Appendix B

Compatibility

You go ahead and follow your customs,
and I'll follow mine.
— C. Napier

C/Ct++ compatibility— silent differences between C ant#G— C code that is not&-
— deprecated features- C++ code that is not &- coping with older €+ implementa-
tions— headers— the standard library— namespaces- allocation errors— templates
— for-statemeninitializers.

B.1 Introduction

This appendix discusses the incompatibilities between C anda@ between Standard€and

earlier versions of €. The purpose is to document differences that can cause problems for the
programmer and point to ways of dealing with such problems. Most compatibility problems sur-
face when people try to upgrade a C program totapgfogram, to try port a-&- program from one
pre-standard version of+& to another, or try to compilet@ using modern features with an older
compiler. The aim here is not to drown you in the details of every compatibility problem that ever
surfaced in an implementation, but rather to list the most frequently occurring problems and present
their standard solutions.

When you look at compatibility issues, a key question to consider is the range of implementa-
tions under which a program needs to work. For learning i€ makes sense to use the most com-
plete and helpful implementation. For delivering a product, a more conservative strategy might be
in order to maximize the number of systems on which the product can run. In the past, this has
been a reason (and sometimes just an excuse) to avaide@tures deemed novel. However,
implementations are converging, so the need for portability across platforms is less cause for
extreme caution than it was a couple of years ago.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

http://store.awl.com/catalog/cepub_detail.mhtml?isbn=0-201-88954-4

816 Compatibility Appendix B

B.2 C/Ct+ Compatibility

With minor exceptions, €t is a superset of C. Most differences stem from’'S€greater emphasis
on type checking. Well-written C programs tend to Ber @rograms as well. All differences
between €+ and C can be diagnosed by a compiler.

B.2.1 “Silent” Differences

With a few exceptions, programs that are bot#+ @nd C have the same meaning in both lan-
guages. Fortunately, these “silent differences” are rather obscure:

In C, the size of a character constant and of an enumeration esigemffint). In Cr+,
sizeof(" a’) equalssizeof(char) , and a €+ implementation is allowed to choose whatever size is
most appropriate for an enumeration (84.8).

C++ provides thd/ comments; C does not (although many C implementations provide it as an
extension). This difference can be used to construct programs that behave differently in the two
languages. For example:

int f(int a, int b)

{
return a// * pretty unlikely */ b

i /* unrealistic: semicolon on separate line to avoid syntax etfor

}

ISO C is being revised to alloW as in G+.
A structure name declared in an inner scope can hide the name of an object, function, enumera-
tor, or type in an outer scope. For example:

int X[99];
void f()

{
struct x{ int a; };
sizeof(X); /* size of the array in C, size of the struct it+C*/

B.2.2 C Code That Is Not &+

The C/G+ incompatibilities that cause most real problems are not subtle. Most are easily caught
by compilers. This section gives examples of C code that isiiot Klost are deemed poor style
or even obsolete in modern C.

In C, most functions can be called without a previous declaration. For example:

main() /* poor style C. Not €+ */

double sq2 = sqrt(2); /¥ call undeclared functioty
printf(" the sguare root of 2 is%g\n", sq2); /* call undeclared functiot/

}

Complete and consistent use of function declarations (function prototypes) is generally recom-
mended for C. Where that sensible advice is followed, and especially where C compilers provide

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section B.2.2 C Code That Is Not €+ 817

options to enforce it, C code conforms to ther@ile. Where undeclared functions are called, you
have to know the functions and the rules for C pretty well to know whether you have made a mis-
take or introduced a portability problem. For example, the previ@ai() contains at least two
errors as a C program.

