
AIX linking 101

Presented by developerWorks, your source for great tutorials

ibm.com/developerWorks

Table of Contents
If you're viewing this document online, you can click any of the topics below to link directly to that section.

1. Tutorial roadmap ... 2
2. Introduction.. 3
3. Library search path .. 4
4. More linker Options .. 9
5. Summary & References... 11
6. About the author.. 12

AIX linking 101 Page 1 of 12

Section 1. Tutorial roadmap

Tutorial roadmap

Should I take this tutorial?

Before you begin, you should have a working knowledge of application architecture,
including shared modules (or shared libraries). You should also understand the role
played by the linker in application construction.

After completing this tutorial, you will understand:

• How to make effective use of the LIBPATH environment variable

• How LIBPATH interacts with the linker

• How to direct the linker when creating loader information in a module

• How the kernel finds dependent modules

• How to effectively use certain linker command line options

What is this tutorial about?

This tutorial is for developers who write or port applications to AIX and who want a
quick introduction to the most commonly used features related to the linker and loader.
The first of a series of practical tips and techniques, this tutorial focuses primarily on
the library search path. Watch for more tutorials on a number of linker options.

Tools needed

The features discussed in this tutorial were initially made available in AIX 4.2. Later
levels of the operating system provide behavior compatibility, including 64-bit programs
in both AIX 4.3 and 5L.

The techniques in this tutorial apply to the linker, loader, and shell; unless stated
otherwise, they are independent of the application development language. Therefore,
applications written in C, C++, Fortran, Cobol, etc, can all be affected in a consistent
manner. No specific language or version of compiler is required, nor is any level of AIX,
other than a minimum of 4.2.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 2 of 12 AIX linking 101

Section 2. Introduction

Introduction

I've been working with AIX for twelve years, five of them in AIX kernel development. My
primary interest has been the AIX linker and loader and application development. I've
spent a great deal of my time helping others learn how to use the tools, answering
questions, solving problems, and generally trying to transfer skills to those who need
them.

Looking back, I can count a lot of common tips and techniques I've explained -- and
others have explained -- in repetition to large numbers of AIX programmers, but these
things have never before been written down in plain, simple statements. So that's what
we're doing in this tutorial -- teaching tips and techniques common to many frequently
encountered situations facing AIX programmers. Use it as a cheat sheet.

You might be an application developer new to AIX, or you might be quite experienced
with AIX. Take this tutorial before you read the technical manuals, or take it as a
summary after you review the manuals. Or use it as a companion to other, more
exhaustive papers (such as AIX Linking and Loading Mechanisms). This tutorial
doesn't replace or conflict with those more extensive sources; instead it coalesces,
summarizes, and puts into context some of the relevant technical points about the
linker.

Warning: This tutorial is full of opinions. They're opinions based upon my experience in
supporting customers. They're my opinions about code development and architecture
and about the problems most frequently encountered by both new and experienced
AIX application developers. I would be most grateful if any errors or inconsistencies
were brought to my attention.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

AIX linking 101 Page 3 of 12

Section 3. Library search path

Where is the library search path found?

One of the most common concerns is the use of library search path information. The
AIX environment variable LIBPATH correlates to the LD_LIBRARY_PATH variable on
many other systems (for example, Solaris and Linux), and to SHLIB_PATH on HPUX.
The LIBPATH variable also affects the link-editor in the same way as on other systems.
If LIBPATH is set in the environment, the value is read and respected by the ld
command. If a link operation occurs, either directly or driven by one of the compilers
(xlc, xlC, xlf, etc) then the value of LIBPATH is used to search for dependent
libraries (the -L option) and the contents of LIBPATH are stored in the resulting
module. In this case, the contents of LIBPATH prepend the default library search path,
which is /usr/lib:/lib. This might not be the behavior you intended, so once the
module is built, you should view the library search path contained in the module by
using the dump -Hv command. For example, consider this loader header

Loader Section
Loader Header Information

VERSION# #SYMtableENT #RELOCent LENidSTR
0x00000001 0x00000103 0x000002a9 0x000000ac

#IMPfilID OFFidSTR LENstrTBL OFFstrTBL
0x00000005 0x00003854 0x00000d7b 0x00003900

Import File Strings
INDEX PATH BASE MEMBER
0 .:../../lib/AIX:/usr/lib/threads:/usr/lib:/lib
1 libpthreads.a shr.o
2 libc.a shr.o
3 /opt/lotus/notes/latest/ibmpow libnotes_r.a
4 /opt/lotus/notes/latest/ibmpow libvsapi.o

Figure 1: An example of dump -Hv output

Look at entry 0 of the Import File Strings section. This information will be used by the
loader to find dependents, in addition to the contents of LIBPATH at runtime and the
search path in the executable (read on for more detail). This particular header, built on
an AIX 4.1 system, also illustrates some of the problems that are addressed by the
features added to the linker in AIX 4.2. More on this topic later.

To further complicate the situation, LIBPATH is ignored at link time if the command line
contains any use of the -L option. In this case, the paths specified by one or more -L
options are concatenated in the order they appear on the command line, and then
prepended to the default library search path. The resulting composite path specification
is stored in the loader section of the constructed module.

LIBPATH at runtime (exec)

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 4 of 12 AIX linking 101

Regardless how a module was constructed, LIBPATH can be used at runtime to direct
the loader (a component of the kernel) to search in specific directories for dependent
modules. The contents of the environment variable are prepended to the library search
path found in the executable; this composite is then used at exec time to find
dependents of the main program.

But additional rules apply. It's worthwhile to refer to the AIX 5.1 documentation, where
the rules for finding modules at dynamic load time are listed in the manual page for the
load() function. But exec time is not quite the same, so let's start with the rules for
finding modules when a program is exec'ed. The possible components of the search
path are:

1. The value of LIBPATH, if it is set in the environment.

2. The library search path contained in the main executable.

3. The library search path of the module being loaded.

4. The library search path contained in the loader section of the module whose
immediate dependents are being loaded. Note that this per-module information
changes when searching for each module's immediate dependents.

These elements are used, in order, to construct the library search path used when
hunting for dependents.

LIBPATH at runtime (dynamic load)

When dynamically loading modules, the rules are:

1. If the L_LIBPATH_EXEC flag is set, the library search path used at exec-time.

2. The value of the LibraryPath parameter if it is non-null. Note that a null string is a
valid search path which refers to the current working directory. If the LibraryPath
parameter is NULL, the value of the LIBPATH environment variable is used instead.

3. The library search path contained in the loader section of the module being loaded
(the ModuleName parameter).

4. The library search path contained in the loader section of the module whose
immediate dependents are being loaded. Note that this per-module information
changes when searching for each module's immediate dependents.

(You can find this information in the AIX documentation at

http://publibn.boulder.ibm.com/doc_link/en_US/a_doc_lib/libs/basetrf1/load.htm#HDRSDM12345
) To find the specifically named module, components 1 and 2 are used; all four
components are used, in order, to find dependents of the named module.

LIBPATH summary

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

AIX linking 101 Page 5 of 12

http://publibn.boulder.ibm.com/doc_link/en_US/a_doc_lib/libs/basetrf1/load.htm#HDRSDM12345

You can see that LIBPATH (with the exception of a programmatic specification in the
load() function) takes precedence over information that is part of a module.

Finally, note that when a program requires the gaining of privilege, the LIBPATH
environment variable is cleared. For security reasons, a process designed to run with
an alternate effective user or group ID should find dependent modules only from
trusted locations that are embedded within the application. In most cases, for example,
an application that runs with superuser authority will usually have its dependents
located in the /usr/lib directory.

LIBPATH problems at runtime

One of the most common problems encountered by users is the inability to find a
dependent module. The error message produced by the kernel looks something like
(on a 4.3.3. system)

$./main
exec(): 0509-036 Cannot load program ./main because of the following errors:

0509-022 Cannot load module ./foo.so.
0509-150 Dependent module bar.so could not be loaded.
0509-022 Cannot load module bar.so.
0509-026 System error: A file or directory in the path name does not exist.

By reading this message you can figure out that the system found the main program
and the first module, but it was unable to locate bar.so. The action required by the user
is to use dump -Hv to see what main contains for a library search path, echo
$LIBPATH in the shell to see if/how it is set, and generally figure out where the bar.so
module is supposed to be found. In many cases the name of the missing module
provides some indication of its purpose and supposed location. Failing that, the user
can always seek help from the system administrator.

On earlier levels of AIX, the message displayed when a direct dependent could not be
found was the same as that shown when a dependent of the dependent couldn't be
loaded. This led to the false conclusion that the immediately dependent module was
the point of failure, when in fact it was often found that the actual problem was farther
down the dependency tree. What should you do? You must (1) carefully read the error
message to glean as much information as possible, and then (2) use dump -Hv,
starting at the main program, and work your way down through the layers of modules to
figure out where the actual failure is occurring. At some point way down there, you'll
usually discover a missing module, or find that the required module is in a directory that
is not part of the library search path.

The -blibpath option

When you're developing applications on AIX and deciding upon the architecture of the
program files, a common situation is that the build environment for the application

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 6 of 12 AIX linking 101

doesn't necessarily reflect reality as it applies to the installation of that application on a
production machine. Often, the manner in which shared libraries (modules) are
constructed, how they reference one another, and how they are referenced by the
applications themselves can be trivially disorganized, or it may be grossly complex.
One issue is how a build environment can be used in a flexible manner during a link
operation, yet that build environment structure is not evident in the end product. And
this applies most often to the library search information that the linker stores in the
constructed module.

Recall from above that, between the LIBPATH environment variable and the use of -L
options, a number of paths may be concatenated and stored in the linker's output file.
What is needed is a way to do whatever it takes to generate a proper ld command line,
yet have the resulting module not contain any information that likely has no applicability
to the production environment.

What to do? Use the -blibpath option. This useful option allows the specification of
an exact library search path that should be stored in the output module. Regardless of
the search paths used when link-editing, the final product will contain the string that
follows the -blibpath option. For example, to force the default library search path
into a module, a (portion of a) command line would look like this:

... -L/lib/foo -L/lib/bar -blibpath:/usr/lib:/lib ...

The resulting module would have a basic, default search path as entry 0 in the Import
File Strings section of the loader header (dump -Hv <filename>).

Finally, examine the loader header shown in figure 1. You can see that the search path
(in entry 0) contains a relative path. Clearly, this path was used when this program was
linked; on an end user's machine, however, it is meaningless. Aside from creating extra
work for the loader, which must try to access the specified directory when conducting
its module search, the path serves no purpose. In this case, the -blibpath option
would have been very convenient.

Absolute paths vs. relative paths

No doubt about it: relative paths are evil, at least in the search for dependent modules.
The primary problem with relative paths is that their use depends upon a context (that
is, the directory from which the reference is made). As most applications are intended
to be run by a user in a completely arbitrary directory, any relative path is going to
based from a location that was unforeseeable when that application was constructed.

To be fair, though, relative paths do come in handy in build environments. Even the
environment in which AIX is built takes advantage of relative paths during link
operations. But that doesn't make them practical at runtime. So you are strongly
encouraged to take advantage of the -blibpath option to circumvent any unpleasant
side effects that may result from using relative paths with -L.

At runtime, in LIBPATH, it's just inadvisable to use relative paths. I'm unaware of any
situation where an absolute path could not be used just as effectively, and with less

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

AIX linking 101 Page 7 of 12

confusion.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 8 of 12 AIX linking 101

Section 4. More linker Options

The -bnoipath option

Another very useful option is -bnoipath. This option removes path information from
dependent modules listed in the loader section of the output file. Why is this
interesting? A build environment can take many forms. Often, the linker's -L option is
used to list a search path; at other times, dependent modules are specified by
providing a path to the file. This implies that archive files and/or loadable modules may
be listed on the command line in the same fashion as object files. It's not wrong or
right, just appropriate to a particular situation. So, where -L and -blibpath together
can be used to find dependents for a link operation, so can naming the files explicitly
and using -bnoipath to trim the path information.

Look again at figure 1. In this header there are two dependents that contain path
information, entries 3 and 4. The problem with this construct is that at runtime those
dependent files (libnotes_r.a and libvsapi.o) must be located in precisely the
directory specified in the loader header. No use of LIBPATH will change that fact. If the
files aren't found in /opt/lotus/notes/latest/ibmpow, this program won't run.

Using the same link command to build this program, but adding -bnoipath, would
produce an Import File Strings section like that shown in figure 2.

Import File Strings
INDEX PATH BASE MEMBER
0 .:../../lib/AIX:/usr/lib/threads:/usr/lib:/lib
1 libpthreads.a shr.o
2 libc.a shr.o
3 libnotes_r.a
4 libvsapi.o

Figure : The loader header after using -bnoipath

With this configuration, the four dependent modules could be located anywhere and
LIBPATH would be utilized to find those dependents, resulting in much greater
flexibility when installing and running this application.

The -T and -H options

The -T and -H options were necessary on AIX 3. No more. AIX 4 introduced a linker
that could neatly pack the sections of the object file together, and generate loader
information that allowed the loader to map portions of the file neatly into memory, all
without requiring the sections to begin on certain boundaries.

Yes, the options have their place; for example, they are often required when
constructing applications for embedded systems. But generally speaking, they're no
longer needed.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

AIX linking 101 Page 9 of 12

The -e and -bnoentry options

On AIX, every module has an entry point, including shared (or "loadable") modules.
The linker understands that the default entry point is "__start", and for executables, this
entry point is defined in the crt0.o file that is included automatically by the compiler.
Therefore, the linker's requirement for this symbol is satisfied without any special action
on the part of the user.

When building a shared module, however, you have a choice. As a parallel to other
systems, a module can be constructed without an "entry point;" the -bnoentry ld option
would be used. The resulting module just presents a bunch of symbols (its API, or
programming interface) representing the code and data within the module. In addition,
on AIX the module can have an entry point, similar to an executable. This entry point
can serve the same purpose as the one for a main program: if the module is
dynamically loaded via the load() function, the return value from load() will be the entry
point. If the entry point of the module is a function, then the return value can be cast to
a function pointer, and the entry point called directly. Another example is using a data
location as the entry point. If the parent program understands what data is contained
within the structure referred to by the return value from load(), it can then cast the
pointer and de-reference it to access the data in the loaded module.

Whether a module has an entry point has no bearing on any other use of that module.
The module can still be used as a dependent in a link operation, or dynamically loaded
via dlopen(), load(), and so forth. Just note that the entry point is only accessible
programmatically by using load().

When building a shared, or loadable, module, and an entry point is not required, use
the -bnoentry option. If you are building your modules by invoking the compiler (for
example, cc) rather than ld, this will prevent the inclusion of the start-up code in the
generated module. This will avoid duplicate definitions of global symbols in your
module, and therefore avoid potential confusion between modules and the main
application. More on this subject in a future tutorial.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 10 of 12 AIX linking 101

Section 5. Summary & References

Summary & References

Summary

Thus ends the first in a planned series of tutorials that provide simple, practical
suggestions on the use of the AIX linker and loader. Watch for the next tutorial, AIX
linking 102, where I'll offer some practical suggestions on the most common issues
surrounding runtime linking, slibclean, and whatever else space permits.

References

For more comprehensive coverage, see the article AIX Linking and Loading
Mechanisms.

The AIX5L technical manuals fully discuss the ld command, dlopen() and load() system
calls, and the XCOFF file format.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

AIX linking 101 Page 11 of 12

http://www-1.ibm.com/servers/aix/library/
http://www-1.ibm.com/servers/aix/library/
http://www-1.ibm.com/servers/aix/library/

Section 6. About the author

About the author

Gary R. Hook is a senior technical consultant at IBM, providing application
development, porting, and technical assistance to independent software vendors. Mr.
Hook's professional experience focuses on Unix-based application development. Upon
joining IBM in 1990, he worked with the AIX Technical Support center in Southlake,
Texas, providing consulting and technical support services to customers, with an
emphasis upon AIX application architecture. Now residing in Austin, Mr. Hook was a
member of the AIX Kernel Development team from 1995 through 2000, specializing in
the AIX linker, loader, and general application development tools. You can contact him
at ghook@us.ibm.com.

Colophon

This tutorial was written entirely in XML, using the developerWorks Toot-O-Matic tutorial
generator. The open source Toot-O-Matic tool is an XSLT stylesheet and several XSLT
extension functions that convert an XML file into a number of HTML pages, a zip file, JPEG
heading graphics, and two PDF files. Our ability to generate multiple text and binary formats
from a single source file illustrates the power and flexibility of XML. (It also saves our
production team a great deal of time and effort.)

You can get the source code for the Toot-O-Matic at
www6.software.ibm.com/dl/devworks/dw-tootomatic-p. The tutorial Building tutorials with the
Toot-O-Matic demonstrates how to use the Toot-O-Matic to create your own tutorials.
developerWorks also hosts a forum devoted to the Toot-O-Matic; it's available at
www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11.
We'd love to know what you think about the tool.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 12 of 12 AIX linking 101

mailto:ghook@us.ibm.com
http://www6.software.ibm.com/dl/devworks/dw-tootomatic-p
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11

	Table of Contents
	Tutorial roadmap
	Tutorial roadmap

	Introduction
	Introduction

	Library search path
	Where is the library search path found?
	LIBPATH at runtime (exec)
	LIBPATH at runtime (dynamic load)
	LIBPATH summary
	LIBPATH problems at runtime
	The -blibpath option
	Absolute paths vs. relative paths

	More linker Options
	The -bnoipath option
	The -T and -H options
	The -e and -bnoentry options

	Summary & References
	Summary & References

	About the author
	About the author

