
C for AIX User’s Guide
IBM

C for AIX User’s Guide
IBM

Note!
Before using this information and the product it supports, be sure to read the general information
under “Notices” on page xv.

September 1999 Edition

This documentation applies to Version 5 Release 0 of the C for AIX compiler and to all subsequent releases and
modifications until otherwise indicated in new editions. Make sure you are using the correct edition for the level of the
product.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not
stocked at the address below.

If you have comments about this document, address them to:

IBM Canada Ltd. Laboratory
Information Development
2G/345/1150/TOR
1150 Eglinton Avenue East
North York, Ontario, Canada, M3C 1H7

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way
it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1995, 1999. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

iii

iv C for AIX User’s Guide

Contents

Notices . xv
Trademarks and Service Marks . xv

About this Information . xvii
Related Reading . xvii

IBM Publications . xvii
Non-IBM Publications . xviii

Chapter 1. Introducing C for AIX . 1

Chapter 2. Setting Up the C for AIX Compilation Environment 3
Setting Environment Variables to Select 64- or 32-bit Compilation Modes 3
Setting Parallel Processing Run-time Options . 3
Setting Environment Variables for the Message and Help Files 3
Setting Environment Variables in bsh, ksh, or sh Shells 4
Setting Environment Variables in csh Shell . 4

Chapter 3. Using the C for AIX Compiler . 5
Compiler Modes . 5
Types of Input Files . 7
Types of Output Files . 8
Invoking the Compiler . 8
Invoking the Linkage Editor . 9
Compiler Options . 10

Specifying Compiler Options on the Command Line 10
Specifying Compiler Options in Your Program Source Files 12
Specifying Compiler Options in a Configuration File 13
Specifying Compiler Options for Architecture-Specific, 32- or 64-bit Compilation 14

Compiler Message and Listing Information . 18
Compiler Listings . 19
Message Severity Levels and Compiler Response 20
Compiler Return Codes . 20
Compiler Message Format . 21

Chapter 4. Advanced Compiler Usage . 23
Program Optimization with the C for AIX Compiler . 23

Optimization Techniques Used by the C for AIX Compiler 23
Special Handling of Math and String Library Functions 25

Floating Point Operations with the C for AIX Compiler 25
RISC System/6000 Floating Point Hardware . 25
Compile-Time Floating-Point Arithmetic . 26
Floating-Point Compiler Options . 27
Rounding Mode Restrictions . 35

Creating and Using Precompiled Headers . 35
Minimizing the Size of Object Files . 36

Chapter 5. Program Parallelization . 37
IBM Directives . 37
OpenMP Directives . 37
Countable Loops. 38
Reduction Operations in Parallelized Loops . 39
Shared and Private Variables in a Parallel Environment 40
Using Pragmas to Control Parallel Processing . 41

© Copyright IBM Corp. 1995, 1999 v

Chapter 6. The C Language . 45
Lexical Elements of C . 45

Tokens . 45
Comments . 46
Identifiers . 47
Constants . 48

Identifier Behavior in Your Program . 53
Scope of Identifier Visibility . 53
Program Linkage Between Identifiers . 54
Storage Duration. 57
Name Spaces . 57

Preprocessor Directives . 58
Preprocessing Operations . 59
Preprocessor Macros . 59
Conditional Compilation Directives . 60

Declarations Overview. 61
Block Scope Data Declarations . 62

Initialization. 62
Storage . 62
File Scope Data Declarations . 63
Declarators . 64
Storage Class Specifiers . 65
Initializers . 65
Type Specifiers . 66

Expressions and Operators . 67
Operator Precedence and Associativity . 67
Operands . 69
lvalues . 70
Types of Expressions . 70
Constant Expressions . 71
Function Calls. 72

Implicit Type Conversions . 74
Integral Promotions . 74
Standard Type Conversions. 74
Arithmetic Conversions . 76

Functions . 77
Calling Functions and Passing Arguments . 77

C Language Levels . 78
Basic Data Types . 79

char . 79
float, double . 80
int, long, short. 81
enum . 82
void . 85

Derived Data Types . 86
Arrays . 86
Pointers . 90
struct (Structures) . 95
union (Unions) . 103
Incomplete Types . 106
auto . 106
extern . 109
register . 111
static. 112
typedef . 115

Data Type Qualifiers . 115

vi C for AIX User’s Guide

Expression Operators . 117
Operator Precedence and Associativity Table . 117
Primary Operators . 118
Unary Operators . 120
Binary Operators . 124
Conditional Operator (?) . 131
Assignment Operators . 133
Comma Operator (,) . 136

Arithmetic Conversions Table. 137
Functions . 138

Function Declarations . 138
Function Definitions . 139
main() Function. 144

Program Statement Keywords . 145
break . 145
continue . 147
do . 148
Expressions . 149
for . 149
goto . 151
if / else . 152
Null Statement . 153
return . 154
switch . 155
while. 158

Statement Labels . 158
Statement Blocks . 159

Example of Initialization within Statement Blocks 159
C Programming Character Set . 160
Escape Sequences for Non-Printable Characters . 161
Reserved Keywords . 161
Differences Between C Language Levels . 162

Conflicts Between extended C and Other Levels 162
Extensions to RT C Provided by extended C . 164
Exceptions to ansi C Addressed by classic C . 164
saal2 C Deviations from SAA Level 2 C . 167
Arithmetic Conversions for extended Level C . 167
Summary of C Language Level Conflicts . 170

Chapter 7. Writing C Programs . 173
Creating and Naming a C Source File . 174

File-Naming Conventions . 174
Internal Structure of a C Program . 174
Example of a Simple C Program . 175
Example of a C Program Comprised of Two Source Files 176
External Structure of a C Program . 177

Specifying Path Names for Include Files . 178
Using a Full Path Name to Imbed Files . 178
Using a Relative Path Name to Imbed Files . 178
Directory Search Sequence for Include Files Using Relative Path Names 178

Using Memory Heaps in a Program . 179
Memory Management Functions . 179
Managing Memory with Multiple Heaps . 182
Types of Memory . 183
Debugging Memory Heaps . 183
Changing the Default Heap Used in a Program . 185

Contents vii

Creating and Using a Fixed Size Heap . 186
Creating and Using an Expandable Heap . 188
Expanding Your Heap . 189
Shrinking Your Heap . 189
Example of Creating and Using a User Heap . 190
Example of Creating and Using a Shared-Memory User Heap 191
Debugging Programs with Heap Memory . 195

Writing Optimized Program Source Code . 197
Variables . 197
Pointers . 198
Functions . 199
Function Arguments . 199
Expressions . 199
Critical Loops . 200
Conversions . 201
Arithmetic Constructions . 201
Using Inlined Components. 202

Chapter 8. Using C for AIX with Other Programming Languages 207
Interlanguage Calling Conventions. 207
Corresponding Data Types . 207

Special Treatment of Character and Aggregate Data 208
Using the Subroutine Linkage Conventions in Interlanguage Calls 209

Interlanguage Calls - Parameter Passing . 210
Interlanguage Calls - Call by Reference Parameters 210
Interlanguage Calls - Call by Value Parameters . 211
Interlanguage Calls - Rules for Passing Parameters by Value 211
Interlanguage Calls - Pointers to Functions . 212
Interlanguage Calls - Function Return Values . 213
Interlanguage Calls - Stack Floor . 213
Interlanguage Calls - Stack Overflow . 213
Interlanguage Calls - Traceback Table . 214
Interlanguage Calls - Type Encoding and Checking 214

Sample Program: C Calling Fortran . 214

Appendix A. Compiler Options . 217
Resolving Conflicting Compiler Options . 217
Compiler Options and Their Defaults . 218
Lists of Compiler Options by Functional Groupings. 226

Options that Specify Compiler Characteristics . 226
Options that Specify Debugging Features . 227
Options that Specify Preprocessor Options . 228
Options that Specify Compiler Output . 228
Options that Specify the Compiler Object Code Produced 229
Options that Specify Linkage Options. 230

Compiler Options Reference . 231
. 231
32, 64 . 231
aggrcopy . 232
alias . 233
align . 234
ansialias . 236
arch . 237
assert . 238
attr . 238
B . 239

viii C for AIX User’s Guide

bitfields. 240
brtl . 240
bstatic, bdynamic . 241
C . 242
c . 242
cache . 243
chars . 244
check . 245
compact . 246
cpluscmt . 247
D . 250
datalocal, dataimported . 251
dbxextra . 252
digraph . 252
dollar . 253
dpcl . 253
E . 253
enum . 255
extchk . 258
f . 259
F . 259
fdpr . 260
flag . 261
float . 261
flttrap . 264
fold . 265
fullpath . 266
G . 266
g . 267
genpcomp. 267
genproto . 268
halt . 269
heapdebug . 270
hsflt . 271
hssngl . 272
I . 272
idirfirst . 273
ignerrno . 274
ignprag . 274
info . 275
initauto . 276
inlglue . 277
inline . 277
ipa . 279
isolated_call . 284
L . 285
l . 286
langlvl . 286
ldbl128, longdouble . 289
libansi . 290
linedebug . 291
list . 291
listopt . 292
longlit . 292
longlong . 293
M . 294

Contents ix

ma . 295
macpstr . 295
maf . 297
makedep . 298
maxerr . 299
maxmem . 300
mbcs, dbcs . 301
noprint . 301
O, optimize . 302
o . 305
once . 306
P . 307
p . 308
pascal . 308
pdf1, pdf2 . 309
pg. 311
phsinfo . 312
proclocal, procimported, procunknown . 312
proto. 313
Q . 314
r . 316
rndsngl . 316
ro . 317
roconst . 317
rrm . 318
S . 319
showinc . 320
smp . 320
source . 322
spill . 323
spnans . 323
srcmsg . 324
statsym. 324
stdinc . 325
strict . 326
strict_induction . 327
syntaxonly . 327
suppress . 328
t . 329
tabsize . 329
tbtable . 330
threaded . 331
tune . 331
U . 332
unroll . 333
upconv . 334
usepcomp. 335
v . 336
W . 336
w . 337
warn64 . 338
xcall . 338
xref . 339
y . 339

Appendix B. 32-bit to 64-bit Migration Considerations 341

x C for AIX User’s Guide

Appendix C. Operating System Migration Considerations 345

Appendix D. Preprocessor Directives and Related Information 347
List of Standard Preprocessor Directives . 347

(Null) Preprocessor Directive . 347
#define Preprocessor Directive . 348
#if, #elif Preprocessor Directives . 352
#else Preprocessor Directive . 353
#endif Preprocessor Directive . 353
#error Preprocessor Directive . 354
#ifdef Preprocessor Directive . 354
#indef Preprocessor Directive . 355
#include Preprocessor Directive. 356
#line Preprocessor Directive . 357
#undef Preprocessor Directive . 358

Predefined Preprocessor Macros . 359
Examples of Predefined Macros in a Program . 362

#pragma Preprocessor Directives . 363
#pragma alloca Preprocessor Directive . 365
#pragma chars Preprocessor Directive . 365
#pragma comment Preprocessor Directive . 366
#pragma disjoint Preprocessor Directive. 366
#pragma execution_frequency Preprocessor Directive 367
#pragma hdrfile Preprocessor Directive . 368
#pragma hdrstop Preprocessor Directive . 369
#pragma info Preprocessor Directive . 370
#pragma isolated_call Preprocessor Directive. 371
#pragma langlvl Preprocessor Directive . 373
#pragma leaves Preprocessor Directive . 373
#pragma map Preprocessor Directive . 374
#pragma option_override Preprocessor Directive 374
#pragma options Preprocessor Directive . 375
#pragma reachable Preprocessor Directive . 376
#pragma strings Preprocessor Directive . 376

Preprocessor Macro Operators . 377
Preprocessor Macro Operator. 377
Preprocessor Macro Operator . 378
/**/ Preprocessor Macro Operator . 379

Appendix E. Parallel Processing Facilities . 381
#pragma Preprocessor Directives for Parallel Processing 381

#pragma ibm critical Preprocessor Directive . 382
#pragma ibm independent_calls Preprocessor Directive 383
#pragma ibm independent_loop Preprocessor Directive 384
#pragma ibm iterations Preprocessor Directive . 384
#pragma ibm parallel_loop Preprocessor Directive 385
#pragma ibm permutation Preprocessor Directive 385
#pragma ibm schedule Preprocessor Directive . 386
#pragma ibm sequential_loop Preprocessor Directive 387
#pragma omp parallel Preprocessor Directive. 388
#pragma omp for Preprocessor Directive . 389
#pragma omp parallel for Preprocessor Directive 393
#pragma omp sections Preprocessor Directive . 393
#pragma omp parallel sections Preprocessor Directive 394
#pragma omp single Preprocessor Directive . 395
#pragma omp master Preprocessor Directive . 395

Contents xi

#pragma omp critical Preprocessor Directive . 396
#pragma omp barrier Preprocessor Directive . 397
#pragma omp atomic Preprocessor Directive . 397
#pragma omp flush Preprocessor Directive . 398
#pragma omp ordered Preprocessor Directive . 399
#pragma omp threadprivate Preprocessor Directive 399

Built-in Functions Used for Parallel Processing . 400
Run-time Options for Parallel Processing . 402
OpenMP Run-time Options for Parallel Processing . 404

Appendix F. C for AIX Debug Functions . 407
_debug_calloc - Allocate and Initialize Memory . 407
_debug_free - Free Allocated Memory . 408
_debug_heapmin - Free Unused Memory in the Default Heap 410
_debug_malloc - Allocate Memory . 412
_debug_memcpy - Copy Bytes . 413
_debug_memmove - Copy Bytes . 415
_debug_memset - Set Bytes to Value . 416
_debug_realloc - Reallocate Memory Block . 417
_debug_strcat - Concatenate Strings . 419
_debug_strcpy - Copy Strings . 421
_debug_strncat - Concatenate Strings . 422
_debug_strncpy - Copy Strings . 423
_debug_strnset - Set Characters in String . 425
_debug_strset - Set Characters in String . 426
_debug_ucalloc - Reserve and Initialize Memory from User Heap 428
_debug_uheapmin - Free Unused Memory in User Heap 430
_debug_umalloc - Reserve Memory Blocks from User Heap 431

Appendix G. Built-in Functions for PowerPC Processors 435

Appendix H. RISC System/6000 Alignment Rules 437
Alignment Rules for Nested Aggregates . 438
Packed Alignment Rules . 438
MacIntosh and Twobyte Alignment Rules . 440
__align Specifier . 442

Appendix I. Implementation Dependencies Overview 445
C for AIX Compiler Limits . 445
Implementation-Defined Behavior . 445

Implementation Dependency - Translation (F.3.1) 446
Implementation Dependency - Environment (F.3.2) 447
Implementation Dependency - Identifiers (F.3.3) . 448
Implementation Dependency - Characters (F.3.4) 448
Implementation Dependency - Integers (F.3.5) . 449
Implementation Dependency - Floating Point Types (F.3.6) 451
Implementation Dependency - Arrays and Pointers (F.3.7) 452
Implementation Dependency - Registers (F.3.8) . 452
Implementation Dependency - Structures, Unions, Enumerations, Bit Fields (A.6.3.9) (F.3.9) . . . 453
Implementation Dependency - Qualifiers (F.3.10) 453
Implementation Dependency - Declarators (F.3.11) 454
Implementation Dependency - Statements (F.3.12) 454
Implementation Dependency - Preprocessing Directives (F.3.13). 454
Implementation Dependency - Library Functions (F.3.14) 455
Implementation Dependency - Locale-Specific Behavior (F.4) 459

Type Conversions . 461

xii C for AIX User’s Guide

Synchronization of Stores and Loads to I/O Space . 464
Example of Multiple Writes to a Single Register . 465
Example of Reading and Writing to Mapped-to-I/O Space 465

Appendix J. C for AIX and XL C Compatibility . 467

Appendix K. National Languages Support in the C for AIX Compiler 469
Converting Files Containing Multibyte Data to New Code Pages 469
Where Multibyte Characters Are Supported . 469

Appendix L. C for AIX Files . 473
etc/vac.cfg - Default Configuration File . 474

vac.cfg.41 Compiler Configuration File . 474
vac.cfg.43 Compiler Configuration File . 477

Appendix M. ASCII Character Set . 483

Appendix N. Problem Solving . 487
Message Catalog Errors . 487
Correcting Page Space Errors During Compilation . 487

Appendix O. Glossary . 489
A . 489
B . 489
C . 490
D . 491
E . 492
F . 492
G . 493
H . 493
I . 493
K . 494
L . 494
M . 495
N . 495
O . 495
P . 496
R . 496
S . 496
T . 497
U . 497
V . 498
W . 498
Z . 498

Contents xiii

xiv C for AIX User’s Guide

Notices

Any reference to an IBM licensed program in this publication is not intended to state or imply that only
IBM’s licensed program may be used. Any functionally equivalent product, program, or service that does
not infringe any of IBM’s intellectual property rights may be used instead of the IBM product, program, or
service. Evaluation and verification of operation in conjunction with other products, except those expressly
designated by IBM, is the user’s responsibility.

IBM may have patents or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries,
in writing, to:

Director of Licensing,
Intellectual Property & Licensing,
International Business Machines Corporation,
North Castle Drive, MD - NC119,
Armonk, New York 10504-1785,
U.S.A.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this one)
and (ii) the mutual use of the information which has been exchanged, should contact IBM Canada Ltd.,
Department 071, 1150 Eglinton Avenue East, North York, Ontario M3C 1H7, Canada. Such information
may be available, subject to appropriate terms and conditions, including in some cases payment of a fee.

This publication may contain examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples may include the names of individuals, companies, brands,
and products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

IBM may change this publication, the product described herein, or both.

Trademarks and Service Marks

The following terms are trademarks of the International Business Machines Corporation in the United
States and/or other countries:

AIX
AIXwindows
C Set ++
IBM
OS/2
POWER
POWER2
PowerPC
RS/6000

Windows is a trademark or registered trademark of Microsoft Corporation in the U.S. and/or other
countries.

UNIX is a registered trademark in the U.S. and other countries licensed exclusively through X/Open
Company Limited.

Other company, product, and service names, which may be denoted by a double asterisk(**), may be
trademarks or service marks of others.

© Copyright IBM Corp. 1995, 1999 xv

xvi C for AIX User’s Guide

About this Information

This information describes the IBM C for AIX licensed program product, intended for use with the AIX
Version 4 Operating System environment.

You will find information on using the C for AIX compiler product to compile, link, and run programs coded
in the C language. Sections describe how to both write and use compiler options to better optimize
programs compile with the C for AIX product. Also included is C languge reference information.

Highlighting Conventions
This information uses the following text-highlighting conventions:

Bold Font v Names of operating system commands

v Names of compiler options

v Names of language keywords

v Directory paths
Monospaced Font v Information that you should actually type

v Examples of code

v Examples of text or system messages that you might see displayed on the screen
Italic Font v Variables for which you will substitute actual names

Related Reading

All C for AIX information is available online and can be viewed with an HTML browser. You may also want
refer to the following publications for additional information:

IBM Publications
v AIX Version 4 System User’s Guide: Operating System and Devices (SC23-2544)

Describes the AIX Version 4 Operating System for novice system users. It describes how to run
commands, handle processes, files and directories, printing, and working with the AIXwindows Desktop.
It also introduces system commands for securing files, using storage media, and customizing
environment files.

v AIX Version 4 Getting Started (SC23-2527)
Contains information for users who have little or no experience with the AIX operating system. It
introduces basic system commands covering tasks such as starting and stopping the system, using a
keyboard or mouse, logging in and out, identifying and using the various user interfaces, and running
basic file commands.

v AIX Version 4 Commands Reference (SBOF-1851)
A collection of volumes that contain descriptions and examples of AIX commands and their available
flags.

v AIX Version 4 General Programming Concepts (SC23-2533 and SC23-2490)
Discusses the operating system from a programming perspective.

v AIX Version 4 Technical Reference, Volumes 1 and 2: Base Operating System and Extensions
(SC23-2614 and SC23-2615)
Provides reference information about system calls, subroutines, macros, and statements associated with
the AIX base operating system runtime services and device services.

© Copyright IBM Corp. 1995, 1999 xvii

Non-IBM Publications

The C language is a well-established programming language. The following standards describe it:

v ANSI/ISO-IEC 9899-1990[1992]
Presents the ANSI/ISO standard for the C language. This document has officially replaced American
National Standard for Information Systems-Programming Language C (X3.159-1989) as the ANSI C
standard, and is technically equivalent to ANSI X3.159-1989.

v ISO/IEC 9899:1990(E)
Presents the International Standards Organization (ISO) standard for the C language.

v Federal Information Processing Standards Publication C (FIPS PUB 160)
Presents the Federal Information Processing Standard (FIPS) for the C language.

xviii C for AIX User’s Guide

Chapter 1. Introducing C for AIX

The C for AIX product is an IBM licensed program that operates in the AIX Version 4 Operating System
environment. Features of the C for AIX product include:

v Ability to compile in either 64- or 32-bit modes. Programs compiled in 64-bit mode can only be run on
64-bit CPUs using AIX 4.3 or higher. Programs compiled in 32-bit mode can be run on either 64- or
32-bit CPUs using AIX 4.2 or higher.

v Programming support for parallel processing architectures:

– SMP automatic and explicit parallelization support

– OpenMP Application Program Interface support

v Conformance to the following industry standards for compiling C language source code:

– The Federal Information Processing Standard (FIPS) PUB 160 C language

– The American National Standard for Information Systems (ANSI) and International Standards
Organization (ISO) standard ANSI/ISO-IEC 9899-1990[1992] for the C programming language

– The International Standards Organization (ISO) standard ISO/IEC 9899:1990(E) for the C
programming language

– Conformance to IBM Systems Application Architecture (SAA) Common Programming Interface C
language definition, described by the document Systems Application Architecture Common
Programming Interface C Reference - Level 2. SAA Level 2 is an IBM definition of the C language
that allows programmers to develop applications that can be easily transported across different SAA
environments. It specifies several features of the C language that the ANSI C standard designates as
implementation-defined.

v Compiler options to provide support for different levels and features of the C language

v Compiler options to enable various levels of optimization for generated object code

v Unicode character support lets you use characters not in the basic character set to describe identifiers,
character constants, and string literals.

v Memory debug routines

v xldb and IBM Distributed Debugger (idebug) graphical debugger tools

v HTML-based product help and reference information

© Copyright IBM Corp. 1995, 1999 1

2 C for AIX User’s Guide

Chapter 2. Setting Up the C for AIX Compilation Environment

Before you compile your C programs, you must set up the environment variables and the configuration file
for your application.

Setting Environment Variables to Select 64- or 32-bit Compilation
Modes

The OBJECT_MODE environment variable, if it exists, can set the default compilation mode. Permissible
values for the OBJECT_MODE environment variable are:

32 Sets the compiler to generate and/or use 32-bit objects.

64 Sets the compiler to generate and/or use 64-bit objects.

32_64 Sets the compiler to accept both 32- and 64-bit objects. The compiler never functions in this mode, and
using this choice may generate an error message, depending on other compilation options set at
compile-time.

See “Specifying Compiler Options for Architecture-Specific, 32- or 64-bit Compilation” on page 14 for more
information.

Setting Parallel Processing Run-time Options

The XLSMPOPTS environment variable sets options for programs using loop parallelization. For example,
to have a program run-time create 4 threads and use dynamic scheduling with chunk size of 5, you would
set the XLSMPOPTS environment variable as shown below:

XLSMPOPTS=PARTHDS=4:SCHEDULE=DYNAMIC=5

Additional environment variables set options for program parallelization using OpenMP-compliant
directives.

See “Run-time Options for Parallel Processing” on page 402 and “OpenMP Run-time Options for Parallel
Processing” on page 404 for more information.

Setting Environment Variables for the Message and Help Files

Before using the compiler, you must install the message catalogs and help files and set the following two
environment variables:

LANG Specifies the national language for message and help files.

NLSPATH Specifies the path name of the message and help files.

The LANG environment variable can be set to any of the locales provided on the system. See the
description of locales in AIX General Programming Concepts for IBM RISC System/6000 for more
information.

© Copyright IBM Corp. 1995, 1999 3

The national language code for United States English is en_US. If the appropriate message catalogs have
been installed on your system, any other valid national language code can be substituted for en_US.

To determine the current setting of the national language on your system, use the both of the following
echo commands:

echo $LANG
echo $NLSPATH

The LANG and NLSPATH environment variables are initialized when the operating system is installed, and
might differ from the ones you want to use.

You use different commands to set the environment variables depending on whether you are using the
Bourne shell (bsh or sh), Korn shell (ksh), or C shell (csh). To determine the current shell, use the echo
command:

echo $SHELL

The Bourne-shell path is /bin/bsh or /bin/sh . The Korn shell path is /bin/ksh . The C-shell path is
/bin/csh .

For more information about the NLSPATH and LANG environment variables, see AIX Version 4 System
User’s Guide: Operating System and Devices. The AIX international language facilities are described in the
AIX General Programming Concepts for IBM RISC System/6000.

Setting Environment Variables in bsh, ksh, or sh Shells

To set the environment variables from the Bourne shell or Korn shell, use the following commands:
LANG=en_US
NLSPATH=/usr/lib/nls/msg/%L/%N:/usr/lib/nls/msg/%N
export LANG NLSPATH

To set the variables so that all users have access to them, add the commands to the file /etc/profile . To
set them for a specific user only, add the commands to the file .profile in the user’s home directory. The
environment variables are set each time the user logs in.

Setting Environment Variables in csh Shell

To set the environment variables from the C shell, use the following commands:
setenv LANG en_US
setenv NLSPATH /usr/lib/nls/msg/%L/%N:/usr/lib/nls/msg/%N

In the C shell, you cannot set the environment variables so that all users have access to them. To set
them for a specific user only, add the commands to the file .cshrc in the user’s home directory. The
environment variables are set each time the user logs in.

“Specifying Compiler Options for Architecture-Specific, 32- or 64-bit Compilation” on page 14
“Run-time Options for Parallel Processing” on page 402
“OpenMP Run-time Options for Parallel Processing” on page 404

4 C for AIX User’s Guide

Chapter 3. Using the C for AIX Compiler

You can use the C for AIX product as a C compiler for files with a .c (small c) suffix. The compiler
processes your text-based C program source files to create an executable object module.

The cc command is a tradional UNIX operating system command for invoking the C compiler. Other
compiler modes and their invocation commands described in this and related pages are specific to the C
for AIX compiler.

Note: Use of the xlc Command in this Information

Throughout these information panels, the xlc command is used to describe the actions of the compiler.

In most cases, you should use the xlc command to compile your C source files.

The xlc_r and xlc128 commands specify additional libraries, macros, or options that are not automatically included or
set by the xlc command. Besides these differences, these commands may be considered functionally equivalent, so
that any mention of one in this book implies the other. This is also true for the cc , cc_r and cc128 commands.

“Compiler Modes”
“Compiler Options” on page 10
“Types of Input Files” on page 7
“Types of Output Files” on page 8
“Compiler Message and Listing Information” on page 18
“Invoking the Linkage Editor” on page 9
“Invoking the Compiler” on page 8
“Specifying Compiler Options on the Command Line” on page 10
“Specifying Compiler Options in Your Program Source Files” on page 12
“Specifying Compiler Options in a Configuration File” on page 13
“Compiler Options and Their Defaults” on page 218

Compiler Modes

There are several forms of the C for AIX compiler command to support various version levels of the C
language. Normally, you should use the xlc command for compiling your source files. You can, however,
use other forms of the command if your particular environment and file systems require it.

The basic compiler invocations are:

xlc Invokes the compiler for C source files with a default language level of ansi , and specifies compiler
option -qansialias to allow type-based aliasing. Use this invocation for new C programs.

cc Invokes the compiler for C source files with a default language level of extended and compler
options -qnoro and -qnoroconst (to provide compatibility with the RT compiler and placement of
string literals or constant values in read/write storage). Use this invocation for legacy C code that
does not require compliance withANSI C.

c89 Invokes the compiler for C source files, with a default language level of ansi , and specifies
compiler options -qansialias (to allow type based aliasing) and -qnolonglong (disabling use of
long long), and sets -D_ANSI_C_SOURCE (for ANSI-conformant headers). Use this invocation for
strict conformance to the ANSI standard.

© Copyright IBM Corp. 1995, 1999 5

C for AIX provides variations on the four basic compiler invocations. These variations are described below:

xlc128
cc128

All 128-suffixed invocation commands are functionally similar to their corresponding base compiler
invocations. They specify the -qldbl128 option, which increases the length of long double types in
your program from 64 to 128 bits.

xlc_r
cc_r

All _r-suffixed invocations are functionally similar to their corresponding base compiler invocations,
but set the macro name -D_THREAD_SAFE and invoke the added compiler options:

v -L/usr/lib/threads

v -Lusr/lib/dce

v -lc_r

v -lpthreads

v -qthreaded

Use the _r-suffixed invocations when compiling with the -qsmp compiler option or if you want to
create either Posix or AIX DCE threaded applications.

xlc_r4
cc_r4

Use _r4-suffixed invocations to provide compatibility between DCE applications written for AIX
Version 3.2.5 and AIX Version 4. They link your application to the correct AIX Version 4 DCE
libraries, providing compatibility between the latest version of the pthreads library and the earlier
versions supported on AIX Version 3.2.5.

On AIX 4.3, use _r7-suffixed invocations to compile and link applications conforming to DRAFT 7 of
the Posix threads standard. Otherwise, the compiler will by default compile and link applications
conforming to the current Posix threads standards.

xlc_r7
cc_r7

On AIX 4.3, use _r7-suffixed invocations to compile and link applications conforming to DRAFT 7 of
the Posix threads standard. Otherwise, the compiler will by default compile and link applications
conforming to the current Posix threads standards.

“C Language Levels” on page 78
“Invoking the Compiler” on page 8
“ansialias” on page 236
“D” on page 250
“L” on page 285
“l” on page 286
“longlong” on page 293
“ro” on page 317
“roconst” on page 317

6 C for AIX User’s Guide

Types of Input Files

You can input the following types of files to the C for AIX compilers.

C Source Files These are files containing a C source module. The source file must have a .c (lowercase c)
suffix, for example, mysource.c.

The compiler will also accept source files with the .i suffix. This extension designates
preprocessed source files.

The compiler processes the source files in the order in which they appear. If the compiler
cannot find a specified source file, it produces an error message and the compiler proceeds
to the next specified file. However, the link editor will not be run and temporary object files
will be removed.

Your program can consist of several source files. All of these source files can be compiled at
once using only one invocation of xlc . Although more than one source file can be compiled
using a single invocation of the compiler, you can specify only one set of compiler options on
the command line per invocation. Each distinct set of command-line compiler options that you
want to specify requires a separate invocation.

By default, the xlc command preprocesses and compiles all the specified source files.
Although you will usually want to use this default, you can use the xlc command to
preprocess the source file without compiling by specifying either the -E or the -P option. If
you specify the -P option, a preprocessed source file, file_name.i, is created and processing
ends.

The -E option preprocesses the source file, writes to standard output, and halts processing
without generating an output file.

Preprocessed Source
Files

Preprocessed source files have a .i suffix, for example, file_name.i.

The xlc command sends the preprocessed source file, file_name.i, to the compiler where it is
preprocessed again in the same way as a .c file. Preprocessed files are useful for checking
macros and preprocessor directives.

Object Files Object files must have an .o suffix, for example, year.o.

Object files, library files, and nonstripped executable files serve as input to the linkage editor.
After compilation, the linkage editor links all of the specified object files to create an
executable file.

Assembler Files Assembler files must have an .s suffix, for example, check.s.

Assembler files are assembled to create an object file.
Nonstripped
Executable Files

Extended Common Object File Format (XCOFF) files that have not been stripped with the
AIX strip command can be used as input to the compiler. See the strip command in the AIX
Version 4 Commands Reference, and the description of a.out file format in the AIX Version 4
Files Reference for more information.

“Types of Output Files” on page 8
“E” on page 253
“P” on page 307

Chapter 3. Using the C for AIX Compiler 7

Types of Output Files

You can specify the following types of output files when invoking the C for AIX compiler.

Executable File By default, executable files are named a.out. To name the executable file something else, use
the -ofile_name option with the invocation command. This option creates an executable file
with the name you specify as file_name. The name you specify can be a relative or absolute
path name for the executable file.

The format of the a.out file is described in the AIX Version 4 Files Reference.
Object Files Object files must have an .o suffix, for example, year.o, unless the -ofilename option is

specified.

If you specify the -c option, an output object file, file_name.o, is produced for each input
source file file_name.c. The linkage editor is not invoked, and the object files are placed in
your current directory. All processing stops at the completion of the compilation. .

You can link-edit the object files later into a single executable file using the xlc command.
Assembler Files Assembler files must have an .s suffix, for example, check.s.

They are created by specifying the -S option. Assembler files are assembled to create an
object file.

Preprocessed Source
Files

Preprocessed source files have an .isuffix, for example, tax_calc.i.

To make a preprocessed source file, specify the -P option. The source files are preprocessed
but not compiled.

A preprocessed source file, file_name.i, is produced for each source file, file_name.c.
Listing Files Listing files have an .lst suffix, for example, form.lst.

Specifying any one of the listing-related options to the invocation command produces a
compiler listing (unless you have specified the -qnoprint option). The file containing this
listing is placed in your current directory and has the same file name (with an .lst extension)
as the source file from which it was produced.

Target File Output files associated with the -M option have an .usuffix, for example, conversion.u.

The file contains targets suitable for inclusion in a description file for the AIX make command.
A .u file is created for every input file with a .c or .i suffix. .u files are not created for any
other files (unless you use the -+ option so other file suffixes are treated as .c files).

“Types of Input Files” on page 7“c” on page 242“M” on page 294
“o” on page 305“P” on page 307
“S” on page 319
“noprint” on page 301

Invoking the Compiler

All forms of the C for AIX compiler are invoked using the following syntax, where invocation can be
replaced with any valid C for AIX compiler mode invocation command:

8 C for AIX User’s Guide

The parameters of the compiler invocation command can be the names of input files, compiler options,
and linkage-editor options. Compiler options perform a wide variety of functions, such as setting compiler
characteristics, describing the object code and compiler output to be produced, and performing some
preprocessor functions.

To compile without link-editing, use the -c compiler option. The -c option stops the compiler after
compilation is completed and produces as output, an object file file_name.o for each file_name.c input
source file. The linkage editor is not invoked. You can link-edit the object files later using the invocation
command, specifying the object files without the -c option.

Notes

1. Any object files produced from an earlier compilation are deleted as part of the compilation process,
even if new object files are not produced.

2. By default, the invocation command calls both the compiler and the linkage editor. It passes linkage
editor options to the linkage editor. Consequently, the invocation commands also accept all linkage
editor options.

“Chapter 7. Writing C Programs” on page 173
“Compiler Modes” on page 5
“Specifying Compiler Options on the Command Line” on page 10
“Compiler Options and Their Defaults” on page 218
“Message Severity Levels and Compiler Response” on page 20
“Compiler Return Codes” on page 20
“Compiler Message Format” on page 21
“c” on page 242

Invoking the Linkage Editor

The linkage editor link-edits all of the specified object files to create one executable file. Invoking the
compiler with one of the invocation commands automatically calls the linkage editor unless you specify one
of the following compiler options: -E, -P, -c, or -#.

Input Files
Object files, library files, and unstripped executable files serve as input to the linkage editor.

Object Files
Object files must have a .o suffix, for example, year.o .

Library Files
Static library file names have a .a suffix, for example, libold.a . Dynamic library file names have a .so
suffix, for example, libold.so . Library files are created by combining one or more files into a single archive
file with the AIX ar command. For a description of the ar command, refer to the AIX Version 4 Commands
Reference.

Output Files
The linkage editor generates an executable file and places it in your current directory. The default name
for an executable file is a.out . To name the executable file explicitly, use the -ofile_name option with the
xlc command, where file_name is the name you want to give to the executable file. If you use the
-ofile_name option, the resulting executable file is called file_name.

Using the ld Command
You can invoke the linkage editor explicitly with the ld command. However, the compiler invocation

Chapter 3. Using the C for AIX Compiler 9

commands set several linkage-editor options, and link some standard files into the executable output by
default. In most cases, it is better to use one of the compiler invocation commands to link-edit your .o files.

Note: When link-editing .o files, do not use the -e option of the ld command. The default entry point of the
executable output is __start. Changing this label with the -e flag can cause erratic results.

“Chapter 7. Writing C Programs” on page 173
“Invoking the Compiler” on page 8“#” on page 231
“c” on page 242
“E” on page 253
“o” on page 305
“P” on page 307

Compiler Options

Compiler options perform a wide variety of functions, such as setting compiler characteristics, describing
the object code and compiler output to be produced, and performing some preprocessor functions. You
can specify compiler options in one or more of three ways:

v on the command line

v in your source program

v in a configuration file

When specifying compiler options in more than one of the above locations, it is possible for option conflicts
and incompatibilities to occur. C for AIX resolves these conflicts and incompatibilities in a consistent
fashion, as described in “Resolving Conflicting Compiler Options” on page 217.

“Invoking the Compiler” on page 8
“Specifying Compiler Options on the Command Line”
“Specifying Compiler Options in Your Program Source Files” on page 12
“Specifying Compiler Options in a Configuration File” on page 13
“Resolving Conflicting Compiler Options” on page 217
“Compiler Options and Their Defaults” on page 218

Specifying Compiler Options on the Command Line

Most options specified on the command line override both the default settings of the option and options set
in the configuration file. Similarly, most options specified on the command line are in turn overridden by
options set in the source file. Options that do not follow this scheme are listed in “Resolving Conflicting
Compiler Options” on page 217.

There are two kinds of command-line options:

v -qoption_keyword (compiler-specific)

v Flag options (available to compilers on AIX systems)

-q Options

10 C for AIX User’s Guide

Command-line options in the -qoption_keyword format are similar to on and off switches. If the option is
specified more than once, the last instance is recognized by the compiler. For example, -qsource turns on
the source option to produce a compiler listing; -qnosource turns off the source option, so no source
listing is produced. For example:

xlc -qnosource MyFirstProg.c -qsource MyNewProg.c

would produce a source listing for both MyNewProg.c and MyFirstProg.c because the last source option
specified (-qsource) takes precedence.

You can have multiple -qoption_keyword instances in the same command line, but they must be separated
by blanks. Option keywords can appear in either uppercase or lowercase, but you must specify the -q in
lowercase. You can specify any -qoption_keyword before or after the file name. For example:

xlc -qLIST -qnomaf file.c
xlc file.c -qxref -qsource

Some options have suboptions. You specify these with an equal sign following the -qoption. If the option
permits more than one suboption, a colon (:) must separate each suboption from the next. For example:

xlc -qflag=w:e -qattr=full file.c

compiles the C source file file.c using the option -qflag to specify the severity level of messages to be
reported, the suboptions w (warning) for the minimum level of severity to be reported on the listing, and e
(error) for the minimum level of severity to be reported on the terminal. The option -qattr with suboption
full will produce an attribute listing of all identifiers in the program.

Flag Options

The compilers available on AIX systems use a number of common conventional flag options. The C for
AIX compiler supports these flags. Lowercase flags are different from their corresponding uppercase flags.
For example, -c and -C are two different compiler options: -c specifies that the compiler should only
preprocess and compile and not invoke the linkage editor, while -C can be used with -P or -E to specify
that user comments should be preserved.

The C for AIX compiler also supports flags directed to other AIX programming tools and utilities (for
example, the AIX ld command). The compiler passes on those flags directed to ld at link-edit time.

Some flag options have arguments that form part of the flag. For example:
xlc stem.c -F/home/tools/test3/new.cfg:myc -qproclocal=sort:count

where new.cfg is a custom configuration file.

You can specify flags that do not take arguments in one string. For example:
xlc -Ocv file.c

has the same effect as:
xlc -O -c -v file.c

and compiles the C source file file.c with optimization (-O) and reports on compiler progress (-v), but
does not invoke the linkage editor (-c).

A flag option that takes arguments can be specified as part of a single string, but you can only use one
flag that takes arguments, and it must be the last option specified. For example, you can use the -o flag
(to specify a name for the executable file) together with other flags, only if the -o option and its argument
are specified last. For example:

Chapter 3. Using the C for AIX Compiler 11

xlc -Ovotest test.c

has the same effect as:
xlc -O -v -otest test.c

Most flag options are a single letter, but some are two letters. Note that -pg (extended profiling) is not the
same as -p -g (profiling, -p, and generating debug information, -g). Take care not to specify two or more
options in a single string if there is another option that uses that letter combination.

“Compiler Options” on page 10
“Invoking the Compiler” on page 8
“Specifying Compiler Options in Your Program Source Files”
“Specifying Compiler Options in a Configuration File” on page 13
“Resolving Conflicting Compiler Options” on page 217
“Compiler Options and Their Defaults” on page 218

Specifying Compiler Options in Your Program Source Files

To specify compiler options in your program source files, use the preprocessor directive:
#pragma options compiler_options

If you specify more than one compiler option, separate the options using a blank space. For example:

#pragma options langlvl=ansi halt=s spill=1024 source

Most #pragma options directives must come before any statements in your source program; only
comments, blank lines, and other #pragma specifications can precede them. For example, the first few
lines of your program can be a comment followed by the #pragma options directive:

/* The following is an example of a #pragma options directive: */

#pragma options langlvl=ansi halt=s spill=1024 source

/* The rest of the source follows ... */

Options specified before any code in your source program apply to your entire program source code. You
can use other #pragma directives throughout your program to turn an option on for a selected block of
source code. For example, you can request that parts of your source code be included in your compiler
listing:

#pragma options source

/* Source code between the source and nosource #pragma
options is included in the compiler listing */

#pragma options nosource

Options specified in program source files override all other option settings.

These #pragma directives are listed in the detailed descriptions of the options to which they apply. For
complete details on the other #pragma preprocessor directives, see “#pragma Preprocessor Directives” on
page 363 and “#pragma Preprocessor Directives for Parallel Processing” on page 381.

12 C for AIX User’s Guide

“Compiler Options” on page 10
“Invoking the Compiler” on page 8
“Specifying Compiler Options on the Command Line” on page 10
“Specifying Compiler Options in a Configuration File”
“Resolving Conflicting Compiler Options” on page 217
“Compiler Options and Their Defaults” on page 218
“#pragma Preprocessor Directives” on page 363
“#pragma Preprocessor Directives for Parallel Processing” on page 381

Specifying Compiler Options in a Configuration File

The default configuration file, /etc/vac.cfg, specifies information that the compiler uses when you invoke it.
This file defines values used by the compiler to compile C programs. You can make entries to this file to
support specific compilation requirements or to support other C compilation environments.

Most options specified in the configuration file override the default settings of the option. Similarly, most
options specified in the configuration file are in turn overridden by options set in the source file and on the
command line. Options that do not follow this scheme are listed in “Resolving Conflicting Compiler
Options” on page 217.

Tailoring a Configuration FileThe default configuration file is /etc/vac.cfg.

You can copy this file and make changes to the copy to support specific compilation requirements or to
support other C compilation environments. To specify a configuration file other than the default, you use
the -F option.

For example, to make -qnoro the default for the xlc compiler invocation command, add -qnoro to the xlc
stanza in your copied version of the configuration file.

You can link the compiler invocation command to several different names. The name you specify when
you invoke the compiler determines which stanza of the configuration file the compiler uses. You can add
other stanzas to your copy of the configuration file to customize your own compilation environment. You
can use the -F option with the compiler invocation command to make links to select additional stanzas or
to specify a stanza or another configuration file. For example:

xlc myfile.c -Fmyconfig:SPECIAL

would compile myfile.c using the SPECIAL stanza in a myconfig.cfg configuration file that you had created.

Configuration File Attributes
A stanza in the configuration file can contain the following attributes:

as Path name to be used for the assembler. The default is /bin/as .
asopt List of options for the assembler and not for the compiler. These override all normal processing by

the compiler and are directed to the assembler specified in the as stanza. The string is formatted
for the AIX getopt() subroutine as a concatenation of flag letters, with a letter followed by a colon
(:) if the corresponding flag takes a parameter.

cppcode Path name to be used for the code generation phase of the compiler. The default is
/usr/vac/exe/xlCcode .

ccomp C Front end. The default is /usr/vac/exe/xlcentry .
codeopt List of options for the code-generation phase of the compiler.
cppopt List of options for the lexical analysis phase of the compiler.
crt Path name of the object file passed as the first parameter to the linkage editor. If you do not

specify either the -p or the -pg option, the crt value is used. The default is /lib/crt0.o .
csuffix Suffix for source programs. The default is c (lowercase c).
dis Path name of the disassembler. The default is /usr/vac/exe/dis .

Chapter 3. Using the C for AIX Compiler 13

gcrt Path name of the object file passed as the first parameter to the linkage editor. If you specify the
-pg option, the gcrt value is used. The default is /lib/grt0.o .

inline Path name to be used for the inlining phase of the compiler. The default is /usr/vac/exe/xlCinline .
inlineopt List of options for the inlining phase of the compiler.
ld Path name to be used to link C programs. The default is /bin/ld .
ldopt List of options that are directed to the linkage editor part of the compiler. These override all normal

processing by the compiler and are directed to the linkage editor. If the corresponding flag takes a
parameter, the string is formatted for the Aix getopt() subroutine as a concatenation of flag letters,
with a letter followed by a colon (:).

libraries2 Library options, separated by commas, that the compiler passes as the last parameters to the
linkage editor. libraries2 specifies the libraries that the linkage editor is to use at link-edit time for
both profiling and nonprofiling. The default is empty.

mcrt Path name of the object file passed as the first parameter to the linkage editor if you have specified
the -p option. The default is/lib/mcrt0.o .

options A string of option flags, separated by commas, to be processed by the compiler as if they had been
entered on the command line.

osuffix The suffix for object files. The default is .o.
proflibs Library options, separated by commas, that the compiler passes to the linkage editor when profiling

options are specified. proflibs specifies the profiling libraries used by the linkage editor at link-edit
time. The default is -L/lib/profiled and -L/usr/lib/profiled .

ssuffix The suffix for assembler files. The default is .s.
use Values for attributes are taken from the named stanza and from the local stanza. For single-valued

attributes, values in the use stanza apply if no value is provided in the local, or default, stanza. For
comma-separated lists, the values from the use stanza are added to the values from the local
stanza.

xlc The path name of the xlc compiler component. The default is /usr/vac/bin/xlc .

“Compiler Options” on page 10
“Invoking the Compiler” on page 8
“Specifying Compiler Options on the Command Line” on page 10
“Specifying Compiler Options in Your Program Source Files” on page 12
“Resolving Conflicting Compiler Options” on page 217
“Compiler Options and Their Defaults” on page 218
“etc/vac.cfg - Default Configuration File” on page 474
“F” on page 259
“L” on page 285
“p” on page 308
“pg” on page 311

Specifying Compiler Options for Architecture-Specific, 32- or 64-bit
Compilation

You can use C for AIX compiler options to optimize compiler output for use on specific processor
architectures. You can also instruct the compiler to compile in either 32- or 64-bit mode.

The compiler evaluates compiler options in the following order, with the last allowable one found
determining the compiler mode:

1. Internal default (32-bit mode)

2. OBJECT_MODE environment variable setting, as follows:

OBJECT_MODE
Setting

User-selected compilation-mode behavior, unless overridden by configuration file or
command-line options

not set 32-bit compiler mode.
32 32-bit compiler mode.

14 C for AIX User’s Guide

OBJECT_MODE
Setting

User-selected compilation-mode behavior, unless overridden by configuration file or
command-line options

64 64-bit compiler mode.
32_64 Fatal error and stop with following message,

1501-054 OBJECT_MODE=32_64 is not a valid setting for the compiler

unless an explicit configuration file or command-line compiler-mode setting exists.
any other Fatal error and stop with following message,

1501-055 OBJECT_MODE setting is not recognized and is not
a valid setting for the compiler

unless an explicit configuration file or command-line compiler-mode setting exists.

3. Configuration file settings

4. Command line compiler options (-q32, -q64, -qarch , -qtune)

5. Source file statements (#pragma options tune= suboption)

The compilation mode actually used by the compiler depends on a combination of the settings of the -q32,
-q64, -qarch , and -qtune compiler options, subject to the following conditions:

v Compiler mode is set acording to the last-found instance of the -q32 or -q64 compiler options. If neither
of these compiler options is chosen, the compiler mode is set by the value of the OBJECT_MODE
environment variable.

v Architecture target is set according to the last-found instance of the -qarch compiler option, provided
that the specified -qarch setting is compatible with the compiler mode setting. If the -qarch option is not
set, the compiler assumes a -qarch setting of com .

v Tuning of the architecture target is set according to the last-found instance of the -qtune compiler
option, provided that the -qtune setting is compatible with the architecture target and compiler mode
settings. If the -qtune option is not set, the compiler assumes a default -qtune setting according to the
-qarch setting in use.

Allowable combinations of these options are found in the Acceptable Compiler Mode and Processor
Architecture Combinations table.

Possible option conflicts and compiler resolution of these conflicts are described below:

v -q32 or -q64 setting is incompatible with user-selected -qarch option

Resolution: -q32 or -q64 setting overrides -qarch option; compiler issues a warning message, sets
-qarch option to com , and sets -qtune option to the -qarch setting’s default -qtune value.

v -q32 or -q64 setting is incompatible with user-selected -qtune option

Resolution: -q32 or -q64 setting overrides -qtune option; compiler issues a warning message, and sets
-qtune option to the -qarch setting’s default -qtune value.

v -qarch option is incompatible with user-selected -qtune option

Resolution: Compiler issues a warning message, and sets -qtune tothe -qarch setting’s default -qtune
value.

v Selected -qarch or -qtune options are not known to the compiler

Resolution: Compiler issues a warning message, sets -qarch to com , and sets -qtune to the -qarch
setting’s default -qtune setting. The compiler mode (32- or 64-bit) is determined by the OBJECT_MODE
environment variable or -q32/-q64 compiler settings.

Chapter 3. Using the C for AIX Compiler 15

“Compiler Options” on page 10
“Invoking the Compiler” on page 8
“Chapter 2. Setting Up the C for AIX Compilation Environment” on page 3
“Specifying Compiler Options in Your Program Source Files” on page 12
“Specifying Compiler Options in a Configuration File” on page 13
“Acceptable Compiler Mode and Processor Architecture Combinations”
“Resolving Conflicting Compiler Options” on page 217
“Compiler Options and Their Defaults” on page 218
“32, 64” on page 231
“arch” on page 237
“tune” on page 331

Acceptable Compiler Mode and Processor Architecture Combinations

You can use the -q32, -q64, -qarch , and -qtune compiler options to optimize the output of the compiler to
suit:

v the broadest possible selection of target processors,

v a range of processors within a given processor architecture family,

v a single specific processor.

Generally speaking, the options do the following:

v -q32selects 32-bit compiler mode.

v -q64 selects 64-bit compiler mode.

v -qarch selects the general family processor architecture for which code (instructions) should be
generated. Certain -qarch settings will produce code that will run only on RS/6000 systems that support
all of the instructions generated by the compiler in response to the chosen -qarch settings.

v -qtune selects the specific processor for which compiler output is optimized. Some -qtune settings can
also be specified as -qarch options, in which case they do not also need to be specified as a -qtune
option. The -qtune option influences only the performance of the code when running on a particular
system but does not determine where the code will run.

There are three families of RS/6000 machines:

v POWER

v POWER2

v PowerPC

Each of these families have a different instruction set but share a common subset of instructions. The
POWER2 instruction set is a superset of the POWER instructions set. The PowerPC instruction set
includes additional instructions not available on POWER systems but does not support all of the POWER
instruction set. It also includes some but not all of the POWER2 instructions not available in the POWER
instruction set. Further, some features found in the POWER2 instruction set may or may not be
implemented on particular PowerPC processors. These optional feature groups are:

v support for the graphics instruction group

v support for the sqrt instruction group

v support for 64-bit support (-q64 compiler option)

If you want to generate code that will run across a variety of processors, use the following guidelines to
select the appropriate -qarch and/or -qtune compiler options. Code compiled with:

v -qarch=com will run on any RS/6000.

v -qarch=pwr will run on any POWER or POWER2 machine.

v -qarch=pwr2 (or pwr2s , pwrx , p2sc) will run only on POWER2 machines.

16 C for AIX User’s Guide

v -qarch=ppc will run only on all PowerPC machines.

v -q64 will run only on PowerPC machines with 64-bit support

v other -qarch options that refer to specific processors will run on any functionally equivalent PowerPC
machine. In the examples found in the table below, code compiled with -qarch=pwr3 will also run on a
rs64b but not on a rs64a . Similarly, code compiled with -qarch=603 will run on a pwr3 but not on a
rs64a .

Processor graphics support sqrt support 64-bit support
603 yes no no
604 yes no no

rs64a no no yes
rs64b yes yes yes
pwr3 yes yes yes

If you want to generate code optimized specifically for a particular processor, acceptable combinations of
-q32, -q64, -qarch , and -qtune compiler options are shown in the table below. If you specify incompatible
combinations of these options, the compiler will assume its own option selections, as described in
“Specifying Compiler Options for Architecture-Specific, 32- or 64-bit Compilation” on page 14.

-qarch option Predefined Macro Available
-qtune options

Default -qtune
suboption

-q32 -q64

com _ARCH_COM DEFAULT
(not selectable)

pwr
pwr2
pwr2s
pwr3
pwrx
p2sc
601
602
603
604
403

rs64a
rs64b

pwr2 yes yes

pwr _ARCH_PWR pwr
pwr2
pwr2s
pwrx
p2sc
601

pwr2 yes no

pwr2
pwrx

_ARCH_PWR
_ARCH_PWR2

pwr2
pwr2s
pwrx
p2sc

pwr2 yes no

ppc _ARCH_PPC 601
602
603
604
403

rs64a
rs64b
pwr3

604 (32-bit mode)

pwr3 (64-bit mode)

yes yes

ppcgr _ARCH_PPC
_ARCH_PPCGR

603
604

604 yes yes

Chapter 3. Using the C for AIX Compiler 17

-qarch option Predefined Macro Available
-qtune options

Default -qtune
suboption

-q32 -q64

pwr2s _ARCH_PWR
_ARCH_PWR2

_ARCH_PWR2S

pwr2s pwr2s yes no

p2sc _ARCH_PWR
_ARCH_PWR2
_ARCH_P2SC

p2sc p2sc yes no

601 _ARCH_601 601 601 yes no

602 _ARCH_PPC
_ARCH_602

602 602 yes no

603 _ARCH_PPC
_ARCH_PPCGR

_ARCH_603

603 603 yes no

604 _ARCH_PPC
_ARCH_PPCGR

_ARCH_604

604 604 yes no

403 _ARCH_PPC
_ARCH_403

403 403 yes no

pwr3 _ARCH_PPC
_ARCH_PPCGR
_ARCH_PWR3

pwr3 pwr3 yes yes

rs64a
(RS/6000 Models

S70, S71)

_ARCH_PPC
_ARCH_RS64A

rs64a rs64a yes yes

rs64b
(RS/6000 Models

S70, S71)

_ARCH_PPC
_ARCH_RS64B

rs64b rs64b yes yes

rs64c _ARCH_PPC
_ARCH_RS64C

rs64c rs64c yes yes

“Invoking the Compiler” on page 8
“Specifying Compiler Options on the Command Line” on page 10
“Specifying Compiler Options in Your Program Source Files” on page 12
“Specifying Compiler Options in a Configuration File” on page 13
“Specifying Compiler Options for Architecture-Specific, 32- or 64-bit Compilation” on page 14
“Appendix G. Built-in Functions for PowerPC Processors” on page 435
“32, 64” on page 231
“arch” on page 237
“tune” on page 331

Compiler Message and Listing Information

When the compiler encounters a programming error while compiling a C source program, it issues a
diagnostic message to the standard error device.

The compiler issues messages specific to the C language and XL messages common to all XL compilers.

If you specify the compiler option -qsrcmsg and the error is applicable to a particular line of code, the
reconstructed source line or partial source line is included with the error message in the stderr file. A
reconstructed source line is a preprocessed source line that has all the macros expanded.

18 C for AIX User’s Guide

If the error is identifiable within the source line, a finger line under the source line points to the column
position of the error. For example:

10 | int add(int, int)
....a...b....c...

a - 1506-166 (S) Definition of function add requires parentheses.
b - 1506-172 (S) Parameter type list for function add contains
parameters without identifiers.
c - 1506-172 (S) Parameter type list for function add contains
parameters without identifiers.

The compiler also places messages in the source listing if you specify the -qsource option.

If the -qlanglvl option is set to ansi , compile-time messages about incorrect #pragma directives are not
generated.

You can control the diagnostic messages issued, according to their severity, using either the -qflag option
or the -w option. To get additional informational messages about potential problems in your program, use
the -qinfo option.

Compiler Listings

The listings produced by the compiler are a useful debugging aid. By specifying appropriate options, you
can request information on all aspects of a compilation. The listing consists of a combination of the
following sections:

v Header section that lists the compiler name, version, and release, as well as the source file name and
the date and time of the compilation

v Source section that lists the input source code with line numbers

v Options section that lists the options that were in effect during the compilation

v Attribute and cross-reference listing section that provides information about the variables used in the
compilation unit

v File table section that shows the file number and file name for each main source file and include file

v Compilation epilogue section that summarizes the diagnostic messages, lists the number of source lines
read, and indicates whether the compilation was successful

v Object section that is produced only when the list option is in effect and that lists the object code

Each section, except the header section, has a section heading that identifies it. The section heading is
enclosed by angle brackets:

“Compiler Message Format” on page 21
“Message Severity Levels and Compiler Response” on page 20
“w” on page 337
“flag” on page 261
“info” on page 275
“langlvl” on page 286
“source” on page 322
“srcmsg” on page 324

Chapter 3. Using the C for AIX Compiler 19

Message Severity Levels and Compiler Response

The following table shows the compiler response associated with each level of message severity.

Letter Severity Compiler Response

I Informational Compilation continues. The message
reports conditions found during
compilation.

W Warning Compilation continues. The message
reports valid, but possibly unintended,
conditions.

E Error Compilation continues and object
code is generated. Error conditions
exist that the compiler can correct,
but the program might not run
correctly.

S Severe error Compilation continues, but object
code is not generated. Error
conditions exist that the compiler
cannot correct.

U Unrecoverable error The compiler halts. An internal
compiler error has been found. This
message should be reported to your
IBM service representative.

“Compiler Message and Listing Information” on page 18
“Compiler Message Format” on page 21
“Compiler Return Codes”

Compiler Return Codes

At the end of compilation, the compiler sets the return code to zero under any of the following conditions:

v No messages are issued.

v The highest severity level of all errors diagnosed is E, W, or I.

v The highest severity level of all errors diagnosed is less than the setting of the -qhalt compiler option,
and the number of errors did not reach the limit set by the -qmaxerr compiler option.

Otherwise, the compiler sets the return code to one of the following values:

Return Code Error Type

1 Any error with a severity level higher than the setting of the halt compiler option has been
detected.

40 An option error or an unrecoverable error has been detected.

41 A configuration file error has been detected.

250 An out-of-memory error has been detected. The xlc command cannot allocate any more memory
for its use.

251 A signal-received error has been detected. That is, an unrecoverable error or interrupt signal has
occurred.

252 A file-not-found error has been detected.

253 An input/output error has been detected: files cannot be read or written to.

254 A fork error has been detected. A new process cannot be created.

20 C for AIX User’s Guide

255 An error has been detected while the process was running.

“Compiler Message and Listing Information” on page 18
“Compiler Message Format”
“Message Severity Levels and Compiler Response” on page 20
“halt” on page 269
“maxerr” on page 299

Compiler Message Format

Diagnostic messages have the following format when the “srcmsg” on page 324 option is active (which is
the default):

“file”, line line_number.column_number: 15dd-nnn(severity) text.

where:

file is the name of the C source file with the error.
line_number is the line number of the error.
column_number is the column number for the error
15 is the compiler product identifier
cc is a two-digit code indicating the C for AIX compiler component that issued the message. cc

can have the following values:

00 - code generating or optimizing message

01 - compiler services message.

06 - message specific to C for AIX compiler

40 - message specific to C for AIX compiler

41 - message specific to C for AIX compiler

46 - message specific to C for AIX compiler backend

86 - message specific to interprocedural analysis (IPA).

nnn is the message number
severity is a letter representing the severity of the error
text is a message describing the error

Diagnostic messages have the following format when the -qsrcmsg option is specified:

x - 15dd-nnn(severity)text.

where x is a letter referring to a finger in the finger line.

To help you find the exact point of the error in the line, when you use the -qsrcmsg option, a finger line is
produced below the source code line if the error is applicable to a specific column in the source line. For
example:

10 | int add(int, int)
....a...b....c...

a - 1506-166 (S) Definition of function add requires parentheses.

Chapter 3. Using the C for AIX Compiler 21

b - 1506-172 (S) Parameter type list for function add contains
parameters without identifiers.
c - 1506-172 (S) Parameter type list for function add contains
parameters without identifiers.

The finger line may also be produced in the source listing if you specify the -qsource option.

“Compiler Message and Listing Information” on page 18
“Compiler Return Codes” on page 20
“Message Severity Levels and Compiler Response” on page 20
“source” on page 322
“srcmsg” on page 324

22 C for AIX User’s Guide

Chapter 4. Advanced Compiler Usage

Program Optimization with the C for AIX Compiler

During optimization, the compiler changes the unoptimized code sequences, derived from the source code,
into equivalent optimized code sequences. The resulting code runs faster and usually takes less space.
However, during optimization, compilation usually takes more time and space.

Because optimization transforms the code, the direct correspondence between source and object code is
often lost. Therefore, debugging information is not provided for programs compiled using the optimization
option. Optimized code is also more sensitive to subtle coding errors. For these reasons, do not use the
optimization options while you are developing your programs. Use the -O optimization options only to
compile the final versions of your programs.

Optimization Levels in C

The default is not to optimize your program. To optimize your program, specify one of the following
optimizing compiler options:

v -O

v -O2

v -O3

v -O4

v -qOPTimize

v -qOPTimize=2

v -qOPTimize=3

v -qOPTimize=4

When you specify optimization, the compiler performs a complete control and data-flow analysis for each
function. The compiler also uses global register allocation for the whole function, thereby allowing many
variables to be kept in registers rather than in memory. The compiler performs optimizations such as
described in “Optimization Techniques Used by the C for AIX Compiler”.

“Optimization Techniques Used by the C for AIX Compiler”
“Special Handling of Math and String Library Functions” on page 25
“Writing Optimized Program Source Code” on page 197
“Using Inlined Components” on page 202
“Minimizing the Size of Object Files” on page 36
“O, optimize” on page 302
“Appendix G. Built-in Functions for PowerPC Processors” on page 435

Optimization Techniques Used by the C for AIX Compiler

Technique Description of Technique
Value Numbering Involves constant propagation, expression elimination, and folding of several

instructions into a single instruction.
Branch Optimizations Rearranges the program code to minimize branching logic and to combine physically

separate blocks of code.

© Copyright IBM Corp. 1995, 1999 23

Common Subexpression
Elimination

In common expressions, the same value is recalculated in a subsequent expression.
The duplicate expression can be eliminated by using the previous value. This step is
done even for intermediate expressions within expressions. For example, if your
program contains the following statements:

a = c + d;
.
.
.

f = c + d + e;

the common expression c + d is saved from its first evaluation and is used in the
subsequent statement to determine the value of f.

Code Motion If variables used in a computation within a loop are not altered within the loop, the
calculation can be performed outside of the loop and the results used within the loop.

Invariant IF Code Floating
(Unswitching)

Removes invariant branching code from loops to make more opportunity for other
optimizations.

For example, in the following code segment, the condition test and the conditional
assignment:

if (a[i]>100.0) b[i]=a[i]-3.7;
x+=a[j]+b[i];

do not change during execution of the inner loop.

for (i=0;i<1000;i++) {
for (j=0;j<1000;j++) {

if (a[i]>100.0) b[i]=a[i]-3.7;
x+=a[j]+b[i];

}
}

The compiler translates the code into a machine-language loop that executes as:

for (i=0;i<1000;i++) {
if (a[i]<100.00) {

for (j=0;j<1000;j++) {
b[i]=a[i]-3.7;
x+=a[j]+b[i];

}
}
else {

for (j=0;j<1000;j++) {
x+=a[j]+b[i];

}
}

}
Reassociation Rearranges the sequence of calculations in an array-subscript expression, producing

more candidates for common-expression elimination.
Strength Reduction Replaces less efficient instructions with more efficient ones. For example, in array

subscripting, an add instruction replaces a multiply instruction.
Constant Propagation Constants used in an expression are combined, and new ones are generated. Some

implicit conversions between integer and floating-point types are done.
Store Motion Moves store instructions out of loops.
Dead Store Elimination Eliminates stores when the value stored is never referred to again. For example, if two

stores to the same location have no intervening load, the first store is unnecessary and
is removed.

Dead Code Elimination Eliminates code that cannot be reached or code whose results are not subsequently
used.

Inlining
(-Q option)

Replaces function calls with actual program code.

Instruction Scheduling Reorders instructions to minimize execution time.
Interprocedural Analysis
(-qipa option)

Uncovers relationships across function calls, and eliminates loads, stores, and
computations that cannot be eliminated with more straightforward optimizations.

24 C for AIX User’s Guide

Global Register Allocation Allocates variables and expressions to available hardware registers using a graph
coloring algorithm.

The -O and -Q compiler options also determine the types of inlining to be used.

“Program Optimization with the C for AIX Compiler” on page 23
“Special Handling of Math and String Library Functions”
“Writing Optimized Program Source Code” on page 197
“O, optimize” on page 302
“Q” on page 314
“ipa” on page 279

Special Handling of Math and String Library Functions

The C for AIX compiler can improve optimization by generating substitute code for calls to some math and
string functions available within the standard C runtime libraries. The functions handled this way are
defined as macros in /usr/include/math.h or /usr/include/string.h .

The special handling of these functions occurs by default, when either math.h or string.h is included in the
source program. To explicitly generate substitute code for a particular function, use the function with two
underscores (__strcpy , for example).

When including math.h and string.h , avoid redeclaring the functions.

If your application requires a function call to one or all of the math or string functions, prevent special
handling of all math or string functions within a source file by using either the -U __MATH__ or the -U
__STR__ option on the command line. For example:

ixlc -c -U__MATH__ file.c

Runtime performance of an application is affected if special handling is disabled.

“Program Optimization with the C for AIX Compiler” on page 23
“Optimization Techniques Used by the C for AIX Compiler” on page 23
“U” on page 332

Floating Point Operations with the C for AIX Compiler

RISC System/6000 Floating Point Hardware

The RISC/6000 floating-point hardware performs all computations in IEEE double precision (eight byte
representation), equivalent to double in C programs. Single-precision (four byte representation) (float)
values are automatically converted to double precision before they are used, and all results are calculated
in double precision. Double precision provides greater range and precision than single precision does
Double precision values have an approximate range of 10(-308) to 10(+308) and precision of about 16
decimal digits. Single precision values have an approximate range of 10(-38) to 10(+38), with about 7
decimal digits of precision.

When results must be converted to single precision, rounding operations are used. A rounding operation
produces the correct single-precision value based on the IEEE rounding mode in effect. Because explicit
rounding operations are required, single-precision computations are often slower than double precision
computations. On many other machines the reverse is true: single-precision operations are faster than

Chapter 4. Advanced Compiler Usage 25

double-precision operations. Code ported from other systems can show different performance on a RISC
System/6000 computer. See the -qfloat=rndsngl compiler option for more information about single
precision.

The RISC System/6000 hardware also provides a special set of double-precision operations that multiply
two numbers and add a third number to the product. These combined multiply-add (maf) operations are
performed in the same time as a multiply or an add operation alone. The maf functions provide an
extension to the IEEE standard because they perform the multiply and add with one (rather than two)
rounding errors. The maf functions are both faster and more accurate than the equivalent separate
operations. Use the nomaf option to suppress the generation of these multiply-add instructions.

Note: PowerPC and Power3 hardware can perform computations in either single or double precision.
Considerations regarding single precision do not apply to these platforms.

Detecting Floating-Point Exceptions

A number of floating-point exceptions can be detected by the floating-point hardware: invalid operation,
division by zero, overflow, underflow, and inexact. By default, all exceptions are ignored. However, if you
use the flttrap option, any or all of these exceptions can be detected. (For an example of how this works,
see “Sample TRAP Signal Handler” on page 31.) In addition, when you add suitable support code to your
program, program execution can continue after an exception occurs, and you can then modify the results
of operations causing exceptions.

Refer to “Floating-Point Processor Overview” and “Floating-Point Exceptions” in the AIX Version 4
Assembler Language Referencefor more information about RISC System/6000 floating-point processing.

“Compile-Time Floating-Point Arithmetic”
“Floating-Point Compiler Options” on page 27
“Rounding Mode Restrictions” on page 35
“Sample TRAP Signal Handler” on page 31
“float” on page 261
“flttrap” on page 264

Compile-Time Floating-Point Arithmetic

The compiler attempts to perform as much floating-point arithmetic as possible at compile time.
Floating-point operations with constant operands are folded, replacing the operation with the result
calculated at compile time. When the -O option is used, more folding might occur than when optimization
is not enabled.

All compile-time folding of floating-point computations can be suppressed using the float=nofold option.
Alternatively, the IEEE rounding mode used in compile-time arithmetic can be controlled using the -y
options.

Compile-time floating-point arithmetic can have two effects on program results:

v In specific cases, the result of a computation at compile time might differ slightly from the result that
would have been calculated at run time. The reason is that more rounding operations occur at compile
time. For example, where a maf operation might be used at run time, separate multiply and add
operations might be used at compile time, producing a slightly different result.

v Computations that produce exceptions can be folded to the IEEE result that would have been produced
by default in a runtime operation. This would prevent an exception from occurring at run time. When
using the flttrap option, you should consider using the float=nofold option.

26 C for AIX User’s Guide

In general, code that affects the rounding mode at run time should be compiled with the -y option that
matches the rounding mode intended at run time. For example, when the following program:

main ()
{
float x, y;
int i;
x = 1.0/3.0;
i = *(int *)&x;
printf(“1/3 = %.8x\n”, i);
x = 1.0;
y = 3.0;
x = x/y;
i = *(int *)&x;
printf(“1/3 = %.8x\n”, i);
}

is compiled with:
xlc -yz -qfloat=rndsngl

the expression 1.0/3.0 is folded by the compiler at compile time into a double-precision result. This result
is then converted to single precision and then stored in float x . The float=nofold option can be specified
to suppress all compile-time folding of floating-point computations. The -yz option only affects compile-time
rounding of floating-point computations, but does not affect runtime rounding. The code fragment:

x = 1.0;
y = 3.0;
x = x/y;

is evaluated at run time in single precision. Here, the default runtime rounding of “round to nearest” is still
in effect and takes precedence over the compile-time specification of “round to zero” (-yz).

Note: The -y option does not specify the runtime rounding mode.

“Floating-Point Compiler Options”
“Rounding Mode Restrictions” on page 35
“O, optimize” on page 302
“y” on page 339
“float” on page 261
“flttrap” on page 264
“maf” on page 297

Floating-Point Compiler Options

Compiler options affect the accuracy, performance, and potentially the correctness of floating-point
calculations. Although the default values for the options have been chosen to provide efficient and correct
execution of most programs, some applications may require nondefault options to reproduce results
reported by other hardware. You should read this and related pages before using the floating-point options.

By default, the C for AIX compiler produces object code that evaluates floating-point expressions in double
precision, even if all operands in an expression are single precision. The results of expressions are then
rounded to single precision if they are assigned to float variables.

Other C compilers might evaluate floating-point expressions in single precision where such an evaluation
is permitted by the language definition. This implementation is preferred on machines where
single-precision operations are faster than double-precision operations.

In general, floating-point results from programs compiled using C for AIX and executed on the RISC
System/6000 system are more accurate than those from other implementations, because of the higher

Chapter 4. Advanced Compiler Usage 27

precision used for intermediate results and the use of maf operations.

“float” on page 261 Compiler Option
“flttrap” on page 264 Compiler Option
“-qfloat=nomaf”
“-qfloat=hssngl”
“-qfloat=nans” on page 29
“-qfloat=hsflt” on page 29
“-qfloat=rndsngl” on page 30
“-qflttrap” on page 30
“Sample TRAP Signal Handler” on page 31

-qfloat=nomaf

The nomaf option is provided for cases where it is necessary to exactly duplicate the double results of an
implementation that does not have multiply-add operations. The nomaf option prevents the compiler from
generating any multiply-add operations. Not using multiply-add operations decreases accuracy and
performance but strictly conforms to the IEEE standard for double-precision arithmetic.

To duplicate the single-precision results from other implementations, you may also need to use the
-qfloat=rndsngl option.

“Floating-Point Compiler Options” on page 27
“-qfloat=hssngl”
“-qfloat=nans” on page 29
“-qfloat=hsflt” on page 29
“-qfloat=rndsngl” on page 30
“-qflttrap” on page 30
“Sample TRAP Signal Handler” on page 31
“float” on page 261
“flttrap” on page 264

-qfloat=hssngl

The -qfloat=hssngl option improves the performance of single-precision (float) floating-point calculations
by suppressing certain rounding operations. The suppressed rounding operations are required by the C
language, but are not necessary for correct program execution. Rounding operations are still inserted
when double-precision results are stored into single-precision memory locations.

The hssngl option retains the results of floating-point expressions in double precision when the original
program would have rounded those results to single precision. The retained double-precision results are
then used in later expressions instead of the rounded results. The program results may be more accurate
because of the increased precision, and program execution may be faster because rounding operations
have been omitted.

Rounding operations are still necessary in cases where a floating-point result is stored into a
single-precision variable. The result must be rounded to detect a single-precision floating-point overflow or
underflow. In some cases, program optimization can remove store operations from a program. The hssngl
option allows the rounding operation that accompanied the original store to be removed also. When the
hssngl option can retain such a result in double precision, an exception can be avoided.

The hssngl option is safe for all types of programs because it can only increase the precision of
floating-point computations in a program.

28 C for AIX User’s Guide

Use the -qfloat=hssngl option with the -O option, but not with the -qfloat=rndsngl option.

“Floating-Point Compiler Options” on page 27
“-qfloat=nomaf” on page 28
“-qfloat=nans”
“-qfloat=hsflt”
“-qfloat=rndsngl” on page 30
“-qflttrap” on page 30
“Sample TRAP Signal Handler” on page 31
“O, optimize” on page 302
“float” on page 261
“flttrap” on page 264

-qfloat=nans

The -qfloat=nans option causes the compiler to generate object code that detects the conversion of a
single-precision signalling NaN (NaNS) to double precision. By default, the compiler generates object code
that detects the use of a NaNS in all other situations required by the IEEE standard.

Very few programs actually require checks for NaNS. A NaNS cannot be produced by any floating-point
operation, and must instead be explicitly created. A program only needs to be compiled with the
-qfloat=nans option if it explicitly creates a signalling NaN.

“Floating-Point Compiler Options” on page 27
“-qfloat=nomaf” on page 28
“-qfloat=hssngl” on page 28
“-qfloat=hsflt”
“-qfloat=rndsngl” on page 30
“-qflttrap” on page 30
“Sample TRAP Signal Handler” on page 31
“float” on page 261
“flttrap” on page 264

-qfloat=hsflt

The -qfloat=hsflt option improves the performance of floating-point computations by suppressing all
rounding operations and by performing conversions from floating point to integer with inline code. This
option is intended for knowledgeable programmers in specific applications where the computational
characteristics of a program are known. To safely use the hsflt option, a program must never attempt to
assign floating-point results to single-precision variables unless the results are known to be within the
allowable range of single-precision values. In addition, if any floating-point numbers are converted to
integers, the floating-point numbers must be within the representable range of integers. If the hsflt option
is used in cases where a program does not have these properties, the program may produce incorrect
results without warning. When the computational characteristics of a program are not known, use hssngl
not hsflt .

In suppressing rounding operations, the hsflt option operates in the same way as the hssngl option.
However, the hsflt option also suppresses rounding operations when double-precision values are assigned
to single-precision variables. Single-precision overflow or underflow is not detected in such assignments,
and the assigned value is not properly rounded according to the current rounding mode.

For floating-point-to-integer conversions, the hsflt option allows the compiler to use inline code sequences
instead of subroutine calls. The inline code sequences do not check the floating-point value, and produce
incorrect results in cases where the floating-point value does not fall within the range of an integer.

Chapter 4. Advanced Compiler Usage 29

Use the -qfloat=hsflt option with the -O option, but not with the -qfloat=rndsngl or -qfloat=hssngl
options.

“Floating-Point Compiler Options” on page 27
“-qfloat=nomaf” on page 28
“-qfloat=hssngl” on page 28
“-qfloat=nans” on page 29
“-qfloat=rndsngl”
“-qflttrap”
“Sample TRAP Signal Handler” on page 31
“O, optimize” on page 302
“float” on page 261
“flttrap” on page 264

-qfloat=rndsngl

The -qfloat=rndsngl option is provided for cases where it is necessary to exactly duplicate the results of
an implementation that uses single-precision floating-point arithmetic for float expressions. The rndsngl
option causes the compiler to round the results of floating-point operations on float operands to single
precision. The effect of rounding the intermediate results to single precision is the same as if
single-precision operations had been used for evaluating float expressions. Runtime performance can
decrease significantly because of the increased rounding overhead.

Some programs might check portions of their results by comparing those results with values computed on
other systems. Again, the rndsngl option may be required to duplicate the previous results and to have
such programs report correct execution. Programs checking double-precision results may also require the
nomaf option.

“Floating-Point Compiler Options” on page 27
“-qfloat=nomaf” on page 28
“-qfloat=hssngl” on page 28
“-qfloat=nans” on page 29
“-qfloat=hsflt” on page 29
“-qflttrap”
“Sample TRAP Signal Handler” on page 31
“float” on page 261
“flttrap” on page 264

-qflttrap

The IEEE standard for floating-point arithmetic specifies that five types of exceptions be signalled when
detected:

v overflow

v underflow

v division by zero

v invalid operation

v inexact

By default, the signalling of an exception involves setting a status flag and continuing. The standard also
allows for an exception to generate a trap and invoke a handler routine specified by the user.

The flttrap option directs the compiler to produce code that generates a TRAP signal to flag the
occurrence of any enabled floating-point exception. Exception types can be specified with the flttrap
option. Each of the five exception types is controlled by a separate suboption:

30 C for AIX User’s Guide

OVerflow Generates code to detect and trap floating-point overflow.
UNDerflow Generates code to detect and trap floating-point underflow.
ZEROdivide Generates code to detect and trap floating-point division by zero.
INValid Generates code to detect and trap floating-point invalid-operation exceptions.
INEXact Generates code to detect and trap floating-point inexact exceptions.

The exceptions are enabled using the -qflttrap=enable option or the Base Operating System (BOS)
Runtime Service routine fp_enable . The enable suboption inserts code into the prologue of the main
program to enable the exceptions specified by the -qflttrap option. The suboption has no effect on source
files that do not contain a main program.

The -qflttrap=imprecise suboption generates code that checks for the specified exceptions only on entry
and exit to functions that perform floating-point computations. If an exception occurs, it is detected, but the
exact location of the exception is not determined. When the imprecise suboption is not specified, each
floating-point operation in the code compiled with the -qflttrap option is checked. Unless the exception
occurred during a call to another function that was not compiled with -qflttrap (for example, a library
routine), the exact location of any exception is identified.

Specifying the -qflttrap option with no suboptions is equivalent to setting

-qflttrap=ov:und:zero:inv:inex

The exceptions are not automatically enabled, and all floating-point operations are checked to provide
precise exception-location information.

By default, the TRAP signals generated by enabled exceptions cause a program to stop. Alternatively, the
exceptions can be acted upon by a program by providing a routine that is to be invoked when a TRAP
signal occurs, and by calling the BOS Runtime Service routine to specify that routine as the handler of
TRAP signals. In these respects, the implementation of -qflttrap does not fully support the
exception-handling environment suggested by the IEEE floating-point standard.

Floating-point exceptions are described in the AIX Version 4 Assembler Language Reference. The sample
“Sample TRAP Signal Handler” signal handler illustrates the detection and handling of floating-point
exceptions.

“Floating-Point Compiler Options” on page 27
“-qfloat=nomaf” on page 28
“-qfloat=hssngl” on page 28
“-qfloat=nans” on page 29
“-qfloat=hsflt” on page 29
“-qfloat=rndsngl” on page 30
“Sample TRAP Signal Handler”
“float” on page 261
“flttrap” on page 264

Sample TRAP Signal Handler: The sample C code below defines a TRAP signal handler fhandler_. It
uses the fp_enable and fp_disable_all support routines from the Base Operating System (BOS) Runtime
Services to enable or disable floating-point exceptions. The sample handler prints an error message
indicating the type and location of the operation that caused the exception. You can use a load map and
compiler listing to show the location and identify the source code line that generated the exception. The
signal-handling code also allows the results of failing instructions to be modified to specific values.

The program myprogram.c would be compiled with the command:
xlc -c myprogram.c

Chapter 4. Advanced Compiler Usage 31

and the resulting object file would be linked with other C object files produced using the flttrap option.

Note: This code is for illustrative purposes; even when support code such as this is used, the
implementation of flttrap does not fully support the exception-handling environment suggested by the
IEEE floating-point standard.

/*
* Exception handling support for use with the 'flttrap' compiler
* option. Provides routines to enable, disable, and handle
* exceptions. Exception handling includes the ability to
* identify the point where an exception occurred and to continue
* execution following an exception, possibly supplying a value
* as the result of the failing instruction.
*
* Two routines are visible:
* enable_fp_traps_(mask)
* disable_fp_traps_()
* The names contain a trailing underscore to enable their use
* with the FORTRAN 'extname' compiler option.
*
* The flttrap compiler option will generate TRAP signals when
* floating-point exceptions occur. It does so by setting the
* record bit on all floating-point instructions, and then
* trapping if condition register bit 5 is set (that is, if
* the floating-point enabled exception (FEX) bit is set in
* the floating-point status and control register).
*/
#include <stdio.h> #include <stdlib.h> #include <signal.h> #include <fptrap.h> #include <fpxcp.h> /*
* The specific trap instruction used by the flttrap option is
* TRAP R15=R15. This is the machine code for that instruction.
*/
#define FLTTRAPINST (0x7c8f7808)
/*
* The following table maps instruction bit patterns to the name
* of a floating-point instruction. This table is referenced
* using bits 26-30 of a floating-point instruction.
*/
static char *op_table[32] = {

“fcmp”, “?”, “?”, “?”, “?”, “?”, “?”, “?”,
“?”, “?”, “?”, “?”, “frsp”, “?”, “?”, “?”,
“?”, “?”, “fd”, “?”, “fs”, “fa”, “?”, “?”,
“?”, “fm”, “?”, “?”, “fms”, “fma”, “fnms”, “fnma” };

/*
* The following variables record the location of the failing
* operation, the kind of operation, and the floating-point
* registers found in a failing instruction. Note that the
* valid registers depend on the instruction type.
*/
static unsigned int *fpe_loc;
static char *opcode;
static int frt_reg, fra_reg, frb_reg, frc_reg;
/* Mask value to check for floating-point exceptions. */
#define TST_MASK (FP_INVALID|FP_OVERFLOW| \

FP_UNDERFLOW|FP_DIV_BY_ZERO|FP_INEXACT)
/* Function Prototypes */
static int find_instr(unsigned int *trap_loc);
void enable_fp_traps_(int *mask);
void disable_fp_traps_();
/*
* Sample exception handler.
* Customize this code by printing additional debugging
* information and defining exception results.
*/
static void fhandler_(int sig,int code,struct sigcontext *scp)
{

fptrap_t fpstat;
int result_reg;

32 C for AIX User’s Guide

fpstat = scp->sc_jmpbuf.jmp_context.fpscr;
/* Check that the trap is of the type used for the flttrap
* option and that the floating-point status and control
* register indicates that an exception has occurred.
*/
if (*((int *) scp->sc_jmpbuf.jmp_context.iar) != FLTTRAPINST ||

!(fpstat & TST_MASK)) {
/*
* This must be a trap caused by an integer division by
* zero or a subscript out of range. */
fputs(“SIGTRAP without floating-point exception\n”,stderr);
exit(42);

}
/*
* Find the floating-point instruction causing the exception and
* decode it. find_inst sets the static variables that indicate
* the instruction location, kind, and registers.
*/
if (find_instr((unsigned int *)scp->sc_jmpbuf.jmp_context.iar)) {

fputs(“SIGTRAP handler failed to find exception point\n”,
stderr);

/*
* Note that, because the exception might have occurred in a
* subroutine that was not compiled with the flttrap option,
* it may be desirable simply to ignore the exception by
* clearing the exception bits and returning.
*/
exit(43);

}
/* Examine the floating-point status and control register for
* enabled exceptions. Customize each case below. */
if ((fpstat & (TRP_INVALID|FP_INVALID)) ==

(TRP_INVALID|FP_INVALID)) {
fprintf(stderr,
“FP invalid operation, operation '%s', location %x\n”,
opcode, fpe_loc);
/*
* Consider an invalid operation an unrecoverable error.
* By examining other bits in the status and control register,
* we can identify the specific invalid operation that
* occurred (for example, zero divided by zero). Using the
* kind of operation, we can examine the source operands.
* If the instruction has any result registers, they
* have not been modified.
*/
exit(44);

}
if ((fpstat & (TRP_OVERFLOW|FP_OVERFLOW)) ==

(TRP_OVERFLOW|FP_OVERFLOW)) {
fprintf(stderr,“FP overflow, operation '%s', location %x\n”,
opcode, fpe_loc);
/*
* Note that the result register in an overflow contains a
* correctly rounded normalized number, but 1536 has been
* subtracted from the exponent.
* Set the result of any overflow to zero.
*/
scp->sc_jmpbuf.jmp_context.fpr[frt_reg] = 0.0;

}
if ((fpstat & (TRP_UNDERFLOW|FP_UNDERFLOW)) ==

(TRP_UNDERFLOW|FP_UNDERFLOW)) {
fprintf(stderr,“FP underflow, operation '%s', location %x\n”,
opcode, fpe_loc);
/*
* Note that the result register in an underflow contains a
* correctly rounded normalized number, but 1536 has been
* added to the exponent.

Chapter 4. Advanced Compiler Usage 33

* Set the result of any underflow to zero.
*/
scp->sc_jmpbuf.jmp_context.fpr[frt_reg] = 0.0;

}
if ((fpstat & (TRP_DIV_BY_ZERO|FP_DIV_BY_ZERO)) ==

(TRP_DIV_BY_ZERO|FP_DIV_BY_ZERO)) {
fprintf(stderr,
“FP division by zero, operation '%s', location %x\n”,
opcode, fpe_loc);
/*
* Print the source operands for the division; the divide
* instruction uses FRA and FRB. Note that the result
* register has not been modified by the divide.
*/
fprintf(stderr,“ Division source operands: %f / %f\n”,
scp->sc_jmpbuf.jmp_context.fpr[fra_reg],
scp->sc_jmpbuf.jmp_context.fpr[frb_reg]);
/* Set the result of any division by zero to zero. */
scp->sc_jmpbuf.jmp_context.fpr[frt_reg] = 0.0;

}
if ((fpstat & (TRP_INEXACT|FP_INEXACT)) ==

(TRP_INEXACT|FP_INEXACT)) {
fprintf(stderr,“FP inexact, operation '%s', location %x\n”,
opcode, fpe_loc);
/* No action, just ignore this. */

}
/* Reset the exception bits because they are sticky. */
scp->sc_jmpbuf.jmp_context.fpscr &= xFP_ALL_XCP;
/* signal(SIGTRAP,fhandler_); */
/* Continue execution with the instruction following the trap.*/
scp->sc_jmpbuf.jmp_context.iar += 4;

}
/*
* Find and decode the floating-point instruction causing the
* exception. Return 1 if not found, else zero.
*/
static int find_instr(unsigned int *trap_loc)
{

/*
* Search backward in the instruction stream starting from
* trap_loc, looking for a floating-point instruction (bits
* 0-5 equal decimal 63). The first such instruction found
* will be assumed to be the failing operation.
* Note that a linear backward search assumes that there is
* no branching code separating the trap instruction from
* the failing floating-point operation. This will always
* be true with the current implementation of the flttrap
* option (in fact, in the current implementation the
* failing operation will always be the second last
* instruction before the trap point), except in the case
* of subroutine calls causing an exception.
* For safety we limit the search length.
*/
int i = 0;
while ((*(—trap_loc) >> 26 != 63) &&
(++i <10));
if (*trap_loc >> 26 != 63) return(1); /* no float op found */
/* Check that the operation found has the record bit set. */
if (!(*trap_loc & 1)) return(1); /* record bit not set */
/*
* Check to see if the instruction found was a move register.
* This instruction is produced after calls to external
* routines to see if they returned with any exception bits
* set. Any such external routine must be a library routine
* or in user code that was not compiled with flttrap.
*/
if (((*trap_loc >> 1) & 0x3ff) == 72) return(1); /* fmr found */

34 C for AIX User’s Guide

/* Decode the instruction to identify the kind of operation
* and the source and result registers. */
fpe_loc = trap_loc;
opcode = op_table[(*trap_loc >> 1) & 0x1f];
frt_reg = (*trap_loc >> 21) & 0x1f;
fra_reg = (*trap_loc >> 16) & 0x1f;
frb_reg = (*trap_loc >> 11) & 0x1f;
frc_reg = (*trap_loc >> 6) & 0x1f;
return(0);

}
/*
* Install a trap handler and enable floating-point exceptions.
* The mask parameter indicates which exceptions should be enabled
* as follows (values are from /usr/include/fptrap.h):
* Invalid Operation = TRP_INVALID = 0x00000080
* Overflow = TRP_OVERFLOW = 0x00000040
* Underflow = TRP_UNDERFLOW = 0x00000020
* Division by Zero = TRP_DIV_BY_ZERO = 0x00000010
* Inexact = TRP_INEXACT = 0x00000008
* To enable multiple exceptions, OR values together. Note that
* the parameter is a pointer, for FORTRAN call by reference.
*/
void enable_fp_traps_(int *mask)
{

signal(SIGTRAP,(void(*)())fhandler_);
fp_enable(*mask);

}
/* Disable all floating-point exceptions and remove trap handler.*/
void disable_fp_traps_()
{

fp_disable_all();
signal(SIGTRAP,SIG_DFL);

}

Rounding Mode Restrictions

The floating-point rounding mode can only be changed at the beginning and end of a function. It cannot be
changed across a function call, and if it is changed within a function, it must be restored before returning
to the calling routine.

“Floating-Point Compiler Options” on page 27
“Compile-Time Floating-Point Arithmetic” on page 26

Creating and Using Precompiled Headers

You can improve your compile time by using precompiled headers. Use the -qgenpcomp and
-qusepcomp compiler options to create and maintain precompiled header files for your application.

If you use these two options consistently, a precompiled header file is created if it does not exist, and used
if it does exist. When a source file is changed, the precompiled version is automatically regenerated.

The compiler generates a single precompiled object for the first initial sequence of #include directives.
The next time you compile, this single object can be used wherever that initial sequence appears. Since
the precompiled object is only used in cases where the context is the same (same language, same
beginning sequence of #include directives, compatible options and macro definitions), the precompiled
object does not have to be reinterpreted every time it is included.

Chapter 4. Advanced Compiler Usage 35

To get the most benefit from this new method, use the same initial sequence of headers wherever
possible. The more files that share the same initial sequence, the greater the improvement in your compile
time.

You can specify different names or directories for precompiled header files with the -qgenpcomp and
-qusepcomp compiler options. This allows you to create more than one initial sequence, and further
improve your compile time.

When you use precompiled header files, the following restrictions apply:

v To create a precompiled header file, the compiler process must have write permission to the directories
you specify, or to the current working directories if none are specified.

v To use a precompiled header, the compiler process must have read permission for that file.

v Precompiled header files do not appear in any listing files.

“#include Preprocessor Directive” on page 356
“genpcomp” on page 267
“usepcomp” on page 335

Minimizing the Size of Object Files

To minimize the size of object files, you can specify the -qcompact option. Using this option may increase
execution time.

“compact” on page 246

36 C for AIX User’s Guide

Chapter 5. Program Parallelization

The compiler offers you two methods of implementing shared memory program parallelization. These are:

v Automatic and explicit parallelization of countable loops using IBM pragma directives.

v Program parallelization using pragma directives compliant to the OpenMP Application Program
Interface specification.

All methods of program parallelization are enabled when the -qsmp compiler option is in effect without the
omp suboption. You can enable strict OpenMP compliance with the -qsmp=omp compiler option, but
doing so will disable automatic parallelization.

Parallel regions of program code are executed by multiple threads, possibly running on multiple
processors. The number of threads created is determined by run-time options and calls to library functions.
Work is distributed among available threads according to the directives specified in the source.

Note: The -qsmp option must only be used together with thread-safe compiler invocation modes.

IBM Directives

IBM directives exploit shared memory parallelism through the parallelization of countable loops. A loop is
considered to be countable if it has any of the forms described in Countable Loops .

The compiler can automatically locate and where possible parallelize all countable loops in your program
code. In general, a countable loop is automatically parallelized only if all of the follow conditions are met:

v the order in which loop iterations start or end does not affect the results of the program.

v the loop does not contain I/O operations.

v floating point reductions inside the loop are not affected by round-off error, unless the -qnostrict option
is in effect.

v the -qnostrict_induction compiler option is in effect.

v the -qsmp compiler option is in effect without its omp suboption. The compiler must be invoked using a
thread-safe compiler mode.

You can also use the IBM directives to explicitly instruct the compiler to parallelize selected countable
loops.

The C for AIX compiler provides pragma directives that you can use to improve on automatic
parallelization performed by the compiler. Pragmas fall into two general categories.

1. The first category of pragmas lets you give the compiler information on the characteristics of a specific
countable loop. The compiler uses this information to perform more efficient automatic parallelization of
the loop.

2. The second category gives you explicit control over parallelization. Use these pragmas to force or
suppress parallelization of a loop, apply specific parallelization algorithms to a loop, and synchronize
access to shared variables using critical sections.

OpenMP Directives

OpenMP directives exploit shared memory parallelism by defining various types of parallel regions. Parallel
regions can include both iterative and non-iterative segments of program code.

Pragmas fall into four general categories:

© Copyright IBM Corp. 1995, 1999 37

1. The first category of pragmas lets you define parallel regions in which work is done by threads in
parallel. Most of the OpenMP directives either statically or dynamically bind to an enclosing parallel
region.

2. The second category lets you define how work will be distributed across the threads in a parallel
region.

3. The third category lets you control synchronization among threads.

4. The fourth category lets you define the scope of data visibility across threads.

“Countable Loops”
“Reduction Operations in Parallelized Loops” on page 39
“Shared and Private Variables in a Parallel Environment” on page 40
“Compiler Modes” on page 5
“Using Pragmas to Control Parallel Processing” on page 41
“Invoking the Compiler” on page 8
“#pragma Preprocessor Directives for Parallel Processing” on page 381
“Run-time Options for Parallel Processing” on page 402
“OpenMP Run-time Options for Parallel Processing” on page 404
“Built-in Functions Used for Parallel Processing” on page 400
“smp” on page 320
“strict” on page 326
“strict_induction” on page 327

Countable Loops

A loop is considered to be countable if :

v there is no branching into or outside of the loop.

v the incr_expr expression is not within a critical section.

The following are examples of countable loops.
for ([iv]; exit_cond; incr_expr)
statement

for ([iv]; exit_cond; [expr] {
[declaration_list]
[statement_list]
incr_expr;
[statement_list]

}

while (exit_cond) {
[declaration_list]
[statement_list]
incr_expr;
[statement_list]

}

do {
[declaration_list]
[statement_list]
incr_expr;
[statement_list]

} while (exit_cond)

The following definitions apply to the above examples:

38 C for AIX User’s Guide

exit_cond takes form: iv <= ub
iv < ub
iv >= ub
iv > ub

incr_expr takes form: ++iv
iv++
—iv
iv—
iv += incr
iv -= incr
iv = iv + incr
iv = incr + iv
iv = iv - incr

iv Iteration variable. The iteration variable is a signed integer that has either automatic or register storage
class, does not have its address taken, and is not modified anywhere in the loop except in incr_expr.

incr Loop invariant signed integer expression. The value of the expression is known at compile-time and is
not 0. incr cannot reference extern or static variables, pointers or pointer expressions, function calls, or
variables that have their address taken.

ub Loop invariant signed integer expression. ub cannot reference extern or static variables, pointers or
pointer expressions, function calls, or variables that have their address taken.

“Chapter 5. Program Parallelization” on page 37
“Shared and Private Variables in a Parallel Environment” on page 40
“Reduction Operations in Parallelized Loops”
“Using Pragmas to Control Parallel Processing” on page 41
“#pragma Preprocessor Directives for Parallel Processing” on page 381

Reduction Operations in Parallelized Loops

The compiler can recognize and properly handle most reduction operations in a loop during both automatic
and explicit parallelization. In particular, it can handle reduction statements that have either of the following
forms:

var = var op expr;

var assign_op expr;

where:

var Is an identifier designating an automatic or register variable that does not have its address
taken and is not referenced anywhere else in the loop, including all loops that are nested. For
example, in the following code, only S in the nested loop is recognized as a reduction:

int i,j, S=0;
#pragma ibm parallel_loop
for (i= 0 ;i < N; i++) {

S = S+ i;
#pragma ibm parallel_loop
for (j=0;j< M; j++) {

S = S + j;
}

}

op Is one of the following operators:

+ - * | | &

assign_op Is one of the following operators:

+= -= *= |= |= &=

Chapter 5. Program Parallelization 39

expr Is any valid expression.

Recognized reductions are listed by the -qinfo=reduction option. When using IBM directives, use critical
sections to synchronize access to all reduction variables not recognized by the compiler. OpenMP
directives provide you with mechanisms to specify reduction variables explictily.

“Chapter 5. Program Parallelization” on page 37
“Countable Loops” on page 38
“Shared and Private Variables in a Parallel Environment”
“Using Pragmas to Control Parallel Processing” on page 41
“#pragma Preprocessor Directives for Parallel Processing” on page 381
“#pragma ibm critical Preprocessor Directive” on page 382
“info” on page 275

Shared and Private Variables in a Parallel Environment

Variables can have either shared or private context in a parallel environment.

v Variables in shared context are visible to all threads running in associated parallel constructs.

v Variables in private context are hidden from other threads. Each thread has its own private copy of the
variable, and modifications made by a thread to its copy are not visible to other threads.

You can explicitly specify a shared or private context for a variable, or you can let the compiler determine
the default context of a variable according to the following rules:

v Variables with static storage duration are shared.

v Dynamically allocated objects are shared.

v Variables with automatic storage duration are private.

v All variables defined outside a parallel construct become shared when the parallel construct is
encountered.

v Loop iteration variables are private within their loops. The value of the iteration variable after the loop is
the same as if the loop were run sequentially.

v Memory allocated by the alloca function within:

– a parallel loop or any other OpenMP construct persists only for the duration of that construct and is
private for each thread.

– a work-sharing loop persists only for the duration of one iteration of that loop.

– a section of a work-sharing sections construct persists only for the duration of that section.

The following code segments show examples of these rules:

40 C for AIX User’s Guide

int E1; /* shared static */

void main (argvc,...) { /* argvc is shared */
int i; /* shared automatic */

void *p = malloc(...); /* memory allocated by malloc */
/* is accessible by all threads */
/* and cannot be privatized */

#pragma omp parallel firstprivate (p)
{
int b; /* private automatic */
static int s; /* shared static */
#pragma omp for
for (i =0;...) {
int tmp = b; /* b is still private here ! */
foo (i); /* i is private here because it */

/* is an iteration variable */
}

#pragma omp parallel
{
int tmp = b /* b is shared here because it */

/* is another parallel region */
}

}
}

int E2; /*shared static */

void foo (int x) { /* x is private for the parallel */
/* region it was called from */

int c; /* the same */
... }

Some OpenMP preprocessor directives let you explicitly specify visibility context for selected data
variables. For more information, see OpenMP directive descriptions or the OpenMP C and C++ Application
Program Interface specification.

Note that even if a variable has shared context, it can be privatized by the compiler if it is possible to do
so without changing the semantics of the program. For example, if each loop iteration uses a unique value
of a shared variable, that variable can be privatized. Privatized variables are reported by the
-qinfo=private option.

“Chapter 5. Program Parallelization” on page 37
“Countable Loops” on page 38
“Reduction Operations in Parallelized Loops” on page 39
“Using Pragmas to Control Parallel Processing”
“#pragma Preprocessor Directives for Parallel Processing” on page 381
“#pragma ibm critical Preprocessor Directive” on page 382
“info” on page 275

Using Pragmas to Control Parallel Processing

Parallel processing operations are controlled by pragma directives in your program source. You can use
either IBM or OpenMP parallel processng directives. Each have their own usage characteristics.

IBM Directives

Chapter 5. Program Parallelization 41

Syntax:
#pragma ibm pragma_name_and_args
<countable for|while|do loop>

Pragma directives must appear immediately before the section of code to which they apply. For most
parallel processing pragma directives this section of code must be a countable loop, and the compiler will
report an error if one is not found.

More than one parallel processing pragma directive can be applied to a countable loop. For example:
#pragma ibm independent_loop
#pragma ibm independent_calls
#pragma ibm schedule(static,5)
<countable for|while|do loop>

Some pragma directives are mutually-exclusive of each other. If mutually-exclusive pragmas are specified
for the same loop, the pragma last specified applies to the loop. In the example below, the parallel_loop
pragma directive is applied to the loop, and the sequential_loop pragma directive is ignored.
#pragma ibm sequential_loop
#pragma ibm parallel_loop

Other pragmas, if specified repeatedly for a given loop, have an additive effect. For example:
#pragma ibm permutation (a,b)
#pragma ibm permutation (c)

is equivalent to:
#pragma ibm permutation (a,b,c)

OpenMP Directives

Syntax:
#pragma omp pragma_name_and_args
statement_block

Pragma directives generally appear immediately before the section of code to which they apply.

The omp parallel directive is used to define the region of program code to be parallelized. Other OpenMP
directives define visibility of data variables in the defined parallel region and how work within that region is
shared and synchronized.

For example, the following example defines a parallel region in which iterations of a for loop can run in
parallel:
#pragma omp parallel {
#pragma omp for

for (i=0; i<n; i++)
...

}

This example defines a parallel region in which two or more non-iterative sections of program code can
run in parallel:
#pragma omp parallel region {
/* code here is executed by all threads */
#pragma omp sections {

/* each section is executed once */
#pragma omp section
structured_block_1

42 C for AIX User’s Guide

...
#pragma omp section
structured_block_2

...
....

}
}

“Chapter 5. Program Parallelization” on page 37
“Shared and Private Variables in a Parallel Environment” on page 40
“Countable Loops” on page 38
“#pragma Preprocessor Directives for Parallel Processing” on page 381
“smp” on page 320
“info” on page 275

Chapter 5. Program Parallelization 43

44 C for AIX User’s Guide

Chapter 6. The C Language

C is a programming language designed for a wide variety of programming tasks. It is used for system-level
code, text processing, graphics, and in many other application areas.

The C language described in these pages is consistent with the Systems Application Architecture Common
Programming Interface (also known as the SAA C Level 2 interface), and with the International Standard C
(ANSI/ISO-IEC 9899-1990[1992]). This standard has officially replaced American National Standard for
Information Systems—Programming Language C (X3.159-1989) (X3.159-1989) and is technically
equivalent to the ANSI** C standard.

C supports several data types, including characters, integers, floating-point numbers, and pointers — each
in a variety of forms. In addition, C also supports arrays, structures (records), unions, and enumerations.

The C language contains a concise set of statements, with functionality added through its library. This
division enables C to be both flexible and efficient. An additional benefit is that the language is highly
consistent across different systems.

The C library contains functions for input and output, mathematics, exception handling, string and
character manipulation, dynamic memory management, as well as date and time manipulation. Use of this
library helps to maintain program portability, because the underlying implementation details for the various
operations need not concern the programmer.

All of the standard C library functions and many others are part of the AIX Base Operating System (BOS)
Runtime Services. The AIX Version 4 Technical Reference, Volumes 1 and 2: Base Operating System and
Extensions describes all of the C library functions supported by the C for AIX compiler. Refer to
“Subroutines Overview” in AIX Version 4 System User’s Guide: Operating System and Devices for general
information about library functions.

Lexical Elements of C

Tokens

Source code is treated during preprocessing and compilation as a sequence of tokens. There are five
different types of tokens:

v Identifiers

v Keywords

v Literals

v Operators

v Other separators

Adjacent identifiers, keywords and literals must be separated with white space. Other tokens should be
separated by white space to make the source code more readable. White space includes blanks,
horizontal and vertical tabs, new lines, form feeds and comments.

“Comments” on page 46
“Identifiers” on page 47
“Constants” on page 48

© Copyright IBM Corp. 1995, 1999 45

Comments

Comments begin with the /* characters, end with the */ characters, and can span more than one line. You
can put comments anywhere the language allows white space. Multibyte characters can be included in a
comment.

Comments are replaced during preprocessing by a single space character.

If the “cpluscmt” on page 247 compiler option is in effect when you compile a C program, double slashes
(//) also specify the beginning of a comment. The comment ends at the next newline character.

The “C” on page 242 , “E” on page 253 , and “P” on page 307 compiler options affect how comments
appear in the compiler listing.

Note: The /* or */ characters found in a character constant or string literal do not start or end comments.

You cannot nest comments. Each comment ends at the first occurrence of */. For example, in the
following code segment, the comments are highlighted:

1 /* A program with nested comments. */ 2
3 #include <stdio.h>
4
5 int main(void)
6 {
7 test_function();
8 }
9
10 int test_function(void)
11 {
12 int number;
13 char letter;
14 /*15 number = 55;16 letter = 'A';17 /* number = 44; */18 */
19 return 999;
20 }

In test_function , the compiler reads the /* in line 14 through the */ in line 17 as a comment, and line 18
as C language code, causing errors at line 18.

To avoid commenting over comments already in the source code, you can use conditional compilation
preprocessor directives to cause the compiler to bypass sections of a C program. For example, one
method to ignore lines 15 through 17 would be to change line 14 to:

14 #if 0

and line 18 to:
18 #endif

To later reenable the ignored comments, change line 14 to:
14 #if 1

46 C for AIX User’s Guide

Conditional compilation preprocessor directives are described in Preprocessor Directives.

“Tokens” on page 45
“Identifiers”
“Constants” on page 48
“Preprocessor Directives” on page 58
“Conditional Compilation Directives” on page 60
“#if, #elif Preprocessor Directives” on page 352
“#endif Preprocessor Directive” on page 353

Identifiers

Identifiers consist of an arbitrary number of letters or digits. They provide names for the following language
elements:

v Functions

v Data objects

v Labels

v Tags

v Parameters

v Macros

v Typedefs

v Structure and union members.

There is no limit for the number of characters in an identifier. However, the linkage editor does limit the
number of significant characters in external identifiers and truncates them after 4095 characters.

The compiler distinguishes between uppercase and lowercase letters in identifiers. For example, PROFIT
and profit represent different data objects.

Note: The underscore character (_) is considered a letter. In ansi mode, identifiers can begin with _ but
not with $. In extended mode, identifiers can begin with _ or $, but you should avoid using these
characters at the beginning of identifiers because they are reserved for internal system names. . The
“dollar” on page 253 compiler option lets you use the $ character in identifiers.

Identifiers used by C library functions that begin with two underscores or an underscore followed by a
capital letter, are reserved in all contexts.

Although the names of system calls and library functions are not reserved words if you do not include the
appropriate headers, avoid using them as identifiers. Duplication of a predefined name can lead to
confusion for the maintainers of your code and can cause errors at link time or run time. If you include a
library in a program, be aware of the function names in that library to avoid name duplications.

You should always include the appropriate headers when using standard library functions.

“Tokens” on page 45
“Comments” on page 46
“Constants” on page 48
“Scope of Identifier Visibility” on page 53

Chapter 6. The C Language 47

Constants

A constant does not change its value while the program is running. The value of any constant must be in
the range of representable values for its type.

The C language contains the following types of constants (also called literals):

v “Integer Constant” on page 47

v “Floating-Point Constants” on page 49

v “Character Constants” on page 50

v “String Literals” on page 51

v “Escape Sequences” on page 52

v “enum” on page 82

Integer Constant

Integer constants can represent decimal, octal, or hexadecimal values.

Data Types for Integer Constants: The data type of an integer constant is determined by the form,
value, and suffix of the constant. The following table lists the integer constants and shows the possible
data types for each constant. The smallest data type that can represent the constant value is used to store
the constant.

Data Types for Integer Constants
Assigned Constant Value Data Type
unsuffixed decimal int, long int, unsigned long int
unsuffixed octal int, unsigned int, long int, unsigned long int
unsuffixed hexadecimal int, unsigned int, long int, unsigned long int
suffixed by u or U unsigned int, unsigned long int
suffixed by l or L long int, unsigned long int
suffixed by both u or U, and l or L unsigned long int
suffixed by ll or LL long long int, unsigned long long int
suffixed by both u or U, and ll or LL unsigned long long int

A plus (+) or minus (-) symbol can precede the constant. It is treated as a unary operator rather than as
part of the constant value.

Note that the integer constant -2147483648 is not valid because 2147483648 is an unsigned int value,
which cannot have the unary minus operator applied to it. Instead, this value should be coded as
-(2147483647 + 1). To avoid such problems with very small integral values, you should use the identifiers
INT_MIN (for int), SHRT_MIN (for short int), and SCHAR_MIN (for signed char). These and other limits
for integer values are set in the /usr/include/limits.h include file. Header files are described in the AIX
Version 4 Files Reference.

Decimal Values: A decimal constant contains any of the digits 0 through 9. The first digit cannot be 0.

48 C for AIX User’s Guide

Integer constants beginning with the digit 0 are interpreted as an octal constant, rather than as a decimal
constant.

The following are examples of decimal constants:
485976
-433132211
+20
5

Hexadecimal Values: A hexadecimal constant begins with the 0 digit followed by either an x or X,
followed by any combination of the digits 0 through 9 and the letters a through f or A through F. The letters
A (or a) through F (or f) represent the values 10 through 15, respectively.

The following are examples of hexadecimal constants:
0x3b24
0XF96
0x21
0x3AA
0X29b
0X4bD

Octal Values: An octal constant begins with the digit 0 and contains any of the digits 0 through 7.

The following are examples of octal constants:

0
0125
034673
03245

Floating-Point Constants

A floating-point constant consists of:

v An integral part

v A decimal point

v A fractional part

v An exponent part

v An optional suffix.

Chapter 6. The C Language 49

Both the integral and fractional parts are made up of decimal digits. You can omit either the integral part or
the fractional part, but not both. You can omit either the decimal point or the exponent part, but not both.

A suffix of f or F indicates a type of float , and a suffix of l or L indicates a type of long double . If a suffix
is not specified, the floating-point constant has a type double .

A plus (+) or minus (-) symbol can precede a floating-point constant. However, it is not part of the
constant; it is interpreted as a unary operator.

The limits for floating-point values are set in the /usr/include/float.h include file. Header files are
described in the AIX Version 4 Files Reference.

The following are examples of floating-point constants:

Floating-Point Constant Value
5.3876e4 53876
4e-11 0.00000000004
1e+5 100000

7.321E-3 0.007321
3.2E+4 32000
0.5e-6 0.0000005
0.45 0.45
6.e10 60000000000

Character Constants

A character constant contains a sequence of characters or escape sequences enclosed in single quotation
mark symbols.

At least one character or escape sequence must appear in the character constant. The characters can be
any from the source program character set, excluding the single quotation mark, backslash and new-line
symbols. The prefix L indicates a wide character constant. A character constant must appear on a single
logical source line.

The value of a character constant containing a single character is the numeric representation of the
character in the character set used at run time. The value of a wide character constant containing a single
multibyte character is the code for that character, as defined by the mbtowc function.

A character constant has type int . A wide character constant is represented by a double-byte character of
type wchar_t , an integral type defined in the <stddef.h> include file. Header files are described in the AIX
Version 4 Files Reference. Each multibyte character can contain up to 4 bytes.

To represent the single quotation symbol, backslash, and new-line characters, you must use the
corresponding escape sequence. For more information on escape sequences, see “Escape Sequences” on
page 52.

The following are examples of character constants:

’a’ ’ 0’ ’ x’ ’ 7’ ’ C’
’\’’ ’ (’ ’ \n’ ’ \117’

50 C for AIX User’s Guide

Notes:

1. In extended mode, a character constant longer than 2 characters causes a warning to be issued by
the C compiler. Only the rightmost 4 characters are used. A character constant with 4 characters has
an unsigned int value.

2. In ansi mode, a character constant longer than 1 character causes a warning to be issued. Only the
rightmost 4 characters are used. For example the character constant ’too_long’ causes the following
message:
1506-076 (W) Character constant has more than one character.
Rightmost four characters are used.

String Literals

A string constant or literal contains a sequence of characters or escape sequences enclosed in double
quotation mark symbols.

The prefix L indicates a wide-character string literal.

A null (’\0’) character is appended to each string. For a wide character string (a string prefixed by the
letter L), the value ’\0’ of type wchar_t is appended. By convention, programs recognize the end of a
string by finding the null character.

Multiple spaces contained within a string constant are retained.

To continue a string on the next line, use the line continuation sequence (\ symbol immediately followed by
a new-line character). A carriage return must immediately follow the backslash. In the following example,
the string literal second causes a compile-time error.
char *first = “This string continues onto the next\

line, where it ends.”; /* compiles successfully. */
char *second = “The comment makes the \ /* continuation symbol */

invisible to the compiler.”; /* compilation error. */

Another way to continue a string is to have two or more consecutive strings. Adjacent string literals are
concatenated to produce a single string. You cannot concatenate a wide string constant with a character
string constant. For example:
“hello ” “there” /* is equivalent to “hello there” */
“hello ” L“there” /* is not valid */
“hello” “there” /* is equivalent to “hellothere” */

Characters in concatenated strings remain distinct. For example, the strings “\xab” and “3” are
concatenated to form “\xab3”. However, the characters \xab and 3 remain distinct and are not merged to
form the hexadecimal character \xab3.

Following any concatenation, ’\0’ of type char is appended at the end of each string. C programs find the
end of a string by scanning for this value. For a wide-character string literal, ’\0’ of type wchar_t is
appended. For example:
char *first = “Hello ”; /* stored as “Hello \0” */
char *second = “there”; /* stored as “there\0” */
char *third = “Hello ” “there”; /* stored as “Hello there\0” */

A character string constant has type array of char and static storage duration. A wide character constant
has type array of wchar_t and static storage duration.

Chapter 6. The C Language 51

Use the escape sequence \n to represent a new-line character as part of the string. Use the escape
sequence \\ to represent a backslash character as part of the string. You can represent the single
quotation mark symbol by itself ’, but you use the escape sequence \“ to represent the double quotation
mark symbol. For example:
#include <stdio.h>
void main ()
{

char *s = ”Hi there! \n“;
char *p = ”The backslash character \\.“;
char *q = ”The double quotation mark \“.\n”;
printf(“%s%s\n%s”, s, p, q);

}

This program produces the following output:
Hi there!
The backslash character \.
The double quotation mark “.

You should be careful when modifying string literals because the resulting behavior depends on whether
your strings are stored in read/write static memory.

Use the ro compiler option or the #pragma strings preprocessor directive to change the default storage
for string literals. The #pragma strings preprocessor directive can also be used to specify whether string
literals are readonly or read/write.

The following are examples of string literals:
char titles[] = ”Handel's \“Water Music\”“;
char *mail_addr = ”Last Name First Name MI Street Address \

City Province Postal code “;
char *temp_string = ”abc“ ”def“ ”ghi“; /* *temp_string = ”abcdefghi\0“ */
wchar_t *wide_string = L”longstring“;

Escape Sequences

You can represent any member of the execution character set by an escape sequence. They are primarily
used to put nonprintable characters in character and string literals. For example, you can use escape
sequences to put such characters as tab, carriage return, and backspace into an output stream.

An escape sequence contains a backslash (\) symbol followed by one of the escape sequence characters
or an octal or hexadecimal number. A hexadecimal escape sequence contains an x followed by one or
more hexadecimal digits (0-9, A-F, a-f). An octal escape sequence uses up to three octal digits (0-7). The
value of the hexadecimal or octal number specifies the value of the desired character or wide character.

Note: The line continuation sequence (\ followed by a new-line character) is not an escape sequence. It is
used in character strings to indicate that the current line continues on the next line.

The escape sequences and the characters they represent are:

Escape Sequence Character Represented
\a Alert (bell, alarm)
\b Backspace
\f Form feed (new page)
\n New-line

52 C for AIX User’s Guide

\r Carriage return
\t Horizontal tab
\v Vertical tab
\’ Single quotation mark
\” Double quotation mark
\? Question mark
\\ Backslash

The value of an escape sequence represents the member of the character set used at run time. Escape
sequences are translated during preprocessing. For example, the AIX Version 4 operating system uses the
ASCII character set, where the value of the escape sequence \x56 is the letter V.

Use escape sequences only in character constants or in string literals.

If an escape sequence is not recognized, the compiler removes the backslash and issues a warning
message. For example, the string “abc\def” becomes “abcdef”. Note that this behavior is
implementation-defined.

When a hexadecimal escape sequence is longer than two digits, the compiler issues a warning. Only the
rightmost two digits are used. For example, in the following statement

printf (“\x06asset \n”);

only the digits 6a are retained.

In string and character sequences, when you want the backslash to represent itself (rather than the
beginning of an escape sequence), you must use a \\ backslash escape sequence.
#include <stdio.h>
void main()
{

char a,b,c,d,e;
a='a';
b=97; /* ASCII integer value */
c='\141'; /* ASCII octal value */
d='\x61'; /* ASCII hexadecimal value */
e='\n';
printf(“%c %c %c %c %c\n”, a, b, c, d, e);

}

“Constant Expressions” on page 71
“Tokens” on page 45
“Comments” on page 46
“Identifiers” on page 47
“Type Specifiers” on page 66
“#pragma strings Preprocessor Directive” on page 376
“ro” on page 317 Compiler Option

Identifier Behavior in Your Program

Scope of Identifier Visibility

An identifier becomes visible with its declaration. The region where an identifier is visible is referred to as
the identifier’s scope.

The scope of an identifier is determined by where the identifier is declared. The four kinds of scope and
their descriptions are:

Chapter 6. The C Language 53

Block Scope The identifier’s declaration is located inside a statement block.

A block starts with an opening brace ({) and ends with a closing brace (}). An identifier
with block scope is visible between the point where it is declared and the closing brace
that ends the block.

Block scope is sometimes referred to as local scope.
Function Scope The only identifier with function scope is a label name.

A label is implicitly declared by its appearance in the program source. A goto statement
transfers control to the label specified in the goto statement. The label is visible to any
goto statement that appears in the same function as the label.

File Scope The identifer’s declaration appears outside any block.

It is visible from the point where it is declared to the end of the source file. If the source
files are included by #include preprocessor directives, those files are considered to be
part of the source, and the identifier will be visible to all included files that appear after
the declaration of the identifier.

The identifier can be declared again as a block scope variable. The new declaration
replaces the file-scope declaration until the end of the block.

Function Prototype Scope The identifier’s declaration appears within the list of parameters in a function prototype.

It is visible from the point where it is declared to the closing parenthesis of the
prototype declaration.

“Program Linkage Between Identifiers”
“Storage Duration” on page 57
“Name Spaces” on page 57
“Identifiers” on page 47
“#include Preprocessor Directive” on page 356
“goto” on page 151 Statement

Program Linkage Between Identifiers

The association, or lack of association, between two identical identifiers is known as linkage. The kind of
linkage that an identifier has depends on the way that it is declared.

54 C for AIX User’s Guide

Types of identifier linkage and their descriptions are:

Internal Linkage Internal linkage occurs where identical identifiers within a single source file refer to the same
data object or function.

The following kinds of labels have internal linkage:

v All identifiers with file or block scope that have the keyword static in their declarations.
Functions with static storage class are visible only in the source file in which you define
them.

v C identifiers declared at file scope with the specifier const , and not explicitly declared
extern .

A variable that has static storage class can be defined within a block or outside of a function.

v If the defnition occurs within the block, the variable has internal linkage and is visible only
within the block after its declaration is seen.

v If the definition occurs outside of a function, the variable has internal linkage, and is
available from the point where it is defined until the end of the current source file.

A class name that has no static members or non-inline member functions, and that has not
been used in the declaration of an object, function, or class, is local to its translation unit.

If the declaration of an identifier has the keyword extern , and if a previous declaration of the
identifier is visible at file scope, the identifier has the same linkage as the first declaration.

External Linkage External linkage occurs where identical identifiers in separately compiled files refer to the
same data object or function.

The following kinds of identifiers have external linkage:

v Identifiers with file or block scope that have the keyword extern in their declarations.

If a previous declaration of the identifier is visible at file scope, the identifier has the
same linkage as the first declaration. For example, a variable or function that is first
declared with the keyword static and is later declared with the keyword extern has
internal linkage.

v Function identifiers declared without storage-class specifiers.

v Object identifiers that have file scope declared without a storage-class specified. Storage is
allocated for such object identifiers.

v Static class members and non-inline member functions.

Identifiers declared with the keyword extern can be defined in other translation units.
No Linkage No linkage occurs where each identical identifier refers to a unique object.

The following kinds of identifiers have no linkage:

v Identifiers that do not represent an object or a function, including labels, enumerators,
typedef names, type names, and template names.

v Identifiers that represent a function argument.

v Identifiers declared inside a block without the keyword extern .

“Scope of Identifier Visibility” on page 53
“Example of File and Function Prototype Visibility Scopes” on page 56
“Example of File and Block Visibility Scopes” on page 56
“Data Type Qualifiers” on page 115
“extern” on page 109
“static” on page 112
“typedef” on page 115

Chapter 6. The C Language 55

Example of File and Function Prototype Visibility Scopes

In the following example, the variable x, which is declared on line 1, is different from the x declared on
line 2. The variable declared on line 2 has function prototype scope and is visible only up to the closing
parenthesis of the prototype declaration. Visibility of the variable x declared on line 2 resumes after the
end of the prototype declaration.
1 int x = 4; /* variable x defined with file scope */
2 long myfunc(int x, long y); /* variable x has function */
3 /* prototype scope */
4 int main(void)
5 {
6 /* . . . */
7 }

“Scope of Identifier Visibility” on page 53
“Example of File and Block Visibility Scopes”

Example of File and Block Visibility Scopes

Functions with static storage class are visible only in the source file they are defined in. All other
functions can be globally visible.

The following program illustrates blocks, nesting, and scope. The example shows two kinds of scope: file
and block. The main function prints the values 1, 2, 3, 0, 3, 2, 1 on separate lines. Each instance of i
represents a different variable.

#include <stdio.h>
int i = 1; /* i defined at file scope */
int main(int argc, char * argv[])

+——— {
|
| printf(“%d\n”, i); /* Prints 1 */
|
| +—— {
| | int i = 2, j = 3; /* i and j defined at
| | block scope */
| | printf(“%d\n%d\n”, i, j); /* Prints 2, 3 */
| |
| | +— {
| | | int i = 0; /* i is redefined in a nested block */
| | | /* previous definitions of i are hidden */
| | | printf(“%d\n%d\n”, i, j); /* Prints 0, 3 */
| | +— }
| |
| | printf(“%d\n”, i); /* Prints 2 */
| |
| +—— }
|
| printf(“%d\n”, i); /* Prints 1 */
|
| return 0;
|
+——— }

“Scope of Identifier Visibility” on page 53

56 C for AIX User’s Guide

“Example of File and Function Prototype Visibility Scopes” on page 56

“Scope of Identifier Visibility” on page 53
“Example of File and Function Prototype Visibility Scopes” on page 56

Storage Duration

Storage duration determines how long storage for an object exists. An object has either static storage
duration or automatic storage duration depending on its declaration. Descriptions of each follow:

Static storage Is allocated at initialization and remains available until the program ends. Objects have static
storage duration if they:

v Have file scope

v Have external or internal linkage OR

v Contain the static storage class specifier.
Automatic storage Is allocated and removed according to the scope of the identifier. Objects have automatic

storage duration if they are:

v Parameters in a function definition.

v Declared at block scope and do not have any storage class specifier, or,

v Declared at block scope and have the register or auto storage class specifier.

For example, storage for an object declared at block scope is allocated when the identifier is
declared and removed when the closing brace (}) is reached.

Note: Objects can also have heap storage duration. Heap objects are created at runtime and storage is
allocated for them by calling a function such as malloc() .

“Scope of Identifier Visibility” on page 53
“Program Linkage Between Identifiers” on page 54
“Name Spaces”
“auto” on page 106 Storage Class Specifier
“register” on page 111 Storage Class Specifier
“static” on page 112 Storage Class Specifier

Name Spaces

The compiler sets up name spaces to distinguish among identifiers referring to different kinds of entities.
Identical identifiers in different name spaces do not interfere with each other, even if they are in the same
scope.

You must assign unique names within each name space to avoid conflict. The same identifier can be used
to declare different objects as long as each identifier is unique within its name space. The syntactic
context of an identifier within a program lets the compiler resolve its name space without ambiguity.

Identifiers in the same name space can be redefined within enclosed program blocks, as described in
“Scope of Identifier Visibility” on page 53.

Within each of the following four name spaces, the identifiers must be unique.

v Tags of these types must be unique within a single scope:

– Enumerations

– Structures and unions

Chapter 6. The C Language 57

v Members of structures and unions must be unique within a single structure or union type.

v Statement labels have function scope and must be unique within a function.

v All other ordinary identifiers must be unique within a single scope:

– Function names

– Variable names

– Names of function parameters

– Enumeration constants

– typedef names.

“Scope of Identifier Visibility” on page 53
“Example of Name Space Separation”

Example of Name Space Separation

Structure tags, structure members, variable names, and statement labels are in four different name
spaces; no conflict occurs among the four items named student in the following example:
int get_item()
{

struct student /* structure tag */
{

char student[20]; /* structure member */
int section;
int id;

} student; /* structure variable */
goto student;
student: ; /* null statement label */
return (0);

}

Each occurrence of student is interpreted by its context in the program. For example, when student
appears after the keyword struct , it is a structure tag. When student appears after either of the member
selection operators . or ->, the name refers to the structure member. When student appears after the
goto statement, control is passed to the null statement label. In other contexts, the identifier student refers
to the structure variable.

“Name Spaces” on page 57
“Scope of Identifier Visibility” on page 53

Preprocessor Directives

Preprocessing is a step that takes place before compilation that lets you:

v Replace tokens in the current file with specified replacement tokens.

v Imbed files within the current file

v Conditionally compile sections of the current file

v Generate diagnostic messages

v Change the line number of the next line of source and change the file name of the current file.

A token is a series of characters delimited by white space. The only white space allowed on a
preprocessor directive is the space, horizontal tab, vertical tab, form feed, and comments. The new-line
character can also separate preprocessor tokens.

58 C for AIX User’s Guide

The preprocessed source program file must be a valid C program.

Preprocessor directives begin with the # token followed by a preprocessor keyword. The # token must
appear as the first character that is not white space on a line. The # is not part of the directive name and
can be separated from the name with white spaces.

A preprocessor directive ends at the new-line character unless the last character of the line is the \
(backslash) character. If the \ character appears as the last character in the preprocessor line, the
preprocessor interprets the \ and the new-line character as a continuation marker. The preprocessor
deletes the \ (and the following new-line character) and splices the physical source lines into continuous
logical lines.

Except for some #pragma directives, preprocessor directives can appear anywhere in a program.

“Preprocessing Operations”
“Preprocessor Macros”
“Conditional Compilation Directives” on page 60
“List of Standard Preprocessor Directives” on page 347
“#pragma Preprocessor Directives” on page 363

Preprocessing Operations

Preprocessing carries out the following operations on your program source files:

1. New-line characters are introduced as needed to replace system-dependent end-of-line characters,
and other system-dependent character-set translations are performed as needed. Trigraph sequences
are replaced by equivalent single characters.

2. Each \ (backslash) followed by a new-line character is deleted, and the next source line is appended to
the line that contained the backslash.

3. The source text is decomposed into preprocessing tokens tokens and sequences of white space. A
single white space replaces each comment. A source file cannot end with a partial token or comment.

4. Preprocessing directives are run, and macros are expanded.

5. Escape sequences in character constants and string literals are replaced by their equivalent values.

6. Adjacent string literals are concatenated.

The rest of the compilation process operates on the preprocessor output, which is syntactically and
semantically analyzed and translated, and then linked as necessary with other programs and libraries.

“Preprocessor Directives” on page 58
“Preprocessor Macros”
“Conditional Compilation Directives” on page 60
“C Programming Character Set” on page 160

Preprocessor Macros

You can use the #define preprocessor directive to define a macro that assigns a value to an identfier. The
preprocessor replaces subsequent occurences of that identifier with its assigned value until the identifier is
undefined with the #undef preprocessor directive, or until the end of the program source is reached,
whichever comes first.

There are two basic types of macro definitions that you can use to assign a value to an identifer:

Object-like Macros Replaces a single identifier with a specified token, or constant value.

Chapter 6. The C Language 59

Function-like Macros Associates a user-defined function and argument list to an identifier. When the
preprocessor encounters that identifier in the program source, the defined function is
inserted in place of the identifier along with any corresponding arguments.

“Preprocessor Directives” on page 58
“Preprocessing Operations” on page 59
“Conditional Compilation Directives”
“#define Preprocessor Directive” on page 348
“#undef Preprocessor Directive” on page 358
“Predefined Preprocessor Macros” on page 359
“Preprocessor Macro Operators” on page 377

Conditional Compilation Directives

A preprocessor conditional compilation directive causes the preprocessor to conditionally suppress the
compilation of portions of source code. These directives test a constant expression or an identifier to
determine which tokens the preprocessor should pass on to the compiler and which tokens should be
bypassed during preprocessing. The directives are:

v #if

v #ifdef

v #ifndef

v #else

v #elif

v #endif

For each #if , #ifdef , and #ifndef directive, there are zero or more #elif directives, zero or one #else
directive, and one matching #endif directive. All the matching directives are considered to be at the same
nesting level.

You can nest conditional compilation directives. In the following directives, the first #else is matched with
the #if directive.
#ifdef MACNAME

/* tokens added if MACNAME is defined */
if TEST <=10

/* tokens added if MACNAME is defined and TEST <=“10” */
else

/* tokens added if MACNAME is defined and TEST> 10 */
endif
#else

/* tokens added if MACNAME is not defined */
#endif

Each directive controls the block immediately following it. A block consists of all the tokens starting on the
line following the directive and ending at the next conditional compilation directive at the same nesting
level.

Each directive is processed in the order in which it is encountered. If an expression evaluates to zero, the
block following the directive is ignored.

When a block following a preprocessor directive is to be ignored, the tokens are examined only to identify
preprocessor directives within that block so that the conditional nesting level can be determined. All tokens
other than the name of the directive are ignored.

Only the first block whose expression is nonzero is processed. The remaining blocks at that nesting level
are ignored. If none of the blocks at that nesting level has been processed and there is a #else directive,

60 C for AIX User’s Guide

the block following the #else directive is processed. If none of the blocks at that nesting level has been
processed and there is no #else directive, the entire nesting level is ignored.

“Preprocessor Directives” on page 58
“Preprocessing Operations” on page 59
“Preprocessor Macros” on page 59
“Examples of Conditional Preprocessor Directives” on page 355
“#if, #elif Preprocessor Directives” on page 352
“#else Preprocessor Directive” on page 353
“#endif Preprocessor Directive” on page 353
“#if, #elif Preprocessor Directives” on page 352
“#ifdef Preprocessor Directive” on page 354
“#indef Preprocessor Directive” on page 355
“List of Standard Preprocessor Directives” on page 347

Declarations Overview

A declaration establishes the names and characteristics of data objects and functions used in a program. A
definition allocates storage for data objects or specifies the body for a function. When you define a type,
no storage is allocated.

Declarations determine the following properties of data objects and their identifiers:

v Scope, which describes the visibility of an identifier in a block or source file.

v Linkage, which describes the association between two identical identifiers.

v Storage duration, which describes when the system allocates and frees storage for a data object.

v Type, which describes the kind of data the object is to represent.

The declaration for a data object can include the following components:

v Qualifier and declarator

v Storage class

v Initializer

v Type specifier

The following table shows examples of declarations and definitions. The identifiers declared in the first
column do not allocate storage; they refer to a corresponding definition. In the case of a function, the
corresponding definition is the code or body of the function. The identifiers declared in the second column
allocate storage; they are both declarations and definitions.

Declarations Declarations and Definitions

extern double pi; double pi = 3.14159265;

float square(float x); float square(float x) { return x*x; }

Chapter 6. The C Language 61

Declarations Declarations and Definitions

struct payroll; struct payroll {
char *name;
float salary;

} employee;

“Program Linkage Between Identifiers” on page 54
“Scope of Identifier Visibility” on page 53
“Storage Duration” on page 57
“Block Scope Data Declarations”
“File Scope Data Declarations” on page 63
“Declarators” on page 64
“Storage Class Specifiers” on page 65
“Initializers” on page 65
“Type Specifiers” on page 66

Block Scope Data Declarations

In C, a block scope data declaration can only be put at the beginning of a block. It describes a variable
and makes that variable accessible to the current block. All block scope declarations that do not have the
extern storage class specifier are definitions and allocate storage for that object.

You can declare a data object with block scope with any one of the following storage class specifiers:

v auto

v extern

v register

v static

v typedef

If you do not specify a storage class specifier in a block-scope data declaration, the default storage class
specifier auto is used. If you specify a storage class specifier, you can omit the type specifier. If you omit
the type specifier, all variables in that declaration receive type int .

Initialization

You cannot initialize a variable declared in a block scope data declaration that has the extern storage
class specifier.

The types of variables you can initialize and the values that uninitialized variables receive vary for that
storage class specifier. See “Storage Class Specifiers” on page 65 for details on the different storage
classes.

Storage

The duration and type of storage varies for each storage class specifier.

62 C for AIX User’s Guide

Declarations with the auto or register storage class specifier result in automatic storage duration.
Declarations with the extern or static storage class specifier result in static storage duration.

“Declarations Overview” on page 61
“File Scope Data Declarations”
“Declarators” on page 64
“Storage Class Specifiers” on page 65
“Initializers” on page 65
“Type Specifiers” on page 66
“auto” on page 106
“extern” on page 109
“register” on page 111
“static” on page 112
“int, long, short” on page 81
“typedef” on page 115

File Scope Data Declarations

A file scope data declaration appears outside any function definition. It describes a variable and makes
that variable accessible to all functions that are in the same file and whose definitions appear after the
declaration.

A file scope data definition is a data declaration at file scope that also causes storage to be allocated for
that variable. All objects whose identifiers are declared at file scope have static storage duration.

Use a file scope data declaration to declare variables that you want to have external linkage.

The only storage class specifiers you can put in a file scope data declaration are static , extern , and
typedef . If you specify static , all variables defined in it have internal linkage. If you do not specify static ,
all variables defined in it have external linkage. If you specify the storage class you can omit the type
specifier. If you omit the type specifier, all variables defined in that declaration receive the type int .

Initialization

You can initialize any object with file scope. If you do not initialize a file scope variable, its initial value is
zero of the appropriate type. If you do initialize it, the initializer must be described by a constant
expression, or it must reduce to the address of a previously declared variable at file scope, possibly
modified by a constant expression. Initialization of all variables at file scope takes place before the main
function begins running.

Storage

All objects with file scope data declarations have static storage duration. Storage is allocated at runtime
and freed when the program stops running.

“Declarations Overview” on page 61
“Block Scope Data Declarations” on page 62
“Declarators” on page 64
“Storage Class Specifiers” on page 65
“Initializers” on page 65
“Type Specifiers” on page 66
“int, long, short” on page 81
“extern” on page 109
“static” on page 112
“typedef” on page 115

Chapter 6. The C Language 63

Declarators

A declarator designates a data object or function. Declarators appear in all data definitions and
declarations, and in some type definitions.

You cannot declare or define a volatile or const function.

A subscript declarator describes the number of dimensions in an array, and the number of elements in
each dimension.

A simple declarator consists of an identifier, which names a data object. For example, the following block
scope data declaration uses initial as the declarator:

auto char initial

The data object initial has the storage class auto , and the data type char .

The following table describes some more declarators:

Example Description
int owner owner is an int object.
int *node node is a pointer to an int data object.
int names[126] names is an array of 126 int elements.
int *action() action is a function returning a pointer to an int .
volatile int min min is an int that has the volatile qualifier.
int * volatile volume volume is a volatile pointer to an int .
volatile int * next next is a pointer to a volatile int .
volatile int * sequence[5] sequence is an array of five pointers to volatile int objects.
extern const volatile int op_system_clock op_system_clock is a constant and volatile int with static storage

duration and external linkage.

“Declarations Overview” on page 61
“Block Scope Data Declarations” on page 62
“File Scope Data Declarations” on page 63
“Storage Class Specifiers” on page 65
“Initializers” on page 65
“Type Specifiers” on page 66
“Arrays” on page 86
“int, long, short” on page 81
“char” on page 79
“auto” on page 106
“Data Type Qualifiers” on page 115
“Data Type Qualifiers” on page 115

64 C for AIX User’s Guide

Storage Class Specifiers

The storage class specifier used within the declaration determines whether:

v The object has internal, external, or no linkage.

v The object is to be stored in memory or in a register, if available.

v The object receives the default initial value 0 or an indeterminate default initial value.

v The object can be referenced throughout a program or only within the function, block, or source file
where the variable is defined.

v The storage duration for the object is static (storage is maintained throughout program run time) or
automatic (storage is maintained only during the execution of the block where the object is defined).

For a function, the storage class specifier determines the linkage of the function.

Declarations with the auto or register storage-class specifier result in automatic storage. Those with the
extern or static storage-class specifier result in static storage.

Most local declarations that do not include the extern storage-class specifier allocate storage; however,
function declarations and type declarations do not allocate storage.

The only storage-class specifiers allowed in a global or file scope declaration are static and extern .

Storage class specifier keywords are:

v auto

v extern

v register

v static

v typedef

“auto” on page 106
“extern” on page 109
“register” on page 111
“static” on page 112
“typedef” on page 115

Initializers

An initializer is an optional part of a data declaration that specifies an initial value of a data object.

The initializer consists of the = symbol followed by an initial expression or a braced list of initial
expressions separated by commas. The number of initializers must not be more than the number of
elements to be initialized. An initializer list with fewer initializers than elements, can end with a comma,
indicating that the rest of the uninitialized elements are initialized to zero. The initial expression evaluates
to the first value of the data object.

To assign a value to a scalar object, use the simple initializer: = expression. For example, the following
data definition uses the initializer = 3 to set the initial value of group to 3:

int group = 3;

Chapter 6. The C Language 65

For unions and structures, the set of initial expressions must be enclosed in { } (braces) unless the
initializer is a string literal. If the initializer of a character string is a string literal, the { } are optional.
Individual expressions must be separated by commas, and groups of expressions can be enclosed in
braces and separated by commas.

In an array, structure, or union initialized using a brace-enclosed initializer list, any members or subscripts
that are not initialized are implicitly initialized to zero of the appropriate type.

The initialization properties of each data type are described in the section for that data type.

In the following example, only the first eight elements of the array grid are explicitly initialized. The
remaining four elements that are not explicitly initialized are initialized as if they were explicitly initialized to
zero.

static short grid[3] [4] = {0, 0, 0, 1, 0, 0, 1, 1};

The following example is an equivalent initialization of the array grid:
static short grid[3] [4] = {{0, 0, 0, 1},

{0, 0, 1, 1}};

The initial values of grid are:

Element Value Element Value

grid[0][0] 0 grid[1][2] 1

grid[0][1] 0 grid[1][3] 1

grid[0][2] 0 grid[2][0] 0

grid[0][3] 1 grid[2][1] 0

grid[1][0] 0 grid[2][2] 0

grid[1][1] 0 grid[2][3] 0

“Declarations Overview” on page 61
“Block Scope Data Declarations” on page 62
“File Scope Data Declarations” on page 63
“Declarators” on page 64
“Storage Class Specifiers” on page 65
“Type Specifiers”

Type Specifiers

Type specifiers indicate the type of object or function being created.

The basic range of types are:

v “char” on page 79

v “float, double” on page 80

v “int, long, short” on page 81

v “enum” on page 82

v “void” on page 85

You can use the basic types listed above to derive the following additional object types:

v “Pointers” on page 90

v “Arrays” on page 86

v “struct (Structures)” on page 95

66 C for AIX User’s Guide

v “union (Unions)” on page 103

v “Functions” on page 77

The integral types are char and int of all sizes. Floating-point numbers can have types float , double , or
long double . Integral and floating-point types are collectively called arithmetic types.

You can give names to both basic and derived types with the typedef specifier.

“Declarations Overview” on page 61
“Block Scope Data Declarations” on page 62
“File Scope Data Declarations” on page 63
“Declarators” on page 64
“Storage Class Specifiers” on page 65
“Initializers” on page 65
“Type Specifiers” on page 66
“Character Constants” on page 50
“Integer Constant” on page 48
“Floating-Point Constants” on page 49
“typedef” on page 115

Expressions and Operators

Expressions are sequences of operators, operands, and punctuators that specify a computation. The
evaluation of an expressions is based on the operators that the expression contains, and the context in
which the operators are used.

“Operator Precedence and Associativity”
“Operands” on page 69
“lvalues” on page 70
“Types of Expressions” on page 70
“Constant Expressions” on page 71
“Function Calls” on page 72
“Operator Precedence and Associativity Table” on page 117
“Primary Operators” on page 118
“Unary Operators” on page 120
“Binary Operators” on page 124
“Assignment Operators” on page 133
“Comma Operator (,)” on page 136

Operator Precedence and Associativity

Two characteristics of operators determine how they will group with operands:

precedence Precedence is the priority for grouping different types of operators with their operands.
associativity Associativity is the left-to-right or right-to-left order for grouping operands to operators that have the

same precedence.

For example, in the following statements, the value of 5 is assigned to both a and b because of the
right-to-left associativity of the = operator. The value of c is assigned to b first, and then the value of b is
assigned to a.

Chapter 6. The C Language 67

b = 9;
c = 5;
a = b = c;

Because the order of the expression evaluation is not specified, you can explicitly force the grouping of
operands with operators by using parentheses. In the expression:

a + b * c / d

the * and / operations are performed before the + because of precedence. Further, b is multiplied by c
before it is divided by d because of associativity.

Special Cases

Order of evaluation for function call arguments or for the operands of binary operators is not specified.
Avoid writing ambiguous expressions, such as:

z = (x * ++y) / func1(y);
func2(++i, x[i]);

In the example above, the order of evaluation of ++y and func1(y) is not defined. In fact, they might not
even be evaluated in the same order at different optimization levels. Do not write code that depends on a
particular order of evaluation of operators that have the same precedence.

The order of grouping operands with operators in an expression containing more than one instance of an
operator with both associative and commutative properties is not specified. The operators that have the
same associative and commutative properties are *, +, &, |, and |.

The order of evaluation for the operands of the logical AND (&&) and OR (||) operators is always
left-to-right. If the operand on the left side of a && operator evaluates to a 0 (zero), the operand on the
right side is not evaluated. If the opernad on the left side of a || operator evaluates to a non-zero value,
the operator on the right side is not evaluated.

“Examples of Operator Precedence and Associativity”
“Operator Precedence and Associativity Table” on page 117

Examples of Operator Precedence and Associativity

The parentheses in the following expressions explicitly show how the compiler groups operands and
operators. If the parentheses did not appear in these expressions, the operands and operators are
grouped in the same manner as indicated by the parentheses.

total = (4 + (5 * 3));
total = (((8 * 5) / 10) / 3);
total = (10 + (5 / 3));

Because the order of grouping operands with operators that are both associative and commutative is not
specified, the compiler can group the operands and operators in the expression:

total = price + prov_tax + city_tax;

in the following ways, as indicated by the parentheses:

68 C for AIX User’s Guide

total = price + prov_tax + city_tax;
total = price + prov_tax + city_tax;
total = price + prov_tax + city_tax;

If the values in this expression are integers, the grouping of operands and operators does not affect the
result. Different groupings of floating-point operators, however, may give different results because
intermediate values are rounded.

In certain expressions, the grouping of operands and operators can affect the result. For example, in the
following expression, each of the three function calls might modify the same global variables.

a = b() + c() + d();

This expression might give different results, depending on the order in which the functions are called.

If the expression contains operators that are both associative and commutative, and the order of grouping
operands with operators can affect the result of the expression, separate the expression into several
expressions. For example, the following expressions could replace the previous expression if the called
functions do not produce any side effects that affect the variable a.

a = b();
a += c();
a += d();

Integer overflows are ignored. Division by zero and floating-point exceptions are implementation-
dependent.

“Operator Precedence and Associativity” on page 67
“Operator Precedence and Associativity Table” on page 117

Operands

Most expressions can contain several different, but related, types of operands. The following type classes
described related types of operands.

integral Character objects and constants, objects having an enumeration type, and objects having the types
short ,int , long , long long , unsigned short , unsigned int , unsigned long , or unsigned long
long .

arithmetic Integral objects listed above, and objects having the types float , double , long double , and long
float .

scalar Arithmetic objects listed above, and pointers to any object type.
aggregate Arrays, structures, and unions.

Many operators cause conversions from one data type to another.

“Integral Promotions” on page 74
“Standard Type Conversions” on page 74
“Arithmetic Conversions” on page 76
“Arithmetic Conversions Table” on page 137
“Arithmetic Conversions for extended Level C” on page 167
“int, long, short” on page 81
“float, double” on page 80

Chapter 6. The C Language 69

lvalues

An lvalue is an expression that represents an object. A modifiable lvalue is an expression representing an
object that can be changed. It is typically the left operand in an assignment expression. For example,
arrays and const objects are not modifiable lvalues, but static int objects are.

All assignment operators evaluate their right operand and assign that value to the left operand. The left
operand must evaluate to a reference to an object.

The address operator (&) requires an lvalue as an operand, while the increment (++) and the decrement
(—) operators require a modifiable lvalue as an operand.

Expression Lvalue of Expression
x = 42; x

*ptr = newvalue; *ptr
a++ a

“Expressions and Operators” on page 67
“Operator Precedence and Associativity” on page 67
“Operands” on page 69
“Types of Expressions”
“Data Type Qualifiers” on page 115
“int, long, short” on page 81
“static” on page 112

Types of Expressions

Primary Expressions A primary expression can be any of the following:

v identifier

v string literal

v parenthesized expression

v constant expression

v function call

v array element specification

v structure of union member specification

All primary operators have the same precedence, and have left-to-right associativity.
Unary Expressions A unary expression contains one operand and a unary operator.

All unary operators have the same precedence, and have right-to-left associativity. The usual
arithmetic conversions are performed on the operands of most unary expressions.

Binary Expressions A binary expression contains two operands separated by one operator.

Not all binary operators have the same precedence. All binary operators have left-to-right
associativity. The usual arithmetic conversions are performed on the operands of most binary
expressions.

The order in which the operands of most binary operators are evaluated is not specified. To
ensure correct results, avoid creating binary expressions that depend on the order in which
the compiler evaluates the operands.

70 C for AIX User’s Guide

Conditional
Expressions

A conditional expressions is a compound expression that contains a condition (operand1), an
expression to be evaluated if the condition has a non-zero value (operand2), and an
expression to be evaluated if the condition has the value 0 (operand3).

Conditional expressions have right-to-left associativity. The left operand (operand1) is
evaluated first, and then only one of the two remaining operands is evaluated. If that
operand’s expression contains or returns arithmetic types, the usual arithmetic conversions
are performed on that expression’s values.

Assignment
Expressions

An assignment expression stores a value in the object designated by the left operand. There
are two types of assignment operators: simple assignment, and compound assignment.

The left operand in all assignment expressions must be a modifiable lvalue. The type of the
expression is the type of the left operand. The value of the expression is the value of the left
operand after the assignment completes. The result of an assignment expression is not an
lvalue.

All assignment operators have the same precedence, and have right-to-left associativity.
Comma Expression A comma expression contains two operands separated by a comma. Although the compiler

evaluates both operands, the value of the right operand is the value of the expression. The
left operand is evaluated, possibly producing side effects, and the value is discarded. The
result of a comma expression is not an lvalue.

Both operands of a comma expression can have any type. All comma expressions have
left-to-right associativity. The left operand is fully evaluated before the right operand.

“Operator Precedence and Associativity” on page 67
“Operands” on page 69
“lvalues” on page 70
“Constant Expressions”
“Function Calls” on page 72
“Expressions” on page 149
“Operator Precedence and Associativity Table” on page 117
“Primary Operators” on page 118
“Unary Operators” on page 120
“Binary Operators” on page 124
“Conditional Operator (?)” on page 131
“Assignment Operators” on page 133
“Comma Operator (,)” on page 136

Constant Expressions

A constant expression is an expression with a value that is determined during compilation. That value can
be evaluated at runtime, but cannot be changed. Constant expressions can be composed of integer,
character, floating-point, and enumeration constants, as well as other constant expressions. Some
constant expressions, such as string literals or address constants, are lvalues.

The C language requires constants in the following places:

v In the subscript declarator, as the description of the array bound

v After the keyword case in a switch statement

v In an enumerator, as the numeric value of an enum constant

v In a bit-field width specifier

v In the preprocessor #if statement (enumeration constants, address constants, and sizeof cannot be
used in the preprocessor #if statement)

v In the initializer of a file scope data definition

Chapter 6. The C Language 71

In all of these contexts, except for an initializer of a file scope data definition, the constant expression can
contain integer, character, and enumeration constants, casts to integral types, and sizeof expressions.
Function-scope static and extern declarations can be initialized with the address of a previously-defined
static or extern .

In a file scope data definition, the initializer must evaluate to a constant or to the address of a static
storage (extern or static) object (plus or minus an integer constant) that is defined or declared earlier in
the file. The constant expression in the initilizer can contain integer, character, enumeration, or float
constants, casts to any type, sizeof expressions, and unary address expressions.

The following show constants used in expressions:

Expression Containing Constant Constant
x = 42; 42

extern int cost = 1000; 1000
y = 3 * 29; 3 * 29

“Types of Expressions” on page 70
“switch” on page 155
“enum” on page 82
“#if, #elif Preprocessor Directives” on page 352
sizeof (page 122)
“extern” on page 109
“static” on page 112

Function Calls

A function call is a primary expression containing a simple type name and a parenthesized argument list.
The argument list can contain any number of expressions separated by commas. It can also be empty. For
example:

stub()
overdue(account, date, amount)
notify(name, date + 5)
report(error, time, date, ++num)

The arguments are evaluated, and each formal parameter is assigned the value of the corresponding
argument. Assigning avalue to a formal parameter within the function body changes the value of the
parameter within the function, but has no effect on the argument.

The type of a function call expression is the return type of the function.The return value is determined by
the return statement in the function definition. The result of a function call is an lvalue only if the function
returns a reference. A function can call itself.

If you want a function to change the value of a variable, pass a pointer to the variable you want changed.
When a pointer is passed as a parameter, the pointer and not the object pointed to is copied.

Argument that are arrays and functions are converted to pointers before being passed as function
arguments.

Arguments passed to non-prototyped C functions undergo conversions. Type short or char parameters
are converted to int , and float parameters are converted to double . Use a cast expression for other
conversions.

72 C for AIX User’s Guide

The compiler compares the data types provided by the calling function with the data types that the called
function expects. The compiler might also perform type conversions if the declaration of the function is:

v in function prototype format and the parameters differ from the prototype, or,

v visible at the point where the function is called.

“Functions” on page 77
“Types of Expressions” on page 70
“Operator Precedence and Associativity” on page 67
“Operands” on page 69
“lvalues” on page 70
“Functions” on page 77
“Examples of Function Calls”
“Example of the main() Function” on page 145
“Examples of Function Declarations” on page 139
“Examples of Function Definitions” on page 142
“main() Function” on page 144
“Function Declarations” on page 138
“Function Definitions” on page 139
“return” on page 154
“char” on page 79
“int, long, short” on page 81
“float, double” on page 80

Examples of Function Calls

For example, the declaration of funct is a protoype. When function funct is called, the parameter f is
converted to a double , and parameter c is converted to an int .

char * funct (double d, int i);
main
{

float f;
char c:
funct(f, c) /* f is a double, c is an int */

}

The order in which parameters are evaluated is not specified. Avoid calls such as:

method(sample1, batch.process—, batch.process);

In this example, batch.process— might be evaluated last, causing the second and third arguments to be
passed with the same value.

In the following example, main passes func two values, 5 and 7. The function func receives copies of
these values, and accesses them by the identifiers a and b. The function func changes the value of a.
When control passes back to main, the actual values of x and y are not changed. The called function func
only receives copies of x and y, and not the actual values themselves.

#include <stdio.h>
int main(void)
{

int x = 5, y = 7;
func(x, y);
printf(“In main, x = %d y = %d\n”, x, y);

}
void func (int a, int b)
{

a +=b;
printf(“In func, a = %d b = %d\n”, a, b);

}

Chapter 6. The C Language 73

This program produces the following output:
In func, a = 12 b = 7
In main, x = 5 y = 7

“Functions” on page 77
“Function Calls” on page 72
“Types of Expressions” on page 70
“Operands” on page 69
“lvalues” on page 70
“Example of the main() Function” on page 145
“Examples of Function Declarations” on page 139
“Examples of Function Definitions” on page 142
“Function Declarations” on page 138
“Function Definitions” on page 139
“float, double” on page 80
“int, long, short” on page 81

Implicit Type Conversions

Integral Promotions

Certain fundamental types can be used wherever an integer can be used. The fundamental types that can
be converted through integral promotion are:

v char

v short int

v enumerators

v objects of enumeration type

v integer bit fields (both signed and unsigned)

If the value cannot be represented by an int , the value is converted to an unsigned int .

Note: Integral promotions are not performed on long or long long integers.

“Standard Type Conversions”
“Arithmetic Conversions” on page 76
“Arithmetic Conversions Table” on page 137
“Arithmetic Conversions for extended Level C” on page 167
“char” on page 79
“int, long, short” on page 81

Standard Type Conversions

Many C operators cause implicit type conversions, which change the type of a value. When you add
values of operands having different data types, both values are first converted to the same type. For
example, when a short int value and an int value are added together, the short int value is converted to
the int type.

Implicit type conversions can occur when:

v A value is prepared for an arithmetic or logical operation.

v An assignment is made to an lvalue that has a different type than the assigned value.

v A prototyped function is provided a value that has a different type than the parameter.

74 C for AIX User’s Guide

v The value specified in the return statement of a function has a different type from the defined return
type for the function.

You can perform explicit type conversions using the cast operator or the function style cast. For more
information on explicit type conversions, see Type Casting (page 122).

Signed-Integer Conversions

The compiler converts a signed integer to a shorter integer by truncating the high-order bits and converting
the variable to a longer signed integer by sign-extension.

Conversion of signed integers to floating-point values takes place without loss of information, except when
an int or long int value is converted to a float , in which case some precision may be lost. When a signed
integer is converted to an unsigned integer, the signed integer is converted to the size of the unsigned
integer, and the result is interpreted as an unsigned value.

Unsigned-Integer Conversions

An unsigned integer is converted to a shorter unsigned or signed integer by truncating the high-order bits.
An unsigned integer is converted to a longer unsigned or signed integer by zero-extending. Zero-extending
pads the leftmost bits of the longer integer with binary zeros.

When an unsigned integer is converted to a signed integer of the same size, no change in the bit pattern
occurs. However, the value changes if the sign bit is set.

Floating-Point Conversions

A float value converted to a double undergoes no change in value. A double converted to a float is
represented exactly, if possible. If the compiler cannot exactly represent the double value as a float , the
value loses precision. If the value is too large to fit into a float , the result is undefined.

When a floating-point value is converted to an integer value, the decimal fraction portion of the
floating-point value is discarded in the conversion. If the result is too large for the given integer type, the
result of the conversion is undefined.

Pointer Conversions

Pointer conversions are performed when pointers are used, including pointer assignment, initialization, and
comparison.

A constant expression that evaluates to zero can be converted to a pointer. This pointer will be a null
pointer (pointer with a zero value), and is guaranteed not to point to any object.

Any pointer to an object that is not a const or volatile object can be converted to a void* . You can also
convert any pointer to a function to a void* , provided that a void* has sufficient bits to hold it.

You can convert an expression with type array of some type to a pointer to the initial element of the array,
except when the expression is used as the operand of the & (address) operator or the sizeof operator.

Chapter 6. The C Language 75

You can convert an expression with a type of function returning T to a pointer to a function returning T,
except when the expression is used as the operand of the & (address) operator, the () (function call)
operator, or the sizeof operator.

You can convert an integer value to an address offset.

For more information on pointer conversions, see Pointer Arithmetic (page 92).

Function Argument Conversions

If no function prototype declaration is visible when a function is called, the compiler can perform default
argument promotions, which consist of the following:

v Integral promotions

v Arguments with type float are converted to type double .

Other Conversions

By definition, the void type has no value. Therefore, it cannot be converted to any other type, and no
other value can be converted to void by assignment. However, a value can be explicitly cast to void .

No conversions between structure or union types are allowed. You can convert from an enum to any
integral type but not from an integral type to an enum .

“Operands” on page 69
“lvalues” on page 70
“Integral Promotions” on page 74
“Arithmetic Conversions”
“Arithmetic Conversions Table” on page 137
“Arithmetic Conversions for extended Level C” on page 167
“Data Type Qualifiers” on page 115
“int, long, short” on page 81
“float, double” on page 80
“enum” on page 82
“void” on page 85
“return” on page 154
sizeof (page 122)

Arithmetic Conversions

Most operators perform type conversions to bring the operands of an expression to a common type or to
extend short values to the integer size used in machine operations. The conversions depend on the
specific operator and the type of the operand or operands. However, many operators perform similar
conversions on operands of integer and floating-point types. These standard conversions are known as the
arithmetic conversions because they apply to the types of values ordinarily used in arithmetic.

Arithmetic conversions are used for matching operands of arithmetic operators to a common type. See
“Arithmetic Conversions Table” on page 137 to see how operand type mismatches are resolved.

76 C for AIX User’s Guide

“Operands” on page 69
“Integral Promotions” on page 74
“Standard Type Conversions” on page 74
“Arithmetic Conversions Table” on page 137
“Arithmetic Conversions for extended Level C” on page 167

Functions

Functions specify the logical structure of a program, and define how operations are implemented.

A function declaration consists of a return type, a name, and an argument list. It is used to declare the
format and existence of a function prior to its use.

A function definition contains a function declaration, and the body of the function. A function can have only
one definition.

C functions can be declared or defined in two ways:

prototyped Type information is provided with each parameter. The compiler uses the function prototype
for argument type checking and argument conversions. Prototypes can appear several times
in a program, provided the declarations are compatible. They allow the compiler to check for
mismatches between the parameters of a function call and those in the function declaration.

nonprototyped No type information is provided in the function declaration. Type information for each
parameter in a function definition is provided after a list of parameters.

Prototypes are the preferred style of function declaration. The ANSI C standard has declared the
nonprototyped style obsolete.

Calling Functions and Passing Arguments

A function call specifies a function name and a list of arguments. The calling function passes the value of
each argument to the specified function. The argument list is surrounded by parentheses, and each
argument is separated by a comma. The argument list can be empty.

The arguments to a function are evaluated before the function is called. When an argument is passed in a
function call, the function receives a copy of the argument value. If the value of the argument is an
address, the called function can use indirection to change the contents pointed to by the address. If a
function or array is passed as an argument, the argument is converted to a pointer that points to the
function or array.

Arguments passed to parameters in prototype declarations will be converted to the declared parameter
type. For nonprototype function declarations, “char” on page 79 and “int, long, short” on page 81
parameters are promoted to “int, long, short” on page 81 , and “float, double” on page 80 to “float,
double” on page 80 .

The order in which arguments are evaluated and passed to the function is implementation-defined.

For example, the following sequence of statements calls the function tester:
int x;
x = 1;
tester(x++, x);

Chapter 6. The C Language 77

The call to tester in the example may produce different results on different compilers. Depending on the
implementation, x++ may be evaluated first or x may be evaluated first. To avoid the ambiguity and have
x++ evaluated first, replace the preceding sequence of statements with the following:

int x, y;
x = 1;
y = x++;
tester(y, x);

The value of the second parameter in the following example is unpredictable:
int x;
x = 1;
tester(x++, x);

The following sequence of statements avoids this ambiguous function call by having x++ evaluated first:
int x, y;
x = 1;
y = x++;
tester(y, x);

“Function Calls” on page 72
“Arithmetic Conversions” on page 76
“Arithmetic Conversions Table” on page 137
“Integral Promotions” on page 74
“Standard Type Conversions” on page 74
“Function Declarations” on page 138
“Function Definitions” on page 139
“return” on page 154
“main() Function” on page 144
“Example of the main() Function” on page 145
“Examples of Function Declarations” on page 139
“Examples of Function Definitions” on page 142
“char” on page 79
“int, long, short” on page 81
“float, double” on page 80

C Language Levels

To help you avoid conflicts between the different C language definitions in existance, the C for AIX
compiler supports several levels of the C language. Available language levels and their descriptions are:

Level Description
ansi Conforms to the American National Standards Institute

(ANSI) C standard.
classic Conforms closely to the K&R level preprocessor, enabling

the compilation of many non-ANSI programs.
extended High compatibility with RT C source code. extended level

C is defined as ansi level C, extended for compatibility
with the RT compiler. RT compatibility conflicts with the
ANSI C standard under certain conditions.

saal2 Systems Application Architecture (SAA) CPI C Level 2.
saal2 level C conforms to SAA C with some deviations.

saa The highest level SAA C definition available. This is
currently SAA Level 2 C.

Note: saal2 and saa C language levels are options of the C for AIX compiler, and are not part of the SAA Common
Programming Interface.

78 C for AIX User’s Guide

You should use the ansi language level for most new programs. You can specify support for other
language levels with the -qlanglvl compiler option if your environment and applications require it.

The C for AIX compiler also uses various compiler invocation modes to provide additional support for
specific environments and levels of the C language.

“Chapter 3. Using the C for AIX Compiler” on page 5
“Compiler Modes” on page 5
“Invoking the Compiler” on page 8
“Compiler Options and Their Defaults” on page 218
“Conflicts Between extended C and Other Levels” on page 162
“Extensions to RT C Provided by extended C” on page 164
“Exceptions to ansi C Addressed by classic C” on page 164
“saal2 C Deviations from SAA Level 2 C” on page 167
“Arithmetic Conversions for extended Level C” on page 167
“Summary of C Language Level Conflicts” on page 170
“langlvl” on page 286

Basic Data Types

char

Specifier Description

char Use to declare arrays of characters, pointers to
characters, and arrays of pointers to characters.

signed char, unsigned char Use to declare numeric variables that occupy a single
byte.

To declare a data object having a character type, use the char type specifier. The char specifier has the
form:

The declarator for a simple character declaration is an identifier. You can initialize a simple character with
a character constant or with an expression that evaluates to an integer.

The C language has three character data types: char , signed char , and unsigned char . These data
types are not compatible with each other, but each provides enough storage to hold any member of the
ASCII character set. The amount of storage allocated for a char is implementation-dependent. The C for
AIX compiler uses 8 bits to represent a character, as defined by the CHAR_BIT macro in the <limits.h>
header.

The default character type behaves like an unsigned char . To change this default, use #pragma chars or
the -qchars compiler option.

If it does not matter whether a char data object is signed or unsigned , you can declare the object as
having the data type char . Otherwise, explicitly declare the object as signed char or unsigned char .
When a char (signed or unsigned) is widened to an int , its value is preserved.

The following example defines the identifier end_of_string as a constant object of type char having the
initial value \0 (the null character):

Chapter 6. The C Language 79

const char end_of_string = '\0';

The following example defines the unsigned char variable switches as having the initial value 3:
unsigned char switches = 3;

The following example defines string_pointer as a pointer to a character:
char *string_pointer;

The following example defines name as a pointer to a character. After initialization, name points to the first
letter in the character string “Johnny”:

char *name = “Johnny”;

The following example defines a one-dimensional array of pointers to characters. The array has three
elements. Initially they are a pointer to the string “Venus”, a pointer to “Jupiter”, and a pointer to
“Saturn”:

static char *planets[] = { “Venus”, “Jupiter”, “Saturn” };

“Character Constants” on page 50
“Arrays” on page 86
“Pointers” on page 90
“#pragma chars Preprocessor Directive” on page 365
“chars” on page 244

float, double

Specifier Description

float Allocates 4 bytes of data storage.

double Allocates 8 bytes of data storage.

long double Allocates 8 bytes of data storage in 32-bit mode, or 16
bytes if the -qldbl128 or -qlongdouble option is in effect.

Notes:

1. The amount of storage allocated for a float , double , or long double floating-point variable is
implementation-dependent. On all compilers, the storage size of a float variable is less than or equal to the
storage size of a double variable.

2. In extended mode, the C compiler supports long float , but this is a non-portable language extension.

To declare a data object having a floating-point type, use the float specifier.

The float specifier has the form:

The declarator for a simple floating-point declaration is an identifier. You can initialize a simple
floating-point variable with a float constant or with a variable or expression that evaluates to an integer or
floating-point number. The storage class of a variable determines how you initialize the variable.

The following example defines the identifier pi as an object of type double :
double pi;

The following example defines the float variable real_number with the initial value 100.55:
static float real_number = 100.55f;

80 C for AIX User’s Guide

The following example defines the float variable float_var with the initial value 0.0143:
float float_var = 1.43e-2f;

The following example declares the long double variable maximum:
extern long double maximum;

The following example defines the array table with 20 elements of type double :
double table[20];

“Floating-Point Constants” on page 49
“Compile-Time Floating-Point Arithmetic” on page 26
“Floating-Point Compiler Options” on page 27
“ldbl128, longdouble” on page 289

int, long, short

Specifier Description

short, short int Allocates 2 bytes of data storage.

int Allocates 4 bytes of data storage.

long, long int Allocates 4 bytes of data storage in 32-bit mode, 8 bytes
in 64-bit mode.

long long, long long int Allocates 8 bytes of data storage. The C compiler
supports long long , but this is not a standard C data
type. Though needed for some AIX system programming,
it may not be portable to other systems.

Notes: The amount of storage allocated for an int , short , or long integer variable is implementation-dependent.

To declare a data object having an integer data type, use an int type specifier.

The int specifier has the form:

The declarator for a simple integer definition or declaration is an identifier. You can initialize a simple
integer definition with an integer constant or with an expression that evaluates to a value that can be
assigned to an integer. The storage class of a variable determines how you can initialize the variable.

The unsigned prefix indicates that the object is a nonnegative integer. Each unsigned type provides the
same size storage as its signed equivalent. For example, int reserves the same storage as unsigned int .
Because a signed type reserves a sign bit, an unsigned type can hold a larger positive integer than the
equivalent signed type.

The following example defines the short int variable flag:
short int flag;

The following example defines the int variable result:
int result;

Chapter 6. The C Language 81

The following example defines the unsigned long int variable ss_number as having the initial value
438888834:

unsigned long ss_number = 438888834ul;

The following example defines the identifier sum as an object of type int . The initial value of sum is the
result of the expression a + b:

extern int a, b;
auto sum = a + b;

“Integer Constant” on page 48

enum

An enumeration data type represents a set of values that you declare. You can define an enumeration
data type and all variables that have that enumeration type in one statement, or you can separate the
declaration of the enumeration data type from all variable definitions. The identifier associated with the
data type (not an object) is called an enumeration tag.

identifier Names the data type (like the tag on a struct data type).
enumerator Provides the data type with a set of values.

Each enumerator constant in the list has its own identifier, and represents an integer value.
The integer value of an enumerator can be set implicitly by the position of the enumerator
within the list, or explicitly by assigning an integral_constant_expression value to that
enumerator.

To conserve space, enumerations may be stored in spaces smaller than that of an int .

Enumeration Constants
When you define an enumeration data type, you specify a set of identifiers that the data type represents.
Each identifier in this set is called an enumeration constant.

The value of the constant is determined in the following way:

1. An equal sign (=) and a constant expression after the enumeration constant gives an explicit value to
the constant. The identifier represents the value of the constant expression.

2. If no explicit value is assigned, the leftmost constant in the list receives the value zero (0).

3. Identifiers with no explicitly assigned values receive the integer value that is one greater than the value
represented by the previous identifier.

Each enumeration constant has an integer value. Use an enumeration constant anywhere an integer
constant is allowed.

Each enumeration constant must be unique within the scope in which the enumeration is defined. In the
following example, the declarations of average on line 4 and of poor on line 5 cause compiler error
messages:

82 C for AIX User’s Guide

1 func()
2 {
3 enum score { poor, average, good };
4 enum rating { below, average, above };
5 int poor;
6 }

Defining Enumeration Variables
An enumeration variable definition contains an optional storage class specifier, a type specifier, a
declarator, and an optional initializer. The type specifier contains the keyword enum followed by the name
of the enumeration data type. You must declare the enumeration data type before you can define a
variable having that type.

The initializer for an enumeration variable contains the = symbol followed by an expression. The initializer
expression must evaluate to an int value.

The first line of the following example declares the enumeration tag grain. The second line defines the
variable g_food and gives variable g_food the initial value of barley (2).

enum grain { oats, wheat, barley, corn, rice };
enum grain g_food = barley;

The type specifier enum grain indicates that the value of g_food is a member of the enumerated data type
grain.

Defining an Enumeration Type and Enumeration Objects in the Same Statement
You can define a type and a variable in one statement by using a declarator and an optional initializer after
the type definition. To specify a storage class specifier for the variable, you must put the storage class
specifier at the beginning of the declaration. For example:

register enum score { poor=1, average, good } rating = good;

This example is equivalent to the following two declarations:
enum score { poor=1, average, good };
register enum score rating = good;

Both examples define the enumeration data type score and the variable rating. rating has the storage
class specifier register , the data type enum score, and the initial value 3 (or good).

Combining a data type definition with the definitions of all variables having that data type lets you leave
the data type unnamed. For example:

enum { Sunday, Monday, Tuesday, Wednesday, Thursday, Friday,
Saturday } weekday;

defines the variable weekday, which can be assigned any of the specified enumeration constants.

“Identifiers” on page 47
“Constant Expressions” on page 71
“Examples of Eumerator Declaration and Use”

Examples of Eumerator Declaration and Use

The following data type declarations list oats, wheat, barley, corn, and rice as enumeration constants.
The number under each constant shows the integer value.

Chapter 6. The C Language 83

enum grain { oats, wheat, barley, corn, rice };
/* 0 1 2 3 4 */

enum grain { oats=1, wheat, barley, corn, rice };
/* 1 2 3 4 5 */

enum grain { oats, wheat=10, barley, corn=20, rice };
/* 0 10 11 20 21 */

It is possible to associate the same integer with two different enumeration constants. For example, the
following definition is valid. The identifiers suspend and hold have the same integer value.

enum status { run, clear=5, suspend, resume, hold=6 };
/* 0 5 6 7 6 */

The following example is a different declaration of the enumeration tag status:
enum status { run, create, clear=5, suspend };

/* 0 1 5 6 */

The following program receives an integer as input. The output is a sentence that gives the French name
for the weekday that is associated with the integer. If the integer is not associated with a weekday, the
program prints “C’est le mauvais jour.”

** Example program using enumerations
**/
#include <stdio.h>
enum days {

Monday=1, Tuesday, Wednesday,
Thursday, Friday, Saturday, Sunday

} weekday;
void french(enum days);
int main(void)
{

int num;
printf(“Enter an integer for the day of the week. ”

“Mon=1,...,Sun=7\n”);
scanf(“%d”, &num);
weekday=num;
french(weekday);
return(0);

}

void french(enum days weekday)
{

switch (weekday)
{

case Monday:
printf(“Le jour de la semaine est lundi.\n”);
break;

case Tuesday:
printf(“Le jour de la semaine est mardi.\n”);
break;

case Wednesday:
printf(“Le jour de la semaine est mercredi.\n”);
break;

case Thursday:
printf(“Le jour de la semaine est jeudi.\n”);
break;

case Friday:
printf(“Le jour de la semaine est vendredi.\n”);
break;

case Saturday:
printf(“Le jour de la semaine est samedi.\n”);
break;

case Sunday:
printf(“Le jour de la semaine est dimanche.\n”);
break;

84 C for AIX User’s Guide

default:
printf(“C'est le mauvais jour.\n”);

}
}

“enum” on page 82

void

The void data type always represents an empty set of values. The only object that can be declared with
the type specifier void is a pointer.

When a function does not return a value, you should use void as the type specifier in the function
definition and declaration. An argument list for a function taking no arguments is void .

You cannot declare a variable of type void , but you can explicitly convert any expression to type void with
the resulting expression used only as one of the following:

v An expression statement

v The left operand of a comma expression

v The second or third operand in a conditional expression.

“Example of a void Declaration”

Example of a void Declaration

On line 7 of the following example, the function find_max is declared as having type void . Lines 15
through 26 contain the complete definition of find_max.

Note: The use of the sizeof operator in line 13 is a standard method of determining the number of
elements in an array.

1 /**
2 ** Example of void type
3 **/
4 #include <stdio.h>
5
6 /* declaration of function find_max */
7 extern void find_max(int x[], int j);
8
9 int main(void)
10 {
11 static int numbers[] = { 99, 54, -102, 89 };
12
13 find_max(numbers, (sizeof(numbers) / sizeof(numbers[0])));
14
15 return(0);
16 }
17
18 void find_max(int x[], int j)
19 { /* begin definition of function find_max */
20 int i, temp = x[0];
21
22 for (i = 1; i < j; i++)
23 {
24 if (x[i] > temp)

Chapter 6. The C Language 85

25 temp = x[i];
26 }
27 printf(“max number = %d\n”, temp);
28 } /* end definition of function find_max */

“void” on page 85

Derived Data Types

Arrays

An array is an ordered group of data objects. Each object is called an element. All elements within an
array have the same data type.

Use any type specifier in an array definition or declaration. Array elements can be of any data type, except
function. You can, however, declare an array of pointers to functions.

Declaring an Array

identifier The name of the array. If preceded by an * (asterisk), the array is an array of pointers.
constant expression Positive integer expression describing the number of elements in a given dimension of

the array. An array can have more than one dimension.

The following example defines a one-dimensional array that contains four elements having type char :
char list[4];

The first subscript of each dimension is 0. The array list contains the elements:
list[0]
list[1]
list[2]
list[3]

The following example defines a two-dimensional array that contains six elements of type int :
int roster[3][2];

Multidimensional arrays are stored in row-major order. When elements are referred to in order of
increasing storage location, the last subscript varies the fastest. For example, the elements of array roster
are stored in the order:

roster[0][0]
roster[0][1]
roster[1][0]
roster[1][1]
roster[2][0]
roster[2][1]

You can leave the first (and only the first) set of subscript brackets empty in

v Array definitions that contain initializations

v extern declarations

86 C for AIX User’s Guide

v Parameter declarations.

In array definitions that leave the first set of subscript brackets empty, the initializer determines the number
of elements in the first dimension. In a one-dimensional array, the number of initialized elements becomes
the total number of elements. In a multidimensional array, the initializer is compared to the subscript
declarator to determine the number of elements in the first dimension.

An unsubscripted array (for example, region instead of region[4]) represents a pointer whose value is the
address of the first element of the array, provided the array has been previously declared. An
unsubscripted array name with square brackets (for example, region[]) is allowed only when declaring
arrays at file scope or in the argument list of a function declaration. In declarations, only the first dimension
can be left empty, and you must specify the sizes of any additional dimensions declared.

Whenever an array is used in a context (such as a parameter) where it cannot be used as an array, the
identifier is treated as a pointer. The only exceptions are when an array is used as an operand to the
sizeof expression or with an address (&) operator.

Initializing Arrays
The initializer for an array contains the = symbol followed by a comma-separated list of constant
expressions enclosed in braces ({ }). You do not need to initialize all elements in an array. Elements that
are not initialized (in extern and static definitions only) receive the value 0 of the appropriate type. You
cannot have more initializers than the number of elements in the array.

The initializer must be a constant expression if the structure has static storage duration or if you are
compiling your source code in ansi mode.

Note: Array initializations can be either fully braced (with braces around each dimension) or unbraced
(with only one set of braces enclosing the entire set of initializers). Avoid placing braces around some
dimensions and not around others.

Initializing a one-dimensional character array
Initialize a one-dimensional character array by specifying:

v A brace-enclosed comma-separated list of constants, each of which can be contained in a character

v A string constant. (Braces surrounding the constant are optional.)

Initializing a string constant places the null character (\0) at the end of the string if there is room or if the
array dimensions are not specified.

Initializing a multidimensional array
Initialize a multidimensional array by:

v Listing the values of all elements you want to initialize, in the order that the compiler assigns the values.
The compiler assigns values by increasing the subscript of the last dimension fastest. This form of a
multidimensional array initialization looks like a one-dimensional array initialization. The following
definition completely initializes the array month_days:

static month_days[2][12] =
{
31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31,
31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
};

v Using braces to group the values of the elements you want initialized. You can put braces around each
element, or around any nesting level of elements. The following definition contains two elements in the
first dimension. (You can consider these elements as rows.) The initialization contains braces around
each of these two elements:

Chapter 6. The C Language 87

static int month_days[2][12] =
{
{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
{ 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
};

v Using use nested braces to initialize dimensions and elements in a dimension selectively.

“String Literals” on page 51
“Declarators” on page 64
“Initializers” on page 65
“Examples of Array Declaration and Use”
Array Subscript (page 118)
“Pointers” on page 90

Examples of Array Declaration and Use

The following show four different character array initializations:
static char name1[] = { 'J', 'a', 'n' };
static char name2[] = { “Jan” };
static char name3[3] = “Jan”;
static char name4[4] = “Jan”;

These initializations create the following elements:

name1 name2 name3 name4

Element Value Element Value Element Value Element Value

name1[0] J name2[0] J name3[0] J name4[0] J

name1[1] a name2[1] a name3[1] a name4[1] a

name1[2] n name2[2] n name3[2] n name4[2] n

name2[3] \0 name4[3] \0

Note that the NULL character (\0)is lost for name1[] and name3[3]. A compiler warning is issued for
name3[3].

The following program defines a floating-point array called prices.

The first for statement prints the values of the elements of prices. The second for statement adds five
percent to the value of each element of prices, and assigns the result to total, and prints the value of
total.

/**
** Example of one-dimensional arrays
**/
#include <stdio.h>
#define ARR_SIZE 5
int main(void)
{
static float const prices[ARR_SIZE] = { 1.41, 1.50, 3.75, 5.00, .86 };
auto float total;
int i;
for (i = 0; i < ARR_SIZE; i++)
{
printf(“price = $%.2f\n”, prices[i]);

}
printf(“\n”);
for (i = 0; i < ARR_SIZE; i++)
{
total = prices[i] * 1.05;

88 C for AIX User’s Guide

printf(“total = $%.2f\n”, total);
}
return(0);

}

This program produces the following output:
price = $1.41
price = $1.50
price = $3.75
price = $5.00
price = $0.86
total = $1.48
total = $1.57
total = $3.94
total = $5.25
total = $0.90

The following program defines the multidimensional array salary_tbl. A for loop prints the values of
salary_tbl.

/**
** Example of a multidimensional array
**/
#include <stdio.h>
#define ROW_SIZE 3
#define COLUMN_SIZE 5
int main(void)
{

static int salary_tbl[ROW_SIZE][COLUMN_SIZE] =
{
{ 500, 550, 600, 650, 700 },
{ 600, 670, 740, 810, 880 },
{ 740, 840, 940, 1040, 1140 }

};
int grade , step;
for (grade = 0; grade < ROW_SIZE; ++grade)
for (step = 0; step < COLUMN_SIZE; ++step)
{

printf(“salary_tbl[%d] [%d] = %d\n”, grade, step,
salary_tbl[grade] [step]);

}
return(0);

}

This program produces the following output:
salary_tbl[0] [0] = 500
salary_tbl[0] [1] = 550
salary_tbl[0] [2] = 600
salary_tbl[0] [3] = 650
salary_tbl[0] [4] = 700
salary_tbl[1] [0] = 600
salary_tbl[1] [1] = 670
salary_tbl[1] [2] = 740
salary_tbl[1] [3] = 810
salary_tbl[1] [4] = 880
salary_tbl[2] [0] = 740
salary_tbl[2] [1] = 840
salary_tbl[2] [2] = 940
salary_tbl[2] [3] = 1040
salary_tbl[2] [4] = 1140

“Arrays” on page 86

Chapter 6. The C Language 89

Pointers

A pointer type variable holds the address of a data object or function. A pointer can refer to an object of
any one data type, but cannot point to a bit field or to an object having the register storage class specifier.
Some common uses for pointers are:

v To access dynamic data structures such as linked lists, trees, and queues.

v To access elements of an array or members of a structure.

v To access an array of characters as a string.

v To pass by reference the address of a variable to a function. By referencing a variable through its
address, a function can change the contents of that variable.

Pointers occupy 4 bytes of data storage in 32-bit mode, and 8 bytes in 64-bit mode.

Declaring a Pointer
A pointer is declared by placing an * (asterisk) after the data type specifier and before the identifier. The
following example declares pcoat as a pointer to an object having type long :

extern long *pcoat;

If the keyword volatile appears before the *, the declarator describes a pointer to a volatile object. If the
keyword volatile comes between the * and the identifier, the declarator describes a volatile pointer. The
keyword const operates in the same manner as the volatile keyword described. In the following example,
pvolt is a constant pointer to an object having type short :

short * const pvolt;

The following example declares pnut as a pointer to an int object having the volatile qualifier:
extern int volatile *pnut;

The following example defines psoup as a volatile pointer to an object having type float :
float * volatile psoup;

The following example defines pfowl as a pointer to an enumeration object of type bird:
enum bird *pfowl;

The next example declares pvish as a pointer to a function that takes no parameters and returns a char
object:

char (*pvish)(void);

Assigning Pointers
When you use pointers in an assignment operation, you must ensure that the types of the pointers in the
operation are compatible.

The following example shows compatible declarations for the assignment operation:
float subtotal;
float * sub_ptr;

.

.

.
sub_ptr = &subtotal;
printf(“The subtotal is %f\n”, *sub_ptr);

90 C for AIX User’s Guide

The next example shows incompatible declarations for the assignment operation:
double league;
int * minor;

.

.

.
minor = &league; /* error */

Initializing Pointers
The initializer is an = (equal sign) followed by the expression that represents the address that the pointer
is to contain. The following example defines the variables time and speed as having type double and
amount as having type pointer to a double . The pointer amount is initialized to point to total:

double total, speed, *amount = &total;

The compiler converts an unsubscripted array name to a pointer to the first element in the array. You can
assign the address of the first element of an array to a pointer by specifying the name of the array. The
following two sets of definitions are equivalent. Both define the pointer student and initialize student to the
address of the first element in section:

int section[80];
int *student = section;

is equivalent to:
int section[80];
int *student = §ion[0];

You can assign the address of the first character in a string constant to a pointer by specifying the string
constant in the initializer.

The following example defines the pointer variable string and the string constant “abcd”. The pointer
string is initialized to point to the character a in the string “abcd”.

char *string = “abcd”;

The following example defines weekdays as an array of pointers to string constants. Each element points to
a different string. The pointer weekdays[2], for example, points to the string “Tuesday”.

static char *weekdays[] =
{
“Sunday”, “Monday”, “Tuesday”, “Wednesday”,
“Thursday”, “Friday”, “Saturday”

};

A pointer can also be initialized to NULL using any integer constant expression that evaluates to 0, for
example char * a=0;. Such a pointer is a NULL pointer. It does not point to any object.

Using Pointers
Two operators are commonly used in working with pointers, the address (&) operator and the indirection
(*) operator. You can use the & operator to refer to the address of an object. For example, the following
statement assigns the address of x to the variable p_to_x. The variable p_to_x has been defined as a
pointer.

int x, *p_to_x;
p_to_x = &x;

The * (indirection) operator lets you access the value of the object a pointer refers to. The following
statement assigns to y the value of the object that p_to_x points to:

Chapter 6. The C Language 91

float y, *p_to_x;
.
.
.

y = *p_to_x;

The following statement assigns the value of y to the variable that *p_to_x references:
char y ,

*p_to_x,
.
.
.

*p_to_x = y;

You cannot use pointers to reference bit fields or objects having the register storage class specifier.

Pointer Arithmetic
You can perform a limited number of arithmetic operations on pointers. These operations are:

v Increment and decrement

v Addition and subtraction

v Comparison

v Assignment

The increment (++) operator increases the value of a pointer by the size of the data object the pointer
refers to. For example, if the pointer refers to the second element in an array, the ++ makes the pointer
refer to the third element in the array.

The decrement (—) operator decreases the value of a pointer by the size of the data object the pointer
refers to. For example, if the pointer refers to the second element in an array, the — makes the pointer
refer to the first element in the array.

You can add a pointer to an integer, but you cannot add a pointer to a pointer.

If the pointer p points to the first element in an array, the following expression causes the pointer to point
to the third element in the same array:

p = p + 2;

If you have two pointers that point to the same array, you can subtract one pointer from the other. This
operation yields the number of elements in the array that separate the two addresses that the pointers
refer to.

You can compare two pointers with the following operators: ==, !=, <, >, <=, and >=.

Pointer comparisons are defined only when the pointers point to elements of the same array. Pointer
comparisons using the == and != operators can be performed even when the pointers point to elements of
different arrays.

You can assign to a pointer the address of a data object, the value of another compatible pointer or the
NULL pointer.

Passing Pointer Values to Functions
Pointers allow a called function to alter the value of a variable in the calling function. Any changes to a

92 C for AIX User’s Guide

variable passed as an argument to a called function are not returned to the calling function. However, if a
pointer to a variable is passed as an argument, the called function can alter the value of the variable the
pointer refers to.

“Declarators” on page 64
“Initializers” on page 65
“Examples of Pointer Declaration and Use”
Address (&) Operator (page 121)
Indirection (*) Operator (page 122)
“Data Type Qualifiers” on page 115
“char” on page 79
“float, double” on page 80
“float, double” on page 80
“int, long, short” on page 81
“register” on page 111
“Data Type Qualifiers” on page 115
“ldbl128, longdouble” on page 289

Examples of Pointer Declaration and Use

The following program shows how you can pass a pointer to a function and change the value of the object
the pointer points to:

/***
** This program accepts a value for a timer, then decreases **
** this timer value by one each time the function count_down **
** is called. **
***/
#include <stdio.h>
int count_down(int *timer)
int main(void)
{

int t_timer; /* local storage */
printf(“Set timer to: _ \n”);
scanf(“%d”, &t_timer);
if (t_timer <= 0)

printf(“Timer was set to a negative value\n”);
else
{

while (count_down(&t_timer)) /* while timer not zero */
{

printf(“Timer still counting. %d\n”, t_timer);
}
printf(“Timer has reached zero.\n”);

}
} /* End main */ </pre>

/***
** This function decreases the value of timer by decrements **
** of 1 and returns false when the timer reaches zero. **
***/
int count_down(int *timer) /* receives a copy of a pointer to

t_timer */
{

return(—*timer); /* modifying t_timer in main */
} /* End count_down */

Interaction with this program could produce the following sessions:

Chapter 6. The C Language 93

Output Set timer to: _
Input 6
Output Timer still counting. 5

Timer still counting. 4
Timer still counting. 3
Timer still counting. 2
Timer still counting. 1
Timer has reached zero.

The following program contains pointer arrays:
/**
** Program to search for the first occurrence of a specified **
** character string in an array of character strings. **
**/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define SIZE 20
#define EXIT_FAILURE 999
int main(void)
{

static char *names[] = { “Jim”, “Amy”, “Mark”, “Sue”, NULL };
char * find_name(char **, char *);
char new_name[SIZE], *name_pointer;
printf(“Enter name to be searched.\n”);
scanf(“%s”, new_name);
name_pointer = find_name(names, new_name);
printf(“name %s%sfound\n”, new_name,

(name_pointer == NULL) ? “ not ” : “ ”);
exit(EXIT_FAILURE);

} /* End of main */

/***
** Function find_name. This function searches an array **
** of names to see if a given name already exists in the **
** array. It returns a pointer to the name or NULL if **
** the name is not found. **
** **
** char **arry is a pointer to arrays of pointers whose **
** names already exist. **
** **
** char *strng is a pointer to character array entered **
***/
char * find_name(char **arry, char *strng)
{

for (; *arry != NULL; arry++) /* for each name */
{

if (strcmp(*arry, strng) == 0) /* if strings match */
return(*arry); /* found it! */

}
return(*arry); /* return the pointer */

} /* End of find_name */

Interaction with this program could produce the following sessions:

Output Enter name to be searched.
Input Mark
Output name Mark found

or:

Output Enter name to be searched._
Input Deborah
Output name Deborah not found

94 C for AIX User’s Guide

“Pointers” on page 90

struct (Structures)

A structure contains an ordered group of data objects. Unlike the elements of an array, the data objects
within a structure can have varied types. Each data object within a structure is called a member or field.

Use structures to group logically-related objects. For example, to allocate storage for the components of
one address, define the following variables:

int street_no;
char *street_name;
char *city;
char *prov;
char *postal_code;

Declaring a Structure

identifier Provides a tag name for the structure. If specified, subsequent declarations (in the same
scope) of variables using the structure can be made by referring to the tag name. If not
specified, you must place all variable definitions that refer to the structure within the
declaration of the data type.

member The list of members provides the data type with a description of the values that can be stored
in the structure.

A member that does not represent a bit field can be of any data type and can have the
volatile or const qualifier.

If a : (colon) and a constant expression follow the member declarator, the member
represents a bit field. Bit fields are described in Declaring and Using Bit Fields in Structures
(page 97).

A structure type declaration describes the members that are part of the structure.

Identifiers used as structure or member names can be redefined to represent different objects in the same
scope without conflicting. You cannot use the name of a member more than once in a structure type, but
you can use the same member name in another structure type that is defined within the same scope.

You cannot declare a structure type that contains itself as a member, but you can declare a structure type
that contains a pointer to itself as a member.

Defining a Structure Variable
A structure variable definition contains an optional storage class keyword, the struct keyword, a structure
tag, a declarator, and an optional identifier. The structure tag indicates the data type of the structure
variable.

Chapter 6. The C Language 95

You can declare structures having any storage class. Most compilers, however, treat structures declared
with the register storage class specifier as automatic structures.

Initializing Structures
The initializer contains an = (equal sign) followed by a brace-enclosed comma-separated list of values.
You do not have to initialize all members of a structure.

The following definition shows a completely initialized structure:
struct address {

int street_no;
char *street_name;
char *city;
char *prov;
char *postal_code;

};
static struct address perm_address =

{ 3, “Savona Dr.”, “Dundas”, “Ontario”, “L4B 2A1”};

The values of perm_address are:

Member Value
perm_address.street_no 3
perm_address.street_name address of string “Savona Dr.”

perm_address.city address of string “Dundas”
perm_address.prov address of string “Ontario”

perm_address.postal_code address of string “L4B 2A1”

The following definition shows a partially initialized structure:
struct address {

int street_no;
char *street_name;
char *city;
char *prov;
char *postal_code;

};
struct address temp_address =

{ 44, “Knyvet Ave.”, “Hamilton”, “Ontario” };

The values of temp_address are:

Member Value
temp_address.street_no 44
temp_address.street_name address of string “Knyvet Ave.”

temp_address.city address of string “Hamilton”
temp_address.prov address of string “Ontario”

temp_address.postal_code value depends on the storage class.

Note: The initial value of uninitialized structure members like temp_address.postal_code depends on the
storage class associated with the member.

Alignment of Structures
Structures are aligned according to the setting of the -qalign compiler option, which specifies the
alignment rules the compiler uses when laying out memory storage for structures and unions. The
mapping of a structure is based on the alignment setting in effect at the beginning of the structure
definition.

96 C for AIX User’s Guide

Structures and unions with identical members, but using different alignment, are not type compatible and
cannot be assigned to each other. Use the -qextchk compiler option to check for alignment mismatches,
and refer to the attribute section of the compiler listing to find the variables that have different alignment
settings.

Your code should not depend on the offset or alignment of members within a structure. Use the offsetof
macro, defined in the /usr/include/stddef.h header file, to determine the offset of members in a macro.
This macro is described in the AIX Version 4 Files Reference.

Declaring Structure Types and Variables
To define a structure type and a structure variable in one statement, put a declarator and an optional
initializer after the type definition. To specify a storage class specifier for the variable, you must put the
storage class specifier at the beginning of the statement.

For example:
static struct {

int street_no;
char *street_name;
char *city;
char *prov;
char *postal_code;

} perm_address, temp_address;

Because this example does not name the structure data type, perm_address and temp_address are the only
structure variables that will have this data type. Putting an identifier after struct , lets you make additional
variable definitions of this data type later in the program.

The structure type (or tag) cannot have the volatile qualifier, but a member or a structure variable can be
defined as having the volatile qualifier.

For example:
static struct class1 {

char descript[20];
volatile long code;
short complete;

} volatile file1, file2;
struct class1 subfile;

This example qualifies the structures file1 and file2, and the structure member subfile.code as
volatile .

Declaring and Using Bit Fields in Structures A structure can contain bit fields that allow you to access
individual bits. You can use bit fields for data that requires just a few bits of storage. A bit field declaration
contains a type specifier followed by an optional declarator, a colon, a constant expression, and a
semicolon.

The constant expression specifies how many bits the field reserves.

Bit fields with a length of 0 must be unnamed. Unnamed bit fields cannot be referenced or initialized. A
zero-width bit field causes the next field to be aligned on the next container boundary, where the container
is the same size as the underlying type as the bit field.

The maximum bit-field length is implementation dependent. The maximum bit field length for the C for AIX
compiler is 32 bits (4 bytes, or 1 word).

Chapter 6. The C Language 97

For portability, do not use bit fields greater than 32 bits in size.

The following restrictions apply to bit fields. You cannot:

v Define an array of bit fields

v Take the address of a bit field

v Have a pointer to a bit field

In C, you can declare a bit field as type int , signed int , or unsigned int . Bit fields of the type int are
equivalent to those of type unsigned int .

The default integer type for a bit field is unsigned . Use the bitfields=signed option to change this default.

In extended mode C, bit fields can be any integral type. For example,
struct S {

short x : 4;
long y : 10;
char z : 7;

} s;

Non-integral bit fields in extended mode C are converted to type unsigned int and a warning is issued. In
other modes, the use of non-integral bit fields results in an error.

In ansi mode C, bit fields of type unsigned char or unsigned short are changed to unsigned int . An
unsigned short bit field occupies 32 bits.

A bit field cannot have the volatile or const qualifier.

The following structure has three bit-field members kingdom, phylum, and genus, occupying 12, 6, and 2
bits respectively:

struct taxonomy {
int kingdom : 12;
int phylum : 6;
int genus : 2;
};

Alignment of Bit Fields in Structures
Bit fields are word-aligned but packed as closely as possible into the current word. The first bit field in a
sequence of bit fields starts on a word boundary. For example, a structure containing only bit fields is
word-aligned, but after the first bit field, the bit fields themselves do not have to begin on word boundaries.
Word alignment is the default and is equivalent to setting the -qalign=power compiler option.

If a series of bit fields does not add up to the size of an int , padding can take place. The amount of
padding is determined by the alignment characteristics of the members of the structure. Bit fields cannot
cross word boundaries but are forced to start at the next word boundary. Alignment of structures is
described in .

The following example declares the identifier kitchen to be of type struct on_off:
struct on_off {

unsigned light : 1;
unsigned toaster : 1;
int count; /* 4 bytes */
unsigned ac : 4;
unsigned : 4;
unsigned clock : 1;
unsigned : 0;
unsigned flag : 1;

} kitchen ;

98 C for AIX User’s Guide

The structure kitchen contains eight members totalling 16 bytes. The following table describes the storage
that each member occupies:

Member Name Storage Occupied
light 1 bit

toaster 1 bit
(padding, 30 bits) to next int boundary

count the size of an int
ac 4 bits

(unnamed field) 4 bits
clock 1 bit

(padding, 23 bits) to next int boundary (unnamed field)
flag 1 bit

(padding, 31 bits) to next int boundary

All references to structure fields must be fully qualified. For instance, you cannot reference the second
field by toaster. You must reference this field by kitchen.toaster.

The following expression sets the light field to 1:
kitchen.light = 1;

When you assign to a bit field a value that is out of its range, the bit pattern is preserved and the
appropriate bits are assigned. The following expression sets the toaster field of the kitchen structure to 0
because only the least significant bit is assigned to the toaster field:

kitchen.toaster = 2;

Bit Fields under the align Compiler Option
Bit fields are also subject to the -qalign compiler option.

The default alignment is -qalign=power . When it is in effect, bit fields are aligned as described in
Alignment of Bit Fields in Structures. Bit fields have the following alignment properties under the twobyte
and packed suboptions.

Chapter 6. The C Language 99

twobyte Bit fields are packed into a word and are aligned on a halfword boundary. Bit fields cannot cross
word boundaries but are forced to start at the next halfword boundary even if they start on a
halfword boundary.

A bit field with a width of 0 (zero) forces the next member to start at the next halfword boundary
even if it is not a bit field and even if the zero-width bit field is already at a halfword boundary. A
structure containing nothing but zero-width bit fields has a length equal to twice the number of
zero-width bit fields.

In the following example, the bit fields in the structure species are aligned according to the
-qalign=twobyte option:

#pragma options align=twobyte
struct species {

char a;
int : 0;
int b : 4;
int c : 18; /* 8 + 8 + 2 bits */

};

The following figure shows the layout of species. The shaded areas are padding.

Bit field b starts on a halfword boundary because of the unnamed zero-width int bit field. It
occupies the first 4 bits of the third byte (byte 2 in the figure.) Because bit field c is larger than 2
bytes, it cannot cross the word boundary between bytes 3 and 4, but is forced to start at byte 4. It
occupies bytes 4 and 5 (the first two bytes of the second word) and 2 bits of byte 6.

100 C for AIX User’s Guide

packed Bit fields are packed into a 1 byte space. Bit fields that cross byte boundaries are forced to start at
the next available byte boundary.

A bit field with a width of 0 (zero) forces the next member to start at the next byte boundary. If the
zero-width bit field is already at a byte boundary, the next structure member starts there. A non-bit
field member following a bit field is aligned on the next byte boundary.

In the following example, the bit fields in the structure order are aligned according to the
-qalign=packed option:

#pragma options align=packed
struct order {

char a;
int b : 10;
int c : 12;
int d : 6;
int : 0;
int e : 1;
char f;

};

The following figure shows the layout of order. The shaded areas are padding.

Because bit field c is longer than 1 byte and cannot straddle the boundary between bytes 2 and 3,
it must start at byte 3. Likewise, field d cannot cross the byte boundary between bytes 4 and 5; it is
forced to start at byte 5. The zero-width bit field between field d and field e forces bit field e to start
at byte 6.

“Declarators” on page 64
“Initializers” on page 65
“Examples of Structure Declaration and Use”
“Incomplete Types” on page 106
Structure and Union Member Specification (page 119)
“Data Type Qualifiers” on page 115
“char” on page 79
“int, long, short” on page 81
“align” on page 234
“extchk” on page 258

Examples of Structure Declaration and Use

The following program finds the sum of the integer numbers in a linked list:
/**
** Example program illustrating structures using linked lists
**/
#include <stdio.h>
struct record {

Chapter 6. The C Language 101

int number;
struct record *next_num;

};
int main(void)
{

struct record name1, name2, name3;
struct record *recd_pointer = &name1;
int sum = 0;
name1.number = 144;
name2.number = 203;
name3.number = 488;
name1.next_num = &name2;
name2.next_num = &name3;
name3.next_num = NULL;
while (recd_pointer != NULL)
{

sum += recd_pointer->number;
recd_pointer = recd_pointer->next_num;

}
printf(“Sum = %d\n”, sum);
return(0);

}

The structure type record contains two members: the integer number and next_num, which is a pointer to a
structure variable of type record.

The record type variables name1, name2, and name3 are assigned the following values:

Member Value

name1.number 144

name1.next_num address of name2

name2.number 203

name2.next_num address of name3

name3.number 488

name3.next_num NULL (indicating the end of the linked list)

The variable recd_pointer is a pointer to a structure of type record. It is initialized to the address of name1
(the beginning of the linked list).

The while loop causes the linked list to be scanned until recd_pointer equals NULL. The statement:
recd_pointer = recd_pointer->next_num;

advances the pointer to the next object in the list.

The following example shows how to define and initialize a structure within a structure.
struct client {

char *name;
struct info {

int age;
int weight;

} pers_info;
} child = { “Bob”, { 3, 31 } }; /* initialization */

“struct (Structures)” on page 95

102 C for AIX User’s Guide

union (Unions)

A union is an object that can hold any one of a set of named members. The members of the named set
can be of any data type. Members are overlaid in storage.

The storage allocated for a union is the storage required for the largest member of the union, plus any
padding required for the union to end at a natural boundary of its strictest member.

Declaring a Union

identifier Provides a tag name for the union. If specified, subsequent declarations (in the same scope)
of variables using the union can be made by referring to the tag name. If not specified, you
must place all variable definitions that refer to the union within the declaration of the data
type.

member The list of members provides the data type with a description of the values that can be stored
in the union.

A member that does not represent a bit field can be of any data type and can have the
volatile or const qualifier.

If a : (colon) and a constant expression follow the member declarator, the member
represents a bit field. Bit fields are described in Declaring and Using Bit Fields in Structures
(page 97).

You can reference one of the possible members of a union the same way as referencing a member of a
structure.

For example:
union {

char birthday[9];
int age;
float weight;
} people;

people.birthday[0] = '\n';

assigns ’\n’ to the first element in the character array birthday, a member of the union people.

A union can represent only one of its members at a time. In the example, the union people contains either
age, birthday, or weight but never more than one of these. The printf statement in the following example
does not give the correct result because people.age replaces the value assigned to people.birthday in
the first line:

1 people.birthday = “03/06/56”;
2 people.age = 38;
3 printf(“%s\n”, people.birthday);

Defining a Union Variable
A union variable definition contains an optional storage class keyword, the union keyword, a union tag,
and a declarator. The union tag indicates the data type of the union variable.

Chapter 6. The C Language 103

The type specifier contains the keyword union followed by the name of the union type. You must declare
the union data type before you can define a union having that type.

You can define a union data type and a union of that type in the same statement by placing the variable
declarator after the data type definition.

The declarator is an identifier, possibly with the volatile or const qualifier.

The initializer must be a constant expression if the union has static storage duration or if you are
compiling your source code in ansi mode. If the union has auto storage duration, it can be initialized using
the = (equal sign) followed by any expression that returns a compatible union value. You can only initialize
the first member of a union.

The following example shows how you would initialize the first union member birthday of the union
variable people:

union {
char birthday[9];
int age;
float weight;
} people = {“23/07/57”};

Defining a Union Type and a Union Variable
To define union type and a union variable in one statement, put a declarator after the type definition. The
storage class specifier for the variable must go at the beginning of the statement.

Alignment of Unions
The rules for alignment of structures and structure members apply to unions, with the following exception:
when the -qalign=twobyte option is specified, a union whose largest element is a bit field of width 16 or
less has a size of 2 bytes. If the width of the bit field is greater than 16, the size of the union is 4 bytes.

Anonymous Unions
Union can be declared without declarators if they are members of another structure or union. Unions
without declarators are called anonymous unions.

Note: Annonymous unions are not part of the the ANSI C language standard, and are supported by C for
AIX in extended compiler mode only.

Members of an anonymous union can be accessed as if they were declared directly in the containing
structure or union. For example, given the following structure:

struct s {
int a;
union {

int b;
float c;

}; /* no declarator */
} kurt;

you can make the following statements:
kurt.a = 5;
kurt.b = 36;

You can also declare an anonymous union by:

1. Creating a typedef and using the typedef name without a declarator:
typedef union {

int a;
int b;

} UNION_T;

104 C for AIX User’s Guide

struct s1 {
UNION_T;
int c;

} dave;

1. By using an existing union tag without a declarator:
union u1 {

int a;
int b;

};
struct s1 {
union u1;
int c;
} dave;

In both of these examples, the members can be accessed as dave.a, dave.b, and dave.c.

An anonymous union must be a member of, or nested within another anonymous union that is a member
of, a named structure or union. If a union is declared at file scope without a declarator, its members are
not available to the surrounding scope. For example, the following union only declares the union tag tom:

union tom {
int b;
float c;

} ;

The variables b and c from this union cannot be used at file scope, and the following statements will
generate errors:

b = 5;
c = 2.5;

“Declarators” on page 64
“Initializers” on page 65
“C Language Levels” on page 78
“Example of union Declaration and Use”
“Incomplete Types” on page 106
“struct (Structures)” on page 95
Structure and Union Member Specification (page 119)
“Data Type Qualifiers” on page 115
“static” on page 112
“auto” on page 106
“typedef” on page 115
“align” on page 234

Example of union Declaration and Use

The following example defines a union data type (not named) and a union variable (named length). The
member of length can be a long int , a float , or a double .

union {
float meters;
double centimeters;
long inches;

} length;

The following example defines the union type data as containing one member. The member can be named
charctr, whole, or real. The second statement defines two data type variables: input and output.

Chapter 6. The C Language 105

union data {
char charctr;
int whole;
float real;

};
union data input, output;

The following statement assigns a character to input:
input.charctr = 'h';

The following statement assigns a floating-point number to member output:
output.real = 9.2;

The following example defines an array of structures named records. Each element of records contains
three members: the integer id_num, the integer type_of_input, and the union variable input, which has
the union data type defined in the previous example.

struct {
int id_num;
int type_of_input;
union data input;

} records[10];

The following statement assigns a character to the structure member input of the first element of records :
records[0].input.charctr = 'g';

“union (Unions)” on page 103

Incomplete Types

Incomplete types are the type void , an array of unknown size, or structure, union, or enumeration tags
that have no member lists. For example, the following are incomplete types:

void *incomplete_ptr;
struct dimension linear; /* no previous definition of dimension */

void is an incomplete type that cannot be completed. Incomplete structure or union and enumeration tags
must be completed before being used to declare an object, although you can define a pointer to an
incomplete structure or union.

“void” on page 85
“Arrays” on page 86
“struct (Structures)” on page 95
“union (Unions)” on page 103
“void” on page 85

auto

The auto storage class specifier lets you define a variable with automatic storage; its use and storage is
restricted to the current block. The storage class keyword auto is optional in a data declaration. It is not
permitted in a parameter declaration. A variable having the auto storage class specifier must be declared
within a block. It cannot be used for file scope declarations.

Because automatic variables require storage only while they are actually being used, defining variables
with the auto storage class can decrease the amount of memory required to run a program. However,
having many large automatic objects may cause you to run out of stack space.

106 C for AIX User’s Guide

Declaring variables with the auto storage class can also make code easier to maintain, because a change
to an auto variable in one function never affects another function (unless it is passed as an argument).

The following example lines declare variables having the auto storage class specifier:
auto int counter;
auto char letter = 'k';

Initialization
You can initialize any auto variable except parameters. If you do not initialize an automatic object, its
value is indeterminate. If you provide an initial value, the expression representing the initial value can be
any valid C expression. For structure and union members, the initial value must be a valid constant
expression if an initializer list is used. The object is then set to that initial value each time the program
block that contains the object’s definition is entered.

Note: If you use the goto statement to jump into the middle of a block, automatic variables within that
block are not initialized.

Storage
Objects with the auto storage class specifier have automatic storage duration. Each time a block is
entered, storage for auto objects defined in that block is made available. When the block is exited, the
objects are no longer available for use.

If an auto object is defined within a function that is recursively invoked, memory is allocated for the object
at each invocation of the block.

“Block Scope Data Declarations” on page 62
“Examples Using auto Storage Classes”
“goto” on page 151

Examples Using auto Storage Classes

The following program shows the scope and initialization of auto variables. The function main defines two
variables, each named auto_var. The first definition occurs on line 10. The second definition occurs in a
nested block on line 13. While the nested block is running, only the auto_var created by the second
definition is available. During the rest of the program, only the auto_var created by the first definition is
available.

1 /**
2 ** Example illustrating the use of auto variables **
3 **/
4
5 #include <stdio.h>
6
7 int main(void)
8 {
9 void call_func(int passed_var);
10 auto int auto_var = 1; /* first definition of auto_var */
11
12 {
13 int auto_var = 2; /* second definition of auto_var */
14 printf(“inner auto_var = %d\n”, auto_var);
15 }
16 call_func(auto_var);
17 printf(“outer auto_var = %d\n”, auto_var);

Chapter 6. The C Language 107

18 return 0;
19 }
20
21 void call_func(int passed_var)
22 {
23 printf(“passed_var = %d\n”, passed_var);
24 passed_var = 3;
25 printf(“passed_var = %d\n”, passed_var);
26 }

This program produces the following output:
inner auto_var = 2
passed_var = 1
passed_var = 3
outer auto_var = 1

The following example uses an array that has the storage class auto to pass a character string to the
function sort. The function sort receives the address of the character string, rather than the contents of
the array. The address enables sort to change the values of the elements in the array.

/***
** Sorted string program — this example passes an array name **
** to a function **
***/
#include <stdio.h>
#include <string.h>
int main(void)
{

void sort(char *array, int n);
char string[75];
int length;
printf(“Enter letters:\n”);
scanf(“%74s”, string);
length = strlen(string);
sort(string,length);
printf(“The sorted string is: %s\n”, string);
return(0);

}

void sort(char *array, int n)
{

int gap, i, j, temp;
for (gap = n / 2; gap > 0; gap /= 2)

for (i = gap; i <n; i++)
for (j=i gap; j>= 0 && array[j] > array[j + gap];

j -= gap)
{

temp = array[j];
array[j] = array[j + gap];
array[j + gap] = temp;

}
}

When the program is run, interaction with the program could produce:

Output Enter letters:
Input zyfab
Output The sorted string is: abfyz

“auto” on page 106

108 C for AIX User’s Guide

extern

The extern storage class specifier lets you declare objects and functions that several source files can use.
All object declarations that occur outside a function and that do not contain a storage class specifier
declare identifiers with external linkage. All function definitions that do not specify a storage class define
functions with external linkage.

An extern variable, function definition, or declaration also makes the described variable or function usable
by the succeeding part of the current source file. This declaration does not replace the definition. The
declaration is used to describe the variable that is externally defined.

If a declaration for an identifier already exists at file scope, any extern declaration of the same identifier
found within a block refers to that same object. If no other declaration for the identifier exists at file scope,
the identifier has external linkage.

An extern declaration can appear outside a function or at the beginning of a block. If the declaration
describes a function or appears outside a function and describes an object with external linkage, the
keyword extern is optional.

If you do not specify a storage class specifier, the function has external linkage.

Initialization
You can initialize any object with the extern storage class specifier at file scope. You can initialize an
extern object with an initializer that must either:

v Appear as part of the definition and the initial value must be described by a constant expression. OR

v Reduce to the address of a previously declared object with static storage duration. This object may be
modified by adding or subtracting an integral constant expression.

If you do not explicitly initialize an extern variable, its initial value is zero of the appropriate type.
Initialization of an extern object is completed by the time the program starts running.

Storage
Storage is allocated at compile time for extern variables that are initialized. Uninitialized variables are
mapped at compile time and initialized to 0 (zero) at load time. This storage is freed when the program
finishes running.

“Constant Expressions” on page 71
“File Scope Data Declarations” on page 63
“Examples Using extern Storage Classes”
“Function Declarations” on page 138

Examples Using extern Storage Classes

The following program shows the linkage of extern objects and functions. The extern object total is
declared on line 12 of File 1 and on line 11 of File 2. The definition of the external object total appears
in File 3. The extern function tally is defined in File 2. The function tally can be in the same file as
main or in a different file. Because main precedes these definitions and main uses both total and tally,
main declares tally on line 11 and total on line 12.

File 1

Chapter 6. The C Language 109

1 /**
2 ** The program receives the price of an item, adds the **
3 ** tax, and prints the total cost of the item. **
5 **/
6
7 #include <stdio.h>
8
9 int main(void)
10 { /* begin main */
11 void tally(void); /* declaration of function tally */
12 extern float total; /* first declaration of total */
13
14 printf(“Enter the purchase amount: \n”);
15 tally();
16 printf(“\nWith tax, the total is: %.2f\n”, total);
17
18 return(0);
19 } /* end main */

File 2
1 /**
2 ** This file defines the function tally **
3 **/
4 #include <stdio.h>
6 #define tax_rate 0.05
7
8 void tally(void)
9 { /* begin tally */
10 float tax;
11 extern float total; /* second declaration of total */
12
13 scanf(“%f”, &total);
14 tax = tax_rate * total;
15 total += tax;
16 } /* end tally */

File 3
1 float total;

When this program is run, interaction with it could produce:

Output Enter the purchase amount:
Input 99.95
Output With tax, the total is: 104.95

The following program shows extern variables used by two functions. Because both functions main and
sort can access and change the values of the extern variables string and length, main does not have to
pass parameters to sort.

/***
** Sorted string program — this example shows extern **
** used by two functions **
***/
#include <stdio.h>
#include <string.h>
char string[75];

110 C for AIX User’s Guide

int length;
int main(void)
{

void sort(void);
printf(“Enter letters:\n”);
scanf(“%s”, string);
length = strlen(string);
sort();
printf(“The sorted string is: %s\n”, string);
return(0);

}

void sort(void)
{

int gap, i, j, temp;
for (gap = length / 2; gap > 0; gap /= 2)

for (i = gap; i <length; i++)
for (j = i - gap;

j >= 0 && string[j] > string[j + gap];
j -= gap)

{
temp = string[j];
string[j] = string[j + gap];
string[j + gap] = temp;

}
}

When this program is run, interaction with it could produce:

Output Enter letters:
Input zyfab
Output The sorted string is: abfyz

“extern” on page 109

register

The register storage class specifier indicates to the compiler that a heavily used variable (such as a loop
control variable) within a block scope data definition or a parameter declaration should be allocated a
register to minimize access time.

It is equivalent to the auto storage class except that the compiler places the object, if possible, into a
machine register for faster access.

Note: Because the C for AIX compiler optimizes register use, it ignores the register keyword.

Most heavily-used entities are generated by the compiler itself; therefore, register variables are given no
special priority for placement in machine registers. The register storage class keyword is required in a
data definition and in a parameter declaration that describes an object having the register storage class.
An object having the register storage class specifier must be defined within a block or declared as a
parameter to a function.

The following example lines define automatic storage duration objects using the register storage class
specifier:

register int score1 = 0, score2 = 0;
register unsigned char code = 'A';
register int *element = &order[0];

Chapter 6. The C Language 111

Initialization
You can initialize any register object except parameters. If you do not initialize an automatic object, its
value is indeterminate. If you provide an initial value, the expression representing the initial value can be
any valid C expression. For structure and union members, the initial value must be a valid constant
expression if an initializer list is used. The object is then set to that initial value each time the program
block that contains the object’s definition is entered.

Storage
Objects with the register storage class specifier have automatic storage duration. Each time a block is
entered, storage for register objects defined in that block are made available. When the block is exited,
the objects are no longer available for use.

If a register object is defined within a function that is recursively invoked, the memory is allocated for the
variable at each invocation of the block.

The register storage class specifier indicates that the object is heavily used and indicates to the compiler
that the value of the object should reside in a machine register. Because of the limited size and number of
registers available on most systems, few variables can actually be put in registers.

If the compiler does not allocate a machine register for a register object, the object is treated as having
the storage class specifier auto .

Using register definitions for variables that are heavily used may make your object files smaller and make
them run faster. In object code, a reference to a register can require less code and time than a reference
to memory. In C programs, even if a register variable is treated as a variable with storage class auto , the
address of the variable cannot be taken.

Restrictions
You cannot use the register storage class specifier in file scope data declarations.

You cannot apply the address (&) operator to register variables.

Block Scope Data Declarations
“auto” on page 106

static

The static storage class specifier lets you define objects with static storage duration and internal linkage,
or to define functions with internal linkage.

An object having the static storage class specifier can be defined within a block or at file scope. If the
definition occurs within a block, the object has no linkage. If the definition occurs at file scope, the object
has internal linkage.

Initialization
You can initialize any static object with a constant expression or an expression that reduces to the

112 C for AIX User’s Guide

address of a previously declared extern or static object, possibly modified by a constant expression. If you
do not provide an initial value, the object receives the value of zero of the appropriate type.

Storage
Storage is allocated at compile time for static variables that are initialized. Uninitialized static variables are
mapped at compile time and initialized to 0 (zero) at load time. This storage is freed when the program
finishes running. Beyond this, the language does not define the order of initialization of objects from
different files.

Block Scope Usage
Use static variables to declare objects that retain their value from one execution of a block to the next
execution of that block. The static storage class specifier keeps the variable from being reinitialized each
time the block where the variable is defined runs. For example:

static float rate = 10.5;

Initialization of a static array is performed only once at compile time. The following examples show the
initialization of an array of characters and an array of integers:

static char message[] = “startup completed”;
static int integers[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

File Scope Usage
The static storage class specifier causes the variable to be visible only in the file where it is declared.
Files, therefore, cannot access file scope static variables declared in other files.

Restrictions
You cannot declare a static function at block scope.

“Block Scope Data Declarations” on page 62
“File Scope Data Declarations” on page 63
“Examples Using static Storage Classes”
“Function Declarations” on page 138
“extern” on page 109

Examples Using static Storage Classes

The following program shows the linkage of static identifiers at file scope. This program uses two different
external static identifiers named stat_var. The first definition occurs in File 1. The second definition
occurs in File 2. The main function references the object defined in File 1.. The var_print function
references the object defined in File 2.

File 1
/**
** Program to illustrate file scope static variables **
**/
#include <stdio.h>
extern void var_print(void);
static stat_var = 1;
int main(void)

Chapter 6. The C Language 113

{
printf(“file1 stat_var = %d\n”, stat_var);
var_print();
printf(“FILE1 stat_var = %d\n”, stat_var);
return(0);

}

File 2
/**
** This file contains the second definition of stat_var **
**/
#include <stdio.h>
static int stat_var = 2;
void var_print(void)
{

printf(“file2 stat_var = %d\n”, stat_var);
}

This program produces the following output:
file1 stat_var = 1
file2 stat_var = 2
FILE1 stat_var = 1

The following program shows the linkage of static identifiers with block scope. The test function defines
the static variable stat_var, which retains its storage throughout the program, even though test is the
only function that can refer to stat_var.

/**
** Program to illustrate block scope static variables **
**/
#include <stdio.h>
int main(void)
{

void test(void);
int counter;
for (counter = 1; counter <= 4; ++counter)

test();
return(0);

}
void test(void)
{

static int stat_var = 0;
auto int auto_var = 0;
stat_var++;
auto_var++;
printf(“stat_var = %d auto_var = %d\n”, stat_var, auto_var);

}

This program produces the following output:
stat_var = 1 auto_var = 1
stat_var = 2 auto_var = 1
stat_var = 3 auto_var = 1
stat_var = 4 auto_var = 1

“static” on page 112

114 C for AIX User’s Guide

typedef

A typedef declaration lets you define your own identifiers that can be used in place of type specifiers such
as int , float , and double . The names you define using typedef are not new data types. They are
synonyms for the data types or combinations of data types they represent.

A typedef declaration does not reserve storage.

When an object is defined using a typedef identifier, the properties of the defined object are exactly the
same as if the object were defined by explicitly listing the data type associated with the identifier.

The following statements declare LENGTH as a synonym for int , then use this typedef to declare length,
width, and height as integral variables.

typedef int LENGTH;
LENGTH length, width, height;

The following declarations are equivalent to the above declaration:
int length, width, height;

Similarly, you can use typedef to define a struct type. For example:
typedef struct {

int scruples;
int drams;
int grains;

} WEIGHT;

The structure WEIGHT can then be used in the following declarations:
WEIGHT chicken, cow, horse, whale;

“Type Specifiers” on page 66
“struct (Structures)” on page 95
“int, long, short” on page 81

Data Type Qualifiers

Qualifier Description
const Explicitly declares a data object as a data item that cannot

be changed. Its value is set at initialization. You cannot
use const data objects in expressions requiring a
modifiable lvalue. For example, a const data object
cannot appear on the left-hand side of an assignment
statement.

Chapter 6. The C Language 115

volatile Maintains consistency of memory access to data objects.
It tells the compiler that the variable should always contain
its current value even when optimized, so that the variable
can be queried when an exception occurs. Volatile objects
are read from memory each time their value is needed,
and written back to memory each time they are changed.

The volatile qualifier is useful for data objects having
values that may be changed in ways unknown to your
program (such as the system clock). Portions of an
expression that reference volatile objects are not to be
changed or removed.

Note: These type qualifiers are only meaningful in expressions that are lvalues.

For a volatile or const pointer, you must put the keyword between the * and the identifier. For example:
int * volatile x; /* x is a volatile pointer to an int */
int * const y = &z; /* y is a const pointer to the int variable z */

For a pointer to a volatile or const data object, the type specifier, qualifier, and storage class specifier can
be in any order. For example:

volatile int *x1; /* x1 is a pointer to a volatile int */
int volatile *x2; /* x2 is a pointer to a volatile int */

const int *y1; /* y1 is a pointer to a const int */
int const *y2; /* y2 is a pointer to a const int */

In the following example, the pointer to y is a constant. You can change the value that y points to, but you
cannot change the value of y:

int * const y

In the following example, the value that y points to is a constant integer and cannot be changed. However,
you can change the value of y:

const int * y

For other types of volatile and const variables, the position of the keyword within the definition (or
declaration) is less important. For example:

volatile struct omega {
int limit;
char code;

} group;

provides the same storage as:
struct omega {

int limit;
char code;

} volatile group;

In both examples above, only the structure variable group receives the volatile qualifier. Similarly, if you
specified the const keyword instead of volatile , only the structure variable group receives the const
qualifier. The const and volatile qualifiers when applied to a structure or union also apply to the members
of the structure or union.

Although enumeration, structure, and union variables can receive the volatile or const qualifier,
enumeration, structure, and union tags do not carry the volatile or const qualifier. For example, the blue
structure does not carry the volatile qualifier:

116 C for AIX User’s Guide

volatile struct whale {
int weight;
char name[8];

} beluga;
struct whale blue;

The keywords volatile and const cannot separate the keywords enum , struct , and union from their tags.

You cannot declare or define a volatile or const function but you can define or declare a function that
returns a pointer to a volatile or const object.

You can put more than one qualifier on a declaration but you cannot specify the same qualifier more than
once on a declaration.

If you put a type definition in the same declaration as a definition of a variable having the volatile or const
qualifier, the qualifier applies to that variable only. For example:

enum shape { round, square, triangular, oblong } volatile object;
enum shape appearance;

The variable object is defined as volatile . The variable appearance does not have the volatile qualifier.
Similarly, if you specified the const keyword instead of volatile , only the variable object receives the
const qualifier.

Expression Operators

Operator Precedence and Associativity Table

The following table lists the C language operators in order of precedence and shows the direction of
associativity for each operator. The primary operators have the highest precedence. The comma operator
has the lowest precedence. Operators that appear in the same group have the same precedence.

Operator Name Associativity Operators

Primary left to right () [] . ->

Unary right to left ++ — + - ! x & * (type_name) sizeof

Multiplicative left to right * / %

Additive left to right + -

Bitwise Shift left to right << >>

Relational left to right < > <= >=

Equality left to right == !=

Bitwise AND left to right &

Bitwise Exclusive OR left to right |

Bitwise Inclusive OR left to right |

Logical AND left to right &&

Logical OR left to right ||

Conditional right to left ? :

Assignment right to left = += -= *= /= <<= >>= %= &= |= |=

Comma left to right ,

Chapter 6. The C Language 117

“Expressions and Operators” on page 67
“Types of Expressions” on page 70
“Primary Operators”
“Unary Operators” on page 120
“Binary Operators” on page 124
“Conditional Operator (?)” on page 131
“Assignment Operators” on page 133
“Comma Operator (,)” on page 136

Primary Operators

Operators Description

() Parentheses Used for Expression Grouping

Use parentheses to explicitly force the order of expression evaluation. The following expression does
not contain any parentheses used for grouping operands and operators. The parentheses surrounding
weight, zipcode are used to form a function call. Note how the compiler groups the operands and
operators in the expression according to the rules for operator precedence and associativity:

The following expression is similar to the previous expression, but it contains parentheses that change
how the operands and operators are grouped:

In an expression that contains both associative and commutative operators, you can use parentheses to
specify the grouping of operands with operators. The parentheses in the following expression guarantee
the order of grouping operands with the operators:

x = f + (g + h);

118 C for AIX User’s Guide

[] Array Subscripts

A primary expression followed by an expression in [] (square brackets) specifies an element of an
array. The expression within the square brackets is referred to as a subscript.

The primary expression must have a pointer type, and the subscript must have integral type. The result
of an array subscript is an lvalue.

The first element of each array has the subscript 0. The expression contract[35] refers to the 36th
element in the array contract.

In a multidimensional array, you can reference each element (in the order of increasing storage
locations) by incrementing the rightmost subscript most frequently.

For example, the following statement gives the value 100 to each element in the array code[4][3][6]:

for (first = 0; first <= 3; ++first)
for (second = 0; second <= 2; ++second)

for (third = 0; third <= 5; ++third)
code[first][second][third] = 100;

.
->

Structure and Union Member Specification

Two primary operators let you specify structure and union members. The dot (a period) and arrow
(formed by a minus and a greater than symbol) operators are always preceded by a primary expression
and followed by an identifier.

When you use the dot operator, the primary expression must be an instance of a type of structure or
union, and the identifier must name a member of that structure or union. The result is the value
associated with the named structure or union member. The result is an lvalue if the first expression is an
lvalue.

Some sample dot expressions:

roster[num].name
roster[num].name[1]

When you use the arrow operator, the primary expression must be a pointer to a structure or a union,
and the identifier must name a member of the structure or union. The result is the value of the named
structure or union member to which the pointer expression refers. In the following example, name is an
int :

roster -> name

“Operator Precedence and Associativity” on page 67
“Expressions and Operators” on page 67
“Types of Expressions” on page 70
“Operator Precedence and Associativity Table” on page 117
“Unary Operators” on page 120
“Binary Operators” on page 124
“Conditional Operator (?)” on page 131
“Assignment Operators” on page 133
“Comma Operator (,)” on page 136
“Arrays” on page 86
“struct (Structures)” on page 95
“union (Unions)” on page 103
“int, long, short” on page 81

Chapter 6. The C Language 119

Unary Operators

Operators Description

++ Increment

The ++ (increment) operator adds 1 to the value of a scalar operand, or if the operand is a
pointer, increments the operand by the size of the object to which it points. The operand
receives the result of the increment operation. The operand must be a modifiable lvalue of
arithmetic or pointer type.

You can put the ++ before or after the operand. If it appears before the operand, the
operand is incremented, and then the incremented value is used in the expression. If you
put the ++ after the operand, the value of the operand is used in the expression before the
operand is incremented. For example:

play = ++play1 + play2++;

is equivalent to the following three expressions:

play1 = play1 + 1;
play = play1 + play2;
play2 = play2 + 1;

Because the order of evaluation for subexpressions is not specified, avoid using a variable
more than once in an expression in which the variable is incremented. For example, the
following expression might cause i to be incremented before or after the function x is called:

y = x(i) + i++;

The result has the same type as the operand after integral promotion, but is not an lvalue.
The usual arithmetic conversions on the operand are performed.

— Decrement

The — (decrement) operator subtracts 1 from the value of a scalar operand, or if the
operand is a pointer, decreases the operand by the size of the object to which it points. The
operand receives the result of the decrement operation. The operand must be a modifiable
lvalue.

You can put the — before or after the operand. If it appears before the operand, the
operand is decremented, and the decremented value is used in the expression. If the —
appears after the operand, the current value of the operand is used in the expression and
the operand is decremented.

For example:

play = —play1 + play2—;

is equivalent to the following three expressions:

play1 = play1 - 1;
play = play1 + play2;
play2 = play2 - 1;

Because the order of evaluation for subexpressions is not specified, avoid using a variable
more than once in an expression in which the variable is decremented. For example, the
following expression might cause i to be decremented before or after the function x is
called:

y = x(i) + i—;

The result has the same type as the operand after integral promotion, but is not an lvalue.
The usual arithmetic conversions on the operand are performed.

120 C for AIX User’s Guide

+ Unary Plus

The + (unary plus) operator maintains the value of the operand. The operand can have any
arithmetic type. The result is not an lvalue.

The result of the unary plus expression has the same type as the operand after any integral
promotions (for example, char to int). The usual arithmetic conversions on the operand are
performed.

Note: Any plus sign in front of a constant is not part of the constant.

- Unary Minus

The + (unary plus) operator negates the value of the operand. The operand can have any
arithmetic type. The result is not an lvalue.

For example, if quality has the value 100, -quality has the value -100.

The result of the unary minus expression has the same type as the operand after any
integral promotions (for example, char to int). The usual arithmetic conversions on the
operand are performed.

Note: Any plus sign in front of a constant is not part of the constant.

! Logical Negation

The ! (logical negation) operator determines whether the operand evaluates to 0 (false) or
nonzero (true). The expression yields the value 1 (true) if the operand evaluates to 0, and
the value 0 (false) if the operand evaluates to a nonzero value. The operand must have a
scalar data type, but the result of the operation has always type int and is not an lvalue.

The following two expressions are equivalent:

!right;
right == 0;

The usual arithmetic conversions on the operand are performed.

x Bitwise Negation

The x (bitwise negation) operator yields the bitwise complement of the operand. In the
binary representation of the result, every bit has the opposite value of the same bit in the
binary representation of the operand. The operand must have an integral type. The result
has the same type as the operand but is not an lvalue.

Suppose x represents the decimal value 5. The 32-bit binary representation of x is:

00000000000000000000000000000101

The expression xx yields the following result, represented here as a 32-bit binary number:

11111111111111111111111111111010

The 32-bit binary representation of x0 is:

11111111111111111111111111111111

Chapter 6. The C Language 121

& Address

The & (address) operator yields a pointer to its operand. The operand must be an lvalue or
function designator. It cannot be a bit field, nor can it have the storage class register .

If the operand is an lvalue or function, the resulting type is a pointer to the expression type.
For example, if the expression has type int , the result is a pointer to an object having type
int . The result is not an lvalue.

If p_to_y is defined as a pointer to an int and y as an int , the following expression assigns
the address of the variable y to the pointer p_to_y:

p_to_y = &y;

* Indirection

The * (indirection) operator determines the value referred to by the pointer-type operand.

The operand cannot be a pointer to an incomplete type. The operation yields an lvalue or a
function designator if the operand points to a function. Arrays and functions are converted to
pointers.

The type of the operand determines the type of the result. For example, if the operand is a
pointer to an int , the result has type int .

Do not apply the indirection operator to any pointer that contains an address that is not
valid, such as NULL. The result is not defined.

If p_to_y is defined as a pointer to an int and y as an int , the expressions:

p_to_y = &y;
*p_to_y = 3;

cause the variable y to receive the value 3.

Cast(type_name) Type Casting

A cast operator converts the type of the operand to a specified data type and performs the
necessary conversions to the operand for the type.

The cast operator is a type specifier in parentheses. This type and the operand must be
scalar. The type can also be void . The result has the type of the specified data type but is
not an lvalue.

The following expression contains a cast expression, (double)x), to convert an operand of
type int to a value of type double :

int x;
printf(“x=%lf\n”, (double)x);

The function printf receives the value of x as a double . The variable x remains unchanged
by the cast.

122 C for AIX User’s Guide

sizeof Size of an Object

The sizeof operator yields the size in bytes of the operand. Types cannot be defined in a
sizeof expression. Except in extended mode C, the sizeof operation cannot be performed
on

v A bit field

v A function

v An array with unspecified dimensions

v An incomplete type (such as void)

The operand can be the parenthesized name of a type or expression.

The compiler must be able to evaluate the size at compile time. The expression is not
evaluated; there are no side effects. For example, the value of b is 5 from initialization to the
end of program runtime:

#include <stdio.h>
int main(void){
int b = 5;
sizeof(b++);

}

When the compiler is in 32-bit mode, the result is an integer constant. When the compiler is
in 64-bit mode, the result is an unsigned long.

The size of a char object is the size of a byte. For example, if a variable x has type char ,
the expression sizeof(x) always evaluates to 1.

The result of a sizeof operation has type size_t , which is an unsigned integral type defined
in the <stddef.h> header. Header files are described in the AIX Version 4 Files Reference.

The size of an object is determined on the basis of its definition. The sizeof operator does
not perform any conversions. If the operand contains operators that perform conversions,
the compiler does take these conversions into consideration. The following expression
causes the usual arithmetic conversions to be performed. The result of the expression x + 1
has type int (if x has type char , short , or int or any enumeration type) and is equivalent to
sizeof(int):

sizeof (x + 1);

Except in preprocessor directives, you can use a sizeof expression wherever an integral
constant is required. One of the most common uses for the sizeof operator is to determine
the size of objects that are referred to during storage allocation, input, and output functions.

Another use of sizeof is in porting code across platforms. You should use the sizeof
operator to determine the size that a data type represents. For example:

sizeof(int);

Using the sizeof operator on a bit field is not permitted in ansi mode. It is allowed in
extended mode, and returns the same result as sizeof(int).

When applied to a C enumeration constant, sizeof always returns 4 because enumeration
constants in C always have type int or unsigned int . When applied to an enumeration
compiled under the -qenum=small option, the result of the sizeof operation is the size of
the predefined type used to allocate storage for the enumeration.

Chapter 6. The C Language 123

“Operator Precedence and Associativity” on page 67
“Expressions and Operators” on page 67
“Types of Expressions” on page 70
“Operator Precedence and Associativity Table” on page 117
“Primary Operators” on page 118
“Binary Operators”
“Conditional Operator (?)” on page 131
“Assignment Operators” on page 133
“Comma Operator (,)” on page 136
“Arithmetic Conversions Table” on page 137
“Pointers” on page 90
“register” on page 111
“char” on page 79
“int, long, short” on page 81
“float, double” on page 80
“void” on page 85
“enum” on page 255

Binary Operators

Operators Description

* Multiplication

The * (multiplication) operator yields the product of its operands. The operands must have an arithmetic
type. The result is not an lvalue. The usual arithmetic conversions on the operands are performed.

Because the multiplication operator has both associative and commutative properties, the compiler can
rearrange the operands in an expression that contains more than one multiplication operator. For
example, the expression:

sites * number * cost

can be interpreted in any of the following ways:

(sites * number) * cost
sites * (number * cost)
(cost * sites) * number

/ Division

The / (division) operator yields the quotient of its operands. The operands must have an arithmetic type.
The result is not an lvalue.

If both operands are positive integers and the operation produces a remainder, the remainder is
ignored. For example, expression 7 / 4 yields the value 1 (rather than 1.75 or 2).

On all IBM C compilers, if either operand is negative, the result is rounded towards zero.

The result is undefined if the second operand evaluates to 0.

For more information on generating warning messages for division by constant zero, see the -qinfo
compiler option.

The usual arithmetic conversions on the operands are performed.

124 C for AIX User’s Guide

% Remainder

The % (remainder) operator yields the remainder from the division of the left operand by the right
operand. For example, the expression 5 % 3 yields 2. The result is not an lvalue.

Both operands must have an integral type. If the right operand evaluates to 0, the result is undefined. If
either operand has a negative value, the result is such that the following expression always yields the
value of a if b is not 0 and a / b is representable:

(a / b) * b + a % b;

The sign of the remainder is the same as the sign of the quotient.

The usual arithmetic conversions on the operands are performed.

+ Addition

The + (addition) operator yields the sum of its operands. Both operands must have an arithmetic type,
or one operand must be a pointer to an object type and the other operand must have an integral type.

When both operands have an arithmetic type, the usual arithmetic conversions on the operands are
performed. The result has the type produced by the conversions on the operands and is not an lvalue.

A pointer to an object in an array can be added to a value having integral type. The result is a pointer of
the same type as the pointer operand. The result refers to another element in the array, offset from the
original element by the amount specified by the integral value. If the resulting pointer points to storage
outside the array, other than the first location outside the array, the result is undefined. The compiler
does not provide boundary checking on the pointers. For example, after the addition, ptr points to the
third element of the array:

int array[5];
int *ptr;
ptr = array + 2;

- Subtraction

The - (subtraction) operator yields the difference of its operands. Both operands must have an
arithmetic type, or the left operand must have a pointer type and the right operand must have the same
pointer type or an integral type. You cannot subtract a pointer from an integral value.

When both operands have an arithmetic type, the usual arithmetic conversions on the operands are
performed. The result has the type produced by the conversions on the operands and is not an lvalue.

When the left operand is a pointer and the right operand has an integral type, the compiler converts the
value of the right to an address offset. The result is a pointer of the same type as the pointer operand.

If both operands are pointers to the same type, the compiler converts the result to an integral type that
represents the number of objects separating the two addresses. Behavior is undefined if the pointers do
not refer to objects in the same array.

Chapter 6. The C Language 125

<<
>>

Bitwise Shifts

The bitwise shift operators move the bit values of a binary object. The left operand specifies the value to
be shifted. The right operand specifies the number of positions that the bits in the value are to be
shifted. The result is not an lvalue. Both operands have the same precedence and are left-to-right
associative.

Operator
Usage

<< Indicates the bits are to be shifted to the left.

>> Indicates the bits are to be shifted to the right.

Each operand must have an integral type. The compiler performs integral promotions on the operands.
Then the right operand is converted to type int . The result has the same type as the left operand (after
the arithmetic conversions).

The right operand should not have a negative value or a value that is greater than or equal to the width
in bits of the expression being shifted. The result of bitwise shifts on such values is unpredictable.

If the right operand has the value 0, the result is the value of the left operand (after the usual arithmetic
conversions).

The << operator fills vacated bits with zeros. For example, if left_op has the value 4019, the bit pattern
(in 32-bit format) of left_op is:

00000000000000000000111110110011

The expression left_op << 3 yields:

00000000000000000111110110011000

The following table shows the behavior of the >> operator:

Left Operand Type
Result of >>

unsigned type
The vacated bits are filled with zeros.

Nonnegative unsigned type
The integral part of the quotient of the left operand divided by the quantity 2, raised to the
power of the right operand. The vacated bits of a signed value are filled with a copy of the sign
bit of the unshifted value.

Negative signed type
The language does not specify how the vacated bits produced by the >> operator are filled.

126 C for AIX User’s Guide

<
>
<=
>=

Relational

The relational operators compare two operands and determine the validity of a relationship. If the
relationship stated by the operator is true, the value of the result is 1. If false, the value of the result is
0. The result is not an lvalue.

The following table describes the four relational operators:

Operator
Usage

< Indicates whether the value of the left operand is less than the value of the right operand.

> Indicates whether the value of the left operand is greater than the value of the right operand.

<= Indicates whether the value of the left operand is less than or equal to the value of the right
operand.

>= Indicates whether the value of the left operand is greater than or equal to the value of the right
operand.

Both operands must have arithmetic types or be pointers to the same type. The result has type int .

If the operands have arithmetic types, the usual arithmetic conversions on the operands are performed.

When the operands are pointers, the result is determined by the locations of the objects to which the
pointers refer. If the pointers do not refer to objects in the same array, the result is not defined.

Relational operators have left-to-right associativity. For example, the expression:

a < b <= c

is interpreted as:

(a < b) <= c

If the value of a is less than the value of b, the first relationship is true and yields the value 1. The
compiler then compares the value 1 with the value of c.

Chapter 6. The C Language 127

==
!=

Equality

The equality operators, like the relational operators, compare two operands for the validity of a
relationship. The equality operators, however, have a lower precedence than the relational operators. If
the relationship stated by an equality operator is true, the value of the result is 1. Otherwise, the value
of the result is 0.

The following table describes the two equality operators:

Operator
Usage

== Indicates whether the value of the left operand is equal to the value of the right operand.

!= Indicates whether the value of the left operand is not equal to the value of the right operand.

Both operands must have arithmetic types or be pointers to the same type, or one operand must have a
pointer type and the other operand must be a pointer to void or NULL. The result has type int .

If the operands have arithmetic types, the usual arithmetic conversions on the operands are performed.

If the operands are pointers, the result is determined by the locations of the objects to which the
pointers refer.

If one operand is a pointer and the other operand is an integer having the value 0, the == expression is
true only if the pointer operand evaluates to NULL. The != operator evaluates to true if the pointer
operand does not evaluate to NULL.

You can also use the equality operators to compare pointers to members that are of the same type but
do not belong to the same object. The following expressions contain examples of equality and relational
operators:

time < max_time == status < complete
letter != EOF

Note: The equality operator (==) should not be confused with the assignment (=) operator.

For example,

if(x == 3)

evaluates to 1 if x is equal to three. Equality tests like this should be coded with
spaces between the operator and the operands to prevent unintentional assignments.

if(x = 3)

is taken to be true because (x = 3) evaluates to a non-zero value (3). The expression
also assigns the value 3 to x.

128 C for AIX User’s Guide

& Bitwise AND

The & (bitwise AND) operator compares each bit of its first operand to the corresponding bit of the
second operand. If both bits are 1’s, the corresponding bit of the result is set to 1. Otherwise, it sets the
corresponding result bit to 0.

Both operands must have an integral type. The usual arithmetic conversions on each operand are
performed. The result has the same type as the converted operands.

Because the bitwise AND operator has both associative and commutative properties, the compiler can
rearrange the operands in an expression that contains more than one bitwise AND operator.

The following example shows the values of a, b, and the result of a & b represented as 32-bit binary
numbers:

bit pattern of a
00000000000000000000000001011100

bit pattern of b
00000000000000000000000000101110

bit pattern of a & b
00000000000000000000000000001100

Note: The bitwise AND (&) should not be confused with the logical AND (&&) operator. For example, 1
& 4 evaluates to 0 while 1 && 4 evaluates to 1

| Bitwise Exclusive OR

The bitwise exclusive OR operator compares each bit of its first operand to the corresponding bit of the
second operand. If both bits are 1’s or both bits are 0’s, the corresponding bit of the result is set to 0.
Otherwise, it sets the corresponding result bit to 1.

Both operands must have an integral type. The usual arithmetic conversions on each operand are
performed. The result has the same type as the converted operands and is not an lvalue.

Because the bitwise exclusive OR operator has both associative and commutative properties, the
compiler can rearrange the operands in an expression that contains more than one bitwise exclusive
OR operator even when the sub-expressions are explicitly grouped with parentheses.

The following example shows the values of a, b, and the result of a | b represented as 32-bit binary
numbers:

bit pattern of a
00000000000000000000000001011100

bit pattern of b
00000000000000000000000000101110

bit pattern of a | b
00000000000000000000000001110010

Chapter 6. The C Language 129

| Bitwise Inclusive OR

The | (bitwise inclusive OR) operator compares the values (in binary format) of each operand and yields
a value whose bit pattern shows which bits in either of the operands has the value 1. If both of the bits
are 0, the result of that bit is 0; otherwise, the result is 1.

Both operands must have an integral type. The usual arithmetic conversions on each operand are
performed. The result has the same type as the converted operands and is not an lvalue.

Because the bitwise inclusive OR operator has both associative and commutative properties, the
compiler can rearrange the operands in an expression that contains more than one bitwise inclusive OR
operator even when the subexpressions are explicitly grouped with parentheses.

The following example shows the values of a, b, and the result of a | b represented as 32-bit binary
numbers:

bit pattern of a
00000000000000000000000001011100

bit pattern of b
00000000000000000000000000101110

bit pattern of a | b
00000000000000000000000001111110

Note: The bitwise OR (|) should not be confused with the logical OR (||) operator. For example, 1 | 4
evaluates to 5 while 1 || 4 evaluates to 1

&& Logical AND

The && (logical AND) operator indicates whether both operands have a nonzero value. If both operands
have nonzero values, the result has the value 1. Otherwise, the result has the value 0.

Both operands must have a scalar type. The usual arithmetic conversions on each operand are
performed. The result has type int and is not an lvalue.

Unlike the & (bitwise AND) operator, the && operator guarantees left-to-right evaluation of the operands.
If the left operand evaluates to 0, the right operand is not evaluated.

The following examples show how the expressions that contain the logical AND operator are evaluated:

Expression
Result

1 && 0 0

1 && 4 1

0 && 0 0

The following example uses the logical AND operator to avoid division by zero:

(y != 0) && (x / y)

The expression x / y is not evaluated when y != 0 evaluates to 0.

Note: The logical AND (&&) should not be confused with the bitwise AND (&) operator. For example: 1
&& 4 evaluates to 1 while 1 && 4 evaluates to 0

130 C for AIX User’s Guide

|| Logical OR

The || (logical OR) operator indicates whether either operand has a nonzero value. If either operand has
a nonzero value, the result has the value 1. Otherwise, the result has the value 0.

Both operands must have a scalar type. The usual arithmetic conversions on each operand are
performed. The result has type int and is not an lvalue.

Unlike the | (bitwise inclusive OR) operator, the || operator guarantees left-to-right evaluation of the
operands. If the left operand has a nonzero value, the right operand is not evaluated.

The following examples show how expressions that contain the logical OR operator are evaluated:

Expression
Result

1 || 0 1

1 || 4 1

0 || 0 0

The following example uses the logical OR operator to conditionally increment y:

++x || ++y;

The expression ++y is not evaluated when the expression ++x evaluates to a nonzero quantity.

Note: The logical OR (||) should not be confused with the bitwise OR (|) operator. For example: 1 ||
4 evaluates to 1 while 1 | 4 evaluates to 5

“Operator Precedence and Associativity” on page 67
“Expressions and Operators” on page 67
“Types of Expressions” on page 70
“Arithmetic Conversions” on page 76
“Standard Type Conversions” on page 74
“Pointer Conversions” on page 75
“Operator Precedence and Associativity Table” on page 117
“Primary Operators” on page 118
“Unary Operators” on page 120
“Conditional Operator (?)”
“Assignment Operators” on page 133
“Comma Operator (,)” on page 136
“Arithmetic Conversions Table” on page 137
Pointer Arithmetic (page 92)
“int, long, short” on page 81
“info” on page 275

Conditional Operator (?)

A conditional expression is a compound expression that contains a condition (operand1), an expression to
be evaluated if the condition has a non-zero value (operand2), and an expression to be evaluated if the
condition has the value 0 (operand3).

Conditional expressions have right-to-left associativity. The left operand (operand1) is evaluated first, and
then only one of the two remaining operands is evaluated. If that operand’s expression contains or returns
arithmetic types, the usual arithmetic conversions are performed on that expression’s values.

The conditional expression contains one two-part operator. The ? symbol follows the condition, and the :
appears between the two action expressions. All expressions that occur between the ? and : are treated
as one expression.

Chapter 6. The C Language 131

The first operand must have a scalar type. The type of the second and third operands must be one of the
following:

v an arithmetic type

v a compatible pointer, structure, or union type

v void

The second and third operands can also be a pointer or a null pointer constant.

Two object are compatible when they have the same type, but not necessarily the same type qualifiers
(volatile or const). Pointer objects are compatible if they have the same type, or are pointers to void .

The first expression is evaluated first. If the first expression returns a non-zero value, the second
expression is evaluated, converted to the result type, and becomes the value of the conditional expression.
The third operand is ignored in this case. If the first expression instead returns a zero value, the third
operand is evaluated, converted to the result type, and becomes the value of the conditional expression.
The second expression is ignored in this case.

The types of the second and third operands determine the type of the result as shown below:

Type of One Operand Type of Other Operand Type of Result

Arithmetic Arithmetic Arithmetic type after usual arithmetic
conversions

Structure or union type Compatible structure or union type Structure or union type with all the
qualifiers on both operands

void void void

Pointer to compatible type Pointer to compatible type Pointer to type with all the qualifiers
specified for the type

Pointer to type NULL pointer (the constant 0) Pointer to type

Pointer to object or incomplete type Pointer to void Pointer to void with all the qualifiers
specified for the type

“Operator Precedence and Associativity” on page 67
“Expressions and Operators” on page 67
“Types of Expressions” on page 70
“Examples Using the Conditional Operator”
“Operator Precedence and Associativity Table” on page 117
“Primary Operators” on page 118
“Unary Operators” on page 120
“Binary Operators” on page 124
“Assignment Operators” on page 133
“Comma Operator (,)” on page 136
“Arithmetic Conversions Table” on page 137
Pointer Arithmetic (page 92)
“void” on page 85

Examples Using the Conditional Operator

The following expression determines which variable has the greater value, y or z, and assigns the greater
value to the variable x.

x = (y > z) ? y : z;

The following is an equivalent statement:

132 C for AIX User’s Guide

if (y > z)
x = y;

else
x = z;

The following expression calls the function printf, which receives the value of the variable c if c evaluates
to a digit. Otherwise, printf receives the character constant ’x’ .

printf(“ c = %c\n”, isdigit(c) ? c : ’x’);

If the last operand of a conditional expression contains an assignment operator, use parentheses to
ensure the expression evaluates properly. For example, the == operator has higher precedence than the ?:
operator in the following expression:

int i, j, k;
(i == 7) ? j ++ : k = j;

This expression generates and error because it is interpreted as if it were parenthesized this way:

int i, j, k;
((i == 7) ? j ++ : k) = j;

The value k, and not k = j, is treated as the third operand. This error arrises because a conditional
expression is not an lvalue, and the assignment is not valid. To make the expression evaluate correctly,
enclose the last operand in parenetheses. For example:

int i, j, k;
(i == 7) ? j ++ : (k = j);

“Operator Precedence and Associativity” on page 67
“Expressions and Operators” on page 67
“Types of Expressions” on page 70
“lvalues” on page 70
“Operator Precedence and Associativity Table” on page 117
“Conditional Operator (?)” on page 131

Assignment Operators

Operators Description

Chapter 6. The C Language 133

= Simple Assignment

The simple assignment operator stores the value of the right operand in the object designated by the
left operand.

Both operands must have arithmetic types, the same structure type, or the same union type. Otherwise,
both operands must be pointers to the same type, or the left operand must be a pointer and the right
operand must be the constant 0 or NULL. If the language level is extended , both operands can be
pointers to different types.

If both operands have arithmetic types, the system converts the type of the right operand to the type of
the left operand before the assignment.

If the left operand is a pointer and the right operand is the constant 0, the result is NULL.

Pointers to void can appear on either side of the simple assignment operator.

A packed structure or union can be assigned to a nonpacked structure or union of the same type, and a
nonpacked structure or union can be assigned to a packed structure or union of the same type.

If one operand is packed and the other is not, the layout of the right operand is remapped to match the
layout of the left. This remapping of structures might degrade performance. For efficiency, when you
perform assignment operations with structures or unions, you should ensure that both operands are
either packed or nonpacked.

Note: If you assign pointers to structures or unions, the objects they point to must both be either
packed or nonpacked.

You can assign values to operands with the type qualifier volatile . You cannot assign a pointer of an
object with the type qualifier const to a pointer of an object without the const type qualifier. For
example:

const int *p1;
int *p2;
p2 = p1; /* this is NOT allowed */
p1 = p2; /* this IS allowed */

Note: The assignment (=) operator should not be confused with the equality operator (==).

For example,

if(x == 3)

evaluates to 1 if x is equal to three. Equality tests like this should be coded with
spaces between the operator and the operands to prevent unintentional assignments.

if(x = 3)

is taken to be true because (x = 3) evaluates to a non-zero value (3). The expression
also assigns the value 3 to x.

134 C for AIX User’s Guide

+=
-=
*=
/=
%=
<<=
>>=
&=
|=
|=

Compound Assignment

The compound assignment operators consist of a binary operator and the simple assignment operator.
They perform the operation of the binary operator on both operands and give the result of that operation
to the left operand.

The following table shows the operand types of compound assignment expressions:

Operator
Left Operand

Right Operand

+=or -=
Arithmetic

Arithmetic

+=or -=
Pointer

Integral type

=, /, and %/
Arithmetic

Arithmetic

<<=, >>=, &=, |=, and |=
Integral type

Integral type

Note that the expression a *= b + c is equivalent to a = a * (b + c), and not a = a * b + c.

“Operator Precedence and Associativity” on page 67
“Expressions and Operators” on page 67
“Types of Expressions” on page 70
“Examples Using Compound Assignment Operators”
“Operator Precedence and Associativity Table” on page 117
“Primary Operators” on page 118
“Unary Operators” on page 120
“Binary Operators” on page 124
“Conditional Operator (?)” on page 131
“Comma Operator (,)” on page 136
“Data Type Qualifiers” on page 115

Examples Using Compound Assignment Operators

The table below lists the compound assignment operators and shows an expression using each operator:

Operator Example Equivalent Expression

+= index += 2 index = index + 2

-= *(pointer++) -= 1 *pointer = *(pointer++) - 1

*= bonus *= increase bonus = bonus * increase

/= time /= hours time = time / hours

%= allowance %= 1000 allowance = allowance % 1000

<<= result <<= num result = result << num

>>= form >>= 1 form = form >> 1

&= mask &= 2 mask = mask & 2

Chapter 6. The C Language 135

|= test |= pre_test test = test | pre_test

|= flag |= ON flag = flag | ON

Although the equivalent expression column shows the left operands (from the example column) evaluated
twice, the left operand is evaluated only once.

“Assignment Operators” on page 133

Comma Operato r (,)

A comma expression contains two operands separated by a comma. Although the compiler evaluates both
operands, the value of the right operand is the value of the expression. The left operand is evaluated,
possibly producing side effects, and the value is discarded. The result of a comma expression is not an
lvalue.

Both operands of a comma expression can have any type. All comma expressions have left-to-right
associativity. The left operand is fully evaluated before the right operand.

In the following example, if omega has the value 11, the expression increments delta and assigns the value
3 to alpha:

alpha = (delta++, omega % 4);

Any number of expressions separated by commas can form a single expression. The compiler evaluates
the leftmost expression first. The value of the rightmost expression becomes the value of the entire
expression.

For example, the value of the expression:
intensity++, shade * increment, rotate(direction);

is the value of the expression:
rotate(direction)

The primary use of the comma operator is to produce side effects in the following situations:

v Calling a function

v Entering or repeating an iteration loop

v Testing a condition

v Other situations where a side effect is required but the result of the expression is not immediately
needed

To use the comma operator in a context where the comma has other meanings, such as in a list of
function arguments or a list of initializers, you must enclose the comma operator in parentheses. For
example, the function

f(a, (t = 3, t + 2), c);

has only three arguments: the value of a, the value 5, and the value of c. The value of the second
argument is the result of the comma expression in parentheses:

t = 3, t + 2

136 C for AIX User’s Guide

which has the value 5.

“Operator Precedence and Associativity” on page 67
“Expressions and Operators” on page 67
“Types of Expressions” on page 70
“Examples Using the Comma Operator (,)”
“Operator Precedence and Associativity Table” on page 117
“Primary Operators” on page 118
“Unary Operators” on page 120
“Binary Operators” on page 124
“Conditional Operator (?)” on page 131
“Assignment Operators” on page 133

Examples Using the Comma Operato r (,)

The table below gives some examples of the uses of the comma operator:

Statement Effects

for (i=0; i<2; ++i, f()); A for statement in which i is incremented and f() is called at each iteration.

if (f(), ++i, i>1)
{ /* ... */ }

An if statement in which function f() is called, variable i is incremented, and
variable i is tested against a value. The first two expressions within this comma
expression are evaluated before the expression i>1. Regardless of the results of
the first two expressions, the third is evaluated and its result determines whether
the if statement is processed.

func((++a, f(a))); A function call to func() in which a is incremented, the resulting value is passed
to a function f(), and the return value of f() is passed to func(). The function
func() is passed only a single argument, because the comma expression is
enclosed in parentheses within the function argument list.

“Comma Operator (,)” on page 136

Arithmetic Conversions Table

Arithmetic conversions are used for matching operands of arithmetic operators, and proceed in the
following order:

Operand Type Conversion

One operand has long double type The other operand is converted to long double type.

One operand has double type The other operand is converted to double .

One operand has float type The other operand is converted to float .

One operand has unsigned long int type The other operand is converted to unsigned long int .

One operand has unsigned long long int type The other operand is converted to unsigned long long
int .

One operand has unsigned int type and the other
operand has long int type and the value of the unsigned
int can be represented in a long int

The operand with unsigned int type is converted to long
int .

One operand has unsigned int type and the other
operand has long int type and the value of the unsigned
int cannot be represented in a long int

Both operands are converted to unsigned long int

One operand has long int type The other operand is converted to long int .

Chapter 6. The C Language 137

Operand Type Conversion

One operand has long long int type The other operand is converted to long long int .

One operand has unsigned int type The other operand is converted to unsigned int .

Both operands have int type The result is type int .

Note: The rules for arithmetic conversions in extended mode are different, and are described in
“Arithmetic Conversions for extended Level C” on page 167.

“Arithmetic Conversions” on page 76
“Arithmetic Conversions for extended Level C” on page 167

Functions

Function Declarations

A function declaration establishes the name and the parameters of the function.

A function is declared implicitly by its appearance in an expression if it has not been defined or declared
previously; the implicit declaration is equivalent to a declaration of extern int func_name(). The default
return type of a function is “int, long, short” on page 81 .

To indicate that the function does not return a value, declare it with a return type of “void” on page 85 .

A function cannot be declared as returning a data object having a “Data Type Qualifiers” on page 115 or
“Data Type Qualifiers” on page 115 type but it can return a pointer to a volatile or const object. Also, a
function cannot return a value that has a type of array or function.

If the called function returns a value that has a type other than “int, long, short” on page 81 , you must
declare the function before the function call. Even if a called function returns a type int , explicitly declaring
the function prior to its call is good programming practice.

Some declarations do not have parameter lists; the declarations simply specify the types of parameters
and the return values, such as in the following example:

int func(int,long);

“Functions” on page 77
“Function Calls” on page 72
“Example of the main() Function” on page 145
“Examples of Function Declarations” on page 139
“Examples of Function Definitions” on page 142
“main() Function” on page 144
“Function Definitions” on page 139

138 C for AIX User’s Guide

Examples of Function Declarations

The following example defines the function absolute with the return type double . Because this is a
non-integer return type, absolute is declared prior to the function call.

#include <stdio.h>
double absolute(double);
int main(void)
{

double f = -3.0;
printf(“absolute number = %lf\n”, absolute(f));

}
double absolute(double number)
{

if (number < 0.0)
number = -number;

return number;
}

The following example defines the function absolute with the return type void . Within the function main,
absolute is declared with the return type void .

#include <stdio.h>
int main(void)
{

void absolute(float);
float f = -8.7;
absolute(f);

}
void absolute(float number)
{

if (number < 0.0)
number = -number;

printf(“absolute number = %f\n”, number);
}

“Functions” on page 77
“Function Calls” on page 72
“Examples of Function Calls” on page 73
“Example of the main() Function” on page 145
“Examples of Function Definitions” on page 142
“main() Function” on page 144
“Function Declarations” on page 138
“Function Definitions”
“float, double” on page 80
“void” on page 85

Function Definitions

A function definition (either prototype or nonprototype) contains the following:

v An optional storage class specifier extern or static , which determines the scope of the function. If a
storage class specifier is not given, the function has external linkage.

v An optional type specifier, which determines the type of value that the function returns. If a type
specifier is not given, the function has type int .

Chapter 6. The C Language 139

v A function declarator, which provides the function with a name, can further describe the type of the
value that the function returns, and can list any parameters that the function expects and their types.
The parameters that the function is expecting are enclosed in parentheses.

v A block statement, which contains data definitions and code.

A nonprototype function definition can also have a list of parameter declarations, which describe the types
of parameters that the function receives. In nonprototype functions, parameters that are not declared have
type int .

A function can be called by itself or by other functions. Unless a function definition has the storage class
specifier static , the function also can be called by functions that appear in other files or modules.
Functions with a storage class specifier of static can only be directly invoked from within the same source
file.

If a function has the storage class specifier static or a return type other than int , the function definition or
a declaration for the function must appear before, and in the same file as, a call to the function. If a
function definition has external linkage and a return type of int , calls to the function can be made before it
is visible because an implicit declaration of extern int func(); is assumed.

All declarations for a given function must be compatible; that is, the return type is the same and the
parameters have the same type.

The default type for the return value and parameters of a function is int , and the default storage class
specifier is extern . If the function does not return a value or it is not passed any parameters, use the
keyword void as the type specifier.

You can include ellipses (...) at the end of your parameter list to indicate that a variable number of
arguments will be passed to the function. Parameter promotions are performed, and no type checking is
done.

You cannot declare a function as a structure or union member.

A function cannot have a return type of function, array, or any type having the volatile or const qualifier.
However, it can return a pointer to an object with a volatile or const type.

You cannot define an array of functions. You can, however, define an array of pointers to functions.

Function Declarator
The function declarator shown in the function definition syntax diagram names the function and lists the
function parameters. It contains an identifier that names the function and a list of the function parameters.
You should always use prototype function declarators because of the parameter checking that can be
performed. The detailed syntax structure for the function declarator is:

140 C for AIX User’s Guide

where:

parameter_declaration_list

abstract_declarator

Prototype Function Declarators
Each parameter should be declared within the function declarator. Any calls to the function must pass the
same number of arguments as there are parameters in the declaration.

Nonprototype Function Declarators
Each parameter should be declared in a parameter declaration list following the declarator. If a parameter
is not declared, it has type int .

char and short parameters are widened to int , and float to double . No type checking between the
argument type and the parameter type is done for nonprototyped functions. As well, there are no checks to
ensure that the number of arguments matches the number of parameters.

Each value that a function receives should be declared in a parameter declaration list for nonprototype
function definitions that follows the declarator.

A parameter declaration determines the storage class specifier and the data type of the value.

The only storage class specifier allowed is the register storage class specifier. Any type specifier for a
parameter is allowed. If you do not specify the register storage class specifier, the parameter will have the
auto storage class specifier. If you omit the type specifier and you are not using the prototype form to
define the function, the parameter will have type int .

int func(i,j)
{

/* i and j have type int */
}

You cannot declare a parameter in the parameter declaration list if it is not listed within the declarator.

Ellipsis and void
An ellipsis at the end of a parameter declaration indicates that the number of arguments is equal to, or
greater than, the number of specified argument types. At least one parameter declaration must come
before the ellipsis. Where it is permitted, an ellipsis preceded by a comma is equal to a simple ellipsis.

int f(int,...);

The comma before the ellipsis is optional.

Chapter 6. The C Language 141

Parameter promotions are performed as needed, but no type checking is done on the variable arguments.

You can declare a function with no arguments in two ways:
int f(void); /* f() takes no parameters */

int f(); /* f() takes any number */
/* or type or parameters */

An empty argument declaration list or the argument declaration list of (void) indicates a function that
takes no arguments. void cannot be used as an argument type, although types derived from void (such
as pointers to void) can be used.

In the following example, the function f() takes one integer parameter and returns no value, while g()
expects no parameters and returns an integer.

void f(int)
int g(void)

Function Body
The body of a function is a block statement.

The following function body contains a definition for the integer variable big_num, an if-else control
statement, and a call to the function printf :

void largest(int num1, int num2)
{

int big_num;
if (num1 >= num2)

big_num = num1;
else

big_num = num2;
printf(“big_num = %d\n”, big_num);

}

“Functions” on page 77
“Function Calls” on page 72
“Example of the main() Function” on page 145
“Examples of Function Declarations” on page 139
“Examples of Function Definitions”
“main() Function” on page 144
“Function Declarations” on page 138
“extern” on page 109
“register” on page 111
“static” on page 112
“char” on page 79
“float, double” on page 80
“int, long, short” on page 81
“void” on page 85

Examples of Function Definitions

In the following example, ary is an array of two function pointers. Type casting is performed to the values
assigned to ary for compatibility:

#include <stdio.h>
int func1(void);
void func2(double a);
int main(void)
{

142 C for AIX User’s Guide

double num;
int retnum;
void (*ary[2]) ();
ary[0] = ((void(*)())func1);
ary[1] = ((void(*)())func2);
((int (*)())ary[0])(); /* calls func1 */
((void (*)(double))ary[1])(num); /* calls func2 */

}
int func1(void)
{

int number=3;
return number;

}
void func2(double a)
{

a=333.3333;
}

The following example is a complete definition of the function sum:
int sum(int x,int y)
{

return(x + y);
}

The function sum has external linkage, returns an object that has type int , and has two parameters of type
int declared as x and y. The function body contains a single statement that returns the sum of x and y.

The following example contains a function declarator sort with table declared as a pointer to int , and
length declared as type int . Note that arrays as parameters are implicitly converted to a pointer to the
type.

void sort(int table[], int length)
{

int i, j, temp;
for (i = 0; i < length - 1; i++)

for (j = i + 1; j < length; j++)
if (table[i] > table[j])
{

temp = table[i];
table[i] = table[j];
table[j] = temp;

}
}

The following examples contain prototype function declarators:
double square(float x);
int area(int x, int y);
static char *search(char);

The following example shows how a typedef function can be used in a function declarator:
typedef struct tm_fmt { int minutes;

int hours;
char am_pm;

} struct_t;
long time_seconds(struct_t arrival)

The following function set_date declares a pointer to a structure of type date as a parameter. date_ptr has
the storage class specifier register .

Chapter 6. The C Language 143

set_date(register struct date *date_ptr)
{

date_ptr->mon = 12;
date_ptr->day = 25;
date_ptr->year = 87;

}

“Functions” on page 77
“Function Calls” on page 72
“Examples of Function Calls” on page 73
“Example of the main() Function” on page 145
“Examples of Function Declarations” on page 139
“main() Function”
“Function Declarations” on page 138
“Function Definitions” on page 139
“typedef” on page 115
“register” on page 111
“int, long, short” on page 81

main() Function

The function main can be declared with or without arguments that pass program parameters and
environment settings to the program. Although any name can be given to these parameters, they are
usually referred to as argc, argv, and envp.

argc Is the argument count. It has type int and indicates how many arguments are entered on the
command line.

argv Is the argument vector. It is an array of pointers to char array objects. These char objects are
null-terminated strings that are the program arguments passed to the program when it is invoked.

envp Is an optional environment pointer. It is an array of pointers to char objects that are the
environment variables available to the program. These have the form name=value. The system
determines the value of this parameter during program initialization (before calling main). Because
you can use the function getenv to get the value of these pointers, there is usually no need to
declare this parameter.

The value of argc indicates the number of pointers in the array argv. If a program name is available, the
first element in argv points to a character array that contains the program name or the invocation name of
the program that is being run. If the name cannot be determined, the first element in argv points to a null
character.

This name is counted as one of the arguments to the function main . For example, if only the program
name is entered on the command line, argc has a value of 1 and argv[0] points to the program name.

Regardless of the number of arguments entered on the command line, argv[argc] always contains NULL.

“Functions” on page 77
“Function Calls” on page 72
“Statement Blocks” on page 159
“Type Specifiers” on page 66
“Examples of Function Calls” on page 73
“Examples of Function Declarations” on page 139
“Examples of Function Definitions” on page 142
“Function Declarations” on page 138
“Statement Blocks” on page 159
“char” on page 79
“int, long, short” on page 81

144 C for AIX User’s Guide

Example of the main() Function

The following program backward prints the arguments entered on a command line such that the last
argument is printed first:

#include <stdio.h>
int main(int argc, char *argv[])
{

while (—argc > 0)
printf(“%s ”, argv[argc]);

}

Invoking this program from a command line with the following:
backward string1 string2

gives the following output:
string2 string1

The arguments argc and argv would contain the following values:

Object Value

argc 3

argv[0] pointer to string“backward”

argv[1] pointer to string“string1”

argv[2] pointer to string“string2”

argv[3] NULL

“Functions” on page 77
“Function Calls” on page 72
“Examples of Function Declarations” on page 139
“Examples of Function Definitions” on page 142
“main() Function” on page 144
“Function Declarations” on page 138
“Function Definitions” on page 139

Program Statement Keywords

break

A break statement lets you end an iterative (do , for , while) or switch statement and exit from it at any
point other than the logical end.

In an iterative statement, the break statement ends the loop and moves control to the next statement
outside the loop. Within nested statements, the break statement ends only the smallest enclosing do , for ,
switch , or while statement.

In a switch body, the break passes control out of the switch body to the next statement outside the
switch body.

Chapter 6. The C Language 145

Restrictions
A break statement can appear only in the body of an iterative statement or a switch statement.

“Examples Using the break Statement”
“do” on page 148
“for” on page 149
“switch” on page 155
“while” on page 158

Examples Using the break Statement

The following example shows a break statement in the action part of a for statement. If the ith element of
the array string is equal to ’\0’ , the break statement causes the for statement to end.

for (i = 0; i < 5; i++)
{

if (string[i] == '\0')
break;

length++;
}

The following is an equivalent for statement, if string does not contain any embedded null characters:
for (i = 0; (i < 5)&& (string[i] != '\0'); i++)
{

length++;
}

The following example shows a break statement in a nested iterative statement. The outer loop goes
through an array of pointers to strings. The inner loop examines each character of the string. When the
break statement is processed, the inner loop ends and control returns to the outer loop.

/**
** This program counts the characters in the strings that are
** part of an array of pointers to characters. The count stops
** when one of the digits 0 through 9 is encountered
** and resumes at the beginning of the next string.
**/
#include <stdio.h>
#define SIZE 3
int main(void)
{

static char *strings[SIZE] = { “ab”, “c5d”, “e5” };
int i;
int letter_count = 0;
char *pointer;
for (i = 0; i <SIZE; i++) /* for each string */

/* for each character */
for (pointer=strings[i]; *pointer != '\0' ; ++pointer)
{ /* if a number */

if (*pointer >='0' && *pointer <= '9')
break;

letter_count++;
}

printf(“letter count=”%d\n“,” letter_count);
}

The program produces the following output:
letter count = 4

The following example is a switch statement that contains several break statements. Each break
statement indicates the end of a specific clause and ends the switch statement.

146 C for AIX User’s Guide

#include <stdio.h>
enum {morning, afternoon, evening} timeofday = morning;
int main(void) {

switch (timeofday) {
case (morning):

printf(“Good Morning\n”);
break;

case (evening):
printf(“Good Evening\n”);
break;

default:
printf(“Good Day, eh\n”);

}
}

“break” on page 145

continue

A continue statement lets you end the current iteration of a loop. Program control is passed from the
continue statement to the end of the loop body.

The continue statement ends the processing of the action part of an iterative (do , for , or while) statement
and moves control to the condition part of the statement. If the iterative statement is a for statement,
control moves to the third expression in the condition part of the statement, then to the second expression
(the test) in the condition part of the statement.

Within nested statements, the continue statement ends only the current iteration of the do , for , or while
statement immediately enclosing it.

Restrictions
A continue statement can only appear within the body of an iterative statement.

“Examples Using the continue Statement”
“do” on page 148
“for” on page 149
“while” on page 158

Examples Using the continue Statement

The following example shows a continue statement in a for statement. The continue statement causes
processing to skip over those elements of the array rates that have values less than or equal to 1.

/**
** This example shows a continue statement in a for statement.
**/
#include <stdio.h>
#define SIZE 5
int main(void)
{

int i;
static float rates[SIZE] = { 1.45, 0.05, 1.88, 2.00, 0.75 };
printf(“Rates over 1.00\n”);

Chapter 6. The C Language 147

for (i = 0; i < SIZE; i++)
{

if (rates[i] <= 1.00) /* skip rates <= 1.00 */
continue;

printf(“rate = %.2f\n”, rates[i]);
}
return(0);}

The program produces the following output:
Rates over 1.00
rate = 1.45
rate = 1.88
rate = 2.00

The following example shows a continue statement in a nested loop. When the inner loop encounters a
number in the array strings, that iteration of the loop ends. Processing continues with the third expression
of the inner loop. The inner loop ends when the ’\0’ escape sequence is encountered.

/**
** This program counts the characters in strings that are part
** of an array of pointers to characters. The count excludes
** the digits 0 through 9.
**/
#include <stdio.h>
#define SIZE 3
int main(void)
{

static char *strings[SIZE] = { “ab”, “c5d”, “e5” };
int i;
int letter_count = 0;
char *pointer;
for (i = 0; i <SIZE; i++) /* for each string */

/* for each each character */
for (pointer=“strings[i];” *pointer !=“\0” ; ++pointer)
{ /* if a number */

if (*pointer>= '0' && *pointer <= '9')
continue;

letter_count++;
}

printf(“letter count=”%d\n",“ letter_count);
}

The program produces the following output:
letter count = 5

Compare this program with the third program in “Examples Using the break Statement” on page 146,
which uses the break statement to perform a similar function.

“continue” on page 147

do

A do statement repeatedly runs a statement until the test expression evaluates to 0. Because of the order
of processing, the statement is run at least once.

148 C for AIX User’s Guide

The body of the loop is run before the controlling while clause is evaluated. Further processing of the do
statement depends on the value of the while clause. If the while clause does not evaluate to 0, the
statement runs again. When the while clause evaluates to 0, the statement ends. The controlling
expression must be evaluate to a scalar type.

A break , return , or goto statement can cause the processing of a do statement to end, even when the
while clause does not evaluate to 0.

“Example Using the do Statement”
“break” on page 145
“goto” on page 151
“return” on page 154
“while” on page 158

Example Using the do Statement

The following statement prompts the user to enter a 1. If the user enters a 1, the statement ends. If not, it
displays another prompt.

#include <stdio.h>
int main (void)
{

int reply1;
do
{

printf(“Enter a 1\n”);
scanf(“%d”, &reply1);

} while (reply1 != 1);
return(0);

}

“do” on page 148

Expressions

An expression statement contains an expression. The expression can be null.

An expression statement evaluates the given expression, which can then be assigned to a variable or
used as an argument in a function call. Some examples are:

printf(“Account Number: \n”); /* call to the printf */

marks = dollars * exch_rate; /* assignment to marks */

(difference <0) ? ++losses : ++gain; /* conditional increment */

switches=flags | BIT_MASK; /* assignment to switches */

“Types of Expressions” on page 70

for

A for statement lets you do the following:

v Evaluate an expression before the first iteration of the statement (initialization)

Chapter 6. The C Language 149

v Specify an expression to determine whether or not the statement should be processed (controlling part)

v Evaluate an expression after each iteration of the statement

v Repeatedly process the statement if the controlling part does not evaluate to zero.

Arguments to the for statement are:

expression1 Is the initialization expression. It is evaluated only before the statement is processed for the
first time. You can use this expression to initialize a variable. If you do not want to evaluate
an expression prior to the first iteration of the statement, you can omit this expression.

expression2 Is the controlling part. It is evaluated before each iteration of the statement. It must evaluate
to a scalar type.

If it evaluates to 0 (zero), the statement is not processed and control moves to the next
statement following the for statement. If expression2 does not evaluate to 0, the statement is
processed. If you omit expression2, it is as if the expression had been replaced by a nonzero
constant, and the for statement is not terminated by failure of this condition.

expression3 Is evaluated after each iteration of the statement. You can use this expression to increase,
decrease, or reinitialize a variable. This expression is optional.

A break , return , or goto statement can cause a for statement to end, even when the second expression
does not evaluate to 0. If you omit expression2, you must use a break , return , or goto statement to end
the for statement.

“Examples Using the for Statement”
“break” on page 145
“goto” on page 151
“return” on page 154

Examples Using the for Statement

The following for statement prints the value of count 20 times. The for statement initially sets the value of
count to 1. After each iteration of the statement, count is incremented.

for (count = 1; count <= 20; count++)
printf(“count = %d\n”, count);

The following sequence of statements accomplishes the same task. Note the use of the while statement
instead of the for statement.

count = 1;
while (count <= 20)
{

printf(“count = %d\n”, count);
count++;

}

The following for statement does not contain an initialization expression:
for (; index > 10; —index)
{

list[index] = var1 + var2;
printf(“list[%d] = %d\n”, index, list[index]);

}

The following for statement will continue running until scanf receives the letter e.

150 C for AIX User’s Guide

for (;;)
{

scanf(“%c”, &letter);
if (letter == '\n')

continue;
if (letter == 'e')

break;
printf(“You entered the letter %c\n”, letter);

}

The following for statement contains multiple initializations and increments. The comma operator makes
this construction possible.

for (i = 0, j = 50; i < 10; ++i, j += 50)
{

printf(“i = %2d and j = %3d\n”, i, j);
}

The following example shows a nested for statement. It prints the values of an array having the
dimensions [5][3].

for (row = 0; row <5; row++)
for (column=0; column < 3; column++)

printf(“%d\n”, table[row][column]);

The outer statement is processed as long as the value of row is less than 5. Each time the outer for
statement is executed, the inner for statement sets the initial value of column to zero and the statement of
the inner for statement is executed 3 times. The inner statement is executed as long as the value of
column is less than 3.

“for” on page 149
“break” on page 145
“continue” on page 147

goto

A goto statement causes your program to unconditionally transfer control to the statement associated with
the label specified on the goto statement.

Because the goto statement can interfere with the normal sequence of processing, it makes a program
more difficult to read and maintain. Often, a break statement, a continue statement, or a function call can
eliminate the need for a goto statement.

If you use a goto statement to transfer control to a statement inside of a loop or block, initializations of
automatic storage for the loop do not take place and the result is undefined. The label must appear in the
same function as the goto .

“Example Using the goto Statement” on page 152
“break” on page 145
“continue” on page 147

Chapter 6. The C Language 151

Example Using the goto Statement

The following example shows a goto statement that is used to jump out of a nested loop. This function
could be written without using a goto statement.

void display(int matrix[3][3])
{

int i, j;
for (i = 0; i < 3; i++)

for (j = 0; j < 3; j++)
{

if ((matrix[i][j] < 1) || (matrix[i][j] > 6))
goto out_of_bounds;

printf(“matrix[%d][%d] = %d\n”, i, j, matrix[i][j]);
}

return;
out_of_bounds: printf(“number must be 1 through 6\n”);

}

“goto” on page 151

if / else

An if statement lets you conditionally process a statement when the specified test expression evaluates to
a nonzero value. The expression must evaluate to a scalar type. You can optionally specify an else clause
on the if statement. If the test expression evaluates to 0 and an else clause exists, the statement
associated with the else clause runs. If the test expression evaluates to a nonzero value, the statement
following the expression runs and the else clause is ignored.

When if statements are nested and else clauses are present, a given else is associated with the closest
preceding if statement within the same block.

“Examples Using the if/else Statement”

Examples Using the if/else Statement

The following example causes grade to receive the value A if the value of score is greater than or equal to
90.

if (score >= 90)
grade = 'A';

The following example displays Number is positive if the value of number is greater than or equal to 0. If
the value of number is less than 0, it displays Number is negative.

if (number >= 0)
printf(“Number is positive\n”);

else
printf(“Number is negative\n”);

The following example shows a nested if statement:
if (paygrade == 7)

if (level >= 0 && level <= 8)
salary *= 1.05;

152 C for AIX User’s Guide

else
salary *= 1.04;

else
salary *= 1.06;

The following example shows a nested if statement that does not have an else clause. Because an else
clause always associates with the closest if statement, braces might be needed to force a particular else
clause to associate with the correct if statement. In this example, omitting the braces would cause the
else clause to associate with the nested if statement.

if (kegs > 0) {
if (furlongs > kegs)

fpk = furlongs/kegs;
}
else

fpk = 0;

The following example shows an if statement nested within an else clause. This example tests multiple
conditions. The tests are made in order of their appearance. If one test evaluates to a nonzero value, a
statement runs and the entire if statement ends.

if (value > 0)
++increase;

else if (value == 0)
++break_even;

else
++decrease;

“if / else” on page 152

Null Statement

The null statement performs no operation.

A null statement can hold the label of a labeled statement or complete the syntax of an iterative statement.

“Examples Using the Null Statement”

Examples Using the Null Statement

The following example initializes the elements of the array price. Because the initializations occur within
the for expressions, a statement is only needed to finish the for syntax; no operations are required.

for (i = 0; i < 3; price[i++] = 0)
;

A null statement can be used when a label is needed before the end of a block statement. For example:
void func(void) {

if (error_detected)
goto depart;

/* further processing */
depart: ; /* null statement required */

}

Chapter 6. The C Language 153

“Null Statement” on page 153

return

A return statement ends the processing of the current function and returns control to the caller of the
function.

A return statement in a function is optional. The compiler issues a warning if a return statement is not
found in a function declared with a return type. If the end of a function is reached without encountering a
return statement, control is passed to the caller as if a return statement without an expression were
encountered. A function can contain multiple return statements.

Value of a return Expression and Function Value
If an expression is present on a return statement, the value of the expression is returned to the caller. If
the data type of the expression is different from the function return type, conversion of the return value
takes place as if the value of the expression were assigned to an object with the same function return
type.

If an expression is not present on a return statement, the value of the return statement is undefined. If an
expression is not given on a return statement in a function declared with a nonvoid return type, a warning
message is issued, and the result of calling the function is unpredictable.

You cannot use a return statement with an expression when the function is declared as returning type
void .

“Examples Using the return Statement”
“Expressions” on page 149

Examples Using the return Statement

The following are examples of return statements:
return; /* Returns no value */
return result; /* Returns the value of result */
return 1; /* Returns the value 1 */
return (x * x); /* Returns the value of x * x */

The following function searches through an array of integers to determine if a match exists for the variable
number. If a match exists, the function match returns the value of i. If a match does not exist, the function
match returns the value -1 (negative one).

int match(int number, int array[], int n)
{

int i;
for (i = 0; i < n; i++)

if (number == array[i])
return (i);

return(-1);
}

154 C for AIX User’s Guide

“return” on page 154

switch

A switch statement lets you transfer control to different statements within the switch body depending on
the value of the switch expression. The switch expression must evaluate to an integral value.

The body of the switch statement contains case clauses that consist of

v A case label

v An optional default label

v A case expression

v A list of statements.

If the value of the switch expression equals the value of one of the case expressions, the statements
following that case expression are processed. If not, the default label statements, if any, are processed.

The switch body is enclosed in braces and can contain definitions, declarations, case clauses, and a
default clause. Each case clause and default clause can contain statements.

Note: An initializer within a type_definition, file_scope_data_declaration or block_scope_data_declaration is
ignored.

A case clause contains a case label followed by any number of statements.

A case label contains the word case followed by an integral constant expression and a colon. Anywhere
you can put one case label, you can put multiple case labels.

A default clause contains a default label followed by one or more statements. You can put a case label on
either side of the default label. A switch statement can have only one default label.

Chapter 6. The C Language 155

The switch statement passes control to the statement following one of the labels or to the statement
following the switch body. The value of the expression that precedes the switch body determines which
statement receives control. This expression is called the switch expression.

The value of the switch expression is compared with the value of the expression in each case label. If a
matching value is found, control is passed to the statement following the case label that contains the
matching value. If there is no matching value but there is a default label in the switch body, control
passes to the default labelled statement. If no matching value is found, and there is no default label
anywhere in the switch body, no part of the switch body is processed.

When control passes to a statement in the switch body, control only leaves the switch body when a
break statement is encountered or the last statement in the switch body is processed.

If necessary, an integral promotion is performed on the controlling expression, and all expressions in the
case statements are converted to the same type as the controlling expression.

Restrictions
The switch expression and the case expressions must have an integral type. The value of each case
expression must represent a different value and must be a constant expression.

Only one default label can occur in each switch statement. You cannot have duplicate case labels in a
switch statement.

You can put data definitions at the beginning of the switch body, but the compiler does not initialize
“auto” on page 106 and “register” on page 111 variables at the beginning of a switch body.

“Examples Using the switch Statement”
“break” on page 145

Examples Using the switch Statement

The following “switch” on page 155 statement contains several case clauses and one default clause.
Each clause contains a function call and a “break” on page 145 statement. The break statements
prevent control from passing down through each statement in the switch body.

If the switch expression evaluates to ’/’ , the switch statement calls the function divide. Control then
passes to the statement following the switch body.

char key;
printf(“Enter an arithmetic operator\n”);
scanf(“%c”,&key);
switch (key)
{

case '+':
add();
break;

case '-':
subtract();
break;

case '*':
multiply();
break;

case '/':
divide();
break;

156 C for AIX User’s Guide

default:
printf(“invalid key\n”);
break;

}

If the switch expression matches a case expression, the statements following the case expression are
processed until a “break” on page 145 statement is encountered or the end of the “switch” on page 155
body is reached.

In the following example, “break” on page 145 statements are not present. If the value of text[i] is
equal to ’A’ , all three counters are incremented. If the value of text[i] is equal to ’a’ , lettera and total
are increased. Only total is increased if text[i] is not equal to ’A’ or ’a’ .

char text[100];
int capa, lettera, total;
for (i=0; i<sizeof(text); i++) {

switch (text[i])
{

case 'A':
capa++;

case 'a':
lettera++;

default:
total++;

}
}

The following “switch” on page 155 statement performs the same statements for more than one case
label:

int month;
/* Determine what season a month falls into */
switch (month)
{

case 12:
case 1:
case 2:

printf(“month %d is a winter month\n”, month);
break;

case 3:
case 4:
case 5:

printf(“month %d is a spring month\n”, month);
break;

case 6:
case 7:
case 8:

printf(“month %d is a summer month\n”, month);
break;

case 9:
case 10:
case 11:

printf(“month %d is a fall month\n”, month);
break;

case 66:
case 99:
default:

printf(“month %d is not a valid month\n”, month);
}

If the expression month has the value 3, control passes to the statement:
printf(“month %d is a spring month\n”, month);

The “break” on page 145 statement passes control to the statement following the “switch” on page 155
body.

Chapter 6. The C Language 157

“break” on page 145
“switch” on page 155

while

A while statement repeatedly runs the body of a loop until the controlling expression evaluates to 0.

The expression is evaluated to determine whether or not to process the body of the loop. The expression
must be convertible to a scalar type.

If the expression evaluates to 0, the body of the loop never runs.

If the expression does not evaluate to 0, the loop body is processed. After the body has run, control
passes back to the expression. Further processing depends on the value of the condition.

A break , return , or goto statement can cause a while statement to end, even when the condition does
not evaluate to 0.

“Example Using the While Statement”
“break” on page 145
“goto” on page 151
“return” on page 154

Example Using the While Statement

In the following program, item[index] triples each time the value of the expression ++index is less than
MAX_INDEX. When ++index evaluates to MAX_INDEX, the while statement ends.

#define MAX_INDEX (sizeof(item) / sizeof(item[0]))
#include <stdio.h>
int main(void)
{

static int item[] = { 12, 55, 62, 85, 102 };
int index = 0;
while (index < MAX_INDEX)
{

item[index] *= 3;
printf(“item[%d] = %d\n”, index, item[index]);
++index;

}
return(0);

}

“while”

Statement Labels

A label is an identifier that allows your program to transfer control to other statements within the same
function. It is the only type of identifier that has function scope.

158 C for AIX User’s Guide

Control is transferred to the statement following the label by means of the goto or switch statements. The
case and default label names are reserved for use within the body of the switch statement.

In the examples below, the label is both the identifier and the colon (:) character at the beginning of each
line.

comment_complete : ; /* null statement label */

test_for_null : if (NULL == pointer)

“Scope of Identifier Visibility” on page 53
“goto” on page 151
“switch” on page 155

Statement Blocks

A block statement, or compound statement, lets you group any number of data definitions, declarations,
and statements into one statement. All definitions, declarations, and statements enclosed within a single
set of braces are treated as a single statement. You can use a block wherever a single statement is
allowed.

Definitions and declarations must come before the statements in a statement block.

Redefining a data object inside a nested block hides the outer object while the inner block runs. However,
defining several variables that have the same identifier can make a program difficult to understand and
maintain. You should avoid redefining identifiers within nested blocks. If a data object is usable within a
block and its identifier is not redefined, all nested blocks can use that data object.

Initialization of an auto or register variable occurs each time the block is run from the beginning. If you
transfer control from one block to the middle of another block, initializations are not always performed. You
cannot initialize an extern variable within a block.

“Block Scope Data Declarations” on page 62
“File Scope Data Declarations” on page 63
“Storage Class Specifiers” on page 65
“Type Specifiers” on page 66
“Example of Initialization within Statement Blocks”

Example of Initialization within Statement Blocks

The following program shows how the values of data objects change in nested statement blocks:
1 #include <stdio.h>
2
3 int main(void)
4 {
5 int x = 1; /* Initialize x to 1 */

Chapter 6. The C Language 159

6 int y = 3;
7
8 if (y > 0)
9 {
10 int x = 2; /* Initialize x to 2 */
11 printf(“second x = %4d\n”, x);
12 }
13 printf(“first x = %4d\n”, x);
14 }

The program produces the following output:
second x = 2
first x = 1

Two variables named x are defined in main. The definition of x on line 5 retains storage while main is
running. However, because the definition of x on line 10 occurs within a nested block, line 11 recognizes x
as the variable defined on line 10. Because line 13 is not part of the nested block, x is recognized as the
variable defined on line 5.

“Initializers” on page 65
“Statement Blocks” on page 159

C Programming Character Set

You can use any of the following characters from the ASCII character set to enter programming text into
your source file.

v

a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

v

0 1 2 3 4 5 6 7 8 9

v

! “ # % & ' () * + , - . / :
; < = > ? [\] | _ { | } x

v The space character.

v The control characters representing horizontal tab, vertical tab, and form feed.

Some characters from the C character set are not available in all environments. You can enter these
characters into a C source file using a sequences of two or three characters. A sequence of three
characters called a trigraph. A sequence of two characters is called a digraph, but will be accepted by the
compiler only if the -qdigraph compiler option is in effect. Digraph or trigraph character sequences
appearing in character or string literals are not replaced during the preprocessor stage.

Digraph and trigraph sequences available to you are:

C for AIX Digraph and Trigraph Sequences

Digraphs Trigraphs Character(s) Represented Description

%% ??= # pound sign

<: ??([left bracket

:< ??)] right bracket

<% ??< { left brace

160 C for AIX User’s Guide

%> ??> } right brace

??/ \ backslash

??’ | caret

??! | pipe

??- x tilde

%:%: /**/ substitute for ##
preprocessor macro

concatenation operator

“digraph” on page 252

Escape Sequences for Non-Printable Characters

Escape Sequence Character Represented

\a Alert (bell, alarm)

\b Backspace

\f Form feed (new page)

\n New-line

\r Carriage return

\t Horizontal tab

\v Vertical tab

\’ Single quotation mark

\“ Double quotation mark

\? Question mark

\\ Backslash

“Escape Sequences” on page 52

Reserved Keywords

Keywords are identifiers reserved by the C language for special use. You can use them for preprocessor
macro names but that is, however, considered poor programming style.

Only the exact character case and spelling of keywords is reserved. For example, auto is reserved, but
AUTO is not.

Keywords reserved by the C programming language are:

auto break case char
const continue default do
double else enum extern
float for goto if
int long register return
short signed sizeof static
struct switch typedef union

Chapter 6. The C Language 161

unsigned void volatile while

Identifier names should not start with an underscore (_) followed by an uppercase letter, and should not
contain two underscores (__) anywhere. The compiler and library use identifiers beginning with single and
double underscores for their own purposes.

Differences Between C Language Levels

Conflicts Between extended C and Other Levels

extended level C, the default language level for the cc compiler invocation command, adheres to the
ANSI/ISO C definition except where adherence conflicts with compatibility with the RT C implementation.
In the case of certain obsolete RT C language definitions, adherence to the ANSI/ISO C standard takes
precedence over compatibility with RT C.

This page lists the conflicts between:

v extended C and ansi C (page 162)

v extended C and RT C (page 163)

Conflicts Between extended C and ansi C
The following are areas where extended level C supports RT C constructs and conventions not supported
by ansi level C:

v Macro expansion within quoted strings (either single or double quotation marks):

Macro parameters found within quoted strings in replacement text are not replaced in ansi mode but
are replaced in extended mode.

v Arithmetic conversions (for example, integral promotions):

extended level C follows the rules outlined in “Arithmetic Conversions for extended Level C” on
page 167, which differ from the ansi level C conversion rules defined in section 3.2.1.5 of the ANSI/ISO
C Standard.

v Scope of external functions declared at block scope:

In ansi mode, external functions have block scope. In extended mode, they have file scope.

v Implicit pointer conversions:

extended mode allows assignment of a pointer to an object of a different type. In ansi mode, a cast
operation is necessary if conversion is to be done.

v Pointers of different types can be assigned to each other:

In ansi mode, an attempt to assign pointers of different types to each other produces an error message.
extended mode accepts the assignment.

v enum declarations containing a trailing extra comma:

Accepted in extended mode but not in ansi mode.

v No definition of static function:

ansi mode requires a function declared static to be defined in the same file as the declaration. In
extended mode, a function that is declared static but is not defined in the same file as the declaration
is implicitly redeclared extern . An informational message is produced.

v sizeof operator on bit fields:

Allowed by extended but not by ansi .

v String literals:

162 C for AIX User’s Guide

Both ansi and extended modes give you the choice of making string literals either modifiable or
unmodifiable, but the defaults are different. The default is modifiable for extended and unmodifiable for
ansi .

v Ref/def model:

The ANSI/ISO C standard defines a relaxed, strict, and initialization ref/def model for objects with
external linkage. extended mode supports the relaxed model, whereas ansi mode supports a
combination of the strict and initialization models.

v unsigned char and unsigned short bit fields:

Allowed in extended mode but not in ansi mode. In extended mode, an error message is issued, but
compilation continues. Both unsigned char and unsigned short are changed to unsigned int . For bit
fields, unsigned char and unsigned short are changed to unsigned int .

v long long int type:

Allowed in extended mode but not in ansi mode.

v Character data types: char , unsigned char , or signed char :

In ansi mode the C compiler distinguishes between the three character types; in extended mode, the C
compiler does not distinguish between char and unsigned char .

v Macro redefinition:

ansi level C requires that a macro be undefined before it can be defined again in a #define directive.
extended level C allows macros to be redefined without first being undefined. An informational message
is issued that states that the second definition is used.

v $ (dollar sign) character in identifiers:

In extended mode only, the compiler allows the $ (dollar sign) character to be used in identifier names
to facilitate calls between different languages. The $ (dollar sign) is not a valid character for identifiers in
ansi mode.

v Macro concatenation using /**/:

Allowed by extended but not by ansi .

Conflicts Between extended C and RT C
Ideally, extended mode should handle all RT C source code without conflict. Certain obsolete RT C
definitions do conflict with ANSI/ISO C. For these, extended mode follows ANSI/ISO C and conflicts with
RT C.

extended level C does not support the following RT C definitions:

v asm and fortran keywords.

v External data with file scope, even though declared or defined at block scope.

v Array initialization without braces.

v The last member of a structure definition not terminated by a semicolon.

v Type specifier not required when a name that was previously defined as a typedef is redefined.

v =+ and =- operators.

v #ifdef using logical operators or period (.).

v Taking the address of a register variable.

v Function declarations at file scope without type specifiers.

v Variable declarations without type specifiers.

v Structure definition containing an empty structure declaration.

v Predefined macro names unix , and AIX.

Chapter 6. The C Language 163

“C Language Levels” on page 78
“Extensions to RT C Provided by extended C”
“Exceptions to ansi C Addressed by classic C”
“saal2 C Deviations from SAA Level 2 C” on page 167
“Arithmetic Conversions for extended Level C” on page 167
“Summary of C Language Level Conflicts” on page 170

Extensions to RT C Provided by extended C

The following are part of the ANSI/ISO C definition and are part of the extended language level. They
cause no conflict with existing RT C source:

v #pragma , #elif , and #error preprocessor directives.

v Ability to form macro literals using #.

v Macro concatenation using ##.

v Recursive macro definitions are only expanded once.

v White space or comment allowed before #.

v Trigraph sequences.

v Redeclaration of typedef names (variable defined as a typedef can be redeclared as an identifier).

v const and volatile type qualifiers.

v Support of the signed keyword with char , int , short , and long data types.

v Suffixes l and L for type long double floating-point constants.

v Suffixes u and U for types unsigned char and unsigned int .

v Hexadecimal constants of the form \0xdd.

v Unary + operator.

v enum and void types.

v Function prototypes (including variable number of arguments specified by an ellipsis (...)).

v Initialization of auto aggregate variables.

“C Language Levels” on page 78
“Conflicts Between extended C and Other Levels” on page 162
“Exceptions to ansi C Addressed by classic C”
“saal2 C Deviations from SAA Level 2 C” on page 167
“Arithmetic Conversions for extended Level C” on page 167
“Summary of C Language Level Conflicts” on page 170

Exceptions to ansi C Addressed by classic C

Exceptions to the ansi mode addressed by classic are as follows:

v Tokenization (page 164)

v Preprocessing Directives (page 165)

v Macro Expansion (page 166)

v Text Output

Tokenization
Tokens introduced by macro expansion may be combined with adjacent tokens in some cases. Historically,

164 C for AIX User’s Guide

this effect was caused by the text-based implementations of older preprocessors and because in older
implementations, the preprocessor was a separate program whose output was passed on to the compiler.

For similar reasons, tokens separated only by a comment may also be combined to form a single token.
Here is a summary of how tokenization of a program compiled in classic mode is performed:

v At a given point in the source file, the next token is the longest sequence of characters which could
possibly form a token. For example, i+++++j is tokenized as i ++ ++ + j even though i ++ + ++ j is
the intended tokenization.

v If the token formed is an identifier and it is a macro name, the macro is replaced by the text of the
tokens specified on its #define directive. Each parameter is replaced by the text of the corresponding
argument. Comments are removed from both the arguments and the macro text.

v Scanning is resumed at the first step from the point at which the macro was replaced as if it were part
of the original program.

v When the entire program has been preprocessed, the result is scanned again by the compiler as in the
first step. The second and third steps do not apply here since there will be no macros to replace.
Constructs generated by the first three steps which resemble preprocessing directives are not
processed as such.

It is in the third and fourth steps that the text of adjacent but previously separate tokens may be combined
to form new tokens.

The \ character for line continuation is accepted only in string literals and character constants and on
preprocessing directives.

Constructs such as
#if 0

“unterminated
#endif
#define US ”Unterminating string
char *s = US terminated now“

will not generate diagnostic messages, since the first is an unterminated literal in a FALSE block and the
second is completed after macro expansion. However

char *s = US;

will generate a diagnostic message since the string literal in US is not completed before the end of the line.

Empty character literals are allowed. The value of the literal is 0.

Preprocessing directives
The # token must appear in the first column of the line. The token immediately following # is available for
macro expansion. The line can be continued with \ only if the name of the directive and, in the following
example, the (has been seen:

#define f(a,b) a+b
f\
(1,2) /* accepted */

#define f(a,b) a+b
f(\
1,2) /* not accepted */

The rules concerning \ apply whether or not the directive is valid. For example,
#\
define M 1 /* not allowed */
#def\

Chapter 6. The C Language 165

ine M 1 /* not allowed */
#define\
M 1 /* allowed */
#dfine\
M 1 /* equivalent to #dfine M 1, even though

#dfine is not valid */

Following are the preprocessor directive differences between classic mode and ansi mode (directives not
listed here behave similarly in both modes):

#ifdef/#ifndef When the first token is not an identifier, no diagnostic message is generated, and the
condition is FALSE.

#else When there are extra tokens, no diagnostic message is generated.
#endif When there are extra tokens, no diagnostic message is generated.
#include The < and > are separate tokens. The header is formed by combining the spelling of the <

and > with the tokens between them. Therefore /* and // are recognized as comments (and
are always stripped) and that ” and ’ do begin literals within the < and >.

Note: In C programs, //-style comments are only valid when cpluscmt is specified.)
#line The spelling of all tokens which are not part of the line number form the new file name.

These tokens need not be string literals.
#error Not recognized in classic mode.
#define A valid macro parameter list consists of zero or more identifiers each separated by zero or

more commas. The commas are ignored and the parameter list is constructed as if they were
not specified. The parameter names need not be unique. If there is a conflict, the last name
specified is honored.

For an invalid parameter list, a warning is issued. If a macro name is redefined with a new
definition, a warning will be issued and the new definition used.

#undef When there are extra tokens, no diagnostic message is generated.

Macro expansion

v When the number of arguments on a macro invocation does not match the number of parameters, a
warning is issued.

v If the (token is present after the macro name of a function-like macro, it is treated as too few
arguments (as above) and a warning is issued.

v Parameters are replaced in string literals and character literals.

v Examples:
#define M() 1
#define N(a) (a)
#define O(a,b) ((a) + (b))
M(); /* no error */
N(); /* empty argument */
O(); /* empty first argument and too few arguments */

166 C for AIX User’s Guide

No text is generated to replace comments.

“C Language Levels” on page 78
“Conflicts Between extended C and Other Levels” on page 162
“Extensions to RT C Provided by extended C” on page 164
“saal2 C Deviations from SAA Level 2 C”
“Arithmetic Conversions for extended Level C”
“Summary of C Language Level Conflicts” on page 170
“cpluscmt” on page 247

saal2 C Deviations from SAA Level 2 C

saal2 level C deviates from the SAA C definition as follows:

v The _Packed attribute for structures and unions is not supported by the C compiler component of C for
AIX. The -qalign=packed compiler option provides some of the function of the attribute.

v Record input/output is not supported by the AIX Version 3.2 operating system, and is not available on
the C compiler. SAA Level 2 defines record input/output.

v AIX Version 3.2 operating system error conditions for the following differ from those of SAA Level 2:

acos asin atan2 the bessel functions (y0, y1, yn)
fmod gamma log log10 pow sq

“C Language Levels” on page 78
“Conflicts Between extended C and Other Levels” on page 162
“Extensions to RT C Provided by extended C” on page 164
“Exceptions to ansi C Addressed by classic C” on page 164
“Arithmetic Conversions for extended Level C”
“Summary of C Language Level Conflicts” on page 170
“align” on page 234

Arithmetic Conversions for extended Level C

This page describes the rules for arithmetic conversions that the compiler adheres to when the language
specified is extended . Described are:

v Usual Unary Conversions (page 167)

v Usual Arithmetic Conversions (page 168)

– Widening (page 168)

– Type Balancing (page 168)

– Sign Balancing (page 169)

v Assignment Conversions Table (page 169)

v Explicit Conversions (page 169)

– Reduction Conversions (page 169)

– Expansion Conversions (page 170)

– Pointer Conversions (page 170)

– void Conversions (page 170)

– volatile Conversions (page 170)

Usual Unary Conversions The usual unary conversions reduce the types of values that the compiler must
handle. The compiler uses the usual unary conversions on:

v The operands of the unary operators: !, -, x, and *

Chapter 6. The C Language 167

v The operands of the binary operators < and >

v The arguments in a function call (before the function is called and if a function prototype is not
available).

The following table lists the types of values that the usual unary conversions affect:

Type of Value...

before Conversion after Conversion

char int

unsigned char unsigned int

short int

unsigned short unsigned int

float double

array of type pointer to type

Note: The compiler performs the usual unary conversion of float to double on arguments in function calls
only. When a float object appears as an operand of !, -, x, *, <, or >, the compiler does not perform a
usual unary conversion.

Explicit Conversions (page 169) describes how the compiler performs conversions.

Usual Arithmetic Conversions The usual arithmetic conversions reduce the types of objects that the
compiler handles when performing arithmetic operations. Many compilers perform arithmetic operations
only on objects having one of several data types. These types are: int , unsigned int , long , unsigned
long , float , double , and long double . If all operands do not have one of these types, the system converts
the values of the operands according to the following procedures:

1. Widening values that do not have data types appropriate for arithmetic operations.

2. Type balancing values in operations that have more than one operand.

3. Sign balancing values in operations that have more than one operand.

The following sections describe the usual arithmetic conversion procedures.

Widening Widening expands the size of a value (for example, short to int by padding bits located to the
left of the value with a copy of the sign bit). Widening does not affect the sign of the value.

The following table shows the types of values that the compiler widens:

Type of Value...

before Widening after Widening

char int OR unsigned int

unsigned char unsigned int

short int

unsigned short unsigned int

float double

The compiler treats char objects as unsigned values. Widening of a char yields an int that has a positive
value.

Many compilers widen float values to double values before performing arithmetic operations. Where
possible, C for AIX performs double-precision arithmetic on float values.

168 C for AIX User’s Guide

Type Balancing
Type balancing makes all operands have the same data type. If both of the operands do not have the
same size data type, the compiler converts the value of the operand having the smaller type to a value
having the larger type. For example, if the operand count has type int and the operand maximum has type
long , the compiler converts the value of count to type long .

Type balancing does not affect the sign of the value.

Sign Balancing Sign balancing makes both operands have the same data type (signed or unsigned). If
one operand has an unsigned type, the compiler converts the other operand to that unsigned type.
Otherwise, both operands remain signed.

Assignment Conversion An assignment conversion makes the value of the right operand have the same
data type as the left operand. Only the following assignment type combinations are supported by the
language:

Type of...

Left Operand Right Operand

Any arithmetic type Any arithmetic type

Pointer to type Pointer to type, or,
the NULL pointer

Structure of type Structure of type

Union of type Union of type

Explicit Conversions (page 169) describes how the compiler performs conversions from one arithmetic
type to another arithmetic type.

Explicit Conversions When the compiler converts the values of one data type to the value of another data
type, the compiler usually performs one of the following conversions:

Reduction conversions Change the data type of a value to a smaller size data type (for example, a value
having type double to a value having type float).

Expansion conversions Change the data type of a value to a larger size data type (for example, a value
having type float to a value having type double).

Pointer conversions Change the data type to which a pointer refers or change an integral type to a
pointer.

void conversions Discard the value of a function call.
volatile conversions Give a nonvolatile data object the volatile attribute.

The following sections describe these conversions.

Reduction Conversions

Integral Reduction The compiler converts an integral value to a narrower type (for example, a long
to a short); the compiler truncates the value by discarding the most significant
bits.

double or long double to float The compiler converts a double-precision floating-point value (long double or
double) to a single-precision floating-point value (float); the compiler rounds off
the double-precision value.

Floating-Point to Integral The language does not define the method of converting floating-point values to
integral values. The compiler drops the fraction part of the floating-point value.

Integral to Floating-Point The C language does not prohibit integral sizes from having a higher precision
than the floating-point sizes. If a higher precision integer is converted to a float ,
the resulting float might experience a loss of precision.

Chapter 6. The C Language 169

Expansion Conversions

Floating-Point Expansion Although many compilers perform all floating-point arithmetic in double precision
only, the C compiler extended language level performs double-precision
arithmetic when all operands have type float . When on operand has type float
and another operand has type double or long double , the compiler converts the
float to the equivalent double or long double value.

Integral to Floating-Point The compiler converts narrower integral values to equivalent floating-point values.
Unsigned Arithmetic Expansion The compiler converts narrower unsigned arithmetic values to wider unsigned

arithmetic values by padding the values with zeros.
Signed Arithmetic Expansion The language does not define how narrower signed arithmetic values are

converted to wider signed arithmetic values. When a narrower arithmetic value is
converted to a wider signed arithmetic value, the compiler pads bits located to the
left of the value with a copy of the sign bit.

Pointer Conversions

Pointer to Pointer When two pointers to objects of the same type are subtracted, the compiler
performs the operation on the values of the pointers and divides the result by the
length of the objects to which the pointers refer. The result is an integer that
indicates the distance between the specified objects in the array. For example, if
p points to the second element in an array and q points to the fifth element in the
array, the expression p - q yields -3.

Integral to Pointer When an integral value is subtracted from a pointer, the compiler multiplies the
integral value by the length of the object to which the pointer refers to produce an
address offset, which can be added or subtracted from the pointer value. The
result is a pointer (having the same type as the original pointer) that refers to an
object assumed to be in the same array.

void Conversions A program cannot use or apply conversions to the (nonexistent) value of a void object.
To convert the result of a function call to type void , use the cast operator. Such a conversion discards the
value of a function call used in an expression statement. For example, the following statement discards the
result of the function call add():

(void)add();

volatile Conversions

volatile to Nonvolatile Through an explicit cast, you can assign the address of a volatile data object to
a pointer that is defined as pointing to a nonvolatile data object. If the volatile
object is referenced through such a pointer, the result is undefined.

Nonvolatile to volatile You can assign the address of a nonvolatile data object that is defined as pointing
to a volatile data object. If the nonvolatile object is referenced through such a
pointer, the compiler treats the nonvolatile object as a volatile object.

“C Language Levels” on page 78
“Arithmetic Conversions Table” on page 137
“Conflicts Between extended C and Other Levels” on page 162
“Extensions to RT C Provided by extended C” on page 164
“Exceptions to ansi C Addressed by classic C” on page 164
“saal2 C Deviations from SAA Level 2 C” on page 167
“Summary of C Language Level Conflicts”

Summary of C Language Level Conflicts

This section summarizes for quick reference the conflicts listed in the related pages.

170 C for AIX User’s Guide

Note: The following table shows only those features of extended level C that conflict with either RT C or
ANSI/ISO C. Features that are part of extended C but not part of RT C are not listed in the table unless
they present a conflict.

Area of Conflict RT C ansi C extended C

asm and fortran keywords Supported Not Supported Not Supported

=+ and =- operator Supported Not Supported Not Supported

Type specifier not required
when a name that was
previously defined as a
typedef is redefined

Supported Not Supported Not Supported

Scope of external data
declared or defined at block
scope

File Block Block

#ifdef using logical
operators or period (.)

Supported Not Supported Not Supported

Taking the address of a
register variable

Supported Not Supported Not Supported

Modifiable or unmodifiable
string literals

Modifiable Unmodifiable Modifiable

Relaxed ref/def model Supported Not Supported Supported

unsigned char and
unsigned short bit fields

Supported Not Supported Changed to unsigned int

unsigned char and char
recognized as incompatible
types

Not Supported Supported Not Supported

long long int type Not Supported Not Supported Supported

Scope of external functions
declared at block scope

File Block File

Handling of macro
parameters within string
literals

Expanded Not Expanded Expanded

Preprocessor macro can be
redefined without first being
undefined

Supported Not Supported Supported

Rules followed when
performing arithmetic
conversions

RT C ANSI/ISO RT C

All valid pointer conversions
without an explicit cast

Supported Not Supported Supported

Assignment of pointers to
different types

Supported Not Supported Supported

Enumeration declarations
with trailing extra comma

Supported Not Supported Supported

Functions without definition
accepted and defined
extern

Supported Not Supported Supported

Definition of static function Not Required Required Not Required

sizeof operator on bit fields Supported Not Supported Supported

Chapter 6. The C Language 171

Array initialization without
braces

Supported Not Supported Not Supported

Last member of a structure
definition not terminated by
a semicolon

Supported Not Supported Not Supported

Predefined macro name unix and AIX _AIX _AIX

$ character in identifiers Permitted Prohibited Permitted

Macro concatenation using
/**/

Supported Not Supported Supported

“C Language Levels” on page 78
“Conflicts Between extended C and Other Levels” on page 162
“Extensions to RT C Provided by extended C” on page 164
“Exceptions to ansi C Addressed by classic C” on page 164
“saal2 C Deviations from SAA Level 2 C” on page 167
“Arithmetic Conversions for extended Level C” on page 167

172 C for AIX User’s Guide

Chapter 7. Writing C Programs

A C program typically passes through four steps of development.

The solid lines show inputs into each step of the development cycle. Compile and Linkage Editor
operations are performed by the C for AIX product, which also lets you specify what optional outputs are
produced. Optional outputs are shown in the diagram by the broken lines. Descriptions of the steps follow
below:

Design and Code Involves designing a program to meet a specified requirement, and creating the programming
language text files that will comprise the program source.

Compile After checking for syntactical correctness, converts the programming language source files
into machine readable instructions, where C variables are associated with memory
addresses, and C statements are turned into a series of machine language instructions. The
compiler can produces various forms of output, depending on the compiler options selected.

Linkage Editor Links compiler output with external modules requested by the compiled program. C programs
can use routines from C libraries or any object or archive file from the IBM XL family of
languages. C programs can also use modules produced by the current or previous
compilations. As well as linking the external modules, the linkage editor resolves addresses
within the object module.

Run and Test This stage can be both the final step in program development, or it can be an intermediate
point in the program design and implementation process. A program’s design commonly is
further refined as a result of information gathered during testing.

© Copyright IBM Corp. 1995, 1999 173

“Creating and Naming a C Source File”
“Internal Structure of a C Program”
“External Structure of a C Program” on page 177
“Writing Optimized Program Source Code” on page 197
“Compiler Options and Their Defaults” on page 218
“Message Severity Levels and Compiler Response” on page 20
“Compiler Return Codes” on page 20
“Compiler Message Format” on page 21

Creating and Namin g a C Source File

A C program source is a collection of one or more text source files written in the C programming language,
each of which can contain all or part of the functions that make up a C program. The individual source
files are compiled into object modules which can then be linked together to create an executable program.
You can use any text editor to create and edit a source file.

File-Naming Conventions

A file name can be up to 256 characters. (Longer names are truncated on the right.) The file name can
contain lowercase and uppercase letters, numbers, underscores, periods, and other characters. The AIX
Version 4 Operating System distinguishes between uppercase and lowercase letters.

By convention, C source files end with a .c filename extension, for example,

myprogram.c

The characters & | ; () < > ? / * ’ x have special meaning in the AIX system. To use them in a file name,
you must place them inside quotation marks so that the shell does not interpret them. For example:

my“<”new“>”program.c

“Chapter 7. Writing C Programs” on page 173
“Internal Structure of a C Program”
“External Structure of a C Program” on page 177
“C Language Levels” on page 78
“Writing Optimized Program Source Code” on page 197
“C Programming Character Set” on page 160
“Reserved Keywords” on page 161
“Appendix M. ASCII Character Set” on page 483

Internal Structure o f a C Program

A C source program is a collection of one or more directives, declarations, and statements contained in
one or more source files.

statements Specify the action to be performed.
directives Instruct the preprocessor to act on the text of the program. Pragma directives affect compiler

behavior.
declarations Establish names and define linkage characteristics such as scope, data type, and linkage.
definitions Are declarations that allocate storage for data objects or define a body for functions. An object

definition allocates storage and may optionally initialize the object.

174 C for AIX User’s Guide

A function declaration precedes the function body. The function body is a compound statement that can
contain declarations and statements that define what the function does. The function declaration declares
the name, its parameters, and the data type of the value it returns.

A program must contain at least one function declaration. If the program contains only one function
declaration, the function must be called main . If the program contains more than one function declaration,
only one of the functions can be called main . Any additional functions called main are ignored.

By convention, main is the starting point for running a program. The main function can in turn call other
functions. A program usually stops running at the first encounter of any of the following:

v The end of the main function

v A return statement in the main function

v An exit function call

A C program can contain any number of directives, declarations, and definitions. Before the C program is
compiled, the preprocessor filters out preprocessor directives that may change the files. Preprocessor
directives are completed, macros are expanded, and a temorary source file is created containing C
statements, completed directives, declarations, and definitions.

It is sometimes useful to gather variable definitions into one source file and declare references to those
variables in any source files that use them. This procedure makes definitions easy to find and change. You
can also organize constants and macros into separate files, and include them into source files as needed.
You can use the #include directive to imbed such source files into other source files.

Directives in a source file apply to that source file and its included files only. Each directive applies only to
the part of the file (and included files) following the directive.

The C for AIX compiler looks for a function called main in the source code and uses it as the entry point
name. If a program contains more than one function definition, only one of these functions can be named
main . If the program contains only one function definition, that function must be called main .

“External Structure of a C Program” on page 177
“Scope of Identifier Visibility” on page 53
“Statement Blocks” on page 159
“Example of a Simple C Program”
“Example of a C Program Comprised of Two Source Files” on page 176
“Specifying Path Names for Include Files” on page 178
“C Programming Character Set” on page 160
“Reserved Keywords” on page 161
“Appendix M. ASCII Character Set” on page 483

Example of a Simple C Program

The source for a simple C program is shown below:

A Simple C Program

Chapter 7. Writing C Programs 175

/**
** This is an example of a simple C program
**/
#include <stdio.h> /* standard I/O library header that

contains macros and function
declarations, ie printf used below */

#include <math.h> /* standard math library header that
contains macros and function
declarations, ie cos used below */

#define NUM 46.0 /* Preprocessor directive */
double x = 45.0; /* External variable definitions */
double y = NUM;
int main(void) /* Function definition

for main function */
{

double z; /* Local variable definitions */
double w;
z = cos(x); /* cos is declared in math.h as

double cos(double arg) */
w = cos(y);
printf (“cosine of x is %f\n”, z); /* Print cosine of x */
printf (“cosine of y is %f\n”, w); /* Print cosine of y */
return 0;

}

The program above defines main and declares a reference to the function cos . The program defines the
global variables x and y, initializes them, and declares two local variables z and w.

“Internal Structure of a C Program” on page 174
“Scope of Identifier Visibility” on page 53
“Statement Blocks” on page 159
“Example of a C Program Comprised of Two Source Files”

Example o f a C Program Comprised of Two Source Files

The following example shows a C program source comprised of two source files. The main and max
functions are in separate files. The program logic starts with the main function.

Example Program with Two Source Files

/***
* Source file 1 - main function *
**/
#define ONE 1
#define TWO 2
#define THREE 3
extern int max(int, int); /* Function declaration */
int main(int argc, char * argv[]) /* Function definition */
{

int u, w, x, y, z;
u = 5;
z = 2;
w = max(u, ONE);
x = max(w,TWO);
y = max(x,THREE);
z = max(y,z);

return z;
}

176 C for AIX User’s Guide

/***
* Source file 2 - max function *
**/
int max (int a,int b) /* Function definition */
{

if (a > b)
return (a);

else
return (b);

}

The first source file declares the function max , but does not define it. This is an external declaration, a
declaration of a function defined in source file 2. Four statements in main are function calls of max .

The lines beginning with a number sign (#) are preprocessor directives that direct the preprocessor to
replace the identifiers ONE, TWO, and THREE with the digits 1, 2, and 3. The directives in the first source file
do not apply to the second source file.

The second source file contains the function definition for max , which is called four times in main . After
you compile the source files, you can link and run them as a single program.

“Internal Structure of a C Program” on page 174
“Scope of Identifier Visibility” on page 53
“Statement Blocks” on page 159
“Example of a Simple C Program” on page 175

External Structure o f a C Program

A source program consists of at least one source file. You can compile a source program that consists of
several source files by specifying all of the source files as input to the compiler invocation command.
Typically, compiler invocation produces calls to both the compiler and the linkage editor, and creates a
single executable file as output. For example, to produce an executable file named testprog from three
files, testdata.c , testres.c , and testparm.c , you would enter:

xlc testdata.c testres.c testparm.c -o testprog

You can also compile each source file separately by specifying the “c” on page 242 compiler option to
invoke only the compiler to produce object files (.o files). You can then link-edit the resulting object files to
create an executable file by invoking the compiler on these .o files without using the “c” on page 242
option.

For example, to produce object files for each of three programs, testdata.c , testres.c , and testparm.c ,
you would enter:

xlc testdata.c testres.c testparm.c -c

Then, to produce an executable file named testprog from these three object files, testdata.o, testres.o, and
testparm.o, enter:

xlc testdata.o testres.o testparm.o -o testprog

To combine several source files at compilation, you can list the files on the command line when you use
an invocation command to produce a compiled file for each file you specify. Or you can use the “#include
Preprocessor Directive” on page 356 preprocessor directive to include the files in the primary source file
so that one compiled file is produced. This directive causes the text of a named secondary source file to
be imbedded at the point where the #include is encountered in the primary file.

Chapter 7. Writing C Programs 177

“Internal Structure of a C Program” on page 174
“Specifying Path Names for Include Files”
“Compiler Options and Their Defaults” on page 218

Specifying Path Names for Include Files

When you imbed one source file in another using the #include preprocessor directive, you must supply
the name of the file to be included. You can specify a file name either by using a full path name or by
using a relative path name.

Using a Full Path Name to Imbed Files

The full path name, also called the absolute path name, is the file’s complete name starting from the root
directory. These path names start with the / (slash) character. The full path name locates the specified file
regardless of the directory you are presently in (called your working or current directory).

The following example specifies the full path to file mine.h in John Doe’s subdirectory example_prog:
/u/johndoe/example_prog/mine.h

Using a Relative Path Name to Imbed Files

The relative path name locates a file relative to the directory that holds the current source file or relative to
directories defined using the -Idirectory option. See AIX Version 4 System User’s Guide: Operating System
and Devicesfor a complete explanation of the AIX. file system.

Directory Search Sequence for Include Files Using Relative Path
Names

The C language defines two versions of the #include preprocessor directive. The C for AIX compiler
supports both. With the #include directive, you can search directories by enclosing the file name between
< > or “ ” characters.

The result of using each method is as follows:

#include type Directory Search Order

#include < file_name> 1. If you specify the -Idirectory option, the compiler searches for file_name in the
directory called directory first. If more than one directory is specified, the compiler
searches the directories in the order that they appear on the command line.

2. Searches the directory /usr/includ e.

178 C for AIX User’s Guide

#include “ file_name” 1. Searches the directory where your current source file resides. The current source
file is the one that contains the directive #include “ file_name” .

2. If you specify the option -Idirectory, the compiler searches for file_name in
directory. If more than one directory is specified, the compiler searches the
directories in the order that they appear on the command line.

3. Searches the directory /usr/include .

Notes:

1. file_name is the path name of the file to be included. When you specify a full path name, the two
versions of the #include directive have the same effect because the location of the file to be included
is completely specified. With a relative path name, the directory search sequence is determined by
whether you use the < > or the “ ” characters.

2. The only difference between the two versions of the #include directive is that the “ ” (user include)
version first searches in the directory where your current source file resides. Typically, standard header
files are included using the < > (system include) version, and header files that you create are included
using the “ ” (user include) version.

3. You can change the search order by specifying the -qstdinc and -qidirfirst options along with the
-Idirectory option.

Use the -qnostdinc option to search only the directories specified with the -Idirectory option and the
current source file directory, if applicable. The /usr/include directory is not searched.

Use the -qidirfirst option with the #include “ file_name” directive to search the directories specified
with the -Idirectory option before searching other directories.

Use the -I option to specify the directory search paths.

“External Structure of a C Program” on page 177
“I” on page 272
“idirfirst” on page 273
“stdinc” on page 325
“I” on page 272

Using Memory Heaps in a Program

Memory Management Functions

The memory management functions defined by ANSI are calloc, malloc, realloc, and free. These
regular functions allocate and free memory from the default runtime heap. C for AIX includes another
function, _heapmin, to return unused memory to the system. C for AIX also provides enhanced versions of
memory management functions that can help you improve program performance (link to the libhm.a
library), work with user heaps, or debug your programs.

All the versions actually work the same way. They differ only in what heap they allocate from, and in
whether they save information to help you debug memory problems. The memory allocated by all of these
functions is suitably aligned for storing any type of object.

The table below summarizes the different versions of memory management functions, using malloc as an
example of how the names of the functions change for each version.

Regular Version Debug Version
Default Heap malloc _debug_malloc

User-Created Heap _umalloc _debug_umalloc

Chapter 7. Writing C Programs 179

Heap-Specific Functions

Use heap-specific versions of memory allocation functions to allocate and free memory from user-created
heaps that you specify. If you want, you can also explicitly specify the runtime heap. The names of
user-created heaps are prefixed by _u (for “user heaps”), for example, _umalloc, and they are defined in
<umalloc.h>.

When working with user-created heaps, you need to link to the libhu.a library. Heap-specific functions
provided in this library are:

v _ucalloc

v _umalloc

v _uheapmin

There are no heap-specific versions of realloc or free. These standard functions always determine which
heap memory is allocated from, and can be used with both user-created and runtime memory heaps.

Debug Functions

Use these functions to allocate and free memory from the default runtime heap, just as you would use the
regular versions. They also provide information that you can use to debug memory problems.

Use the -qheapdebug compiler option to automatically map all calls to the regular memory management
functions to their debug versions. You can also call the debug versions explicitly.

Note: If you parenthesize the calls to the regular memory management functions, they are not mapped to
their debug versions.

You should place a #pragma strings(readonly) directive at the top of each source file that will call debug
functions, or in a common header file that each includes. This directive is not essential, but it ensures that
the file name passed to the debug functions can’t be overwritten, and that only one copy of the file name
string is included in the object module.

The names of the debug versions are prefixed by _debug_, for example, _debug_malloc, and they are
defined in <malloc.h> and <stdlib.h>.

The functions provided are:

v _debug_calloc

v _debug_free

v _debug_heapmin

v _debug_malloc

v _debug_realloc

The debug_malloc , debug_realloc , and debug_free functions set the memory areas they affect to a
specific, repeating fill pattern. See “Debugging Memory Heaps” on page 183 for more information.

In addition to their usual behavior, these functions also store information (file name and line number) about
each call made to them. Each call also automatically checks the heap by calling _heap_check (described
below).

Three additional debug memory management functions do not have regular counterparts:

180 C for AIX User’s Guide

v _dump_allocated

Prints information to stderr about each memory block currently allocated by the debug functions.

v _dump_allocated_delta

Prints information to file handle 2 about each memory block allocated by the debug functions since the
last call to _dump_allocated or _dump_allocated_delta.

v _heap_check

Checks all memory blocks allocated or freed by the debug functions to make sure that no overwriting
has occurred outside the bounds of allocated blocks or in a free memory block.

The debug functions call _heap_check automatically; and you can also call this function explicitly. The
_dump_allocated and _dump_allocated_delta functions must be explicitly called.

Heap-Specific Debug Functions

The heap-specific functions also have debug versions that work just like the regular debug versions. Use
these functions to allocate and free memory from the user-created heap you specify, and also provide
information that you can use to debug memory problems in your own heaps.

Use the -qheapdebug compiler option to automatically map all calls to the regular memory management
functions to their debug versions. You can also call the debug versions explicitly.

Note: If you parenthesize the calls to the regular memory management functions, they are not mapped to
their debug versions.

The names of the heap-specific debug versions are prefixed by _debug_u, for example, _debug_umalloc,
and they are defined in <umalloc.h>.

The functions provided are:

v _debug_ucalloc

v _debug_uheapmin

v _debug_umalloc

v _udump_allocated

v _udump_allocated_delta

v _uheap_check

The debug_umalloc function sets the memory areas they affect to a specific, repeating fill pattern. See
“Debugging Memory Heaps” on page 183 for more information.

There are no heap-specific debug versions of _debug_realloc or _debug_free. These functions always
determine which heap memory is allocated from, and can be used with both user-created and runtime
memory heaps.

Chapter 7. Writing C Programs 181

“Managing Memory with Multiple Heaps”
“Types of Memory” on page 183
“Debugging Memory Heaps” on page 183
“Creating and Using a Fixed Size Heap” on page 186
“Creating and Using an Expandable Heap” on page 188
“Debugging Programs with Heap Memory” on page 195
“Changing the Default Heap Used in a Program” on page 185
“Example of Creating and Using a User Heap” on page 190
“Example of Creating and Using a Shared-Memory User Heap” on page 191
“#pragma strings Preprocessor Directive” on page 376
“heapdebug” on page 270

Managing Memory with Multiple Heaps

C for AIX lets you create and use your own pools of memory, called heaps. You can use your own heaps
in place of or in addition to the default C for AIX runtime heap to improve the performance of your
program.

Note: Many readers will not be interested in creating their own heaps. Using your own heaps is entirely
optional, and your applications will work perfectly well using the default memory management provided
(and used by) the C for AIX runtime library. If you want to improve the performance and memory
management of your program, multiple heaps can help you. Otherwise, you can ignore this section and
any heap-specific library functions.

Why Use Multiple Heaps?

Using a single runtime heap is fine for most programs. However, using multiple heaps can be more
efficient and can help you improve your program’s performance and reduce wasted memory for a number
of reasons:

v When you allocate from a single heap, you may end up with memory blocks on different pages of
memory. For example, you might have a linked list that allocates memory each time you add a node to
the list. If you allocate memory for other data in between adding nodes, the memory blocks for the
nodes could end up on many different pages. To access the data in the list, the system may have to
swap many pages, which can significantly slow your program.

With multiple heaps, you can specify which heap you allocate from. For example, you might create a
heap specifically for the linked list. The list’s memory blocks and the data they contain would remain
close together on fewer pages, reducing the amount of swapping required.

v In multithread applications, only one thread can access the heap at a time to ensure memory is safely
allocated and freed. For example, say thread 1 is allocating memory, and thread 2 has a call to free.
Thread 2 must wait until thread 1 has finished its allocation before it can access the heap. Again, this
can slow down performance, especially if your program does a lot of memory operations.

If you create a separate heap for each thread, you can allocate from them concurrently, eliminating both
the waiting period and the overhead required to serialize access to the heap.

v With a single heap, you must explicitly free each block that you allocate. If you have a linked list that
allocates memory for each node, you have to traverse the entire list and free each block individually,
which can take some time.

If you create a separate heap for that linked list, you can destroy it with a single call and free all the
memory at once.

v When you have only one heap, all components share it (including the C for AIX runtime library, vendor
libraries, and your own code). If one component corrupts the heap, another component might fail. You
may have trouble discovering the cause of the problem and where the heap was damaged.

182 C for AIX User’s Guide

With multiple heaps, you can create a separate heap for each component, so if one damages the heap
(for example, by using a freed pointer), the others can continue unaffected. You also know where to
look to correct the problem.

You can create heaps of regular memory or shared memory, and you can have any number of heaps of
any type. See “About this Information” on page xvii for more information about the different types of
memory for heaps. The only limit is the space available on your operating system (your machine’s memory
and swapper size, minus the memory required by other running applications).

C for AIX provides heap-specific versions of the memory management functions, for example, umalloc and
so on. Debug versions of all memory management functions are provided, including the heap-specific
ones. C for AIX also provides additional functions that you can use to create and manage your own heaps
of memory, such as udefault .

“Memory Management Functions” on page 179
“Types of Memory”
“Debugging Memory Heaps”
“Creating and Using a Fixed Size Heap” on page 186
“Creating and Using an Expandable Heap” on page 188
“Debugging Programs with Heap Memory” on page 195
“Changing the Default Heap Used in a Program” on page 185
“Example of Creating and Using a User Heap” on page 190
“Example of Creating and Using a Shared-Memory User Heap” on page 191

Types of Memory

There are two types of memory:

1. Regular memory

Most programs use regular memory. This is the type provided by the default runtime heap.

2. Shared memory

Heaps of shared memory can be shared between processes or applications. If you want other
processes to use the heaps you have created, you must pass them the heap handle and give them
access to the heap. Use _ucreate to create the heap.

“Memory Management Functions” on page 179
“Managing Memory with Multiple Heaps” on page 182
“Debugging Memory Heaps”
“Example of Creating and Using a User Heap” on page 190
“Example of Creating and Using a Shared-Memory User Heap” on page 191

Debugging Memory Heaps

C for AIX provides two sets of functions for debugging your memory problems:

1. Debug versions of all memory management functions

2. Heap-checking functions similar to those provided by other compilers.

Debug Memory Management Functions

Debug versions of the heap-specific memory management functions are provided, just as they are for the
regular versions. Each debug version performs the same function as its non-debug counterpart. In

Chapter 7. Writing C Programs 183

addition, the debug version calls _uheap_check to check the heap used in the call, and records the file and
line number where the memory was allocated or freed. You can then use _dump_allocated or
_dump_allocated_delta to display information about currently allocated memory blocks. Information is
printed to stderr .

You can use debug memory management functions for any type of heap, including shared memory. To use
the debug versions, specify the -qheapdebug compiler option. The C for AIX compiler then maps all calls
to memory management functions (regular or heap-specific) to the corresponding debug versions.

Note: If you parenthesize the name of a memory management function, the function is not mapped to the
debug version.

Heap-Checking Functions

C for AIX also provides some new functions for validating user heaps: _uheapchk, _uheapset, and
_uheap_walk. Each of these functions also has a non-heap-specific version that validates the default heap.

Both _uheapchk and _uheapset check the specified heap for minimal consistency; _uheapchk checks the
entire heap, while _uheapset checks only the free memory. _uheapset also sets the free memory in the
heap to a value you specify. _uheap_walk traverses the heap and provides information about each
allocated or freed object to a callback function that you provide. You can then use the information however
you like.

These heap-checking functions are defined in <umalloc.h> (the regular versions are also in <malloc.h>).
They are not controlled by a compiler option, so you can use them in your program at any time.

Which Should I Use?

Both sets of debugging functions have their benefits and drawbacks. Which you choose to use depends
on your program, your problems, and your preference.

The debug memory management functions provide detailed information about all allocation requests you
make with them in your program. You don’t need to change any code to use the debug versions; you need
only specify the -qheapdebug compiler option. However, because only calls that have been mapped to
debug versions provide any information, you may have to rebuild many or all of your program’s modules,
which can be time-consuming.

On the other hand, the heap-checking functions perform more general checks on the heap at specific
points in your program. You have greater control over where the checks the occur. The heap-checking
functions also provide compatibility with other compilers that offer these functions. You only have to rebuild
the modules that contain the heap-checking calls. However, you have to change your source code to
include these calls, which you will probably want to remove in your final code. Also, the heap-checking
functions only tell you if the heap is consistent or not; they do not provide the details that the debug
memory management functions do.

What you may choose to do is add calls to heap-checking functions in places you suspect possible
memory problems. If the heap turns out to be corrupted, at that point you may want to rebuild with the
-qheapdebug option.

Note: When the debug memory option -qheapdebug is specified, code is generated to pre-initialize the
local variables for all functions. This makes it much more likely that uninitialized local variables will be
found during the normal debug cycle rather than much later (usually when the code is optimized).

184 C for AIX User’s Guide

Regardless of which debugging functions you choose, your program requires additional memory to
maintain internal information for these functions. If you are using fixed-size heaps, you may have to
increase the heap size in order to use the debugging functions.

“Memory Management Functions” on page 179
“Managing Memory with Multiple Heaps” on page 182
“Types of Memory” on page 183
“Creating and Using a Fixed Size Heap” on page 186
“Creating and Using an Expandable Heap” on page 188
“Debugging Programs with Heap Memory” on page 195
“Changing the Default Heap Used in a Program”
“Example of Creating and Using a User Heap” on page 190
“Example of Creating and Using a Shared-Memory User Heap” on page 191
“heapdebug” on page 270
“_debug_calloc - Allocate and Initialize Memory” on page 407
“_debug_free - Free Allocated Memory” on page 408
“_debug_heapmin - Free Unused Memory in the Default Heap” on page 410
“_debug_malloc - Allocate Memory” on page 412
“_debug_memcpy - Copy Bytes” on page 413
“_debug_memmove - Copy Bytes” on page 415
“_debug_memset - Set Bytes to Value” on page 416
“_debug_realloc - Reallocate Memory Block” on page 417
“_debug_strcat - Concatenate Strings” on page 419
“_debug_strcpy - Copy Strings” on page 421
“_debug_strncat - Concatenate Strings” on page 422
“_debug_strncpy - Copy Strings” on page 423
“_debug_strnset - Set Characters in String” on page 425
“_debug_strset - Set Characters in String” on page 426
“_debug_ucalloc - Reserve and Initialize Memory from User Heap” on page 428
“_debug_uheapmin - Free Unused Memory in User Heap” on page 430
“_debug_umalloc - Reserve Memory Blocks from User Heap” on page 431
“heapdebug” on page 270

Changing the Default Heap Used in a Program

The regular memory management functions (malloc and so on) always use whatever heap is currently the
default for that thread. The initial default heap for all C for AIX applications is the runtime heap provided by
C for AIX. However, you can make your own heap the default by calling _udefault. Then all calls to the
regular memory management functions allocate from your heap instead of the runtime heap.

The default heap changes only for the thread where you call _udefault. You can use a different default
heap for each thread of your program if you choose.

This is useful when you want a component (such as a vendor library) to use a heap other than the C for
AIX runtime heap, but you can’t actually alter the source code to use heap-specific calls. For example, if
you set the default heap to a shared heap then call a library function that calls malloc, the library allocates
storage in shared memory.

Because _udefault returns the current default heap, you can save the return value and later use it to
restore the default heap you replaced. You can also change the default back to the C for AIX runtime heap
by calling _udefault and specifying _RUNTIME_HEAP (defined in <umalloc.h>). You can also use this macro
with any of the heap-specific functions to explicitly allocate from the runtime heap.

Chapter 7. Writing C Programs 185

“Memory Management Functions” on page 179
“Managing Memory with Multiple Heaps” on page 182
“Types of Memory” on page 183
“Debugging Memory Heaps” on page 183
“Creating and Using a Fixed Size Heap”
“Creating and Using an Expandable Heap” on page 188
“Debugging Programs with Heap Memory” on page 195
“Example of Creating and Using a User Heap” on page 190
“Example of Creating and Using a Shared-Memory User Heap” on page 191

Creating and Using a Fixed Size Heap

Before creating a heap, you must first allocate a block of memory large enough to hold the heap. The
block must be large enough to satisfy all the memory requests your program will make of it, and also be
able to hold internal information required to manage the heap. Once the block is fully allocated, further
allocation requests to the heap will fail.

The internal information requires _HEAP_MIN_SIZE bytes (_HEAP_MIN_SIZE is defined in <umalloc.h>). You
cannot create a heap smaller than this. Add the amount of memory your program requires to this value to
determine the size of the block you need to get. Also make sure the block is the correct type (regular or
shared) for the heap you are creating.

After you have allocated a block of memory, create the heap with _ucreate.

For example:
Heap_t fixedHeap; /* this is the “heap handle” */
/* get memory for internal info plus 5000 bytes for the heap */
static char block[_HEAP_MIN_SIZE + 5000];
fixedHeap = _ucreate(block, (_HEAP_MIN_SIZE+5000), /* block to use */

!_BLOCK_CLEAN, /* memory is not set to 0 */
_HEAP_REGULAR, /* regular memory */
NULL, NULL); /* we'll explain this later */

The !_BLOCK_CLEAN parameter indicates that the memory in the block has not been initialized to 0. If it
were set to 0 (for example, by memset), you would specify _BLOCK_CLEAN. The calloc and _ucalloc
functions use this information to improve their efficiency; if the memory is already initialized to 0, they don’t
need to initialize it.

The fourth parameter indicates what type of memory the heap contains: regular (_HEAP_REGULAR) or shared
(_HEAP_SHARED). The different memory types are described in “Types of Memory” on page 183.

For a fixed-size heap, the last two parameters are always NULL.

Using Your Heap

Once you have created your heap, you can open it for use by calling _uopen:
_uopen(fixedHeap);

This opens the heap for that particular process; if the heap is shared, each process that uses the heap
needs its own call to _uopen.

186 C for AIX User’s Guide

You can then allocate and free from your own heap just as you would from the default heap. To allocate
memory, use _ucalloc or _umalloc. These functions work just like calloc and malloc, except you specify
the heap to use as well as the size of block that you want. For example, to allocate 1000 bytes from
fixedHeap:

void *up;
up = _umalloc(fixedHeap, 1000);

To reallocate and free memory, use the regular realloc and free functions. Both of these functions always
check what heap the memory came from, so you don’t need to specify the heap to use. For example, the
realloc and free calls in the following code fragment look exactly the same for both the default heap and
your heap:

void *p, *up;
p = malloc(1000); /* allocate 1000 bytes from default heap */
up = _umalloc(fixedHeap, 1000); /* allocate 1000 from fixedHeap */
realloc(p, 2000); /* reallocate from default heap */
realloc(up, 100); /* reallocate from fixedHeap */
free(p); /* free memory back to default heap */
free(up); /* free memory back to fixedHeap */

For any object, you can find out what heap it was allocated from by calling _mheap. You can also get
information about the heap itself by calling _ustats, which tells you:

v How much memory the heap holds (excluding memory used for overhead)

v How much memory is currently allocated from the heap

v What type of memory is in the heap

v The size of the largest contiguous piece of memory available from the heap

When you call any heap function, make sure the heap you specify is valid. If the heap is not valid, the
behavior of the heap functions is undefined.

Adding to a Fixed-Size Heap

Although you created the heap with a fixed size, you can add blocks of memory to it with _uaddmem. This
can be useful if you have a large amount of memory that is allocated conditionally. Like the starting block,
you must first allocate memory for a block of memory. This block will be added to the current heap, so
make sure the block you add is the same type of memory as the heap you are adding it to.

For example, to add 64K to fixedHeap:
static char newblock[65536];
_uaddmem(fixedHeap, /* heap to add to */

newblock, 65536, /* block to add */
_BLOCK_CLEAN); /* sets memory to 0 */

Using _uaddmem is the only way to increase the size of a fixed heap.

Note: For every block of memory you add, a small number of bytes from it are used to store internal
information. To reduce the total amount of overhead, it is better to add a few large blocks of memory than
many small blocks.

Chapter 7. Writing C Programs 187

Destroying Your Heap

When you have finished using the heap, close it with _uclose. Once you have closed the heap in a
process, that process can no longer allocate from or return memory to that heap. If other processes share
the heap, they can still use it until you close it in each of them. Performing operations on a heap after
you’ve closed it causes undefined behavior.

To finally destroy the heap, call _udestroy. If blocks of memory are still allocated somewhere, you can
force the destruction. Destroying a heap removes it entirely even if it was shared by other processes.
Again, performing operations on a heap after you’ve destroyed it causes undefined behavior.

After you destroy your fixed-size heap, it is up to you to return the memory for the heap (the initial block of
memory you supplied to _ucreate and any other blocks added by _uaddmem) to the system.

“Memory Management Functions” on page 179
“Managing Memory with Multiple Heaps” on page 182
“Types of Memory” on page 183
“Debugging Memory Heaps” on page 183
“Creating and Using an Expandable Heap”
“Debugging Programs with Heap Memory” on page 195
“Changing the Default Heap Used in a Program” on page 185
“Example of Creating and Using a User Heap” on page 190
“Example of Creating and Using a Shared-Memory User Heap” on page 191

Creating and Using an Expandable Heap

When using a fixed-size heap, the initial block of memory must be large enough to satisfy all allocation
requests made to it. You can also, however, create a heap that can expand and contract as your program
needs demand.

With the C for AIX runtime heap, when not enough storage is available for your malloc request, the
runtime gets additional storage from the system. Similarly, when you minimize the heap with _heapmin or
when your program ends, the runtime returns the memory to the operating system.

When you create an expandable heap, you provide your own functions to do this work (we’ll call them
getmore_fn and release_fn, although you can name them whatever you choose). You specify pointers to
these functions as the last two parameters to _ucreate (instead of the NULL pointers you used to create a
fixed-size heap). For example:

Heap_t growHeap;
static char block[_HEAP_MIN_SIZE]; /* get block */
growHeap = _ucreate(block, _HEAP_MIN_SIZE, /* starting block */

!_BLOCK_CLEAN, /* memory not set to 0 */
_HEAP_REGULAR, /* regular memory */
getmore_fn, /* function to expand heap */
release_fn); /* function to shrink heap */

Note: You can use the same getmore_fn and release_fn for more than one heap, as long as the heaps
use the same type of memory and your functions are not written specifically for one heap.

188 C for AIX User’s Guide

Expanding Your Heap

When you call _umalloc (or a similar function) for your heap, _umalloc tries to allocate the memory from
the initial block you provided to _ucreate. If not enough memory is there, it then calls your getmore_fn.
Your getmore_fn then gets more memory from the operating system and adds it to the heap. It is up to
you how you do this.

Your getmore_fn must have the following prototype:
void *(*getmore_fn)(Heap_t uh, size_t *size, int *clean);

The uh is the heap to be expanded.

The size is the size of the allocation request passed by _umalloc. You probably want to return enough
memory at a time to satisfy several allocations; otherwise every subsequent allocation has to call
getmore_fn, reducing your program’s execution speed. Make sure that you update the size parameter. if
you return more than the size requested.

Your function must also set the clean parameter to either _BLOCK_CLEAN, to indicate the memory has been
set to 0, or !_BLOCK_CLEAN, to indicate that the memory has not been initialized.

The following fragment shows an example of a getmore_fn:
static void *getmore_fn(Heap_t uh, size_t *length, int *clean)
{

char *newblock;
/* round the size up to a multiple of 64K */
*length = (*length / 65536) * 65536 + 65536;
clean = _BLOCK_CLEAN; / mark the block as “clean” */
return(newblock); /* return new memory block */

}

Be sure that your getmore_fn allocates the right type of memory (regular or shared) for the heap. There
are also special considerations for shared memory, as described under “Types of Memory” on page 183.

You can also use _uaddmem to add blocks to your heap, as you did for the fixed heap in “Creating and
Using a Fixed Size Heap” on page 186. _uaddmem works exactly the same way for expandable heaps.

Shrinking Your Heap

To coalesce the heap (return all blocks in the heap that are totally free to the system), use _uheapmin.
_uheapmin works like _heapmin, except that you specify the heap to use.

When you call _uheapmin to coalesce the heap or _udestroy to destroy it, these functions call your
release_fn to return the memory to the system. Again, it is up to you how you implement this function.

Your release_fn must have the following prototype:
void (*release_fn)(Heap_t uh, void *block, size_t size);

Where uh identifies the heap to be shrunk. The pointer block and its size are passed to your function by
_uheapmin or _udestroy. Your function must return the memory pointed to by block to the system. For
example:

Chapter 7. Writing C Programs 189

static void release_fn(Heap_t uh, void *block, size_t size)
{

free(block);
return;

}

Notes:

1. _udestroy calls your release_fn to return all memory added to the uh heap by your getmore_fn or by
_uaddmem. However, you are responsible for returning the initial block of memory that you supplied to
_ucreate.

2. Because a fixed-size heap has no release_fn, _uheapmin and _udestroy work slightly differently.
Calling _uheapmin for a fixed-size heap has no effect but does not cause an error; _uheapmin simply
returns 0. Calling _udestroy for a fixed-size heap marks the heap as destroyed, so no further
operations can be performed on it, but returns no memory. It is up to you to return the heap’s memory
to the system.

“Memory Management Functions” on page 179
“Managing Memory with Multiple Heaps” on page 182
“Types of Memory” on page 183
“Debugging Memory Heaps” on page 183
“Creating and Using a Fixed Size Heap” on page 186
“Debugging Programs with Heap Memory” on page 195
“Changing the Default Heap Used in a Program” on page 185
“Example of Creating and Using a User Heap”
“Example of Creating and Using a Shared-Memory User Heap” on page 191

Example of Creating and Using a User Heap

The program below shows how you might create and use a heap.

Assuming that the program file is called t.c, compile it with the following command:
/usr/vac/bin/cc -qheapdebug t.c -lhu

#include <stdlib.h>
#include <stdio.h>
#include <umalloc.h>
static void *get_fn(Heap_t usrheap, size_t *length, int *clean)
{

void *p;
/* Round up to the next chunk size */
*length = ((*length) / 65536) * 65536 + 65536;
*clean = _BLOCK_CLEAN;
p = calloc(*length,1);
return (p);

}
static void release_fn(Heap_t usrheap, void *p, size_t size)
{

free(p);
return;

}
int main(void)
{

void *initial_block;
long rc;
Heap_t myheap;
char *ptr;
int initial_sz;
/* Get initial area to start heap */

190 C for AIX User’s Guide

initial_sz = 65536;
initial_block = malloc(initial_sz);
if(initial_block == NULL) return (1);
/* create a user heap */
myheap = _ucreate(initial_block, initial_sz, _BLOCK_CLEAN,

_HEAP_REGULAR, get_fn, release_fn);
if (myheap == NULL) return(2);
/* allocate from user heap and cause it to grow */
ptr = _umalloc(myheap, 100000);
_ufree(ptr);
/* destroy user heap */
if (_udestroy(myheap, _FORCE)) return(3);
/* return initial block used to create heap */
free(initial_block);
return 0;

}

“Memory Management Functions” on page 179
“Managing Memory with Multiple Heaps” on page 182
“Types of Memory” on page 183
“Debugging Memory Heaps” on page 183
“Creating and Using a Fixed Size Heap” on page 186
“Creating and Using an Expandable Heap” on page 188
“Debugging Programs with Heap Memory” on page 195
“Changing the Default Heap Used in a Program” on page 185
“Example of Creating and Using a Shared-Memory User Heap”

Example of Creating and Using a Shared-Memory User Heap

The following program shows how you might implement a heap shared between a parent and several child
processes.

Example of a User Heap - Parent Process (page 191) shows the parent process, which creates the shared
heap. First the main program calls the init function to allocate shared memory from the operating system
(using CreateFileMapping) and name the memory so that other processes can use it by name. The init
function then creates and opens the heap. The loop in the main program performs operations on the heap,
and also starts other processes. The program then calls the term function to close and destroy the heap.

Example of a Shared User Heap- Child Process (page 193) shows the process started by the loop in the
parent process. This process uses OpenFileMapping to access the shared memory by name, then extracts
the heap handle for the heap created by the parent process. The process then opens the heap, makes it
the default heap, and performs some operations on it in the loop. After the loop, the process replaces the
old default heap, closes the user heap, and ends.

Example of a User Heap - Parent Process
/* The following program shows how you might implement
a heap shared between a parent and several child processes.
Example of a Shared User Heap - Parent Process shows the parent
process, which creates the shared heap. First
the main program calls the init function to allocate shared memory from the operating system (using
CreateFileMapping) and name the memory so that other processes can use it by name. The init function
then creates and opens the heap. The loop in the main program performs operations on the heap, and also
starts other processes. The program then calls the term function to close and destroy the heap.
*/
#include <umalloc.h>
#include <stdio.h>
#include <stdlib.h>

Chapter 7. Writing C Programs 191

#include <string.h>
#define PAGING_FILE 0xFFFFFFFF
#define MEMORY_SIZE 65536
#define BASE_MEM (VOID*)0x01000000
static HANDLE hFile; /* Handle to memory file */
static void* hMap; /* Handle to allocated memory */
typedef struct mem_info {

void * pBase;
Heap_t pHeap;

} MEM_INFO_T;
/*————————————————————————————————————*/
/* inithp: */
/* Function to create and open the heap with a named shared memory object */
/*————————————————————————————————————*/
static Heap_t inithp(size_t heap_size)
{

MEM_INFO_T info; /* Info structure */
/* Allocate shared memory from the system by creating a shared memory */
/* pool basing it out of the system paging (swapper) file. */
hFile = CreateFileMapping((HANDLE) PAGING_FILE,

NULL,
PAGE_READWRITE,
0,
heap_size + sizeof(Heap_t),
“MYNAME_SHAREMEM”);

if (hFile == NULL) {
return NULL;

}
/* Map the file to this process' address space, starting at an address */
/* that should also be available in child processe(s) */
hMap = MapViewOfFileEx(hFile, FILE_MAP_WRITE, 0, 0, 0, BASE_MEM);
info.pBase = hMap;
if (info.pBase == NULL) {
return NULL;

}
/* Create a fixed sized heap. Put the heap handle as well as the */
/* base heap address at the beginning of the shared memory. */
info.pHeap = _ucreate((char *)info.pBase + sizeof(info),

heap_size - sizeof(info),
!_BLOCK_CLEAN,
_HEAP_SHARED | _HEAP_REGULAR,
NULL, NULL);

if (info.pBase == NULL) {
return NULL;

}
memcpy(info.pBase, info, sizeof(info));
if (_uopen(info.pHeap)) { /* Open heap and check result */

return NULL;
}
return info.pHeap;

}
/*————————————————————————————————————*/
/* termhp: */
/* Function to close and destroy the heap */
/*————————————————————————————————————*/
static int termhp(Heap_t uheap)
{

if (_uclose(uheap)) /* close heap */
return 1;

if (_udestroy(uheap, _FORCE)) /* force destruction of heap */
return 1;

UnmapViewOfFile(hMap); /* return memory to system */
CloseHandle(hFile);
return 0;

}
/*————————————————————————————————————*/
/* main: */

192 C for AIX User’s Guide

/* Main function to test creating, writing to and destroying a shared */
/* heap. */
/*————————————————————————————————————*/
int main(void)
{

int i, rc; /* Index and return code */
Heap_t uheap; /* heap to create */
void *init_block; /* initial block to use */
char *p; /* for allocating from heap */
/* */
/* call init function to create and open the heap */
/*
uheap = inithp(MEMORY_SIZE);
if (uheap == NULL) /* check for success */

return 1; /* if failure, return non zero */
/* */
/* perform operations on uheap */
/* */
for (i = 1; i <= 5; i++)
{

p = _umalloc(uheap, 10); /* allocate from uheap */
if (p == NULL)

return 1;
memset(p, 'M', _msize(p)); /* set all bytes in p to 'M' */
p = realloc(p,50); /* reallocate from uheap */
if (p == NULL)

return 1;
memset(p, 'R', _msize(p)); /* set all bytes in p to 'R' */

}
/* */
/* Start a second process which accesses the heap */
/* */
if (system(“memshr2.exe”))

return 1;
/* */
/* Take a look at the memory that we just wrote to. Note that memshr.c */
/* and memshr2.c should have been compiled specifying the /Tm+ flag. */
/* */
#ifdef DEBUG
_udump_allocated(uheap, -1);

#endif
/* */
/* call term function to close and destroy the heap */
/* */
rc = termhp(uheap);
#ifdef DEBUG
printf(“memshr ending... rc = %d\n”, rc);

#endif
return rc;

}

Example of a Shared User Heap - Child Process
/* Example of a Shared User Heap - Child Process shows

the process started by the loop in the parent process.
This process uses OpenFileMapping to access the shared memory
by name, then extracts the heap handle for the heap created
by the parent process. The process then opens the heap,
makes it the default heap, and performs some operations
on it in the loop. After the loop, the process replaces
the old default heap, closes the user heap, and ends.

*/
#include <umalloc.h>
#include <stdio.h>
#include <stdlib.h>

Chapter 7. Writing C Programs 193

#include <string.h>
static HANDLE hFile; /* Handle to memory file */
static void* hMap; /* Handle to allocated memory */
typedef struct mem_info {

void * pBase;
Heap_t pHeap;

} MEM_INFO_T;
/*————————————————————————————————————*/
/* inithp: Subprocess Version */
/* Function to create and open the heap with a named shared memory object */
/*————————————————————————————————————*/
static Heap_t inithp(void)
{

MEM_INFO_T info; /* Info structure */
/* Open the shared memory file by name. The file is based on the */
/* system paging (swapper) file. */
hFile = OpenFileMapping(FILE_MAP_WRITE, FALSE, “MYNAME_SHAREMEM”);
if (hFile == NULL) {
return NULL;

}
/* Figure out where to map this file by looking at the address in the */
/* shared memory where the memory was mapped in the parent process. */
hMap = MapViewOfFile(hFile, FILE_MAP_WRITE, 0, 0, sizeof(info));
if (hMap == NULL) {
return NULL;

}
/* Extract the heap and base memory address from shared memory */
memcpy(info, hMap, sizeof(info));
UnmapViewOfFile(hMap);
hMap = MapViewOfFileEx(hFile, FILE_MAP_WRITE, 0, 0, 0, info.pBase);
if (_uopen(info.pHeap)) { /* Open heap and check result */

return NULL;
}
return info.pHeap;

}
/*————————————————————————————————————*/
/* termhp: */
/* Function to close my view of the heap */
/*————————————————————————————————————*/
static int termhp(Heap_t uheap)
{

if (_uclose(uheap)) /* close heap */
return 1;

UnmapViewOfFile(hMap); /* return memory to system */
CloseHandle(hFile);
return 0;

}
/*————————————————————————————————————*/
/* main: */
/* Main function to test creating, writing to and destroying a shared */
/* heap. */
/*————————————————————————————————————*/
int main(void)
{

int rc, i; /* for return code, loop iteration */
Heap_t uheap, oldheap; /* heap to create, old default heap */
char *p; /* for allocating from the heap */
/* */
/* Get the heap storage from the shared memory */
/* */
uheap = inithp();
if (uheap == NULL)
return 1;

/* */
/* Register uheap as default runtime heap, save old default */
/* */
oldheap = _udefault(uheap);

194 C for AIX User’s Guide

if (oldheap == NULL) {
return termhp(uheap);

}
/* */
/* Perform operations on uheap */
/* */
for (i = 1; i <= 5; i++)
{

p = malloc(10); /* malloc uses default heap, which is now uheap*/
memset(p, 'M', _msize(p));

}
/* */
/* Replace original default heap and check result */
/* */
if (uheap != _udefault(oldheap)) {

return termhp(uheap);
}

/* */
/* Close my views of the heap */
/* */
rc = termhp(uheap);
#ifdef DEBUG
printf(“Returning from memshr2 rc = %d\n”, rc);

#endif
return rc;

}

“Memory Management Functions” on page 179
“Managing Memory with Multiple Heaps” on page 182
“Types of Memory” on page 183
“Debugging Memory Heaps” on page 183
“Creating and Using a Fixed Size Heap” on page 186
“Creating and Using an Expandable Heap” on page 188
“Debugging Programs with Heap Memory”
“Changing the Default Heap Used in a Program” on page 185
“Example of Creating and Using a User Heap” on page 190

Debugging Programs with Heap Memory

C for AIX provides debug versions of both general memory management functions and heap-specific
memory management functions. To automatically call the debug versions of these functions, specify the
-qheapdebug compiler option when compiling your program. Bear in mind that specifying this option can
significantly increase the memory requirements and running time of your program.

Memory Allocation Fill Pattern

Some debug functions set all the memory they allocate to a specified fill pattern. This lets you easily locate
areas in memory that your program uses.

The debug_malloc , debug_realloc , and debug_umalloc functions sets allocated memory to a default
repeating 0xAA fill pattern. To enable this fill pattern, export the HD_FILL environment variable.

The debug_free function sets all free memory to a repeating 0xFB fill pattern.

Chapter 7. Writing C Programs 195

Skipping Heap Checks

Each debug function calls _heap_check (or _uheap_check) to check the heap. Although this is useful, it can
also increase your program’s memory requirements and decrease its execution speed.

To reduce the overhead of checking the heap on every debug memory management function, you can
control how often the functions check the heap with the HD_SKIP environment variable. You will not need to
do this for most of your applications unless the application is extremely memory intensive.

Set HD_SKIP like any other environment variable. The syntax for HD_SKIP is:
set HD_SKIP=increment,[start]

where:

increment Specifies how often you want the debug functions to check the heap.
start Optional. Use this parameter to start skipping heap checks after start calls to debug functions.

Note : The comma separating the parameters is optional.

When you use the start parameter to start skipping heap checks, you are trading off heap checks that are
done implicitly against program execution speed. You should therefore start with a small increment (like 5)
and slowly increase until the application is usable.

For example, if you specify:
set HD_SKIP=10

then every tenth debug memory function call performs a heap check. If you specify:
set HD_SKIP=5,100

then after 100 debug memory function calls, only every fifth call performs a heap check. Other than the
heap check, the debug functions behave exactly the same as usual.

Using Stack Traces

Stack contents are traced for each allocated memory object. If the contents of an object’s stack change,
the traced contents are dumped.

The trace size is controlled by the HD_STACK environment variable. If this variable is not set, the compiler
assumes a stack size of 10. To disable stack tracing, set the HD_STACK environment variable to 0.

196 C for AIX User’s Guide

“Memory Management Functions” on page 179
“Managing Memory with Multiple Heaps” on page 182
“Types of Memory” on page 183
“Debugging Memory Heaps” on page 183
“Creating and Using a Fixed Size Heap” on page 186
“Creating and Using an Expandable Heap” on page 188
“Changing the Default Heap Used in a Program” on page 185
“Example of Creating and Using a User Heap” on page 190
“Example of Creating and Using a Shared-Memory User Heap” on page 191
“_debug_calloc - Allocate and Initialize Memory” on page 407
“_debug_free - Free Allocated Memory” on page 408
“_debug_heapmin - Free Unused Memory in the Default Heap” on page 410
“_debug_malloc - Allocate Memory” on page 412
“_debug_memcpy - Copy Bytes” on page 413
“_debug_memmove - Copy Bytes” on page 415
“_debug_memset - Set Bytes to Value” on page 416
“_debug_realloc - Reallocate Memory Block” on page 417
“_debug_strcat - Concatenate Strings” on page 419
“_debug_strcpy - Copy Strings” on page 421
“_debug_strncat - Concatenate Strings” on page 422
“_debug_strncpy - Copy Strings” on page 423
“_debug_strnset - Set Characters in String” on page 425
“_debug_strset - Set Characters in String” on page 426
“_debug_ucalloc - Reserve and Initialize Memory from User Heap” on page 428
“_debug_uheapmin - Free Unused Memory in User Heap” on page 430
“_debug_umalloc - Reserve Memory Blocks from User Heap” on page 431
“heapdebug” on page 270

Writing Optimized Program Source Code

This page contains tips for writing code to take advantage of the optimization features of the compiler. The
following language elements are discussed:

v “Variables”

v “Pointers” on page 198

v “Functions” on page 199

v “Function Arguments” on page 199

v “Expressions” on page 199

v “Critical Loops” on page 200

v “Conversions” on page 201

v “Arithmetic Constructions” on page 201

v “Using Inlined Components” on page 202

You can also refer to the Optimization Guide for Fortran, C, and C++ for more information about optimizing
and tuning your code.

“Program Optimization with the C for AIX Compiler” on page 23

Variables

Use local variables, preferably automatic variables, as much as possible. The compiler can accurately
analyze the use of local variables, but it has to make several worst-case assumptions about global

Chapter 7. Writing C Programs 197

variables. These assumptions tend to hinder optimization. For example, if you write a function that uses
external variables heavily, and that function also calls several external functions, the compiler assumes
that every call to an external function could change the value of every external variable. If you know that
none of the function calls affects the global variables that you are using, and you have to read them
frequently with function calls interspersed, copy the global variables to local variables and then use these
local variables. The compiler can then perform optimization that it could not otherwise perform.

If you must use global variables, use static variables with file scope rather than external variables
wherever possible. In a file with several related functions and static variables, the optimizer can gather and
use more information about how the variables are affected.

To access an external variable, the compiler has to make an extra memory access to obtain the address
of the variable. When the compiler removes extraneous address loads, it has to use a register to keep the
address. Using many external variables simultaneously takes up many registers. Those that cannot fit into
registers during optimization are spilled into memory. Because all elements of an external structure use the
same base address, you should group external data into structures or arrays wherever it makes sense to
do so.

The “#pragma isolated_call Preprocessor Directive” on page 371 preprocessor directive can improve
the runtime performance of optimized code by allowing the compiler to make less pessimistic assumptions
about the storage of external and static variables.

Because the compiler treats register variables the same as it does automatic variables, you do not gain
anything by declaring register variables. Note that this differs from other implementations, where using the
register attribute can greatly affect program performance.

“Program Optimization with the C for AIX Compiler” on page 23
“Writing Optimized Program Source Code” on page 197
“Pointers”
“Functions” on page 199
“Function Arguments” on page 199
“Expressions” on page 199
“Critical Loops” on page 200
“Conversions” on page 201
“Arithmetic Constructions” on page 201
“Using Inlined Components” on page 202

Pointers

Keeping track of pointers during optimization is difficult and in some cases impossible. Using pointers
inhibits most memory optimization (such as dead store elimination and store motion).

Using the “#pragma disjoint Preprocessor Directive” on page 366 preprocessor directive to list
identifiers that do not share the same physical storage can improve the runtime performance of optimized
code.

Also see “assert” on page 238 for information on applying aliasing assertions to pointers in your
compilation unit.

198 C for AIX User’s Guide

“Program Optimization with the C for AIX Compiler” on page 23
“Writing Optimized Program Source Code” on page 197
“Variables” on page 197
“Functions”
“Function Arguments”
“Expressions”
“Critical Loops” on page 200
“Conversions” on page 201
“Arithmetic Constructions” on page 201
“Using Inlined Components” on page 202

Functions

Declare nonmember functions as static whenever possible. This will speed up calls to the function.

“Program Optimization with the C for AIX Compiler” on page 23
“Writing Optimized Program Source Code” on page 197
“Variables” on page 197
“Pointers” on page 198
“Function Arguments”
“Expressions”
“Critical Loops” on page 200
“Conversions” on page 201
“Arithmetic Constructions” on page 201
“Using Inlined Components” on page 202

Function Arguments

Optimization is effective when function arguments are used. It is usually better to pass a value as an
argument to a function than to let the function take the value from a global variable.

The “#pragma isolated_call Preprocessor Directive” on page 371 preprocessor directive lists functions
that have no side effects. Using the pragma to list functions that do not have side effects, that is, that do
not modify global storage, can improve the runtime performance of optimized code.

“Program Optimization with the C for AIX Compiler” on page 23
“Writing Optimized Program Source Code” on page 197
“Variables” on page 197
“Pointers” on page 198
“Functions”
“Expressions”
“Critical Loops” on page 200
“Conversions” on page 201
“Arithmetic Constructions” on page 201
“Using Inlined Components” on page 202

Expressions

If components of an expression are duplicate expressions, code them either at the left end of the
expression or within parentheses. For example:

a = b*(x*y*z); /* Duplicates recognized */
c = x*y*z*d;
e = f + (x + y);

Chapter 7. Writing C Programs 199

g = x + y + h;
a = b*x*y*z; /* No duplicates recognized */
c = x*y*z*d;
e = f + x + y;
g = x + y + h;

When components of an expression in a loop are constant, code the expressions either at the left end of
the expression, or within parentheses. If c, d, and e are constant and v, w, and x are variable, the
following examples show the difference in evaluation:

v*w*x*(c*d*e); /* Loop invariant expressions recognized */
c + d + e + v + w + x;
v*w*x*c*d*e; /* Optimization required for loop invariant */
v + w + x + c + d + e; /* expressions to be recognized */

For integer expressions, the loop invariant expression will be recognized if -O is specified. For
floating-point expressions, the loop invariant expression will be recognized if -O3 is specified.

“Program Optimization with the C for AIX Compiler” on page 23
“Writing Optimized Program Source Code” on page 197
“Variables” on page 197
“Pointers” on page 198
“Functions” on page 199
“Function Arguments” on page 199
“Critical Loops”
“Conversions” on page 201
“Arithmetic Constructions” on page 201
“Using Inlined Components” on page 202
“O, optimize” on page 302

Critical Loops

If your program contains a short, heavily referenced for loop, consider expanding the code to a straight
sequence of statements. For example:

array[0] = b[k+1]*c[m+1];
array[1] = b[k+2]*c[m+2];
array[2] = b[k+3]*c[m+3];
array[3] = b[k+4]*c[m+4];
array[4] = b[k+5]*c[m+5];

would run faster than:
for (i = 0; i < 5; i++)

array[i] = b[k+i]*c[m+i];

The compiler will perform automatic unrolling of inner loops when the -O3 option is specified. In this case,
the compiler will unroll the loop once.

200 C for AIX User’s Guide

“Program Optimization with the C for AIX Compiler” on page 23
“Writing Optimized Program Source Code” on page 197
“Variables” on page 197
“Pointers” on page 198
“Functions” on page 199
“Function Arguments” on page 199
“Expressions” on page 199
“Conversions”
“Arithmetic Constructions”
“Using Inlined Components” on page 202
“O, optimize” on page 302

Conversions

Avoid forcing the compiler to convert numbers between integer and floating-point internal representations.
Conversions require several instructions, including some double-precision floating-point arithmetic. For
example:

float array[10];
float x = 1.0;
int i;
for (i = 0; i< 9; i++) { /* No conversions needed */

array[i] = array[i]*x;
x = x + 1.0;

}
for (i = 0; i< 9; i++) /* Multiple conversions needed */

array[i] = array[i]*i;

When you must use mixed-mode arithmetic, code the fixed-point and floating-point arithmetic in separate
computations wherever possible.

“Program Optimization with the C for AIX Compiler” on page 23
“Writing Optimized Program Source Code” on page 197
“Variables” on page 197
“Pointers” on page 198
“Functions” on page 199
“Function Arguments” on page 199
“Expressions” on page 199
“Critical Loops” on page 200
“Arithmetic Constructions”
“Using Inlined Components” on page 202

Arithmetic Constructions

Wherever possible, use multiplication rather than division. For example:
x*(1.0/3.0);

produces faster code than:
x/3.0;

Assigning the reciprocal of the divisor to a temporary variable and then multiplying by that variable is
beneficial, especially if you divide many values by the same number in your code. This is attempted by the
compiler when the -O3 option is specified.

Chapter 7. Writing C Programs 201

“Program Optimization with the C for AIX Compiler” on page 23
“Writing Optimized Program Source Code” on page 197
“Variables” on page 197
“Pointers” on page 198
“Functions” on page 199
“Function Arguments” on page 199
“Expressions” on page 199
“Critical Loops” on page 200
“Conversions” on page 201
“Using Inlined Components”
“O, optimize” on page 302

Using Inlined Components

By default, the compiler inlines certain library functions, meaning that it replaces the function call with the
actual code for the function at the point where the call was made. These library functions are called
intrinsic or built-in functions.

You can also request that the compiler inline the code for your own functions. There are benefits and
drawbacks of, and restrictions on, inlining user code.

There are two ways to inline user code:

1. Use the C for AIX _inline , _Inline , and __inline keywords to specify which functions you want to have
inlined. You must specify the Q or -qinline options to turn inlining on.

2. Use the -Q or -qinline option with a value parameter to automatically inline functions smaller than the
value specified.

You should use inlining only for very small functions. See -Q or -qinline for more information about the
inlining option.

Note: Requesting that a function be inlined makes it a candidate for inlining but does not necessarily mean that
the function will be inlined. In all cases, the compiler ultimately decides whether a function is inlined.

Benefits of Inlining

Inlining user code eliminates the overhead of the function call and linkage, and also exposes the function’s
code to the optimizer, resulting in faster code performance. Inlining produces the best results when:

v The overhead for the function is significant; for example, when functions are called within nested loops.

v The inlined function provides additional opportunities for optimization, such as when constant arguments
are used.

For example, given the following function:
void glen(int a, int b)
{

if (a == 10)
{

switch(b)
{

case 1 : .
:

case 20: puts(“b is 20”);
break;

case 30: .
:

202 C for AIX User’s Guide

default: .
:

}
}

}

and assuming your program calls glen several times with constant arguments, for example, glen(10,
20);, each call to glen causes the if and switch expressions to be evaluated. If glen is inlined, the
compiler can then optimize the function. The evaluation of the if and switch statements can be done at
compile time, and the function code can then be reduced to only the puts statement from case 20.

The best candidates for inlining are small functions that are called often. Use the Performance Analyzer or
a profiler to determine which functions to inline to obtain the best results.

Drawbacks of Inlining

Inlining user code usually results in a larger executable module because the code for the function is
included at each call site. Because of the extra optimizations that can be performed, the difference in size
may be less than the size of the function multiplied by the number of calls.

Inlining can also result in slower program performance, especially if you use auto-inlining. Because
auto-inlining looks only at the number of ACUs for a function, the functions that are inlined are not always
the best candidates for inlining. As much as possible, use the _Inline or inline keyword to choose the
functions to be inlined.

When you use inlining, you need more stack space. When a function is called, its local storage is allocated
at the time of the call and freed when it returns to the calling function. If that same function is inlined, its
storage is allocated when the function that calls it is entered, and is not freed until that calling function
ends. Ensure that you have enough stack space for the local storage of the inlined functions, in order to
avoid a stack overflow.

Restrictions on Inlining

The following restrictions apply to inlining:

If the definition and reference to a given function reside in different files, all such files must be compiled
and linked using the -qipa compiler option. To inline across source files, you must place the function
definition (qualified with _Inline) in a header file that is included by all source files where the function is to
be inlined.

Turn off inlining if you plan to debug your executable module. Inlining can make debugging difficult. For
example, if you set an entry breakpoint for a function call but the function is inlined, the breakpoint will not
work.

The Performance Analyzer treats an inlined function as part of the function in which it is inlined.

A function is not inlined during an inline expansion of itself. For a function that is directly recursive, the call
to the function from within itself is not inlined. For example, given three functions to be inlined, A, B, and
C, where:

1. A calls B

2. B calls C

3. C calls back to B

Chapter 7. Writing C Programs 203

the following inlining takes place:

1. The call to B from A is inlined.

2. The call to C from B is inlined.

3. The call to B from C is not inlined because it is made from within an inline expansion of B itself.

“Program Optimization with the C for AIX Compiler” on page 23
“Writing Optimized Program Source Code” on page 197
“Variables” on page 197
“Pointers” on page 198
“Functions” on page 199
“Function Arguments” on page 199
“Expressions” on page 199
“Critical Loops” on page 200
“Conversions” on page 201
“Arithmetic Constructions” on page 201
“_Inline, _inline, __inline”
“Q” on page 314

_Inline, _inline, __inline

C for AIX provides keywords that you can use to specify functions that you want the compiler to inline:

v _Inline

v _inline

v __inline

For example:

_Inline int catherine(int a);

causes catherine to be inlined, meaning that code is generated for the function, rather than a function
call. The inline keywords also implicitly declare the function as static.

Using the inline specifiers with data generates an error.

By default, function inlining is turned off, and functions qualified with inline specifiers are treated simply as
static functions. To turn on function inlining, specify either the -qinline or -Q compiler options. If you turn
optimization on (/O+), /Oi+ becomes the default.

Recursive functions (functions that call themselves) are inlined for the first occurrence only. The call to the
function from within itself is not inlined.

You can also use the -qinline or -Q compiler options to automatically inline all functions smaller than a
specified size. For best performance, however, use the inline keywords to choose the functions you want
to inline rather than using automatic inlining.

An inline function can be declared and defined simultaneously. If it is declared with one of the inline
specifier keywords, it can be declared without a definition. The following code fragment shows an inline
function definition. Note that the definition includes both the declaration and body of the inline function.

_inline int add(int i, int j) { return i + j; }

Note: The use of the inline specifier does not change the meaning of the function, but inline expansion of
a function may not preserve the order of evaluation of the actual arguments.

204 C for AIX User’s Guide

“Program Optimization with the C for AIX Compiler” on page 23
“Using Inlined Components” on page 202
“Writing Optimized Program Source Code” on page 197
“inline” on page 277
“Q” on page 314

Chapter 7. Writing C Programs 205

206 C for AIX User’s Guide

Chapter 8. Using C for AIX with Other Programming
Languages

With the C for AIX compiler, you can call functions written in other XL languages from your C program.
Similarly, the other XL language programs can call functions written in C for AIX. This and related pages
give you information about how to use interlanguage calls in your C program. You should already be
familiar with the syntax of the languages you are using.

“Interlanguage Calling Conventions”
“Corresponding Data Types”
“Using the Subroutine Linkage Conventions in Interlanguage Calls” on page 209
“Sample Program: C Calling Fortran” on page 214

Interlanguage Calling Conventions

You should follow these recommendations when writing C for AIX code to call functions written in other
languages:

v Avoid using uppercase letters in identifiers. Fortran and Pascal use only lowercase letters for all
external names. Both fold external identifiers to lowercase (by default).

v Avoid using the underscore (_) and dollar sign ($) as the first character in identifiers, to prevent conflict
with the naming conventions for the C language library.

v Avoid using long identifier names. The maximum number of significant characters in identifiers is 250
characters.

“Corresponding Data Types”
“Using the Subroutine Linkage Conventions in Interlanguage Calls” on page 209
“Sample Program: C Calling Fortran” on page 214

Corresponding Data Types

The following table shows the correspondence between the data types available in C for AIX, C Set ++
for AIX, Fortran, and Pascal. Several data types in C have no equivalent representation in Pascal or
Fortran. Do not use them when programming for interlanguage calls. Blank table cells indicate that no
matching data type exists.

Correspondence of Data Types among C, C++, Fortran, and Pascal

C and C++ Data Types Fortran Data Types Pascal Data Types

char CHARACTER CHAR

signed char INTEGER*1
BYTE

PACKED -128..127

unsigned char LOGICAL*1 PACKED 0..255

signed short int INTEGER*2 PACKED -32768..32767

unsigned short int LOGICAL*2 PACKED 0..65535

signed long int INTEGER*4 INTEGER

unsigned long int LOGICAL*4 —

signed long long int INTEGER*8 —

© Copyright IBM Corp. 1995, 1999 207

unsigned long long int LOGICAL*8 —

float REAL
REAL*4

SHORTREAL

double REAL*8
DOUBLE PRECISION

REAL

long double REAL*8
DOUBLE PRECISION

REAL

long double (with -qlongdouble or
-qldbl128)

REAL*16 —

structure of two floats COMPLEX
COMPLEX*4

RECORD of two SHORTREALS

structure of two doubles COMPLEX*16
DOUBLE COMPLEX

RECORD of two REALS

structure of two long doubles COMPLEX*16 —

struct — RECORD (see notes below)

enumeration INTEGER*4 Enumeration

char[n] CHARACTER*n PACKED ARRAY[1..n] OF CHAR

array pointer (*) to type Dimensioned variable (transposed) ARRAY

pointer (*) to function Functional Parameter Functional Parameter

structure (with -qalign=pack) Sequence derived type PACKED RECORD

Special Treatment of Character and Aggregate Data

Most numeric data types have counterparts across the three languages. Character and aggregate data
types require special treatment:

v Because of padding and alignment differences, C structures do not exactly correspond to the Pascal
RECORD data type.

v C character strings are delimited by a ’\0’ character. In Fortran, all character variables and expressions
have a length that is determined at compile time. If Fortran passes a string argument to another routine,
it adds a hidden argument giving the length to the end of the argument list. This length argument must
be explicitly declared in C. The C code should not assume a null terminator; the supplied or declared
length should always be used. Use the strncat , strncpm , and strncpy functions of the C runtime
library. These functions are described in the AIX Version 4 Technical Reference, Volumes 1 and 2: Base
Operating System and Extensions.

v Pascal’s STRING data type corresponds to a C structure For example.:
VAR s: STRING(10);

is equivalent to:
struct {

int length;
char str [10];

};

where length contains the actual length of STRING.

v The -qmacpstr option converts Pascal string literals into null-terminated strings, where the first byte
contains the length of the string.

v C and Pascal store array elements in row-major order (array elements in the same row occupy adjacent
memory locations). Fortran stores array elements in ascending storage units in column-major order
(array elements in the same column occupy adjacent memory locations). The following example shows
how a two-dimensional array declared by A[3][2] in C, A[1..3,1..2] in Pascal, and by A(3,2) in Fortran, is

208 C for AIX User’s Guide

stored:

Storage of a Two-Dimensional Array

Storage Unit C and C++ Element Name Pascal Element Name Fortran Element Name

Lowest A[0] [0] A[1,1] A(1,1)

A[0] [1] A[1,2] A(2,1)

A[1] [0] A[2,1] A(3,1)

A[1] [1] A[2,2] A(1,2)

A[2] [0] A[3,1] A(2,2)

Highest A[2] [1] A[3,2] A(3,2)

v In general, for a multidimensional array, if you list the elements of the array in the order they are laid out
in memory, a row-major array will be such that the rightmost index varies fastest, while a column-major
array will be such that the leftmost index varies fastest.

“Interlanguage Calling Conventions” on page 207
“Using the Subroutine Linkage Conventions in Interlanguage Calls”
“Sample Program: C Calling Fortran” on page 214
“macpstr” on page 295

Using the Subroutine Linkage Conventions in Interlanguage Calls

The subroutine linkage conventions describes the machine state at subroutine entry and exit. Routines that
are compiled separately in the same or different languages are linked when the programs are linked, and
run when called. The AIX Version 4 Assembler Language Referencedescribes the Subroutine Linkage
Convention in detail.

The RISC System/6000 linkage convention provides fast and efficient subroutine linkage between
languages. It specifies how parameters are passed, taking full advantage of the large number of
floating-point registers (FPRs) and general-purpose registers (GPRs), and minimizes the saving and
restoring of registers on subroutine entry and exit.

v “Interlanguage Calls - Parameter Passing” on page 210

v “Interlanguage Calls - Call by Reference Parameters” on page 210

v “Interlanguage Calls - Call by Value Parameters” on page 211

v “Interlanguage Calls - Rules for Passing Parameters by Value” on page 211

v “Interlanguage Calls - Pointers to Functions” on page 212

v “Interlanguage Calls - Function Return Values” on page 213

v “Interlanguage Calls - Stack Floor” on page 213

v “Interlanguage Calls - Stack Overflow” on page 213

v “Interlanguage Calls - Traceback Table” on page 214

v “Interlanguage Calls - Type Encoding and Checking” on page 214

“Interlanguage Calling Conventions” on page 207
“Corresponding Data Types” on page 207
“Sample Program: C Calling Fortran” on page 214

Chapter 8. Using C for AIX with Other Programming Languages 209

Interlanguage Calls - Parameter Passing

The RISC System/6000 linkage convention specifies the methods for parameter passing and whether
return values are to be in FPRs, GPRs, or both. The GPRs and FPRs available for argument passing are
specified in two fixed lists: R3-R10 and FP1-FP13.

Prototyping affects how parameters are passed and whether widening occurs:

Nonprototyped functions
In nonprototyped functions in the C language, floating-point arguments are widened to double and
integral types are widened to int .

Prototyped functions
No widening conversions occur except in arguments passed to an ellipsis function. Floating-point
double arguments are only passed in FPRs. If an ellipsis is present in the prototype, floating-point
double arguments are passed in both FPRs and GPRs.

When there are more argument words than available parameter GPRs and FPRs, the remaining words are
passed in storage on the stack. The values in storage are the same as if they were in registers. Space for
more than 8 words of arguments (float and nonfloat) must be reserved on the stack even if all the
arguments were passed in registers.

The size of the parameter area is sufficient to contain all the arguments passed on any call statement from
a procedure associated with the stack frame. Although not all the arguments for a particular call actually
appear in storage, they can be regarded as forming a list in this area, each one occupying one or more
words.

The methods of passing parameters are as follows:

v In C, all function arguments are passed by value, and the called function receives a copy of the value
passed to it.

v In Fortran, by default, arguments are passed by reference, and the called function receives the address
of the value passed to it. You can use the %VAL Fortran built-in function to pass by value. Refer to the
AIX XL Fortran Compiler/6000 User’s Guidefor more information about using %VAL and interlanguage
calls.

v In Pascal, the function declaration determines whether a parameter is expected to be passed by value
or by reference.

“Interlanguage Calling Conventions” on page 207
“Corresponding Data Types” on page 207
“Using the Subroutine Linkage Conventions in Interlanguage Calls” on page 209
“Sample Program: C Calling Fortran” on page 214

Interlanguage Calls - Call by Reference Parameters

For call-by-reference (as in Fortran), the address of the parameter is passed in a register.

When passing parameters by reference, if you write C function that...

v you want to call from a Fortran program, declare all parameters as pointers.

v calls a program written in Fortran, all arguments must be pointers or scalars with the address operator.

v you want to call from a Pascal program, declare as pointers all parameters that the Pascal program
treats as reference parameters.

v calls a program written in Pascal, all arguments corresponding to reference parameters must be
pointers.

210 C for AIX User’s Guide

“Interlanguage Calling Conventions” on page 207
“Corresponding Data Types” on page 207
“Using the Subroutine Linkage Conventions in Interlanguage Calls” on page 209
“Sample Program: C Calling Fortran” on page 214

Interlanguage Calls - Call by Value Parameters

In prototype functions with a variable number of arguments— specified with an ellipsis, as in function(...)—
the compiler widens all floating-point arguments to double precision. Integral arguments (except for long
int) are widened to int . Because of this widening, some data types cannot be passed between Pascal and
C without explicit conversions, and Pascal routines cannot have value parameters of certain data types.

The following information refers to call by value, as in C. In the following list, arguments are classified as
floating values or nonfloating values:

v Each nonfloating scalar argument requires 1 word and appears in that word exactly as it would appear
in a GPR. It is right-justified, if language semantics specify, and is word aligned.

v Each float value occupies 1 word, float doubles occupy 2 successive words in the list, and long doubles
occupy either 2 or 4 words, depending on the setting of the the -qldbl128/-qlongdouble option.

v Structure values appear in successive words as they would anywhere in storage, satisfying all
appropriate alignment requirements. Structures are aligned to a fullword and occupy (sizeof(struct
X)+3)/4 fullwords, with any padding at the end. A structure smaller than a word is left-justified within its
word or register. Larger structures can occupy multiple registers and can be passed partly in storage
and partly in registers.

v Other aggregate values are passed val-by-ref; that is, the compiler actually passes their addresses and
arranges for a copy to be made in the invoked program.

v A function pointer is passed as a pointer to the routine’s function descriptor. The first word contains the
entry-point address. See “Interlanguage Calls - Pointers to Functions” on page 212 for more information.

“Interlanguage Calling Conventions” on page 207
“Corresponding Data Types” on page 207
“Using the Subroutine Linkage Conventions in Interlanguage Calls” on page 209
“Interlanguage Calls - Pointers to Functions” on page 212
“Sample Program: C Calling Fortran” on page 214
“ldbl128, longdouble” on page 289

Interlanguage Calls - Rules for Passing Parameters by Value

The following is an example of a call to a prototyped function:

int i, j, k;
double d1, d2;
float f1;
short int s1;
char c;
...
void f(int, int, int, double, float, char, double, short);
f(i, j, k, d1, f1, c, d2, s1);

The function call results in the following storage mapping:

Chapter 8. Using C for AIX with Other Programming Languages 211

Notes:

1. A parameter is guaranteed to be mapped only if its address is taken.

2. Data with less than fullword alignment is copied into high-order bytes. Because the function in the
example is prototyped, the mapping of parameters c and s1 is right-justified.

3. The parameter list is a conceptually contiguous piece of storage containing a list of words. For
efficiency, the first 8 words of the list are not actually stored in the space reserved for them, but
passed in GPR3-GPR10. Furthermore, the first 13 floating point value parameter values are not
passed in GPRs, but are passed in FPR1-FPR13. In all cases, parameters beyond the first 8 words of
the list are also stored in the space reserved for them.

4. If thecalled procedure intends to treat the parameter list as a contiguous piece of storage (for example,
if the address of a parameter is taken in C), the parameter registers are stored in the space reserved
for them in the stack.

5. A register image is stored on the stack.

6. The argument area (P1 ... Pn) must be large enough to hold the largest parameter list.

“Interlanguage Calling Conventions” on page 207
“Corresponding Data Types” on page 207
“Using the Subroutine Linkage Conventions in Interlanguage Calls” on page 209
“Sample Program: C Calling Fortran” on page 214

Interlanguage Calls - Pointers to Functions

A function pointer is a data type whose values range over function addresses. Variables of this type
appear in several programming languages such as C and Fortran. In Fortran, a dummy argument that
appears in an EXTERNAL statement is a function pointer. Function pointers are supported in contexts
such as the target of a call statement or an actual argument of such a statement.

A function pointer is a fullword quantity that is the address of a function descriptor. The function descriptor
is a 3-word object. The first word contains the address of the entry point of the procedure, the second has
the address of the TOC of the module in which the procedure is bound, and the third is the environment
pointer for languages such as Pascal. There is only one function descriptor per entry point. It is bound into
the same module as the function it identifies, if the function is external. The descriptor has an external
name, which is the same as the function name, but without a leading . (dot). This descriptor name is used
in all import and export operations.

212 C for AIX User’s Guide

“Interlanguage Calling Conventions” on page 207
“Corresponding Data Types” on page 207
“Using the Subroutine Linkage Conventions in Interlanguage Calls” on page 209
“Sample Program: C Calling Fortran” on page 214

Interlanguage Calls - Function Return Values

Functions pass their return values according to type:

v Pointers, enumerated types, and integral values (int , short , long , char , and unsigned types) of any
length are returned, right-justified, in R3; long long values are returned in R3 and R4.

v float s and double s are returned in FP1; 128-bit long double s are returned in FP1 and FP2.

v Calling functions supply a pointer to a memory location where the called function stores the returned
value.

v long double s are returned in R1 and R2.

“Interlanguage Calling Conventions” on page 207
“Corresponding Data Types” on page 207
“Using the Subroutine Linkage Conventions in Interlanguage Calls” on page 209
“Sample Program: C Calling Fortran” on page 214

Interlanguage Calls - Stack Floor

The stack floor is a system-defined address below which the stack cannot grow. All programs in the
system must avoid accessing locations in the stack segment that are below the stack floor.

Other system invariants related to the stack must be maintained by all compilers and assemblers:

v No data is saved or accessed from an address lower than the stack floor.

v The stack pointer is always valid. When the stack frame size is more than 32767 bytes, take care to
ensure that its value is changed in a single instruction, so that there is no timing window in which a
signal handler would either overlay the stack data or erroneously appear to overflow the stack segment.

“Interlanguage Calling Conventions” on page 207
“Corresponding Data Types” on page 207
“Using the Subroutine Linkage Conventions in Interlanguage Calls” on page 209
“Sample Program: C Calling Fortran” on page 214

Interlanguage Calls - Stack Overflow

The RISC System/6000 linkage convention requires no explicit inline check for overflow. The operating
system uses a storage-protect mechanism to detect stores past the end of the stack segment.

“Interlanguage Calling Conventions” on page 207
“Corresponding Data Types” on page 207
“Using the Subroutine Linkage Conventions in Interlanguage Calls” on page 209
“Sample Program: C Calling Fortran” on page 214

Chapter 8. Using C for AIX with Other Programming Languages 213

Interlanguage Calls - Traceback Table

The compiler supports the traceback mechanism, which is required by the AIX Version 4 Operating System
symbolic debugger to unravel the call or return stack. Each function has a traceback table in the text
segment at the end of its code. This table contains information about the function, including the type of
function as well as stack frame and register information.

“Interlanguage Calling Conventions” on page 207
“Corresponding Data Types” on page 207
“Using the Subroutine Linkage Conventions in Interlanguage Calls” on page 209
“Sample Program: C Calling Fortran”

Interlanguage Calls - Type Encoding and Checking

Detecting errors before a program is run is a key objective of the C for AIX compiler. Runtime errors are
hard to find, and a many are caused by mismatching subroutine interfaces or conflicting data definitions.

The C for AIX compiler uses a scheme for early detection that encodes information about all external
symbols (data and programs). If the “extchk” on page 258 option has been specified, this information
about external symbols is checked at bind or load time for consistency.

The Assembler Language Reference for the AIX RISC System/6000 book describes the following details of
the Subroutine Linkage Convention:

v Register usage (general-purpose, floating-point, and special-purpose registers)

v Stack

v The calling routine’s responsibilities

v The called routine’s responsibilities

“Interlanguage Calling Conventions” on page 207
“Corresponding Data Types” on page 207
“Using the Subroutine Linkage Conventions in Interlanguage Calls” on page 209
“Sample Program: C Calling Fortran”

Sample Program: C Calling Fortran

A C program can call a Fortran function or subroutine.

The following example illustrates how program units written in different languages can be combined to
create a single program. It also demonstrates parameter passing between C and Fortran subroutines with
different data types as arguments.

#include <iostream.h>
extern double add(int *, double [],
int *, double []);
double ar1[4]={1.0, 2.0, 3.0, 4.0};
double ar2[4]={5.0, 6.0, 7.0, 8.0};
main()
{
int x, y;
double z;
x = 3;

214 C for AIX User’s Guide

z = add(&x, ar1, y, ar2); /* Call Fortran add routine */
/* Note: Fortran indexes arrays 1..n*/
/* C indexes arrays 0..(n-1) */
printf(“The sum of %1.0f and %1.0f is %2.0f \n”,
ar1[x-1], ar2[y-1], z);
}

The Fortran subroutine is:

C Fortran function add.f - for C interlanguage call example
C Compile separately, then link to C program
REAL FUNCTION ADD*8 (A, B, C, D)
REAL*8 B,D
INTEGER*4 A,C
DIMENSION B(4), D(4)
ADD = B(A) + D(C)
RETURN
END

“Interlanguage Calling Conventions” on page 207
“Corresponding Data Types” on page 207
“Using the Subroutine Linkage Conventions in Interlanguage Calls” on page 209

Chapter 8. Using C for AIX with Other Programming Languages 215

216 C for AIX User’s Guide

Appendix A. Compiler Options

The compiler options pages describe each of the compiler options, including:

v The command-line syntax of the compiler option. The first line under the Syntax heading specifies the
command-line or configuration-file method of specification. The second line, if one appears, is the
#pragma options keyword for use in your source file.

v The default setting of the option if you do not specify the option on the command line, in the
configuration file, or in a #pragma directive within your program.

v The purpose of the option and additional information about its behavior.

Uppercase letters in the option, suboption, or #pragma options keyword syntax represent its valid
abbreviation. For example, both of the following are acceptable specifications of the LANGlvl option in a
source file:

#pragma options lang=ansi
#pragma options langlvl=ansi

Options that appear entirely in lowercase must be entered in full.

“Invoking the Compiler” on page 8
“Specifying Compiler Options on the Command Line” on page 10
“Specifying Compiler Options in Your Program Source Files” on page 12
“Specifying Compiler Options in a Configuration File” on page 13
“Resolving Conflicting Compiler Options”
“Compiler Options and Their Defaults” on page 218
“Options that Specify Compiler Characteristics” on page 226
“Options that Specify Debugging Features” on page 227
“Options that Specify Preprocessor Options” on page 228
“Options that Specify Compiler Output” on page 228
“Options that Specify the Compiler Object Code Produced” on page 229
“Options that Specify Linkage Options” on page 230

Resolving Conflicting Compiler Options

In general, if more than one variation of the same option is specified (with the exception of xref and attr),
the compiler uses the setting of the last one specified. Compiler options specified on the command line
must appear in the order you want the compiler to process them.

If a command-line flag is valid for more than one compiler program (for example -B, -W, or -I applied to
the compiler, linkage editor, and assembler program names), you must specify it in cppopt , codeopt ,
inlineopt , ldopt , or asopt in the configuration file. The command-line flags must appear in the order that
they are to be directed to the appropriate compiler program.

Two exceptions to the rules of conflicting options are the -Idirectory and -Ldirectory options, which have
cumulative effects when they are specified more than once.

In most cases, conflicting or incompatible options are resolved according to the precedence shown in the
following figure:

© Copyright IBM Corp. 1995, 1999 217

Most options that do not follow this scheme are summarized in the following table.

Option Conflicting Options Resolution

-qhalt Severity specified Lowest severity specified.

-qnoprint -qxref|-qattr|-qsource|-qlistopt|-qlist -qnoprint

-qfloat=rsqrt -qnoignerrno Last option specified

-qxref -qxref=FULL -qxref=FULL

attr -qattr=FULL -qattr=FULL

-p -pg Last option specified

-qhsflt -qrndsngl|-qspnans -qhsflt

-qhssngl -qrndsngl|-qspnans hssngl

-E -P|-o|-S -E

-P -c|-o|-S -P

-# -v -#

-F -B|-t|-W|configuration file settings -B|-t|-W

-S -c -S

“Specifying Compiler Options for Architecture-Specific, 32- or 64-bit Compilation” on page 14
“Invoking the Compiler” on page 8
“Specifying Compiler Options on the Command Line” on page 10
“Specifying Compiler Options in Your Program Source Files” on page 12
“Specifying Compiler Options in a Configuration File” on page 13

Compiler Options and Their Defaults

This page lists all C for AIX compiler options, specifying each option’s type and if it exists, default value.
Where a * appears beside the default value for a compiler option, see the description for that option for
special notes regarding the default value.

To get detailed information on any option listed, click on the that option’s name in the table.

Option Name Type Default Description

“#” on page 231 -flag - Traces the compilation
without doing anything.

“32, 64” on page 231 -qopt - Selects 32- or 64-bit
compiler mode.

“aggrcopy” on page 232 -qopt See “aggrcopy” on
page 232.

Enables destructive copy
operations for structures
and unions.

“alias” on page 233 -qopt See “alias” on page 233. Specifies which type-based
aliasing is to be used during
optimization.

“align” on page 234 -qopt align=full Specifies what aggregate
alignment rules the compiler
uses for file compilation.

“ansialias” on page 236 -qopt ansialias* Specifies whether
type-based aliasing is to be
used during optimization.

218 C for AIX User’s Guide

“arch” on page 237 -qopt arch=com Specifies the architecture
on which the executable
program will be run.

“assert” on page 238 -qopt noassert Requests the compiler to
apply aliasing assertions to
your compilation unit.

“attr” on page 238 -qopt noattr Produces a compiler listing
that includes an attribute
listing for all identifiers.

“B” on page 239 -flag - Determines substitute path
names for the compiler,
assembler, linkage editor,
and preprocessor.

“bitfields” on page 240 -flag unsigned Specifies if bitfields are
signed.

“brtl” on page 240 -flag - Tells the linkage editor to
accept both .so and .a
library file types.

“bstatic, bdynamic” on
page 241

-flag bdynamic Determines which types of
library files are searched by
the linkage editor.

“C” on page 242 -flag - Preserves comments in
preprocessed output.

“c” on page 242 -flag - Instructs the compiler to
pass source files to the
compiler only.

“cache” on page 243 -qopt - Specifies the cache
configuration for a specific
execution machine..

“chars” on page 244 -qopt chars=unsigned Instructs the compiler to
treat all variables of type
char as either signed or
unsigned .

“check” on page 245 -qopt nocheck Generates code which
performs certain types of
run-time checking.

“compact” on page 246 -qopt nocompact When used with
optimization, reduces code
size where possible, at the
expense of execution
speed.

“cpluscmt” on page 247 -qopt nocpluscmt Use this option if you want
C++ comments to be
recognized in C source
files.

“D” on page 250 -flag - Defines the identifier name
as in a #define
preprocessor directive.

“datalocal, dataimported” on
page 251

-qopt dataimported Mark data as local or
imported.

Appendix A. Compiler Options 219

“dbxextra” on page 252 -qopt nodbxextra Specifies that all typedef
declarations, struct , union ,
and enum type definitions
are included for debugger
processing.

“digraph” on page 252 -qopt nodigraph Allows use of digraph
character sequences in
your program.

“dollar” on page 253 -qopt nodollar Allows the $ symbol to be
used in the names of
identifiers.

“dpcl” on page 253 -qopt nodpcl Generates symbols that
tools based on the Dynamic
Probe Class Library (DPCL)
can use to see the structure
of an executable file.

“E” on page 253 -flag - Runs the source files
named in the compiler
invocation through the
preprocessor.

“enum” on page 255 -qopt enum=int Specifies the amount of
storage occupied by the
enumerations.

“extchk” on page 258 -qopt noextchk Generates bind-time type
checking information and
checks for compile-time
consistency.

“F” on page 259 -flag - Names an alternative
configuration file for xlc .

“f” on page 259 -flag - Linkage editor (ld
command) option only.
Passes to the linkage editor
the filename of a file
containing a list of input
files to be processed.

“fdpr” on page 260 -qopt nofdpr Collect program information
for use with the AIX fdpr
performance-tuning utility.

“flag” on page 261 -qopt flag=i:i Specifies the minimum
severity level of diagnostic
messages to be reported.

“float” on page 261 -qopt See “float” on page 261. Specifies various floating
point options to speed up or
improve the accuracy of
floating point operations.

“flttrap” on page 264 -qopt noflttrap Generates extra instructions
to detect and trap floating
point exceptions.

“fold” on page 265 -qopt fold Specifies that constant
floating point expressions
are to be evaluated at
compile time.

220 C for AIX User’s Guide

“fullpath” on page 266 -qopt nofullpath Specifies what path
information is stored for
files when you use the -g
option.

“G” on page 266 -flag - Linkage editor (ld
command) option only.
Used to generate a
dynamic libary file.

“g” on page 267 -flag - Generates debugging
information used by the
debugger.

“genpcomp” on page 267 -qopt nogenpcomp Generates a precompiled
version of any header file
for which the original source
is used.

“genproto” on page 268 -qopt nogenproto Produces ANSI prototypes
from K&R function
definitions.

“halt” on page 269 -qopt halt=s Instructs the compiler to
stop after the compilation
phase when it encounters
errors of specified severity
or greater.

“heapdebug” on page 270 -qopt noheapdebug Enables debug versions of
memory management
functions.

“hsflt” on page 271 -qopt nohsflt Speeds up calculations by
removing range checking
on single-precision float
results and on conversions
from floating point to
integer.

“hssngl” on page 272 -qopt nohssngl Specifies that
single-precision expressions
are rounded only when the
results are stored into float
memory locations.

“I” on page 272 -flag - Specifies an additional
search path if the file name
in the #include directive is
not specified using its
absolute path name.

“idirfirst” on page 273 -qopt noidirfirst Specifies the search order
for files included with the
#include “ file_name”
directive.

“ignerrno” on page 274 -qopt noignerrno Allows the compiler to
perform optimizations that
assume errno is not
modified by system calls.

“ignprag” on page 274 -qopt - Instructs the compiler to
ignore certain pragmas.

“info” on page 275 -qopt noinfo Produces informational
messages.

Appendix A. Compiler Options 221

“initauto” on page 276 -qopt noinitauto Initializes automatic storage
to the two-digit hexadecimal
byte value hex_value.

“inlglue” on page 277 -qopt noinlglue Generates fast external
linkage by inlining the
pointer glue code necessary
to make a call to an
external function or a call
through a function pointer.

“inline” on page 277 -qopt See “inline” on page 277. Attempts to inline functions
instead of generating calls
to a function.

“ipa” on page 279 -qopt object (compile-time),
noipa (link-time)

Turns on or customizes a
class of optimizations
known as interprocedural
analysis (IPA).

“isolated_call” on page 284 -qopt - Specifies functions in the
source file that have no
side effects.

“L” on page 285 -flag See “L” on page 285. Searches the specified
directory for library files
specified by the -l option.

“l” on page 286 -flag See “l” on page 286. Searches a specified library
for linking.

“langlvl” on page 286 -qopt langlvl=ansi* Selects the C language
level for compilation.

“ldbl128, longdouble” on
page 289

-qopt noldbl128 Increases the size of long
double type from 64 bits to
128 bits.

“libansi” on page 290 -qopt nolibansi Assumes that all functions
with the name of an ANSI C
library function are in fact
the system functions.

“linedebug” on page 291 -qopt nolinedebug Generates abbreviated line
number and source file
name information for the
debugger.

“list” on page 291 -qopt nolist Produces a compiler listing
that includes an object
listing.

“listopt” on page 292 -qopt nolistopt Produces a compiler listing
that displays all options in
effect.

“longlit” on page 292 -qopt nolonglit Changes implicit type
selection in 64-bit mode to
use larger data types where
possible.

“longlong” on page 293 -qopt longlong* Allows long long types in
your program.

“M” on page 294 -flag - Creates an output file that
contains targets suitable for
inclusion in a description file
for the AIX make command.

222 C for AIX User’s Guide

“ma” on page 295 -flag - Substitutes inline code for
calls to function alloca as if
#pragma alloca directives
are in the source code.

“macpstr” on page 295 -qopt nomacpstr Converts Pascal string
literals into null-terminated
strings where the first byte
contains the length of the
string.

“maf” on page 297 -qopt maf Specifies whether the
floating-point multiply-add
instructions are to be
generated.

“makedep” on page 298 -qopt - Creates an output file that
contains targets suitable for
inclusion in a description file
for the AIX make command.

“maxerr” on page 299 -qopt nomaxerr Instructs the compiler to
halt compilation when a
specified number of errors
of specified or greater
severity is reached.

“maxmem” on page 300 -qopt maxmem=2048 Limits the amount of
memory used for local
tables of specific,
memory-intensive
optimizations.

“mbcs, dbcs” on page 301 -qopt nombcs Use the -qmbcs option if
your program contains
multibyte characters.

“noprint” on page 301 -qopt - Suppresses listings.

“O, optimize” on page 302 -qopt, -flag nooptimize Optimizes code at a choice
of levels during compilation.

“o” on page 305 -flag - Specifies a name or
directory for the output
executable file(s) created
either by the compiler or the
linkage editor.

“once” on page 306 -qopt noonce Avoids including a header
file more than once even if
it is specified in several of
the files you are compiling.

“P” on page 307 -flag - Preprocesses the C source
files named in the compiler
invocation and creates an
output preprocessed source
file for each input source
file.

“p” on page 308 -flag - Sets up the object files
produced by the compiler
for profiling.

“pascal” on page 308 -qopt nopascal Ignores the word pascal in
type specifiers and function
declarations.

Appendix A. Compiler Options 223

“pdf1, pdf2” on page 309 -qopt nopdf1
nopdf2

Tunes optimizations through
Profile-Directed Feedback.

“pg” on page 311 -flag - Sets up the object files for
profiling, but provides more
information than is provided
by the -p option.

“phsinfo” on page 312 -qopt nophsinfo Reports the time taken in
each compilation phase.

“proclocal, procimported,
procunknown” on page 312

-qopt proclocal* Mark functions as local,
imported, or unknown.

“proto” on page 313 -qopt noproto Assumes all functions are
prototyped.

“Q” on page 314 -flag See “Q” on page 314. Attempts to inline functions
instead of generating calls
to a function.

“r” on page 316 -flag - Produces a relocatable
object.

“rndsngl” on page 316 -qopt norndsngl Specifies that the result of
each single-precision (float)
operation is to be rounded
to single precision.

“ro” on page 317 -qopt ro* Specifies the storage type
for string literals.

“roconst” on page 317 -qopt roconst* Specifies the storage
location for constant values.

“rrm” on page 318 -qopt norrm Prevents floating-point
optimizations that are
incompatible with run-time
rounding to plus and minus
infinity modes.

“S” on page 319 -flag - Generates an assembly
language file (.s) for each
source file.

“showinc” on page 320 -qopt noshowinc If used with the -qsource
option, all the include files
are included in the source
listing.

“smp” on page 320 -qopt nosmp Specifies if and how
parallelized object code is
generated.

“source” on page 322 -qopt nosource Produces a compiler listing
and includes source code.

“spill” on page 323 -qopt spill=512 Specifies the size of the
register allocation spill area.

“spnans” on page 323 -qopt nospnans Generates extra instructions
to detect signalling NaN on
conversion from single
precision to double
precision.

“srcmsg” on page 324 -qopt nosrcmsg Adds the corresponding
source code lines to the
diagnostic messages in the
stderr file.

224 C for AIX User’s Guide

“statsym” on page 324 -qopt nostatsym Adds user-defined,
non-external names that
have a persistent storage
class to the name list.

“stdinc” on page 325 -qopt stdinc Specifies which files are
included with #include
<file_name> and #include
“ file_name” directives.

“strict” on page 326 -qopt See “strict” on page 326. Turns off aggressive
optimizations that have the
potential to alter the
semantics of your program.

“strict_induction” on
page 327

-qopt See “strict_induction” on
page 327.

Disables loop induction
variable optimizations that
have the potential to alter
the semantics of your
program.

“syntaxonly” on page 327 -qopt - Causes the compiler to
perform syntax checking
without generating an object
file.

“suppress” on page 328 -qopt nosuppress Lets you specify warning or
information messages to be
suppressed in the compiler
listing.

“t” on page 329 -flag See “t” on page 329. Adds the prefix specified by
the -B option to designated
programs.

“tabsize” on page 329 -qopt tabsize=8 Changes the length of tabs
as perceived by the
compiler.

“tbtable” on page 330 -qopt full* Sets traceback table
characteristics.

“threaded” on page 331 -qopt See “threaded” on
page 331.

Indicates to the compiler
that the program will run in
a multi-threaded
environment.

“tune” on page 331 -qopt See “tune” on page 331. Specifies the architecture
for which the executable
program is optimized.

“U” on page 332 -flag - Undefines a specified
identifier defined by the
compiler or by the -D
option.

“unroll” on page 333 -qopt unroll=4* Unrolls inner loops in the
program by a specified
factor.

“upconv” on page 334 -qopt noupconv* Preserves the unsigned
specification when
performing integral
promotions.

Appendix A. Compiler Options 225

“usepcomp” on page 335 -qopt nousepcomp Use precompiled header
files for any files that have
not changed since the
precompiled header was
created.

“v” on page 336 -flag - Instructs the compiler to
report information on the
progress of the compilation.

“W” on page 336 -flag - Passes the listed words to
a designated compiler
program.

“w” on page 337 -flag - Requests that warning
messages be suppressed.

“warn64” on page 338 -qopt nowarn64 Enables warning of possible
long to integer data
truncations.

“xcall” on page 338 -qopt noxcall Generates code to static
routines within a
compilation unit as if they
were external calls.

“xref” on page 339 -qopt noxref Produces a compiler listing
that includes a
cross-reference listing of all
identifiers.

“y” on page 339 -flag - Specifies the compile-time
rounding mode of constant
floating-point expressions.

“Invoking the Compiler” on page 8
“Specifying Compiler Options on the Command Line” on page 10
“Specifying Compiler Options in Your Program Source Files” on page 12
“Specifying Compiler Options in a Configuration File” on page 13
“Options that Specify Compiler Characteristics”
“Options that Specify Debugging Features” on page 227
“Options that Specify Preprocessor Options” on page 228
“Options that Specify Compiler Output” on page 228
“Options that Specify the Compiler Object Code Produced” on page 229
“Options that Specify Linkage Options” on page 230
“Resolving Conflicting Compiler Options” on page 217

Lists of Compiler Options by Functional Groupings

Options that Specify Compiler Characteristics

To: See:

Specify the language level “langlvl” on page 286

Specify a different configuration file or stanza “F” on page 259

Specify path names to other program names “B” on page 239

Specify program options “W” on page 336

Specify a search path “I” on page 272

226 C for AIX User’s Guide

Specify if char variables are treated as signed or
unsigned

“chars” on page 244

Specify the use of multibyte characters “mbcs, dbcs” on page 301

Change the length of tabs in your source file “tabsize” on page 329

Produce ANSI prototypes from K&R function definitions “genproto” on page 268

Specify aliasing assertions “alias” on page 233
“assert” on page 238

“Invoking the Compiler” on page 8
“Specifying Compiler Options on the Command Line” on page 10
“Specifying Compiler Options in Your Program Source Files” on page 12
“Specifying Compiler Options in a Configuration File” on page 13
“Compiler Options and Their Defaults” on page 218
“Options that Specify Debugging Features”
“Options that Specify Preprocessor Options” on page 228
“Options that Specify Compiler Output” on page 228
“Options that Specify the Compiler Object Code Produced” on page 229
“Options that Specify Linkage Options” on page 230

Options that Specify Debugging Features

To: See:

Produce only line number and source file name
information for dbx

“linedebug” on page 291

Produce debug information for dbx “g” on page 267

Generates symbols for use by tools based on the
Dynamic Probe Class Library (DPCL)

“dpcl” on page 253

Enable debug versions of memory management functions “heapdebug” on page 270

Specify full path information when you use “g” on
page 267 with dbx

“fullpath” on page 266

Generate and set the charcateristics of the traceback
table

“tbtable” on page 330

Set up object files for profiling “p” on page 308
“pg” on page 311

Trap division of an integer by zero “check” on page 245

Ignore “isolated_call” on page 284 aliasing pragmas “ignprag” on page 274

“Debugging Memory Heaps” on page 183
“Memory Management Functions” on page 179
“Managing Memory with Multiple Heaps” on page 182
“Debugging Programs with Heap Memory” on page 195
“Invoking the Compiler” on page 8
“Specifying Compiler Options on the Command Line” on page 10
“Specifying Compiler Options in Your Program Source Files” on page 12
“Specifying Compiler Options in a Configuration File” on page 13
“Compiler Options and Their Defaults” on page 218
“Options that Specify Compiler Characteristics” on page 226
“Options that Specify Preprocessor Options” on page 228
“Options that Specify Compiler Output” on page 228
“Options that Specify the Compiler Object Code Produced” on page 229
“Options that Specify Linkage Options” on page 230

Appendix A. Compiler Options 227

Options that Specify Preprocessor Options

To: See:

Define a name in a #define directive “D” on page 250

Undefine a name as in a #undefine directive “U” on page 332

Create an output file for use with the make command “M” on page 294
“makedep” on page 298

“Invoking the Compiler” on page 8
“Specifying Compiler Options on the Command Line” on page 10
“Specifying Compiler Options in Your Program Source Files” on page 12
“Specifying Compiler Options in a Configuration File” on page 13
“Compiler Options and Their Defaults” on page 218
“Options that Specify Compiler Characteristics” on page 226
“Options that Specify Debugging Features” on page 227
“Options that Specify Compiler Output”
“Options that Specify the Compiler Object Code Produced” on page 229
“Options that Specify Linkage Options” on page 230

Options that Specify Compiler Output

To: See:

Perform syntax checking but do not generate an object
file

“syntaxonly” on page 327

Compile but not link “c” on page 242
“C” on page 242
“E” on page 253
“P” on page 307

Create a dynamic library object file (ld command only) “G” on page 266

Suppress output listings “C” on page 242

Produce compiler listings “noprint” on page 301
“source” on page 322

“showinc” on page 320
“srcmsg” on page 324

“xref” on page 339
“attr” on page 238
“list” on page 291

“listopt” on page 292

Specify severity level of diagnostic messages “flag” on page 261

Suppress messages “suppress” on page 328
“w” on page 337

Halt the compiler output if errors of specified severity or
greater are encountered

“halt” on page 269

Halt the compiler output if num errors of specified or
greater severity are encountered

“maxerr” on page 299

Produce information messages “info” on page 275

Report the time taken for compilation “phsinfo” on page 312

Report status information as the compilation proceeds “v” on page 336

Trace the compilation “#” on page 231

228 C for AIX User’s Guide

“Invoking the Compiler” on page 8
“Specifying Compiler Options on the Command Line” on page 10
“Specifying Compiler Options in Your Program Source Files” on page 12
“Specifying Compiler Options in a Configuration File” on page 13
“Compiler Options and Their Defaults” on page 218
“Options that Specify Compiler Characteristics” on page 226
“Options that Specify Debugging Features” on page 227
“Options that Specify Preprocessor Options” on page 228
“Options that Specify the Compiler Object Code Produced”
“Options that Specify Linkage Options” on page 230

Options that Specify the Compiler Object Code Produced

To: See:

Specify the architecture on which the executable program
will be run

“32, 64” on page 231
“arch” on page 237
“tune” on page 331

Use the linkage editor to create a dynamic library file (ld
command only)

“G” on page 266

Specify the register allocation spill area “spill” on page 323

Specify if and how parallelized object code is generated. “smp” on page 320

Choose code optimization options “cache” on page 243
“aggrcopy” on page 232

“O, optimize” on page 302
“pdf1, pdf2” on page 309

“ipa” on page 279
“unroll” on page 333

Generate information used by the fdpr
performance-tuning utility

“fdpr” on page 260

Set inlining options “Q” on page 314
“ipa” on page 279

“inline” on page 277

Choose alignment rules for aggregates “align” on page 234

Choose storage type for constant values “roconst” on page 317

Choose storage types for string literals “ro” on page 317

Set the size of a long double (64 or 128 bits) “ldbl128, longdouble” on page 289

Ignore long long int types “longlong” on page 293

Set the rounding mode of floating-point expressions “y” on page 339

Reduce code size “compact” on page 246

Set floating point options “float” on page 261

Set rounding of single-precision expressions “float” on page 261 (-qfloat=hssngl)

Include extra instructions to detect NaN “float” on page 261 (-qfloat=nans)

Remove range checking “float” on page 261 (-qfloat=hsflt)

Set rounding of single-precision (float) operations “float” on page 261 (-qfloat=rndsngl)

Detect and trap floating point exceptions “flttrap” on page 264

Generate floating point multiply-add instructions “float” on page 261 (-qfloat=maf)

Prevent incompatible optimizations “float” on page 261 (-qfloat=rrm)

Evaluate floating point expressions at compile time “float” on page 261 (-qfloat=fold)

Appendix A. Compiler Options 229

Generate bind-time type checking “extchk” on page 258

Choose type-based aliasing during optimization “alias” on page 233
“ansialias” on page 236

Initialize automatic storage “initauto” on page 276

Limit the amount of memory “maxmem” on page 300

Mark data as local or imported “datalocal, dataimported” on page 251

Mark functions as local, imported, or unknown “proclocal, procimported, procunknown” on page 312

Substitute inline code for calls to alloca “ma” on page 295

Perform optimizations that assume errno is not modified
by system calls

“ignerrno” on page 274

“Invoking the Compiler” on page 8
“Specifying Compiler Options on the Command Line” on page 10
“Specifying Compiler Options in Your Program Source Files” on page 12
“Specifying Compiler Options in a Configuration File” on page 13
“Compiler Options and Their Defaults” on page 218
“Options that Specify Compiler Characteristics” on page 226
“Options that Specify Debugging Features” on page 227
“Options that Specify Preprocessor Options” on page 228
“Options that Specify Compiler Output” on page 228
“Options that Specify Linkage Options”

Options that Specify Linkage Options

To: See:

Name the output file or directory “o” on page 305

Search specified libraries “l” on page 286

Search a path for libraries “L” on page 285

Produce an output file even if not all symbols are
resolved

“r” on page 316

Specify which types of library file are used by the linkage
editor

“brtl” on page 240
“bstatic, bdynamic” on page 241

Generate fast external linkage “inlglue” on page 277

“Invoking the Compiler” on page 8
“Specifying Compiler Options on the Command Line” on page 10
“Specifying Compiler Options in Your Program Source Files” on page 12
“Specifying Compiler Options in a Configuration File” on page 13
“Compiler Options and Their Defaults” on page 218
“Options that Specify Compiler Characteristics” on page 226
“Options that Specify Debugging Features” on page 227
“Options that Specify Preprocessor Options” on page 228
“Options that Specify Compiler Output” on page 228
“Options that Specify the Compiler Object Code Produced” on page 229

230 C for AIX User’s Guide

Compiler Options Reference

#

Option Type Default Value #pragma options

-flag - -

Syntax

-#

Purpose
Traces the compilation without invoking anything. This option previews the compilation steps specified on
the command line. When the xlc command is issued with this option, it names the programs within the
preprocessor, compiler, and linkage editor that would be invoked, and the options that would be specified
to each program. The preprocessor, compiler, and linkage editor are not invoked.

Notes :
The -# option overrides the -v option. It displays the same information as -v, but does not invoke the
compiler. Information is displayed to standard output.

Use this command to determine commands and files will be involved in a particular compilation. It avoids
the overhead of compiling the source code and overwriting any existing files, such as .lst files.

Example
To preview the steps for the compilation of the source file myprogram.c, enter:

xlc myprogram.c -#

“Compiler Options and Their Defaults” on page 218
“Options that Specify Compiler Output” on page 228
“v” on page 336

32, 64

Option Type Default Value #pragma options

-qoption - -

Syntax
-q32 | -q64

Purpose
Selects either 32- or 64-bit compiler mode.

Notes
The -q32 and -q64 options override the compiler mode set by the value of the OBJECT_MODE
environment variable, if it exists. If the -q32 and -q64 options are not specified, and the OBJECT_MODE
environment variable is not set, the compiler defaults to 32-bit output mode.

If the compiler is invoked in in 64-bit mode, the __64BIT__ preprocessor macro is defined.

Appendix A. Compiler Options 231

Use -q32 and -q64 options, along with the -qarch and -qtune compiler options, to optimize the output of
the compiler to the architecture on which that output will be used. Refer to the “Acceptable Compiler
Mode and Processor Architecture Combinations” on page 16 for valid combinations of the -q32, -q64,
-qarch , and -qtune compiler options.

If specified alone without accompanying -qarch and -qtune compiler options, the C for AIX compiler treats:

v -q32 as -qarch=com -q32

v -q64 as -qarch=com -q64

Example
To specify that the executable program testing compiled from myprogram.c is to run on a computer with a
32-bit PowerPC architecture, enter:

xlc -o testing myprogram.c -q32 -qarch=ppc

Important Notes!

1. If you mix 32-and 64-bit compilation modes, your XCOFF objects will not bind. You must recompile
completely to ensure that all objects are in the same mode.

2. Your link options must reflect the type of objects you are linking. If you compiled 64-bit objects, you
must link these objects using 64-bit mode.

“Specifying Compiler Options for Architecture-Specific, 32- or 64-bit Compilation” on page 14
“Acceptable Compiler Mode and Processor Architecture Combinations” on page 16
“Compiler Options and Their Defaults” on page 218
“Options that Specify the Compiler Object Code Produced” on page 229
“arch” on page 237
“tune” on page 331

aggrcopy

Option Type Default Value #pragma options

-qoption See notes. -

Syntax
-qaggrcopy=overlap | -qaggrcopy=nooverlap

Purpose
Enables destructive copy operations for structures and unions.

Notes
If the -qaggrcopy=nooverlap compiler option is enabled, the compiler assumes that the source and
destination for structure and union assignments do not overlap. This assumption lets the compiler generate
faster code.

Default Setting
The default setting of this option is -qaggrcopy=nooverlap when compiling to the ANSI, SAA and SAAL2
language levels.

The default setting of this option is -qaggrcopy=overlap when compiling to the EXTENDED and CLASSIC
language levels.

Programs that do not comply to the ANSI C standard as it pertains to non-overlap of source and
destination assignment may need to be compiled with the -qaggrcopy=overlap compiler option.

232 C for AIX User’s Guide

Example
xlc myprogram.c -qaggrcopy=nooverlap

“Compiler Options and Their Defaults” on page 218
“Options that Specify the Compiler Object Code Produced” on page 229

alias

Option Type Default Value #pragma options

-qoption ansi:typeptr:noallptrs:noaddrtaken* ALIAS=suboption[:suboption]

Syntax
-qalias=suboption[:suboption][...]
ALIAS=suboption[:suboption]

Purpose
Requests the compiler to apply aliasing assertions to your compilation unit. The compiler will take
advantage of the aliasing assertions to improve optimizations where possible, unless you specify
otherwise.

Notes
If used, #pragma ALIAS= suboption must appear before the first program statement.

The compiler will apply aliasing assertions according to the following suboptions:

[NO]TYPeptr Pointers to different types are never aliased. In other words, in the compilation unit no two pointers
of different types will point to the same storage location.

[NO]ALLPtrs Pointers are never aliased (this also implies -qalias=typeptr). Therefore, in the compilation unit, no
two pointers will point to the same storage location.

[NO]ADDRtaken Variables are disjoint from pointers unless their address is taken. Any class of variable for which an
address has not been recorded in the compilation unit will be considered disjoint from indirect
access through pointers.

[NO]ANSI Type-based aliasing is used during optimization, which restricts the lvalues that can be safely used
to access a data object. The optimizer assumes that pointers can only point to an object of the
same type. This (ansi) is the default for the xlc and c89 compilers. This option has no effect
unless you also specify the -O option.

If you select noansi , the optimizer makes worst case aliasing assumptions. It assumes that a
pointer of a given type can point to an external object or any object whose address is already
taken, regardless of type. This is the default for the cc compiler.

The following are not subject to type-based aliasing:

v Signed and unsigned types. For example, a pointer to a signed int can point to an unsigned int .

v Character pointer types can point to any type.

v Types qualified as volatile or const . For example, a pointer to a const int can point to an int .

Example
To specify worst-case aliasing assumptions when compiling myprogram.c, enter:

Appendix A. Compiler Options 233

xlc myprogram.c -O -qalias=noansi

“Compiler Options and Their Defaults” on page 218
“Options that Specify the Compiler Object Code Produced” on page 229
“Options that Specify Compiler Characteristics” on page 226
“O, optimize” on page 302

align

Option Type Default Value #pragma options

-qoption align=full ALIGN=suboption

Syntax
-qalign=suboption
ALIGN=suboption

Purpose
Specifies what aggregate alignment rules the compiler uses for file compilation. Use this option to specify
the maximum alignment to be used when mapping a class-type object, either for the whole source
program or for specific parts.

Notes
The -qalign suboptions are:

power The compiler uses the RISC System/6000 alignment rules.
full The compiler uses the RISC System/6000. alignment rules. The power suboption is the same as full .
mac68k The compiler uses the Macintosh alignment rules.
twobyte The compiler uses the Macintosh alignment rules. The mac68k suboption is the same as twobyte .
packed The compiler uses the packed alignment rules.
bit_packed The compiler uses the bit_packed alignment rules. Alignment rules for bit_packed are the same as that

for packed alignment except that bitfield data is packed on a bit-wise basis without respect to byte
boundaries.

natural The compiler maps structure members to their natural boundaries. This has the same effect as the
power suboption, except that it also applies alignment rules to doubles and long doubles that are not
the first member of a structure or union.

If you use the qalign option more than once on the command line, the last alignment rule specified applies
to the file.

Within your source file, you can use #pragma options align=reset to revert to a previous alignment rule.
The compiler stacks alignment directives, so you can go back to using the previous alignment directive,
without knowing what it is, by specifying the #pragma align=reset directive. For example, you can use
this option if you have a class declaration within an include file and you do not want the alignment rule
specified for the class to apply to the file in which the class is included.

You can code #pragma options align=reset in a source file to change the alignment option to what it was
before the last alignment option was specified. If no previous alignment rule appears in the file, the
alignment rule specified in the invocation command is used.

Exampl e 1 - Imbedded #pragmas
Using the compiler invocation:
xlc -qalign=mac68k file.c /* <— default alignment rule for file is */

/* Macintosh */

234 C for AIX User’s Guide

Where file.c has:
struct A {
int a;
struct B {
char c;
double d;

#pragma options align=power /* <— B will be unaffected by this */
/* #pragma, unlike previous behavior; */
/* Macintosh alignment rules still */
/* in effect */

} BB;
#pragma options align=reset /* <— A unaffected by this #pragma; */
} AA; /* Macintosh alignment rules still */

/* in effect */

Example 2 - Affecting Only Aggregate Definition
Using the compiler invocation:
xlc file2.c /* <— default alignment rule for file is */

/* RISC System/6000 since no alignment rule specified */

Where file2.c has:
extern struct A A1;
typedef struct A A2;
#pragma options align=packed /* <— use packed alignment rules */
struct A {
int a;
char c;

};
#pragma options align=reset /* <— Go back to default alignment rules */
struct A A1; /* <— aligned using packed alignment rules since */
A2 A3; /* this rule applied when struct A was defined */

Exampl e 3 - Sample bit_packed Fields
Assuming the following structure is declared:
#pragma options align=bit_packed
struct {

int a : 8;
int c : 12;
int d : 4;
int e : 3;
int : 0;
int f : 1;
char g;

} A;
#pragma options align=reset;

The structure takes on the following characteristics:

sizeof(A) = 7

and the layout of A is:

Member Name Offset

Bytes Bits

a 0 0

b 1 0

c 2 2

Appendix A. Compiler Options 235

d 3 6

e 4 2

f 5 0

g 6 0

Note that there is no padding between bitfield members c and d.

“__align Specifier” on page 442
“Compiler Options and Their Defaults” on page 218
“Options that Specify the Compiler Object Code Produced” on page 229
“Appendix H. RISC System/6000 Alignment Rules” on page 437
“MacIntosh and Twobyte Alignment Rules” on page 440
“Packed Alignment Rules” on page 438
“Alignment Rules for Nested Aggregates” on page 438

ansialias

Option Type Default Value #pragma options

-qoption ansialias* ANSIALIAS

Syntax
-qansialias | -qnoansialias
ANSIALIAS | NOANSIALIAS

Purpose
Specifies whether type-based aliasing is to be used during optimization. Type-based aliasing restricts the
lvalues that can be used to access a data object safely.

Notes
This option is obsolete. Use -qalias= in your new applications.

This option has no effect unless you also specify the -O option.

* The default with xlc and c89 is ansialias . The optimizer assumes that pointers can only point to an
object of the same type.

The default with cc is noansialias .

If you select noansialias , the optimizer makes worst-case aliasing assumptions. It assumes that a pointer
of a given type can point to an external object or any object whose address is already taken, regardless of
type.

The following are not subject to type-based aliasing:

v Signed and unsigned types; for example, a pointer to a signed int can point to an unsigned int .

v Character pointer types can point to any type.

v Types qualified as volatile or const ; for example, a pointer to a const int can point to an int .

Example
To specify worst-case aliasing assumptions when compiling myprogram.c, enter:

xlc myprogram.c -O -qnoansialias

236 C for AIX User’s Guide

“Compiler Options and Their Defaults” on page 218
“Options that Specify the Compiler Object Code Produced” on page 229
“O, optimize” on page 302
“alias” on page 233

arch

Option Type Default Value #pragma options

-qoption arch=com -

Syntax
-qarch=suboption

Purpose
Specifies the general processor architecture for which the code (instructions) should be generated.

Notes
If you want maximum performance on a specific architecture and will not be using the program on other
architectures, use the appropriate processor architecture option. You can specify the architecture using the
following basic suboptions:

auto Automatically detects the specific architecture of the compiling machine. Use this suboption only if the
execution environment is the same as the compilation environment.

com Produces object code that contains instructions that will run on all the POWER, POWER2*, and
PowerPC* hardware platforms (that is, the instructions generated are common to all platforms. Using
-qarch=com is referred to as compiling in common mode) Defines the _ARCH_COM macro.

Use this option if you want your program to be portable.
pwr Produces object code that contains instructions that will run on any of the POWER and POWER2

hardware platforms. Defines the _ARCH_PWR macro.
pwr2 Produces object code that contains instructions that will run on the POWER2 hardware platforms.

Defines the _ARCH_PWR and _ARCH_PWR2 macros.
pwrx Produces object code that contains instructions that will run on the POWER2 hardware platforms (same

as -qarch=pwr2). Defines the _ARCH_PWR and _ARCH_PWR2 macros.
ppc Produces object code that contains instructions that will run on any of the 32-bit PowerPC hardware

platforms. This suboption will cause the compiler to produce single-precision instructions to be used with
single-precision data. Defines the _ARCH_PPC macro.

ppcgr Produces object code that contains optional graphics instructions for PowerPC processors. Defines the
_ARCH_PPC and _ARCH_PPCGR macros.

noauto Valid only when the -O4 compiler option is in effect, this option disables automatic setting of the -qarch
and qtune compiler options.

Additional -qarch suboptions for specific processors can be found in “Acceptable Compiler Mode and
Processor Architecture Combinations” on page 16.

You can use -qarch= suboption with -qtune= suboption. -qarch= suboption specifies the architecture for
which the instructions are to be generated, and -qtune= suboption specifies the target platform for which
the code is optimized.

Default
The default setting of the -qarch option depends on the setting of the -qtune option.

If -qtune is specified without -qarch , the compiler uses -qarch=com .

Appendix A. Compiler Options 237

If -qarch is specified without -qtune , the compiler uses the default tuning option for the specified
architecture. Listings will show only:

TUNE=DEFAULT

To find the actual default -qtune setting for a given -qarch setting, refer to “Acceptable Compiler Mode
and Processor Architecture Combinations” on page 16.

Example
To specify that the executable program testing compiled from myprogram.c is to run on a computer with a
32-bit PowerPC architecture, enter:

xlc -o testing myprogram.c -qarch=ppc

“Specifying Compiler Options for Architecture-Specific, 32- or 64-bit Compilation” on page 14
“Acceptable Compiler Mode and Processor Architecture Combinations” on page 16
“Compiler Options and Their Defaults” on page 218
“Options that Specify the Compiler Object Code Produced” on page 229
“O, optimize” on page 302
“tune” on page 331

assert

Option Type Default Value #pragma options

-qoption noassert -

Syntax
-qassert=suboption

Purpose
Requests the compiler to apply aliasing assertions to your compilation unit. The compiler will take
advantage of the aliasing assertions to improve optimizations where possible.

Notes
This option is obsolete. Use -qalias= in your new applications.

The compiler will apply aliasing assertions when you specify the following suboptions:

-qASSert=TYPeptr Pointers to different types are never aliased. In other words, in the compilation unit no two
pointers of different types will point to the same storage location.

-qASSert=ALLPtrs Pointers are never aliased (this implies -qassert=typeptr). Therefore, in the compilation unit,
no two pointers will point to the same storage location.

-qASSert=ADDRtaken Variables are disjoint from pointers unless their address is taken. Any class of variable for
which an address has not been recorded in the compilation unit will be considered disjoint
from indirect access through pointers.

“Compiler Options and Their Defaults” on page 218
“Options that Specify Compiler Characteristics” on page 226
“alias” on page 233

attr

Option Type Default Value #pragma options

-qoption noattr ATTR

238 C for AIX User’s Guide

Syntax
-qattr | -qattr=full | -qnoattr
ATTR | ATTR=FULL | NOATTR

Purpose

Produces a compiler listing that includes an attribute listing for all identifiers.

Notes

-qattr=full Reports all identifiers in the program.
-qattr Reports only those identifiers that are used.

This option does not produce a cross-reference listing unless you also specify -qxref .

The -qnoprint option overrides this option.

If -qattr is specified after -qattr=full , it has no effect. The full listing is produced.

Example
To compile the program myprogram.c and produce a compiler listing of all identifiers, enter:

xlc myprogram.c -qxref -qattr=full

A typical cross-reference listing has the form:

“Compiler Options and Their Defaults” on page 218
“Options that Specify Compiler Output” on page 228
“noprint” on page 301
“xref” on page 339

B

Option Type Default Value #pragma options

-flag - -

Syntax
-B | -Bprefix | -B -tprograms | -Bprefix -tprograms

Purpose
Determines substitute path names for the compiler, assembler, linkage editor, and preprocessor.

Notes
The optional prefix defines part of a path name to the new programs. It must end in /.

To form the complete path name for each program, the C for AIX compiler adds prefix to the standard
program names for the compiler, assembler, linkage editor and preprocessor.

Appendix A. Compiler Options 239

Use this option if you want to keep multiple levels of some or all of the C for AIX compiler executables and
have the option of specifying which one you want to use.

If -Bprefix is not specified, the default path is used.

-B -tprograms specifies the programs to which the -B prefix name is to be appended.

The -Bprefix -tprogramsoptions override the -Fconfig_file option.

Example
To compile myprogram.c using a substitute xlc compiler in /lib/tmp/mine/ enter:

xlc myprogram.c -B/lib/tmp/mine/

To compile myprogram.c using a substitute linkage editor in /lib/tmp/mine/ , enter:
xlc myprogram.c -B/lib/tmp/mine/ -tl

“Compiler Options and Their Defaults” on page 218
“Options that Specify Compiler Characteristics” on page 226
“F” on page 259
“t” on page 329

bitfields

Option Type Default Value #pragma options

-qoption unsigned -

Syntax
-qbitfields=suboption

Purpose
Specifies if bitfields are signed. By default, bitfields are unsigned.

Notes
The -qbitfields suboptions are:

signed Bitfields are signed.
unsigned Bitfields are unsigned.

“Compiler Options and Their Defaults” on page 218

brtl

Option Type Default Value #pragma options

-flag - -

Syntax
-brtl

Purpose
Tells the linkage editor to perform library searches of both .a and .so library files.

240 C for AIX User’s Guide

Notes
This option affects all library searches.

For a library name and path specied by the -l and -L options, the linkage editor searches, if they exist, the
.so library first and then the .a library.

Example
To compile myprogram.c searching both shared and static versions of the C for AIX compiler libraries,
enter:

xlc myprogram.c -brtl

“Compiler Options and Their Defaults” on page 218
“Options that Specify Linkage Options” on page 230
“bstatic, bdynamic”
“l” on page 286
“L” on page 285

bstatic, bdynamic

Option Type Default Value #pragma options

-flag bdynamic -

Syntax
-bstatic | -bdynamic

Purpose
Controls how libraries are processed by specifying which forms of library names the linkage editor looks
for.

Notes
The linkage editor searches library names and paths specied by the -l and -L options according to the
following criteria:

bdynamic For settings of the -lkey option appearing after the -bdynamic option, both lib key.so and lib key.a
library files are searched for by the linkage editor. This option remains in effect until overridden by
the appearance of the -bstatic option, which in turn affects -lkey options appearing after it.

bstatic For settings of the -lkey option appearing after the -bstatic option, only lib key.a library files are
searched for by the linkage editor. This option remains in effect until overridden by the appearance
of the -bdynamic option, which in turn affects -lkey options appearing after it.

The default option, -bdynamic , ensures that the C library (lib.c) links dynamically. To avoid possible
problems with unresolved linker errors when linking the C library, you must add the -bdynamic option to
the end of any compilation sections that use the -bstatic option.

Example
To compile myprogram.c using a static version of the libtask.a Task Library and a dynamic version version
of the libcomplex.a Complex Mathematics Library, enter:

xlc myprogram.c -bstatic -ltask -bdynamic -lcomplex

“Compiler Options and Their Defaults” on page 218
“Options that Specify Linkage Options” on page 230
“l” on page 286
“L” on page 285

Appendix A. Compiler Options 241

C

Option Type Default Value #pragma options

-flag - -

Syntax
-C

Purpose
Preserves comments in preprocessed output.

Notes
The -C option has no effect without either the -E or the -P option. With the -E option, comments are
written to standard output. With the -P option, comments are written to an output file.

Example
To compile myprogram.c to produce a file myprogram.i that contains the preprocessed program text
including comments, enter:

xlc myprogram.c -P -C

“Compiler Options and Their Defaults” on page 218
“Options that Specify Compiler Output” on page 228
“C”
“E” on page 253
“P” on page 307

c

Option Type Default Value #pragma options

-flag - -

Syntax
-c

Purpose
Instructs the compiler to pass source files to the compiler only.

Notes
The compiled source files are not sent to the linkage editor. The compiler creates an output object file,
file_name.o, for each valid source file, file_name.c or file_name.i.

The -c option is overridden if either the -E, -P, or -qsyntaxonly options are specified.

The -c option can be used in combination with the -o option to provide an explicit name of the object file
that is created by the compiler.

Example
To compile myprogram.c to produce an object file myfile.o , but no executable file, enter the command:

xlc myprogram.c -c

To compile myprogram.c to produce the object file new.o and no executable file, enter:
xlc myprogram.c -c -o new.o

242 C for AIX User’s Guide

“Compiler Options and Their Defaults” on page 218
“Options that Specify Compiler Output” on page 228
“E” on page 253
“o” on page 305
“P” on page 307
“syntaxonly” on page 327

cache

Option Type Default Value #pragma options

-qoption - -

Syntax
-qcache=
{
assoc=number |
auto |
cost=cycles |
level=level |
line=bytes |
size=Kbytes |
type=cache_type
}[: ...|

Purpose
Use this option to describe the cache configuration for a specific target execution machine, if different from
the compiling machine. The compiler uses this configuration information to optimize program performance,
particularly loop operations that can be structured or blocked, to maximize effective use of the data cache
on the target execution machine.

Notes
The -qcache option has an effect only if you also specify the -qipa, -O4 , -O5, or -qsmp options.

Suboption Description
assoc=number Specifies the set associativity of the cache, where number can be:

0 Direct-mapped cache

1 Fully-associative cache

n > 1 n-way set-associative cache

auto Specifies the cache configuration to match that of the compiling machine.
cost=cycles Specifies in instruction cycles the estimated performance penalty that results from a cache miss.

The compiler uses this value when deciding whether or not to perform an optimization that might
result in extra cache misses.

level=level Specifies the level of cache affected, where level can be:

1 Level-1 cache

2 Level-2 cache, or the translation look-aside buffer in a machine that has no level-2 cache.

3 Translation look-aside buffer in a machine that has a level-2 cache.

If a machine has more than one level of cache, use a separate -qcache option to describe each
cache.

line=bytes Specifies the line size of the cache in bytes.
size=Kbytes Specifies the total size of the cache in Kbytes.

Appendix A. Compiler Options 243

Suboption Description
type=cache_type Specifies the type of cache to which the above settings apply, where cache_type can be:

C or c Combined data and instruction cache

D or d Data cache

I or i Instruction cache

Use the following guidelines when specifying -qcache suboptions:

v Specify information for as many configuration parameters as possible.

v If the target execution system has more than one level of cache, use a separate -qcache option to
describe each cache level.

v If you are unsure of the exact size of the cache(s) on the target execution machine, specify an
estimated cache size on the small side. It is better to leave some cache memory unused than it is to
experience cache misses or page faults from specifying a cache size larger than actually present.

v The data cache has a greater effect on program performance than the instruction cache.If you have
limited time available to experiment with different cache configurations, determine the optimal
configuration specifications for the data cache first.

v If you specify the wrong values for the cache configuration, or run the program on a machine with a
different configuration, program performance may degrade but program output will still be as expected.

v The -O4 and -O5 optimization options automatically select the cache characteristics of the compiling
machine. If you specify the -qcache option together with the -O4 or -O5 options, the option specified
last takes precedence.

Example s

1. To tune performance for a system with a combined instruction and data level-1 cache, where the cache
is two-way associative, 8 KB in size, and has 64-byte cache lines, type:
xlc -qipa -qcache=type=c:level=1:size=8:line=64:assoc=2 file.c

2. To tune performance for a system with two levels of data cache, specify the -qcache option once for
each level of cache:
xlc -O4 -qcache=type=D:level=1:size=256:line=256:assoc=4 \

-qcache=type=D:level=2:size=512:line=256:assoc=2 file.c

3. To tune performance for a system with two types of cache, again, specify the -qcache option once for
each type of cache:
xlc -O5 -qipa -qcache=type=D:level=1:size=256:line=256:assoc=4 \

-qcache=type=I:level=1:size=512:line=256:assoc=2 file.c

“Compiler Options and Their Defaults” on page 218
“Options that Specify the Compiler Object Code Produced” on page 229
“O, optimize” on page 302
“arch” on page 237
“ipa” on page 279
“smp” on page 320
“tune” on page 331

chars

Option Type Default Value #pragma options

-qoption chars=unsigned CHARS=sign_type

Syntax

244 C for AIX User’s Guide

-qchars=signed | -qchars=unsigned
CHARS=signed | CHARS=unsigned

Purpose
Instructs the compiler to treat all variables of type char as either signed or unsigned .

Notes
You can also specify sign type in your source program using either of the following preprocessor
directives:

#pragma options chars=sign_type

#pragma chars (sign_type)

where sign_type is either signed or unsigned .

The _CHAR_SIGNED or _CHAR_UNSIGNED macros are defined according to the setting of the -qchars
option or corresponding preprocessor directives.

Regardless of the setting of this option, the type of char is still considered to be distinct from the types
unsigned char and signed char for purposes of type-compatibility checking.

Example
To treat all char types as signed when compiling myprogram.c, enter:

xlc myprogram.c -qchars=signed

“Compiler Options and Their Defaults” on page 218
“Options that Specify Compiler Characteristics” on page 226

check

Option Type Default Value #pragma options

-qoption nocheck CHECK

Syntax
-qcheck | -qcheck=suboptions | -qnocheck
CHECK | CHECK=suboptions | NOCHECK

Purpose
Generates code that performs certain types of runtime checking. If a violation is encountered, a runtime
exception is raised by sending a SIGKILL signal to the process.

Notes
The -qcheck option has the following suboptions. If you use more than one suboption, separate each one
with a colon (:).

all Switches on all the following suboptions. You can use the all option along with the no...
form of one or more of the other -qcheck suboptions as a filter.

For example, using:

xlc myprogram.c -qcheck=all:nonull

provides checking for everything except for addresses contained in pointer variables
used to reference storage.

If you use all with the no... form of the options, all should be the first suboption.

Appendix A. Compiler Options 245

NULLptr | NONULLptr Performs runtime checking of addresses contained in pointer variables used to
reference storage. The address is checked at the point of use; a trap will occur if the
value is less than 512.

bounds | nobounds Performs runtime checking of addresses when subscripting within an object of known
size. The index is checked to ensure that it will result in an address that lies within the
bounds of the object’s storage. A trap will occur if the address does not lie within the
bounds of the object.

DIVzero | NODIVzero Performs runtime checking of integer division. A trap will occur if an attempt is made to
divide by zero.

Using the -qcheck option without any suboptions turns all the suboptions on.

Using the -qcheck option with suboptions turns the specified suboptions on if they do not have the no
prefix, and off if they have the no prefix.

You can specify the -qcheck option more than once. The suboption settings are accumulated, but the later
suboptions override the earlier ones.

The #pragma options directive must be specified before the first statement in the compilation unit.

The -qcheck option affects the runtime performance of the application. When checking is enabled, runtime
checks are inserted into the application, which may result in slower execution.

Example
For -qcheck=null:bounds :

void func1(int* p) {
p = 42; / Traps if p is a null pointer */

}
void func2(int i) {
int array[10];
array[i] = 42; /* Traps if i is outside range 0 - 9 */

}

For -qcheck=divzero:

void func3(int a, int b) {
a / b; /* Traps if b=0 */

}

“Compiler Options and Their Defaults” on page 218
“Options that Specify Debugging Features” on page 227

compact

Option Type Default Value #pragma options

-qoption nocompact COMPact

Syntax
-qcompact | -qnocompact
COMPACT | NOCOMPACT

Purpose
When used with optimization, reduces code size where possible, at the expense of execution speed.

Notes
Code size is reduced by inhibiting optimizations that replicate or expand code inline. Execution time may
increase.

246 C for AIX User’s Guide

Example
To compile myprogram.c to reduce code size, enter:

xlc myprogram.c -qcompact

“Compiler Options and Their Defaults” on page 218
“Options that Specify the Compiler Object Code Produced” on page 229
“#pragma option_override Preprocessor Directive” on page 374

cpluscmt

Option Type Default Value #pragma options

-qoption nocpluscmt CPLUSCMT

Syntax
-qcpluscmt | -qnocpluscmt
CPLUSCMT | NOCPLUSCMT

Purpose
Use this option if you want C++ comments to be recognized in C source files.

Notes
The #pragma options directive must appear before the first statement in the C language source file and
applies to the entire file.

C++ comments have the form //text . The two slashes (//) in the character sequence must be adjacent with
nothing between them. Everything to the right of them until the end of the logical source line, as indicated
by a new-line character, is treated as a comment. The // delimiter can be located at any position within a
line.

// comments are not part of ANSI C. The result of the following valid ANSI C program will be incorrect if
-qcpluscmt is specified:

main() {
int i = 2;
printf(“%i\n”, i //* 2 */

+ 1);
}

The correct answer is 2 (2 divided by 1). When -qcpluscmt is specified, the result is 3 (2 plus 1).

The preprocessor handles all comments in the following ways:

v If the -C option is not specified, all comments are removed and replaced by a single blank.

v If the -C option is specified, comments are output unless they appear on a preprocessor directive or in a
macro argument.

v If -E is specified, continuation sequences are recognized in all comments and are output

v If -P is specified, comments are recognized and stripped from the output, forming concatenated output
lines.

A comment can span multiple physical source lines if they are joined into one logical source line through
use of the backslash (\) character. You can represent the backslash character by a trigraph (??/).

Example of C++ Comments
The following examples show the use of C++ comments:

Appendix A. Compiler Options 247

// A comment that spans two \
physical source lines

// A comment that spans two ??/
physical source lines

Preprocessor Output Example 1
For the following source code fragment:

int a;
int b; // A comment that spans two \

physical source lines
int c;

// This is a C++ comment
int d;

The output for the -P option is:
int a;
int b;
int c;
int d;

The ANSI mode output for the -P -Coptions is:
int a;
int b; // A comment that spans two physical source lines
int c;

// This is a C++ comment
int d;

The output for the -E option is:
int a;
int b;
int c;
int d;

The ANSI mode output for the -E -C options is:
#line 1 “fred.c”
int a;
int b; // a comment that spans two \

physical source lines
int c;

// This is a C++ comment
int d;

Extended mode output for the -P -C options or -E -C options is:
int a;
int b; // A comment that spans two \

physical source lines
int c;

// This is a C++ comment
int d;

Preprocessor Output Exampl e 2 - Directive Line
For the following source code fragment:

int a;
#define mm 1 // This is a C++ comment on which spans two \

physical source lines
int b;

// This is a C++ comment
int c;

The output for the -P option is:

248 C for AIX User’s Guide

int a;
int b;
int c;

The output for the -P -C options:
int a;
int b;

// This is a C++ comment
int c;

The output for the -E option is:
#line 1 “fred.c”
int a;
#line 4
int b;
int c;

The output for the -E -C options:
#line 1 “fred.c”
int a;
#line 4
int b;

// This is a C++ comment
int c;

Preprocessor Output Exampl e 3 - Macro Function Argument
For the following source code fragment:

#define mm(aa) aa
int a;
int b; mm(// This is a C++ comment

int blah);
int c;

// This is a C++ comment
int d;

The output for the -P option:
int a;
int b; int blah;
int c;
int d;

The output for the -P -C options:
int a;
int b; int blah;
int c;

// This is a C++ comment
int d;

The output for the -E option is:
#line 1 “fred.c”
int a;
int b;
int blah;
int c;
int d;

The output for the -E -C option is:
#line 1 “fred.c”
int a;
int b;

Appendix A. Compiler Options 249

int blah;
int c;

// This is a C++ comment
int d;

A comment may contain a sequence of valid multibyte characters.

The character sequence // begins a C++ comment, except within a header name, a character constant, a
string literal, or a comment. The character sequence //, or /* and */ are ignored within a C++ comment.
Comments do not nest.

Macro replacement is not performed within comments.

Compile Example
To compile myprogram.c. so that C++ comments are recognized as comments, enter:

xlc myprogram.c -qcpluscmt

“Compiler Options and Their Defaults” on page 218
“Options that Specify Preprocessor Options” on page 228
“C” on page 242
“E” on page 253
“P” on page 307

D

Option Type Default Value #pragma options

-flag - -

Syntax

-Dname=definition | -Dname= | -Dname

Purpose
Defines the identifier name as in a #define preprocessor directive. definition is an optional definition or
value assigned to name.

Notes The identifier name can also be defined in your source program using the #define preprocessor
directive.

-Dname= is equivalent to #define name.

-Dname is equivalent to #define name 1. (This is the default.)

To aid in program portability and standards compliance, the AIX Version 4 OPerating System provides
several header files that define macro names you can set with the -D option. You can find most of these
header files either in the /usr/include directory or in the /usr/include/sys directory. See “Header Files
Overview” in the AIX Version 4 Files Referencefor more information.

The configuration file uses the -D option to specify the following predefined macros:

v _POWER

v _AIX

v _AIX32

v _IBMR2

v _ANSI_C_SOURCE

250 C for AIX User’s Guide

To ensure that the correct macros for your source file are defined, use the -D option with the appropriate
macro name. If your source file includes the /usr/include/sys/stat.h header file, you must compile with the
option -D_POSIX_SOURCE to pick up the correct definitions for that file.

If your source file includes the /usr/include/standards.h header file, _ANSI_C_SOURCE,
_XOPEN_SOURCE, and _POSIX_SOURCE are defined if you have not defined any of them.

The -Uname option has a higher precedence than the -Dname option.

Example To specify that all instances of the name COUNT be replaced by 100 in myprogram.c,
enter:

xlc myprogram.c -DCOUNT=100

This is equivalent to having #define COUNT 100 at the beginning of the source file.

“Compiler Options and Their Defaults” on page 218
“Options that Specify Preprocessor Options” on page 228
“U” on page 332

datalocal, dataimported

Option Type Default Value #pragma options

-qoption dataimported DATALOCal, DATAIMPorted

Syntax
-qdatalocal | -qdatalocal=names
-qdataimported | -qdataimported=names

DATALOCAL | DATALOCAL=names
DATAIMPORTED | DATAIMPORTED=names

Purpose
Mark data as local or imported.

Notes

Local variables are statically bound with the functions that use them. -qdatalocal changes the default to
assume that all variables are local. -qdatalocal= names marks the named variables as local, where names
is a list of identifiers separated by colons (:). The default is not changed. Performance may decrease if an
imported variable is assumed to be local.

Imported variables are dynamically bound with a shared portion of a library. -qdataimported changes the
default to assume that all variables are imported. -qdataimported= names marks the named variables as
imported, where names is a list of identifiers separated by colons (:). The default is not changed.

Conflicts among the data-marking options are resolved in the following manner:

Options that list variable names
The last explicit specification for a particular variable name is used.

Options that change the default
This form does not specify a name list. The last option specified is the default for variables not
explicitly listed in the name-list form.

Appendix A. Compiler Options 251

“Compiler Options and Their Defaults” on page 218
“Options that Specify the Compiler Object Code Produced” on page 229

dbxextra

Option Type Default Value #pragma options

-qoption nodbxextra -

Syntax
-qdbxextra | -qnodbxextra

Purpose
Specifies that all typedef declarations, struct , union , and enum type definitions are included for debugger
processing.

Notes
Use this option with the -g option to produce additional debugging information.

When you specify the -g option, debugging information is included in the object file. To minimize the size
of object and executable files, the compiler only includes information for symbols that are referenced.
Debugging information is not produced for unreferenced arrays, pointers, or file-scope variables unless
-qdbxextra is specified.

Using -qdbxextra may make your object and executable files larger.

Example
To include all symbols in myprogram.c for debugger processing, enter:

xlc myprogram.c -g -qdbxextra

“Compiler Options and Their Defaults” on page 218
“Options that Specify Debugging Features” on page 227
“g” on page 267

digraph

Option Type Default Value #pragma options

-qoption nodigraph -

Syntax
-qdigraph | -qnodigraph

Purpose
Lets you use digraph character sequences to represent characters not found on some keyboards.
Digraphs are enabled by default.

Example
To disable digraph character sequences when compiling your program, enter:

xlc myprogram.c -qnodigraph

252 C for AIX User’s Guide

“Compiler Options and Their Defaults” on page 218
“C Programming Character Set” on page 160

dollar

Option Type Default Value #pragma options

-qoption nodollar -

Syntax
-qdollar | -qnodollar

Purpose
Allows the $ symbol to be used in the names of identifiers.

Example
To compile myprogram.c so that $ is allowed in identifiers in the program, enter:

xlc myprogram.c -qdollar

“Compiler Options and Their Defaults” on page 218

dpcl

Option Type Default Value #pragma options

-qoption nodpcl -

Syntax
-qdpcl | -qnodpcl

Purpose
Generates symbols that tools based on the Dynamic Probe Class Library (DPCL) can use to see the
structure of an executable file.

Notes
When you specify the -qdpcl option, the compiler emits symbols to define blocks of code in a program.
You can then use tools that use the DPCL interface to examine performance information such as memory
usage for object files that you have compiled with this option.

You must also specify the -g option when you specify -qdpcl .

You cannot specify the -qipa or -qsmp . options together with -qdpcl .

“Compiler Options and Their Defaults” on page 218
“Options that Specify the Compiler Object Code Produced” on page 229

E

Option Type Default Value #pragma options

-type - -

Syntax

Appendix A. Compiler Options 253

-E

Purpose
Runs the source files named in the compiler invocation through the preprocessor. The -E option calls the
preprocessor directly as /usr/vac/exe/xlCcpp .

Notes
The -E and -P options have different results. When the -E option is specified, the compiler assumes that
the input is a C file and that the output will be recompiled or reprocessed in some way. These
assumptions are:

v Original source coordinates are preserved. This is why #line directives are produced.

v All tokens are output in their original spelling, which, in this case, includes continuation sequences. This
means that any subsequent compilation or reprocessing with another tool will give the same coordinates
(for example, the coordinates of error messages).

The -P option is used for general-purpose preprocessing. No assumptions are made concerning the input
or the intended use of the output. This mode is intended for use with input files that are not written in C.
As such, all preprocessor-specific constructs are processed as described in the ANSI C standard. In this
case, the continuation sequence is removed as described in the “Phases of Translation” of that standard.
All non-preprocessor-specific text should be output as it appears.

Using -E causes #line directives to be generated to preserve the source coordinates of the tokens. Blank
lines are stripped and replaced by compensating #line directives.

The line continuation sequence is removed and the source lines are concatenated with the -P option. With
the -E option, the tokens are output on separate lines in order to preserve the source coordinates. The
continuation sequence may be removed in this case.

The -E option overrides the -P, -o, and -qsyntaxonly options, and accepts any file name.

If used with the -M option, -E will work only for files with a .c (C source files), or a .i (preprocessed source
files) filename suffix. Source files with unrecognized filename suffixes are treated and preprocessed as C
files, and no error message is generated.

Comments are replaced in the preprocessed output by a single space character. New lines and #line
directives are issued for comments that span multiple source lines, and when -C is not specified.
Comments within a macro function argument are deleted.

The default is to preprocess, compile, and link-edit source files to produce an executable file.

Example
To compile myprogram.c and send the preprocessed source to standard output, enter:

xlc myprogram.c -E

If myprogram.c has a code fragment such as:
#define SUM(x,y) (x + y) ;
int a ;
#define mm 1 ; /* This is a comment in a

preprocessor directive */
int b ; /* This is another comment across

two lines */
int c ;

/* Another comment */
c = SUM(a, /* Comment in a macro function argument*/

b) ;

the output will be:

254 C for AIX User’s Guide

#line 2 “myprogram.c”
int a;
#line 5
int b;
int c;
c =
(a + b);

“Compiler Options and Their Defaults” on page 218
“Options that Specify Compiler Output” on page 228
“#line Preprocessor Directive” on page 357
“C” on page 242
“M” on page 294
“o” on page 305
“P” on page 307
“syntaxonly” on page 327

enum

Option Type Default Value #pragma options

-qoption enum=int ENUM=suboption

Syntax
-qenum=small | -qenum=int | -qenum=intlong | -qenum=1 | -qenum=2 | -qenum=4 | -qenum=8
ENUM=SMALL | ENUM=INT | ENUM=INTLONG | ENUM=1 | ENUM=2 | ENUM=4 | ENUM=8 | ENUM=RESET

Purpose
Specifies the amount of storage occupied by enumerations.

Notes
Valid suboptions are:

-qenum=small Specifies that enumerations occupy a minimum amount of storage: either 1, 2, or 4 bytes of
storage, depending on the range of the enum constants.

-qenum=int Specifies that enumerations occupy 4 bytes of storage and are represented by int .
-qenum=intlong Specifies that enumerations occupy 8 bytes of storage and are represented by long , if -q64

is specified and the range of the enum constants exceed the limit for int .
-qenum=1 Specifies that enumerations occupy 1 byte of storage.
-qenum=2 Specifies that enumerations occupy 2 bytes of storage.
-qenum=4 Specifies that enumerations occupy 4 bytes of storage.
-qenum=8 Valid only in 64-bit compiler mode. Specifies that enumerations occupy 8 bytes of storage.
RESET Valid in #pragma enum statement only. Resets the enum mapping rule to the rule that was

in effect before the current mapping rule. If no previous enum mapping rule was specified in
the file, the rule specified when the compiler was initially invoked is used.

The -qenum=small option allocates to an enum variable the amount of storage that is required by the
smallest predefined type that can represent that range of enum constants. By default, an unsigned
predefined type is used. If any enum constant is negative, a signed predefined type is used.

The enum constants are always of type int , except for the following cases:

v If -q64 is not specified, and if the range of these constants is beyond the range of int , enum constants
will have type unsigned int and be 4 bytes long.

v If -q64 is specified, and if the range of these constants is beyond the range of int , enum constants will
have type long and be 8 bytes long.

Appendix A. Compiler Options 255

The -qenum=1|2|4 options allocate a specific amount of storage to an enum variable. If the specified
storage size is smaller than that required by the range of enum variables, the requested size is kept but a
warning is issued. For example:

enum {frog, toad=257} amph;
1506-387 (W) The enum cannot be packed to the requested size.

Use a larger value for -qenum.
(The enum size is 1 and the value of toad is 1)

For every #pragma options enum= directive that you put in your program, it is good practice to have a
corresponding #pragma options=reset as well. This is the only way to prevent one file from potentially
changing the enum= setting of another file that #include s it. It is good practice to specify #pragma
options enum=reset at the end of any file that contains #pragma options enum= directives.

The table below shows the priority for selecting a predefined type. It also shows the the predefined type,
the maximum range of enum constants for the corresponding predefined type, and the amount of storage
that is required for that predefined type (that is, the value that the sizeof operator would yield when
applied to the minimum-sized enum).

Priority of Choosing Predefined enum Types

Priority Variable Constant Range
(inclusive)

Size
(bytes)

1 (highest) unsigned char int 0 to 255 1

2 signed char int -(127 + 1) to 127 1

3 unsigned short int 0 to 65,535 2

4 short (signed short) int -(32767 + 1) to 32767 2

5 unsigned int unsigned int 0 to 4,294,967,295 4

6 int (signed int) int -(2,147,483,647 + 1)
to 2,147,483,647

4

7 unsigned long unsigned long 0 to 2
64

8 (see Note)

8 (lowest) signed long signed long -(2
63

) to (2
63

-1) 8 (see Note)

Note: Long enum types are valid only in 64-bit compiler mode.

v When you specify #pragma options enum=small , the option stays in effect until it is explicitly turned
off with a #pragma options enum=int or #pragma options enum=reset directive.

v If you compile the file using the -qenum=int option on the command line, the first #pragma
options=small directive encountered in the source file will override it.

v If you specify -qenum=small on the command line, it is turned off by the first #pragma options
enum=int directive found in the source code.

v You cannot change the storage allocation of an enum using a #pragma options enum= within the
declaration of an enum. The following code segment generates a warning and the second occurrence of
the enum option is ignored:

#pragma options enum=small
enum e_tag
{ a,
b,

#pragma options enum=int /* cannot be within a declaration */
c

} e_var;

The range of enum constants must fall within the range of either unsigned int or int (signed int) . For
example, the following code segments contain errors:

256 C for AIX User’s Guide

#pragma options enum=small
enum e_tag { a=-1,

b=2147483648 /* larger than maximum int */
} e_var;

The enum constant range does not fit within the range of an int (signed int) .
#pragma options enum=small
enum e_tag { a=0,

b=4294967296 /* larger than maximum int */
} e_var;

The enum constant range does not fit within the range of an unsigned int .
#pragma options enum=small
enum e_tag { a=-1,

b=2147483647, /* max int */
c /* larger than maximum int */

} e_var;

The enum constant range does not fit within the range of an int (signed int) .

The #pragma options keywords are ENUM=SMALL , to specify minimum-sized ENUMS; ENUM=INT, to
disable minimum-sized enums; and ENUM=RESET, to reset the enum mapping rule to the rule that was in
effect before the current mapping rule. If no previous enum mapping rule was specified in the file, the rule
specified when the compiler was invoked is used.

A -qenum=reset option corresponding to the #pragma options ENUM=RESET directive does not exist.
Attempting to use -qenum=reset generates a warning message and the option is ignored.

Examples

1. One typical use for the reset suboption is to reset the enumeration size set at the end of an include
file that specifies an enumeration storage different from the default in the main file. For example, the
following include file, small_enum.h, declares various minimum-sized enumerations, then resets the
specification at the end of the include file to the last value on the option stack:

/*
* File small_enum.h
* This enum must fit within an unsigned char type
*/
#pragma options enum=small

enum e_tag {a, b=255};
enum e_tag u_char_e_var; /* occupies 1 byte of storage */

/* Reset the enumeration size to whatever it was before */
#pragma options enum=reset

The following source file, int_file.c, includes small_enum.h:
/*
* File int_file.c
* Defines 4 byte enums
*/
#pragma options enum=int
enum testing {ONE, TWO, THREE};
enum testing test_enum;
/* various minimum-sized enums are declared */
#include “small_enum.h”
/* return to int-sized enums. small_enum.h has reset the
* enum size
*/
enum sushi {CALIF_ROLL, SALMON_ROLL, TUNA, SQUID, UNI};
enum sushi first_order = UNI;

Appendix A. Compiler Options 257

The enumerations test_enum and test_order both occupy 4 bytes of storage and are of type int . The
variable u_char_e_var defined in small_enum.h occupies 1 byte of storage and is represented by an
unsigned char data type.

2. If the following C fragment is compiled with the enum=small option:
enum e_tag {a, b, c} e_var;

the range of enum constants is 0 through 2. This range falls within all of the ranges described in the
table above. Based on priority, the compiler uses predefined type unsigned char .

3. If the following C code fragment is compiled with the enum=small option:
enum e_tag {a=-129, b, c} e_var;

the range of enum constants is -129 through -127. This range only falls within the ranges of short
(signed short) and int (signed int) . Because short (signed short) has a higher priority, it will be
used to represent the enum .

4. If you compile a file myprogram.c using the command:
xlc myprogram.c -qenum=small

assuming file myprogram.c does not contain #pragma options=int statements, all enum variables
within your source file will occupy the minimum amount of storage.

5. If you compile a file yourfile.c that contains the following lines:
enum testing {ONE, TWO, THREE};
enum testing test_enum;

#pragma options enum=small
enum sushi {CALIF_ROLL, SALMON_ROLL, TUNA, SQUID, UNI};
enum sushi first_order = UNI;

#pragma options enum=int
enum music {ROCK, JAZZ, NEW_WAVE, CLASSICAL};
enum music listening_type;

using the command:
xlc yourfile.c

only the enum variable first_order will be minimum-sized (that is, enum variable first_order will only
occupy 1 byte of storage). The other two enum variables test_enum and listening_type will be of
type int and occupy 4 bytes of storage.

“Compiler Options and Their Defaults” on page 218

extchk

Option Type Default Value #pragma options

-qoption noextchk EXTCHK

Syntax
-qextchk | -qnoextchk
EXTCHK | NOEXTCHK

Purpose
Generates bind-time type checking information and checks for compile-time consistency.

Notes
-qextchk checks for consistency at compile time and detects mismatches across compilation units at link
time.

258 C for AIX User’s Guide

-qextchk does not perform type checking on functions or objects that contain references to incomplete
types.

Example
To compile myprogram.c so that bind-time checking information is produced, enter:

xlc myprogram.c -qextchk

“Compiler Options and Their Defaults” on page 218
“Options that Specify the Compiler Object Code Produced” on page 229

f

Option Type Default Value #pragma options

-flag - -

Syntax
-f filename

Purpose
Linkage editor (ld command) option only. Passes to the linkage editor the filename of a file containing a
list of input files to be processed

Notes
Each line in filename is treated as if it were listed separately on the ld linkage editor command line. Lines
in this file can contain the following shell pattern characters to designate multiple object files:

v * asterisk

v [left bracket

v] right bracket

v ? question mark

For more information on the -f compiler option, refer to the ld command in the AIX Commands Reference.

“Compiler Options and Their Defaults” on page 218
“Options that Specify Compiler Characteristics” on page 226

F

Option Type Default Value #pragma options

-flag - -

Syntax
-Fconfig_file:stanza | -Fconfig_file | -F:stanza

Purpose
Names an alternative configuration file for xlc .

Notes

config_file Specifies the configuration of your system to the compiler.

Appendix A. Compiler Options 259

stanza Is the name of the command used to invoke the compiler. This directs the compiler to the
config_file under stanza for the description of the compiler environment.

This suboption is not required.

The default is a configuration file supplied at installation time called /etc/vac.cfg . Any file names or
stanzas that you specify on the command line or within your source file override the defaults specified in
the /etc/vac.cfg configuration file.

For information regarding the contents of the configuration file, refer to “Specifying Compiler Options in a
Configuration File” on page 13.

Options specified with -W option override options in the -Fconfig_file configuration file. The -B, -t, and -W
options override the -F option.

Example
To compile myprogram.c using a configuration file /usr/tmp/myvac.cfg with an xlc stanza, enter:

xlc myprogram.c -F/usr/tmp/myvac.cfg:xlc

“Compiler Options and Their Defaults” on page 218
“Options that Specify Compiler Characteristics” on page 226
“etc/vac.cfg - Default Configuration File” on page 474
“B” on page 239
“t” on page 329
“W” on page 336

fdpr

Option Type Default Value #pragma options

-qoption nofdpr -

Syntax
-qfdpr | -qnofdpr

Purpose
Collects information about your program for use with the AIX fdpr (Feedback Directed Program
Restructuring) performance-tuning utility.

Notes
You should compile your program with -qfdpr before optimizing it with the fdpr performance-tuning utility.
Optmization data is stored in the object file.

For more information on using the fdpr performance-tuning utilty, refer to the AIX Version 4 Commands
Reference or enter the command:

man fdpr

Example
To compile myprogram.c so it include data required by the fdpr utility, enter:

xlc myprogram.c -qfdpr

“Compiler Options and Their Defaults” on page 218
“Options that Specify the Compiler Object Code Produced” on page 229

260 C for AIX User’s Guide

flag

Option Type Default Value #pragma options

-qoption flag=i:i FLAG=severity1:severity2

Syntax
-qflag=severity1:severity2 FLAG=severity1:severity2

Purpose
Specifies the minimum severity level of diagnostic messages to be reported in a listing and displayed on a
terminal.

Notes

severity1 Message level reported in listing
severity2 Message level reported on terminal

You must specify a level for both severity1 and severity2.

Diagnostic messages have the following severity levels:

i Informational
w Warning
e Error
s Severe Error
u Unrecoverable Error

Specifying informational messages does not turn on the -qinfo option.

Example
To compile myprogram.c so that the listing shows all messages that were generated and your workstation
displays only error and higher messages, enter:

xlc myprogram.c -qflag=I:E

“Compiler Options and Their Defaults” on page 218
“Options that Specify Compiler Output” on page 228
“Message Severity Levels and Compiler Response” on page 20
“info” on page 275
“suppress” on page 328

float

Option Type Default Values #pragma options

-qoption noemulate
nofltint

fold
nohsflt

nohssngl
maf

norndsngl
norrm
norsqrt

nospnans

FLOAT

Syntax:

Appendix A. Compiler Options 261

-qfloat=suboptions
FLOAT=suboptions

Purpose
Specifies various floating-point options. These options provide different strategies for speeding up or
improving the accuracy of floating-point calculations.

Notes
Using the float option may produce results that are not precisely the same as the default. Incorrect results
may be produced if not all required conditions are met. For these reasons, you should only use this option
if you are experienced with floating-point calculations involving IEEE floating-point values and can properly
assess the possibility of introducing errors in your program. See “Floating-Point Compiler Options” on
page 27 before using this option.

The float option has the following suboptions. If you use more than one suboption, separate each one with
a colon (:).

-qfloat=emulate |
-qfloat=noemulate

Emulates the floating-point instructions omitted by the PowerPC 403 processor. The default
is float=noemulate .

To emulate PowerPC 403 processor floating-point instructions, use -qfloat=emulate .
Function calls are emitted in place of PowerPC 403 floating-point instructions. Use this
option only in a single-threaded, stand-alone environment targeting the PowerPC 403
processor.

Do not use -qfloat=emulate with any of the following:

v -qarch=pwr , -qarch=pwr2 , -qarch=pwrx

v -qlongdouble , -qldbl128

v xlc128 compiler invocation command

-qfloat=fltint |
-qfloat=nofltint

Speeds up floating-point-to-integer conversions by using faster inline code that does not
check for overflows. The default is float=nofltint , which checks floating-point-to-integer
conversions for out-of-range values.

This suboption must only be used with an optimization option.

v For -O2, the default is -qfloat=nofltint .

v For -O3, the default is -qfloat=fltint .

To include range checking in floating-point-to-integer conversions with the -O3 option,
specify -qfloat=nofltint .

v -qstrict sets -qfloat=nofltint

v -qnostrict sets -qfloat=fltint

Changing the optimization level will not change the setting of the fltint option if fltint has
already been specified.

If -qfloat= options are explicitly set, the -qstrict | -qnostrict option will not override those
settings. Otherwise, the default setting appearing last is used.

-qfloat=fold |
-qfloat=nofold

Specifies that constant floating-point expressions are to be evaluated at compile time rather
than at run time.

The -qfloat=fold option replaces the obsolete -qfold option. Use -qfloat=fold in your new
applications.

262 C for AIX User’s Guide

-qfloat=hsflt |
-qfloat=nohsflt

Speeds up calculations by enforcing the rounding of computed values to single precision
before storing and on conversions from floating point to integer. nohsflt specifies that
single-precision expressions are rounded after expression evaluation and that
floating-point-to-integer conversions are to be checked for out-of-range values.

The hsflt option overrides the rndsngl , nans , and spnans options.

Note: The hsflt option is for specific applications in which floating-point computations have
known characteristics. Using this option when you are compiling other application programs
can produce incorrect results without warning.

The -qfloat=hsflt option replaces the obsolete -qhsflt option. Use -qfloat=hsflt in your new
applications.

-qfloat=hssngl |
-qfloat=nohssngl

Specifies that single-precision expressions are rounded only when the results are stored into
float memory locations. nohssngl specifies that single-precision expressions are rounded
after expression evaluation. Using hssngl can improve runtime performance but is safer
than using -qfloat=hsflt .

The -qfloat=hssngl option replaces the obsolete -qhssngl option. Use -qfloat=hssngl in
your new applications.

-qfloat=maf |
-qfloat=nomaf

Makes floating-point calculations faster and more accurate by using floating-point
multiply-add instructions where appropriate. The results may not be exactly equivalent to
those from similar calculations performed at compile time or on other types of computers.
This option may affect the precision of floating-point intermediate results.

The -qfloat=maf option replaces the obsolete -qmaf option. Use -qfloat=maf in your new
applications.

-qfloat=nans |
-qfloat=nonans

Generates extra instructions to detect signalling NaN (Not-a-Number) when converting from
single precision to double precision at run time. The option nonans specifies that this
conversion need not be detected. -qfloat=nans is required for full compliance to the IEEE
754 standard.

The hsflt option overrides the nans option.

When used with the -qflttrap or -qflttrap=invalid option, the compiler detects invalid
operation exceptions in comparison operations that occur when one of the operands is a
signalling NaN.

The -qfloat=nans option replaces the obsolete -qfloat=spnans option and the -qspnans
option. Use -qfloat=nans in your new applications.

qfloat=rndsngl |
-qfloat=norndsngl

Specifies that the result of each single-precision (float) operation is to be rounded to single
precision. -qfloat=norndsngl specifies that rounding to single-precision happens only after
full expressions have been evaluated. Using this option may sacrifice speed for consistency
with results from similar calculations on other types of computers.

The hsflt option overrides the rndsngl option.

The -qfloat=rndsngl option replaces the obsolete -qrndsngl option. Use -qfloat=rndsngl in
your new applications.

-qfloat=rrm |
-qfloat=norrm

Prevents floating-point optimizations that are incompatible with runtime rounding to plus and
minus infinity modes. Informs the compiler that the floating-point rounding mode may change
at run time or that the floating-point rounding mode is not round to nearest at run time.

-qfloat=rrm must be specified if the Floating Point Status and Control register is changed at
run time (as well as for initializing exception trapping).

The -qfloat=rrm option replaces the obsolete -qrrm option. Use -qfloat=rrm in your new
applications.

Appendix A. Compiler Options 263

-qfloat=rsqrt |
-qfloat=norsqrt

Specifies whether a sequence of code that involves division by the result of a square root
can be replaced by calculating the reciprocal of the square root and multiplying. Allowing this
replacement produces code that runs faster.

v For -O2, the default is -qfloat=norsqrt .

v For -O3, the default is -qfloat=rsqrt . Use -qfloat=norsqrt to override this default.

v -qstrict sets -qfloat=norsqrt .

v -qnostrict sets -qfloat=rsqrt . (Note that -qfloat=rsqrt means that errno will not be set
for any sqrt function calls.)

v -qfloat=rsqrt has no effect when -qarch=pwr2 is also specified.

v -qfloat=rsqrt has no effect unless -qignerrno is also specified.

Changing the optimization level will not change the setting of the rsqrt option if rsqrt has
already been specified.

If -qfloat= options are explicitly set, the -qstrict | -qnostrict option will not override those
settings. Otherwise, the default setting appearing last is used.

-qfloat=spnans |
-qfloat=nospnans

Generates extra instructions to detect signalling NaN on conversion from single precision to
double precision. The option nospnans specifies that this conversion need not be detected.

The hsflt option overrides the spnans option.

The -qfloat=nans option replaces the obsolete -qfloat=spnans and -qspnans options. Use
-qfloat=nans in your new applications.

Example
To compile myprogram.c so that range checking occurs and multiply-add instructions are not generated,
enter:

xlc myprogram.c -qfloat=fltint:nomaf

“Floating-Point Compiler Options” on page 27
“Compiler Options and Their Defaults” on page 218
“Options that Specify the Compiler Object Code Produced” on page 229
“O, optimize” on page 302
“arch” on page 237
“fold” on page 265
“hsflt” on page 271
“hssngl” on page 272
“ldbl128, longdouble” on page 289
“maf” on page 297
“rndsngl” on page 316
“rrm” on page 318
“spnans” on page 323
“strict” on page 326

flttrap

Option Type Default Value #pragma options

-qoption noflttrap FLTTRAP

Syntax:
-qflttrap | -qflttrap=suboptions | -qnoflttrap
FLTTRAP | FLTTRAP=suboptions | NOFLTTRAP

Purpose
Generates extra instructions to detect and trap floating-point exceptions.

264 C for AIX User’s Guide

Notes
This option is recognized during linking. -qnoflttrap specifies that these extra instructions need not be
generated.

If specified with #pragma options , the -qnoflttrap option must be the first option specified.

The flttrap option has the following suboptions:

OVerflow Generates code to detect and trap floating-point overflow.
UNDerflow Generates code to detect and trap floating-point underflow.
ZEROdivide Generates code to detect and trap floating-point division by zero.
INValid Generates code to detect and trap floating-point invalid operation exceptions.
INEXact Generates code to detect and trap floating-point inexact exceptions.
ENable Enables the specified exceptions in the prologue of the main program. This suboption is

required if you want to turn on exception trapping without modifying the source code.
IMPrecise Generates code for imprecise detection of the specified exceptions. If an exception occurs, it

is detected, but the exact location of the exception is not determined.

Specifying the flttrap option with no suboptions is equivalent to setting -qflttrap=ov:und:zero:inv:inex .
The exceptions are not automatically enabled, and all floating-point operations are checked to provide
precise exception-location information.

If your program contains signalling NaNs, you should use the -qfloat=nans along with -qflttrap to trap any
exceptions.

The compiler exhibits behavior as illustrated in the following examples when the -qflttrap option is
specified together with -qoptimize options:

v with -O:

– 1/0 generates a div0 exception and has a result of infinity

– 0/0 generates an invalid operation

v with -O3:

– 1/0 generates a div0 exception and has a result of infinity

– 0/0 returns zero multiplied by the result of the previous division.

Example
To compile myprogram.c so that floating-point overflow and underflow and divide by zero are detected,
enter:

xlc myprogram.c -qflttrap=overflow:underflow:zerodivide:enable

“Floating-Point Compiler Options” on page 27
“Compiler Options and Their Defaults” on page 218
“O, optimize” on page 302
“float” on page 261
“O, optimize” on page 302

fold

Option Type Default Value #pragma options

-qoption fold FOLD

Syntax:
-qfold | -qnofold
FOLD | NOFOLD

Appendix A. Compiler Options 265

Purpose
Specifies that constant floating-point expressions are to be evaluated at compile time.

Notes
This option is obsolete. Use -qfloat=fold in your new applications.

“Floating-Point Compiler Options” on page 27
“Compiler Options and Their Defaults” on page 218
“float” on page 261

fullpath

Option Type Default Value #pragma options

-qoption nofullpath -

Syntax
-qfullpath | -qnofullpath

Purpose
Specifies what path information is stored for files when you use the -g option.

Notes
Using -qfullpath causes the compiler to preserve the absolute (full) path name of source files specified
with the -g option.

The relative path name of files is preserved when you use -qnofullpath .

-qfullpath is useful if the executable file was moved to another directory. If you specified -qnofullpath , the
debugger would be unable to find the file. Using -qfullpath would locate the file successfully.

“Compiler Options and Their Defaults” on page 218
“Options that Specify Debugging Features” on page 227
“g” on page 267

G

Option Type Default Value #pragma options

-flag - -

Syntax
This is a linkage editor (ld) option. Refer to AIX Version 4 Commands Reference for a description of ld
command usage and syntax.

Purpose
Tells the linkage editor to create a dynamic library.

“Compiler Options and Their Defaults” on page 218
“Options that Specify the Compiler Object Code Produced” on page 229

266 C for AIX User’s Guide

g

Option Type Default Value #pragma options

-flag - -

Syntax
-g

Purpose
Generates information used by debugging tools such as the xldb graphical debugger.

Notes
Avoid using this option with -O (optimization) option. The information produced may be incomplete or
misleading.

If you specify the -g option, the inlining option defaults to -Q! (no functions are inlined).

The default with -g is not to include information about unreferenced symbols in the debugging information.

To include information about both referenced and unreferenced symbols, use the -qdbxextra option with
-g.

To specify that source files used with -g are referred to by either their absolute or their relative path name,
use -qfullpath .

You can also use the -qlinedebug option to produce abbreviated debugging information in a smaller
object size.

Some symbols which are clearly referenced or set in the source code may be optimized away by IPA, and
may be lost to debug, nm, or dump outputs. Using IPA together with the -g compiler will usually result in
non-steppable output.

Example
To compile myprogram.c to produce an executable programtesting so you can debug it, enter:

xlc myprogram.c -o testing -g

To compile myprogram.c to produce an executable program testing_all containing additional information
about unreferenced symbols so you can debug it, enter:

xlc myprogram.c -o testing_all -g -qdbxextra

“Compiler Options and Their Defaults” on page 218
“Options that Specify Debugging Features” on page 227
“O, optimize” on page 302
“Q” on page 314
“dbxextra” on page 252
“fullpath” on page 266
“ipa” on page 279
“linedebug” on page 291

genpcomp

Option Type Default Value #pragma options

-qoption nogenpcomp -

Appendix A. Compiler Options 267

Syntax
-qgenpcomp | -qgenpcomp=directory | -qnogenpcomp

Purpose
Generates a precompiled version of any header file for which the original source file is used. This may
help improve compile time when you use the -qusepcomp option.

Notes

-qgenpcomp Generates a precompiled header file called csetc.pch , and saves it to the current
directory.

-qgenpcomp=directory Generates a precompiled header file.

v If directory is the name of an existing directory, the precompiled header file is named
csetc.pch and saved to that named directory.

v If a directory with the name directory does not exist, the precompiled header file is
named directory, and is saved to the current directory.

-qnogenpcomp Does not generate precompiled header files.

-qgenpcomp and -qusepcomp will be ignored if they are both specified along with the -a or -ae options.
Without the -qusepcomp option, -qgenpcomp is accepted in all cases.

Example
To compile myprogram.c and generate a precompiled header file for any files that have changed since the
last compilation, or for any files that do not have precompiled header files, and then place them in the
directory /headers , enter:

xlc myprogram.c -qgenpcomp=/headers

The new precompiled header is called csetc.pch .

“Creating and Using Precompiled Headers” on page 35
“Compiler Options and Their Defaults” on page 218
“usepcomp” on page 335

genproto

Option Type Default Value #pragma options

-qoption nogenproto -

Syntax
-qgenproto | -qgenproto=parmnames | -qnogenproto

Purpose
Produces ANSI prototypes from K&R function definitions. This should help to ease the transition from K&R
to ANSI.

Notes
Using -qgenproto without PARMnames will cause prototypes to be generated without parameter names.
Parameter names are included in the prototype when PARMnames is specified.

Example
For the following function, foo.c:

foo(a,b,c)
float a;
int *b;

268 C for AIX User’s Guide

specifying
xlc -c -qgenproto foo.c

produces

int foo(double, int*, int);

The parameter names are dropped. On the other hand, specifying
xlc -c -qgenproto=parm foo.c

produces
int foo(double a, int* b, int c);

In this case the parameter names are kept.

Note that float a is represented as double or double a in the prototype, since ANSI states that all
narrow-type arguments (such as char s, short s, and float s) are widened before they are passed to K&R
functions.

“Compiler Options and Their Defaults” on page 218
“Options that Specify Compiler Characteristics” on page 226

halt

Option Type Default Value #pragma options

-qoption halt=s HALT=severity

Syntax
-qhalt=severity
HALT=severity

Purpose
Instructs the compiler to stop after the compilation phase when it encounters errors of specified severity or
greater.

Notes
severity is one of:

severity Description
i Information
w Warning
e Error
s Severe error
u Unrecoverable error

When the compiler stops as a result of the -qhalt option, the compiler return code is nonzero.

When -qhalt is specified more than once, the lowest severity level is used.

The -qhalt option can be overridden by the -qmaxerr option.

Diagnostic messages may be controlled by the -qflag option.

Appendix A. Compiler Options 269

Example
To compile myprogram.c so that compilation stops if a warning or higher level message occurs, enter:

xlc myprogram.c -qhalt=w

“Compiler Options and Their Defaults” on page 218
“Options that Specify Compiler Output” on page 228
“Message Severity Levels and Compiler Response” on page 20
“flag” on page 261
“maxerr” on page 299

heapdebug

Option Type Default Value #pragma options

-qoption noheapdebug val

Syntax
-qheapdebug

Purpose
Enables debug versions of memory management functions.

Notes
The -qheapdebug options specifies that the debug versions of memory management functions
(_debug_calloc , _debug_malloc , new , etc.) be used in place of regular memory management functions.
This option defines the __DEBUG_ALLOC__ macro.

When you specify -qheapdebug , the compiler generates additional code at the beginning of every function
that preinitializes the local variables for the function. This makes it easier to find uninitialized local
variables.

By default, the compiler uses the regular memory management functions (calloc , malloc , new , etc.) and
does not preinitialize their local storage.

Example
To compile myprogram.c with the debug versions of memory management functions, enter:

xlc -qheapdebug myprogram.c -o testing

270 C for AIX User’s Guide

“Debugging Memory Heaps” on page 183
“Memory Management Functions” on page 179
“Managing Memory with Multiple Heaps” on page 182
“Debugging Programs with Heap Memory” on page 195
“Compiler Options and Their Defaults” on page 218
“Options that Specify Debugging Features” on page 227
“_debug_calloc - Allocate and Initialize Memory” on page 407
“_debug_free - Free Allocated Memory” on page 408
“_debug_heapmin - Free Unused Memory in the Default Heap” on page 410
“_debug_malloc - Allocate Memory” on page 412
“_debug_memcpy - Copy Bytes” on page 413
“_debug_memmove - Copy Bytes” on page 415
“_debug_memset - Set Bytes to Value” on page 416
“_debug_realloc - Reallocate Memory Block” on page 417
“_debug_strcat - Concatenate Strings” on page 419
“_debug_strcpy - Copy Strings” on page 421
“_debug_strncat - Concatenate Strings” on page 422
“_debug_strncpy - Copy Strings” on page 423
“_debug_strnset - Set Characters in String” on page 425
“_debug_strset - Set Characters in String” on page 426
“_debug_ucalloc - Reserve and Initialize Memory from User Heap” on page 428
“_debug_uheapmin - Free Unused Memory in User Heap” on page 430
“_debug_umalloc - Reserve Memory Blocks from User Heap” on page 431

hsflt

Option Type Default Value #pragma options

-qoption nohsflt HSFLT

Syntax:
-qhsflt | -qnohsflt
HSFLT | NOHSFLT

Purpose
Speeds up calculations by removing range checking on single-precision float results, and on conversions
from floating point to integer. -qnohsflt specifies that single-precision expressions are rounded after
expression evaluation, and that floating-point-to-integer conversions are to be checked for out of range
values.

Notes
This option is obsolete. Use -qfloat=hsflt in your new applications.

The hsflt option overrides the -qrndsngl and -qspnans options.

The -qhsflt option is intended for specific applications in which floating-point computations have known
characteristics. Using this option when compiling other application programs can produce incorrect results
without warning. See “Floating-Point Compiler Options” on page 27 before you use the -qhslft option.

“Floating-Point Compiler Options” on page 27
“Compiler Options and Their Defaults” on page 218
“float” on page 261
“rndsngl” on page 316
“spnans” on page 323

Appendix A. Compiler Options 271

hssngl

Option Type Default Value #pragma options

-qoption nohssngl HSSNGL

Syntax
-qhssngl | -qnohssngl
HSSNGL | NOHSSNGL

Purpose
Specifies that single-precision expressions are rounded only when the results are stored into float memory
locations. nohssngl specifies that single-precision expressions are rounded after expressione valuation.
Using hssngl can improve run-time performance.

Notes
This option is obsolete. Use -qfloat=hssngl in your new applications.

“Floating-Point Compiler Options” on page 27
“Compiler Options and Their Defaults” on page 218
“float” on page 261

I

Option Type Default Value #pragma options

-flag - -

Syntax
-Idirectory

Purpose
Specifies an additional search path if the file name in the #include directive is not specified using its
absolute path name.

Notes
The value for directory must be a valid path name (for example, /u/golnaz , or /tmp , or ./subdir). The
compiler appends a slash (/) to the directory and then concatenates it with the file name before doing the
search. The path directory is the one that the compiler searches first for #include files whose names do
not start with a slash (/). If directory is not specified, the default is to search the standard directories.

The normal search order is:

1. Search the directory where the current source file resides.

2. Search the directory or directories specified with the -I directory option.

3. Search the standard include directory, /usr/include .

If the -I directory option is specified both in the configuration file and on the command line, the paths
specified in the configuration file are searched first.

When all specified directories have been searched, the directories on the standard list for #include files
are searched. The directories on the standard list differ for the two versions of the #include directive. See
“Directory Search Sequence for Include Files Using Relative Path Names” on page 178 for more
information about searching directories.

272 C for AIX User’s Guide

The -Idirectory option can be specified more than once on the command line. If you specify more than one
-I option, directories are searched in the order that they appear on the command line.

If you specify a full (absolute) path name on the #include directive, this option has no effect.

Example
To compile myprogram.c and search /usr/tmp and then /oldstuff/history for included files, enter:

xlc myprogram.c -I/usr/tmp -I/oldstuff/history

“Compiler Options and Their Defaults” on page 218
“idirfirst” Compiler Option

idirfirst

Option Type Default Value #pragma options

-qoption noidirfirst IDIRFirst

Syntax
-qidirfirst | -qnoidirfirst
IDIRFIRST | NOIDIRFIRST

Purpose
Specifies the search order for files included with the #include “ file_name” directive.

Notes
Use -qidirfirst with the -Idirectory option.

The normal search order (for files included with the #include “ file_name” directive) without the idirfirst
option is:

1. Search the directory where the current source file resides.

2. Search the directory or directories specified with the -Idirectory option.

3. Search the standard include directory, /usr/include .

With -qidirfirst , the directories specified with the -Idirectory option are searched before the directory where
the current file resides.

-qidirfirst has no effect on the search order for the #include <file_name> directive.

-qidirfirst is independent of the -qnostdinc option, which changes the search order for both #include
“file_name” and #include <file_name> .

The search order of files is described in “Directory Search Sequence for Include Files Using Relative Path
Names” on page 178.

The last valid #pragma option [NO]IDIRFirst remains in effect until replaced by a subsequent #pragma
option [NO]IDIRFirst .

Example
To compile myprogram.c and search /usr/tmp/myinclude for included files before searching the current
directory (where the source file resides), enter:

xlc myprogram.c -I/usr/tmp/myinclude -qidirfirst

Appendix A. Compiler Options 273

“Compiler Options and Their Defaults” on page 218
“I” on page 272
“stdinc” on page 325

ignerrno

Option Type Default Value #pragma options

-qoption noignerrno -

Syntax
-qignerrno | -qignerrno

Purpose
Allows the compiler to perform optimizations that assume errno is not modified by system calls.

Notes
Library routines set errno when an exception occurs. This setting and subsequent side effects of errno
may be ignored by specifying -qignerrno .

“Compiler Options and Their Defaults” on page 218
“Options that Specify the Compiler Object Code Produced” on page 229

ignprag

Option Type Default Value #pragma options

-qoption - IGNPRAG=suboption

Syntax
-qignprag=suboption IGNPRAG=suboption

Purpose
Instructs the compiler to ignore certain pragmas.

Notes

Suboptions are:

all Equivalent to selecting all options described below.
disjoint Ignores all #pragma disjoint directives in the source file.
isolated Ignores all #pragma isolated_call directives in the source file.
ibm Ignores all IBM parallel processing directives in the source file, such as #pragma ibm

parallel_loop , #pragma ibm schedule , etc..
omp Ignores all OpenMP parallel processing directives in the source file, such as #pragma omp

parallel , #pragma omp critical , etc..

The ignprag option is useful for detecting aliasing pragma errors. Incorrect aliasing gives runtime errors
that are hard to diagnose. When a runtime error occurs, but the error disappears when you use -qignprag
with the -O option, the information specified in the aliasing pragmas is likely incorrect.

This option is also useful for disabling parallel processing directives to ensure that a program works
correctly in both sequential and parallel mode.

274 C for AIX User’s Guide

Examples

1. To compile myprogram.c and ignore any #pragma isolated directives, enter:
xlc myprogram.c -qignprag=isolated

2. To compile myprogram.c and ignore all parallel processing pragmas, enter:
xlc myprogram.c -qignprag=ibm:omp

“Compiler Options and Their Defaults” on page 218
“Options that Specify Debugging Features” on page 227
“Example of the #pragma disjoint Preprocessor Directive” on page 367
“#pragma isolated_call Preprocessor Directive” on page 371
“#pragma Preprocessor Directives for Parallel Processing” on page 381
“O, optimize” on page 302

info

Option Type Default Value #pragma options

-qoption noinfo INFO

Syntax
-qinfo | -qinfo=all | -qinfo=suboption[:suboption ...] | -qnoinfo
INFO | INFO=ALL | INFO=suboption[:suboption ...] | INFO=RESET | NOINFO

Purpose
Produces informational messages.

Notes
Specifying -qinfo or -qinfo=all turns on all diagnostic messages for all groups.

Specifying -qnoinfo turns off all diagnostic messages.

You can use the #pragma options info= suboption[:suboption...] or #pragma options noinfo forms of
this compiler option to temporarily enable or disable messages in a particular section of program code,
and #pragma options info=reset to return to your initial -qinfo settings.

Available suboptions for -qinfo compiler option are:

Suboptions Description
all Turns on all diagnostic messages for all groups.

Note: The -qinfo and -qinfo=all forms of the option have the same effect.
private Lists shared variables made private to a parallel loop.
reduction Lists all variables that are recognized as reduction variables inside a parallel loop.

Appendix A. Compiler Options 275

Suboptions Description
group Turns on specific groups of messages, where group can be one or more of:

group Type of messages returned

cmp Possible redundancies in unsigned comparisons

cnd Possible redundancies or problems in conditional expressions

cns Operations involving constants

cnv Conversions

dcl Consistency of declarations

eff Statements with no effect

enu Consistency of enum variables

ext Unused external definitions

gen General diagnostic messages

gnr Generation of temporary variables

got Use of goto statements

ini Possible problems with initialization

inl Functions not inlined

lan Language level effects

obs Obsolete features

ord Unspecified order of evaluation

par Unused parameters

por Nonportable language constructs

ppc Possible problems with using the preprocessor

ppt Trace of preprocessor actions

pro Missing function prototypes

rea Code that cannot be reached

ret Consistency of return statements

trd Possible truncation or loss of data or precision

tru Variable names truncated by the compiler

uni Unitialized variables

use Unused auto and static variables

vft Generation of virtual function tables

“Compiler Options and Their Defaults” on page 218
“Options that Specify Compiler Output” on page 228
“#pragma info Preprocessor Directive” on page 370

initauto

Option Type Default Value #pragma options

-qoption noinitauto INITAuto

276 C for AIX User’s Guide

Syntax
-qinitauto=hex_value | -qnoinitauto
INITAUTO=hex_value | NOINITAUTO

Purpose
Initializes automatic storage to the two-digit hexadecimal byte value hex_value. The option generates extra
code to initialize the automatic (stack-allocated) storage of functions. It reduces the runtime performance of
the program and should only be used for debugging.

Notes
There is no default setting for the initial value of -qinitauto ; you must set an explicit value (for example,
-qinitauto=FA).

Example
To compile myprogram.c so that automatic stack storage is initialized to hex value FF (decimal 255), enter:

xlc myprogram.c -qinitauto=FF

“Compiler Options and Their Defaults” on page 218
“Options that Specify the Compiler Object Code Produced” on page 229

inlglue

Option Type Default Value #pragma options

-qoption noinlglue INLGLUE

Syntax
-qinlglue | -qnoinlglue
INLGLUE | NOINLGLUE

Purpose
Generates fast external linkage by inlining the pointer glue code necessary to make a call to an external
function or a call through a function pointer.

Notes
Glue code, generated by the linker, is used for passing control between two external functions, or when
you call functions through a pointer. Therefore the -qinlglue option only affects function calls through
pointers or calls to an external compilation unit. For calls to an external function, you should specify that
the function is imported by using, for example, the -qprocimported option.

The inlining of glue code can cause the size of code to grow. This can be overridden by specifying the
-qcompact option, thereby disabling the -qinlglue option.

“Compiler Options and Their Defaults” on page 218
“Options that Specify Linkage Options” on page 230
“proclocal, procimported, procunknown” on page 312
“compact” on page 246

inline

Option Type Default Value #pragma options

-qoption See below. -

Syntax

Appendix A. Compiler Options 277

-qinline | -qinline=threshold | -qinline-names | -qinline+names | -qinline=limit | -qnoinline

Purpose
Attempts to inline functions instead of generating calls to a function. Inlining is performed if possible, but,
depending on which optimizations are performed, some functions might not be inlined.

Notes
The -qinline option is functionally equivalent to the -Q option.

Because inlining does not always improve run time, you should test the effects of this option on your code.
Do not attempt to inline recursive or mutually recursive functions.

Normally, application performance is optimized if you request optimization (-O option), and compiler
performance is optimized if you do not request optimization.

The C for AIX _inline , _Inline , and __inline language keywords override all -qinline options except
-qnoinline . The compiler will try to inline functions marked with these keywords regardless of other
-qinline option settings.

To maximize inlining, specify optimization (-O) and also specify the -qinline option.

-qinline The compiler attempts to inline all appropriate functions with 20 executable source
statements or fewer, subject to any other settings of the suboptions to the -qinline
option. If -qinline is specified last, all functions are inlined.

-qnoinline Does not inline any functions. If -qnoinline is specified last, no functions are inlined.
-qinline=threshold Sets a size limit on the functions to be inlined. The number of executable statements

must be less than or equal to threshold for the function to be inlined. threshold must be
a positive integer. The default value is 20. Specifying a threshold value of 0 causes no
functions to be inlined except those functions marked with the __inline , _Inline , or
_inline keywords.

The threshold value applies to logical C statements. Declarations are not counted, as
you can see in the example below:

increment()
{
int a, b, i;
for (i=0; i<10; i++) /* statement 1 */
{

a=i; /* statement 2 */
b=i; /* statement 3 */

}
}

-qinline-names The compiler does not inline functions listed by names. Separate each name with a
colon (:). All other appropriate functions are inlined. The option implies -qinline .

For example:

-qinline-salary:taxes:expenses:benefits

causes all functions except those named salary , taxes , expenses , or benefits to be
inlined if possible.

A warning message is issued for functions that are not defined in the source file.

278 C for AIX User’s Guide

-qinline+names Attempts to inline the functions listed by names and any other appropriate functions.
Each name must be separated by a colon (:). The option implies -qinline .

For example,

-qinline+food:clothes:vacation

causes all functions named food , clothes , or vacation to be inlined if possible, along
with any other functions eligible for inlining.

A warning message is issued for functions that are not defined in the source file or that
are defined but cannot be inlined.

This suboption overrides any setting of the threshold value. You can use a threshold
value of zero along with -qinline+ names to inline specific functions. For example:

-qinline=0

followed by:

-qinline+salary:taxes:benefits

causes only the functions named salary , taxes , or benefits to be inlined, if possible,
and no others.

-qinline=limit Specifies the maximum size (in bytes of generated code) to which a function can grow
due to inlining. This limit does not affect the inlining of user specified functions.

-qinline Is the same as -Q.

Default
The default is to treat inline specifications as a hint to the compiler, and the result depends on other
options that you select:

v If you specify the -g option (to generate debug information), no functions are inlined.

v If you specify the -O option (to optimize your program) and the -qinline option (to inline functions), the
compiler attempts to inline the functions you specify.

Example
To compile myprogram.c so that no functions are inlined, enter:

xlc myprogram.c -O -qnoinline

To compile myprogram.c so that the compiler attempts to inline functions of fewer than 12 lines, enter:
xlc myprogram.c -O -qinline=12

“Program Optimization with the C for AIX Compiler” on page 23
“Using Inlined Components” on page 202
“Writing Optimized Program Source Code” on page 197
“Compiler Options and Their Defaults” on page 218
“Options that Specify the Compiler Object Code Produced” on page 229
“_Inline, _inline, __inline” on page 204, “_Inline, _inline, __inline” on page 204, and “_Inline,
_inline, __inline” on page 204
“g” on page 267
“O, optimize” on page 302
“Q” on page 314

ipa

Option Type Default Values #pragma options

Compile-time Link-time

-qoption object noipa -

Appendix A. Compiler Options 279

Syntax

For compile-time use:
-qipa
-qipa=object|noobject

For link-time use:
-qipa
-qipa=suboption {, suboption}
-qnoipa

IPA at Compile Time

-qipa Compile-time
Formats

Description

-qipa Activates interprocedural analysis with the following -qipa suboption default:

v object
-qipa=object

-qipa=noobject
Specifies whether to include standard object code in the object files.

Specifying the noobject suboption can substantially reduce overall compile time by not
generating object code during the first IPA phase.

If the -S compiler option is specified with noobject , noobject is ignored.

If compilation and linking are performed in the same step, and neither the -S nor any
listing option is specified, -qipa=noobject is implied by default.

If any object file used in linking with -qipa was created with the -qipa=noobject option,
any file containing an entry point (the main program for an executable program, or an
exported function for a library) must be compiled with -qipa .

IPA at Link Time

-qipa Link-time
Formats

Description

-qnoipa Deactivates interprocedural analysis.
-qipa Activates interprocedural analysis with the following -qipa suboption defaults:

v inline=auto

v level=1

v missing=unknown

v partition=medium
suboption Suboptions can take any of the forms shown below. Separate multiple suboptions with commas.

exits= name{,name}
Specifies names of functions which represent program exits. Program exits are calls which
can never return and can never call any procedure which has been compiled with IPA
pass 1.

280 C for AIX User’s Guide

inline[= suboption]
Same as specifying the -qinline compiler option, with suboption being any valid -qinline
suboption.

inline=auto
Enables automatic inlining only. The compiler still accepts user-specified functions as
candidates for inlining.

inline=noauto
Disables automatic inlining only. The compiler still accepts user-specified functions as
candidates for inlining.

inline= name{,name}
Specifies a comma-separated list of functions to try to inline, where functions are identified
by name.

noinline= name{,name}
Specifies a comma-separated list of functions that must not be inlined, where functions are
identified by name.

inline=limit= num
Changes the size limits that the -Q option uses to determine how much inline expansion to
perform. This established limit is the size below which the calling procedure must remain.
number is the optimizer’s approximation of the number of bytes of code that will be
generated. Larger values for this number allow the compiler to inline larger subprograms,
more subprogram calls, or both. This argument is implemented only when inline=auto is
on.

inline=threshold= size
Specifies the upper size limit of functions to be inlined, where size is a value as defined
under inline=limit . This argument is implemented only when inline=auto is on.

isolated= name,{name}
Specifies a list of isolated functions that are not compiled with IPA. Neither isolated
functions nor functions within their call chain can refer to global variables.

level= n Specifies the optimization level for interprocedural analysis. The default level is 1. Valid
levels are as follows:

0 Does only minimal interprocedural analysis and optimization.

1 Turns on inlining, limited alias analysis, and limited call-site tailoring.

2 Performs full interprocedural data flow and alias analysis.

list[= name|short|long]
Specifies that a listing file be generated during the link phase. The listing file contains
information about transformations and analyses performed by IPA, as well as an optional
object listing generated by the back end for each partition. This option can also be used to
specify the name of the listing file.

If listings have been requested (using either the -qlist or -qipa=list options), and name is
not specified, the listing file name defaults to a.lst .

The long and short suboptions can be used to request more or less information in the
listing file. The short suboption, which is the default, generates the Object File Map,
Source File Map and Global Symbols Map sections of the listing. The long suboption
causes the generation of all of the sections generated through the short suboption, as well
as the Object Resolution Warnings, Object Reference Map, Inliner Report and Partition
Map sections.

Appendix A. Compiler Options 281

lowfreq= name{,name}
Specifies names of functions which are likely to be called infrequently. These will typically
be error handling, trace, or initialization functions. The compiler may be able to make other
parts of the program run faster by doing less optimization for calls to these functions.

missing= attribute
Specifies the interprocedural behavior of procedures that are not compiled with -qipa and
are not explicitly named in an unknown , safe , isolated , or pure suboption.

The following attributes may be used to refine this information:

safe Functions which do not indirectly call a visible (not missing) function either
through a direct call or through a function pointer.

isolated
Functions which do not directly reference global variables accessible to visible
functions. Functions bound from shared libraries are assumed to be isolated.

pure Functions which are safe and isolated and which do not indirectly alter storage
accessible to visible functions. pure functions also have no observable internal
state.

unknown
The default setting. This option greatly restricts the amount of interprocedural
optimization for calls to unknown functions. Specifies that the missing functions
are not known to be safe, isolated, or pure.

partition= size
Specifies the size of each program partition created by IPA during pass 2. Size can be any
of:

v small

v medium

v large

v any positive integer value

The size of the partition is directly proportional to the time required to link and the quality
of the generated code. When partition sizes are large, the time to complete linkage is
longer but the quality of the generated code is generally better. An integer may be used to
specify partition size for finer control. This integer is in terms of unspecified units and its
meaning may change from release to release. Its use should be limited to very short term
tuning efforts.

pure= name{,name}
Specifies a list of pure functions that are not compiled with -qipa . Any function specified
as pure must be isolated and safe, and must not alter the internal state nor have
side-effects, defined as potentially altering any data visible to the caller.

safe=name{,name}
Specifies a list of safe functions that are not compiled with -qipa . Safe functions can
modify global variables, but may not call functions compiled with -qipa .

unknown= name{,name}
Specifies a list of unknown functions that are not compiled with -qipa . Any function
specified as unknown can make calls to other parts of the program compiled with -qipa ,
and modify global variables and dummy arguments.

282 C for AIX User’s Guide

filename
Gives the name of a file which contains suboption information in a special format. The file
format is the following:

... comment
attribute{, attribute} = name{, name}
missing = attribute{, attribute}
exits = name{, name}
lowfreq = name{, name}
inline [= auto | = noauto]
inline = name{, name} [from name{, name}]
inline-threshold = unsigned_integer
inline-limit = unsigned_integer
list [= file-name | short | long]
noinline
noinline = name{, name} [from name{, name}]
level = 0 | 1 | 2
partition = small | medium | large | unsigned_integer

where attribute is one of:

v exits

v lowfreq

v unknown

v safe

v isolated

v pure

Purpose
Turns on or customizes a class of optimizations known as interprocedural analysis (IPA).

Notes

1. IPA can significantly increase compilation time, even with the -qipa=noobject option, so using IPA
should be limited to the final performance tuning stage of development.

2. Specify the -qipa option on both the compile and link steps of the entire application, or as much of it
as possible. You should compile at least the file containing main , or at least one of the entry points if
compiling a library.

3. While IPA’s interprocedural optimizations can significantly improve performance of a program, they can
also cause previously incorrect but functioning programs to fail. Listed below are some programming
practices that can work by accident without aggressive optimization, but are exposed with IPA:

a. Relying on the allocation order or location of automatics. For example, taking the address of an
automatic variable and then later comparing it with the address of another local to determine the
growth direction of a stack. The C language does not guarantee where an automatic variable is
allocated, or it’s position relative to other automatics. Do not compile such a function with IPA(and
expect it to work).

b. Accessing either an invalid pointer or beyond an array’s bounds. IPA can reorganize global data
structures. A wayward pointer which may have previously modified unused memory may now
trample upon user allocated storage.

4. Ensure you have sufficient resources to compile with IPA. IPA can generate significantly larger object
files than traditional compilers. As a result, the temporary storage used to hold these intermediate files
(by convention /tmp on AIX) is sometimes too small. If a large application is being compiled, consider
redirecting temporary storage with the TMPDIR environment variable.

5. Ensure there is enough swap space to run IPA (at least 200Mb for large programs). Otherwise the
operating system might kill IPA with a signal 9 , which cannot be trapped, and IPA will be unable to
clean up its temporary files.

Appendix A. Compiler Options 283

6. You can link objects created with different releases of the compiler, but you must ensure that you use a
linker that is at least at the same release level as the newer of the compilers used to create the
objects being linked.

7. Some symbols which are clearly referenced or set in the source code may be optimized away by IPA,
and may be lost to debug, nm, or dump outputs. Using IPA together with the -g compiler will usually
result in non-steppable output.

The necessary steps to use IPA are:

1. Perform preliminary performance analysis and tuning before compiling with the -qipa option, because
the IPA analysis uses a two-pass mechanism that increases compile and link time. You can reduce
some compile and link overhead by using the -qipa=noobject option.

2. Specify the -qipa option on both the compile and the link steps of the entire application, or as much of
it as possible. Use suboptions to indicate assumptions to be made about parts of the program not
compiled with -qipa . During compilation, the compiler stores interprocedural analysis information in the
.o file. During linking, the -qipa option causes a complete recompilation of the entire application.

Note: If a Severe error occurs during compilation, -qipa returns RC=1 and terminates. Performance analysis
also terminates.

Example
To compile a set of files with interprocedural analysis, enter:

xlc -c -O3 *.c -qipa
xlc -o product *.o -qipa

Here is how you might compile the same set of files, improving the optimization of the second compilation,
and the speed of the first compile step. Assume there exists two functions, trace_error and debug_dump,
which are rarely executed.

xlc -c -O3 *.c -qipa=noobject
xlc -c -O3 *.o -qipa=lowfreq=trace_error,debug_dump

If a given compiler option is specified at both compile- and link-time with differing settings, the link-time
option settings will generally prevail. In the example below, the -O3 option used at link-time, along with
other settings implied by -O3, overrides the -O2 option used at compile-time.

xlc -c -O2 *.c -qipa=noobject
xlc -c -O3 *.o -qipa=lowfreq=trace_error,debug_dump

“Compiler Options and Their Defaults” on page 218
“Options that Specify the Compiler Object Code Produced” on page 229
“S” on page 319
“inline” on page 277
“list” on page 291

isolated_call

Option Type Default Value #pragma options

-qoption - ISOLATED_CALL

Syntax
-qisolated_call=function_name
ISOLATED_CALL=function_name

284 C for AIX User’s Guide

Purpose
Specifies functions in the source file that have no side effects.

Notes

function_name Is the name of a function that does not have side effects or does not rely on functions or
processes that have side effects.

Side effects are any changes in the state of the runtime environment. Examples of such
changes are accessing a volatile object, modifying an external object, modifying a file, or
calling another function that does any of these things. Functions with no side effects cause
no changes to external and static variables.

function_name can be a list of functions separated by colons (:).

Marking a function as isolated can improve the runtime performance of optimized code by indicating to the
optimizer that external and static variables are not changed by the called function.

The #pragma options keyword isolated_call must be specified at the top of the file, before the first C
statement. You can use the #pragma isolated_call directive at any point in your source file.

Example
To compile myprogram.c, specifying that the functions myfunction(int) and classfunction(double) do not
have side effects, enter:

xlc myprogram.c -qisolated_call=myfunction:classfunction

“Compiler Options and Their Defaults” on page 218
“#pragma options Preprocessor Directive” on page 375
“#pragma isolated_call Preprocessor Directive” on page 371

L

Option Type Default Value #pragma options

-flag See below. -

Syntax
-Ldirectory

Purpose
Searches the path directory for library files specified by the -lkey option.

Notes
If the -Ldirectory option is specified both in the configuration file and on the command line, the paths
specified in the configuration file are searched first.

Default
The default is to search only the standard directories.

Example
To compile myprogram.c so that the directory /usr/tmp/old is searched for the library libspfiles.a , enter:

xlc myprogram.c -lspfiles -L/usr/tmp/old

Appendix A. Compiler Options 285

“Compiler Options and Their Defaults” on page 218
“Options that Specify Linkage Options” on page 230
“l”

l

Option Type Default Value #pragma options

-flag See below. -

Syntax
-lkey

Purpose
Searches the specified library file, libkey.so, and then libkey.a for dynamic linking, or just libkey.a for static
linking.

Notes
The actual search path can be modified with the -Ldirectory option. See -B, -brtl , and
-bstatic,-bdynamic for information on specifying the types of libraries that are searched (for static or
dynamic linking).

Default
The default is to search only the C library (-lc).

Example
To compile myprogram.c and include the Task Library, libtask.a , and the Complex Mathematics Library,
libcomplex.a , enter:

xlc myprogram.c -ltask -lcomplex

“Compiler Options and Their Defaults” on page 218
“Options that Specify Linkage Options” on page 230
“B” on page 239
“datalocal, dataimported” on page 251
“bstatic, bdynamic” on page 241
“L” on page 285
“l”

langlvl

Option Type Default Value #pragma options

-qoption langlvl=ansi* LANGlvl=suboption

Syntax
-qlanglvl=suboption[:suboption ...]
LANGlvl=suboption[:suboption ...]

Purpose
Selects the C language level used for compilation.

Default
The default language level is ansi when you invoke the compiler using the xlc or c89 command. The
default language level is extended when you invoke the compiler using the cc command.

286 C for AIX User’s Guide

You can use either of the following preprocessor directive styles to specify the language level used when
compiling your C source program:

#pragma options langlvl=suboption[:suboption ...]

#pragma langlvl(suboption)

The pragma directive must appear before any noncommentary lines in the source code.

Notes
Language level suboptions can be specified using an abbreviation of the complete suboption name. In the
list below, the minimum suboption specification is shown with uppercase characters. Suboption names can
be entered using either uppercase or lowercase characters.

Suboption Description
ANSI Compilation conforms to the ANSI language level standard.
SAAL2 Compilation conforms to the SAA C Level 2 CPI language level definition, with some exceptions.
SAA Compilation conforms to the current SAA C CPI language level definition. This is currently SAA C

Level 2.
EXTended Provides compatibility with the RT compiler and classic language levels.
CLAssic Allows the compilation of non-ANSI language level programs, and conforms closely to the K&R

level preprocessor.
NOUCS
UCS

The default is NOUCS. This suboption can be used together with other -qlanglvl suboptions.

With option -qlanglvl=ucs , you can use universal character names in form of \unnnn or
\Unnnnnnnn as defined in the C9X Final Draft International Standard ISO/IEC 9899:1999.

The universal character name \unnnn designates a character whose four-digit short identifier is
nnnn. The universal character name \Unnnnnnnn designates a character whose eight-digit short
identifier is nnnnnnnn. Short identifiers of characters are specified by ISO/IEC 10646. A four-digit
identifier of nnnn is identical to an eight-digit short identifier of 0000nnnn.

Universal character names may be used in identifiers, character constants, and string literals to
designate characters that are not in the basic character set. A universal character name shall not
specify a character whose short identifier is:

v less than 00A0 except 0024 ($), 0040 (@), and 0060 (′), or,

v in the range D800 through DFFF inclusive.

If more than one language level is specified, the later option will override earlier options. For example,
specifying

-qlanglvl=ansi:extended

will result in the compiler using the extended language level. The exceptions to this rule are the noucs
and ucs suboptions, which do not override and are not overridden by other -qlanglvl suboptions.

Exceptions to the ansi mode addressed by classic are as follows:

Tokenization Tokens introduced by macro expansion may be combined with adjacent tokens in some
cases. Historically, this was an artifact of the text-based implementations of older
preprocessors, and because, in older implementations, the preprocessor was a separate
program whose output was passed on to the compiler.

Appendix A. Compiler Options 287

For similar reasons, tokens separated only by a comment may also be combined to form a
single token. Here is a summary of how tokenization of a program compiled in classic mode
is performed:

1. At a given point in the source file, the next token is the longest sequence of characters
that can possibly form a token. For example, i+++++j is tokenized as i ++ ++ + j even
though i ++ + ++ j may have resulted in a correct program.

2. If the token formed is an identifier and a macro name, the macro is replaced by the text
of the tokens specified on its #define directive. Each parameter is replaced by the text of
the corresponding argument. Comments are removed from both the arguments and the
macro text.

3. Scanning is resumed at the first step from the point at which the macro was replaced, as
if it were part of the original program.

4. When the entire program has been preprocessed, the result is scanned again by the
compiler as in the first step. The second and third steps do not apply here since there will
be no macros to replace. Constructs generated by the first three steps that resemble
preprocessing directives are not processed as such.

It is in the third and fourth steps that the text of adjacent but previously separate tokens may
be combined to form new tokens.

The \ character for line continuation is accepted only in string and character literals and on
preprocessing directives.

Constructs such as:

#if 0
“unterminated

#endif
#define US ”Unterminating string
char *s = US terminated now“

will not generate diagnostic messages, since the first is an unterminated literal in a FALSE
block, and the second is completed after macro expansion. However:

char *s = US;

will generate a diagnostic message since the string literal in US is not completed before the
end of the line.

Empty character literals are allowed. The value of the literal is zero.
Preprocessing
directives

The # token must appear in the first column of the line. The token immediately following # is
available for macro expansion. The line can be continued with \ only if the name of the
directive and, in the following example, the (has been seen:

#define f(a,b) a+b
f\
(1,2) /* accepted */

#define f(a,b) a+b
f(\
1,2) /* not accepted */

The rules concerning \ apply whether or not the directive is valid. For example,

#\
define M 1 /* not allowed */

#def\
ine M 1 /* not allowed */

#define\
M 1 /* allowed */

#dfine\
M 1 /* equivalent to #dfine M 1, even

though #dfine is not valid */

288 C for AIX User’s Guide

Following are the preprocessor directive differences between classic mode and ansi mode.
Directives not listed here behave similarly in both modes.

#ifdef/
#ifndef

When the first token is not an identifier, no diagnostic message is generated, and
the condition is FALSE.

#else When there are extra tokens, no diagnostic message is generated.

#endif When there are extra tokens, no diagnostic message is generated.

#include
The < and > are separate tokens. The header is formed by combining the spelling of
the < and > with the tokens between them. Therefore /* and // are recognized as
comments (and are always stripped), and the ” and ’ do begin literals within the <
and >. (Remember that in C programs, C++-style comments // are recognized when
-qcpluscmt is specified.)

#line The spelling of all tokens which are not part of the line number form the new file
name. These tokens need not be string literals.

#error Not recognized in classic mode.

#define
A valid macro parameter list consists of zero or more identifiers each separated by
commas. The commas are ignored and the parameter list is constructed as if they
were not specified. The parameter names need not be unique. If there is a conflict,
the last name specified is recognized.

For an invalid parameter list, a warning is issued. If a macro name is redefined with
a new definition, a warning will be issued and the new definition used.

#undef When there are extra tokens, no diagnostic message is generated.

Macro expansion v When the number of arguments on a macro invocation does not match the number of
parameters, a warning is issued.

v If the (token is present after the macro name of a function-like macro, it is treated as too
few arguments (as above) and a warning is issued.

v Parameters are replaced in string literals and character literals.

v Examples:

#define M() 1
#define N(a) (a)
#define O(a,b) ((a) + (b))

M(); /* no error */
N(); /* empty argument */
O(); /* empty first argument

and too few arguments */

Text Output No text is generated to replace comments.

“Compiler Options and Their Defaults” on page 218
“Options that Specify Compiler Characteristics” on page 226
“cpluscmt” on page 247

ldbl128, longdouble

Option Type Default Value #pragma options

-qoption noldbl128 LDBL128

Appendix A. Compiler Options 289

Syntax
-qldbl128 | -qnoldbl128 | -qlongdouble | -qnolongdouble
LDBL128 | NOLDBL128 | LONGDOUBLE | NOLONGDOUBLE

Purpose
Increases the size of long double type from 64 bits to 128 bits.

Notes
The -qlongdouble option is the same as the -qldbl128 option.

Separate libraries are provided that support 128-bit long double types. These libraries will be
automatically linked if you use any of the invocation commands with the 128 suffix (xlc128 or cc128). You
can also manually link to the 128-bit versions of the libraries using the -lkey option, as shown in the
following table:

Default (64-bit) long double 128-bit long double

Library Form of the -l key option Library Form of the -l key option

libC.a N/A libC128.a N/A

libCns.a -lCns libC128ns.a -lC128ns

libcomplex.a -lcomplex libcomplex128.a -lcomplex128

Linking without the 128-bit versions of the libraries when your program uses 128-bit long double s (for
example, if you specify -qldbl128 alone) may produce unpredictable results.

The -qldbl128 option defines __LONGDOUBLE128 .

The #pragma options directive must appear before the first C statement in the source file, and the option
applies to the entire file.

Example
To compile myprogram.c so that long double types are 128 bits, enter:

xlc myprogram.c -qldbl128 -lC128

or:
xlc128 myprogram.c

For a description of the 128-bit long double, refer to “Implementation Dependency - Floating Point Types
(F.3.6)” on page 451.

“Compiler Options and Their Defaults” on page 218
“Options that Specify the Compiler Object Code Produced” on page 229
“l” on page 286

libansi

Option Type Default Value #pragma options

-qoption nolibansi -

Syntax
-qlibansi | -qnolibansi

Purpose
Assumes that all functions with the name of an ANSI C library function are in fact the system functions.

290 C for AIX User’s Guide

Notes
This will allow the optimizer to generate better code because it will know about the behavior of a given
function, such as whether or not it has any side effects.

“Compiler Options and Their Defaults” on page 218

linedebug

Option Type Default Value #pragma options

-qoption nolinedebug -

Syntax
-qLINEDebug | -qNOLINEDebug

Purpose
Generates line number and source file name information for the debugger.

Notes
This option produces minimal debugging information, so the resulting object size is smaller than that
produced if the -g debugging option is specified. You can use the debugger to step through the source
code, but you will not be able to see or query variable information. The traceback table, if generated, will
include line numbers.

Avoid using this option with -O (optimization) option. The information produced may be incomplete or
misleading.

If you specify the -qlinedebug option, the inlining option defaults to -Q! (no functions are inlined).

The -g option overrides the -qlinedebug option. If you specify -g -qnolinedebug on the command line,
-qnolinedebug is ignored and the following warning is issued:
1506-... (W) Option -qnolinedebug is incompatible with option -g and is ignored.

Example
To compile myprogram.c to produce an executable programtesting so you can step through it with a
debugger, enter:

xlc myprogram.c -o testing -qlinedebug

“Compiler Options and Their Defaults” on page 218
“Options that Specify Debugging Features” on page 227
“g” on page 267
“O, optimize” on page 302
“Q” on page 314

list

Option Type Default Value #pragma options

-qoption nolist LIST

Syntax
-qlist | -qnolist
LIST | NOLIST

Appendix A. Compiler Options 291

Purpose
Produces a compiler listing that includes an object listing.

Notes
Options that are not defaults appear in all listings, even if nolist is specified. The noprint option overrides
this option.

Example
To compile myprogram.c to produce an object listing enter:

xlc myprogram.c -qlist

“Compiler Options and Their Defaults” on page 218
“Options that Specify Compiler Output” on page 228

listopt

Option Type Default Value #pragma options

-qoption nolistopt -

Syntax
-qlistopt | -qnolistopt

Purpose
Produces a compiler listing that displays all options in effect at time of compiler invocation

The listing will show options in effect as set by the compiler default, configuration file, and command line
settings. Option settings caused by #pragma statements in the program source are not shown in the
compiler listing.

Example
To compile myprogram.c to produce a compiler listing that shows all options in effect, enter:

xlc myprogram.c -qlistopt

“Compiler Options and Their Defaults” on page 218
“Options that Specify Compiler Output” on page 228

longlit

Option Type Default Value #pragma options

-qoption nolonglit -

Syntax
-qlonglit | -qnolonglit

Purpose
Changes implicit type selection in 64-bit mode to use larger data types where possible.

Notes
This feature provides the same effect as suffixing all integer constants with l or L.

This option may be useful in porting to 64-bit situations where a signed long result is expected instead of
unsigned int in expressions that contain literals. For example:

292 C for AIX User’s Guide

unsigned int ui = 0;
long l;
l = ui - 1;

In 32-bit mode, l will be equal to -1. In 64-bit mode, the value of l becomes UINT_MAX. Forcing 1 into
type signed long will provide the desired result.

Use this option with extreme caution as it implicitly changes the type of all unsuffixed integer constants
that would otherwise have type int or unsigned int .

The following table shows implicit type selections performed by the compiler with and without the longlit
option in effect.

Default 64-bit mode -qlonglit option enabled

unsuffixed decimal signed int
signed long

unsigned long

signed long
unsigned long

unsuffixed octal or hex signed int
unsigned int
signed long

unsigned long

signed long
unsigned long

suffixed by u or U unsigned int
unsigned long

unsigned long

suffixed by l or L signed long
unsigned long

signed long
unsigned long

suffixed by ul or UL unsigned long unsigned long

“Compiler Options and Their Defaults” on page 218
“Options that Specify the Compiler Object Code Produced” on page 229

longlong

Option Type Default Value #pragma options

-qoption longlong* -

Syntax
-qlonglong | -qnolonglong

Purpose
Allows long long integer types in your program.

Default
The default with xlc , and cc is -qlonglong , which defines _LONG_LONG (long long types will work in C
programs). The default with c89 is -qnolonglong (long long types are ignored).

Example
To compile myprogram.c so that long long int s are not allowed, enter:

xlc myprogram.c -qnolonglong

“Compiler Options and Their Defaults” on page 218
“Options that Specify the Compiler Object Code Produced” on page 229

Appendix A. Compiler Options 293

M

Option Type Default Value #pragma options

-flag - -

Syntax
-M

Purpose
Creates an output file that contains targets suitable for inclusion in a description file for the AIX make
command.

Notes
The -M option is functionally identical to the -qmakedep option.

.u files are not make files; .u files must be edited before they can be used with the make command. For
more information on this command, see AIX Version 4 Commands Reference.

If you do not specify the -o option, the output file generated by the -M option is created in the current
directory. It has a .u suffix. For example, the command:

xlc -M person_years.c

produces the output file person_years.u.

A .u file is created for every input file with a .c or .i suffix. Output .u files are not created for any other
files. For example, the command:

xlc -M conversion.c filter.c /lib/libm.a

produces two output files, conversion.u and filter.u (and an executable file as well). No .u file is created
for the library.

If the current directory is not writable, no .u file is created. If you specify -ofile_name along with -M, the .u
file is placed in the directory implied by -ofile_name. For example, for the following invocation:

xlc -M -c t.c -o /tmp/t.o

places the .u output file in /tmp/t.u .

Format of the Output File
The output file contains a line for the input file and an entry for each include file. It has the general form:

file_name.o:file_name.cfile_name.o:include_file_name

Include files are listed according to the search order rules for the #include preprocessor directive,
described in “Directory Search Sequence for Include Files Using Relative Path Names” on page 178. (If
the include file is not found, it is not added to the .u file.)

Files with no include statements produce output files containing one line that lists only the input file name.

“Compiler Options and Their Defaults” on page 218
“Options that Specify Preprocessor Options” on page 228
“o” on page 305
“makedep” on page 298

294 C for AIX User’s Guide

ma

Option Type Default Value #pragma options

-flag - -

Syntax
-ma

Purpose
Substitutes inline code for calls to function alloca as if #pragma alloca directives are in the source code.

Notes
If #pragma alloca is unspecified, or if you do not use -ma, alloca is treated as a user-defined identifier
rather than as a built-in function.

Example
To compile myprogram.c so that calls to the function alloca are treated as inline, enter:

xlc myprogram.c -ma

“Compiler Options and Their Defaults” on page 218
“Options that Specify the Compiler Object Code Produced” on page 229

macpstr

Option Type Default Value #pragma options

-qoption nomacpstr MACPSTR

Syntax
-qmacpstr | -qnomacpstr
MACPSTR | NOMACPSTR

Purpose
Converts Pascal string literals into null-terminated strings where the first byte contains the length of the
string.

Notes
A Pascal string literal always contains the characters “\p . The characters \p in the middle of a string do not
form a Pascal string literal; the characters must be immediately preceded by the ” (double quote)
character.

The final length of the Pascal string literal can be no longer than 255 bytes (the maximum length that can
fit in a byte).

For example, the -qmacpstr converts:
“\pABC”

to:
'\03' , 'A' , 'B' , 'C' , '\0'

The compiler ignores the -qmacpstr option when the -qmbcs or -qdbcs option is active because
Pascal-string-literal processing is only valid for one-byte characters.

Appendix A. Compiler Options 295

The #pragma options keyword MACPSTR is only valid at the top of a source file before any C
statements. If you attempt to use it in the middle of a source file, it is ignored and the compiler issues an
error message.

Examples of Pascal String Literals
The compiler replaces trigraph sequences by the corresponding single-character representation. For
example:

“??/p pascal string”

becomes:
“\p pascal string”

The following are examples of valid Pascal string literals:

ANSI Mode “\p pascal string”

Each instance of a new-line character and an immediately preceding backslash (\) character
is deleted, splicing the physical source lines into logical ones. For example:

“\p pascal \
string”

Two Pascal string literals are concatenated to form one Pascal string literal. For example:

“\p ABC” “\p DEF”

or

“\p ABC” “DEF”

becomes:

“\06ABCDEF”

For the macro ADDQUOTES:

#define ADDQUOTES (x) #x

where x is:

\p pascal string

or

\p pascal \
string

becomes:

“\p pascal string”

Note however that:

ADDQUOTES(This is not a “\p pascal string”)

becomes:

“This is not a \”\\p pascal string\“”

Extended Mode Is the same as ANSI mode, except the macro definition would be:

#define ADDQUOTES_Ext (x) “x”

Where x is the same as in the ANSI example:

\p pascal string
\p pascal \
string

296 C for AIX User’s Guide

String Literal Processing
The following describes how Pascal string literals are processed.

v Concatenating a Pascal string literal to a normal string gives a non-Pascal string. For example:
“ABC” “\pDEF”

gives:
“ABCpDEF”

v A Pascal string literal cannot be concatenated with a wide string literal.

v The compiler truncates a Pascal string literal that is longer than 255 bytes (excluding the length byte
and the terminating NULL) to 255 characters.

v The compiler ignores the -qmacpstr option if -qmbcs or -qdbcs is used, and issues a warning
message.

v Because there is no Pascal-string-literal processing of wide strings, using the escape sequence \p in a
wide string literal with the -qmacpstr option, generates a warning message and the escape sequence is
ignored.

v The Pascal string literal is not a basic type different from other C string literals. After the processing of
the Pascal string literal is complete, the resulting string is treated the same as all other strings. If the
program passes a C string to a function that expects a Pascal string, or vice versa, the behavior is
undefined.

v Concatenating two Pascal string literals, for example, strcat() , does not result in a Pascal string literal.
However, as described above, two adjacent Pascal string literals can be concatenated to form one
Pascal string literal in which the first byte is the length of the new string literal.

v Modifying any byte of the Pascal string literal after the processing has been completed does not alter
the original length value in the first byte.

v No errors or warnings are issued when the bytes of the processed Pascal string literal are modified.

v Entering the characters:
'\p' , 'A' , 'B' , 'C' , '\0'

into a character array does not form a Pascal string literal.

Example
To compile mypascal.c and convert string literals into null-terminated strings, enter:

xlc mypascal.c -qmacpstr

“Compiler Options and Their Defaults” on page 218
“mbcs, dbcs” on page 301

maf

Option Type Default Value #pragma options

-qoption maf MAF

Syntax
-qmaf | -qnomaf
MAF | NOMAF

Purpose
Specifies whether floating-point multiply-add instructions are to be generated. This option affects the
precision of floating-point intermediate results. Before using this option, see “Floating-Point Compiler
Options” on page 27 for more information about floating-point operations.

Appendix A. Compiler Options 297

Notes
This option is obsolete. Use -qfloat=maf in your new applications.

“Floating-Point Compiler Options” on page 27
“Compiler Options and Their Defaults” on page 218
“float” on page 261

makedep

Option Type Default Value #pragma options

-qoption - -

Syntax
-qmakedep

Purpose
Creates an output file that contains targets suitable for inclusion in a description file for the AIX make
command.

Notes
The -qmakedep option is functionally identical to the -M option.

.u files are not make files; .u files must be edited before they can be used with the make command. For
more information on this command, see AIX Version 4 Commands Reference.

If you do not specify the -o option, the output file generated by the -qmakedep option is created in the
current directory. It has a .u suffix. For example, the command:

xlc -qmakedep person_years.c

produces the output file person_years.u.

A .u file is created for every input file with a .c or .i suffix. Output .u files are not created for any other
files. For example, the command:

xlc -qmakedep conversion.c filter.c /lib/libm.a

produces two output files, conversion.u and filter.u (and an executable file as well). No .u file is created
for the library.

If the current directory is not writable, no .u file is created. If you specify -ofile_name along with
-qmakedep , the .u file is placed in the directory implied by -ofile_name. For example, for the following
invocation:

xlc -qmakedep -c t.c -o /tmp/t.o

places the .u output file in /tmp/t.u .

Format of the Output File
The output file contains a line for the input file and an entry for each include file. It has the general form:

file_name.o:file_name.cfile_name.o:include_file_name

Include files are listed according to the search order rules for the #include preprocessor directive,
described in “Directory Search Sequence for Include Files Using Relative Path Names” on page 178. (If
the include file is not found, it is not added to the .u file.)

298 C for AIX User’s Guide

Files with no include statements produce output files containing one line that lists only the input file name.

“Compiler Options and Their Defaults” on page 218
“Options that Specify Preprocessor Options” on page 228
“M” on page 294
“o” on page 305

maxerr

Option Type Default Value #pragma options

-qoption nomaxerr -

Syntax
-qmaxerr=num:[sev_level] | -qnomaxerr

Purpose
Instructs the compiler to halt compilation when num errors of severity sev_level or higher is reached.

Notes
num must be an integer. sev_level must be one of the following:

sev_level Description
i Informational
w Warning
e Error
s Severe error

If no value is specified for sev_level, the current value of the -qhalt option is used. The default value for
-qhalt is s (severe error).

If the -qmaxerr option is specified more than once, the -qmaxerr option specified last determines the
action of the option. If both the -qmaxerr and -qhalt options are specified, the -qmaxerr or -qhalt option
specified last determines the severity level used by the -qmaxerr option.

Messages suppressed by the -qsuppress option are not counted.

An unrecoverable error occurs when the number of errors reached the limit specified. The error message
issued is similar to:

1506-672 (U) The number of errors has reached the limit of ...

If -qnomaxerr is specified, the entire source file is compiled regardless of how many errors are
encountered.

Diagnostic messages may be controlled by the -qflag and -qsuppress options.

Example s

1. To stop compilation of myprogram.c when 10 warnings are encounted, enter the command:
xlc myprogram.c -qmaxerr=10:w

1. To stop compilation of myprogram.c when 5 severe errors are encounted, assuming that the current
-qhalt option value is S (severe), enter the command:
xlc myprogram.c -qmaxerr=5

1. To stop compilation of myprogram.c when 3 informationals are encountered, enter the command:

Appendix A. Compiler Options 299

xlc myprogram.c -qmaxerr=3:i

or:
xlc myprogram.c -qmaxerr=5:w qmaxerr=3 -qhalt=i

“Compiler Options and Their Defaults” on page 218
“Options that Specify Compiler Output” on page 228
“Message Severity Levels and Compiler Response” on page 20
“flag” on page 261
“halt” on page 269
“suppress” on page 328

maxmem

Option Type Default Value #pragma options

-qoption maxmem=2048 -

Syntax
-qmaxmem=size

Purpose
Limits the amount of memory used for local tables of specific, memory-intensive optimizations to size
kilobytes. If that memory is insufficient for a particular optimization, the scope of the optimization is
reduced.

Notes

v A size value of -1 permits each optimization to take as much memory as it needs without checking for
limits. Depending on the source file being compiled, the size of subprograms in the source, the machine
configuration, and the workload on the system, this might exceed available system resources.

v The limit set by maxmem is the amount of memory for specific optimizations, and not for the compiler
as a whole. Tables required during the entire compilation process are not affected by or included in this
limit.

v Setting a large limit has no negative effect on the compilation of source files when the compiler needs
less memory.

v Limiting the scope of optimization does not necessarily mean that the resulting program will be slower,
only that the compiler may finish before finding all opportunities to increase performance.

v Increasing the limit does not necessarily mean that the resulting program will be faster, only that the
compiler is better able to find opportunities to increase performance if they exist.

v The option -O3 implies -qmaxmem=-1 .

The default is -qmaxmem=2048 , which specifies a default memory size.

Depending on the source file being compiled, the size of the subprograms in the source, the machine
configuration, and the workload on the system, setting the limit too high might lead to page-space
exhaustion. In particular, specifying -qmaxmem=-1 allows the compiler to try and use an infinite amount of
storage, which in the worst case can exhaust the resources of even the most well-equipped machine.

Example
To compile myprogram.c so that the memory specified for local table is 4096 kilobytes, enter:

xlc myprogram.c -qmaxmem=4096

300 C for AIX User’s Guide

“Compiler Options and Their Defaults” on page 218
“Options that Specify the Compiler Object Code Produced” on page 229
“O, optimize” on page 302

mbcs, dbcs

Option Type Default Value #pragma options

-qoption nombcs DBCS

Syntax:
-qmbcs | -qdbcs | -qnombcs | -qnodbcs
MBCS | DBCS | NOMBCS | NODBCS

Purpose
Use the -qmbcs option if your program contains multibyte characters. The -qmbcs option is equivalent to
-qdbcs .

Notes
Multibyte characters are used in certain languages such as Japanese and Korean.

Example
To compile myprogram.c if it contains multibyte characters, enter:

xlc myprogram.c -qmbcs

“Compiler Options and Their Defaults” on page 218
“Options that Specify Compiler Characteristics” on page 226

noprint

Option Type Default Value #pragma options

-qoption - -

Syntax
-qnoprint

Purpose
Suppresses listings. -qnoprint overrides all of the listing-producing options, regardless of where they are
specified.

Notes
The default is not to suppress listings if they are requested.

The options that produce listings are:

v -qattr

v -qlist

v -qlistopt

v -qsource

v -qxref

Appendix A. Compiler Options 301

Example
To compile myprogram.c and suppress all listings, even if some files have #pragma options source and
similar directives, enter:

xlc myprogram.c -qnoprint

“Compiler Options and Their Defaults” on page 218
“Options that Specify Compiler Output” on page 228
“attr” on page 238
“list” on page 291
“listopt” on page 292
“source” on page 322
“xref” on page 339

O, optimize

Option Type Default Value #pragma options

-qoption
-flag

nooptimize -

Syntax
-O | -O2 | -O3 | -O4 | -qoptimize | -qoptimize=2 | -qoptimize=3 |

-qoptimize=4 | -qoptimize=5 | -qnooptimize | -qoptimize=0

OPTimize | OPTimize=2 | OPTimize=3 | OPTimize=4 | OPTimize=5 |
NOOPTimize | OPTimize=0

Purpose
Optimizes code at a choice of levels during compilation.

Notes
You can abbreviate -qoptimize... to -qopt... . For example, -qnoopt is equivalent to -qnooptimize .

Increasing the level of optimization may or may not result in additional performance improvements,
depending on whether additional analysis detects further opportunities for optimization.

Compilations with optimizations may require more time and machine resources than other compilations.

Optimization can cause statements to be moved or deleted, and generally should not be specified along
with the -g flag for the dbx symbolic debug program. The debugging information produced may not be
accurate.

The levels of optimization are:

-qNOOPTimize (Same as -qOPTimize=0 .) Performs only quick local optimizations such as constant folding
and elimination of local common subexpressions.

This setting implies -qstrict_induction unless -qnostrict_induction is explicitly specified.
-O, -qOPTimize Performs optimizations that the compiler developers considered the best combination for

compilation speed and runtime performance.

The optimizations may change from one product release to the next. If you need a specific
level of optimization, specify the appropriate numeric value.

This setting implies -qnostrict_induction unless -qstrict_induction is explicitly specified.
-O2, -qOPTimize=2 Same as -O.

302 C for AIX User’s Guide

-O3, -qOPTimize=3 Performs additional optimizations that are memory intensive, compile-time intensive, or both.
These optimizations are performed in addition to those performed with only the -O option
specified. They are recommended when the desire for runtime improvement outweighs the
concern for minimizing compilation resources.

This level is the compiler’s highest and most aggressive level of optimization. -O3 performs
optimizations that have the potential to slightly alter the semantics of your program. It also
applies the -O2 level of optimization with unbounded time and memory. The compiler guards
against these optimizations at -O2.

You can use the -qstrict option with -O3 to turn off the aggressive optimizations that might
change the semantics of a program. -qstrict combined with -O3 invokes all the optimizations
performed at -O2 as well as further loop optimizations. Note that the -qstrict compiler option
must appear after the -O3 option, otherwise it is ignored.

Appendix A. Compiler Options 303

The aggressive optimizations performed when you specify -O3 are:

1. Aggressive code motion, and scheduling on computations that have the potential to raise
an exception, are allowed.

Loads and floating-point computations fall into this category. This optimization is
aggressive because it may place such instructions onto execution paths where they will
be executed when they may not have been according to the actual semantics of the
program.

For example, a loop-invariant floating-point computation that is found on some, but not all,
paths through a loop will not be moved at -O2 because the computation may cause an
exception. At -O3, the compiler will move it because it is not certain to cause an
exception. The same is true for motion of loads. Although a load through a pointer is
never moved, loads off the static or stack base register are considered movable at -O3.
Loads in general are not considered to be absolutely safe at -O2 because a program can
contain a declaration of a static array a of 10 elements and load a[60000000003], which
could cause a segmentation violation.

The same concepts apply to scheduling.

Example : In the following example, at -O2, the computation of b+c is not moved out of
the loop for two reasons:

a. it is considered dangerous because it is a floating-point operation

b. it does not occur on every path through the loop

At -O3, the code is moved.

...
int i ;
float a[100], b, c ;
for (i = 0 ; i < 100 ; i++)
{
if (a[i] < a[i+1])
a[i] = b + c ;

}
...

2. Conformance to IEEE rules are relaxed.

With -O2 certain optimizations are not performed because they may produce an incorrect
sign in cases with a zero result, and because they remove an arithmetic operation that
may cause some type of floating-point exception.

For example, X + 0.0 is not folded to X because, under IEEE rules, -0.0 + 0.0 = 0.0,
which is -X. In some other cases, some optimizations may perform optimizations that
yield a zero result with the wrong sign. For example, X - Y * Z may result in a -0.0 where
the original computation would produce 0.0.

In most cases the difference in the results is not important to an application and -O3
allows these optimizations.

3. Floating-point expressions may be rewritten.

Computations such as a*b*c may be rewritten as a*c*b if, for example, an opportunity
exists to get a common subexpression by such rearrangement. Replacing a divide with a
multiply by the reciprocal is another example of reassociating floating-point computations.

304 C for AIX User’s Guide

Notes

v -qfloat=fltint:rsqrt are on by default in -O3.

v Built-in functions do not change errno at -O3.

v Aggressive optimizations do not include the following floating-point suboptions:
-qfloat=hsflt , hssngl , and -qfloat=rndsngl .

v The default maxmem value is -1 at -O3.

v Refer to -qflttrap to see the behavior of the compiler when you specify optimize options
with the flttrap option.

v The -O3 option implies -qnostrict. You can use the -qstrict compiler option to turn resulting
optimizations that can potentially change the semantics of a program. Reference to these
compiler option must appear after the -O3 option.

v The -O3 compiler option implies -qnostrict_induction unless -qstrict_induction is
explicitly specified.

-O4, -qOPTimize=4 This option is the same as -O3, except that it also:

v Sets the -qipa option

v Sets the -qarch and -qtune options to the architecture of the compiling machine

Note: Later settings of -O, -qcache , -qipa , -qarch , and -qtune options will override the
settings implied by the -O4 option.

-O5, -qOPTimize=5 This option is the same as -O4, except that it:

v Sets the -qipa=level=2 option to perform full interprocedural data flow and alias analysis.

Note: Later settings of -O, -qcache , -qipa , -qarch , and -qtune options will override the
settings implied by the -O5 option.

Example
To compile myprogram.c for maximum optimization, enter:

xlc myprogram.c -O3

For an in-depth discussion of how to optimize and tune your programs, refer to the Optimization and
Tuning Guide for Fortran, C, and C++.

“Program Optimization with the C for AIX Compiler” on page 23
“Writing Optimized Program Source Code” on page 197
“Minimizing the Size of Object Files” on page 36
“Compiler Options and Their Defaults” on page 218
“Options that Specify the Compiler Object Code Produced” on page 229
“#pragma option_override Preprocessor Directive” on page 374
“g” on page 267
“arch” on page 237
“cache” on page 243
“float” on page 261
“flttrap” on page 264
“ipa” on page 279
“strict” on page 326
“strict_induction” on page 327
“tune” on page 331

o

Option Type Default Value #pragma options

-flag - -

Syntax

Appendix A. Compiler Options 305

-o file_spec

Purpose
Specifies an output location for the object, assembler, or executable files created by the compiler. When
the -o option is used during compiler invocation, file_spec can be the name of either a file or a directory.
When the -o option is used during direct linkage-editor invocation, file_spec can only be the name of a file.

Notes
When -o is specified as part of a complier invocation, file_spec can be the relative or absolute path name
of either a directory or a file.

1. If file_spec is the name of a directory, files created by the compiler are placed into that directory.

2. If a directory with the name file_spec does not exist, the -o option specifies that the name of the file
produced by the compiler will be file_spec. Otherwise, files created by the compiler will take on their
default names. For example, the following compiler invocation:
xlc test.c -c -o new.o
produces the object file new.o instead of test.o , and
xlc test.c -o new
produces the object file new instead of a.out
A file_spec with a C source file suffix (.c or .i), such as my_text.c or bob.i, results in an error and
neither the compiler nor the linkage editor is invoked.
To use “c” on page 242 and -o together, you can only compile one source file at a time. If you specify
both -c and -ofile_spec, and only one file is being compiled, the output is placed in file_spec. If more
than one source file name is listed in the compiler invocation, the compiler issues a warning message
and ignores -o.

The “E” on page 253 , “P” on page 307 , and “syntaxonly” on page 327 options override the -ofilename
option.

Example

1. To compile myprogram.c so that the resulting file is called myaccount , assuming that no directory with
name myaccount exists, enter:

xlc myprogram.c -o myaccount

If the directory myaccount does exist, the executable file produced by the compiler is placed in the
myaccount directory.

“Compiler Options and Their Defaults” on page 218
“Options that Specify Linkage Options” on page 230
“c” on page 242
“E” on page 253
“P” on page 307
“syntaxonly” on page 327

once

Option Type Default Value #pragma options

-qoption noonce ONCE

Syntax
-qonce | -qnoonce
ONCE | NOONCE

306 C for AIX User’s Guide

Purpose
Avoids including a header file more than once even if it is specified in several of the files you are
compiling.

Notes
The compiler uses the full path name to determine if a file has already been included. No attempt is made
to resolve . or .. in the path name. #include statements that include . or .. in the path statements may
cause the same file to be included more than once.

The #pragma options keyword ONCE may appear anywhere in your code. It can be turned on and off by
specifying ONCE and NOONCE, respectively.

Important!
Do not use the -qonce option if both of the following conditions are true:

1. You include both stdio.h and stdarg.h (in that order) in your source files, and,

2. You are using the macro va_list . va_list must be defined twice to have any effect, and -qonce defeats this
purpose.

Example
The following example shows how the compiler resolves whether a file has already been included.
#include <stdio.h> /* Found in /usr/include/stdio.h */
#include <stdio.h> /* Already included */
#include </usr/include/stdio.h> /* Already included */
#include <./stdio.h> /* Resolves to /usr/include/./stdio.h */

/* which is the same file, but this */
/* file will be included again. */

“Compiler Options and Their Defaults” on page 218

P

Option Type Default Value #pragma options

-flag - -

Syntax
-P

Purpose
Preprocesses the C source files named in the compiler invocation and creates an output preprocessed
source file, file_name.i, for each input source file, file_name.c. The -P option calls the preprocessor
directly as /usr/vac/exe/xlCcpp .

Notes
The -P option retains all white space including line-feed characters, with the following exceptions:

v All comments are reduced to a single space (unless -C is specified).

v Line feeds at the end of preprocessing directives are not retained.

v White space surrounding arguments to function-style macros is not retained.

#line directives are not issued.

The -P option cannot accept a preprocessed source file, file_name.ias input. Source files with
unrecognized filename suffixes are treated and preprocessed as C files, and no error message is
generated.

Appendix A. Compiler Options 307

In extended mode, the preprocessor interprets the backslash character when it is followed by a new-line
character as line-continuation in:

v macro replacement text

v macro arguments

v comments that are on the same line as a preprocessor directive.

Line continuations elsewhere are processed in ANSI mode only.

The -P option is overridden by the -E option. The -P option overrides the -c, -o, and -qsyntaxonly option.
The -C option may used in conjunction with both the -E and -P options.

The default is to compile and link-edit C source files to produce an executable file.

“Compiler Options and Their Defaults” on page 218
“Options that Specify Compiler Output” on page 228
“C” on page 242
“c” on page 242
“E” on page 253
“o” on page 305
“syntaxonly” on page 327

p

Option Type Default Value #pragma options

-flag - -

Syntax
-p

Purpose
Sets up the object files produced by the compiler for profiling.

If the -qtbtable option is not set, the -p option will generate full traceback tables.

Example
To compile myprogram.c so that it can be used with the AIX prof command, enter:

xlc myprogram.c -p

Note: When compiling and linking in separate steps, the -p option must be specified in both steps.

“Compiler Options and Their Defaults” on page 218
“Options that Specify Debugging Features” on page 227
“pg” on page 311 Compiler Option
prof command in the AIX Version 4 Commands Reference, for details on profiling.

pascal

Option Type Default Value #pragma options

-qoption nopascal -

Syntax
-qpascal | -qnopascal

308 C for AIX User’s Guide

Purpose
Ignores the word pascal in type specifiers and function declarations.

Notes
This option can be used to improve compatibility of C for AIX programs on some other systems.

“Compiler Options and Their Defaults” on page 218

pdf1, pdf2

Option Type Default Value #pragma options

-qoption nopdf1
nopdf2

-

Syntax
-qpdf1 | -qpdf2 | -qnopdf1 | -qnopdf2

Purpose
Tunes optimizations through Profile-Directed Feedback (PDF), where results from one or more sample
program executions are used to improve optimization near conditional branches and in frequently executed
code sections.

Notes
To use PDF:

1. Compile some or all of the source files in a program with the -qpdf1 option. main must be compiled.
The “l” on page 286pdf option is required during the link step, the -O3 option is recommended for
optimization. Pay special attention to the compiler options used to compile the files, because you will
need to use the same options later.

2. Run the program all the way through, using a typical data set. The program records profiling
information when it finishes. You can run the program multiple times with different data sets, and the
profiling information is accumulated to provide an accurate count of how often branches are taken and
blocks of code are executed.

Important: Use data that is representative of the data that will be used during a normal run of your
finished program.

3. Recompile your program, using the same compiler options as before but changing -qpdf1 to -qpdf2 .
Remember that -L, -l, and some others are linker options, and you can change them at this point. In
particular, leave the -lpdf option out. In this second compilation, the accumulated profiling information
is used to fine-tune the optimizations. The resulting program contains no profiling overhead and runs at
full speed.

For optimum performance, use the -O3 option with all compilations when you use PDF (as in the example
above). With -O2 optimization, one of the most important PDF optimizations (moving code before branches
to fill delay slots) is not done.

The profile is placed in the current working directory, or the directory named by the PDFDIR environment
variable if that variable is set.

To avoid wasting compilation and execution time, make sure the PDFDIR environment variable is set to an
absolute path; otherwise, you might run the application from the wrong directory so that it cannot locate
the profile data files. If that happens, the program may not be optimized correctly or may be stopped by a
segmentation fault. A segmentation fault might also happen if you change the value of the PDFDIR
variable and execute the application before finishing the PDF process.

Appendix A. Compiler Options 309

Because this option requires compiling the entire application twice, it is intended to be used after other
debugging and tuning is finished, as one of the last steps before putting the application into production.

Restrictions

v Do not mix PDF files created by the current version of C for AIX with PDF files created by previous
versions.

v PDF optimizations also require at least level 2 of -O.

v The main program must be compiled with PDF for profiling to work properly. If you want to use this
option to optimize a library or other code that does not usually incorporate a main program, supply a
main program for the first PDF compilation, then omit the main program for the second PDF
compilation.

v Do not compile or run two different applications that use the same PDFDIR directory at the same time.

v You must use the same set of compiler options at all compilation steps for a particular program;
otherwise, PDF cannot optimize your program correctly, and may even slow it down. All compiler
settings must be the same, including any supplied by configuration files.

v If you do compile a program with -qpdf1 , remember that it will generate profiling information when it
runs, which involves some performance overhead. This overhead goes away when you recompile with
-qpdf2 or with no PDF at all.

The following commands are available for managing the PDFDIR directory:

resetpdf [pathname] Zeros out all profiling information (but does not remove the data files) from the
pathname directory; or if pathname is not specified, from the PDFDIR directory; or if
PDFDIR is not set, from the current directory.

When you make changes to the application and recompile some files, the profiling
information for those files is automatically reset, because the changes may alter the
program flow. Run resetpdf to reset the profiling information for the entire application,
after making significant changes that may affect execution counts for parts of the
program that were not recompiled.

cleanpdf [pathname] Removes all profiling information from the pathname directory; or if pathname is not
specified, from the PDFDIR directory; or if PDFDIR is not set, from the current directory.

Removing the profiling information reduces the runtime overhead if you change the
program and then go through the PDF process again.

Run this program after compiling with -qpdf2 , or after finishing with the PDF process for
a particular application. If you continue using PDF with an application after running
cleanpdf , you must recompile all the files with -qpdf1 .

Example 1
Here are the steps for a simple example:

1. First, set the PDFDIR environment variable:

export PDFDIR=/home/user

2. Compile all files with -qpdf1 and -O3, and link with -lpdf .

xlc -qpdf1 -lpdf -O3 file1.c file2.c file3.c -L/usr/vac/lib

3. Run with one set of input data:

a.out < sample.data

4. Recompile all files with -qpdf2 and -O3:

xlc -qpdf2 -O3 file1.c file2.c file3.c

310 C for AIX User’s Guide

The program should now run faster than without PDF, if the sample used data was typical of actual
program data.

Note: When using -qpdf1 , specify the search location for its libraries with the -L compiler option, as shown
in step 2 above.

Example 2
Here are the steps for a more elaborate example.

1. Set the PDFDIR environment variable:

export PDFDIR=/home/user

2. Compile most of the files with -qpdf1 .

xlc -qpdf1 -O3 -c file1.c file2.c file3.c -L/usr/vac/lib

3. This file is not so important to optimize:

xlc -c file4.c

4. Non-PDF object files like file4.o can be linked in:

xlc -qpdf1 -lpdf file1.o file2.o file3.o file4.o -L/usr/vac/lib

5. Run several times with different input data:

a.out < polar_orbit.data
a.out < elliptical_orbit.data
a.out < geosynchronous_orbit.data

6. You do not need to recompile the source of non-PDF object files:

xlc -qpdf2 -O3 file1.c file2.c file3.c

7. Link all the object files into the final application:

xlc file1.o file2.o file3.o file4.o

“Compiler Options and Their Defaults” on page 218
“Options that Specify the Compiler Object Code Produced” on page 229
“L” on page 285
“l” on page 286
“O, optimize” on page 302

pg

Option Type Default Value #pragma options

-flag - -

Syntax
-pg

Purpose
Sets up the object files for profiling, but provides more information than is provided by the -p option.

If the -qtbtable option is not set, the -pg option will generate full traceback tables.

Example
To compile myprogram.c for use with the AIX gprof command, enter:

Appendix A. Compiler Options 311

xlc myprogram.c -pg

Remember to compile and link with the -pg option. For example:
xlc myprogram.c -pg -c
xlc myprogram.o -pg -o program

“Compiler Options and Their Defaults” on page 218
“Options that Specify Debugging Features” on page 227
“p” on page 308
gprof command in the AIX Version 4 Commands Reference, for details on profiling.

phsinfo

Option Type Default Value #pragma options

-qoption nophsinfo -

Syntax
-qphsinfo | -qnophsinfo

Purpose
Reports the time taken in each compilation phase. Phase information is sent to standard output.

Example
To compile myprogram.c and report the time taken for each phase of the compilation, enter:

xlc myprogram.c -qphsinfo

“Compiler Options and Their Defaults” on page 218
“Options that Specify Compiler Output” on page 228

proclocal, procimported, procunknown

Option Type Default Value #pragma options

-qoption proclocal* PROCLOCal, PROCIMPorted,
PROCUNKnown

Syntax
-qproclocal | -qproclocal=names
-qprocimported | -qprocimported=names
-qprocunknown | -qprocunknown=names
PROCLOCAL | PROCLOCAL=names
PROCIMPORTED | PROCIMPORTED=names
PROCUNKNOWN | PROCUNKNOWN=names

Purpose
Marks functions as local, imported, or unknown.

Default
The default is to assume that all functions whose definition is in the current compilation unit are local
(proclocal), and that all other functions are unknown (procunknown). If any functions that are marked as
local resolve to shared library functions, the linkage editor will detect the error and issue warnings such as:
ld: 0711-768 WARNING: Object foo.o, section 1, function .printf:

The branch at address 0x18 is not followed by a recognized no-op
or TOC-reload instruction. The unrecognized instruction is 0x83E1004C.

312 C for AIX User’s Guide

An executable file is produced, but it will not run. The error message indicates that a call to printf in object
file foo.o caused the problem. When you have confirmed that the called routine should be imported from a
shared object, recompile the source file that caused the warning and explicitly mark printf as imported.
For example:

xlc -c -qprocimported=printf foo.c

Notes

Local functions Are statically bound with the functions that call them. -qproclocal changes the default to
assume that all functions are local. -qproclocal= names marks the named functions as local,
where names is a list of function identifiers separated by colons (:). The default is not
changed.

Smaller, faster code is generated for calls to functions marked as local.
Imported functions Are dynamically bound with a shared portion of a library. -qprocimported changes the

default to assume that all functions are imported. -qprocimported= names marks the named
functions as imported, where names is a list of function identifiers separated by colons (:).
The default is not changed.

The code generated for calls to functions marked as imported might be larger, but it is faster
than the default code sequence generated for functions marked as unknown. If any marked
functions are resolved to statically bound objects, the generated code may be larger and run
more slowly than the default code sequence generated for unknown functions.

Unknown functions Are resolved to either statically or dynamically bound objects during link-editing.
-qprocunknown changes the default to assume that all functions are unknown.
-qprocunknown= names marks the named functions as unknown, where names is a list of
function identifiers separated by colons (:). The default is not changed.

Conflicts among the procedure-marking options are resolved in the following manner:

Options that list function names The last explicit specification for a particular function name is used.
Options that change the default This form does not specify a name list. The last option specified is the

default for functions not explicitly listed in the name-list form.

Example
To compile myprogram.c along with the archive library oldprogs.a so that the functions fun and sun are
specified as local , moon and stars are specified as imported , and venus is specified as unknown ,
enter:
xlc myprogram.c oldprogs.a -qprolocal=fun(int):sun()
-qprocimported=moon():stars(float) -qprocunknown=venus()

“Compiler Options and Their Defaults” on page 218
“Options that Specify the Compiler Object Code Produced” on page 229

proto

Option Type Default Value #pragma options

-qoption noproto PROTO

Syntax
-qproto | -qnoproto
PROTO | NOPROTO

Purpose
Assumes all functions are prototyped.

Appendix A. Compiler Options 313

Notes
This option asserts that procedure call points agree with their declarations even if the procedure has not
been prototyped. Callers can pass floating-point arguments in floating-point registers only and not in
General-Purpose Registers (GPRs). The compiler assumes that the arguments on procedure calls are the
same types as the corresponding parameters of the procedure definition.

You can obtain warnings for functions that do not have prototypes.

Example
To compile my_c_program.c to assume that all functions are prototyped, enter:

xlc my_c_program.c -qproto

“Compiler Options and Their Defaults” on page 218
“info” on page 275 Compiler Option

Q

Option Type Default Value #pragma options

-flag See below. -

Syntax
-Q | -Q=threshold | -Q-names | -Q+names | -Q!

Purpose
Attempts to inline functions instead of generating calls to a function. Inlining is performed if possible, but,
depending on which optimizations are performed, some functions might not be inlined.

Notes
The -Q option is functionally equivalent to the -qinline option.

Because inlining does not always improve run time, you should test the effects of this option on your code.
Do not attempt to inline recursive or mutually recursive functions.

Normally, application performance is optimized if you request optimization (-O option), and compiler
performance is optimized if you do not request optimization.

The C for AIX _inline , _Inline , and __inline language keywords override all -Q options except -Q!. The
compiler will try to inline functions marked with these keywords regardless of other -Q option settings.

To maximize inlining, specify optimization (-O) and also specify the appropriate -Q option, as described
below:

-Q Attempts to inline all appropriate functions with 20 executable source statements or fewer,
subject to the setting of any of the suboptions to the -Q option. If -Q is specified last, all
functions are inlined.

-Q! Does not inline any functions. If -Q! is specified last, no functions are inlined.

314 C for AIX User’s Guide

-Q=threshold Sets a size limit on the functions to be inlined. The number of executable statements must be
less than or equal to threshold for the function to be inlined. threshold must be a positive
integer. The default value is 20. Specifying a threshold value of 0 causes no functions to be
inlined except those functions marked with the __inline , _Inline , or _inline keywords.

The threshold value applies to logical C statements. Declarations are not counted, as you can
see in the example below:

increment()
{
int a, b, i;
for (i=0; i<10; i++) /* statement 1 */
{

a=i; /* statement 2 */
b=i; /* statement 3 */

}
}

-Q-names Does not inline functions listed by names. Separate each name with a colon (:). All other
appropriate functions are inlined. The option implies -Q.

For example:

-Q-salary:taxes:expenses:benefits

causes all functions except those named salary , taxes , expenses , or benefits to be inlined
if possible.

A warning message is issued for functions that are not defined in the source file.
-Q+names Attempts to inline the functions listed by names and any other appropriate functions. Each

name must be separated by a colon (:). The option implies -Q.

For example,

-Q+food:clothes:vacation

causes all functions named food , clothes , or vacation to be inlined if possible, along with
any other functions eligible for inlining.

A warning message is issued for functions that are not defined in the source file or that are
defined but cannot be inlined.

This suboption overrides any setting of the threshold value. You can use a threshold value of
zero along with -Q+names to inline specific functions. For example:

-Q=0

followed by:

-Q+salary:taxes:benefits

causes only the functions named salary , taxes , or benefits to be inlined, if possible, and no
others.

Default
The default is to treat inline specifications as a hint to the compiler and depends on other options that you
select:

v If you specify the -g option (to generate debug information), no functions are inlined.

v If you specify the -O option (to optimize your program) and the -Q option (to inline functions), the
compiler attempts to inline the functions you specify.

Example
To compile the program myprogram.c so that no functions are inlined, enter:

xlc myprogram.c -O -Q!

Appendix A. Compiler Options 315

To compile the program my_c_program.c so that the compiler attempts to inline functions of fewer than 12
lines, enter:

xlc my_c_program.c -O -Q=12

“Program Optimization with the C for AIX Compiler” on page 23
“Using Inlined Components” on page 202
“Writing Optimized Program Source Code” on page 197
“Compiler Options and Their Defaults” on page 218
“Options that Specify the Compiler Object Code Produced” on page 229
“_Inline, _inline, __inline” on page 204, “_Inline, _inline, __inline” on page 204, and “_Inline,
_inline, __inline” on page 204
“g” on page 267
“O, optimize” on page 302
“inline” on page 277

r

Option Type Default Value #pragma options

-flag - -

Syntax
-r

Purpose
Produces a relocatable object. This permits the output file to be produced even though it contains
unresolved symbols.

Notes
A file produced with this flag is expected to be used as a file parameter in another call to xlc .

Example
To compile myprogram.c and myprog2.c into a single object file mytest.o , enter:

xlc myprogram.c myprog2.c -r -o mytest.o

“Compiler Options and Their Defaults” on page 218
“Options that Specify Linkage Options” on page 230

rndsngl

Option Type Default Value #pragma options

-qoption norndsngl RNDSNGL

Syntax:
-qrndsngl | -qnorndsngl
RNDSNGL | NORNDSNGL

Purpose
Specifies that the results of each single-precision (float) operation is to be rounded to single precision.
-qnorndsngl specifies that rounding to single-precision happens only after full expressions have been
evaluated.

Notes
This option is obsolete. Use -qfloat=rndsngl . in your new applications.

316 C for AIX User’s Guide

The -qhsflt option overrides the -qrndsngl options.

The -qrndsngl option is intended for specific applications in which floating-point computations have known
characteristics. Using this option when compiling other application programs can produce incorrect results
without warning. See “Floating-Point Compiler Options” on page 27 before you use the -qrndsngl option.

“Floating-Point Compiler Options” on page 27
“Compiler Options and Their Defaults” on page 218
“float” on page 261
“hsflt” on page 271

ro

Option Type Default Value #pragma options

-qoption ro* RO

Syntax:
-qro | -qnoro
RO | NORO

Purpose
Specifies the storage type for string literals.

Default
The default with xlc and c89 is ro . The default with cc is noro .

Notes
If ro is specified, the compiler places string literals in read-only storage. If noro is specified, string literals
are placed in read/write storage.

You can also specify the storage type in your source program using:
#pragma strings storage_type

where storage_type is read-only or writable .

Placing string literals in read-only memory can improve runtime performance and save storage, but code
that attempts to modify a read-only string literal generates a memory error.

Example
To compile myprogram.c so that the storage type is writable , enter:

xlc myprogram.c -qnoro

“Compiler Options and Their Defaults” on page 218
“Options that Specify the Compiler Object Code Produced” on page 229

roconst

Option Type Default Value #pragma options

-qoption roconst* ROCONST

Syntax

Appendix A. Compiler Options 317

-qroconst | -qnoroconst
ROCONST | NOROCONST

Purpose
Specifies the storage location for constant values.

Default
The default with xlc and c89 is roconst . The default with cc is noroconst .

Notes
If -qroconst is specified, the compiler places constants in read-only storage. If -qnoroconst is specified,
constant values are placed in read/write storage.

Placing constant values in read-only memory can improve runtime performance, save storage, and provide
shared access. Code that attempts to modify a read-only constant value generates a memory error.

Constant value in the context of the -qroconst option refers to variables that are qualified by const
(including const-qualified characters, integers, floats, enumerations, structures, unions, and arrays). The
following variables do not apply to this option:

v variables qualified with volatile and aggregates (such as a struct or a union) that contain volatile
variables

v pointers and complex aggregates containing pointer members

v automatic and static types with block scope

v uninitialized types

v regular structures with all members qualified by const

v initializers that are addresses, or initializers that are cast to non-address values

The -qroconst option does not imply the -qro option. Both options must be specified if you wish to specify
storage characteristics of both string literals (-qro) and constant values (-qroconst).

“Compiler Options and Their Defaults” on page 218
“Options that Specify the Compiler Object Code Produced” on page 229
“ro” on page 317

rrm

Option Type Default Value #pragma options

-qoption norrm RRM

Syntax
-qrrm | -qnorrm
RRM | NORRM

Purpose
Prevents floating-point optimizations that are incompatible with run-time rounding to plus and minus infinity
modes.

Notes
This option informs the compiler that, at run time, the floating-point rounding mode may change or that the
mode is not set to -yn (rounding to the nearest representable number.)

-qrrm must also be specified if the Floating Point Status and Control register is changed at run time.

318 C for AIX User’s Guide

The default, -qnorrm , generates code that is compatible with run-time rounding modes nearest and zero .
For a list of rounding mode options, see the -y compiler option.

This option is obsolete. Use -qfloat=rrm in your new applications.

“Compiler Options and Their Defaults” on page 218
“Options that Specify the Compiler Object Code Produced” on page 229
“y” on page 339
“float” on page 261

S

Option Type Default Value #pragma options

-flag - -

Syntax
-S

Purpose
Generates an assembler language file (.s) for each source file. The resulting .s files can be assembled to
produce object .o files or an executable file (a.out).

Notes
You can invoke the assembler with the xlc command. For example,

xlc myprogram.s

will invoke the assembler, and if successful, the loader to create an executable file, a.out .

If you specify -S with -E or -P, -E or -P takes precedence. Note the following order of precedence with
respect to the -S option:

1. -E overrides -P

2. -P overrides -S

3. -S overrides -c

This order of precedence holds regardless of the order in which they were specified on the command line.

You can use the -o option to specify the name of the file produced only if no more than one source file is
supplied. For example, the following is not valid:

xlc myprogram1.c myprogram2.c -o -S

Restrictions
The generated assembler files do not include all the data that is included in a .o file by the -g or -qipa
options.

Example
To compile myprogram.c to produce an assembler language file myprogram.s , enter:

xlc myprogram.c -S

To assemble this program to produce an object file myprogram.o , enter:
xlc myprogram.s -c

To compile myprogram.c to produce an assembler language file asmprogram.s , enter:
xlc myprogram.c -S -o asmprogram.s

Appendix A. Compiler Options 319

“Compiler Options and Their Defaults” on page 218
“c” on page 242
“E” on page 253
“g” on page 267
“o” on page 305
“P” on page 307
“ipa” on page 279
AIX Version 4 Assembler Language Reference
AIX Version 4 Files Reference

showinc

Option Type Default Value #pragma options

-qoption noshowinc SHOwinc

Syntax
-qshowinc | -qnoshowinc
SHOWINC

Purpose
If used with -qsource , all the include files are included in the source listing.

Example
To compile myprogram.c so that all included files appear in the source listing, enter:

xlc myprogram.c -qsource -qshowinc

“Compiler Options and Their Defaults” on page 218
“Options that Specify Compiler Output” on page 228
“source” on page 322

smp

Option Type Default Value #pragma options

-qoption nosmp -

Syntax
-qnosmp | -qsmp[=suboption[:suboption] [...]]

Purpose
Specifies if and how parallelized object code is generated, according to suboption(s) specified:

Suboption Description

auto
noauto

Enables or disables automatic parallelization.

auto is the default if -qsmp is specified without the omp suboption. Otherwise,
the default is noauto .

explicit
noexplicit

Enables or disables pragmas controlling explicit parallelization of countable loops.

explicit is the default.

If noexplicit is in effect, #pragma ibm omp parallel_loop is not honored by the
compiler.

320 C for AIX User’s Guide

nested_par
nonested_par

Enables or disables parallelization of nested parallel constructs.

nonested_par is the default. If one parallel construct is run as part of another
parallel construct, the execution of the nested construct is serialized by the
compiler for better performance.

If nested_par is in effect, nested parallel constructs are not serialized.

Notes:

1. nested_par does not provide true nested parallelism because it does
not cause new team of threads to be created for nested parallel
regions. Instead, threads that are currently available are re-used.

2. This option should be used with caution. Depending on the number
of threads available and the amount of work in an outer loop, inner
loops could be executed sequentially even if this option is in effect.
Parallelization overhead may not necessarily be offset by program
performance gains.

omp
noomp

Enables or disables strict compliance with OpenMP C and C++ API specifications.

noomp is the default. This mode allows for maximum program parallelization, but
may not be completely compliant to the OpenMP API specification.

If you specify the omp suboption, the compiler disables automatic parallelization
and warns of directives that are not OpenMP-compliant. The _OPENMP macro is
defined.

Certain other smp suboptions enable compiler parallelization features that do not
comply with the OpenMP specification. If they are specified together with the omp
suboption, a warning message issued. These suboptions are:

v auto

v nested_par

v rec_locks

v schedule=affinity=n

rec_locks
norec_locks

Specifies whether recursive locks are used to implement critical sections.

If rec_locks is in effect, recursive locks are used, and nested critical sections will
not cause a deadlock.

The default is norec_locks , or regular locks.

schedule=sched_type[=n] Specifies what kind of scheduling algorithms and chunking are used for loops to
which no other scheduling algorithm has been explicitly assigned in the source
code.

Valid options for sched_type are:

v dynamic[=n]

v guided[=n]

v static[=n]

v affinity[=n]

v runtime

If sched_type is not specified, runtime is assumed as the default setting.

For more information about these scheduling algorithms, see schedule pragma.

Notes

Appendix A. Compiler Options 321

v Specifying -qsmp without suboptions is equivalent to specifying
-qsmp=auto:explicit:noomp:norec_locks:nonested_par:schedule=runtime .

v The -qnosmp default option setting specifies that no code should be generated for parallelization
directives, though syntax checking will still be performed. Use -qignprag=omp:ibm to completely ignore
parallelization directives.

v Specifying -qsmp defines the _IBMSMP preprocessing macro

v Specifying -qsmp implicitly sets -O2. The -qsmp option overrides -qnooptimize , but does not override
-O3 or -O4.

v -qsmp must be used only with thread-safe compiler mode invocations such as xlc_r . These invocations
ensure that the pthreads , xlsmp , and thread-safe versions of all default run-time libraries are linked to
the resulting executable.

“Chapter 5. Program Parallelization” on page 37
“Compiler Modes” on page 5
“Using Pragmas to Control Parallel Processing” on page 41
“Invoking the Compiler” on page 8
“Compiler Options and Their Defaults” on page 218
“Options that Specify the Compiler Object Code Produced” on page 229
“#pragma Preprocessor Directives for Parallel Processing” on page 381
“#pragma ibm schedule Preprocessor Directive” on page 386
“Run-time Options for Parallel Processing” on page 402
“Built-in Functions Used for Parallel Processing” on page 400
“O, optimize” on page 302
“ignprag” on page 274
“O, optimize” on page 302
“threaded” on page 331

source

Option Type Default Value #pragma options

-qoption nosource SOURCE

Syntax:
-qsource | -qnosource
SOURCE | NOSOURCE

Purpose
Produces a compiler listing and includes source code.

Notes
The -qnoprint option overrides this option.

Parts of the source can be selectively printed by using pairs of #pragma options source and #pragma
options nosource preprocessor directives throughout your source program. The source following
#pragma options source and preceding #pragma options nosource is printed.

Example
The following code causes the parts of the source code between the #pragma options directives to be
included in the compiler listing:

#pragma options source
. . .

/* Source code to be included in the compiler listing

322 C for AIX User’s Guide

is bracketed by #pragma options directives.
*/

. . .
#pragma options nosource

To compile myprogram.c to produce a compiler listing that includes the source for myprogram.c , enter:
xlc myprogram.c -qsource

“Compiler Options and Their Defaults” on page 218
“Options that Specify Compiler Output” on page 228
“#pragma options Preprocessor Directive” on page 375
“noprint” on page 301

spill

Option Type Default Value #pragma options

-qoption spill=512 SPILL=size

Syntax
-qspill=size
SPILL=size

Purpose
Specifies the register allocation spill area as being size bytes.

Notes
If your program is very complex, or if there are too many computations to hold in registers at one time and
your program needs temporary storage, you might need to increase this area. Do not enlarge the spill area
unless the compiler issues a message requesting a larger spill area. In case of a conflict, the largest spill
area specified is used.

Example
If you received a warning message when compiling myprogram.c and want to compile it specifying a spill
area of 900 entries, enter:

xlc myprogram.c -qspill=900

“Compiler Options and Their Defaults” on page 218
“Options that Specify the Compiler Object Code Produced” on page 229

spnans

Option Type Default Value #pragma options

-qoption nospnans SPNANS

Syntax
-qspnans | -qnospnans
SPNANS | NOSPNANS

Purpose
Generates extra instructions to detect signalling NaN on conversion from single precision to double
precision. The nospnans option specifies that this conversion need not be detected.

Appendix A. Compiler Options 323

Notes
The -qhsflt option overrides the spnans option

This option is obsolete. Use -qfloat=nans in your new applications.

“Compiler Options and Their Defaults” on page 218
“float” on page 261
“hsflt” on page 271

srcmsg

Option Type Default Value #pragma options

-qoption nosrcmsg SRCMSG

Syntax
-qsrcmsg | -qnosrcmsg
SRCMSG | NOSRCMSG

Purpose
Adds the corresponding source code lines to the diagnostic messages in the stderr file.

Notes
The compiler reconstructs the source line or partial source line to which the diagnostic message refers and
displays it before the diagnostic message. A pointer to the column position of the error may also be
displayed. Specifying -qnosrcmsg suppresses the generation of both the source line and the finger line,
and the error message simply shows the file, line and column where the error occurred.

The reconstructed source line represents the line as it appears after macro expansion. At times, the line
may be only partially reconstructed. The characters “....” at the start or end of the displayed line indicate
that some of the source line has not been displayed.

The default (nosrcmsg) displays concise messages that can be parsed. Instead of giving the source line
and pointers for each error, a single line is displayed, showing the name of the source file with the error,
the line and character column position of the error, and the message itself.

Example
To compile myprogram.c so that the source line is displayed along with the diagnostic message when an
error occurs, enter:

xlc myprogram.c -qsrcmsg

“Compiler Message Format” on page 21
“Message Severity Levels and Compiler Response” on page 20
“Compiler Message and Listing Information” on page 18
“Compiler Options and Their Defaults” on page 218
“Options that Specify Compiler Output” on page 228

statsym

Option Type Default Value #pragma options

-qoption nostatsym -

Syntax
-qstatsym | -qnostatsym

324 C for AIX User’s Guide

Purpose
Adds user-defined, nonexternal names that have a persistent storage class, such as initialized and
uninitialized static variables, to the name list (the symbol table of xcoff objects).

Default
The default is to not add static variables to the symbol table. However, static functions are added to the
symbol table.

Example
To compile myprogram.c so that static symbols are added to the symbol table, enter:

xlc myprogram.c -qstatsym

“Compiler Options and Their Defaults” on page 218

stdinc

Option Type Default Value #pragma options

-qoption stdinc STDINC

Syntax:
-qstdinc | -qnostdinc
STDINC | NOSTDINC

Purpose
Specifies which files are included with #include < file_name> and #include “ file_name” directives.

Notes
If you specify -qnostdinc , the compiler will not search the directory /usr/include (unless you explicitly add
them with the -Idirectory option).

If a full (absolute) path name is specified, this option has no effect on that path name. It will still have an
effect on all relative path names.

-qnostdinc is independent of -qidirfirst . (-qidirfirst searches the directory specified with -Idirectory before
searching the directory where the current source file resides.

The search order for files is described in “Directory Search Sequence for Include Files Using Relative Path
Names” on page 178.

The last valid #pragma options [NO]STDINC remains in effect until replaced by a subsequent #pragma
options [NO]STDINC .

Example
To compile myprogram.c so that the directory /tmp/myfiles is searched for a file included in myprogram.c
with the #include “myinc.h” directive, enter:

xlc myprogram.c -qnostdinc -I/tmp/myfiles

“Compiler Options and Their Defaults” on page 218
“I” on page 272
“idirfirst” on page 273

Appendix A. Compiler Options 325

strict

Option Type Default Value #pragma options

-qoption See below. STRICT

Syntax
-qstrict | -qnostrict
STRICT | NOSTRICT

Purpose
Turns off aggressive optimizations that have the potential to alter the semantics of your program.

Notes
-qnostrict has no effect at -O optimization level 0.

-qstrict turns off the following optimizations:

v Performing code motion and scheduling on computations such as loads and floating-point computations
that may trigger an exception.

v Relaxing conformance to IEEE rules.

v Reassociating floating-point expressions.

Unless explicitly set otherwise by the -qfloat option:

v -qstrict sets -qfloat=nofltint:norsqrt .

v -qnostrict sets -qfloat=fltint:rsqrt .

You can use -qfloat=fltint and -qfloat=rsqrt to override the -qstrict settings.

For example:

v Using -O3 -qstrict -qfloat=fltint means that -qfloat=fltint is in effect, but there are no other aggressive
optimizations.

v Using -O3 -qnostrict -qfloat=norsqrt means that the compiler performs all aggressive optimizations
except -qfloat=rsqrt .

Defaults
Default setting for the strict option varies according to -Ooptimization level in effect:

Optimization
level

Default setting for
strict option

0 -qstrict
2 -qstrict
3 -qnostrict
4 -qnostrict

You can override the default settings by explicitly setting either -qstrict or -qnostrict . In the example
below, -qstrict is active regardless of the -O3 optimization level selected.

xlc myprogram.c -O3 -qstrict -qfloat=fltint:rsqrt

Example
To compile myprogram.c so that the aggressive optimizations of -O3 are turned off, range checking is
turned off (-qfloat=fltint), and division by the result of a square root is replaced by multiplying by the
reciprocal (-qfloat=rsqrt), enter:

xlc myprogram.c -O3 -qstrict -qfloat=fltint:rsqrt

326 C for AIX User’s Guide

“Compiler Options and Their Defaults” on page 218
“#pragma option_override Preprocessor Directive” on page 374
“O, optimize” on page 302
“float” on page 261
“strict_induction”

strict_induction

Option Type Default Value #pragma options C C++

-qoption See below. - x x

Syntax
-qstrict_induction | -qnostrict_induction

Purpose
Setting -qstrict_induction disables loop induction variable optimizations that have the potential to alter the
semantics of your program. Such optimizations can change the result of a program if truncation or sign
extension of a loop induction variable should occur as a result of variable overflow or wrap-around.

Notes
This option affects only loops which have an induction (loop counter) variable declared as a different size
than a register. The most probable incidence of such a situation will likely involve using 32-bit loop
counters (int or unsigned int) when compiling in 64-bit mode. Unless you intend such variables to overflow
or wrap around, use -qnostrict_induction .

Using -qstrict_induction can cause considerable performance degradation. However, the option may be
useful for debugging a program sensitive to variable overflow or wrap-around.

Default

v -qstrict_induction with optimization level 0, or when using c89 compiler invocation mode.

v -qnostrict_induction otherwise.

“Compiler Modes” on page 5
“Compiler Options and Their Defaults” on page 218

syntaxonly

Option Type Default Value #pragma options

-qoption - -

Syntax
-qSYNTAXonly

Purpose
Causes the compiler to perform syntax checking without generating an object file.

Notes
The -P, -E, and -C options override the -qsyntaxonly option, which in turn overrides the -c and -o options.

The -qsyntaxonly option suppresses only the generation of an object file. All other files (listings,
precompiled header files, etc) are still produced if their corresponding options are set.

Appendix A. Compiler Options 327

Example
To check the syntax of myprogram.c without generating an object file, enter:

xlc myprogram.c -qsyntaxonly

or
xlc myprogram.c -o testing -qsyntaxonly

Note that in the second example, the -qsyntaxonly option overrides the “o” on page 305 option so no
object file is produced.

“Compiler Options and Their Defaults” on page 218
“Options that Specify Debugging Features” on page 227
“C” on page 242
“E” on page 253
“P” on page 307

suppress

Option Type Default Value #pragma options

-qoption nosuppress -

Syntax
-qsuppress=msg_num[:msg_num ...] | -qnosuppress

Purpose
This compiler option lets you specify warning or information messages to be suppressed in compiler
listings or screen displays.

Notes
This option suppresses compiler messages only, and has no effect on linker or operating system
messages.

Compiler messages that cause compilation to stop, such as (S) and (U) level messages, or other
messages depending on the setting of the -qhalt compiler option, cannot be suppressed. For example, if
the -qhalt=w compiler option is set, warning messages will not be suppressed by the -qsuppress
compiler option.

The -qnosuppress compiler option cancels previous settings of -qsuppress .

Example
Assuming a sample program called myprogram.c, shown below:

#pragma incorrect_pragma
void () {
}

Compiling the program above would normally result in the following or similar compiler message:
“t.c”, line 1.1: 1506-224 (I) Incorrect #pragma ignored

To suppress this message, compile the sample program with the -qsuppress option as follows:
xlc myprogram.c -qsuppress=1506-224

328 C for AIX User’s Guide

“Compiler Options and Their Defaults” on page 218
“flag” on page 261
“halt” on page 269
“maxerr” on page 299

t

Option Type Default Value #pragma options

-flag See below. -

Syntax:
-tprograms

Purpose
Adds the prefix specified by the -B option to the designated programs.

Notes
This option can only be used with the -B option. The flags representing the standard program names are:

Programs Description

c Compiler front end

b Compiler back end

p Compiler preprocessor

a Assembler

I Interprocedural Analysis tool - compile phase

L Interprocedural Analysis tool - link phase

l Linkage editor

m Linkage helper (munch)

Default
If -B is specified but prefix is not, the default prefix is /lib/o . If -Bprefix is not specified at all, the prefix of
the standard program names is /lib/n .

If -B is specified but -tprograms is not, the default is to construct path names for all the standard program
names: (c,b, I, a, l, and m).

Example
To compile myprogram.c so that the name/u/newones/compilers/ is prefixed to the compiler and
assembler program names, enter:

xlc myprogram.c -B/u/newones/compilers/ -tca

“Compiler Options and Their Defaults” on page 218
“B” on page 239

tabsize

Option Type Default Value #pragma options

-qoption tabsize=8 -

Syntax

Appendix A. Compiler Options 329

-qtabsize=n

Purpose
Changes the length of tabs as perceived by the compiler.

Notes
n is the number of character spaces representing a tab in your source program.

This option only affects error messages that specify the column number at which an error occurred. For
example, the compiler will consider tabs as having a width of one character if you specify -qtabsize=1 . In
this case, you can consider one character position (where each character and each tab equals one
position, regardless of tab length) as being equivalent to one character column.

“Compiler Options and Their Defaults” on page 218
“Options that Specify Compiler Characteristics” on page 226

tbtable

Option Type Default Value #pragma options

-qoption full* TBTABLE

Syntax
-qtbtable=suboption
TBTABLE=suboption

Purpose
Generates a traceback table that contains information about each function, including the type of function
as well as stack frame and register information. The traceback table is placed in the text segment at the
end of its code.

Notes
Values for suboption are:

none No traceback table is generated. The stack frame cannot be unwound.
full A full traceback table is generated, complete with name and parameter information.
small The traceback table generated has no name or parameter information, but otherwise has full traceback

capability.

The #pragma options directive must be specified before the first statement in the compilation unit.

Default
Many performance measurement tools require a full traceback table to properly analyze optimized code.
The /etc/vac.cfg compiler configuration file contains entries to accomodate this requirement. If you do not
require full traceback tables for your optimized code, you can save file space by making the following
changes to your /etc/vac.cfg compiler configuration file:

1. Remove the -qtable=full option from the options lines of the C compilation stanzas.

2. Remove the -qtable=full option from the xlCopt line of the DFLT stanza.

With these changes, the defaults for the tbtable option are:

v When compiling with optization options set, -qtbtable=small

v When compiling with no otimization options set, -qtable=full

See “Interlanguage Calls - Traceback Table” on page 214 for a brief description of traceback tables. The
AIX Version 4 traceback mechanism is described in the “Subroutine Linkage Convention” section of the

330 C for AIX User’s Guide

AIX Version 4 Assembler Language Reference.

“Compiler Options and Their Defaults” on page 218
“Options that Specify Debugging Features” on page 227
“etc/vac.cfg - Default Configuration File” on page 474

threaded

Option Type Default Value #pragma options

-qoption See below. -

Syntax
-qthreaded | -qnothreaded

Purpose
Indicates to the compiler that the program will run in a multi-threaded environment. Always use this option
when compiling or linking multi-threaded applications.

Notes
This option applies to both compile and linkage editor operations.

To maintain thread safety, a file compiled with the -qthreaded option, whether explicitly by option selection
or implicitly by choice of _r compiler invocation mode, must also be linked with the -qthreaded option.

This option does not make code thread-safe, but it will ensure that code already thread-safe will remain so
after compile and linking.

Default
The default is -qthreaded when compiling with _r invocation modes, and -qnothreaded when compiling
with other invocation modes.

“Compiler Modes” on page 5
“Compiler Options and Their Defaults” on page 218
“Options that Specify the Compiler Object Code Produced” on page 229
“smp” on page 320

tune

Option Type Default Value #pragma options

-qoption See below. TUNE=suboption

Syntax
-qtune=suboption
TUNE=suboption

Purpose
Specifies the architecture system for which the executable program is optimized.

Notes
Allowable values for suboption are:

auto Automatically detects the specific architecture of the compiling machine. Use this suboption only if the
execution environment is the same as the compilation environment.

Appendix A. Compiler Options 331

403 Produces object code optimized for the PowerPC 403 processor.

601 Produces object code optimized for the PowerPC 601 processor.

602 Produces object code optimized for the PowerPC 602 processor.

603 Produces object code optimized for the PowerPC 603 processor.

604 Produces object code optimized for the PowerPC 604 processor.

p2sc Produces object code optimized for the PowerPC P2SC processor.

pwr Produces object code optimized for the POWER hardware platforms.

pwr2 Produces object code optimized for the POWER2 hardware platforms.

pwr2s Produces object code optimized for the POWER2 hardware platforms, avoiding certain
quadruple-precision instructions that would slow program performance.

pwr3 Produces object code optimized for POWER3 processors.

pwrx Produces object code optimized for the POWER2 hardware platforms (same as -qtune=pwr2).

rs64a Produces object code optimized for the RS64A processor.

rs64b Produces object code optimized for the RS64B processor.

If -qtune is specified without -qarch= suboption, the compiler uses -qarch=com .

You can use -qtune= suboption with -qarch= suboption.

v -qarch= suboption specifies the architecture for which the instructions are to be generated, and,

v -qtune= suboption specifies the target platform for which the code is optimized.

Default
The default setting of the -qtune= option depends on the setting of the -qarch= option.

v If -qtune is specified without -qarch , the compiler uses -qarch=com .

v If -qarch is specified without -qtune= , the compiler uses the default tuning option for the specified
architecture. Listings will show only:

TUNE=DEFAULT

To find the actual default -qtune setting for a given -qarch setting, refer to “Acceptable Compiler Mode
and Processor Architecture Combinations” on page 16 .

Example
To specify that the executable program testing compiled from myprogram.c is to be optimized for a
POWER hardware platform, enter:

xlc -o testing myprogram.c -qtune=pwr

“Specifying Compiler Options for Architecture-Specific, 32- or 64-bit Compilation” on page 14
“Acceptable Compiler Mode and Processor Architecture Combinations” on page 16
“Compiler Options and Their Defaults” on page 218
“Options that Specify the Compiler Object Code Produced” on page 229
“arch” on page 237

U

Option Type Default Value #pragma options

-flag - -

Syntax
-Uname

332 C for AIX User’s Guide

Purpose
Undefines the identifier name defined by the compiler or by the -Dname option.

Notes
The -Uname option is not equivalent to the #undef preprocessor directive. It cannot undefine names
defined in the source by the #define preprocessor directive. It can only undefine names defined by the
compiler or by the -Dname option.

The identifier name can also be undefined in your source program using the #undef preprocessor
directive.

The -Uname option has a higher precedence than the -Dname option.

Example
To compile myprogram.c so that the definition of the name COUNT, is nullified, enter:

xlc myprogram.c -UCOUNT

For example if the option -DCOUNT=1000 is used, a source line #undefine COUNT is generated at the
top of the source.

“Compiler Options and Their Defaults” on page 218
“Options that Specify Preprocessor Options” on page 228
“D” on page 250

unroll

Option Type Default Value #pragma options

-qoption unroll=4* -

Syntax
-qunroll=n | -qnounroll

Purpose
Unrolls inner loops in the program by a factor of n.

Notes
When -qunroll is specified, the bodies of inner loops will be duplicated n-1 times, creating a loop with n
original bodies. The loop control may be modified in some cases to avoid unnecessary branching.

The maximum value for n is 8.

Default
The compiler will perform automatic unrolling of inner loops by a factor of 4 at an optimization level of 2 or
higher (for example, when the -O3 optimizing option is specified). This will be disabled, however, if
-qnounroll is specified at the same time.

Example
In the following example, loop control is not modified:

while (*s != 0)
{

*p++ = *s++;
}

Unrolling this by a factor of 2 gives:

Appendix A. Compiler Options 333

while (*s)
{
*p++ = *s++;
if (*s == 0) break;
*p++ = *s++;

}

In this example, loop control is modified:
for (i=0; i<n; i++) {
a[i]=b[i] * c[i];

}

Unrolling by 3 gives:
i=0;
if (i>n-2) goto remainder;
for (; i<n-2; i+=3) {
a[i]=b[i] * c[i];
a[i+1]=b[i+1] * c[i+1];
a[i+2]=b[i+2] * c[i+2];

}
if (i<n) {
remainder:
for (; i<n; i++) {
a[i]=b[i] * c[i];

}
}

“Compiler Options and Their Defaults” on page 218
“Options that Specify the Compiler Object Code Produced” on page 229
“O, optimize” on page 302

upconv

Option Type Default Value #pragma options

-qoption noupconv* UPCONV

Syntax
-qupconv | -qnoupconv
UPCONV | NOUPCONV

Purpose
Preserves the unsigned specification when performing integral promotions.

Notes
The -qupconv option promotes any unsigned type smaller than an int to an unsigned int instead of to
an int .

Unsignedness preservation is provided for compatibility with older dialects of C. The ANSI C standard
requires value preservation as opposed to unsignedness preservation.

Default
The default is -qnoupconv , except when -qlanglvl=ext , in which case the default is -qupconv . The
compiler does not preserve the unsigned specification.

The default compiler action is for integral promotions to convert a char , short int , int bitfield or their
signed or unsigned types, or an enumeration type to an int . Otherwise, the type is converted to an
unsigned int .

334 C for AIX User’s Guide

Example
To compile myprogram.c so that all unsigned types smaller than an int are converted to unsigned int ,
enter:

xlc myprogram.c -qupconv

The following short listing demonstrates the effect of -qupconv :
#include <stdio.h>
int main(void) {

unsigned char zero = 0;
if (-1 <zero)
printf(“Value-preserving rules in effect\n”);

else
printf(“Unsignedness-preserving rules in effect\n”);

return 0;
}

“Compiler Options and Their Defaults” on page 218
“langlvl” on page 286

usepcomp

Option Type Default Value #pragma options

-qoption nousepcomp -

Syntax
-qusepcomp | -qusepcomp=directory | -qnousepcomp

Purpose
Uses a precompiled header file if no included files that have not changed since the precompiled header
was created. This may help improve compile time.

Notes
Usage modes for usepcomp are:

-qusepcomp Uses the precompiled header file called csetc.pch , if it exists in the current
directory.

-qusepcomp=directory Uses a precompiled header file if:

v directory is the name of an existing directory, and the csetc.pch precompiled
header file exists in that directory.

v a directory with the name directory does not exist, but a precompiled header
file called directory exists in the current directory.

-qnousepcomp Does not use precompiled header files.

The -qusepcomp and -qgenpcomp options are designed to be used together, but they may be used
separately.

v -qgenpcomp used alone will refresh the contents of the precompiled header file, even if it already
exists. This is useful if the file has been corrupted.

v -qusepcomp used alone will use an existing precompiled header file without creating a new one. This
is useful if you only want do not want the precompiled header file to be recompiled, or if remaining disk
space is low.

When -qusepcomp and -qgenpcomp are used together, the compiler will automatically maintain and use
a current precompiled header.

Appendix A. Compiler Options 335

If you update your system header files, you can regenerate them with the /usr/vac/bin/mkpcomp
command.

Precompiled headers will only be used at the same language level used during their creation.

For a given #include , -qusepcomp is checked first. Then the compiler checks for a precompiled version
of the file to be included if such is specified. If it is found and it is current, it is used.

If a precompiled header is not being used (for example, if a current one is not found, or if -qusepcomp is
not specified), and -qgenpcomp is specified, the compiler will create a new precompiled header (even if it
exists and is current).

The precompiled headers created by installing C for AIX are listed in the LPP inventory, and are removed
if you uninstall C for AIX. Any additional headers you create are not removed during uninstall.

“Creating and Using Precompiled Headers” on page 35
“Compiler Options and Their Defaults” on page 218
“#include Preprocessor Directive” on page 356
“genpcomp” on page 267

v

Option Type Default Value #pragma options

-flag - -

Syntax
-v

Purpose
Instructs the compiler to report information on the progress of the compilation, and names the programs
being invoked within the compiler and the options being specified to each program. Information is
displayed to standard output.

Notes
The -v option is overridden by the -# option.

Example
To compile myprogram.c so you can watch the progress of the compilation and see messages that
describe the progress of the compilation, the programs being invoked, and the options being specified,
enter:

xlc myprogram.c -v

“Compiler Options and Their Defaults” on page 218
“Options that Specify Compiler Output” on page 228
“#” on page 231

W

Option Type Default Value #pragma options

-flag - -

Syntax

336 C for AIX User’s Guide

-Wprogram, options

Purpose
Passes the listed options to the designated compiler program.

program can be:

Program Description
a Assembler
b Compiler back end
c Compiler front end
I Interprocedural Analysis tool
l linkage editor
p compiler preprocessor

Notes
When used in the configuration file, the -W option accepts the escape sequence backslash comma (\,) to
represent a comma in the parameter string.

Example
To compile myprogram.c so that the option -pg is passed to the linkage editor (l) and the assembler (a),
enter:

xlc myprogram.c -Wl:a, -pg

In a configuration file, use the \, sequence to represent the comma (,).
-Wl:a\,-pg

“Compiler Options and Their Defaults” on page 218
“Options that Specify Compiler Characteristics” on page 226

w

Option Type Default Value #pragma options

-flag See below. -

Syntax
-w

Purpose
Requests that warnings and lower-level messages be suppressed. Specifying this option is equivalent to
specifying -qflag=e:e .

Example
To compile myprogram.c so that no warning messages are displayed, enter:

xlc myprogram.c -w

“Compiler Options and Their Defaults” on page 218
“Options that Specify Compiler Output” on page 228
“flag” on page 261

Appendix A. Compiler Options 337

warn64

Option Type Default Value #pragma options

-qoption nowarn64 -

Syntax
-qwarn64

Purpose
Enables checking for possible long-to-integer truncation.

Notes
All generated messages have level Informational.

This option functions in either 32- or 64-bit compiler modes. In 32-bit mode, it functions as a preview aid to
discover possible 32- to 64-bit migration problems.

Informational messages are displayed where data conversion may cause problems. The 64-bit compiler
mode , such as possible:

v truncation due to explicit or implicit conversion of long types into int types

v unexpected results due to explicit or implicit conversion of int types into long types

v invalid memory references due to explicit conversion by cast operations of pointer types into into types

v invalid memory references due to explicit conversion by cast operations of int types into pointer types

v problems due to explicit or implicit conversion of constants into long types

v problems due to explicit or implicit conversion by cast operations of constants into pointer types

v conflicts with pragma options arch in source files and on the command line

“Specifying Compiler Options for Architecture-Specific, 32- or 64-bit Compilation” on page 14
“Acceptable Compiler Mode and Processor Architecture Combinations” on page 16
“Compiler Options and Their Defaults” on page 218
“Options that Specify the Compiler Object Code Produced” on page 229

xcall

Option Type Default Value #pragma options

-qoption noxcall -

Syntax
-qxcall | -qnoxcall

Purpose
Generates code to static routines within a compilation unit as if they were external routines.

Notes
-qxcall generates slower code than -qnoxcall .

Example
To compile myprogram.c so all static routines are compiled as external routines, enter:

xlc myprogram.c -qxcall

338 C for AIX User’s Guide

“Compiler Options and Their Defaults” on page 218

xref

Option Type Default Value #pragma options

-qoption noxref XREF

Syntax
-qxref | -qnoxref
XREF | NOXREF

Purpose
Produces a compiler listing that includes a cross-reference listing of all identifiers.

Notes
Usage modes for xref are:

-qxref=full Reports all identifiers in the program.
-qxref Reports only those identifiers that are used.

The -qnoprint option overrides this option.

Any function defined with the #pragma mc_func function_name directive is listed as being defined on the
line of the #pragma directive.

Example
To compile myprogram.c and produce a cross-reference listing of all identifiers whether they are used or
not, enter:

xlc myprogram.c -qxref=full

A typical cross-reference listing has the form:

“Compiler Options and Their Defaults” on page 218
“Options that Specify Compiler Output” on page 228
“noprint” on page 301

y

Option Type Default Value #pragma options

-flag - Yrounding_mode

Syntax

Appendix A. Compiler Options 339

-yrounding_mode Yrounding_mode

Purpose
Specifies the compile-time rounding mode of constant floating-point expressions.

Notes
rounding_mode must be one of the following:

n Round to the nearest representable number. This is the default.
m Round toward minus infinity.
p Round toward plus infinity.
z Round toward zero.

Example
To compile myprogram.c so that constant floating-point expressions are rounded toward zero at compile
time, enter:

xlc myprogram.c -yz

“Compiler Options and Their Defaults” on page 218
“Options that Specify the Compiler Object Code Produced” on page 229

340 C for AIX User’s Guide

Appendix B. 32-bit to 64-bit Migration Considerations

This section outlines various portability considerations in moving C programs from 32-bit to 64-bit mode.

v Constants (page 341)

v Undeclared Functions (page 342)

v Assignment of Long Types to Integer and Pointers (page 342)

v Structure Sizes and Alignment (page 343)

v Bitfields (page 343)

v Miscellaneous (page 343)

v Interlanguage Calls with Fortran (page 344)

Constants
The limits of constants change. This table shows changed items in the limits.h header file, their
hexadecimal value, and decimal equivalent. The equation gives an idea of how to construct these values.

Type Hexadecimal Equation Decimal

signed long min
(LONG_MIN)

0x8000000000000000L -(263) -9,223,372,036,854,775,808

signed long max
(LONG_MAX)

0x7FFFFFFFFFFFFFFFL 263-1

(-LONG_MIN-1)

+9,223,372,036,854,775,807

unsigned long max
(ULONG_MAX)

0xFFFFFFFFFFFFFFFFUL 264-1 +18,446,744,073,709,551,616

In C, type identification of constants follows explicit rules. However, programs that use constants
exceeding the limit (relying on a 2’s complement representation) will experience unexpected results in the
64-bit mode. This is especially true of hexadecimal constants and unsuffixed constants, which are more
likely to be extended into the 64-bit long type.

Problematic behaviors will generally occur at boundary areas such as:

v constant >= UINT_MAX

v constant < INT_MIN

v constant > INT_MAX

Some examples of undesirable boundary side effects are:

Constant assigned to long 32 bit mode 64 bit mode

-2,147,483,649 (INT_MIN-1) +2,147,483,647 -2,147,483,649

+2,147,483,648 (INT_MAX+1) -2,147,483,648 +2,147,483,648

+4,294,496,726 (UINT_MAX+1) 0 +4,294,967,296

0xFFFFFFFF (UINT_MAX) -1 +4,294,496,295

0x100000000 (UINT_MAX+1) 0 +4,294,967,296

0xFFFFFFFFFFFFFFFF (ULONG_MAX) -1 -1

Currently, the compiler gives out of range warning messages when attempting to assign a value larger
than the designated range into a long type. The warning message is:

1506-207 (W) Integer constant 0x100000000 out of range.

© Copyright IBM Corp. 1995, 1999 341

This warning message may not appear for every case.

When you bit left-shift a 32-bit constant and assign it into a long type, signed values are sign-extended
and unsigned values are zero-extended. The examples in the table below show the effects of performing a
bit-shift on both 32- and 64-bit constants, using the following code segment:

long l=constantL<<1;

Initial Constant Value Constant Value after Bit-Shift

32-bit 64-bit

0x7FFFFFFFL (INT_MAX) 0xFFFFFFFE 0xFFFFFFFE

0x80000000L (INT_MIN) 0 0x100000000

0xFFFFFFFFL (UINT_MAX) 0xFFFFFFFE 0x1FFFFFFFE

Unsuffixed constants can lead to type ambiguity that can impact other parts of your program, such as the
result of sizeof operations. For example, in 32-bit mode the compiler types a number like 4294967295
(UINT_MAX) as an unsigned long. In 64-bit mode, this same number becomes a signed long. To avoid this
possibility, explicitly add a suffix to all constants that have the potential of impacting constant assignment
or expression evaluation in other parts of your program. The fix for the above case is to write the number
as 4294967295U. This forces the compiler to always see that constant as an unsigned int regardless of
compiler mode.

Assignment of Long Variables to Integers and Pointers
Using int and long types in expressions and assignments can lead to implicit conversion through
promotions and demotions, or explicit conversions through assignments and argument passing. The
following should be avoided:

v Using integer and long types interchangeably, leading to truncation of significant digits or unexpected
results.

v Passing long arguments to functions expecting type int

v Exchanging pointers and int types, causing segmentation faults.

v Passing pointers to a function expecting an int type, resulting in truncation.

v Assignment of long types to float, causing possible loss of accuracy.

Assigning a long constant to an integer will cause truncation without warning. For example:
int i;
long l=2147483648; /* INT_MAX+1*/
i=l;

What will be the value of i? INT_MAX+1 is 2147483647+1 (0x80000000), which becomes INT_MIN when
assigned into a signed type. Truncation occurs because the highest bit is treated as a sign bit. The rule
here is that there will be a loss of significant digits.

Similar problems occur when passing constants directly to functions, and in functions that return long
types. Making explicit use of the L and UL suffix will avoid most, but not all, problems. Alternately, you can
avoid accidental conversions by using explicit prototyping. Another good practice is to avoid implicit type
conversion by using explicit type casting to change types.

342 C for AIX User’s Guide

UndeclaredFunctions
Any function that returns a pointer should be explicitly declared when compiling in 64-bit mode. Otherwise,
the compiler will assume the function returns an int and truncate the resulting pointer, even if you were to
assign it into a valid pointer.

Code such as:
a=(char *) calloc(25);

which used to work in 32-bit mode will in 64-bit mode will now silently get a truncated pointer. Even the
type casting will not avoid this because the calloc has already been truncated after the return.

The fix in this case is to include the appropriate header file, which is stdlib.h and not malloc.h.

Structure Sizes and Alignments
Structures may face potential porting problems.

The 64-bit specification changes the size, member and structure alignment of all structures that are
recompiled in 64-bit mode. Structures with long types and pointers will generally change size and
alignment in 64-bit mode. Some structures may not change in size because they happen to fall on an
exact 8-byte boundary even in 32-bit mode.

Sharing data structures between 32- and 64-bit processes is no longer possible unless the structure is
devoid of pointer and long types. Unions that attempt to share long and int types, or overlay pointers onto
int types will now be aligned differently, or be corrupted. In general, all but the simplest structures must be
checked for alignment and size dependencies.

The alignment for -qalign =full, power or natural changes for 64-bit mode. Structure members are aligned
on their natural boundaries. Long types and pointer types are word-aligned in 32-bit mode, and
doubleword aligned in 64-bit mode. Additional spaces could be used for padding members.

The alignment for -qalign =twobyte and -qalign =mac68k are not supported in 64-bit mode.

Structures are aligned according to the strictest aligned member. This remains unchanged from 32-bit
mode. Because of the padding introduced by the member alignment, structure alignment may not be
exactly the same as in the 32-bit mode. This is especially important when you have arrays of structures
which contain pointer or long types. The member alignment will change, most likely leading to the structure
alignment to change to doubleword alignment (if there are no long long types, double types and long
double types).

Bitfields
Structure bitfields are limited to 32 bits, and can be of type signed int, unsigned int or plain int. Bit fields
are packed into the current word. Adjacent bit fields that cross a word boundary will start at storage unit.
This storage unit is a word in power and full alignment, halfword in the mac68k and twobyte alignment,
and byte in the packed alignment. 64-bit bitfields are not supported.

In 32-bit mode, non-integer bitfields are tolerated (but not respected) only in the C extended language
level.

If you use long bit fields in 64-bit mode, their exact alignment may change in future versions of the
compiler, even if the bitfield is under 32 bits in length.

Appendix B. 32-bit to 64-bit Migration Considerations 343

Miscellaneous Issues

v The sizeof operator will now return size_t which is an unsigned long.

v The length of the integer required to hold the difference between two pointers is ptrdiff_t, and is a
signed long type.

v Masks will generally lead to different results when compiled in 64-bit mode from their 32-bit mode
behavior.

v Many include files have pointers and structures in them, and their inclusion in 64-bit mode will change
the size of your data section even if your program does not use structures and pointers explicitly.

v __int64 is a long type in 64-bit mode, but will look like a long long type in 32-bit mode. __int64 types
can participate in promotion rules and arithmetic conversion when in 64-bit mode. When in 32-bit mode,
these types can not participate in the usual arithmetic conversions.

v In 64-bit mode, member values in a structure passed by value to a va_arg argument may not be
accessed properly if the size of the structure is not a multiple of 8-bytes. This is a known limitation of
the operating system.

v In 64-bit extended mode, zero-extension from unsigned int to an unsigned long preserves the bit
pattern. For example, zero-extending an unsigned int with value 0xFFFF FFFF (large negative value)
results in an unsigned long with value 0x0000 0000 FFFF FFFF (large positive value).

Interlanguage Calls with Fortran A significant number of applications use C, C++, and Fortran together,
by calling each other or sharing files. Such applications are among the early candidates for porting to
64-bit platforms for its abilities to solve larger mathematical models. Experience shows that it is easier to
modify data sizes/types on the C side than the Fortran side of such applications. The following table lists
the equivalent Fortran type in the different modes.

C/C++ type 32-bit 64-bit

int INTEGER INTEGER

unsigned int LOGICAL LOGICAL

signed long INTEGER INTEGER*8

unsigned long LOGICAL LOGICAL*8

pointer INTEGER INTEGER*8

A user must not mix XCOFF object formats from different modes. A 32-bit Fortran XCOFF cannot mix
with a 64-bit C or C++ XCOFF object and vice versa. Since Fortran77 usually does not have an explicit
pointer type, it is common practice to use INTEGER variables to hold C or C++ pointers in 32-bit mode.
In 64-bit mode, the user should use INTEGER*8 in Fortran. Fortran90 does have a pointer, but it is
unsuitable for conversion to the basic C and C++ types.

In 64-bit mode, Fortran will have a POINTER*8 that is 8 bytes in length as compared to their POINTER
which is 4-bytes in length.

“Appendix C. Operating System Migration Considerations” on page 345

344 C for AIX User’s Guide

Appendix C. Operating System Migration Considerations

You should be aware of the following considerations when moving programs to AIX 4.3:

v time_t has changed type from AIX 4.2 to AIX 4.3

Library functions which take an argument of time_t or return type time_t may find type mismatches with
your existing code in 32-bit mode. time_t is changed from long type in AIX 4.2 to int type in AIX 4.3.
The change in types may cause compile-time errors in your programs.

v MB_CUR_MAX has changed from int to size_t in AIX 4.3

MB_CUR_MAX is a macro defined in stdlib.h that calls _getmbcurmax() . This function now returns
size_t which has always been unsigned lon g. In AIX 4.2, it was prototyped to return an int .

v setlocale in 64-bit mode

If you have user locales defined, you must recompile them in 64-bit mode using localedef . This
generates 32-bit and 64-bit versions of your locale file. Otherwise, calling setlocale in 64-bit mode will
not find the user-defined locale file.

However, localedef in AIX 4.3 supports only the charmap that is supplied with the AIX 4.3 distribution. If
you need the charmaps from an older AIX distribution, you must explicitly copy them into your directory
before using localedef with your custom locale definition file.

In addition, localedef by default is set up to use /bin/cc and /usr/bin/cc. The C for AIX compiler does not
create links in /usr/bin or /bin by default. Since localedef requires the use of a 64-bit compiler, you need
to run /usr/vac/bin/replaceCSet to create links pointing to the C for AIX product. Invoke localedef , then
execute restoreCSet to restore the links as they were before.

v The make tool does not discriminate between object formats

The make tool only discriminates on the timestamp of files. The only case where this can cause
problems is when you try to add same-named 32 and 64-bit objects into the archive. Running make first
in 32-bit mode, then in 64-bit mode, will not update the 2nd object. Make only checks the timestamp of
the first object it finds with the correct name.

v int64 is type defined in inttypes.h

If you use int64 as a variable name, this is now a typedef in inttypes.h

v Header file predefined types that are based on long

There are many header file predefined types, such as size_t and ptrdiff_t , which remain the same type
regardless of 32 or 64-bit compiler mode. This presents a subtle opportunity for differences when
compiling the same code in different mode of the compiler.

Although size_t remains the same type (unsigned long), the length of size_t will change between
different modes of AIX. This can cause library functions that return or take size_t to change behavior in
32-bit to 64-bit mode. Specifically, sizeof will return an 8-byte value in 64-bit and a 4-byte value in
32-bit mode. The same applies to prtdiff_t , which is signed long in both modes.

v m:n thread may exhaust memory rapidly

The m:n thread model is one of the 3 models used to map user threads to kernel threads.

– In the m:1 model, all user threads are mapped to one kernel thread, and all user threads run on one
virtual processor. This is the traditional model on single-threaded systems.

– In the 1:1 model, each user thread is mapped to one kernel thread, and each user thread runs on
one virtual processor. POSIX 1003.1c Draft 7-based applications continue to run in 1:1 mode.

– In the m:n model, all user threads are mapped to a pool of kernel threads, and all user threads run
on a pool of virtual processors. One user thread may be bound to a specific virtual processor (like
1:1) with remaining threads using the remaining virtual processors in the pool. This is the newest
and most complex model. It is the default for XPG-5.

Previously, AIX 4.3.0 XPG-5 based applications ran in 1:1 mode. The same application now runs in m:n
mode in AIX 4.3.1. The application should continue to function correctly, however, the performance of
the application is likely to change.

© Copyright IBM Corp. 1995, 1999 345

The AIXTHREAD_SCOPE environment variable resets the disposition of the default attribute. This can
be used to change the scheduling policy from m:n to 1:1 or vice versa. Settings for this environment
variable are:

AIXTHREAD_SCOPE=sched_policy

where sched_policy is one of:

P - process based scheduling (m:n)
S - system based scheduling (1:1)

The AIXTHREAD_SCOPE environment variable can also be used to overcome problems associated
with the m:n based scheduling. APAR IX76628 is available to fix these problems.

We recommend setting the environment variable to S if your threaded application encounters problems.

“Appendix B. 32-bit to 64-bit Migration Considerations” on page 341

346 C for AIX User’s Guide

Appendix D. Preprocessor Directives and Related Information

List of Standard Preprocessor Directives

This page lists and briefly describes preprocessor directives available to you with C for AIX. To get more
information on any item listed here, go to the reference page for that item.

Preprocessor Directives

Name Action

“# (Null) Preprocessor Directive” Null directive specifying that no action be performed.

“#define Preprocessor Directive” on page 348 Defines a preprocessor macro.

“#if, #elif Preprocessor Directives” on page 352 Conditionally includes source text if the previous #if ,
#ifdef , #ifndef , or #elif test fails.

“#else Preprocessor Directive” on page 353 Conditionally includes source text if the previous #if ,
#ifdef , #ifndef , or #elif test fails.

“#endif Preprocessor Directive” on page 353 Ends conditional text.

“#error Preprocessor Directive” on page 354 Defines text for a compile-time error message.

“#if, #elif Preprocessor Directives” on page 352 Conditionally includes or suppresses portions of source
code, depending on the result of a constant expression.

“#ifdef Preprocessor Directive” on page 354 Conditionally includes source text if a macro name is
defined.

“#indef Preprocessor Directive” on page 355 Conditionally includes source text if a macro name is not
defined.

“#include Preprocessor Directive” on page 356 Inserts text from another source file.

“#line Preprocessor Directive” on page 357 Supplies a line number for compiler messages.

“#pragma Preprocessor Directives” on page 363 Specifies implementation-defined instructions to the
compiler.

“#undef Preprocessor Directive” on page 358 Removes a preprocessor macro definition.

“Preprocessor Directives” on page 58
“Preprocessing Operations” on page 59
“Preprocessor Macros” on page 59
“Conditional Compilation Directives” on page 60
“#pragma Preprocessor Directives” on page 363
“#pragma Preprocessor Directives for Parallel Processing” on page 381

(Null) Preprocessor Directive

The null directive performs no action. It consists of a single # on a line of its own.

The null directive should not be confused with the # operator or the character that starts a preprocessor
directive.

In the following example, if MINVAL is a defined macro name, no action is performed. If MINVAL is not a
defined identifier, it is defined 1.

#ifdef MINVAL
#

#else
#define MINVAL 1

#endif

© Copyright IBM Corp. 1995, 1999 347

“Preprocessor Directives” on page 58
“List of Standard Preprocessor Directives” on page 347

#define Preprocessor Directive

A preprocessor define directive directs the preprocessor to replace all subsequent occurrences of a macro
with specified replacement tokens.

348 C for AIX User’s Guide

The #define directive can contain an object-like definition or a function-like definition

Object-Like Macros An object-like macro definition replaces a single identifier
with the specified replacement tokens. The following
object-like definition causes the preprocessor to replace all
subsequent instances of the identifier COUNT with the
constant 1000:

#define COUNT 1000

If the statement

int arry[COUNT];

appears after this definition and in the same file as the
definition, the preprocessor would change the statement
to

int arry[1000];

in the output of the preprocessor.

Other definitions can make reference to the identifier
COUNT:

#define MAX_COUNT COUNT + 100

The preprocessor replaces each subsequent occurrence
of MAX_COUNT with COUNT + 100, which the preprocessor
then replaces with 1000 + 100.

If a number that is partially built by a macro expansion is
produced, the preprocessor does not consider the result to
be a single value. For example, the following will not result
in the value 10.2 but in a syntax error.

#define a 10
a.2

Using the following also results in a syntax error:

#define a 10
#define b a.11

To have the preprocessor treat the result as a single
value, preprocess your source files using the -P compiler
option and then compile the resulting .i file.

Identifiers that are partially built from a macro expansion
may not be produced. Therefore, the following example
contains two identifiers and results in a syntax error:

#define d efg
abcd

Appendix D. Preprocessor Directives and Related Information 349

Function-Like Macros To define a function-like macro, specify an identifier name
followed by a parenthesized parameter list in parenthesis
and the replacement tokens. The parameters are
imbedded in the replacement code. White space cannot
separate the identifier (which is the name of the macro)
and the left parenthesis of the parameter list. A comma
must separate each parameter. For portability, you should
not have more than 31 parameters for a macro.

Use function-like macros in your program as follows. In
the body of your program source, insert a defined
function-like macro name followed by a list of arguments
in parentheses. A comma must separate each argument.
Once the preprocessor identifies a function-like macro
invocation, argument substitution takes place. Parameters
in the replacement code are replaced by the
corresponding arguments. Any macro invocations
contained in an argument itself are completely replaced
before the argument replaces its corresponding parameter
in the replacement code.

Examples of Usage
The following line defines the macro SUM as having two
parameters a and b and the replacement tokens (a + b):

#define SUM(a,b) (a + b)

This definition causes the preprocessor to change the
following statements (if the statements appear after the
previous definition):

c = SUM(x,y);
c = d * SUM(x,y);

In the output of the preprocessor, these statements would
appear as:

c = (x + y);
c = d * (x + y);

Use parentheses to ensure correct evaluation of
replacement text. For example, the definition:

#define SQR(c) ((c) * (c))

requires parentheses around each parameter c in the
definition in order to correctly evaluate an expression like:

y = SQR(a + b);

The preprocessor expands this statement to:

y = ((a + b) * (a + b));

Without parentheses in the definition, the correct order of
evaluation is not preserved, and the preprocessor output
is:

y = (a + b * a + b);

350 C for AIX User’s Guide

Notes :

1. Arguments of the # and ## operators are converted before replacement of parameters in a function-like macro.

2. The number of arguments in a mcro invocation must be the same as the number of parameters in the
corresponding macro definition.

3. Commas in the macro invocation argument list do not act as argument separators when they are:

v in character constants

v in string literals

v surrounded by parenthesis

4. The scope of a macro definition begins at the definition and does not end until a corresponding #undef directive is
encountered. If there is no corresponding #undef directive, the scope of the macro lasts until the end of the
compilation is reached.

5. A recursive macro is not fully expanded. For example, the definition

#define x(a,b) x(a+1,b+1) + 4

would expand

x(20,10)

to

x(20+1,10+1) + 4

rather than trying to expand the macro x over and over within itself.

6. A definition is not required to specify replacement tokens. The following definition removes all instances of the
token debug from subsequent lines in the current file:

#define debug

This is the same as specifying the -Ddebug= compiler option. Note that specifying -Ddebug without the = (equal
sign) gives the digit 1 as replacement text.

7. You can change the definition of a defined identifer or macro with a second preprocessor #define directive only if
the second preprocessor #define statement is preceded by a preprocessor #undef directive. The #undef directive
nullifies the first definition so that the same identifier can be used in a redefinition.

8. Within the text of the program, the preprocessor does not scan character constants or string constants for macro
invocations.

“Preprocessor Macros” on page 59
“Preprocessor Directives” on page 58
“Example of the #define Preprocessor Directive”
“#undef Preprocessor Directive” on page 358
“Predefined Preprocessor Macros” on page 359
“Preprocessor Macro Operators” on page 377
“List of Standard Preprocessor Directives” on page 347
“#undef Preprocessor Directive” on page 358
“D” on page 250
“P” on page 307

Example of the #define Preprocessor Directive

The following program contains two macro definitions and a macro invocation that refers to both of the
defined macros:
/**
** This example illustrates #define directives.
**/
#include <stdio.h>
#define SQR(s) ((s) * (s))
#define PRNT(a,b) \
printf(“value 1 = %d\n”, a); \

Appendix D. Preprocessor Directives and Related Information 351

printf(“value 2 = %d\n”, b) ;
int main(void)
{
int x = 2;
int y = 3;

PRNT(SQR(x),y);
return(0);

}

After being interpreted by the preprocessor, this program is replaced by code equivalent to the following:
#include <stdio.h>
int main(void)
{
int x = 2;
int y = 3;

printf(“value 1 = %d\n”, ((x) * (x)));
printf(“value 2 = %d\n”, y);

return(0);
}

This program produces the following output:
value 1 = 4
value 2 = 3

“Preprocessor Macros” on page 59
“#define Preprocessor Directive” on page 348
“List of Standard Preprocessor Directives” on page 347

#if, #elif Preprocessor Directives

The #if and #elif directives compare the value of the expression to zero.

If the constant expression evaluates to a nonzero value, the tokens that immediately follow the condition
are passed on to the compiler.

If the expression evaluates to zero and the conditional compilation directive contains a preprocessor #elif
directive, the source text located between the #elif and the next #elif or #else preprocessor directive is
selected by the preprocessor to be passed on to the compiler. The #elif directive cannot appear after the
preprocessor #else directive.

All macros are expanded, any defined() expressions are processed and all remaining identifiers are
replaced with the token 0.

The expressions that are tested must be integer constant expressions with the following properties:

v No casts are performed.

v Arithmetic is performed using long int values.

v The expression can contain defined macros. No other identifiers can appear in the expression.

v The constant expression can contain the unary operator defined . This operator can be used only with
the preprocessor keyword #if . The following expressions evaluate to 1 if the identifier is defined in the
preprocessor, otherwise to 0:

defined identifier defined(identifier)

352 C for AIX User’s Guide

For example:
#if defined(TEST1) || defined(TEST2)

Note: If a macro is not defined, a value of 0 (zero) is assigned to it. In the following example, TEST must
be a macro identifier:

#if TEST >= 1
printf(“i = %d\n”, i);
printf(“array[i] = %d\n”, array[i]);

#elif TEST <0
printf(“array subscript out of bounds \n”);

#endif

“Conditional Compilation Directives” on page 60
“Preprocessor Directives” on page 58
“Examples of Conditional Preprocessor Directives” on page 355
“#else Preprocessor Directive”
“#endif Preprocessor Directive”
“#ifdef Preprocessor Directive” on page 354
“#indef Preprocessor Directive” on page 355
“List of Standard Preprocessor Directives” on page 347

#else Preprocessor Directive

If the condition specified in the #if , #ifdef , or #ifndef directive evaluates to 0, and the conditional
compilation directive contains a preprocessor #else directive, the source text located between the
preprocessor #else directive and the preprocessor #endif directive is selected by the preprocessor to be
passed on to the compiler.

“Conditional Compilation Directives” on page 60
“Preprocessor Directives” on page 58
“Examples of Conditional Preprocessor Directives” on page 355
“#if, #elif Preprocessor Directives” on page 352
“#endif Preprocessor Directive”
“#if, #elif Preprocessor Directives” on page 352
“#ifdef Preprocessor Directive” on page 354
“#indef Preprocessor Directive” on page 355
“List of Standard Preprocessor Directives” on page 347

#endif Preprocessor Directive

The preprocessor #endif directive ends the “#if, #elif Preprocessor Directives” on page 352 conditional
compilation directive.

Appendix D. Preprocessor Directives and Related Information 353

“Conditional Compilation Directives” on page 60
“Preprocessor Directives” on page 58
“Examples of Conditional Preprocessor Directives” on page 355
“#if, #elif Preprocessor Directives” on page 352
“#else Preprocessor Directive” on page 353
“#if, #elif Preprocessor Directives” on page 352
“#ifdef Preprocessor Directive”
“#indef Preprocessor Directive” on page 355
“List of Standard Preprocessor Directives” on page 347

#error Preprocessor Directive

A preprocessor error directive causes the preprocessor to generate a severe (S) compile-time diagnostic
error message. Preprocessing continues, but no object code is generated.

Use the #error directive as a safety check during compilation. For example, if your program uses
preprocessor conditional compilation directives, put #error directives in the source file to prevent code
generation if a section of the program is reached that should be bypassed.

For example, the directive
#error Error in TESTPGM1 - This section should not be compiled

generates the following error message:
Error in TESTPGM1 - This section should not be compiled

“Preprocessor Directives” on page 58
“List of Standard Preprocessor Directives” on page 347

#ifdef Preprocessor Directive

The #ifdef directive checks for the existence of macro definitions.

If the identifier specified is defined as a macro, the tokens that immediately follow the condition are passed
on to the compiler.

The following example defines MAX_LEN to be 75 if EXTENDED is defined for the preprocessor. Otherwise,
MAX_LEN is defined to be 50.

#ifdef EXTENDED
define MAX_LEN 75
#else
define MAX_LEN 50
#endif

354 C for AIX User’s Guide

“Conditional Compilation Directives” on page 60
“Preprocessor Directives” on page 58
“Examples of Conditional Preprocessor Directives”
“#if, #elif Preprocessor Directives” on page 352
“#endif Preprocessor Directive” on page 353
“#if, #elif Preprocessor Directives” on page 352
“#indef Preprocessor Directive”
“List of Standard Preprocessor Directives” on page 347

#indef Preprocessor Directive

The #ifndef directive checks for the existence of macro definitions.

If the identifier specified is not defined as a macro, the tokens that immediately follow the condition are
passed on to the compiler.

An identifier must follow the #ifndef keyword. The following example defines MAX_LEN to be 50 if EXTENDED
is not defined for the preprocessor. Otherwise, MAX_LEN is defined to be 75.

#ifndef EXTENDED
define MAX_LEN 50
#else
define MAX_LEN 75
#endif

“Conditional Compilation Directives” on page 60
“Preprocessor Directives” on page 58
“Examples of Conditional Preprocessor Directives”
“#if, #elif Preprocessor Directives” on page 352
“#endif Preprocessor Directive” on page 353
“#if, #elif Preprocessor Directives” on page 352
“#ifdef Preprocessor Directive” on page 354
“List of Standard Preprocessor Directives” on page 347

Examples of Conditional Preprocessor Directives

Example 1
The following example shows how you can nest preprocessor conditional compilation directives:
#if defined(TARGET1)
define SIZEOF_INT 16
ifdef PHASE2
define MAX_PHASE 2
else
define MAX_PHASE 8
endif
#elif defined(TARGET2)
define SIZEOF_INT 32
define MAX_PHASE 16
#else
define SIZEOF_INT 32
define MAX_PHASE 32
#endif

Appendix D. Preprocessor Directives and Related Information 355

Example 2
The following program contains preprocessor conditional compilation directives:
/**
** This example contains preprocessor
** conditional compilation directives.
**/
#include <stdio.h>
int main(void)
{

static int array[] = { 1, 2, 3, 4, 5 };
int i;
for (i = 0; i <= 4; i++)
{

array[i] *= 2;
#if TEST >= 1

printf(“i = %d\n”, i);
printf(“array[i] = %d\n”, array[i]);

#endif
}
return(0);

}

“Conditional Compilation Directives” on page 60
“#if, #elif Preprocessor Directives” on page 352
“#else Preprocessor Directive” on page 353
“#endif Preprocessor Directive” on page 353
“#if, #elif Preprocessor Directives” on page 352
“#ifdef Preprocessor Directive” on page 354
“#indef Preprocessor Directive” on page 355

#include Preprocessor Directive

A preprocessor include directive causes the preprocessor to replace the directive with the contents of the
specified file.

The preprocessor resolves macros contained in a #include directive. After macro replacement, the
resulting token sequence must consist of a file name enclosed in either double quotation marks or the
characters < and >. For example:

#define MONTH <july.h>
#include MONTH

If the file name is enclosed in double quotation marks, (“) the preprocessor searches the place (for
example, directories or libraries) that contain the source files and then a standard or specified sequence of
places until it finds the specified file. For example:

#include ”payroll.h“

If the file name is enclosed in the characters < and >, the preprocessor searches only the standard or
specified places for the specified file. For example:

#include <stdio.h>

The -I compiler option specifies a search path if the file name in the #include directive is not an absolute
path.

356 C for AIX User’s Guide

“Preprocessor Directives” on page 58
“Examples of the #include Preprocessor Directive”
“List of Standard Preprocessor Directives” on page 347
“I” on page 272

Examples of the #include Preprocessor Directive

Example 1
Declarations that are used by several files can be placed in one file and included with #include in each
file that uses them. For example, the following file defs.h contains several definitions and an inclusion of
an additional file of declarations:

/* defs.h */
#define TRUE 1
#define FALSE 0
#define BUFFERSIZE 512
#define MAX_ROW 66
#define MAX_COLUMN 80
int hour;
int min;
int sec;
#include “mydefs.h”

You can embed the definitions that appear in defs.h with the following directive:
#include “defs.h”

The preprocessor looks for the file defs.h first in the directory that contains the source file. If the file is not
found there, the preprocessor searches a sequence of specified or standard locations.

Example 2
In the following example, a #define combines several preprocessor macros to define a macro that
represents the name of the C standard I/O header file. A #include makes the header file available to the
program.

#define IO_HEADER <stdio.h>
.
.
.

#include IO_HEADER /* equivalent to specifying #include <stdio.h> */
.
.
.

“Preprocessor Directives” on page 58
“#include Preprocessor Directive” on page 356
“List of Standard Preprocessor Directives” on page 347

#line Preprocessor Directive

A preprocessor line control directive supplies line numbers for compiler messages. It causes the compiler
to view the line number of the next source line as the specified number.

Appendix D. Preprocessor Directives and Related Information 357

In order for the compiler to produce meaningful references to line numbers in preprocessed source, the
preprocessor inserts #line directives where necessary (for example, at the beginning and after the end of
included text).

A file name specification enclosed in double quotation marks can follow the line number. If you specify a
file name, the compiler views the next line as part of the specified file. If you do not specify a file name,
the compiler views the next line as part of the current source file.

The token sequence on a #line directive is subject to macro replacement. After macro replacement, the
resulting character sequence must consist of a decimal constant, optionally followed by a file name
enclosed in double quotation marks.

Note: In extended mode, the keyword line is optional. The directive
line 300

is equivalent to
300

The keyword line is required in ansi mode.

“Preprocessor Directives” on page 58
“List of Standard Preprocessor Directives” on page 347

#undef Preprocessor Directive

A preprocessor undef directive causes the preprocessor to end the scope of a preprocessor definition.

If the identifier is not currently defined as a macro, #undef is ignored

Macros can also be undefined with the -U compiler option.

Example of Usage
The following directives define BUFFER and SQR:
#define BUFFER 512
#define SQR(x) ((x) * (x))

The following directives nullify these definitions:

#undef BUFFER
#undef SQR

Any occurrences of the identifiers BUFFER and SQR that follow these #undef directives are not replaced with
any replacement tokens. Once the definition of a macro has been removed by an #undef directive, the
identifier can be used in a new #define directive.

“Preprocessor Macros” on page 59
“Preprocessor Directives” on page 58
“#define Preprocessor Directive” on page 348
“List of Standard Preprocessor Directives” on page 347
“#define Preprocessor Directive” on page 348
“U” on page 332

358 C for AIX User’s Guide

Predefined Preprocessor Macros

C for AIX includes two groups of predefined preproccessor macros. The first group contains macros
defined by the ANSI standard for the C programming language. The second group contains macros
provided by C for AIX.

ANSI Standard Predefined Preprocessor Macros

Name Description

__LINE__ An integer describing the current source line number.

The value of __LINE__ changes during compilation as the compiler processes subsequent
lines of your source program. It can be set with the #line directive.

__FILE__ A character string literal conatining the name of the source file.

The value of __FILE__ changes as the compiler processes include files that are part of your
source program. It can be set with the #line directive.

__DATE__ A character string literal containg the date when the source file was compiled.

The value of __DATE__ changes as the compiler processes any include files that are part of
your source program. The date is in the form:

“Mmm dd yyyy”

where:

Mmm Represents the month in an abbreviated form (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug,
Sep, Oct, Nov, or Dec).

dd Represents the day of the month. If the day is less than 10, the first d is a blank
character.

yyyy Represents the year.

__STDC__ The integer 1 (one) indicates that the C compiler conforms to the ANSI standard.

Note: This macro is undefined if the language level is set to anything other than ANSI.

__TIME__ A character string literal containing the time when the source file was compiled.

The value of __TIME__ changes as the compiler processes any include files that are part of
your source program. The time is in the form:

“hh:mm:ss”

where:

hh Represents the hour.

dd Represents the minutes.

yyyy Represents the seconds.

The time is always set to the system time.

Appendix D. Preprocessor Directives and Related Information 359

Name Description

__TIMESTAMP__ A character string literal containing the date and time when the source file was last modified.

The value of __TIMESTAMP__ changes as the compiler process any include files that are
part of your source program. The date and the time are in the form:

“Day Mmm dd hh:mm:ss yyyy”

where:

Day Represents the day of the week. (Mon, Tue, Wed, Thu, Fri, Sat, or Sun).

Mmm Represents the month in an abbreviated form (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug,
Sep, Oct, Nov, or Dec).

dd Represents the day of the month. If the day is less than 10, the first d is a blank
character.

hh Represents the hour.

mm Represents the minutes.

ss Represents the seconds.

yyyy Represents the seconds.

The date and time are always set to the system date and time.

Note: You cannot use the -U option to undefine a predefined macro name.

C for AIX Predefined Preprocessor Macros

Name Description

__64BIT__ Defined if the compiler is invoked to compile in 64-bit mode. This macro should not be
user-defined or redefined.

_AIX32 Defined if the operating system is AIX version 3.2 or higher.

_AIX41 Defined if the operating system is AIX version 4.1 or higher.

_AIX43 Defined if the operating system is AIX version 4.3 or higher.

__ANSI__ Allows only language constructs that conform to ANSI C standards.

Defined using the #pragma langlvl directive or the -qlanglvl compiler option.

ARCH* Indicates that the compiler generates code to run on the family of processors denoted by *.

See the -qarch compiler option for more information.

_CHAR_SIGNED Indicates that the default character type is signed.

Defined when the -qchars=signed compiler option is in effect. See the -qchars compiler
option for more information.

_CHAR_UNSIGNED Indicates that the default character type is unsigned.

Defined when the -qchars=unsigned compiler option is in effect. See the -qchars compiler
option for more information.

__CLASSIC__ Macro defined when the classic language level is specified.

Defined using the #pragma langlvl directive or the -qlanglvl compiler option.

__EXTENDED__ Allows additional language constructs provided by the C for AIX implementation.

Defined using the #pragma langlvl directive or the -qlanglvl compiler option.

360 C for AIX User’s Guide

Name Description

__FUNCTION__ Indicates the name of the function being compiled.

__HOS_AIX__ Indicates the host operating system is AIX.

__IBMC__ Macro contains the version number of the compiler, for example, __IBMC__=450. This
macro should be used innew code.

__IBMSMP Macro defined when the when the -qsmp compiler option is selected.

_ILP32 Defined if the compiler is using the 32-bit data model. This data model is used when
compiling programs for 32-bit mode. This macro should not be user-defined or redefined.

_LONG_LONG Macro defined when the compiler is in a mode that permits long long int and unsigned
long long int types.

_LONGDOUBLE128 Sets the number of bits to use when representing the value of a long double. The available
options are 64 and 128 bits.

_LP64 Defined if the compiler is using the 64-bit data model. This data model is used when
compiling programs for 64-bit mode. This macro should not be user-defined or redefined.

__MATH__ Instructs the compiler to generate substitute code for calls to some math functions available
in the standard C runtime libraries, if appropriate.

The functions handled this way are defined as replacement text for macros that begin with
two underscores (__) in the /usr/vac/include/math.h header file.

_OPENMP Macro defined when the -qsmp=omp compiler option is set to enable full compliance to the
OpenMP API specification.

_POWER Indicates the operating system is AIX 4.1 or higher.

__SAA__ Allows only language constructs that conform to the most recent level of the SAA C
standards.

Defined using the #pragma langlvl directive or the -qlanglvl compiler option.

__SAAL2__ Allows only language constructs that conform to the most recent level of the SAA Level 2 C
standards.

Defined using the #pragma langlvl directive or the -qlanglvl compiler option.

__STR__ Instructs the compiler to generate substitute code for calls to some string functions available
in the standard C runtime libraries, if appropriate.

The functions handled this way are defined as replacement text for macros that begin with
two underscores (__) in the /usr/vac/include/string.h header file.

__THW_INTEL__ Indicates that the target hardware is an Intel processor.

__THW_RS6000__ Indicates that the target hardware is a RISC/6000 processor.

__xlC__ A hexadecimal constant containing the version number of the compiler. The version is in the
form:

0xVVRR

where:

VV Represents the compiler version number.

RR Represents the compiler release number.

For C for AIX Version 5 Release 0, the macro has the value 0x0500.

Appendix D. Preprocessor Directives and Related Information 361

Name Description

__XLC121__ Instructs the compiler to generate substitute code for calls to some new string and math
functions.

The functions handled this way are defined as replacement text for macros that begin with
two underscores (__) in the following header files:

v /usr/vac/include/string.h

v /usr/vac/include/math.h

v /usr/vac/include/stdlib.h

v /usr/vac/include/stream.h

Notes:

1. The value of all C for AIX macros are defined when the corresponding #pragma directive or compiler
option is used.

2. Except for __MATH, __STR__, and __XLC121__ macros, predefined macro names cannot be the
subject of a #define or #undefine preprocessor directive. The preprocessor ignores any redefined
macros and issues an error message.

3. You cannot use the -U option to undefine a predefinedmacro name.

“Preprocessor Directives” on page 58
“Preprocessor Macros” on page 59
“C Language Levels” on page 78
“Examples of Predefined Macros in a Program”
“#define Preprocessor Directive” on page 348
“#line Preprocessor Directive” on page 357
“#pragma langlvl Preprocessor Directive” on page 373
“Preprocessor Macro Operators” on page 377
“List of Standard Preprocessor Directives” on page 347
“U” on page 332
“arch” on page 237
“langlvl” on page 286
“smp” on page 320

Examples of Predefined Macros in a Program

Example 1
The following printf statements display the values of the predefined macros __LINE__, __FILE__,
__TIME__, and __DATE__ and print a message indicating the program’s conformance to ANSI/ISO
standards based on __STDC__:
/**
** This example illustrates some predefined macros.
**/
#pragma langlvl(ANSI)
#include <stdio.h>
#if __STDC__
define CONFORM “conforms”
#else
define CONFORM “does not conform”
#endif
int main(void)
{
printf(“Line %d of file %s has been executed\n”, __LINE__, __FILE__);
printf(“This file was compiled at %s on %s\n”, __TIME__, __DATE__);
printf(“This program %s to ANSI/ISO standard C\n”, CONFORM);

}

362 C for AIX User’s Guide

Example 2
The following program uses the __FUNCTION__ macro to determine the name of the program function
currently in effect.
/**
** This example illustrates the __FUNCTION__ predefined macro
** in a C program.
**/
#include <stdio.h>int foo(int);
main(int argc, char **argv) {

int k = 1;
printf (“ In function %s \n”,__FUNCTION__);
foo(k);

}
int foo (int i) {

printf (“ In function %s \n”,__FUNCTION__);
}

The output of this example is:
In function main
In function foo

“Preprocessor Directives” on page 58
“Predefined Preprocessor Macros” on page 359
“#define Preprocessor Directive” on page 348
“#line Preprocessor Directive” on page 357
“#undef Preprocessor Directive” on page 358
“List of Standard Preprocessor Directives” on page 347

#pragma Preprocessor Directives

A pragma is an implementation-defined instruction to the compiler. It has the general form:

where character_sequence is a series of characters giving a specific compiler instruction and arguments, if
any.

The character_sequence on a pragma is not subject to macro substitutions. More than one pragma
construct can be specified on a single #pragma directive. The compiler ignores unrecognized pragmas.

Some #pragma directives, as indicated in the list below, must appear before any statements in the C
source code. The other #pragma directives can be used throughout your program to affect a selected
block of source code.

The C for AIX compiler lets you specify many compiler options as either command line options or as
#pragma statements. In addition, the C for AIX compiler recognizes the pragmas listed below:

Pragma Directive Description

Appendix D. Preprocessor Directives and Related Information 363

“#pragma alloca
Preprocessor
Directive” on page 365

Provides an inline version of function alloca . This directive must appear before any
statements in the C source code.

“#pragma chars
Preprocessor
Directive” on page 365

Sets the sign type of character data. This directive must appear before any statements in
the C source code.

“#pragma comment
Preprocessor
Directive” on page 366

Places a comment into the object file.

“#pragma disjoint
Preprocessor
Directive” on page 366

Lists identifiers not aliased to each other within the current scope of their use.

“#pragma
execution_frequency
Preprocessor
Directive” on page 367

Identifies the expected frequency with which a block of code will be executed.

“#pragma hdrfile
Preprocessor
Directive” on page 368

Specifies the file name of the precompiled header to be generated and/or used.

“#pragma hdrstop
Preprocessor
Directive” on page 369

Terminates the initial sequence of #include directives being considered for precompilation.

“#pragma info
Preprocessor
Directive” on page 370

Controls the diagnostic messages generated by the -qinfo compiler option.

“#pragma isolated_call
Preprocessor
Directive” on page 371

Lists functions that do not alter data objects visible at the time of the function call.

“#pragma langlvl
Preprocessor
Directive” on page 373

Selects the C language level for compilation. This directive must appear before any
statements in the C source code.

“#pragma leaves
Preprocessor
Directive” on page 373

Specifies that a given function never returns.

“#pragma map
Preprocessor
Directive” on page 374

Tells the compiler that all references to an identifier are to be converted to “name”.

“#pragma
option_override
Preprocessor
Directive” on page 374

Lets you specify alternate optimization options for specific functions.

“#pragma options
Preprocessor
Directive” on page 375

Specifies settings for compiler options in your source program.

“#pragma reachable
Preprocessor
Directive” on page 376

Specifies that the point after a given routine, marked reachable, can be reached from a point
other than the return from that routine.

“#pragma strings
Preprocessor
Directive” on page 376

Sets storage type for strings. This directive must appear before any statements in the C
source code.

Note: The #pragma page , #pragma skip , #pragma subtitle , and #pragma title directives are not
recognized by the C for AIX compiler.

364 C for AIX User’s Guide

Another set of pragma directives let you control parallel processing operations. See “#pragma
Preprocessor Directives for Parallel Processing” on page 381 for more information.

“Preprocessor Directives” on page 58
“List of Standard Preprocessor Directives” on page 347
“#pragma Preprocessor Directives for Parallel Processing” on page 381
“Compiler Options and Their Defaults” on page 218
“info” on page 275

#pragma alloca Preprocessor Directive

The #pragma alloca directive specifies that the function alloca(size_t size) is to allocate space for an
object of size bytes. The allocated space is put on the stack.

You must include the #pragma alloca directive to have the compiler provide an inline version of alloca .
Alternatively, the -ma compiler option substitutes inline code for calls to function alloca without specifying
the #pragma alloca directive in the source code. If #pragma alloca is unspecified, or if you do not use
-ma, alloca is treated as a user-defined identifier, rather than as a built-in function.

This pragma must be included in the source before the first function definition. Once specified, it applies to
the rest of the file and cannot be turned off. If a program source contains functions that you want compiled
without #pragma alloca , place these functions in a different file.

Whenever you make a call to alloca , you must include the header file <malloc.h> to define alloca .
Header files are described in the AIX Version 4 Files Reference.

“Preprocessor Directives” on page 58
“#pragma Preprocessor Directives” on page 363
“List of Standard Preprocessor Directives” on page 347
“ma” on page 295

#pragma chars Preprocessor Directive

The #pragma chars directive specifies that the compiler is to treat all char objects as signed or
unsigned .

This pragma must appear before any statements in a file. Once specified, it applies to the rest of the file
and cannot be turned off. If a program file contains functions that you want compiled without #pragma
chars , place these functions in a different file.

The chars compiler option has the same effect as this pragma.

The _CHAR_SIGNED or _CHAR_UNSIGNED macros are defined according to the setting of the -qchars
option or corresponding preprocessor directives.

Appendix D. Preprocessor Directives and Related Information 365

“Preprocessor Directives” on page 58
“#pragma Preprocessor Directives” on page 363
“List of Standard Preprocessor Directives” on page 347
“chars” on page 244

#pragma comment Preprocessor Directive

The #pragma comment directive places a comment into the object file.

compiler The compiler appends the name and version of the compiler to the end of the generated
object module.

date The compiler appends the date and time of compilation to the end of the generated object
module.

timestamp The compiler appends the date and time of the last modification to the sourcer to the end of
the generated object module.

copyright The compiler places text specified by the token_string into the generated object module. This
text loads into memory when the program runs.

user The compiler places text specified by the token_string into the generated object module. This
text does not load into memory when the program runs.

“Preprocessor Directives” on page 58
“#pragma Preprocessor Directives” on page 363
“List of Standard Preprocessor Directives” on page 347

#pragma disjoint Preprocessor Directive

The #pragma disjoint directive lists the identifiers that are not aliased to each other within the scope of
their use.

where identifier is a primary expression that can be the name of an operator function, conversion function,
destructor, or a qualified name.

The directive informs the compiler that none of the identifiers listed shares the same physical storage,
which provides more opportunity for optimizations. If any identifiers actually share physical storage, the
pragma may give incorrect results.

The pragma can appear anywhere in the source program that a declaration is allowed. An identifier in the
directive must be visible at the point in the program where the pragma appears. The identifiers in the
disjoint name list cannot refer to any of the following:

v A member of a structure, or union

v A structure, union, or enumeration tag

v An enumeration constant

v A typedef name

366 C for AIX User’s Guide

v A label

The identifiers must be declared before they are used in the pragma. A pointer in the identifier list must not
have been dereferenced or used as a function argument before appearing in the directive.

The -qignprag compiler option causes aliasing pragmas to be ignored. Use this option to debug
applications containing the #pragma disjoint directive.

“Preprocessor Directives” on page 58
“Example of the #pragma disjoint Preprocessor Directive”
“#pragma Preprocessor Directives” on page 363
“List of Standard Preprocessor Directives” on page 347
“ignprag” on page 274
“ignprag” on page 274

Example of the #pragma disjoint Preprocessor Directive

The following example shows the use of #pragma disjoint .

int a, b, *ptr_a, ptr_b;
#pragma disjoint(*ptr_a, b) // *ptr_a never points to b
#pragma disjoint(*ptr_b, a) // *ptr_b never points to a
one_function()
{
b = 6;
*ptr_a = 7; // Assignment will not change the value of b
another_function(b); // Argument “b” has the value 6
}

Because external pointer ptr_a does not share storage with and never points to the external variable b,
the assignment of 7 to the object that ptr_a points to will not change the value of b. Likewise, external
pointer ptr_b does not share storage with and never points to the external variable a. The compiler can
assume that the argument to another_function has the value 6 and will not reload the variable from
memory.

“Preprocessor Directives” on page 58
“#pragma disjoint Preprocessor Directive” on page 366
“#pragma Preprocessor Directives” on page 363
“List of Standard Preprocessor Directives” on page 347

#pragma execution_frequency Preprocessor Directive

The #pragma execution_frequency directive identifies the expected frequency with which a block of code
will be executed. This information is used by the compiler as hint to the optimizer.

The currently accepted value for frequency is:

very_low The probability of execution for the statement block in
which the pragma resides is very close to nil.

This pragma has effect only if:

Appendix D. Preprocessor Directives and Related Information 367

v the program is optimized.

v the pragma is placed inside statements with block scope such as if-then-else, looping and switch
statements. A warning message is issued and the pragma ignored if it is placed outside of block scope.

Examples

1. In the following sample program, execution is unlikely to branch through Block A:
int *array = (int *) malloc(10000);

if (array == NULL) {
/* Block A */
#pragma execution_frequency(very_low) error();}

2. In the following sample program, code “Block B” is marked as being infrequently executed, indicating
that “Block C” is most likely to be chosen during branching.
if (Foo > 0) { #pragma execution_frequency(very_low)

/* Block B */
doSomething();

} else {
/* Block C */
doAnotherThing();

}

“Preprocessor Directives” on page 58
“List of Standard Preprocessor Directives” on page 347

#pragma hdrfile Preprocessor Directive

The #pragma hdrfile directive specifies the file name of the precompiled header to be generated and/or
used.

This pragma must appear before the first #include directive, and either the -qgenpcomp or -qusepcomp
compiler options must also be specified.

If a file name is specified by both a -qgenpcomp or -qusepcomp compiler option and a #pragma hdrfile
entry, the name specified by the pragma takes precedence. If the name specified is a directory, the
compiler searches for or generates a file with the default name in that directory.

In order to maximize the reuse of precompiled headers, use #pragma hdrfile in combination with
#pragma hdrstop to manually limit the initial sequence of #include directives.

Using precompiled header files can decrease compile time. Using precompiled headers will not improve
compile time performance in most applications without some organization of the headers included by each
source file.

Some examples of #pragma hdrfile directives are:
/**
*
In the following example, the headers h1.h and h2.h are precompiled and
the precompiled output is written to the file fred.pch (provided the
-qgenpcomp compiler option is specified). If -qgenpcomp=dave.pch is
specified, the precompiled output will still be written to fred.pch since
the name specified in the pragma takes precedence. To use the precompiled
output in fred.pch when compiling, specify the -qusepcomp compiler option.
*

368 C for AIX User’s Guide

**/
#pragma hdrfile “fred.pch”
#include “h1.h”
#include “h2.h”
main () {}
/**
*
In the following example, only header h1.h will be precompiled (provided
the -qgenpcomp compiler option is specified) and the precompiled output
is written to the file fred.pch. To use the precompiled output in fred.pch
when compiling, specify the -qusepcomp compiler option.
*
**/
#pragma hdrfile “fred.pch”
#include “h1.h”
#pragma hdrstop
#include “h2.h”
main () {}

“Preprocessor Directives” on page 58
“List of Standard Preprocessor Directives” on page 347
“#pragma hdrstop Preprocessor Directive”
“genpcomp” on page 267
“usepcomp” on page 335

#pragma hdrstop Preprocessor Directive

The #pragma hdrstop directive manually terminates the initial sequence of #include directives being
considered for precompilation.

It has no effect if:

v The initial sequence of #include directives has already ended

v Neither the -qgenpcomp or -qusepcomp compiler options are specified

v It does not appear in the primary source file

Using precompiled header files can decrease compile time. Using precompiled headers will not improve
compile time performance in most applications without some organization of the headers included by each
source file.

Some examples of #pragma hdrfile directives are:
/**
*
In the following example, only header file h1.h is precompiled and the
precompiled output is written to the file csetc.pch (provided the
-qgenpcomp compiler option is specified). If both -qusepcomp=dave.pch
and -qgenpcomp=john.pch are specified then the compiler looks for the
precompiled header in john.pch (since this is the name specified last),
and regenerates it if it is not found or unusable.
*
**/
#include “h1.h”
#pragma hdrstop
#include “h2.h”
main () {}
/**
*

Appendix D. Preprocessor Directives and Related Information 369

In the following example, no precompiled headers are generated or used
for the compilation, even if -qgenpcomp or -qusepcomp compiler options
are specified.
*
**/
#pragma hdrstop
#include “h1.h”
#include “h2.h”
main () {}

“Preprocessor Directives” on page 58
“List of Standard Preprocessor Directives” on page 347
“genpcomp” on page 267
“usepcomp” on page 335

#pragma info Preprocessor Directive

The #pragma info directive controls the diagnostic messages generated by the info compiler option.

You can use this directive in place of the info option to turn groups of diagnostic messages on or off. The
#pragma info directive overrides any info options stated on the command line.

Available options are:

all Turns on all diagnostic checking.
none Turns off all diagnostic suboptions for specific portions of your program.
restore Restores the options that were in effect before the previous #pragma info directive.

Because #pragma info operates like a stack, the options restored may not be those given on the
command line. If no options were previously in effect, #pragma info(restore) does nothing.

370 C for AIX User’s Guide

group Turns on specific groups of messages, where group can be one or more of:

group Type of messages returned

cmp Possible redundancies in unsigned comparisons

cnd Possible redundancies or problems in conditional expressions

cns Operations involving constants

cnv Conversions

dcl Consistency of declarations

eff Statements with no effect

enu Consistency of enum variables

ext Unused external definitions

gen General diagnostic messages

gnr Generation of temporary variables

got Use of goto statements

ini Possible problems with initialization

inl Functions not inlined

lan Language level effects

obs Obsolete features

ord Unspecified order of evaluation

par Unused parameters

por Nonportable language constructs

ppc Possible problems with using the preprocessor

ppt Trace of preprocessor actions

pro Missing function prototypes

rea Code that cannot be reached

ret Consistency of return statements

trd Possible truncation or loss of data or precision

tru Variable names truncated by the compiler

uni Unitialized variables

use Unused auto and static variables

vft Generation of virtual function tables

“Preprocessor Directives” on page 58
“#pragma Preprocessor Directives” on page 363
“List of Standard Preprocessor Directives” on page 347
“info” on page 275

#pragma isolated_call Preprocessor Directive

The #pragma isolated_call directive lists functions that do not alter data objects visible at the time of the
function call.

Appendix D. Preprocessor Directives and Related Information 371

The pragma must appear before calls to the functions in the identifier list. The identifiers listed must be
declared before they are used in the pragma, and must be of type function or a typedef of function.

The pragma informs the compiler that none of the functions listed has side effects. Functions are
cosidered to have side effects if they:

v Access a volatile object

v Modify an external object

v Modify a file

v Call a function that does any of the above.

Any change in the state of the runtime environment is considered a side effect. Passing function
arguments by reference is one side effect that is allowed, but in general, functions with side effects can
give incorrect results when listed in #pragma isolated_call directives.

Marking a function as isolated indicates to the optimizer that external and static variables cannot be
changed by the called function, and that references to storage can be deleted from the calling function
where appropriate. Instructions can be reordered with more freedom, resulting in fewer pipeline delays and
faster execution in the processor. Note that instruction reordering might yield code with more values in
general purpose and/or floating-point registers maintained across the isolated call. When the isolated call
is not located in a loop, the overhead of saving and restoring extra registers might not be worth the
savings that result from deleting the storage references.

Functions specified in the identifier are permitted to examine external objects and return results that
depend on the state of the runtime environment. The functions can also modify the storage pointed to by
any pointer arguments passed on to the function, that is, calls by reference. Do not specify a function that
calls itself or relies on local static storage. Listing such functions in the #pragma isolated_call directive
can give unpredictable results.

The -qisolated_call compiler option has the same effect as this pragma. The -qignprag compiler option
causes aliasing programs to be ignored. Use this option to debug applications containing the #pragma
isolated_call directive.

“Preprocessor Directives” on page 58
“Example of the #pragma isolated_call Preprocessor Directive”
“#pragma Preprocessor Directives” on page 363
“List of Standard Preprocessor Directives” on page 347
“ignprag” on page 274
“isolated_call” on page 284

Example of the #pragma isolated_call Preprocessor Directive

The following example shows the use of the #pragma isolated_call directive. Because the function
this_function does not have side effects, a call to it will not change the value of the external variable a.
The argument to that_function has the value 6.
int a, this_function(int) /* Assumed to have no side effects */
#pragma isolated_call(this_function)
that_function()
{

a = 6;
this_function(7); /* Call does not change the value of “a” */
other_function(a); /* Argument “a” has the value of 6 */

}

372 C for AIX User’s Guide

“Preprocessor Directives” on page 58
“#pragma isolated_call Preprocessor Directive” on page 371
“#pragma Preprocessor Directives” on page 363
“List of Standard Preprocessor Directives” on page 347

#pragma langlvl Preprocessor Directive

The #pragma langlvl directive selects the C language level used for compilation.

This pragma must appear before any statements in a source file. The compiler uses predefined macros in
the header files to make declarations and definitions available that define the specified language level.

Language levels available with the C for AIX compiler are:

Language Level Description

ansi Defines the predefined macros __ANSI__ and __STDC__, and defines other langlvl
variables. The default language level for the clc and c89 compiler invocations is ansi .

classic Defines the predefined macro __CLASSIC__ , and undefines other langlvl variables.

extended Defines the predefined macro __EXTENDED__, and undefines other langlvl variables. The
default language level for the CC compiler invocation commands is extended .

saa Defines the predefined macro __SAA__ , and undefines other langlvl variables.

saa12 Defines the predefined macro __SAA_L2__ , and undefines other langlvl variables.

This pragma has the same effect as the -qlanglvl compiler option.

“Preprocessor Directives” on page 58
“C Language Levels” on page 78
“#pragma Preprocessor Directives” on page 363
“List of Standard Preprocessor Directives” on page 347
“langlvl” on page 286

#pragma leaves Preprocessor Directive

The #pragma leaves directive takes a function name, and specifies that the function never returns to the
instruction following that function call.

Appendix D. Preprocessor Directives and Related Information 373

If the specified function is not found, a warning message is produced.

“Preprocessor Directives” on page 58
“C Language Levels” on page 78
“#pragma Preprocessor Directives” on page 363
“List of Standard Preprocessor Directives” on page 347

#pragma map Preprocessor Directive

The #pragma map directive tells the compiler that all references to an function identifier are to be
converted to “name”.

The following describes the options available for #pragma map :

identifier Name of a function.
name External name that is to be bound to the given function.

The directive can appear anywhere in the program. The identifier appearing in the directive is resolved as
though the directive had appeared at file scope, independent of its actual point of occurrence.

For example:
int func(int);
{

void func(void);

#pragma map(func, “funcname1”) /* maps func to funcname1 */
};

“Preprocessor Directives” on page 58
“Example of the #pragma isolated_call Preprocessor Directive” on page 372
“#pragma Preprocessor Directives” on page 363
“List of Standard Preprocessor Directives” on page 347

#pragma option_override Preprocessor Directive

The #pragma option_override directives lets you specify alternate optimization options for specific
functions.

By default, optimization options specified on the command line apply to the entire C source program. This
option lets you override those default settings for specified functions (func_name) in your program.

Per-function optimizations have effect only if optimization is already enabled by compilation option. You
can request per-function optimizations at a level less than or great than that applied to the rest of the
program being compiled. Selecting options through this pragma affects only the specific optimization option
selected, and does not affect the implied settings of related options.

374 C for AIX User’s Guide

Allowable settings for option are:

opt (level, 2) Same as specifying -O2 for the specified function.

opt (level, 3) Same as specifying -O3 for the specified function.

opt (strict) Same as specifying -qstrict for the specified function.

opt (strict, yes) Same as specifying -qstrict for the specified function.

opt (strict, no) Same as specifying -qnostrict for the specified function.

opt (compact) Same as specifying -qcompact for the specified function.

opt (compact, yes) Same as specifying -qcompact for the specified function.

opt (compact, no) Same as specifying -qnocompact for the specified function.

Selections for option are not subject to macro expansion.

This pragma affects only functions defined in your compilation unit and can appear anywhere in the
compilation unit, for example:

v before or after a compilation unit

v before or after the function definition

v before or after the function declaration

v before or after a function has been referenced

v inside or outside a function definition.

“Preprocessor Directives” on page 58
“#pragma Preprocessor Directives” on page 363
“Compiler Options and Their Defaults” on page 218
“List of Standard Preprocessor Directives” on page 347
“O, optimize” on page 302
“compact” on page 246
“strict” on page 326

#pragma options Preprocessor Directive

The #pragma options directives specifies compiler options within your source program.

By default, the options specified apply to the entire C source program. If you specify more than one
compiler option, use a blank space to separate them.

Most #pragma options directives must appear before any statements in your C program source.
Comments and blank lines, however, may precede the #pragma options directive. For example, the first
few lines of your C program can be a comment followed by the #pragma options directive, then the
source:
/*
* The following is an example of a #pragma options directive:
*/
#pragma options langlvl=saa halt=s spill=1024 source
/* The rest of the source follows below... */

For more information about compiler options, refer to “Compiler Options and Their Defaults” on page 218.

The following #pragma options directives can appear anywhere in the source file:

Appendix D. Preprocessor Directives and Related Information 375

v #pragma options source

v #pragma options enum

v #pragma options align

Some #pragma options directives have corresponding preprocessor #pragma directives. These, along
with their required placement locations in a C program source, are:

#pragma options Name #pragma Name Placement in Source

langlvl langlvl Before any statements in the source file.

chars chars Before any statements in the source file.

ro strings Before any statements in the source file.

isolated_call isolated_call Before any calls to the listed functions.

Note: #pragma options arch=suboption is not supported in source files.

“Preprocessor Directives” on page 58
“#pragma Preprocessor Directives” on page 363
“Compiler Options and Their Defaults” on page 218
“List of Standard Preprocessor Directives” on page 347

#pragma reachable Preprocessor Directive

The #pragma reachable directive takes a function name, and declares that the point in the program after
that function can be the target of a branch from some unknown location. In other words, the instruction
after the specified function can be reached from a program point other than the return statement in the
named function.

If the specified function is not found, a warning message is shown.

“Preprocessor Directives” on page 58
“C Language Levels” on page 78
“#pragma Preprocessor Directives” on page 363
“List of Standard Preprocessor Directives” on page 347

#pragma strings Preprocessor Directive

Specifies that the compiler can place strings into read-only memory, or must place strings into read/write
memory.

This pragma must appear before any statements in a source file. The default for ansi mode is readonly .
The default for extended mode is writable . The specification writable is supported for portability between
releases of the XL C compiler product.

376 C for AIX User’s Guide

This pragma has the same effect as the -qro compiler option.

“Preprocessor Directives” on page 58
“#pragma Preprocessor Directives” on page 363
“List of Standard Preprocessor Directives” on page 347
“ro” on page 317

Preprocessor Macro Operators

This page lists and briefly describes preprocessor macro operators available to you with the C for AIX
compiler. To get more information on any item listed here, go to the reference page for that item.

Preprocessor Macro Operators

Name Action

“# Preprocessor Macro Operator” Converts a parameter of a function-like macro into a
character string literal.

“## Preprocessor Macro Operator” on page 378 Concatenates two tokens in a macro, ignoring white
space between macro tokens and operators.

“/**/ Preprocessor Macro Operator” on page 379 Concatenates two tokens in a macro, preserving white
space between macro tokens and operators.

“Preprocessor Directives” on page 58
“#define Preprocessor Directive” on page 348
“List of Standard Preprocessor Directives” on page 347

Preprocessor Macro Operator

The # (single number sign) operator converts a parameter of a function-like macro into a character string
literal. For example, if macro ABC is defined using the following directive:

#define ABC(x) #x

all subsequent invocations of the macro ABC would be expanded into a character string literal containing
the argument passed to ABC. For example:

Invocation Result of Macro Expansion

ABC(1) “1”

ABC(Hello there) “Hello there”

The # operator should not be confused with the “# (Null) Preprocessor Directive” on page 347 null
directive.

Use the # operator in a function-like macro definition according to the following rules:

v A parameter following # operator in a function-like macro is converted into a character string literal
containing the argument passed to the macro.

v White-space characters that appear before or after the argument passed to the macro are deleted.

v Multiple white-space characters imbedded within the argument passed to the macro is replaced by a
single space character.

v If the argument passed to the macro contains a string literal and if a \ (backslash) character appears
within the literal, a second \ character is inserted before the original \ when the macro is expanded.

Appendix D. Preprocessor Directives and Related Information 377

v If the argument passed to the macro contains a “ (double quotation mark) character, a \character is
inserted before the ” when the macro is expanded.

v If the argument passed to the macro contains a ’ (single quotation mark) character, a \ character is
inserted before the ’ when the macro is expanded.

v The conversion of an argument into a string literal occurs before macro expansion on that argument.

v If more than one ## operator or # operator appears in the replacement list of a macro definition, the
order of evaluation of the operators is not defined.

v If the result of the macro expansion is not a valid character string literal, the behavior is undefined.

The following example demonstrates the use of the # operator:

Sample Preprocessor Macro Definitions

#define STR(x) #x
#define XSTR(x) STR(x)

#define ONE 1

Invocation Result of Macro Expansion

STR(\n “\n” ’\n’) “\n \”\\n\“ ’\\n’”

STR(ONE) “ONE”

XSTR(ONE) “1”

XSTR(“hello”) “\”hello\“”

“Preprocessor Directives” on page 58
“Preprocessor Macros” on page 59
“Preprocessor Macro Operators” on page 377
“#define Preprocessor Directive” on page 348

Preprocessor Macro Operator

Use the ## operator according to the following rules:

v The ## operator cannot be the very first or very last item in the replacement list of a macro definition.

v The last token of the item in front of the ## operator is concatenated with first token of the item
following the ## operator.

v Concatenation takes place before any macros in arguments are expanded.

v If the result of a concatenation is a valid macro name, it is available for further replacement even if it
appears in a context in which it would not normally be available.

v If more than one ## operator and/or “# Preprocessor Macro Operator” on page 377 operator appears
in the replacement list of a macro definition, the order of evaluation of the operators is not defined.

The following examples demonstrate the use of the ## operator:

Sample Preprocessor Macro Definitions

#define ArgArg(x, y) x##y
#define ArgText(x) x##TEXT
#define TextArg(x) TEXT##x
#define TextText TEXT##text

#define Jitter 1
#define bug 2

#define Jitterbug 3

Invocation Result of Macro Expansion

ArgArg(lady, bug) “ladybug”

378 C for AIX User’s Guide

ArgText(con) “conTEXT”

TextArg(book) “TEXTbook”

TextText “TEXTtext”

ArgArg(Jitter, bug) 3

“Preprocessor Directives” on page 58
“Preprocessor Macros” on page 59
“Preprocessor Macro Operators” on page 377
“#define Preprocessor Directive” on page 348

/**/ Preprocessor Macro Operator

The /**/ operator differs from the “## Preprocessor Macro Operator” on page 378 operator only in the
way that the preprocessor treats white space between the operator and its arguments.

For example, the macro definition:
#define XY(x, y) x /**/y

does not give the same result as:
#define XY(x, y) x ##y

because the preprocessor preserves white space with the /**/ operator. With the “## Preprocessor Macro
Operator” on page 378 operator, arguments are concatenated without white space.

The following examples demonstrate the use of the /**/ operator:

Sample Preprocessor Macro Definitions

#define ws1(x, y) x /**/y
#define ws2(x, y) x/**/ y
#define nws1(x, y) x ##y
#define nws2(x, y) x##y

Invocation Result of Macro Expansion

ws1(Turtle, neck) Turtle neck

ws2(Turtle, neck) Turtle neck

nws1(Turtle, neck) Turtleneck

nws2(Turtle, neck) Turtleneck

For /**/ to function the same way as “## Preprocessor Macro Operator” on page 378 in ANSI/ISO C,
there can be no spaces between the operator and the arguments.

“Preprocessor Directives” on page 58
“Preprocessor Macros” on page 59
“Preprocessor Macro Operators” on page 377
“#define Preprocessor Directive” on page 348

Appendix D. Preprocessor Directives and Related Information 379

380 C for AIX User’s Guide

Appendix E. Parallel Processing Facilities

#pragma Preprocessor Directives for Parallel Processing

The #pragma directives on this page give you control over how the compiler handles parallel processing in
your program. These pragmas fall into two groups; IBM C for AIX-specific directives, and directives
conforming to the OpenMP Application Program Interface specification.

All of the following pragmas have effect only if the -qsmp option is specified. If the -qsmp option is not
specified, syntax checking of the pragmas is still performed even though corresponding code is not
generated.

You can instruct the compiler to ignore all parallel processing-related #pragma directives by specifying the
-qignprag=ibm:omp compiler option.

Directives apply only to the statement or statement block immediately following the directive.

IBM Pragma Directives Description

“#pragma ibm critical
Preprocessor Directive” on
page 382

Instructs the compiler that the statement or statement block immediately
following this pragma is a critical section.

“#pragma ibm independent_calls
Preprocessor Directive” on
page 383

Asserts that specified function calls within the chosen loop have no loop-carried
dependencies.

“#pragma ibm independent_loop
Preprocessor Directive” on
page 384

Asserts that iterations of the chosen loop are independent, and that the loop can
therefore be parallelized.

“#pragma ibm iterations
Preprocessor Directive” on
page 384

Specifies the approximate number of loop iterations for the chosen loop.

“#pragma ibm parallel_loop
Preprocessor Directive” on
page 385

Explicitly instructs the compiler to parallelize the chosen loop.

“#pragma ibm permutation
Preprocessor Directive” on
page 385

Asserts that specified arrays in the chosen loop contain no repeated values.

“#pragma ibm schedule
Preprocessor Directive” on
page 386

Specifies scheduling algorithms for parallel loop execution.

“#pragma ibm sequential_loop
Preprocessor Directive” on
page 387

Explicitly instructs the compiler to execute the chosen loop sequentially.

OpenMP Pragma Directives Description

“#pragma omp parallel
Preprocessor Directive” on
page 388

Defines a parallel region to be run by multiple threads in parallel. With specific
exceptions, all other OpenMP directives work within parallelized regions defined
by this directive.

“#pragma omp for Preprocessor
Directive” on page 389

Work-sharing construct identifying an iterative for-loop whose iterations should
be run in parallel.

“#pragma omp parallel for
Preprocessor Directive” on
page 393

Shortcut combination of omp parallel and omp for pragma directives, used to
define a parallel region containing a single for directive.

© Copyright IBM Corp. 1995, 1999 381

“#pragma omp sections
Preprocessor Directive” on
page 393

Work-sharing construct identifying a non-iterative section of code containing one
or more subsections of code that should be run in parallel.

“#pragma omp parallel sections
Preprocessor Directive” on
page 394

Shortcut combination of omp parallel and omp sections pragma directives,
used to define a parallel region containing a single sections directive.

“#pragma omp single
Preprocessor Directive” on
page 395

Work-sharing construct identifying a section of code that must be run by a single
available thread.

“#pragma omp master
Preprocessor Directive” on
page 395

Synchronization construct identifying a section of code that must be run only by
the master thread.

“#pragma omp critical
Preprocessor Directive” on
page 396

Synchronization construct identifying a statement block that must be executed by
a single thread at a time.

“#pragma omp barrier
Preprocessor Directive” on
page 397

Synchronizes all the threads in a parallel region.

“#pragma omp atomic
Preprocessor Directive” on
page 397

Identifies a memory location that must be updated atomically and not be
exposed to multiple, simultaneous writing threads.

“#pragma omp flush Preprocessor
Directive” on page 398

Synchronization construct identifying a point at which the compiler ensures that
all threads in a parallel region have the same view of specified objects in
memory.

“#pragma omp ordered
Preprocessor Directive” on
page 399

Identifies a structure block of code that must be executed as a sequential loop.

“#pragma omp threadprivate
Preprocessor Directive” on
page 399

Defines the scope of selected file-scope data variables as being private to a
thread, but file-scope visible within that thread.

“Chapter 5. Program Parallelization” on page 37
“Preprocessor Directives” on page 58
“Using Pragmas to Control Parallel Processing” on page 41
“List of Standard Preprocessor Directives” on page 347
“Run-time Options for Parallel Processing” on page 402
“OpenMP Run-time Options for Parallel Processing” on page 404
“Built-in Functions Used for Parallel Processing” on page 400
“smp” on page 320

#pragma ibm critical Preprocessor Directive

The critical pragma identifies a critical section of program code that must only be run by one process at a
time.

Syntax
#pragma ibm critical [(name)]
<statement>

where name can be used to optionally identify the critical region. Identifiers naming a critical region have
external linkage.

382 C for AIX User’s Guide

Notes
The compiler reports an error if you try to branch into or out of a critical section. Some situations that will
cause an error are:

v A critical section that contains the return statement.

v A critical section that contains goto , continue , or break statements that transfer program flow outside
of the critical section.

v A goto statement outside a critical section that transfers program flow to a label defined within a critical
section.

A thread waits at the start of a critical region identified by a given name until no other thread in the
program is executing a critical region with that same name. Critical sections not specifically named by the
ibm critical or omp critical directives are mapped to the same unspecified name.

“Chapter 5. Program Parallelization” on page 37
“Shared and Private Variables in a Parallel Environment” on page 40
“Countable Loops” on page 38
“Using Pragmas to Control Parallel Processing” on page 41
“#pragma Preprocessor Directives for Parallel Processing” on page 381
“#pragma omp critical Preprocessor Directive” on page 396
“smp” on page 320

#pragma ibm independent_calls Preprocessor Directive

The independent_calls pragma asserts that specified function calls within the chosen loop have no
loop-carried dependencies. This information helps the compiler perform dependency analysis.

Syntax
#pragma ibm independent_calls [(identifier [,identifier] ...)]
<countable for/while/do loop>

where identifier represents the name of a function.

Notes
identifier cannot be the name of a pointer to a function.

If no function identifiers are specified, the compiler assumes that all functions inside the loop are free of
carried dependencies.

Example
/* #pragma ibm independent_calls */
int s, a[100], i, N = 100;
int foo (int);

#pragma ibm independent_calls (foo)
for (i = 0; i < N; i++) {

a[i] = foo(i);
}

“Chapter 5. Program Parallelization” on page 37
“Shared and Private Variables in a Parallel Environment” on page 40
“Countable Loops” on page 38
“Using Pragmas to Control Parallel Processing” on page 41
“#pragma Preprocessor Directives for Parallel Processing” on page 381

Appendix E. Parallel Processing Facilities 383

#pragma ibm independent_loop Preprocessor Directive

The independent_loop pragma asserts that iterations of the chosen loop are independent, and that the
loop can be parallelized.

Syntax
#pragma ibm independent_loop [if (exp)]
<countable for/while/do loop>

where exp represents a scalar expression. When the if argument is specified, loop iterations are
considered independent only as long as exp evaluates to TRUE at run-time.

Notes
This pragma can be combined with the schedule pragma to select a specific parallel process scheduling
algorithm. For more information, see the description for the schedule pragma.

Examples
/* #pragma ibm independent_loop applied to a for loop */
#pragma ibm independent_loop
for (i = 0; i < N; i++) {

a[i] = i;
}

/* pragma independent_loop applied to a do-while loop */
i = 0;
#pragma ibm independent_loop
do {

a[i] = i;
i++;

} while (i < N);

/* pragma independent_loop with if clause, applied to a while loop */
i = 0;
#pragma ibm independent_loop if (dist >= N/2)
while (i < N/2) {

a[i] = a[i+dist];
i++;

}

“Chapter 5. Program Parallelization” on page 37
“Shared and Private Variables in a Parallel Environment” on page 40
“Countable Loops” on page 38
“Using Pragmas to Control Parallel Processing” on page 41
“#pragma Preprocessor Directives for Parallel Processing” on page 381
“#pragma ibm schedule Preprocessor Directive” on page 386

#pragma ibm iterations Preprocessor Directive

The iterations pragma specifies the approximate number of loop iterations for the chosen loop.

Syntax
#pragma ibm iterations (iteration-count)
<countable for/while/do loop>

where iteration-count represents a positive integral constant expression.

Notes
The compiler uses the information in the iteration-count variable to determine if it is efficient to parallelize
the loop.

384 C for AIX User’s Guide

“Chapter 5. Program Parallelization” on page 37
“Shared and Private Variables in a Parallel Environment” on page 40
“Countable Loops” on page 38
“Using Pragmas to Control Parallel Processing” on page 41
“#pragma Preprocessor Directives for Parallel Processing” on page 381

#pragma ibm parallel_loop Preprocessor Directive

The parallel_loop pragma explicitly instructs the compiler to parallelize the chosen loop.

Syntax
#pragma ibm parallel_loop [if (exp)] [schedule (sched-type)]
<countable for/while/do loop>

where exp represents a scalar expression, and sched-type represents any scheduling algorithm as valid
for the schedule directive. When the if argument is specified, the loop executes in parallel only if exp
evaluates to TRUE at run-time. Otherwise the loop executes sequentially. The loop will also run
sequentially if it is in a critical section.

Notes
This pragma can be applied to a wide variety of C loops, and the compiler will try to determine if a loop is
countable or not.

Program sections using the ibm parallel_loop pragma must be able to produce a correct result in both
sequential and parallel mode. For example, loop iterations must be independent before the loop can be
parallelized. Explicit parallel programming techniques involving condition synchronization are not permitted.

This pragma can be combined with the ibm schedule pragma to select a specific parallel process
scheduling algorithm. For more information, see the description for the ibm schedule pragma.

A warning is generated if this pragma is not followed by a countable loop.

Example
/* #pragma ibm parallel_loop

The loop will execute in parallel if N is greater
or equal to 10000. Dynamic scheduling will be used. */

#pragma ibm parallel_loop if (N >= 10000) schedule (dynamic)
for (i = 0; i < N; i++) {

a[i] = z;
}

“Chapter 5. Program Parallelization” on page 37
“Shared and Private Variables in a Parallel Environment” on page 40
“Countable Loops” on page 38
“Using Pragmas to Control Parallel Processing” on page 41
“#pragma Preprocessor Directives for Parallel Processing” on page 381
“#pragma ibm schedule Preprocessor Directive” on page 386“smp” on page 320

#pragma ibm permutation Preprocessor Directive

The permutation pragma asserts that specified arrays in the chosen loop contain no repeated values.

Syntax

Appendix E. Parallel Processing Facilities 385

#pragma ibm permutation (identifier [,identifier] ...)
<countable for/while/do loop>

where identifier represents the name of an array.

Notes
identifier cannot be the name of a pointer.

An array specified by this pragma cannot be a function parameter.

“Chapter 5. Program Parallelization” on page 37
“Shared and Private Variables in a Parallel Environment” on page 40
“Countable Loops” on page 38
“Using Pragmas to Control Parallel Processing” on page 41
“#pragma Preprocessor Directives for Parallel Processing” on page 381

#pragma ibm schedule Preprocessor Directive

The schedule pragma specifies the scheduling algorithms used for parallel processing.

Syntax
#pragma ibm schedule (sched-type)
<countable for/while/do loop>

where sched-type represents one of the following options:

affinity
affinity,n

Iterations of a loop are initially divided into local partitions of size
ceiling (number_of_iterations/number_of_threads). Each local partition then further subdivided
into chunks of size ceiling (number_of_iterations_remaining_in_partition/2).

If n is specified, each local partition is subdivided into chunks of size n, where n is an integral
assignment expression of value 1 or greater.

When a thread becomes available, it takes the next chunk from its local partition. If there are
no more chunks in the local partition, the thread takes an available chunk from the partition of
another thread.

dynamic
dynamic,n

If n is not specified, iterations of a loop are divided into chunks of size 1.

If n is specified, all chunks are set to size n, where n is an integral assignment expression of
value 1 or greater.

Chunks are assigned to threads on a first-come, first-serve basis as threads become
available. This continues until all work is completed.

guided
guided,n

Chunks are made progressively smaller until the default minimum chunk size is reached. The
first chunk is of size ceiling (number_of_iterations/number_of_threads). Remaining chunks are
of size ceiling (number_of_iterations_remaining/number_of_threads).

If n is specified, the minimum chunk size is set to n, where n is an integral assignment
expression of value 1 or greater.

If n is not specified, a default value of 1 is assumed.

Chunks are assigned to threads on a first-come, first-serve basis as threads become
available. This continues until all work is completed.

runtime Scheduling policy is determined at run-time.

386 C for AIX User’s Guide

static Iterations of a loop are divided into chunks of size
ceiling (number_of_iterations/number_of_threads). Each thread is assigned a separate chunk.

This scheduling policy is also known as block scheduling.

static,n Iterations of a loop are divided into chunks of size n. Each chunk is assigned to a thread in
round-robin fashion.

n must be an integral assignment expression of value 1 or greater.

This scheduling policy is also known as block cyclic scheduling.

static,1 Iterations of a loop are divided into chunks of size 1. Each chunk is assigned to a thread in
round-robin fashion.

This scheduling policy is also known as cyclic scheduling.

Notes
Scheduling algorithms for parallel processing can be specified using any of the methods shown below. If
used, methods higher in the list override entries lower in the list.

v pragma statements

v compiler command line options

v run-time command line options

v run-time default options

Scheduling algorithms can also be specified using the schedule argument of the parallel_loop pragma
statements. For example, the following sets of statements are equivalent:

#pragma ibm schedule (guided, 10)
#pragma ibm parallel_loop
for (i = 0; i < N; i++) {

...
}

and

#pragma ibm parallel_loop schedule (guided, 10)
for (i = 0; i < N; i++) {

...
}

If different scheduling types are specified for a given loop, the last one specified is applied.

“Chapter 5. Program Parallelization” on page 37
“Shared and Private Variables in a Parallel Environment” on page 40
“Countable Loops” on page 38
“Using Pragmas to Control Parallel Processing” on page 41
“#pragma Preprocessor Directives for Parallel Processing” on page 381
“#pragma ibm parallel_loop Preprocessor Directive” on page 385
“Built-in Functions Used for Parallel Processing” on page 400
“Run-time Options for Parallel Processing” on page 402
“smp” on page 320

#pragma ibm sequential_loop Preprocessor Directive

The sequential_loop pragma explicitly instructs the compiler to execute the chosen loop sequentially.

Syntax
#pragma ibm sequential_loop
<countable for/while/do loop>

Appendix E. Parallel Processing Facilities 387

Notes
This pragma disables automatic parallelization of the chosen loop, and is always respected by the
compiler.

“Chapter 5. Program Parallelization” on page 37
“Shared and Private Variables in a Parallel Environment” on page 40
“Countable Loops” on page 38
“Using Pragmas to Control Parallel Processing” on page 41
“#pragma Preprocessor Directives for Parallel Processing” on page 381

#pragma omp parallel Preprocessor Directive

The omp parallel directive explicitly instructs the compiler to parallelize the chosen segment of code.

When a parallel region is encountered, a logical team of threads is formed. Each thread in the team
executes all statements within a parallel region except for work-sharing constructs. Work within
work-sharing constructs is distributed among the threads in a team.

Syntax
#pragma omp parallel [clause[clause] ...]
<statement_block>

where clause is any of the following:

if (exp) When the if argument is specified, the program code executes in parallel only if the scalar
expression represented by exp evaluates to a non-zero value at run-time. Only one if clause
can be specified.

private (list) Declares the scope of the data variables in list to be private to each thread. Data variables in
list are separated by commas.

firstprivate (list) Declares the scope of the data variables in list to be private to each thread. Each new private
object is initialized with the value of the original variable as if there was an implied declaration
within the statement block. Data variables in list are separated by commas.

shared (list) Declares the scope of the data variables in list to be shared across all threads. Data
variables in list are separated by commas.

copyin (list) For each data variable specified in list, the value of the data variable in the master thread is
copied to the thread-private copies at the beginning of the parallel region. Data variables in
list are separated by commas.

Each data variable specified in the copyin clause must be a threadprivate variable.
default (shared | none) Defines the default data scope of variables in each thread. Only one default clause can be

specified on an omp parallel directive.

Specifying default(shared) is equivalent to stating each variable in a shared(list) clause.

Specifying default(none) requires that each data variable visible to the parallelized statement
block must be explcitly listed in a data scope clause, with the exception of those variables
that are:

v const-qualified,

v specified in an enclosed data scope attribute clause, or,

v used as a loop control variable referenced only by a corresponding omp for or omp
parallel for directive.

388 C for AIX User’s Guide

reduction (operator:
list)

Performs a reduction on all scalar variables in list using the specified operator. Reduction
variables in list are separated by commas.

A private copy of each variable in list is created for each thread. At the end of the statement
block, the final values of all private copies of the reduction variable are combined in a manner
appropriate to the operator, and the result is placed back into the original value of the shared
reduction variable.

Variables specified in the reduction clause:

v must be of a type appropriate to the operator.

v must be shared in the enclosing context.

v must not be const-qualified.

v must not have pointer type.

Notes
Loop iterations must be independent before the loop can be parallelized. An implied barrier exists at the
end of a parallelized statement block.

Nested parallel regions are always serialized.

“Chapter 5. Program Parallelization” on page 37
“Shared and Private Variables in a Parallel Environment” on page 40
“Using Pragmas to Control Parallel Processing” on page 41
“#pragma Preprocessor Directives for Parallel Processing” on page 381
“OpenMP Run-time Options for Parallel Processing” on page 404
“#pragma omp parallel sections Preprocessor Directive” on page 394

#pragma omp for Preprocessor Directive

The omp for directive instructs the compiler to distribute loop iterations within the team of threads that
encounters this work-sharing construct.

Syntax
#pragma omp for [clause[clause] ...]
<for_loop>

where clause is any of the following:

private (list) Declares the scope of the data variables in list to be private to each thread. Data variables in
list are separated by commas.

firstprivate (list) Declares the scope of the data variables in list to be private to each thread. Each new private
object is initialized as if there was an implied declaration within the statement block. Data
variables in list are separated by commas.

lastprivate (list) Declares the scope of the data variables in list to be private to each thread. The final value of
each variable in list, if assigned, will be the value assigned to that variable in the last
iteration. Variables not assigned a value will have an indeterminate value. Data variables in
list are separated by commas.

Appendix E. Parallel Processing Facilities 389

reduction (operator:
list)

Performs a reduction on all scalar variables in list using the specified operator. Reduction
variables in list are separated by commas.

A private copy of each variable in list is created for each thread. At the end of the statement
block, the final values of all private copies of the reduction variable are combined in a manner
appropriate to the operator, and the result is placed back into the original value of the shared
reduction variable.

Variables specified in the reduction clause:

v must be of a type appropriate to the operator.

v must be shared in the enclosing context.

v must not be const-qualified.

v must not have pointer type.
ordered Specify this clause if an ordered construct is present within the dynamic extent of the omp

for directive.

390 C for AIX User’s Guide

schedule (type) Specifies how iterations of the for loop are divided among available threads. Acceptable
values for type are:

dynamic
dynamic,n

If n is not specified, iterations of a loop are divided into chunks of size
ceiling (number_of_iterations/number_of_threads).

If n is specified, all chunks are set to size n. n must be an integral
assignment expression of value 1 or greater.

Chunks are dynamically assigned to threads on a first-come, first-serve
basis as threads become available. This continues until all work is
completed.

guided
guided,n

Chunks are made progressively smaller until the default minimum chunk
size is reached. The first chunk is of size
ceiling (number_of_iterations/number_of_threads). Remaining chunks are of
size ceiling (number_of_iterations_remaining/number_of_threads).

If n is specified, the minimum chunk size is set to n. n must be an integral
assignment expression of value 1 or greater.

If n is not specified, a default value of 1 is assumed.

Chunks are assigned to threads on a first-come, first-serve basis as threads
become available. This continues until all work is completed.

runtime

Scheduling policy is determined at run-time. Use the OMP_SCHEDULE
environment variable to set the scheduling type and chunk size.

static

Iterations of a loop are divided into chunks of size
ceiling (number_of_iterations/number_of_threads). Each thread is assigned
a separate chunk.

This scheduling policy is also known as block scheduling.

static,n

Iterations of a loop are divided into chunks of size n. Each chunk is
assigned to a thread in round-robin fashion.

n must be an integral assignment expression of value 1 or greater.

This scheduling policy is also known as block cyclic scheduling.

static,1

Iterations of a loop are divided into chunks of size 1. Each chunk is
assigned to a thread in round-robin fashion.

This scheduling policy is also known as cyclic scheduling.

Appendix E. Parallel Processing Facilities 391

nowait Use this clause to avoid the implied barrier at the end of the for directive. This is useful if
you have multiple independent work-sharing sections or iterative loops within a given parallel
region. Only one nowait clause can appear on a given for directive.

and where for_loop is a for loop construct with the following canonical shape:
for (init_expr; exit_cond; incr_expr)
statement

where:

init_expr takes form: iv = b
integer-type iv = b

exit_cond takes form: iv <= ub
iv < ub
iv >= ub
iv > ub

incr_expr takes form: ++iv
iv++
—iv
iv—
iv += incr
iv -= incr
iv = iv + incr
iv = incr + iv
iv = iv - incr

and:

iv Iteration variable. The iteration variable must be a signed integer not modified anywhere within the
for loop. It is implicitly made private for the duration of the for operation. If not specified as
lastprivate , the iteration variable will have an indeterminate value after the operation completes..

b, ub, incr Loop invariant signed integer expressions. No synchronization is performed when evaluating these
expressions and evaluated side effects may result in indeterminate values..

Notes
Program sections using the omp for pragma must be able to produce a correct result regardless of which
thread executes a particular iteration. Similarly, program correctness must not rely on using a particular
scheduling algorithm.

The for loop iteration variable is implicitly made private in scope for the duration of loop execution. This
variable must not be modified within the body of the for loop. The value of the increment variable is
indeterminate unless the variable is specified as having a data scope of lastprivate .

An implicit barrier exists at the end of the for loop unless the nowait clause is specified.

Restrictions are:

v The for loop must be a structured block, and must not be terminated by a break statement.

v Values of the loop control expressions must be the same for all iterations of the loop.

v An omp for directive can accept only one schedule clauses.

v The value of n (chunk size) must be the same for all threads of a parallel region.

392 C for AIX User’s Guide

“Chapter 5. Program Parallelization” on page 37
“Shared and Private Variables in a Parallel Environment” on page 40
“Using Pragmas to Control Parallel Processing” on page 41
“#pragma Preprocessor Directives for Parallel Processing” on page 381
“#pragma omp ordered Preprocessor Directive” on page 399
“OpenMP Run-time Options for Parallel Processing” on page 404

#pragma omp parallel for Preprocessor Directive

The omp parallel for directive effectively combines the omp parallel and omp for directives. This
directive lets you define a parallel region containing a single omp for directive in one step.

Syntax
#pragma omp parallel for [clause[clause] ...]
<for_loop>

All clauses and restrictions described in the omp parallel and omp for directives apply to the omp
parallel for directive.

“Chapter 5. Program Parallelization” on page 37
“Shared and Private Variables in a Parallel Environment” on page 40
“Countable Loops” on page 38
“Using Pragmas to Control Parallel Processing” on page 41
“#pragma Preprocessor Directives for Parallel Processing” on page 381
“OpenMP Run-time Options for Parallel Processing” on page 404
“#pragma omp parallel Preprocessor Directive” on page 388
“#pragma omp for Preprocessor Directive” on page 389

#pragma omp sections Preprocessor Directive

The omp sections directive distributes work among threads bound to a defined parallel region.

Syntax
#pragma omp sections [clause[clause] ...]

{
[#pragma omp section]

statement-block
[#pragma omp section]

statement-block
.
.
.

}

where clause is any of the following:

private (list) Declares the scope of the data variables in list to be private to each thread. Data variables in
list are separated by commas.

firstprivate (list) Declares the scope of the data variables in list to be private to each thread. Each new private
object is initialized as if there was an implied declaration within the statement block. Data
variables in list are separated by commas.

lastprivate (list) Declares the scope of the data variables in list to be private to each thread. The final value of
each variable in list, if assigned, will be the value assigned to that variable in the last
section . Variables not assigned a value will have an indeterminate value. Data variables in
list are separated by commas.

Appendix E. Parallel Processing Facilities 393

reduction (operator:
list)

Performs a reduction on all scalar variables in list using the specified operator. Reduction
variables in list are separated by commas.

A private copy of each variable in list is created for each thread. At the end of the statement
block, the final values of all private copies of the reduction variable are combined in a manner
appropriate to the operator, and the result is placed back into the original value of the shared
reduction variable.

Variables specified in the reduction clause:

v must be of a type appropriate to the operator.

v must be shared in the enclosing context.

v must not be const-qualified.

v must not have pointer type.
nowait Use this clause to avoid the implied barrier at the end of the sections directive. This is

useful if you have multiple independent work-sharing sections within a given parallel region.
Only one nowait clause can appear on a given sections directive.

Notes
The omp section directive is optional for the first program code segment inside the omp sections
directive. Following segments must be preceded by an omp section directive. All omp section directives
must appear within the lexical construct of the program source code segment associated with the omp
sections directive.

When program execution reaches a omp sections directive, program segments defined by the following
omp section directive are distributed for parallel execution among available threads. A barrier is implicitly
defined at the end of the larger program region associated with the omp sections directive unless the
nowait clause is specified.

“Chapter 5. Program Parallelization” on page 37
“Shared and Private Variables in a Parallel Environment” on page 40
“Using Pragmas to Control Parallel Processing” on page 41
“#pragma Preprocessor Directives for Parallel Processing” on page 381
“OpenMP Run-time Options for Parallel Processing” on page 404
“#pragma omp parallel sections Preprocessor Directive”

#pragma omp parallel sections Preprocessor Directive

The omp parallel sections directive effectively combines the omp parallel and omp sections directives.
This directive lets you define a parallel region containing a single omp sections directive in one step.

Syntax
#pragma omp parallel sections [clause[clause] ...]

{
[#pragma omp section]

statement-block
[#pragma omp section]

statement-block
.
.
.

]
}

All clauses and restrictions described in the omp parallel and omp sections directives apply to the omp
parallel sections directive.

394 C for AIX User’s Guide

“Chapter 5. Program Parallelization” on page 37
“Shared and Private Variables in a Parallel Environment” on page 40
“Countable Loops” on page 38
“Using Pragmas to Control Parallel Processing” on page 41
“#pragma Preprocessor Directives for Parallel Processing” on page 381
“OpenMP Run-time Options for Parallel Processing” on page 404
“#pragma omp parallel Preprocessor Directive” on page 388
“#pragma omp sections Preprocessor Directive” on page 393

#pragma omp single Preprocessor Directive

The omp single directive identifies a section of code that must be run by a single available thread.

Syntax
#pragma omp single [clause[clause] ...]

statement_block

where clause is any of the following:

private (list) Declares the scope of the data variables in list to be private to each thread. Data variables in
list are separated by commas.

firstprivate (list) Declares the scope of the data variables in list to be private to each thread. Each new private
object is initialized as if there was an implied declaration within the statement block. Data
variables in list are separated by commas.

nowait Use this clause to avoid the implied barrier at the end of the single directive. Only one
nowait clause can appear on a given single directive.

Notes
An implied barrier exists at the end of a parallelized statement block unless the nowait clause is specified.

“Chapter 5. Program Parallelization” on page 37
“Shared and Private Variables in a Parallel Environment” on page 40
“Using Pragmas to Control Parallel Processing” on page 41
“#pragma Preprocessor Directives for Parallel Processing” on page 381
“OpenMP Run-time Options for Parallel Processing” on page 404

#pragma omp master Preprocessor Directive

The omp master directive identifies a section of code that must be run only by the master thread.

Syntax
#pragma omp master

statement_block

Notes
Threads other than the master thread will not execute the statement block associated with this construct.

Appendix E. Parallel Processing Facilities 395

No implied barrier exists on either entry to or exit from the master section.

“Chapter 5. Program Parallelization” on page 37
“Shared and Private Variables in a Parallel Environment” on page 40
“Countable Loops” on page 38
“Using Pragmas to Control Parallel Processing” on page 41
“#pragma Preprocessor Directives for Parallel Processing” on page 381
“OpenMP Run-time Options for Parallel Processing” on page 404

#pragma omp critical Preprocessor Directive

The omp critical directive identifies a section of code that must be executed by a single thread at a time.

Syntax
#pragma omp critical [(name)]

statement_block

where name can be used to optionally identify the critical region. Identifiers naming a critical region have
external linkage.

Notes
The compiler reports an error if you try to branch into or out of a critical section. Some situations that will
cause an error are:

v A critical section that contains the return statement.

v A critical section that contains goto , continue , or break statements that transfer program flow outside
of the critical section.

v A goto statement outside a critical section that transfers program flow to a label defined within a critical
section.

A thread waits at the start of a critical region identified by a given name until no other thread in the
program is executing a critical region with that same name. Critical sections not specifically named by the
ibm critical or omp critical directives are mapped to the same unspecified name.

Example
/* #pragma ibm critical */
int s, a[100], i;

#pragma ibm parallel_loop
for (i = 0; i < 100; i++) {

#pragma ibm critical (lock1)
s = s + a[i]*i;

}

“Chapter 5. Program Parallelization” on page 37
“Shared and Private Variables in a Parallel Environment” on page 40
“Countable Loops” on page 38
“Using Pragmas to Control Parallel Processing” on page 41
“#pragma Preprocessor Directives for Parallel Processing” on page 381
“#pragma ibm critical Preprocessor Directive” on page 382
“OpenMP Run-time Options for Parallel Processing” on page 404

396 C for AIX User’s Guide

#pragma omp barrier Preprocessor Directive

The omp barrier directive identifies a synchronization point at which threads in a parallel region will wait
until all other threads in that section reach the same point. Statement execution past the omp barrier
point then continues in parallel.

Syntax
#pragma omp barrier

Notes
The omp barrier directive must appear within a block or compound statement. For example:

if (x!=0) {
#pragma omp barrier /* valid usage */

}

if (x!=0)
#pragma omp barrier /* invalid usage */

“Chapter 5. Program Parallelization” on page 37
“Shared and Private Variables in a Parallel Environment” on page 40
“Countable Loops” on page 38
“Using Pragmas to Control Parallel Processing” on page 41
“#pragma Preprocessor Directives for Parallel Processing” on page 381
“OpenMP Run-time Options for Parallel Processing” on page 404

#pragma omp atomic Preprocessor Directive

The omp atomic directive identifies a specific memory location that must be updated atomically and not
be exposed to multiple, simultaneous writing threads.

Syntax
#pragma omp atomic

statement

where statement is an expression statement of scalar type that takes one of the forms that follow:

x bin_op = expr where:

bin_op

is one of:

+ * - / & | | << >>

expr is an expression of scalar type that does not reference x.

x++
++x
x—
—x

Notes
Load and store operations are atomic only for object x. Evaluation of expr is not atomic.

All atomic references to a given object in your program must have a compatible type.

Appendix E. Parallel Processing Facilities 397

Objects that can be updated in parallel and may be subject to race conditions should be protected with the
omp atomic directive.

Examples
extern float x[], *p = x, y;

/* Protect against race conditions among multiple updates. */
#pragma omp atomic
x[index[i]] += y;

/* Protect against races with updates through x. */
#pragma omp atomic
p[i] -= 1.0f;

“Chapter 5. Program Parallelization” on page 37
“Shared and Private Variables in a Parallel Environment” on page 40
“Countable Loops” on page 38
“Using Pragmas to Control Parallel Processing” on page 41
“#pragma Preprocessor Directives for Parallel Processing” on page 381
“OpenMP Run-time Options for Parallel Processing” on page 404

#pragma omp flush Preprocessor Directive

The omp flush directive identifies a point at which the compiler ensures that all threads in a parallel
region have the same view of specified objects in memory.

Syntax
#pragma omp flush [(list)]

where list is a comma-separated list of variables that will be synchronized.

Notes
If list includes a pointer, the pointer is flushed, not the object being referred to by the pointer. If list is not
specified, all shared objects are synchronized except those inaccessible with automatic storage duration.

An flush directive is implied with the following directives:

v omp barrier

v Entry to and exit from omp critical .

v Exit from omp parallel .

v Exit from omp for .

v Exit from omp sections .

v Exit from omp single .

The omp flush directive must appear within a block or compound statement. For example:
if (x!=0) {

#pragma omp flush /* valid usage */
}

if (x!=0)
#pragma omp flush /* invalid usage */

398 C for AIX User’s Guide

“Chapter 5. Program Parallelization” on page 37
“Shared and Private Variables in a Parallel Environment” on page 40
“Countable Loops” on page 38
“Using Pragmas to Control Parallel Processing” on page 41
“#pragma Preprocessor Directives for Parallel Processing” on page 381
“OpenMP Run-time Options for Parallel Processing” on page 404

#pragma omp ordered Preprocessor Directive

The omp ordered directive identifies a structured block of code that must be executed in sequential order.

Syntax
#pragma omp ordered

statement_block

Notes
The omp ordered directive must be used as follows:

v It must appear within the extent of a omp for or omp parallel for construct containing an ordered
clause.

v It applies to the statement block immediately following it. Statements in that block are executed in the
same order in which iterations are executed in a sequential loop.

v An iteration of a loop must not execute the same omp ordered directive more than once.

v An iteration of a loop must not execute more than one distinct omp ordered directive.

“Chapter 5. Program Parallelization” on page 37
“Shared and Private Variables in a Parallel Environment” on page 40
“Countable Loops” on page 38
“Using Pragmas to Control Parallel Processing” on page 41
“#pragma Preprocessor Directives for Parallel Processing” on page 381
“#pragma omp for Preprocessor Directive” on page 389
“OpenMP Run-time Options for Parallel Processing” on page 404

#pragma omp threadprivate Preprocessor Directive

The omp threadprivate directive defines the scope of selected file-scope data variables as being private
to a thread, but file-scope visible within that thread.

Syntax
#pragma omp threadprivate (list)

where list is a comma-separated list of variables.

Notes
Each copy of an omp threadprivate data variable is initialized once prior to first use of that copy. If an
object is changed before being used to initialize a threadprivate data variable, behavior is unspecified.

A thread must not reference another thread’s copy of an omp threadprivate data variable. References will
always be to the master thread’s copy of the data variable when executing serial and master regions of
the program.

Use of the omp threadprivate directive is governed by the following points:

v An omp threadprivate directive must appear at file scope outside of any definition or declaration.

Appendix E. Parallel Processing Facilities 399

v A data variable must be declared with file scope prior to inclusion in an omp threadprivate directive list.

v An omp threadprivate directive and its list must lexically precede any reference to a data variable
found in that list.

v A data variable specified in an omp threadprivate directive in one translation unit must also be
specified as such in all other translation units in which it is declared.

v Data variables specified in an omp threadprivate list must not appear in any clause other than the
copyin , schedule , and if clauses.

v The address of a data variable in an omp threadprivate list is not an address constant.

v A data variable specified in an omp threadprivate list must not have an incomplete or reference type.

“Chapter 5. Program Parallelization” on page 37
“Shared and Private Variables in a Parallel Environment” on page 40
“Countable Loops” on page 38
“Using Pragmas to Control Parallel Processing” on page 41
“#pragma Preprocessor Directives for Parallel Processing” on page 381
“OpenMP Run-time Options for Parallel Processing” on page 404

Built-in Functions Used for Parallel Processing

Your program can use these built-in functions to modify or obtain information about the parallel
environment. Function definitions for the omp_ functions can be found in the omp.h header file.

Function Prototype Description

int __parthds(void) This function returns the value of the parthds run-time
option. If the parthds option is not explicitly set by the
user, the function returns the default value set by the
run-time library.

If the -qsmp compiler option was not specified during
program compilation, this function returns 1 regardless of
run-time options selected.

int __usrthds(void) This function returns the value of the usrthds run-time
option.

If the usrthds option is not explicitly set by the user, or
the -qsmp compiler option was not specified during
program compilation, this function returns 0 regardless of
run-time options selected.

int omp_set_num_threads(int num_threads); This function must be called from a serial portion of your
program.

v If dynamic adjustment of the number of threads is
enabled, this function sets num_threads as the
maximum number of threads to use for subsequent
parallel regions.

v If dynamic adjustment of the number of threads is
disabled, this function causes num_threads to be used
as the number of threads for all subsequent parallel
regions.

The value of num_threads must be a positive integer.
This function takes overrides the setting of the
OMP_NUM_THREADS environment variable.

400 C for AIX User’s Guide

Function Prototype Description

int omp_get_num_threads(void); This function returns the number of threads currently in
the team executing the parallel region from which it is
called.

int omp_get_max_threads(void); This function returns the maximum value that can be
returned by calls to omp_get_num_threads.

int omp_get_thread_num(void); This function returns the thread number, within its team,
of the thread executing the function. The thread number
lies between 0 and omp_get_num_threads() û 1,
inclusive. The master thread of the team is thread 0.

int omp_get_num_procs(void); This function returns the maximum number of processors
that could be assigned to the program.

int omp_in_parallel(void); This function returns non-zero if it is called within the
dynamic extent of a parallel region executing in parallel;
otherwise, it returns 0.

void omp_set_dynamic(int dynamic_threads); This function enables or disables dynamic adjustment of
the number of threads available for execution of parallel
regions.

int omp_get_dynamic(void); This function returns non-zero if dynamic thread
adjustments enabled and returns 0 otherwise.

void omp_set_nested(int nested); This function enables or disables nested parallelism.

int omp_get_nested(void); This function returns non-zero if nested parallelism is
enabled and 0 if it is disabled.

void omp_init_lock(omp_lock_t *lock);

void omp_init_nest_lock(omp_nest_lock_t *lock);

These functions provide the only means of initializing a
lock. Each function initializes the lock associated with the
parameter lock for use in subsequent calls.

void omp_destroy_lock(omp_lock_t *lock);

void omp_destroy_nest_lock(omp_nest_lock_t *lock);

These functions ensure that the pointed to lock variable
lock is uninitialized.

void omp_set_lock(omp_lock_t *lock);

void omp_set_nest_lock(omp_nest_lock_t *lock);

Each of these functions blocks the thread executing the
function until the specified lock is available and then sets
the lock. A simple lock is available if it is unlocked. A
nestable lock is available if it is unlocked or if it is already
owned by the thread executing the function.

void omp_unset_lock(omp_lock_t *lock);

void omp_unset_nest_lock(omp_nest_lock_t *lock);

These functions provide the means of releasing
ownership of a lock.

int omp_test_lock(omp_lock_t *lock);

int omp_test_nest_lock(omp_nest_lock_t *lock);

These functions attempt to set a lock but do not block
execution of the thread.

Note: In the current implementation, nested parallel regions are
always serialized. As a result, omp_set_nested does not
have any effect, and omp_get_nested always returns 0.

For complete information about OpenMP runtime library functions, refer to the OpenMP C/C++ Application
Program Interface specification.

Appendix E. Parallel Processing Facilities 401

“Chapter 5. Program Parallelization” on page 37
“Shared and Private Variables in a Parallel Environment” on page 40
“Countable Loops” on page 38
“#pragma Preprocessor Directives for Parallel Processing” on page 381
“Run-time Options for Parallel Processing”
“OpenMP Run-time Options for Parallel Processing” on page 404
“smp” on page 320

Run-time Options for Parallel Processing

Run-time options affecting parallel processing are specified in the XLSMPOPTS environment variable. This
environment variable, which must be set before you run an application, uses syntax of form:

XLSMPOPTS=option_and_args[:option_and_args][...]

Parallelization run-time options can also be specified using OMP environment variables. When OMP and
XLSMPOPTS run-time options conflict, OMP options will prevail.

Run-time options fall into different categories as described below.

Scheduling Algorithm Options

schedule=algorith=[n] This option specifies the scheduling algorithm used for loops not explictly assigned a
scheduling alogorithm with the ibm schedule pragma.

Valid options for algorithm are:

v guided

v affinity

v dynamic

v static

If specified, the value of n must be an integer value of 1 or greater.

The default is scheduling algorithm is static .

See “#pragma ibm schedule Preprocessor Directive” on page 386 for a description of these
algorithms.

Parallel Environment Options

parthds=num num represents the number of parallel threads requested, which is usually
equivalent to the number of processors available on the system.

Some applications cannot use more threads than the maximum number of
processors available. Other applications can experience significant performance
improvements if they use more threads than there are processors. This option
gives you full control over the number of user threads used to run your program.

The default value for num is the number of processors available on the system.

usrthds=num num represents the number of user threads expected.

This option should be used if the program code explicitly creates threads, in
which case num should be set to the number of threads created.

The default value for num is 0.

402 C for AIX User’s Guide

stack=num num specifies the largest amount of space required for a thread’s stack.

The default value for num is 32768.

Performance Tuning Options

spins=num num represents the number of loop spins before a yield occurs.

When a thread completes its work, the thread continues executing in a tight loop looking for
new work. One complete scan of the work queue is done during each busy-wait state. An
extended busy-wait state can make a particular application highly responsive, but can also
harm the overall responsiveness of the system unless the thread is given instructions to
periodically scan for and yield to requests from other applications.

A complete busy-wait state for benchmarking purposes can be forced by setting both spins
and yields to 0.

The default value for num is 100.

yields=num num represents the number of yields before a sleep occurs.

When a thread sleeps, it completely suspends execution until another thread signals that
there is work to do. This provides better system utilization, but also adds extra system
overhead for the application.

The default value for num is 100.

delays=num num represents a period of do-nothing delay time between each scan of the work queue.
Each unit of delay is achieved by running a single no-memory-access delay loop.

The default value for num is 500.

Dynamic Profiling Options

profilefreq=num num represents the sampling rate at which each loop is revisited to determine
appropriateness for parallel processing.

The run-time library uses dynamic profiling to dynamically tune the performance of
automatically-parallelized loops. Dynamic profiling gathers information about loop running
times to determine if the loop should be run sequentially or in parallel the next time through.
Threshold running times are set by the parthreshold and seqthreshold dynamic profiling
options, described below.

If num is 0, all profiling is turned off, and overheads that occur because of profiling will not
occur. If num is greater than 0, running time of the loop is monitored once every num times
through the loop.

The default for num is 16. The maximum sampling rate is 32. Higher values of num are
changed to 32.

parthreshold=mSec mSec specifies the expected running time in milliseconds below which a loop must be run
sequentially. mSec can be specified using decimal places.

If parthreshold is set to 0, a parallelized loop will never be serialized by the dynamic profiler.

The default value for mSec is 0.2 milliseconds.

seqthreshold=mSec mSec specifies the expected running time in milliseconds beyond which a loop that has been
serialized by the dynamic profiler must revert to being run in parallel mode again. mSec can
be specified using decimal places.

The default value for mSec is 5 milliseconds.

Appendix E. Parallel Processing Facilities 403

Note: You must use thread-safe compiler mode invocations
when compiling parallelized program code.

“Chapter 5. Program Parallelization” on page 37
“Shared and Private Variables in a Parallel Environment” on page 40
“Countable Loops” on page 38
“Compiler Modes” on page 5
“Invoking the Compiler” on page 8
“#pragma Preprocessor Directives for Parallel Processing” on page 381“#pragma
Preprocessor Directives for Parallel Processing” on page 381
“OpenMP Run-time Options for Parallel Processing”
“#pragma ibm schedule Preprocessor Directive” on page 386
“Built-in Functions Used for Parallel Processing” on page 400
“smp” on page 320

OpenMP Run-time Options for Parallel Processing

OpenMP run-time time options affecting parallel processing are specified in a set of OMP environment
variables. These environment variables, which must be set before you run an application, use syntax of
form:

env_variable=option_and_args

Parallelization run-time options can also be specified by the XLSMPOPTS environment variable. When
OMP and XLSMPOPTS run-time options conflict, OMP options will prevail.

OpenMP run-time options fall into different categories as described below.

Scheduling Algorithm Environment Variable

OMP_SCHEDULE=algorithm This option specifies the scheduling algorithm used for loops not explictly assigned a
scheduling alogorithm with the omp schedule directive. For example:

OMP_SCHEDULE=“guided, 4”

Valid options for algorithm are:

v dynamic[, n]

v guided[, n]

v runtime

v static[, n]

If specified, the value of n must be an integer value of 1 or greater.

The default is scheduling algorithm is static .

See “#pragma omp for Preprocessor Directive” on page 389 for a description of these
algorithms.

404 C for AIX User’s Guide

Parallel Environment Environment Variables

OMP_NUM_THREADS=num num represents the number of parallel threads requested, which is usually equivalent to the
number of processors available on the system.

This number can be overridden during program execution by calling the
omp_set_num_threads() runtime library function.

Some applications cannot use more threads than the maximum number of processors
available. Other applications can experience significant performance improvements if they
use more threads than there are processors. This option gives you full control over the
number of user threads used to run your program.

The default value for num is the number of processors available on the system.

OMP_NESTED=TRUE|FALSE This environment variable enables or disables nested parallelism. The setting of this
environment variable can be overrridden by calling the omp_set_nested() runtime library
function.

If nested parallelism is disabled, nested parallel regions are serialized and run in the current
thread.

In the current implementation, nested parallel regions are always serialized. As a result,
OMP_SET_NESTED does not have any effect, and omp_get_nested() always returns 0. If
-qsmp=nested_par option is on (only in non-strict OMP mode), nested parallel regions may
employ additional threads as available. However, no new team will be created to run nested
parallel regions.

The default value for OMP_NESTED is FALSE.

Dynamic Profiling Environment Variable

OMP_DYNAMIC=TRUE|FALSE This environment variable enables or disables dynamic adjustment of the number of threads
available for running parallel regions.

If set to TRUE, the number of threads available for executing parallel regions may be
adjusted at runtime to make the best use of system resources. See the description for
profilefreq=num in “Run-time Options for Parallel Processing” on page 402 for more
information.

If set to FALSE, dynamic adjustment is disabled.

The default setting is TRUE.

Note: You must use thread-safe compiler mode invocations
when compiling parallelized program code.

“Chapter 5. Program Parallelization” on page 37
“Shared and Private Variables in a Parallel Environment” on page 40
“Compiler Modes” on page 5
“Invoking the Compiler” on page 8
“#pragma Preprocessor Directives for Parallel Processing” on page 381
“Run-time Options for Parallel Processing” on page 402
“#pragma ibm schedule Preprocessor Directive” on page 386
“Built-in Functions Used for Parallel Processing” on page 400
“smp” on page 320

Appendix E. Parallel Processing Facilities 405

406 C for AIX User’s Guide

Appendix F. C for AIX Debug Functions

_debug_calloc - Allocate and Initialize Memory

Format
#include <stdlib.h> /* also in <malloc.h> */
void *_debug_calloc(size_t num, size_t size,

const char *file, size_t line);

Language Level: Extension

_debug_calloc is the debug version of calloc . Like calloc , it allocates memory from the default heap for
an array of num elements, each of length size bytes. It then initializes all bits of each element to 0.

In addition, _debug_calloc makes an implicit call to _heap_check , and stores the name of the file file
and the line number line where the storage is allocated. This information can be used later by the
_heap_check , _dump_allocated or _dump_allocated_delta functions.

To use _debug_calloc , you must compile with the debug memory -qheapdebug compiler option. This
option maps all calloc calls to _debug_calloc .

Note: The -qheapdebug option maps all calls to memory management functions (including heap-specific
versions) to their debug counterparts. To prevent a call from being mapped, parenthesize the function
name.

To reallocate or free memory allocated by _debug_calloc , use _debug_realloc and _debug_free ; you
can also use realloc and free if you do not want debug information about the operation.

A heap-specific version (_debug_ucalloc) is available. _debug_calloc always allocates memory from the
default heap.

Return Value
_debug_calloc returns a pointer to the reserved space. If not enough memory is available, or if num or
size is 0, _debug_calloc returns NULL.

Example
This example reserves storage of 100 bytes. It then attempts to write to storage that was not allocated.
When _debug_calloc is called again, _heap_check detects the error, generates several messages, and
stops the program.

Note: You must compile this example with the -qheapdebug option to map the calloc calls to
_debug_calloc .
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

int main(void)
{

char *ptr1, *ptr2;

if (NULL == (ptr1 = (char*)calloc(1, 100))) {
puts(“Could not allocate memory block.”);
exit(EXIT_FAILURE);

}
memset(ptr1, 'a', 105); /* overwrites storage that was not allocated */
ptr2 = (char*)calloc(2, 20); /* this call to calloc invokes _heap_check */
puts(“_debug_calloc did not detect that a memory block was overwritten.”);
return 0;

© Copyright IBM Corp. 1995, 1999 407

/**
The output should be similar to:

End of allocated object 0x00073890 was overwritten at 0x000738f4.
The first eight bytes of the memory block (in hex) are: 6161616161616161.
This memory block was (re)allocated at line number 9 in _debug_callo.c.
Heap state was valid at line 9 of _debug_callo.c.
Memory error detected at line 14 of _debug_callo.c.

**/
}

“Debugging Memory Heaps” on page 183
“Memory Management Functions” on page 179
“Managing Memory with Multiple Heaps” on page 182
“Debugging Programs with Heap Memory” on page 195
“heapdebug” on page 270
“_debug_free - Free Allocated Memory”
“_debug_heapmin - Free Unused Memory in the Default Heap” on page 410
“_debug_malloc - Allocate Memory” on page 412
“_debug_memcpy - Copy Bytes” on page 413
“_debug_memmove - Copy Bytes” on page 415
“_debug_memset - Set Bytes to Value” on page 416
“_debug_realloc - Reallocate Memory Block” on page 417
“_debug_strcat - Concatenate Strings” on page 419
“_debug_strcpy - Copy Strings” on page 421
“_debug_strncat - Concatenate Strings” on page 422
“_debug_strncpy - Copy Strings” on page 423
“_debug_strnset - Set Characters in String” on page 425
“_debug_strset - Set Characters in String” on page 426
“_debug_ucalloc - Reserve and Initialize Memory from User Heap” on page 428
“_debug_uheapmin - Free Unused Memory in User Heap” on page 430
“_debug_umalloc - Reserve Memory Blocks from User Heap” on page 431
“heapdebug” on page 270

_debug_free - Free Allocated Memory

Format
#include <stdlib.h> /* also in <malloc.h> */
void _debug_free(void *ptr, const char *file,

size_t line);

Language Level: Extension

_debug_free is the debug version of free . Like free , it frees the block of memory pointed to by ptr.
_debug_free also sets each block of freed memory to 0xFB, so you can easily locate instances where your
program uses the data in freed memory.

In addition, _debug_free makes an implicit call to the _heap_check , and stores the file name file and
the line number line where the memory is freed. This information can be used later by the _heap_check ,
_dump_allocated , or _dump_allocated_delta functions.

To use _debug_free , you must compile with the debug memory -qheapdebug compiler option. This option
maps all free calls to _debug_free .

Note: The -qheapdebug option maps all calls to memory management functions (including heap-specific
versions) to their debug counterparts. To prevent a call from being mapped, parenthesize the function
name.

408 C for AIX User’s Guide

Because _debug_free always checks what heap the memory was allocated from, you can use
_debug_free to free memory blocks allocated by the regular, heap-specific, or debug versions of the
memory management functions. However, if the memory was not allocated by the memory management
functions, or was previously freed, _debug_free generates an error message and the program ends.

Return Value
There is no return value.

Example
This example reserves two blocks, one of 10 bytes and the other of 20 bytes. It then frees the first block
and attempts to overwrite the freed storage. When _debug_free is called a second time, _heap_check
detects the error, prints out several messages, and stops the program.

Note: You must compile this example with the -qheapdebug option to map the free calls to _debug_free .
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

int main(void)
{

char *ptr1, *ptr2;

if (NULL == (ptr1 = (char*)malloc(10)) || NULL == (ptr2 = (char*)malloc(20))) {
puts(“Could not allocate memory block.”);
exit(EXIT_FAILURE);

}
free(ptr1);
memset(ptr1, 'a', 5); /* overwrites storage that has been freed */
free(ptr2); /* this call to free invokes _heap_check */
puts(“_debug_free did not detect that a freed memory block was overwritten.”);
return 0;

/**
The output should be similar to:

Free heap was overwritten at 0x00073890.
Heap state was valid at line 12 of _debug_free.c.
Memory error detected at line 14 of _debug_free.c.

**/
}

Appendix F. C for AIX Debug Functions 409

“Debugging Memory Heaps” on page 183
“Memory Management Functions” on page 179
“Managing Memory with Multiple Heaps” on page 182
“Debugging Programs with Heap Memory” on page 195
“heapdebug” on page 270
“_debug_calloc - Allocate and Initialize Memory” on page 407
“_debug_heapmin - Free Unused Memory in the Default Heap”
“_debug_malloc - Allocate Memory” on page 412
“_debug_memcpy - Copy Bytes” on page 413
“_debug_memmove - Copy Bytes” on page 415
“_debug_memset - Set Bytes to Value” on page 416
“_debug_realloc - Reallocate Memory Block” on page 417
“_debug_strcat - Concatenate Strings” on page 419
“_debug_strcpy - Copy Strings” on page 421
“_debug_strncat - Concatenate Strings” on page 422
“_debug_strncpy - Copy Strings” on page 423
“_debug_strnset - Set Characters in String” on page 425
“_debug_strset - Set Characters in String” on page 426
“_debug_ucalloc - Reserve and Initialize Memory from User Heap” on page 428
“_debug_uheapmin - Free Unused Memory in User Heap” on page 430
“_debug_umalloc - Reserve Memory Blocks from User Heap” on page 431
“heapdebug” on page 270

_debug_heapmin - Free Unused Memory in the Default Heap

Format
#include <stdlib.h> /* also in <malloc.h> */
int _debug_heapmin(const char *file, size_t line);

Language Level: Extension

_debug_heapmin is the debug version of _heapmin . Like _heapmin , it returns all unused memory from
the default runtime heap to the operating system.

In addition, _debug_heapmin makes an implicit call to _heap_check , and stores the file name file and
the line number line where the memory is returned. This information can be used later by the
_heap_check function.

To use _debug_heapmin , you must compile with the debug memory -qheapdebug compiler option. This
option maps all _heapmin calls to _debug_heapmin .

Note: The -qheapdebug option maps all calls to memory management functions (including heap-specific
versions) to their debug counterparts. To prevent a call from being mapped, parenthesize the function
name.

A heap-specific version of this function (_debug_uheapmin) is also available. _debug_heapmin always
operates on the default heap.

Return Value
If successful, _debug_heapmin returns 0; otherwise, it returns -1.

Example
This example allocates 10000 bytes of storage, changes the storage size to 10 bytes, and then uses
_debug_heapmin to return the unused memory to the operating system. The program then attempts to

410 C for AIX User’s Guide

overwrite memory that was not allocated. When _debug_heapmin is called again, _heap_check detects
the error, generates several messages, and stops the program.

Note: You must compile this example with the -qheapdebug option to map the _heapmin calls to
_debug_heapmin .
#include <stdlib.h>
#include <stdio.h>

int main(void)
{

char *ptr;

/* Allocate a large object from the system */
if (NULL == (ptr = (char*)malloc(100000))) {

puts(“Could not allocate memory block.”);
exit(EXIT_FAILURE);

}
ptr = (char*)realloc(ptr, 10);
_heapmin(); /* No allocation problems to detect */

(ptr - 1) = 'a'; / Overwrite memory that was not allocated */
_heapmin(); /* This call to _heapmin invokes _heap_check */

puts(“_debug_heapmin did not detect that a non-allocated memory block”
“was overwritten.”);

return 0;

/**
Possible output is:

Header information of object 0x000738b0 was overwritten at 0x000738ac.
The first eight bytes of the memory block (in hex) are: AAAAAAAAAAAAAAAA.
This memory block was (re)allocated at line number 13 in _debug_heapm.c.
Heap state was valid at line 14 of _debug_heapm.c.
Memory error detected at line 17 of _debug_heapm.c.

**/
}

“Debugging Memory Heaps” on page 183
“Memory Management Functions” on page 179
“Managing Memory with Multiple Heaps” on page 182
“Debugging Programs with Heap Memory” on page 195
“heapdebug” on page 270
“_debug_calloc - Allocate and Initialize Memory” on page 407
“_debug_free - Free Allocated Memory” on page 408
“_debug_malloc - Allocate Memory” on page 412
“_debug_memcpy - Copy Bytes” on page 413
“_debug_memmove - Copy Bytes” on page 415
“_debug_memset - Set Bytes to Value” on page 416
“_debug_realloc - Reallocate Memory Block” on page 417
“_debug_strcat - Concatenate Strings” on page 419
“_debug_strcpy - Copy Strings” on page 421
“_debug_strncat - Concatenate Strings” on page 422
“_debug_strncpy - Copy Strings” on page 423
“_debug_strnset - Set Characters in String” on page 425
“_debug_strset - Set Characters in String” on page 426
“_debug_ucalloc - Reserve and Initialize Memory from User Heap” on page 428
“_debug_uheapmin - Free Unused Memory in User Heap” on page 430
“_debug_umalloc - Reserve Memory Blocks from User Heap” on page 431
“heapdebug” on page 270

Appendix F. C for AIX Debug Functions 411

_debug_malloc - Allocate Memory

Format
#include <stdlib.h> /* also in <malloc.h> */
void *_debug_malloc(size_t size,

const char *file, size_t line);

Language Level: Extension

_debug_malloc is the debug version of malloc . Like malloc , it reserves a block of storage of size bytes
from the default heap. _debug_malloc also sets all the memory it allocates to 0xAA, so you can easily
locate instances where your program uses the data in the memory without initializing it first.

In addition, _debug_malloc makes an implicit call to _heap_check , and stores the file name file and the
line number line where the storage is allocated. This information can later be used by the _heap_check ,
_dump_allocated , or _dump_allocated_delta functions.

To use _debug_malloc , you must compile with the debug memory -qheapdebug compiler option. This
option maps all malloc calls to _debug_malloc .

Note: The -qheapdebug option maps all calls to memory management functions (including heap-specific
versions) to their debug counterparts. To prevent a call from being mapped, parenthesize the function
name.

To reallocate or free memory allocated by _debug_malloc , use _debug_realloc and _debug_free ; you
can also use realloc and free if you do not want debug information about the operation.

A heap-specific version of this function (_debug_umalloc) is also available. _debug_malloc always
allocates memory from the default heap.

Return Value
_debug_malloc returns a pointer to the reserved space. If not enough memory is available or if size is 0,
_debug_malloc returns NULL.

Example
This example allocates 100 bytes of storage. It then attempts to write to storage that was not allocated.
When _debug_malloc is called again, _heap_check detects the error, generates several messages, and
stops the program.

Note: You must compile this example with the -qheapdebug option to map the malloc calls to
_debug_malloc .
#include <stdlib.h>
#include <stdio.h>

int main(void)
{

char *ptr1, *ptr2;

if (NULL == (ptr1 = (char*)malloc(100))) {
puts(“Could not allocate memory block.”);
exit(EXIT_FAILURE);

}
(ptr1 - 1) = 'a'; / overwrites storage that was not allocated */
ptr2 = (char*)malloc(10); /* this call to malloc invokes _heap_check */
puts(“_debug_malloc did not detect that a memory block was overwritten.”);
return 0;

/**
Possible output is:

412 C for AIX User’s Guide

Header information of object 0x00073890 was overwritten at 0x0007388c.
The first eight bytes of the memory block (in hex) are: AAAAAAAAAAAAAAAA.
This memory block was (re)allocated at line number 8 in _debug_mallo.c.
Heap state was valid at line 8 of _debug_mallo.c.
Memory error detected at line 13 of _debug_mallo.c.

**/
}

“Debugging Memory Heaps” on page 183
“Memory Management Functions” on page 179
“Managing Memory with Multiple Heaps” on page 182
“Debugging Programs with Heap Memory” on page 195
“heapdebug” on page 270
“_debug_calloc - Allocate and Initialize Memory” on page 407
“_debug_free - Free Allocated Memory” on page 408
“_debug_heapmin - Free Unused Memory in the Default Heap” on page 410
“_debug_memcpy - Copy Bytes”
“_debug_memmove - Copy Bytes” on page 415
“_debug_memset - Set Bytes to Value” on page 416
“_debug_realloc - Reallocate Memory Block” on page 417
“_debug_strcat - Concatenate Strings” on page 419
“_debug_strcpy - Copy Strings” on page 421
“_debug_strncat - Concatenate Strings” on page 422
“_debug_strncpy - Copy Strings” on page 423
“_debug_strnset - Set Characters in String” on page 425
“_debug_strset - Set Characters in String” on page 426
“_debug_ucalloc - Reserve and Initialize Memory from User Heap” on page 428
“_debug_uheapmin - Free Unused Memory in User Heap” on page 430
“_debug_umalloc - Reserve Memory Blocks from User Heap” on page 431
“heapdebug” on page 270

_debug_memcpy - Copy Bytes

Format
#include <string.h>
void *_debug_memcpy(void *dest, const void *src, size_t count,

const char *file, size_t line);

Language Level: Extension

_debug_memcpy is the debug version of memcpy . Like memcpy , it copies count bytes of src to dest,
where the behavior is undefined if copying takes place between objects that overlap.

_debug_memcpy validates the heap after copying the bytes to the target location, and performs this
check only when the target is within a heap. _debug_memcpy makes an implicit call to _heap_check . If
_debug_memcpy detects a corrupted heap when it makes a call to _heap_check , _debug_memcpy will
report the file name file and line number line in a message.

Note: _debug_memcpy checks only the current default heap. Therefore, this debug support will not check
all heaps within applications that have multiple user heaps.

To use _debug_memcpy , you must compile with the debug memory -qheapdebug compiler option. This
option maps all memcpy calls to _debug_memcpy . You do not have to change your source code, in
order for _debug_memcpy to verify the heap.

Appendix F. C for AIX Debug Functions 413

Note: The -qheapdebug option maps all calls to other string functions and all calls to memory
management functions (including a heap-specific version), to their debug counterparts. To prevent a call
from being mapped, parenthesize the function name.

Return Value
_debug_memcpy returns a pointer to dest.

Example
This example contains a programming error. On the memcpy used to initialize the target location, the
count is more than the size of the target object, and the memcpy operation copies bytes past the end of
the allocated object.
#include <stdlib.h>
#include <string.h>
#include <stdio.h>

#define MAX_LEN 10

int main(void)
{

char *source, *target;

target = (char*)malloc(MAX_LEN);
memcpy(target, “This is the target string”, 11);

printf(“Target is \”%s\“\n”, target);
return 0;

/**
The output should be similar to:

End of allocated object 0x00073c80 was overwritten at 0x00073c8a.
The first eight bytes of the memory block (in hex) are: 5468697320697320.
This memory block was (re)allocated at line number 11 in memcpy.c.
Heap state was valid at line 11 of memcpy.c.
Memory error detected at line 12 of memcpy.c.

**/
}

“Debugging Memory Heaps” on page 183
“Memory Management Functions” on page 179
“Managing Memory with Multiple Heaps” on page 182
“Debugging Programs with Heap Memory” on page 195
“heapdebug” on page 270
“_debug_calloc - Allocate and Initialize Memory” on page 407
“_debug_free - Free Allocated Memory” on page 408
“_debug_heapmin - Free Unused Memory in the Default Heap” on page 410
“_debug_malloc - Allocate Memory” on page 412
“_debug_memmove - Copy Bytes” on page 415
“_debug_memset - Set Bytes to Value” on page 416
“_debug_realloc - Reallocate Memory Block” on page 417
“_debug_strcat - Concatenate Strings” on page 419
“_debug_strcpy - Copy Strings” on page 421
“_debug_strncat - Concatenate Strings” on page 422
“_debug_strncpy - Copy Strings” on page 423
“_debug_strnset - Set Characters in String” on page 425
“_debug_strset - Set Characters in String” on page 426
“_debug_ucalloc - Reserve and Initialize Memory from User Heap” on page 428
“_debug_uheapmin - Free Unused Memory in User Heap” on page 430
“_debug_umalloc - Reserve Memory Blocks from User Heap” on page 431
“heapdebug” on page 270

414 C for AIX User’s Guide

_debug_memmove - Copy Bytes

Format
#include <string.h>
void *_debug_memmove(void *dest, const void *src, size_t count,

const char *file, size_t line);

Language Level: Extension

_debug_memmove is the debug version of memmove . Like memmove , it copies count bytes of src to
dest, and allows for copying between objects that may overlap.

_debug_memmove validates the heap after copying the bytes to the target location, and performs this
check only when the target is within a heap. _debug_memmove makes an implicit call to _heap_check .
If _debug_memmove detects a corrupted heap when it makes a call to _heap_check ,
_debug_memmove will report the file name file and line number line in a message.

Note: _debug_memmove checks only the current default heap. Therefore, this debug support will not
check all heaps within applications that have multiple user heaps.

To use _debug_memmove , you must compile with the debug memory -qheapdebug compiler option.
This option maps all memcpy calls to _debug_memmove . You do not have to change your source code,
in order for _debug_memmove to verify the heap.

Note: The -qheapdebug option maps all calls to other string functions and all calls to memory
management functions (including a heap-specific version), to their debug counterparts. To prevent a call
from being mapped, parenthesize the function name.

Return Value
_debug_memmove returns a pointer to dest.

Example
This example contains a programming error. The count specified on memmove is 15 instead of 5, and the
memmove operation copies bytes past the end of the allocated object.
#include <stdlib.h>
#include <string.h>
#include <stdio.h>

#define SIZE 21

int main(void)
{

char *target, *p, *source;

target = (char*)malloc(SIZE);
strcpy(target, “a shiny white sphere”);
p = target+8; /* p points at the starting character

of the word we want to replace */
source = target+2; /* start of “shiny” */

printf(“Before memmove, target is \”%s\“\n”, target);
memmove(p, source, 15);
printf(“After memmove, target becomes \”%s\“\n”, target);
return 0;

/**
The output should be similar to:

Before memmove, target is “a shiny white sphere”
End of allocated object 0x00073c80 was overwritten at 0x00073c95.
The first eight bytes of the memory block (in hex) are: 61207368696E7920.
This memory block was (re)allocated at line number 11 in memmove.c.

Appendix F. C for AIX Debug Functions 415

Heap state was valid at line 12 of memmove.c.
Memory error detected at line 18 of memcpy.c.

**/
}

“Debugging Memory Heaps” on page 183
“Memory Management Functions” on page 179
“Managing Memory with Multiple Heaps” on page 182
“Debugging Programs with Heap Memory” on page 195
“heapdebug” on page 270
“_debug_calloc - Allocate and Initialize Memory” on page 407
“_debug_free - Free Allocated Memory” on page 408
“_debug_heapmin - Free Unused Memory in the Default Heap” on page 410
“_debug_malloc - Allocate Memory” on page 412
“_debug_memcpy - Copy Bytes” on page 413
“_debug_memset - Set Bytes to Value”
“_debug_realloc - Reallocate Memory Block” on page 417
“_debug_strcat - Concatenate Strings” on page 419
“_debug_strcpy - Copy Strings” on page 421
“_debug_strncat - Concatenate Strings” on page 422
“_debug_strncpy - Copy Strings” on page 423
“_debug_strnset - Set Characters in String” on page 425
“_debug_strset - Set Characters in String” on page 426
“_debug_ucalloc - Reserve and Initialize Memory from User Heap” on page 428
“_debug_uheapmin - Free Unused Memory in User Heap” on page 430
“_debug_umalloc - Reserve Memory Blocks from User Heap” on page 431
“heapdebug” on page 270

_debug_memset - Set Bytes to Value

Format
#include <string.h>
void *_debug_memset(void *dest, int c, size_t count,

const char *file, size_t line);

Language Level: Extension

_debug_memset is the debug version of memset . Like memset , it sets the first count bytes of dest to
the value c. The value of c is converted to an unsigned character.

_debug_memset validates the heap after setting the bytes, and performs this check only when the target
is within a heap. _debug_memset makes an implicit call to _heap_check . If _debug_memset detects a
corrupted heap when it makes a call to _heap_check , _debug_memset will report the file name file and
line number line in a message.

Note: _debug_memset checks only the current default heap. Therefore, this debug support will not check
all heaps within applications that have multiple user heaps.

To use _debug_memset , you must compile with the debug memory -qheapdebug compiler option. This
option maps all memset calls to _debug_memset . You do not have to change your source code, in order
for _debug_memset to verify the heap.

Note: The -qheapdebug option maps all calls to other string functions and all calls to memory
management functions (including a heap-specific version), to their debug counterparts. To prevent a call
from being mapped, parenthesize the function name.

416 C for AIX User’s Guide

Return Value
_debug_memset returns a pointer to dest.

Example
This example contains a programming error. The invocation of memset that puts ’B’ in the buffer specifies
the wrong count, and stores bytes past the end of the buffer.
#include <stdlib.h>
#include <string.h>
#include <stdio.h>

#define BUF_SIZE 20

int main(void)
{

char *buffer, *buffer2;
char *string;

buffer = (char*)calloc(1, BUF_SIZE+1); /* +1 for null-terminator */

string = (char*)memset(buffer, 'A', 10);
printf(“\nBuffer contents: %s\n”, string);
memset(buffer+10, 'B', 20);

return 0;

/**
The output should be:

Buffer contents: AAAAAAAAAA
End of allocated object 0x00073c80 was overwritten at 0x00073c95.
The first eight bytes of the memory block (in hex) are: 4141414141414141.
This memory block was (re)allocated at line number 12 in memset.c.
Heap state was valid at line 14 of memset.c.
Memory error detected at line 16 of memset.c.

**/
}

“Debugging Memory Heaps” on page 183
“Memory Management Functions” on page 179
“Managing Memory with Multiple Heaps” on page 182
“Debugging Programs with Heap Memory” on page 195
“heapdebug” on page 270
“_debug_calloc - Allocate and Initialize Memory” on page 407
“_debug_free - Free Allocated Memory” on page 408
“_debug_heapmin - Free Unused Memory in the Default Heap” on page 410
“_debug_malloc - Allocate Memory” on page 412
“_debug_memcpy - Copy Bytes” on page 413
“_debug_memmove - Copy Bytes” on page 415
“_debug_realloc - Reallocate Memory Block”
“_debug_strcat - Concatenate Strings” on page 419
“_debug_strcpy - Copy Strings” on page 421
“_debug_strncat - Concatenate Strings” on page 422
“_debug_strncpy - Copy Strings” on page 423
“_debug_strnset - Set Characters in String” on page 425
“_debug_strset - Set Characters in String” on page 426
“_debug_ucalloc - Reserve and Initialize Memory from User Heap” on page 428
“_debug_uheapmin - Free Unused Memory in User Heap” on page 430
“_debug_umalloc - Reserve Memory Blocks from User Heap” on page 431

_debug_realloc - Reallocate Memory Block

Format

Appendix F. C for AIX Debug Functions 417

#include <stdlib.h> /* also in <malloc.h> */
void *_debug_realloc(void *ptr, size_t size,

const char *file, size_t line);

Language Level: Extension

_debug_realloc is the debug version of realloc . Like realloc , it reallocates the block of memory pointed
to by ptr to a new size, specified in bytes. It also sets any new memory it allocates to 0xAA, so you can
easily locate instances where your program tries to use the data in that memory without initializing it first.

In addition, _debug_realloc makes an implicit call to _heap_check , and stores the file name file and the
line number line where the storage is reallocated. This information can be used later by the
_heap_check , _dump_allocated, or _dump_allocated_delta functions.

If ptr is NULL, _debug_realloc behaves like _debug_malloc (or malloc) and allocates the block of
memory.

To use _debug_realloc , you must compile with the debug memory -qheapdebug compiler option. This
option maps all realloc calls to _debug_realloc .

Note: The -qheapdebug option maps all calls to memory management functions (including heap-specific
versions) to their debug counterparts. To prevent a call from being mapped, parenthesize the function
name.

Because _debug_realloc always checks what heap the memory was allocated from, you can use
_debug_realloc to reallocate memory blocks allocated by the regular or debug versions of the memory
management functions. However, if the memory was not allocated by the memory management functions,
or was previously freed, _debug_realloc generates an error message and the program ends.

Return Value
_debug_realloc returns a pointer to the reallocated memory block. The ptr argument to _debug_realloc
is not the same as the return value; _debug_realloc always changes the memory location to help you
locate references to the memory that were not freed before the memory was reallocated.

If size is 0, _debug_realloc returns NULL. If not enough memory is available to expand the block to the
given size, the original block is unchanged and NULL is returned.

Example
This example uses _debug_realloc to allocate 100 bytes of storage. It then attempts to write to storage
that was not allocated. When _debug_realloc is called again, _heap_check detects the error, generates
several messages, and stops the program.

Note: You must compile this example with the -qheapdebug option to map the realloc calls to
_debug_realloc .
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

int main(void)
{

char *ptr;

if (NULL == (ptr = (char*)realloc(NULL, 100))) {
puts(“Could not allocate memory block.”);
exit(EXIT_FAILURE);

}
memset(ptr, 'a', 105); /* overwrites storage that was not allocated */
ptr = (char*)realloc(ptr, 200); /* realloc invokes _heap_check */
puts(“_debug_realloc did not detect that a memory block was overwritten.”);
return 0;

418 C for AIX User’s Guide

/**
The output should be similar to:

End of allocated object 0x00073890 was overwritten at 0x000738f4.
The first eight bytes of the memory block (in hex) are: 6161616161616161.
This memory block was (re)allocated at line number 8 in _debug_reall.c.
Heap state was valid at line 8 of _debug_reall.c.
Memory error detected at line 13 of _debug_reall.c.

**/
}

“Debugging Memory Heaps” on page 183
“Memory Management Functions” on page 179
“Managing Memory with Multiple Heaps” on page 182
“Debugging Programs with Heap Memory” on page 195
“heapdebug” on page 270
“_debug_calloc - Allocate and Initialize Memory” on page 407
“_debug_free - Free Allocated Memory” on page 408
“_debug_heapmin - Free Unused Memory in the Default Heap” on page 410
“_debug_malloc - Allocate Memory” on page 412
“_debug_memcpy - Copy Bytes” on page 413
“_debug_memmove - Copy Bytes” on page 415
“_debug_memset - Set Bytes to Value” on page 416
“_debug_strcat - Concatenate Strings”
“_debug_strcpy - Copy Strings” on page 421
“_debug_strncat - Concatenate Strings” on page 422
“_debug_strncpy - Copy Strings” on page 423
“_debug_strnset - Set Characters in String” on page 425
“_debug_strset - Set Characters in String” on page 426
“_debug_ucalloc - Reserve and Initialize Memory from User Heap” on page 428
“_debug_uheapmin - Free Unused Memory in User Heap” on page 430
“_debug_umalloc - Reserve Memory Blocks from User Heap” on page 431
“heapdebug” on page 270

_debug_strcat - Concatenate Strings

Format
#include <string.h>
char *_debug_strcat(char *string1, const char *string2,

const char *file, size_t file);

Language Level: Extension

_debug_strcat is the debug version of strcat . Like strcat , it concatenates string2 to string1 and ends
the resulting string with the null character.

_debug_strcat validates the heap after concatenating the strings, and performs this check only when the
target is within a heap. _debug_strcat makes an implicit call to _heap_check . If _debug_strcat detects a
corrupted heap when it makes a call to _heap_check , _debug_strcat will report the file name file and
line number file in a message.

Note: _debug_strcat checks only the current default heap. Therefore, this debug support will not check all
heaps within applications that have multiple user heaps.

To use _debug_strcat , you must compile with the debug memory -qheapdebug compiler option. This
option maps all strcat calls to _debug_strcat . You do not have to change your source code, in order for
_debug_strcat to verify the heap.

Appendix F. C for AIX Debug Functions 419

Note: The -qheapdebug option maps all calls to other string functions and all calls to memory
management functions (including a heap-specific version), to their debug counterparts. To prevent a call
from being mapped, parenthesize the function name.

Return Value
_debug_strcat returns a pointer to the concatenated string string1.

Example
This example contains a programming error. The buffer1 object is not large enough to store the result
after the string “ program” is concatenated.
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#define SIZE 10

int main(void)
{

char *buffer1;
char *ptr;

buffer1 = (char*)malloc(SIZE);
strcpy(buffer1, “computer”);

ptr = strcat(buffer1, “ program”);
printf(“buffer1 = %s\n”, buffer1);
return 0;

/**
The output should be similar to:

End of allocated object 0x00073c80 was overwritten at 0x00073c8a.
The first eight bytes of the memory block (in hex) are: 636F6D7075746572.
This memory block was (re)allocated at line number 12 in strcat.c.
Heap state was valid at line 13 of strcat.c.
Memory error detected at line 15 of strcat.c.

**/
}

“Debugging Memory Heaps” on page 183
“Memory Management Functions” on page 179
“Managing Memory with Multiple Heaps” on page 182
“Debugging Programs with Heap Memory” on page 195
“heapdebug” on page 270
“_debug_calloc - Allocate and Initialize Memory” on page 407
“_debug_free - Free Allocated Memory” on page 408
“_debug_heapmin - Free Unused Memory in the Default Heap” on page 410
“_debug_malloc - Allocate Memory” on page 412
“_debug_memcpy - Copy Bytes” on page 413
“_debug_memmove - Copy Bytes” on page 415
“_debug_memset - Set Bytes to Value” on page 416
“_debug_realloc - Reallocate Memory Block” on page 417
“_debug_strcpy - Copy Strings” on page 421
“_debug_strncat - Concatenate Strings” on page 422
“_debug_strncpy - Copy Strings” on page 423
“_debug_strnset - Set Characters in String” on page 425
“_debug_strset - Set Characters in String” on page 426
“_debug_ucalloc - Reserve and Initialize Memory from User Heap” on page 428
“_debug_uheapmin - Free Unused Memory in User Heap” on page 430
“_debug_umalloc - Reserve Memory Blocks from User Heap” on page 431
“heapdebug” on page 270

420 C for AIX User’s Guide

_debug_strcpy - Copy Strings

Format
#include <string.h>
char *_debug_strcpy(char *string1, const char *string2,

const char *file, size_t line);

Language Level: Extension

_debug_strcpy is the debug version of strcpy . Like strcpy , it copies string2, including the ending null
character, to the location specified by string1.

_debug_strcpy validates the heap after copying the string to the target location, and performs this check
only when the target is within a heap. _debug_strcpy makes an implicit call to _heap_check . If
_debug_strcpy detects a corrupted heap when it makes a call to _heap_check , _debug_strcpy will
report the file name file and line number line in a message.

Note: _debug_strcpy checks only the current default heap. Therefore, this debug support will not check
all heaps within applications that have multiple user heaps.

To use _debug_strcpy , you must compile with the debug memory -qheapdebug compiler option. This
option maps all strcpy calls to _debug_strcpy . You do not have to change your source code, in order for
_debug_strcpy to verify the heap.

Note: The -qheapdebug option maps all calls to other string functions and all calls to memory
management functions (including a heap-specific version), to their debug counterparts. To prevent a call
from being mapped, parenthesize the function name.

Return Value
_debug_strcpy returns a pointer to the copied string string1.

Example
This example contains a programming error. The source string is too long for the destination buffer, and
the strcpy operation damages the heap.
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#define SIZE 10

int main(void)
{

char *source = “1234567890123456789”;
char *destination;
char *return_string;

destination = (char*)malloc(SIZE);
strcpy(destination, “abcdefg”),

printf(“destination is originally = '%s'\n”, destination);
return_string = strcpy(destination, source);
printf(“After strcpy, destination becomes '%s'\n\n”, destination);
return 0;

/**
The output should be similar to:

destination is originally = 'abcdefg'
End of allocated object 0x00073c80 was overwritten at 0x00073c8a.
The first eight bytes of the memory block (in hex) are: 3132333435363738.
This memory block was (re)allocated at line number 13 in strcpy.c.

Appendix F. C for AIX Debug Functions 421

Heap state was valid at line 14 of strcpy.c.
Memory error detected at line 17 of strcpy.c.

**/
}

“Debugging Memory Heaps” on page 183
“Memory Management Functions” on page 179
“Managing Memory with Multiple Heaps” on page 182
“Debugging Programs with Heap Memory” on page 195
“heapdebug” on page 270
“_debug_calloc - Allocate and Initialize Memory” on page 407
“_debug_free - Free Allocated Memory” on page 408
“_debug_heapmin - Free Unused Memory in the Default Heap” on page 410
“_debug_malloc - Allocate Memory” on page 412
“_debug_memcpy - Copy Bytes” on page 413
“_debug_memmove - Copy Bytes” on page 415
“_debug_memset - Set Bytes to Value” on page 416
“_debug_realloc - Reallocate Memory Block” on page 417
“_debug_strcat - Concatenate Strings” on page 419
“_debug_strncat - Concatenate Strings”
“_debug_strncpy - Copy Strings” on page 423
“_debug_strnset - Set Characters in String” on page 425
“_debug_strset - Set Characters in String” on page 426
“_debug_ucalloc - Reserve and Initialize Memory from User Heap” on page 428
“_debug_uheapmin - Free Unused Memory in User Heap” on page 430
“_debug_umalloc - Reserve Memory Blocks from User Heap” on page 431
“heapdebug” on page 270

_debug_strncat - Concatenate Strings

Format
#include <string.h>
char *_debug_strncat(char *string1, const char *string2, size_t count,

const char *file, size_t line);

Language Level: Extension

_debug_strncat is the debug version of strncat . Like strncat , it appends the first count characters of
string2 to string1 and ends the resulting string with a null character (\0). If count is greater than the
length of string2, the length of string2 is used in place of count.

_debug_strncat validates the heap after appending the characters, and performs this check only when
the target is within a heap. _debug_strncat makes an implicit call to _heap_check . If _debug_strncat
detects a corrupted heap when it makes a call to _heap_check , _debug_strncat will report the file name
file and line number line in a message.

Note: _debug_strncat checks only the current default heap. Therefore, this debug support will not check
all heaps within applications that have multiple user heaps.

To use _debug_strncat , you must compile with the debug memory -qheapdebug compiler option. This
option maps all strncat calls to _debug_strncat . You do not have to change your source code, in order
for _debug_strncat to verify the heap.

Note: The -qheapdebug option maps all calls to other string functions and all calls to memory
management functions (including a heap-specific version), to their debug counterparts. To prevent a call
from being mapped, parenthesize the function name.

422 C for AIX User’s Guide

Return Value
_debug_strncat returns a pointer to the joined string string1.

Example
This example contains a programming error. The buffer1 object is not large enough to store the result
after eight characters from the string “ programming” are concatenated.
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#define SIZE 10

int main(void)
{

char *buffer1;
char *ptr;

buffer1 = (char*)malloc(SIZE);
strcpy(buffer1, “computer”);

/* Call strncat with buffer1 and “ programming” */

ptr = strncat(buffer1, “ programming”, 8);
printf(“strncat: buffer1 = \”%s\“\n”, buffer1);
return 0;

/**
The output should be similar to:

End of allocated object 0x00073c80 was overwritten at 0x00073c8a.
The first eight bytes of the memory block (in hex) are: 636F6D7075746572.
This memory block was (re)allocated at line number 12 in strncat.c.
Heap state was valid at line 13 of strncat.c.
Memory error detected at line 17 of strncat.c.

**/
}

“Debugging Memory Heaps” on page 183
“Memory Management Functions” on page 179
“Managing Memory with Multiple Heaps” on page 182
“Debugging Programs with Heap Memory” on page 195
“heapdebug” on page 270
“_debug_calloc - Allocate and Initialize Memory” on page 407
“_debug_free - Free Allocated Memory” on page 408
“_debug_heapmin - Free Unused Memory in the Default Heap” on page 410
“_debug_malloc - Allocate Memory” on page 412
“_debug_memcpy - Copy Bytes” on page 413
“_debug_memmove - Copy Bytes” on page 415
“_debug_memset - Set Bytes to Value” on page 416
“_debug_realloc - Reallocate Memory Block” on page 417
“_debug_strcat - Concatenate Strings” on page 419
“_debug_strcpy - Copy Strings” on page 421
“_debug_strncpy - Copy Strings”
“_debug_strnset - Set Characters in String” on page 425
“_debug_strset - Set Characters in String” on page 426
“_debug_ucalloc - Reserve and Initialize Memory from User Heap” on page 428
“_debug_uheapmin - Free Unused Memory in User Heap” on page 430
“_debug_umalloc - Reserve Memory Blocks from User Heap” on page 431
“heapdebug” on page 270

_debug_strncpy - Copy Strings

Format

Appendix F. C for AIX Debug Functions 423

#include <string.h>
char *_debug_strncpy(char *string1, const char *string2, size_t count,

const char *file, size_t line);

Language Level: Extension

_debug_strncpy is the debug version of strncpy . Like strncpy , it copies count characters of string2 to
string1. If count is less than or equal to the length of string2, a null character (\0) is not appended to the
copied string. If count is greater than the length of string2, the string1 result is padded with null
characters (\0) up to length count.

_debug_strncpy validates the heap after copying the strings to the target location, and performs this
check only when the target is within a heap. _debug_strncpy makes an implicit call to _heap_check . If
_debug_strncpy detects a corrupted heap when it makes a call to _heap_check , _debug_strncpy will
report the file name file and line number line in a message.

Note: _debug_strncpy checks only the current default heap. Therefore, this debug support will not check
all heaps within applications that have multiple user heaps.

To use _debug_strncpy , you must compile with the debug memory -qheapdebug compiler option. This
option maps all strncpy calls to _debug_strncpy . You do not have to change your source code, in order
for _debug_strncpy to verify the heap.

Note: The -qheapdebug option maps all calls to other string functions and all calls to memory
management functions (including a heap-specific version), to their debug counterparts. To prevent a call
from being mapped, parenthesize the function name.

Return Value
_debug_strncpy returns a pointer to string1.

Example
This example contains a programming error. The source string is too long for the destination buffer, and
the strncpy operation damages the heap.
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#define SIZE 10

int main(void)
{

char *source = “1234567890123456789”;
char *destination;
char *return_string;
int index = 15;

destination = (char*)malloc(SIZE);
strcpy(destination, “abcdefg”),

printf(“destination is originally = '%s'\n”, destination);
return_string = strncpy(destination, source, index);
printf(“After strncpy, destination becomes '%s'\n\n”, destination);
return 0;

/**
The output should be similar to:

destination is originally = 'abcdefg'
End of allocated object 0x00073c80 was overwritten at 0x00073c8a.
The first eight bytes of the memory block (in hex) are: 3132333435363738.
This memory block was (re)allocated at line number 14 in strncpy.c.

424 C for AIX User’s Guide

Heap state was valid at line 15 of strncpy.c.
Memory error detected at line 18 of strncpy.c.

**/
}

“Debugging Memory Heaps” on page 183
“Memory Management Functions” on page 179
“Managing Memory with Multiple Heaps” on page 182
“Debugging Programs with Heap Memory” on page 195
“heapdebug” on page 270
“_debug_calloc - Allocate and Initialize Memory” on page 407
“_debug_free - Free Allocated Memory” on page 408
“_debug_heapmin - Free Unused Memory in the Default Heap” on page 410
“_debug_malloc - Allocate Memory” on page 412
“_debug_memcpy - Copy Bytes” on page 413
“_debug_memmove - Copy Bytes” on page 415
“_debug_memset - Set Bytes to Value” on page 416
“_debug_realloc - Reallocate Memory Block” on page 417
“_debug_strcat - Concatenate Strings” on page 419
“_debug_strcpy - Copy Strings” on page 421
“_debug_strncat - Concatenate Strings” on page 422
“_debug_strnset - Set Characters in String”
“_debug_strset - Set Characters in String” on page 426
“_debug_ucalloc - Reserve and Initialize Memory from User Heap” on page 428
“_debug_uheapmin - Free Unused Memory in User Heap” on page 430
“_debug_umalloc - Reserve Memory Blocks from User Heap” on page 431
“heapdebug” on page 270

_debug_strnset - Set Characters in String

Format
#include <string.h>
char *_debug_strnset(char *string, int c, size_t n,

const char *file, size_t line);

Language Level: Extension

_debug_strnset is the debug version of strnset . Like strnset , it sets, at most, the first n characters of
string to c (converted to a char), where if n is greater than the length of string, the length of string is
used in place of n.

_debug_strnset validates the heap after setting the bytes, and performs this check only when the target is
within a heap. _debug_strnset makes an implicit call to _heap_check . If _debug_strnset detects a
corrupted heap when it makes a call to _heap_check , _debug_strnset will report the file name file and
line number line in a message.

Note: _debug_strnset checks only the current default heap. Therefore, this debug support will not check
all heaps within applications that have multiple user heaps.

To use _debug_strnset , you must compile with the debug memory -qheapdebug compiler option. This
option maps all strnset calls to _debug_strnset . You do not have to change your source code, in order
for _debug_memset to verify the heap.

Note: The -qheapdebug option maps all calls to memory management functions (including a
heap-specific version) to their debug counterparts. To prevent a call from being mapped, parenthesize the
function name.

Appendix F. C for AIX Debug Functions 425

Return Value
_debug_strnset returns a pointer to the altered string. There is no error return value.

Example
This example contains two programming errors. The string, str, was created without a null-terminator to
mark the end of the string, and without the terminator strnset with a count of 10 stores bytes past the end
of the allocated object.
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

int main(void)
{

char *str;

str = (char*)malloc(10);

printf(“This is the string after strnset: %s\n”, str);
return 0;

/**
The output should be:

End of allocated object 0x00073c80 was overwritten at 0x00073c8a.
The first eight bytes of the memory block (in hex) are: 7878787878797979.
This memory block was (re)allocated at line number 9 in strnset.c.
Heap state was valid at line 11 of strnset.c.

**/
}

“Debugging Memory Heaps” on page 183
“Memory Management Functions” on page 179
“Managing Memory with Multiple Heaps” on page 182
“Debugging Programs with Heap Memory” on page 195
“heapdebug” on page 270
“_debug_calloc - Allocate and Initialize Memory” on page 407
“_debug_free - Free Allocated Memory” on page 408
“_debug_heapmin - Free Unused Memory in the Default Heap” on page 410
“_debug_malloc - Allocate Memory” on page 412
“_debug_memcpy - Copy Bytes” on page 413
“_debug_memmove - Copy Bytes” on page 415
“_debug_memset - Set Bytes to Value” on page 416
“_debug_realloc - Reallocate Memory Block” on page 417
“_debug_strcat - Concatenate Strings” on page 419
“_debug_strcpy - Copy Strings” on page 421
“_debug_strncat - Concatenate Strings” on page 422
“_debug_strncpy - Copy Strings” on page 423
“_debug_strset - Set Characters in String”
“_debug_ucalloc - Reserve and Initialize Memory from User Heap” on page 428
“_debug_uheapmin - Free Unused Memory in User Heap” on page 430
“_debug_umalloc - Reserve Memory Blocks from User Heap” on page 431
“heapdebug” on page 270

_debug_strset - Set Characters in String

Format
#include <string.h>
char *_debug_strset(char *string, size_t c,

const char *file, size_t line);

Language Level: Extension

426 C for AIX User’s Guide

_debug_strset is the debug version of strset. Like strset, it sets all characters of string, except the
ending null character (\0), to c (converted to a char).

_debug_strset validates the heap after setting all characters of string, and performs this check only
when the target is within a heap. _debug_strset makes an implicit call to _heap_check . If _debug_strset
detects a corrupted heap when it makes a call to _heap_check , _debug_strset will report the file name
file and line number line in a message.

Note: _debug_strset checks only the current default heap. Therefore, this debug support will not check all
heaps within applications that have multiple user heaps.

To use _debug_strset , you must compile with the debug memory -qheapdebug compiler option. This
option maps all strset calls to _debug_strset . You do not have to change your source code, in order for
_debug_strset to verify the heap.

Note: The -qheapdebug option maps all calls to other string functions and all calls to memory
management functions (including a heap-specific version), to their debug counterparts. To prevent a call
from being mapped, parenthesize the function name.

Return Value
_debug_strset returns a pointer to the altered string. There is no error return value.

Example
This example contains a programming error. The string, str, was created without a null-terminator, and
strset propagates the letter ’k’ until it finds what it thinks is the null-terminator.
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

int main(void)
{

char *str;

str = (char*)malloc(10);

strnset(str, 'x', 5);
strset(str+5, 'k');
printf(“This is the string after strset: %s\n”, str);
return 0;

/**
The output should be:

End of allocated object 0x00073c80 was overwritten at 0x00073c8a.
The first eight bytes of the memory block (in hex) are: 78787878786B6B6B.
This memory block was (re)allocated at line number 9 in strset.c.
Heap state was valid at line 11 of strset.c.
Memory error detected at line 12 of strnset.c.

**/
}

Appendix F. C for AIX Debug Functions 427

“Debugging Memory Heaps” on page 183
“Memory Management Functions” on page 179
“Managing Memory with Multiple Heaps” on page 182
“Debugging Programs with Heap Memory” on page 195
“heapdebug” on page 270
“_debug_calloc - Allocate and Initialize Memory” on page 407
“_debug_free - Free Allocated Memory” on page 408
“_debug_heapmin - Free Unused Memory in the Default Heap” on page 410
“_debug_malloc - Allocate Memory” on page 412
“_debug_memcpy - Copy Bytes” on page 413
“_debug_memmove - Copy Bytes” on page 415
“_debug_memset - Set Bytes to Value” on page 416
“_debug_realloc - Reallocate Memory Block” on page 417
“_debug_strcat - Concatenate Strings” on page 419
“_debug_strcpy - Copy Strings” on page 421
“_debug_strncat - Concatenate Strings” on page 422
“_debug_strncpy - Copy Strings” on page 423
“_debug_strnset - Set Characters in String” on page 425
“_debug_ucalloc - Reserve and Initialize Memory from User Heap”
“_debug_uheapmin - Free Unused Memory in User Heap” on page 430
“_debug_umalloc - Reserve Memory Blocks from User Heap” on page 431
“heapdebug” on page 270

_debug_ucalloc - Reserve and Initialize Memory from User Heap

Format
#include <umalloc.h>
void *_debug_ucalloc(Heap_t heap, size_t num, size_t size,

const char *file, size_t line);

Language Level: Extension

_debug_ucalloc is the debug version of _ucalloc . Like _ucalloc , it allocates memory from the heap you
specify for an array of num elements, each of length size bytes. It then initializes all bits of each element to
0.

In addition, _debug_ucalloc makes an implicit call to _uheap_check , and stores the name of the file file
and the line number line where the storage is allocated. This information can be used later by the
_uheap_check , _uheap_allocated , or _udump_allocated_delta functions.

To use _debug_ucalloc , you must compile with the debug memory -qheapdebug compiler option. This
option maps all _ucalloc calls to _debug_ucalloc .

Note: The -qheapdebug option maps all calls to memory management functions (including heap-specific
versions) to their debug counterparts. To prevent a call from being mapped, parenthesize the function
name.

_debug_ucalloc works just like _debug_calloc except that you specify the heap to use; _debug_calloc
always allocates from the default heap.

If the heap does not have enough memory for the request, _debug_ucalloc calls the getmore_fn that you
specified when you created the heap with _ucreate .

To reallocate or free memory allocated with _debug_ucalloc , use the non-heap-specific _debug_realloc
and _debug_free . These functions always check what heap the memory was allocated from.

428 C for AIX User’s Guide

Return Value
_debug_ucalloc returns a pointer to the reserved space. If size or num was specified as zero, or if your
getmore_fn cannot provide enough memory, _debug_ucalloc returns NULL. Passing _debug_ucalloc a
heap that is not valid results in undefined behavior.

Example
This example creates a user heap and allocates memory from it with _debug_ucalloc . It then attempts to
write to memory that was not allocated. When _debug_free is called, _uheap_check detects the error,
generates several messages, and stops the program.

Note: You must compile this example with the -qheapdebug option to map the _ucalloc calls to
_debug_ucalloc and free to _debug_free .
#include <stdlib.h>
#include <stdio.h>
#include <umalloc.h>
#include <string.h>

int main(void)
{

Heap_t myheap;
char *ptr;

/* Use default heap as user heap */
myheap = _udefault(NULL);

if (NULL == (ptr = (char*)_ucalloc(myheap, 100, 1))) {
puts(“Cannot allocate memory from user heap.”);
exit(EXIT_FAILURE);

}
memset(ptr, 'x', 105); /* Overwrites storage that was not allocated */
free(ptr);
return 0;

/**
The output should be similar to :

End of allocated object 0x00073890 was overwritten at 0x000738f4.
The first eight bytes of the memory block (in hex) are: 7878787878787878.
This memory block was (re)allocated at line number 14 in _debug_ucallo.c.
Heap state was valid at line 14 of _debug_ucallo.c.
Memory error detected at line 19 of _debug_ucallo.c.

**/
}

Appendix F. C for AIX Debug Functions 429

“Debugging Memory Heaps” on page 183
“Memory Management Functions” on page 179
“Managing Memory with Multiple Heaps” on page 182
“Debugging Programs with Heap Memory” on page 195
“heapdebug” on page 270
“_debug_calloc - Allocate and Initialize Memory” on page 407
“_debug_free - Free Allocated Memory” on page 408
“_debug_heapmin - Free Unused Memory in the Default Heap” on page 410
“_debug_malloc - Allocate Memory” on page 412
“_debug_memcpy - Copy Bytes” on page 413
“_debug_memmove - Copy Bytes” on page 415
“_debug_memset - Set Bytes to Value” on page 416
“_debug_realloc - Reallocate Memory Block” on page 417
“_debug_strcat - Concatenate Strings” on page 419
“_debug_strcpy - Copy Strings” on page 421
“_debug_strncat - Concatenate Strings” on page 422
“_debug_strncpy - Copy Strings” on page 423
“_debug_strnset - Set Characters in String” on page 425
“_debug_strset - Set Characters in String” on page 426
“_debug_uheapmin - Free Unused Memory in User Heap”
“_debug_umalloc - Reserve Memory Blocks from User Heap” on page 431
“heapdebug” on page 270

_debug_uheapmin - Free Unused Memory in User Heap

Format
#include <umalloc.h>
int _debug_uheapmin(Heap_t heap, const char *file, size_t line);

Language Level: Extension

_debug_uheapmin is the debug version of _uheapmin . Like _uheapmin , it returns all unused memory
blocks from the specified heap to the operating system.

To return the memory, _debug_uheapmin calls the release_fn you supplied when you created the heap
with _ucreate . If you do not supply a release_fn, _debug_uheapmin has no effect and returns 0.

In addition, _debug_uheapmin makes an implicit call to _uheap_check to validate the heap.

_debug_uheapmin works just like _debug_heapmin except that you specify the heap to use;
_debug_heapmin always uses the default heap.

To use _debug_uheapmin , you must compile with the debug memory -qheapdebug compiler option. This
option maps all _uheapmin calls to _debug_uheapmin .

Note: The -qheapdebug option maps all calls to memory management functions (including heap-specific
versions) to their debug counterparts. To prevent a call from being mapped, parenthesize the function
name.

Return Value
If successful, _debug_uheapmin returns 0. A nonzero return value indicates failure. If the heap specified
is not valid, _debug_uheapmin generates an error message with the file name and line number where the
call to _debug_uheapmin was made.

430 C for AIX User’s Guide

Example
This example creates a heap and allocates memory from it, then uses _debug_heapmin to release the
memory.

Note: You must compile this example with the -qheapdebug option to map the _uheapmin calls to
_debug_uheapmin .
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <umalloc.h>

int main(void)
{

Heap_t myheap;
char *ptr;

/* Use default heap as user heap */
myheap = _udefault(NULL);

/* Allocate a large object */
if (NULL == (ptr = (char*)_umalloc(myheap, 60000))) {

puts(“Cannot allocate memory from user heap.\n”);
exit(EXIT_FAILURE);

}
memset(ptr, 'x', 60000);
free(ptr);

/* _debug_uheapmin will attempt to return the freed object to the system */
if (0 != _uheapmin(myheap)) {

puts(“_debug_uheapmin returns failed.\n”);
exit(EXIT_FAILURE);

}
return 0;

}

“Debugging Memory Heaps” on page 183
“Memory Management Functions” on page 179
“Managing Memory with Multiple Heaps” on page 182
“Debugging Programs with Heap Memory” on page 195
“heapdebug” on page 270
“_debug_calloc - Allocate and Initialize Memory” on page 407
“_debug_free - Free Allocated Memory” on page 408
“_debug_heapmin - Free Unused Memory in the Default Heap” on page 410
“_debug_malloc - Allocate Memory” on page 412
“_debug_memcpy - Copy Bytes” on page 413
“_debug_memmove - Copy Bytes” on page 415
“_debug_memset - Set Bytes to Value” on page 416
“_debug_realloc - Reallocate Memory Block” on page 417
“_debug_strcat - Concatenate Strings” on page 419
“_debug_strcpy - Copy Strings” on page 421
“_debug_strncat - Concatenate Strings” on page 422
“_debug_strncpy - Copy Strings” on page 423
“_debug_strnset - Set Characters in String” on page 425
“_debug_strset - Set Characters in String” on page 426
“_debug_ucalloc - Reserve and Initialize Memory from User Heap” on page 428
“_debug_umalloc - Reserve Memory Blocks from User Heap”
“heapdebug” on page 270

_debug_umalloc - Reserve Memory Blocks from User Heap

Format

Appendix F. C for AIX Debug Functions 431

#include <umalloc.h>
void *_debug_umalloc(Heap_t heap, size_t size,

const char *file, size_t line);

Language Level: Extension

_debug_umalloc is the debug version of _umalloc . Like _umalloc , it reserves storage space from the
heap you specify for a block of size bytes. _debug_umalloc also sets all the memory it allocates to 0xAA,
so you can easily locate instances where your program uses the data in the memory without initializing it
first.

In addition, _debug_umalloc makes an implicit call to _uheap_check , and stores the name of the file
file and the line number line where the storage is allocated. This information can be used later by the
_uheap_check , _udump_allocated , or _udump_allocated_delta functions. _debug_umalloc also sets
all the memory it allocates to 0xAA; this can help you debug problems where your program uses the data
in the memory without initializing it.

_debug_umalloc works just like _debug_malloc except that you specify the heap to use;
_debug_malloc always allocates from the default heap.

If the heap does not have enough memory for the request, _debug_umalloc calls the getmore_fn that you
specified when you created the heap with _ucreate .

To use _debug_umalloc , you must compile with the debug memory -qheapdebug compiler option. This
option maps all _umalloc calls to _debug_umalloc .

Note: The -qheapdebug option maps all calls to memory management functions (including heap-specific
versions) to their debug counterparts. To prevent a call from being mapped, parenthesize the function
name.

To reallocate or free memory allocated with _debug_umalloc , use the non-heap-specific _debug_realloc
and _debug_free . These functions always check what heap the memory was allocated from.

Return Value
_debug_umalloc returns a pointer to the reserved space. If size was specified as zero, or the getmore_fn
cannot provide enough memory, _debug_umalloc returns NULL. Passing _debug_umalloc a heap that is
not valid results in undefined behavior.

Example
This example creates a heap myheap and uses _debug_umalloc to allocate 100 bytes from it. It then
attempts to overwrite storage that was not allocated. The call to _debug_free invokes _uheap_check ,
which detects the error, generates messages, and ends the program.

Note: You must compile this example with the -qheapdebug option to map _umalloc to
_debug_umalloc , and free to _debug_free .
#include <stdlib.h>
#include <stdio.h>
#include <umalloc.h>
#include <string.h>

int main(void)
{

Heap_t myheap;
char *ptr;

/* Use default heap as user heap */
myheap = _udefault(NULL);

432 C for AIX User’s Guide

if (NULL == (ptr = (char*)_umalloc(myheap, 100))) {
puts(“Cannot allocate memory from user heap.\n”);
exit(EXIT_FAILURE);

}
memset(ptr, 'x', 105); /* Overwrites storage that was not allocated */
free(ptr);
return 0;

/**
The output should be similar to :

End of allocated object 0x00073890 was overwritten at 0x000738f4.
The first eight bytes of the memory block (in hex) are: 7878787878787878.
This memory block was (re)allocated at line number 14 in _debug_umallo.c.
Heap state was valid at line 14 of _debug_umallo.c.
Memory error detected at line 19 of _debug_umallo.c.

**/
}

“Debugging Memory Heaps” on page 183
“Memory Management Functions” on page 179
“Managing Memory with Multiple Heaps” on page 182
“Debugging Programs with Heap Memory” on page 195
“heapdebug” on page 270
“_debug_calloc - Allocate and Initialize Memory” on page 407
“_debug_free - Free Allocated Memory” on page 408
“_debug_heapmin - Free Unused Memory in the Default Heap” on page 410
“_debug_malloc - Allocate Memory” on page 412
“_debug_memcpy - Copy Bytes” on page 413
“_debug_memmove - Copy Bytes” on page 415
“_debug_memset - Set Bytes to Value” on page 416
“_debug_realloc - Reallocate Memory Block” on page 417
“_debug_strcat - Concatenate Strings” on page 419
“_debug_strcpy - Copy Strings” on page 421
“_debug_strncat - Concatenate Strings” on page 422
“_debug_strncpy - Copy Strings” on page 423
“_debug_strnset - Set Characters in String” on page 425
“_debug_strset - Set Characters in String” on page 426
“_debug_ucalloc - Reserve and Initialize Memory from User Heap” on page 428
“_debug_uheapmin - Free Unused Memory in User Heap” on page 430
“heapdebug” on page 270

Appendix F. C for AIX Debug Functions 433

434 C for AIX User’s Guide

Appendix G. Built-in Functions for PowerPC Processors

PowerPC platforms support certain RS/6000 machine instructions not available on other platforms. If
performance is critical to your application, the C for AIX compiler provides a set of built-in functions that
directly map to certain RS/6000 instructions. By using these functions, function call return costs, parameter
passing, stack adjustment and all the additional costs related with function invocations are eliminated.

Not all functions described below are supported by all RS/6000 processors. Using an unsupported function
will result in an error message being displayed.

Name Prototype Return Value or Action Performed
__fmadds() float __fmadds (float, float, float); __fmadds (a, x, y) = [a * x + y]
__fmadd() double __fmadd (double, double,

double);
__fmadd (a, x, y) = [a * x + y]

__fmsubs() float __fmsubs (float, float, float); __fmsubs (a, x, y) = [a * x - y]
__fmsub() double __fmsub (double, double,

double);
__fmsub (a, x, y) = [a * x - y]

__fnmadds() float __fnmadds (float, float, float); __fnmadds (a, x, y) = [- (a * x + y)]
__fnmadd() double __fnmadd (double, double,

double);
__fnmadd (a, x, y) = [- (a * x + y)]

__fnmsubs() float __fnmsubs (float, float, float); __fnmsubs (a, x, y) = [- (a * x - y)]
__fnmsub() double __fnmsub (double double,

double);
__fnmsub (a, x, y) = [- (a * x - y)]

__fsqrts() float __fsqrts (float); __fsqrts (x) = square root of x
__fsqrt() double __fsqrt (double); __fsqrt (x) = square root of x

__frsqrte() double __frsqrte (double); __frsqrte (x) = [(estimate of)
1.0/sqrt(x)]

__fres() float __fres (float); __fres (x) = [(estimate of) 1.0/x]

__fsels() float __fsels (float, float, float); if (a >= 0.0) then __fsels (a, x, y) = x;
else __fsels (a, x, y) = y

__fsel() double __fsel (double, double,
double);

if (a >= 0.0) then __fsel (a, x, y) = x;
else __fsel (a, x, y) = y

__fabss() float __fabss (float); __fabss (x) = |x|
__fabs() double __fabs (double); __fabs (x) = |x|

__fnabss() float __fnabss (float); __fnabss (x) = -|x|
__fnabs() double __fnabs (double); __fnabs (x) = -|x|

__dcbt() void __dcbt (void *); Data Cache Block Touch. Loads the
block of memory containing the
specified address into the data cache.

__dcbz() void __dcbz (void *); Data Cache Block set to Zero. Sets
the specified address in the data
cache to zero (0).

__trap() void __trap (int); Trap if the parameter is not zero.

© Copyright IBM Corp. 1995, 1999 435

Name Prototype Return Value or Action Performed
__trapd() void __trapd (long long); Trap if the parameter is not zero.

“Acceptable Compiler Mode and Processor Architecture Combinations” on page 16

436 C for AIX User’s Guide

Appendix H. RISC System/6000 Alignment Rules

On the RISC System/6000 system, an aggregate is aligned according to its most strictly aligned member.
Within aggregates, members are aligned according to their type. The table below summarizes size and
alignment information for each type.

Type, Size, and Alignment for the RISC System/6000 System

Type Alignment of Member Size (bytes)

char byte aligned 1

short halfword aligned 2

(long) int word aligned 4

long long int doubleword aligned 8

pointer word aligned 4

float word aligned 4

double doubleword aligned if
-qalign=natural . Otherwise, word

aligned.

8

long double
with -qlongdouble or -qldbl128

option.

long doubleword aligned if
-qalign=natural . Otherwise, word

aligned.

16

Notes:

1. The entire object is aligned on the same boundary as its most strictly aligned member.

2. Each member is assigned the lowest available offset with the appropriate alignment (internal padding).

3. The object’s size is increased, if necessary, to make it a multiple of the size of its most strictly aligned
member. (For example, if the object contains a word, it is padded to a word boundary.)

On the RISC System/6000 system, if a double is the first member of a struct , it is 8-byte (doubleword)
aligned. If a long double is the first member of a struct , it is 16-byte aligned.

Bit Fields for RISC System/6000 Format
The following rules apply when you are laying out bit fields in struct s.

v struct s containing bit fields are 4-byte (word) aligned.

v Bit fields can be at most 32 bits long.

v Bit fields are packed into the current word. If a bit field would cross a word boundary, it starts at the
next word boundary.

v A bit field of width zero causes the bit field that immediately follows it to be aligned at the next word
boundary. If the zero width bit field is at a word boundary, the next bit field starts at this boundary.

v A struct containing nothing but zero-width bit fields is allowed and will have a length of 0 bytes.

In the C language, you can specify bit fields as char or short instead of int , but the compiler maps them
as if they were unsigned int . In extended mode, you can use the sizeof operator on a bit field. (The
sizeof operator on a bit field always returns 4.)

© Copyright IBM Corp. 1995, 1999 437

“align” on page 234
“__align Specifier” on page 442
“MacIntosh and Twobyte Alignment Rules” on page 440
“Packed Alignment Rules”
“Alignment Rules for Nested Aggregates”

Alignment Rules for Nested Aggregates

Aggregates with different alignments can be nested. Each aggregate is laid out using the alignment rules
applicable to it. The start position of the nested aggregate is determined by the alignment rules of the
aggregate in which it is nested.

Example
The following example uses these symbols to show padding and boundaries:

p = padding
| = halfword boundary
: = byte boundary

For:
#pragma options align=mac68k
struct A {

char a;
#pragma options align=power
struct B {
int b;
char c;

} B1; // <— B1 laid out using RISC System/6000 alignment rules
#pragma options align=reset // <— has no effect on A or B, but

// on subsequent structs
char d;

};
sizeof(A) == 12

The layout of A is:
|a:p|b:b|b:b|c:p|p:p|d:p|

“align” on page 234
“__align Specifier” on page 442
“Appendix H. RISC System/6000 Alignment Rules” on page 437
“MacIntosh and Twobyte Alignment Rules” on page 440
“Packed Alignment Rules”

Packed Alignment Rules

All structures are byte-aligned regardless of their members. All members are also byte-aligned. (Bit fields
are byte-aligned, but bit-field members are not.)

438 C for AIX User’s Guide

Example
The following example uses these symbols to show padding and boundaries:

p = padding
| = halfword boundary
: = byte boundary

For:
#pragma options align=packed
struct {

char a;
double b;

} B;
#pragma options align=reset
sizeof(B) == 9

The layout of B is:
|a:b|b:b|b:b|b:

Packed Bit Fields
The following rules apply when laying out packed bit fields.

v An individual bit field can be at most 32 bits long.

v Bit fields are packed together into the current word. If a bit field extends beyond the current word, it
starts at the next byte boundary.

v A bit field of width zero causes the next class member to start at the next byte boundary. If the
zero-width bit field is already at a byte boundary, the next structure member starts at this boundary.

v A nonbit field following a bit field is aligned on the next byte boundary.

Example

#pragma options align=packed
struct {
int a : 8;
int b : 10;
int c : 12;
int d : 4;
int e : 3;
int : 0;
int f : 1;
char g;
} A;
#pragma options align=reset
sizeof(A) == 7

The layout of A is:

Member Name Displacement
bytes (bits)

a 0
b 1
c 2 (2)
d 4
e 4 (4)

Appendix H. RISC System/6000 Alignment Rules 439

f 5
g 6

“align” on page 234
“Appendix H. RISC System/6000 Alignment Rules” on page 437
“MacIntosh and Twobyte Alignment Rules”
“Alignment Rules for Nested Aggregates” on page 438

MacIntosh and Twobyte Alignment Rules

All unions and structures are halfword aligned regardless of their members. Within the aggregate,
members are aligned according to their type. The size of types for the Macintosh system is the same as
on the RISC System/6000 system. The table below summarizes alignment information for each type.

Type, Size, and Alignment for the Macintosh System

Type Alignment Size

char byte aligned byte

short halfword aligned halfword

(long) int halfword aligned word

long long int halfword aligned doubleword

pointer halfword aligned word

float halfword aligned word

double halfword aligned doubleword

long double halfword aligned doubleword

long double
with -qlongdouble
or -qldbl128 option.

halfword aligned quadrupleword

Example
The following example uses these symbols to show padding and boundaries:

p = padding
| = halfword boundary
: = byte boundary

For:
#pragma options align=mac68k
struct A {

char a;
}
sizeof(A) == 2

The layout of A is:
|a:p|

For:

440 C for AIX User’s Guide

#pragma options align=mac68k
struct B {

char a;
double b;

}
sizeof(B) == 10

The layout of B is:
|a:p|b:b|b:b|b:b|b:b|

Bit fields for Macintosh Format
The following rules apply when you are laying out bit fields in structures.

v An individual bit field can be at most 32 bits long.

v Bit fields are packed into a word and are aligned on a 2-byte boundary.

v Bit fields that would cross a word boundary are moved to the next halfword boundary even if they are
already starting on a halfword boundary. (The bit field may still end up crossing a word boundary.)

v A bit field of width zero forces the next member (even if it is not a bit field) to start at the next halfword
boundary even if the zero-width bit field is currently at a halfword boundary.

v A structure containing nothing but zero width bit fields is allowed and will have a length, in bytes, of two
times the number of zero width bit fields.

For unions, there is one special case:

v Unions whose largest element is a bit field of width 16 or less have a size of 2 bytes. If the width of the
bit field is greater than 16, the size of the union is 4 bytes.

Example
The following example uses these symbols to show padding and boundaries:

p = padding
| = halfword boundary
: = byte boundary

For:
#pragma options align=mac68k
struct A {

char a;
int : 0;
int b : 4;
int c : 17;

}
sizeof(A) == 8

The layout of A is:
|a:p|b .. :p|c:c|c .. :p|

Type Compatibility between RISC System/6000 and Macintosh Systems
Different aggregate types with identical members are not compatible. Therefore such aggregates cannot
be assigned to each other. Use the -qextchk option to assure type safe linkage for function declarations
that may use different alignment rules.

Appendix H. RISC System/6000 Alignment Rules 441

“align” on page 234
“Appendix H. RISC System/6000 Alignment Rules” on page 437
“Packed Alignment Rules” on page 438
“Alignment Rules for Nested Aggregates” on page 438
“extchk” on page 258

__align Specifier

Syntax
declarator __align (integer_constant) identifier;

struct_or_union_specifier __align (integer_constant) [identifier {struct_declaration_list}];

where:

integer_constantSpecifies a byte-alignment boundary. integer_constant must be an integer greater than 0 and equal to a
power of 2.

Purpose
Use the __align specifier to explicitly specify alignment and padding when declaring or defining data
items.

Notes
The __align specifier can only be used with declarations of first-level variables and aggregate definitions.
It ignores parameters and automatics.

The __align specifier cannot be used on individual elements within an aggregate definition, but it can be
used on an aggregate definition nested within another aggregate definition.

The __align specifier cannot be used in the following situations:

v Individual elements within an aggregate definition.

v Variables declared with incomplete type.

v Aggregates declared without definition.

v Individual elements within an aggregate definition.

v Individual elements of an array.

v Other types of declarations or definitions, such as typedef, function, and enum.

v Where the size of variable alignment is smaller than the size of type alignment.

Examples

Applying __align to first-level variables:
int __align(1024) varA; /* varA is aligned on a 1024-byte boundary and

padded with 1020 bytes */

static int __align(512) varB; /* varB is aligned on a 512-byte boundary and
padded with 508 bytes */

int __align(128) functionB(); /* An error */

typedef int __align(128) T; /* An error */

__align enum C {a, b, c}; /* An error */

Applying __align to align and pad aggregate tags without affecting aggregate members:

442 C for AIX User’s Guide

__align(1024) struct structA {int i; int j;}; /* struct structA is aligned on a
1024-byte boundary with size
including padding of 1024 bytes */

__align(1024) union unionA {int i; int j;}; /* union unionA is aligned on a
1024-byte boundary with size
including padding of 1024 bytes */

Applying __align to a structure or union, where the size and alignment of the aggregate using the
structure or union is affected:
__align(128) struct S {int i;}; /* sizeof(struct S) == 128 */
struct S sarray[10]; /* sarray is aligned on 128-byte boundary

with sizeof(sarray) == 1280 */
struct S __align(64) svar; /* error - alignment of variable is smaller

than alignment of type */
struct S2 {struct S s1; int a;} s2; /* s2 is aligned on 128-byte boundary with

sizeof(s2) == 256 bytes */

Applying __align to an array:
AnyType __align(64) arrayA[10]; /* Only arrayA is aligned on a 64-byte boundary,

and elements within that array are aligned
according to the alignment of AnyType.
Padding is applied after the back of the
array and does not affect the size of the
array member itself. */

Applying __align where size of variable alignment differs from size of type alignment:
__align(64) struct S {int i;};
struct S __align(32) s1; /* error, alignment of variable is smaller

than alignment of type */
struct S __align(128) s2; /* s2 is aligned on 128-byte boundary */
struct S __align(16) s3[10]; /* error */

int __align(1) s4; /* error */

__align(1) struct S {int i;}; /* error */

“align” on page 234
“Appendix H. RISC System/6000 Alignment Rules” on page 437
“MacIntosh and Twobyte Alignment Rules” on page 440
“Alignment Rules for Nested Aggregates” on page 438

Appendix H. RISC System/6000 Alignment Rules 443

444 C for AIX User’s Guide

Appendix I. Implementation Dependencies Overview

The behavior of some features of the C language depends on the particular C compiler used. This and
related pages describe these C for AIX implementation-specific dependencies.

v “C for AIX Compiler Limits”

v “Implementation-Defined Behavior”

v “Type Conversions” on page 461

v “Synchronization of Stores and Loads to I/O Space” on page 464

Note: Compiling your C for AIX programs with C for AIX
The C for AIX compiler is a stricter compiler than the XL C compiler. See “Appendix J. C for AIX and XL C
Compatibility” on page 467, which discusses the issues you should consider if you plan to use your XL C
programs with the C for AIX compiler.

C for AIX Compiler Limits

The limits for your program might differ from those stated here depending on its complexity.

Language Feature Limit

Nesting levels for included files 255

Significant initial characters in identifiers No limit (but the linker has a limit of 4095 characters for
external names).

Other system limits are set in the /usr/include/sys/limits.h file. The limits.h header file is described in the
“Header Files Overview” in the AIX Version 4 Files Reference.

“Appendix I. Implementation Dependencies Overview”

Implementation-Defined Behavior

Appendix F and other sections of the American National Standard for Information Systems —
Programming Language C (X3.159-1989) standard designate several C language features as
implementation-defined. The ANSI standard for the C language requires that manufacturers document the
specifics of these features for their compiler.

This and related pages provide this ANSI-required documentation, and references the relevant sections of
the ANSI standard. The references are given in parentheses for each item, for example, (2.1.1.2) .

v “Implementation Dependency - Translation (F.3.1)” on page 446

v “Implementation Dependency - Environment (F.3.2)” on page 447

v “Implementation Dependency - Identifiers (F.3.3)” on page 448

v “Implementation Dependency - Characters (F.3.4)” on page 448

v “Implementation Dependency - Integers (F.3.5)” on page 449

v “Implementation Dependency - Floating Point Types (F.3.6)” on page 451

v “Implementation Dependency - Arrays and Pointers (F.3.7)” on page 452

v “Implementation Dependency - Registers (F.3.8)” on page 452

© Copyright IBM Corp. 1995, 1999 445

v “Implementation Dependency - Structures, Unions, Enumerations, Bit Fields (A.6.3.9) (F.3.9)” on
page 453

v “Implementation Dependency - Qualifiers (F.3.10)” on page 453

v “Implementation Dependency - Declarators (F.3.11)” on page 454

v “Implementation Dependency - Statements (F.3.12)” on page 454

v “Implementation Dependency - Preprocessing Directives (F.3.13)” on page 454

v “Implementation Dependency - Library Functions (F.3.14)” on page 455

v “Implementation Dependency - Locale-Specific Behavior (F.4)” on page 459

“Appendix I. Implementation Dependencies Overview” on page 445

Implementation Dependency - Translation (F.3.1)

Translation is the process of transforming all or part of a source program into a program image that
contains all the information needed for the program to run.

Each nonempty sequence of white-space characters in a source program, other than the new-line
character, is replaced by one space character. Comments are treated as white space. (2.1.1.2)

If you use the -C compiler option, comments are retained.

Diagnostic messages have the following format (2.1.1.3):
15cc-nnn (severity) text.

where:

cc Is a two-digit code indicating the compiler component that issued the
message:

00 Code-generation or optimization message

01 Compiler services message

05 Front-end text message

06 Front-end error message

nnn Is the message number
severity Is a letter representing the severity level of the message
text Is the message text describing the error

Diagnostic messages have the following severity levels:

Letter Severity Compiler Response

I Informational Compilation continues. The message
reports conditions found during
compilation.

W Warning Compilation continues. The message
reports valid, but possibly unintended,
conditions.

E Error Compilation continues and object
code is generated. Error conditions
exist that the compiler can correct,
but the program might not run
correctly.

446 C for AIX User’s Guide

S Severe error Compilation continues, but object
code is not generated. Error
conditions exist that the compiler
cannot correct.

U Unrecoverable error The compiler halts. An internal
compiler error has been found. This
message should be reported to your
IBM service representative.

The translator returns the following status codes for each severity level of diagnostic message:

Message Severity Return Code

Informational, Warning, or Error 0

Severe 1

Unrecoverable 40

The level of diagnostic can be controlled with the following compiler options (2.1.1.3):

halt=severity
flag=severity1:severity2

See “Message Severity Levels and Compiler Response” on page 20 for detailed information about C for
AIX compiler diagnostic messages.

“Implementation-Defined Behavior” on page 445
“Appendix I. Implementation Dependencies Overview” on page 445
“Message Severity Levels and Compiler Response” on page 20
“Compiler Return Codes” on page 20
“C” on page 242
“flag” on page 261
“halt” on page 269

Implementation Dependency - Environment (F.3.2)

Program termination and library facilities are not available to a free-standing program. Only a hosted
environment is available. (2.1.2.1)

Arguments passed to a C program from the AIX operating system command line can be retrieved as
arguments of the function main . (2.1.2.2.1) The first argument passed indicates the number of
white-space-separated parameters supplied. The second argument is an array of pointers to these
parameters. The third argument is a null-terminated array of pointers to a set of system arguments for the
program. The arguments are traditionally named argc , envp[] , and argv[] , but these names are not
mandatory. To access these variables, the main() function of your program must declare them as
arguments. The following table summarizes the main() function arguments and their uses.

Name Meaning Purpose

int argc Argument count Contains the number of parameters
supplied on the command line. The
name with which the program was
invoked is the first parameter.

Appendix I. Implementation Dependencies Overview 447

char* argv[] Argument vector An array of pointers to character
strings. Each character string is a
parameter supplied on the command
line. Valid pointers are from argv[0] to
argv[argc-1]. argv[0] is the command
name, and argv[1] contains what was
specified as the first argument to the
command.

char* envp[] Environment pointer An array of pointers to character
strings. Each character string is an
environment parameter supplied to
the program. The array ends at the
first null pointer (array element with a
value of zero).

An asynchronous terminal and a paired display and keyboard are the valid interactive devices. (2.1.2.3)

“Implementation-Defined Behavior” on page 445
“Appendix I. Implementation Dependencies Overview” on page 445

Implementation Dependency - Identifiers (F.3.3)

In an identifier without external linkage, 219 characters beyond 31 (for a total of 250) are significant.
(3.1.2)

In an identifier with external linkage, 244 characters beyond 6 (for a total of 250) are significant. (3.1.2)

Case is significant in an identifier with external linkage.

“Implementation-Defined Behavior” on page 445
“Appendix I. Implementation Dependencies Overview” on page 445

Implementation Dependency - Characters (F.3.4)

The C for AIX compiler uses all source and execution characters explicitly specified by the ANSI C
Standard. (2.2.1)

The C for AIX compiler recognizes the following escape sequence values (2.2.2):

Sequence Decimal Value Character Represented

\a 7 Alert (Bell)

\b 8 Backspace

\f 12 Form feed

\n 10 New line

\r 13 Carriage return

\t 9 Horizontal tab

\v 11 Vertical tab

\“ 34 Double quotation mark

\’ 39 Single quotation mark

\? 63 Question mark

448 C for AIX User’s Guide

\\ 92 Backslash

Multibyte characters are encoded such that the first character identifies the form of the multibyte character.
Any character is valid in the remaining bytes. (2.2.1.2)

A character in the execution character set contains 8 bits. (2.2.4.2)

The mapping of members of the source character set (in character and string literals) to members of the
execution character set is one to one. (3.1.3.4)

The same code set is used for both source and execution set. (3.1.3.4)

The lowest 4 bytes represent character constants when (3.1.3.4):

v An integer-character constant contains a character or escape sequence not represented in the basic
execution character set.

v A wide-character constant contains a character or escape sequence not represented in the extended
character set.

v An integer character constant contains more than one character.

v A wide-character constant contains more than one multibyte character.

The name of the locale used to convert multibyte characters into corresponding wide characters (codes)
for a wide-character constant is user-defined. (3.1.3.4)

The default equivalent type of a plain char is unsigned char . (3.2.1.1) The chars option sets the sign
type of characters.

“Implementation-Defined Behavior” on page 445
“Appendix I. Implementation Dependencies Overview” on page 445
“chars” on page 244

Implementation Dependency - Integers (F.3.5)

The following table shows the storage occupied and the range of various integer types. (3.1.2.5)

Type Size (bits) Range (in limits.h)

signed char 8 -(127 + 1) to 127

(unsigned) char 8 0 to 255

(signed) short 16 -(32767 + 1) to 32767

unsigned short 16 0 to 65535

(signed) int 32 -(2147483647 + 1) to 2147483647

unsigned int 32 0 to 4294967295

(signed) long 32 -(2147483647 + 1) to 2147483647

unsigned long 32 0 to 4294967295

(signed) long long 64 -(9223372036854775807 + 1) to
9223372036854775807

unsigned long long 64 0 to 18446744073709551615

When an integer is converted to a signed char , the lowest byte of the integer is used to represent the
char . (3.2.1.2)

Appendix I. Implementation Dependencies Overview 449

When an integer is converted to a shorter signed integer, the lowest 2 bytes of the integer are used to
represent the short int . (3.2.1.2)

When an unsigned integer is converted to a signed integer of equal length, the bit pattern is preserved,
and the high-order bit becomes the sign bit. (3.2.1.2)

Bitwise operations (Inclusive OR (|), AND (&), Exclusive OR (|)) on a signed integer use the bit pattern of
the signed quantity. (3.3)

If either operand of integer division is negative, the result of the / operator is the largest integer less than
or equal to the algebraic quotient. (3.3.5)

When a bitwise right shift (>>) of a negative signed integral type is used, vacated bits are filled with ones.
(3.3.7) When a bitwise right shift () of a non-negative signed integral type or an unsigned integral type is
used, vacated bits are filled with zeros.

When using long long in your programs, the following rules apply:

v The size of pointers remains 32-bit.

v An integer constant has type long long int only if it is suffixed by the letters ll .

v An integer constant with suffix ll has type long long int or unsigned long long int . An integer with
suffix ull or llu has type unsigned long long int .

v Integral promotions are unchanged. Integral promotions are not performed on long long ints .

v Conversion of an integral type to long long int only occurs if one of the operands in the expression
being evaluated has type long long int .

v When a value of float type is converted to long long type, the fractional part is discarded. If the value
of the integral part cannot be represented by the long long int type, the result is the maximum value of
the long long int type.

v When a value of long long int type is converted to floating type, if the value being converted is in the
range of values that can be represented but cannot be represented exactly, the result is either the
nearest higher or nearest lower value, depending on the IEEE rounding mode. You set the compile-time
IEEE rounding mode with the -y compiler option.

v For binary operators that expect operands of arithmetic type, if either operand has type unsigned long
long int , the other operand is converted to unsigned long long int . Otherwise, if either operand has
type long long int , the other operand is converted to long long int .

v The maximum size of a bit-field remains 32-bit.

v A conversion specification may contain an optional ll , specifying that a following d, i, o, u, x, or X
conversion specifier applies to a long long int or unsigned long long int argument.

v For power alignment rules, long long int identifiers and aggregates containing long long int members
are aligned on a 64-bit boundary.

v For type-based aliasing, lvalues of type char , unsigned char , long long int , or unsigned long long
int are considered as possible aliases of a long long int or unsigned long long int .

v The attribute listing will display long long integer for signed long long int identifiers and unsigned long
long integer for long long int identifiers.

v In interlanguage calls, a C signed long long int maps to a Fortran INTEGER*8 and an unsigned long
long int maps to a Fortran LOGICAL*8.

Other system limits are set in the /usr/include/sys/limits.h file. The limits.h header file is described in the
Header Files Overview of the AIX Version 4 Files Reference.

450 C for AIX User’s Guide

“Implementation-Defined Behavior” on page 445
“Appendix I. Implementation Dependencies Overview” on page 445
“Type Conversions” on page 461

Implementation Dependency - Floating Point Types (F.3.6)

The scaled value of a floating-point constant that is in the range of the representable value for its type is
controlled at compile time by the -y compiler option, and conforms to the IEEE standard for binary
floating-point arithmetic. (3.1.3.1)

The following table shows the storage occupied and the range of various floating-point types (3.1.2.5):

Type Size (bits) Range of base
10 Exponents

Range of Decimal Values
(in float.h)

Precision
(decimal digits)

float 32 -37 to 38 1.175494351E-38 to 3.402823466E+38 7

double 64 -307 to 308 2.2250738585072014E-308 to
1.7976931348623157E+308

15

long double 64 -307 to 308 2.2250738585072014E-308 to
1.7976931348623157E+308

15

long double
(-qldbl128
option)

128 -307 to 308 2.2250738585072014E-308 to
1.7976931348623157E+308

31

Other floating-point limits are set in the /usr/include/float.h header file, described in “Header Files
Overview” in the AIX Version 4 Files Reference.

When an integral value is converted to a floating-point number that cannot exactly represent the original
value, the direction of truncation depends on the compile-time rounding mode set by the -y compiler
option. (3.2.1.3)

When a floating-point number is converted to a narrower floating-point number, the direction of truncation
or rounding depends on the rounding mode set by the -y compiler option. (3.2.1.4)

Using 16-byte long doubles (-qldbl128 Option)
The mathematical functions contained in the <math.h> header file, such as cosl , tanl , fmodl , have been
updated to work with 16-byte long double floating-point numbers.

The input/output functions in the <stdio.h> header file, such as printf , scanf , vsprintf , have been
updated to work with 16-byte long double floating-point numbers.

A new function atold , which converts a string to a long double representation, has been added to the
existing string-to-number functions strtod , strtol , and strtoul .

Alignment Rules
If the first member of a union or structure is a long double , the aggregate is aligned on a 128-bit
boundary. Other aggregates and long double identifiers are aligned on a 32-bit boundary. If
-qalign=natural is specified, all long double s are aligned on a 128-bit boundary, regardless of their
placement in a union or structure.

Appendix I. Implementation Dependencies Overview 451

The 2-byte alignment rules remain unchanged. All identifiers and aggregates are aligned on a 16-bit
boundary.

For bind-time type checking, a long double has type r16.

There are three floating types: float , double , and long double . The range of values of each type is a
subrange of the values of the next type in the list.

When the compiler converts a value of floating type to integral type, the fractional part is discarded. If the
value of the integral part is too large to be represented by an integral type, the value is converted to the
maximum value of an integral type.

When a long double is demoted to double or float , if the value being converted is in the range of values
that can be represented but cannot be represented exactly, the result is either the nearest higher or
nearest lower value, depending on the IEEE rounding mode.

“Implementation-Defined Behavior” on page 445
“Appendix I. Implementation Dependencies Overview” on page 445
“y” on page 339
“align” on page 234
“ldbl128, longdouble” on page 289

Implementation Dependency - Arrays and Pointers (F.3.7)

The type of the integer required to hold the maximum size of an array (the type of the sizeof operator,
size_t) is unsigned long . (3.3.3.4 and 4.1.1)

For a pointer to be converted to an integral type, the size of integer required is 32 or 64 bits. (3.3.4)

The type of the integer required to hold the difference between two pointers to elements of the same array
(ptrdiff_t) is long . (3.3.6 and 4.1.1)

When a pointer is cast to an integer, or an integer is cast to a pointer, the bit patterns are preserved.
(3.3.4)

“Implementation-Defined Behavior” on page 445
“Appendix I. Implementation Dependencies Overview” on page 445

Implementation Dependency - Registers (F.3.8)

Objects in registers declared with the storage class specifier register are treated as int objects. (3.5.1)

“Implementation-Defined Behavior” on page 445
“Appendix I. Implementation Dependencies Overview” on page 445
“register” on page 111
“int, long, short” on page 81

452 C for AIX User’s Guide

Implementation Dependency - Structures, Unions, Enumerations, Bit
Fields (A.6.3.9) (F.3.9)

If a union object is accessed using a member of a different type, the result is undefined. (3.3.2.3)

The alignment and padding of structures and unions are subject to the following rules (3.5.2.1):

v Padding is added to align the structure and union members on their natural boundaries.

v Padding is added to the end of structures and unions on their natural boundary.

v The alignment of a structure or union is that of its strictest member.

An unsigned int bit field is equivalent to a plain int bit field. (3.5.2.1)

Bit fields within an int are allocated from low memory to high memory. For example, 0x12345678 is stored
with byte 0 containing 0x12, and byte 3 containing 0x78. (3.5.2.1)

The type of an enum bit field is the underlying type of the enumeration.

The maximum bit field length for the compiler is 32 bits. If a series of bit fields does not add up to the size
of an int , padding may take place.

Bit fields cannot cross a storage-unit boundary. For example, in the following struct , with bit fields mapped
as shown,

struct S {
unsigned int bit : 30;
unsigned int bit : 3;
unsigned int bit : 8;

}

the 3-bit bit field following the 30-bit bit field would cross a 32-bit word-storage boundary. Because
crossing a word boundary is not allowed, the 30 bit field is padded and the 3-bit field starts another word.

The -qalign= option allows you to specify different bit-field alignment rules.

Values of an enumeration type are represented by the integral type signed int . (3.5.2.2)

You can use the -qenum=small compiler option to minimize the size of enumerations to 1, 2, or 4 bytes.

“Implementation-Defined Behavior” on page 445
“Appendix I. Implementation Dependencies Overview” on page 445
“align” on page 234
“enum” on page 255

Implementation Dependency - Qualifiers (F.3.10)

For access to an object that has a type qualified as volatile , all access is retained. (3.5.5.3) The volatile
attribute maintains consistency in memory access to data objects. Volatile objects are read from memory
each time their value is needed, and written back to memory each time they are changed. When
optimizing the code, the compiler cannot remove any access to a volatile variable. The volatile attribute is
useful for objects (such as the system clock) that have values that may be changed in ways unknown to
your program.

For example, in the following program fragment,

Appendix I. Implementation Dependencies Overview 453

volatile int i;
i=3;
i=5;
i=6;

all of these statements are kept by the compiler even if the -O option to optimize the code is active. If int i
was not defined as volatile , only i=6 would be kept in the optimized code.

“Implementation-Defined Behavior” on page 445
“Appendix I. Implementation Dependencies Overview” on page 445
“O, optimize” on page 302 Compiler Option

Implementation Dependency - Declarators (F.3.11)

There is no limit to the number of declarators that can modify a structure, union, or arithmetic type. (3.5.4)

“Implementation-Defined Behavior” on page 445
“Appendix I. Implementation Dependencies Overview” on page 445

Implementation Dependency - Statements (F.3.12)

There is no limit to the number of case values in a switch statement. (3.6.4.2)

“Implementation-Defined Behavior” on page 445
“Appendix I. Implementation Dependencies Overview” on page 445

CTR

Implementation Dependency - Preprocessing Directives (F.3.13)

The value of a single-character character constant in a constant expression that controls conditional
inclusion does not match the value of the same character constant in the execution character set. (3.8.1)

A single-character character constant in a constant expression that controls conditional inclusion can have
a negative value. (3.8.1)

The method of locating included source files is described in “Directory Search Sequence for Include Files
Using Relative Path Names” on page 178. (3.8.2)

Headers are identified by the directive #include < file_name>, and are stored under /usr/include . (3.8.2)

User-defined include-file names can be specified in double quotation marks (“). (3.8.2)

The mapping between the name specified in the include directive and the external source file name is one
to one. Multibyte characters are permitted in the include directive. (3.8.2)

The definitions of the __DATE__ and__TIME__ predefined macros are always defined to the system date
and time. (3.8.8)

454 C for AIX User’s Guide

“Implementation-Defined Behavior” on page 445
“Appendix I. Implementation Dependencies Overview” on page 445
“#include Preprocessor Directive” on page 356

Implementation Dependency - Library Functions (F.3.14)

All of the C library functions are part of the AIX Base Operating System (BOS) Runtime Services and are
described in detail in the AIX Version 4 Technical Reference, Volumes 1 and 2: Base Operating System
and Extensions. Refer to the Subroutines Overview in AIX Version 4 General Programming Conceptsfor
general information about library functions.

The macro NULL , defined in the /usr/include/stddef.h header file, expands to the null pointer constant,
(void *)0 . (4.1.5)

The assert macro, defined in the /usr/include/assert.h header file, writes the following message to
standard error and stops the program (4.2):

Assertion failed: expression, file file_name, line line_number

In the error message, file_name is the name of the source file and line_number is the source line number
of the assert statement.

The character-testing (ctype) functions (isalnum , isalpha , iscntrl , islower , isprint , and isupper) test for
the following characters (4.3.1):

isalnum The alphanumeric characters [A-Z], [a-z], and [0-9]
isalpha The alphabetic characters [A-Z] and [a-z]
iscntrl The nonprinting characters and any control character (ASCII 0-31, or 127)
islower The lowercase characters [a-z]
isprint The alphanumeric, punctuation, and space printing characters
isupper The uppercase characters [A-Z]

After a domain error (EDOM), the mathematics functions return the value NaN. (4.5.1)

The mathematics functions set the integer expression errno to the value of the macro ERANGE on
underflow range errors. The /usr/include/sys/errno.h header file declares the errno variable and defines
a constant for each of the possible error conditions. (4.5.1)

When the fmod function has a second argument of zero, a domain error (EDOM) is generated and NaN is
returned. (4.5.6.4)

Signals
The sigaction , sigvec , and signal functions of the C Library specify the action to take upon delivery of a
signal. These functions are described in the AIX Version 4 Technical Reference, Volumes 1 and 2: Base
Operating System and Extensions. (4.7.1.1)

Signals do not have parameters because they are not functions. (4.7.1.1)

The default handling and the handling at program startup for each signal recognized by the signal function
are described with the sigaction , sigvec , and signal functions. (4.7.1.1)

The equivalent of signal (sig,SIG_DFL) is performed before the call of a signal handler. (4.7.1.1)

Appendix I. Implementation Dependencies Overview 455

The default handling is reset if a SIGKILL signal is received by a handler specified to the signal function.
(4.7.1.1)

Streams and Files
The last line of a text stream does not require a terminating new-line character. (4.9.2)

Space characters that are written out to a text stream immediately before a new-line character appear
when the stream is read back in. (4.9.2)

No null characters can be appended to data written to a binary stream. (4.9.2)

The file position indicator of an append mode stream is initially positioned at the end of the file. (4.9.3)

A write on a text stream does not cause the associated file to be truncated beyond that point. (4.9.3)

Default file buffering is fully buffered. File buffering can be set to line or to unbuffered with the setbuf
function. (4.9.3)

A zero-length file can exist. (4.9.3)

The / character is not allowed in a valid file name. (4.9.3)

The same file can be opened multiple times. (4.9.3)

The remove function does not remove an open file. The file is removed after it is closed. (4.9.4.1)

If a file renamed by the rename function exists before a call to the function, the file is renamed anyway.
(4.9.4.2)

The output for %p conversion in the fprintf and fscanf functions is a sequence of printable characters in
an integer representation. (4.9.6.1 and 4.9.6.2)

In the fscanf function, a - (hyphen) character that is neither the first nor the last character in the scan list
for %[] conversion is interpreted as indicating a range of characters in the scan list. For example, you can
express [0123456789] as [0-9]. The - stands for itself whenever it is the first or the last character in the
scan list. (4.9.6.2)

Temporary Files (tmpfile Function)
An open temporary file created by the tmpfile function is automatically deleted if the program terminates
abnormally. (4.9.4.3)

errno Variable
The errno variable is set to the value of the macro EINVAL (22) by the fgetpos or ftell function on failure.
(4.9.9.1 and 4.9.9.4)

The perror function writes a message on the standard error output that describes the last error
encountered by a system call or library function. (4.9.10.4)

456 C for AIX User’s Guide

The error message includes the name of the program that caused the error followed by a : (colon), a
blank, the message string, and a new-line character. The error number is taken from the global variable
errno , which is set when an error occurs, but is not cleared when a successful call is made.

The following table lists the content of the error message strings.

Error Number Message Text Error Number Message Text

00 Error 0 occurred. 52 Missing file or file system

01 Not owner 53 Requests blocked by Administrator

02 No such file or directory 54 Operation would block

03 No such process 55 Operation now in progress

04 Interrupted system call 56 Operation already in progress

05 I/O error 57 Socket operation on non-socket

06 No such device or address 58 Destination address required

07 Arg list too long 59 Message too long

08 Exec format error 60 Protocol wrong type for socket

09 Bad file number 61 Protocol not available

10 No child processes 62 Protocol not supported

11 Resource temporarily unavailable 63 Socket type not supported

12 Not enough space 64 Operation not supported on socket

13 Permission denied 65 Protocol family not supported

14 Bad address 66 Address not supported by protocol
family

15 Block device required 67 Address already in use

16 Device busy 68 Cannot assign requested address

17 File exists 69 Network is down

18 Cross-device link 70 Network is unreachable

19 No such device 71 Network dropped connection on reset

20 Not a directory 72 Software caused connection abort

21 Is a directory 73 Connection reset by peer

22 Invalid argument 74 No buffer space available

23 File table overflow 75 Socket is already connected

24 Too many open files 76 Socket is not connected

25 Not a typewriter 77 Cannot send after socket shutdown

26 Text file busy 78 Connection timed out

27 File too large 79 Connection refused

28 No space left on device 80 Host is down

29 Illegal seek 81 No route to host

30 Read-only file system 82 Restart the system call

31 Too many links 83 Too many processes

32 Broken pipe 84 Too many users

33 Argument out of domain 85 Too many levels of symbolic links

34 Result too large 86 File name too long

35 No message of desired type 87 Directory not empty

Appendix I. Implementation Dependencies Overview 457

Error Number Message Text Error Number Message Text

36 Identifier removed 88 Disk quota exceeded

37 Channel number out of range 93 Item is not local to host

38 Level 2 not synchronized 109 Function not implemented

39 Level 3 halted 110 Media surface error

40 Level 3 reset 111 I/O completed, but needs relocation

41 Link number out of range 112 No attribute found

42 Protocol driver not attached 113 Security Authentication Denied

43 No CSI structure available 114 Not a Trusted Program. Too many
references: can’t splice

44 Level 2 halted 115 Invalid wide character

45 Deadlock condition if locked 116 Asynchronous I/O canceled

46 Device not ready 117 Out of STREAMS resources

47 Write-protected media 118 System call timed out

48 Unformatted or incompatible media 119 Next message has wrong type

49 No locks available 120 Error in protocol

50 Cannot Establish Connection 121 No message on stream head read
queue

51 Connection Down 122 fd not associated with a stream

Note: Messages 89 to 92 and 94 to 108 are reserved for future use.

Memory (calloc, malloc, and realloc Functions)
If the size requested is zero, the calloc , malloc , and realloc functions return a null pointer. (4.10.3)

abort Function
When the abort function is called, open and temporary files are closed, and temporary files are erased.
(4.10.4.1)

exit Function
If the value of the argument to the exit function is other than zero, EXIT_SUCCESS, or EXIT_FAILURE
the process ends and returns the value as the return code. (4.10.4.3)

getenv Function
Environment names are defined by the underlying shell being used. (4.10.4.4)

The environment list obtained by a call to the getenv function is altered in the following manner (4.10.4.4):

1. The getenv function searches the environment list for a string of the form name=value.

2. The getenv function returns a pointer to the value in the current environment, if such a string is
present. If such a string is not present, a NULL pointer is returned.

3. A call to putenv is used. The prototype for putenv is:
int putenv(char *)

458 C for AIX User’s Guide

4. The string format is name=value, where name is the environment variable and value is the new value
for it.

system Function
The underlying command shell determines the format of the string that is passed to the system . (4.10.4.5)

The string that is passed to the system function goes directly to the current shell. Then the shell
command interprets it as a command and runs it. (4.10.4.5)

Note: The system function runs only Bourne Shell (bsh) commands. The results are unpredictable if the
string parameter is not a valid bsh command.

strerror Function
The format of the error message output of the strerror function is the same as for perror . (4.11.6.2)

The contents of the error message strings returned by a call to the strerror function is the same as for
perror . (4.11.6.2)

“Implementation-Defined Behavior” on page 445
“Appendix I. Implementation Dependencies Overview” on page 445

Implementation Dependency - Locale-Specific Behavior (F.4)

The C for AIX compiler defines the following locale-specific behavior:

v The local time zone and daylight saving time are set by the operating system. (4.12.1)

v The era for the clock function starts when the process containing the program is started. (4.12.2.1)

v The locale determines the characters of the execution set. Some locales contain characters other than
those required by the C standard. (2.2.1)

v The direction of printing is left to right. (2.2.2)

v The decimal point character is locale-specific. For the United States English locale, it is the period.
(4.1.1)

v The format of the time and date is specified by the format parameter of the strftime function. It is a
character string containing two types of objects: plain characters that are simply placed in the output
string, and conversion specifications for presenting the time and date in a readable form. Each
conversion specification is a sequence of this form (4.12.3.5),

where:

hyphen Is the - character. It puts padding on the right of the converted value instead
of on the left if needed.

width Is the minimum field width.
precision Is the maximum field width.

Appendix I. Implementation Dependencies Overview 459

type Is specified by one or two conversion
characters. The characters and their
meanings are:

%D Represents the date in the
format %m/%d/%y (for
example, 01/31/92)

%e Represents the day of the
month as a decimal number
(1 to 31), with a leading
space if needed

%E Represents the combined
alternative era year and
name for the locale, in %o
%N format

%h Represents the abbreviated
month name for the locale
(for example, Jan)

%n Is a new-line character

%N Represents the alternative
era name for the locale

%o Represents the alternative
era year for the locale

%r 12 hour clock format with
AM/PM notation, which is the
same as $I:$M:$S [AM|PM]

%t Is a tab character

%T 24 hour clock time in the
format %H:%M:%S (for
example, 16:55:15)

Refer to the AIX Version 4 Technical Reference, Volumes 1 and 2: Base Operating System and
Extensionsfor more information about time and date formatting and the strftime function.

Character Testing and Case Mapping
The execution character set follows the ASCII collating sequence (4.3 and 4.11.4.4) :

v The control characters representing horizontal tab, vertical tab, and form feed (ASCII 0-31)

v The space character

v ! “ # $ % & ’ () * + , - . /

v 0 1 2 3 4 5 6 7 8 9

v : ; <=> ? @

v A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

v [\] | _ ′

v a b c d e f g h i j k l m n o p q r s t u v w x y z

v { | } x
v delete

“Implementation-Defined Behavior” on page 445
“Appendix I. Implementation Dependencies Overview” on page 445

460 C for AIX User’s Guide

Type Conversions

Type conversions are implementation dependent. Tables on this page summarize type conversions of
arithmetic types. Arithmetic types include signed and unsigned integral types (char , int , short and long)
in addition to float , double , and long double types.

v Type Conversions - Signed Integer Types (table) (page 460)

v Type Conversions - Unsigned Integer Types (table) (page 462)

v Type Conversions - Floating Point Types (table) (page 463)

v Converting Pascal String Literals (page 464)

v Integral Promotion (page 464)

Type Conversions—Signed Integer Types

To: signed char signed short signed int signed long signed long long

From:

signed char None Sign extend Sign extend Sign extend Sign extend

signed short Preserve
low-order bytes

None sign extend sign extend sign extend

signed int Preserve
low-order bytes

Preserve
low-order bytes

None Preserve bit
pattern

sign extend

signed long Preserve
low-order bytes

Preserve
low-order bytes

Preserve
low-order bytes

None sign extend

signed long long Preserve
low-order bytes

Preserve
low-order bytes

Preserve
low-order bytes

Preserve
low-order bytes

None

unsigned char Preserve bit
pattern:
high-order bit
becomes sign bit

Zero extend Zero extend Zero extend Zero extend

unsigned short Preserve
low-order bytes

Preserve bit
pattern:
high-order bit
becomes sign bit

Zero extend Zero extend Zero extend

unsigned int Preserve
low-order bytes

Preserve
low-order bytes

Preserve bit
pattern:
high-order bit
becomes sign bit

Preserve bit
pattern:
high-order bit
becomes sign bit

Zero extend

unsigned long Preserve
low-order bytes

Preserve
low-order bytes

Preserve bit
pattern:
high-order bit
becomes sign bit

Preserve bit
pattern:
high-order bit
becomes sign bit

Zero extend

unsigned long
long

Preserve
low-order bytes

Preserve
low-order bytes

Preserve
low-order bytes

Preserve
low-order bytes

Preserve bit
pattern:
high-order bit
becomes sign bit

float Convert to int ,
and convert int to
signed char

Convert to int ,
and convert int to
signed short

Truncate at
decimal. if result
is too large for
int , result is
undefined

Truncate at
decimal. if result
is too large for
long , result is
undefined

Truncate at
decimal. if result
is too large for
long long , result
is undefined

Appendix I. Implementation Dependencies Overview 461

double Convert to int ,
and convert int to
signed char

Convert to int ,
and convert int to
signed short

Truncate at
decimal. if result
is too large for
int , result is
undefined

Truncate at
decimal. if result
is too large for
long , result is
undefined

Truncate at
decimal. if result
is too large for
long long , result
is undefined

long double Convert to int ,
and convert int to
signed char

Convert to int ,
and convert int to
signed short

Truncate at
decimal. if result
is too large for
int , result is
undefined

Truncate at
decimal. if result
is too large for
long , result is
undefined

Truncate at
decimal. if result
is too large for
long long , result
is undefined

Type Conversions—Unsigned Integer Types

To: unsigned char unsigned short unsigned int unsigned long unsigned long
longFrom:

signed char Preserve bit
pattern: sign
function of sign bit
lost

Sign extend to
short , and
convert to
unsigned short

Sign extend to
int , and convert
int to unsigned
int

Sign extend to
long , and convert
long to unsigned
long

Sign extend to
long long , and
convert long long
to unsigned long
long

short Preserve
low-order byte

Preserve bit
pattern: sign
function of sign bit
lost

Sign extend to
int , and convert
int to unsigned
int

Sign extend to
long , and convert
long to unsigned
long

Sign extend to
long long , and
convert long long
to unsigned long
long

int Preserve
low-order byte

Preserve
low-order byte

Preserve bit
pattern: sign
function of sign bit
lost

Preserve bit
pattern: sign
function of sign bit
lost

Sign extend to
long long , and
convert long long
to unsigned long
long

long Preserve
low-order byte

Preserve
low-order byte

Preserve bit
pattern: sign
function of sign bit
lost

Preserve bit
pattern: sign
function of sign bit
lost

Sign extend to
long long , and
convert long long
to unsigned long
long

long long Preserve
low-order byte

Preserve
low-order byte

Preserve
low-order byte

Preserve
low-order byte

Preserve bit
pattern: sign
function of sign bit
lost

unsigned char None Zero extend Zero extend Zero extend Zero extend

unsigned short Preserve
low-order byte

None Zero extend Zero extend Zero extend

unsigned int Preserve
low-order bytes

Preserve
low-order bytes

None Preserve bit
pattern

Zero extend

unsigned long Preserve
low-order bytes

Preserve
low-order bytes

Preserve bit
pattern

None Zero extend

unsigned long
long

Preserve
low-order bytes

Preserve
low-order bytes

Preserve
low-order bytes

Preserve
low-order bytes

None

float Convert to int ,
and convert int to
unsigned char

Convert to
unsigned int ,
and convert
unsigned int to
unsigned short

Truncate; if result
is negative or too
large, the result is
undefined

Truncate; if result
is negative or too
large, the result is
undefined

Truncate; if result
is negative or too
large, the result is
undefined

462 C for AIX User’s Guide

double Convert to int ,
and convert int to
unsigned char

Convert to
unsigned int ,
and convert
unsigned int to
unsigned short

Truncate; if result
is negative or too
large, the result is
undefined

Truncate; if result
is negative or too
large, the result is
undefined

Truncate; if result
is negative or too
large, the result is
undefined

long double Convert to int ,
and convert int to
unsigned char

Convert to
unsigned int ,
and convert
unsigned int to
unsigned short

Truncate; if result
is negative or too
large, the result is
undefined

Truncate; if result
is negative or too
large, the result is
undefined

Truncate; if result
is negative or too
large, the result is
undefined

Type Conversions—Floating-point Types

To: float double long double

From:

signed char Sign extend to int , and
convert int to float

Sign extend to int , and
convert int to double

Sign extend to int , and
convert int to long double

signed short Sign extend to int , and
convert int to float

Sign extend to int , and
convert int to double

Sign extend to int , and
convert int to long double

signed int Represent as float ; if the
int cannot be represented
exactly, some loss of
precision may occur

Represent as double ; if the
int cannot be represented
exactly, some loss of
precision may occur

Represent as long double ;
if the int cannot be
represented exactly, some
loss of precision may occur

signed long Represent as float ; if the
long cannot be represented
exactly, some loss of
precision may occur

Represent as double ; if the
long cannot be represented
exactly, some loss of
precision may occur

Represent as long double ;
if the long cannot be
represented exactly, some
loss of precision may occur

signed long long Represent as float ; if the
long long cannot be
represented exactly, some
loss of precision may occur

Represent as double ; if the
long long cannot be
represented exactly, some
loss of precision may occur

Represent as long double ;
if the long long cannot be
represented exactly, some
loss of precision may occur

unsigned char Sign extend to int , and
convert int to float

Sign extend to int , and
convert int to double

Sign extend to int , and
convert int to long double

unsigned short Sign extend to int , and
convert int to float

Sign extend to int , and
convert int to double

Sign extend to int , and
convert int to long double

unsigned int Represent as float ; if the
int cannot be represented
exactly, some loss of
precision may occur

Represent as double ; if the
int cannot be represented
exactly, some loss of
precision may occur

Represent as long double ;
if the int cannot be
represented exactly, some
loss of precision may occur

unsigned long Represent as float ; if the
long cannot be represented
exactly, some loss of
precision may occur

Represent as double ; if the
long cannot be represented
exactly, some loss of
precision may occur

Represent as long double ;
if the long cannot be
represented exactly, some
loss of precision may occur

unsigned long long Represent as float ; if the
long long cannot be
represented exactly, some
loss of precision may occur

Represent as double ; if the
long long cannot be
represented exactly, some
loss of precision may occur

Represent as long double ;
if the long long cannot be
represented exactly, some
loss of precision may occur

float None Convert to double Convert to long double

double Represent as float ; if result
is too large, result is
undefined

None Convert to long double

Appendix I. Implementation Dependencies Overview 463

long double Convert to float Represent as double ; if
result is too large to be
represented as double ,
result is undefined

None

Converting Pascal String Literals The -qmacpstr option converts Pascal string literals of the form
“\pABC” into null-terminated strings where the first byte contains the length of the string.

Integral Promotion The default compiler action is for integral promotions to convert a char , short int , int
bitfield or their signed or unsigned types, or an enumeration type to an int . Otherwise, the type is
converted to an unsigned int .

The -qupconv option promotes any unsigned type smaller than an int to an unsigned int instead of to
an int .

“Appendix I. Implementation Dependencies Overview” on page 445
“macpstr” on page 295
-“upconv” on page 334

Synchronization of Stores and Loads to I/O Space

Stores and loads to I/O space must be separated from other store and load operations by synchronization
instructions. These synchronization instructions allow the compiler to synchronize the execution of the
code block.

The C for AIX compiler provides two built-in functions that you can use to specify the type of
synchronization, and where and how it should take place.

For C source programs, the two functions are:

v extern void __iospace_eieio(void);

v extern void __iospace_sync(void);

Use the function __iospace_eieio (Enforced In-order Execution for I/O) when you want to synchronize
cache-inhibited memory-mapped I/O.

Use the function __iospace_sync (I/O Space Synchronization) when all the multiple dispatch capabilities
of the processor must be synchronized.

To use these built-in functions effectively, you should use pointers to volatile to access device registers,
and then place either of these built-in functions at the completion of this access section of your code.

“Example of Reading and Writing to Mapped-to-I/O Space” on page 465
“Example of Multiple Writes to a Single Register” on page 465
“Appendix I. Implementation Dependencies Overview” on page 445

464 C for AIX User’s Guide

Example of Multiple Writes to a Single Register
/*
Consider a machine with a single register.
This register must be fed a sequence of four
commands in exact order to form a complete instruction.
To prevent reordering of the command sequence,
the __iospace_eieio(); function is used.
The sequence of commands is:

1. load address
2. low-order byte data
3. high-order byte data
4. load word command

Each set of instruction data needs to be synchronized.
*/
typedef unsigned long data;
#define COMMAND_REG ((volatile data *const) 0xFFFFFF20)
#define LOAD_ADDRESS 0xFFFF2000
#define LOAD_HIGH_DATA 0xFF
#define LOAD_LOW_DATA 0xA0
#define LOAD_COMMAND 0x10
void send_load_command()
{

*COMMAND_REG=LOAD_ADDRESS;
__iospace_eieio(); /* ensure the stores are ordered */
*COMMAND_REG=LOAD_LOW_DATA;
__iospace_eieio(); /* ensure the stores are ordered */
*COMMAND_REG=LOAD_HIGH_DATA;
__iospace_eieio(); /* ensure the stores are ordered */
*COMMAND_REG=LOAD_COMMAND;
__iospace_eieio(); /* ensure the stores are ordered */

}

“Example of Reading and Writing to Mapped-to-I/O Space”
“Appendix I. Implementation Dependencies Overview” on page 445
“Synchronization of Stores and Loads to I/O Space” on page 464

Example of Reading and Writing to Mapped-to-I/O Space
/* The following example assumes a special machine
with three hardware locations.
There is an input data buffer at 0xFFFFFF20
There is an output data buffer at 0xFFFFFF24
There is a control data buffer at 0xFFFFFF28
The third-least-significant bit set in the control
buffer indicates there is data in the input buffer.
This bit is unset when the data is read out of the
input buffer by the program.
The second-least-significant bit set in the control
buffer indicates the output device is ready to accept
output data.
This bit is unset when the data is placed in the
output buffer and is read out.
*/
typedef unsigned long datatype, controltype, counttype;
#define CONTROLLER ((const volatile controltype *const) 0xFFFFFF28)
#define INPUT_BUF ((const volatile datatype *const) 0xFFFFFF20)
#define OUTPUT_BUF ((volatile datatype *const) 0xFFFFFF24)
#define INPUT_READY_BIT 0x4
#define OUTPUT_READY_BIT 0x2
#define INPUT_READY ((*CONTROLLER) & INPUT_READY_BIT)
#define OUTPUT_READY ((*CONTROLLER) & OUTPUT_READY_BIT)
/*
The function copy_data copies data from the input buffer
to the output buffer until an input value of 0 is seen.

Appendix I. Implementation Dependencies Overview 465

The number of characters copied is returned.
*/
/* Make count of the input global so that other CPUs can access it */
counttype volatile count=0;
counttype copy_data()
{

datatype temp;
for(;;) {

while (!INPUT_READY); /* Wait for input */
temp=*INPUT_BUF;
__iospace_eieio(); /* synchronize the I/O */
if (temp==0) return count;
while (!OUTPUT_READY); /* Wait for output */
*OUTPUT_BUF=temp;
__iospace_eieio(); /* synchronize the I/O */
count++;
__iospace_sync(); /* synchronize the CPU */

/* for count to allow */
/* other CPUs to
/* access it */

}
}

“Example of Multiple Writes to a Single Register” on page 465
“Appendix I. Implementation Dependencies Overview” on page 445
“Synchronization of Stores and Loads to I/O Space” on page 464

466 C for AIX User’s Guide

Appendix J. C for AIX and XL C Compatibility

This appendix discusses compatibility issues between the C for AIX compiler and the XL C compiler.

The C for AIX compiler is not fully compatible with XL C: it is a stricter compiler than XL C. The following
are the differences:

1. C for AIX implements tighter ANSI conformance. For example, the following code segments are
accepted by XL C, but not by C for AIX:

Example 1: Mixing K&R-style and ANSI-style function prototypes.
void func();
void func(float f){ }

Accepting this code leads to runtime problems since the float parameter in the definition is first
promoted to double (default argument promotions). When the float argument is passed in, the wrong
size registers are taken off the stack.

Example 2: Null dimension multi-dimensional arrays.

Arrays of incomplete arrays are not allowed, not even on parameters:
void f(int p[][]);

All dimensions except the first must be specified for a multi-dimensional array. In the above example, p
is defined to be an incomplete array of an incomplete type (an incomplete array of an incomplete array
of int).

Example 3: Tags introduced at parameter scope are not exported to the enclosing non-parameter
scope.
int f(struct a *);
struct a { int a; };
int f(struct a* i) { return i->a; }

The type struct a was introduced in a parameter list, and will go out of scope at the end of the function
declaration or definition.

2. The C for AIX compiler may differ from XL C in implementation-defined parts of the language.

v Apparent order of evaluation of arguments to functions with assignments will generate different
results with XL C 1.3 and with C for AIX. Other industry compilers may generate results with even
greater differences. This code is not portable and should be avoided.
#include <stdio.h>
void func(int i, int j, int k)
{
printf(“i = %d, j = %d, k = %d\n”,i,j,k);

}
main()
{

int r=1;
int c=0;
func(c=r,r,r=4);

}

With XL C 1.3 the results are:
i = 1 j = 1 k = 4

With C for AIX the results are:
i = 1 j = 4 k = 4

v Preprocessor differences include:

© Copyright IBM Corp. 1995, 1999 467

– Output preserves coordinates of each token.

– No redundant #line directives or multiple blank lines in output.

– Erroneous/incomplete macro invocations are expanded anyway. This includes:

- Extra arguments (ignored)

- Empty arguments

- Missing arguments (treated as empty)

- Incomplete argument list (treated as completed)

3. C for AIX differs from XL C where provisions for future extensions are implemented.

v C for AIX requires that #pragma options align= suboption appears before the structure definition.
XL C allows the #pragma to appear anywhere before the last closing brace of the structure
definition.

v long long type is supported, even under ANSI mode. long long is recognized by all of the
invocation commands except for ic89 and c89, which disable it by specifying the -qnolonglong
option.

v Invoking the compiler does not define _ANSI_C_SOURCE (unless you use the ic89 or c89
invocation commands, or unless you include standards.h). This is because there are many useful
definitions in header files that are not detected when _ANSI_C_SOURCE is in effect. You can define
_ANSI_C_SOURCE by supplying -D_ANSI_C_SOURCE at compiler invocation.

468 C for AIX User’s Guide

Appendix K. National Languages Support in the C for AIX
Compiler

This and related pages summarize the national language support (NLS) specific to the C for AIX Compiler.

Note: You must specify the -qmbcs option to use multibyte characters anywhere in your program.

Support for multibyte characters includes support for wide characters. Generally, wide characters are
permitted anywhere multibyte characters are, but they are incompatible with multibyte characters in the
same string because their bit patterns differ. Wherever permitted, you can mix single-byte and multibyte
characters in the same string. See Restrictions (page 471) for more information.

“Converting Files Containing Multibyte Data to New Code Pages”
“Where Multibyte Characters Are Supported”
“mbcs, dbcs” on page 301

Converting Files Containing Multibyte Data to New Code Pages

If you have installed new code pages on your system, you must use the AIX iconv migration utility to
convert files containing multibyte data to use new code pages. This command converts files containing
multibyte data from the IBM-932 code set to the IBM-euc code set.

The iconv command is described in the AIX Version 4 Commands Reference. Using the NLS code set
converters with the iconv command is described in “Converters Overview for Programming” in the AIX
Version 4 General Programming Concepts.

“Appendix K. National Languages Support in the C for AIX Compiler”
“Where Multibyte Characters Are Supported”

Where Multibyte Characters Are Supported

In the examples that follow, multibyte_char represents any string of one or more multibyte characters.

String Literals and Character Constants
Multibyte characters are supported in string literals and character constants. Strings containing multibyte
characters are treated in essentially the same way as strings without multibyte characters. Multibyte
characters can appear in several contexts:

v Preprocessor directives

v Macro definitions

v The # and ## operators

v The definition of the macro name in the -D compiler option

Wide-character strings can be manipulated the same way as single-byte character strings. The system
provides equivalent wide-character and single-byte string functions.

© Copyright IBM Corp. 1995, 1999 469

The default storage type for all string literals is read-only. The -qro option sets the storage type of string
literals to read-only, and the -qnoro option makes string literals writable.

Note: Because a character constant can store only 1 byte, avoid assigning multibyte characters to
character constants. Only the last byte of a multibyte character constant is stored. Use a wide-character
representation instead. Wide-character string literals and constants must be prefixed by L. For example:

wchar_t *a = L“wide_char_string” ;
wchar_t b = L'c'

String literals and character constants are described in AIX Version 4: Language Reference. The # and ##
operators, preprocessor directives, and macro definitions are also described there.

Preprocessor Directives
The following preprocessor directives permit multibyte-character constants and string literals:

v #define

v #pragma comment

v #include

These and other preprocessor directives are described in AIX Version 4: Language Reference.

Macro Definitions
Because string literals and character constants can be part of #define statements, multibyte characters
are also permitted in both object-like and function-like macro definitions.

Compiler Options
Multibyte characters can appear in the compiler suboptions that take file names as arguments:

v -l key

v -ofile_name

v -B prefix

v -Fconfig_file:stanza

v -I directory

v -Ldirectory

The -D name=definition option permits multibyte characters in the definition of the macro name. In the
following example, the first definition is a string literal, and the second is a character constant:

-DMYMACRO=“kpsmultibyte_chardcs”
-DMYMACRO='multibyte_char'

The -qmbcs compiler option permits both double-byte and multibyte characters. In other respects, it is
equivalent to the -qdbcs option, but it should be used when multibyte characters appear in the program.

The listings produced by the -qlist and -qsource options display the date and time for the appropriate
international language. Multibyte characters in the file name of the C source file also appear in the name
of the corresponding list file. For example, a C source file called:

multibyte_char.c

gives a list file called

470 C for AIX User’s Guide

multibyte_char.lst

File Names and Comments
Any file name can contain multibyte characters. The file name can be a relative or absolute path name.
For example:

#include <multibyte_char/mydir/mysource/multibyte_char.h>
#include “multibyte_char.h”
xlc /u/myhome/c_programs/kanji_files/multibyte_char.c
-omultibyte_char

Multibyte characters are also permitted in comments, if you specify the -qmbcs compiler option.
Comments are described in AIX Version 4: Language Reference.

Restrictions

v Multibyte characters are not permitted in identifiers.

v Hexadecimal values for multibyte characters must be in the range of the code page being used.

v You cannot mix wide characters and multibyte characters in macro definitions. For example, a macro
expansion that concatenates a wide string and a multibyte string is not permitted.

v Assignment between wide characters and multibyte characters is not permitted.

v Concatenating wide character strings and multibyte character strings is not permitted.

“Appendix K. National Languages Support in the C for AIX Compiler” on page 469
“Where Multibyte Characters Are Supported” on page 469
“B” on page 239
“D” on page 250
“F” on page 259
“I” on page 272
“L” on page 285
“l” on page 286
“o” on page 305
“list” on page 291
“mbcs, dbcs” on page 301
“ro” on page 317
“source” on page 322

Appendix K. National Languages Support in the C for AIX Compiler 471

472 C for AIX User’s Guide

Appendix L. C for AIX Files

You can install the C for AIX. as an optional software product of the AIX for RISC System/6000. Installing
the compiler places the following files on your system:

C for AIX README file, which contains important
information not included in other documentation. Read
this file before you use the compiler for the first time.

/usr/vac/xlC/README.C

C front end /usr/vac/exe/xlcentry

Help file /usr/vac/exe/default_msg/vac.help

C preprocessor /usr/vac/exe/xlCcpp

Disassembler /usr/vac/exe/dis

Interprocedural Analysis tool /usr/vac/exe/ipa

Code generator /usr/vac/exe/xlCcode
/usr/vac/exe/bolt

Default message catalogs /usr/vac/exe/default_msg/vacdmsg.cat
/usr/vac/exe/default_msg/vacfe.cat
/usr/vac/exe/default_msg/vacimsg.cat
/usr/vac/exe/default_msg/vacsmsg.cat

C driver programs /usr/vac/bin/xlc
/usr/vac/bin/xlc128
/usr/vac/bin/xlc_r
/usr/vac/bin/cc
/usr/vac/bin/cc128
/usr/vac/bin/cc_r
/usr/vac/bin/cleanpdf
/usr/vac/bin/replaceCSET
/usr/vac/bin/resetpdf
/usr/vac/bin/restoreCSET
/usr/vac/bin/showpdf

Precompiled header support /usr/vac/lib/compmalloc.o

Memory debug support /usr/vac/lib/libhm.a
/usr/vac/lib/libhm_r.a
/usr/vac/lib/libhmd.a
/usr/vac/lib/libhmd_r.a
/usr/vac/lib/libhu.a
/usr/vac/lib/libhu_r.a
/usr/vac/include/stdlib.h
/usr/vac/include/string.h
/usr/vac/include/umalloc.h

Profile-directed feedback library /usr/vac/lib/libpdf.a

Profiling library /usr/vac/lib/profiled

Configuration file /etc/vac.cfg

Links to /usr/vac/bin /usr/bin/xlc
/usr/bin/xlc128
/usr/bin/xlc_r
/usr/bin/c89
/usr/bin/cc
/usr/bin/cc128
/usr/bin/cc_r

© Copyright IBM Corp. 1995, 1999 473

C for AIX Compiler Invocation Commands
All invocation command files are placed in /usr/vac/bin . You may add this directory to the beginning of
your PATH environment variable to make these commands available to you.

The default links in /usr/bin (xlc, cc, c89, etc) that point to /usr/vac/bin of C for AIX are optional. They are
created at the discretion of the product installer using replaceCSET .

etc/vac.cfg - Default Configuration File

The C for AIX Compiler includes two versions of the default configuration file. When you install the C for
AIX Compiler, only one of these configuration files is linked to /etc/vac.cfg according to the following
criteria:

v If the level of your operating system is AIX 4.3 or higher, /etc/vac.cfg is linked to the “vac.cfg.43
Compiler Configuration File” on page 477 default configuration file

v If the level of your operating system is earlier than AIX 4.3, /etc/vac.cfg is linked to the “vac.cfg.41
Compiler Configuration File” default configuration file.

“Compiler Options” on page 10
“Invoking the Compiler” on page 8
“Specifying Compiler Options on the Command Line” on page 10
“Specifying Compiler Options in Your Program Source Files” on page 12
“Specifying Compiler Options in a Configuration File” on page 13
“Resolving Conflicting Compiler Options” on page 217
“Compiler Options and Their Defaults” on page 218

vac.cfg.41 Compiler Configuration File
*
* COMPONENT_NAME: (CC) C for AIX Compiler
*
* FUNCTIONS: C/C++ Configuration file
*
* ORIGINS: 27
*
* (C) COPYRIGHT International Business Machines Corp. 1991, 1999
* All Rights Reserved
* Licensed Materials - Property of IBM
*
* US Government Users Restricted Rights - Use, duplication or
* disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
*
* ANSI C compiler, UNIX header files
xlc: use = DEFLT

crt = /lib/crt0.o
mcrt = /lib/mcrt0.o

gcrt = /lib/gcrt0.o
libraries = -lc
proflibs = -L/lib/profiled,-L/usr/lib/profiled
options = -qansialias

* C compiler, extended mode
cc: use = DEFLT
crt = /lib/crt0.o
mcrt = /lib/mcrt0.o
gcrt = /lib/gcrt0.o

libraries = -lc

474 C for AIX User’s Guide

proflibs = -L/lib/profiled,-L/usr/lib/profiled
options = -qlanglvl=extended,-qnoro,-qnoroconst

xlc128: use = DEFLT
crt = /lib/crt0.o
mcrt = /lib/mcrt0.o
gcrt = /lib/gcrt0.o
libraries = -lc128,-lc
proflibs = -L/lib/profiled,-L/usr/lib/profiled
options = -qansialias,-qldbl128

* C compiler, extended mode
cc128: use = DEFLT

crt = /lib/crt0.o
mcrt = /lib/mcrt0.o
gcrt = /lib/gcrt0.o
libraries = -lc128,-lc
proflibs = -L/lib/profiled,-L/usr/lib/profiled
options = -qlanglvl=extended,-qnoro,-qnoroconst,-qldbl128

* Strict ANSI compiler, ANSI headers
c89: use = DEFLT

crt = /lib/crt0.o
mcrt = /lib/mcrt0.o
gcrt = /lib/gcrt0.o
libraries = -lc
proflibs = -L/lib/profiled,-L/usr/lib/profiled
options = -D_ANSI_C_SOURCE,-qansialias,-qnolonglong,-qstrict_induction

* C++ compiler
xlC: use = DEFLT

crt = /usr/vacpp/lib/crt0.o
mcrt = /usr/vacpp/lib/mcrt0.o
gcrt = /usr/vacpp/lib/gcrt0.o
libraries2 = -L/usr/vacpp/lib,-lC,-lm,-lc
proflibs = -L/usr/vacpp/lib/profiled,-L/lib/profiled,-L/usr/lib/profiled
hdlibs = -L/usr/vac/lib,-lhC,-lhmd
options = -qansialias

* C++ compiler with 128 bit long double
xlC128: use = DEFLT

crt = /usr/vacpp/lib/crt0.o
mcrt = /usr/vacpp/lib/mcrt0.o
gcrt = /usr/vacpp/lib/gcrt0.o
libraries2 = -L/usr/vacpp/lib,-lC128,-lC,-lm,-lc128,-lc
proflibs = -L/usr/vacpp/lib/profiled,-L/lib/profiled,-L/usr/lib/profiled
hdlibs = -L/usr/vac/lib,-lhC,-lhmd
options = -qansialias,-qldbl128

* standard c compiler aliased as xlc_r (AIX Threads)
xlc_r: use = DEFLT

crt = /lib/crt0_r.o
mcrt = /lib/mcrt0_r.o
gcrt = /lib/gcrt0_r.o
libraries = -L/usr/lib/threads,-lpthreads,-lc_r,/usr/lib/libc.a
proflibs = -L/lib/profiled,-L/usr/lib/profiled
hdlibs = -L/usr/vac/lib,-lhmd_r
options = -qansialias,-qthreaded,-D_THREAD_SAFE,-D__VACPP_MULTI__

* standard c compiler aliased as cc_r (AIX Threads)
cc_r: use = DEFLT

crt = /lib/crt0_r.o
mcrt = /lib/mcrt0_r.o
gcrt = /lib/gcrt0_r.o
libraries = -L/usr/lib/threads,-lpthreads,-lc_r,/usr/lib/libc.a
proflibs = -L/lib/profiled,-L/usr/lib/profiled
hdlibs = -L/usr/vac/lib,-lhmd_r
options = -qlanglvl=extended,-qnoro,-qnoroconst,-qthreaded,-D_THREAD_SAFE,-D__VACPP_MULTI__

xlc128_r: use = DEFLT
crt = /lib/crt0_r.o
mcrt = /lib/mcrt0_r.o
gcrt = /lib/gcrt0_r.o
libraries = -L/usr/lib/threads,-lpthreads,-lc128_r,-lc128,-lc_r,/usr/lib/libc.a
proflibs = -L/lib/profiled,-L/usr/lib/profiled

Appendix L. C for AIX Files 475

hdlibs = -L/usr/vac/lib,-lhmd_r
options = -qansialias,-qldbl128,-qthreaded,-D_THREAD_SAFE,-D__VACPP_MULTI__

* C compiler, extended mode
cc128_r: use = DEFLT

crt = /lib/crt0_r.o
mcrt = /lib/mcrt0_r.o
gcrt = /lib/gcrt0_r.o
libraries = -L/usr/lib/threads,-lpthreads,-lc128_r,-lc128,-lc_r,/usr/lib/libc.a
proflibs = -L/lib/profiled,-L/usr/lib/profiled
hdlibs = -L/usr/vac/lib,-lhmd_r
options = -qlanglvl=extended,-qnoro,-qnoroconst,-qldbl128,-qthreaded,-D_THREAD_SAFE,-D__VACPP_MULTI__

* xlC C++ compiler aliased as xlC_r (AIX Threads)
xlC_r: use = DEFLT

crt = /usr/vacpp/lib/crt0_r.o
mcrt = /usr/vacpp/lib/mcrt0_r.o
gcrt = /usr/vacpp/lib/gcrt0_r.o
options = -qansialias,-qthreaded,-D_THREAD_SAFE,-D__VACPP_MULTI__
libraries2 = -L/usr/lib/threads,-L/usr/vacpp/lib,-lC_r,-lC,-lpthreads,-lc_r,-lm,/usr/lib/libc.a
proflibs = -L/usr/vacpp/lib/profiled,-L/lib/profiled,-L/usr/lib/profiled
hdlibs = -L/usr/vac/lib,-lhC_r,-lhmd_r

* C++ compiler with 128 bit long double (AIX Threads)
xlC128_r: use = DEFLT

crt = /usr/vacpp/lib/crt0_r.o
mcrt = /usr/vacpp/lib/mcrt0_r.o
gcrt = /usr/vacpp/lib/gcrt0_r.o
libraries2 = -L/usr/lib/threads,-L/usr/vacpp/lib,-lC128_r,-lC128,-lC_r,-lC,-lpthreads,-lc128_r,-lc128,-lc_r,-lm,/us
proflibs = -L/usr/vacpp/lib/profiled,-L/lib/profiled,-L/usr/lib/profiled
hdlibs = -L/usr/vac/lib,-lhC_r,-lhmd_r
options = -qansialias,-qldbl128,-qthreaded,-D_THREAD_SAFE,-D__VACPP_MULTI__

* standard c compiler aliased as xlc_r4 (DCE)
xlc_r4: use = DEFLT

crt = /lib/crt0_r.o
mcrt = /lib/mcrt0_r.o
gcrt = /lib/gcrt0_r.o
libraries = -L/usr/lib/threads,-ldcelibc_r,-ldcepthreads,-lpthreads,-lc_r,-lc
proflibs = -L/lib/profiled,-L/usr/lib/profiled
hdlibs = -L/usr/vac/lib,-lhmd_r
options = -qansialias,-qthreaded,-D_THREAD_SAFE,-D__VACPP_MULTI__,-D_AIX32_THREADS=1,-D_AES_SOURCE,-D_AIX41,-I/

* standard c compiler aliased as cc_r4 (DCE)
cc_r4: use = DEFLT

crt = /lib/crt0_r.o
mcrt = /lib/mcrt0_r.o
gcrt = /lib/gcrt0_r.o
libraries = -L/usr/lib/threads,-ldcelibc_r,-ldcepthreads,-lpthreads,-lc_r,-lc
proflibs = -L/lib/profiled,-L/usr/lib/profiled
hdlibs = -L/usr/vac/lib,-lhmd_r
options = -qlanglvl=extended,-qnoro,-qnoroconst,-qthreaded,-D_THREAD_SAFE,-D__VACPP_MULTI__,-D_AIX32_THREADS=1,-

xlc128_r4: use = DEFLT
crt = /lib/crt0_r.o
mcrt = /lib/mcrt0_r.o
gcrt = /lib/gcrt0_r.o
libraries = -L/usr/lib/threads,-ldcelibc_r,-ldcepthreads,-lpthreads,-lc128_r,-lc128,-lc_r,-lc
proflibs = -L/lib/profiled,-L/usr/lib/profiled
hdlibs = -L/usr/vac/lib,-lhmd_r
options = -qansialias,-qldbl128,-qthreaded,-D_THREAD_SAFE,-D__VACPP_MULTI__

* C compiler, extended mode
cc128_r4: use = DEFLT

crt = /lib/crt0_r.o
mcrt = /lib/mcrt0_r.o
gcrt = /lib/gcrt0_r.o
libraries = -L/usr/lib/threads,-ldcelibc_r,-ldcepthreads,-lpthreads,-lc128_r,-lc128,-lc_r,-lc
proflibs = -L/lib/profiled,-L/usr/lib/profiled
hdlibs = -L/usr/vac/lib,-lhmd_r
options = -qlanglvl=extended,-qnoro,-qnoroconst,-qldbl128,-qthreaded,-D_THREAD_SAFE,-D__VACPP_MULTI__

* xlC C++ compiler aliased as xlC_r4 (DCE)
xlC_r4: use = DEFLT

crt = /usr/vacpp/lib/crt0_r.o

476 C for AIX User’s Guide

mcrt = /usr/vacpp/lib/mcrt0_r.o
gcrt = /usr/vacpp/lib/gcrt0_r.o
libraries2 = -L/usr/lib/threads,-L/usr/vacpp/lib,-lC_r,-lC,-ldcelibc_r,-ldcepthreads,-lpthreads,-lc_r,-lm,/usr/li
proflibs = -L/usr/vacpp/lib/profiled,-L/lib/profiled,-L/usr/lib/profiled
hdlibs = -L/usr/vac/lib,-lhC_r,-lhmd_r
options = -qansialias,-qthreaded,-D__VACPP_MULTI__,-D_THREAD_SAFE,-D_AIX32_THREADS=1,-D_AIX41,-D_AES_SOURCE,-I

* C++ compiler with 128 bit long double (AIX Threads)
xlC128_r4: use = DEFLT

crt = /usr/vacpp/lib/crt0_r.o
mcrt = /usr/vacpp/lib/mcrt0_r.o
gcrt = /usr/vacpp/lib/gcrt0_r.o
libraries2 = -L/usr/lib/threads,-L/usr/vacpp/lib,-lC128_r,-lC128,-lC_r,-lC,-ldcelibc_r,-ldcepthreads,-lpthreads,-
proflibs = -L/usr/vacpp/lib/profiled,-L/lib/profiled,-L/usr/lib/profiled
hdlibs = -L/usr/vac/lib,-lhC,-lhmd
options = -qansialias,-qldbl128,-qthreaded,-D_THREAD_SAFE,-D__VACPP_MULTI__,-D_AIX32_THREADS=1,-D_AIX41,-D_AES

* common definitions
DEFLT: cppcomp = /usr/vacpp/exe/xlCentry

ccomp = /usr/vac/exe/xlcentry
code = /usr/vac/exe/xlCcode
cpp = /usr/vac/exe/xlCcpp
munch = /usr/vacpp/exe/munch
ipa = /usr/vac/exe/ipa
dis = /usr/vac/exe/dis
cppfilt = /usr/vacpp/bin/c++filt
bolt = /usr/vac/exe/bolt
as = /bin/as
ld = /bin/ld
xlC = /usr/vacpp/bin/xlC
cppinc = /usr/vacpp/include
options = -D_AIX,-D_AIX32,-D_AIX41,-D_IBMR2,-D_POWER,-bpT:0x10000000,-bpD:0x20000000
ldopt = “b:o:e:u:R:H:Y:Z:L:T:A:k:j:”
hdlibs = -L/usr/vac/lib,-lhmd
xlCcopt = -qansialias
smplibraries = -lxlsmp
optlibraries = -lxlopt
resexp = /usr/vacpp/lib/res.exp
genexports = /usr/vac/bin/CreateExportList

vac.cfg.43 Compiler Configuration File
*
* COMPONENT_NAME: (CC) C for AIX Compiler
*
* FUNCTIONS: C/C++ Configuration file
*
* ORIGINS: 27
*
* (C) COPYRIGHT International Business Machines Corp. 1991, 1999
* All Rights Reserved
* Licensed Materials - Property of IBM
*
* US Government Users Restricted Rights - Use, duplication or
* disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
*
* ANSI C compiler, UNIX header files
xlc: use = DEFLT

crt = /lib/crt0.o
mcrt = /lib/mcrt0.o
gcrt = /lib/gcrt0.o
libraries = -lc
proflibs = -L/lib/profiled,-L/usr/lib/profiled
options = -qansialias

* C compiler, extended mode
cc: use = DEFLT

crt = /lib/crt0.o

Appendix L. C for AIX Files 477

mcrt = /lib/mcrt0.o
gcrt = /lib/gcrt0.o
libraries = -lc
proflibs = -L/lib/profiled,-L/usr/lib/profiled
options = -qlanglvl=extended,-qnoro,-qnoroconst

xlc128: use = DEFLT
crt = /lib/crt0.o
mcrt = /lib/mcrt0.o
gcrt = /lib/gcrt0.o
libraries = -lc128,-lc
proflibs = -L/lib/profiled,-L/usr/lib/profiled
options = -qansialias,-qldbl128

* C compiler, extended mode
cc128: use = DEFLT

crt = /lib/crt0.o
mcrt = /lib/mcrt0.o
gcrt = /lib/gcrt0.o
libraries = -lc128,-lc
proflibs = -L/lib/profiled,-L/usr/lib/profiled
options = -qlanglvl=extended,-qnoro,-qnoroconst,-qldbl128

* Strict ANSI compiler, ANSI headers
c89: use = DEFLT

crt = /lib/crt0.o
mcrt = /lib/mcrt0.o
gcrt = /lib/gcrt0.o
libraries = -lc
proflibs = -L/lib/profiled,-L/usr/lib/profiled
options = -D_ANSI_C_SOURCE,-qansialias,-qnolonglong,-qstrict_induction

* C++ compiler
xlC: use = DEFLT

crt = /lib/crt0.o
mcrt = /lib/mcrt0.o
gcrt = /lib/gcrt0.o
libraries2 = -L/usr/vacpp/lib,-lC,-lm,-lpthreads,-lc
proflibs = -L/usr/vacpp/lib/profiled,-L/lib/profiled,-L/usr/lib/profiled
hdlibs = -L/usr/vac/lib,-lhC,-lhmd
options = -qansialias

* C++ compiler with 128 bit long double
xlC128: use = DEFLT

crt = /lib/crt0.o
mcrt = /lib/mcrt0.o
gcrt = /lib/gcrt0.o
libraries2 = -L/usr/vacpp/lib,-lC128,-lC,-lm,-lpthreads,-lc128,-lc
proflibs = -L/usr/vacpp/lib/profiled,-L/lib/profiled,-L/usr/lib/profiled
hdlibs = -L/usr/vac/lib,-lhC,-lhmd
options = -qansialias,-qldbl128

* standard c compiler aliased as xlc_r (AIX Threads)
xlc_r: use = DEFLT

crt = /lib/crt0.o
mcrt = /lib/mcrt0.o
gcrt = /lib/gcrt0.o
libraries = -L/usr/lib/threads,-lpthreads,-lc
proflibs = -L/lib/profiled,-L/usr/lib/profiled
hdlibs = -L/usr/vac/lib,-lhmd
options = -qansialias,-qthreaded,-D_THREAD_SAFE,-D__VACPP_MULTI__

* xlc128_r
xlc128_r: use = DEFLT

crt = /lib/crt0.o
mcrt = /lib/mcrt0.o
gcrt = /lib/gcrt0.o
libraries = -L/usr/lib/threads,-lpthreads,-lc128,-lc
proflibs = -L/lib/profiled,-L/usr/lib/profiled
hdlibs = -L/usr/vac/lib,-lhmd
options = -qansialias,-qldbl128,-qthreaded,-D_THREAD_SAFE,-D__VACPP_MULTI__

* standard c compiler aliased as cc_r (AIX Threads)
cc_r: use = DEFLT

crt = /lib/crt0.o

478 C for AIX User’s Guide

mcrt = /lib/mcrt0.o
gcrt = /lib/gcrt0.o
libraries = -L/usr/lib/threads,-lpthreads,-lc
proflibs = -L/lib/profiled,-L/usr/lib/profiled
hdlibs = -L/usr/vac/lib,-lhmd
options = -qlanglvl=extended,-qnoro,-qnoroconst,-qthreaded,-D_THREAD_SAFE,-D__VACPP_MULTI__

* cc128_r
cc128_r: use = DEFLT

crt = /lib/crt0.o
mcrt = /lib/mcrt0.o
gcrt = /lib/gcrt0.o
libraries = -L/usr/lib/threads,-lpthreads,-lc128,-lc
proflibs = -L/lib/profiled,-L/usr/lib/profiled
hdlibs = -L/usr/vac/lib,-lhmd
options = -qlanglvl=extended,-qnoro,-qnoroconst,-qldbl128,-qthreaded,-D_THREAD_SAFE,-D__VACPP_MULTI__

* xlC C++ compiler aliased as xlC_r (AIX Threads)
xlC_r: use = DEFLT

crt = /lib/crt0.o
mcrt = /lib/mcrt0.o
gcrt = /lib/gcrt0.o
options = -qansialias,-qthreaded,-D_THREAD_SAFE,-D__VACPP_MULTI__
libraries2 = -L/usr/lib/threads,-L/usr/vacpp/lib,-lC,-lpthreads,-lm,-lc
proflibs = -L/usr/vacpp/lib/profiled,-L/lib/profiled,-L/usr/lib/profiled
hdlibs = -L/usr/vac/lib,-lhC,-lhmd

* xlC C++ compiler with 128 bit long double aliased as xlC128_r (AIX Threads)
xlC128_r: use = DEFLT

crt = /lib/crt0.o
mcrt = /lib/mcrt0.o
gcrt = /lib/gcrt0.o
libraries2 = -L/usr/lib/threads,-L/usr/vacpp/lib,-lC128,-lC,-lpthreads,-lc128,-lm,-lc
proflibs = -L/usr/vacpp/lib/profiled,-L/lib/profiled,-L/usr/lib/profiled
hdlibs = -L/usr/vac/lib,-lhC,-lhmd
options = -qansialias,-qldbl128,-qthreaded,-D_THREAD_SAFE,-D__VACPP_MULTI__

* standard c compiler aliased as xlc_r4 (DCE)
xlc_r4: use = DEFLT

crt = /lib/crt0.o
mcrt = /lib/mcrt0.o
gcrt = /lib/gcrt0.o
libraries = -L/usr/lib/threads,-ldcelibc_r,-ldcepthreads,-lpthreads_compat,-lpthreads,-lc
proflibs = -L/lib/profiled,-L/usr/lib/profiled
hdlibs = -L/usr/vac/lib,-lhmd
options = -qansialias,-qthreaded,-D_THREAD_SAFE,-D__VACPP_MULTI__,-D_AIX_PTHREADS_D7,-D_AIX32_THREADS=1,-D_AE

* xlc128_r4
xlc128_r4: use = DEFLT

crt = /lib/crt0.o
mcrt = /lib/mcrt0.o
gcrt = /lib/gcrt0.o
libraries = -L/usr/lib/threads,-ldcelibc_r,-ldcepthreads,-lpthreads_compat,-lpthreads,-lc128,-lc
proflibs = -L/lib/profiled,-L/usr/lib/profiled
hdlibs = -L/usr/vac/lib,-lhmd
options = -qansialias,-qthreaded,-D_THREAD_SAFE,-D__VACPP_MULTI__,-D_AIX_PTHREADS_D7,-D_AIX32_THREADS=1,-D_AE

* standard c compiler aliased as cc_r4 (DCE)
cc_r4: use = DEFLT

crt = /lib/crt0.o
mcrt = /lib/mcrt0.o
gcrt = /lib/gcrt0.o
libraries = -L/usr/lib/threads,-ldcelibc_r,-ldcepthreads,-lpthreads_compat,-lpthreads,-lc
proflibs = -L/lib/profiled,-L/usr/lib/profiled
hdlibs = -L/usr/vac/lib,-lhmd
options = -qlanglvl=extended,-qnoro,-qnoroconst,-qthreaded,-D_THREAD_SAFE,-D__VACPP_MULTI__,-D_AIX_PTHREADS_D7

* cc128_r4
cc128_r4: use = DEFLT

crt = /lib/crt0.o
mcrt = /lib/mcrt0.o
gcrt = /lib/gcrt0.o
libraries = -L/usr/lib/threads,-ldcelibc_r,-ldcepthreads,-lpthreads_compat,-lpthreads,-lc128,-lc
proflibs = -L/lib/profiled,-L/usr/lib/profiled

Appendix L. C for AIX Files 479

hdlibs = -L/usr/vac/lib,-lhmd
options = -qlanglvl=extended,-qnoro,-qnoroconst,-qthreaded,-D_THREAD_SAFE,-D__VACPP_MULTI__,-D_AIX_PTHREADS_D7,-

* xlC C++ compiler aliased as xlC_r4 (DCE)
xlC_r4: use = DEFLT

crt = /lib/crt0.o
mcrt = /lib/mcrt0.o
gcrt = /lib/gcrt0.o
libraries2 = -L/usr/lib/threads,-L/usr/vacpp/lib,-lC,-ldcelibc_r,-ldcepthreads,-lpthreads_compat,-lpthreads,-lm,-lc
proflibs = -L/usr/vacpp/lib/profiled,-L/lib/profiled,-L/usr/lib/profiled
hdlibs = -L/usr/vac/lib,-lhC,-lhmd
options = -qansialias,-qthreaded,-D_THREAD_SAFE,-D__VACPP_MULTI__,-D_AIX_PTHREADS_D7,-D_AIX32_THREADS=1,-D_AIX41

* xlC C++ compiler with 128 bit long double aliased as xlC128_r4 (DCE)
xlC128_r4: use = DEFLT

crt = /lib/crt0.o
mcrt = /lib/mcrt0.o
gcrt = /lib/gcrt0.o
libraries2 = -L/usr/lib/threads,-L/usr/vacpp/lib,-lC128,-lC,-ldcelibc_r,-ldcepthreads,-lpthreads_compat,-lm,-lpthre
proflibs = -L/usr/vacpp/lib/profiled,-L/lib/profiled,-L/usr/lib/profiled
hdlibs = -L/usr/vacpp/lib,-lhC,-lhmd
options = -qansialias,-qldbl128,-qthreaded,-D_THREAD_SAFE,-D__VACPP_MULTI__,-D_AIX_PTHREADS_D7,-D_AIX32_THREADS=

* standard c compiler aliased acrt0r (AIX POSIX Draft 7Threads)
xlc_r7: use = DEFLT

crt = /lib/crt0.o
mcrt = /lib/mcrt0.o
gcrt = /lib/gcrt0.o
libraries = -L/usr/lib/threads,-lpthreads_compat,-lpthreads,-lc_r,-lc
proflibs = -L/lib/profiled,-L/usr/lib/profiled
hdlibs = -L/usr/vac/lib,-lhmd
options = -qansialias,-qthreaded,-D_THREAD_SAFE,-D__VACPP_MULTI__,-D_AIX_PTHREADS_D7

xlc128_r7: use = DEFLT
crt = /lib/crt0.o
mcrt = /lib/mcrt0.o
gcrt = /lib/gcrt0.o
libraries = -L/usr/lib/threads,-lpthreads_compat,-lpthreads,-lc128,-lc_r,-lc
proflibs = -L/lib/profiled,-L/usr/lib/profiled
hdlibs = -L/usr/vac/lib,-lhmd
options = -qansialias,-qthreaded,-D_THREAD_SAFE,-D__VACPP_MULTI__,-D_AIX_PTHREADS_D7,-qldbl128

* standard c compiler aliased as cc_r (AIX POSIX Draft 7Threads)
cc_r7: use = DEFLT

crt = /lib/crt0.o
mcrt = /lib/mcrt0.o
gcrt = /lib/gcrt0.o
libraries = -L/usr/lib/threads,-lpthreads_compat,-lpthreads,-lc_r,-lc
proflibs = -L/lib/profiled,-L/usr/lib/profiled
hdlibs = -L/usr/vac/lib,-lhmd
options = -qlanglvl=extended,-qnoro,-qnoroconst,-qthreaded,-D_THREAD_SAFE,-D__VACPP_MULTI__,-D_AIX_PTHREADS_D7

cc128_r7: use = DEFLT
crt = /lib/crt0.o
mcrt = /lib/mcrt0.o
gcrt = /lib/gcrt0.o
libraries = -L/usr/lib/threads,-lpthreads_compat,-lpthreads,-lc128,-lc_r,-lc
proflibs = -L/lib/profiled,-L/usr/lib/profiled
hdlibs = -L/usr/vac/lib,-lhmd
options = -qlanglvl=extended,-qnoro,-qnoroconst,-qthreaded,-D_THREAD_SAFE,-D__VACPP_MULTI__,-D_AIX_PTHREADS_D7,

* xlC C++ compiler aliased as xlC_r7 (AIX POSIX Draft 7Threads)
xlC_r7: use = DEFLT

crt = /lib/crt0.o
mcrt = /lib/mcrt0.o
gcrt = /lib/gcrt0.o
libraries2 = -L/usr/lib/threads,-L/usr/vacpp/lib,-lC,-lpthreads_compat,-lpthreads,-lc_r,-lm,/usr/lib/libc.a
proflibs = -L/usr/vacpp/lib/profiled,-L/lib/profiled,-L/usr/lib/profiled
hdlibs = -L/usr/vac/lib,-lhC,-lhmd
options = -qansialias,-qthreaded,-D_THREAD_SAFE,-D__VACPP_MULTI__,-D_AIX_PTHREADS_D7

* xlC C++ compiler with 128 bit long double aliased as xlC128_r7 (AIX POSIX Draft 7Threads)
xlC128_r7: use = DEFLT

crt = /lib/crt0.o
mcrt = /lib/mcrt0.o

480 C for AIX User’s Guide

gcrt = /lib/gcrt0.o
libraries2 = -L/usr/lib/threads,-L/usr/vacpp/lib,-lC128,-lC,-lpthreads_compat,-lm,-lpthreads,-lc128,-lc
proflibs = -L/usr/vacpp/lib/profiled,-L/lib/profiled,-L/usr/lib/profiled
hdlibs = -L/usr/vac/lib,-lhC,-lhmd
options = -qansialias,-qldbl128,-qthreaded,-D_THREAD_SAFE,-D__VACPP_MULTI__,-D_AIX_PTHREADS_D7

* common definitions
DEFLT: cppcomp = /usr/vacpp/exe/xlCentry

ccomp = /usr/vac/exe/xlcentry
code = /usr/vac/exe/xlCcode
cpp = /usr/vac/exe/xlCcpp
munch = /usr/vacpp/exe/munch
ipa = /usr/vac/exe/ipa
dis = /usr/vac/exe/dis
cppfilt = /usr/vacpp/bin/c++filt
bolt = /usr/vac/exe/bolt
as = /bin/as
ld = /bin/ld
xlC = /usr/vacpp/bin/xlC
cppinc = /usr/vacpp/include
options = -D_AIX,-D_AIX32,-D_AIX41,-D_AIX43,-D_IBMR2,-D_POWER,-bpT:0x10000000,-bpD:0x20000000
ldopt = “b:o:e:u:R:H:Y:Z:L:T:A:k:j:”
hdlibs = -L/usr/vac/lib,-lhmd
xlCcopt = -qansialias
crt_64 = /lib/crt0_64.o
mcrt_64 = /lib/mcrt0_64.o
gcrt_64 = /lib/gcrt0_64.o
smplibraries = -lxlsmp
optlibraries = -lxlopt
resexp = /usr/vacpp/lib/res.exp
genexports = /usr/vac/bin/CreateExportList

Appendix L. C for AIX Files 481

482 C for AIX User’s Guide

Appendix M. ASCII Character Set

The C for AIX compiler uses the American National Standard Code for Information Interchange (ASCII)
character set as its collating sequence.

The following table lists the standard ASCII characters in ascending numerical order, with their
corresponding decimal, octal, and hexadecimal values. It also shows the control characters with
Ctrl- notation. For example, the carriage return (ASCII symbol CR) appears as Ctrl-M , which you enter by
simultaneously pressing the Ctrl key and the M key.

Decimal
Value

Octal
Value

Hex Value Control Character ASCII
Symbol

Meaning

0 0 00 Ctrl-@ NUL null

1 1 01 Ctrl-A SOH start of heading

2 2 02 Ctrl-B STX start of text

3 3 03 Ctrl-C ETX end of text

4 4 04 Ctrl-D EOT end of transmission

5 5 05 Ctrl-E ENQ enquiry

6 6 06 Ctrl-F ACK acknowledge

7 7 07 Ctrl-G BEL bell

8 10 08 Ctrl-H BS backspace

9 11 09 Ctrl-I HT horizontal tab

10 12 0A Ctrl-J LF new line

11 13 0B Ctrl-K VT vertical tab

12 14 OC Ctrl-L FF form feed

13 15 0D Ctrl-M CR carriage return

14 16 0E Ctrl-N SO shift out

15 17 0F Ctrl-O SI shift in

16 20 10 Ctrl-P DLE data link escape

17 21 11 Ctrl-Q DC1 device control 1

18 22 12 Ctrl-R DC2 device control 2

19 23 13 Ctrl-S DC3 device control 3

20 24 14 Ctrl-T DC4 device control 4

21 25 15 Ctrl-U NAK negative acknowledge

22 26 16 Ctrl-V SYN synchronous idle

23 27 17 Ctrl-W ETB end of transmission block

24 30 18 Ctrl-X CAN cancel

25 31 19 Ctrl-Y EM end of medium

26 32 1A Ctrl-Z SUB substitute

27 33 1B Ctrl-[ESC escape

28 34 1C Ctrl-\ FS file separator

29 35 1D Ctrl-] GS group separator

© Copyright IBM Corp. 1995, 1999 483

30 36 1E Ctrl-| RS record separator

31 37 1F Ctrl-_ US unit separator

32 40 20 SP digit select

33 41 21 ! exclamation point

34 42 22 “ double quotation mark

35 43 23 # pound sign, number sign

36 44 24 $ dollar sign

37 45 25 % percent sign

38 46 26 & ampersand

39 47 27 ’ apostrophe

40 50 28 (left parenthesis

41 51 29) right parenthesis

42 52 2A * asterisk

43 53 2B + addition sign

44 54 2C , comma

45 55 2D - subtraction sign

46 56 2E . period

47 57 2F / right slash

48 60 30 0

49 61 31 1

50 62 32 2

51 63 33 3

52 64 34 4

53 65 35 5

54 66 36 6

55 67 37 7

56 70 38 8

57 71 39 9

58 72 3A : colon

59 73 3B ; semicolon

60 74 3C < less than

61 75 3D = equal

62 76 3E > greater than

63 77 3F ? question mark

64 100 40 @ at sign

65 101 41 A

66 102 42 B

67 103 43 C

68 104 44 D

69 105 45 E

70 106 46 F

71 107 47 G

484 C for AIX User’s Guide

72 110 48 H

73 111 49 I

74 112 4A J

75 113 4B K

76 114 4C L

77 115 4D M

78 116 4E N

79 117 4F O

80 120 50 P

81 121 51 Q

82 122 52 R

83 123 53 S

84 124 54 T

85 125 55 U

86 126 56 V

87 127 57 W

88 130 58 X

89 131 59 Y

90 132 5A Z

91 133 5B [left bracket

92 134 5C \ left slash, backslash

93 135 5D] right bracket

94 136 5E | hat, circumflex, caret

95 137 5F _ underscore

96 140 60 ′ grave accent

97 141 61 a

98 142 62 b

99 143 63 c

100 144 64 d

101 145 65 e

102 146 66 f

103 147 67 g

104 150 68 h

105 151 69 i

106 152 6A j

107 153 6B k

108 154 6C l

109 155 6D m

110 156 6E n

111 157 6F o

112 160 70 p

113 161 71 q

Appendix M. ASCII Character Set 485

114 162 72 r

115 163 73 s

116 164 74 t

117 165 75 u

118 166 76 v

119 167 77 w

120 170 78 x

121 171 79 y

122 172 7A z

123 173 7B { left brace

124 174 7C | logical or, vertical bar

125 175 7D } right brace

126 176 7E x similar, tilde

127 177 7F DEL delete

486 C for AIX User’s Guide

Appendix N. Problem Solving

Message Catalog Errors

Before the compiler can compile your program, the message catalogs must be installed and the
environment variables LANG and NLSPATH must be set to a language for which the message catalog
has been installed. See “Chapter 2. Setting Up the C for AIX Compilation Environment” on page 3 for more
information about setting these variables.

If you see the following message during compilation, the appropriate message catalog cannot be opened:
Error occurred while initializing the message system in
file: message_file

where message_file is the name of the message catalog that the compiler cannot open. This message is
issued in English only.

You should then verify that the message catalogs and the environment variables are in place and correct.
If the message catalog or environment variables are not correct, compilation can continue, but all
nondiagnostic messages are suppressed and the following message is issued instead:

No message text for message_number.

where message_number is the C for AIX internal message number. This message is issued in English only.

To determine message catalogs which are installed on your system, list all of the file names for the
catalogs using the following command:

ls /usr/lib/nls/msg/%L/vac*.cat

where %L is the primary language environment (locale) selected during installation of the AIX Version 4
Operating System. If the AIX system has never been installed on the system before, the default locale is
C. The locale for United States English is en_US. The default message catalogs in
/usr/vac/exe/default_msg are called when:

v The C for AIX compiler cannot find message catalogs for the locale specified by %L.

v The locale has never been changed from the default, C.

For more information about the NLSPATH and LANG environment variables, see the AIX Version 4
System User’s Guide: Operating Systems and Devices.

The AIX national language facilities are described in the “Introducing National Language Support for
Programming” in the AIX Version 4 General Programming Concepts.

“Chapter 2. Setting Up the C for AIX Compilation Environment” on page 3

Correcting Page Space Errors During Compilation

If the AIX operating system runs low on paging space during a compilation, the compiler issues one of the
following messages:

1501-229 Compilation ended due to lack of space.
1501-224 fatal error in ../exe/xlCcode: signal 9 received.

If lack of paging space causes other compiler programs to fail, the following message is displayed:

© Copyright IBM Corp. 1995, 1999 487

Killed.

To minimize paging-space problems, do any of the following and recompile your program:

v Reduce the size of your program by splitting it into two or more source files

v Compile your program without optimization.

v Reduce the number of processes competing for system paging space.

v Increase the system paging space.

To check the current paging-space settings enter the command: lsps -a or use the AIX System
Management Interface Tool (SMIT) command smit pgsp .

The paging-space overview in AIX Version 4 System User’s Guide: Operating System and
Devicesdescribes paging space and how to allocate it.

488 C for AIX User’s Guide

Appendix O. Glossary

This is a glossary of commonly used terms in the C for AIX information library. It includes definitions
developed by the American National Standards Institute (ANSI) and entries from the IBM Dictionary of
Computing (ZC20-1699). It supplements the AIX Version 4 Topic Index and Glossary.

A
address

A name, label, or number identifying a location in storage, a device in a system or network, or any
other data source.

arithmetic object
An integral object or objects having the type float , double , or long double .

array element
A single data item in an array.

assembler language
A symbolic programming language in which the set of instructions includes the instructions of the
machine and whose data structures correspond directly to the storage and registers of the
machine.

assignment conversion
A change to the form of the right operand that makes the right operand have the same data type
as the left operand.

assignment expression
An operation that stores the value of the right operand in the storage location specified by the left
operand.

B
binary expression

An operation containing two operands and one operator.

bit field
A member of a structure or union that contains 0 or more bits.

block See 489.

block statement
Any number of data definitions, declarations, and statements that appear between the symbols {
(left brace) and } (right brace).

boundary alignment
The position in main storage of a fixed-length field (such as halfword or doubleword) on an integral
boundary for that unit of information. For example, a word boundary is a storage address evenly
divisible by four.

break statement
A language control statement that contains the word break and a semicolon. It is used to end an
iterative or a switch statement by exiting from it at any point other than the logical end. Control is
passed to the first statement after the iteration or switch statement.

buffer flush
A process that removes the contents of a buffer. After a buffer flush, the buffer is empty.

© Copyright IBM Corp. 1995, 1999 489

C
C library

A system library that contains common C language subroutines for file access, string operators,
character operations, memory allocation, and other functions.

case clause
In a switch statement, a case label followed by any number of statements.

case label
The word case followed by a constant expression and a colon. When the selector evaluates the
value of the constant expression, the statements following the case label are processed.

cast expression
A cast expression explicitly converts its operand to a specified arithmetic, scalar, or class type.

cast operator
The cast operator is used for explicit type conversions.

char specifier
A char is a built-in data type.

character constant
A character or an escape sequence enclosed in single quotation marks.

character set
A group of characters used for a specific reason; for example, the set of characters a printer can
print or a keyboard can support.

character variable
A data object whose value can be changed during program execution and whose data type is
char , signed char , or unsigned char.

comma expression
An expression that contains two operands separated by a comma. Although the compiler
evaluates both operands, the value of the expression is the value of the right operand. If the left
operand produces a value, the compiler discards this value. Typically, the left operand of a comma
expression is used to produce side effects.

complex number
A complex number is made up of two parts: a real part and an imaginary part. A complex number
can be represented by an ordered pair (a, b), where a is the value of the real part and b is the
value of the imaginary part. The same complex number could also be represented as a + bi,
where i is the square root of -1.

conditional compilation directive
A preprocessor directive that causes the preprocessor to process specified source code in the file
depending on the evaluation of a specific condition.

conditional expression
A compound expression that contains a condition (the first expression), an expression to be
evaluated if the condition has a nonzero value (the second expression), and an expression to be
evaluated if the condition has the value zero (the third expression).

const A keyword that allows you to define a variable whose value does not change.

constant
A data item with a value that does not change during program execution.

constant expression
An expression having a value that can be determined during compilation and that does not change
during program execution.

490 C for AIX User’s Guide

control statement
A C language statement that changes the normal path of execution.

conversion
A change in the type of a value. For example, when you add values having different data types,
the compiler converts both values to the same type before adding them.

D
data definition

A program statement that describes the features of, specifies relationships of, or establishes the
context of, data. A data definition can also provide an initial value. Definitions appear outside a
function (for example at file scope) or within a block statement.

data object
Anything that exists in storage and on which operations can be performed, such as files,
programs, or arrays.

data type
A category that specifies the interpretation of a data object such as its mathematical qualities and
internal representation.

DBCS See 491.

debug To detect, locate, and correct errors in a program.

decimal constant
A number containing any digits 0 through 9 that does not begin with 0 (zero).

declaration
Establishes the names and characteristics of data objects and functions used in a program.

declarator
Designates a data object or function declared. Initializations can be performed in a declarator.

default
A value, attribute, or option that is assumed when no alternative is specified by the programmer.

default clause
In a switch statement, the keyword default followed by a colon, and one or more statements.
When the conditions of the specified case labels in the switch statement do not hold, the default
clause is chosen.

default initialization
The initial value assigned to a data object by the compiler if no initial value is specified by the
programmer. extern and static variables receive a default initialization of zero, while the default
initial value for auto and register variables is undefined.

define directive
A preprocessor directive that causes the preprocessor to replace an identifier or macro call with
specified code.

definition
A declaration that allocates storage, and may initialize a data object or specify the body of a
function.

do statement
A looping statement that contains the word do followed by a statement (the action), the word
while , and an expression in parentheses (the condition).

double-byte character set (DBCS)
A set of characters in which each character is represented by 2 bytes of storage.

Appendix O. Glossary 491

double precision
The use of two computer words to represent a floating-point value in accordance with the required
precision.

E
element

The component of an array, subrange, enumeration, or set.

else clause
The part of an if statement that contains the word else followed by a statement. The else clause
provides an action that is executed when the if condition evaluates to zero (false).

enumeration constant
An identifier (that has an associated integer value) defined by an enumeration type. You can use
an enumeration constant anywhere an integer constant is allowed.

enumeration tag
The identifier that names an enumeration data type.

enumeration type
An enumeration type defines a set of enumeration constants.

enumerator
An enumeration constant and its associated value.

escape sequence
A representation of a nonprintable character in a character or string literal. An escape sequence
contains the \ symbol, followed by one of the characters: a, b, f, n, r, t, v, ’, ?, or \, or followed by
one to three octal digits or \ followed by an x followed by any number of hexadecimal digits.

exception
Any user, logic, or system error detected by a function that does not itself deal with the error but
passes the error on to a handling routine.

expression
A representation of a value. For example, variables and constants appearing alone or in
combination with operators are expressions.

external data definition
A definition appearing outside a function. The defined object is accessible to all functions that
follow the definition and are located within the same source file as the definition.

F
file scope

A name declared outside all blocks and classes has file scope and can be used after the point of
declaration in a source file.

float constant
A number containing a decimal point, an exponent, or both a decimal point and an exponent. The
exponent contains an e or E, an optional sign (+ or -), and one or more digits (0 through 9).

for statement
A looping statement that contains the word for followed by a list of expressions enclosed in
parentheses (the condition) and a statement (the action). Each expression in the parenthesized list
is separated by a semicolon. You can omit any of the expressions, but you cannot omit the
semicolons.

function
A named group of statements that can be invoked and evaluated and can return a value to the
calling statement.

492 C for AIX User’s Guide

function call
An expression that moves the path of execution from the current function to a specified function
and evaluates to the return value provided by the called function. A function call contains the name
of the function to which control moves and a parenthesized list of arguments.

function declarator
The part of a function definition that names the function, provides additional information about the
return value of the function, and lists the function parameters.

function definition
The complete description of a function. A function definition contains an optional storage class
specifier, an optional type specifier, a function declarator, parameter declarations, and a block
statement (the function body).

function prototype
A function declaration that provides type information for each parameter. It is the first line of the
function (header) followed by a ; (semicolon). It is required by the compiler when the function will
be declared later so type checking can occur.

function scope
Labels that are declared in a function have function scope and can be used anywhere in that
function.

G
global scope

See 492.

global variable
A symbol defined in one program module that is used in other independently compiled program
modules.

H
header file

A file that contains declarations used by a group of functions or users.

hexadecimal
A system of numbers to the base sixteen; hexadecimal digits range from 0 (zero) through 9 (nine)
and A (ten) through F (fifteen).

hexadecimal constant
A constant, usually starting with special characters, that contains only hexadecimal digits. The
special characters are \x, 0x, or 0X.

I
I/O Stream Library

A class library that provides the facilities to deal with many varieties of input and output.

identifier
A name that refers to a data object. An identifier contains some combination of letters, digits, and
underscores, but its first character cannot be a digit.

if statement
A conditional statement that contains the word if followed by an expression in parentheses (the
condition), a statement (the action), and an optional else clause (the alternative action).

Appendix O. Glossary 493

include file
A text file that contains declarations used by a group of functions, programs, or users. Also known
as a header file.

include directive
A preprocessor directive that causes the preprocessor to replace the statement with the contents
of a specified file.

initialize
To set the starting value of a data object.

initializer
An expression used to initialize data objects.

inline function
A function declared and defined simultaneously in a class definition. You can also explicitly declare
a function inline by using the keyword inline , which is a hint to the compiler to perform inline
expansion of the body of a function member. Both member and nonmember functions can be
inlined.

instruction
A program statement that specifies an operation to be performed by the computer, along with the
values or locations of operands. This statement represents the programmer’s request to the
processor to perform a specific operation.

integer
A positive or negative whole number or zero.

integer constant
A decimal, octal, or hexadecimal constant.

integral object
A character object, an object having variations of the type int , or an object that is a bit field.

internal data definition
A description of a variable appearing in a block that directs the system to allocate storage for that
variable and makes that variable accessible to the current block after its point of declaration.

K
keyword

A reserved C language identifier.

L
label An identifier followed by a colon, used to identify a statement in a program. Usually the target of a

goto or switch statement.

labeled statement
A possibly empty statement immediately preceded by a label.

link To interconnect items of data or portions of one or more computer programs, such as linking
object programs by a linkage editor or linking data items by pointers.

linkage editor
A program that resolves cross-references between separately compiled object modules and then
assigns final addresses to create a single relocatable load module. If a single object module is
linked, the linkage editor simply makes it relocatable.

literal See 490.

load module
A computer program in a form suitable for loading into main storage for execution.

494 C for AIX User’s Guide

local Pertaining to information that is defined and used only in one subdivision of a computer program.

local scope
A name declared in a block has local scope and can only be used in that block.

long constant
An integer constant followed by the letter l (el) or L.

lvalue An expression that represents an object. A modifiable Ivalue can be both examined and changed.

M
macro call

An identifier followed by a parenthetical list of arguments that the preprocessor replaces with the
replacement code located in a preprocessor define directive.

main function
An external function that has the identifier main . Each program must have exactly one external
function named main() . Program execution begins with this function.

N
new-line character

A control character that causes the print or display position to move to the first position on the next
line. This character is represented by ’\n’ in C.

NULL A pointer that has a value 0 is guaranteed not to point to any data object. The pointer can be
converted to any pointer type.

null character (NUL)
The character hex 00, used to represent the absence of a printed or displayed character.

null statement
A C statement that consists solely of a semicolon.

O
object code

Machine-executable instructions, usually generated by a compiler from source code written in a
higher level language. For programs that must be linked, object code consists of relocatable
machine code.

octal A base eight numbering system.

octal constant
The digit 0 (zero) followed by any digits 0 through 7.

operand
An entity on which an operation is performed.

operator
A symbol (such as +, -, *) that represents an operation (in this case, addition, subtraction,
multiplication).

overflow
That portion of an operation’s result that exceeds the capacity of the intended unit of storage.

overflow condition
A condition that occurs when a portion of the result of an operation exceeds the capacity of the
intended unit of storage.

Appendix O. Glossary 495

P
pad To fill unused positions in a field with dummy data, usually zeros, ones, or blanks.

parameter declaration
A description of a value that a function receives. A parameter declaration determines the storage
class and the data type of the value.

pointer
A variable that holds the address of a data object or function.

preprocessor
A program that examines the source program for preprocessor statements that are then
interpreted, resulting in the alteration of the source program.

preprocessor directive
A statement that begins with the pound sign (#) and contains instructions that the preprocessor
interprets.

primary expression
Literals, names, and names qualified by the :: (scope resolution) operator.

prototype
See 492.

R
register

A storage area commonly associated with fast-access storage, capable of storing a specified
amount of data such as a bit or an address.

register variable
A variable defined with the register storage class specifier. Register variables have automatic
storage.

S
scalar An arithmetic object, or a pointer, or a reference to an object of any type.

scope That part of a source program in which a variable is visible.

single-byte character set
A set of characters in which each character is represented by 1 byte of storage.

single precision
Pertaining to the use of one computer word to represent a number, in accordance with the
required precision.

source program
A set of instructions written in a programming language that must be translated to machine
language before the program can be run.

stanza
A group of lines in a file that together have a common function or define a part of a system.
Stanzas are usually separated by blank lines or colons, and each stanza has a name. The stanzas
of the C for AIX compiler default configuration file, /etc/vac.cfg , specify information that the
compiler uses when it is invoked.

statement
An instruction that ends with a semicolon (;) or one or more instructions enclosed in braces ({}).

496 C for AIX User’s Guide

static A keyword used for defining the scope and linkage of variables and functions. For internal
variables, the variable has block scope and retains its value between function calls. For external
values, the variable has file scope and retains its value within the source file. For class variables,
the variable is shared by all objects of the class and retains its value within the entire program.

storage class specifier
One of: auto , register , static , or extern .

string literal
Zero or more characters enclosed in double quotation marks.

structure
A data type that contains an ordered group of data objects. Unlike an array, the data objects within
a structure can have varied data types.

structure tag
The identifier that names a structure data type.

subscript
One or more expressions, each enclosed in brackets, that follow an array name. A subscript refers
to an element in an array.

switch expression
The controlling expression of a switch statement.

switch statement
A C language statement that causes control to be transferred to one of several statements
depending on the value of an expression.

T
token The smallest independent unit of meaning of a program as defined either by a parser or a lexical

analyzer. A token can contain data, a language keyword, an identifier, or other parts of language
syntax.

translation
The process of transforming all or part of a source program into into a program image that
contains all the information needed for the program to run.

type The description of the data and the operations that can be performed on or by the data.

type balancing
A conversion that makes both operands have the same data type. If the operands do not have the
same size data type, the compiler converts the value of the operand with the smaller type to a
value having the larger type.

type conversion
See 489.

type definition
A definition of a data type.

type specifier
Used to indicate the data type of an object or function being declared.

U
ultimate consumer

The target of data in an input and output operation. An ultimate consumer can be a file, a device,
or an array of bytes in memory.

Appendix O. Glossary 497

ultimate producer
The source of data in an input and output operation. An ultimate producer can be a file, a device,
or an array of bytes in memory.

unary expression
An expression that contains one operand.

union A variable that can hold any one of several data types, but only one data type at a time.

union tag
The identifier that names a union data type.

V
variable

An object that can take different values at different times.

W
while statement

A looping statement that contains the word while followed by an expression in parentheses (the
condition) and a statement (the action).

white space
Space characters, tab characters, form feed characters, new-line characters, and (when referring
to source code) comments.

Z
zero suppression

The removal of, or substitution of blanks for, leading zeros in a number. For example, 00057
becomes 57 when using zero suppression.

498 C for AIX User’s Guide

IBM

	Edition Notice
	Contents
	Notices
	About this Information
	Chapter 1. Introducing C for AIX
	Chapter 2. Setting Up the C for AIX Compilation Environment
	Chapter 3. Using the C for AIX Compiler
	Chapter 4. Advanced Compiler Usage
	Chapter 5. Program Parallelization
	Chapter 6. The C Language
	Chapter 7. Writing C Programs
	Chapter 8. Using C for AIX with Other Programming
	Appendix A. Compiler Options
	Appendix B. 32-bit to 64-bit Migration Considerations
	Appendix C. Operating System Migration Considerations
	Appendix D. Preprocessor Directives and Related Information
	Appendix E. Parallel Processing Facilities
	Appendix F. C for AIX Debug Functions
	Appendix G. Built-in Functions for PowerPC Processors
	Appendix H. RISC System/6000 Alignment Rules
	Appendix I. Implementation Dependencies Overview
	Appendix J. C for AIX and XL C Compatibility
	Appendix K. National Languages Support in the C for AIX
	Appendix L. C for AIX Files
	Appendix M. ASCII Character Set
	Appendix N. Problem Solving
	Appendix O. Glossary