In C, a function declared without specifying any argument types can take any number of argu-
ments of any type at all. Such use is deemed obsolescent in Standard C, but it is not uncommon:

void f() ;/* argument types not mentiont/d
void g()
{

f(2); /¥ poor style C. Not €+ */

In C, functions can be defined using a syntax that optionally specifies argument types after the list
of arguments:

void f(a, p,c) char*p; char ¢c; { /* ..*/ } [* C.NotG+ */

Such definitions must be rewritten:
void f(int a, char* p, char ¢) { /* ..* }

In C and in pre-standard versions &ftCthe type specifier defaults imt. For example:
const a=7, /* InC,typeintassumed. Not€ */

ISO C is being revised to disallow “implidit,” just as in G+.
C allows the definition ostructs in return type and argument type declarations. For example:

struct S{ int x, y; } () ; /¥ C.NotG+ *
void g(struct S{ int x, y; } y); /¥ C.NotG+ *

The G+ rules for defining types make such declarations useless, and they are not allowed.
In C, integers can be assigned to variables of enumeration type:

enum Direction{ up, down};
Direction d= 1, [* error: int assigned to Direction; ok in @

C++ provides many more keywords than C does. If one of these appears as an identifier in a C pro-
gram, that program must be modified to make-& @rogram:

U C++ Keywords That Are Not C Keywords U
—and and eq asm hitand bitor bool S
[catch class compl const cast delete dynamic_cast [
Cexplicit export false friend inline mutable O
Lhamespace mew not not_eq operator or g

r eq private jprotected public reinterpret cast static_cast g

emplate this throw true try typeid 0
[typename wsing virtual wchar _t xor Xor_eq 0

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

818 Compatibility Appendix B

In C, some of the €+ keywords are macros defined in standard headers:

g C++ Keywords That Are C Macros S
—and and eq bitand bitor compl not
ot eq or or_eq wchar_t xor Xor_eq

This implies that in C they can be tested usiifdef, redefined, etc.

In C, a global data object may be declared several times without usiexfeire specifier. As
long as at most one such declaration provides an initializer, the object is considered defined only
once. For example:

int i; int i; /* defines or declares a single integer ‘i’; not€*/

In C++, an entity must be defined exactly once; §9.2.3.

In C++, a class may not have the same nametypedef declared to refer to a different type in
the same scope; 85.7.

In C, avoid* may be used as the right-hand operand of an assignment to or initialization of a
variable of any pointer type; int@ it may not (85.6). For example:

void f(int n)
{

}

C allows jumps to bypass an initializatiort:4Xoes not.

In C, a globakonst by default has external linkage; if€it does not and must be initialized,
unless explicitly declareeitem (85.4).

In C, names of nested structures are placed in the same scope as the structure in which they are
nested. For example:

int* p = malloc(n* sizeof(int)) ;/* not C-+. In Ct+, allocate using ‘new*/

struct S{
struct T{
int a;
h
int b;
5

struct T x /¥ okin C meaning ‘S::T x;". Not& */

In C, an array can be initialized by an initializer that has more elements than the array requires. For
example:

char v[5] ="Oscar"; [* okin C, the terminating O is not used. NattC*/

B.2.3 Deprecated Features

By deprecating a feature, the standards committee expresses the wish that the feature would go
away. However, the committee does not have a mandate to remove a heavily used feature

ever redundant or dangerous it may be. Thus, a deprecation is a strong hint to the users to avoid the
feature.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section B.2.3 Deprecated Features 819

The keywordstatic, which usually means “statically allocated,” can be used to indicate that a
function or an object is local to a translation unit. For example:

/1 filel:
static int glob;

/1 file2:
static int glob;

This program genuinely has two integers catifmb. Eachglob is used exclusively by functions
defined in its translation unit.

The use ofstatic to indicate “local to translation unit” is deprecated in+C Use unnamed
namespaces instead (88.2.5.1).

C-style casts should have been deprecated when the new-style casts were introduced. Program-
mers should seriously consider banning C-style casts from their own programs. Where explicit
type conversion is necessasfatic_cast, reinterpret_cast, const_cast, or a combination of these
can do what a C-style cast can. The new-style casts should be preferred because they are more
explicit and more visible (§6.2.7).

B.2.4 Cr+ Code That Is Not C

This section lists facilities offered by+€ but not by C. The features are sorted by purpose. How-
ever, many classifications are possible and most features serve multiple purposes, so this classifica-
tion should not be taken too seriously.
— Features primarily for notational convenience:
[1] // comments (82.3); being added to C
[2] Support for restricted character sets (8C.3.1)
[3] Support for extended character sets (§8C.3.3); being added to C
[4] Non-constant initializers for objects #tatic storage (§9.4.1)
[5] constin constant expressions (85.4, 8C.5)
[6] Declarations as statements (86.3.1)
[7] Declarations irfor-statemeninitializers and conditions (86.3.3, §6.3.2.1)
[8] Structure names need not be prefixedstouct (85.7)
— Features primarily for strengthening the type system:
[1] Function argument type checking (87.1); later added to C (8B.2.2)
[2] Type-safe linkage (89.2, §9.2.3)
[3] Free store management usimgw anddelete (86.2.6, §10.4.5, §15.6)
[4] const(85.4, 85.4.1); later added to C
[5] The Boolean typdool (§4.2)
[6] New cast syntax (86.2.7)
— Facilities for user-defined types:
[1] Classes (Chapter 10)
[2] Member functions (§810.2.1) and member classes (811.12)
[3] Constructors and destructors (§10.2.3, §10.4.1)
[4] Derived classes (Chapter 12, Chapter 15)
[5] virtual functions and abstract classes (§12.2.6, §12.3)

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

820 Compatibility Appendix B

[6] Public/protected/private access control (§810.2.2, 815.3, §C.11)

[7] friends (§811.5)

[8] Pointers to members (815.5, 8C.12)

[9] static members (810.2.4)

[10] mutable members (§10.2.7.2)

[11] Operator overloading (Chapter 11)

[12] References (85.5)

— Features primarily for program organization (in addition to classes):

[1] Templates (Chapter 13, 8C.13)

[2] Inline functions (87.1.1)

[3] Default arguments (87.5)

[4] Function overloading (87.4)

[5] Namespaces (88.2)

[6] Explicit scope qualification (operator ; 84.9.4)

[7] Exception handling (88.3, Chapter 14)

[8] Run-time Type ldentification (815.4)
The keywords added by+€ (8B.2.2) can be used to spot most+&pecific facilities. However,
some facilities, such as function overloading aodsts in constant expressions, are not identified
by a keyword. In addition to the language features listed here;+thébCary (816.1.2) is mostly
C++ specific.

The__cplusplus macro can be used to determine whether a program is being processed by a C

or a G+ compiler (89.2.4).

B.3 Coping with Older C++ Implementations

C++ has been in constant use since 1983 (81.4). Since then, several versions have been defined and
many separately developed implementations have emerged. The fundamental aim of the standards
effort was to ensure that implementers and users would have a single definitiot @f Work
from. Until that definition becomes pervasive in thet@ommunity, however, we have to deal
with the fact that not every implementation provides every feature described in this book.

It is unfortunately not uncommon for people to take their first serious look+tat€ing a five-
year-old implementation. The typical reason is that such implementations are widely available and
free. Given a choice, no self-respecting professional would touch such an antique. For a novice,
older implementations come with serious hidden costs. The lack of language features and library
support means that the novice must struggle with problems that have been eliminated in newer
implementations. Using a feature-poor older implementation also warps the novice’s programming
style and gives a biased view of whatt@s. The best subset ofr€to initially learn isnotthe set
of low-level facilities (and not the common C anttGubset; §1.2). In particular, | recommend
relying on the standard library and on templates to ease learning and to get a good initial impres-
sion of what @+ programming can be.

The first commercial release of-€was in late 1985. The language was defined by the first
edition of this book. At that point,*@ did not offer multiple inheritance, templates, run-time type
information, exceptions, or namespaces. Today, | see no reason to use an implementation that

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section B.3 Coping with Older G+ Implementations 821

doesn’t provide at least some of these features. | added multiple inheritance, templates, and excep-
tions to the definition of €+ in 1989. However, early support for templates and exceptions was
uneven and often poor. If you find problems with templates or exceptions in an older implementa-
tion, consider an immediate upgrade.

In general, it is wise to use an implementation that conforms to the standard wherever possible
and to minimize the reliance on implementation-defined and undefined aspects of the language.
Design as if the full language were available and then use whatever workarounds are needed. This
leads to better organized and more maintainable programs than designing for the lowest-common-
denominator subset oft€. Also, be careful to use implementation-specific language extensions
only when absolutely necessary.

B.3.1 Headers

Traditionally, every header file had & suffix. Thus, @+ implementations provided headers such
as<map. h> and<iostream. h>. For compatibility, most still do.

When the standards committee needed headers for redefined versions of standard libraries and
for newly added library facilities, naming those headers became a problem. Using the old
names would have caused compatibility problems. The solution was to drop shéfix in stan-
dard header names. The suffix is redundant anyway because-thetation indicates that a stan-
dard header is being named.

Thus, the standard library provides non-suffixed headers, sudibsteeam™> and<map>. The
declarations in those files are placed in namessgtaceOlder headers place their declarations in the
global namespace and uselasuffix. Consider:

#include<iostream>
int main()

{

}

If this fails to compile on an implementation, try the more traditional version:

std: : cout << " Hello, world! \n";

#include<iostream. h>

int main()

{
}

Some of the most serious portability problems occur because of incompatible headers. The stan-
dard headers are only a minor contributor to this. Often, a program depends on a large number of
headers that are not present on all systems, on a large number of declarations that don’t appear in
the same headers on all systems, and on declarations that appear to be standard (because they are
found in headers with standard names) but are not part of any standard.

There are no fully-satisfactory approaches to dealing with portability in the face of inconsistent
headers. A general idea is to avoid direct dependencies on inconsistent headers and localize the
remaining dependencies. That is, we try to achieve portability through indirection and localization.

cout << " Hello, world! \n";

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

822 Compatibility Appendix B

For example, if declarations that we need are provided in different headers in different systems, we
may choose tafinclude an application specific header that in tuincludes the appropriate
header(s) for each system. Similarly, if some functionality is provided in slightly different forms
on different systems, we may choose to access that functionality through application-specific inter-
face classes and functions.

B.3.2 The Standard Library

Naturally, pre-standard+@ implementations may lack parts of the standard library. Most will
have iostreams, non-templateomplex, a differentstring class, and the C standard library. How-

ever, some may laciap, list, valarray, etc. In such cases, use thetypically proprietary—

libraries available in a way that will allow conversion when your implementation gets upgraded to
the standard. Itis usually better to use a non-starstiang, list, andmap than to revert to C-style
programming in the absence of these standard library classes. Also, good implementations of the
STL part of the standard library (Chapter 16, Chapter 17, Chapter 18, Chapter 19) are available free
for downloading.

Early implementations of the standard library were incomplete. For example, some had con-
tainers that didn’t support allocators and others required allocators to be explicitly specified for
each class. Similar problems occurred for other “policy arguments,” such as comparison criteria.
For example:

list<int> li; / | ok, but some implementations require an allocator
list<int, allocator<int> > li2; / | ok, but some implementations don’t implement allocators
map<string, Record> m1; /| ok, but some implementations require a less-operation

map<string, Record, less<string> > m2,

Use whichever version an implementation accepts. Eventually, the implementations will accept all.
Early Cr+ implementations providedstrstream and ostrstream defined in <strstream h>
instead ofistringstream and ostringstream defined in <sstream>. The strstreams operated
directly on achar[] (see §21.10[26]).
The streams in pre-standard-Cimplementations were not parameterized. In particular, the
templates with thdasic_ prefix are new in the standard, and Hasic_ios class used to be called
ios. Curiously enoughipstate used to be callenb_state.

B.3.3 Namespaces

If your implementation does not support nhamespaces, use source files to express the logical struc-
ture of the program (Chapter 9). Similarly, use header files to express interfaces that you provide
for implementations or that are shared with C.

In the absence of namespaces, staic to compensate for the lack of unnamed namespaces.
Also use an identifying prefix to global names to distinguish your names from those of other parts
of the code. For example:

/1 for use on pre-namespace implementations:

class bs string{ /* ...*/ }; | [/ Bjarne’s string
typedef int bs_bool; / | Bjarne’s Boolean type

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section B.3.3 Namespaces 823

class joe string; / | Joe’s string
enum joe bool { joe false joe true}; / / Joe’s bool

Be careful when choosing a prefix. Existing C ard @braries are littered with such prefixes.

B.3.4 Allocation Errors

In pre-exception-handling3, operatornew returnedO to indicate allocation failure. Standard
C++'s newthrowsbad_alloc by default.

In general, it is best to convert to the standard. In this case, this means modify the code to catch
bad_alloc rather than test fod. In either case, coping with memory exhaustion beyond giving an
error message is hard on many systems.

However, when converting from testi®go catchingbad_alloc is impractical, you can some-
times modify the program to revert to the pre-exception-handling behavior._ffem handler is
installed, using thaothrow allocator will cause 8 to be returned in case of allocation failure:

X* pl=new X / | throws badalloc if no memory
X* p2 = new(nothrow) X;/ / returns O if no memory

B.3.5 Templates

The standard introduced new template features and clarified the rules for several existing ones.
If your implementation doesn’t support partial specialization, use a separate name for the tem-
plate that would otherwise have been a specialization. For example:

template<class T> class plist: private list<void*> {/ / should have been lisT*>
/..
h

If your implementation doesn’t support member templates, some techniques become infeasible. In
particular, member templates allow the programmer to specify construction and conversion with a
flexibility that cannot be matched without them (813.6.2). Sometimes, providing a nonmember
function that constructs an object is an alternative. Consider:

template<class T> class X{
/..
template<class A> X(const A& a);

h
In the absence of member templates, we must restrict ourselves to specific types:

template<class T> class X{
/...
X(const Al& a);
X(const A2& a);
/..

k

Most early implementations generated definitions for all member functions defined within a tem-
plate class when that template class was instantiated. This could lead to errors in unused member

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

824 Compatibility Appendix B

functions (8C.13.9.1). The solution is to place the definition of the member functions after the
class declaration. For example, rather than

template<class T> class Container {

/..
public:

void sort() { /* use<* } [/ | in-class definition
h

class Glob{ /* no<for Glob*/ };

Container<Glob> cg; // some pre-standard implementations try to define ContaBleh>::sort()
use

template<class T> class Container {
/...

public:
void sort() ;

h

template<class T> void Container<T>:: sort() { /* use<* }
class Glob{ /* no<for Glob*/ }; / [/ out-of-class definition

Container<Glob> cg; // no problem as long as cg.sort() isn't called

Early implementations of €3 did not handle the use of members defined later in a class. For
example:

template<class T> class Vector {

public:
T& operator[](size t i) { return V[i]; } / / v declared below
/...

private:
T v, / | oops: not found!
size t sz

h

In such cases, either sort the member declarations to avoid the problem or place the definition of
the member function after the class declaration.

Some pre-standard#@ implementations do not accept default arguments for templates
(813.4.1). In that case, every template parameter must be given an explicit argument. For example:

template<class T, class LT = less<T> > class map {
/...

}

map<int> m; /| Oops: default template arguments not implemented
map< int, less<int>>m2, / / workaround: be explicit

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section B.3.6 For-Statement Initializers 825

B.3.6 For-Statement Initializers

Consider:

void f(vector<char>&v, int m)

{
for (int i=0; i<v. size)) &&i<=m; ++i) cout << V[i];
if (i==m) { / [/ error:ireferred to after end of for-statement
Il ..
}
}

Such code used to work because in the original definitiontef the scope of the controlled vari-
able extended to the end of the scope in whichfahstatementppears. If you find such code,
simply declare the controlled variable beforeftbrestatement

void f2(vector<char>& v, int m)

{
int i=0; / / ineeded after the loop
for (; i<v. size) &&i<=m; ++i) cout << V[i];
if (i==m) {
/..
}
}

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

826 Compatibility Appendix B

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

	Return to Contents
	B.1 Introduction
	B.2 C/C++ Compatibility
	B.3 Coping with Older C++ Implementations

	buy now:

