10

Classes

Those types are not "abstract";
they are as real amt andfloat
— Doug Mcllroy

Concepts and classes class members— access control— constructors— static

members— default copy— const member functions— this — structs — in-class func-
tion definition— concrete classes- member functions and helper functiors over-
loaded operators— use of concrete classes destructors— default construction—

local variables— user-defined copy— new anddelete — member objects— arrays—

static storage— temporary variables- unions— advice— exercises.

10.1 Introduction [class.intro]

The aim of the €&+ class concept is to provide the programmer with a tool for creating new types
that can be used as conveniently as the built-in types. In addition, derived classes (Chapter 12) and
templates (Chapter 13) provide ways of organizing related classes that allow the programmer to
take advantage of their relationships.

A type is a concrete representation of a concept. For examplettheult-in type float with
its operations-, - , *, etc., provides a concrete approximation of the mathematical concept of a real
number. A class is a user-defined type. We design a new type to provide a definition of a concept
that has no direct counterpart among the built-in types. For example, we might provide a type
Trunk line in a program dealing with telephony, a tyReplosion for a videogame, or a type
list<Paragraph> for a text-processing program. A program that provides types that closely match
the concepts of the application tends to be easier to understand and easier to modify than a program
that does not. A well-chosen set of user-defined types makes a program more concise. In addition,
it makes many sorts of code analysis feasible. In particular, it enables the compiler to detect illegal
uses of objects that would otherwise remain undetected until the program is thoroughly tested.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

http://store.awl.com/catalog/cepub_detail.mhtml?isbn=0-201-88954-4

224 Classes Chapter 10

The fundamental idea in defining a new type is to separate the incidental details of the imple-
mentation (e.g., the layout of the data used to store an object of the type) from the properties essen-
tial to the correct use of it (e.g., the complete list of functions that can access the data). Such a sep-
aration is best expressed by channeling all uses of the data structure and internal housekeeping rou-
tines through a specific interface.

This chapter focuses on relatively simple “concrete” user-defined types that logically don’t dif-
fer much from built-in types. Ideally, such types should not differ from built-in types in the way
they are used, only in the way they are created.

10.2 Classeglass.class]

A classis a user-defined type. This section introduces the basic facilities for defining a class, creat-
ing objects of a class, and manipulating such objects.

10.2.1 Member Functions [class.member]

Consider implementing the concept of a date usistyuct to define the representation oDate
and a set of functions for manipulating variables of this type:

struct Date { | | representation

int d m, vy;
2
void init_date(Date& d, int, int, int); / / initialize d
void add year(Date& d, int n); / | add nyearstod
void add_month(Date& d, int n); / | add n months to d
void add day(Date& d, int n); / | addndaystod

There is no explicit connection between the data type and these functions. Such a connection can
be established by declaring the functions as members:

struct Date {
int d, m, vy,
void init(int dd, int mm int yy); / / initialize
void add year(int n); / | add n years
void add_month(int n); /| add n months
void add day(int n); / | add n days

k

Functions declared within a class definitiorsfauct is a kind of class; §10.2.8) are called member
functions and can be invoked only for a specific variable of the appropriate type using the standard
syntax for structure member access. For example:

Date my_birthday;

void f()

{
Date today;

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 10.2.1 Member Functions 225

today. init(16, 10, 1996);
my_birthday. init(30, 12, 1950);

Date tomorrow = today;
tomorrow. add_day(1);
/...

}

Because different structures can have member functions with the same name, we must specify the
structure name when defining a member function:

void Date:: init(int dd, int mm int yy)

d=dd;
m = mmg
Y=Yy,
}
In a member function, member names can be used without explicit reference to an object. In that
case, the name refers to that member of the object for which the function was invoked. For exam-
ple, whenDate: : init() is invoked fortoday, m=mm assigns ta¢oday. m. On the other hand,
when Date: : init() is invoked formy birthday, m=mm assigns tomy birthday. m. A class
member function always “knows” for which object it was invoked.
The construct

class X{ ... }

is called eclass definitiorbecause it defines a new type. For historical reasons, a class definition is
often referred to as@ass declaration Also, like declarations that are not definitions, a class defi-
nition can be replicated in different source files usimclude without violating the one-definition

rule (89.2.3).

10.2.2 Access Control [class.access]

The declaration oDate in the previous subsection provides a set of functions for manipulating a
Date. However, it does not specify that those functions should be the only ones to depend directly
on Date's representation and the only ones to directly access objects oDaltessThis restriction

can be expressed by usinglassinstead of atruct:

class Date {
int d, m, vy,

public:
void init(int dd, int mm int yy); / / initialize
void add year(int n); / | add nyears
void add_month(int n); / | add n months
void add day(int n); / | add n days

k

The public label separates the class body into two parts. The names in therifiate, part can be
used only by member functions. The secqndlic, part constitutes the public interface to objects

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

226 Classes Chapter 10

of the class. Astruct is simply aclass whose members are public by default (§10.2.8); member
functions can be defined and used exactly as before. For example:

inline woid Date: : add_year(int n)

{
}

However, nonmember functions are barred from using private members. For example:

void timewarp(Date& d)
{

}

There are several benefits to be obtained from restricting access to a data structure to an explicitly
declared list of functions. For example, any error causibgte to take on an illegal value (for
example, December 36, 1985) must be caused by code in a member function. This implies that the
first stage of debugging localization— is completed before the program is even run. This is a
special case of the general observation that any change to the behavior of thateypan and

must be effected by changes to its members. In particular, if we change the representation of a
class, we need only change the member functions to take advantage of the new representation.
User code directly depends only on the public interface and need not be rewritten (although it may
need to be recompiled). Another advantage is that a potential user need examine only the definition
of the member functions in order to learn to use a class.

The protection of private data relies on restriction of the use of the class member names. It can
therefore be circumvented by address manipulation and explicit type conversion. But this, of
course, is cheating. 1@ protects against accident rather than deliberate circumvention (fraud).
Only hardware can protect against malicious use of a general-purpose language, and even that is
hard to do in realistic systems.

Theinit() function was added partially because it is generally useful to have a function that
sets the value of an object and partly because making the data private forces us to provide it.

y+=nm

d.y-= 200; / / error: Date:y is private

10.2.3 Constructors [class.ctor]

The use of functions such mt() to provide initialization for class objects is inelegant and error-
prone. Because it is nowhere stated that an object must be initialized, a programmer can forget to
do so- or do so twice (often with equally disastrous results). A better approach is to allow the pro-
grammer to declare a function with the explicit purpose of initializing objects. Because such a
function constructs values of a given type, it is calledrastructor A constructor is recognized by
having the same name as the class itself. For example:

class Date {

/...

Date(int, int, int); /| constructor
I3

When a class has a constructor, all objects of that class will be initialized. If the constructor
requires arguments, these arguments must be supplied:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 10.2.3 Constructors 227

Date today = Date(23, 6, 1983);

Date xmas(25, 12, 1990); / | abbreviated form

Date my_birthday; [| error: initializer missing
Date releasel 0(10, 12); [| error: 3rd argument missing

It is often nice to provide several ways of initializing a class object. This can be done by providing
several constructors. For example:

class Date {
int d m, y;
public:
/...
Date(int, int, int); / | day, month, year
Date(int, int); / | day, month, today’s year
Date(int); / | day, today’s month and year
Date() ; / | default Date: today
Date(const char*) ; /| date in string representation

h
Constructors obey the same overloading rules as do other functions (§87.4). As long as the construc-
tors differ sufficiently in their argument types, the compiler can select the correct one for each use:

Date today(4);

Date july4(" July 4, 1983") ;

Date guy(" 5 Nov") ;

Date mow; /| default initialized as today

The proliferation of constructors in tiZate example is typical. When designing a class, a pro-
grammer is always tempted to add features just because somebody might want them. It takes more
thought to carefully decide what features are really needed and to include only those. However,
that extra thought typically leads to smaller and more comprehensible programs. One way of
reducing the number of related functions is to use default arguments (87.5).Diat¢heach argu-

ment can be given a default value interpreted as “pick the detfoddty.”

class Date {
int d, m, y;

public:
Date(int dd=0, int mm=0, int yy=0);
/..

h

Date: : Date(int dd, int mm int yy)

d=dd? dd: today. d;

m=mm? mm: today. m;

y=yy?yy: today.y;

/1 check that the Date is valid
}

When an argument value is used to indicate “pick the default,” the value chosen must be outside
the set of possible values for the argument. dagrandmenth, this is clearly so, but forear, zero

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

228 Classes Chapter 10

may not be an obvious choice. Fortunately, there is no year zero on the European calendar; 1AD
(year==1) comes immediately after 1B@dar==- 1).

10.2.4 Static Members [class.static]

The convenience of a default value fates was bought at the cost of a significant hidden prob-
lem. OurDate class became dependent on the global vartaolay. This Date class can be used
only in a context in whictioday is defined and correctly used by every piece of code. This is the
kind of constraint that causes a class to be useless outside the context in which it was first written.
Users get too many unpleasant surprises trying to use such context-dependent classes, and mainte-
nance becomes messy. Maybe “just one little global variable” isn’t too unmanageable, but that
style leads to code that is useless except to its original programmer. It should be avoided.
Fortunately, we can get the convenience without the encumbrance of a publicly accessible glo-
bal variable. A variable that is part of a class, yet is not part of an object of that class, is called a
static member. There is exactly one copy dftatic member instead of one copy per object, as for
ordinary nonstatic members. Similarly, a function that needs access to members of a class, yet
doesn’t need to be invoked for a particular object, is calktdtae member function.
Here is a redesign that preserves the semantics of default constructor vaDagefaithout
the problems stemming from reliance on a global:

class Date {
int d m, vy,
static Date default_date;
public:
Date(int dd =0, int mm=0, int yy=0);
/..

static void set default(int, int, int);
k
We can now define thBate constructor like this:
Date: : Date(int dd, int mm int yy)
d=dd? dd: default_date. d;

m=mm? mm: default_date. m;
y=yy?yy: default_date. y;

/1 check that the Date is valid
}

We can change the default date when appropriate. A static member can be referred to like any
other member. In addition, a static member can be referred to without mentioning an object.
Instead, its name is qualified by the name of its class. For example:

void f()
{

}
Static members both function and data membersnust be defined somewhere. For example:

Date: : set_default(4, 5, 1945);

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 10.2.4 Static Members 229

Date Date: : default_date(16, 12, 1770);
void Date:: set default(int d, int m, int y)
{

}

Now the default value is Beethoven’s birth datentil someone decides otherwise.
Note thatDate() serves as a notation for the valueatte: : default_date. For example:

Date copy_of default_date = Date() ;

Date: : default_date = Date(d, m, y);

Consequently, we don’'t need a separate function for reading the default date.

10.2.5 Copying Class Objects [class.default.copy]

By default, class objects can be copied. In particular, a class object can be initialized with a copy
of another object of the same class. This can be done even where constructors have been declared.
For example:

Date d= today; /I initialization by copy
By default, the copy of a class object is a copy of each member. If that default is not the behavior
wanted for a clasX, a more appropriate behavior can be provided by defining a copy constructor,

X:: X(const X&) . This is discussed further in §10.4.4.1.
Similarly, class objects can by default be copied by assignment. For example:

void f(Dateg d)
{

}

Again, the default semantics is memberwise copy. If that is not the right choice for X,dlass
user can define an appropriate assignment operator (810.4.4.1).

d = today;

10.2.6 Constant Member Functions [class.constmem]

The Date defined so far provides member functions for givin@ate a value and changing it.
Unfortunately, we didn’t provide a way of examining the value Bate. This problem can easily
be remedied by adding functions for reading the day, month, and year:

class Date {
int d m, vy,

public:
int day() const{ return d; }
int month() const{ return m }
int year() const
/..

h

Note theconst after the (empty) argument list in the function declarations. It indicates that these
functions do not modify the state oDate.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

230 Classes Chapter 10

Naturally, the compiler will catch accidental attempts to violate this promise. For example:

inline int Date: : year() const

{
return y++; / / error: attempt to change member value in const function
}
When aconst member function is defined outside its class,abrst suffix is required:
inline int Date: : year() const /1 correct
{
return vy,
}
inline int Date: : year() / / error: const missing in member function type
{
return vy,
}

In other words, theonst is part of the type dDate: : day() andDate:: year() .
A const member function can be invoked for battnst and noneonst objects, whereas a non-
const member function can be invoked only for nmonst objects. For example:

void f(Date& d, const Date& cd)

{

inti=d year(); / / ok

d. add year(1); / | ok

int j=cd. year(); / / ok

cd. add year(1); / / error: cannot change value of const cd
}

10.2.7 Self-Reference [class.this]

The state update functioadd year() , add_month() , andadd day() were defined not to return
values. For such a set of related update functions, it is often useful to return a reference to the
updated object so that the operations can be chained. For example, we would like to write

void f(Date& d)

{
/...
d. add_day(1). add month(1). add year(1);
/...

}

to add a day, a month, and a yead.toTo do this, each function must be declared to return a refer-
ence to dDate:

class Date{
/...

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 10.2.7 Self-Reference 231

Date& add_year(int n); / / add nyears

Date& add_month(int n);/ / add n months

Date& add_day(int n); / / add n days
h

Each (nonstatic) member function knows what object it was invoked for and can explictly refer to
it. For example:

Date& Date: : add year(int n)

if (d==29 && m==2 && ! leapyear(y+n)) {/ / beware of February 29
d=1;
m=3;

}

y+=n

return * this;

}

The expressiofi this refers to the object for which a member function is invoked. It is equivalent
to Simula’sTHISand Smalltalk’self.

In a nonstatic member function, the keywdhis is a pointer to the object for which the func-
tion was invoked. In a noocenst member function of clasX, the type ofthis is X * const. The
const makes it clear that the user is not supposed to change the vahis dh aconst member
function of classX, the type ofthis is const X * const to prevent modification of the object itself
(see also 85.4.1).

Most uses ofhis are implicit. In particular, every reference to a nonstatic member from within
a class relies on an implicit usetbis to get the member of the appropriate object. For example,
theadd year function could equivalently, but tediously, have been defined like this:

Date& Date: : add year(int n)

if (this-> d==29 && this-> m==2 && ! leapyear(this-> y+n)) {

this>d=1;
this>m=3;
}
this>y +=n;
return * this;

}

One common explicit use dhis is in linked-list manipulation (e.g., §24.3.7.4).

10.2.7.1 Physical and Logical Constness [class.const]

Occasionally, a member function is logicatignst, but it still needs to change the value of a mem-

ber. To a user, the function appears not to change the state of its object. However, some detail that
the user cannot directly observe is updated. This is often datiezhl constness For example,

the Date class might have a function returning a string representation that a user could use for out-
put. Constructing this representation could be a relatively expensive operation. Therefore, it would
make sense to keep a copy so that repeated requests would simply return the copy, unless the

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

232 Classes Chapter 10

Date’s value had been changed. Caching values like that is more common for more complicated
data structures, but let's see how it can be achievedDate

class Date{
bool cache valid;
string cache;
void compute_cache value() ; / / fill cache

string string_rep() const; /| string representation

From a user’s point of vievatring_rep doesn’'t change the state of Rate, so it clearly should be
a const member function. On the other hand, the cache needs to be filled before it can be used.
This can be achieved through brute force:

string Date: : string_rep() const

if (cache valid == false) {
Date* th = const_cast<Date*>(this);/ / cast away const
th-> compute_cache value() ;
th-> cache valid = true;

return cache

That is, theconst_cast operator (§15.4.2.1) is used to obtain a pointer of Bak* to this. This
is hardly elegant, and it is not guaranteed to work when applied to an object that was originally
declared as eonst. For example:

Date di,

const Date d2;

string s1=d1. string_rep() ;

string s2=d2. string rep() ; / / undefined behavior

In the case ofll, string_rep() simply casts back td1's original type so that the call will work.
However,d2 was defined as aonst and the implementation could have applied some form of
memory protection to ensure that its value wasn't corrupted. Consequéhtifring_rep() is

not guaranteed to give a single predictable result on all implementations.

10.2.7.2 Mutable [class.mutable]

The explicit type conversion “casting awagnst’ and its consequent implementation-dependent
behavior can be avoided by declaring the data involved in the cache managememitabhe

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 10.2.7.2 Mutable 233

class Date {
mutable thool cache valid;
mutable siring cache;
void compute_cache value() const; / / fill (mutable) cache
/...
public:
/...
string string_rep() const; [| string representation
h

The storage specifienutable specifies that a member should be stored in a way that allows updat-
ing — even when it is a member ofcanst object. In other wordsnutable means “can never be
const.” This can be used to simplify the definition stfing_rep() :

string Date: : string_rep() const

if (! cache valid) {
compute_cache value() ;
cache valid = true;

}

return cache

}
and makes reasonable usestding rep() valid. For example:

Date d3,

const Date d4;

string s3= d3. string_rep() ;

string s4=d4. string_rep() ; / / ok!

Declaring membermutable is most appropriate when (only) part of a representation is allowed to
change. If most of an object changes while the object remains logtoally; it is often better to

place the changing data in a separate object and access it indirectly. If that technique is used, the
string-with-cache example becomes:

struct cache{

bool valid;
string rep;
I3
class Date {
cache* c; / I initialize in constructor (810.4.6)
void compute_cache value() const; / / fill what cache refers to
/...
public:
/...
string string_rep() const / | string representation
h

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

234 Classes Chapter 10

string Date: : string_rep() const

{
if (! c>valid) {
compute_cache value() ;
c-> valid = true
}
return c-> rep;
}

The programming techniques that support a cache generalize to various forms of lazy evaluation.

10.2.8 Structures and Classes [class.struct]

By definition, astruct is a class in which members are by default public; that is,
struct s{ ...

is simply shorthand for

class s{ public: ...

The access specifi@rivate: can be used to say that the members following are private, just as
public: says that the members following are public. Except for the different names, the following
declarations are equivalent:

class Datel {
int d, m, vy,
public:
Datel(int dd, int mm, int yy);

void add year(int n); / / addnyears

h
struct Date2 {
private:
intd m, vy,
public:
Date2(int dd, int mm, int yy);
void add year(int n); / / addnyears
h

Which style you use depends on circumstances and taste. | usually prefestraictder classes
that have all data public. | think of such classes as “not quite proper types, just data structures.”
Constructors and access functions can be quite useful even for such structures, but as a shorthand
rather than guarantors of properties of the type (invariants, see §24.3.7.1).

It is not a requirement to declare data first in a class. In fact, it often makes sense to place data
members last to emphasize the functions providing the public user interface. For example:

class Date3{
public:
Date3(int dd, int mm, int yy);

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 10.2.8 Structures and Classes 235

void add year(int n); / / addnyears
private:

int d, m, vy,
I3

In real code, where both the public interface and the implementation details typically are more
extensive than in tutorial examples, | usually prefer the style us&hte8.
Access specifiers can be used many times in a single class declaration. For example:

class Date4 {
public:
Dated(int dd, int mm int yy);
private:
int d m, y;
public:
void add year(int n); / / addnyears
I8

Having more than one public section, adDiate4, tends to be messy. So does having more than
one private section. However, allowing many access specifiers in a class is useful for machine-
generated code.

10.2.9 In-Class Function Definitions [class.inline]

A member function defined within the class definitierrather than simply declared thereis
taken to be an inline member function. That is, in-class definition of member functions is for small,
frequently-used functions. Like the class definition it is part of, a member function defined in-class
can be replicated in several translation units uginglude. Like the class itself, its meaning must
be the same wherever it is used (§9.2.3).

The style of placing the definition of data members last in a class can lead to a minor problem
with public inline functions that refer to the representation. Consider:

class Date{ / / potentially confusing

public:
int day() const{ return d; } / / return Date::d
/..

private:
int d, m, vy,

I3

This is perfectly good €+ code because a member function declared within a class can refer to
every member of the class as if the class were completely defined before the member function bod-
ies were considered. However, this can confuse human readers.

Consequently, | usually either place the data first or define the inline member functions after the
class itself. For example:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

236 Classes Chapter 10

class Date{

public:
int day() const
/...

private:
int d m, vy,

h

inline int Date: : day() const{ return d; }

10.3 Efficient User-Defined Typesclass.concrete]

The previous section discussed bits and pieces of the desigdaté alass in the context of intro-

ducing the basic language features for defining classes. Here, | reverse the emphasis and discuss
the design of a simple and efficieDate class and show how the language features support this
design.

Small, heavily-used abstractions are common in many applications. Examples are Latin charac-
ters, Chinese characters, integers, floating-point numbers, complex numbers, points, pointers, coor-
dinates, transforms, p@inter,offset pairs, dates, times, ranges, links, associations, nodes,
(value,uni} pairs, disk locations, source code locatid@P characters, currencies, lines, rectan-
gles, scaled fixed-point numbers, numbers with fractions, character strings, vectors, and arrays.
Every application uses several of these. Often, a few of these simple concrete types are used heav-
ily. A typical application uses a few directly and many more indirectly from libraries.

C++ and other programming languages directly support a few of these abstractions. However,
most are not, and cannot be, supported directly because there are too many of them. Furthermore,
the designer of a general-purpose programming language cannot foresee the detailed needs of every
application. Consequently, mechanisms must be provided for the user to define small concrete
types. Such types are called concrete types or concrete classes to distinguish them from abstract
classes (812.3) and classes in class hierarchies (§12.2.4, §12.4).

It was an explicit aim of €+ to support the definition and efficient use of such user-defined
data types very well. They are a foundation of elegant programming. As usual, the simple and
mundane is statistically far more significant than the complicated and sophisticated.

In this light, let us build a better date class:

class Date {
public: / | public interface:
enum Month { jan=1, feb, mar, apr, may, jun, jul, aug, sep, oct, nov, dec};

class Bad date{ };/ / exception class
Date(int dd =0, Month mm=Month(0), int yy=0);/ / 0 means “pick a default”

/1 functions for examining the Date:
int day() const,
Month month() const,
int year() const

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 10.3 Efficient User-Defined Types 237

string string_rep() const /| string representation
void char_rep(char §[]) const | | C-style string representation

static void set default(int, Month, int);

/1 functions for changing the Date:

Date& add_year(int n); / | add nyears

Date& add_meonth(int n); / | add n months

Date& add_day(int n); /| add n days
private:

int d m, y; | | representation

static Date default_date;
h

This set of operations is fairly typical for a user-defined type:

[1] A constructor specifying how objects/variables of the type are to be initialized.

[2] A set of functions allowing a user to examinBate. These functions are markednst to

indicate that they don’t modify the state of the object/variable for which they are called.
[3] A set of functions allowing the user to manipulBtates without actually having to know
the details of the representation or fiddle with the intricacies of the semantics.

[4] A set of implicitly defined operations to alloldates to be freely copied.

[5] A class,Bad_date, to be used for reporting errors as exceptions.
| defined aMonth type to cope with the problem of remembering, for example, whether the 7th of
June is writtenDate(6, 7) (American style) orDate(7, 6) (European style). | also added a
mechanism for dealing with default arguments.

| considered introducing separate tydeay and Year to cope with possible confusion of
Date(1995, jul, 27) andDate(27, jul, 1995) . However, these types would not be as useful as
theMonth type. Almost all such errors are caught at run-time anywthe 26th of July year 27 is
not a common date in my work. How to deal with historical dates before year 1800 or so is a tricky
issue best left to expert historians. Furthermore, the day of the month can’t be properly checked in
isolation from its month and year. See §11.7.1 for a way of defining a convéeaerype.

The default date must be defined as a Vialitle somewhere. For example:

Date Date: : default_date(22, jan, 1901);

| omitted the cache technique from §10.2.7.1 as unnecessary for a type this simple. If needed, it
can be added as an implementation detail without affecting the user interface.
Here is a smalt and contrived- example of howDates can be used:

void f(Date& d)

{
Date Ivb_day = Date(16, Date: : dec, d. year()) ;
if (d. day()== 29 &&d. month()== Date:: feb) {
/..
}
if (midnight()) d. add day(1);
cout << "day after" <<d+l<<’\n’;
}

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

238 Classes Chapter 10

This assumes that the output operatorand the addition operataerhave been declared fbrates.
| do that in §10.3.3.
Note theDate: : febnotation. The functiof() is not a member dbate, so it must specify that
it is referring toDate’s feband not to some other entity.
Why is it worthwhile to define a specific type for something as simple as a date? After all, we
could define a structure:

struct Date {
int day, month, year;
2

and let programmers decide what to do with it. If we did that, though, every user would either have
to manipulate the components Dates directly or provide separate functions for doing so. In
effect, the notion of a date would be scattered throughout the system, which would make it hard to
understand, document, or change. Inevitably, providing a concept as only a simple structure causes
extra work for every user of the structure.

Also, even though thBate type seems simple, it takes some thought to get right. For example,
incrementing éDate must deal with leap years, with the fact that months are of different lengths,
and so on (note: 810.6[1]). Also, the day-month-and-year representation is rather poor for many
applications. If we decided to change it, we would need to modify only a designated set of func-
tions. For example, to represenbDate as the number of days before or after January 1, 1970, we
would need to change onBate’'s member functions (810.6[2]).

10.3.1 Member Functions [class.memfct]

Naturally, an implementation for each member function must be provided somewhere. For exam-
ple, here is the definition ddate’s constructor:

Date: : Date(int dd, Month mm, int yy)
{
if (yy==0) yy = default_date. year() ;
if (mm==0) mm= default_date. month() ;
if (dd==0) dd = default_date. day() ;
int max;
switch (mm) {
case feb:
max = 28+leapyear(yy);
break;
case apr: case jun: case Sep. case Mmov:
max = 30;
break;
case jan: case mar: case may. case jul: case aug:. case oct: case dec
max = 31,
break;
default:
throw Bad_date() ; / / someone cheated
}

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 10.3.1 Member Functions 239

if (dd<1|| max<dd) throw Bad _date() ;
Y=Yy
m= mm
d=dd;
}

The constructor checks that the data supplied denotes a Watd. If not, say for
Date(30, Date: : feb, 1994) , it throws an exception (88.3, Chapter 14), which indicates that
something went wrong in a way that cannot be ignored. If the data supplied is acceptable, the obvi-
ous initialization is done. Initialization is a relatively complicated operation because it involves
data validation. This is fairly typical. On the other hand, onBat has been created, it can be
used and copied without further checking. In other words, the constructor establishes the invariant
for the class (in this case, that it denotes a valid date). Other member functions can rely on that
invariant and must maintain it. This design technique can simplify code immensely (see §24.3.7.1).
I'm using the valueMonth(0) — which doesn’t represent a monthto represent “pick the
default month.” | could have defined an enumeratavionth specifically to represent that. But |
decided that it was better to use an obviously anomalous value to represent “pick the default
month” rather than give the appearance that there were 13 months in a year. NOteathdie
used because it is within the range guaranteed for the enumdviaintim (§4.8).
| considered factoring out the data validation in a separate furistidate() . However, |
found the resulting user code more complicated and less robust than code relying on catching the
exception. For example, assuming thatis defined foDate:

void fill(vector<Date>& aa)

while (cin) {
Date d
try {

}

catch (Date: : Bad_date) {
/1 my error handling
continue

cin>> d;

}
aa. push_back(d); / / see 83.7.3
}

As is common for such simple concrete types, the definitions of member functions vary between
the trivial and the not-too-complicated. For example:

inline int Date: : day() const

{
}

return d,

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

240 Classes Chapter 10

Date& Date: : add_month(int n)

if (n==0) return * this;
if (n>0) {
int delta_y=n/ 12,
int mm= m+n%2,
if (12<mm) {/ / note: int(dec)==12
delta_y++;
mm-= 12;

}

/1 handle the cases where Month(mm) doesn’t have day d
y += delta_y;

m = Month(mm);

return * this;

}

/1 handle negative n

return * this;

10.3.2 Helper Functions [class.helper]

Typically, a class has a number of functions associated with it that need not be defined in the class
itself because they don't need direct access to the representation. For example:

int diff(Date @ Date b); // number of days in the range [a,b) or [b,a)

bool leapyear(int y);
Date mext weekday(Date d);
Date mext_saturday(Date d);

Defining such functions in the class itself would complicate the class interface and increase the
number of functions that would potentially need to be examined when a change to the representa-
tion was considered.

How are such functions “associated” with cld@ate? Traditionally, their declarations were
simply placed in the same file as the declaration of &ts, and users who needBates would
make them all available by including the file that defined the interface (89.2.1). For example:

#include " Date. h"

In addition to using a specifibate. h header, or as an alternative, we can make the association
explicit by enclosing the class and its helper functions in a namespace (88.2):

namespace Chrono { / | facilities for dealing with time
class Date{ /* ...*/};

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 10.3.2 Helper Functions 241

int diff(Date a Date b);
bool leapyear(int y);

Date mext_weekday(Date d);
Date mext_saturday(Date d);
/..

}

The Chrono namespace would naturally also contain related classes, stianeand Stopwatch,
and their helper functions. Using a hamespace to hold a single class is usually an over-elaboration
that leads to inconvenience.

10.3.3 Overloaded Operators [class.over]

It is often useful to add functions to enable conventional notation. For examptpetiator==
function defines the equality operator to work for Dates:

inline bool operator==(Date a Date h) / / equality

{
return a day()== b. day() &&a. month()== b. month() &&a. year()== b. year() ;
}
Other obvious candidates are:
bool operator!=(Date, Date); /| inequality
bool operator<(Date, Date); /I less than
bool operator>(Date, Date); / | greater than

...

Date& operator++(Date& d); /| increase Date by one day
Date& operator--(Date& d); / | decrease Date by one day
Date& operator+=(Date& d, int n); | | add n days

Date& operator-=(Date& d, int n); [| subtract n days

Date aperator+(Date d, int n); / | add n days

Date aperator-(Date d int n); / | subtract n days

ostream& operator<<(ostream&, Date d);/ / outputd

istream& operator>>(istream&, Date& d);/ / readinto d

For Date, these operators can be seen as mere conveniences. However, for marystygiesas
complex numbers (811.3), vectors (83.7.1), and function-like objects (§18w) use of conven-
tional operators is so firmly entrenched in people’s minds that their definition is almost mandatory.
Operator overloading is discussed in Chapter 11.

10.3.4 The Significance of Concrete Classes [class.significance]

| call simple user-defined types, such @ate, concrete typeso distinguish them from abstract
classes (82.5.4) and class hierarchies (812.3) and also to emphasize their similarity to built-in types
such asint and char. They have also been calleglue typesand their usevalue-oriented
programming Their model of use and the “philosophy” behind their design are quite different
from what is often advertised as object-oriented programming (82.6.2).

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

242 Classes Chapter 10

The intent of a concrete type is to do a single, relatively small thing well and efficiently. It is
not usually the aim to provide the user with facilities to modify the behavior of a concrete type. In
particular, concrete types are not intended to display polymorphic behavior (see §2.5.5, §12.2.6).

If you don’t like some detail of a concrete type, you build a new one with the desired behavior.
If you want to “reuse” a concrete type, you use it in the implementation of your new type exactly
as you would have used mt. For example:

class Date_and_time{
private:
Date dt
Time t
public:
Date_and_timeg Date d, Time t);
Date_and_time(int d, Date:: Month m, int y, Time t);
/...
I3
The derived class mechanism discussed in Chapter 12 can be used to define new types from a con-
crete class by describing the desired differences. The definitivleadifom vector (83.7.2) is an
example of this.

With a reasonably good compiler, a concrete class suBlatesincurs no hidden overhead in
time or space. The size of a concrete type is known at compile time so that objects can be allocated
on the run-time stack (that is, without free-store operations). The layout of each object is known at
compile time so that inlining of operations is trivially achieved. Similarly, layout compatibility
with other languages, such as C and Fortran, comes without special effort.

A good set of such types can provide a foundation for applications. Lack of suitable “small
efficient types” in an application can lead to gross run-time and space inefficiencies when overly
general and expensive classes are used. Alternatively, lack of concrete types can lead to obscure
programs and time wasted when each programmer writes code to directly manipulate “simple and
frequently used” data structures.

10.4 Objectgclass.objects]

Objects can be created in several ways. Some are local variables, some are global variables, some
are members of classes, etc. This section discusses these alternatives, the rules that govern them,
the constructors used to initialize objects, and the destructors used to clean up objects before they

become unusable.

10.4.1 Destructors [class.dtor]

A constructor initializes an object. In other words, it creates the environment in which the member

functions operate. Sometimes, creating that environment involves acquiring a ressuoteas a

file, a lock, or some memokry that must be released after use (814.4.7). Thus, some classes need a
function that is guaranteed to be invoked when an object is destroyed in a manner similar to the
way a constructor is guaranteed to be invoked when an object is created. Inevitably, such functions
are calleddestructors They typically clean up and release resources. Destructors are called

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 10.4.1 Destructors 243

implicitly when an automatic variable goes out of scope, an object on the free store is deleted, etc.
Only in very unusual circumstances does the user need to call a destructor explicitly (§10.4.11).

The most common use of a destructor is to release memory acquired in a constructor. Consider
a simple table of elements of some t\jy@mme The constructor fofable must allocate memory to
hold the elements. When the table is somehow deleted, we must ensure that this memory is
reclaimed for further use elsewhere. We do this by providing a special function to complement the
constructor:

class Name{
const char* s;
/...
I
class Table {
Name* p;
size t sz
public:
Table(size t s=15) { p=new Name sz=sg|; }/ / constructor
~Table() { delete]] p; } /| destructor

Name* lookup(const char *) ;
bool insert(Name*) ;
h

The destructor notationTable() uses the complement symbelto hint at the destructor’s rela-
tion to theTable() constructor.

A matching constructor/destructor pair is the usual mechanism for implementing the notion of a
variably-sized object in €. Standard library containers, suchraap, use a variant of this tech-
nigue for providing storage for their elements, so the following discussion illustrates techniques
you rely on every time you use a standard container (including a stestdag). The discussion
applies to types without a destructor, also. Such types are seen simply as having a destructor that
does nothing.

10.4.2 Default Constructors [class.default]

Similarly, most types can be considered to have a default constructor. A default constructor is a
constructor that can be called without supplying an argument. Because of the default at§ument
Table: : Table(size t) is a default constructor. If a user has declared a default constructor, that
one will be used; otherwise, the compiler will try to generate one if needed and if the user hasn’t
declared other constructors. A compiler-generated default constructor implicitly calls the default
constructors for a class’ members of class type and bases (§12.2.2). For example:

struct Tables{
int i;
int vi[10];
Table t1;
Table wt 10];
I

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

244 Classes Chapter 10

Tables ft;

Here,tt will be initialized using a generated default constructor that Talbe(15) for tt. t1 and
each element dt. vt. On the other handt. i and the elements ¢f. vi are not initialized because
those objects are not of a class type. The reasons for the dissimilar treatment of classes and built-in
types are C compatibility and fear of run-time overhead.

Becauseonsts and references must be initialized (85.5, 85.4), a class conteamsipr refer-
ence members cannot be default-constructed unless the programmer explicitly supplies a construc-
tor (810.4.6.1). For example:

struct X {
const int a;
const int&r;
h

X x // error: no default constructor for X

Default constructors can be invoked explicitly (810.4.10). Built-in types also have default con-
structors (86.2.8).

10.4.3 Construction and Destruction [class.ctor.dtor]

Consider the different ways an object can be created and how it gets destroyed afterwards. An
object can be created as:

810.4.4 A named automatic object, which is created each time its declaration is encountered
in the execution of the program and destroyed each time the program exits the block
in which it occurs

810.4.5 A free-store object, which is created usingnése operator and destroyed using the
delete operator

810.4.6 A nonstatic member object, which is created as a member of another class object and
created and destroyed when the object of which it is a member is created and
destroyed

810.4.7 An array element, which is created and destroyed when the array of which it is an ele-
ment is created and destroyed

810.4.8 A local static object, which is created the first time its declaration is encountered in
the execution of the program and destroyed once at the termination of the program

810.4.9 A global, namespace, or class static object, which is created once “at the start of the
program” and destroyed once at the termination of the program

810.4.10 A temporary object, which is created as part of the evaluation of an expression and
destroyed at the end of the full expression in which it occurs

8§10.4.11 An object placed in memory obtained from a user-supplied function guided by argu-
ments supplied in the allocation operation

§10.4.12 Aunion member, which may not have a constructor or a destructor

This list is roughly sorted in order of importance. The following subsections explain these various
ways of creating objects and their uses.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 10.4.4 Local Variables 245

10.4.4 Local Variables [class.local]

The constructor for a local variable is executed each time the thread of control passes through the
declaration of the local variable. The destructor for a local variable is executed each time the local
variable’s block is exited. Destructors for local variables are executed in reverse order of their con-
struction. For example:

void f(int i)

{
Table aa;

Table bb;

if (i>0) {
Table cc;
/...

}
Table dd;
/...

}

Here,aa, bb, anddd are constructed (in that order) each tiff)e is called, andid, bb, andaa are
destroyed (in that order) each time we return ff@m If i>0 for a call,cc will be constructed after
bb and destroyed befodd is constructed.

10.4.4.1 Copying Objects [class.copy]

If t1 andt2 are objects of a clasgable, t2=t1 by default means a memberwise copytbinto t2
(810.2.5). Having assignment interpreted this way can cause a surprising (and usually undesired)
effect when used on objects of a class with pointer members. Memberwise copy is usually the
wrong semantics for copying objects containing resources managed by a constructor/destructor
pair. For example:

void h()
{
Table t1;
Table ©2=1t1; / / copy initialization: trouble
Table t3;
3 =12; / | copy assignment: trouble
}

Here, theTable default constructor is called twice: once eachtloandt3. It is not called fort2
because that variable was initialized by copying. HoweverTHisle destructor is called three
times: once each fdd, t2, andt3! The default interpretation of assignment is memberwise copy, so
t1, t2, andt3 will, at the end oh() , each contain a pointer to the array of names allocated on the
free store whenl was created. No pointer to the array of nhames allocated t@8weas created
remains because it was overwritten by tBet2 assignment. Thus, in the absence of automatic
garbage collection (810.4.5), its storage will be lost to the program forever. On the other hand, the
array created forl appears i1, t2, andt3, so it will be deleted thrice. The result of that is unde-
fined and probably disastrous.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

246 Classes Chapter 10

Such anomalies can be avoided by defining what it means to ciabjlea

class Table {
Il ...
Table(const Table&); / | copy constructor
Table& operator=(const Table&); / / copy assignment
h

The programmer can define any suitable meaning for these copy operations, but the traditional one
for this kind of container is to copy the contained elements (or at least to give the user of the con-
tainer the appearance that a copy has been done; see §11.12). For example:

Table: : Table(const Table& t) /| copy constructor

{

p=new Name szt. s7;

for (int i =0; i<sz i++) p[i] =t. p[i];
}

Table& Table: : operator=(const Table& t) / | assignment

if (this!= &t) { /| beware of self-assignment: t =t
delete]] p;
p = new Name sz-t. s7;
for (int i =0; i<sz i++) p[i] =t. p[i];
}
return * this;
}

As is almost always the case, the copy constructor and the copy assignment differ considerably.
The fundamental reason is that a copy constructor initializes uninitialized memory, whereas the
copy assignment operator must correctly deal with a well-constructed object.

Assignment can be optimized in some cases, but the general strategy for an assignment operator
is simple: protect against self-assignment, delete old elements, initialize, and copy in new elements.
Usually every nonstatic member must be copied (810.4.6.3).

10.4.5 Free Store [class.free]

An object created on the free store has its constructor invoked msheperator and exists until
thedelete operator is applied to a pointer to it. Consider:
int main()
{
Table* p = new Table;

Table* q= new Table;

delete |p;
delete @ // probably causes run-time error

}

The constructoifable: : Table() is called twice. So is the destrucibable: :~ Table() . Unfor-
tunately, thenews and thedeletes in this example don’t match, so the object pointed t@ iy

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 10.4.5 Free Store 247

deleted twice and the object pointed todgiot at all. Not deleting an object is typically not an

error as far as the language is concerned; it is only a waste of space. However, in a program that is
meant to run for a long time, such a memory leak is a serious and hard-to-find error. There are
tools available for detecting such leaks. Deleprtwvice is a serious error; the behavior is unde-
fined and most likely disastrous.

Some @+ implementations automatically recycle the storage occupied by unreachable objects
(garbage collecting implementations), but their behavior is not standardized. Even when a garbage
collector is runningdelete will invoke a destructor if one is defined, so it is still a serious error to
delete an object twice. In many cases, that is only a minor inconvenience. In particular, where a
garbage collector is known to exist, destructors that do memory management only can be elimi-
nated. This simplification comes at the cost of portability and for some programs, a possible
increase in run time and a loss of predictability of run-time behavior (8C.9.1).

After delete has been applied to an object, it is an error to access that object in any way. Unfor-
tunately, implementations cannot reliably detect such errors.

The user can specify homew does allocation and hodelete does deallocation (see §6.2.6.2
and 815.6). It is also possible to specify the way an allocation, initialization (construction), and
exceptions interact (see 814.4.5 and §19.4.5). Arrays on the free store are discussed in §10.4.7.

10.4.6 Class Objects as Members [class.m]

Consider a class that might be used to hold information for a small organization:

class Club {
string name
Table members;
Table officers;
Date founded;
/...
Club(const string& n, Date fd);
h
The Club'’s constructor takes the name of the club and its founding date as arguments. Arguments
for a member’s constructor are specified in a member initializer list in the definition of the con-
structor of the containing class. For example:

Club: : Club(const string& n, Date fd)
: name(n), members() , officers() , founded(fd)
{

I ..
}

The member initializers are preceded by a colon and the individual member initializers are sepa-
rated by commas.

The members’ constructors are called before the body of the containing class’ own constructor
is executed. The constructors are called in the order in which they are declared in the class rather
than the order in which they appear in the initializer list. To avoid confusion, it is best to specify
the initializers in declaration order. The member destructors are called in the reverse order of con-
struction.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

248 Classes Chapter 10

If a member constructor needs no arguments, the member need not be mentioned in the member
initializer list, so

Club: : Club(const string& n, Date fd)
: name(n), founded(fd)
{

/..
}

is equivalent to the previous version. In each c8heh: : officersis constructed biyable: : Table
with the default argumens.

When a class object containing class objects is destroyed, the body of that object’'s own
destructor (if one is specified) is executed first and then the members’ destructors are executed in
reverse order of declaration. A constructor assembles the execution environment for the member
functions for a class from the bottom up (members first). The destructor disassembles it from the
top down (members last).

10.4.6.1 Necessary Member Initialization [class.ref.init]

Member initializers are essential for types for which initialization differs from assign#ibat is,
for member objects of classes without default constructors;oiust members, and for reference
members. For example:

class X{

const int i;

Club c;

Club& pc;

/..

X(int ii, const string&n, Date d, Club&c) : i(ii), ¢(n, d), pc(c) { }
h

There isn’'t any other way to initialize such members, and it is an error not to initialize objects of
those types. For most types, however, the programmer has a choice between using an initializer
and using an assignment. In that case, | usually prefer to use the member initializer syntax, thus
making explicit the fact that initialization is being done. Often, there also is an efficiency advan-
tage to using the initializer syntax. For example:

class Person {
string name
string address
/..
Person(const Person&);
Person(const string& n, const string& a);

3

Person: : Person(const string& n, const string& a)
: name(n)

{
address= g;

}

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 10.4.6.1 Necessary Member Initialization 249

Here name is initialized with a copy oh. On the other handiddress is first initialized to the
empty string and then a copy afs assigned.

10.4.6.2 Member Constants [class.memconst]

It is also possible to initialize a static integral constant member by addgstant-expressiani-
tializer to its member declaration. For example:

class Curious{

public:
static const int c1=7,
static int c2=11;
const int c3=13;
static const int c4=1(17);
static const float c5=7. 0;
/..

ok, but remember definition

error: not const

error: not static

error: in-class initializer not constant
error: in-class not integral

~ — — — —
~ — — — —

k

If (and only if) you use an initialized member in a way that requires it to be stored as an object in
memory, the member must be (uniquely) defined somewhere. The initializer may not be repeated:

const int Curious : cl; /| necessary, but don't repeat initializer here

const int* p = &Curious: : cl; / | ok: Curious::cl has been defined

Alternatively, you can use an enumerator (84.8, 814.4.6, §15.3) as a symbolic constant within a
class declaration. For example:

class X{
enum{ c1=7, c2=11, ¢c3=13, c4=17};
/...

|3

In that way, you are not tempted to initialize variables, floating-point numbers, etc. within a class.

10.4.6.3 Copying Members [class.mem.copy]

A default copy constructor or default copy assignment (810.4.4.1) copies all elements of a class. If
this copy cannot be done, it is an error to try to copy an object of such a class. For example:

class Unique_handle {
private: / | copy operations are private to prevent copying (§11.2.2)
Unique_handle(const Unique_handleg);
Unique_handle& operator=(const Unique_handle&);
public:
..
h
struct Y{
..
Unique_handle @ / / requires explicit initialization

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

250 Classes Chapter 10

Y yi;

Y y2=y1, / | error: cannot copy Y::a
In addition, a default assignment cannot be generated if a nonstatic member is a refeanste, a
or a user-defined type without a copy assignment.

Note that the default copy constructor leaves a reference member referring to the same object in
both the original and the copied object. This can be a problem if the object referred to is supposed
to be deleted.

When writing a copy constructor, we must take care to copy every element that needs to be
copied. By default, elements are default-initialized, but that is often not what is desired in a copy
constructor. For example:

Person: : Person(const Person& a) : name(a. name) { } / / beware!
Here, | forgot to copy thaddress soaddressis initialized to the empty string by default. When

adding a new member to a class, always check if there are user-defined constructors that need to be
updated in order to initialize and copy the new member.

10.4.7 Arrays [class.array]

If an object of a class can be constructed without supplying an explicit initializer, then arrays of that
class can be defined. For example:

Table thl[10];

This will create an array df0 Tables and initialize eaciiable by a call ofTable: : Table() with
the default argumeris.

There is no way to specify explicit arguments for a constructor in an array declaration. If you
absolutely must initialize members of an array with different values, you can write a default con-
structor that directly or indirectly reads and writes nonlocal data. For example:

class Ibuffer {

string buf;
public:
Ibuffer() { cin>>buf; }
/..
h
void f()
Ibuffer wordg] 100];/ / each word initialized from cin
..
}

It is usually best to avoid such subtleties.

The destructor for each constructed element of an array is invoked when that array is destroyed.
This is done implicitly for arrays that are not allocated usiemy. Like C, G-+ doesn't distinguish
between a pointer to an individual object and a pointer to the initial element of an array (85.3).
Consequently, the programmer must state whether an array or an individual object is being deleted.
For example:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 10.4.7 Arrays 251

void f(int s2)

{
Table* t1 = new Table;

Table* t2 = new Table[sZ ;
Table* t3 = new Table;
Table* t4 = new Table[s7;

delete t1; / [right
delete]] t2; / / right
delete]] t3; / / wrong: trouble
delete t4, [| wrong: trouble

}

Exactly how arrays and individual objects are allocated is implementation-dependent. Therefore,
different implementations will react differently to incorrect uses oftédete anddelete]] opera-

tors. In simple and uninteresting cases like the previous one, a compiler can detect the problem, but
generally something nasty will happen at run time.

The special destruction operator for arrajedete[] , isn't logically necessary. However, sup-
pose the implementation of the free store had been required to hold sufficient information for every
object to tell if it was an individual or an array. The user could have been relieved of a burden, but
that obligation would have imposed significant time and space overheads on-sbimg@men-
tations.

As always, if you find C-style arrays too cumbersome, use a class suattaxg83.7.1, §16.3)
instead. For example:

void g()
{

vector<Table>* pl= new vector<Table>(10);
Table* p2 = new Table;

delete pi,;
delete p2

10.4.8 Local Static Store [class.obj.static]

The constructor for a local static object (§7.1.2) is called the first time the thread of control passes
through the object’s definition. Consider this:

void f(int i)
{
static Table tbl;
Il ...
if (i) {
static Table thl2;
/...
}
}

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

252 Classes Chapter 10

int main()
{
f(0);
f(1);
f(2);
..
}

Here, the constructor is called fthl once the first timef() is called. Becaustbl is declared
static, it does not get destroyed on return fré{n and it does not get constructed a second time
whenf() is called again. Because the block containing the declaratit2adoesn’t get executed
for the callf(0) , tbl2 doesn't get constructed until the cflIfl) . It does not get constructed again
when its block is entered a second time.

The destructors for local static objects are invoked in the reverse order of their construction
when the program terminates (§9.4.1.1). Exactly when is unspecified.

10.4.9 Nonlocal Store [class.global]

A variable defined outside any function (that is, global, namespace, andstakisvariables) is
initialized (constructed) befommain() is invoked, and any such variable that has been constructed
will have its destructor invoked after exit fraomain() . Dynamic linking complicates this picture
slightly by delaying the initialization until the code is linked into the running program.

Constructors for nonlocal objects in a translation unit are executed in the order their definitions
occur. Consider:

class X{

/...

static Table memitbl;
}
Table tbl;

Table X : memibl;

namespace Z{
Table thl2;
}

The order of construction ibl, thenX:: memtbl, and thenZ:: tbl2. Note that a declaration (as
opposed to a definition), such as the declaratiomefibl in X, doesn't affect the order of con-
struction. The destructors are called in the reverse order of construziotbl2, then
X:: memibl, and thertbl.

No implementation-independent guarantees are made about the order of construction of nonlo-
cal objects in different compilation units. For example:

/1 filel.c:
Table tbl1;

/1 file2.c:
Table tbl2;

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 10.4.9 Nonlocal Store 253

Whethertbll1 is constructed befortbl2 or vice versa is implementation-dependent. The order isn’t
even guaranteed to be fixed in every particular implementation. Dynamic linking, or even a small
change in the compilation process, can alter the sequence. The order of destruction is similarly
implementation-dependent.

Sometimes when you design a library, it is necessary, or simply convenient, to invent a type
with a constructor and a destructor with the sole purpose of initialization and cleanup. Such a type
would be used once only: to allocate a static object so that the constructor and the destructor are
called. For example:

class Zib_init {
Zlib_init() ; / / get Zlib ready for use
~Zlib_init() ; / / clean up after Zlib

I8

class Zib {
static Zlib_init x;
/...

I8

Unfortunately, it is not guaranteed that such an object is initialized before its first use and destroyed
after its last use in a program consisting of separately compiled units. A partittilan@emen-

tation may provide such a guarantee, but most don’'t. A programmer may ensure proper initial-
ization by implementing the strategy that the implementations usually employ for local static
objects: a first-time switch. For example:

class Zib {

static bool initialized;
static void initialize() { /* initialize*/ initialized = true; }

public:
/1 no constructor
void f()
{
if (initialized == false) initialize() ;
/I ...
}
/...
I8

If there are many functions that need to test the first-time switch, this can be tedious, but it is often
manageable. This technique relies on the fact that statically allocated objects without constructors
are initialized to0. The really difficult case is the one in which the first operation may be time-
critical so that the overhead of testing and possible initialization can be serious. In that case, further
trickery is required (§21.5.2).

An alternative approach for a simple object is to present it as a function (§9.4.1):

int& obj() { static int x=0; return x } / / initialized upon first use

First-time switches do not handle every conceivable situation. For example, it is possible to create
objects that refer to each other during construction. Such examples are best avoided. If such

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

254 Classes Chapter 10

objects are necessary, they must be constructed carefully in stages. Also, there is no similarly sim-
ple last-time switch construct. Instead, see §9.4.1.1 and §21.5.2.

10.4.10 Temporary Objects [class.temp]

Temporary objects most often are the result of arithmetic expressions. For example, at some point
in the evaluation ok* y+z the partial resulk* y must exist somewhere. Except when performance

is the issue (811.6), temporary objects rarely become the concern of the programmer. However, it
happens (§11.6, §22.4.7).

Unless bound to a reference or used to initialize a named object, a temporary object is destroyed
at the end of the full expression in which it was createdullfexpressioris an expression that is
not a subexpression of some other expression.

The standardtring class has a member functionstr() that returns a C-style, zero-terminated
array of characters (83.5.1, §20.4.1). Also, the operaterdefined to mean string concatenation.
These are very useful facilities fsirings. However, in combination they can cause obscure prob-
lems. For example:

void f(string& s1, string& s2, string& s3)

{
const char* cs= (s1+s2). c_str() ;
cout << cs,
if (strlen(cs=(s2+s3). c_str())< 8&&cq 0]==" a’) {
/1 cs used here
}
}

Probably, your first reaction is “but don’t do that,” and | agree. However, such code does get writ-
ten, so it is worth knowing how it is interpreted.

A temporary object of classtring is created to holdl+s2. Next, a pointer to a C-style string
is extracted from that object. Therat the end of the expressierthe temporary object is deleted.

Now, where was the C-style string allocated? Probably as part of the temporary object holding
s1+s2, and that storage is not guaranteed to exist after that temporary is destroyed. Consequently,
cs points to deallocated storage. The output operatbut<<cs might work as expected, but that
would be sheer luck. A compiler can detect and warn against many variants of this problem.

The example with thé-statementis a bit more subtle. The condition will work as expected
because the full expression in which the temporary holsig3 is created is the condition itself.
However, that temporary is destroyed before the controlled statement is entered, so argsuse of
there is not guaranteed to work.

Please note that in this case, as in many others, the problems with temporaries arose from using
a high-level data type in a low-level way. A cleaner programming style would have not only
yielded a more understandable program fragment, but also avoided the problems with temporaries
completely. For example:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 10.4.10 Temporary Objects 255

void f(string& s1, string& s2, string& s3)

{
cout << s1+s2;
string s= s2+s3,
if (s. length()< 8 &&9 0]==" a’) {
/1 use s here
}
}

A temporary can be used as an initializer fopast reference or a named object. For example:
void g(const string&, const string&);

void h(string& s1, string& s2)
{
const string& s= s1+s2,
string ss= s1+s2,

dg(s s9; / / we canuse s and ss here

This is fine. The temporary is destroyed when “its” reference or named object go out of scope.
Remember that returning a reference to a local variable is an error (§87.3) and that a temporary
object cannot be bound to a noonst reference (85.5).

A temporary object can also be created by explicitly invoking a constructor. For example:

void f(Sthape& s, int X, int y)
{

s. move(Point(X, y)) ; /| construct Point to pass to Shape::move()
/..

}
Such temporaries are destroyed in exactly the same way as the implicitly generated temporaries.

10.4.11 Placement of Objects [class.placement]

Operatomew creates its object on the free store by default. What if we wanted the object allocated
elsewhere? Consider a simple class:

class X{

public:
X(int);
/..

h

We can place objects anywhere by providing an allocator function with extra arguments and then
supplying such extra arguments when usiew.

void* operator new(size t, void* p) { return p; } / / explicit placement operator

void* buf = reinterpret_cast<void*>(0xFOOF); / / significant address
X* p2 = new(buf) X;/ / construct an X at ‘buf;’ invokes: operator new(sizeof(X),buf)

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

256 Classes Chapter 10

Because of this usage, thew(buf) X syntax for supplying extra argumentsojgerator new() is
known as thelacement syntaxNote that everpperator new() takes a size as its first argument
and that the size of the object allocated is implicitly supplied (815.6).opémator new() used
by thenew operator is chosen by the usual argument matching rules (§7.4);opeeagor new()

has asize t as its first argument.

The “placement”operator new() is the simplest such allocator. It is defined in the standard
headexnew>.

The reinterpret_cast is the crudest and potentially nastiest of the type conversion operators
(86.2.7). In most cases, it simply yields a value with the same bit pattern as its argument with the
type required. Thus, it can be used for the inherently implementation-dependent, dangerous, and
occasionally absolutely necessary activity of converting integer values to pointers and vice versa.

The placememew construct can also be used to allocate memory from a specific arena:

class Arena {

public:
virtual void* alloc(size t) =0;
virtual void free(void*) =0;

/...
h
void* operator new(size t sz Arena* a)
{
return a> alloc(s2);
}

Now objects of arbitrary types can be allocated from diffeAeahas as needed. For example:

extern Arena* Persistent;

extern Arena* Shared

void g(int i)

{
X* p=new(Persistent) X(i); / / Xin persistent storage
X* q= new(Shared) X(i); / | Xin shared memory
/..

}

Placing an object in an area that is not (directly) controlled by the standard free-store manager
implies that some care is required when destroying the object. The basic mechanism for that is an
explicit call of a destructor:

void destroy(X* p, Arena* a)

{
p->~ X() ; /| call destructor

a->freg(p); / / free memory
}

Note that explicit calls of destructors, like the use of special-purglobal allocators, should be
avoided wherever possible. Occasionally, they are essential. For example, it would be hard to
implement an efficient general container along the lines of the standard hmaoy (83.7.1,
§16.3.8) without using explicit destructor class. However, a novice should think thrice before

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 10.4.11 Placement of Objects 257

calling a destructor explicitly and also should ask a more experienced colleague before doing so.
See §14.4.7 for an explanation of how placement new interacts with exception handling.
There is no special syntax for placement of arrays. Nor need there be, since arbitrary types can
be allocated by placement new. However, a spegedator delete() can be defined for arrays
(819.4.5).

10.4.12 Unions [class.union]

A named union is defined asstiuct, where every member has the same address (see 8C.8.2). A
union can have member functions but not static members.

In general, a compiler cannot know what member of a union is used; that is, the type of the
object stored in a union is unknown. Consequently, a union may not have members with construc-
tors or destructors. It wouldn't be possible to protect that object against corruption or to guarantee
that the right destructor is called when the union goes out of scope.

Unions are best used in low-level code, or as part of the implementation of classes that keep
track of what is stored in the union (see §10.6[20]).

10.5 Advice[class.advice]

[1] Represent concepts as classes; §10.1.

[2] Use public datasfructs) only when it really is just data and no invariant is meaningful for the
data members; §10.2.8.

[3] A concrete type is the simplest kind of class. Where applicable, prefer a concrete type over
more complicated classes and over plain data structures; §10.3.

[4] Make a function a member only if it needs direct access to the representation of a class;
§10.3.2.

[5] Use a namespace to make the association between a class and its helper functions explicit;
§10.3.2.

[6] Make a member function that doesn’t modify the value of its objeohst member function;
§10.2.6.

[7]1 Make a function that needs access to the representation of a class but needn’t be called for a
specific object atatic member function; §10.2.4.

[8] Use a constructor to establish an invariant for a class; §10.3.1.

[9] If a constructor acquires a resource, its class needs a destructor to release the resource;
§10.4.1.

[10] If a class has a pointer member, it needs copy operations (copy constructor and copy assign-
ment); §10.4.4.1.

[11] If a class has a reference member, it probably needs copy operations (copy constructor and
copy assignment); 810.4.6.3.

[12] If a class needs a copy operation or a destructor, it probably needs a constructor, a destructor, a
copy assignment, and a copy constructor; 8§10.4.4.1.

[13] Check for self-assignment in copy assignments; §10.4.4.1.

[14] When writing a copy constructor, be careful to copy every element that needs to be copied
(beware of default initializers); §10.4.4.1.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

258 Classes Chapter 10

[15] When adding a new member to a class, always check to see if there are user-defined construc-
tors that need to be updated to initialize the member; §10.4.6.3.

[16] Use enumerators when you need to define integer constants in class declarations; §10.4.6.1.

[17] Avoid order dependencies when constructing global and namespace objects; §10.4.9.

[18] Use first-time switches to minimize order dependencies; §10.4.9.

[19] Remember that temporary objects are destroyed at the end of the full expression in which they
are created; §10.4.10.

10.6 Exercisegclass.exercises]

1. () Find the error irDate: : add_year() in §10.2.2. Then find two additional errors in the
version in §10.2.7.

2. (R.5) Complete and teflate. Reimplement it with “number of days after 1/1/1970" repre-
sentation.

3. (@) Find aDate class that is in commercial use. Critique the facilities it offers. If possible,
then discuss th&ate with a real user.

4. (1) How do you accesset default from classDate from namespac€hrono (§10.3.2)? Give
at least three different ways.

5. (R) Define a classlistogram that keeps count of numbers in some intervals specified as argu-
ments toHistogram's constructor. Provide functions to print out the histogram. Handle out-
of-range values.

6. ((R) Define some classes for providing random numbers of certain distributions (for example,
uniform and exponential). Each class has a constructor specifying parameters for the distribu-
tion and a functiomraw that returns the next value.

7. (2.5) Complete classable to hold (name,value) pairs. Then modify the desk calculator pro-
gram from §6.1 to use cla$able instead ofmap. Compare and contrast the two versions.

8. () RewriteTnodefrom §7.10[7] as a class with constructors, destructors, etc. Define a tree of
Tnodes as a class with constructors, destructors, etc.

9. (B) Define, implement, and test a set of integers, d¢htset. Provide union, intersection, and
symmetric difference operations.

10. (L.5) Modify clasdntset into a set of nodes, wheNpdeis a structure you define.

11. (B) Define a class for analyzing, storing, evaluating, and printing simple arithmetic expressions
consisting of integer constants and the operators, *, and/ . The public interface should
look like this:

class Expr {
/...
public:
Expr(char*) ;
int eval() ;
void print() ;
h

The string argument for the constructBxpr:: Expr() is the expression. The function
Expr:: eval() returns the value of the expression, &pr:: print() prints a representation

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 10.6 Exercises 259

of the expression ocout. A program might look like this:

Expr x(" 123/ 4+123*4- 3") ;
cout<<"x=" << x ewval() <<"\n"
X. print() ;

Define clas€Expr twice: once using a linked list of nodes as the representation and once using a
character string as the representation. Experiment with different ways of printing the expres-
sion: fully parenthesized, postfix notation, assembly code, etc.

12. (2) Define a clas€har_queue so that the public interface does not depend on the representa-
tion. ImplementChar_queue (a) as a linked list and (b) as a vector. Do not worry about con-
currency.

13. (B) Design a symbol table class and a symbol table entry class for some language. Have a look
at a compiler for that language to see what the symbol table really looks like.

14. (2) Modify the expression class from §10.6[11] to handle variables and the assignment opera-
tor =. Use the symbol table class from §10.6[13].

15. () Given this program:

#include <iostream>
int main()
{

}
modify it to produce this output:

std: : cout << " Hello, world! \n";

Initialize
Hello, world!
Clean up

Do not changenain() in any way.

16. (2) Define aCalculator class for which the calculator functions from 86.1 provide most of the
implementation. Creat€alculators and invoke them for input frokin, from command-line
arguments, and for strings in the program. Allow output to be delivered to a variety of targets
similar to the way input can be obtained from a variety of sources.

17. () Define two classes, each withstatic member, so that the construction of eastditic
member involves a reference to the other. Where might such constructs appear in real code?
How can these classes be modified to eliminate the order dependence in the constructors?

18. (2.5) Compare claddate (§10.3) with your solution to §5.9[13] and §7.10[19]. Discuss errors
found and likely differences in maintenance of the two solutions.

19.(B) Write a function that, given aristream and a vector<string>, produces a
map<string, vector<int>> holding each string and the numbers of the lines on which the string
appears. Run the program on a text-file with no fewer than 1,000 lines looking for no fewer
than 10 words.

20. (2) Take clas€ntry from 8§C.8.2 and modify it so that each union member is always used
according to its type.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

260 Classes Chapter 10

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

	Return to Contents
	10.1 Introduction
	10.2 Classes
	10.3 Efficient User Defined Types
	10.4 Objects
	10.5 Advice

	buy now:

