Appendix

Technicalities

Deep in the fundamental
heart of mind and Universe,
there is a reason.

— Slartibartfast

What the standard promises character sets- integer literals— constant expressions
— promotions and conversions- multidimensional arrays— fields and unions—
memory management garbage collectior— namespaces- access contrel pointers
to data members— templates— static members— friends — templates as template
parameters— template argument deductier typename andtemplate qualification—
instantiation— name binding— templates and namespaeesexplicit instantiation—
advice.

C.1 Introduction and Overview

This chapter presents technical details and examples that do not fit neatly into my presentation of
the main @+ language features and their uses. The details presented here can be important when
you are writing a program and essential when reading code written using them. However, | con-
sider them technical details that should not be allowed to distract from the student’s primary task of
learning to use €+ well or the programmer’s primary task of expressing ideas as clearly and as
directly as possible in3-.

C.2 The Standard

Contrary to common belief, strictly adhering to thet@nguage and library standard doesn't guar-
antee good code or even portable code. The standard doesn’t say whether a piece of code is good

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

http://store.awl.com/catalog/cepub_detail.mhtml?isbn=0-201-88954-4

828 Technicalities Appendix C

or bad; it simply says what a programmer can and cannot rely on from an implementation. One can
write perfectly awful standard-conforming programs, and most real-world programs rely on fea-
tures not covered by the standard.

Many important things are deemadplementation-definetly the standard. This means that
each implementation must provide a specific, well-defined behavior for a construct and that behav-
ior must be documented. For example:

unsigned char cl = 64; /| well-defined: a char has at least 8 bits and can always hold 64
unsigned char c2 = 1256; /| implementation-defined: truncation if a char has only 8 bits

The initialization ofcl is well-defined becausechar must be at least 8 bits. However, the behav-

ior of the initialization ofc2 is implementation-defined because the number of bits Ghaa is
implementation-defined. If thehar has only 8 bits, the valu#256 will be truncated to232
(8C.6.2.1). Most implementation-defined features relate to differences in the hardware used to run
a program.

When writing real-world programs, it is usually necessary to rely on implementation-defined
behavior. Such behavior is the price we pay for the ability to operate effectively on a large range of
systems. For example, the language would have been much simpler if all characters had been 8 bits
and all integers 32 bits. However, 16-bit and 32-bit character sets are not uncemmormare
integers too large to fit in 32 bits. For example, many computers now have disks that hold more
that32G bytes, so 48-bit or 64-bit integers can be useful for representing disk addresses.

To maximize portability, it is wise to be explicit about what implementation-defined features
we rely on and to isolate the more subtle examples in clearly marked sections of a program. A typi-
cal example of this practice is to present all dependencies on hardware sizes in the form of con-
stants and type definitions in some header file. To support such techniques, the standard library
providesnumeric_limits (§22.2).

Undefined behavior is nastier. A construct is deemmgdefinedby the standard if no reason-
able behavior is required by an implementation. Typically, some obvious implementation tech-
nigue will cause a program using an undefined feature to behave very badly. For example:

const int size= 4*1024;
char pagd size ;

void f()
{

}

page| sizetsizel =7; // undefined

Plausible outcomes of this code fragment include overwriting unrelated data and triggering a hard-
ware error/exception. An implementation is not required to choose among plausible outcomes.
Where powerful optimizers are used, the actual effects of undefined behavior can become quite
unpredictable. If a set of plausible and easily implementable alternatives exist, a feature is deemed
implementation-defined rather than undefined.

It is worth spending considerable time and effort to ensure that a program does not use some-
thing deemed undefined by the standard. In many cases, tools exist to help do this.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section C.3 Character Sets 829

C.3 Character Sets

The examples in this book are written using the U.S. variant of the international 7-bit character set
ISO 646-1983 called ASCIl (ANSI3.4-1968). This can cause three problems for people who use
C++in an environment with a different character set:
[1] ASCII contains punctuation characters and operator symbelsh ag , {, and! - that
are not available in some character sets.
[2] We need a notation for characters that do not have a convenient character representation
(e.g., newline and “the character with value 17").
[3] ASCII doesn't contain characters, such-ag , &, and1 — that are used for writing lan-
guages other than English.

C.3.1 Restricted Character Sets

The ASCII special charactefs], {, }, |, and\ occupy character set positions designated as
alphabetic by ISO. In most European national ISO-646 character sets, these positions are occupied
by letters not found in the English alphabet. For example, the Danish national character set uses
them for the vowelgE, & @, g, A, and&. No significant amount of text can be written in Danish
without them.

A set of trigraphs is provided to allow national characters to be expressed in a portable way
using a truly standard minimal character set. This can be useful for interchange of programs, but it
doesn’t make it easier for people to read programs. Naturally, the long-term solution to this prob-
lem is for G+ programmers to get equipment that supports both their native languagetnd C
well. Unfortunately, this appears to be infeasible for some, and the introduction of new equipment
can be a frustratingly slow process. To help programmers stuck with incomplete character sets,
Ct++ provides alternatives:

U Keywords U Digraphs U Trigraphs S
and && % { = #
(and_eq &= 0> Pl I 0
(bitand & [X: [2% { O
Chitor | B] 2?08\ U
H:on‘pl ~ Ly T 99 B
rhot ! %0 ## ?% } 0
ror Il O 7w " 0
oreq |= O ol | O
Ckor ~ 0 2. ~ U
%(or_eq ’_: B %’?’? ? B
hoteq != [O O

Programs using the keywords and digraphs are far more readable than the equivalent programs
written using trigraphs. However, if characters such ase not available, trigraphs are necessary
for putting “missing” characters into strings and character constants. For exafhpléecomes
<.
Some people prefer the keywords suchrdto their traditional operator notation.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

830 Technicalities Appendix C

C.3.2 Escape Characters

A few characters have standard names that use the badkataah escape character:

U Name ASClI Name G+ Name U
hewline NL (LF) \n S
Chorizontal tab HT \t 0
Overtical tab VT \v O
Lhackspace BS \b 0

arriage return CR \r B

orm feed FF \f 0
ralert BEL \a 0
[backslash \ \\ O
Lhuestion mark ? \? 0

ingle quote ' \ B
rdouble quote " \" 0
pctal number o000 \ 000 0
Fhex number hhh \x hhh ... G

Despite their appearance, these are single characters.

It is possible to represent a character as a one-, two-, or three-digit octal nufalbewéd by
octal digits) or as a hexadecimal numbarféllowed by hexadecimal digits). There is no limit to
the number of hexadecimal digits in the sequence. A sequence of octal or hexadecimal digits is ter-
minated by the first character that is not an octal digit or a hexadecimal digit, respectively. For
example:

U Octal Hexadecimal Decimal ASCII S
0\6’ X6’ 6 ACK 0
0\60° \x30' 48 0 0

B\137 "\x05f' 95 o

1m]|

This makes it possible to represent every character in the machine’s character set and, in particular,
to embed such characters in character strings (see 8§5.2.2). Using any numeric notation for charac-
ters makes a program nonportable across machines with different character sets.

It is possible to enclose more than one character in a character literal, for ekabipleSuch
uses are archaic, implementation-dependent, and best avoided.

When embedding a numeric constant in a string using the octal notation, it is wise always to use
three digits for the number. The notation is hard enough to read without having to worry about
whether or not the character after a constant is a digit. For hexadecimal constants, use two digits.
Consider these examples:

char vi]] ="awxah\129" / | 6chars:’a’ '\xa’ 'h’ \12' '9’ "\0’
char v2[] ="awxah\127", /| 5chars:’a’ \xa’ 'h’ \127' "\0’
char v3[] ="awxad\127"; [| 4 chars:’'a’ \xad’ \127" \0’
char v4[] ="awxad\0127"; /| 5chars:’a’ \xad’ \012’ '7’ "\0’

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section C.3.3 Large Character Sets 831

C.3.3 Large Character Sets

A C++ program may be written and presented to the user in character sets that are much richer than
the 127 character ASCII set. Where an implementation supports larger character sets, identifiers,
comments, character constants, and strings may contain characters sygrandia However, to
be portable the implementation must map these characters into an encoding using only characters
available to every € user. In principle, this translation into the#Cbasic source character set
(the set used in this book) occurs before the compiler does any other processing. Therefore, it does
not affect the semantics of the program.

The standard encoding of characters from large character sets into the smaller set supported
directly by G-+ is presented as sequences of four or eight hexadecimal digits:

universal-character-name:
W XXXXXXXX
Wu XX XX

Here, X represents a hexadecimal digit. For examplide2b. The shorter notatiokuXXXX is
equivalent tdUOO0OXXXX. A number of hexadecimal digits different from four or eight is a lexi-
cal error.

A programmer can use these character encodings directly. However, they are primarily meant
as a way for an implementation that internally uses a small character set to handle characters from a
large character set seen by the programmer.

If you rely on special environments to provide an extended character set for use in identifiers,
the program becomes less portable. A program is hard to read unless you understand the natural
language used for identifiers and comments. Consequently, for programs used internationally it is
usually best to stick to English and ASCII.

C.3.4 Signed and Unsigned Characters

It is implementation-defined whether a platmar is considered signed or unsigned. This opens the
possibility for some nasty surprises and implementation dependencies. For example:

char ¢ =255, / / 255 is “all ones,” hexadecimal OXFF
int i =c

What will be the value of? Unfortunately, the answer is undefined. On all implementations |
know of, the answer depends on the meaning of the “all onbaf’ bit pattern when extended into
anint. On a SGI Challenge machinechar is unsigned, so the answer285. On a Sun SPARC
or an IBM PC, where ghar is signed, the answer isl. In this case, the compiler might warn
about the conversion of the lite@B5 to thechar value- 1. However, @+ does not offer a general
mechanism for detecting this kind of problem. One solution is to avoid ¢gilamand use the spe-
cific char types only. Unfortunately, some standard library functions, sustramp() , take plain
chars only (§20.4.1).

A char must behave identically to eithersigned char or anunsigned char. However, the
threechar types are distinct, so you can’'t mix pointers to diffehar types. For example:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

832 Technicalities Appendix C

void f(char c, signed char sc, unsigned char uc)

{
char* pc= &uc; /| error: no pointer conversion
signed char* psc=pc, / / error: no pointer conversion
unsigned char* puc=pc;/ / error: no pointer conversion
psc = puc; /| error: no pointer conversion
}

Variables of the threehar types can be freely assigned to each other. However, assigning a too-
large value to a signeghar (8C.6.2.1) is still undefined. For example:

void f(char c, signed char sc, unsigned char uc)

{
c=255; / / undefined if plain chars are signed and have 8 bits
c=sc [/ / ok
c=uc;, / / undefined if plain chars are signed and if uc’s value is too large
sc=uc;, / / undefined if uc’s value is too large
uc=sc / / ok: conversion to unsigned
sc=c; [/ [/ undefined if plain chars are unsigned and if ¢’s value is too large
uc=c; [/ / ok:conversion to unsigned
}

None of these potential problems occurs if you use plan throughout.

C.4 Types of Integer Literals

In general, the type of an integer literal depends on its form, value, and suffix:
— Ifitis decimal and has no suffix, it has the first of these types in which its value can be rep-
resentedint, long int, unsigned long int.
— If it is octal or hexadecimal and has no suffix, it has the first of these types in which its
value can be representédt, unsigned int, long int, unsigned long int.
— |Ifit is suffixed byu or U, its type is the first of these types in which its value can be repre-
sentedunsigned int, unsigned long int.
— |Ifit is suffixed byl or L, its type is the first of these types in which its value can be repre-
sentediong int, unsigned long int.
— Ifitis suffixed byul, lu, uL, Lu, Ul, IU, UL, orLU, its type isunsigned long int.
For example 100000 is of typeint on a machine with 32-bints but of typdong int on a machine
with 16-bitints and 32-bilongs. Similarly,0XA0Q0 is of typeint on a machine with 32-bints
but of typeunsigned int on a machine with 16-bints. These implementation dependencies can be
avoided by using suffixes00000L is of typelong int on all machines an@XAQ00U is of type
unsigned int on all machines.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section C.5 Constant Expressions 833

C.5 Constant Expressions

In places such as array bounds (85.2), case labels (86.3.2), and initializers for enumerators (84.8),
C++ requires aonstant expressionA constant expression evaluates to an integral or enumeration
constant. Such an expression is composed of literals (84.3.1, 84.4.1, 84.5.1), enumerators (84.8),
and consts initialized by constant expressions. In a template, an integer template parameter can
also be used (8C.13.3). Floating literals (84.5.1) can be used only if explicitly converted to an inte-
gral type. Functions, class objects, pointers, and references can be used as operasizedb the
operator (86.2) only.

Intuitively, constant expressions are simple expressions that can be evaluated by the compiler
before the program is linked (89.1) and starts to run.

C.6 Implicit Type Conversion

Integral and floating-point types (84.1.1) can be mixed freely in assignments and expressions.
Wherever possible, values are converted so as not to lose information. Unfortunately, value-
destroying conversions are also performed implicitly. This section provides a description of con-
version rules, conversion problems, and their resolution.

C.6.1 Promotions

The implicit conversions that preserve values are commonly referredptorastions Before an
arithmetic operation is performenhtegral promotionis used to creatmts out of shorter integer
types. Note that these promotions witit promote tdong (unless the operand iswachar_t or an
enumeration that is already larger thanimt). This reflects the original purpose of these promo-
tions in C: to bring operands to the “natural” size for arithmetic operations.

The integral promotions are:

— A char, signed char, unsigned char, short int, or unsigned short int is converted to amt
if int can represent all the values of the source type; otherwise, it is converted to an
unsigned int.

— A wechar_t (84.3) or an enumeration type (84.8) is converted to the first of the following
types that can represent all the values of its underlying imbeunsigned int, long, or
unsigned long.

— A bit-field (8C.8.1) is converted to ant if int can represent all the values of the bit-field;
otherwise, it is converted wansigned int if unsigned int can represent all the values of the
bit-field. Otherwise, no integral promotion applies to it.

— A bool is converted to amt; falsebecome® andtrue becomed.

Promotions are used as part of the usual arithmetic conversions (8C.6.3).

C.6.2 Conversions

The fundamental types can be converted into each other in a bewildering number of ways. In my
opinion, too many conversions are allowed. For example:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

834 Technicalities Appendix C

void f(double d)
{

}

When writing code, you should always aim to avoid undefined behavior and conversions that qui-
etly throw away information. A compiler can warn about many questionable conversions. Fortu-
nately, many compilers actually do.

char c=d; / / beware: double-precision floating-point to char conversion

C.6.2.1 Integral Conversions

An integer can be converted to another integer type. An enumeration value can be converted to an
integer type.

If the destination type ignsigned, the resulting value is simply as many bits from the source as
will fit in the destination (high-order bits are thrown away if necessary). More precisely, the result
is the least unsigned integer congruent to the source integer ntllthe nth, wheren is the
number of bits used to represent the unsigned type. For example:

unsigned char uc=1023; // binary 1111111111: uc becomes binary 11111111, that is, 255

If the destination type isigned, the value is unchanged if it can be represented in the destination
type; otherwise, the value is implementation-defined:

signed char sc=1023; / / implementation-defined

Plausible results ai265 and- 1 (§C.3.4).
A Boolean or enumeration value can be implicitly converted to its integer equivalent (§84.2,
§4.8).

C.6.2.2 Floating-Point Conversions

A floating-point value can be converted to another floating-point type. If the source value can be
exactly represented in the destination type, the result is the original numeric value. If the source
value is between two adjacent destination values, the result is one of those values. Otherwise, the
behavior is undefined. For example:

float f=FLT_MAX; /I largest float value

double d=f; / | ok:d==

float f2=d; ! | ok:f2 ==

double d3=DBL_MAX; / / largest double value

float 3 = d3; /| undefined if FLTMAX<DBL_MAX

C.6.2.3 Pointer and Reference Conversions

Any pointer to an object type can be implicitly converted tmid* (85.6). A pointer (reference)

to a derived class can be implicitly converted to a pointer (reference) to an accessible and unam-
biguous base (812.2). Note that a pointer to function or a pointer to member cannot be implicitly
converted to aoid* .

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section C.6.2.3 Pointer and Reference Conversions 835

A constant expression (8C.5) that evaluate® tan be implicitly converted to any pointer or
pointer to member type (85.1.1). For example:

int* p=

!' .! S o " ' 1

A T* can be implicitly converted to eonst T* (85.4.1). Similarly, al& can be implicitly con-
verted to aonst T&

C.6.2.4 Pointer-to-Member Conversions

Pointers and references to members can be implicitly converted as described in §15.5.1.

C.6.2.5 Boolean Conversions

Pointers, integral, and floating-point values can be implicitly convertéodb(84.2). A nonzero
value converts ttrue; a zero value converts false For example:

void f(int* p, int i)
{

bool is _not_zero = p; [I true if p!=0
bool b2=1; /I trueifi'=0

C.6.2.6 Floating-Integral Conversions

When a floating-point value is converted to an integer value, the fractional part is discarded. In
other words, conversion from a floating-point type to an integer type truncates. For example, the
value ofint(1. 6) is 1. The behavior is undefined if the truncated value cannot be represented in

the destination type. For example:

inti=27, / | ibecomes 2
char b=2000. 7; / / undefined for 8-bit chars: 2000 cannot be represented as an 8-bit char

Conversions from integer to floating types are as mathematically correct as the hardware allows.
Loss of precision occurs if an integral value cannot be represented exactly as a value of the floating
type. For example,

int i = float(1234567890) ;

left i with the valuel234567936 on a machine, where boihts andfloats are represented using 32
bits.

Clearly, it is best to avoid potentially value-destroying implicit conversions. In fact, compilers
can detect and warn against some obviously dangerous conversions, such as floating to integral and
long int to char. However, general compile-time detection is impractical, so the programmer must
be careful. When “being careful” isn’t enough, the programmer can insert explicit checks. For
example:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

836 Technicalities Appendix C

class check failed{ };

char checked(int i)

{
char c=i; / | warning: not portable (8C.6.2.1)

if (i 1= c) throw check failed() ;
return c;

}

void my _code(int i)

{
char ¢ = checked(i);
/...

}
To truncate in a way that is guaranteed to be portable requires thenussedtc limits (§22.2).

C.6.3 Usual Arithmetic Conversions

These conversions are performed on the operands of a binary operator to bring them to a common
type, which is then used as the type of the result:

[1] If either operand is of typkang double, the other is converted tong double.

— Otherwise, if either operand d®uble, the other is converted timuble.

— Otherwise, if either operandfioat, the other is converted float.

— Otherwise, integral promotions (8C.6.1) are performed on both operands.

[2] Then, if either operand isnsigned long, the other is converted tmsigned long.

— Otherwise, if one operand islang int and the other is aunsigned int, then if along int
can represent all the values of amsigned int, theunsigned int is converted to #ong int;
otherwise, both operands are convertednsigned long int.

— Otherwise, if either operandlieng, the other is converted tong.

— Otherwise, if either operand imsigned, the other is converted tmsigned

— Otherwise, both operands arg.

C.7 Multidimensional Arrays

It is not uncommon to need a vector of vectors, a vector of vector of vectors, etc. The issue is how
to represent these multidimensional vectors tr+.CHere, | first show how to use the standard
library vector class. Next, | present multidimensional arrays as they appear in G-anquldgrams

using only built-in facilities.

C.7.1 Vectors

The standaratector (§16.3) provides a very general solution:

vector< vector<int> > m,

This creates a vector of vectors of integers that initially contains no elements. We could initialize it
to a three-by-five matrix like this:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section C.7.1 Vectors 837

void init_m()
m. resize(3); /| m now holds 3 empty vectors
for (int i = 0; i<m. size() ; i++) {
m[i]. resize(5); /| now each of m’s vectors holds 5 ints
for (int j=0; j<m[i]. size) ; j++) m[i][j] = 10*i+j;
}
}

or graphically:

m (3]
mio}, [§—— = 00/01]02]03[04]
miif:| 5 10[11[12[13]14
m[2]:| 5—

T ————=[20[21]22]23]24

Eachvector implementation holds a pointer to its elements plus the number of elements. The ele-
ments are typically held in an array. For illustration, | gave a#tdm initial value representing its
coordinates.
It is not necessary for thector<int>s in thevector< vector<int> > to have the same size.
Accessing an element is done by indexing twice. For examplg] j] is thejth element of
theith vector. We can primhlike this:

void print_m()

for (int i = 0; i<m. size() ; i++) {
for (int j =0; j<m[i]. siz&)) ; j++) cout<< m[i][j] << " \t;
cout << " \n’;

}
which gives:

0 1 2 3 4
10 11 12 13 14
20 21 22 23 24

C.7.2 Arrays

The built-in arrays are a major source of errergspecially when they are used to build multidi-
mensional arrays. For novices, they are also a major source of confusion. Wherever possible, use
vector, list, valarray, string, etc.

Multidimensional arrays are represented as arrays of arrays. A three-by-five array is declared
like this:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

838 Technicalities Appendix C

int ma[3][5];/ / 3arrays with 5 ints each
For arrays, the dimensions must be given as part of the definition. We can initialike this:

void init_ma()
{
for (int i =0; i<3; i++) {
for (int j=0; j<5; j++) mali][j] = 10i+j;
}

}
or graphically:

ma: \00\01\02\03\04\10\11\12\13\14\20\21\22\23\24\

The arraymais simply 15ints that we access as if it were 3 arrays @fits. In particular, there is

no single object in memory that is the matmia— only the elements are stored. The dimens®ns
and>5 exist in the compiler source only. When we write code, it is our job to remember them some-
how and supply the dimensions where needed. For example, we migimaplike this:

void print_ma()

for (int i =0; i<3; i++) {
for (int j =0; j<5; j++) cout<< ma]i][j] << " \t’;
cout << " \n’;

}

The comma notation used for array bounds in some languages cannot be usethégabse the
comma () is a sequencing operator (86.2.2). Fortunately, most mistakes are caught by the com-
piler. For example:

int bad[3, 5]; / | error: comma not allowed in constant expression

int good[3][5]; / | 3arrays with 5 ints each

int ouch=good[1, 4]; / / error: intinitialized by int* (good[1,4] means good[4], which is an int*)
int nice= good| 1][4];

C.7.3 Passing Multidimensional Arrays

Consider defining a function to manipulate a two-dimensional matrix. If the dimensions are known
at compile time, there is no problem:

void print_m35(int m[3][5])
for (int i =0; i<3; i++) {

for (int j =0; j<5; j++) cout<<m[i][j] << \t;
cout<< ' \n’;

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section C.7.3 Passing Multidimensional Arrays 839

A matrix represented as a multidimensional array is passed as a pointer (rather than copied; 85.3).
The first dimension of an array is irrelevant to the problem of finding the location of an element; it
simply states how many elements (h8yeof the appropriate type (hemt[5]) are present. For
example, look at the previous representatiomafand note that by our knowing only that the sec-

ond dimension i, we can locatana i][5] for anyi. The first dimension can therefore be
passed as an argument:

void print_miS(int m][5], int diml)

{
for (int i =0; i<diml; i++) {
for (int j=0; j<5; j++) cout<<m[i][j] <<"\t;
cout << "\n’;
}
}

The difficult case is when both dimensions need to be passed. The “obvious solution” simply
does not work:

void print_mij(int m[][] ., int diml, int dim2) // doesn't behave as most people would think
for (int i =0; i<diml; i++) {
for (int j=0; j<dim2 j++) cout<<m[i][j] <<"\; / [/ surprise!
cout << " \n’;

}

First, the argument declaration(][] is illegal because the second dimension of a multidimen-
sional array must be known in order to find the location of an element. Second, the expression
m[i][j] is (correctly) interpreted ag*(mti)+ j), although that is unlikely to be what the pro-
grammer intended. A correct solution is:

void print_mij(int* m, int diml, int dim2)
for (int i =0; i<diml; i++) {
for (int j =0; j<dim2 j++) cout << m[i*dim2+j] << \t"; // obscure
cout << " \n’;

}

The expression used for accessing the membgyamh mij() is equivalent to the one the com-
piler generates when it knows the last dimension.
To call this function, we pass a matrix as an ordinary pointer:

int main()
int V[3][5 ={ {0, 1,2 3 4}, {10, 11, 12, 13, 14}, {20, 21, 22, 23, 24} };

print_m35(v);
print_mi5(v, 3);
print_mij(&v[O][0], 3, 5);

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

840 Technicalities Appendix C

Note the use ofv[O] O] for the last cally[0] would do because it is equivalent, butrould be
a type error. This kind of subtle and messy code is best hidden. If you must deal directly with mul-
tidimensional arrays, consider encapsulating the code relying on it. In that way, you might ease the
task of the next programmer to touch the code. Providing a multidimensional array type with a
proper subscripting operator saves most users from having to worry about the layout of the data in
the array (822.4.6).

The standardector (§16.3) doesn’t suffer from these problems.

C.8 Saving Space

When programming nontrivial applications, there often comes a time when you want more memory
space than is available or affordable. There are two ways of squeezing more space out of what is
available:

[1] Put more than one small object into a byte.

[2] Use the same space to hold different objects at different times.
The former can be achieved by usiiglds and the latter by usingnions These constructs are
described in the following sections. Many uses of fields and unions are pure optimizations, and
these optimizations are often based on nonportable assumptions about memory layouts. Conse-
qguently, the programmer should think twice before using them. Often, a better approach is to
change the way data is managed, for example, to rely more on dynamically allocated store (86.2.6)
and less on preallocated (static) storage.

C.8.1 Fields

It seems extravagant to use a whole byteh@ or abool) to represent a binary variablefor
example, an on/off switch but achar is the smallest object that can be independently allocated
and addressed int€ (85.1). It is possible, however, to bundle several such tiny variables together
asfieldsin a struct. A member is defined to be a field by specifying the number of bits it is to
occupy. Unnamed fields are allowed. They do not affect the meaning of the named fields, but they
can be used to make the layout better in some machine-dependent way:

struct PPN { / | R6000 Physical Page Number
unsigned int PFN: 22; / / Page Frame Number
int: 3 /| unused

unsigned int CCA: 3; / / Cache Coherency Algorithm

bool nonreachable: 1;

bool dirty: 1;

bool valid: 1;

bool global : 1;

h

This example also illustrates the other main use of fields: to name parts of an externally imposed
layout. A field must be of an integral or enumeration type (84.1.1). It is not possible to take the
address of a field. Apart from that, however, it can be used exactly like other variables. Note that a
boal field really can be represented by a single bit. In an operating system kernel or in a debugger,
the typePPN might be used like this:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section C.8.1 Fields 841

void part_of VM_system(PPN* p)

{
/...
if (p->dirty) {/ / contents changed
/1 copy to disc
p-> dirty = 0;
}
/...
}

Surprisingly, using fields to pack several variables into a single byte does not necessarily save
space. It saves data space, but the size of the code needed to manipulate these variables increases
on most machines. Programs have been known to shrink significantly when binary variables were
converted from bit fields to characters! Furthermore, it is typically much faster to actessoa

anint than to access a field. Fields are simply a convenient shorthand for using bitwise logical
operators (86.2.4) to extract information from and insert information into part of a word.

C.8.2 Unions

A union is astruct in which all members are allocated at the same address so toaidgheccu-
pies only as much space as its largest member. Naturallyipa can hold a value for only one
member at a time. For example, consider a symbol table entry that holds a name and a value:

enum Type{ S |};

struct Entry {
char* name
Type t,
char* s; / / usesift==S
int i; [[useiift==
5

void f(Entry* p)
{

if (p>t==9 cout<< p->s
/...
}

The members andi can never be used at the same time, so space is wasted. It can be easily recov-
ered by specifying that both should be membersuriian, like this:

union Value{
char* s;
int i;
b
The language doesn’t keep track of which kind of value is heldumyom, so the programmer must
still do that:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

842 Technicalities Appendix C

struct Entry {
char* name

Type t
Value v, / / use v.s if t==S; use v.i if t==I

b
void f(Entry* p)
{

if(p>t==9) cout<< p->v. s
/...
}

Unfortunately, the introduction of theion forced us to rewrite code to says instead of plairs.

This can be avoided by using anonymous unigrwhich is a union that doesn’t have a nhame and
consequently doesn’t define a type. Instead, it simply ensures that its members are allocated at the
same address:

struct Entry {
char* name
Type t
union {
char* s; / [/ usesift==S
int i; [| useiif t==I

h
void f(Entry* p)

if(p>t==9 cout<<p->s
/...
}

This leaves all code using &mtry unchanged.

Using aunion so that its value is always read using the member through which it was written is
a pure optimization. However, it is not always easy to ensure timbais used in this way only,
and subtle errors can be introduced through misuse. To avoid errors, one can encapgsigate a
so that the correspondence between a type field and accessibiotinenembers can be guaranteed
(810.6[20)).

Unions are sometimes misused for “type conversion.” This misuse is practiced mainly by pro-
grammers trained in languages that do not have explicit type conversion facilities, where cheating is
necessary. For example, the following “converts” iabto anint* simply by assuming bitwise
equivalence:

union Fudge {
int i;
int* p;

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section C.8.2 Unions 843

int* cheat(int i)
{
Fudge &
ai=i;
return a p; / / baduse

}

This is not really a conversion at all. On some machinesptaand anint* do not occupy the
same amount of space, while on others, no integer can have an odd address. Suchnien isf a
dangerous and nonportable, and there is an explicit and portable way of specifying type conversion
(86.2.7).

Unions are occasionally used deliberately to avoid type conversion. One might, for example,
use aFudgeto find the representation of the poin@er

int main()

Fudge foo;
foo. p=0;
cout << " the integer value of the pointer 0 is" << foo. i <<’ \n;

C.8.3 Unions and Classes

Many nontrivialunions have some members that are much larger than the most frequently-used
members. Because the size afiraon is at least as large as its largest member, space is wasted.
This waste can often be eliminated by using a set of derived classes instemibof a

A class with a constructor, destructor, or copy operation cannot be the typmiohanember
(810.4.12) because the compiler would not know which member to destroy.

C.9 Memory Management

There are three fundamental ways of using memory-in C

Static memoryin which an object is allocated by the linker for the duration of the program.
Global and namespace variablstatic class members (§10.2.4), astatic variables in
functions (87.1.2) are allocated in static memory. An object allocated in static memory is
constructed once and persists to the end of the program. It always has the same address.
Static objects can be a problem in programs using threads (shared-address space concur-
rency) because they are shared and require locking for proper access.

Automatic memoryin which function arguments and local variables are allocated. Each entry
into a function or a block gets its own copy. This kind of memory is automatically created
and destroyed; hence the name automatic memory. Automatic memory is also said “to be
on the stack.” If you absolutely must be explicit about thist @rovides the redundant
keywordauto.

Free store from which memory for objects is explicitly requested by the program and where a
program can free memory again once it is done with it (usmganddelete). When a pro-
gram needs more free storesw requests it from the operating system. Typically, the free

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

844 Technicalities Appendix C

store (also calledynamic memorgr the heap grows throughout the lifetime of a program
because no memory is ever returned to the operating system for use by other programs.
As far as the programmer is concerned, automatic and static storage are used in simple, obvious,
and implicit ways. The interesting question is how to manage the free store. Allocation (using
new) is simple, but unless we have a consistent policy for giving memory back to the free store
manager, memory will fill up- especially for long-running programs.

The simplest strategy is to use automatic objects to manage corresponding objects in free store.
Consequently, many containers are implemented as handles to elements stored in the free store
(825.7). For example, an automa8iring (811.12) manages a sequence of characters on the free
store and automatically frees that memory when it itself goes out of scope. All of the standard con-
tainers (816.3, Chapter 17, Chapter 20, §22.4) can be conveniently implemented in this way.

C.9.1 Automatic Garbage Collection

When this regular approach isn't sufficient, the programmer might use a memory manager that
finds unreferenced objects and reclaims their memory in which to store new objects. This is usu-
ally calledautomatic garbage collectigror simplygarbage collection Naturally, such a memory
manager is called garbage collectar

The fundamental idea of garbage collection is that an object that is no longer referred to in a
program will not be accessed again, so its memory can be safely reused for some new object. For
example:

void f()
{

int* p=new int;
p=0;
char* q=new char;

}

Here, the assignmemt=0 makes theint unreferenced so that its memory can be used for some
other new object. Thus, tlehar might be allocated in the same memory asmeo thatq holds
the value thap originally had.

The standard does not require that an implementation supply a garbage collector, but garbage
collectors are increasingly used fot#in areas where their costs compare favorably to those of
manual management of free store. When comparing costs, consider the run time, memory usage,
reliability, portability, monetary cost of programming, monetary cost of a garbage collector, and
predictability of performance.

C.9.1.1 Disguised Pointers

What should it mean for an object to be unreferenced? Consider:

void f()

{
int* p=new int;
long i1 = reinterpret_cast<long>(p)& OxFFFF000O;
long i2 = reinterpret_cast<long>(p)& 0x0000FFFF;
p=0;

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section C.9.1.1 Disguised Pointers 845

/1 point #1: no pointer to the int exists here

p = reinterpret_cast<int*>(i1| i2);
/1 now the int is referenced again

}

Often, pointers stored as non-pointers in a program are called “disguised pointers.” In particular,
the pointer originally held ip is disguised in the integer® andi2. However, a garbage collector
need not be concerned about disguised pointers. If the garbage collector runs#t, ghentmem-
ory holding theint can be reclaimed. In fact, such programs are not guaranteed to work even if a
garbage collector is not used because the useirterpret_cast to convert between integers and
pointers is at best implementation-defined.

A union that can hold both pointers and non-pointers presents a garbage collector with a special
problem. In general, it is not possible to know whether sugiian contains a pointer. Consider:

union U { /| union with both pointer and non-pointer members
int* p;
int i;
I3
void f(U u, U u2, U u3)
{
u. p = new int;
u2. i = 999999;
ui=§;
/..

}

The safe assumption is that any value that appears in susbreis a pointer value. A clever gar-

bage collector can do somewhat better. For example, it may notice that (for a given implementa-
tion) ints are not allocated with odd addresses and that no objects are allocated with an address as
low as8. Noticing this will save the garbage collector from having to assume that objects contain-
ing locations999999 and8 are used by() .

C.9.1.2 Delete

If an implementation automatically collects garbage, delete and delete]] operators are no
longer needed to free memory for potential reuse. Thus, a user relying on a garbage collector could
simply refrain from using these operators. However, in addition to freeing medelefe and
delete]] invoke destructors.
In the presence of a garbage collector,

delete |

invokes the destructor for the object pointed tlgif any). However, reuse of the memory can be
postponed until it is collected. Recycling lots of objects at once can help limit fragmentation
(8C.9.1.4). It also renders harmless the otherwise serious mistake of deleting an object twice in the
important case where the destructor simply deletes memory.

As always, access to an object after it has been deleted is undefined.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

846 Technicalities Appendix C

C.9.1.3 Destructors

When an object is about to be recycled by a garbage collector, two alternatives exist:

[1] Call the destructor (if any) for the object.

[2] Treat the object as raw memory (don't call its destructor).

By default, a garbage collector should choose option (2) because objects creatatewsangl
neverdeleted are never destroyed. Thus, one can see a garbage collector as a mechanism for simu-
lating an infinite memory.

It is possible to design a garbage collector to invoke the destructors for objects that have been
specifically “registered” with the collector. However, there is no standard way of “registering”
objects. Note that it is always important to destroy objects in an order that ensures that the
destructor for one object doesn’t refer to an object that has been previously destroyed. Such order-
ing isn't easily achieved by a garbage collector without help from the programmer.

C.9.1.4 Memory Fragmentation

When a lot of objects of varying sizes are allocated and freed, the mémagnyents That is,

much of memory is consumed by pieces of memory that are too small to use effectively. The rea-
son is that a general allocator cannot always find a piece of memory of the exact right size for an
object. Using a slightly larger piece means that a smaller fragment of memory remains. After run-
ning a program for a while with a naive allocator, it is not uncommon to find half the available
memory taken up with fragments too small ever to get reused.

Several techniques exist for coping with fragmentation. The simplest is to request only larger
chunks of memory from the allocator and use each such chunk for objects of the same size (§815.3,
819.4.2). Because most allocations and deallocations are of small objects of types such as tree
nodes, links, etc., this technique can be very effective. An allocator can sometimes apply similar
techniques automatically. In either case, fragmentation is further reduced if all of the larger
“chunks’” are of the same size (say, the size of a page) so that they themselves can be allocated and
reallocated without fragmentation.

There are two main styles of garbage collectors:

[1] A copying collectomoves objects in memory to compact fragmented space.

[2] A conservative collectaallocates objects to minimize fragmentation.

From a @+ point of view, conservative collectors are preferable because it is very hard (probably
impossible in real programs) to move an object and modify all pointers to it correctly. A conserva-
tive collector also allows-&- code fragments to coexist with code written in languages such as C.
Traditionally, copying collectors have been favored by people using languages (such as Lisp and
Smalltalk) that deal with objects only indirectly through unique pointers or references. However,
modern conservative collectors seem to be at least as efficient as copying collectors for larger pro-
grams, in which the amount of copying and the interaction between the allocator and a paging sys-
tem become important. For smaller programs, the ideal of simply never invoking the collector is
often achievable especially in €+, where many objects are naturally automatic.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section C.10 Namespaces 847

C.10 Namespaces

This section presents minor points about hamespaces that look like technicalities, yet frequently
surface in discussions and in real code.

C.10.1 Convenience vs. Safety

A using-declarationadds a hame to a local scope.uging-directivedoes not; it simply renders
names accessible in the scope in which they were declared. For example:

namespace X{
int i, j, k
}
int k;
void f1()
int i =0;
using namespace X, // make names from X accessible
i++; /I locali
jt+ !X
k++; /| error: X::k or global k ?
1k /| the global k
X: o k++; /[| Xsk
}
void f2()
{
inti=0;
using X::i; / / error:ideclared twice in f2()
using X : j;
using X:: k; / / hides global k
i++;
jt+; 1 X
k++; [1 Xk

}

A locally declared name (declared either by an ordinary declaration orusyng-declaratiop
hides nonlocal declarations of the same name, and any illegal overloadings of the name are detected
at the point of declaration.

Note the ambiguity error fde++ in f1() . Global names are not given preference over names
from namespaces made accessible in the global scope. This provides significant protection against
accidental name clashes, andmportantly— ensures that there are no advantages to be gained
from polluting the global namespace.

When libraries declaringnanynames are made accessible througimg-directivs, it is a sig-
nificant advantage that clashes of unused names are not considered errors.

The global scope is just another namespace. The global nhamespace is odd only in that you
don’t have to mention its name in an explicit qualification. That:ik,means “look fork in the
global namespace and in namespaces mentionadng- directives in the global namespace,”

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

848 Technicalities Appendix C

whereasX: : k means “thek declared in namespacé and namespaces mentioned using-
directives in X" (88.2.8).

| hope to see a radical decrease in the use of global names in new programs using namespaces
compared to traditional C and-€programs. The rules for namespaces were specifically crafted to
give no advantages to a “lazy” user of global names over someone who takes care not to pollute
the global scope.

C.10.2 Nesting of Namespaces

One obvious use of namespaces is to wrap a complete set of declarations and definitions in a sepa-
rate namespace:

namespace X{
/1 all my declarations
}

The list of declarations will, in general, contain namespaces. Thus, nested namespaces are allowed.
This is allowed for practical reasons, as well as for the simple reason that constructs ought to nest
unless there is a strong reason for them not to. For example:

void h() ;
namespace X{
void g() ;
/..
namespace Y{
void f() ;
void ff() ;
/..
}
}
The usual scope and qualification rules apply:
void X::Y:: ff()
f0 5 90 ; hQ ;
void X:: g()
{
fO ; [I error: no f() in X
Y. f); / / ok
}
void h()
{
fO ; [I error: no global f()
Y:: () ; /| error: no global Y
X () ; [| error: no f() in X
XY fQ); 11 ok
}

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section C.10.2 Nesting of Namespaces 849

C.10.3 Namespaces and Classes

A namespace is a named scope. A class is a type defined by a named scope that describes how
objects of that type can be created and used. Thus, a namespace is a simpler concept than a class
and ideally a class would be defined as a namespace with a few extra facilities included. This is
almost the case. A namespace is open (88.2.9.3), but a class is closed. This difference stems from
the observation that a class needs to define the layout of an object and that is best done in one place.
Furthermoreusing- dedarations andusing- directives can be applied to classes only in a very
restricted way (815.2.2).

Namespaces are preferred over classes when all that is needed is encapsulation of names. In
this case, the class apparatus for type checking and for creating objects is not needed; the simpler
namespace concept suffices.

C.11 Access Control

This section presents a few technical examples illustrating access control to supplement those pre-
sented in §15.3.

C.11.1 Access to Members

Consider:

class X{
/1 private by default:
int priv;
protected
int prot;
public:
int publ;
void m() ;
h

The membek:: m() has unrestricted access:

void X:: m()

{
priv=1; / / ok
prot=2; / / ok
publ =3;/ / ok

}

A member of a derived class has access to public and protected members (815.3):

class Y: public X{
void mderived) ;
I3

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

850 Technicalities Appendix C

void Y:: mderived()

{
priv=1; / / error: priv is private
prot=2; / / ok: protis protected and mderived() is a member of the derived class Y
publ = 3; / / ok: publis public

}

A global function can access only the public members:

void f(Y* p)

{
p->priv=1; [/ [error: privis private
p->prot=2; / / error: protis protected and f() is not a friend or a member of X or Y
p->publ =3; / / ok: publis public

}

C.11.2 Access to Base Classes

Like a member, a base class can be declansdte, protected, or public. Consider:

class X{
public:
int g
/...
h

class Y1: public X{ };
class Y2: protected X{ };
class Y3: private X{ };

BecauseX is a public base oY1, any function can (implicitly) convert ¥1* to anX* where
needed just as it can access the public members obcldasr example:

void f(YI* pyl, Y2* py2, Y3* py3)
{

X* px=pyl; / / ok:Xis a public base class of Y1

pyl->a=7 [| ok
px = py2; /I error: X is a protected base of Y2
py2->a=7, [[error
px = py3; /| error: X is a private base of Y3
py3>a=7, [/ | error
}
Consider:

class Y2: protected X{ };
class 22 : public Y2{ void f(YI*, Y2*, Y3); };

BecauseX is a protected base 2, only members and friends ¥2 and members and friends of
Y2s derived classes (e.@Z2) can (implicitly) convert &2* to anX* where needed, just as they
can access the public and protected members ofXlaBsr example:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section C.11.2 Access to Base Classes 851

void Z2:: f(YI* pyl, Y2* py2, Y3* py3)

{
X* px=pyl; / / ok:Xis a public base class of Y1
pyl->a=7;, [/ | ok
pX = py2; / | ok: X'is a protected base of Y2, and Z2 is derived from Y2
py2->a=7, /| | ok
px = py3; /| error: X is a private base of Y3
py3>a=7, [/ [/ error
}

Consider finally:
class Y3: private X{ void f(YI*, Y2*, Y3%); };

BecauseX is a private base of3, only members and friends ¥8 can (implicitly) convert &3¢ to

an X* where needed, just as they can access the public and protected membersXf Elaiss
example:

void Y3:: f(YI* pyl, Y2* py2, Y3* py3)

{
X* px=pyl; / / ok:Xis a public base class of Y1
pyl->a=7;, /| / ok
px = py2, / I error: X is a protected base of Y2
py2->a=7, [[error
pXx = py3; / | ok: X'is a private base of Y3, and Y3::f() is a member of Y3
py3>a=7, [/ [/ ok
}

C.11.3 Access to Member Class

The members of a member class have no special access to members of an enclosing class. Simi-
larly members of an enclosing class have no special access to members of a nested class; the usual
access rules (810.2.2) shall be obeyed. For example:

class Quter {
typedef int T,
int i;
public:
int i2;
static int s;
class Inner {
int x;
T y, // error: Outer::T is private
public:
void f(Outer* p, int v);
h

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

852 Technicalities Appendix C

int g(Inner* p);

2

void Outer:: Inner:: f(Outer* p, int v)

{
p>i=v; [| error: Outer::i is private
p->i2=v; /| ok: Outer::i2 is public

}

int Outer:: g(Inner* p)

p-> f(this, 2); / / ok: Inner:f() is public
return p->x; / / error: Inner::x is private

}

However, it is often useful to grant a member class access to its enclosing class. This can be done
by making the memberfaend. For example:

class Quter {
typedef int T,
int i;
public:
class Inner; / | forward declaration of member class
friend class Inner; / / grant access to Outer::Inner
class Inner {
int x;
Ty, [1 ok: Inner is a friend
public:
void f(Outer* p, int v);
b
b
void Outer: : Inner:: f(Outer* p, int v)
{
p->i=v;/ [/ ok:Inneris a friend
}

C.11.4 Friendship

Friendship is neither inherited nor transitive. For example:

class A{
friend class B;
int a;
5
class B{
friend class C,
}

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section C.11.4 Friendship 853
class C{
void f(A* p)
p->at+; / / error: Cis not a friend of A, despite being a friend of a friend of A

2
class D: public B{
void f(A* p)

p->at++; / | error: D is not a friend of A, despite being derived from a friend of A

C.12 Pointers to Data Members

Naturally, the notion of pointer to member (§815.5) applies to data members and to member func-

tions with arguments and return types. For example:

struct C{
char* val,
int i;
void print(int x) { cout<<val << x<<'\n’; }
void f1() ;
int f2() ;
C(char* v) { val =v; }

2

typedef void (C::* PMFI)(int); !

typedef char* C::* PM,; I

void f(C&z1, C& z2)
{

pointer to member function of C taking an int
pointer to char* data member of C

C* p=&z2
PMFI pf = &C:: print;
PM pm=&C:: val;

z1 print(1);

(z1* pf)(2);

z1* pm="nvl";

p->* pm="nv2"

z2. print(3);

(p->* ph(4);

pf=&C:: f1; / [error: return type mismatch
pf=&C::f2; [/ [error: argument type mismatch
pm=&C::i; [/ [error: type mismatch

pm = pf; [| error: type mismatch

}

The type of a pointer to function is checked just like any other type.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

854

Technicalities Appendix C

C.13 Templates

A class template specifies how a class can be generated given a suitable set of template arguments.
Similarly, a function template specifies how a function can be generated given a suitable set of tem-
plate arguments. Thus, a template can be used to generate types and executable code. With this
expressive power comes some complexity. Most of this complexity relates to the variety of con-
texts involved in the definition and use of templates.

C.13.1 Static Members

A class template can hawtatic members. Each class generated from the template has its own
copy of the static members. Static members must be separately defined and can be specialized. For
example:

template<class T> class X{
/...
static T def val;
static T new X(T a=def val);
h
template<class T> T X<T>:: def_val(0, 0);
template<class T> T* X<T>:.:new X(T a { /* ..* }

template<> int X<int>:: def_val<int> = 0;
template<> int* X<int>:: new X<int>(int i) { /* ..* }

If you want to share an object or function among all members of every class generated from a tem-
plate, you can place it in a non-templatized base class. For example:

struct B {
static B* nil; / / to be used as common null pointer for every class derived from B
I3
template<class T> class X: public B{
/...
h
B* B:: nil = 0;

C.13.2 Friends

Like other classes, a template class can have friends. For example, comparison operators are typi-
cally friends, so we can rewrite claBasic_opsfrom §13.6 like this:

template <class C> class Basic_ops{ // basic operators on containers
friend bool operator==(const C&, const C&);/ / compare elements
friend bool operator!=(const C&, const C&);
/..

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section C.13.2 Friends 855

template<class T> class Math_container : public Basic_ops< Math_container<T> > {
/...

k

Like a member, a friend declared within a template is itself a template and is defined using the tem-
plate parameters of its class. For example:

template <class C> bool operator==(const C& a, const C&b)

if (a. size() != b. size)) return false
for (int i =0; i<a. sizg)) ; ++i)
if (a[i] != b[i]) return false
return true
}

Friends do not affect the scope in which the template class is defined, nor do they affect the scope
in which the template is used. Instead, friend functions and operators are found using a lookup
based on their argument types (811.2.4, 811.5.1). Like a member function, a friend function is

instantiated (§C.13.9.1) only if it is called.

C.13.3 Templates as Template Parameters

Sometimes it is useful to pass templatesather than classes or objeetsaas template arguments.
For example:

template<class T, template<class> class C> class Xrefd {
C<T> mems
C<T*> refs;
/..

h

Xrefd<Entry, vector> x1; / / store cross references for Entries in a vector

Xrefd<Record, set> x2; / / store cross references for Records in a set

To use a template as a template parameter, you specify its required arguments. The template
parameters of the template parameter need to be known in order to use the template parameter. The
point of using a template as a template parameter is usually that we want to instantiate it with a
variety of argument types (suchBandT* in the previous example). That is, we want to express
the member declarations of a template in terms of another template, but we want that other template
to be a parameter so that it can be specified by users.

The common case in which a template needs a container to hold elements of its own argument
type is often better handled by passing the container type (§13.6, §17.3.1).

Only class templates can be template arguments.

C.13.4 Deducing Function Template Arguments

A compiler can deduce a type template argumErdy TT, and a non-type template argument,
from a template function argument with a type composed of the following constructs:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

856

Technicalities Appendix C

T const T volatile T

T T& T[constant_expression]
type{ 1] class template_name<T> class template_name<|>
TI<T> T<I> <>

T type :* T T type T::*

T()(args) type (T::*)(args) T (type:*)(args)

type (type :*)(args TI) T(T::*)(args Tl type (T::*)(args TI)
T (type :*)(args TI) type (*)(args_TI)

Here,args Tl is a parameter list from whichTaor anl can be determined by recursive application
of these rules andrgsis a parameter list that does not allow deduction. If not all parameters can
be deduced in this way, a call is ambiguous. For example:

template<class T, class U> void f(const T*, U(*)(U)) ;

int g(int);
void h(const char* p)
{
f(p,9); / / Tischar,Uisint
f(p, h); / / error: can’'t deduce U
}

Looking at the arguments of the first callf¢f , we easily deduce the template arguments. Look-
ing at the second call &f) , we see thalti() doesn’'t match the pattekn(*)(U) becausd() 's
argument and return types differ.

If a template parameter can be deduced from more than one function argument, the same type

must be the result of each deduction. Otherwise, the call is an error. For example:

template<class T> void f(T i, T* p);
void g(int i)
{
f(i,&1); /| ok
f(i," Remember!") ;/ / error, ambiguous: T is int or T is char?

C.13.5 Typename and Template

To make generic programming easier and more general, the standard library containers provide a
set of standard functions and types (816.3.1). For example:

template<class T> class vector {
public:
typedef T value type
typedef T* iterator;
iterator begin() ;
iterator end() ;

...

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section C.13.5 Typename and Template 857

template<class T> class list {

class link {
/...
h
public:

typedef T value type
typedef link* iterator;

iterator begin() ;
iterator end() ;

" ..
h

This allows us to write:

void f1(vector<T>& V)

{
vector<T>:: iterator i =v. begin() ;
/..

}
void f2(list<T>& v)

list<T>:: iterator i = v. begin() ;
/...
}

However, this does not allow us to write:

template<class C> void f4(C& V)
{

C:: iterator i =v. begin() ; // error
/..

}

Unfortunately, the compiler isn’'t required to be psychic, so it doesn’t knovCthaterator is the
name of a type. In the previous example, the compiler could look at the declaratémtoof> to
determine that thiterator in vector<T>: : iterator was a type. That is not possible when the qual-
ifier is a type parameter. Naturally, a compiler could postpone all checking until instantiation time
where all information is available and could then accept such examples. However, that would be a
nonstandard language extension.

Consider an example stripped of clues as to its meaning:

template<class T> void f5(T& V)
T::x(y); /I error?
Is T:: x a function called with a nonlocal variableas its argument? Or, are we declaring a vari-

abley with the typeT: : x perversely using redundant parentheses? We could imagine a context in
which X:: x('y) was a function call an¥: : x(y) was a declaration.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

858 Technicalities Appendix C

The resolution is simple: unless otherwise stated, an identifier is assumed to refer to something
that is not a type or a template. If we want to state that something should be treated as a type, we

can do so using thypenamekeyword:

template<class C> void f4(C& V)
{

typename C. : iterator i = v. begin() ;
/..
}

Thetypenamekeyword can be placed in front of a qualified name to state that the entity named is a
type. In this, it resemblestruct andclass

Thetypenamekeyword can also be used as an alternatiedassin template declarations. For
example:

template<typename T> void f(T);
Being an indifferent typist and always short of screen space, | prefer the shorter:
template<class T> void f(T);

C.13.6 Template as a Qualifier

The need for théypename qualifier arises because we can refer both to members that are types and

to members that are non-types. We can also have members that are templates. In rare cases, the
need to distinguish the name of a template member from other member names can arise. Consider
a possible interface to a general memory manager:

class Memory { // some Allocator

public:
template<class T> T* get_new() ;
template<class T> void release(T&);

/..
h
template<class Allocator> void f(Allocator& m)
{
int* pl=m. get new<int>() ; /| syntax error: int after less-than operator
int* p2=m. template get new<int>() ; / / explicit qualification
..
m. release(p1); // template argument deduced: no explicit qualification needed
m. release(p2);
}

Explicit qualification ofget new() is necessary because its template parameter cannot be deduced.
In this case, théemplate prefix must be used to inform the compiler (and the human reader) that
get_newis a member template so that explicit qualification with the desired type of element is pos-
sible. Without the qualification wittemplate, we would get a syntax error because<tveould be
assumed to be a less-than operator. The need for qualificatiotemplate is rare because most
template parameters are deduced.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section C.13.7 Instantiation 859

C.13.7 Instantiation

Given a template definition and a use of that template, it is the implementation’s job to generate
correct code. From a class template and a set of template arguments, the compiler needs to gener-
ate the definition of a class and the definitions of those of its member functions that were used.
From a template function, a function needs to be generated. This process is commonly called
template instantiation

The generated classes and functions are cafledializations When there is a need to distin-
guish between generated specializations and specializations explicitly written by the programmer
(813.5), these are referred togemerated specializatiormndexplicit specializationsrespectively.

An explicit specialization is sometimes referred to asex-defined specializationr simply auser
specialization.

To use templates in nontrivial programs, a programmer must understand how names used in a
template definition are bound to declarations and how source code can be organized (§13.7).

By default, the compiler generates classes and functions from the templates used in accordance
with the name-binding rules (8C.13.8). That is, a programmer need not state explicitly which ver-
sions of which templates must be generated. This is important because it is not easy for a program-
mer to know exactly which versions of a template are needed. Often, templates that the program-
mer hasn't even heard of are used in the implementation of libraries, and sometimes templates that
the programmer does know of are used with unknown template argument types. In general, the set
of generated functions needed can be known only by recursive examination of the templates used in
application code libraries. Computers are better suited than humans for doing such analysis.

However, it is sometimes important for a programmer to be able to state specifically where code
should be generated from a template (§C.13.10). By doing so, the programmer gains detailed con-
trol over the context of the instantiation. In most compilation environments, this also implies con-
trol over exactly when that instantiation is done. In particular, explicit instantiation can be used to
force compilation errors to occur at predictable times rather than occurring whenever an implemen-
tation determines the need to generate a specialization. A perfectly predictable build process is
essential to some users.

C.13.8 Name Binding

It is important to define template functions so that they have as few dependencies as possible on
nonlocal information. The reason is that a template will be used to generate functions and classes
based on unknown types and in unknown contexts. Every subtle context dependency is likely to
surface as a debugging problem for some programnaad that programmer is unlikely to want to

know the implementation details of the template. The general rule of avoiding global names as far
as possible should be taken especially seriously in template code. Thus, we try to make template
definitions as self-contained as possible and to supply much of what would otherwise have been
global context in the form of template parameters (e.g., traits; §13.4, §20.2.1).

However, some nonlocal names must be used. In particular, it is more common to write a set of
cooperating template functions than to write just one self-contained function. Sometimes, such
functions can be class members, but not always. Sometimes, nonlocal functions are the best
choice. Typical examples of that esart() 's calls toswap() andless) (813.5.2). The standard
library algorithms provide a large-scale example (Chapter 18).

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

860 Technicalities Appendix C

Operations with conventional names and semantics, sueh*ag] , andsort() , are another
source of nonlocal name use in a template definition. Consider:

#include<vector>
bool tracing;
/...

template<class T> T sum(std: : vector<T>& V)

{
T t=0;
if (tracing) cerr <<"sum(" << & <<") \n";
for (int i =0; i<v. size() ; i++) t=t+V[i];
return t

}
...

#include<quad. h>

void f(std: : vector<Quad>& v)
{

}

The innocent-looking template functiemm() depends on the operator. In this example; is
defined in<quad. h>:

Quad operator+(Quad, Quad);

Quad c=sum(V);

Importantly, nothing related to complex numbers is in scope \stm) is defined and the writer
of sum() cannot be assumed to know about cl@ead. In particular, ther may be defined later
thansum() in the program text, and even later in time.

The process of finding the declaration for each name explicitly or implicitly used in a template
is calledname binding The general problem with template name binding is that three contexts are
involved in a template instantiation and they cannot be cleanly separated:

[1] The context of the template definition

[2] The context of the argument type declaration

[3] The context of the use of the template

C.13.8.1 Dependent Names

When defining a function template, we want to assure that enough context is available for the tem-
plate definition to make sense in terms of its actual arguments without picking up “accidental”
stuff from the environment of a point of use. To help with this, the language separates hames used
in a template definition into two categories:
[1] Names that depend on a template argument. Such names are bound at some point of instan-
tiation (8C.13.8.3). In theum() example, the definition of can be found in the instantia-
tion context because it takes operands of the template argument type.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section C.13.8.1 Dependent Names 861

[2] Names that don’t depend on a template argument. Such names are bound at the point of
definition of the template (8C.13.8.2). In tlsam() example, the templateector is
defined in the standard headarector> and the Booleatracing is in scope when the defi-
nition of sum() is encountered by the compiler.
The simplest definition of N depends on a template paramétémould be “N is a member of
T.” Unfortunately, this doesn’t quite suffice; addition Quads (8C.13.8) is a counter-example.
Consequently, a function call is saiddepend ora template argument if and only if one of these
conditions hold:
[1] The type of the actual argument depends on a template parameteording to the type
deduction rules (813.3.1). For examgleT(1)) ,f(t),f(g(t)) , andf(&t), assuming that
tis aT.
[2] The function called has a formal parameter that dependsameording to the type deduc-
tion rules (813.3.1). For exampfé¢,T) , f(list<T>&), andf(const T*) .
Basically, the name of a function called is dependent if it is obviously dependent by looking at its
arguments or at its formal parameters.
A call that by coincidence has an argument that matches an actual template parameter type is
not dependent. For example:

template<class T>T f(T a)
{

}
void g(int);
int z=1(2);

return g(1); / / error: no g() in scope and g(1) doesn’'t depend on T

It doesn’t matter that for the cd(12) , T happens to bant andg() 's argument just happens to be
anint. Hadg(1) been considered dependent, its meaning would have been most subtle and myste-
rious to the reader of the template definition. If a programmer vgitiid) to be calledg(int) 's
definition should be placed before the definitiorf(®f so thatg(int) is in scope whef() is ana-
lyzed. This is exactly the same rule as for non-template function definitions.

Note that only names of functions used in calls can be dependent names according to this defi-
nition. Names of variables, class members, types, etc., in a template definition must be declared
(possibly in terms of template parameters) before they are used.

C.13.8.2 Point of Definition Binding

When the compiler sees a template definition, it determines which names are dependent
(8C.13.8.1). If a name is dependent, looking for its declaration must be postponed until instantia-
tion time (8C.13.8.3).

Names that do not depend on a template argument must be in scope (84.9.4) at the point of defi-
nition. For example:

int x;

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

862 Technicalities Appendix C

template<class T>T f(T a)

{
X++; /I ok
Vama [| error: noy in scope, and y doesn’t depend on T
return a

}

int y;

int z=1(2);

If a declaration is found, that declaration is used even if a “better” declaration might be found
later. For example:

void g(double);

template<class T> class X: public T{
public:
void f) { g(2); } / / call g(double);
/...

h

void g(int);
class Z{ };
void h(X<Z> x)

x. f0;
}

When a definition forX<zZ>:: f() is generatedg(int) is not considered because it is declared
after X. It doesn’t matter thaX is not used until after the declarationggfint) . Also, a call that
isn't dependent cannot be hijacked in a base class:

class Y{ public: void g(int); };
void h(X<Y> x)

X 10 ;
}

Again, X<Y>:: f() will call g(double) . If the programmer had wanted tgf from the base
classT to be called, the definition &) should have said so:

template<class T> class XX : public T{
void f) { T::9(2); } [[/ callsT:g()
/..

k

This is, of course, an application of the rule of thumb that a template definition should be as self-
contained as possible.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section C.13.8.3 Point of Instantiation Binding 863

C.13.8.3 Point of Instantiation Binding

Each use of a template for a given set of template arguments defines a point of instantiation. That

point is in the nearest global or namespace scope enclosing its use, just before the declaration that
contains that use. For example:

template<class T>void f(T a) { g(a); }
void g(int);

void h()

{
extern g(double);
f(2);

}

Here, the point of instantiation féxint>() is just beforeh() , so theg() called inf() is the glo-
bal g(int) rather than the loca(double) . The definition of “instantiation point” implies that a
template parameter can never be bound to a local name or a class member. For example:

void f()

{
struct X{ /* ..*/ }, | [local structure
vector<X> v; / | error: cannot use local structure as template parameter
Il ..

}

Nor can an unqualified hame used in a template ever be bound to a local name. Finally, even if a
template is first used within a class, unqualified names used in the template will not be bound to

members of that class. Ignoring local names is essential to prevent a lot of nasty macro-like behav-
ior. For example:

template<class T> void sort(vector<T>& v)
{

}

class Container {
vector<int>v; / / elements
/...

public:
void sort() / / sortelements

{

}
/...

sort(v. begin() , v. end()) ; / / use standard library sort()

sort(v); / [/ invokes sort(vectaint>&) rather than Container::sort()

h

If the point of instantiation for a template defined in a namespace is in another namespace, names
from both namespaces are available for name binding. As always, overload resolution is used to
choose between names from different namespaces (§88.2.9.2).

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

864 Technicalities Appendix C

Note that a template used several times with the same set of template arguments has several
points of instantiation. If the bindings of independent names differ, the program is illegal. How-
ever, this is a difficult error for an implementation to detect, especially if the points of instantiation
are in different translation units. It is best to avoid subtleties in name binding by minimizing the
use of nonlocal names in templates and by using header files to keep use contexts consistent.

C.13.8.4 Templates and Namespaces

When a function is called, its declaration can be found even if it is not in scope, provided it is
declared in the same namespace as one of its arguments (88.2.6). This is very important for func-
tions called in template definitions because it is the mechanism by which dependent functions are
found during instantiation.

A template specialization may be generated at any point of instantiation (8C.13.8.3), any point
subsequent to that in a translation unit, or in a translation unit specifically created for generating
specializations. This reflects three obvious strategies an implementation can use for generating
specializations:

[1] Generate a specialization the first time a call is seen.

[2] At the end of a translation unit, generate all specializations needed for that translation unit.

[3] Once every translation unit of a program has been seen, generate all specializations needed

for the program.
All three strategies have strengths and weaknesses, and combinations of these strategies are also
possible.

In any case, the binding of independent names is done at a point of template definition. The
binding of dependent names is done by looking at

[1] the names in scope at the point where the template is defined, plus

[2] the names in the namespace of an argument of a dependent call (global functions are consid-

ered in the namespace of built-in types).
For example:

namespace N {
class A{ * ..* };
char f(A);

char f(int);
template<class T>char g(T t) { return f(t); }
char c=g(N:: A() ; [| causes N:f(N::A) to be called

Here,f(t) is clearly dependent, so we can’t bini f(N:: A) or f(int) at the point of definition.
To generate a specialization fg&N: : A>(N:: A), the implementation looks in namesp&téor
functions called() and findsN:: f(N:: A) .

A program is illegal, if it is possible to construct two different meanings by choosing different
points of instantiation or different contents of namespaces at different possible contexts for generat-
ing the specialization. For example:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section C.13.8.4 Templates and Namespaces 865

namespace N {
class A{ * ..* }
char f(A, int);
}
template<class T, class T2>char g(T t, T2 ©2) { return f(t, t2); }
char c=g(N:: A), &) ; /I error (alternative resolutions of f(t) possible)
namespace NI{ / | add to namespace N (§8.2.9.3)

void f(A, char);
}

We could generate the specialization at the point of instantiation anfg etA, int) called.
Alternatively, we could wait and generate the specialization at the end of the translation unit and
getf(N:: A, char) called. Consequently, the cglIN:: A() ,” &) is an error.

It is sloppy programming to call an overloaded function in between two of its declarations.
Looking at a large program, a programmer would have no reason to suspect a problem. In this par-
ticular case, a compiler could catch the ambiguity. However, similar problems can occur in sepa-
rate translation units, and then detection becomes much harder. An implementation is not obliged
to catch problems of this kind.

Most problems with alternative resolutions of function calls involve built-in types. Conse-
guently, most remedies rely on more-careful use of arguments of built-in types.

As usual, use of global functions can make matters worse. The global namespace is considered
the namespace associated with built-in types, so global functions can be used to resolve dependent
calls that take built-in types. For example:

int f(int);

template<class T>T g(T t) { return f(t); }

char c=g(" @) ; [/ [/ error: alternative resolutions of f(t) are possible
char f(char);

We could generate the specializatgachar>(char) at the point of instantiation and gitint)
called. Alternatively, we could wait and generate the specialization at the end of the translation
unit and gef(char) called. Consequently, the cg(l @) is an error.

C.13.9 When Is a Specialization Needed?

It is necessary to generate a specialization of a class template only if the class’ definition is heeded.
In particular, to declare a pointer to some class, the actual definition of a class is not needed. For
example:

class X
X* p; /| ok: no definition of X needed
X a | | error: definition of X needed

When defining template classes, this distinction can be crucial. A template alasg&antiated
unless its definition is actually needed. For example:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

866 Technicalities Appendix C

template<class T> class Link {
Link* suc;, // ok: no definition of Link needed (yet)
/...

I3
Link<int>* pl; / / no instantiation of Linkint> needed

Link<int> Ink; / / now we need to instantiate Liikt>

The point of instantiation is where a definition is first needed.

C.13.9.1 Template Function Instantiation

An implementation instantiates a template function only if that function has been used. In particu-
lar, instantiation of a class template does not imply the instantiation of all of its members or even of
all of the members defined in the template class declaration. This allows the programmer an impor-
tant degree of flexibility when defining a template class. Consider:

template<class T> class List {
/..
void sort() ;

h

class Glob { /* no comparison operatorg };
void f(List<Glob>& Ib, List<string>& Is)

Is. sort() ;
/1 use operations on Ib, but not Ib.sort()

}

Here,List<string>: : sort() is instantiated, butist<Glob>: : sort() isn’t. This both reduces the
amount of code generated and saves us from having to redesign the program. Had
List<Glob>: : sort() been generated, we would have had to either add the operations needed by
vector: : sort() to Glob, redefinesort() so that it wasn't a member dist, or use some other
container foiGlobs.

C.13.10 Explicit Instantiation

An explicit instantiation request is a declaration of a specialization prefixed by the ketgnmord
plate (not followed by<):

template dass vector<int>; !/
template int& vector<int>: : operator[](int); / / member
template int convert<int, double>(double); [| function

A template declaration starts wittmplate<, whereas plaitemplate starts an instantiation request.
Note thattemplate prefixes a complete declaration; just stating a name is not sufficient:

template vector<int>:: operator[] ; / / syntax error
template convert<int, double>; | | syntax error

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section C.13.10 Explicit Instantiation 867

As in template function calls, the template arguments that can be deduced from the function argu-
ments can be omitted (813.3.1). For example:

template int convert<int, double>(double); /| ok (redundant)
template int convert<int>(double); ! [ok

When a class template is explicitly instantiated, every member function is also instantiated.
Note that an explicit instantiation can be used as a constraints check (§13.6.2). For example:

template<class T> class Calls _foo {
void constraints(T t) { foo(t); } / / call from every constructor
...

h
template dass Calls_foo<int>; /I error: foo(int) undefined
template Calls foo<Shape*>: : constraints() ; / / error: foo(Shape*) undefined

The link-time and recompilation efficiency impact of instantiation requests can be significant. |
have seen examples in which bundling most template instantiations into a single compilation unit
cut the compile time from a number of hours to the equivalent number of minutes.

It is an error to have two definitions for the same specialization. It does not matter if such mul-
tiple specializations are user-defined (813.5), implicitly generated (8C.13.7), or explicitly
requested. However, a compiler is not required to diagnose multiple instantiations in separate com-
pilation units. This allows a smart implementation to ignore redundant instantiations and thereby
avoid problems related to composition of programs from libraries using explicit instantiation
(8C.13.7). However, implementations are not required to be smart. Users of “less smart” imple-
mentations must avoid multiple instantiations. However, the worst that will happen if they don't is
that their program won't load; there will be no silent changes of meaning.

The language does not require that a user request explicit instantiation. Explicit instantiation is
an optional mechanism for optimization and manual control of the compile-and-link process
(8C.13.7).

C.14 Advice

[1] Focus on software development rather than technicalities; §C.1.

[2] Adherence to the standard does not guarantee portability; 8C.2.

[3] Avoid undefined behavior (including proprietary extensions); 8C.2.

[4] Localize implementation-defined behavior; 8C.2.

[5] Use keywords and digraphs to represent programs on systems{i{fjere are missing
and trigraphs ik or! are missing; §C.3.1.

[6] To ease communication, use the ANSI characters to represent programs; 8C.3.3.

[7]1 Prefer symbolic escape characters to numeric representation of characters; §C.3.2.

[8] Do not rely on signedness or unsignednesshaf; §C.3.4.

[9] Ifin doubt about the type of an integer literal, use a suffix; 8C.4.

[10] Avoid value-destroying implicit conversions; §C.6.

[11] Prefervector over array; 8C.7.

[12] Avoid unions; §C.8.2.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

868 Technicalities Appendix C

[13] Use fields to represent externally-imposed layouts; 8C.8.1.

[14] Be aware of the tradeoffs between different styles of memory management; 8C.9.

[15] Don't pollute the global namespace; §C.10.1.

[16] Where a scope (module) rather than a type is needed, prei@mespace over aclass
§C.10.3.

[17] Remember to definstatic class template members; §C.13.1.

[18] Usetypenameto disambiguate type members of a template parameter; 8C.13.5.

[19] Where explicit qualification by template arguments is necessaryemplate to disambiguate
template class members; §C.13.6.

[20] Write template definitions with minimal dependence on their instantiation context; §C.13.8.

[21] If template instantiation takes too long, consider explicit instantiation; §C.13.10.

[22] If the order of compilation needs to be perfectly predictable, consider explicit instantiation;
§C.13.10.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

	Return to Contents
	C.1 Introduction and Overview
	C.2 The Standard
	C.3 Character Sets
	C.4 Types of Integer Literals
	C.5 Constant Expressions
	C.6 Implicit Type Conversion
	C.7 Multidimensional Arrays
	C.8 Saving Space
	C.9 Memory Management
	C.10 Namespaces
	C.11 Access Control
	C.12 Pointers to Data Members
	C.13 Templates
	C.14 Advice

	buy now:

