
_ __ _______________________________________

10
_ __ _______________________________________

Classes

Those types are not "abstract";
they are as real asint andfloat .

– Doug McIlroy

Concepts and classes— class members— access control— constructors— s st ta at ti ic c
members— default copy— c co on ns st t member functions— t th hi is s — s st tr ru uc ct ts — in-class func-
tion definition — concrete classes— member functions and helper functions— over-
loaded operators— use of concrete classes— destructors— default construction—
local variables— user-defined copy— n ne ew w andd de el le et te e — member objects— arrays—
static storage— temporary variables— unions— advice— exercises.

10.1 Introduction [class.intro]

The aim of the C++ class concept is to provide the programmer with a tool for creating new types
that can be used as conveniently as the built-in types. In addition, derived classes (Chapter 12) and
templates (Chapter 13) provide ways of organizing related classes that allow the programmer to
take advantage of their relationships.

A type is a concrete representation of a concept. For example, the C++ built-in type f fl lo oa at t with
its operations+, - , * , etc., provides a concrete approximation of the mathematical concept of a real
number. A class is a user-defined type. We design a new type to provide a definition of a concept
that has no direct counterpart among the built-in types. For example, we might provide a type
T Tr ru un nk k_ _l li in ne e in a program dealing with telephony, a typeE Ex xp pl lo os si io on n for a videogame, or a type
l li is st t<P Pa ar ra ag gr ra ap ph h> for a text-processing program. A program that provides types that closely match
the concepts of the application tends to be easier to understand and easier to modify than a program
that does not. A well-chosen set of user-defined types makes a program more concise. In addition,
it makes many sorts of code analysis feasible. In particular, it enables the compiler to detect illegal
uses of objects that would otherwise remain undetected until the program is thoroughly tested.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

http://store.awl.com/catalog/cepub_detail.mhtml?isbn=0-201-88954-4

224 Classes Chapter 10

The fundamental idea in defining a new type is to separate the incidental details of the imple-
mentation (e.g., the layout of the data used to store an object of the type) from the properties essen-
tial to the correct use of it (e.g., the complete list of functions that can access the data). Such a sep-
aration is best expressed by channeling all uses of the data structure and internal housekeeping rou-
tines through a specific interface.

This chapter focuses on relatively simple ‘‘concrete’’ user-defined types that logically don’t dif-
fer much from built-in types. Ideally, such types should not differ from built-in types in the way
they are used, only in the way they are created.

10.2 Classes[class.class]

A classis a user-defined type. This section introduces the basic facilities for defining a class, creat-
ing objects of a class, and manipulating such objects.

10.2.1 Member Functions [class.member]

Consider implementing the concept of a date using as st tr ru uc ct t to define the representation of aD Da at te e
and a set of functions for manipulating variables of this type:

s st tr ru uc ct t D Da at te e { / / representation
i in nt t d d, m m, y y;

};

v vo oi id d i in ni it t_ _d da at te e(D Da at te e& d d, i in nt t, i in nt t, i in nt t) ; / / initialize d
v vo oi id d a ad dd d_ _y ye ea ar r(D Da at te e& d d, i in nt t n n) ; / / add n years to d
v vo oi id d a ad dd d_ _m mo on nt th h(D Da at te e& d d, i in nt t n n) ; / / add n months to d
v vo oi id d a ad dd d_ _d da ay y(D Da at te e& d d, i in nt t n n) ; / / add n days to d

There is no explicit connection between the data type and these functions. Such a connection can
be established by declaring the functions as members:

s st tr ru uc ct t D Da at te e {
i in nt t d d, m m, y y;

v vo oi id d i in ni it t(i in nt t d dd d, i in nt t m mm m, i in nt t y yy y) ; / / initialize
v vo oi id d a ad dd d_ _y ye ea ar r(i in nt t n n) ; / / add n years
v vo oi id d a ad dd d_ _m mo on nt th h(i in nt t n n) ; / / add n months
v vo oi id d a ad dd d_ _d da ay y(i in nt t n n) ; / / add n days

};

Functions declared within a class definition (as st tr ru uc ct t is a kind of class; §10.2.8) are called member
functions and can be invoked only for a specific variable of the appropriate type using the standard
syntax for structure member access. For example:

D Da at te e m my y_ _b bi ir rt th hd da ay y;

v vo oi id d f f()
{

D Da at te e t to od da ay y;

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 10.2.1 Member Functions 225

t to od da ay y. i in ni it t(1 16 6, 1 10 0, 1 19 99 96 6) ;
m my y_ _b bi ir rt th hd da ay y. i in ni it t(3 30 0, 1 12 2, 1 19 95 50 0) ;

D Da at te e t to om mo or rr ro ow w = t to od da ay y;
t to om mo or rr ro ow w. a ad dd d_ _d da ay y(1 1) ;
/ / ...

}

Because different structures can have member functions with the same name, we must specify the
structure name when defining a member function:

v vo oi id d D Da at te e: : i in ni it t(i in nt t d dd d, i in nt t m mm m, i in nt t y yy y)
{

d d = d dd d;
m m = m mm m;
y y = y yy y;

}

In a member function, member names can be used without explicit reference to an object. In that
case, the name refers to that member of the object for which the function was invoked. For exam-
ple, whenD Da at te e: : i in ni it t() is invoked fort to od da ay y, m m=m mm m assigns tot to od da ay y. m m. On the other hand,
when D Da at te e: : i in ni it t() is invoked for m my y_ _b bi ir rt th hd da ay y, m m=m mm m assigns tom my y_ _b bi ir rt th hd da ay y. m m. A class
member function always ‘‘knows’’ for which object it was invoked.

The construct

c cl la as ss s X X { ... };

is called aclass definitionbecause it defines a new type. For historical reasons, a class definition is
often referred to as aclass declaration. Also, like declarations that are not definitions, a class defi-
nition can be replicated in different source files using#i in nc cl lu ud de e without violating the one-definition
rule (§9.2.3).

10.2.2 Access Control [class.access]

The declaration ofD Da at te e in the previous subsection provides a set of functions for manipulating a
D Da at te e. However, it does not specify that those functions should be the only ones to depend directly
on D Da at te e’s representation and the only ones to directly access objects of classD Da at te e. This restriction
can be expressed by using ac cl la as ss s instead of as st tr ru uc ct t:

c cl la as ss s D Da at te e {
i in nt t d d, m m, y y;

p pu ub bl li ic c:
v vo oi id d i in ni it t(i in nt t d dd d, i in nt t m mm m, i in nt t y yy y) ; / / initialize

v vo oi id d a ad dd d_ _y ye ea ar r(i in nt t n n) ; / / add n years
v vo oi id d a ad dd d_ _m mo on nt th h(i in nt t n n) ; / / add n months
v vo oi id d a ad dd d_ _d da ay y(i in nt t n n) ; / / add n days

};

Thep pu ub bl li ic c label separates the class body into two parts. The names in the first,private, part can be
used only by member functions. The second,public, part constitutes the public interface to objects

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

226 Classes Chapter 10

of the class. As st tr ru uc ct t is simply ac cl la as ss s whose members are public by default (§10.2.8); member
functions can be defined and used exactly as before. For example:

i in nl li in ne e v vo oi id d D Da at te e: : a ad dd d_ _y ye ea ar r(i in nt t n n)
{

y y += n n;
}

However, nonmember functions are barred from using private members. For example:

v vo oi id d t ti im me ew wa ar rp p(D Da at te e& d d)
{

d d. y y -= 2 20 00 0; / / error: Date::y is private
}

There are several benefits to be obtained from restricting access to a data structure to an explicitly
declared list of functions. For example, any error causing aD Da at te e to take on an illegal value (for
example, December 36, 1985) must be caused by code in a member function. This implies that the
first stage of debugging– localization– is completed before the program is even run. This is a
special case of the general observation that any change to the behavior of the typeD Da at te e can and
must be effected by changes to its members. In particular, if we change the representation of a
class, we need only change the member functions to take advantage of the new representation.
User code directly depends only on the public interface and need not be rewritten (although it may
need to be recompiled). Another advantage is that a potential user need examine only the definition
of the member functions in order to learn to use a class.

The protection of private data relies on restriction of the use of the class member names. It can
therefore be circumvented by address manipulation and explicit type conversion. But this, of
course, is cheating. C++ protects against accident rather than deliberate circumvention (fraud).
Only hardware can protect against malicious use of a general-purpose language, and even that is
hard to do in realistic systems.

The i in ni it t() function was added partially because it is generally useful to have a function that
sets the value of an object and partly because making the data private forces us to provide it.

10.2.3 Constructors [class.ctor]

The use of functions such asi in ni it t() to provide initialization for class objects is inelegant and error-
prone. Because it is nowhere stated that an object must be initialized, a programmer can forget to
do so– or do so twice (often with equally disastrous results). A better approach is to allow the pro-
grammer to declare a function with the explicit purpose of initializing objects. Because such a
function constructs values of a given type, it is called aconstructor. A constructor is recognized by
having the same name as the class itself. For example:

c cl la as ss s D Da at te e {
/ / ...
D Da at te e(i in nt t, i in nt t, i in nt t) ; / / constructor

};

When a class has a constructor, all objects of that class will be initialized. If the constructor
requires arguments, these arguments must be supplied:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 10.2.3 Constructors 227

D Da at te e t to od da ay y = D Da at te e(2 23 3, 6 6, 1 19 98 83 3) ;
D Da at te e x xm ma as s(2 25 5, 1 12 2, 1 19 99 90 0) ; / / abbreviated form
D Da at te e m my y_ _b bi ir rt th hd da ay y; / / error: initializer missing
D Da at te e r re el le ea as se e1 1_ _0 0(1 10 0, 1 12 2) ; / / error: 3rd argument missing

It is often nice to provide several ways of initializing a class object. This can be done by providing
several constructors. For example:

c cl la as ss s D Da at te e {
i in nt t d d, m m, y y;

p pu ub bl li ic c:
/ / ...
D Da at te e(i in nt t, i in nt t, i in nt t) ; / / day, month, year
D Da at te e(i in nt t, i in nt t) ; / / day, month, today’s year
D Da at te e(i in nt t) ; / / day, today’s month and year
D Da at te e() ; / / default Date: today
D Da at te e(c co on ns st t c ch ha ar r*) ; / / date in string representation

};

Constructors obey the same overloading rules as do other functions (§7.4). As long as the construc-
tors differ sufficiently in their argument types, the compiler can select the correct one for each use:

D Da at te e t to od da ay y(4 4) ;
D Da at te e j ju ul ly y4 4(" J Ju ul ly y 4 4, 1 19 98 83 3") ;
D Da at te e g gu uy y(" 5 5 N No ov v") ;
D Da at te e n no ow w; / / default initialized as today

The proliferation of constructors in theD Da at te e example is typical. When designing a class, a pro-
grammer is always tempted to add features just because somebody might want them. It takes more
thought to carefully decide what features are really needed and to include only those. However,
that extra thought typically leads to smaller and more comprehensible programs. One way of
reducing the number of related functions is to use default arguments (§7.5). In theD Da at te e, each argu-
ment can be given a default value interpreted as ‘‘pick the default:t to od da ay y.’’

c cl la as ss s D Da at te e {
i in nt t d d, m m, y y;

p pu ub bl li ic c:
D Da at te e(i in nt t d dd d =0 0, i in nt t m mm m =0 0, i in nt t y yy y =0 0) ;
/ / ...

};

D Da at te e: : D Da at te e(i in nt t d dd d, i in nt t m mm m, i in nt t y yy y)
{

d d = d dd d ? d dd d : t to od da ay y. d d;
m m = m mm m ? m mm m : t to od da ay y. m m;
y y = y yy y ? y yy y : t to od da ay y. y y;

/ / check that the Date is valid
}

When an argument value is used to indicate ‘‘pick the default,’’ the value chosen must be outside
the set of possible values for the argument. Ford da ay y andm mo on nt th h, this is clearly so, but fory ye ea ar r, zero

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

228 Classes Chapter 10

may not be an obvious choice. Fortunately, there is no year zero on the European calendar; 1AD
(y ye ea ar r==1 1) comes immediately after 1BC (y ye ea ar r==- 1 1).

10.2.4 Static Members [class.static]

The convenience of a default value forD Da at te es was bought at the cost of a significant hidden prob-
lem. OurD Da at te e class became dependent on the global variablet to od da ay y. ThisD Da at te e class can be used
only in a context in whicht to od da ay y is defined and correctly used by every piece of code. This is the
kind of constraint that causes a class to be useless outside the context in which it was first written.
Users get too many unpleasant surprises trying to use such context-dependent classes, and mainte-
nance becomes messy. Maybe ‘‘just one little global variable’’ isn’t too unmanageable, but that
style leads to code that is useless except to its original programmer. It should be avoided.

Fortunately, we can get the convenience without the encumbrance of a publicly accessible glo-
bal variable. A variable that is part of a class, yet is not part of an object of that class, is called a
s st ta at ti ic c member. There is exactly one copy of as st ta at ti ic c member instead of one copy per object, as for
ordinary non-s st ta at ti ic c members. Similarly, a function that needs access to members of a class, yet
doesn’t need to be invoked for a particular object, is called as st ta at ti ic c member function.

Here is a redesign that preserves the semantics of default constructor values forD Da at te e without
the problems stemming from reliance on a global:

c cl la as ss s D Da at te e {
i in nt t d d, m m, y y;
s st ta at ti ic c D Da at te e d de ef fa au ul lt t_ _d da at te e;

p pu ub bl li ic c:
D Da at te e(i in nt t d dd d =0 0, i in nt t m mm m =0 0, i in nt t y yy y =0 0) ;
/ / ...
s st ta at ti ic c v vo oi id d s se et t_ _d de ef fa au ul lt t(i in nt t, i in nt t, i in nt t) ;

};

We can now define theD Da at te econstructor like this:

D Da at te e: : D Da at te e(i in nt t d dd d, i in nt t m mm m, i in nt t y yy y)
{

d d = d dd d ? d dd d : d de ef fa au ul lt t_ _d da at te e. d d;
m m = m mm m ? m mm m : d de ef fa au ul lt t_ _d da at te e. m m;
y y = y yy y ? y yy y : d de ef fa au ul lt t_ _d da at te e. y y;

/ / check that the Date is valid
}

We can change the default date when appropriate. A static member can be referred to like any
other member. In addition, a static member can be referred to without mentioning an object.
Instead, its name is qualified by the name of its class. For example:

v vo oi id d f f()
{

D Da at te e: : s se et t_ _d de ef fa au ul lt t(4 4, 5 5, 1 19 94 45 5) ;
}

Static members– both function and data members– must be defined somewhere. For example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 10.2.4 Static Members 229

D Da at te e D Da at te e: : d de ef fa au ul lt t_ _d da at te e(1 16 6, 1 12 2, 1 17 77 70 0) ;

v vo oi id d D Da at te e: : s se et t_ _d de ef fa au ul lt t(i in nt t d d, i in nt t m m, i in nt t y y)
{

D Da at te e: : d de ef fa au ul lt t_ _d da at te e = D Da at te e(d d, m m, y y) ;
}

Now the default value is Beethoven’s birth date– until someone decides otherwise.
Note thatD Da at te e() serves as a notation for the value ofD Da at te e: : d de ef fa au ul lt t_ _d da at te e. For example:

D Da at te e c co op py y_ _o of f_ _d de ef fa au ul lt t_ _d da at te e = D Da at te e() ;

Consequently, we don’t need a separate function for reading the default date.

10.2.5 Copying Class Objects [class.default.copy]

By default, class objects can be copied. In particular, a class object can be initialized with a copy
of another object of the same class. This can be done even where constructors have been declared.
For example:

D Da at te e d d = t to od da ay y; / / initialization by copy

By default, the copy of a class object is a copy of each member. If that default is not the behavior
wanted for a classX X, a more appropriate behavior can be provided by defining a copy constructor,
X X: : X X(c co on ns st t X X&) . This is discussed further in §10.4.4.1.

Similarly, class objects can by default be copied by assignment. For example:

v vo oi id d f f(D Da at te e& d d)
{

d d = t to od da ay y;
}

Again, the default semantics is memberwise copy. If that is not the right choice for a classX X, the
user can define an appropriate assignment operator (§10.4.4.1).

10.2.6 Constant Member Functions [class.constmem]

The D Da at te e defined so far provides member functions for giving aD Da at te e a value and changing it.
Unfortunately, we didn’t provide a way of examining the value of aD Da at te e. This problem can easily
be remedied by adding functions for reading the day, month, and year:

c cl la as ss s D Da at te e {
i in nt t d d, m m, y y;

p pu ub bl li ic c:
i in nt t d da ay y() c co on ns st t { r re et tu ur rn n d d; }
i in nt t m mo on nt th h() c co on ns st t { r re et tu ur rn n m m; }
i in nt t y ye ea ar r() c co on ns st t;
/ / ...

};

Note thec co on ns st t after the (empty) argument list in the function declarations. It indicates that these
functions do not modify the state of aD Da at te e.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

230 Classes Chapter 10

Naturally, the compiler will catch accidental attempts to violate this promise. For example:

i in nl li in ne e i in nt t D Da at te e: : y ye ea ar r() c co on ns st t
{

r re et tu ur rn n y y++; / / error: attempt to change member value in const function
}

When ac co on ns st t member function is defined outside its class, thec co on ns st t suffix is required:

i in nl li in ne e i in nt t D Da at te e: : y ye ea ar r() c co on ns st t / / correct
{

r re et tu ur rn n y y;
}

i in nl li in ne e i in nt t D Da at te e: : y ye ea ar r() / / error: const missing in member function type
{

r re et tu ur rn n y y;
}

In other words, thec co on ns st t is part of the type ofD Da at te e: : d da ay y() andD Da at te e: : y ye ea ar r() .
A c co on ns st t member function can be invoked for bothc co on ns st t and non-c co on ns st t objects, whereas a non-

c co on ns st t member function can be invoked only for non-c co on ns st t objects. For example:

v vo oi id d f f(D Da at te e& d d, c co on ns st t D Da at te e& c cd d)
{

i in nt t i i = d d. y ye ea ar r() ; / / ok
d d. a ad dd d_ _y ye ea ar r(1 1) ; / / ok

i in nt t j j = c cd d. y ye ea ar r() ; / / ok
c cd d. a ad dd d_ _y ye ea ar r(1 1) ; / / error: cannot change value of const cd

}

10.2.7 Self-Reference [class.this]

The state update functionsa ad dd d_ _y ye ea ar r() , a ad dd d_ _m mo on nt th h() , anda ad dd d_ _d da ay y() were defined not to return
values. For such a set of related update functions, it is often useful to return a reference to the
updated object so that the operations can be chained. For example, we would like to write

v vo oi id d f f(D Da at te e& d d)
{

/ / ...
d d. a ad dd d_ _d da ay y(1 1). a ad dd d_ _m mo on nt th h(1 1). a ad dd d_ _y ye ea ar r(1 1) ;
/ / ...

}

to add a day, a month, and a year tod d. To do this, each function must be declared to return a refer-
ence to aD Da at te e:

c cl la as ss s D Da at te e {
/ / ...

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 10.2.7 Self-Reference 231

D Da at te e& a ad dd d_ _y ye ea ar r(i in nt t n n) ; / / add n years
D Da at te e& a ad dd d_ _m mo on nt th h(i in nt t n n) ; / / add n months
D Da at te e& a ad dd d_ _d da ay y(i in nt t n n) ; / / add n days

};

Each (nonstatic) member function knows what object it was invoked for and can explictly refer to
it. For example:

D Da at te e& D Da at te e: : a ad dd d_ _y ye ea ar r(i in nt t n n)
{

i if f (d d==2 29 9 && m m==2 2 && ! l le ea ap py ye ea ar r(y y+n n)) { / / beware of February 29
d d = 1 1;
m m = 3 3;

}
y y += n n;
r re et tu ur rn n * t th hi is s;

}

The expression* t th hi is s refers to the object for which a member function is invoked. It is equivalent
to Simula’sT TH HI IS Sand Smalltalk’ss se el lf f.

In a nonstatic member function, the keywordt th hi is s is a pointer to the object for which the func-
tion was invoked. In a non-c co on ns st t member function of classX X, the type oft th hi is s is X X * c co on ns st t. The
c co on ns st t makes it clear that the user is not supposed to change the value oft th hi is s. In ac co on ns st t member
function of classX X, the type oft th hi is s is c co on ns st t X X * c co on ns st t to prevent modification of the object itself
(see also §5.4.1).

Most uses oft th hi is s are implicit. In particular, every reference to a nonstatic member from within
a class relies on an implicit use oft th hi is s to get the member of the appropriate object. For example,
thea ad dd d_ _y ye ea ar r function could equivalently, but tediously, have been defined like this:

D Da at te e& D Da at te e: : a ad dd d_ _y ye ea ar r(i in nt t n n)
{

i if f (t th hi is s-> d d==2 29 9 && t th hi is s-> m m==2 2 && ! l le ea ap py ye ea ar r(t th hi is s-> y y+n n)) {
t th hi is s-> d d = 1 1;
t th hi is s-> m m = 3 3;

}
t th hi is s-> y y += n n;
r re et tu ur rn n * t th hi is s;

}

One common explicit use oft th hi is s is in linked-list manipulation (e.g., §24.3.7.4).

10.2.7.1 Physical and Logical Constness [class.const]

Occasionally, a member function is logicallyc co on ns st t, but it still needs to change the value of a mem-
ber. To a user, the function appears not to change the state of its object. However, some detail that
the user cannot directly observe is updated. This is often calledlogical constness. For example,
theD Da at te e class might have a function returning a string representation that a user could use for out-
put. Constructing this representation could be a relatively expensive operation. Therefore, it would
make sense to keep a copy so that repeated requests would simply return the copy, unless the

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

232 Classes Chapter 10

D Da at te e’s value had been changed. Caching values like that is more common for more complicated
data structures, but let’s see how it can be achieved for aD Da at te e:

c cl la as ss s D Da at te e {
b bo oo ol l c ca ac ch he e_ _v va al li id d;
s st tr ri in ng g c ca ac ch he e;
v vo oi id d c co om mp pu ut te e_ _c ca ac ch he e_ _v va al lu ue e() ; / / fill cache
/ / ...

p pu ub bl li ic c:
/ / ...
s st tr ri in ng g s st tr ri in ng g_ _r re ep p() c co on ns st t; / / string representation

};

From a user’s point of view,s st tr ri in ng g_ _r re ep p doesn’t change the state of itsD Da at te e, so it clearly should be
a c co on ns st t member function. On the other hand, the cache needs to be filled before it can be used.
This can be achieved through brute force:

s st tr ri in ng g D Da at te e: : s st tr ri in ng g_ _r re ep p() c co on ns st t
{

i if f (c ca ac ch he e_ _v va al li id d == f fa al ls se e) {
D Da at te e* t th h = c co on ns st t_ _c ca as st t<D Da at te e*>(t th hi is s) ; / / cast away const
t th h-> c co om mp pu ut te e_ _c ca ac ch he e_ _v va al lu ue e() ;
t th h-> c ca ac ch he e_ _v va al li id d = t tr ru ue e;

}
r re et tu ur rn n c ca ac ch he e;

}

That is, thec co on ns st t_ _c ca as st t operator (§15.4.2.1) is used to obtain a pointer of typeD Da at te e* to t th hi is s. This
is hardly elegant, and it is not guaranteed to work when applied to an object that was originally
declared as ac co on ns st t. For example:

D Da at te e d d1 1;
c co on ns st t D Da at te e d d2 2;
s st tr ri in ng g s s1 1 = d d1 1. s st tr ri in ng g_ _r re ep p() ;
s st tr ri in ng g s s2 2 = d d2 2. s st tr ri in ng g_ _r re ep p() ; / / undefined behavior

In the case ofd d1 1, s st tr ri in ng g_ _r re ep p() simply casts back tod d1 1’s original type so that the call will work.
However,d d2 2 was defined as ac co on ns st t and the implementation could have applied some form of
memory protection to ensure that its value wasn’t corrupted. Consequently,d d2 2. s st tr ri in ng g_ _r re ep p() is
not guaranteed to give a single predictable result on all implementations.

10.2.7.2 Mutable [class.mutable]

The explicit type conversion ‘‘casting awayc co on ns st t’’ and its consequent implementation-dependent
behavior can be avoided by declaring the data involved in the cache management to bem mu ut ta ab bl le e:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 10.2.7.2 Mutable 233

c cl la as ss s D Da at te e {
m mu ut ta ab bl le e b bo oo ol l c ca ac ch he e_ _v va al li id d;
m mu ut ta ab bl le e s st tr ri in ng g c ca ac ch he e;
v vo oi id d c co om mp pu ut te e_ _c ca ac ch he e_ _v va al lu ue e() c co on ns st t; / / fill (mutable) cache
/ / ...

p pu ub bl li ic c:
/ / ...
s st tr ri in ng g s st tr ri in ng g_ _r re ep p() c co on ns st t; / / string representation

};

The storage specifierm mu ut ta ab bl le e specifies that a member should be stored in a way that allows updat-
ing – even when it is a member of ac co on ns st t object. In other words,m mu ut ta ab bl le e means ‘‘can never be
c co on ns st t.’’ This can be used to simplify the definition ofs st tr ri in ng g_ _r re ep p() :

s st tr ri in ng g D Da at te e: : s st tr ri in ng g_ _r re ep p() c co on ns st t
{

i if f (! c ca ac ch he e_ _v va al li id d) {
c co om mp pu ut te e_ _c ca ac ch he e_ _v va al lu ue e() ;
c ca ac ch he e_ _v va al li id d = t tr ru ue e;

}
r re et tu ur rn n c ca ac ch he e;

}

and makes reasonable uses ofs st tr ri in ng g_ _r re ep p() valid. For example:

D Da at te e d d3 3;
c co on ns st t D Da at te e d d4 4;
s st tr ri in ng g s s3 3 = d d3 3. s st tr ri in ng g_ _r re ep p() ;
s st tr ri in ng g s s4 4 = d d4 4. s st tr ri in ng g_ _r re ep p() ; / / ok!

Declaring membersm mu ut ta ab bl le e is most appropriate when (only) part of a representation is allowed to
change. If most of an object changes while the object remains logicallyc co on ns st t, it is often better to
place the changing data in a separate object and access it indirectly. If that technique is used, the
string-with-cache example becomes:

s st tr ru uc ct t c ca ac ch he e {
b bo oo ol l v va al li id d;
s st tr ri in ng g r re ep p;

};

c cl la as ss s D Da at te e {
c ca ac ch he e* c c; / / initialize in constructor (§10.4.6)
v vo oi id d c co om mp pu ut te e_ _c ca ac ch he e_ _v va al lu ue e() c co on ns st t; / / fill what cache refers to
/ / ...

p pu ub bl li ic c:
/ / ...
s st tr ri in ng g s st tr ri in ng g_ _r re ep p() c co on ns st t; / / string representation

};

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

234 Classes Chapter 10

s st tr ri in ng g D Da at te e: : s st tr ri in ng g_ _r re ep p() c co on ns st t
{

i if f (! c c-> v va al li id d) {
c co om mp pu ut te e_ _c ca ac ch he e_ _v va al lu ue e() ;
c c-> v va al li id d = t tr ru ue e;

}
r re et tu ur rn n c c-> r re ep p;

}

The programming techniques that support a cache generalize to various forms of lazy evaluation.

10.2.8 Structures and Classes [class.struct]

By definition, as st tr ru uc ct t is a class in which members are by default public; that is,

s st tr ru uc ct t s s { ...

is simply shorthand for

c cl la as ss s s s { p pu ub bl li ic c: ...

The access specifierp pr ri iv va at te e: can be used to say that the members following are private, just as
p pu ub bl li ic c: says that the members following are public. Except for the different names, the following
declarations are equivalent:

c cl la as ss s D Da at te e1 1 {
i in nt t d d, m m, y y;

p pu ub bl li ic c:
D Da at te e1 1(i in nt t d dd d, i in nt t m mm m, i in nt t y yy y) ;

v vo oi id d a ad dd d_ _y ye ea ar r(i in nt t n n) ; / / add n years
};

s st tr ru uc ct t D Da at te e2 2 {
p pr ri iv va at te e:

i in nt t d d, m m, y y;
p pu ub bl li ic c:

D Da at te e2 2(i in nt t d dd d, i in nt t m mm m, i in nt t y yy y) ;

v vo oi id d a ad dd d_ _y ye ea ar r(i in nt t n n) ; / / add n years
};

Which style you use depends on circumstances and taste. I usually prefer to uses st tr ru uc ct t for classes
that have all data public. I think of such classes as ‘‘not quite proper types, just data structures.’’
Constructors and access functions can be quite useful even for such structures, but as a shorthand
rather than guarantors of properties of the type (invariants, see §24.3.7.1).

It is not a requirement to declare data first in a class. In fact, it often makes sense to place data
members last to emphasize the functions providing the public user interface. For example:

c cl la as ss s D Da at te e3 3 {
p pu ub bl li ic c:

D Da at te e3 3(i in nt t d dd d, i in nt t m mm m, i in nt t y yy y) ;

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 10.2.8 Structures and Classes 235

v vo oi id d a ad dd d_ _y ye ea ar r(i in nt t n n) ; / / add n years
p pr ri iv va at te e:

i in nt t d d, m m, y y;
};

In real code, where both the public interface and the implementation details typically are more
extensive than in tutorial examples, I usually prefer the style used forD Da at te e3 3.

Access specifiers can be used many times in a single class declaration. For example:

c cl la as ss s D Da at te e4 4 {
p pu ub bl li ic c:

D Da at te e4 4(i in nt t d dd d, i in nt t m mm m, i in nt t y yy y) ;
p pr ri iv va at te e:

i in nt t d d, m m, y y;
p pu ub bl li ic c:

v vo oi id d a ad dd d_ _y ye ea ar r(i in nt t n n) ; / / add n years
};

Having more than one public section, as inD Da at te e4 4, tends to be messy. So does having more than
one private section. However, allowing many access specifiers in a class is useful for machine-
generated code.

10.2.9 In-Class Function Definitions [class.inline]

A member function defined within the class definition– rather than simply declared there– is
taken to be an inline member function. That is, in-class definition of member functions is for small,
frequently-used functions. Like the class definition it is part of, a member function defined in-class
can be replicated in several translation units using#i in nc cl lu ud de e. Like the class itself, its meaning must
be the same wherever it is used (§9.2.3).

The style of placing the definition of data members last in a class can lead to a minor problem
with public inline functions that refer to the representation. Consider:

c cl la as ss s D Da at te e { / / potentially confusing
p pu ub bl li ic c:

i in nt t d da ay y() c co on ns st t { r re et tu ur rn n d d; } / / return Date::d
/ / ...

p pr ri iv va at te e:
i in nt t d d, m m, y y;

};

This is perfectly good C++ code because a member function declared within a class can refer to
every member of the class as if the class were completely defined before the member function bod-
ies were considered. However, this can confuse human readers.

Consequently, I usually either place the data first or define the inline member functions after the
class itself. For example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

236 Classes Chapter 10

c cl la as ss s D Da at te e {
p pu ub bl li ic c:

i in nt t d da ay y() c co on ns st t;
/ / ...

p pr ri iv va at te e:
i in nt t d d, m m, y y;

};

i in nl li in ne e i in nt t D Da at te e: : d da ay y() c co on ns st t { r re et tu ur rn n d d; }

10.3 Efficient User-Defined Types[class.concrete]

The previous section discussed bits and pieces of the design of aD Da at te e class in the context of intro-
ducing the basic language features for defining classes. Here, I reverse the emphasis and discuss
the design of a simple and efficientD Da at te e class and show how the language features support this
design.

Small, heavily-used abstractions are common in many applications. Examples are Latin charac-
ters, Chinese characters, integers, floating-point numbers, complex numbers, points, pointers, coor-
dinates, transforms, (pointer,offset) pairs, dates, times, ranges, links, associations, nodes,
(value,unit) pairs, disk locations, source code locations,B BC CD D characters, currencies, lines, rectan-
gles, scaled fixed-point numbers, numbers with fractions, character strings, vectors, and arrays.
Every application uses several of these. Often, a few of these simple concrete types are used heav-
ily. A typical application uses a few directly and many more indirectly from libraries.

C++ and other programming languages directly support a few of these abstractions. However,
most are not, and cannot be, supported directly because there are too many of them. Furthermore,
the designer of a general-purpose programming language cannot foresee the detailed needs of every
application. Consequently, mechanisms must be provided for the user to define small concrete
types. Such types are called concrete types or concrete classes to distinguish them from abstract
classes (§12.3) and classes in class hierarchies (§12.2.4, §12.4).

It was an explicit aim of C++ to support the definition and efficient use of such user-defined
data types very well. They are a foundation of elegant programming. As usual, the simple and
mundane is statistically far more significant than the complicated and sophisticated.

In this light, let us build a better date class:

c cl la as ss s D Da at te e {
p pu ub bl li ic c: / / public interface:

e en nu um m M Mo on nt th h { j ja an n=1 1, f fe eb b, m ma ar r, a ap pr r, m ma ay y, j ju un n, j ju ul l, a au ug g, s se ep p, o oc ct t, n no ov v, d de ec c };

c cl la as ss s B Ba ad d_ _d da at te e { }; / / exception class

D Da at te e(i in nt t d dd d =0 0, M Mo on nt th h m mm m =M Mo on nt th h(0 0) , i in nt t y yy y =0 0) ; / / 0 means ‘‘pick a default’’

/ / functions for examining the Date:
i in nt t d da ay y() c co on ns st t;
M Mo on nt th h m mo on nt th h() c co on ns st t;
i in nt t y ye ea ar r() c co on ns st t;

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 10.3 Efficient User-Defined Types 237

s st tr ri in ng g s st tr ri in ng g_ _r re ep p() c co on ns st t; / / string representation
v vo oi id d c ch ha ar r_ _r re ep p(c ch ha ar r s s[]) c co on ns st t; / / C-style string representation

s st ta at ti ic c v vo oi id d s se et t_ _d de ef fa au ul lt t(i in nt t, M Mo on nt th h, i in nt t) ;

/ / functions for changing the Date:
D Da at te e& a ad dd d_ _y ye ea ar r(i in nt t n n) ; / / add n years
D Da at te e& a ad dd d_ _m mo on nt th h(i in nt t n n) ; / / add n months
D Da at te e& a ad dd d_ _d da ay y(i in nt t n n) ; / / add n days

p pr ri iv va at te e:
i in nt t d d, m m, y y; / / representation
s st ta at ti ic c D Da at te e d de ef fa au ul lt t_ _d da at te e;

};

This set of operations is fairly typical for a user-defined type:
[1] A constructor specifying how objects/variables of the type are to be initialized.
[2] A set of functions allowing a user to examine aD Da at te e. These functions are markedc co on ns st t to

indicate that they don’t modify the state of the object/variable for which they are called.
[3] A set of functions allowing the user to manipulateD Da at te es without actually having to know

the details of the representation or fiddle with the intricacies of the semantics.
[4] A set of implicitly defined operations to allowD Da at te es to be freely copied.
[5] A class,B Ba ad d_ _d da at te e, to be used for reporting errors as exceptions.

I defined aM Mo on nt th h type to cope with the problem of remembering, for example, whether the 7th of
June is writtenD Da at te e(6 6, 7 7) (American style) orD Da at te e(7 7, 6 6) (European style). I also added a
mechanism for dealing with default arguments.

I considered introducing separate typesD Da ay y and Y Ye ea ar r to cope with possible confusion of
D Da at te e(1 19 99 95 5, j ju ul l, 2 27 7) andD Da at te e(2 27 7, j ju ul l, 1 19 99 95 5) . However, these types would not be as useful as
theM Mo on nt th h type. Almost all such errors are caught at run-time anyway– the 26th of July year 27 is
not a common date in my work. How to deal with historical dates before year 1800 or so is a tricky
issue best left to expert historians. Furthermore, the day of the month can’t be properly checked in
isolation from its month and year. See §11.7.1 for a way of defining a convenientY Ye ea ar r type.

The default date must be defined as a validD Da at te esomewhere. For example:

D Da at te e D Da at te e: : d de ef fa au ul lt t_ _d da at te e(2 22 2, j ja an n, 1 19 90 01 1) ;

I omitted the cache technique from §10.2.7.1 as unnecessary for a type this simple. If needed, it
can be added as an implementation detail without affecting the user interface.

Here is a small– and contrived– example of howD Da at te es can be used:

v vo oi id d f f(D Da at te e& d d)
{

D Da at te e l lv vb b_ _d da ay y = D Da at te e(1 16 6, D Da at te e: : d de ec c, d d. y ye ea ar r()) ;

i if f (d d. d da ay y()== 2 29 9 && d d. m mo on nt th h()== D Da at te e: : f fe eb b) {
/ / ...

}

i if f (m mi id dn ni ig gh ht t()) d d. a ad dd d_ _d da ay y(1 1) ;

c co ou ut t << " d da ay y a af ft te er r:" << d d+1 1 << ´ \ \n n´;
}

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

238 Classes Chapter 10

This assumes that the output operator<< and the addition operator+ have been declared forD Da at te es.
I do that in §10.3.3.

Note theD Da at te e: : f fe eb b notation. The functionf f() is not a member ofD Da at te e, so it must specify that
it is referring toD Da at te e’s f fe eb b and not to some other entity.

Why is it worthwhile to define a specific type for something as simple as a date? After all, we
could define a structure:

s st tr ru uc ct t D Da at te e {
i in nt t d da ay y, m mo on nt th h, y ye ea ar r;

};

and let programmers decide what to do with it. If we did that, though, every user would either have
to manipulate the components ofD Da at te es directly or provide separate functions for doing so. In
effect, the notion of a date would be scattered throughout the system, which would make it hard to
understand, document, or change. Inevitably, providing a concept as only a simple structure causes
extra work for every user of the structure.

Also, even though theD Da at te e type seems simple, it takes some thought to get right. For example,
incrementing aD Da at te e must deal with leap years, with the fact that months are of different lengths,
and so on (note: §10.6[1]). Also, the day-month-and-year representation is rather poor for many
applications. If we decided to change it, we would need to modify only a designated set of func-
tions. For example, to represent aD Da at te e as the number of days before or after January 1, 1970, we
would need to change onlyD Da at te e’s member functions (§10.6[2]).

10.3.1 Member Functions [class.memfct]

Naturally, an implementation for each member function must be provided somewhere. For exam-
ple, here is the definition ofD Da at te e’s constructor:

D Da at te e: : D Da at te e(i in nt t d dd d, M Mo on nt th h m mm m, i in nt t y yy y)
{

i if f (y yy y == 0 0) y yy y = d de ef fa au ul lt t_ _d da at te e. y ye ea ar r() ;
i if f (m mm m == 0 0) m mm m = d de ef fa au ul lt t_ _d da at te e. m mo on nt th h() ;
i if f (d dd d == 0 0) d dd d = d de ef fa au ul lt t_ _d da at te e. d da ay y() ;

i in nt t m ma ax x;

s sw wi it tc ch h (m mm m) {
c ca as se e f fe eb b:

m ma ax x = 2 28 8+l le ea ap py ye ea ar r(y yy y) ;
b br re ea ak k;

c ca as se e a ap pr r: c ca as se e j ju un n: c ca as se e s se ep p: c ca as se e n no ov v:
m ma ax x = 3 30 0;
b br re ea ak k;

c ca as se e j ja an n: c ca as se e m ma ar r: c ca as se e m ma ay y: c ca as se e j ju ul l: c ca as se e a au ug g: c ca as se e o oc ct t: c ca as se e d de ec c:
m ma ax x = 3 31 1;
b br re ea ak k;

d de ef fa au ul lt t:
t th hr ro ow w B Ba ad d_ _d da at te e() ; / / someone cheated

}

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 10.3.1 Member Functions 239

i if f (d dd d<1 1 || m ma ax x<d dd d) t th hr ro ow w B Ba ad d_ _d da at te e() ;

y y = y yy y;
m m = m mm m;
d d = d dd d;

}

The constructor checks that the data supplied denotes a validD Da at te e. If not, say for
D Da at te e(3 30 0, D Da at te e: : f fe eb b, 1 19 99 94 4) , it throws an exception (§8.3, Chapter 14), which indicates that
something went wrong in a way that cannot be ignored. If the data supplied is acceptable, the obvi-
ous initialization is done. Initialization is a relatively complicated operation because it involves
data validation. This is fairly typical. On the other hand, once aD Da at te e has been created, it can be
used and copied without further checking. In other words, the constructor establishes the invariant
for the class (in this case, that it denotes a valid date). Other member functions can rely on that
invariant and must maintain it. This design technique can simplify code immensely (see §24.3.7.1).

I’m using the valueM Mo on nt th h(0 0) – which doesn’t represent a month– to represent ‘‘pick the
default month.’’ I could have defined an enumerator inM Mo on nt th h specifically to represent that. But I
decided that it was better to use an obviously anomalous value to represent ‘‘pick the default
month’’ rather than give the appearance that there were 13 months in a year. Note that0 0 can be
used because it is within the range guaranteed for the enumerationM Mo on nt th h (§4.8).

I considered factoring out the data validation in a separate functioni is s_ _d da at te e() . However, I
found the resulting user code more complicated and less robust than code relying on catching the
exception. For example, assuming that>> is defined forD Da at te e:

v vo oi id d f fi il ll l(v ve ec ct to or r<D Da at te e>& a aa a)
{

w wh hi il le e (c ci in n) {
D Da at te e d d;
t tr ry y {

c ci in n >> d d;
}

c ca at tc ch h (D Da at te e: : B Ba ad d_ _d da at te e) {
/ / my error handling
c co on nt ti in nu ue e;

}
a aa a. p pu us sh h_ _b ba ac ck k(d d) ; / / see §3.7.3

}
}

As is common for such simple concrete types, the definitions of member functions vary between
the trivial and the not-too-complicated. For example:

i in nl li in ne e i in nt t D Da at te e: : d da ay y() c co on ns st t
{

r re et tu ur rn n d d;
}

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

240 Classes Chapter 10

D Da at te e& D Da at te e: : a ad dd d_ _m mo on nt th h(i in nt t n n)
{

i if f (n n==0 0) r re et tu ur rn n * t th hi is s;

i if f (n n>0 0) {
i in nt t d de el lt ta a_ _y y = n n/ 1 12 2;
i in nt t m mm m = m m+n n%1 12 2;
i if f (1 12 2 < m mm m) { / / note: int(dec)==12

d de el lt ta a_ _y y++;
m mm m -= 1 12 2;

}

/ / handle the cases where Month(mm) doesn’t have day d

y y += d de el lt ta a_ _y y;
m m = M Mo on nt th h(m mm m) ;
r re et tu ur rn n * t th hi is s;

}

/ / handle negative n

r re et tu ur rn n * t th hi is s;
}

10.3.2 Helper Functions [class.helper]

Typically, a class has a number of functions associated with it that need not be defined in the class
itself because they don’t need direct access to the representation. For example:

i in nt t d di if ff f(D Da at te e a a, D Da at te e b b) ; / / number of days in the range [a,b) or [b,a)
b bo oo ol l l le ea ap py ye ea ar r(i in nt t y y) ;
D Da at te e n ne ex xt t_ _w we ee ek kd da ay y(D Da at te e d d) ;
D Da at te e n ne ex xt t_ _s sa at tu ur rd da ay y(D Da at te e d d) ;

Defining such functions in the class itself would complicate the class interface and increase the
number of functions that would potentially need to be examined when a change to the representa-
tion was considered.

How are such functions ‘‘associated’’ with classD Da at te e? Traditionally, their declarations were
simply placed in the same file as the declaration of classD Da at te e, and users who neededD Da at te es would
make them all available by including the file that defined the interface (§9.2.1). For example:

#i in nc cl lu ud de e " D Da at te e. h h"

In addition to using a specificD Da at te e. h h header, or as an alternative, we can make the association
explicit by enclosing the class and its helper functions in a namespace (§8.2):

n na am me es sp pa ac ce e C Ch hr ro on no o { / / facilities for dealing with time

c cl la as ss s D Da at te e { /* ... */};

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 10.3.2 Helper Functions 241

i in nt t d di if ff f(D Da at te e a a, D Da at te e b b) ;
b bo oo ol l l le ea ap py ye ea ar r(i in nt t y y) ;
D Da at te e n ne ex xt t_ _w we ee ek kd da ay y(D Da at te e d d) ;
D Da at te e n ne ex xt t_ _s sa at tu ur rd da ay y(D Da at te e d d) ;
/ / ...

}

TheC Ch hr ro on no o namespace would naturally also contain related classes, such asT Ti im me e andS St to op pw wa at tc ch h,
and their helper functions. Using a namespace to hold a single class is usually an over-elaboration
that leads to inconvenience.

10.3.3 Overloaded Operators [class.over]

It is often useful to add functions to enable conventional notation. For example, theo op pe er ra at to or r==
function defines the equality operator== to work forD Da at te es:

i in nl li in ne e b bo oo ol l o op pe er ra at to or r==(D Da at te e a a, D Da at te e b b) / / equality
{

r re et tu ur rn n a a. d da ay y()== b b. d da ay y() && a a. m mo on nt th h()== b b. m mo on nt th h() && a a. y ye ea ar r()== b b. y ye ea ar r() ;
}

Other obvious candidates are:

b bo oo ol l o op pe er ra at to or r!=(D Da at te e, D Da at te e) ; / / inequality
b bo oo ol l o op pe er ra at to or r<(D Da at te e, D Da at te e) ; / / less than
b bo oo ol l o op pe er ra at to or r>(D Da at te e, D Da at te e) ; / / greater than
/ / ...

D Da at te e& o op pe er ra at to or r++(D Da at te e& d d) ; / / increase Date by one day
D Da at te e& o op pe er ra at to or r--(D Da at te e& d d) ; / / decrease Date by one day

D Da at te e& o op pe er ra at to or r+=(D Da at te e& d d, i in nt t n n) ; / / add n days
D Da at te e& o op pe er ra at to or r-=(D Da at te e& d d, i in nt t n n) ; / / subtract n days

D Da at te e o op pe er ra at to or r+(D Da at te e d d, i in nt t n n) ; / / add n days
D Da at te e o op pe er ra at to or r-(D Da at te e d d, i in nt t n n) ; / / subtract n days

o os st tr re ea am m& o op pe er ra at to or r<<(o os st tr re ea am m&, D Da at te e d d) ; / / output d
i is st tr re ea am m& o op pe er ra at to or r>>(i is st tr re ea am m&, D Da at te e& d d) ; / / read into d

For D Da at te e, these operators can be seen as mere conveniences. However, for many types– such as
complex numbers (§11.3), vectors (§3.7.1), and function-like objects (§18.4)– the use of conven-
tional operators is so firmly entrenched in people’s minds that their definition is almost mandatory.
Operator overloading is discussed in Chapter 11.

10.3.4 The Significance of Concrete Classes [class.significance]

I call simple user-defined types, such asD Da at te e, concrete typesto distinguish them from abstract
classes (§2.5.4) and class hierarchies (§12.3) and also to emphasize their similarity to built-in types
such asi in nt t and c ch ha ar r. They have also been calledvalue types, and their usevalue-oriented
programming. Their model of use and the ‘‘philosophy’’ behind their design are quite different
from what is often advertised as object-oriented programming (§2.6.2).

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

242 Classes Chapter 10

The intent of a concrete type is to do a single, relatively small thing well and efficiently. It is
not usually the aim to provide the user with facilities to modify the behavior of a concrete type. In
particular, concrete types are not intended to display polymorphic behavior (see §2.5.5, §12.2.6).

If you don’t like some detail of a concrete type, you build a new one with the desired behavior.
If you want to ‘‘reuse’’ a concrete type, you use it in the implementation of your new type exactly
as you would have used ani in nt t. For example:

c cl la as ss s D Da at te e_ _a an nd d_ _t ti im me e {
p pr ri iv va at te e:

D Da at te e d d;
T Ti im me e t t;

p pu ub bl li ic c:
D Da at te e_ _a an nd d_ _t ti im me e(D Da at te e d d, T Ti im me e t t) ;
D Da at te e_ _a an nd d_ _t ti im me e(i in nt t d d, D Da at te e: : M Mo on nt th h m m, i in nt t y y, T Ti im me e t t) ;
/ / ...

};

The derived class mechanism discussed in Chapter 12 can be used to define new types from a con-
crete class by describing the desired differences. The definition ofV Ve ec c from v ve ec ct to or r (§3.7.2) is an
example of this.

With a reasonably good compiler, a concrete class such asD Da at te e incurs no hidden overhead in
time or space. The size of a concrete type is known at compile time so that objects can be allocated
on the run-time stack (that is, without free-store operations). The layout of each object is known at
compile time so that inlining of operations is trivially achieved. Similarly, layout compatibility
with other languages, such as C and Fortran, comes without special effort.

A good set of such types can provide a foundation for applications. Lack of suitable ‘‘small
efficient types’’ in an application can lead to gross run-time and space inefficiencies when overly
general and expensive classes are used. Alternatively, lack of concrete types can lead to obscure
programs and time wasted when each programmer writes code to directly manipulate ‘‘simple and
frequently used’’ data structures.

10.4 Objects[class.objects]

Objects can be created in several ways. Some are local variables, some are global variables, some
are members of classes, etc. This section discusses these alternatives, the rules that govern them,
the constructors used to initialize objects, and the destructors used to clean up objects before they
become unusable.

10.4.1 Destructors [class.dtor]

A constructor initializes an object. In other words, it creates the environment in which the member
functions operate. Sometimes, creating that environment involves acquiring a resource– such as a
file, a lock, or some memory– that must be released after use (§14.4.7). Thus, some classes need a
function that is guaranteed to be invoked when an object is destroyed in a manner similar to the
way a constructor is guaranteed to be invoked when an object is created. Inevitably, such functions
are calleddestructors. They typically clean up and release resources. Destructors are called

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 10.4.1 Destructors 243

implicitly when an automatic variable goes out of scope, an object on the free store is deleted, etc.
Only in very unusual circumstances does the user need to call a destructor explicitly (§10.4.11).

The most common use of a destructor is to release memory acquired in a constructor. Consider
a simple table of elements of some typeN Na am me e. The constructor forT Ta ab bl le e must allocate memory to
hold the elements. When the table is somehow deleted, we must ensure that this memory is
reclaimed for further use elsewhere. We do this by providing a special function to complement the
constructor:

c cl la as ss s N Na am me e {
c co on ns st t c ch ha ar r* s s;
/ / ...

};

c cl la as ss s T Ta ab bl le e {
N Na am me e* p p;
s si iz ze e_ _t t s sz z;

p pu ub bl li ic c:
T Ta ab bl le e(s si iz ze e_ _t t s s = 1 15 5) { p p = n ne ew w N Na am me e[s sz z = s s] ; }/ / constructor

~T Ta ab bl le e() { d de el le et te e[] p p; } / / destructor

N Na am me e* l lo oo ok ku up p(c co on ns st t c ch ha ar r *) ;
b bo oo ol l i in ns se er rt t(N Na am me e*) ;

};

The destructor notation~T Ta ab bl le e() uses the complement symbol~ to hint at the destructor’s rela-
tion to theT Ta ab bl le e() constructor.

A matching constructor/destructor pair is the usual mechanism for implementing the notion of a
variably-sized object in C++. Standard library containers, such asm ma ap p, use a variant of this tech-
nique for providing storage for their elements, so the following discussion illustrates techniques
you rely on every time you use a standard container (including a standards st tr ri in ng g). The discussion
applies to types without a destructor, also. Such types are seen simply as having a destructor that
does nothing.

10.4.2 Default Constructors [class.default]

Similarly, most types can be considered to have a default constructor. A default constructor is a
constructor that can be called without supplying an argument. Because of the default argument1 15 5,
T Ta ab bl le e: : T Ta ab bl le e(s si iz ze e_ _t t) is a default constructor. If a user has declared a default constructor, that
one will be used; otherwise, the compiler will try to generate one if needed and if the user hasn’t
declared other constructors. A compiler-generated default constructor implicitly calls the default
constructors for a class’ members of class type and bases (§12.2.2). For example:

s st tr ru uc ct t T Ta ab bl le es s {
i in nt t i i;
i in nt t v vi i[1 10 0] ;

T Ta ab bl le e t t1 1;
T Ta ab bl le e v vt t[1 10 0] ;

};

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

244 Classes Chapter 10

T Ta ab bl le es s t tt t;

Here,t tt t will be initialized using a generated default constructor that callsT Ta ab bl le e(1 15 5) for t tt t. t t1 1 and
each element oft tt t. v vt t. On the other hand,t tt t. i i and the elements oft tt t. v vi i are not initialized because
those objects are not of a class type. The reasons for the dissimilar treatment of classes and built-in
types are C compatibility and fear of run-time overhead.

Becausec co on ns st ts and references must be initialized (§5.5, §5.4), a class containingc co on ns st t or refer-
ence members cannot be default-constructed unless the programmer explicitly supplies a construc-
tor (§10.4.6.1). For example:

s st tr ru uc ct t X X {
c co on ns st t i in nt t a a;
c co on ns st t i in nt t& r r;

};

X X x x; / / error: no default constructor for X

Default constructors can be invoked explicitly (§10.4.10). Built-in types also have default con-
structors (§6.2.8).

10.4.3 Construction and Destruction [class.ctor.dtor]

Consider the different ways an object can be created and how it gets destroyed afterwards. An
object can be created as:

§10.4.4 A named automatic object, which is created each time its declaration is encountered
in the execution of the program and destroyed each time the program exits the block
in which it occurs

§10.4.5 A free-store object, which is created using then ne ew w operator and destroyed using the
d de el le et te eoperator

§10.4.6 A nonstatic member object, which is created as a member of another class object and
created and destroyed when the object of which it is a member is created and
destroyed

§10.4.7 An array element, which is created and destroyed when the array of which it is an ele-
ment is created and destroyed

§10.4.8 A local static object, which is created the first time its declaration is encountered in
the execution of the program and destroyed once at the termination of the program

§10.4.9 A global, namespace, or class static object, which is created once ‘‘at the start of the
program’’ and destroyed once at the termination of the program

§10.4.10 A temporary object, which is created as part of the evaluation of an expression and
destroyed at the end of the full expression in which it occurs

§10.4.11 An object placed in memory obtained from a user-supplied function guided by argu-
ments supplied in the allocation operation

§10.4.12 Au un ni io on n member, which may not have a constructor or a destructor
This list is roughly sorted in order of importance. The following subsections explain these various
ways of creating objects and their uses.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 10.4.4 Local Variables 245

10.4.4 Local Variables [class.local]

The constructor for a local variable is executed each time the thread of control passes through the
declaration of the local variable. The destructor for a local variable is executed each time the local
variable’s block is exited. Destructors for local variables are executed in reverse order of their con-
struction. For example:

v vo oi id d f f(i in nt t i i)
{

T Ta ab bl le e a aa a;
T Ta ab bl le e b bb b;
i if f (i i>0 0) {

T Ta ab bl le e c cc c;
/ / ...

}
T Ta ab bl le e d dd d;
/ / ...

}

Here,a aa a, b bb b, andd dd d are constructed (in that order) each timef f() is called, andd dd d, b bb b, anda aa a are
destroyed (in that order) each time we return fromf f() . If i i>0 0 for a call,c cc c will be constructed after
b bb b and destroyed befored dd d is constructed.

10.4.4.1 Copying Objects [class.copy]

If t t1 1 andt t2 2 are objects of a classT Ta ab bl le e, t t2 2=t t1 1 by default means a memberwise copy oft t1 1 into t t2 2
(§10.2.5). Having assignment interpreted this way can cause a surprising (and usually undesired)
effect when used on objects of a class with pointer members. Memberwise copy is usually the
wrong semantics for copying objects containing resources managed by a constructor/destructor
pair. For example:

v vo oi id d h h()
{

T Ta ab bl le e t t1 1;
T Ta ab bl le e t t2 2 = t t1 1; / / copy initialization: trouble
T Ta ab bl le e t t3 3;

t t3 3 = t t2 2; / / copy assignment: trouble
}

Here, theT Ta ab bl le e default constructor is called twice: once each fort t1 1 and t t3 3. It is not called fort t2 2
because that variable was initialized by copying. However, theT Ta ab bl le e destructor is called three
times: once each fort t1 1, t t2 2, andt t3 3! The default interpretation of assignment is memberwise copy, so
t t1 1, t t2 2, andt t3 3 will, at the end ofh h() , each contain a pointer to the array of names allocated on the
free store whent t1 1 was created. No pointer to the array of names allocated whent t3 3 was created
remains because it was overwritten by thet t3 3=t t2 2 assignment. Thus, in the absence of automatic
garbage collection (§10.4.5), its storage will be lost to the program forever. On the other hand, the
array created fort t1 1 appears int t1 1, t t2 2, andt t3 3, so it will be deleted thrice. The result of that is unde-
fined and probably disastrous.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

246 Classes Chapter 10

Such anomalies can be avoided by defining what it means to copy aT Ta ab bl le e:

c cl la as ss s T Ta ab bl le e {
/ / ...
T Ta ab bl le e(c co on ns st t T Ta ab bl le e&) ; / / copy constructor
T Ta ab bl le e& o op pe er ra at to or r=(c co on ns st t T Ta ab bl le e&) ; / / copy assignment

};

The programmer can define any suitable meaning for these copy operations, but the traditional one
for this kind of container is to copy the contained elements (or at least to give the user of the con-
tainer the appearance that a copy has been done; see §11.12). For example:

T Ta ab bl le e: : T Ta ab bl le e(c co on ns st t T Ta ab bl le e& t t) / / copy constructor
{

p p = n ne ew w N Na am me e[s sz z=t t. s sz z] ;
f fo or r (i in nt t i i = 0 0; i i<s sz z; i i++) p p[i i] = t t. p p[i i] ;

}

T Ta ab bl le e& T Ta ab bl le e: : o op pe er ra at to or r=(c co on ns st t T Ta ab bl le e& t t) / / assignment
{

i if f (t th hi is s != &t t) { / / beware of self-assignment: t = t
d de el le et te e[] p p;
p p = n ne ew w N Na am me e[s sz z=t t. s sz z] ;
f fo or r (i in nt t i i = 0 0; i i<s sz z; i i++) p p[i i] = t t. p p[i i] ;

}
r re et tu ur rn n * t th hi is s;

}

As is almost always the case, the copy constructor and the copy assignment differ considerably.
The fundamental reason is that a copy constructor initializes uninitialized memory, whereas the
copy assignment operator must correctly deal with a well-constructed object.

Assignment can be optimized in some cases, but the general strategy for an assignment operator
is simple: protect against self-assignment, delete old elements, initialize, and copy in new elements.
Usually every nonstatic member must be copied (§10.4.6.3).

10.4.5 Free Store [class.free]

An object created on the free store has its constructor invoked by then ne ew w operator and exists until
thed de el le et te eoperator is applied to a pointer to it. Consider:

i in nt t m ma ai in n()
{

T Ta ab bl le e* p p = n ne ew w T Ta ab bl le e;
T Ta ab bl le e* q q = n ne ew w T Ta ab bl le e;

d de el le et te e p p;
d de el le et te e p p; / / probably causes run-time error

}

The constructorT Ta ab bl le e: : T Ta ab bl le e() is called twice. So is the destructorT Ta ab bl le e: :~ T Ta ab bl le e() . Unfor-
tunately, then ne ew ws and thed de el le et te es in this example don’t match, so the object pointed to byp p is

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 10.4.5 Free Store 247

deleted twice and the object pointed to byq q not at all. Not deleting an object is typically not an
error as far as the language is concerned; it is only a waste of space. However, in a program that is
meant to run for a long time, such a memory leak is a serious and hard-to-find error. There are
tools available for detecting such leaks. Deletingp p twice is a serious error; the behavior is unde-
fined and most likely disastrous.

Some C++ implementations automatically recycle the storage occupied by unreachable objects
(garbage collecting implementations), but their behavior is not standardized. Even when a garbage
collector is running,d de el le et te e will invoke a destructor if one is defined, so it is still a serious error to
delete an object twice. In many cases, that is only a minor inconvenience. In particular, where a
garbage collector is known to exist, destructors that do memory management only can be elimi-
nated. This simplification comes at the cost of portability and for some programs, a possible
increase in run time and a loss of predictability of run-time behavior (§C.9.1).

After d de el le et te ehas been applied to an object, it is an error to access that object in any way. Unfor-
tunately, implementations cannot reliably detect such errors.

The user can specify hown ne ew w does allocation and howd de el le et te e does deallocation (see §6.2.6.2
and §15.6). It is also possible to specify the way an allocation, initialization (construction), and
exceptions interact (see §14.4.5 and §19.4.5). Arrays on the free store are discussed in §10.4.7.

10.4.6 Class Objects as Members [class.m]

Consider a class that might be used to hold information for a small organization:

c cl la as ss s C Cl lu ub b {
s st tr ri in ng g n na am me e;
T Ta ab bl le e m me em mb be er rs s;
T Ta ab bl le e o of ff fi ic ce er rs s;
D Da at te e f fo ou un nd de ed d;
/ / ...
C Cl lu ub b(c co on ns st t s st tr ri in ng g& n n, D Da at te e f fd d) ;

};

TheC Cl lu ub b’s constructor takes the name of the club and its founding date as arguments. Arguments
for a member’s constructor are specified in a member initializer list in the definition of the con-
structor of the containing class. For example:

C Cl lu ub b: : C Cl lu ub b(c co on ns st t s st tr ri in ng g& n n, D Da at te e f fd d)
: n na am me e(n n) , m me em mb be er rs s() , o of ff fi ic ce er rs s() , f fo ou un nd de ed d(f fd d)

{
/ / ...

}

The member initializers are preceded by a colon and the individual member initializers are sepa-
rated by commas.

The members’ constructors are called before the body of the containing class’ own constructor
is executed. The constructors are called in the order in which they are declared in the class rather
than the order in which they appear in the initializer list. To avoid confusion, it is best to specify
the initializers in declaration order. The member destructors are called in the reverse order of con-
struction.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

248 Classes Chapter 10

If a member constructor needs no arguments, the member need not be mentioned in the member
initializer list, so

C Cl lu ub b: : C Cl lu ub b(c co on ns st t s st tr ri in ng g& n n, D Da at te e f fd d)
: n na am me e(n n) , f fo ou un nd de ed d(f fd d)

{
/ / ...

}

is equivalent to the previous version. In each case,C Cl lu ub b: : o of ff fi ic ce er rs s is constructed byT Ta ab bl le e: : T Ta ab bl le e
with the default argument1 15 5.

When a class object containing class objects is destroyed, the body of that object’s own
destructor (if one is specified) is executed first and then the members’ destructors are executed in
reverse order of declaration. A constructor assembles the execution environment for the member
functions for a class from the bottom up (members first). The destructor disassembles it from the
top down (members last).

10.4.6.1 Necessary Member Initialization [class.ref.init]

Member initializers are essential for types for which initialization differs from assignment– that is,
for member objects of classes without default constructors, forc co on ns st t members, and for reference
members. For example:

c cl la as ss s X X {
c co on ns st t i in nt t i i;
C Cl lu ub b c c;
C Cl lu ub b& p pc c;
/ / ...
X X(i in nt t i ii i, c co on ns st t s st tr ri in ng g& n n, D Da at te e d d, C Cl lu ub b& c c) : i i(i ii i) , c c(n n, d d) , p pc c(c c) { }

};

There isn’t any other way to initialize such members, and it is an error not to initialize objects of
those types. For most types, however, the programmer has a choice between using an initializer
and using an assignment. In that case, I usually prefer to use the member initializer syntax, thus
making explicit the fact that initialization is being done. Often, there also is an efficiency advan-
tage to using the initializer syntax. For example:

c cl la as ss s P Pe er rs so on n {
s st tr ri in ng g n na am me e;
s st tr ri in ng g a ad dd dr re es ss s;
/ / ...
P Pe er rs so on n(c co on ns st t P Pe er rs so on n&) ;
P Pe er rs so on n(c co on ns st t s st tr ri in ng g& n n, c co on ns st t s st tr ri in ng g& a a) ;

};

P Pe er rs so on n: : P Pe er rs so on n(c co on ns st t s st tr ri in ng g& n n, c co on ns st t s st tr ri in ng g& a a)
: n na am me e(n n)

{
a ad dd dr re es ss s = a a;

}

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 10.4.6.1 Necessary Member Initialization 249

Here n na am me e is initialized with a copy ofn n. On the other hand,a ad dd dr re es ss s is first initialized to the
empty string and then a copy ofa a is assigned.

10.4.6.2 Member Constants [class.memconst]

It is also possible to initialize a static integral constant member by adding aconstant-expressionini-
tializer to its member declaration. For example:

c cl la as ss s C Cu ur ri io ou us s {
p pu ub bl li ic c:

s st ta at ti ic c c co on ns st t i in nt t c c1 1 = 7 7; / / ok, but remember definition
s st ta at ti ic c i in nt t c c2 2 = 1 11 1; / / error: not const
c co on ns st t i in nt t c c3 3 = 1 13 3; / / error: not static
s st ta at ti ic c c co on ns st t i in nt t c c4 4 = f f(1 17 7) ; / / error: in-class initializer not constant
s st ta at ti ic c c co on ns st t f fl lo oa at t c c5 5 = 7 7. 0 0; / / error: in-class not integral
/ / ...

};

If (and only if) you use an initialized member in a way that requires it to be stored as an object in
memory, the member must be (uniquely) defined somewhere. The initializer may not be repeated:

c co on ns st t i in nt t C Cu ur ri io ou us s: : c c1 1; / / necessary, but don’t repeat initializer here

c co on ns st t i in nt t* p p = &C Cu ur ri io ou us s: : c c1 1; / / ok: Curious::c1 has been defined

Alternatively, you can use an enumerator (§4.8, §14.4.6, §15.3) as a symbolic constant within a
class declaration. For example:

c cl la as ss s X X {
e en nu um m { c c1 1 = 7 7, c c2 2 = 1 11 1, c c3 3 = 1 13 3, c c4 4 = 1 17 7 };
/ / ...

};

In that way, you are not tempted to initialize variables, floating-point numbers, etc. within a class.

10.4.6.3 Copying Members [class.mem.copy]

A default copy constructor or default copy assignment (§10.4.4.1) copies all elements of a class. If
this copy cannot be done, it is an error to try to copy an object of such a class. For example:

c cl la as ss s U Un ni iq qu ue e_ _h ha an nd dl le e {
p pr ri iv va at te e: / / copy operations are private to prevent copying (§11.2.2)

U Un ni iq qu ue e_ _h ha an nd dl le e(c co on ns st t U Un ni iq qu ue e_ _h ha an nd dl le e&) ;
U Un ni iq qu ue e_ _h ha an nd dl le e& o op pe er ra at to or r=(c co on ns st t U Un ni iq qu ue e_ _h ha an nd dl le e&) ;

p pu ub bl li ic c:
/ / ...

};

s st tr ru uc ct t Y Y {
/ / ...
U Un ni iq qu ue e_ _h ha an nd dl le e a a; / / requires explicit initialization

};

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

250 Classes Chapter 10

Y Y y y1 1;
Y Y y y2 2 = y y1 1; / / error: cannot copy Y::a

In addition, a default assignment cannot be generated if a nonstatic member is a reference, ac co on ns st t,
or a user-defined type without a copy assignment.

Note that the default copy constructor leaves a reference member referring to the same object in
both the original and the copied object. This can be a problem if the object referred to is supposed
to be deleted.

When writing a copy constructor, we must take care to copy every element that needs to be
copied. By default, elements are default-initialized, but that is often not what is desired in a copy
constructor. For example:

P Pe er rs so on n: : P Pe er rs so on n(c co on ns st t P Pe er rs so on n& a a) : n na am me e(a a. n na am me e) { } / / beware!

Here, I forgot to copy thea ad dd dr re es ss s, soa ad dd dr re es ss s is initialized to the empty string by default. When
adding a new member to a class, always check if there are user-defined constructors that need to be
updated in order to initialize and copy the new member.

10.4.7 Arrays [class.array]

If an object of a class can be constructed without supplying an explicit initializer, then arrays of that
class can be defined. For example:

T Ta ab bl le e t tb bl l[1 10 0] ;

This will create an array of1 10 0 T Ta ab bl le es and initialize eachT Ta ab bl le e by a call ofT Ta ab bl le e: : T Ta ab bl le e() with
the default argument1 15 5.

There is no way to specify explicit arguments for a constructor in an array declaration. If you
absolutely must initialize members of an array with different values, you can write a default con-
structor that directly or indirectly reads and writes nonlocal data. For example:

c cl la as ss s I Ib bu uf ff fe er r {
s st tr ri in ng g b bu uf f;

p pu ub bl li ic c:
I Ib bu uf ff fe er r() { c ci in n>>b bu uf f; }
/ / ...

};

v vo oi id d f f()
{

I Ib bu uf ff fe er r w wo or rd ds s[1 10 00 0] ; / / each word initialized from cin
/ / ...

}

It is usually best to avoid such subtleties.
The destructor for each constructed element of an array is invoked when that array is destroyed.

This is done implicitly for arrays that are not allocated usingn ne ew w. Like C, C++ doesn’t distinguish
between a pointer to an individual object and a pointer to the initial element of an array (§5.3).
Consequently, the programmer must state whether an array or an individual object is being deleted.
For example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 10.4.7 Arrays 251

v vo oi id d f f(i in nt t s sz z)
{

T Ta ab bl le e* t t1 1 = n ne ew w T Ta ab bl le e;
T Ta ab bl le e* t t2 2 = n ne ew w T Ta ab bl le e[s sz z] ;
T Ta ab bl le e* t t3 3 = n ne ew w T Ta ab bl le e;
T Ta ab bl le e* t t4 4 = n ne ew w T Ta ab bl le e[s sz z] ;

d de el le et te e t t1 1; / / right
d de el le et te e[] t t2 2; / / right
d de el le et te e[] t t3 3; / / wrong: trouble
d de el le et te e t t4 4; / / wrong: trouble

}

Exactly how arrays and individual objects are allocated is implementation-dependent. Therefore,
different implementations will react differently to incorrect uses of thed de el le et te e andd de el le et te e[] opera-
tors. In simple and uninteresting cases like the previous one, a compiler can detect the problem, but
generally something nasty will happen at run time.

The special destruction operator for arrays,d de el le et te e[] , isn’t logically necessary. However, sup-
pose the implementation of the free store had been required to hold sufficient information for every
object to tell if it was an individual or an array. The user could have been relieved of a burden, but
that obligation would have imposed significant time and space overheads on some C++ implemen-
tations.

As always, if you find C-style arrays too cumbersome, use a class such asv ve ec ct to or r (§3.7.1, §16.3)
instead. For example:

v vo oi id d g g()
{

v ve ec ct to or r<T Ta ab bl le e>* p p1 1 = n ne ew w v ve ec ct to or r<T Ta ab bl le e>(1 10 0) ;
T Ta ab bl le e* p p2 2 = n ne ew w T Ta ab bl le e;

d de el le et te e p p1 1;
d de el le et te e p p2 2;

}

10.4.8 Local Static Store [class.obj.static]

The constructor for a local static object (§7.1.2) is called the first time the thread of control passes
through the object’s definition. Consider this:

v vo oi id d f f(i in nt t i i)
{

s st ta at ti ic c T Ta ab bl le e t tb bl l;
/ / ...
i if f (i i) {

s st ta at ti ic c T Ta ab bl le e t tb bl l2 2;
/ / ...

}
}

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

252 Classes Chapter 10

i in nt t m ma ai in n()
{

f f(0 0) ;
f f(1 1) ;
f f(2 2) ;
/ / ...

}

Here, the constructor is called fort tb bl l once the first timef f() is called. Becauset tb bl l is declared
s st ta at ti ic c, it does not get destroyed on return fromf f() and it does not get constructed a second time
whenf f() is called again. Because the block containing the declaration oft tb bl l2 2 doesn’t get executed
for the callf f(0 0) , t tb bl l2 2 doesn’t get constructed until the callf f(1 1) . It does not get constructed again
when its block is entered a second time.

The destructors for local static objects are invoked in the reverse order of their construction
when the program terminates (§9.4.1.1). Exactly when is unspecified.

10.4.9 Nonlocal Store [class.global]

A variable defined outside any function (that is, global, namespace, and classs st ta at ti ic c variables) is
initialized (constructed) beforem ma ai in n() is invoked, and any such variable that has been constructed
will have its destructor invoked after exit fromm ma ai in n() . Dynamic linking complicates this picture
slightly by delaying the initialization until the code is linked into the running program.

Constructors for nonlocal objects in a translation unit are executed in the order their definitions
occur. Consider:

c cl la as ss s X X {
/ / ...
s st ta at ti ic c T Ta ab bl le e m me em mt tb bl l;

};

T Ta ab bl le e t tb bl l;

T Ta ab bl le e X X: : m me em mt tb bl l;

n na am me es sp pa ac ce e Z Z {
T Ta ab bl le e t tb bl l2 2;

}

The order of construction ist tb bl l, thenX X: : m me em mt tb bl l, and thenZ Z: : t tb bl l2 2. Note that a declaration (as
opposed to a definition), such as the declaration ofm me em mt tb bl l in X X, doesn’t affect the order of con-
struction. The destructors are called in the reverse order of construction:Z Z: : t tb bl l2 2, then
X X: : m me em mt tb bl l, and thent tb bl l.

No implementation-independent guarantees are made about the order of construction of nonlo-
cal objects in different compilation units. For example:

/ / file1.c:
T Ta ab bl le e t tb bl l1 1;

/ / file2.c:
T Ta ab bl le e t tb bl l2 2;

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 10.4.9 Nonlocal Store 253

Whethert tb bl l1 1 is constructed beforet tb bl l2 2 or vice versa is implementation-dependent. The order isn’t
even guaranteed to be fixed in every particular implementation. Dynamic linking, or even a small
change in the compilation process, can alter the sequence. The order of destruction is similarly
implementation-dependent.

Sometimes when you design a library, it is necessary, or simply convenient, to invent a type
with a constructor and a destructor with the sole purpose of initialization and cleanup. Such a type
would be used once only: to allocate a static object so that the constructor and the destructor are
called. For example:

c cl la as ss s Z Zl li ib b_ _i in ni it t {
Z Zl li ib b_ _i in ni it t() ; / / get Zlib ready for use
~Z Zl li ib b_ _i in ni it t() ; / / clean up after Zlib

};

c cl la as ss s Z Zl li ib b {
s st ta at ti ic c Z Zl li ib b_ _i in ni it t x x;
/ / ...

};

Unfortunately, it is not guaranteed that such an object is initialized before its first use and destroyed
after its last use in a program consisting of separately compiled units. A particular C++ implemen-
tation may provide such a guarantee, but most don’t. A programmer may ensure proper initial-
ization by implementing the strategy that the implementations usually employ for local static
objects: a first-time switch. For example:

c cl la as ss s Z Zl li ib b {
s st ta at ti ic c b bo oo ol l i in ni it ti ia al li iz ze ed d;
s st ta at ti ic c v vo oi id d i in ni it ti ia al li iz ze e() { /* initialize */ i in ni it ti ia al li iz ze ed d = t tr ru ue e; }

p pu ub bl li ic c:
/ / no constructor

v vo oi id d f f()
{

i if f (i in ni it ti ia al li iz ze ed d == f fa al ls se e) i in ni it ti ia al li iz ze e() ;
/ / ...

}
/ / ...

};

If there are many functions that need to test the first-time switch, this can be tedious, but it is often
manageable. This technique relies on the fact that statically allocated objects without constructors
are initialized to0 0. The really difficult case is the one in which the first operation may be time-
critical so that the overhead of testing and possible initialization can be serious. In that case, further
trickery is required (§21.5.2).

An alternative approach for a simple object is to present it as a function (§9.4.1):

i in nt t& o ob bj j() { s st ta at ti ic c i in nt t x x = 0 0; r re et tu ur rn n x x; } / / initialized upon first use

First-time switches do not handle every conceivable situation. For example, it is possible to create
objects that refer to each other during construction. Such examples are best avoided. If such

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

254 Classes Chapter 10

objects are necessary, they must be constructed carefully in stages. Also, there is no similarly sim-
ple last-time switch construct. Instead, see §9.4.1.1 and §21.5.2.

10.4.10 Temporary Objects [class.temp]

Temporary objects most often are the result of arithmetic expressions. For example, at some point
in the evaluation ofx x* y y+z z the partial resultx x* y y must exist somewhere. Except when performance
is the issue (§11.6), temporary objects rarely become the concern of the programmer. However, it
happens (§11.6, §22.4.7).

Unless bound to a reference or used to initialize a named object, a temporary object is destroyed
at the end of the full expression in which it was created. Afull expressionis an expression that is
not a subexpression of some other expression.

The standards st tr ri in ng g class has a member functionc c_ _s st tr r() that returns a C-style, zero-terminated
array of characters (§3.5.1, §20.4.1). Also, the operator+ is defined to mean string concatenation.
These are very useful facilities fors st tr ri in ng gs s. However, in combination they can cause obscure prob-
lems. For example:

v vo oi id d f f(s st tr ri in ng g& s s1 1, s st tr ri in ng g& s s2 2, s st tr ri in ng g& s s3 3)
{

c co on ns st t c ch ha ar r* c cs s = (s s1 1+s s2 2). c c_ _s st tr r() ;
c co ou ut t << c cs s;
i if f (s st tr rl le en n(c cs s=(s s2 2+s s3 3). c c_ _s st tr r())< 8 8 && c cs s[0 0]==´ a a´) {

/ / cs used here
}

}

Probably, your first reaction is ‘‘but don’t do that,’’ and I agree. However, such code does get writ-
ten, so it is worth knowing how it is interpreted.

A temporary object of classs st tr ri in ng g is created to holds s1 1+s s2 2. Next, a pointer to a C-style string
is extracted from that object. Then– at the end of the expression– the temporary object is deleted.
Now, where was the C-style string allocated? Probably as part of the temporary object holding
s s1 1+s s2 2, and that storage is not guaranteed to exist after that temporary is destroyed. Consequently,
c cs s points to deallocated storage. The output operationc co ou ut t<<c cs s might work as expected, but that
would be sheer luck. A compiler can detect and warn against many variants of this problem.

The example with theif-statementis a bit more subtle. The condition will work as expected
because the full expression in which the temporary holdings s2 2+s s3 3 is created is the condition itself.
However, that temporary is destroyed before the controlled statement is entered, so any use ofc cs s
there is not guaranteed to work.

Please note that in this case, as in many others, the problems with temporaries arose from using
a high-level data type in a low-level way. A cleaner programming style would have not only
yielded a more understandable program fragment, but also avoided the problems with temporaries
completely. For example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 10.4.10 Temporary Objects 255

v vo oi id d f f(s st tr ri in ng g& s s1 1, s st tr ri in ng g& s s2 2, s st tr ri in ng g& s s3 3)
{

c co ou ut t << s s1 1+s s2 2;
s st tr ri in ng g s s = s s2 2+s s3 3;

i if f (s s. l le en ng gt th h()< 8 8 && s s[0 0]==´ a a´) {
/ / use s here

}
}

A temporary can be used as an initializer for ac co on ns st t reference or a named object. For example:

v vo oi id d g g(c co on ns st t s st tr ri in ng g&, c co on ns st t s st tr ri in ng g&) ;

v vo oi id d h h(s st tr ri in ng g& s s1 1, s st tr ri in ng g& s s2 2)
{

c co on ns st t s st tr ri in ng g& s s = s s1 1+s s2 2;
s st tr ri in ng g s ss s = s s1 1+s s2 2;

g g(s s, s ss s) ; / / we can use s and ss here
}

This is fine. The temporary is destroyed when ‘‘its’’ reference or named object go out of scope.
Remember that returning a reference to a local variable is an error (§7.3) and that a temporary
object cannot be bound to a non-c co on ns st t reference (§5.5).

A temporary object can also be created by explicitly invoking a constructor. For example:

v vo oi id d f f(S Sh ha ap pe e& s s, i in nt t x x, i in nt t y y)
{

s s. m mo ov ve e(P Po oi in nt t(x x, y y)) ; / / construct Point to pass to Shape::move()
/ / ...

}

Such temporaries are destroyed in exactly the same way as the implicitly generated temporaries.

10.4.11 Placement of Objects [class.placement]

Operatorn ne ew w creates its object on the free store by default. What if we wanted the object allocated
elsewhere? Consider a simple class:

c cl la as ss s X X {
p pu ub bl li ic c:

X X(i in nt t) ;
/ / ...

};

We can place objects anywhere by providing an allocator function with extra arguments and then
supplying such extra arguments when usingn ne ew w:

v vo oi id d* o op pe er ra at to or r n ne ew w(s si iz ze e_ _t t, v vo oi id d* p p) { r re et tu ur rn n p p; } / / explicit placement operator

v vo oi id d* b bu uf f = r re ei in nt te er rp pr re et t_ _c ca as st t<v vo oi id d*>(0 0x xF F0 00 0F F) ; / / significant address
X X* p p2 2 = n ne ew w(b bu uf f) X X; / / construct an X at ‘buf;’ invokes: operator new(sizeof(X),buf)

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

256 Classes Chapter 10

Because of this usage, then ne ew w(b bu uf f) X X syntax for supplying extra arguments too op pe er ra at to or r n ne ew w() is
known as theplacement syntax. Note that everyo op pe er ra at to or r n ne ew w() takes a size as its first argument
and that the size of the object allocated is implicitly supplied (§15.6). Theo op pe er ra at to or r n ne ew w() used
by then ne ew w operator is chosen by the usual argument matching rules (§7.4); everyo op pe er ra at to or r n ne ew w()
has as si iz ze e_ _t t as its first argument.

The ‘‘placement’’o op pe er ra at to or r n ne ew w() is the simplest such allocator. It is defined in the standard
header<n ne ew w>.

The r re ei in nt te er rp pr re et t_ _c ca as st t is the crudest and potentially nastiest of the type conversion operators
(§6.2.7). In most cases, it simply yields a value with the same bit pattern as its argument with the
type required. Thus, it can be used for the inherently implementation-dependent, dangerous, and
occasionally absolutely necessary activity of converting integer values to pointers and vice versa.

The placementn ne ew w construct can also be used to allocate memory from a specific arena:

c cl la as ss s A Ar re en na a {
p pu ub bl li ic c:

v vi ir rt tu ua al l v vo oi id d* a al ll lo oc c(s si iz ze e_ _t t) =0 0;
v vi ir rt tu ua al l v vo oi id d f fr re ee e(v vo oi id d*) =0 0;
/ / ...

};

v vo oi id d* o op pe er ra at to or r n ne ew w(s si iz ze e_ _t t s sz z, A Ar re en na a* a a)
{

r re et tu ur rn n a a-> a al ll lo oc c(s sz z) ;
}

Now objects of arbitrary types can be allocated from differentA Ar re en na as as needed. For example:

e ex xt te er rn n A Ar re en na a* P Pe er rs si is st te en nt t;
e ex xt te er rn n A Ar re en na a* S Sh ha ar re ed d;

v vo oi id d g g(i in nt t i i)
{

X X* p p = n ne ew w(P Pe er rs si is st te en nt t) X X(i i) ; / / X in persistent storage
X X* q q = n ne ew w(S Sh ha ar re ed d) X X(i i) ; / / X in shared memory
/ / ...

}

Placing an object in an area that is not (directly) controlled by the standard free-store manager
implies that some care is required when destroying the object. The basic mechanism for that is an
explicit call of a destructor:

v vo oi id d d de es st tr ro oy y(X X* p p, A Ar re en na a* a a)
{

p p->~ X X() ; / / call destructor
a a-> f fr re ee e(p p) ; / / free memory

}

Note that explicit calls of destructors, like the use of special-purposeglobal allocators, should be
avoided wherever possible. Occasionally, they are essential. For example, it would be hard to
implement an efficient general container along the lines of the standard libraryv ve ec ct to or r (§3.7.1,
§16.3.8) without using explicit destructor class. However, a novice should think thrice before

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 10.4.11 Placement of Objects 257

calling a destructor explicitly and also should ask a more experienced colleague before doing so.
See §14.4.7 for an explanation of how placement new interacts with exception handling.
There is no special syntax for placement of arrays. Nor need there be, since arbitrary types can

be allocated by placement new. However, a specialo op pe er ra at to or r d de el le et te e() can be defined for arrays
(§19.4.5).

10.4.12 Unions [class.union]

A named union is defined as as st tr ru uc ct t, where every member has the same address (see §C.8.2). A
union can have member functions but not static members.

In general, a compiler cannot know what member of a union is used; that is, the type of the
object stored in a union is unknown. Consequently, a union may not have members with construc-
tors or destructors. It wouldn’t be possible to protect that object against corruption or to guarantee
that the right destructor is called when the union goes out of scope.

Unions are best used in low-level code, or as part of the implementation of classes that keep
track of what is stored in the union (see §10.6[20]).

10.5 Advice[class.advice]

[1] Represent concepts as classes; §10.1.
[2] Use public data (s st tr ru uc ct ts) only when it really is just data and no invariant is meaningful for the

data members; §10.2.8.
[3] A concrete type is the simplest kind of class. Where applicable, prefer a concrete type over

more complicated classes and over plain data structures; §10.3.
[4] Make a function a member only if it needs direct access to the representation of a class;

§10.3.2.
[5] Use a namespace to make the association between a class and its helper functions explicit;

§10.3.2.
[6] Make a member function that doesn’t modify the value of its object ac co on ns st t member function;

§10.2.6.
[7] Make a function that needs access to the representation of a class but needn’t be called for a

specific object as st ta at ti ic c member function; §10.2.4.
[8] Use a constructor to establish an invariant for a class; §10.3.1.
[9] If a constructor acquires a resource, its class needs a destructor to release the resource;

§10.4.1.
[10] If a class has a pointer member, it needs copy operations (copy constructor and copy assign-

ment); §10.4.4.1.
[11] If a class has a reference member, it probably needs copy operations (copy constructor and

copy assignment); §10.4.6.3.
[12] If a class needs a copy operation or a destructor, it probably needs a constructor, a destructor, a

copy assignment, and a copy constructor; §10.4.4.1.
[13] Check for self-assignment in copy assignments; §10.4.4.1.
[14] When writing a copy constructor, be careful to copy every element that needs to be copied

(beware of default initializers); §10.4.4.1.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

258 Classes Chapter 10

[15] When adding a new member to a class, always check to see if there are user-defined construc-
tors that need to be updated to initialize the member; §10.4.6.3.

[16] Use enumerators when you need to define integer constants in class declarations; §10.4.6.1.
[17] Avoid order dependencies when constructing global and namespace objects; §10.4.9.
[18] Use first-time switches to minimize order dependencies; §10.4.9.
[19] Remember that temporary objects are destroyed at the end of the full expression in which they

are created; §10.4.10.

10.6 Exercises[class.exercises]

1. (∗1) Find the error inD Da at te e: : a ad dd d_ _y ye ea ar r() in §10.2.2. Then find two additional errors in the
version in §10.2.7.

2. (∗2.5) Complete and testD Da at te e. Reimplement it with ‘‘number of days after 1/1/1970’’ repre-
sentation.

3. (∗2) Find aD Da at te e class that is in commercial use. Critique the facilities it offers. If possible,
then discuss thatD Da at te ewith a real user.

4. (∗1) How do you accesss se et t_ _d de ef fa au ul lt t from classD Da at te e from namespaceC Ch hr ro on no o (§10.3.2)? Give
at least three different ways.

5. (∗2) Define a classH Hi is st to og gr ra am m that keeps count of numbers in some intervals specified as argu-
ments toH Hi is st to og gr ra am m’s constructor. Provide functions to print out the histogram. Handle out-
of-range values.

6. (∗2) Define some classes for providing random numbers of certain distributions (for example,
uniform and exponential). Each class has a constructor specifying parameters for the distribu-
tion and a functiond dr ra aw w that returns the next value.

7. (∗2.5) Complete classT Ta ab bl le e to hold (name,value) pairs. Then modify the desk calculator pro-
gram from §6.1 to use classT Ta ab bl le e instead ofm ma ap p. Compare and contrast the two versions.

8. (∗2) RewriteT Tn no od de e from §7.10[7] as a class with constructors, destructors, etc. Define a tree of
T Tn no od de es as a class with constructors, destructors, etc.

9. (∗3) Define, implement, and test a set of integers, classI In nt ts se et t. Provide union, intersection, and
symmetric difference operations.

10. (∗1.5) Modify classI In nt ts se et t into a set of nodes, whereN No od de e is a structure you define.
11. (∗3) Define a class for analyzing, storing, evaluating, and printing simple arithmetic expressions

consisting of integer constants and the operators+, - , * , and/ . The public interface should
look like this:

c cl la as ss s E Ex xp pr r {
/ / ...

p pu ub bl li ic c:
E Ex xp pr r(c ch ha ar r*) ;
i in nt t e ev va al l() ;
v vo oi id d p pr ri in nt t() ;

};

The string argument for the constructorE Ex xp pr r: : E Ex xp pr r() is the expression. The function
E Ex xp pr r: : e ev va al l() returns the value of the expression, andE Ex xp pr r: : p pr ri in nt t() prints a representation

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 10.6 Exercises 259

of the expression onc co ou ut t. A program might look like this:

E Ex xp pr r x x(" 1 12 23 3/ 4 4+1 12 23 3* 4 4- 3 3") ;
c co ou ut t << " x x = " << x x. e ev va al l() << " \ \n n";
x x. p pr ri in nt t() ;

Define classE Ex xp pr r twice: once using a linked list of nodes as the representation and once using a
character string as the representation. Experiment with different ways of printing the expres-
sion: fully parenthesized, postfix notation, assembly code, etc.

12. (∗2) Define a classC Ch ha ar r_ _q qu ue eu ue e so that the public interface does not depend on the representa-
tion. ImplementC Ch ha ar r_ _q qu ue eu ue e (a) as a linked list and (b) as a vector. Do not worry about con-
currency.

13. (∗3) Design a symbol table class and a symbol table entry class for some language. Have a look
at a compiler for that language to see what the symbol table really looks like.

14. (∗2) Modify the expression class from §10.6[11] to handle variables and the assignment opera-
tor =. Use the symbol table class from §10.6[13].

15. (∗1) Given this program:

#i in nc cl lu ud de e <i io os st tr re ea am m>

i in nt t m ma ai in n()
{

s st td d: : c co ou ut t << " H He el ll lo o, w wo or rl ld d! \ \n n";
}

modify it to produce this output:

I In ni it ti ia al li iz ze e
H He el ll lo o, w wo or rl ld d!
C Cl le ea an n u up p

Do not changem ma ai in n() in any way.
16. (∗2) Define aC Ca al lc cu ul la at to or r class for which the calculator functions from §6.1 provide most of the

implementation. CreateC Ca al lc cu ul la at to or rs and invoke them for input fromc ci in n, from command-line
arguments, and for strings in the program. Allow output to be delivered to a variety of targets
similar to the way input can be obtained from a variety of sources.

17. (∗2) Define two classes, each with as st ta at ti ic c member, so that the construction of eachs st ta at ti ic c
member involves a reference to the other. Where might such constructs appear in real code?
How can these classes be modified to eliminate the order dependence in the constructors?

18. (∗2.5) Compare classD Da at te e (§10.3) with your solution to §5.9[13] and §7.10[19]. Discuss errors
found and likely differences in maintenance of the two solutions.

19. (∗3) Write a function that, given ani is st tr re ea am m and a v ve ec ct to or r<s st tr ri in ng g>, produces a
m ma ap p<s st tr ri in ng g, v ve ec ct to or r<i in nt t>> holding each string and the numbers of the lines on which the string
appears. Run the program on a text-file with no fewer than 1,000 lines looking for no fewer
than 10 words.

20. (∗2) Take classE En nt tr ry y from §C.8.2 and modify it so that each union member is always used
according to its type.

.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

260 Classes Chapter 10

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

	Return to Contents
	10.1 Introduction
	10.2 Classes
	10.3 Efficient User Defined Types
	10.4 Objects
	10.5 Advice

	buy now:

