11

Operator Overloading

Whenl use a word it means just what
| choose it to mean neither more nor less.
— Humpty Dumpty

Notation— operator functions— binary and unary operators- predefined meanings
for operators— user-defined meanings for operatersoperators and namespaeesa
complex type— member and nonmember operaters mixed-mode arithmetic—
initialization — copying— conversions— literals — helper functions— conversion
operators— ambiguity resolution— friends— members and friends- large objects—
assignment and initializatior- subscripting— function call— dereferencing— incre-
ment and decrement a string class— advice— exercises.

11.1 Introduction [over.intro]

Every technical field- and most nontechnical fields have developed conventional shorthand
notation to make convenient the presentation and discussion involving frequently-used concepts.
For example, because of long acquaintance

X+y*z
is clearer to us than
muitiply y by z and add the result to x

It is hard to overestimate the importance of concise notation for common operations.

Like most languages,*@ supports a set of operators for its built-in types. However, most con-
cepts for which operators are conventionally used are not built-in types-is&they must be rep-
resented as user-defined types. For example, if you need complex arithmetic, matrix algebra, logic
signals, or character strings i€ you use classes to represent these notions. Defining operators

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.


http://store.awl.com/catalog/cepub_detail.mhtml?isbn=0-201-88954-4

262  Operator Overloading Chapter 11

for such classes sometimes allows a programmer to provide a more conventional and convenient

notation for manipulating objects than could be achieved using only the basic functional notation.
For example,

class complex { /| very simplified complex
double re, im;

public:
complex( double r, double i) : re(r), im(i) { }
complex operator+( complex);
complex operator*( complex);

3

defines a simple implementation of the concept of complex numbecemplexis represented by
a pair of double-precision floating-point numbers manipulated by the operadmd* . The pro-
grammer definesomplex : operator+() andcomplex : operator*() to provide meanings for
and*, respectively. For example, lif andc are of typecomplex, b+c meansh. operator+( c) .
We can now approximate the conventional interpretaticyomiplex expressions:

void f()

{
complex a= complex( 1, 3. 1);
complex b= complex( 1. 2, 2);
complex c=b;
a=b+c;
b = b+c* g;
¢ = a*b+complex( 1, 2);

}

The usual precedence rules hold, so the second statementbmbats* a) , notb=( b+c)* a.

Many of the most obvious uses of operator overloading are for concrete types (810.3). How-
ever, the usefulness of user-defined operators is not restricted to concrete types. For example, the
design of general and abstract interfaces often leads to the use of operatorssu¢h aand() .

11.2 Operator Functiongover.oper]

Functions defining meanings for the following operators (86.2) can be declared:

+ - * / % A &

| - ] = < > +=

-= *= = %= N= = =

<< >> >>= <<= == 1= <=

>= && Il ++ -- ->* ,

> I 0 new new] delete  deletef]

The following operators cannot be defined by a user:
(scope resolution; 84.9.4, §10.2.4),
(member selection; 85.7), and
¥ (member selection through pointer to function; §15.5).

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.



Section 11.2 Operator Functions 263

They take a name, rather than a value, as their second operand and provide the primary means of
referring to members. Allowing them to be overloaded would lead to subtleties [Stroustrup,1994].

It is not possible to define new operator tokens, but you can use the function-call notation when
this set of operators is not adequate. For examplepowg , not** . These restrictions may
seem Draconian, but more flexible rules can easily lead to ambiguities. For example, defining an
operator** to mean exponentiation may seem an obvious and easy task at first glance, but think
again. Should* bind to the left (as in Fortran) or to the right (as in Algol)? Should the expres-
siona** p be interpreted aa*(* p) or as( a)**( p)?

The name of an operator function is the keywaopeérator followed by the operator itself; for
example,operator<<. An operator function is declared and can be called like any other function.
A use of the operator is only a shorthand for an explicit call of the operator function. For example:

void f( complex a, complex b)
{

complex c=a+b; / | shorthand
complex d= a. operator+( b); / / explicit call
}

Given the previous definition @omplex, the two initializers are synonymous.

11.2.1 Binary and Unary Operators [over.binary]

A binary operator can be defined by either a nonstatic member function taking one argument or a
nonmember function taking two arguments. For any binary ope@asa@b can be interpreted as
eitheraa. operator@(b) or operator@(@a, bb) . If both are defined, overload resolution (§87.4)
determines which, if any, interpretation is used. For example:

class X{

public:
void operator+(int);
X(int);

I8

void operator+( X, X);

void operator+( X, double);

void f( X a)

{
at+l; | | a.operator+(1)
1+a; [ | :operator+(X(1),a)
atl. 0; / / :operator+(a,1.0)

}

A unary operator, whether prefix or postfix, can be defined by either a nonstatic member function
taking no arguments or a nonmember function taking one argument. For any prefix unary operator
@ @a can be interpreted as eittea. operator@() or operator@(@a) . If both are defined, over-

load resolution (8§7.4) determines which, if any, interpretation is used. For any postfix unary opera-
tor @ aa@ can be interpreted as eithaa. operator@(nt) or operator@(@a, int) . This is
explained further in 811.11. If both are defined, overload resolution (87.4) determines which, if

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.



264  Operator Overloading Chapter 11

any, interpretation is used. An operator can be declared only for the syntax defined for it in the
grammar (8A.5). For example, a user cannot define a Garya ternary+. Consider:

class X{
/1 members (with implicit ‘this’ pointer):

X* operator&() ; / / prefix unary & (address of)

X operator&(X); / / binary & (and)

X operator++( int); / / postfix increment (see §11.11)
X operator&( X, X);/ / error: ternary

X operator/() ; /| error: unary /

k

/! nonmember functions :

X operator-( X); / | prefix unary minus
X operator-( X, X); [ | binary minus

X operator--( X&, int); / [/ postfix decrement
X operator-() ; / | error: no operand
X operator-( X, X, X); [/ [/ error: ternary

X operator%(X); [ | error: unary %

Operator] is described in §11.8, operatQr in 811.9, operator> in §11.10, operators+ and
-- in 811.11, and the allocation and deallocation operators in §6.2.6.2, §10.4.11, and §15.6.

11.2.2 Predefined Meanings for Operators [over.predefined]

Only a few assumptions are made about the meaning of a user-defined operator. In particular,
operator=, operator[] , operator() , andoperator-> must be nonstatic member functions; this
ensures that their first operands will be Ivalues (84.9.6).

The meanings of some built-in operators are defined to be equivalent to some combination of
other operators on the same arguments. For examples &n int,++a meansa+=1, which in turn
meansa=a+1. Such relations do not hold for user-defined operators unless the user happens to
define them that way. For example, a compiler will not generate a definitiéin operator+=()
from the definitions o¥: : operator+() andZ:: operator=() .

Because of historical accident, the operatoassignment)& (address-of), and (sequencing;

86.2.2) have predefined meanings when applied to class objects. These predefined meanings can
be made inaccessible to general users by making them private:

class X{

private:
void operator=( const X&);
void operator&() ;
void operator,( const X&);
/..

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.



Section 11.2.2 Predefined Meanings for Operators 265

void f(X a, X b)

{
a=b; / [/ error: operator= private
&a; /| error: operator& private
a, b; / | error: operator, private
}

Alternatively, they can be given new meanings by suitable definitions.

11.2.3 Operators and User-Defined Types [over.user]

An operator function must either be a member or take at least one argument of a user-defined type
(functions redefining theew and delete operators need not). This rule ensures that a user cannot
change the meaning of an expression unless the expression contains an object of a user-defined
type. In particular, it is not possible to define an operator function that operates exclusively on
pointers. This ensures that€is extensible but not mutable (with the exception of operatoks
and, for class objects).
An operator function intended to accept a basic type as its first operand cannot be a member
function. For example, consider adding a complex variaalt® the intege: aa+2 can, with a
suitably declared member function, be interpretedaa®operator+( 2) , but 2+aa cannot because
there is no clasimt for which to define+ to mear2. operator+( aa) . Even if there were, two dif-
ferent member functions would be needed to cope 2vitta andaa+2. Because the compiler does
not know the meaning of a user-definedt cannot assume that it is commutative and so interpret
2+aaasaat+2. This example is trivially handled using nonmember functions (§11.3.2, §11.5).
Enumerations are user-defined types so that we can define operators for them. For example:

enum Day{ sun, mon, tue, wed, thu, fri, sat};
Day& operator++( Day& d)
{

return d= (sat==d) ? sun: Day( d+1);
}

Every expression is checked for ambiguities. Where a user-defined operator provides a possible
interpretation, the expression is checked according to the rules in §7.4.

11.2.4 Operators in Namespaces [over.namespace]

An operator is either a member of a class or defined in some namespace (possibly the global nhame-
space). Consider this simplified version of string 1/0 from the standard library:

namespace std { /| simplified std

class ostream {
/..
ostream& operator<<( const char*) ;

k

extern ostream cout;

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.



266  Operator Overloading Chapter 11

class sring {
/...

h

ostreams. operator<<( ostreams., const stringg);
}
int main()
{

char* p="Hello";

std: : String s=" World";

Sld: : cout << p << "’ " << gl \n";
}

Naturally, this writes ouHello, world! But why? Note that | didn’t make everything frcstal
accessible by writing:

using namespace sd;

Instead, | used thstd: : prefix for string andcout. In other words, | was at my best behavior and
didn’t pollute the global namespace or in other ways introduce unnecessary dependencies.
The output operator for C-style stringhdér* ) is a member oftd: : ostream, so by definition

std: : cout << p
means
std: : cout. operator<<( p)
However std: : ostreamdoesn’t have a member function to outpstda: string, so
std: : cout<<'s
means
operator<<( std: : cout, s)

Operators defined in namespaces can be found based on their operand types just like functions can
be found based on their argument types (88.2.6). In particalalrjs in namespacstd, sostd is
considered when looking for a suitable definitiorxef In that way, the compiler finds and uses:

std: : operator<<( std: : osiream&, const std: : siring&)

For a binary operata® x@ wherex is of typeX andy is of typeY is resolved like this:
[1] If X is a class, determine whether cl¥ssr a base oK definesoperator@as a member; if
so, that is the@to try to use.
[2] Otherwise,
— look for declarations ofdin the context surrounding@y; and
— if Xis defined in namespad¥; look for declarations a®in N; and
— if Yis defined in namespadé, look for declarations a@in M.
If declarations obperator@are found in the surrounding context,Nnor in M, we try to use
those operators.
In either case, declarations for sevepperator@ may be found and overload resolution rules

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.



Section 11.2.4 Operators in Namespaces 267

(87.4) are used to find the best match, if any. This lookup mechanism is applied only if the opera-
tor has at least one operand of a user-defined type. Therefore, user-defined conversions (§11.3.2,
811.4) will be considered. Note thatypedef name is just a synonym and not a user-defined type
(84.9.7).

11.3 A Complex Number Typdover.complex]

The implementation of complex numbers presented in the introduction is too restrictive to please
anyone. For example, from looking at a math textbook we would expect this to work:

void f()

{
complex a= complex( 1, 2);
complex b= 3;
complex c=at+2. 3;
complex d= 2+b;
complex e=-b-c;
b=c*2*c;

}

In addition, we would expect to be provided with a few additional operators, sachfas com-

parison anc< for output, and a suitable set of mathematical functions, susin(as andsqrt() .
Classcomplexis a concrete type, so its design follows the guidelines from §10.3. In addition,

users of complex arithmetic rely so heavily on operators that the definitmymplex brings into

play most of the basic rules for operator overloading.

11.3.1 Member and Nonmember Operators [over.member]

| prefer to minimize the number of functions that directly manipulate the representation of an
object. This can be achieved by defining only operators that inherently modify the value of their
first argument, such ass=, in the class itself. Operators that simply produce a new value based on
the values of its arguments, suchtaare then defined outside the class and use the essential opera-
tors in their implementation:

class complex{
double re, im;

public:
complex& operator+=( complex a); / / needs access to representation
/..

h

complex operator+( complex a, complex b)

{

complex r = a;
return r +=b; / / access representation through +=

}

Given these declarations, we can write:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.



268  Operator Overloading Chapter 11

void f( complex x, complex y, complex 2

{
complex rl = x+y+z // rl = operator+(x,operator+(y,z))
complex r2 = x; [ 1 r2=x
r2+=y;, / | r2.operator+=(y)
r2+=z ! | r2.operator+=(z)
}

Except for possible efficiency differences, the computatiomt ahdr2 are equivalent.

Composite assignment operators suchtasand *= tend to be simpler to define than their
“simple” counterpartst and*. This surprises most people at first, but it follows from the fact that
three objects are involved in4aoperation (the two operands and the result), whereas only two
objects are involved in &= operation. In the latter case, run-time efficiency is improved by elimi-
nating the need for temporary variables. For example:

inline complex& complex : operator+=( complex a)

{
re+=a. re
im+=a. im,
return * this;
}

does not require a temporary variable to hold the result of the addition and is simple for a compiler
to inline perfectly.

A good optimizer will generate close to optimal code for uses of the plaiperator also.
However, we don't always have a good optimizer and not all types are as sincplapiex, so
811.5 discusses ways of defining operators with direct access to the representation of classes.

11.3.2 Mixed-Mode Arithmetic [over.mixed]
To cope with
complex d= 2+b;

we need to define operaterto accept operands of different types. In Fortran terminology, we
needmixed-mode arithmeticWe can achieve that simply by adding appropriate versions of the
operators:

class complex{
double re, im;

public:
complex& operator+=( complex a) {
re+=a.re;
im+=a. im;
return * this;
}

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.



Section 11.3.2 Mixed-Mode Arithmetic 269

complex& operator+=( double a@) {

re+= a;
return * this;
}
/...
h
complex operator+( complex a, complex b)
{
complex r = g;
return r +=b; / / calls complex::operator+=(complex)
}
complex operator+( complex a, double k)
{
complex r = a;
return r +=b; / / calls complex::operator+=(double)
}

complex operator+( double @ complex b)

complex r = b;
return r +=a; / / calls complex::operator+=(double)

Adding adouble to a complex number is a simpler operation than addicgnaplex This is
reflected in these definitions. The operations taldogble operands do not touch the imaginary
part of a complex number and thus will be more efficient.

Given these declarations, we can write:

void f( complex x, complex y)
{

complex rl = x+y; / / calls operator+(complex,complex)
complex r2 = x+2; / |/ calls operator+(complex,double)
complex r3=2+x; / / calls operator+(double,complex)

11.3.3 Initialization [over.ctor]

To cope with assignments and initializationcomplex variables with scalars, we need a conver-
sion of a scalar (integer or floating-point number) tomplex For example:

complex b= 3;/ / should mean b.re=3, b.im=0

A constructor taking a single argument specifies a conversion from its argument type to the
constructor’s type. For example:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.



270  Operator Overloading Chapter 11

class complex {
double re, im;

public:
complex( double r) :re(r), im(0) { }
..

I

The constructor specifies the traditional embedding of the real line in the complex plane.

A constructor is a prescription for creating a value of a given type. The constructor is used
when a value of a type is expected and when such a value can be created by a constructor from the
value supplied as an initializer or assigned value. Thus, a constructor requiring a single argument
need not be called explicitly. For example,

complex b= 3;
means
complex b= complex( 3);

A user-defined conversion is implicitly applied only if it is unique (§7.4). See 8§11.7.1 for a way of
specifying constructors that can only be explicitly invoked.

Naturally, we still need the constructor that takes two doubles, and a default constructor initial-
izing acomplexto ( 0, 0) is also useful:

class complex{
double re, im;

public:
complex) : re(0), im(0) { }
complex( double ) : re(r), im(0) { }
complex( double r, double i) : re(r), im(i) {}
/..

h

Using default arguments, we can abbreviate:

class complex{
double re, im;

public:
complex( double r=0, double ii=0) : re(r), im(i) {}
/...

h

When a constructor is explicitly declared for a type, it is not possible to use an initializer list (85.7,
84.9.5) as the initializer. For example:

complex zZ1={ 3}; /| error: complex has a constructor
complex 22={ 3, 4}, / |/ error: complex has a constructor

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.



Section 11.3.4 Copying 271

11.3.4 Copying [over.copy]

In addition to the explicitly declared constructocemplex by default gets a copy constructor
defined (810.2.5). A default copy constructor simply copies all members. To be explicit, we could
equivalently have written:

class complex {
double re, im;

public:
complex( const complex& c) : re(c.re), im(c.im) { }
/...

I3

However, for types where the default copy constructor has the right semantics, | prefer to rely on
that default. It is less verbose than anything | can write, and people should understand the default.
Also, compilers know about the default and its possible optimization opportunities. Furthermore,
writing out the memberwise copy by hand is tedious and error-prone for classes with many data
members (810.4.6.3).

| use a reference argument for the copy constructor because | must. The copy constructor
defines what copying meanrsincluding what copying an argument meanso writing

complex : complex( complex c¢) : re(c.re), im(c.im) { }/ / error

is an error because any call would have involved an infinite recursion.

For other functions takingomplex arguments, | use value arguments rather than reference
arguments. Here, the designer has a choice. From a user’s point of view, there is little difference
between a function that takecamplex argument and one that takesanst complex& argument.

This issue is discussed further in §11.6.
In principle, copy constructors are used in simple initializations such as

complex x= 2 | | create complex(2); then initialize x with it
complex y= complex( 2, 0); / / create complex(2,0); then initialize y with it

However, the calls to the copy constructor are trivially optimized away. We could equivalently
have written:

complex x( 2); / I initialize x by 2
complex y(2, 0); / / initialize x by (2,0)

For arithmetic types, such aesmplex, | like the look of the version usingbetter. It is possible to
restrict the set of values accepted by4tstyle of initialization compared to tife style by making
the copy constructor private (§11.2.2) or by declaring a constrexbicit (§11.7.1).

Similar to initialization, assignment of two objects of the same class is by default defined as
memberwise assignment (§10.2.5). We could explicitly deoraplex : operator= to do that.
However, for a simple type likeomplexthere is no reason to do so. The default is just right.

The copy constructor whether user-defined or compiler-generateid used not only for the
initialization of variables, but also for argument passing, value return, and exception handling (see
811.7). The semantics of these operations is defined to be the semantics of initialization (87.1,
§7.3, 814.2.1).

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.



272  Operator Overloading Chapter 11

11.3.5 Constructors and Conversions [over.conv]

We defined three versions of each of the four standard arithmetic operators:
complex operator+( complex, complex) ;
complex operator+( complex, double);

complex operator+( double, complex);
/..

This can get tedious, and what is tedious easily becomes error-prone. What if we had three alterna-
tives for the type of each argument for each function? We would need three versions of each
single-argument function, nine versions of each two-argument function, twenty-seven versions of
each three-argument function, etc. Often these variants are very similar. In fact, almost all variants
involve a simple conversion of arguments to a common type followed by a standard algorithm.

The alternative to providing different versions of a function for each combination of arguments
is to rely on conversions. For example, complex class provides a constructor that converts a
double to a complex Consequently, we could simply declare only one version of the equality
operator forcomplex

bool operator==( complex, complex) ;
void f( complex x, complex y)
{

x==y;, | | means operator==(X,y)
x==3; /| / means operator==(x,complex(3))
3==y; | | means operator==(complex(3),y)

}

There can be reasons for preferring to define separate functions. For example, in some cases the
conversion can impose overheads, and in other cases, a simpler algorithm can be used for specific
argument types. Where such issues are not significant, relying on conversions and providing only
the most general variant of a functierplus possibly a few critical variants contains the combi-

natorial explosion of variants that can arise from mixed-mode arithmetic.

Where several variants of a function or an operator exist, the compiler must pick “the right”
variant based on the argument types and the available (standard and user-defined) conversions.
Unless a best match exists, an expression is ambiguous and is an error (see §7.4).

An object constructed by explicit or implicit use of a constructor is automatic and will be
destroyed at the first opportunity (see 810.4.10).

No implicit user-defined conversions are applied to the left-hand side ofoaa->). This is
the case even when theis implicit. For example:

void g( complex 2

{
3+z / | ok: complex(3)+z
3. operator+=(2); / / error: 3is not a class object
3+=z / | error: 3 is not a class object
}

Thus, you can express the notion that an operator requires an Ivalue as their left-hand operand by
making that operator a member.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.



Section 11.3.6 Literals 273

11.3.6 Literals [over.literals]

It is not possible to define literals of a class type in the sensé.tBatnd12e3 are literals of type

double. However, literals of the basic types can often be used instead if class member functions are
used to provide an interpretation for them. Constructors taking a single argument provide a general
mechanism for this. When constructors are simple and inline, it is quite reasonable to think of con-
structor invocations with literal arguments as literals. For example, | thicéngglex( 3) as a lit-

eral of typecomplex, even though technically it isn’t.

11.3.7 Additional Member Functions [over.additional]

So far, we have provided clasemplex with constructors and arithmetic operators only. That is
not quite sufficient for real use. In particular, we often need to be able to examine the value of the
real and imaginary parts:

class complex {
double re, im;

public:
double real() const{ return re; }
double imag() const{ return im; }
/...

k

Unlike the other members cbmplex, real() andimag() do not modify the value of complex,
so they can be declarednst.

Givenreal() andimag() , we can define all kinds of useful operations without granting them
direct access to the representatiocarnplex For example:

inline bool operator==( complex a, complex b)
{

}

Note that we need only to be able to read the real and imaginary parts; writing them is less often
needed. If we must do a “partial update,” we can:

return a real()== b. real() &&a. imag()== b. imag() ;

void f( complex& z, double d)

{
...

z= complex( z. real() , d);/ / assignd to z.im
}

A good optimizer generates a single assignment for that statement.

11.3.8 Helper Functions [over.helpers]

If we put all the bits and pieces together, ¢bmplex class becomes:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.



274  Operator Overloading Chapter 11

class complex{
double re, im;
public:
complex( double r=0, double ii=0) : re(r), im(i) {}
double real() const{ return re; }
double imag() const{ return im; }

complex& operator+=( complex) ;
complex& operator+=( double);
[/l ==, *=,and /=
b
In addition, we must provide a number of helper functions:
complex operator+( complex, complex);

complex operator+( complex, double);
complex operator+( double, complex);

/I =, * and/

complex operator-( complex); / / unary minus
complex operator+( complex); / / unary plus

bool operator==( complex, complex) ;

bool operator!=( complex, complex);

istreamg operator>>( istream&, complex&); // input
ostream& operator<<( ostream&, complex); // output

Note that the membereal() andimag() are essential for defining the comparisons. The defini-

tion of most of the following helper functions similarly reliesreal() andimag() .
We might provide functions to allow users to think in terms of polar coordinates:

complex polar( double rho, double theta);
complex conj( complex);

double abs( complex);
double arg( complex);
double morm( complex);

double real( complex);

/ | for notational convenience
double imag( complex); /

/
/ for notational convenience
Finally, we must provide an appropriate set of standard mathematical functions:

complex acos( complex);
complex asin( complex);
complex atan( complex);
/..

From a user's point of view, the complex type presented here is almost identical to the

complex<double> found in<complex> in the standard library (822.5).

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.



Section 11.4 Conversion Operators 275

11.4 Conversion Operatorgover.conversion]

Using a constructor to specify type conversion is convenient but has implications that can be unde-
sirable. A constructor cannot specify
[1] an implicit conversion from a user-defined type to a basic type (because the basic types are
not classes), or
[2] a conversion from a new class to a previously defined class (without modifying the decla-
ration for the old class).
These problems can be handled by definimgrversion operatofor the source type. A member
function X: : operator T() , whereT is a type name, defines a conversion fiérto T. For exam-
ple, one could define a 6-bit non-negative inte@amy, that can mix freely with integers in arith-
metic operations:

class Tiny {

char v;

void assign(int i) { if (i&~077) throw Bad range() ; v=i; }
public:

class Bad range{ };

Tiny(int i) { assign(i); }

Tiny& operator=( int i) { assign(i); return *this;, }

operator int() const{ return v; } / / conversion to int function

k

The range is checked whenevefTiay is initialized by anint and whenever amt is assigned to
one. No range check is needed when we coping so the default copy constructor and assign-
ment are just right.

To enable the usual integer operationgmy variables, we define the implicit conversion from
Tiny to int, Tiny: : operator int() . Note that the type being converted to is part of the name of the
operator and cannot be repeated as the return value of the conversion function:

Tiny: : operator int() const{ return v; } [ | right
int Tiny:: operator int() const{ return v, } / / error

In this respect also, a conversion operator resembles a constructor.
Whenever &iny appears where dnt is needed, the appropridr is used. For example:

int main()
{
Tiny cl1=2;
Tiny ¢c2= 62
Tiny c3=c¢2-cl;, / / c3=60
Tiny c4=c3; /| no range check (not necessary)
int i = cl+c2; /| 1i=64
cl=cl+c2 / | range error: cl can't be 64
i =c3 64 | |i=-4
c2=c3- 64 / | range error: c2 can't be-4
c3=c4 / | no range check (not necessary)
}

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.



276  Operator Overloading Chapter 11

Conversion functions appear to be particularly useful for handling data structures when reading
(implemented by a conversion operator) is trivial, while assignment and initialization are distinctly
less trivial.

Theistream andostreamtypes rely on a conversion function to enable statements such as

while ( cin>>x) cout<<x;

The input operatiogin>>X returns aristream&. That value is implicitly converted to a value indi-
cating the state afin. This value can then be tested by whéle (see §21.3.3). However, it is typ-
ically nota good idea to define an implicit conversion from one type to another in such a way that
information is lost in the conversion.

In general, it is wise to be sparing in the introduction of conversion operators. When used in
excess, they lead to ambiguities. Such ambiguities are caught by the compiler, but they can be a
nuisance to resolve. Probably the best idea is initially to do conversions by named functions, such
asX:: make int() . If such a function becomes popular enough to make explicit use inelegant, it
can be replaced by a conversion operXtoroperator int() .

If both user-defined conversions and user-defined operators are defined, it is possible to get
ambiguities between the user-defined operators and the built-in operators. For example:

int operator+( Tiny, Tiny);

void f( Tiny t, int i)
{

}

t+i; / / error, ambiguous: operator+(t, Tiny(i)) or int(t)+i ?

It is therefore often best to rely on user-defined conversions or user-defined operators for a given
type, but not both.

11.4.1 Ambiguities [over.ambig]

An assignment of a value of tyMeto an object of clasX is legal if there is an assignment operator
X:: operator=( Z) so thatV is Z or there is a unique conversion\bto Z. Initialization is treated
equivalently.

In some cases, a value of the desired type can be constructed by repeated use of constructors or
conversion operators. This must be handled by explicit conversions; only one level of user-defined
implicit conversion is legal. In some cases, a value of the desired type can be constructed in more
than one way; such cases are illegal. For example:

class X{ /* ..*/ X(int); X(char*); };
class Y{ /* ..* Y(int); };

class Z{ I* ..* Z(X); }

X f(X);

Y f(Y);

Z 92,

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.



Section 11.4.1 Ambiguities 277

void ki()
{
f(1); /| error: ambiguous f(X(1)) or f(Y(1))?
f(X(1) ; /| ok
f(Y(D) ; / | ok
g(" Mack") ; [/ [/ error: two user-defined conversions needed; g(Z(X("Mack"))) not tried
g( X(" Doc") ; // ok: g(Z(X("Doc")))
} 9(Z(" Sumy")) ; /1 ok: g(Z(X("Suzy")))

User-defined conversions are considered only if they are necessary to resolve a call. For example:
class XX{ /* ...* XX(int); };

void h( double);
void h( XX);

void k2()

h(1): / / h(double(1)) or h(XX(1))? h(double(1))!
}

The callh(1) meansh( double( 1)) because that alternative uses only a standard conversion
rather than a user-defined conversion (87.4).

The rules for conversion are neither the simplest to implement, the simplest to document, nor
the most general that could be devised. They are, however, considerably safer, and the resulting
resolutions are less surprising. It is far easier to manually resolve an ambiguity than to find an error
caused by an unsuspected conversion.

The insistence on strict bottom-up analysis implies that the return type is not used in overload-
ing resolution. For example:

class Quad {

public:
Quad( double);
/..

h
Quad operator+( Quad, Quad);

void f( double al, double a2)

{
Quad r1 = al+a2 /| double-precision add
Quad r2 = Quad( al)+ a2; // force quad arithmetic

}

The reason for this design choice is partly that strict bottom-up analysis is more comprehensible
and partly that it is not considered the compiler’s job to decide which precision the programmer
might want for the addition.

Once the types of both sides of an initialization or assignment have been determined, both types
are used to resolve the initialization or assignment. For example:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.



278  Operator Overloading Chapter 11

class Real {

public:
operator double() ;
operator int() ;
/...

h

void g( Real a)
double d=a; / / d=a.double();
int i =a; [ 1 i=a.int();
d=g /| d=a.double();
i=a [ 1 i=a.int();

}

In these cases, the type analysis is still bottom-up, with only a single operator and its argument
types considered at any one time.

11.5 Friends[over.friends]

An ordinary member function declaration specifies three logically distinct things:

[1] The function can access the private part of the class declaration, and

[2] the function is in the scope of the class, and

[3] the function must be invoked on an object (h#sispointer).

By declaring a member functicstatic (810.2.4), we can give it the first two properties only. By
declaring a function friend, we can give it the first property only.

For example, we could define an operator that multipliddatrix by a Vector. Naturally,
Vector and Matrix each hide their representation and provide a complete set of operations for
manipulating objects of their type. However, our multiplication routine cannot be a member of
both. Also, we don't really want to provide low-level access functions to allow every user to both
read and write the complete representation of Mulrix andVector. To avoid this, we declare
the operator* a friend of both:

class Matrix;
class Vector {

float v[ 4];

/...

friend Vector operator*( const Matrix&, const Vector&);
h
class Matrix {

Vector V[ 4];

/...

friend Vector operator*( const Matrix&, const Vector&);
3

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.



Section 11.5 Friends 279

Vector operator*( const Matrix& m, const Vector& v)

{
Vector r;
for (int i =0; i<4; i++) { [ 1 rfi] = m[i] *v;
r.v[i] =0;
for (int j=0; j<4; j++) r.Vv[i] +=m.V[i]. V[j] * v. V[]];
}
return T,
}

A friend declaration can be placed in either the private or the public part of a class declaration; it
does not matter where. Like a member function, a friend function is explicitly declared in the
declaration of the class of which it is a friend. It is therefore as much a part of that interface as is a
member function.

A member function of one class can be the friend of another. For example:

class List _iterator {

/...
int* next() ;
class List{
friend int* List jterator: : next() ;
/...
k
It is not unusual for all functions of one class to be friends of another. There is a shorthand for this:
class List{
friend class List iterator;
/..
}

This friend declaration makes all bifst_iterator’'s member functions friends aist
Clearly, friend classes should be used only to express closely connected concepts. Often, there
is a choice between making a class a member (a nested class) or a friend (824.4).

11.5.1 Finding Friends [over.lookup]

Like a member declaration fdend declaration does not introduce a name into an enclosing scope.
For example:

class Matrix {
friend class Xform;
friend Matrix invert( const Matrix&);
/..

k

Xform x [ | error: no Xform in scope
Matrix (* p)( const Matrix&) = &nvert; / / error: no invert() in scope

For large programs and large classes, it is nice that a class doesn’t “quietly” add names to its

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.



280  Operator Overloading Chapter 11

enclosing scope. For a template class that can be instantiated in many different contexts (Chapter
13), this is very important.

A friend class must be previously declared in an enclosing scope or defined in the non-class
scope immediately enclosing the class that is declaring it a friend. For example:

class X{ /* ..* }; [ I Y'sfriend
namespace N {
class Y{
friend class X
friend class Z
friend class AE;
h
class Z{ I* ..* }; [ I Y'sfriend
}
class AE{ I* ..* } /I not a friend of Y

A friend function can be explicitly declared just like friend classes, or it can be found through its
argument types (88.2.6) as if it was declared in the non-class scope immediately enclosing its class.
For example:

void f( Matrix& m)
{
}

It follows that a friend function should either be explicitly declared in an enclosing scope or take an
argument of its class. If not, the friend cannot be called. For example:

/1 no f() here

invert( m); /| Matrix’s friend invert()

void g() ; / | X's friend
class X{
friend void f() ; /| useless
friend void g() ;
friend void h( const X&);/ / can be found through its argument
h
void f() {/* ..* } / I not a friend of X

11.5.2 Friends and Members [over.friends.members]

When should we use a friend function, and when is a member function the better choice for specify-
ing an operation? First, we try to minimize the number of functions that access the representation
of a class and try to make the set of access functions as appropriate as possible. Therefore, the first
guestion is not, “Should it be a member, a static member, or a friend?” but rather, “Does it really
need access?” Typically, the set of functions that need access is smaller than we are willing to
believe at first.

Some operations must be membersfor example, constructors, destructors, and virtual

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.



Section 11.5.2 Friends and Members 281

functions (812.2.6} but typically there is a choice. Because member names are local to the class,
a function should be a member unless there is a specific reason for it to be a nonmember.
Consider a clasX presenting alternative ways of presenting an operation:

class X{
/...
X(int);
int mi) ;
int m2() const;
friend int f1( X&);
friend int f2( const X&);
friend int f3( X);
h

Member functions can be invoked for objects of their class only; no user-defined conversions are
applied. For example:

void g()

99. mX() ; // error: X(99).m1() not tried
99. m2() ; // error: X(99).m2() not tried

}

The conversiorX( int) is not applied to make aout 0f99.

The global functiorf1() has a similar property because implicit conversions are not used for
non-const reference arguments (85.5, §11.3.5). However, conversions may be applied to the argu-
ments off2() andf3() :

void h()

{
f1(99); error: f1(X(99)) not tried

/1
f2(99); / [/ ok: f2(X(99));
f3(99); / [/ ok: f3(X(99));
}

An operation modifying the state of a class object should therefore be a member or a global func-
tion taking a norconst reference argument (or a noonst pointer argument). Operators that
require lvalue operands for the fundamental types=, ++, etc.) are most naturally defined as
members for user-defined types.

Conversely, if implicit type conversion is desired for all operands of an operation, the function
implementing it must be a nonmember function takingomst reference argument or a non-
reference argument. This is often the case for the functions implementing operators that do not
require lvalue operands when applied to fundamental types, (| , etc.). Such operators often
need access to the representations of their operand class. Consequently, binary operators are the
most common source &fiend functions.

If no type conversions are defined, there appears to be no compelling reason to choose a mem-
ber over a friend taking a reference argument, or vice versa. In some cases, the programmer may
have a preference for one call syntax over another. For example, most people seem to prefer the

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.



282  Operator Overloading Chapter 11

notationinv( m) for inverting aMatrix mto the alternativen. inv() . Naturally, ifinv() really
does invermitself, rather than return a neMatrix that is the inverse af, it should be a member.

All other things considered equal, choose a member. It is not possible to know if someone
someday will define a conversion operator. It is not always possible to predict if a future change
may require changes to the state of the object involved. The member function call syntax makes it
clear to the user that the object may be modified; a reference argument is far less obvious. Further-
more, expressions in the body of a member can be noticeably shorter than the equivalent expres-
sions in a global function; a nonmember function must use an explicit argument, whereas the mem-
ber can usehis implicitly. Also, because member names are local to the class they tend to be
shorter than the names of nonmember functions.

11.6 Large Objectdover.large]

We defined thecomplex operators to take arguments of tygmmplex This implies that for each

use of acomplex operator, each operand is copied. The overhead of copyinddubbes can be
noticeable but often less than what a pair of pointers impose. Unfortunately, not all classes have a
conveniently small representation. To avoid excessive copying, one can declare functions to take
reference arguments. For example:

class Matrix {
double mf 4] 4];
public:
Matrix() ;
friend Matrix operator+( const Matrix&, const Matrix&);
friend Matrix operator*( const Matrix&, const Matrix&);

k

References allow the use of expressions involving the usual arithmetic operators for large objects
without excessive copying. Pointers cannot be used because it is not possible to redefine the mean-
ing of an operator applied to a pointer. Addition could be defined like this:

Matrix operator+( const Matrix& argl, const Matrix& arg2)

{
Matrix sum;
for (int i=0; i<4; i++)
for (int j=0; j<4; j++)
sum m(i][ j] =argl m{i][ j] +arg2 m[i][ j];
return sum;
}

This operator+() accesses the operands #ofthrough references but returns an object value.
Returning a reference would appear to be more efficient:

class Matrix {
/...
friend Matrix& operator+( const Matrix&, const Matrix&);
friend Matrix& operator*( const Matrix&, const Matrix&);

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.



Section 11.6 Large Objects 283

This is legal, but it causes a memory allocation problem. Because a reference to the result will be
passed out of the function as a reference to the return value, the return value cannot be an automatic
variable (87.3). Since an operator is often used more than once in an expression, the result cannot
be astatic local variable. The result would typically be allocated on the free store. Copying the
return value is often cheaper (in execution time, code space, and data space) than allocating and
(eventually) deallocating an object on the free store. It is also much simpler to program.

There are techniques you can use to avoid copying the result. The simplest is to use a buffer of
static objects. For example:

const max_matrix_temp = 7,
Matrix& get matrix_temp()

{
static int nbuf = 0;
static Matrix buf[ max_matrix_temp ;
if ( nbuf == max_matrix_temp) nbuf = 0;
return buf[ nbuf++];
}
Matrix& operator+( const Matrix& argl, const Matrix& arg2)
{
Matrix& res= get matrix_temyy() ;
/...
return res
}

Now aMatrix is copied only when the result of an expression is assigned. However, heaven help
you if you write an expression that involves more thax_matrix_temp temporaries!

A less error-prone technique involves defining the matrix type as a handle (§25.7) to a represen-
tation type that really holds the data. In that way, the matrix handles can manage the representation
objects in such a way that allocation and copying are minimized (see 811.12 and §11.14[18]).
However, that strategy relies on operators returning objects rather than references or pointers.
Another technique is to define ternary operations and have them automatically invoked for expres-
sions such aa=b+c anda+b*i (§21.4.6.3, 822.4.7).

11.7 Essential Operatorgover.essential]

In general, for a typ&, the copy constructof( const X&) takes care of initialization by an object

of the same typ&. It cannot be overemphasized tlhasignment and initialization are different
operations(§10.4.4.1). This is especially important when a destructor is declared. If &dlass

a destructor that performs a nontrivial task, such as free-store deallocation, the class is likely to
need the full complement of functions that control construction, destruction, and copying:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.



284  Operator Overloading Chapter 11

class X{
/...
X( Sametype) ; / | constructor: create objects
X( const X&); / | copy constructor
X& operator=( const X&);/ / copy assignment: cleanup and copy
~X0 ; /| destructor: cleanup
h

There are three more cases in which an object is copied: as a function argument, as a function
return value, and as an exception. When an argument is passed, a hitherto uninitialized-variable
the formal parameter is initialized. The semantics are identical to those of other initializations.
The same is the case for function return values and exceptions, although that is less obvious. In
such cases, the copy constructor will be applied. For example:

string g( string arg)

return arg;

}

int main ()
string s=" Newton";
s=g(9);

}

Clearly, the value of ought to be'Newton™ after the call ofy() . Getting a copy of the value sf
into the argumenarg is not difficult; a call ofstring's copy constructor does that. Getting a copy
of that value out of)() takes another call cftring( const string&) ; this time, the variable initial-
ized is a temporary one, which is then assignesl ©ften one, but not both, of these copy opera-
tions can be optimized away. Such temporary variables are, of course, destroyed properly using
string: .~ string() (see §10.4.10).

For a clasX for which the assignment operafér: operator=( const X&) and the copy con-
structorX:: X( const X&) are not explicitly declared by the programmer, the missing operation or
operations will be generated by the compiler (§10.2.5).

11.7.1 Explicit Constructors [over.explicit]

By default, a single argument constructor also defines an implicit conversion. For some types, that
is ideal. For example:

complex z=2;/ / initialize z with complex(2)
In other cases, the implicit conversion is undesirable and error-prone. For example:
string s="a’; // make s a string with int('a’) elements

It is quite unlikely that this was what the person defirangeant.

Implicit conversion can be suppressed by declaring a constexqilicit. That is, arexplicit
constructor will be invoked only explicitly. In particular, where a copy constructor is in principle
needed (811.3.4), axplicit constructor will not be implicitly invoked. For example:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.



Section 11.7.1 Explicit Constructors 285

class Sring{
/...

explicit String(int n); / / preallocate n bytes

String( const char* p); / / initial value is the C-style string p
h
String s1="4a’; / error: no implicit char>String conversion
String s2( 10); ok: String with space for 10 characters

String s3 = String( 10);
String s4= " Brian’;
String s5(" Fawity") ;

void f( String);
Srring g()
{

ok: String with space for 10 characters
ok: s4 = String("Brian")

~ —~
~ o~ — —

~

f( 10); /| error: no implicit int=>String conversion
f( String( 10)) ;

f(" Arthur") ; [ | ok: f(String("Arthur"))

f(s1);

String* pl=new String(" Eric") ;
String* p2 = new String( 10);

return 10; [ [ error: no implicit int->String conversion
}
The distinction between
String s1="a’; /| error: no implicit char->String conversion
and
String s2( 10); /| ok: string with space for 10 characters

may seem subtle, but it is less so in real code than in contrived examples.
In Date, we used a plaimt to represent a year (810.3). HBdte been critical in our design,
we might have introduced¥ear type to allow stronger compile-time checking. For example:

class Year {
int vy,
public:
explicit Year(int i) : y(i) {} / | construct Year from int
operator int() const{ return y, } / / conversion: Year to int
h
class Date {
public:
Date( int d, Month m, Year y);
/...
I3
Date d3( 1978, feb, 21); [ | error: 21 is not a Year

Date d4( 21, feb, Year( 1978)) ; // ok

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.



286  Operator Overloading Chapter 11

The Year class is a simple “wrapper” around ant. Thanks to theoperator int() , a Year is
implicitly converted into annt wherever needed. By declaring the construeiqlicit, we make
sure that thént to Year happens only when we ask for it and that “accidental” assignments are
caught at compile time. Becaugear’'s member functions are easily inlined, no run-time or space
costs are added.

A similar technigue can be used to define range types (§25.6.1).

11.8 Subscriptingover.subscript]

An operator[] function can be used to give subscripts a meaning for class objects. The second
argument (the subscript) of aperator[] function may be of any type. This makes it possible to
definevectors, associative arrays, etc.

As an example, let us recode the example from 85.5 in which an associative array is used to
write a small program for counting the number of occurrences of words in a file. There, a function
is used. Here, an associative array type is defined:

class Assoc{
struct Pair {
string name
double wval;
Pair( string n="", double v=0) : name( n), val(v) { }
h
vector<Pair> vec,
Assoc( const Assocg:); /| private to prevent copying
Assoc& operator=( const Assoc&); / / private to prevent copying
public:
Assoc() {}
double& operator[]( const string&);
void print_all() const
3

An Assoc keeps a vector dPairs. The implementation uses the same trivial and inefficient search
method as in 85.5:

double& Assoc: : operator[]( const string& s)
/1 search for s; return its value if found; otherwise, make a new Pair and return the default value 0

{
for ( vector<Pair>: : const_iterator p = vec. begin() ; p!=vec end() ; ++p)
if (s==p->name) return p->val;
vec. push_back( Pair(s, 0)) ; / / initial value: 0
return vec. back(). val; /| return last element (§16.3.3)
}

Because the representation offasoc is hidden, we need a way of printing it:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.



Section 11.8 Subscripting 287

void Assoc:: print_all() const
{
for ( vector<Pair>: : const_iterator p = vec. begin() ; p!= vec. end() ; ++p)
cout << p-> name<<": " << p->val <<’ \n’;

}
Finally, we can write the trivial main program:

int main() /| count the occurrences of each word on input

{
string buf;
Assoc vec,
while ( cin>>buf) ved buf]++;
vec. print_all() ;
}

A further development of the idea of an associative array can be found in 817.4.1.
An operator[]() must be a member function.

11.9 Function Call[over.call]

Function call, that is, the notati@xpression(expression-lisfan be interpreted as a binary opera-
tion with theexpressioras the left-hand operand and theression-lisas the right-hand operand.
The call operatof) can be overloaded in the same way as other operators can. An argument list
for an operator()() is evaluated and checked according to the usual argument-passing rules.
Overloading function call seems to be useful primarily for defining types that have only a single
operation and for types for which one operation is predominant.

The most obvious, and probably also the most important, use ¢f toperator is to provide
the usual function call syntax for objects that in some way behave like functions. An object that
acts like a function is often calledfanction-like objecbr simply afunction object{§18.4). Such
function objects are important because they allow us to write code that takes nontrivial operations
as parameters. For example, the standard library provides many algorithms that invoke a function
for each element of a container. Consider:

void negate( complex&.c) { c=-c; }

void f( vector<complex>& aa, list<complex>& )
{

for_each( aa. begin() , aa. end() , negate);/ / negate all vector elements
for_each( Il. begin() , Il. end() , negate); / / negate all list elements

}

This negates every element in the vector and the list.
What if we wanted to adcomplex( 2, 3) to every element? That is easily done like this:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.



288  Operator Overloading Chapter 11

void add23( complex& c)

¢ += complex( 2, 3);

}
void g( vector<complex>& aa, list<complex>& II)
{
for_each( aa. begin() , aa. end() , add23);
for_each(Il. begin() , Il. end() , add23);
}

How would we write a function to repeatedly add an arbitrary complex value? We need something
to which we can pass that arbitrary value and which can then use that value each time it is called.
That does not come naturally for functions. Typically, we end up “passing” the arbitrary value by
leaving it in the function’s surrounding context. That's messy. However, we can write a class that
behaves in the desired way:

class Add {
complex val;

public:
Add( complex ¢) { val =c¢; } / | save value
Add( double 1, double i) { val = complex(r, i); }

void operator()( complex&c) const{ c+=val; } / / add value to argument
h

An object of clasdd is initialized with a complex number, and when invoked ug)ngit adds
that number to its argument. For example:

void h( vector<complex>& aa, list<complex>& Il, complex 2)

{
for_each( aa. begin() , aa. end() , Add( 2, 3)) ;
for_each( Il. begin() , Il. end() , Add( 2)) ;

}

This will addcomplex( 2, 3) to every element of the array antb every element on the list. Note
thatAdd( 2) constructs an object that is used repeatedfipbyeach() . It is not simply a function
that is called once or even called repeatedly. The function that is called repeatkdidy 75's
operator()().

This all works becausi®r_each is a template that appli€s to its third argument without car-
ing exactly what that third argument really is:

template<class Iter, class IFct> Iter for_each( Iter b, Iter e, Fct f)

while (b!= €) f(* b++);
return b;

}

At first glance, this technique may look esoteric, but it is simple, efficient, and extremely useful
(see 83.8.5, §18.4).

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.



Section 11.9 Function Call 289

Other popular uses aperator()() are as a substring operator and as a subscripting operator
for multidimensional arrays (822.4.5).
An operator()() must be a member function.

11.10 Dereferencingover.deref]

The dereferencing operator can be defined as a unary postfix operator. That is, given a class

class Ptr {
/...

X* operator->() ;
h

objects of clas®tr can be used to access members of ctassa very similar manner to the way
pointers are used. For example:

void f( Ptr p)

p->m=7; / | (p.operator>())—->m =7

}

The transformation of the objeptinto the pointep. operator->() does not depend on the mem-
berm pointed to. That is the sense in whigerator->() is a unary postfix operator. However,
there is no new syntax introduced, so a member name is still required after tRer example:

void g( Ptr p)
{

X* ql=p->; /| syntax error
X* g2 = p. operator->() ;/ / ok
}

Overloading-> is primarily useful for creating “smart pointers,” that is, objects that act like point-

ers and in addition perform some action whenever an object is accessed through them. For exam-
ple, one could define a claBec ptr for accessing objects of claBec stored on disk.Rec ptr's
constructor takes a name that can be used to find the object orReisktr: : operator->()

brings the object into main memory when accessed througdtedtgptr, andRec ptr’s destructor
eventually writes the updated object back out to disk:

class Rec ptr {
Rec* in_core_address
const char* identifier;
/...

public:
Rec ptr( const char* p) : identifier( p), in_core _address 0) { }
~Rec ptr() { write_to_disk( in_core address identifier); }
Rec* operator->() ;

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.



290 Operator Overloading Chapter 11

Rec* Rec ptr: : operator->()

{
if (in_core_address== 0) in_core_address= read from disk( identifier);
return in_core_address

}

Rec _ptr might be used like this:

struct Rec{ / / the Rec that a Reptr points to
string name
/..

I3

void update( const char* s)
Rec ptr p(s); / | get Recptrfors

p-> name =" Roscoe"; /| update s; if necessary, first retrieve from disk
/1 ...

}

Naturally, a reaRec _ptr would be a template so that tRectype is a parameter. Also, a realistic
program would contain error-handling code and use a less naive way of interacting with the disk.
For ordinary pointers, use ef is synonymous with some uses of unagnd[] . Given

Y p;
it holds that
p->m==(* p). m==p[0]. m

As usual, no such guarantee is provided for user-defined operators. The equivalence can be pro-
vided where desired:

class Ptr_to_Y{
Y p;
public:
Y* operator->() { return p; }
Y& operator*() { return*p; }
Y& operator[]( int i) { return p[i]; }
h
If you provide more than one of these operators, it might be wise to provide the equivalence, just as
it is wise to ensure that+x andx+=1 have the same effect asx+1 for a simple variable of
some class i+, +=, =, and+ are provided.

The overloading of> is important to a class of interesting programs and not just a minor
curiosity. The reason is thatdirectionis a key concept and that overloadifg provides a clean,
direct, and efficient way of representing indirection in a program. Iterators (Chapter 19) provide an
important example of this. Another way of looking at operatois to consider it as a way of pro-
viding C++ with a limited, but useful, form afelegation(§24.2.4).

Operator-> must be a member function. If used, its return type must be a pointer or an object
of a class to which you can apply . When declared for a template claepgrator->() is

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.



Section 11.10 Dereferencing 291

frequently unused, so it makes sense to postpone checking the constraint on the return type until
actual use.

11.11 Increment and Decremenbver.incr]

Once people invent “smart pointers,” they often decide to provide the increment operadod

the decrement operater to mirror these operators’ use for built-in types. This is especially obvi-

ous and necessary where the aim is to replace an ordinary pointer type with a “smart pointer” type
that has the same semantics, except that it adds a bit of run-time error checking. For example, con-
sider a troublesome traditional program:

void f1( T a) / | traditional use

{
T V[ 200];
T p=&v0];
p--
*p=a; / / Oops: ‘p’ out of range, uncaught
++p;
*p=a, [/ / ok

We might want to replace the poinfewith an object of a clad3tr_to_T that can be dereferenced

only provided it actually points to an object. We would also like to ensuretban be incre-
mented and decremented, only provided it points to an object within an array and the increment and
decrement operations yield an object within the array. That is we would like something like this:

class Ptr_to T{

/..
I3
void f2( T a) ! | checked
{
T v 200];
Ptr_to T p(&Vv[Q], v, 200);
p--
*p=a; [/ / run-time error: ‘p’ out of range
++p;
*p=a [ / ok
}

The increment and decrement operators are unique amoengp€rators in that they can be used as
both prefix and postfix operators. Consequently, we must define prefix and postfix increment and
decremenPtr_to_T. For example:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.



292  Operator Overloading Chapter 11

class Ptr_to T{

T™ p;
T* array,
int size
public:
Ptr_to T(T* p, T* v, int 5); / / bindto array v of size s, initial value p
Ptr_to_T(T* p); /I bind to single object, initial value p
Ptr_to_T& operator++() ; [ | prefix
Ptr_to T operator++( int); /| postfix
Ptr_to_T& operator--() ; | | prefix
Ptr_to_T operator--( int); /| postfix

T& operator*() ;  / / prefix
h

Theint argument is used to indicate that the function is to be invoked for postfix applicatien of
This int is never used; the argument is simply a dummy used to distinguish between prefix and
postfix application. The way to remember which version obperator++ is prefix is to note that
the version without the dummy argument is prefix, exactly like all the other unary arithmetic and
logical operators. The dummy argument is used only for the “odd” postfiand-- .

UsingPtr_to_T, the example is equivalent to:

void f3(T a) / | checked

T V[ 200];

Ptr_to T p(&Vv[Q], v, 200);

p. operator--( 0);

p. operator*() =a; / / run-time error: ‘p’ out of range

p. operator++() ;
p. operator*() =a;/ / ok
}

Completing clas®tr_to_T is left as an exercise (§11.14[19]). Its elaboration into a template using
exceptions to report the run-time errors is another exercise (814.12[2]). An example of operators
++ and-- for iteration can be found in 819.3. A pointer template that behaves correctly with
respect to inheritance is presented in (§13.6.3).

11.12 A String Clasgover.string]

Here is a more realistic version of cl&Hng. | designed it as the minimal string that served my
needs. This string provides value semantics, character read and write operations, checked and
unchecked access, stream 1/O, literal strings as literals, and equality and concatenation operators. It
represents strings as C-style, zero-terminated arrays of characters and uses reference counts to mini-
mize copying. Writing a better string class and/or one that provides more facilities is a good exer-
cise (811.14[7-12]). That done, we can throw away our exercises and use the standard library
string (Chapter 20).

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.



Section 11.12 A String Class 293

My almost-realString employs three auxiliary classeSrep, to allow an actual representation
to be shared between seveftilings with the same valudange, to be thrown in case of range
errors, andCref, to help implement a subscript operator that distinguishes between reading and
writing:

class Sring{
struct Srep; /| representation
Srep * rep;

public:
class Cref; | I reference to char
class Range{ }; /| for exceptions
/..

h

Like other members, member clas¢often called anested clagscan be declared in the class itself
and defined later:

struct String: : Srep{
char* s / | pointer to elements
int sz / | number of characters
int n; / | reference count

Srep( int nsz, const char* p)
{

n=1,

Sz=nsz,

s=new char[ sz+1]; // add space for terminator
) strepy( s, p);

~Srep() { delete] s; }
Srep* get_ own_copy() / / clone if necessary
if (n==1) return this;

n--;
return new Srep( sz S);

}
void assign(int nsz const char* p)
{
if (sz!= ns2 {
delete]] s;
SZ=nsz,
s=new char[ sz+1];
}
y strepy('s, p);

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.



294  Operator Overloading Chapter 11

private: / | prevent copying:
Srep( const Srep&.);
Sreps&: operator=( const Srep&);

I3
ClassString provides the usual set of constructors, destructor, and assignment operations:
class Sring{
/...
String() ; [ x="
String( const char*) ; [ | x="abc"
Stiring( const String&); / / x = other string

String& operator=( const char *) ;
String& operator=( const String&);
~String() ;
/...

3

This Stiring has value semantics. That is, after an assignsiers2, the two stringsl ands2 are

fully distinct and subsequent changes to the one have no effect on the other. The alternative would
be to giveString pointer semantics. That would be to let change®tafter s1=s2 also affect the

value ofsl For types with conventional arithmetic operations, such as complex, vector, matrix,
and string, | prefer value semantics. However, for the value semantics to be affor@itineg &
implemented as a handle to its representation and the representation is copied only when necessary:

String: : String() /| the empty string is the default value
{

rep= new Srep(0,") ;
}

String: : String( const String& x) // copy constructor
{

X. rep-> n++;
rep=x. rep;, / / share representation
}
String: :~ String()
{
if (- rep>n==0) delete rep;
}
String& String: : operator=( const String& x) / | copy assignment
{
X. rep-> n++; | | protects against “st = st”
if (- rep>n==0) delete rep;
rep=Xx. rep; | | share representation
return * this;
}

Pseudo-copy operations takiognst char* arguments are provided to allow string literals:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.



Section 11.12 A String Class 295

String: : String( const char* s)
{

rep= new Srep( strlen( s), s);

}
String& String: : operator=( const char* s)
if (rep>n==1) | | recycle Srep
rep-> assign( strlen( s), s);
else{ /| use new Srep
rep->n--;

rep= new Srep( strlen( s), s);

return * this;

}

The design of access operators for a string is a difficult topic because ideally access is by conven-
tional notation (that is, usifg ), maximally efficient, and range checked. Unfortunately, you can-

not have all of these properties simultaneously. My choice here has been to provide efficient
unchecked operations with a slightly inconvenient notation plus slightly less efficient checked oper-
ators with the conventional notation:

class Sring{
/...

void check(int i) const{ if (i<O|| rep->sz=i) throw Range() ; }

char read(int i) const{ return rep-> g i]; }
void write(int i, char c) { rep=rep-> get own_copy() ; rep>9il]=c¢; }

Cref operator[]( int i) { check(i); return Cref(* this, i); }
char operator[]( int i) const{ check(i); return rep> g i]; }

int size) const{ return rep->sz }
/...
3
The idea is to usg to get checked access for ordinary use, but to allow the user to optimize by
checking the range once for a set of accesses. For example:
int hash( const String& s)

{
int h=s. read( 0);
const int max = s. sizg) ;
for (int i =1; i<max; i++) h”= s read(i)>>1; // unchecked accessto s
return h;
}

Defining an operator, such fs, to be used for both reading and writing is difficult where it is not
acceptable simply to return a reference and let the user decide what to do with it. Here, that is not a
reasonable alternative because | have deffidag so that the representation is shared between
Strings that have been assigned, passed as value arguments, etc., until someone actually writes to a

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.



296  Operator Overloading Chapter 11

Siring. Then, and only then, is the representation copied. This technique is usuallycoplfed
on-write The actual copy is done I8fring: : Srep: : get_own_copy() .

To get these access functions inlined, their definitions must be placed so that the definition of
Srep is in scope. This implies that eith®rep is defined withinStiring or the access functions are
definedinline outsideSiring and afterStiring: : Srep (§11.14[2]).

To distinguish between a read and a wiseing: : operator[]() returns aCref when called
for a noneonst object. A Cref behaves like a char& except that it calls
String: : Srep: : get_own_copy() when written to:

class Sring:: Cref { | | reference to s]i]
friend class Sring;
String& s;
int i;
Cref( String& ss, int ii) : s(s9), i(ii) {}
public:
operator char() { return s read(i); } [ | vyield value
void operator=( char c¢) { s. write(i, c); } /| change value
h
For example:

void f( String s, const String&r)

{

int cl=91]; / / cl1=s.operator[](1).operator char()

s[1] ="¢’; [/ [ s.operator[](1).operator=(c’)

int c2=r[1]; / / c2=r.operator[](1)

r[1] ="d; [/ [ error: assignment to char, r.operator[J(1) = 'd’
}

Note that for a nomonst objects. operator[]( 1) isCref(s, 1) .
To complete clasString, | provide a set of useful functions:

class Sring {
/..

String& operator+=( const String&);
String& operator+=( const char*) ;

friend ostream& operator<<( ostream&, const String&);
friend istream& operator>>( istreams, String&);

friend bool operator==( const String& x, const char* s)
{ return strcmp( x. rep>s, s) ==0; }

friend bool operator==( const String& x, const Siring& y)
{ return strcmp( x. rep->s, y. rep>s) ==0; }

friend bool operator!=( const String& x, const char* s)
{ return strcmp(x. rep->s, s) != 0; }

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.



Section 11.12 A String Class 297

friend bool operator!=( const String& x, const Sfring& y)
{ return strcmp(x. rep->s, y.rep>5s) = 0; }
h
String operator+( const String&, const String&);
String operator+( const Siring&, const char®) ;

To save space, | have left the 1/0 and concatenation operations as exercises.

The main program simply exercises BHng operators a bit:
String f( String a, String b)

{
a[2] =" x;
char c=b[ 3J;
cout<<"in f " <<a<<’ " <<b<<’ " <<c<<'\n;
return b;
}
int main()
{
String x, y;
cout << " Please enter two stringsin”;
cin>>x>>y;
cout<<'"input: " << x<<’ ’ <<y<<\n;
String z=x;
y=1(xy);
if (x!= 2) cout<<"x corrupted \n";
x 0] =71,
if (x==2) cout << " write failed \n";
cout<<"exit: " <<x<<’ ' <«<y<<’’ <<z<< '\
}

This String lacks many features that you might consider important or even essential. For example,
it offers no operation of producing a C-string representation of its value (§11.14[10], Chapter 20).

11.13 Advicegclass.advice]

[1]
2]
3]
[4]
[5]
[6]

[7]

[8]
[9]

Define operators primarily to mimic conventional usage; §11.1.

For large operands, usenst reference argument types; 811.6.

For large results, consider optimizing the return; 811.6.

Prefer the default copy operations if appropriate for a class; §11.3.4.

Redefine or prohibit copying if the default is not appropriate for a type; §11.2.2.

Prefer member functions over nonmembers for operations that need access to the representa-
tion; §11.5.2.

Prefer nonmember functions over members for operations that do not need access to the repre-
sentation; §11.5.2.

Use namespaces to associate helper functions with “their” class; §11.2.4.

Use nonmember functions for symmetric operators; §11.3.2.

[10] Use() for subscripting multidimensional arrays; §11.9.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.



298  Operator Overloading Chapter 11

[11] Make constructors that take a single “size argumemxplicit; 811.7.1.

[12] For non-specialized uses, prefer the standtiag (Chapter 20) to the result of your own
exercises; §11.12.

[13] Be cautious about introducing implicit conversions; §11.4.

[14] Use member functions to express operators that require an Ivalue as its left-hand operand,
§11.3.5.

11.14 Exercisefover.exercises]

1. (@) In the following program, which conversions are used in each expression?

struct X {
int i;
X(int);
operator+( int);
h
struct Y {
int i;
Y(X);
operator+( X);
operator int() ;
I8
exten X operator*( X, Y);
extern int f( X);
X x=1,;
Y y=Xx
int i =2;
int main()
{
i +10; y + 10; y+10* vy;
x+y+i;, x*x+i;  f(7);
f(y); y+y 106 + y;

Modify the program so that it will run and print the values of each legal expression.

() Complete and test claString from §11.12.

3. () Define a clastNT that behaves exactly like @mt. Hint: DefinelNT: : operator int() .

4. (1) Define a clasRINT that behaves like aimt except that the only operations allowed are
(unary and binary); (unary and binary)¥, /, and% Hint: Do not defineRINT: : operator
int() .

5. (B) Define a clas&INT that behaves like RINT, except that it has at least 64 bits of preci-
sion.

6. (%) Define a class implementing arbitrary precision arithmetic. Test it by calculating the facto-
rial of 1000. Hint: You will need to manage storage in a way similar to what was done for class
String.

n

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.



Section 11.14 Exercises 299

7. () Define an external iterator for claStsing:

class Sring_iter {
/1 refer to string and string element

public:
String_iter( String& s) ; [ | iterator for s
charé& next() ; /| reference to next element

/1 more operations of your choice

Compare this in utility, programming style, and efficiency to having an internal iterator for
String (that is, a notion of a current element for 8#EHng and operations relating to that ele-
ment).

8. (L.5) Provide a substring operator for a string class by overlo@dingVhat other operations
would you like to be able to do on a string?

9. (IB) Design clas$tring so that the substring operator can be used on the left-hand side of an
assignment. First, write a version in which a string can be assigned to a substring of the same
length. Then, write a version in which the lengths may differ.

10. (R) Define an operation f@tring that produces a C-string representation of its value. Discuss
the pros and cons of having that operation as a conversion operator. Discuss alternatives for
allocating the memory for that C-string representation.

11. (R.5) Define and implement a simple regular expression pattern match facility foBiriags

12. (L.5) Modify the pattern match facility from §11.14[11] to work on the standard listidng.

Note that you cannot modify the definitionsifing.

13. () Write a program that has been rendered unreadable through use of operator overloading
and macros. An idea: Defireto mean and vice versa fdNTs. Then, use a macro to define
int to meanINT. Redefine popular functions using reference type arguments. Writing a few
misleading comments can also create great confusion.

14. (B) Swap the result of §11.14[13] with a friend. Without running it, figure out what your
friend’s program does. When you have completed this exercise, you'll know what to avoid.

15. () Define a typa&/ecA as a vector of foulloats. Defineoperator[] for VecAd. Define opera-
tors+,-,*,/,=,+=,-=,*= and/= for combinations of vectors and floating-point numbers.

16. ((B) Define a clasMat4 as a vector of fouvecds. Defineoperator[] to return avec4 for
Mat4. Define the usual matrix operations for this type. Define a function doing Gaussian elim-
ination for aMat4.

17. () Define a clas¥ector similar to Vec4 but with the size given as an argument to the con-
structorVector: : Vector( int) .

18. (B) Define a clasMatrix similar to Mat4 but with the dimensions given as arguments to the
constructoMatrix: : Matrix( int, int) .

19. (R) Complete clasBtr_to_T from 811.11 and test it. To be compld®;_to_T must have at
least the operators, ->, =, ++, and-- defined. Do not cause a run-time error until a wild
pointer is actually dereferenced.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.



300 Operator Overloading Chapter 11

20. () Given two structures:

struct S{ int x, y; };
struct T{ char* p; char* q; };

write a clas< that allows the use of andp from someSandT, much as ifk andp had been
members ofC.

21.([.5) Define a classindex to hold the index for an exponentiation function
mypow( double, Index) . Find a way to havg** | call mypow( 2, I) .

22. (2) Define a clastmaginary to represent imaginary numbers. Define cl@aemplexbased on
that. Implement the fundamental arithmetic operators.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.



	Return to Contents
	11.1 Introduction
	11.2 Operator Functions
	11.3 A Complex Number Type
	11.4 Conversion Operators
	11.5 Friends
	11.6 Large Objects
	11.7 Essential Operators
	11.8 Subscripting
	11.9 Function Call
	11.10 Dereferencing
	11.11 Increment and Decrement
	11.12 A String Class
	11.13 Advice
	11.14 Exercises

	buy now: 


