13

Templates

Your quote here.
— B. Stroustrup

Templates— a string template— instantiation— template parameters- type checking
— function templates— template argument deductier specifying template arguments
— function template overloading- policy as template arguments default template
arguments— specialization— derivation and templates- member templates- con-
versions— source code organizatien advice— exercises.

13.1 Introduction [temp.intro]

Independent concepts should be independently represented and should be combined only when
needed. Where this principle is violated, you either bundle unrelated concepts together or create
unnecessary dependencies. Either way, you get a less flexible set of components out of which to
compose systems. Templates provide a simple way to represent a wide range of general concepts
and simple ways to combine them. The resulting classes and functions can match hand-written,
more-specialized code in run-time and space efficiency.

Templates provide direct support for generic programming (82.7), that is, programming using
types as parameters. Thet3emplate mechanism allows a type to be a parameter in the definition
of a class or a function. A template depends only on the properties that it actually uses from its
parameter types and does not require different types used as arguments to be explicitly related. In
particular, the argument types used for a template need not be from a single inheritance hierarchy.

Here, templates are introduced with the primary focus on techniques needed for the design,
implementation, and use of the standard library. The standard library requires a greater degree of
generality, flexibility, and efficiency than does most software. Consequently, techniques that can
be used in the design and implementation of the standard library are effective and efficient in the
design of solutions to a wide variety of problems. These techniques enable an implementer to hide

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

http://store.awl.com/catalog/cepub_detail.mhtml?isbn=0-201-88954-4

328 Templates Chapter 13

sophisticated implementations behind simple interfaces and to expose complexity to the user only
when the user has a specific need for it. For exarspi§,v) can be the interface to a variety of
sort algorithms for elements of a variety of types held in a variety of containers. The sort function
that is most appropriate for the particwawill be automatically chosen.

Every major standard library abstraction is represented as a template (for exstrimdg,
ostream, complex, list, andmap) and so are the key operations (for examgii#ng compare, the
output operatok<, complex addition, getting the next element fromliat, andsort()). This
makes the library chapters (Part 3) of this book a rich source of examples of templates and pro-
gramming techniques relying on them. Consequently, this chapter concentrates on smaller exam-
ples illustrating technical aspects of templates and fundamental techniques for using them:

813.2: The basic mechanisms for defining and using class templates

813.3: Function templates, function overloading, and type deduction

813.4: Template parameters used to specify policies for generic algorithms

8§13.5: Multiple definitions providing alternative implementations for a template

813.6: Derivation and templates (run-time and compile-time polymorphism)

813.7: Source code organization
Templates were introduced in 82.7.1 and 83.8. Detailed rules for template nhame resolution, tem-
plate syntax, etc., can be found in §C.13.

13.2 A Simple String Templategtemp.string]

Consider a string of characters. A string is a class that holds characters and provides operations
such as subscripting, concatenation, and comparison that we usually associate with the notion of a
“string.” We would like to provide that behavior for many different kinds of characters. For
example, strings of signed characters, of unsigned characters, of Chinese characters, of Greek char-
acters, etc., are useful in various contexts. Thus, we want to represent the notion of “string” with
minimal dependence on a specific kind of character. The definition of a string relies on the fact that

a character can be copied, and little else. Thus, we can make a more general string type by taking
the string ofchar from §11.12 and making the character type a parameter:

template<class C> class Sring {
struct Srep;
Srep * rep;
public:
String() ;
String(const C*) ;
String(const String&:);
C read(int i) const
/...
h
Thetemplate <class C> prefix specifies that a template is being declared and that a type argument
C will be used in the declaration. After its introducti@js used exactly like other type names.
The scope ofC extends to the end of the declaration prefixeddmplate <class C>. Note that
template<class C> says thaC is atypename; it need not be the name alass

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 13.2 A Simple String Template 329

The name of a class template followed by a type bracketed>bys the name of a class (as
defined by the template) and can be used exactly like other class hames. For example:

String<char> cs;
String<unsigned char> us;
String<wchar_t> ws;

class Jchar {
/1 Japanese character

h

String<Jchar> js;
Except for the special syntax of its nan@iiing<char> works exactly as if it had been defined
using the definition of clasString in §11.12. MakingString a template allows us to provide the

facilities we had foString of char for Strings of any kind of character. For example, if we use the
standard librarynap and theString template, the word-counting example from §11.8 becomes:

int main() /| count the occurrences of each word on input

{
String<char> buf;
map<String<char>, int> m;
while (cin>>buf) m[buf]++;
/] write out result

}

The version for our Japanese-character fghar would be:

int main() /| count the occurrences of each word on input

{
String<Jchar> buf;
map<String<Jchar>, int> m;
while (cin>>buf) m[buf]++;
/1 write out result

}

The standard library provides the template cbasic_string that is similar to the templatized
String (811.12, 8§20.3). In the standard librarglring is defined as a synonym for
basic_string<char>:

typedef basic_string<char> string;
This allows us to write the word-counting program like this:

int main() /| count the occurrences of each word on input

{
string buf;
map<string, int> m;
while (cin>>buf) m[buf]++;
/1 write out result
}

In general typedefs are useful for shortening the long names of classes generated from templates.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

330 Templates Chapter 13

Also, we often prefer not to know the details of how a type is defined, typkdef allows us to
hide the fact that a type is generated from a template.

13.2.1 Defining a Template [temp.string.details]

A class generated from a class template is a perfectly ordinary class. Thus, use of a template does
not imply any run-time mechanisms beyond what is used for an equivalent “hand-written” class.
Nor does it necessarily imply any reduction in the amount of code generated.

It is usually a good idea to debug a particular class, suSiriag, before turning it into a tem-
plate such astring<C>. By doing so, we handle many design problems and most of the code
errors in the context of a concrete example. This kind of debugging is familiar to all programmers,
and most people cope better with a concrete example than with an abstract concept. Later, we can
deal with any problems that might arise from generalization without being distracted by more con-
ventional errors. Similarly, when trying to understand a template, it is often useful to imagine its
behavior for a particular type argument suclclaar before trying to comprehend the template in
its full generality.

Members of a template class are declared and defined exactly as they would have been for a
non-template class. A template member need not be defined within the template class itself. In
that case, its definition must be provided somewhere else, as for non-template class members
(8C.13.7). Members of a template class are themselves templates parameterized by the parameters
of their template class. When such a member is defined outside its class, it must explicitly be
declared a template. For example:

template<class C> struct Siring<C>:: Srep{

C* s / | pointer to elements
int sz /| number of elements
int n; / | reference count
/...

h

template<class C> C Siring<C>:: read(int i) const{ return rep-> g i]; }
template<class C> String<C>:: String()

{

}

Template parameters, such@sare parameters rather than names of types defined externally to the
template. However, that doesn’t affect the way we write the template code using them. Within the
scope ofString<C>, qualification with<C> is redundant for the name of the template itself, so
String<C>: : String is the name for the constructor. If you prefer, you can be explicit:

p = new Srep(0, C()) ;

template<class C> String<C>:: String<C>()

{
, p=new Srep(0, C()) ;

Just as there can be only one function defining a class member function in a program, there can be
only one function template defining a class template member function in a program. However,

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 13.2.1 Defining a Template 331

overloading is a possibility for functions only (§13.3.2), while specialization (§13.5) enables us to
provide alternative implementations for a template.

It is not possible to overload a class template name, so if a class template is declared in a scope,
no other entity can be declared there with the same name (see also §13.5). For example:

template<class T> class Sring{ /* ...* };

class Sring{ /* ...*/ }; // error: double definition

A type used as a template argument must provide the interface expected by the template. For
example, a type used as an argumer8itimg must provide the usual copy operations (810.4.4.1,
8§20.2.1). Note that there is no requirement that different arguments for the same template parame-
ter should be related by inheritance.

13.2.2 Template Instantiation [temp.string.inst]

The process of generating a class declaration from a template class and a template argument is often
calledtemplate instantiatiof8C.13.7). Similarly, a function is generated (“instantiated”) from a
template function plus a template argument. A version of a template for a particular template argu-
ment is called apecialization

In general, it is the implementation’s jebnotthe programmer’s- to ensure that versions of a
template function are generated for each set of template arguments used (8C.13.7). For example:

String<char> cs,

void f()
{

String<Jchar> js;

cs="It" s the implementation" s job to figure out what code meeds to be generated';
}

For this, the implementation generates declarationStfimg<char> and String<Jchar>, for their
correspondingSrep types, for their destructors and default constructors, and for the assignment
String<char>: : operator=(char*) . Other member functions are not used and should not be gen-
erated. The generated classes are perfectly ordinary classes that obey all the usual rules for classes.
Similarly, generated functions are ordinary functions that obey all the usual rules for functions.

Obviously, templates provide a powerful way of generating code from relatively short defini-
tions. Consequently, a certain amount of caution is in order to avoid flooding memory with almost
identical function definitions (813.5).

13.2.3 Template Parameters [temp.param]

A template can take type parameters, parameters of ordinary types simth, @and template
parameters (8C.13.3). Naturally, a template can take several parameters. For example:

template<class T, T def val>class Cont{ /* ...*/ };

As shown, a template parameter can be used in the definition of subsequent template parameters.
Integer arguments come in handy for supplying sizes and limits. For example:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

332 Templates Chapter 13

template<class T, int i> class Buffer {
T Vi];
int sz

public:
;l/uffer() cs«i) {

h
Buffer<char, 127> cbuf;
Buffer<Record, 8> rbuf;

Simple and constrained containers suctBaffer can be important where run-time efficiency and
compactness are paramount (thus preventing the use of a more gimagalr vector). Passing a
size as a template argument alldBudfer's implementer to avoid free store use. Another example
is theRangetype in §25.6.1.

A template argument can be a constant expression (8C.5), the address of an object or function
with external linkage (89.2), or a non-overloaded pointer to member (815.5). A pointer used as a
template argument must be of the fofof, whereof is the name of an object or a function, or of
the formf, wheref is the name of a function. A pointer to member must be of the &otm of,
whereof is the name of an member. In particular, a string literabisacceptable as a template
argument.

An integer template argument must be a constant:

void f(int i)
{

}

Conversely, a non-type template parameter is a constant within the template so that an attempt to
change the value of a parameter is an error.

Buffer<int, i>bx;, / / error: constant expression expected

13.2.4 Type Equivalence [temp.equiv]
Given a template, we can generate types by supplying template arguments. For example:

String<char> s1;
String<unsigned char> s2,
String<int> s3;

typedef unsigned char Uchar;
String<Uchar> s4;
String<char> s5;
Buffer<String<char>, 10> b1;
Buffer<char, 10> b2;
Buffer<char, 20- 10> b3;

When using the same set of template arguments for a template, we always refer to the same gener-
ated type. However, what does “the same” mean in this context? As typelefs do not intro-
duce new types, s@fring<Uchar> is the same type aString<unsigned char>. Conversely,

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 13.2.4 Type Equivalence 333

becausechar and unsigned char are different types (84.3ptfring<char> and String<unsigned
char> are different types.

The compiler can evaluate constant expressions (8C.Bufter<char, 20- 10> is recognized
to be the same type Bsiffer<char, 10>.

13.2.5 Type Checking [temp.check]

A template is defined and then later used in combination with a set of template arguments. When
the template is defined, the definition is checked for syntax errors and possibly also for other errors
that can be detected in isolation from a particular set of template arguments. For example:

template<class T> class List{

struct Link {
Link* pre;
Link* suc;
T val;
Link(Link* p, Link* s, const T&vV) : pre(p), suc(s), val(v) { }
} / | syntax error: missing semicolon
Link* head;
public:

List) : head(7) { } /| error: pointer initialized with int

List(const T&t) : head(new Link(O, o, t)) {} /| error: undefined identifier ‘0’

/...

void print_all() { for (Link* p=head; p; p=p->suc) cout<< p->val <<’ \n’; }

h

A compiler can catch simple semantic errors at the point of definition or later at the point of use.
Users generally prefer early detection, but not all “simple” errors are easy to detect. Here, | made
three “mistakes.” Independently of what the template parameter is, a pdintannot be initial-
ized by the integer. Similarly, the identifieio (a mistyped), of course) cannot be an argument to
List<T>:: Link's constructor because there is no such name in scope.

A name used in a template definition must either be in scope or in some reasonably obvious
way depend on a template parameter (§C.13.8.1). The most common and obvious way of depend-
ing on a template paramet€ris to use a member of Bor to take an argument of tyde In
List<T>:: print_all() , cout<<p-> val is a slightly more subtle example.

Errors that relate to the use of template parameters cannot be detected until the template is used.
For example:

class Rec{ /* ...*/ };

void f(List<int>& li, List<Rec>&Ir)

{
li. print_all() ;
Ir. print_all() ;
}

Theli. print_all() checks out fine, bur. print_all() gives a type error because there is<rO
output operator defined fdRec. The earliest that errors relating to a template parameter can be
detected is at the first point of use of the template for a particular template argument. That point is

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

334 Templates Chapter 13

usually called théirst point of instantiationor simply thepoint of instantiatior(see §C.13.7). The
implementation is allowed to postpone this checking until the program is linked. If we had only a
declaration ofprint_all() available in this translation unit, rather than its definition, the implemen-
tation might have had to delay type checking (see 813.7). Independently of when checking is done,
the same set of rules is checked. Again, users prefer early checking. It is possible to express con-
straints on template arguments in terms of member functions (see §13.9[16]).

13.3 Function Templategtemp.fct]

For most people, the first and most obvious use of templates is to define and use container classes
such ashasic_string (820.3), vector (816.3), list (§17.2.2), andmap (§17.4.1). Soon after, the
need for template functions arises. Sorting an array is a simple example:

template<class T> void sort(vector<T>&); / | declaration
void f(vector<int>& vi, vector<string>& vs)

sort(vi); / /| sort(vectorint>&);
sort(vs); / | sort(vectokstring>&);
}

When a template function is called, the types of the function arguments determine which version of
the template is used; that is, the template arguments are deduced from the function arguments
(813.3.1).

Naturally, the template function must be defined somewhere (§C.13.7):

template<class T> void sort(vector<T>& v) / | definition
/1 Shell sort (Knuth, Vol. 3, pg. 84).

{
const size t n=v. sizg) ;
for (int gap=n/ 2; 0<gap; gap/= 2)
for (int i=gap; i<n; i++)
for (int j=i- gap; 0<=j; j-= gap)
if (v[j+gapl<v(jl) { / / swap v[j]and v[i+gap]
T temp=V[j];
v[jl =Vl j+oapl;
) Vij+gap] = temp;
}

Please compare this definition to tbart() defined in (87.7). This templatized version is cleaner
and shorter because it can rely on more information about the type of the elements it sorts. Most
likely, it is also faster because it doesn't rely on a pointer to function for the comparison. This
implies that no indirect function calls are needed and that inlining of a sinipleasy.

A further simplification is to use the standard library tempéstap() (818.6.8) to reduce the
action to its natural form:

if (v{j+gap]< V[j]) swap(V(j], v[j+gap]) ;

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 13.3 Function Templates 335

This does not introduce any new overheads.
In this example, operater is used for comparison. However, not every type haoperator.
This limits the use of this version sért() , but the limitation is easily avoided (see §13.4).

13.3.1 Function Template Arguments [temp.deduce]

Function templates are essential for writing generic algorithms to be applied to a wide variety of
container types (82.7.2, §3.8, Chapter 18). The ability to deduce the template arguments for a call
from the function arguments is crucial.

A compiler can deduce type and non-type arguments from a call, provided the function argu-
ment list uniquely identifies the set of template arguments (§8C.13.4). For example:

template<class T, int i> T lookup(Buffer<T, i>& b, const char* p);

class Record {
const char[12];
/..

h
Record f(Buffer<Record, 128>& buf, const char* p)
{

}

Here,T is deduced to bRecord andi is deduced to b&28.

Note that class template parameters are never deduced. The reason is that the flexibility pro-
vided by several constructors for a class would make such deduction impossible in many cases and
obscure in many more. Specialization provides a mechanism for implicitly choosing between dif-
ferent implementations of a class (§13.5). If we need to create an object of a deduced type, we can
often do that by calling a function to do the creation;rsalee pair() in §17.4.1.2.

If a template argument cannot be deduced from the template function arguments (8C.13.4), we
must specify it explicitly. This is done in the same way template arguments are explicitly specified
for a template class. For example:

template<class T> class wvector { /* ...*/ };
template<class T> T* create() ; // make a T and return a pointer to it

void f()
{

return lookup(buf, p); // use the lookup() where T is Record and i is 128

vector<int> v; / | class, template argument ‘int’
int* p=create<int>() ; / / function, template argument ‘int’

}
One common use of explicit specification is to provide a return type for a template function:
template<class T, class U> T implicit_cast(U u) { return u; }

void g(int i)

{
implicit_cast(i); [| error: can't deduce T
implicit_cast<double>(i); / | Tisdouble; Uis int

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

336 Templates Chapter 13

implicit_cast<char, double>(i);/ / Tis char; U is double
implicit_cast<char*, int>(i); / / Tis char*; U is int; error: cannot convert int to char*

}

As with default function arguments (87.5), only trailing arguments can be left out of a list of
explicit template arguments.

Explicit specification of template arguments allows the definition of families of conversion
functions and object creation functions (813.3.2, §C.13.1, §C.13.5). An explicit version of the
implicit conversions (8C.6), such amplicit_cast() , is frequently useful. The syntax for
dynamic_cast, static_cast, etc., (86.2.7, §15.4.1) matches the explicitly qualified template function
syntax. However, the built-in type conversion operators supply operations that cannot be expressed
by other language features.

13.3.2 Function Template Overloading [temp.over]

One can declare several function templates with the same name and even declare a combination of
function templates and ordinary functions with the same name. When an overloaded function is
called, overload resolution is necessary to find the right function or template function to invoke.
For example:

template<class T> T sqrit(T);
template<class T> complex<T> sgrt(complex<T>);
double sgrt(double);

void f(complex<double> z)

{

sqrt(2); /| sgrikint>(int)

sgrt(2. 0); /| sqgrt(double)

sqrt(2); /| sgrtcdouble>(complexdouble>)
}

In the same way that a template function is a generalization of the notion of a function, the rules for
resolution in the presence of function templates are generalizations of the function overload resolu-
tion rules. Basically, for each template we find the specialization that is best for the set of function
arguments. Then, we apply the usual function overload resolution rules to these specializations and
all ordinary functions:

[1] Find the set of function template specializations (813.2.2) that will take part in overload res-
olution. Do this by considering each function template and deciding which template argu-
ments, if any, would be used if no other function templates or functions of the same name
were in scope. For the calgt(2) , this makessgrt<double>(complex<double>) and
sgrt< complex<double> >(complex<double>) candidates.

[2] If two template functions can be called and one is more specialized than the other (§13.5.1),
consider only the most specialized template function in the following steps. For the call
sqrt(2) , this means thassgrt<double>(complex<double>) is preferred oversgrt<
complex<double>>(complex<double>) : any call that matchesqrt<T>(complex<T>)
also matchesgrt<T>(T) .

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 13.3.2 Function Template Overloading 337

[3] Do overload resolution for this set of functions, plus any ordinary functions as for ordinary
functions (§7.4). If a template function argument has been determined by template argu-
ment deduction (§13.3.1), that argument cannot also have promotions, standard conversions,
or user-defined conversions applied. Bgrt(2), sgri<int>(int) is an exact match, so it
is preferred ovesqrt(double).

[4] If a function and a specialization are equally good matches, the function is preferred. Con-
sequentlysgrt(double) is preferred ovesgrt<double>(double) for sqrt(2. 0) .

[5] If no match is found, the call is an error. If we end up with two or more equally good
matches, the call is ambiguous and is an error.

For example:

template<class T> T max(T, T);

const int s=7;

void k()
{
max(1, 2); /| maxint>(1,2)
max(" a,” b); / | maxchar>('a’,'b’)
max(2.7,4.9); / | maxdouble>(2.7,4.9)
max(s, 7); /| maxint>(int(s),7) (trivial conversion used)
max(" a’, 1); /| error: ambiguous (no standard conversion)
max(2. 7, 4); / | error: ambiguous (no standard conversion)
}
We could resolve the two ambiguities either by explicit qualification:
void f()
max<int>(" a’, 1); /| maxint>(int('a’),1)
max<double>(2. 7, 4); / / maxdouble>(2.7,double(4))

}
or by adding suitable declarations:

inline int max(int i, int j) { return max<int>(i, j); }

inline double max(int i, double d) { return max<double>(i, d); }

inline double max(double d int i) { return max<double>(d, i); }

inline double max(double dil, double d2) { return max<double>(d1, d2); }

void g()
{

max(" a’, 1); / / max(int(a’),1)
max(2. 7, 4); / |/ max(2.7,double(4))
}

For ordinary functions, ordinary overloading rules (§87.4) apply, and the usting ensures that
no extra overhead is imposed.

The definition ofmax() is trivial, so we could have written it explicitly. However, using a spe-
cialization of the template is an easy and general way of defining such resolution functions.

The overload resolution rules ensure that template functions interact properly with inheritance:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

338 Templates Chapter 13

template<class T> class B{ /* ..*/ }
template<class T> class D: public B<T>{ /* ..* }

template<class T> void f(B<T>*) ;

void g(B<int>* pb, D<int>* pd)

{
f(pb); [/ [/ f<int>(pb)
f(pd); [/ [/ f<int>(static caskB<int>*>(pd)); standard conversion<€nt>* to B<int>* used

In this example, the template functiff) accepts 8<T>* for any typeT. We have an argument
of type D<int>*, so the compiler easily deduces that by choodirtg beint, the call can be
uniquely resolved to a call 6f B<int>*) .

A function argument that is not involved in the deduction of a template parameter is treated
exactly as an argument of a non-template function. In particular, the usual conversion rules hold.
Consider:

template<class C> int get nth(C&p, int n); / / getn-th element

This function presumably returns the value of the n-th element of a container @f. terauseC

has to be deduced from an actual argumegebfth() in a call, conversions are not applicable to

the first argument. However, the second argument is perfectly ordinary, so the full range of possi-
ble conversions is considered. For example:

class IIndex{
public:

operator int() ;
/...

h
void f(vector<int>& v, short s, Index i)

{
int i1=get nth(v, 2); / / exact match
int i2=get nth(v, s); / / standard conversion: short to int
int i3 =get nth(v, i); | | user-defined conversion: Index to int

13.4 Using Template Arguments to Specify Poligyemp.policy]

Consider how to sort strings. Three concepts are involved: the string, the element type, and the cri-
teria used by the sort algorithm for comparing string elements.

We can’t hardwire the sorting criteria into the container because the container can't (in general)
impose its needs on the element types. We can’t hardwire the sorting criteria into the element type
because there are many different ways of sorting elements.

Consequently, the sorting criteria are built neither into the container nor into the element type.
Instead, the criteria must be supplied when a specific operation needs to be performed. For exam-
ple, if | have strings of characters representing names of Swedes, what collating criteria would |

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 13.4 Using Template Arguments to Specify Policy 339

like to use for a comparison? Two different collating sequences (humerical orderings of the charac-
ters) are commonly used for sorting Swedish names. Naturally, neither a general string type nor a
general sort algorithm should know about the conventions for sorting names in Sweden. Therefore,
any general solution requires that the sorting algorithm be expressed in general terms that can be
defined not just for a specific type but also for a specific use of a specific type. For example, let us
generalize the standard C library functstrcmp() for Strings of any typeT (813.2):

template<class T, class C
int compare(const String<T>& strl, const Siring<T>& str2)

for(int i=0; i<sirl. length() &&i< str2. length() ; i++)
if (! C::eq(strl]i], str2[i])) return C::It(strlf[i], str2[i]) ?-1: 1;
return sirl. length()- str2. length() ;
}

If someone wantsompare() to ignore case, to reflect locale, etc., that can be done by defining
suitableC:: eq) andC:: It() . This allows any (comparison, sorting, etc.) algorithm that can be
described in terms of the operations supplied by tfeoperations” and the container to be
expressed. For example:

template<class T> class Cmp{/ / normal, default compare
public:
static int eq(T a, T b) { return a==b; }
static int [t(T a, T b) { return a<b; }
h
class Literate { // compare Swedish names according to literary conventions
public:
static int eq(char a, char b) { return a==b; }
static int It(char, char); // atable lookup based on character value (8§13.9[14])
h
We can now choose the rules for comparison by explicit specification of the template arguments:

void f(String<char> swedel, String<char> swede2)

{
compare< char, Cmp<char> >(swedel, swede?);
compare< char, Literate >(swedel, swede2);

}

Passing the comparison operations as a template parameter has two significant benefits compared to
alternatives such as passing pointers to functions. Several operations can be passed as a single
argument with no run-time cost. In addition, the comparison opemrsandlt() are trivial to

inline, whereas inlining a call through a pointer to function requires exceptional attention from a
compiler.

Naturally, comparison operations can be provided for user-defined types as well as built-in
types. This is essential to allow general algorithms to be applied to types with nontrivial compari-
son criteria (see §18.4).

Each class generated from a class template gets a copy citaticimember of the class tem-
plate (see §C.13.1).

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

340 Templates Chapter 13

13.4.1 Default Template Parameters [temp.default]

Explicitly specifying the comparison criteria for each call is tedious. Fortunately, it is easy to pick
a default so that only uncommon comparison criteria have to be explicitly specified. This can be
implemented through overloading:

template<class T, class C
int compare(const String<T>& strl, const String<T>& str2); // compare using C

template<class T>
int compare(const String<T>& strl, const Siring<T>& str2); // compare using CnyI>

Alternatively, we can supply the normal convention as a default template argument:

template<class T, class C= Cmp<T> >
int compare(const Sring<T>& sirl, const Siring<T>& str2)

{
for(int i=0; i<strl. length() &&i< str2. length() ; i++)
if (! C:eqstrl]i], str2[i])) return C::It(strl[i], swr2[i]) ?-1: 1,
return strl. length()- str2. length() ;
}

Given that, we can write:

void f(String<char> swedel, String<char> swede2)
{

compare(swedel, swede?); / | use Cmpchar>
compare<char, Literate>(swedel, swede?); / | use Literate

}
A less esoteric example (for non-Swedes) is comparing with and without taking case into account:
class No_case{ /* ...*/ };

void f(String<char> s1, String<char> s2)

{
compare(sl, s2); / | case sensitive

compare<char, No_case>(sl, s2); / / not sensitive to case

}

The technique of supplying a policy through a template argument and then defaulting that argument
to supply the most common policy is widely used in the standard library (e.g., 818.4). Curiously
enough, it is not used fdyasic_string (813.2, Chapter 20) comparisons. Template parameters
used to express policies are often called “traits.” For example, the standard library string relies on
char_traits (820.2.1), the standard algorithms on iterator traits (819.2.2), and the standard library
containers omllocators (819.4).

The semantic checking of a default argument for a template parameter is done if and (only)
when that default argument is actually used. In particular, as long as we refrain from using the
default template argume@mp<T> we cancompare() strings of a typeX for which Cmp<X>
wouldn’'t compile (say, becausewasn’t defined for arX). This point is crucial in the design of
the standard containers, which rely on a template argument to specify default values (§816.3.4).

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 13.5 Specialization 341

13.5 Specializatiortemp.special]

By default, a template gives a single definition to be used for every template argument (or combina-
tion of template arguments) that a user can think of. This doesn't always make sense for someone
writing a template. | might want to say, “if the template argument is a pointer, use this implemen-
tation; if it is not, use that implementation” or “give an error unless the template argument is a
pointer derived from clasdly _base” Many such design concerns can be addressed by providing
alternative definitions of the template and having the compiler choose between them based on the
template arguments provided where they are used. Such alternative definitions of a template are
calleduser-defined specializationsr simply,user specializations

Consider likely uses of ¥ector template:

template<class T> class Vector{ / / general vector type
T™ v,
int sz
public:
Vector() ;
Vector(int);

T&elem(int i) { return V{i]; }
T& operator[](int i);

void swap(Vector&);
/...
3
Vector<int> vi;
Vector<Siape*> vps,
Vector<string> vs,
Vector<char*> vpc;
Vector<Node*> vpn;

Most Vectors will be Vectors of some pointer type. There are several reasons for this, but the pri-
mary reason is that to preserve run-time polymorphic behavior, we must use pointers (82.5.4,
812.2.6). That is, anyone who practices object-oriented programming and also uses type-safe con-
tainers (such as the standard library containers) will end up with a lot of containers of pointers.

The default behavior of mostt€ implementations is to replicate the code for template func-
tions. This is good for run-time performance, but unless care is taken it leads to code bloat in criti-
cal cases such as tiector example.

Fortunately, there is an obvious solution. Containers of pointers can share a single implementa-
tion. This can be expressed through specialization. First, we define a version (a specialization) of
Vector for pointers tovoid:

template<> class Vector<void*> {
void** p;
/..
void*& operator[](int i);

h
This specialization can then be used as the common implementationfectalls of pointers.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

342 Templates Chapter 13

Thetemplate<> prefix says that this is a specialization that can be specified without a template
parameter. The template arguments for which the specialization is to be used are specified in
brackets after the name. That is, themid*> says that this definition is to be used as the imple-
mentation of everyector for which T is void* .

The Vector<void*> is a complete specialization. That is, there is no template parameter to
specify or deduce when we use the specializalfentor<void*> is used foVectors declared like
this:

Vector<void*> vpy,

To define a specialization that is used for ewegtor of pointers and only fovectors of pointers,
we need gartial specialization

template<class T> class Vector<T*> : private Vector<void*> {
public:
typedef Vector<void*> Base

Vector() : Base) {}
explicit Vector(int i) : Base(i) {}
T*& elem(int i) { return static_cast<T*&>(Base : elem(i)) ; }
T*& operator[](int i) { return static_cast<T*&>(Base : operator[](i)) ; }
I ...
%
The specialization patterdil*> after the name says that this specialization is to be used for every
pointer type; that is, this definition is to be used for eMstor with a template argument that can
be expressed & . For example:

Vector<Shape*> vps, // <T*>is <Shape* so T is Shape
Vector<int**> vppi;/ / <T*>is<int**>so T is int*

Note that when a partial specialization is used, a template parameter is deduced from the specializa-
tion pattern; the template parameter is not simply the actual template argument. In particular, for
Vector<Sthape*> , T is Stape and notStape* .

Given this partial specialization dector, we have a shared implementation for\attors of
pointers. The&/ector<T*> class is simply an interface woid* implemented exclusively through
derivation and inline expansion.

It is important that this refinement of the implementatioVedtor is achieved without affect-
ing the interface presented to users. Specialization is a way of specifying alternative implementa-
tions for different uses of a common interface. Naturally, we could have given the ¢ésctoal
and theVector of pointers different names. However, when | tried that, many people who should
have known better forgot to use the pointer classes and found their code much larger than expected.
In this case, it is much better to hide the crucial implementation details behind a common interface.

This technique proved successful in curbing code bloat in real use. People who do not use a
technique like this (in €F or in other languages with similar facilities for type parameterization)
have found that replicated code can cost megabytes of code space even in moderately-sized pro-
grams. By eliminating the time needed to compile those additional versions of the vector opera-
tions, this technique can also cut compile and link times dramatically. Using a single specialization

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 13.5 Specialization 343

to implement all lists of pointers is an example of the general technique of minimizing code bloat
by maximizing the amount of shared code.
The general template must be declared before any specialization. For example:
template<class T> class List<T*> { /* ..* };

template<class T> class List{ /* ...*/ }; // error: general template after specialization

The critical information supplied by the general template is the set of template parameters that the
user must supply to use it or any of its specializations. Consequently, a declaration of the general
case is sufficient to allow the declaration or definition of a specialization:

template<class T> class List;
template<class T> class List<T*> { /* ...*/ };

If used, the general template needs to be defined somewhere (§813.7).
If a user specializes a template somewhere, that specialization must be in scope for every use of
the template with the type for which it was specialized. For example:

template<class T> class List{ /* ...*/ };
List<int*> li;

template<class T> class List<T*> { /* ..*/ '}, [/ error

Here,List was specialized fdnt* afterList<int*> had been used.

All specializations of a template must be declared in the same namespace as the template itself.
If used, a specialization that is explicitly declared (as opposed to generated from a more general
template) must also be explicitly defined somewhere (813.7). In other words, explicitly specializ-
ing a template implies that no definition is generated for that specialization.

13.5.1 Order of Specializations [temp.special.order]

One specialization imore specializethan another if every argument list that matches its special-
ization pattern also matches the other, but not vice versa. For example:

template<class T> class Vector; /| general
template<class T> class Vector<T*>; /| specialized for any pointer
template<> class Vector<void*>; | | specialized for void*

Every type can be used as a template argument for the most géeaton] but only pointers can
be used foMector<T*> and onlyvoid* s can be used fdfector<void*> .

The most specialized version will be preferred over the others in declarations of objects, point-
ers, etc., (813.5) and in overload resolution (813.3.2).

A specialization pattern can be specified in terms of types composed using the constructs
allowed for template parameter deduction (§13.3.1).

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

344 Templates Chapter 13

13.5.2 Template Function Specialization [temp.special.fct]

Naturally, specialization is also useful for template functions. Consider the Shell sort from 87.7
and 813.3. It compares elements usirgnd swaps elements using detailed code. A better defini-
tion would be:

template<class T> bool les T a, T b) { return a<b; }
template<class T> void sort(Vector<T>& v)

{
const size t n=v. size) ;
for (int gap=n/ 2; O<gap; gap/= 2)
for (int i=gap; i<n; i++)
for (int j=i- gap; 0<=j; j-= gap)
} if (less(v[j+gap], V[j])) swap(Vj]. v[j+gapl) ;

This does not improve the algorithm itself, but it allows improvements to its implementation. As
written, sort() will not sort aVector<char*> correctly because will compare the twachar* s.

That is, it will compare the addresses of the fitwr in each string. Instead, we would like it to
compare the characters pointed to. A simple specializatitessff for const char* will take care

of that:

template<> bool less<const char*>(const char* a, const char* b)

{
}

As for classes (813.5), themplate<> prefix says that this is a specialization that can be specified
without a template parameter. Theonst char*> after the template function name means that this
specialization is to be used in cases where the template arguroendtishar*. Because the tem-

plate argument can be deduced from the function argument list, we need not specify it explicitly.
So, we could simplify the definition of the specialization:

return stremp(a, b)< 0;

template<> bool less<>(const char* a, const char* b)

{
}

Given thetemplate<> prefix, the second empty> is redundant, so we would typically simply
write:

return stremp(a, b)< 0;

template<> bool lesg const char* a, const char* b)
{

}

| prefer this shorter form of declaration.
Consider the obvious definition eivap() :

return stremp(a, b)< 0;

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 13.5.2 Template Function Specialization 345

template<class T> void swap(T& X, T&Y)

{
Tt=x / | copy x to temporary
X=Y, / | copyytox
y=t / | copy temporary to 'y
}

This is rather inefficient when invoked fulectors of Vectors; it swaps/ectors by copying all ele-

ments. This problem can also be solved by appropriate specializativiectdr object will itself

hold only sufficient data to give indirect access to the elementsstting; 811.12, §13.2). Thus,

a swap can be done by swapping those representations. To be able to manipulate that representa-
tion, | providedvector with a member functioswap() (813.5):

template<class T> void Vector<T>:: swap(Vector & a) /| swap representations
{

swap(Vv, a. V);

swap(sz a. s2);

}
This membeswap() can now be used to define a specialization of the geswapl) :

template<class T> void swap(Vector<T>& a, Vector<T>& b)
{
a. swap(b);

These specializations téss) andswap() are used in the standard library (816.3.9, §20.3.16).

In addition, they are examples of widely applicable techniques. Specialization is useful when there
is a more efficient alternative to a general algorithm for a set of template arguments (here,
swap()). In addition, specialization comes in handy when an irregularity of an argument type
causes the general algorithm to give an undesired result (ess@,). These “irregular types”

are often the built-in pointer and array types.

13.6 Derivation and Templategtemp.derive]

Templates and derivation are mechanisms for building new types out of existing ones, and gener-
ally for writing useful code that exploits various forms of commonality. As shown in 83.7.1,
§3.8.5, and §13.5, combinations of the two mechanisms are the basis for many useful techniques.

Deriving a template class from a non-template class is a way of providing a common implemen-
tation for a set of templates. The list from §13.5 is a good example of this:

template<class T> class list<T*> : private list<void*> { /* ...*/ }

Another way of looking at such examples is that a template is used to provide an elegant and type-
safe interface to an otherwise unsafe and inconvenient-to-use facility.

Naturally, it is often useful to derive one template class from another. One use of a base class is
as a building block in the implementation of further classes. If the data or operations in such a base

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

346 Templates Chapter 13

class depend on a template parameter of a derived class, the base itself must be paraivieterized,;
from 83.7.1 is an example of this:

template<class T> class vector { /* ...*/ }
template<class T> class Vec: public vector<T>{ /* ..* };

The overload resolution rules for template functions ensure that functions work ‘“correctly” for
such derived types (§13.3.2).

Having the same template parameter for the base and derived class is the most common case,
but it is not a requirement. Interesting, although less frequently used, techniques rely on passing
the derived type itself to the base class. For example:

template <class C> class Basic_ops{ // basic operators on containers
bool operator==(const C&) const; / / compare all elements
bool operator!'=(const C&) const

/...
I8
template<class T> class Math_container : public Basic_ops< Math_container<T> > {
public:
size t size() const,
T& operator[](size t);
/...
3

This allows the definition of the basic operations on containers to be separate from the definition of
the containers themselves and defined once only. However, the definition of operationsssuch as
and!= must be expressed in terms of both the container and its elements, so the base class needs to
be passed to the container template.

Assuming that aMath_container is similar to a traditional vector, the definitions of a
Basic_ops member would look something like this:

template <class C> bool Basic_ops<C>:: operator==(const C& a) const

if (size() != a. sizeg)) return false
for (int i =0; i<sizg) ; ++i)
if (* this)[i] != a[i]) return false
return true
}

An alternative technique for keeping the containers and operations separate would be to combine
them from template arguments rather than use derivation:

template<class T, class C> class Mcontainer {
C elements;
public:
/...
T& operator[](size t i) { return elements] i]; }

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 13.6 Derivation and Templates 347

friend bool operator==(const Mcontainer&, const Mcontainer&); // compare elements
friend bool operator!=(const Mcontainer&, const Mcontainer&);
/..

h
template<class T> class My _array{ /* ...*/ };

Mcontainer< double, My_array<double> > mgc;

A class generated from a class template is a perfectly ordinary class. Consequently, it can have
friend functions (§8C.13.2). In this case, | udebnds to achieve the conventional symmetric argu-
ment style for==and!= (8§11.3.2). One might also consider passing a template rather than a con-
tainer as th& argument in such cases (§13.2.3).

13.6.1 Parameterization and Inheritance [temp.inherit]

A template parameterizes the definition of a type or a function with another type. Code implement-
ing the template is identical for all parameter types, as is most code using the template. An abstract
class defines an interface. Much code for different implementations of the abstract class can be
shared in class hierarchies, and most code using the abstract class doesn’'t depend on its implemen-
tation. From a design perspective, the two approaches are so close that they deserve a common
name. Since both allow an algorithm to be expressed once and applied to a variety of types, people
sometimes refer to both gdlymorphic. To distinguish them, what virtual functions provide is
calledrun-time polymorphismand what templates offer is calledmpile-time polymorphisrar
parametric polymorphism

So when do we choose to use a template and when do we rely on an abstract class? In either
case, we manipulate objects that share a common set of operations. If no hierarchical relationship
is required between these objects, they are best used as template arguments. If the actual types of
these objects cannot be known at compile-time, they are best represented as classes derived from a
common abstract class. If run-time efficiency is at a premium, that is, if inlining of operations is
essential, a template should be used. This issue is discussed in greater detail in §24.4.1.

13.6.2 Member Templates [temp.member]

A class or a class template can have members that are themselves templates. For example:

template<class Scalar> class complex {
Scalar re, im;
public:
template<class T>
complex(const complex<T>&¢c) : re(c. re), im(c.im) { }
..
3

complex<float> cf(0, 0);
complex<double> cd = cf; / / ok: uses float to double conversion

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

348 Templates Chapter 13

class Quad {
// no conversion to int

I3
complex<Quad> cq;
complex<int> ci = cq; /I error: no Quad to int conversion

In other words, you can construccamplex<T1> from acomplex<T2> if and only if you can ini-
tialize aTl by aT2. That seems reasonable.

Unfortunately, @+ accepts some unreasonable conversions between built-in types, such as
from doubletoint. Truncation problems could be caught at run time using a checked conversion in
the style ofimplicit_cast (§13.3.1) anathecked (§C.6.2.6):

template<class Scalar> class complex {
Scalar re, im;
public:
complex) : re(0), im(0) { }
complex(const complex<Scalar>&c) : re(c. re), im(c.im) { }

template<class T2> complex(const complex<T2>& c)
: re(checked cast<Scalar>(c. real())) , im(checked cast<Scalar>(c. imag())) {}
..
h

For completeness, | added a default constructor and a copy constructor. Curiously enough, a tem-
plate constructor is never used to generate a copy constructor, so without the explicitly declared
copy constructor, a default copy constructor would have been generated. In that case, that gener-
ated copy constructor would have been identical to the one | explicitly specified.

A member template cannot bigtual. For example:

class Smape {
/...
template<class T> virtual bool intersect(const T&) const=0; // error: virtual template

k

This must be illegal. If it were allowed, the traditional virtual function table technique for imple-
menting virtual functions (82.5.5) could not be used. The linker would have to add a new entry to
the virtual table for clasSiape each time someone calladtersect() with a new argument type.

13.6.3 Inheritance Relationships [temp.rel.inheritance]

A class template is usefully understood as a specification of how particular types are to be created.
In other words, the template implementation is a mechanism that generates types when needed
based on the user's specification. Consequently, a class template is sometimes tglled a
generator

As far as the €+ language rules are concerned, there is no relationship between two classes
generated from a single class template. For example:

class Smpe{ /* ..*/ };
class Circle: public Smape{ /* ...*/ };

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 13.6.3 Inheritance Relationships 349

Given these declarations, people sometimes try to treg&€ircle*> as aset<Shape*>. This is

a serious logical error based on a flawed argumentCirkle is aShape, so a set o€irclesis also

a set ofSthapes therefore, | should be able to use a se€io€lesas a set oShmapes™ The “there-
fore” part of this argument doesn’t hold. The reason is that a s@éirofes guarantees that the
member of the set af@ircles a set ofSiapes does not provide that guarantee. For example:

class Triangle: public Smape{ /* ...*/ };
void f(set<Shape*>& s)

/...
s. insert(new Triangle()) ;
/...

}

void g(set<Circle*>& s)

f(s); // error, type mismatch: s is a s&ircle*>, not a setShape*

This won’t compile because there is no built-in conversion BeCircle*>& to set<Shape*>& .

Nor should there be. The guarantee that the membersetf@Gircle*> areCircles allows us to
safely and efficiently applZircle-specific operations, such as determining the radius, to members
of the set. If we allowed set<Circle*> to be treated asset<Shape*>, we could no longer main-
tain that guarantee. For examplg, inserts alriangle* into its set<Shape*> argument. If the
set<Shape*> could have been set<Circle*>, the fundamental guarantee thasekCircle*>
containsCircle* s only would have been violated.

13.6.3.1 Template Conversions [temp.mem.temp]

The example in the previous section demonstrates that there cannot Hefaulyrelationship
between classes generated from the same templates. However, for some templates we would like to
express such a relationship. For example, when we define a pointer template, we would like to
reflect inheritance relationships among the objects pointed to. Member templates (§13.6.2) allow
us to specify many such relationships where desired. Consider:

template<class T>class Ptr { / / pointerto T
™ p;
public:
Ptr(T*) ;
template<class T2> operator Ptr<T2> () ;/ / convert PtkT>to Ptr<T2>
/...

k

We would like to define the conversion operators to provide the inheritance relationships we are
accustomed to for built-in pointers for these user-defiPtes. For example:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

350 Templates Chapter 13

void f(Ptr<Circle> pc)

{
Ptr<Sthape> ps = pc; /| should work
Ptr<Circle> pc2 = ps, / | should give error

}

We want to allow the first initialization if and only $fape really is a direct or indirect public base
class ofCircle. In general, we need to define the conversion operator so th#trth&> to
Ptr<T2> conversion is accepted if and only ifTA can be assigned toT®2*. That can be done
like this:

template<class T>
template<class T2>
Ptr<T>:: operator Ptr<T2> () { return Ptr<T2>(p); }

The return statement will compile if and onlygf(which is aT*) can be an argument to the
Ptr<T2>(T2*) constructor. Therefore, * can be implicitly converted into B2*, the Ptr<T>
to Ptr<T2> conversion will work. For example

void f(Ptr<Circle> pc)

{
Ptr<Siape> ps = pc; /| ok: can convert Circle* to Shape*
Ptr<Circle> pc2 = ps, /| error: cannot convert Shape* to Circle*

Be careful to define logically meaningful conversions only.
Note that the template parameter lists of a template and its template member cannot be com-
bined. For example:

template<class T, class T2> / / error
Ptr<T>:: operator Ptr<T2> () { return Ptr<T2>(p); }

13.7 Source Code Organizatioftemp.source]

There are two obvious ways of organizing code using templates:
[1] Include template definitions before their use in a translation unit.
[2] Include template declarations (only) before their use in a translation unit, and compile their
definitions separately.
In addition, template functions are sometimes first declared, then used, and finally defined in a sin-
gle translation unit.
To see the differences between the two main approaches, consider a simple template:

#include<iostream>

template<class T> void out(const T&t) { std:: cemr <<t; }

We could call thiout. ¢c and#include it whereverout() was needed. For example:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 13.7 Source Code Organization 351

/1 userl.c:
#include " out. c"
/1 use out()

/] user2.c:
#include " out. c"
/1 use out()

That is, the definition obut() and all declarations it depends on #imcluded in several different
compilation units. It is up to the compiler to generate code when needed (only) and to optimize the
process of reading redundant definitions. This strategy treats template functions the same way as
inline functions.

One obvious problem with this is that everything on which the definitiasutfj depends is
added to each file usingut() , thus increasing the amount of information that the compiler must
process. Another problem is that users may accidentally come to depend on declarations included
only for the benefit of the definition ajut() . This danger can be minimized by using name-
spaces, by avoiding macros, and generally by reducing the amount of information included.

The separate compilation strategy is the logical conclusion of this line of thinking: if the tem-
plate definition isn’t included in the user code, none of its dependencies can affect that code. Thus
we split the originabut. c into two files:

/] out.h:
template<class T> void out(const T&t);

/1 out.c:
#include<iostream>
#include" out. h"

export template<class T> void out(const T&t) { std:: camr <<t; }

The file out. ¢ now holds all of the information needed to defint() , andout. h holds only what
is needed to call it. A uséiincludes only the declaration (the interface):

/] userl.c:
#include " out. h"
/1 use out()

/] user2.c:
#include " out. h"
/1 use out()

This strategy treats template functions the same way it does non-inline functions. The definition (in
out. ¢) is compiled separately, and it is up to the implementation to find the definitiont@f

when needed. This strategy also puts a burden on the implementation. Instead of having to filter
out redundant copies of a template definition, the implementation must find the unique definition

when needed.

Note that to be accessible from other compilation units, a template definition must be explicitly
declaredexport (§9.2.3). This can be done by addiexport to the definition or to a preceding
declaration. Otherwise, the definition must be in scope wherever the template is used.

Which strategy or combination of strategies is best depends on the compilation and linkage

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

352 Templates Chapter 13

system used, the kind of application you are building, and the external constraints on the way you
build systems. Generally, inline functions and other small functions that primarily call other tem-
plate functions are candidates for inclusion into every compilation unit in which they are used. On
an implementation with average support from the linker for template instantiation, doing this can
speed up compilation and improve error messages.

Including a definition makes it vulnerable to having its meaning affected by macros and decla-
rations in the context into which it is included. Consequently, larger template functions and tem-
plate functions with nontrivial context dependencies are better compiled separately. Also, if the
definition of a template requires a large number of declarations, these declarations can have unde-
sirable side effects if they are included into the context in which the template is used.

| consider the approach of separately compiling template definitions and including declarations
only in user code ideal. However, the application of ideals must be tempered by practical con-
straints, and separate compilation of templates is expensive on some implementations.

Whichever strategy is used, naline static members (8C.13.1) must have a unique definition
in some compilation unit. This implies that such members are best not used for templates that are
otherwise included in many translation units.

One ideal is for code to work the same whether it is compiled as a single unit or separated into
several separately translated units. That ideal should be approached by restricting a template
definition’s dependency on its environment rather than by trying to carry as much as possible of its
definition context with it into the instantiation process.

13.8 Advice[temp.advice]

[1] Use templates to express algorithms that apply to many argument types; 813.3.

[2] Use templates to express containers; §13.2.

[3] Provide specializations for containers of pointers to minimize code size; §13.5.

[4] Always declare the general form of a template before specializations; §13.5.

[5] Declare a specialization before its use; §13.5.

[6] Minimize a template definition’s dependence on its instantiation contexts; §13.2.5, §C.13.8.

[7] Define every specialization you declare; §13.5.

[8] Consider if a template needs specializations for C-style strings and arrays; §13.5.2.

[9] Parameterize with a policy object; §13.4.

[10] Use specialization and overloading to provide a single interface to implementations of the
same concept for different types; §13.5.

[11] Provide a simple interface for simple cases and use overloading and default arguments to
express less common cases; §13.5, §13.4.

[12] Debug concrete examples before generalizing to a template; §13.2.1.

[13] Remember taexport template definitions that need to be accessible from other translation
units; 813.7.

[14] Separately compile large templates and templates with nontrivial context dependencies; 813.7.

[15] Use templates to express conversions but define those conversions very carefully; 8§13.6.3.1.

[16] Where necessary, constrain template arguments usiogngtraint() member function;
§13.9[186].

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 13.8 Advice 353

[17] Use explicit instantiation to minimize compile time and link time; §C.13.10.

[18] Prefer a template over derived classes when run-time efficiency is at a premium; 813.6.1.

[19] Prefer derived classes over a template if adding new variants without recompilation is impor-
tant; 813.6.1.

[20] Prefer a template over derived classes when no common base can be defined; §13.6.1.

[21] Prefer a template over derived classes when built-in types and structures with compatibility
constraints are important; §13.6.1.

13.9 Exercisegtemp.exercises]

1. (@) Fix the errors in the definition dfist from §13.2.5 and write out*@ code equivalent to
what the compiler must generate for the definitiorList and the functiorf() . Run a small
test case using your hand-generated code and the code generated by the compiler from the tem-
plate version. If possible on your system given your knowledge, compare the generated code.

2. ((B) Write a singly-linked list class template that accepts elements of any type derived from a
classLink that holds the information necessary to link elements. This is calledrasive list
Using this list, write a singly-linked list that accepts elements of any type (a non-intrusive list).
Compare the performance of the two list classes and discuss the tradeoffs between them.

3. (@2.5) Write intrusive and non-intrusive doubly-linked lists. What operations should be pro-

vided in addition to the ones you found necessary to supply for a singly-linked list?

((2) Complete th&tring template from §13.2 based on @Being class from §11.12.

((2) Define asort() that takes its comparison criterion as a template argument. Define a class

Record with two data membersount andprice. Sort avector<Record> on each data member.

(@) Implement aysort() template.

7. () Write a program that reads«ey, value) pairs and prints out the sum of thaues corre-
sponding to each distinkey. Specify what is required for a type to bkegand avalue.

8. (@.5) Implement a simpl®ap class based on thissoc class from §11.8. Make suiMap
works correctly using both C-style strings astidngs as keys. Make suMap works correctly
for types with and without default constructors. Provide a way of iterating over the elements of
aMap.

9. (B) Compare the performance of the word count program from 811.8 against a program not
using an associative array. Use the same style of I/O in both cases.

10. (B) Re-implemenMap from 813.9[8] using a more suitable data structure (e.g., a red-black
tree or a Splay tree).

11. (R.5) UseMap to implement a topological sort function. Topological sort is described in
[Knuth,1968] vol. 1 (second edition), pg 262.

12. (1L.5) Make the sum program from 813.9[7] work correctly for names containing spaces; for
example, “thumb tack.”

13. (2) Writereadling) templates for different kinds of lines. For example (item,count,price).

14. () Use the technique outlined fbiterate in §13.4 to sort strings in reverse lexicographical
order. Make sure the technique works both fet @nplementations wherehar is signed and
for C++ implementations where it insigned. Use a variant of that technique to provide a sort
that is not case-sensitive.

S

o

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

354 Templates Chapter 13

15. ([L.5) Construct an example that demonstrates at least three differences between a function tem-
plate and a macro (not counting the differences in definition syntax).

16. (2) Devise a scheme that ensures that the compiler tests general constraints on the template
arguments for every template for which an object is constructed. It is not sufficient just to test
constraints of the form “the argumehimust be a class derived frdvy_base”

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

	Return to Contents
	13.1 Introduction
	13.2 A Simple String Template
	13.3 Function Templates
	13.4 Using Template Arguments to Specify Policy
	13.5 Specialization
	13.6 Derivation and Templates
	13.7 Source Code Organization
	13.8 Advice
	13.9 Exercises

	buy now:

