

Turning the AIX Operating System into an MP-capable OS

Jacques Talbot
Bull

Abstract
This paper describes those MP features that Bull and

IBM together introduced into the AIX operating

system to support the Symmetric Multiprocessor

machine marketed by Bull under the Escala name and

by IBM under the RS/6000 Models G30, J30 and R30

names. The PowerPC architecture and the AIX

operating system present some specific challenges.

We present the major problems encountered and how

they were solved.

1. Introduction

This paper is quite broad in the sense that changing a

sophisticated UNIX implementation such as the AIX

operating system into an MP-capable system is a

complex task. So we have tried to briefly describe the

problems encountered and then to provide a more

detailed description of some of them, which were

specific to the AIX operating system and the PowerPC.

2. The Hardware Architecture: a
summary

Only the HW features which have a significant impact

on the SW will be described here. The architecture is a

so-called SMP, Symmetric Multi Processor based on

PowerPC [IBM94]. An SMP is a system where

several CPUs share a common memory address space

and I/O subsystem. There is no memory local to CPUs

(except caches which are almost invisible to SW). The

Symmetric attribute is perhaps not the most significant

one since most machines in the MP category to-day are

symmetric, in the sense that all processors get equal

access to all I/Os. The exceptions to this rule are

primarily low-end Intel-based MP servers derived from

PC technology or machines dedicated to specific needs

(e.g. real-time).

So SMP is better described as "Shared memory with

HW coherency". It means that all CPUs see the "good

old programming model" of a single memory with a

more or less uniform access time, i.e. not depending on

the addresses accessed. Moreover, all CPUs, when

reading the "same" address, get the same value. In

presence of copy-back caches, it is not so easy to

achieve this simple property; this is the purpose of the

HW cache coherence protocol, named according to the

MESI acronym which designates the 4 possible states

of a cacheline in the state machine (Modified,

Exclusive, Shared, Invalid). The SW can safely ignore

this complexity, assuming that the HW is properly

functioning.

The same characteristics of uniform access time and

coherent memory allow to run a single copy of the

operating system on the machine. So all CPUs can

share a single queue of ready-to-run execution threads,

resulting into better system load balancing. Getting

applications for the platform is pretty simple. There is

actually no porting activity in the general case, since

applications can rely on the traditional assumptions

that they have made since computers are with us.

Binary compatibility with the uniprocessor

applications is the rule.

In contrast, architectures such as MPP (Massively

Parallel Processors) and other kinds of tightly coupled

clusters, where the above two characteristics are not

present, generally require that applications have some

knowledge of the HW architecture.

2.1 PowerScale architecture

This specific SMP architecture is called PowerScale.

There are up to 8 PowerPC (601, 604 or 620) CPUs

accessing a common memory through a cross-bar for

data and a bus for addresses. A cross-bar is a data

exchange device modeled after a telephone cross-bar

switch where each agent has a private data path to the

interconnection HW and multiple connections can

occur simultaneously. An I/O bridge allows access to

two MCA busses.

The PowerScale architecture is optimal from a price-

performance standpoint for the target we were shooting

at, i.e. a mid-range SMP optimized for 4 CPUs, still

efficient at 8 CPUs and sellable in monoprocessor.

2.2 Caches

Each of the 8 PowerPC CPUs has a (relatively) small

internal (32 or 64 Kbyte) Level-1 cache and a large

external (1 or 2 MByte) Level-2 cache. Each cache is

organized in "lines". Data transfers and coherency

updates take place in unit of lines. A cache line is 32 or

64 bytes wide, depending on the PowerPC model.

Both caches are copy-back (sometimes called write-

back), meaning that when a write is performed, the

modified value is written only in the cache, and pushed

in lower memory hierarchy levels only when required,

typically when the "dirty" cache line is needed for

other data.

The other option is write-through, where main

memory is updated on each write. This technique is

much simpler but considerably less efficient.

In a copy-back cache, when several copies of a

"clean" (unmodified) line exist in several caches, and

one of these is modified, there are two options for

other copies: update or invalidate. Write-invalidate is

best from a performance standpoint for data which will

probably not be used in the near future by the CPUs

where the line is invalidated. Write-update is best

when the probability of reuse is high. In most cases,

for UNIX applications and kernel pages, write-

invalidate is the preferred mode since most lateral

misses (cache to cache) are related to a working set

migration which is a one-way event and seldom

associated with real data sharing. Since the PowerPC

architecture implements only write-invalidate, there is

anyway no choice to make.

It is possible, HW-wise, to tag pages as cached

(copy-back or write-through) or uncached. Except for

some phases of bootstrap in AIX, all memory is tagged

as cached and copy-back.

2.3 Atomic operations

To construct the locks that SMP SW needs, an atomic

operation is needed. It is not the traditional

test_and_set or compare_and_swap instructions of

CISC processors that are used. The PowerPC, like

many RISC architectures, implements

load_and_reserve and store_conditional instructions

such that if a reservation bit is "broken" between the

Load and the Store operations, the Store fails. These

two instructions allow the efficient implementation of

all the atomic operations that concurrent SW needs,

including test_and_set and compare_and_swap.

2.4 Memory order model

Until recently, UNIX multiprocessors had a strongly
ordered memory model. This means that the order of

loads and stores as seen by the program cannot be

changed between the output of a CPU and the memory

system, where the other CPUs see the effect of these

operations. Modern architectures are weakly ordered.

The HW is allowed to reorder loads and stores between

the CPU and the memory. This is done to optimize

performance, when the first operation has to go to main

memory for completion while the second one can be

rapidly globally performed in the Level-1 cache. In

that case, the second is globally performed before the

first. Of course, the order of operations as seen by one

CPU is not changed, because the HW keeps track of

data dependencies and always provides the latest value

of a data to the CPU, even if not yet globally

performed. Only the visibility of these operations from

the other CPUs is impacted. This has some

importance only when CPUs synchronize or

communicate with one another, because one CPU

could get stale values for some data.

A similar issue results from aggressive prefetching of

data (speculative execution found on 604 and 620)

which allows a CPU to read some data very much in

advance, and even across a test-and-branch sequence.

This again allows a CPU to read data which has stale

value.

Special instructions (isync and sync), also called

import and export fences, allow to solve these

problems. However, inserting these instructions stalls

the pipelines and is therefore a performance drain.

2.5 Interrupt handling

The HW allows interrupts from one bus adapter to be

addressed either to a specific CPU or to a set of CPUs.

This set actually designates "one among all CPUs" and

this CPU is dynamically chosen by the HW at each

interrupt from a set of registers, one register associated

with each CPU. Each CPU writes in this register a

value indicating its willingness to receive interrupts.

3. Some high-level SW issues

Let's now jump abruptly to a very different level of

abstraction. The main issue to transform a

UniProcessor (UP) Operating System like the AIX

operating system Version 3 into an MP Operating

System like AIX Version 4 is to protect the coherency

of the data structures managed by the kernel.

This is because several CPUs can simultaneously

manipulate these data structures. The conflict can be a

thread-thread conflict or a thread-interrupt conflict. On

a UP machine, the thread-thread conflict cannot exist

since only one flow of execution exists at any time

(true only for a non-preemptable kernel); the thread-

interrupt conflict is solved by masking the processor

against interrupts. In an MP OS, locks must be added.

Apart from becoming an MP OS, the AIX operating

system was also turned from a process-based kernel to

a thread-based kernel. Several threads of execution

exist within the scope of a process which is now a

passive entity representing an address space and access

rights. Threads are especially useful for MP

architectures since they enable finer-grain parallel

programming, compared to current multi-process

applications; this gives an opportunity to have a better

speed-up on multi-threaded applications, as opposed to

the scale-up (more throughput) which can be obtained

without parallel programming. A single multithreaded

application will run faster for a single user on an SMP

machine.

Threads-based programming requires a new API

(POSIX 1003.1c) and thread-safe libraries. It opens the

way to portable thread-based applications. We will not

describe threads in more detail in this paper.

Turning a UP UNIX kernel into an MP kernel has been

described several times during the last years in various

USENIX proceedings [Cam91] [Car93] [Pow91]. We

will therefore try to focus below on AIX-specific or

PowerPC-specific issues.

4. Locks

4.1 Some interesting AIX Version 3
features

AIX Version 3 has two specific properties which affect

the MP process.

• preemptability: when an interrupt occurs that

makes schedulable a thread which has a higher

priority than the currently running thread(s), a

context switch is required. If the current thread is

running in user mode, there is no issue. It is

temporarily suspended, and this process is called

preemption. However, if the current thread is

running in kernel mode, most UNIXes do not allow

the preemption to occur. This is to prevent

corruption of the kernel data structures. The

context switch is delayed until the current thread

goes back to user mode. Since this can last quite a

while on long kernel operations, this behavior is

detrimental to response time and real time

requirements.

There are two possibilities to overcome this:

preemption points and full preemptability.

Preemption points are the poor man's solution,

meaning that the kernel is not preemptable except

at some specific points. Full preemptability means

that the kernel is always preemptable except during

a few code sequences. AIX Version 3 is fully

preemptable. This implies a locking scheme to

maintain data coherency.

• pageability: the AIX kernel code and data

structures are pageable, except for some parts

pinned in memory to avoid deadlock scenarios.

This minimizes the amount of real physical

memory required by the kernel by paging-out

seldom used code and data. It allows to over-

dimension kernel tables so that the hideous error

message "too many processes or messages or

whatever" encountered on traditional UNIXes is

never seen on AIX. When a demand peak for a

resource occurs, one or more pages of the

corresponding table are paged-in and used. When

no longer required, they are paged-out.

So page faults and their associated context

switches can be encountered at any point in time

when kernel code runs. This is another case of

unexpected kernel preemption.

To implement the two properties above, AIX Version

3 has a simple locking scheme with a coarse

granularity; this scheme cannot be used for an MP

system because the coarse lock granularity results in a

very high contention rate on the few locks and a very

poor overall scalability versus the number of

processors. Processors spend their time waiting for the

locked resources. However, the V3 locking scheme

provided pointers to the critical areas that needed to be

addressed.

These two AIX features obviously had to be kept for

the MP version. It should be noted that the refinement

of the locking scheme adopted for the sake of MP

efficiency had the side effect of improving the

preemptability of the kernel. In fact, tuning the locks

for low contention tends to reduce the pathlength of

the code spent with preemption off.

4.2 What should be locked?

Two basic approaches to locking exist:

• code-based locks are coarse grain locks which

encapsulate large pieces of code and associated

data. Basically, when entering a subsystem, a lock

is taken and released only at subsystem exit. This

is simple but collision rates can be high since such

locks are taken for a long time.

• data-based locks are associated with data

structures, or part of them, and lock-unlock

operations are inserted in the code so that data

protected by the lock are kept coherent when the

lock is free. Also data-based locks can be coarse-

grained (a whole table), medium grained (some

elements of a table) or fine grained (one element of

a table, or even a single item in a structure).

Both types of locks are used in AIX Version 4. The

choice of lock type is dependent upon how critical to

performance is a given subsystem. For example, the

CD-ROM filesystem has few requirements for

simultaneous access due to the physical constraints of

the device. So a code-lock can be used.

On the other hand, the table of messages for System V

IPC must be fine-grained because this is critical to the

aggregate message switching capabilities of the

system, in presence of several message queues, readers

and writers.

4.3 Which type of locks?

Many lock semantics can be imagined. Because we

wanted to be able to borrow some code from the

OSF/1 kernel, and because of the experience Bull had

accumulated with the MP aspects of OSF/1, we

decided to model our locks on the OSF/1 kernel

locking scheme.

In the case of a resource being unavailable, the

requester thread blocks. This can be either by spinning

(sometimes called "busy wait") or by releasing the

CPU and going to sleep. Sleeping is not allowed if

called from an interrupt level because it leads to

deadlock situations.

Two types of locks are used:

• simple locks: as the name implies, this is the most

rudimentary form and as a result the most efficient

and frequently used. The lock is a simple word

and if busy, the requester spins. However, the lock

implementation has been optimized as follows:

— After some amount of spinning, the requester

of a busy lock will sleep (except if the request

is made from a interrupt-level or masked

against interrupts). The appropriate spinning

time is approximately the time spent to execute

a process switch.

— If a lock is busy and the owner of the lock is

not running on any of the CPUs, the requester

goes to sleep. This is because the probability

that the lock is freed in the spinning time-frame

is almost zero.

The owner of a lock is not running either

because it is runnable but not currently running

on a processor, or because it is waiting for

some event (e.g. page fault resolution).

• complex locks: these are multiple-readers, single-

writer semaphores. They can optionally be tagged

as recursive. Recursivity is generally discouraged

in the locking scheme to keep it simple and

deadlock free. However, to be able to import

recursive code, this option is left open to the

programmer. Threads requesting a busy complex

lock spin and then sleep just like requesters of

simple locks.

They are used only if Reader-Writer semantics

make sense (e.g. in the filesystem) or if recursivity

is needed.

Both types of locks can create the priority-inversion

syndrome. This happens when high priority threads

wait for a resource held by a lower priority thread. It

results in a degradation of the response time. To

overcome this, the priority of the thread owning a lock

is temporarily raised to the priority of the highest

priority thread waiting for the lock. This is sometimes

called "priority promotion".

4.4 How many locks, how often?

A system may have many or few locks. It may use

them often or seldom. In a first approach, fine-grain

parallelization implies many locks, taken often.

Coarse-grain parallelization has few locks seldom

taken. Obviously, there is a continuum in a two-

dimensional space. It is not always obvious to

characterize a locking scheme.

At first sight, it looks that fine-grain locking is always

better. It results in very short time spent while holding

a lock, so low probability for collision (finding a lock

busy). However, locking does not come for free. As

opposed to older architectures where writing a word

and accessing a lock through a test_and_set instruction

were in the same ballpark in terms of execution time,

there are orders of magnitude of difference between

reading or writing a word in Level-1 cache (1 cycle)

and taking a lock (around 50 cycles in the best case).

The high number of cycles associated to locking is due

to several factors, in order of importance:

• need to synchronize the pipelines on lock

operations

• cache misses: processors are much faster these

days, but memory does not keep up.

• SW overhead: for various reasons and despite all

the tuning, several bookkeeping instructions are

needed around the atomic core

So too much locking and unlocking is detrimental to

performance. Instead of taking a lock for the minimal

amount of time needed from a data structure coherency

standpoint, the programmer has to consider whether

the lock will not be needed again soon, and keep the

lock during this interval, even if not strictly needed.

The same applies to whether it is better to have several

locks for a set of data structures and play subtle games

or have a single lock held for a longer time but toggled

less often.

So locking the kernel is finding a trade-off between too

few locks and too much contention or too many locks

and too much overhead. In both cases, performance

suffers. There is an optimum but finding it is a matter

of calculations, experience and finally trial-and-error

process [Cam91].

Some figures below give an idea of the locking scheme

complexity in AIX version 4. They must be considered

as orders of magnitude more than exact figures. There

are around 200 classes (types) of locks. The actual

number of instances of locks depends on the size of

various tables and is not very significant. The number

of lock operations (statically counted) is around 500.

The number of locks operations performed per second

on a timesharing workload (SPEC SDET) is around

10,000 lock-unlock pairs per second, on a quad

machine with 75MHz 601 processors.

4.5 How to avoid locks

Some parts of the kernel fit into well defined

frameworks and in that case the burden of locking can

be delegated to the framework code.

• Drivers which have no strong performance

requirements can be "funneled". In that case the

drivers framework locks the driver on a "master"

processor and all accesses are serialized via a

single lock. This scheme is used only for third

party-devices. None of the Bull or IBM-developed

drivers use it.

• The streams framework [Rit84], taken from OSF/1,

can provide locking at various levels, described

below from the highest level of concurrency to the

the lowest level :

— queue level: only access to message queues is

protected. Modules must provide their own

locking for shared state or upstream -

downstream synchronization.

— queue pair level: both upstream and

downstream queues are protected. If some data

are not "per-stream", i.e. they are shared

between several streams, the module must take

care of their locking. This is used by TTY line

disciplines, which have only per-stream data.

— module level: all queues and shared data

associated with a module are protected. This is

the default mode which can be safely used by

most UP streams modules, which want to

ignore MP issues.

— arbitrary level: allows to arbitrarily group

together from the locking standpoint modules

which share data other than via queues.

— global: one single lock for the whole streams

subsystem, for debug purpose only

In AIX Version 4, the TTY subsystem, SNA and

Netware stacks are implemented within the streams

framework.

4.6 Deadlocks

As soon as we have more than one lock in a system, a

potential for deadlock exists. One well-known strategy

to avoid deadlocks is to implement a lock hierarchy, so

that locks are always taken in the same order. We

chose to implement a partial hierarchy, i.e. not global

to the whole kernel but per subsystem. This hierarchy

is defined in the registration process (see below under

Lock instrumentation). However, it is not global nor

enforced dynamically for reasons similar to the ones

explained in [Pac91]:

— strict ordering is hard to enforce globally and not

always necessary, if the programmer knows that

the deadlock cannot occur for some reason.

— impact on lock code pathlength and therefore

performance

— desire to be able to import code from OSF/1

without major restructuring

We chose instead to use a static deadlock analyzer,

called SDLA (Static DeadLock Analyzer). This tool

processes kernel code to detect potential deadlocks by

exploring the locking scheme tree [Kor89]. It is

derived from lint. SDLA does not use the static

description of the lock hierarchy but constructs its own

vision of the lock hierarchy while walking the tree.

Two common problems found in many similar tools

are the "noise" (false deadlocks) and the time taken to

explore the tree and perform the analysis. We found

several techniques to overcome these in a practical

manner (patents pending) and we were able to discover

several kernel design errors. We use the SDLA to

continuously inspect the source tree to ensure that the

addition of features and correction of bugs do not

introduce new deadlocks.

We foresee an enhancement to SDLA to be able to

detect underlocking. Underlocking happens when data

normally protected by a lock are manipulated without

the lock being held. This can lead to kernel data

corruption and system crashes. It is the most critical

area for an MP kernel, since deadlocks are less difficult

to debug. This will be similar to WARLOCK [Ste93].

4.7 Lock instrumentation

A comprehensive lock instrumentation is key to the

kernel tuning process [Car93]. A symbolic naming

and registration scheme has been adopted for all locks.

This facilitates lock designation by the analysis tools.

Locks are named as:

Subsystem_name$Lock_family_name$Occurrence_number

We implemented two levels of lock instrumentation:

• One is almost always on during validation phases

(selection at bootstrap time) and records the

number of acquisitions, misses and sleeps. The

overhead has to be as low as possible. The current

implementation adds 10% to the lock-unlock pair

execution time. A tool named lockstat allows the

customer or field-service to analyze the behavior of

kernel locks.

Below is a display of lockstat output, taken during

the run of a database benchmark early during

development.

The 20 locks with largest %Ref are shown:

__
Subsys Name Ocn Ref/s %Ref %Block %Sleep
__
PROC PROC_INT_CLASS -1 8434 29.89 18.77 0.00
IOS UPHYSIO_LOCK_CLASS -1 2483 8.80 6.74 0.00
PMAP PMAP 0 2108 7.47 1.60 0.00
DISK SCDISK_LOCK_CLASS -1 1495 5.30 4.22 0.00
IPC SEM_LOCK_CLASS 2 1472 5.22 7.75 0.00
LOCKL LOCKL 7 1035 3.67 0.00 0.00
IOS IOS_IPOLL_CLASS 2 1030 3.65 0.48 0.00
PFS JFS_LOCK_CLASS -1 997 3.53 1.46 0.00
XLVM LVM_LOCK_CLASS 0 996 3.53 3.24 0.00
IPC SEM_LOCK_CLASS 2 569 2.02 4.12 0.00
IPC SEM_LOCK_CLASS 2 524 1.86 3.73 0.00
IPC SEM_LOCK_CLASS 2 523 1.86 3.90 0.00
VMM VMM_LOCK_SCB 443 499 1.77 1.66 0.00
IPC SEM_LOCK_CLASS 2 475 1.68 3.49 0.00
PROC TRB_LOCK_CLASS 3 445 1.58 0.05 0.00
PROC TRB_LOCK_CLASS 2 443 1.57 0.03 0.00
PROC TRB_LOCK_CLASS 0 441 1.56 0.02 0.00
PROC TRB_LOCK_CLASS 1 438 1.55 0.04 0.00
TCPKER DEMUXER_LOCK_FAMILY 45172 417 1.48 3.08 0.00
PROC TOD_LOCK_CLASS -1 399 1.42 12.23 0.00
__

Subsys Name Ocn designate the lock.

Ref/s is the number of requests

for this lock per second.

%Ref is the % of requests for

this lock versus all lock

requests

%Block is the % of blocking (spin

or sleep) requests versus

all requests for this lock.

%Sleep is the % of blocking

requests resulting in

sleeping versus all

requests for this lock.

• For a more detailed lock analysis, we have a trace-

based instrumentation, which can be turned on-off

dynamically. We use the AIX trace tool and insert

trace hooks in lock code. This allows us to

compute the time spent under locks and get a

comprehensive view of lock behavior. The LCA

(Lock Contention Analyzer) is a Motif-based tool

giving a complete picture of all lock parameters. It

is used only in the development organization.

Below is a display of LCA output, taken during the

run of a database benchmark early during

development.

The 20 locks with largest Coll Sec are shown:

TABLE Collision Section (times in 10 s)

+---------------------+--------+---------+--------+-------------+-----------+---------+---------+

| Class | Ocn | Type | Count | Coll Sec(%) | CPU (ms) | CPU Avg | CPU Max |

+---------------------+--------+---------+--------+-------------+-----------+---------+---------+

| PROC_INT_CLASS | -- | Simple | 93579 | 6.108 | 2885.994 | 30.84 | 1712.00 |

| SEM_LOCK_CLASS | 2 | Simple | 15367 | 2.816 | 1330.436 | 86.58 | 2323.46 |

| UPHYSIO_LOCK_CLASS | -- | Simple | 25658 | 2.466 | 1165.270 | 45.42 | 1609.22 |

| SCDISK_LOCK_CLASS | -- | Simple | 15397 | 2.039 | 963.444 | 62.57 | 1336.19 |

| LVM_LOCK_CLASS | 0 | Simple | 10265 | 1.552 | 733.498 | 71.46 | 576.38 |

| DEMUXER_LOCK_FAMILY | 45172 | Simple | 4267 | 1.132 | 534.809 | 25.34 | 365.82 |

| IOS_IPOLL_CLASS | 30 | Simple | 2580 | 1.114 | 526.462 | 04.05 | 546.30 |

| LOCKL | 45 | Lockl | 13043 | 1.071 | 506.051 | 38.80 | 1790.21 |

| IOS_IPOLL_CLASS | 27 | Simple | 2383 | 1.049 | 495.487 | 07.93 | 545.28 |

| DEMUXER_LOCK_FAMILY | 41076 | Simple | 3783 | 0.967 | 456.725 | 20.73 | 518.27 |

| SEM_LOCK_CLASS | 2 | Simple | 5899 | 0.805 | 380.185 | 64.45 | 1300.61 |

| SEM_LOCK_CLASS | 2 | Simple | 5231 | 0.719 | 339.934 | 64.98 | 1806.98 |

| SEM_LOCK_CLASS | 2 | Simple | 5407 | 0.713 | 336.979 | 62.32 | 1276.16 |

| DEMUXER_LOCK_FAMILY | 61556 | Simple | 2104 | 0.673 | 318.065 | 51.17 | 309.89 |

| SEM_LOCK_CLASS | 2 | Simple | 4800 | 0.654 | 309.150 | 64.41 | 1171.71 |

| DEMUXER_LOCK_FAMILY | 116 | Simple | 1937 | 0.608 | 287.322 | 48.33 | 318.59 |

| VMM_LOCK_SCB | 489 | Simple | 5234 | 0.559 | 264.332 | 50.50 | 387.33 |

| JFS_LOCK_CLASS | -- | Simple | 11736 | 0.373 | 176.423 | 15.03 | 1192.45 |

| U_TIMER_CLASS | 41 | Simple | 13639 | 0.366 | 173.051 | 12.69 | 581.76 |

| IOS_IPOLL_CLASS | 2 | Simple | 11182 | 0.302 | 142.643 | 12.76 | 47.62 |

+---------------------+--------+---------+--------+-------------+----------+---------+----------+

Class Ocn designate the lock

Type is the lock type: simple or R/W
or Lockl (AIX V3 backward

compatibility)

Count is the number of lock requests

during the period

Coll Sec(%) is the collision section, i.e. the

% of CPU time when the lock is

held

CPU (ms) is total CPU time (in ms) spent

with the lock held during the

period

CPU Avg is average CPU time (in

microseconds) spent with the

lock held during one locking

(i.e. between one lock and the

corresponding unlock)

CPU Max is maximum CPU time (in

microseconds) spent with the

lock held during one locking

The data above were taken during the development

process and do not reflect the behavior of the

shipped system. For example, at that point in time,

%Sleep was always 0 because the locks were

tuned to spin for a very long time. A lock in the

process management (PROC_INT_CLASS) was a

point of contention. This is clear from the %Ref
and %Block in the lockstat display or the Coll
Sec(%) in the LCA display. This lock is both

taken often (%Ref) and often missed (%Block).

With this information, this problem was taken care

of in the MP tuning process.

Precedence rules among locks in a subsystem are

registered in a database. This allows the LCA tool

to detect rule violations and issue warnings.

4.8 Debugging

The identification of the thread owning a lock is

systematically registered so that the deadlock detector

contained in the crash analyzer can provide extended

information. This is true even in production kernels.

During the development phase, locks can be compiled

with additional sanity checks turned on so that

"asserts" can be used. They are however too costly to

go into production.

The symbolic kernel debugger has been enhanced so

that when a CPU encounters a breakpoint, the other

CPUs are also stopped through the CPU to CPU

communication channel (MPC, see below). It is then

possible to switch the debugger from one CPU to

another for CPU-specific data.

4.9 Testing

For each subsystem, we have a set of tests specifically

targeted to lock stressing. With the lockstat tool, we

are able to ensure that the collision rate is high enough

on each and every lock so that we are sure that they are

appropriately stressed, looking either for overlocking

(→ deadlocks) or underlocking (→ race situations

leading to data corruption). The collision rate is also

randomly varied between maximum value and 0 to

explore windows of vulnerability.

4.10 Kernel Implementation issues

The price of locks After carefully coding lock

and unlock primitives for simple locks, in assembly

language, it was determined that the lock-unlock pair

price in the lock free case was around 100 cycles (on a

PowerPC 601). Notice that the number of instructions

is much smaller. Some lock instructions (e.g. sync) are

costly in terms of cycles because the 601, as any

sophisticated processor, needs to flush its read and

write queues.

MP/UP overhead Locking and unlocking brings

an overhead compared to a UP kernel. We took the

goal to limit this overhead to 5% on the throughput of

macro benchmarks like the TPC family or SPEC SDM

and LADDIS.

The core of the AIX kernel (i.e. not counting the

drivers and loadable kernel extensions like NFS)

actually exists in two versions derived from a single

source tree. In the MP version, all locks are enabled.

In the UP version, only locks mandatory to allow

pageability and preemptability are enabled using

#ifdef. So, the UP systems do not incur the MP

performance penalty. The appropriate kernel is

automatically selected at bootstrap time.

Thundering herd problem This occurs when

several threads are queued waiting for a resource, the

resource is freed and several waiting threads are

awakened at the same time. For simple locks, this is

avoided by selectively waking only the highest priority

sleeping thread. For complex RW locks, the highest

priority writer is awakened, or all the readers if no

writer is waiting.

Interrupts and locks On an MP system, to

protect thread-interrupt critical sections, it is necessary

to take both a lock (for protection against other CPUs)

and to mask interrupts appropriately (for protection

against your own CPU). For performance and

readability reasons, we packaged these operations

together into two primitives: disable_lock() and

unlock_enable().
AIX Version 3 already had two levels for interrupt

handling. Part of the interrupt code is executed at the

HW interruption level. When HW critical management

has been completed, the bulk of the interrupt

processing, if necessary, is handled "off-level" at a

lower SW interrupt level.

Since the AIX Version 4 kernel is thread-based, there

was an opportunity to transform interrupt handling into

normal thread-level code [Pow91]. We decided not to

do so because of the performance overhead of thread

level handling versus off-level interrupt handling.

4.11 Tuning the lock system

Because we had a previous experience in MP UNIXes,

we decided to shoot directly for a 4-way MP-efficient

for the first release. A number of guidelines were

given to developers. The collision section of a lock is

the % of the total CPU time spent under this lock in

the uniprocessor case. The objective was that no

collision section should be greater than 2.5%, for

significant benchmarks (e.g. TPC-C, SDET, LADDIS).

This can be measured with the LCA tool on a UP

system. So even without any SMP HW available, we

were able to determine early during the development

process all the potential granularity problems and

established a list of "locks to be broken". We also

identified too fine-grained locks which had to be

coalesced.

We believe that the scheme put in place can scale up

to 8-way without major redesign, requiring only a

series of measure-and-tune cycles that we will

implement between the first and the second MP AIX

releases.

4.12 User mode locks

Some applications and most importantly database

managers implement locks in user-mode because they

cannot afford the performance overhead of system

provided semaphores (System V IPC) and started

implementing multithreaded applications before a

standardized API was available. These locks are often

called latches.

On a UP AIX 3.2, these locks are implemented with a

compare_and_swap() library routine which uses the

load_and_reserve and store_conditional instructions

on PowerPC machines or a system call on POWER

machines, where atomic instructions are not available.

On MP machines, this scheme does not work because

of the weakly ordered memory model described in the

HW section. As the insertion of the fence instructions

is a delicate process and moreover because these fence

instructions depend on the type of PowerPC processor

(601, 604 or 620) for optimal performance, we

provided a simple API to hide this complexity:

_check_lock() same semantics as

compare_and_swap() and issues the

appropriate import fence.

_clear_lock() issues the appropriate export fence

and clears the lock-word.

Programmers can then combine these to implement the

appropriate type of lock for their application.

An alternative is to use the POSIX1003.1c mutexes

and condition variables provided with the pthreads

library.

5. Other atomic operations

The availability of load_and_reserve and

store_conditional instructions enables the construction

of other atomic operations. They provide better

performance when compared to locks for certain

operations. They usually do not need fences because

no data other than the parameter of the operation is

implicitly involved.

We use mainly:

_fetch_and_add to implement counters,

statistics

_fetch_and_and|or to implement bit masks

_compare_and_swap to implement some carefully

chosen list insertion/deletions

primitives (singly-linked lists)

6. Other SW issues on an SMP system

6.1 Scheduling and dispatching: affinity

The architecture being what it is, the natural tendency

is to let the scheduler dispatch threads on processors

from a single run-queue and according to priorities.

However, the presence of the large Level-2 caches

creates some affinity between threads and processors

because the working set of threads tends to accumulate

in the caches [Tor92]. So if the thread is migrated to

another CPU and therefore another pair of caches, a

warm-up of the cache is unavoidable, with a burst of

lateral misses (i.e. miss where data comes from other

caches, as opposed to vertical misses where data comes

from main memory). This temporarily high miss rate

decreases the performance.

So we implemented an affinity scheduler with a

simple algorithm to ensure that the pathlength increase

in the scheduler code is minimal, so that the global

outcome is positive. Each thread remembers its level

of affinity with processors (actually, it is simply the

last processor where the thread executed). When a

processor becomes idle, the scheduler scans the

runqueue and dispatches preferably a thread with

affinity for it. The algorithm must however ensure fair

access to CPU time. Several parameters (e.g. length

and depth of the runqueue scan) were tuned to insure

this.

6.2 Binding threads to processors

An API allows the programmer to explicitly bind a

thread or a process to a specific processor, preventing

the scheduler to migrate it when possible. Caution is

recommended with this user-driven scheduling,

because the scheduler generally does a better job in

terms of global performance optimization. It should

therefore be used only for special dedicated

applications (e.g. real-time).

6.3 Managing interrupts

Masking against interrupts is done by writing some

mask value into a HW register associated with the

CPU. When the CPU is running at thread level, i.e

with no interrupts masked, it writes a code in this

register to distinguish the idle task from the normal

processing. This register is used by HW to dispatch

interrupts to the "least loaded processor", so all

interrupts will go to one of the idle processors or, if

none, to one of the processors not masked against

interrupts.

As interrupt handling involves significant overhead,

this "interrupt steering" improves response time.

Maximum throughput is not much improved since, in

that case, CPUs are seldom idle.

6.4 Clock management

Ideally, only one clock interrupt per system (as

opposed to one clock interrupt per CPU) is needed on

an SMP since almost all clock related actions are

independent of the CPU. However, actions such as

profiling a CPU i.e. determining which piece of code it

is currently executing, need interruption of the CPU.

So we ended up with a scheme where each CPU is

interrupted at each clock tick but only one of them

implements the system-wide time-related tasks.

6.5 Multi Processor communication
(MPC)

SMP kernel implementations require some sort of

basic inter-CPU communication. In AIX Version 4, it

is called MPC.

The MPC allows a processor to send an interrupt to

another processor and have it perform a specific action.

We tried to maintain this layer as simple as possible.

The MPC services allow:

• To register a service routine, which will be called

by the target processor upon reception of an inter

CPU interrupt.

• To trigger an inter CPU interrupt on a specific

processor or on all the other processors (broadcast).

The MPC services are used for various functions such

as funneling, timer management, dump and kernel

debugger (to stop all the other processors).

7. Overall results

The results of all these technical choices can be

summarized in scalability figures for various types of

workloads. These figures being highly sensitive, you

will have to refer to the marketing brochures of both

companies to get them. Suffice it to say that from a

technical standpoint we are very happy with the overall

scalability.

8. How we did it

AIX 4.1 is the result of a joint development program

between Bull (Grenoble, France) and IBM (Austin,

TX). Bull brought its SMP experience in DPX/2 and

DPS7000 and IBM its knowledge of AIX and the

PowerPC architecture.

The architectural design was done by a joint team of

SW architects. The work sharing was done by a joint

team of technical managers. The component level

design was done by the teams where each component

responsibility had been assigned.

A common team in a single location did the locking of

the kernel core because these parts interact so heavily

that a single team was necessary. The team was

composed of engineers from both companies.

The rest of the work in kernel, libraries and

commands was separable and so could be dispatched

between Austin and Grenoble with the help of a fast

transatlantic communication link allowing us to work

on the same source tree with a unique configuration

management system in almost real time.

The whole project lasted all in all more than 2 years,

from early Bull-IBM technical contacts to shipment.

However, this involves the SMP HW development and

the entirety of the AIX Version 4 development cycle.

This latter decision must be drawn to the attention of

those who may have heard of shorter development

cycles with respect to MP-enabling a UNIX OS

implementation. Instead of freezing the functionality

of AIX 3.2 to make it support SMP HW and let AIX

evolve functionally in parallel to meet market

requirements on UP only, we commonly decided to

proceed with a single development path. This by no

doubt made the MP enablement more complex, but

avoided the confusion and costs resulting from having

2 versions of AIX.

So it is difficult to size the SW SMP effort per se, but

it lasted around 18 months (design to General

Availability) and involved more than 100 people.

With a lot of good will on both sides, this cooperation

worked and is still working incredibly well, probably

due to our common technical culture which is a mix of

UNIX background and mainframe experience.

9. References

This is not a complete bibliography on MP aspects of

the UNIX kernel, because it would be too big.

[Cam91] Lock Granularity Tuning Mechanisms in

SVR4/MP, Mark D. Campbell, Russ Holt,

John Slice, USENIX SEDMS II, March

1991, p. 221

[Car93] Measuring Lock Performance in

Multiprocessor Operating System Kernels

Joseph P. CaraDonna, Noemi Paciorek,

Craig E. Wills, USENIX SEDMS IV, Sept

1993, p. 37

[IBM94] PowerPC and POWER2: Technical Aspects

of the New IBM RISC System/6000,

Prentice-Hall 1994

[Kor89] Sema: a LINT-like tool for analyzing

semaphore usage in a multithreaded UNIX

kernel, Joe Korty, 1989 Winter USENIX

[Pac91] Debugging Multiprocessor Operating

System Kernels, N.Paciorek, S.LoVerso,

A.Langerman, USENIX SEDMS II, March

1991, p. 185

[Pow91] SunOS Multi-thread Architecture, M.L.

Powell, S.R. Kleiman, S. Barton, D. Shah,

D. Stein, M. Weeks, 1991 Winter USENIX,

p. 65

[Rit84] A Stream Input-Output System, D.Ritchie,

AT&T Bell laboratories Technical Journal,

Vol. 63 no. 8 (October 1984)

[Ste93] WARLOCK - A Static Data Race Analysis

Tool, N.Sterling, 1993 Winter USENIX, p.

97

[Tor92] Evaluating the benefits of cache affinity

scheduling in shared memory

multiprocessors, J.Torellas, A.Tucker,

A.Gupta Technical report: CSL-TR-92-536

(Stanford Univ.) August 1992

10. Trademarks

Escala, PowerScale, BOS, DPS and DPX are

trademarks of Bull S.A.

AIX, RS/6000 and PowerPC are registered trademarks

of IBM

UNIX is a registered trademark licensed exclusively

through X/Open

OSF/1 is a registered trademark of OSF

11. Author information

Jacques Talbot is responsible of SW Architecture in

the Open Systems department at Bull Grenoble since

1989. He was previously in charge of the Bull BOS

UNIX kernel development, and then project manager

for the Bull DPX/2 200 UNIX platform. He graduated

in 1972 from the Ecole Supérieure d'Electricité.

Address: 1, rue de Provence 38130 Echirolles

FRANCE

Email: J.Talbot@frec.bull.fr

This paper has been written by Jacques Talbot from
Bull. However, it is the result of the work of many
people in both Bull and IBM. Special thanks to Jack
O'Quin, John O'Quin, Jeff Peek from IBM and André
Albot, Corrado Clementi, Jean-Jacques Guillemaud,
Steve Hinde (*), Michel Sanchez from Bull.

(*) now with another company

