12

Derived Classes

Do not multiply objects without necessity.
— W. Occam

Concepts and classes- derived classes— member functions— construction and
destruction— class hierarchies- type fields— virtual functions— abstract classes-
traditional class hierarchies- abstract classes as interfacedocalizing object creation
— abstract classes and class hierarchiesdvice— exercises.

12.1 Introduction [derived.intro]

From Simula, €+ borrowed the concept of a class as a user-defined type and the concept of class
hierarchies. In addition, it borrowed the idea for system design that classes should be used to
model concepts in the programmer’'s and the application’s world: ptovides language con-
structs that directly support these design notions. Conversely, using the language features in sup-
port of design concepts distinguishes effective useréf ©sing language constructs only as nota-
tional props for more traditional types of programming is to miss key strengths-of C

A concept does not exist in isolation. It coexists with related concepts and derives much of its
power from relationships with related concepts. For example, try to explain what a car is. Soon
you'll have introduced the notions of wheels, engines, drivers, pedestrians, trucks, ambulances,
roads, oil, speeding tickets, motels, etc. Since we use classes to represent concepts, the issue
becomes how to represent relationships between concepts. However, we can't express arbitrary
relationships directly in a programming language. Even if we could, we wouldn’t want to. Our
classes should be more narrowly defined than our everyday corcemtd more precise. The
notion of a derived class and its associated language mechanisms are provided to express hierarchi-
cal relationships, that is, to express commonality between classes. For example, the concepts of a
circle and a triangle are related in that they are both shapes; that is, they have the concept of a shape
in common. Thus, we must explicitly define cl&iscle and clasgriangle to have clasSiapein

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

http://store.awl.com/catalog/cepub_detail.mhtml?isbn=0-201-88954-4

302 Derived Classes Chapter 12

common. Representing a circle and a triangle in a program without involving the notion of a shape
would be to lose something essential. This chapter is an exploration of the implications of this sim-
ple idea, which is the basis for what is commonly called object-oriented programming.

The presentation of language features and techniques progress from the simple and concrete to
the more sophisticated and abstract. For many programmers, this will also be a progression from
the familiar towards the less well known. This is not a simple journey from “bad old techniques”
towards “the one right way.” When | point out limitations of one technique as a motivation for
another, | do so in the context of specific problems; for different problems or in other contexts, the
first technique may indeed be the better choice. Useful software has been constructed using all of
the techniques presented here. The aim is to help you attain sufficient understanding of the tech-
nigues to be able to make intelligent and balanced choices among them for real problems.

In this chapter, | first introduce the basic language features supporting object-oriented program-
ming. Next, the use of those features to develop well-structured programs is discussed in the con-
text of a larger example. Further facilities supporting object-oriented programming, such as multi-
ple inheritance and run-time type identification, are discussed in Chapter 15.

12.2 Derived Classegierived.derived]

Consider building a program dealing with people employed by a firm. Such a program might have
a data structure like this:

struct Employee{
string first name family_name
char middle _initial;
Date hiring_date;
short department;
/...
h

Next, we might try to define a manager:

struct Manager {

Employee emp; /| manager’'s employee record
set<Employee*> group; / / people managed

short level;

/..

}

A manager is also an employee; tBmployee data is stored in themp member of aManager

object. This may be obvious to a human readespecially a careful readerbut there is nothing

that tells the compiler and other tools tMdnager is also arEmployee A Manager* is not an
Employee* , so one cannot simply use one where the other is required. In particular, one cannot put
a Manager onto a list ofEmployees without writing special code. We could either use explicit
type conversion on Manager* or put the address of tremp member onto a list cémployees.
However, both solutions are inelegant and can be quite obscure. The correct approach is to explic-
itly state that aManager is anEmployee, with a few pieces of information added:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 12.2 Derived Classes 303

struct Manager : public Employee {
set<Employee*> group;
short level;
/..

k

The Manager is derivedfrom Employee, and converselyEmployeeis abase clasfor Manager.
The classManager has the members of claEsnployee (name, age, etc.) in addition to its own
membersdroup, level, etc.).

Derivation is often represented graphically by a pointer from the derived class to its base class
indicating that the derived class refers to its base (rather than the other way around):

Employee

|

Manager

A derived class is often said to inherit properties from its base, so the relationship is also called
inheritance A base class is sometimes calleslperclasand a derived classsaibclass This ter-
minology, however, is confusing to people who observe that the data in a derived class object is a
superset of the data of an object of its base class. A derived class is larger than its base class in the
sense that it holds more data and provides more functions.

A popular and efficient implementation of the notion of derived classes has an object of the
derived class represented as an object of the base class, with the information belonging specifically
to the derived class added at the end. For example:

Employee Manager:
first_ name first name
family_name faniI)_(_n ame
group
level

Deriving Manager from Employee in this way makeManager a subtype oEmployee so that a
Manager can be used wherever Bmployeeis acceptable. For example, we can now create a list
of Employees, some of whom afdanagers:

void f(Manager m1, Employee €l)

{
list<Employee*> elist;
elist. push front(& mi);
elist. push front(& el);
/...

}

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

304 Derived Classes Chapter 12

A Manager is (also) anEmployee so aManager* can be used as Bmployee*. However, an
Employeeis not necessarily Blanager, so anEmployee* cannot be used asvanager*. In gen-

eral, if a clasPerived has a public base class (8158%se then aDerived® can be assigned to a
variable of typeBase* without the use of explicit type conversion. The opposite conversion, from
Base* to Derived® , must be explicit. For example:

void g(Manager mm, Employee e

{

Employee* pe = &mm / | ok: every Manager is an Employee

Manager* pm= &ee / | error: not every Employee is a Manager

pm-> level = 2; / | disaster: ee doesn’t have a ‘level’

pm = static_cast<Manager*>(pe); / / brute force: works because pe points

/1 to the Manager mm

pm> level = 2; [I fine: pm points to the Manager mm that has a ‘level’

}

In other words, an object of a derived class can be treated as an object of its base class when manip-
ulated through pointers and references. The opposite is not true. The staticotast and
dynamic_castis discussed in §15.4.2.

Using a class as a base is equivalent to declaring an (unnamed) object of that class. Conse-
guently, a class must be defined in order to be used as a base (85.7):

class Employee / | declaration only, no definition

class Manager : public Employee{ / / error: Employee not defined
/...

h

12.2.1 Member Functions [derived.member]

Simple data structures, suchEmployeeandManager, are really not that interesting and often not
particularly useful. We need to give the information as a proper type that provides a suitable set of
operations that present the concept, and we need to do this without tying us to the details of a par-
ticular representation. For example:

class Employee{
string first name family_name
char middle _initial;
/...
public:
void print() const
string full_name() const
{ return first name+ "~ ~ + middle_initial + ~ ~ + family_name }
/...

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 12.2.1 Member Functions 305

class Manager : public Employee{
/...

public:
void print() const
/...

h

A member of a derived class can use the publimd protected (see §15-3)members of its base
class as if they were declared in the derived class itself. For example:

void Manager:: print() const
{

cout << "name is" << full_name) << \n’;
/...

}
However, a derived class cannot use a base class’ private names:

void Manager: : print() const
{

cout<<" name is" << family_name<<"\n; / / error!
/..

}

This second version dflanager: : print() will not compile. A member of a derived class has no
special permission to access private members of its base cléamilyonameis not accessible to
Manager: : print() .

This comes as a surprise to some, but consider the alternative: that a member function of a
derived class could access the private members of its base class. The concept of a private member
would be rendered meaningless by allowing a programmer to gain access to the private part of a
class simply by deriving a new class from it. Furthermore, one could no longer find all uses of a
private name by looking at the functions declared as members and friends of that class. One would
have to examine every source file of the complete program for derived classes, then examine every
function of those classes, then find every class derived from those classes, etc. This is, at best,
tedious and often impractical. Where it is acceptgimetected — rather tharprivate — members
can be used. A protected member is like a public member to a member of a derived class, yet it is
like a private member to other functions (see §15.3).

Typically, the cleanest solution is for the derived class to use only the public members of its
base class. For example:

void Manager: : print() const

{
Employee : print() ; / / print Employee information
cout << |evel; /I print Manager-specific information
/..

}

Note that:: must be used becaupant() has been redefined Manager. Such reuse of names
is typical. The unwary might write this:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

306 Derived Classes Chapter 12

void Manager:: print() const
{
print() ; / / oops!

/1 print Manager-specific information

}
and find the program involved in an unexpected sequence of recursive calls.

12.2.2 Constructors and Destructors [derived.ctor]

Some derived classes need constructors. If a base class has constructors, then a constructor must be
invoked. Default constructors can be invoked implicitly. However, if all constructors for a base
require arguments, then a constructor for that base must be explicitly called. Consider:

class Employee{
string first name family_name
short department;
/...

public:
Employee(const string& n, int d);
/..

h

class Manager : public Employee{
set<Employee*> group; / / people managed
short level;
/...

public:
Manager(const string&n, int d, int Ivl);
/...

h

Arguments for the base class’ constructor are specified in the definition of a derived class’ con-

structor. In this respect, the base class acts exactly like a member of the derived class (§10.4.6).
For example:

Employee : Employeg(const string& n, int d)

: family_name(n), department(d) /[initialize members
{

/..
}
Manager: : Manager(const string& n, int d, int Ivl)

: Employee(n, d), /I initialize base

level(Ivl) /I initialize members

{

/...
}

A derived class constructor can specify initializers for its own members and immediate bases only;
it cannot directly initialize members of a base. For example:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 12.2.2 Constructors and Destructors 307

Manager: : Manager(const string& n, int d, int Ivl)
: family_name(n), / / error: family_name not declared in manager
department(d), / / error: department not declared in manager
level(Ivl)
{

}

This definition contains three errors: it fails to invokmploye€ s constructor, and twice it
attempts to initialize members Employeedirectly.

Class objects are constructed from the bottom up: first the base, then the members, and then the
derived class itself. They are destroyed in the opposite order: first the derived class itself, then the
members, and then the base. Members and bases are constructed in order of declaration in the class
and destroyed in the reverse order. See also §10.4.6 and §15.2.4.1.

...

12.2.3 Copying [derived.copy]
Copying of class objects is defined by the copy constructor and assignments (§10.4.4.1). Consider:
class Employee{
/...

EmployeeX operator=(const Employeet.);
Employee(const Employees.);

2

void f(const Manager& m)

{
Employee e=m; / / construct e from Employee part of m
e=m; / | assign Employee part of m to e

}

Because th&mployee copy functions do not know anything abddéanagers, only theEmployee

part of aManager is copied. This is commonly referred tosiging and can be a source of sur-

prises and errors. One reason to pass pointers and references to objects of classes in a hierarchy is
to avoid slicing. Other reasons are to preserve polymorphic behavior (82.5.4, 812.2.6) and to gain
efficiency.

12.2.4 Class Hierarchies [derived.hierarchy]

A derived class can itself be a base class. For example:
class Employee{ /* ..*/ }
class Manager : public Employee{ /* ...*/ };
class Director : public Manager { /* ..*/ };

Such a set of related classes is traditionally calledss hierarchy Such a hierarchy is most often
a tree, but it can also be a more general graph structure. For example:

class Temporary { /* ..*/ };
class Secretary : public Employee{ /* ...*/ };

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

308 Derived Classes Chapter 12

class Tsec: public Temporary, public Secretary { /* ...*/ };
class Consultant : public Temporary, public Manager { /* ...*/ }

Or graphically:
Temporary Employee

Secretary Manager

Consultant Director

Thus, as is explained in detail in §15.2;#&an express a directed acyclic graph of classes.

12.2.5 Type Fields [derived.typefield]

To use derived classes as more than a convenient shorthand in declarations, we must solve the fol-
lowing problem: Given a pointer of tygsase*, to which derived type does the object pointed to
really belong? There are four fundamental solutions to the problem:

[1] Ensure that only objects of a single type are pointed to (§2.7, Chapter 13).

[2] Place a type field in the base class for the functions to inspect.

[3] Usedynamic_cast(815.4.2, 815.4.5).

[4] Use virtual functions (82.5.5, §12.2.6).
Pointers to base classes are commonly used in the destgntafner classesuch as set, vector,
and list. In this case, solution 1 yields homogeneous lists, that is, lists of objects of the same type.
Solutions 2, 3, and 4 can be used to build heterogeneous lists, that is, lists of (pointers to) objects of
several different types. Solution 3 is a language-supported variant of solution 2. Solution 4 is a
special type-safe variation of solution 2. Combinations of solutions 1 and 4 are particularly inter-
esting and powerful; in almost all situations, they yield cleaner code than do solutions 2 and 3.

Let us first examine the simple type-field solution to see why it is most often best avoided. The
manager/employee example could be redefined like this:

struct Employee{
enum Empl_type{ M, E};
Empl_type type;

Employee() : type(E) { }
string first name family name
char middle _initial;

Date hiring_date;
short department;
/..

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 12.2.5 Type Fields

struct Manager : public Employee{

h

Manager() { type=M; }

set<Employee*> group; / / people managed
short level;
/..

Given this, we can now write a function that prints information about Emgioyee:
void print_employeg(const Employee* €)

}

switch (e-> type) {

case Employee : E:
cout << e-> family_name<< " \t' << e-> department << " \n’;
/...
break;

case Employee : M:

{ cout << e-> family_name<< " \t" << e-> department << " \n’;
/...
const Manager* p = static_cast<const Manager*>(e);
cout<<" level " << p->level << " \n;
/...
break;

and use it to print a list &dmployees, like this:
void print_list(const list<Employee*>& elist)

}

for (list<Employee*>: : const_iterator p = elist. begin() ; p!= elist. end() ; ++p)
print_employee(* p);

309

This works fine, especially in a small program maintained by a single person. However, it has the
fundamental weakness in that it depends on the programmer manipulating types in a way that can-
not be checked by the compiler. This problem is usually made worse because functions such as
print_employee() are organized to take advantage of the commonality of the classes involved.
For example:

void print_employeg(const Employee* €)

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

cout << e-> family_name<< " \t" << e-> department << " \n’;
/..
if (e-> type== Employee : M) {
const Manager* p = static_cast<const Manager*>(€);
cout<<" level" << p->level << " \n’;
/..

310 Derived Classes Chapter 12

Finding all such tests on the type field buried in a large function that handles many derived classes
can be difficult. Even when they have been found, understanding what is going on can be difficult.
Furthermore, any addition of a new kindErhployeeinvolves a change to all the key functions in

the system- the ones containing the tests on the type field. The programmer must consider every
function that could conceivably need a test on the type field after a change. This implies the need
to access critical source code and the resulting necessary overhead of testing the affected code. The
use of an explicit type conversion is a strong hint that improvement is possible.

In other words, use of a type field is an error-prone technique that leads to maintenance prob-
lems. The problems increase in severity as the size of the program increases because the use of a
type field causes a violation of the ideals of modularity and data hiding. Each function using a type
field must know about the representation and other details of the implementation of every class
derived from the one containing the type field.

It also seems that the existence of any common data accessible from every derived class, such
as a type field, tempts people to add more such data. The common base thus becomes the reposi-
tory of all kinds of “useful information.” This, in turn, gets the implementation of the base and
derived classes intertwined in ways that are most undesirable. For clean design and simpler main-
tenance, we want to keep separate issues separate and avoid mutual dependencies.

12.2.6 Virtual Functions [derived.virtual]

Virtual functions overcome the problems with the type-field solution by allowing the programmer

to declare functions in a base class that can be redefined in each derived class. The compiler and
loader will guarantee the correct correspondence between objects and the functions applied to them.
For example:

class Employee{
string first name family_name
short department;
/..
public:
Employee(const string& name, int dept);
virtual void print() const
/..

%

The keywordvirtual indicates thaprint() can act as an interface to th@nt() function defined
in this class and thprint() functions defined in classes derived from it. Where suraht()
functions are defined in derived classes, the compiler ensures that thprimgf)t for the given
Employeeobject is invoked in each case.

To allow a virtual function declaration to act as an interface to functions defined in derived
classes, the argument types specified for a function in a derived class cannot differ from the argu-
ment types declared in the base, and only very slight changes are allowed for the return type
(815.6.2). A virtual member function is sometimes calleteshod

A virtual functionmustbe defined for the class in which it is first declared (unless it is declared
to be a pure virtual function; see §12.3). For example:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 12.2.6 Virtual Functions 311

void Employee : print() const

{
cout << family_name<< "\t" << department << " \n’;
/...

}

A virtual function can be used even if no class is derived from its class, and a derived class that
does not need its own version of a virtual function need not provide one. When deriving a class,
simply provide an appropriate function, if it is needed. For example:

class Manager : public Employee{
set<Employee*> group;
short level;
/..
public:
Manager(const string& name, int dept, int Ivl);
void print() const

/..
h
void Manager: : print() const
{
Employee : print() ;
cout << "\tlevel " << level << " \n’;
/...
}

A function from a derived class with the same name and the same set of argument types as a virtual
function in a base is said tiverridethe base class version of the virtual function. Except where
we explicitly say which version of a virtual function is called (as in theEmjloyee : print()),
the overriding function is chosen as the most appropriate for the object for which it is called.
The global functionprint_ employee() (812.2.5) is now unnecessary because ghiat()
member functions have taken its place. A lisEoiployees can be printed like this:

void print_list(set<Employee*>& s)
for (set<Employee*>: : const iterator p =s. begin() ; p'=s. end() ; ++p)/ / see §2.7.2
(* p)-> print() ;
}
or even

void print_list(set<Employee>& s)

for_each(s. begin() , s. end() , mem fun(& Employee : print)) ; / / see §3.8.5
}

EachEmployeewill be written out according to its type. For example:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

312 Derived Classes Chapter 12

int main()

{
Employee " Brown', 1234);
Manager m(" Smith", 1234, 2);
set<Employee*> empl;
empl. push front(&e); / / see 82.5.4
empl. push_front(& m);
print_list(empl);

}

produced:

Smith 1234
level 2
Brown 1234

Note that this will work even i[Employee : print_list() was written and compiled before the spe-

cific derived clasgManager was even conceived of! This is a key aspect of classes. When used
properly, it becomes the cornerstone of object-oriented designs and provides a degree of stability to
an evolving program.

Getting “the right” behavior fromEmployee's functions independently of exactly what kind of
Employee is actually used is calledolymorphism A type with virtual functions is called a
polymorphic type To get polymorphic behavior int@&, the member functions called must\ie
tual and objects must be manipulated through pointers or references. When manipulating an object
directly (rather than through a pointer or reference), its exact type is known by the compilation so
that run-time polymorphism is not needed.

Clearly, to implement polymorphism, the compiler must store some kind of type information in
each object of cladEmployeeand use it to call the right version of the virtual funciemt() . In
a typical implementation, the space taken is just enough to hold a pointer (82.5.5). This space is
taken only in objects of a class with virtual functiensot in every object, or even in every object
of a derived class. You pay this overhead only for classes for which you declare virtual functions.
Had you chosen to use the alternative type-field solution, a comparable amount of space would
have been needed for the type field.

Calling a function using the scope resolution operatoas is done irManager: : print()
ensures that the virtual mechanism is not used. Otheriignager: : print() would suffer an
infinite recursion. The use of a qualified name has another desirable effect. Thatvitulah
function is alsdnline (as is not uncommon), then inline substitution can be used for calls specified
using:: . This provides the programmer with an efficient way to handle some important special
cases in which one virtual function calls another for the same object.Mahager: : print()
function is an example of this. Because the type of the object is determined in the call of
Manager: : print() , it need not be dynamically determined again for the resulting call of
Employee : print() .

It is worth remembering that the traditional and obvious implementation of a virtual function
call is simply an indirect function call (§2.5.5), so efficiency concerns should not deter anyone from
using a virtual function where an ordinary function call would be acceptably efficient.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 12.3 Abstract Classes 313

12.3 Abstract Classeglerived.abstract]

Many classes resemble cld&loyeein that they are useful both as themselves and also as bases
for derived classes. For such classes, the techniques described in the previous section suffice.
However, not all classes follow that pattern. Some classes, such aShelpgsrepresent abstract
concepts for which objects cannot exist. Shape makes sense only as the base of some class
derived from it. This can be seen from the fact that it is not possible to provide sensible definitions
for its virtual functions:

class Smape {

public:
virtual void rotate(int) { error(" Stape : rotate”) ; } // inelegant
virtual void draw() { emror(" Shape : draw’) ; }
/..

3
Trying to make a shape of this unspecified kind is silly but legal:
Shape s / / silly: “shapeless shape”

It is silly because every operation swill result in an error.
A better alternative is to declare the virtual functions of cBimpe to bepure virtual functions
A virtual function is “made pure” by the initializer O:

class Smape { / | abstract class

public:
virtual void rotate(int) =0; / / pure virtual function
virtual void draw() =0; /| pure virtual function
virtual bool is closed)) =0; / / pure virtual function
/..

h

A class with one or more pure virtual functions isaéstract classand no objects of that abstract
class can be created:

Shape s / / error: variable of abstract class Shape

An abstract class can be used only as an interface and as a base for other classes. For example:
class Point{ /* ..* };
class Circle: public Shape {

public:
void rotate(int) { } / | override Shape::rotate
void draw() ; / | override Shape::draw

bool is closed) { return true; } / / override Shape::isclosed
Circle(Point p, int r);

private:
Point center;
int radius

%

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

314 Derived Classes Chapter 12

A pure virtual function that is not defined in a derived class remains a pure virtual function, so the
derived class is also an abstract class. This allows us to build implementations in stages:

class Polygon : public Stape{ / | abstract class

public:
bool is closed) { return true; } / / override Shape::isclosed
/1 ... draw and rotate not overridden ...

I8
Polygon b; / / error: declaration of object of abstract class Polygon

class lrregular_polygon: public Polygon {

list<Point> Ip;

public:
void draw() ; | | override Shape::draw
void rotate(int); | | override Shape::rotate
/...

3
Irregular_polygon poly(some points); / / fine (assume suitable constructor)

An important use of abstract classes is to provide an interface without exposing any implementation
details. For example, an operating system might hide the details of its device drivers behind an
abstract class:

class Character_device {
public:
virtual int open(int opt) = 0;
virtual int close(int opt) =0;
virtual int read(char* p, int n) =0;
virtual int write(const char* p, int n) =0;
virtual int ioctl(int...) =0;
virtual ~Character_device() { } [| virtual destructor
h
We can then specify drivers as classes derived €haracter_device, and manipulate a variety of
drivers through that interface. The importance of virtual destructors is explained in §12.4.2.
With the introduction of abstract classes, we have the basic facilities for writing a complete pro-
gram in a modular fashion using classes as building blocks.

12.4 Design of Class Hierarchiefglerived.design]

Consider a simple design problem: provide a way for a program to get an integer value from a user
interface. This can be done in a bewildering number of ways. To insulate our program from this
variety, and also to get a chance to explore the possible design choices, let us start by defining our
program’s model of this simple input operation. We will leave until later the details of implement-
ing it using a real user-interface system.

The idea is to have a clabsl_box that knows what range of input values it will accept. A
program can ask dwal_box for its value and ask it to prompt the user if necessary. In addition, a
program can ask dwal_box if a user changed the value since the program last looked at it.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 12.4 Design of Class Hierarchies 315

Because there are many ways of implementing this basic idea, we must assume that there will
be many different kinds dival_boxes such as sliders, plain boxes in which a user can type a num-
ber, dials, and voice interaction.

The general approach is to build a “virtual user-interface system” for the application to use.
This system provides some of the services provided by existing user-interface systems. It can be
implemented on a wide variety of systems to ensure the portability of application code. Naturally,
there are other ways of insulating an application from a user-interface system. | chose this
approach because it is general, because it allows me to demonstrate a variety of techniques and
design tradeoffs, because those techniques are also the ones used to build “real” user-interface sys-
tems, and- most important- because these techniques are applicable to problems far beyond the
narrow domain of interface systems.

12.4.1 A Traditional Class Hierarchy [derived.traditional]

Our first solution is a traditional class hierarchy as is commonly found in Simula, Smalltalk, and
older G-+ programs.

Classlval_box defines the basic interface to Bial_boxes and specifies a default implementa-
tion that more specific kinds d¥al_boxes can override with their own versions. In addition, we
declare the data needed to implement the basic notion:

class Ival_box{
protected
int val;
int low, high;
bool changed
public:
Ival_box(int Il, int hh) { changed = false val = low=Il; high=hh; }

virtual int get valug() { changed= false return val; }

virtual void set value(int i) { changed= true; val =i; } /
virtual void reset value(int i) { changed=false val =i; } /
virtual void prompt() { }

virtual bool was changed() const{ return changed }

for user

/
| for application

h

The default implementation of the functions is pretty sloppy and is provided here primarily to illus-
trate the intended semantics. A realistic class would, for example, provide some range checking.
A programmer might use theséval classes” like this:

void interact(Ival_box* pb)
{
pb-> prompt() ; // alert user
/..
int i = pb-> get value() ;
if (pb-> was _changed()) {
/1 new value; do something
}

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

316 Derived Classes Chapter 12

else{
/1 old value was fine; do something else
}
/...
}
void some fct()
Ival_box* pl= new lval_slider(0, 5); /I Ival_slider derived from Ivalbox
interact(pl);

Ival_box* p2=new lval_dial(1, 12);
interact(p2);
}

Most application code is written in terms of (pointers to) plaal_boxes the wayinteract() is.
That way, the application doesn’t have to know about the potentially large number of variants of
the Ival_box concept. The knowledge of such specialized classes is isolated in the relatively few
functions that create such objects. This isolates users from changes in the implementations of the
derived classes. Most code can be oblivious to the fact that there are different kuadishmixes.

To simplify the discussion, | do not address issues of how a program waits for input. Maybe the
program really does wait for the userget value() , maybe the program associates lwrel_box
with an event and prepares to respond to a callback, or maybe the program spawns a thread for the
Ival_box and later inquires about the state of that thread. Such decisions are crucial in the design
of user-interface systems. However, discussing them here in any realistic detail would simply dis-
tract from the presentation of programming techniques and language facilities. The design tech-
nigues described here and the language facilities that support them are not specific to user inter-
faces. They apply to a far greater range of problems.

The different kinds ofval_boxes are defined as classes derived fleah_box. For example:

class Ival_slider : public Ival_box {
/1 graphics stuff to define what the slider looks like, etc.

public:
Ival_slider(int, int);
int get value() ;
void prompi() ;

h

The data members d¥al_box were declaredorotected to allow access from derived classes.
Thus, Ival_slider: : get valug() can deposit a value ilval_box : val. A protected member is
accessible from a class’ own members and from members of derived classes, but not to general
users (see §15.3).

In addition tolval_slider, we would define other variants of theal_box concept. These could
include Ival_dial, which lets you select a value by turning a knfiashing_ival_slider, which
flashes when you ask it fgrompt() ; and popup_ival_slider, which responds tprompt() by
appearing in some prominent place, thus making it hard for the user to ignore.

From where would we get the graphics stuff? Most user-interface systems provide a class
defining the basic properties of being an entity on the screen. So, if we use the system from “Big

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 12.4.1 A Traditional Class Hierarchy 317

Bucks Inc.,” we would have to make each of dwal_slider, Ival_dial, etc., classes a kind of
BBwindow. This would most simply be achieved by rewriting teal_box so that it derives from
BBwindow. In that way, all our classes inherit all the properties BBaindow. For example,
everylval_box can be placed on the screen, obey the graphical style rules, be resized, be dragged
around, etc., according to the standard set byBBwindow system. Our class hierarchy would

look like this:

class Ival_box: public BBwindow{ /* ...*/ }; // rewritten to use BBwindow
class Ival_slider : public Ival_box{ /* ..* }

class Ival_dial : public Ival_box{ /* ..* }

class Hashing_ival_slider : public Ival_slider{ /* ..*/ 1},

class Popup _ival_slider : public Ival_slider { /* ...*/ };

or graphically:

BBwindow

Ival_box

PN

Ival_slider Ilval_dial
Popup _ival_slider Flashing ival_slider

12.4.1.1 Critique [derived.critique]

This design works well in many ways, and for many problems this kind of hierarchy is a good solu-

tion. However, there are some awkward details that could lead us to look for alternative designs.
We retrofittedBBwindow as the base dival_box. This is not quite right. The use BBwin-

dow isn’t part of our basic notion of dwal_box; it is an implementation detail. Derivirigal _box

from BBwindow elevated an implementation detail to a first-level design decision. That can be

right. For example, using the environment defined by “Big Bucks Inc.” may be a key decision of

how our organization conducts its business. However, what if we also wanted to have implementa-

tions of ourlval_boxes for systems from “Imperial Bananas,” “Liberated Software,” and “Com-

piler Whizzes?” We would have to maintain four distinct versions of our program:

class Ival_box: public BBwindow{ /* ...*/ } / | BB version
class Ival_box: public CWwindow { /* ...*/ } /| CW version
class Ival_box: public IBwindow{ /* ...*/ }; [/ 1B version

class Ival_box: public LSwindow{ /* ...*/ }; /| LS version

Having many versions could result in a version-control nightmare.

Another problem is that every derived class shares the basic data declaraldbox. That
data is, of course, an implementation detail that also crept intédvalibox interface. From a
practical point of view, it is also the wrong data in many cases. For examplealadlider
doesn’t need the value stored specifically. It can easily be calculated from the position of the slider
when someone executget value() . In general, keeping two related, but different, sets of data is

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

318 Derived Classes Chapter 12

asking for trouble. Sooner or later someone will get them out of sync. Also, experience shows that
novice programmers tend to mess with protected data in ways that are unnecessary and that cause
maintenance problems. Data is better kept private so that writers of derived classes cannot mess
with them. Better still, data should be in the derived classes, where it can be defined to match
requirements exactly and cannot complicate the life of unrelated derived classes. In almost all
cases, a protected interface should contain only functions, types, and constants.

Deriving from BBwindow gives the benefit of making the facilities provided BBwindow
available to users dival_box. Unfortunately, it also means that changes to dwindow may
force users to recompile or even rewrite their code to recover from such changes. In particular, the
way most @+ implementations work implies that a change in the size of a base class requires a
recompilation of all derived classes.

Finally, our program may have to run in a mixed environment in which windows of different
user-interface systems coexist. This could happen either because two systems somehow share a
screen or because our program needs to communicate with users on different systems. Having our
user-interface systems “wired in” as the one and only base of our one antvanlyox interface
just isn’t flexible enough to handle those situations.

12.4.2 Abstract Classes [derived.interface]

So, let’s start again and build a new class hierarchy that solves the problems presented in the cri-
tique of the traditional hierarchy:
[1] The user-interface system should be an implementation detail that is hidden from users who
don’t want to know about it.
[2] Thelval_box class should contain no data.
[3] No recompilation of code using theal_box family of classes should be required after a
change of the user-interface system.
[4] Ival_boxes for different interface systems should be able to coexist in our program.
Several alternative approaches can be taken to achieve this. Here, | present one that maps cleanly
into the G+ language.
First, | specify clastval_box as a pure interface:

class Ival_box{

public:
virtual int get value() =0;
virtual void set value(int i) =0;
virtual void reset value(int i) = 0;
virtual void prompt() =0;
virtual bool was changed() const= 0;
virtual ~Ival_box() { }

b

This is much cleaner than the original declaratiotval_box. The data is gone and so are the sim-
plistic implementations of the member functions. Gone, too, is the constructor, since there is no
data for it to initialize. Instead, | added a virtual destructor to ensure proper cleanup of the data that
will be defined in the derived classes.

The definition oflval_slider might look like this:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 12.4.2 Abstract Classes 319

class Ival_slider : public Ival_box, protected BBwindow {
public:

Ival_slider(int, int);

~Ival_slider() ;

int get value() ;

void set value(int i);

/..
protected:

/1 functions overriding BBwindow virtual functions

/1 e.g. BBwindow::draw(), BBwindow::mouseZ1hit()
private:

/1 data needed for slider

k

The derived clas$val_slider inherits from an abstract clasvdl_box) that requires it to imple-
ment the base class’ pure virtual functions. It also inherits B&window that provides it with
the means of doing so. Sinbeal_box provides the interface for the derived class, it is derived
using public. Since BBwindow is only an implementation aid, it is derived usipgptected
(815.3.2). This implies that a programmer udival_slider cannot directly use facilities defined
by BBwindow. The interface provided biwal_slider is the one inherited biwal_box, plus what
Ival_slider explicitly declares. | useprotected derivation instead of the more restrictive (and usu-
ally safer)private derivation to mak&Bwindow available to classes derived frdwal_slider.

Deriving directly from more than one class is usually cattedtiple inheritancg815.2). Note
thatlval_slider must override functions from botial_box andBBwindow. Therefore, it must be
derived directly or indirectly from both. As shown in §12.4.1.1, derinwal_slider indirectly
from BBwindow by makingBBwindow a base ofval_box is possible, but doing so has undesirable
side effects. Similarly, making the “implementation clagBwindow a member ofval_box is
not a solution because a class cannot override virtual functions of its members (824.3.4). Repre-
senting the window by BBwindow* member inlval_box leads to a completely different design
with a separate set of tradeoffs (812.7[14], §25.7).

Interestingly, this declaration d¥al_slider allows application code to be written exactly as
before. All we have done is to restructure the implementation details in a more logical way.

Many classes require some form of cleanup for an object before it goes away. Since the abstract
classlval_box cannot know if a derived class requires such cleanup, it must assume that it does
require some. We ensure proper cleanup by defining a virtual destivaltdoox: :~ Ival_box()
in the base and overriding it suitably in derived classes. For example:

void f(Ival_box* p)

{
/...

delete |p;
}

The delete operator explicitly destroys the object pointed topbyWe have no way of knowing
exactly to which class the object pointed to jpybelongs, but thanks ttwal_box's virtual
destructor, proper cleanup as (optionally) defined by that class’ destructor will be called.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

320 Derived Classes Chapter 12

Thelval_box hierarchy can now be defined like this:

class Ival_box{ /* ..* }

class Ival_slider : public Ival_box, protected BBwindow { /* ...*/ };
class Ival_dial : public Ival_box, protected BBwindow{ /* ...*/ };
class Hashing_ival_slider : public Ival_slider{ /* ..* };

class Popup_ival_slider : public Ival_slider{ /* ...*/ };

or graphically using obvious abbreviations:

BBwindow Ival_box BBwindow

N)z
~ -

val_slider Ival_dial

7N

Popup_slider Flashing slider

| used a dashed line to represent protected inheritance. As far as general users are concerned, doing
that is simply an implementation detail.

12.4.3 Alternative Implementations [derived.alt]

This design is cleaner and more easily maintainable than the traditionalamtkeno less efficient.
However, it still fails to solve the version control problem:

class Ival_box{ /* ..*/ }; [[/ common

class Ival_slider : public Ival_box, protected BBwindow{ /* ...*/ }; // for BB
class Ival_slider : public Ival_box, protected CWwindow{ /* ...*/ }; // for CW
/..

In addition, there is no way of having aral_slider for BBwindows coexist with arval_slider
for CWwindows, even if the two user-interface systems could themselves coexist.
The obvious solution is to define several differsal_slider classes with separate names:
class Ival_box{ /* ...*/ };
class BB_ival_slider : public Ival_box, protected BBwindow{ /* ..*/ };

class CW _ival_slider : public Ival_box, protected CWwindow { /* ...*/ };
/..

or graphically:
BBwindow Ival_box CWwindow

N)
~ -

BB _ival slider CW ival “slider
To further insulate our application-orienthdhl_box classes from implementation details, we can

derive an abstradval_slider class fromlval_box and then derive the system-speclifal_sliders
from that:

class Ival_box{ /* ..* }
class Ival_slider : public Ival_box{ /* ...* }

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 12.4.3 Alternative Implementations 321

class BB ival_slider : public Ival_slider, protected BBwindow{ /* ...*/ };
class CW _ival_slider : public Ival_slider, protected CWwindow { /* ...*/ };
..

or graphically:
Ival_box

i

BBwindow Ival_slider CWwindow

\\\\\ / \ /////

BB_ival_slider CW_ival_slider

Usually, we can do better yet by utilizing more-specific classes in the implementation hierarchy.
For example, if the “Big Bucks Inc.” system has a slider class, we can derivivaluslider
directly from theBBslider:

class BB _ival_slider : public Ival_slider, protected BBslider { /* ...*/ };
class CW _ival_slider : public Ival_slider, protected CWdlider { /* ...*/ };

or graphically:

BBwindow Ival_box CWwindow
BBslider Ival_slider CWidlider

\\\\\ / \ //f/

BB ival_slider CW _ival_slider

This improvement becomes significant wheras is not uncommon our abstractions are not too
different from the ones provided by the system used for implementation. In that case, program-
ming is reduced to mapping between similar concepts. Derivation from general base classes, such
asBBwindow, is then done only rarely.

The complete hierarchy will consist of our original application-oriented conceptual hierarchy of
interfaces expressed as derived classes:

class Ival_box{ /* ...*/ };

class Ival_slider : public Ival_box{ /* ..* 1}

class Ival_dial : public Ival_box{ /* ...* }

class Hashing_ival_slider : public Ival_shider { /* ...* }
class Popup _ival_slider : public Ival_slider { /* ...*/ }

followed by the implementations of this hierarchy for various graphical user-interface systems,
expressed as derived classes:

class BB _ival_slider : public Ival_slider, protected BBslider { /* ...*/ };
class BB_flashing_ival_slider : public Flashing_ival_slider,
protected BBwindow_with_bells and whistles{ /* ...*/ };
class BB _popup_ival_slider : public Popup _ival_slider, protected BBdlider { /* ..*/ };
class CW_ival_slider : public Ival_slider, protected CWdlider { /* ...*/ };
/...

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

322 Derived Classes Chapter 12

Using obvious abbreviations, this hierarchy can be represented graphically like this:

Ival_box

Ival_slider Ival_dial

ipopup iflash

BBslider BBslider Cwd Cwd Cwd

4 A /1 N | A

I I / \ I I

I I / \ I I

| | / \ | |
BBislider BBipop CWipop CWifl BBifl CWislider

The originallval_box class hierarchy appears unchanged surrounded by implementation classes.

12.4.3.1 Critique [derived.critique2]

The abstract class design is flexible and almost as simple to deal with as the equivalent design that
relies on a common base defining the user-interface system. In the latter design, the windows class
is the root of a tree. In the former, the original application class hierarchy appears unchanged as the
root of classes that supply its implementations. From the application’s point of view, these designs
are equivalent in the strong sense that almost all code works unchanged and in the same way in the
two cases. In either case, you can look atwiak box family of classes without bothering with the
window-related implementation details most of the time. For example, we would not need to
rewriteinteract() from 812.4.1 if we switched from the one class hierarchy to the other.

In either case, the implementation of edehl box class must be rewritten when the public
interface of the user-interface system changes. However, in the abstract class design, almost all
user code is protected against changes to the implementation hierarchy and requires no recompila-
tion after such a change. This is especially important when the supplier of the implementation hier-
archy issues a new “almost compatible” release. In addition, users of the abstract class hierarchy
are in less danger of being locked into a proprietary implementation than are users of a classical
hierarchy. Users of thival _box abstract class application hierarchy cannot accidentally use facili-
ties from the implementation because only facilities explicitly specified itviddebox hierarchy
are accessible; nothing is implicitly inherited from an implementation-specific base class.

12.4.4 Localizing Object Creation [derived.local]

Most of an application can be written using thal_box interface. Further, should the derived
interfaces evolve to provide more facilities than plasa_box, then most of an application can be
written using thdval_box, Ival_slider, etc., interfaces. However, the creation of objects must be

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 12.4.4 Localizing Object Creation 323

done using implementation-specific names suclCWs ival_dial and BB_flashing_ival_slider.
We would like to minimize the number of places where such specific names occur, and object cre-
ation is hard to localize unless it is done systematically.

As usual, the solution is to introduce an indirection. This can be done in many ways. A simple
one is to introduce an abstract class to represent the set of creation operations:

class Ival_maker {

public:
virtual lval_dial* dial(int, int) =0; /| make dial
virtual Popup_ival_slider* popup_slider(int, int) =0; // make popup slider
...

h

For each interface from thiwval _box family of classes that a user should know about, class
Ival_maker provides a function that makes an object. Such a class is sometimes dattesha
and its functions are (somewhat misleadingly) sometimes catted! constructorg815.6.2).

We now represent each user-interface system by a class derivelwétomaker:

class BB_maker : public Ival_maker { / | make BB versions
public:
Ival_dial* dial(int, int);
Popup_ival_slider* popup_slider(int, int);
/...
h
class LS maker : public Ival_maker { / | make LS versions
public:
Ival_dial* dial(int, int);
Popup_ival_slider* popup_slider(int, int);
/...
2
Each function creates an object of the desired interface and implementation type. For example:
Ival_dial* BB_maker: : dial(int a, int b)

{
return new BB_ival_dial(a, b);
}
Ival_dial* LS maker:: dial(int a, int b)
{
return new LS ival_dial(a, b);
}

Given a pointer to &val_maker, a user can now create objects without having to know exactly
which user-interface system is used. For example:

void user(Ival_maker* pim)

Ival_box* pb = pim->dial(0, 99); / / create appropriate dial
/...

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

324 Derived Classes Chapter 12

BB_maker BB _impl;/ / for BB users
LS maker LS impl; / / for LS users

void driver()

{
user(& BB_impl); / / use BB

user(& LS impl); / / uselS

12.5 Class Hierarchies and Abstract Classégerived.hier]

An abstract class is an interface. A class hierarchy is a means of building classes incrementally.
Naturally, every class provides an interface to users and some abstract classes provide significant
functionality to build from, but “interface” and “building block” are the primary roles of abstract
classes and class hierarchies.

A classical hierarchy is a hierarchy in which the individual classes both provide useful function-
ality for users and act as building blocks for the implementation of more advanced or specialized
classes. Such hierarchies are ideal for supporting programming by incremental refinement. They
provide the maximum support for the implementation of new classes as long as the new class
relates strongly to the existing hierarchy.

Classical hierarchies do tend to couple implementation concerns rather strongly with the inter-
faces provided to users. Abstract classes can help here. Hierarchies of abstract classes provide a
clean and powerful way of expressing concepts without encumbering them with implementation
concerns or significant run-time overheads. After all, a virtual function call is cheap and indepen-
dent of the kind of abstraction barrier it crosses. It costs no more to call a member of an abstract
class than to call any otheirtual function.

The logical conclusion of this line of thought is a system represented to users as a hierarchy of
abstract classes and implemented by a classical hierarchy.

12.6 Advice[derived.advice]

[1] Avoid type fields; §12.2.5.

[2] Use pointers and references to avoid slicing; §12.2.3.

[3] Use abstract classes to focus design on the provision of clean interfaces; §12.3.

[4] Use abstract classes to minimize interfaces; §12.4.2.

[5] Use abstract classes to keep implementation details out of interfaces; §12.4.2.

[6] Use virtual functions to allow new implementations to be added without affecting user code;
812.4.1.

[7] Use abstract classes to minimize recompilation of user code; §12.4.2.

[8] Use abstract classes to allow alternative implementations to coexist; §12.4.3.

[9] A class with a virtual function should have a virtual destructor; §12.4.2.

[10] An abstract class typically doesn’t need a constructor; §12.4.2.

[11] Keep the representations of distinct concepts distinct; §12.4.1.1.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 12.7 Exercises 325

12.7 Exercise$derived.exercises]
1. () Define
class hase{

public:
virtual void iam() { cout << " baseéin"; }
I

Derive two classes frorbase and for each defineam() to write out the name of the class.
Create objects of these classes and iaml) for them. Assign pointers to objects of the
derived classes toase* pointers and callam() through those pointers.

2. ((B.5) Implement a simple graphics system using whatever graphics facilities are available on
your system (if you don’t have a good graphics system or have no experience with one, you
might consider a simple “huge bit ASCII implementation” where a point is a character position
and you write by placing a suitable character, such iasa position):Window(n, m) creates
an area of siza timesm on the screen. Points on the screen are addressed using (x,y) coordi-
nates (Cartesian). AVindow w has a current positiow. current() . Initially, current is
Point(0, 0) . The current position can be setwycurrent(p) wherep is aPoint. A Point is
specified by a coordinate paiPoint(x, y). A Line is specified by a pair oPoints:

Line(w. current() , p2); classShape is the common interface tDots, Lines, Rectangles,
Circles, etc. APaint is not aSiape. A Dot, Dot(p) can be used to represeriaint p on the
screen. A Shape is invisible unless draw() n. For example:
w. draw(Circle(w. current() , 10)) . EveryShape has 9 contact pointg (east),w (west),n
(north), s (south),ne, nw, se sw, andc (center). For examplé,ine(x. c() , y. nw()) creates

a line fromx’'s center toy's top left corner. Aftedraw() ing aShapethe current position is the
Shape's se(). A Redangle is specified by its bottom left and top right corner:
Rectangle(w. current() , Point(10, 10)) . As a simple test, display a simple “child’s draw-
ing of a house” with a roof, two windows, and a door.

3. (@) Important aspects of Sfmape appear on the screen as a set of line segments. Implement
operations to vary the appearance of these segnsetitickness(n) sets the line thickness to
0, 1, 2, or 3, where2 is the default an@ means invisible. In addition, a line segment can be
solid, dashed, ordotted This is set by the functio8ape: : outling() .

4. (2.5) Provide a functiotine : arrowhead() that adds arrow heads to an end of a line. A
line has two ends and an arrowhead can point in two directions relative to the line, so the argu-
ment or arguments @rrowhead() must be able to express at least four alternatives.

5. ((8.5) Make sure that points and line segments that fall outsid&iiidow do not appear on
the screen. This is often called “clipping.” As an exercise only, do not rely on the implemen-
tation graphics system for this.

6. ((2.5) Add aText type to the graphics system. T&xt is a rectangulaBtape displaying charac-
ters. By default, a character takes up one coordinate unit along each coordinate axis.

7. () Define a function that draws a line connecting two shapes by finding the two closest “con-
tact points” and connecting them.

8. ((B) Add a notion of color to the simple graphics system. Three things can be colored: the
background, the inside of a closed shape, and the outlines of shapes.

9. (2) Consider:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

326 Derived Classes Chapter 12

class Char_vec{
int sz
char element 1];
public:
static Char_vec* new char_vec(int 9);
char& operator[](int i) { return element] i]; }
..
h
Define new_char_veq() to allocate contiguous memory foiCGhar_vec object so that the ele-
ments can be indexed througlement as shown. Under what circumstances does this trick
cause serious problems?

10. (2.5) Given classe€ircle, Sguare, and Triangle derived from a clasSthape, define a func-
tion intersect() that takes twdShape* arguments and calls suitable functions to determine if
the two shapes overlap. It will be necessary to add suitable (virtual) functions to the classes to
achieve this. Don't bother to write the code that checks for overlap; just make sure the right
functions are called. This is commonly referred td@sbledispatch or amulti-method

11. (®) Design and implement a library for writing event-driven simulations. Hitaisk h>.
However, that is an old program, and you can do better. There should be taskas&n
object of clasgask should be able to save its state and to have that state restored (you might
definetask : save() andtask : restore()) so that it can operate as a coroutine. Specific tasks
can be defined as objects of classes derived from tzdks The program to be executed by a
task might be specified as a virtual function. It should be possible to pass arguments to a new
task as arguments to its constructor(s). There should be a scheduler implementing a concept of
virtual time. Provide a functiotask : delay(long) that “consumes” virtual time. Whether
the scheduler is part of clatask or separate will be one of the major design decisions. The
tasks will need to communicate. Design a ctassue for that. Devise a way for a task to wait
for input from several queues. Handle run-time errors in a uniform way. How would you
debug programs written using such a library?

12. (2) Define interfaces fowarrior, Monster, andObject (that is a thing you can pick up, drop,
use, etc.) classes for an adventure-style game.

13. (@.5) Why is there both Roint and aDot class in §12.7[2]? Under which circumstances
would it be a good idea to augment Simpe classes with concrete versions of key classes such
asLine

14. (B) Outline a different implementation strategy for aal_box example (§12.4) based on the
idea that every class seen by an application is an interface containing a single pointer to the
implementation. Thus, each "interface class" will be a handle to an "implementation class," and
there will be an interface hierarchy and an implementation hierarchy. Write code fragments that
are detailed enough to illustrate possible problems with type conversion. Consider ease of use,
ease of programming, ease of reusing implementations and interfaces when adding a new con-
cept to the hierarchy, ease of making changes to interfaces and implementations, and need for
recompilation after change in the implementation.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

	Return to Contents
	12.1 Introduction
	12.2 Derived Classes
	12.3 Abstract Classes
	12.4 Design of Class Hierarchies
	12.5 Class Hierarchies and Abstract Classes
	12.6 Advice
	12.7 Exercises

	buy now:

