follows a different strategy.

Occasionally, it is necessary to convert from one style of error reporting to another. For exam-
ple, we might checkirno and possibly throw an exception after a call to a C library or, conversely,
catch an exception and s#tno before returning to a C program from &tCibrary:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

384 Exception Handling Chapter 14

void callC() throw(C_blewit)

{
emrno = 0;
c_function() ;
if (errno) {
/1 cleanup, if possible and necessary
throw C_blewit(errno);
}
}
extern " C" void call_from C() throw()
{
try {
¢_plus _plus function() ;
}
catch(...) {
/1 cleanup, if possible and necessary
emno = E_CPLPLFCTBLEWT,;
}
}

In such cases, it is important to be systematic enough to ensure that the conversion of error report-
ing styles is complete.

Error handling should be as far as possible hierarchical. If a function detects a run-time
error, it should not ask its caller for help with recovery or resource acquisition. Such requests set
up cycles in the system dependencies. That in turn makes the program hard to understand and
introduces the possibility of infinite loops in the error-handling and recovery code.

Simplifying techniques such as “resource acquisition is initialization” and simplifying assump-
tions such as “exceptions represent errors” should be used to make the error-handling code more
regular. See also §24.3.7.1 for ideas about how to use invariants and assertions to make the trigger-
ing of exceptions more regular.

14.10 Standard Exceptiongexcept.std]

Here is a table of standard exceptions and the functions, operators, and general facilities that throw
them:

U Standard Exceptions (thrown by the language) g
= (]
H\Iame Thrown by Reference Header
[bad alloc new 86.2.6.2, 819.4.5 <new> O
Lbad_cast dynamic cast §15.4.1.1 <typeinfo> U

ad_typeid typeid 8§15.4.4 <typeinfo> E

ad_exception exception specification §14.6.3 <exceptior]

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 14.10 Standard Exceptions 385

U Standard Exceptions (thrown by the standard library) U
O

E{\Iame Thrown by Reference Header o
Cout_of _range at() 83.7.2, 816.3.3, 820.3.3 <stdexcept [
g bitsek>::operator[]() §17.5.3 <stdexcept U
nvalid_argument bitset constructor §17.5.3.1 <stdexcept g
roverflow_error bitset>::to_ulong() 8§17.5.3.3 <stdexcept
fjos base:failure ios base::clear() 8§21.3.6 <ios> O

The library exceptions are part of a class hierarchy rooted in the standard library exception class
exception presented irexception>:
class exception {
public:
exception() throw() ;
exception(const exception&) throw() ;
exception& operator=(const exception&) throw() ;
virtual ~exception() throw() ;

virtual const char* what() const throw() ;

private:
/...
h
The hierarchy looks like this:
exception
/ \
logic_ermror runtime _error
length_error range error
domain_ermror bad alloc bad cast overflow_error
out_of range bad exception bad typeid underflow_error
invalid_argument ios base::failure

This seems rather elaborate for organizing the eight standard exceptions. This hierarchy attempts to
provide a framework for exceptions beyond the ones defined by the standard library. Logic errors
are errors that in principle could be caught either before the program starts executing or by tests of
arguments to functions and constructors. Run-time errors are all other errors. Some people view
this as a useful framework for all errors and exceptions; | don't.

The standard library exception classes don’t add functions to the set providsdepiion;
they simply define the required virtual functions appropriately. Thus, we can write:

void f()
try {

}

/1 use standard library

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

386 Exception Handling Chapter 14

catch (exception& €) {
cout << " standard library exception" << e what() <<"\n; / / well, maybe

/..

}

catch (...) {
cout << " other exception\n";
/...

}

The standard exceptions are derived fexmeption. However, not every exception is, so it would
be a mistake to try to catch every exception by catcésegption. Similarly, it would be a mis-
take to assume that every exception derived fexoeption is a standard library exception: pro-
grammers can add their own exceptions toepweption hierarchy .

Note thatexception operations do not themselves throw exceptions. In particular, this implies
that throwing a standard library exception doesn’t caubadaalloc exception. The exception-
handling mechanism keeps a bit of memory to itself for holding exceptions (possibly on the stack).
Naturally, it is possible to write code that eventually consumes all memory in the system, thus forc-
ing a failure.

Here is a function that if called — tests whether the function call or the exception-handling
mechanism runs out of memory first:

void perverted()
{
try {
throw exception() ; / / recursive exception throw
}
catch (exception& €) {
perverted() ; /I recursive function call
cout << e. what() ;
}

}

The purpose of the output statement is simply to prevent the compiler from re-using the memory
occupied by the exception named

14.11 Adviceexcept.advice]

[1] Use exceptions for error handling; 814.1, §14.5, §14.9.

[2] Don't use exceptions where more local control structures will suffice; §14.1.

[3] Use the “resource allocation is initialization” technique to manage resources; §14.4.

[4] Not every program needs to be exception safe; §14.4.3.

[5] Use “resource allocation is initialization” and exception handlers to maintain invariants;
§14.3.2.

[6] Minimize the use ofry-blocks. Use “resource acquisition is initialization” instead of explicit
handler code; §14.4.

[7]1 Not every function needs to handle every possible error; §14.9.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 14.11 Advice 387

[8] Throw an exception to indicate failure in a constructor; §14.4.6.

[9] Avoid throwing exceptions from copy constructors; 814.4.6.1.

[10] Avoid throwing exceptions from destructors; §14.4.7.

[11] Havemain() catch and report all exceptions; §14.7.

[12] Keep ordinary code and error-handling code separate; §14.4.5, §14.5.

[13] Be sure that every resource acquired in a constructor is released when throwing an exception
in that constructor; §14.4.

[14] Keep resource management hierarchical; §14.4.

[15] Useexception-specificatianfor major interfaces; §14.9.

[16] Beware of memory leaks caused by memory allocatewstmnot being released in case of an
exception; §14.4.1, §14.4.2, §14.4.4.

[17] Assume that every exception that can be thrown by a function will be thrown; §14.6.

[18] Don’t assume that every exception is derived from amssption; §14.10.

[19] A library shouldn’t unilaterally terminate a program. Instead, throw an exception and let a
caller decide; §14.1.

[20] A library shouldn’t produce diagnostic output aimed at an end user. Instead, throw an excep-
tion and let a caller decide; §14.1.

[21] Develop an error-handling strategy early in a design; §14.9.

14.12 Exercisegexcept.exercises]

1. (@) Generalize th&TC class (814.6.3.1) to a template that can use the “resource acquisition is
initialization” technique to store and reset functions of a variety of types.

2. ((B) Complete thétr_to T class from §11.11 as a template that uses exceptions to signal run-
time errors.

3. (B) Write a function that searches a binary tree of nodes basechar*dfield for a match. If
a node containingpello is found, find(" hello") will return a pointer to that node. Use an
exception to indicate “not found.”

4. (@B) Define a clasnt that acts exactly like the built-in tyjmt, except that it throws exceptions
rather than overflowing or underflowing.

5. (2.5) Take the basic operations for opening, closing, reading, and writing from the C interface

to your operating system and provide equivalext @inctions that call the C functions but

throw exceptions in case of errors.

(C2.5) Write a complet¥ector template withRange andSize exceptions.

7. () Write a loop that computes the sum &fextor as defined in §14.12[6] without examining
the size of th&/ector. Why is this a bad idea?

8. (2.5) Consider using a clagxception as the base of all classes used as exceptions. What
should it look like? How should it be used? What good might it do? What disadvantages
might result from a requirement to use such a class?

9. () Given a

int main() { /* ..* }

o

change it so that it catches all exceptions, turns them into error messagaisorif)ds. Hint;

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

388 Exception Handling Chapter 14

call_from_C() in §14.9 doesn't quite handle all cases.
10. ((2) Write a class or template suitable for implementing callbacks.
11. (R.5) Write aLock class for some system supporting concurrency.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

	Return to Contents
	14.1 Error Handling
	14.2 Grouping of Exceptions
	14.3 Catching Exceptions
	14.4 Resource Management
	14.5 Exceptions That Are Not Errors
	14.6 Exception Specifications
	14.7 Uncaught Exceptions
	14.8 Exceptions and Efficiency
	14.9 Error Handling Alternatives
	14.10 Standard Exceptions
	14.11 Advice
	14.12 Exercises

	buy now:

