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Change Highlights

June 3, 1994

Stack frame format, parameter passing, and glue code sequences were redesigned to
improve efficiency. The minimum stack frame size is now 16 bytes, and the glue code
sequences no longer save and restore the link register, saving several cycles on calls to
imported functions via glue. The parameter passing is changed to accommodate the new
smaller stack frame. (Note: the NT implementation does not incorporate these changes.
The conventions used there are now described fully in the chapter on NT-specific conven-
tions.)

Entry point names in the NT implementation are changed: instead of an ep suffix, they
are identified by a ".." (two periods) prefix. Suffix discriminators were felt to be danger-
ous in the presence of the name truncation options in NT. A single period prefix is prob-
lematic because the assembler and some other utilities are not able to distinguish
references to executable sections that have the same name as a user function (e.g., the

entry label for a user program named data would be the same as the .data section).

March 7, 1994

Stack frames must be a multiple of 16 bytes in size and aligned on a 16-byte boundary.
This will make it possible to align quad word data items and to align data for improved
cache performance.

General register 13 is reserved for system use and should not to be accessed by compiled
code. Some systems will keep a control block address in the register to avoid long paths
otherwise encountered during the handling of certain interrupts.

Parameters greater than 7 bytes long that are passed in registers must begin on an odd
numbered register, and if passed in storage must be double word aligned. This helps in
situations where there is no function prototype and the normal alignment requirement of
a parameter cannot be inferred from an unaligned argument like a structure containing a
double.

For NT: the environment pointer is the address of the stack frame of the establisher of the
environment (called the establisher frame). This is the way NT has defined it in their
stack unwinding code.

Millicode is not mapped at fixed addresses. References to it are resolved by published
names. Millicode cannot be exported and so will not be called using glue sequences. The
general feeling is that it is not worth reserving fixed addresses for this purpose.

Proposal for different glue sequences to increase efficiency (to be adopted).

Proposal for different stack frame layout to reduce minimum frame size to 16 bytes (to be
adopted).

A mechanism to check for stack overflow for frames or alloca’s larger than a page-
described (based on _RtlCheckStack in NT).

June 3, 1994 (mod 7/20/94)



8 LE PPC Linkage. Changes and Introduction

= Copies of function descriptors may appear in the TOC to enhance performance provided
there is no name conflict with the "unique" function descriptor for a function.

= Some refinements to the description of stack unwinding when encountering millicode.
These include definition of some codes appearing in the HandlerData field of the func-
tion table to allow identification of the type of the millicaode.

September 24, 1993

= Assembler syntax [tocv]x and .section x,"t" defined for data in TOC. Symbol attribute
"TOC" and RLD flag "DATAINTOC" defined.

» Platform specific definitions segregated from general ones.

= For NT, entry point names changed to e.g., f0o.ep (from .foo) to avoid conflict with object
and executable section names such as .data.

July 25,1993

= Prologue code restrictions needed to permit stack unwinding spelled out in detail and
guidelines given for prologue code formation. Ditto for epilogue code.

= Data in TOC is permitted. Additional assembler syntax to be defined. New RLD type
SSREL (subsection relative) and subsection .idata$t defined to help support this.

= Names of entry points for register save/restore millicode now begin with "._" to reduce
the chances of name conflicts.

= Slack space at end of stack frame defined as 232 bytes. This is enough for a full register
save, including link, TOC, and condition registers. More is not warranted for NT due to
small kernel stack sizes.

= Locations for a procedure to save its link, TOC, and condition registers are in its own
stack frame. There is no need to specify special locations for these. For NT, reverse execu-
tion of the prologueprovides correct stack unwinding. Tag table entries specifying save
locations can be defined for other systems when needed.

= Two reserved locations for saving registers by glue code defined in stack frame header.
An additional word is reserved for future use. Two others are retained as "spares" for spe-
cial purpose utilities such as profilers.

= Reverse execution of prologue code mechanism described.

June 25,1993

= Default compiler linkage is local (to a function in the same executable). Investigation
shows that this is the predominant mode and should therefore be made the default.

= "Automatic" insertion of glue when local call turns out to be imported. Slots in header
reserved for use by glue code when saving rtoc and the link register. This permits linking
to code in libraries even if no special pragmas have been specified.

= Tag table index and tag table respecified for NT port to accord with function table and
scope table. Restriction on prologues for exception processing: they must be able to be
"executed backwards" by system stack unwinder to restore saved registers.

= For NT port, TOC will be mapped into the .idata section as part of the import address table.

June 3, 1994 (mod 7/20/94)
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= Naming convention change: for program foo, the name of its code section is now .foo
(rather than @fo0). The "@" symbol has a special meaning to the NT linker.

= Stack frame header has architected save locations only for the backchain and for use by
glue code. The remaining 3 fullwords are spares for use by utilities such as profilers. No
other save locations need be specially reserved.

= The section on the PE module format is being revised. The discussion on exception han-
dling is being rewritten to include more specific information on the implementation for
the NT port.

June 3, 1994 (mod 7/20/94)



10 LE PPC Linkage. Changes and Introduction

2 Introduction

This document describes conventions adopted for Little-Endian PowerPC. It is intended to aid
those developing compilers and those writing low-level assembler language code for operating
systems on that architecture. Although the conventions are derived from those for AIX, little
familiarity with those conventions is assumed. Assembler language examples are given to show
the sort of code that compilers should generate for specific situations. A detailed definition of
PowerPC assembler language is not included here -- see the relevant assembler language refer-
ence manuals.

The conventions related to the Table of Contents (TOC) are adapted from those of AIX on RISC
System /6000 to the exigencies of the PowerPC architecture. It is intended that there not be gratu-
itous differences.

Unless otherwise noted, the conventions and examples in this document are intended to apply to
all systems developed for little-endian mode operation on PowerPC architectures. System-spe-
cific sections detail aspects that are particular to Windows NT and WorkPlace.

2.1 Motivation for changes

Existing conventions from AIX on Power have been adopted wherever appropriate. Changes
have been made in some areas. Primary reasons for change include:

= Hardware differences. The most pervasive difference is that alignment of data is an
exemely important factor affecting performance. The penalty for storage access to
unaligned data is so severe that every effort should be made to align data properly, and in
cases where that is not possible, compilers should generate in line sequences to handle
unaligned data.

Another important difference is the lack of load multiple word and store multiple word
instructions in Little-Endian PowerPC. This affects the way register saving and restoring
is handled at function entry and exit.

Other hardware differences include lack of string instructions on Little-Endian PowerPC,
the existence in the architecture of "optional" instructions, and architecturally required
instructions with implementations that differ between the 601 processor and later proces-
sors. These differences drove the definition of "millicode" in Section 3.11.

= Compiler optimization of calling sequences. As in AIX, all calls to functions are gener-
ated as if the call target were bound with the caller into a single executable. Calls outside
the executable (to shared libraries) are discovered to be different at link-edit time, and the
linker inserts "glue" code to save the caller’s TOC pointer, load the target’s TOC pointer
and entry address, and branch to the target.

The "glue" code is as efficient as it can be, but it cannot be scheduled by the compiler
because it is spliced in after compilation. There is no opportunity to interleave the "glue"
instructions with other, unrelated instructions in the compiled code, such as the instruc-
tions that load the parameters being passed. There is no chance for the "glue" code to re-
use values in registers — two calls in a row to the same target cannot take advantage of

June 3, 1994 (mod 7/20/94)
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the fact that the first call has loaded both the target’s TOC address and entry address and
avoid loading them again. These optimizations are possible if the compiled code itself
performs the "glue" function.

For this reason, compiler options and #pragmas are introduced for the the calling conven-
tion on Little-Endian PowerPC that allow specifying at compile time that certain calls are
to routines outside the bound module (see Section 3.6.6). When so specified, the instruc-
tions that save and restore the caller’s TOC register, load the target’s TOC pointer,
develop the target address and branch to it are generated "in-line" by the compiler; no
"glue" is added by the linker. These instructions are subject to all the compiler’s optimi-
zations.

= Performance and space enhancements. In order to streamline linkage to imported func-
tions, function descriptors consist of two rather than three words. For C programs, only
the first two words of the AIX function descriptor were used anyway, and a mechanism
using only two-word function descriptors was designed to do "up level" addressing for
nested functions that occur in languages like Pascal and PL/1. That eliminates an instruc-
tion in the sequence used to implement calls via function pointers as well as saving a
word of storage.

A slight change in the way arguments are passed provides another improvement. Each
stack frame for a non-leaf procedure in AIX contains eight words corresponding to the
eight parameter general purpose registers. This storage in a caller is only used by callees
that take the address of their parameters. A different mechanism is incorporated in these
conventions to achieve exactly the same function but without requiring every non-leaf
function to reserve eight words. Coupled with a reduction in the size of the stack frame
header to four words (from six), this results in a minimum stack frame size of only 16
bytes--an important potential saving for highly recursive programs running in small
memories.

= Descriptive information about procedures. Tables that describe information needed for
traceback, debugging, and stack unwinding are no longer embedded in the code as is
done in AIX. This achieves better performance through more efficient cache utilization. In
addition, information is included to support language specific frame-based exception
processing such as Microsoft’s structured exception handling and "throw-catch" in C++.

= Lack of underlying support for certain AIX concepts. The primary example here is
AIX’s csects, which have both name and storage class and are the replaceable units that
the AIX linker deals with. This concept is missing from Little-Endian PowerPC operating
systems. The MIPS port of Windows NT, which the Little-Endian PowerPC port is
expected to resemble closely, has only the original Unix and COFF concept of "sections"
within which labels are defined. This led to changing the assembly language definition
from AIX, dropping the .csect operator and substituting .text, .data, and the like.

Since Little-Endian PowerPC cannot execute binaries compiled for AIX/Power or even AIX/
PowerPC (Big-Endian), we are not constrained by the need to maintain binary compatibility with
AIX.

2.2 Intent

This document lays out the conventions to be followed by compilers, authors of assembly rou-
tines, and linkers so as to enable communication of the necessary information among these func-
tions to permit production of executable files.

June 3, 1994 (mod 7/20/94)



12 LE PPC Linkage. Changes and Introduction

The authors hold that the linker and loader should depend only upon the minimum amount of
information necessary to perform their functions. Introducing extraneous externally visible
names, for example, whether functionally derived from other names or not, should be avoided as
much as possible. In addition to being a gratuitously uneconomical representation, such a prac-
tice increases the risk of name clashes,

However, this minimalist approach ought not be construed so as to preclude embedding useful
additional information in object files for use by programs such as debuggers and profilers, or for
post compile-time processing to improve performance. Of course, care should be taken to pre-
vent standard linkers and loaders from developing a dependency on such information; and its
presence should not in any way compromise their normal functioning.

June 3, 1994 (mod 7/20/94)
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3 Linkage Conventions — General

3.1 Table of Contents (TOC)

The PowerPC instruction set, like that of POWER (RS/6000) before it, lends itself naturally to
compilation of position-independent code. In fact, it is difficult to write position dependent code
because PowerPC has no instruction formats that support the embedding of a memory address
in an instruction!. Instead, instructions that reference memory involve a base address in a gen-
eral register and optionally a displacement field in the instruction (signed 16-bit constant) or an
index value in a second general register.

Given that an address in a register must be used in order to load anything from storage, a soft-
ware convention is used to make it easy to load the addresses of external variables, functions to
be called, and the like. The addresses of the set of items within an executable that must be so
addressable are collected by the linker into a vector called the Table of Contents, or TOC. There
is one TOC per executable; all functions within it use the same table for loading pointers to exter-
nal variables or routines. Consider an executable made up of routines a() and b(), and external
variables x and y. These may be compiled separately or may all be in one source file. When these
four items are linked to form an executable, the TOC structure will be as shown in Figure 1.

Within the TOC, each distinct address occurs in only one entry and this entry is used by all pro-
cedures that access the data at that address. In general, the displacements of entries in the TOC
cannot be known before the linker executes. Language processors generate relocation informa-

tion to enable the linker to adjust the displacement fields of instructions that reference items in
the TOC.

Separating the addressability of a function’s data from its code address is one of the salient
advantages of the TOC scheme. It permits sharing code among several separate programs (or
threads that don’t share static data) running in the same address space. It achieves this without
requiring the pre-assignment of code addresses for all the functions involved in such an environ-
ment. This feature assumes increasing importance as network distribution of executing code
increases.

3.1.1 TOC pointer register

By convention, the base of addressing for a procedure’s environment (generally the address of its
TOC) is passed to a called function in general register 2. The called routine must treat this value
as non-volatile, ensuring that the same value is in register 2 after returning. However, there will
be times when another value must be placed in register 2, for example when the routine sets up a
call to another that requires a different base address. In that case, the value that was in register 2
on input to a procedure must be saved so that, on normal? exit from the procedure, the value will
be restored to register 2 by epilogue code.

1. The "absolute" variant of the unconditional branch instruction is the only exception, and the address it
supports is limited to 26 bits. While it would be possible to load a 32-bit address from the instruction stream
using two successive instructions, each with a 16-bit immediate value, this approach becomes impossibly
inefficient for 64-bit addresses.

June 3, 1994 (mod 7/20/94)
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| afcn descriptor

ﬁ 0 a’s code \

| 0 a’'s TOC

TOC

b fcn descriptor

O b’s code
0 b’'s TOC

Figure1 Addressability to externals via the TOC

3.1.2 Function descriptors

When one routine calls another, the caller must pass the address of the called routine’s TOC in
register 2. Unless the called routine shares a TOC with its caller, code must be produced to get
the new TOC address into register 2. The required value can be found in the called procedure’s
function descriptor, a two-word data item that contains:

» The address of the called routine’s code (the entry point address), and

= The address of the TOC for the called routine, which may or may not be the same as the
TOC address for the calling routine!.

As is the case for all data addressed via the TOC, the address of the function descriptor will be
found in the caller’s TOC. The name of a function (such as a and b in Figure 1) is associated with
the address of the function descriptor, not the address of the code. It is the address of the func-
tion descriptor that is used when assigning to a function pointer or passing a pointer to a func-

2. Abnormal exits are exceptional conditions. The value in register 2 on entry must be saved in such a way

that the exception handlers know how to restore register 2 during such processes as "stack unwinding".This
point is discussed further in the section on exception handling.

1. For languages that allow taking the address of a nested procedure such as Pascal, the second word of the
function descriptor for such a procedure is the address of its environment (i.e., a pointer to the stack frame

of its statically containing procedure). The address of the TOC is a part of the environment of a nested pro-
cedure and is therefore computable from its environment address.
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tion. In this way a single pointer suffices to identify both the instructions and data (TOC
address) for a routine to be called.

Each function (in the read-only .text section) has exactly one function descriptor (in the process’
read-write .data section). The compiler generates the function descriptor at the same time it gen-
erates the executable code. Two function pointers are considered to compare equal if they point
to the same function, which will be the case precisely when they have the same value: the
address of the unique function descriptor.

Although multiple function descriptors that point to the same function cannot in general be
allowed because of the semantics of comparison of function pointers, it is sometimes useful to
have the function descriptor or a copy of it residing in a TOC. The unique (named) function
descriptor can be treated like any other data item and can be mapped into the TOC associated
with the function’s code. When making a copy in another TOC, care must be taken not to expose
its name or use its address when comparing function pointers. Implementing such a feature
requires linker support, but may increase the efficiency of calls to the function since it eliminates
one addressing indirection. Such copies of function descriptors are sometimes referred to as local
function descriptors.

3.1.3 Assembler Notation for TOC entries

Although not all entries in the TOC have externally visible names, some way of denoting them in
assembly code is required, and it is useful to be able to refer to them in the examples included in
this document. The notation

[toc]bletch

stands for the entry in the TOC that, at execution time, contains the address of the data named
"bletch". Equivalently, it is used to represent the displacement of that entry from the origin of the
TOC. This notation is not and does not of itself give rise to a global symbol.

3.1.4 Assembler Notation for data in the TOC

The original TOC contained only address constants. It is, of course, possible to add data items to
the TOC. To specify that a data item, say an integer named gorp, is expected to be mapped into
the TOC, the assembler syntax is

.toc
gorp: long

Whether or not a function contains the defining instance, the symbol would be addressed using
the TOC register as a base, and the notation

[tocv]gorp

stands for the displacement of the entry in the TOC that, at execution time, contains the data item
named "gorp". The symbol gorp is associated with the absolute address of that entry rather than
with its displacement from the origin of the TOC. Note that neither of these notations denotes
[toc]gorp, which may also be present in a program. As before, [tocv]gorp is not and does not of
itself give rise to a global symbol.

3.1.5 Other assembler notations

These follow the general conventions for most assemblers. For details, see the assembler refer-
ence manuals.

June 3, 1994 (mod 7/20/94)



16 LE PPC Linkage 3. General Conventions

3.2 Register Usage

3.2.1 General purpose registers

General purpose registers are classified into four (not necessarily disjoint) sets:
1 Reserved registers are not available for use by compilers. Values in them and how they
are used are system specific. Only one register is reserved.

gpri13 Not to be used by compilers.

2 Dedicated general purpose registers are reserved for special uses. They define specific
values that are expected to be available either at all times or at certain times, such as
when a function is called.

gprt Stack frame pointer, always valid
gpr2 TOC (or env.) pointer on entry to, and return from, a procedure
gpr3 —10 Used to pass parameters and return values

3 Non-volatile general purpose registers may be presumed to have the same values follow-
ing a procedure call as before the procedure call.

gpri (must always point to current top of stack)

gpr2
gpri4 — 31

4 Volatile general purpose registers may not be presumed to have the same values frollow-
ing a procedure call as before the procedure call.

gpr0, 3 -12 volatile

3.2.2 Floating point registers

Apart from those that are used to pass and return floating values to functions, floating point reg-
isters have no dedicated uses.

fprO volatile
fpr1 —13 volatile and used for passing parameters and return values
fpr14 — 31 non-volatile

3.2.3 Condition register

The 32-bit Condition Register (CR) is divided into eight 4-bit fields, numbered 0 through 7.
Some PowerPC instructions deal with individual bits in the CR, some deal with 4-bit fields, and
some deal with the entire 32-bit register. See PowerPC User Instruction Set Architecture (Book I) for
details.

The linkage conventions treat the CR as a set of eight 4-bit fields. Each field can hold the result
of, for example, a comparison. Certain of the fields are volatile across calls (value in the field
need not be preserved), and others are non-volatile (value on entry must be returned on exit).

cr0 -1 volatile
cr2e—4 non-volatile
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crb-7 volatile!

The move from condition register (mfcr) instruction can copy the entire CR to a general register.
The move to condition register fields (mtcrf) instruction can copy one or more fields from a gen-
eral register to the CR.

3.2.4 Other registers

Certain other registers are accessible to user code and must be dealt with as part of the calling
convention.

LR Link Register volatile
CTR Count Register volatile
XER Fixed Point Exception Register volatile
FPSCR  Floating Point Status and Control Register volatile

The values in these registers after a call cannot be presumed to be the same as before the call.
Thus, there is no need for a function that uses such a register to preserve its original value.

3.3 Stack Frame Layout

Stack frames are allocated from high address to low address. General register 1 is presumed
always to point to a valid stack frame, and the contents of the fullword at that address always
points to the previously allocated stack frame. One? read-only page, or unmapped page, is asso-
ciated with addresses at the (low address) end of the stack to act as a guard page. This permits a
single instruction (stwu) to be used to acquire a stack frame and simultaneously check for stack
overflow for frames not exceeding a page in size.

Stack frames must be aligned on 16-byte boundaries. That is, they must begin on a 16-byte
boundary and their lengths must be a multiple of 16 bytes.

Figure 2 shows a diagram of the stack frame®.

3.3.1 Stack frame header

3.3.1.1 Header format

The stack frame header contains four 32-bit words:

Offset (hex) Contents

0 Back chain; points to caller’s (next higher addressed) stack frame
4 Reserved for use by called function (e.g., to save link register)

8 Slot for glue code to save a register

C (spare)

1. This is a slight change from the original AIX convention, in which cr.5 was originally reserved for "global"
use. AIX has since changed cr.5 to "non-volatile" and finally to "volatile".

2. A system may decide to use more than one page. The use of stwu to check for stack overflow works cor-
rectly for sizes up to the number of reserved pages (up to eight pages).

3. The stack frame layout implemented for the NT port is different and is described in section 5.2
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Low addresses

Condition, toc, and link register save area

GPR save area

\ FPR save area
I
I
I

GPR 1

Back chain Reserved for callee

Glue-saved register spare

Output argument (overflow) area
(used for constructing parameter lists for
called functions) (min 0 words)

Local variables

Condition, toc, and link register save area
| (min 0 words, max 2 words)

Saved GPRs
(min 0 words, max 19 words)

Saved FPRs
(min 0 words, max 18 doublewords)

Back chain Spare

| Glue-saved register Reserved for callee

High addresses

Figure2 Stack frame format
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3.3.1.2 "Ownership" of stack frame header

Except for the back chain, a function never stores into any other words of its "own" stack frame
header. Thus while a function is actively executing, only the back chain slot in its stack frame
header contains useful data. This allows an efficient implementation of the alloca() function,
which need only move the back chain field to a lower address in order quickly to allocate addi-
tional storage in the stack frame. Linker-inserted "glue" code (see Section 3.6.4) may use a
reserved location in the header to save a register, usually register 2. One location is reserved for
use by the called function. This allows, for example, a highly recursive function to save the link
register in its caller’s stack frame header, achieving a minimum stack frame size of 16 bytes. The
remaining word (at offset 4) is a "spare" that may be used by specialized utilities such as profilers,
tracers, debuggers, etc..

3.3.2 Output argument area

This portion of the stack frame is used when passing more arguments to a called function than
will fit into the available parameter registers. In most cases, it will not appear at all. See Section
3.6.7, “Parameter passing” on page 25, for details.

3.3.3 Local variables

This is the dynamic storage area for the function and can be any size. It contains such items as
"automatic" variables, temporaries and register spills used by the compiled code.

3.3.4 Saved floating point registers

If the function uses any floating point registers from the "non-volatile" set, their values on input
to the function are saved here. For the NT port, the code to save the registers must be a part of the
procedure’s prologue; see Section 3.6.8, “Register saving/restoring” on page 31. No space need
be allocated for this area if no floating point registers are saved.

3.3.5 Saved general purpose registers

If the function uses any general registers from the "non-volatile" set, their values on input to the
function are saved here; see Section 3.6.8, “Register saving/restoring” on page 31. No space
need be allocated for this area if no general registers are saved.

3.3.6 Saved special purpose registers

Whenever a function changes the values in the link register, r.toc (gpr 2), or the non-volatile por-
tion of the condition register during the course of its execution, it must restore the changed regis-
ters prior to exiting; see Section 3.6.8, “Register saving/restoring” on page 31. Although one
word is always available for use by the callee in the caller’s stack frame header, additional space
in the callee’s stack frame can be allocated as necessary.

3.3.7 Slack space at end of stack

During function prologues, register values may be saved on the stack at negative offsets of up to
232 bytes from the stack pointer prior to the acquisition of the new stack frame. That is sufficient
space to allow a full save of all non-volatile registers plus the link, TOC, and condition registers.
This means that at some times data may reside in locations beyond the current "top of stack”,
defined by the value in r.sp. To protect such data, routines that may gain control at arbitrary
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times (such as exception or interrupt handlers running on the same stack) should avoid using the
slack space: addresses lying within -232 bytes of the current stack pointer.

This slack space is useful not only for saving registers prior to resetting the stack pointer, but
also because calls to leaf procedures or procedures that optimizing compilers can treat as leaf
procedures may avoid acquiring a stack frame altogether.

3.3.8 Minimum stack frame size

A program need not acquire a stack frame at all if it

= requires no stack storage outside the "slack space", taking account of any other routines
that may be using the slack space simultaneously, and

m calls no other functions that use the stack.

If a stack frame must be obtained, the minimum size frame consists of the header (4 words = 16
bytes).

3.4 Checking for stack overflow

The store-with-update (stwu) instruction is used to decrement the stack pointer by the length of
the new stack frame and to store the back chain (address of previous stack frame) all in one oper-
ation. For moderate-size stack frames this store instruction suffices to check for stack overflow
because the "guard page" is either unmapped or is mapped read-only at the limit of the stack,
thus causing the stwu to fail when the stack limit is exceeded. For stack frames that are larger
than the a page, decrementing the stack pointer may step it over the guard page and thus skip
the stack overflow test. When such large stack frames are generated, language processors should
insert code in the prologue to test for stack overflow explicitly. A typical sequence is

mflr -~ r.0 # prepare to save link register

li r.12,-frame_size  # put negative of frame size inr.12

stw  r.0,4(r.1) # save link register

bl _RtlCheckStack!  # run-time routine causes interrupt if overflow would occur
stwux r.1,r.12(r.1) # acquire the frame and store the back chain

Of course, if the desired frame size is only a few pages in size, a compiler may choose to generate
more efficient code than branching to a checking routine; for example, in line code that "touches"
each page up to the desired size.

3.5 Naming Conventions

3.5.1 Function names

Since a function descriptor is associated with every function, two external names are needed. For
a function named "foo" they are:

= The name of the first instruction of the code (the actual entry point to which one can
branch). This will be ".f00" in our example?.

1. For purposes of this illustration, this is presumed to be a special run time routine that preserves all regis-
ters except .0 and r.11; and expects the negative of the desired frame size in r.12.

2. Prefixing the function name with "." is the general convention adopted in this document both in the text
and in the examples.. Specific platforms may require other conventions to avoid name conflicts.
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= The name of the 2-word function descriptor containing the pointer to the function’s code
and the pointer to its table-of-contents (TOC). This will be "fo0" in our example (that is,
the unadorned name).

The unadorned name is the one that is used to reference a function — the address it denotes
would be the value assigned to a function pointer, for example.

Except when writing assembler code, programmers generally need not be aware of the entry
name for a function. The only name used in source code and imports and exports lists is the
unadorned function name. The entry name is automatically generated by the compiler, together
with the appropriate RLDs and symbol table entries to allow the linker to make the right connec-
tions. Entry names also appear in special stub sequences called glue code used in implementing
calls to functions in shared libraries. These sequences are automatically introduced by the linker.
Source language debuggers should allow users to use function names when setting entry point
break points.

3.5.2 Variable names

External variables are treated similarly to functions, except that there is no need for the equiva-
lent of a "function descriptor". For an external variable named "bar", we just use the unadorned
name "bar".

Figure 3 shows how the various names and pointers are related to one another.

[ foo’s descriptor foo’s descriptor
foo O foo’s code
O foo’'s TOC

O bar

foo

code for foo()

.data

bar .
| variable bar

Figure 3 Showing how the TOC, function descriptors, functions, and data are
connected.
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3.5.3 Entry point of executable module

An executable module has a single entry point, whose value is stored in the module header. For
Little-Endian PowerPC, this will be the address of the function descriptor for the first function
to be executed. From the descriptor can be found both the address of the first instruction and the
address that must be loaded into the TOC register.

3.6 Cdlling Sequence

3.6.1 Default local linkage straight to code

Unless otherwise specified, compilers can generate direct calls to functions using simply a rela-
tive branch and link instruction. This will result in very efficient linkage when

= The target and the caller are bound in the same executable, i.e., share a TOC, and

» The target can be reached via a relative branch computed by the linker (no relocation
needed at run time).

Figure 4 shows how linkage works in this case. The "lwz" instruction shown in brackets indicates
that the caller’s TOC address is moved into r.toc (general register 2). Of course, this instruction is

Calling function code Called function code
Entry point
[lwz r.toc, ..]
bl .routine
znop

blr  <return>

Figure 4 Calling sequence — call direct to local function

only needed if the TOC address is not already in register 2. Since r.toc is non-volatile, the called
routine must insure that whatever value was in it at the time of the call is there at the time of the
return. That might, of course, be achieved by never changing the value of r.toc during the proce-
dure’s execution.

If it is found at link time that the target is in fact not in the same executable, then the linker will
insert "glue" code to implement the call, as described in section 3.6.4. The znop instruction fol-
lowing the branch and link in the caller is a placeholder for an instruction, inserted by the linker,
to restore the TOC register from where the glue sequence has saved it. This arrangement allows a
fairly efficient implementation of glue code since it avoids saving and restoring the link register.
The placeholder need only be present if the possibility exists that the target of the call is
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"imported". It would never be needed, for example, if the target of the call were in the same
source file as the caller.

If the executable is so large that the "bl" (branch and link relative) instruction generated for a local
call cannot reach the target, the link will faill. For such large programs, a successful link may
only be achievable by arranging for some of the calls to be implemented via a function descriptor
(see Section 3.6.2).

Function descriptors need not be generated for functions declared (C) "static" unless the address
of such a function is taken, because static functions cannot be referenced from outside the compi-
lation unit and intra-compilation calls to static functions do not involve a function descriptor.

3.6.2 Optional in-line external linkage via function descriptor

Linkage code that makes use of the function descriptor for the routine can be inserted in place of
the default branch and link. If generated during compilation, such "external linkage" has the
advantage that instructions for the call/return sequence are subject to optimizations like sched-
uling and elimination of redundant loads. When the function is called using its name, the
address of the descriptor is fetched from the TOC, as shown in Figure 5. The new TOC register
and target address are loaded from the descriptor, and a branch and link to the link register gets
directly to the called routine. The exception processing protocol requires that a procedure that
implements a call via a function descriptor save its incoming value of r.toc and link register by
code in its prologue so that they can be properly restored. Unless required earlier in the proce-
dure’s code, the saved value of r.toc need not be restored to r.toc until the procedure is about to
return.

3.6.3 Calls via function pointers

Since it is not in general known at compile time whether calls via a function pointer are to local
or imported routines, the default implementation of such calls follows the same protocol as the
optional in-line external linkage. The address of the function descriptor does not come from the
TOC in this case, however; it is the value of the pointer variable. As is the case for procedures
with compiled in-line external linkage calls, procedures with calls via pointers must save the
incoming values of r.toc and the link register since they will both be modified in the course of
executing the call. This must be done in such a way that stack unwinding mechanisms associated
with exception processors can determine how to restore them. The details are system-specific.

3.6.4 Linker-introduced "glue” code

Compiler generated local calls to procedures that end up not in the same executable as their
caller are handled in a special way. Such procedures occur, for example, in dynamically linked
libraries.

In order to link a program that references procedures from a different executable, a special code
sequence called linkage glue is introduced into the executable at link time. In addition, an entry is
made in the executable’s TOC that will point to the unique function descriptor in the "foreign"
executable. The linkage glue has the same entry point name as the called function so the branch
and link generated for the local call actually branches to the glue. For a call to foo, the general
form of the glue is

foo:

1. A linker function could be designed to enable "glue" code to be inserted to handle this problem.
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TOC

[toc]targ .
O called proc descr.

Calling Proc Code o
save r.toc and link register T
in prologue

lwz rp, [toc]targ(r.toc)

Called Proc Descriptor
lwz rb, O(rp)

O called proc code

O called proc TOC

lwz r.toc, 4(rp)

milr rb

blrl Called Proc Code

/

Entry point
restore r.toc as req'd.

blr  <return>

Figure 5 Calling sequence — call via function pointer from TOC

lwz  r.11, [toc]foo(r.2) # get address of foo’s descriptor
b .ptrgl # branch to pointer glue

[toc]foo refers to the TOC entry that points to foo’s descriptor. The special sequence, .ptrgl, is the
same for all calls to "imported" functions:

.ptrgl:

lwz r.12, 0(r.11) # get address of .foo
stw r.2, glsave(r.1) # save the caller’s TOC register (glsave=8)
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mtctr r.12 # get ready to branch to .foo
lwz r.2,4(r.11) # get callee’s TOC
bctr # branch to .foo

The offset glsave (=8) is the fixed offset from the caller’s stack pointer where the glue can save r.2.
The branch-and-link target is placed in the count register to avoid changing the link register in the
glue code itself. Note that the glue code cannot itself acquire a stack frame since the called proce-
dure expects to find its arguments at known offsets from its caller’s stack pointer and, for this
purpose, the glue code is not its caller!

In addition to introducing the specialized glue sequence, the linker must also replace the znop
instruction with

lwz r.2,glsave(r.1)

so that the caller’s TOC register is properly restored. In AIX, the linker actually examines the
word following the bl instruction to see if it is a znop. A better way is to provide an RLD to
instruct the linker to perform this function. The RLD points to the location of the znop and iden-
tifies the function by its symbol table entry. This technique does not require a specific instruction
to be architected to represent the znop, and does not require the compiler to place it immediately
following the bl.

Appropriate information must be left around after linking to enable the loader to fill in the TOC
entry for the descriptor.

Although scheduled as well as possible, the glue code will be slower than if the compiler had
generated the equivalent in-line linkage. This should always be considered for critical applica-
tions. Therefore, even though the .ptrgl sequence could be used to implement calls through point-
ers, better performance is achieved by using the in-line sequence shown in Figure 5.

3.6.5 Lazy loading

Lazy loading is the term given to the support for loading a function at run time, the first time that
it is called. This is a performance enhancement for programs that contain references to functions
that are called only rarely, or perhaps never in some environments. No overhead for loading
them occurs at initial program load, and even if they are never available, an error will occur only
if they are actually called.

The details of support for this function are system specific.

3.6.6 Pragmas for controlling procedure linkage

By default, most compilers assume that local linkage is to be generated for all calls not to func-
tion pointers. As has been described, calls to imported functions are implemented by linker-
introduced glue sequences. Somewhat greater efficiency can be achieved if these sequences are
"inlined". The Appendix, Section 8.1 shows how options and #pragma stattements can be used in
the AIX compilers to accomplish such inlining.

3.6.7 Parameter passing’

For a RISC machine such as PowerPC, it is generally more efficient to pass arguments to the
parameters of called functions in registers (both general registers and floating-point registers)

1. Please refer to section 5.4 for a discussion of parameter passing in the NT implementation as it is some-
what different from what is presented here.
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than to construct an argument list in storage or to push them onto a stack. All computations
must be performed in registers anyway, and memory traffic can be eliminated if the caller can
compute arguments into registers, pass them in the same registers to the called function, and the
called function can use them for further computation in those same registers.

3.6.7.1 Non-float arguments

For Little-Endian PowerPC, as for AIX on Power, we pass up to eight words in the general regis-
ters, loading them sequentially into general registers 3 through 10. In addition, up to thirteen
floating point arguments can be passed in floating point registers 1 through 13. If fewer (or no)
arguments are passed, the unneeded registers are not loaded and will contain undefined values
on entry to the called function.

In only two cases, both relatively infrequent, must arguments be in storage for a call:

= When the amount of data being passed is more than will fit in the eight general registers
(and the thirteen floating point registers) provided. The remainder is placed in storage.

= When the called function takes the address of one or more of its input parameters. For
example, printf() does this when it interprets at run time the types of its parameters, and
steps through them one at a time using the varargs macro.

For the first case, the excess values are passed in an area of the caller’s stack frame, beginning at
a fixed location from the stack frame (16 bytes). The compiler reserves in the caller’s stack frame
enough space for the caller to construct the longest overflow argument list necessary for all the
functions that it calls. Figure 6 shows a detail of the caller’s stack frame where space is reserved

Caller’s

r.sp (gpr 1) | >

Back chain Reserved for callee

Glue-saved register (spare)

|
< 1st o’flow parameter word | 2nd o’flow parameter word
only as required

Local variables

Increasing
addresses

¢

Figure 6 Parameter list area in stack frame
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for the excess (over 8 words) of arguments passed to a called function’s parameters. The called
function accesses the first eight words of its parameters in general registers 3 through 10. For
parameters beyond the eighth word, it must access the list constructed in the caller’s stack frame.
It is trivial to locate this: the compiler knows the length of the stack frame that it has built, and
the list starts at a fixed location in its caller’s stack frame as shown above. Thus the ninth param-
eter word is at offset 16, the tenth at offset 20, etc. Alternatively, since the caller’s stack pointer is
always stored at offset 0 from the current stack pointer, that value can be loaded and used to
address the parameter list.

In the case where the called function takes the address of an input parameter, or treats its param-
eters as an array, the entire argument list must be materialized in a contiguous space in storage.
To achieve this, the called function allocates additional space on the stack to hold the first eight
parameter words. This space is allocated by moving the calling function’s stack frame header
down 32 bytes, thus providing 32 bytes adjacent to the argument list overflow area. The eight
words thus allocated can be used as targets of store instructions for registers 3 through 10 with-
out regard to their contents. The entire parameter list will then appear in a contiguous area in
storagel, as shown in figure Figure 7.

Low Callee’s back chain | Callee’s stack frame

Address \

Copy of caller’s hdr

32 bytes to store the
first 8 parameter

registers
callers stack header
argument list argument list
overflow area overflow area
Rest of caller’s Rest of caller’s
stack frame stack frame
High
Address

Figure 7 Stack frame showing how callee copies the caller’s header making room
for the first 8 parameter registers contiguous with other arguments

1. Since the callee’s back chain now points to a different address than did the caller’s stack pointer prior to
the call, programs such as the debugger must ensure that they address the caller’s automatic variables from
a base other than the caller’s stack frame pointer. An appropriate such base is the caller’s establisher frame:
i.e., the caller’s caller’s stack frame pointer.
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The allocation and copy is part of the callee’s prologue, and must, of course, be undone as part of
its epilogue. The exact sequences to accomplish this are designed so that exceptions that occur at
inconvenient times will be processed correctly. Typical sequences are shown in Section 3.6.8.5.

The advantage of the scheme described here is that the overhead for its implementation occurs
only when a function addressing its parameter list is actually executed. For all other functions,
there is no penalty in either space or time.

3.6.7.2 Floating point arguments

Floating point arguments are passed in floating point registers 1 through 13. If there are more
than thirteen such arguments, the remainder are passed in storage in the argument extension
area, intermixed with any non-floating arguments as indicated in Section 3.6.7.3.

3.6.7.3 Mapping the argument list

The details of argument passing are most easily understood in terms of a conceptual argument
list. As mentioned in the preceding section, this is a list of fullwords in storage. Taking all the
arguments in order, each is placed in the next available word in the list. Double arguments are
placed starting at the next available word in the list that is on a doubleword boundary. Aggre-
gates such as structures passed by value are also passed in registers and/or the parameter list.
The entire structure is considered to be mapped on the argument list beginning at the location
corresponding to its position in the argument list and satisfying its alignment requirement.

Each argument appears in the argument list exactly as it would appear in storage and each sepa-
rate argument begins on at least a word boundary.

The actual argument list is like the conceptual argument list except that the contents of the first
eight fullwords (including any floating point values) are placed in general purpose registers 3
through 10 rather than in the list, and in addition, the first thirteen floating point scalar arguments
are placed in floating point registers 1 through 13. Any floating point value (or part) that appears
after the eighth word also remains in the list. That part of the argument list containing values
after the eighth fullword appears in the caller’s stack frame beginning at offset 16 from the call-
er’s stack pointer..

If a function prototype is present specifying all the parameters of the function!, redundancy can
be eliminated from the argument list: floating point values that appear in floating point registers
need not also appear in general purpose registers or in storage. However, even in this case the
space for them is retained since the called procedure cannot know whether or not a function pro-
totype was available to its caller.

3.6.7.4 Return values

Certain values returned from a function are placed in parameter registers. In particular, scalar
non-floating data are returned in general purpose registers, and scalar floating values are
returned in floating point registers.

Data that are not returned in registers are returned in storage, the address of which is passed as a
(hidden) first argument by the caller.

1. That is, no call instruction to the function supplies more arguments than there are parameters in the pro-
totype. In effect, the function and its caller agree in advance about the number and types of parameters. This
would not be true, for example, for a function like printf, which determines its parameter types at run time
and uses the varargs macro to access them.
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3.6.7.5 Some examples of parameter passing

Assume the following declarations:

typedef struct { int a,b,c; double dd;} sparm;

/* assumed structure mapping requires dd to be doubleword aligned */

sparm s.,t;
int x, *y;
charc;
double ff,gg;
Example 1:

x = noProto(x,c,y,ff,s,99)

The indicated arguments would appear in the conceptual argument list, which begins at offset -
16 (-10 hex) from the caller’s stack pointer, as follows: x at offset -16 (-10 hex), ¢ at offset -12 (-C
hex), y at offset -8 (-8 hex), etc. Because of alignment requirements, ff begins at offset 0 (0 hex),
skipping the word at offset 36 (24 hex). Hence the actual places occupied by the arguments are as

indicated in Figure 8.

Figure 8 Parameter passing, example 1

Example 2.

sparm Proto(sparm,double, int,double);
t = Proto(s,ff,x,09);

June 3, 1994 (mod 7/20/94)

gprs offset from caller’s stk ptr fprs
gpr3 X -10 (hex)
gpr4 c -C
gprd y -8
gpro -4
gpr7 ff(low) 0 fprl ff
gpr8 ff(hi) 4
gpr9 s.a 8
gprl0 s.b C
10 (hex) s.C
14
18 s.dd(low)
1C s.dd(hi)
20 gg(low) fpr2 gg
24 gg(hi)
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Since a structure value is being returned, the caller allocates temporary space for it in its stack
frame and passes the address of the space as a (hidden) first argument in register r.3.! The
required alignment for the argument structure s forces it to begin in register r.5 (associated with
offset -8 (-8 hex) rather than r.4. The presence of the prototype makes it possible to pass the float-
ing arguments in floating point registers only. Space for them must still be reserved, however,
which explains why Xx appears at offset 24 (18 hex) rather than 16. The arguments thus actually

appear as shown in Figure 9.

Figure 9 Parameter passing, example 2

Example 3:

gprs offset from caller’s stk ptr fp’s

gpr3 &temp -10 (hex)

gpr4 -C

gprd s.a -8

gpré6 s.b -4

gpr7 s.C 0

gpr8 4

gpr9 s.dd(low) 8

gprl0 s.dd(hi) C
10 fprl ff
14
18 X
1C
20 fpr2 gg
4c

This example is rather simple and is included to show the basic efficiency of the parameter pass-

ing.

extern double foo(int *,double,int,int,double,double)

ff = foo(y,ff,x,"y,09,99+1.0);

1. When possible, an optimizing compiler might be able to use the target of the assignment (t) directly as the
temporary, thus avoiding a copy when the function returns.
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yisinr3, ffisinf.1,xisinr.7, *y isin 1.8, gg is in f.2, and gg+1.0 is in {.3. The double is returned
in f.1. Figure 10 diagrams the layout. If the function prototype were not present, in addition to

gprs offset from caller’s stk ptr fprs

gpr3 y

gprd

gprd fprl ff, return val

gpré

gpr7 X

gpr8 Yy

gpr9 fpr2 g8

gprl0
10 hex fpr3 gg+1.0
14 hex

Figure 10 Parameter passing, example 3

the above, the argument ff would also be in r.5 and r.6, gg would also be in r.9 and .10, and
gg+1.0 would also be in the double word of storage at offset 16 (10 hex) from the stack pointer.
Notice that the presence of the prototype allows for a more economical passing strategy; it does
not force it: no harm is done if the floating arguments appear in both places.

3.6.8 Register saving/restoring

To avoid the code expansion that would result from placing long strings of loads and stores in-
line, entry points are defined for routines that save or restore particular sets of general or float-
ing-point registers as well as the other registers (LR, etc.) involved in the calling sequence.

If fewer than three general registers or floating-point registers need to be saved or restored, the
compiler should generate in-line code to do so since that will take less time than calling a save or
restore subroutine, although the routines provided will save/restore as few as one register. The
breakpoint between in-line save/restore and calling a save/restore routine need not be fixed at
three registers; if the compiler can generate in-line save/restore sequences that are faster and not
substantially more bulky than the calls to the save/restore routines, it may do so.

3.6.8.1 Millicode for saving/restoring registers

GPR save routine:

On entry, r.121 points to end of area in which to save GPRs.

1. If no floating registers need be saved, r.12 is of course set to r.sp. A special save (and restore) millicode
routine could be defined to use r.sp directly. That would save two cycles in the linkage as r.12 would not
then be used. Whether or not such millicode will be supplied for all environments is TBD.
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._savegpr_13:
._savegpr_14:
._savegpr_15:
._savegpr_16:
._savegpr_17:
._Savegpr_18:
._savegpr_19:
._savegpr_20:
._savegpr_21:
._savegpr_22:
._savegpr_23:
._savegpr_24:
._savegpr_25:
._savegpr_26:
._savegpr_27:
._savegpr_28:
._savegpr_29:
._savegpr_30:
._savegpr_31:

GPR restore routine:
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stw
stw
stw
stw
stw
stw
stw
stw
stw
stw
stw
stw
stw
stw
stw
stw
stw
stw
stw
blr

r13, -76(r.12)
r14, -72(r.12)
r.15, -68(r.12)
r.16, -64(r.12)
r17, -60(r.12)
r18, -56(r.12)
r19, -52(r.12)
.20, -48(r.12)
r.21, -44(r.12)
r.22, -40(r.12)
r.23, -36(r.12)
r.24, -32(r.12)
.25, -28(r.12)
.26, -24(r.12)
r.27, -20(r.12)
r.28, -16(r.12)
r.29, -12(r.12)
.30, -8(r.12)
r.31, -4(r.12)

# return

On entry, .12 points to end of area in which GPRs were saved.

._restgpr_13:
._restgpr_14:
._restgpr_15:
._restgpr_16:
._restgpr_17:
._restgpr_18:
._restgpr_19:
._restgpr_20:
._restgpr_21:
._restgpr_22:
._restgpr_23:
._restgpr_24:
._restgpr_25:
._restgpr_26:
._restgpr_27:
._restgpr_28:
._restgpr_29:
._restgpr_30:
._restgpr_31:

FPR save routine:

On entry, r.sp points to the end of the area in which FPRs are to be saved.

Iwz
lwz
lwz
lwz
lwz
wz
Iwz
lwz
lwz
lwz
lwz
wz
Iwz
lwz
lwz
lwz
wz
wz
Iwz
blr
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r13, -76(r.12)
r14, -72(r.12)
r.15, -68(r.12)
r.16, -64(r.12)
r17, -60(r.12)
r18, -56(r.12)
r19, -52(r.12)
.20, -48(r.12)
r.21, -44(r.12)
r.22, -40(r.12)
r.23, -36(r.12)
r.24, -32(r.12)
.25, -28(r.12)
.26, -24(r.12)
r.27, -20(r.12)
r.28, -16(r.12)
r.29, -12(r.12)
.30, -8(r.12)
r.31, -4(r.12)
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._savefpr_14: stfd f.14, -144(r.sp)
._savefpr_15: stfd .15, -136(r.sp)
._savefpr_16: stfd f.16, -128(r.sp)
._savefpr_17: stfd f.17,-120(r.sp)
._savefpr_18: stfd .18, -112(r.sp)
._savefpr_19: stfd f.19, -104(r.sp)
._savefpr_20: stfd f.20, -96(r.sp)
._savefpr_21: stfd f.21, -88(r.sp)
._savefpr_22: stfd f.22, -80(r.sp)
._savefpr_23: stfd f.23, -72(r.sp)
._savefpr_24: stfd f.24, -64(r.sp)
._savefpr_25: stfd f.25, -56(r.sp)
._savefpr_26: stfd f.26, -48(r.sp)
._savefpr_27: stfd .27, -40(r.sp)
._savefpr_28: stfd f.28, -32(r.sp)
._savefpr_29: stfd f.29, -24(r.sp)
._savefpr_30: stfd .30, -16(r.sp)
._savefpr_31: stfd .31, -8(r.sp)
blr # return

FPR restore routine:

On entry, r.sp points to the end of the area in which FPRs were saved.

._restfpr_14: Ifd f.14, -144(r.sp)
._restfpr_15: Ifd .15, -136(r.sp)
._restfpr_16: Ifd .16, -128(r.sp)
._restfpr_17: Ifd £.17,-120(r.sp)
._restfpr_18: Ifd .18, -112(r.sp)
._restfpr_19: Ifd .19, -104(r.sp)
._restfpr_20: Ifd f.20, -96(r.sp)
._restfpr_21: Ifd f.21, -88(r.sp)
._restfpr_22: Ifd f.22, -80(r.sp)
._restfpr_23: Ifd f.23, -72(r.sp)
._restfpr_24: Ifd f.24, -64(r.sp)
._restfpr_25: Ifd f.25, -56(r.sp)
._restfpr_26: Ifd f.26, -48(r.sp)
._restfpr_27: Ifd .27, -40(r.sp)
._restfpr_28: Ifd f.28, -32(r.sp)
._restfpr_29: Ifd f.29, -24(r.sp)
._restfpr_30: Ifd .30, -16(r.sp)
._restfpr_31: Ifd f.31, -8(r.sp)
blr # return

Additional sequences can, of course, be provided. For example, if a sequences to save and restore
gprs based on r.sp were provided, a compiler could use those in place of the ones based on r.12 to
save and restore general purpose registers for the common case where no floating point non-vol-
atile registers are required to be saved. That would eliminate having to set a value into r.12 prior
to branching to the sequence.
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3.6.8.2 Prologue/epilogue: saving only general registers

Assume that our called routine needs to save n general purpose registers. A typical prologue and
epilogue for our routine might look like this:

.routine:
mflr r.0 #get LR intoreg O
mr r.12, r.sp # point to GPR save location
bla ._savegpr_32—n1 # save GPRs
stw r.0, LRSAVE(r.sp) # save LR contents
(save CR, r.toc if necessary)
stwu r.sp, —framelength(r.sp) # set back chain, new stack pointer
# body of function
la r.12, framelength(r.sp) # point to caller’s stack frame

# (reload from chain or compute from
# frame pointer if alloca() used)
lwz r.0, LRSAVE(r.12) # reload saved LR contents
(reload saved CR, r.toc if necessary)
# r.12 already points to GPR save location

mtlr r.0 # move LR contents back into LR
mr r.1,r12 # restore stack register2
ba ._restgpr_32-n # restore GPRs and return

The GPR save routine saves only the GPRs. All else is done in-line: we move the LR into r.0
because it will be destroyed by the branch-and-link-absolute, we compute the location where the
GPRs will be stored (not necessarily adjacent to the stack frame header), we store the LR contents
from r.0, and we compute the new stack pointer and store the stack chain (in one atomic opera-
tion). The link register value is saved at offset LRSAVE, which could be chosen to be -4*(n+1), or
alternatively +4, using the reserved word in the caller’s stack frame header. On exit, these actions
are reversed. Since r.2 was never changed, the value in it on exit is the same as on entry, as
required.

3.6.8.3 Prologue/epilogue: saving both general and float registers

Assume that our called routine needs to save m floating point registers and n general purpose
registers. The prologue and epilogue of our routine might look like this:

.routine:
mflr r.0 #getLR intoreg 0
subi r.12, r.sp, 8*m # point to GPR save location
bla ._savegpr_32-n # save GPRs
stw r.0, LRSAVE(r.sp) # save LR contents
bla ._savefpr_32-m # save FPRs
(save CR if necessary)
stwu r.1, —framelength(r.sp) # set back chain, new stack pointer

1. "32-n" is not intended to denote an expression recognized by any assembler. It is merely part of an exter-
nal label name. If n is 5, for example, the code would read "._savegpr_27".,

2. The stack pointer is restored just prior to the branch to the gpr restore millicode in order to satisfy excep-
tion handling requirements related to asynchronous events (see section 3.10.2 and 5.7.6).
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# body of function

la ry, framelength(r.sp) # point to caller’s stack frame
# (reload from chain if alloca() used)
(reload saved CR if necessary)

lwz r.0, LRSAVE(ry) # reload LR value from stack frame
subi r.12,ry, 8*n # point to GPR save location

bla ._restgpr_32-n # restore GPRs

mtlr r.0 # put reloaded value back into LR
mr r.1, rx # restore stack pointer

ba ._restfpr_32-m # restore FPRs and return

In this case, LRSAVE could be chosen to be -4*(n+1)-8*m, or (again) +4 as in the previous exam-
ple. If r.toc or the condition register need to be saved, the save locations could be chosen adjacent
to the last saved non-volatile register. Observe that r.toc cannot be saved in the stack frame
header of either the caller or the callee: that location is only for use by glue code. Of course, more
economical use of registers would be achieved by making r, = r.12, and replacing the mr instruc-
tion by addi r.1,r.12,8"n.

3.6.8.4 Prologue/epilogue: saving only float registers

Assume that our called routine needs to save m floating point registers. The prologue and epi-
logue of our routine might look like this:

.routine:
mflr r.0 #getLR intoreg O
bla ._savefpr_32-m # save FPRs
stw r.0, LRSAVE(r.sp) # save LR in stack frame
(save CR, r.toc if necessary)
stwu r.sp, —framelength(r.sp) # set back chain, new stack pointer
# body of function

(reload saved CR, r.toc if necessary)
lwz r.0, LRSAVE+framelenth(r.sp)# pick up LR from stack frame

la r.sp, framelength(r.sp) # point to caller’s stack frame
# (reload from chain if alloca() used)
ba ._restfpr_32-m # restore FPRs

Note that the old value of the link register is loaded from its saved location prior to the restora-
tion of the stack frame, so that the offset in the instruction has been adjusted accordingly.

3.6.8.5 Prologue/epilogue: a function that addresses its parameters
The following is a typical prologue:

.printf:
mflr r.0 #prepare to save link register
lwz r.11,0(r.1) #copy caller’s stack header
lwz r.12,8(r.1)
stw r.11,-32(r.1)
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lwz r.11,12(r.1)
stw r.12,-24(r.1)
stw r.11,-20(r.1)

stw r.0,-28(r.1) #save link register in caller’s header
addi r.1,r.1,-32

stwu r.1,r.1,-framesize.printf #buy stack frame for printf

bl register_save_millicode #save used non-volatile registers
stw r.3,16(r.1) #'blindly" store parameter gprs

stw r.4,20(r.1)

stw r.10,44(r.1)
printf.body:

Note that at every point, r.1 points to a header with the correct values in it, as required for correct
processing of exceptions. Also, at the end of the prologue, the complete parameter list appears in
contiguous storage, no matter how many arguments were actually passed.

The epilogue code corresponding to this is:

printf.epil:
lwz r.0,framesize+4(r.1) #prepare to restore link register
lwz r.11,framesize(r.1) #copy header back
mtlr r.0 #restore link register
lwz r.12,framesize+8(r.1) #continue to copy header back
stw r.11,framesize+32(r.1)
lwz r.11,framesize+12(r.1)
stw r.12,framesize+40(r.1)
stw r.11,framesize+44(r.1)
addi r.1,r.1,framesize+32 #restore caller’s stack pointer
blr #return

These sample prologues and epilogues indicate possible sequences that a compiler might gener-
ate. They are actually not part of the linkage conventions proper, and in fact a compiler might be
able to obtain better performance by performing the instructions in a different order or including
in the sequence other instructions from the program proper. In order for exception processing in
most systems to operate properly, it is necessary that values in non-volatile registers can be
restored by the exception processing code. Thus, sufficient information must be available at run
time to accomplish this task irrespective of where in the instruction stream the exception
occurred. The protocols used to achieve this are system dependent. For further details, see the
discussion under exception processing.

3.7 Effect of alloca() on stack frame

In C, the alloca() function allocates storage in the stack frame for local non-static variables whose
sizes are not known at compile time. The function is typically built into the compiler and is exe-
cuted as in-line code rather than as a true call. On Little-Endian PowerPC, we perform the
alloca() function by bumping the stack pointer back (toward lower addresses) to make room for
the allocated variable and readjust some of the stack frame header information.

Figure 11 shows what happens to the stack when alloca() is issued to obtain storage to hold vari-
able x. Note that r.sp still points to the current stack frame, as it always must, and that an addi-
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Before alloca() to hold x: After alloca() to hold x:

r.sp —m DBack chain

rsp ——®| Backchain Ir.sp — |  Areafor cunstructing
overflow argument list

Area for constructing Area allocated for x
overflow argument list

Area containing local, Area containing local,
non-static variables non-static variables
Area containing Area containing
saved registers saved registers
establihser - establisher g
frame —  Back chain frame — Back chain

Figure 11 Stack frame before and after alloca()

tional register is used to address that portion of the stack frame containing ordinary (non-
alloca()) local variables. Here we have called the additional register r.frame, for "frame pointer",
but this value is not pre-assigned to a specific register and can vary within a function as the com-
piler’s register allocation mechanism finds best.

When variable X is allocated, the stack pointer (r.sp) is decreased by the length of x (rounded up
to satisfy stack frame alignment requirements). The address of the previous stack frame, (the
back chain) is stored in the first word at the new header location. None of the other contents of
the stack frame header are copied to the new header location, because the other header cells are
never used by the current function. If the compiler has assigned a register to provide the base
address for references to the function’s local non-static, non-alloca() variables, the value in that
register does not change. The compiler is free to choose whatever value it wants for this purpose,
but a convenient value would be the stack pointer of the caller: the establisher frame.
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The implementation of alloca() must insure that the stack does not overflow. The same consider-
ations apply here as for the case when a stack frame is allocated. The guard page will automati-
cally detect stack overflow when r.sp is updated. If the amount to be allocated exceeds the size of
the guard page, an explicit test must be made like the one made when a similarly large stack
frame is allocated.

3.8 Other built-in subroutines

In addition to the register saving and restoring functions and routines to allocate large objects on
the stack, certain other heavily used functions have "well known" entry names that are never
exported and so must be bound directly with their caller. This avoids the necessity for accessing
these functions via the TOC.

This rapid linkage is intended for high-use routines such as those for character string operations,
math operations that may have different underlying implementations on different processors,
and the like.

Such routines are not passed their TOC pointer in register 2; they receive whatever the caller left
there instead (since the linkage is done as if it were local). Linkage to such routines may be non-
standard in other ways as well — they may be known to the compiler to kill fewer registers than
usual, for example.

The list of such routines and their interface definitions is system specific.

3.9 Additional data structures for programs

In addition to the ".text" and ".data" sections that contain the executable code and the data that
the code uses, additional data structures must be generated by compilers to support functions
such as exception handling, traceback, and debugging. Since some of these are system specific,
the sequel discusses them in a rather general fashion.

3.9.1 Tag Tables

Static information about procedures is used by RTE! routines to perform functions such as gener-
ating traceback information or processing user exceptions. In order to perform these functions,
the system routines must be able to find the required information. In the AIX architecture, the
information is located in what are called tag tables. Each procedure has a tag table which is
located immediately after the code, and separated from it by a word of all 0 bits. Given an
instruction address, the tag table for the procedure containing the instruction can be found by
scanning forward for the word of 0’s, which is a distinctive pattern. That location turns out to be
poor because it introduces non-instruction data into the instruction cache, reducing its efficiency.

For Little-Endian PowerPC, the tag tables will be disjoint from the code and can be found using a
tag table index, also disjoint from the code. Every executable or dynamic link library contains a
single tag table index: an array of entries each of which contains pointers to the beginning and
end of the code for a procedure. System exception handlers access a procedure’s tag table to
obtain static information needed to perform such functions as stack unwinding, tracebacks, or
specialized exception processing. Thus, a tag table is required for every procedure for which any
such information is needed. Clearly, this requirement is system specific, although some language

1. Run Time Environment
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constructs (e.g., "try-except" in C) impose requirements of their own. A system function (TBD)
will, given an instruction address, return the address of the relevant tag table index.

The entries in the tag table index are arranged so that the pointers to procedure beginnings
appear in ascending order. Therefore, given a pointer to an instruction (i.e., an instruction
address), a binary search over the table can be used to find the entry that corresponds to the pro-
cedure containing the instruction. If no entry corresponds to the procedure, that fact is also deter-
mined.

In the preceding paragraphs, the term pointer rather than address is used to emphasize that the
values need not be actual addresses but rather values from which addresses can be determined;
i.e, offsets from a known address. Since the tag table index can be in read-only storage, the
address of the tag table index itself could be used as the known address. Making pointers relative
in this way avoids the necessity of relocating the tag table index at load time.

Language processors will be responsible for producing sections containing tag table index
entries and sections containing tag tables. The linker concatenates the tag table index entries in
the same order as it concatenates the corresponding code sections, and locates the resulting index
and the aggregated tag tables in read-only portions of the executable.

3.9.2 Tag table index format

Although the specific format is system dependent, the minimal information that must be
included in the tag table index is the entry point address of the code corresponding to each pro-
cedure that has a tag table. If a part of the tag table is constant format, then that portion also can
be contained in the tag table index.

3.9.3 Tag table format

This again is system specific. If not included in the tag table index, then a pointer to the end of
the procedure must be included in the tag table so that, given an instruction address, its contain-
ing procedure can be obtained unambiguously (recall that not all procedures necessarily have
associated tag tables).

For language processors derived from the AIX compilers, the following tag table format is
derived from what is now used on AIX and can serve as a starting point for defining appropriate
tag tables:

struct TAG_TBL
{

char format=1; /I identifies format of table
// the following is a table of format 1.
char lang_ident; /I Source language identifier (C=0,Fort=1,

/l Pas=2,Ada=3,PL/I=4,Basic=5,Lisp=6,
/I Cobol=7,Modula2=8,C++=9,RPG=10,
// pl.8=11,ASM=12)

unsigned is_out prol:1; //true if out of line prolog or epilog

unsigned short_tag;1; /I true if tag table is abbreviated

unsigned int_proc:1; /[ true if this is an internal procedure
unsigned no_toc:1; // true if procedure does not have a TOC
unsigned saves_cr:1; // true if prologue saves condition register
unsigned saves_r2:1; // true if r.2 saved in r.31
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saves_lIr:1 ;
no_backch:1;
has_alloca:1;
has_imask:1;
has_try e:1;
has_try fi1;
split_prologue
spares:3;
code_end;
frame_siz;
gp_save;
fp_save;

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
char

char

LE PPC Linkage 3. General Conventions

/[ true if contents of link register changed
/[ true if proc does NOT store backchain
/[ true if procedure contains alloca

/[ true if there is an interrupt mask in table
/I true if procedure contains try-except

/[ true if procedure contains try-finally

/[ true if prologue not always executed

// offset of procedure’s end from its entry
/I extent of stack frame

/I number of first gpr saved (32 if none)
/I number of first fpr saved (32 if none)

unsigned char delta_anks// offset to CTL_ANK from addr of tag table

unsigned char delta_try
char nam_len;
char

s
struct TEF_BLK

{
unsigned num;

struct TEF_BLK_DATA{
unsigned begin_try;
unsigned length_try,
unsigned begin_f;
unsigned begin_t;

} tefs[num];
|3
struct CTL_ANKS

{
unsigned num;
unisgned anks[num];

1

name[nam_len+1];

/I offset to TEF_BLK from address of tag table
//'length of procedure name
// procedure’s hame (null terminated)

/I number of entries for try blocks

/I offset of try from proc entry point

/I'length of try

// offset of filter or finally frm proc entry point
/I offset of exception handler, or O

// one for each entry

// number of ctl anchors
// offset in stack frame of each anchor

Given a pointer to the tag table, p, and assuming that p->has_try_e | p->has_try_f is "true", the
pointer to the TEF_BLK subtable is obtained by adding the value in p->delta_try to p!. The
pointer to the CTL_ANKS subtable is obtained similarly using p->delta_anks. That subtable con-
tains pointers to heap storage that is to be restored automatically on exit from a procedure,

"destructors”, and the like.

3.9.4 Special Routines (millicode)

In order to process exceptions properly, some of the millicode sequences must be recognized and
treated in a special fashion. Entries in the tag table index for such sequences serve to identify

them.

1. More formally, (struct TEF_BLK *)(p->delta_try + (int)p).
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3.10 Programmed Exception Processing

It is profitable to consider exception processing as consisting of two parts: language-independent,
and language-dependent. For systems such as AIX and NT, the model of execution is stack-frame
based, and the language-independent portion of exception processing encompasses the notion of
stack unwinding. The language dependent portion deals with particular constructs in a language,
such as try-except and try-finally in (Microsoft extended) C.

3.10.1 Stack Unwinding

Simply stated, unwinding a frame is the process that, given an instruction address (pc value) and a
state, produces the instruction address of the branch instruction that implemented the call to the
function containing the given instruction address, and produces the state at the time of the
branch. The term state in this context means the set of values in all the non-volatile registers. For
languages whose run time environment includes a dynamic stack, the state also includes the rel-
evant address (sp) of the stack frame active when an instruction is executed.

Two basic steps are involved in stack unwinding:
= Given a pc (value), identify the procedure containing the instruction
= Knowing the procedure, restore the state to what it was when the procedure was called.

The first step makes use of the tag table index. A binary search will determine whether there is an
entry for the procedure. If there is no entry, then (barring any special handling) the state of the
machine is presumed to be unchanged from when the instant procedure was called, and the pc of
the branch instruction is presumed to be in the link register.

If there is an entry, then the entry identifies the corresponding tag table. There must be sufficient
information in the table to permit the stack undwinder to know whether or not the link register
has been saved, which non-volatile registers (including the TOC register) have been saved and
where, and to indicate the size of the current stack frame. Obviously, this is sufficient to restore
the state to what it was when the procedure was called.

3.10.2 Special considerations

Special circumstances that may occur during exception processing require special consider-
ations. The details will vary from system to system depending upon the specifics of the various
implementations, but the following must be kept in mind when designing mechanisms:

At what point in the code an interrupt occurs

Asynchronous interrupts

Multiple exceptions
= General performance

The first deals with knowing precisely the state when an interrupt occurs. For example, it may be
that different numbers of registers are saved (and restored) depending on what path of execution
is taken through the program. So restoring registers can only be done if restrictions on how regis-
ters are saved (and restored) coupled with the information in the tag table is sufficient to recon-
struct what it is necessary to do.

Asynchronous interrupts present problems because they may occur at points where it is difficult
to determine the state of the code. For example, if such an interrupt occurs after the stack frame
pointer has been restored but before the code has branched back to its caller, then the stack
pointer does not correspond to the procedure determined to be executing from the tag index
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table. Code sequences should be constructed to enable proper determination of the state of com-
putation when such an interrupt occurs.

Exception handlers may involve code running on the program stack, but even if they are running
on separate stacks, care must be taken to deal with exceptions that occur during exception pro-
cessing.

Finally, attention must be paid to the performance cost involved in the implementation of excep-
tions, particularly for the vast majority of code that does not experience an exception. It is better
for exception processing to be somewhat costly when an exception occurs (by definition an
exceptional event), rather than entailing a cost for all cases when no exception occurs. Although
a useful programming tool, exceptions should not become ordinary coding practice.

3.10.3 Register save/restore millicode

If an exception occurs in register save millicode (recognizable by its tag table index entry), it is
safe to use as the pc the value in the link register. Partially executed save millicode does not
change any state.

If an exception occurs in register restore millicode (again recognizable by its tag table index
entry), the proper unwind step is to complete execution of the millicode and then take as the pc
the target of the final branch. This gives the correct answer whether or not it is in the procedure
that branched to the millicode.

3.10.4 Glue code

Glue code need not have entries in the tag table index since the link register is not changed by
such sequences!. However, since the load instruction that restores the TOC register actually
appears in the calling function (refer to Section 3.6.4), information must be available to exception
processing routines like the stack unwinder to enable them to recognize that the TOC register
must be restored as a part of stack unwinding. One way is for the unwinder to examine the
instruction pointed to by the link register and recognize the load instruction that restores r.2.
Another way is to include the necessary information in the tag table. In the latter case, the com-

piler is free to locate the znop instruction as it sees fit to achieve better performance.

3.10.5 Considerations for language processors

Various exception mechanisms are defined in various languages. The architecture of the tag
index table and the tag table is designed to accommodate their implementation. In addition, sys-
tem support in the form of stack unwinders, state savers/restorers, etc., may be defined in some
platforms.

The responsibility of a language processor is to produce the information that is required to
implement the language’s exception mechanism for use both by system code (the tag table index)
and language specific code (the tag table).

3.11 Millicode

We use the term “millicode” for code that is higher level than microcode but not up to the level of
general-purpose functions. Examples include the register save and restore sequences discussion
in Section 3.6.8, glue linkage code sequences, stack overflow checking code, and the code used to

1. Note that the NT implementation requires such entries, viz. Section 5.7.7
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access special purpose registers described in Section 3.11.4. Such code has the following charac- |
teristics:

= It is intended to supply the function of an instruction that may be missing in certain
implementations, or it papers over differences in semantics for the same instruction on
different implementations.

» It may use non-standard linkage. Fewer registers may be killed across the call than the
linkage standard says, for example. A compiler could take advantage of this and keep
values in registers that would be considered volatile for an ordinary call.

= It must not require a TOC pointer change. This implies:
0 It cannot call any other routines except other millicode.
0 It cannot have any static storage.
0 It cannot be exported, so that no glue is required to call it.

Millicode should not ordinarily be used for routines such as those that would appear in libc, but
might be useful for lower-level routines called by libc routines. If a millicode routine were pro-
vided that performed the function of strcpy() for example, its implementation as millicode would
preclude the user’s replacing the library version with his own. Rather, millicode routines might
be provided to perform the function of the Power string instructions, which are missing from Lit-
tle-Endian PowerPC, and these routines might be called by the library strcpy() routine.

3.11.1 Location of millicode

Millicode is not mapped at any specific location; it is called by its published name.

3.11.2 Calling sequence for millicode

A call to a millicode routine follows the same calling sequence conventions as for ordinary calls,
with a few exceptions.

» The stack frame pointer must be in r.sp (register 1) as always. If the called routine buys a
stack frame, it must follow all the conventions regarding setting the back chain, etc.

= More or fewer registers may be killed across the call than for a standard call. This is sub-
ject to negotiation between the millicode implementor and compiler implementor.

= Parameters and return values may be passed in non-standard registers. Also subject to
negotiation with the compiler implementor.

= The actual call (branch and link instruction) is generated as if the millicode routine were
known to be local to the executable load module. That is, a branch and link relative
instruction directly to the entry point is generated rather than a sequence of code that
loads from a function descriptor and then branches via the Link Register.

3.11.3 Compiling calls directly to millicode

The TOBEY compiler for AIX can do string copies by
= Compiling a call to the strcpy() routine in libc, or
= Generating Power string instructions in-line.

The equivalent on Little-Endian PowerPC would be by
= Compiling a call to the strcpy() routine in libc, or
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= Generating calls to millicode routines that perform low-level string operations similar to
those of the Power string instructions.

A compilation option (command-line flag, #pragma, #define, . . .) should indicate which strategy
to follow.

3.11.4 List of supplied millicode routines

A set of routines is provided for reading and writing the special-purpose registers of PowerPC,
as shown in Figure 12. Since some of the operations performed may require supervisor state
privilege, programs running in problem state must be written to avoid the routines using those
operations.

The BAT (Block Address Translation) register read/write routines use the following structure

parameter:

typedef struct _bat {
unsigned long batu;
unsigned long batl;

/l upper BAT register
/I lower BAT register

} bat;
Register Function prototypes for reading and writing
void * ppc_read_dar ();
DAR ppc_read_dar ()
void ppc_write_dar (void *addr);
unsigned long ppc_read_dec ();
Decrementer
void ppc_write_dec (unsigned long val);
unsigned lon c_read_dsisr ();
DSISR g g ppc_ _ ()
void ppc_write_dsisr (unsigned long val);
unsigned lon c_read_ear ();
EAR g g ppc_read_ear ()
void ppc_write_ear (unsigned long val);
bat ppc_read_dbat (int num);
DBAT n PPe- — ( )
void ppc_write_dbat (int num, bat val);
bat c_read_ibat (int num);
IBAT n PPe— — ( )
void ppc_write_ibat (int num, bat val);
PVR unsigned long ppc_read_pvr ();
unsigned lon c_read_sdr1 ();
SDR 1 g g ppc_ _ ()
void ppc_write_sdr1 (unsigned long val);
unsigned lon c_read_sprg (int num);
SPRG 1 g g ppc_ _sprg ( )
void ppc_write_sprg (int num, unsigned long val);
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Register Function prototypes for reading and writing
SR unsigned long ppc_read_sr (int num);
n
void ppc_write_sr (int num, unsigned long val);
void * ppc_read_srr0 ();
SRR D ppc_read_srr0 ()
void ppc_write_srr0 (void *addr);
unsigned lon c_read_srri ();
SRR 1 g g PPC_ _ (
void ppc_write_srr1 (unsigned long val);
B unsigned long ppc_read_tb ();
void ppc_write_tb (unsigned long val);
unsigned lon c_read_tbu ();
TBU g g ppc_ _tbu (
void ppc_write_tbu (unsigned long val);
unsigned lon c_read xer ();
XER g g PPC_ _xer ()
void ppc_write_xer (unsigned long val);

Figure 12 Millicode prototypes for reading/writing Special Purpose Registers
3.11.5 Additional Millicode

Other millicode sequences are system specific. Included are specific routines to save and restore
registers, check for stack frame overflow, and the like.
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4 Local vs. Imported calls

4.1 Categories of calls

Function calls in C can be grouped into several categories, based on what is known about the tar-
get of the call at compile time:

Call via Known location of target Syntactic form
Pointer-to-function — (*fnptr) ();
Function name Part of caller’s executable n ();

External to caller (e.g., in a DLL) fn ();
Unknown at compile time n ();

Figure 13 Call categories

The location of the called function relative to the calling function has a strong influence on the
code generated for the call.

= Calls to functions that are part of the caller’s executable can usually be done with a sim-
ple branch-and-link-relative (bl) instruction rather than a sequence of instructions that
load the entry point address and branch-and-link via the Link Register (blrl).

= Calls to functions that are part of the caller’s executable can use the caller’s TOC pointer;
they need not load a new TOC pointer from a function descriptor.

In the absence of explicit information about the location of a called function, the compiler must
make an assumption as to whether the call is "local" (to a function that is part of the caller’s exe-
cutable) or "imported" (to a function that is outside the caller’s executable). As is apparent from
the table above, the syntactic form of the call alone can distinguish calls via function pointers
(which are presumed to be imported) from calls via function name, but the calls via name cannot
be further subdivided. The compiler must therefore "guess" (that is, apply its default choice)
whether to generate local or imported linkage, and this choice cannot be proper for all calls.
Judicious use of compiler command-line options and #pragma statements (see section 3.6.6) that
specify local or imported linkage for particular calls or groups of calls can strongly affect the effi-
ciency of the compiled code.

4.2 Call via pointer-to-function

A pointer-to-function is actually a pointer to a function descriptor, which contains the called
function’s entry point address and TOC address. The called function can be anywhere relative to
the caller. In particular, the called function’s TOC pointer may be different than the caller’s TOC
pointer or it may be the same. In principle, the compiler could generate code to determine at run
time whether the TOC pointer must be loaded for such a call, but the code to do the test would
take longer than just loading the TOC pointer unconditionally.
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As a result, calls via pointer-to-function are compiled to save the caller’s TOC pointer (if not
already done so earlier in the program), load the caller’s entry point address and TOC pointer,
and branch-and-link via the Link Register.

4.3 Call via function name

Here the compiler has a choice:

= Generate a call via the target function’s function descriptor, loading the entry point
address and TOC pointer from the descriptor, or

= Generate a direct branch-and-link without loading a new TOC pointer.

The first course will always work (it’s "safe") and, while not as efficient as the simple branch-and-
link, is not excessively inefficient given that the compiler can schedule the call’s instructions
along with those for argument loading and other computation.

The second course is the default since it produces the most efficient linkage for what is expected
to be the preponderance of cases. This is the same as is the default for AIX on RS/6000, and has
the disadvantage that calls to functions in shared libraries are not resolvable at link-edit time.
Instead, the linkage editor must resolve the call to "glue" code, a local sequence of instructions
that implements the call by saving the caller’s TOC pointer, loading the target’s entry point
address and TOC pointer, and issuing a branch via a register to the library routine.

Note that calls that are presumed at compile time to be local but that are discovered at link-edit
time to be imported cannot possibly be as efficient as calls that are presumed at compile time to
be imported. There is the overhead of branching to the glue code, the possibly redundant saving
of the caller’s TOC register (the linkage editor cannot know whether it is safe to omit this store?),
and the fact that none of the glue code can be scheduled with the rest of the caller’s code. This
latter overhead is especially significant, as there are unavoidable dead cycles while the processor
waits for the register to be loaded and the branch to the target to be resolved.

4.4 Making calls more efficient

With the proper use of #pragma statements (or via command-line arguments), the compiler can
be induced to generate the most efficient linkage for each call.

No additional information need be provided for two categories of calls:
= Calls via function pointer. For these, the compiler always generates "imported" linkage.

= Calls to routines defined in the same source file as the caller. For these, the compiler can
generate "local" linkage since they are by definition in the same executable as the caller. It
is not incorrect for the compiler to generate "imported" linkage, but it is less efficient to do
SO.

This leaves calls by name to routines that are defined in compilations other than that of the caller.
The compiler’s default is to treat such a call as "local", which may entail call time overhead in the
form of "glue" code. The following strategy when coding a source module should result in the
most efficient linkage.

/* A typical module, which calls
* -- system-supplied functions in various libraries, with

1. It has been proposed that a means be provided for the compiler to communicate to the linker that the
store is not required in the linkage glue because it is redundant.
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prototypes in system header files, and
-- user-supplied functions linked together into a
single executable, with prototypes in local
* header files
*/

#pragma procimported

#include <stdio.h>
#include <...> /* other system header files */

#pragma proclocal

#include "localhdr.h"
#include " ... " /* other local header files */
main ()

{
.

The intent here is that all functions with function prototypes in system header files are called via
function descriptor, and all functions with function prototypes defined locally (in local headers
or in the source program itself) are called via simple branch-and-link.

4.5 Consequences of "guessing wrong"

If the compiler is told via #pragma or command-line argument that a particular function foo() is
local, and the linkage editor discovers at link time that foo() is in fact not part of the executable
but is in a library, then glue code is inserted as described in the previous chapter. The resulting
inefficiency can be eliminated by proper use of compiler directives.

Assuming that the linkage editor lists all the local calls that entail the introduction of glue code,
this can be accomplished with reasonable effort. It is a simple matter to add the list of local call
"failures" to a -qprocimported invocation parameter for the compiler, especially if a build tool
such as make or nmake is being used. The source files are then recompiled, without making any
changes to the source files themselves, and this time the link-edit should complete without glue
code.

One would expect to treat critical applications in this manner, and hence it is a valuable function
for the linker to produce the relevant information messages.
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5 NT-Specific Conventions and Struc-
tures

The material in this chapter deals with items that are specific to the port of Windows-NT! to
PowerPC. It should be read in the context of Chapters 1 - 4, for which it provides refinements and
additional definitions.

5.1 Naming Conventions

5.1.1 Functions and function descriptors

As described in Section 3.5, two names are required: the name of the function descriptor and the
name of the code entry point. For a function "foo",

= foo is the name associated with the descriptor
= ..foo is the name associated with the entry point of the procedure.

The unadorned name is the one that is used to reference a function — the address it denotes
would be the value assigned to a function pointer, for example.

Except when writing assembler code, programmers generally need not be aware of the entry
name for a function. The only name used in source code and imports and exports lists is the
unadorned function name. The entry name is automatically generated by the compiler, together
with the appropriate RLDs and symbol table entries to allow the linker to make the right connec-
tions. Entry names also appear in special stub sequences called glue code used in implementing
calls to functions in shared libraries. These sequences are automatically introduced by the linker.
Source language debuggers should allow users to use function names when setting entry point
break points.

5.2 Stack frame layout

The stack frame layout in the NT implementation differs from that described in section 3.3.1. The
stack frame header contains 6 words and the output argument area contains at least 8 words,
providing the space to store the 8 general purpose parameter registers.

5.2.1 Stack frame header

Because the glue sequences in NT must save the link register, a slot is reserved for this purpose,
and an additional slot is reserved for future use. The stack frame header in the NT implementa-
tion is

1. Windows-NT is a copywrite of the Microsoft Corporation
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Offset (hex) Contents

0 Back chain; points to caller’s (next higher addressed) stack frame
4 Slot for glue code to save a register

8 Slot for glue code to save a register

C Reserved for future use

10 (spare)

14 (spare)

Except for the back chain, a function never stores into any other words of its "own" stack frame
header. Thus while a function is actively executing, only the back chain slot in its stack frame
header contains useful data. This allows an efficient implementation of the alloca() function,
which need only move the back chain field to a lower address in order quickly to allocate addi-
tional storage in the stack frame. Linker-inserted "glue" code (see Section 3.6.4) may use reserved
locations in the header to save up to two registers, usually the link register and register 2. One
location is reserved for future use. The remaining two words are "spares” that may be used by
specialized utilities such as profilers, tracers, debuggers, etc..

5.2.2 Output argument area

This portion of the stack frame is used to contain arguments to be passed to called functions, and
must be at least eight words long. See Section 5.4, “Parameter passing” on page 53, for details.

5.2.3 Minimum stack frame size

A program need not acquire a stack frame at all if it

= requires no stack storage outside the "slack space" (see Section 3.3.7), taking account of
any other routines that may be using the slack space simultaneously, and

m calls no other functions that use the stack.

If a stack frame must be obtained, the minimum size frame consists of the header (6 words = 24
bytes) plus the smallest allowed output argument area (8 words = 32 bytes), for a total minimum
size stack frame of 64 bytes since frame sizes must be a multiple of 16 bytes.

5.3 Calis to functions not in same executable

Section 3.6.4 discusses how linker introduced linkage glue is used to implement calls that are dis-
covered, at link time, to be to functions not in the same executable. The NT implementation dif-
fers somewhat from that description because of differences in library management and linker
operation. In addition, the glue sequences are different.

5.3.1 Functions in shared libraries

In the NT port, when a program is linked that involves procedures from a library, a .lib file is
included as an argument to the link step. The .lib file contains, among other things, stub
sequences of code (variously called "thunks") and some directory and symbol information per-
taining to the actual code and its descriptor, which are contained in a corresponding .dll file. For
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example, if a procedure in the program calls a library function called foo, the .lib file will contain
a sequence of instructions with name ..foo. Note that the name associated with the glue code is
identical to the name associated with the code for the called function. Recalling that a local call to
foo is implemented simply by a branch-and-link-relative to ..foo, the linker will automatically
resolve the reference to the glue code in the .lib file with the same name. The form of the linkage
glue is shown in Section 5.3.2. The NT linker does not construct it at link time; it merely copies it
into the executable. The labels ..foo , foo.body, and foo.end indicate the three addresses needed
for the function table entry associated with exception processing (see Section 5.7.7 ).

The .lib file contains sufficient information for the linker to construct the appropriate TOC entry
for [toc]foo and the necessary relocation information to enable the later load step, in the presence
of the .dll file, to result in correct references to the TOC and correct address information in the
TOC.

5.3.2 Glue code sequences for NT

The glue code sequences used in NT save and restore the link register. This makes it unnecessary
for language processors to reserve room, as indicated in Section 3.6.4, for an instruction that may
be needed to restore the TOC register following a branch and link. The required load is included
in the glue sequence.

For a call to an imported function foo, the glue sequence bound into the same module as its caller
is:

..foo:
lwz  r.11, [toc]foo(r.2) # get address of foo’s descriptor
stw  r.31, glsavel(r.1) # save r.31 preparatory to using it
lwz r.12, 0(r.11) # get address of ..foo
mflr  r.31 # save link register in r.31
mtctr .12 # get ready to branch to ..foo
stw  r.2, glsave2(r.1) # save r.2
foo.body:
lwz  r.2,4(r11) # load foo’s r.toc
bctrl # branch and link to ..foo
mtlr .31 # get ready to return
lwz r.31, glsavei(r.1) # restore r.31
lwz r.2, glsave2(r.1) # restore r.toc
blr # return to caller
foo.end:

The labels foo.body and foo.end are included for clarity. They are not externally visible names
and do not participate in name resolution. They denote the addresses that play a role in excep-
tion processing and stack unwinding. In particular, glue code must have entries in the tag table
index (see Sections 3.9.2 and 5.7.7). This is a responsibility of the linker. The exception handler
does not otherwise treat glue code in any special way.

5.4 Parameter passing

The following describes the parameter passing paradigm implemented for NT. Except for some
minor details, it is the same as used in AIX and as described in the Power ABI document.
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5.4.1 Non-float arguments

For Little-Endian PowerPC, as for AIX on Power, we pass up to eight words in the general regis-
ters, loading them sequentially into general registers 3 through 10. In addition, up to thirteen
floating point arguments can be passed in floating point registers 1 through 13. If fewer (or no)
arguments are passed, the unneeded registers are not loaded and will contain undefined values
on entry to the called function.

In only two cases, both relatively infrequent, must arguments be in storage for a call:

= When the amount of data being passed is more than will fit in the eight general registers
(and the thirteen floating point registers) provided. The remainder is placed in storage.

= When the called function takes the address of one or more of its input parameters. For
example, printf() does this when it interprets at run time the types of its parameters, and
steps through them one at a time using the varargs macro.

To handle both situations, a fixed area in the stack frame is allocated to hold the data being
passed. Figure 14 shows a detail of the caller’s stack frame where space is reserved for argu-

Caller’'s o
r.s ri
P (gpr 1) » Back chain Glue-saved register
Glue-saved register Reserved
Spare Spare
Always Parameter word 0 Parameter word 1
present
Parameter word 2 Parameter word 3
Parameter word 4 Parameter word 5
Parameter word 6 Parameter word 7
Parameter word 8
Increasing Local variables
addresses

Figure 14 Parameter list area in stack frame

ments passed to a called function’s parameters. The compiler reserves in the caller’s stack frame
enough space for the caller to construct the longest argument list necessary for all the functions
that it calls. The eight shaded words are always reserved; these correspond to the eight general
registers in which a precedure can find its parameters (registers 3 through 10). For any call
requiring more than the eight registers, words after the eighth are stored in the caller’s stack
frame beginning with the slot labelled "Parameter word 8" in Figure 14. Nothing is stored in the
eight shaded words before the call is made; only the overflow goes to storage.
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The called function accesses the first eight words of its parameters in general registers 3 through
10. For parameters beyond the eighth word, it must access the list constructed in the caller’s
stack frame. It is trivial to locate this: the compiler knows the length of the stack frame that it has
built, and the list starts at a fixed location in the caller’s stack frame as shown above. Thus the
ninth parameter word is at offset 56, the tenth at offset 60, etc. Alternatively, since the caller’s
stack pointer is always stored at offset 0 from the current stack pointer, that value can be loaded
and used to address the parameter list.

In the case where the called function takes the address of an input parameter, or treats its param-
eters as an array, the eight words allocated in the caller’s stack frame can be used as targets of
store instructions for registers 3 through 10. Since the eight words are always present, the called
function can blindly store all eight registers without regard to their contents. The entire parame-
ter list will then appear in a contiguous area in storage. Aggregates such as structures passed by
value are also passed in registers and/or the parameter list. The entire structure is considered to
be mapped on the parameter list beginning at the location corresponding to its position in the
argument list and satisfying its alignment requirement..

5.4.2 Floating point arguments

Floating point arguments are passed in floating point registers 1 through 13. If there are more
than thirteen such arguments, the remainder are passed in storage in the argument extension
area, intermixed with any non-floating arguments as indicated in Section 5.4.3.

5.4.3 Mapping the argument list

The details of argument passing are most easily understood in terms of a conceptual argument
list. As mentioned in the preceding section, this is a list of fullwords in storage. Taking all the
arguments in order, each is placed in the next available word in the list. Double arguments are
placed starting at the next available word in the list that is on a doubleword boundary, as are
structures that must be so aligned. A structure argument must be aligned on a double if it has a
size exceeding 7 bytes (some compilers are unable to tell whether or not a structure contains a
double, so using the size of the structure this way guarantees that avery structure containing a
double is double word aligned). Each argument appears in the argument list exactly as it would
appear in storage and each separate argument begins on at least a word boundary.

The actual argument list is like the conceptual argument list except that the contents of the first
eight fullwords (including any floating point values) are placed in general purpose registers 3
through 10 rather than in the list, and in addition, the first thirteen floating point scalar arguments
are placed in floating point registers 1 through 13. Any floating point value (or part) that appears
after the eighth word also remains in the list. The resulting argument list appears in the stack
frame of the calling procedure.

If a function prototype is present that specifies all the parameters of the function!, redundancy
can be eliminated from the argument list: floating point values that appear in floating point reg-
isters need not also appear in general purpose registers or in storage. However, even in this case
the space for them is retained since the called procedure cannot know whether or not a function
prototype was available to its caller.

1. That is, no call instruction to the function supplies more arguments than there are parameters in the pro-
totype. In effect, the function and its caller agree in advance about the number and types of parameters. This
would not be true, for example, for a function like printf, which determines its parameter types at run time
and uses the varargs macro to access them.
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5.4.4 Return values

Certain values returned from a function are placed in parameter registers in the same way as
they would be if they were being passed as arguments:: scalar non-floating data are returned in
general purpose registers, and scalar floating values are returned in floating point registers. In
particular, a single non-float scalar return value is returned in gpr3 and a float scalar value in
fprl. Languages that implement 64-bit integer data will pass such an item in two consecutive
slots in the argument list, and will return it in gpr3 and gpr4.

A value that is not returned in a register (such as a structure in C) is written by the callee to a
memory location provided by the caller The address of the location is passed as a (hidden) first
argument in gpr3..

5.4.5 Some examples of parameter passing

Assume the following declarations:

typedef struct { int a,b,c; double dd;} sparm;
/* assumed structure mapping requires dd to be doubleword aligned */
sparm s,t;
int x, *y;
char c;
double ff,gg;

Example 1:
x = noProto(x,c,y,ff,s,gg)

The indicated arguments would appear in the conceptual argument list, which begins at offset 24
(18 hex) from the caller’s stack pointer, as follows: x at offset 24 (18 hex), ¢ at offset 28 (1c hex), y
at offset 32 (20 hex), etc. Because of alignment requirements, ff begins at offset 40 (28 hex), skip-
ping the word at offset 36 (24 hex). Hence the actual places occupied by the arguments are as
indicated in Figure 15.

gpr’s storage at offset fpr’s
gpr3 X 18 (hex)
gpr4 C 1c
gprd y 20
gpré 24
gpr7 ff(low) 28 fprl ff
gpr8 ff(hi) 2c
gpr9 s.a 30
gprl0 s.b 34
38 s.C
3c

Figure 15 Parameter passing, example 1
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gpr’s storage at offset fpr’s
40 s.dd(low)
44 s.dd(hi)
48 gg(low) fpr2 gg
4c gg(hi)

Figure 15 Parameter passing, example 1

Example 2.

sparm Proto(sparm,double, int,double);
t = Proto(s,ff,x,09);

Since a structure value is being returned, the caller allocates temporary space for it in its stack
frame and passes the address of the space as a (hidden) first argument.” The required alignment
for structure s forces it to begin in register r.5 (associated with offset 32 = 20 hex) rather than r.4.
The presence of the prototype makes it possible to pass the floating arguments in floating point
registers only. Space for them must still be reserved, however, which explains why x appears at
offset 64 (40 hex) rather than 56. The arguments thus actually appear as shown in Figure 16.

gpr’s storage at offset fpr’s
| gpr3 &temp 18 (hex)
| gprd 1c
gprd s.a 20
gpro s.b 24
gpr7 s.c 28
gprd 2c
gpr9 s.dd(low) 30
gprl0 s.dd(hi) 34
| 38 fprl ff
3c
40 X
44
48 fpr2 gg
4c

Figure 16 Parameter passing, example 2

1. When possible, an optimizing compiler might be able to use the target of the assignment (t) directly as the
temporary, thus avoiding a copy when the function returns.
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Example 3:
This example is rather simple and is included to show the basic efficiency of the parameter pass-
ing.

extern double foo(int *,double,int,int,double,double)

ff = foo(y,ff,x,*y,99,99+1.0);

yisinr3, ffisinf.1,xisinr.7, *y isin 1.8, gg is in f.2, and gg+1.0 is in {.3. The double is returned
in f.1. The layout is shown in Figure 17. If the function prototype were not present, in addition to

gprs offset from caller’s stk ptr tprs

gpr3 y 18 hex

gprd 1C

gpr5 20 fprl ff, return val

gpr6 24

gpr7 X 28

gpr8 *y 2C

gpr9 30 fpr2 gg

gprl0 34
38 fpr3 gg+1.0
3C

Figure 17 Parameter passing, example 3

the above, the argument ff would also be in r.5 and r.6, gg would also be in .9 and .10, and
gg+1.0 would also be in the double word of storage at offset 0x38 from the stack pointer. Notice
that the presence of the prototype allows for a more economical passing strategy; it does not force
it: no harm is done if the floating arguments appear in both places.

5.5 PE Module Format

Windows NT’s object module structure is called Portable Executable, or PE. It is derived from
UNIX! COFF, or Common Object File Format, with optional headers and additional sections as
allowed for in the COFF architecture.

5.5.1 New COFF section types in PE

In order to support position-independent code via the TOC, and tag tables for exception han-
dling and debugging, some new COFF section types are defined and special processing of TOC
references is added. The strategy is as follows:

1. UNIXis a trademark of UNIX System Laboratories
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= Several new COFF section types are introduced:

.reldata Like .data but intended to hold data subject to relocation, such
as function descriptors.

.pdata Tag index tables (function table for NT port) (for exception han-
dling, debugging, etc.)

.ydata Tag tables (scope table for NT port) (for exception handling,
debugging, etc.)

.toc The TOC. This is actually a subsection of the .idata section.

= The new section types are generated by the assembler (and eventually directly by compil-
ers) and are processed as are other distinct section types by the linker, up to the point
where an executable module (".exe" file) is generated. When processing multiple input
files, the PE linker concatenates together all the .text sections into a single .text section, the
.data sections into a single .data section, etc. This same process is followed for the newly-
added COFF section types for PowerPC: .reldata is concatenated with .reldata, .pdata
with .pdata, and so on.

= When an executable file (".exe" or ".dll") is produced, the new sections cease to exist in
their own right — their data are added to the data for the .data and .rdata sections.

The read-write .data section is made up of the concatenation of:
the TOC (see below, for NT this is part of the .idata section),
the input .reldata sections, and
the input .pdata sections, and
the input .ydata sections.
the input .data sections.

The read-only .rdata section consists of the read-only (not to be modified after link
time) program text.

Grouping the TOC and other relocatable data together at the start of the read/
write .data section minimizes the number of pages that must be modified when
loading and relocating a module.

The new sections exist in the PE files only until they are bound into an executable module. They
then become part of the ordinary read-write and read-only data sections and are not distin-
guished to the program loader, for example, as anything other than ordinary data. Thus only the
assembler and linker need to be aware of the new section types.

5.5.2 Construction of the TOC

The information necessary to build the TOC is implicit in the symbol table and in the relocation
information for instructions that refer to the TOC. There is no separate TOC COFF section in
".0obj" files. The symbol and relocation information is maintained by the binder until an execut-
able file is finally produced. At this point the entries that make up the TOC are materialized in
the .idata section..

For example, assume that two different object files contain code that references an external vari-
able x. There is a symbol table entry for x and several relocation entries that refer to "TOC entry
for x", but no instantiation in the ".obj" files of an actual pointer to X. From the existence of the
"TOC entry for x" relocation entries, the PE linker will infer that it must add such an entry to the
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TOC constructed for the ".exe" or ".dIlI" file. It will then cause all the references to "TOC entry for
X" to refer to the single entry in the TOC.

Provision is made in the assembler for references to four kinds of TOC entries:
m [toc] x refers to a default-width TOC entry (currently 32 bits) pointing to X.
m [toc32] x refers to a 32-bit-wide TOC entry pointing to x'.

n [toc64] x refers to a 64-bit-wide TOC entry pointing to x.
» [tocv] x refers to an entry in the TOC that contains X.

For the first three, the assembler will produce RLDs that cause the linker to introduce cells into

the TOC. The last will cause an external reference to a cell that the linker is expected to include in
the TOC.

5.6 Linking programs

Since one of the concerns of the NT port were to minimize changes to existing code, some of the
features of linking work differently than they do in AIX and Power. The following describes, in a
general way, some of the concepts.

5.6.1 Imported items

When linking a module (executable or DLL), symbols that are not resolved locally may be
resolved to items exported from a DLL. To be resolved, such items must be represented by an
entry in the .idata section of a .lib file that is listed as one of the inputs to the link command. The
linker will incorporate such .idata entries into the TOC of the module.

Following the NT linker semantics, the symbol associated with the .idata entry for an exported
data item is given the name of the item, even though it actually represents the address of the
item. Thus, programmers will have to be aware of whether a data item is imported or not when
they write their code. References to an imported item can only be made by a pointer variable that
is given the same name as the exported data item. For example, if confusion is the name of an
exported integer, then the programmer that wishes to access confusion must code

externint * confusion;

which will result in resolving his pointer variable confusion to the .idata cell containing the
address of the exported integer confusion. As was mentioned, this cell ends up in the module’s
TOC.

The situation is a little different for exported functions. In that case, whether or not a function is
resolved locally need not be known in advance. When a function, say foo, is exported, the entry
in the .idata section of the appropriate .lib file is associated with the name __imp_foo. In addition,
the .lib contains a glue code sequence named foo.ep and a function descriptor named foo. The
glue code sequence is:

foo.ep:
lwz r.11, [tocv]__imp_foo_ep #get address of function descriptor
stw r.31, glsavel(r.1) #save r.31 preparatory to using it
lwz r.12, 0(r.11) #get address of the real foo.ep
mflr r.31 #save link register in r.31

1. Not supported in all NT assemblers.
2. Not supported in all NT assemblers.
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mtctr r.12 #get ready to branch to foo’s code
foo.body:

lwz r.2, 4(r.11) #load foo’s TOC address

bctrl #branch and link to the real foo.ep

mtlr r.31

lwz r.31, glsavei(r.1) #restore r.31

lwz r.2, glsave2(r.2) #restore r.toc

blr #return to caller

The .idata entry for __imp_foo points to the "true" function descriptor for foo in the exporting
DLL, and ends up in the local TOC. As expected, a call to foo is implemented by a local bl to
foo.ep, the glue sequence.

This arrangement supports, albeit somewhat awkwardly, static initialization of function pointer
variables to exported functions. For example, the variable pf in

void static (*pf)() = foo;

would be initialized to the address of the descriptor foo associated with the glue sequence indi-
cated above. The awkwardness comes about because calls to an imported function via a statically
initialized function pointer now traverse two glue sequences: one in line and the other intro-
duced during the link step'. An additional awkwardness is due to the fact that the address of a
function is only unique within a module. Thus, the ANSI semantics of pointer function compari-
son are not fully satisfied.

5.6.2 Relocation entries ("RLDs")

The standard PE file definition includes a structure to hold relocation information for use by the
linker and the loader. For Little-Endian PowerPC, the structure is defined like this:

typedef struct _IMAGE_RELOCATION {
ULONG VirtualAddress;
ULONG SymbolTablelndex;
USHORT Type;

} IMAGE_RELOCATION;

The value contained in the 16-bit "Type" field is completely machine-dependent. A scan of the
definitions for various machines contained in the ntimage.h header file reveals that there is
almost no overlap in relocation type values from one machine to the next, so the values chosen
for Little-Endian PowerPC do not have to fit into an existing grand scheme. We define the 16-bit
type field as shown in Figure 18.

= ADDR64, ADDR32, and ADDR16 types are used for fields that are to hold addresses;
these can be data fields (doublewords, words, halfwords) and, in the case of ADDR16, the
16-bit displacement field in a load or store instruction.

= ADDR24 and ADDR14 types are used for addresses in branch and conditional branch
instructions. As indicated in the instruction format diagrams in the PowerPC Architec-
ture books, these represent 26-bit and 16-bit addresses, respectively, whose two low order
bits are presumed to be zero; the bits in the instruction format that would normally be

1. Linker modifications to avoid this problem are under consideration.
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8 bits 8 bits
Flags Reloc Type field in relocation entry
Name Value Description
NOOP 0x00
ADDR64 0x01 64-bit address
ADDR32 0x02 32-bit address
ADDR24 0x03 26-bit address, shifted left 2 bits
(e.g., branch absolute)
ADDRI16 0x04 16-bit address
ADDR14 0x05 16-bit address,
2 low-order bits removed
(e.g., load doubleword)
REL24 0x06 26-bit IAR-relative offset,
2 low-order bits removed
(e.g., branch relative)
REL14 0x07 16-bit IAR-relative offset,
2 low-order bits removed
(e.g., branch conditional relative)
TOCREL16 0x08 16-bit offset from TOC base
TOCREL14 0x09 16-bit offset from TOC base,
2 low-order bits removed
(e.g., load doubleword)
ADDR32NB  0x0A 32-bit offset w/o image base
SECREL 0x0B offset relative to containing section
SECTION 0x0C section header number
| Name Value Description
NEG 0x01 subtract relocation value rather
than adding it
BRTAKEN 0x02 set branch prediction bit to
predict branch taken
BRNTAKEN  0x04 set branch prediction bit to
predict branch not taken
| TOCDEFN 0x08 map cell for symbol in the TOC

Figure 18 Relocation entry type field
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occupied by these two low order bits are used for other purposes and must be preserved
when relocation is performed on the instruction.

= REL24 and REL14 types are used for branches relative to the IAR. They represent 26-bit
and 16-bit displacements; the same comments as above for ADDR24 and ADDR14 apply
here.

= TOCREL16 type is used for 16-bit displacement fields in instructions that reference cells
in the TOC, such as Iwz. The TOCREL14 type is used for 16-bit displacement fields
whose two low-order bits are presumed to be zero (similar to ADDR14 and REL14), and
is used for certain load instructions such as Id.

= ADDRB32NB Address relative to the virtual origin.

= SECREL is used to indicate that the value should be relative to the beginning of the sec-
tion that contains the symbol.

= SECTION For fast access ot the header of the section containing the item. This is used by
the Codeview debugger.

Each of the above values can be combined with one or more flag bits:

= NEG indicates that the relocation value is to be subtracted from the field in storage rather
than added to it.

= BRTAKEN and BRNTAKEN indicate that the branch prediction bit (the low-order bit of
the BO field) in a conditional branch instruction should be set to predict branch taken or
branch not taken. Which way the bit should be set depends on the "sign bit" of the branch
target address or offset. This is not in general known until link-edit time,! which is why
there are relocation flags to indicate branch prediction.

The assembler or compiler should set BRTAKEN or BRNTAKEN only on condi-
tional branches and then only such branches as are specified by the programmer
(in assembler language) or deduced by the compiler to require other than the
default prediction. If neither flag is set, the branch prediction bit in the instruction
should not be altered when the instruction is relocated.

= TOCDEFN indicates that no new TOC cell should be made by the linker. Instead, the
linker should expect that the data corresponding to the symbol have been mapped into
the TOC. The value associated with the symbol is the location of the data.

5.7 Exception processing

The model of program exception processing in Windows-NT? is implemented on Little-Endian
PowerPC. Tag table indexes and tag tables follow the format indicated below. In addition, certain
restrictions apply to function prologues to support the reverse execution mechanism that is imple-
mented for stack unwinding.

1. In principle, the way that the branch prediction bit should be set for branch absolute may not be known
until program load time. PowerPC object code may be considered not to be position independent because
of this. However, in a real-world system we can take the position that all the functions reached via branch
absolute will be in low storage (or conversely that all such code will be in high storage) and thus set the
branch prediction bit properly at link-edit time.

2. Copyright Microsoft Corp.
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5.7.1 Function table (Tag table index) format

For the NT port, the tag table index is called the function table, and the format of its entries is
defined by:

typedef struct _RUNTIME_FUNCTION {
unsigned long BeginAddress;
unsigned long EndAddress;
PEXCEPTION_ROUTINE ExceptionHandler;
void * HandlerData;
unsigned long PrologEndAddress;

} RUNTUME_FUNCTION, *PRUNTIME_FUNCTION;

The significance of most of the fields is obvious from their names. ExceptionHandler (if not null)
is a function pointer to a language specific handler that knows how to process the exception con-
structs of a particular language, and HandlerData (if not null) points to the scope table that con-
tains data used by ExceptionHandler.

In general, every procedure that modifies r.sp (i.e., acquires a stack frame) or the link register or
any non-volatile register must have an entry in the function table. As an example, for a C proce-
dure with entry name pooh, the assembler instructions for producing function table entry defini-
tions are:

.pdata

.align 2

.globl pooh.ep # only if pooh is not static
.globl __chandler

Jong pooh.ep, pooh.end, __chandler, pooh.cdata, pooh.body

The ExceptionHandler entry containing __chandler describes the C language specific exception
handler, and the HandlerData field containing pooh.cdata points to the data used by that han-
dler. If there are no try blocks, the ExceptionHandler entry should be null. For programs written
in other languages, the handler and the data it uses may be different or even absent. In the latter
case, the ExceptionHandler field should again be null.

Note that only pooh.ep and __chandler are global symbols. pooh.end indicates the end of the
function’s code, and pooh.body indicates the end of its prologue.

If the ExceptionHandler field is null, then the HandlerData field may either be null or contain a
specific code identifying some property of the code for which this is an entry. Specific codes and
their meanings are listed below.

Code Significance

0x00 None

0x01 Register save millicode
0x02 Register restore millicode
0x03 Glue code sequence

Figure 19 Special codes in HandlerData field when ExceptionHandler = null

June 3, 1994 (mod 7/20/94)



IBM Research 65

5.7.2 Scope table (C-specific tag table) format

For the NT port, the tag table associated with a C program is called the scope table, defined as:

typedef struct _SCOPE_TABLE {
unsigned long Count;
struct
{
unsigned long BeginAddress;
unsigned long EndAddress;
unsigned long HandlerAddress;
unsigned long JumpTarget;
} ScopeRecord[1];
} SCOPE_TABLE, *PSCOPE_TABLE;

BeginAddress and EndAddress are the addresses that delimit the code for a try block; Han-
dlerAddress is the address of the code for the exception filter (for a try-except) and for the termi-
nation handler (for a try-finally); and JumpTarget is the address of the handler code for a try-
except and is 0 otherwise. The scope table entries are sorted primarily by EndAddress and sec-
ondarily inversely by BeginAddress, so innermost try blocks appear first. Exception filters and
termination handlers are implemented as if they were scoped procedures statically nested in the
procedure (or block) that contains them.

Scope tables are aggregated by the linker into the .ydata section. Appropriate assembler syntax
for producing a scope table entry describing a try-finally block within the try part of a try-except
block is

.ydata
pooh.scopetable:
Jong 2
Jong tryf.begin, tryf.end, term.ep, 0
Jong trye.begin, trye.end, filter.ep, ehandler

where the symbols are local labels in the code that identify the various parts.

5.7.3 Up-level addressing

The NT implementation of termination handlers and exception filters treats these as statically
nested functions such as occur in languages like algol and pascal. Since these functions do not
share their stack frame with their parent, some means must be provided for them to address vari-
ables located in their parents’ stack frames, i.e., their environment. The technique used is known
as static back chains. Instead of the TOC address, the environment address is passed to statically
nested blocks.

Care must be taken in the compiler to ensure that the environment of any block that contains a
nested block is stored in the stack frame of the containing block so that the nested block can
access it. One may consider the environment of a level-1 block (the outer function) to be its TOC.
Thus, each nested block can access all of its inherited variables by following the chain of environ-
ment pointers: the static back chain.

In the NT implementation, the address of a nested block’s environment is defined to be the stack
frame pointer of the function that called, or established, the environment. If foo called bar, and bar
contained a termination handler, then the handler’s environment is foo’s stack pointer: the estab-
lisher frame for bar.
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5.7.4 Stack Unwinding

Simply stated, unwinding a frame is the process that, given an instruction address (pc value) and a
state, produces the instruction address of the branch instruction that implemented the call to the
function containing the given instruction, and produces the state at the time of the branch. The
state in this context means the values of all the non-volatile registers. For languages whose run
time environment includes a dynamic stack, the state also includes the relevant address (sp) of
the stack frame active when an instruction is executed. Although reasonably general, the follow-
ing discussion should be understood to be primarily focussed on the NT port.

Two basic steps are involved in stack unwinding;:
= Given a pc (value), identify the procedure containing the instruction
= Knowing the procedure, restore the state to what it was when the procedure was called.

The first step makes use of the function table. A binary search will determine whether there is an
entry for the procedure. If there is no entry, then (barring any special handling) the state is pre-
sumed to be unchanged from when the instant procedure was called, and the pc of the branch
instruction is presumed to be in the link register.

If there is an entry, then the entry indicates the address of the last instruction in the procedure’s
prologue. Assuming that the current pc is past the end of the prologue, simulating the reverse
execution of a properly constructed prologue will restore the state of the machine to what it was
when the procedure was called. That includes the value in the link register, which then gives the
pc for the calling branch-and-link instruction. If the pc is not past the prologue, then a simulated
reverse execution of that part of the prologue up to the pc will have the same effect.

It is clear from the above that the two major restrictions on procedure formation that are imposed
are that

= Prologues occur only at the beginning of procedures and their last instruction is unam-
biguously identifiable, and

= Given a state and an actively executing instruction anywhere in a procedure, simulated
reverse execution of the procedure’s prologue (or part preceeding the instruction) must
be able to restore the state (non-volatile registers and program counter) to what it was at
the time the procedure was called.

5.7.5 Prologues and stack unwinding

If "reverse execution” of a function’s prologue is a part of stack unwinding, that function must
have an entry in the function table. The entry specifies the first instruction (beginning of the pro-
cedure) and the byte following the last instruction of its prologue. This satisfies the first of the
two restrictions on prologue formation mentioned in the previous section.

A definition of what a prologue can consist of to achieve the second restriction depends on how
complicated a stack unwinder one is willing to write. For the NT port, it seems desirable to spec-
ify fairly constrained prologues, leaving for the future increased generality based on sophisti-
cated enhancements to the unwinder(s). The following defines a class of prologues sufficient to
achieve the current goals. The idea is that only certain instructions will be recognized by the
stack unwinder to be executed "in reverse". Any other instructions that are encountered are sim-
ply ignored.
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5.7.5.1 Recognized prologue instructions

The following instructions are recognized by the stack unwinder to be a part of a legitimate pro-
logue:

mflr - ry

mfcr  ry

lwz ry.K(r.1)# where k =0 or4 or 8 or 12
stw Iy, disp(r.1)

stfd  f,, disp(r.1)

mr M My

bl(a) millicode to_save registers

stwu r.1, —stack_size(r.1)

stwux r.1,r.1,ry

addi r12,r1, N

where rx and ry are any arbitrary registers and disp, N, and -stack_size are legitimate values for
the displacement field of an instruction. The bl instructions are only recognized if their targets, as
determined from the function table, are some relevant millicode. Where specific registers are
mentioned, only instructions with those registers in the indicated positions are recognized.

Although other instructions can appear intermixed with prologue instructions, they will be
ignored by the stack unwinder. Recognized instructions that are NOT a part of the prologue may
only be intermixed if they result in no net effect on stack unwinding. The safest way to form a
prologue clearly is to include only prologue instructions, but allowing other instructions to be
included may sometimes offer a scheduling advantage.

5.7.5.2 Prologue formation guidelines

= Use only recognized instructions to save state. This means that only r.sp (general register
1) should be used as a base register to save non-volatile registers in storage by in-line
code.

= Stack frame acquisition should always be done using either the stwu or the stwux instruc-
tion, and these are the only instructions that should modify r.sp.

= The only instruction to be used to calculate values into r.12 for use in the millicode to save
registers is either mr r.12, r.1 or addi r.12,r.1, N.

= All non-volatile registers that are changed in the procedure must be saved in the pro-
logue. This includes the link, TOC, and (non-volatile part of the) condition register.

= Non-prologue instructions that look like recognized instructions may be intermixed with
prologue instructions only if their reverse execution is harmless. Non-recognized instruc-
tions will be ignored by the unwinder.

= The byte following the last instruction in the prologue must be indentified in the function
table entry.

5.7.5.3 Reverse Execution

The following brief description of how the unwinder does reverse execution is presented to pro-
vide some guidance for prologue formation.

1. This instruction is used to move a stack frame header and should only occur in code that does not always
allocate 32 bytes in the caller to hold the values in the eight parameter gprs.
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Starting from the last instruction in the prologue (or the instruction immediately preceeding the
current instruction if it is at a lower address), the stack unwinder works its way backwards
through instructions, simulating a "reverse execution" of instructions that it recognizes as fol-
lows:

mflr reversed as mtlr ry

mfcr  ry reversed as mtcrf 255, ry

lwz ryK(r.1) reversed as stw rx,k(r.1) k=0,4,8,0or 12
stw  ry, disp(r.1)  reversed as lwz ry, disp(r.1)

sttd  f,, disp(r.1)  reversed as Ifd  ry, disp(r.1)

mr > Ty reversed as mr o ry, ry ifry,is notr.1

mr r.12,r.1 is reversed only as a part of reversing bl save_registers
addi r12,r1,N is reversed only as a part of reversing bl save_registers
stwu r.1, N(r.1) reversed as lwz r.1,0(r.1)

stwux r.1,r.1,ry reversed as wz r.1,0(r.1)

bl save_registers reversed as follows:
First establish the value of r.12 on entry to the millicode sequence: search for
the closest preceeding instruction that computes r.12: call it "E".
If no intervening instruction changes r.1, then

compute E.
Otherwise, first compute lwz r12,0 (r.1)
Then, if Eis addir.12,r.1,N
then compute addir.12,r.12, N
Otherwise ignore E.
Finally, simuoate the reverse execution of that instruction sequence from

the last instruction to the point where the sequence was entered.

All other instructions are ignored.

Note that if it is necessary to compute a value into r.12 to be used by millicode, the computation
must be done by a single instruction. Other restrictions on prologue formation follow obviously
from the indicated actions taken by the unwinder: a register that is to be preserved cannot be
destroyed before it is saved, and all saving must be accomplished by the end of the prologue.

5.7.5.4 Reverse execution examples

The following is an example of a legitimate prologue:

begin: mflr  r.0
stw .31, -4(r.1)
stwu r.1,-64(r.1)
add r3,r3,r4
stw .0, 56(r.1)
body:

The label "begin:" marks the beginning of the procedure containing this prologue, and the label
"body:" marks the end of the prologue. The add instruction is not part of the prologue code but
was scheduled in the delay slots of the move-from-link-register instruction. Unwinding would
ignore it and simulate the following instructions:

lwz r.0, 56(r.1)
lwz r.1, 0(r.1)
lwz  r.31,-4(r.1)
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mtlr .0
A more complicated prologue example is:

begin: mflr  r.0
addi r12,r.1,-80
bl ._savefpr_22
bl ._savegpr_26 # known to use r.12
stw r.0, -108(r.1)
stwu r.1,-512(r.1)
body:

Here the stack unwinder does the following:

lwz r.1, 0(r.1)

lwz r.0, -108(r.1)

addi r12,r1,-80 # the closest preceding instruction for r.12
bl ._restgpr_26

bl ._restfpr_22

mtlr ~ r.0

A similar prologue shows how to deal with intervening changes to r.1:

begin: mflr  r.0
bl ._savefpr_22
addi r12,r.1,-80
stwu r.1,-512(r.1)
stw  r.0,-108+512(r.1)

bl ._savegpr_26
body:
Stack unwinding would look like
lwz  r.12,0(r.1) # an intervening instruction changed r.1
addi r.12,r.12,-80
bl ._restgpr_26
lwz 1.0, -108+512(r.1)
wz  r1,0(r.1)
bl ._restfpr_22
mtlr ~ r.0

The next example indicates how a very large stack frame (more than 2! bytes) might be handled:

begin: mflr  r.0 #prepare to save link register
addis r.12, 0, high_part
addi r.12,r12, low_part # compute negative of stack size into r.12
stw .0, link_save(r.1) # save the link register
bl _RtlCheckStk.12.ep # run time routine that guarantees OK stack
stwux r.1,r1,r12 # resets r.1 and stores into back chain field
body:

Unwinding effectively does
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lwz r.1, 0(r.1)
lwz r.0, link_save(r.1)
mtlr ~ r.0

5.7.6 Epilogues

In order to perform unwinding correctly, it is necessary to know whether the current values of
the pc and r.sp are consistent. In this context, consistent means that, whenever the instruction at
pc is part of a procedure that "buys" a stack frame, r.sp correctly identifies that frame. That
would not be the case, for example, at the instruction marked by * in the following code, a typical
part of an epilogue

addi r.1,r1, 248
* blr

Here the stack pointer has been restored to the caller’s frame but the instruction is still in the
called procedure. In order to handle this situation correctly, it is necessary to be able to recognize
such a situation. This is possible if the following restriction on epilogue formation is observed:

= Code to restore the stack pointer must be a single instruction that changes r.sp and occurs
immediately preceding a return blr or immediately preceding a branch absolute to regis-
ter restore millicode (which ends by implementing the return).

The above sample is legitimate. Another example is:

wz  r12,0(r.1)

addi ri12,r12,-32 # point to end of gpr save area
lwz r.0, -56(r.12) # fetch return address
bla ._restgpr_27
mtlr ~ r.0
addi r.1,r12,32 # restore stack pointer
ba ._restfpr_24
An illegal epilogue example is:
wz  r1,0(r.1)
lwz r.0, -8(r.1)
mtlr ~ r.0
lwz r.31, -4(r.1)
blr

It is illegal because the instruction restoring the stack frame is not adjacent to the return branch.

This restriction allows the stack unwinder to determine the correct pc at whatever instruction the
exception occurs. When it is a blr, the target of the blr is the appropriate pc: i.e., the instruction at
that location is consistent with the value of the stack pointer. When it is a ba to register restore
millicode, then again the value in the link register is the appropriate pc. In this case, the first step
in the "unwind" is to simulate the execution of the restore millicode. For all other instructions, the
pc and r.sp are immediately consistent.

Notice that this algorithm gives the correct results even if an exception occurs at a blr that does
not exit the procedure.

Constructing a consistent pc and r.sp by trying to recognize the stack frame resetting instruction
immediately prior to an exiting branch and "reversing" it is not sufficiently robust: that instruc-
tion may not be complete. It could, for example, simply be an mr or the second of an addis-addi
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pair. Indeed, if the procedure in question does not have its own stack frame, there will not even
be a stack frame resetting instruction.

5.7.7 Function tables for linkage glue

Linkage glue is not treated in any special way by the exception processor since it is not generally
possible to recognize it. Therefore, a function table entry should be made for each separate glue
code sequence. The appropriate assembler instructions corresponding to the linkage glue shown
in Section 5.3.2 are:

.pdata
Jong ..foo,foo.end,0,3,foo.body

which correctly identifies the boundaries of the glue and its prologue. No stack frame is associ-
ated with glue, so no exception handler need be specified.

5.7.8 Millicode

Register save/restore millicode sequences are recognized by the exception handler from the
function table entries. For register save millicode, the entry is

address of first instruction in register save millicode

address of last instruction in register save millicode

0x0

0x1

address of first instruction in register save millicode # i.e., no prologue

For register restore millicode, the entry is

address of first instruction in register restore millicode

address of last instruction in register restore millicode

0x0

0x2

address of first instruction in register restore millicode # i.e., no prologue

5.7.8.1 Recognized register save/restore millicode instructions

Register save/restore millicode is not limited to the sequences shown in Section 3.6.8.1. Addi-
tional, unpublished sequences may be formed. The following instructions are recognized by the
stack unwinder as register save millicode instructions:

mfcr  r.x

stw  r.x,disp(ry) whereryisr.1orri12
stfd  f.x, disp(ry) whereryisr.1orr12
mr rx, ry if r.y is not r.1

stwu r.1, -stack_size(r.1)

stwux r.1,r1,rx

The final instruction in reister save millicode must be blr. All other instructions are prohibited in
register save millicode, including these instructions, which are recognized by the stack unwinder
as prologue instructions

mflr  r.x
addi r12,r1, N
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The following instructions are recognized by the stack unwinder as register restore millicode
instructions:

mtlr ~ r.x

mterf 255, r.x

lwz r.x, disp(r.y)
Ifd f.x, disp(r.y)
mr rx, ry

addi rx,ry, N

The final instruction in register restore millicode shall be blr. All other instructions are prohibited
in register restore millicode.

5.7.8.2 Millicode and stack unwinding

If an exception occurs at a bl instruction to one of the register save entry points, no special pro-
cessing takes place. The stack unwinder starts simulating the reverse execution with the preceed-
ing instruction. If an exception occurs at an instruction in register save millicode, no special
processing takes place. The function table entry indicates that the function has no prologue and
the stack unwinder continues with the instruction (presumably the bl to the millicode) with no
change to the stack pointer. The stack unwinder starts simulating the reverse execution of the
prologue in this frame with the instruction preceeding the bl. If an exception occurs at a b instruc-
tion to one of the register restore entry points, the stack unwinder must simulate the forward exe-
cution of the register restore millicode. If an exception occurs at an instruction in register restore
millicode, the stack unwinder must simulate the forward execution of that instruction and the
remaining instructions in the register restore millicode.

5.7.9 Considerations for language processors

It is expected that language processors will treat the try-except and try-finally functions consis-
tently with the mechanism described. That means that exception filters and termination handlers
will be implemented as out of line "internal" procedures, expecting to find in r.toc the address of
their environment, i.e., the stack pointer (actually the frame pointer, which may differ from the
stack pointer if an alloca() has been executed) of the function that contains them. Since the TOC
address, or other base address for accessing static data, is treated as a parameter of an external
procedure, it is handled like any other variable in the environment of an internal procedure. This
means that, should the value be required in the internal procedure, it must be "driven home" to
storage before the internal procedure is invoked. For TRY blocks, the call to the filter or termina-
tion handlers may not be explicit, so care must be taken to ensure that the value is in storage
whenever such a procedure might be called. Parameters passed to the filters and termination
handlers are as defined by MS ( TBD ).

The dispatcher will effectively branch directly to the exception handler. If it is found to be conve-
nient, language processors may choose to implement exception handlers as internal procedures.
In that case, they should specify the address of a call instruction to "their" handler as the location
to which the exception dispatcher should branch. Optimizers must be careful to avoid introduc-
ing dependencies on values that may not be available when control is transferred to an exception
handler. As mentioned above, the control flow to an exception filter, termination handler, or
exception handler is not in general explicit, so care must be taken to guarantee that any values
that are expected by these code segments to be in storage are in fact there. It is recognized that
these constraints may impede some optimizations, but that is a consequence of the semantics of
this exception mechanism.
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Finally, language processors are expected to generate properly formed function table entries and
scope tables.

5.8 Linking to millicode on Windows NT

Millicode sequences have well-known entry names that participate in name resolution at link
time. These routines should not be exported from a library because they cannot be called through
linkage glue. Therefore, they are bound together in the same executable with their callers.
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6 ELF Module Structure for WorkPlace

This is described in a separate document: Karhi, K., System V Application Binary Interface, Pow-
erPC Processor Supplement (Draft), Ver. 0.7, October 27, 1993.
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7/ Assembly language

This section covers the assembly language statements necessary to build the code and data struc-
tures described in this document. Minor syntax differences may exist between different assem-
blers and what is described below. The reference manuals for a particular assembler should be
consulted for complete and accurate information.

7.1 Pseudo-ops
The following pseudo-ops define COFF sections:

Pseudo-op R“e’?i? e/ Description
text RO Program text (instructions)
.data RW Initialized data (read /write)
.rdata RO Initialized data (read-only)
bss RW Uninitialized data
.reldata RW Initialized data (read /write), with relocation
.pdata RO Tag index tables (for structured exception handling)
.ydata RO Tag tables (for structured exception handling)
.section (various) Can be used to define named sections with attributes as
specified in a string parameter

Each of these pseudo-ops starts a COFF section in the assembly, or continues one of the same
type started earlier. In each compilation there is no more than one section of each of these types.
The section pseudo-ops take neither labels nor operands.

7.2 Writing a TOC reference

The following instruction loads into register 3 the entry from the TOC that points to foo, using
register 2 as the base address of the TOC:

lwz r.3, [toc] foo (r.2)

The construct "[toc] foo" means "offset of TOC entry pointing to f00". When combined with the
base register (rtoc) it forms a "displacement(base)" address, which is the form of address valid for
"Iwz" (load word and zero).
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7.3 Putting data into the TOC

The assembler can generate information that will cause the linker to map data into the TOC. Sup-
pose that omelet is the name of a global 12-byte item to be mapped into the TOC and initialixed
to all 0-bits. In the program containing the defining instance, the following would be coded:

.globl omelet

toc # keyword denoting the TOC subsection of .data
omelet:

Jong 0,0,0

In a program that merely referenced data but expected to find it in the TOC, storage references to
the item that occurred in the code would appear, for example, as

stw r.5, [tocvlomelet (r.toc)

causing the assembler to produce an external reference with the TOC attribute in the symbol
table, and also setting up a tocrel RLD with the DATAINTOC flag on.

7.4 Built-in symbols

Certain symbols are pre-defined by the assembler to stand for register numbers, condition regis-
ter field numbers, well-known addresses, and the like. See Figure 20. All the symbols have a
period (.) in them to avoid possible conflict with programmer-defined names in C programs.

Symbol Definition Description
r.0 0 General register 0
r.31 31 General register 31
r.sp 1 Stack pointer (general register 1)
r.toc 2 TOC pointer at entry (general register 2)
r.env 11 Environment pointer (general register 11)
f.0 0 Floating point register 0
f.31 31 Floating point register 31
cr.0 0 Condition register field 0
cr.7 7 Condition register field 7
toc — Base address of the TOC, for use in function descriptors.

Figure 20 Predefined symbols
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Symbol Definition Description
textbegin — First byte of text section (code) in the executable
module.
.databegin — First byte of data section in the executable module.

Figure 20 Predefined symbols
7.5 Function descriptors

A function descriptor consists of two words: the address of the function’s code and the address
of its TOC. For efficiency at link and load time, function descriptors should be placed in one of
the sections containing information that is subject to relocation: the .reldata (relocatable read/
write data) section or the section containing the TOC. To write a function descriptor for a func-
tion named "bletch", one could code

.reldata

.globl bletch, bletch.ep # make descriptor, code names visible
bletch: # label on descriptor

Jong bletch.ep, .toc # address of code, address of TOC

A function descriptor should be supplied for every function or procedure, with one exception: a
descriptor is not needed for a function declared static and whose address is not taken (it is not
incorrect to generate a function descriptor even in that case).

For static functions, neither the name of the descriptor (bletch) nor the name of the code (.bletch)
should be made globally visible. For all other functions, both names should appear as operands
on .globl statements.

If one wanted to map a copy of the descriptor into the TOC, one would replace the .reldata key-
word with .section,"t". Note that it is somewhat dangerous to make copies of function descriptors
if the addresses of such copies are used as function pointer values. Since there may be several dif-
ferent copies, the semantics of function pointer comparison may be violated.

7.6 A "compilation” example

As an example of the assembly language needed for a complete program, consider the simple C
program shown below.

1 extern int exint; /* externally-defined int */

2 int inint1; /* globally visible int defined here, uninitialized */
3 intinint2 = 1; /* globally visible int defined here, initialized */
4 static int stint; /* locally visible int */

5 #pragma procimported exproc /* specify imported linkage */

6 extern int exproc (int);  /* externally-defined function */

7 int inproc (int); /* globally visible function defined here */

8 static int stproc (int); /* locally visible function */

9

10 int main ()

11 {

12 int rc;

13
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14 exint = 2;
15 inint1 = 3;
16 stint = 4;
17
18 rc = exproc (5);
19
20 rc = stproc (6);
21
22 return rc;
23 }
24
25 int inproc (int x)
26 {
27 return (x + 1);
28 }
29
30 static int stproc (int y)
31 {
32 return (y + 2);
33 }
A correct, if not very efficient, assembler language equivalent to this program is:
#line 1
.extern exint # externally defined
#line 2
.data # switch to ".data" section
.globl inint1 # make label visible globally
align 2 # force to word alignment
inint1:
.space 4 # reserve 4 bytes, uninitialized
#line 3
.globl inint2 # make label visible globally
inint2: # already on word boundary
ong 1 # word initialized to '1’
#line 4
stint: # already on word boundary
.space 4 # reserve 4 bytes, uninitialized
#line 6
.extern exproc # defined externally
#line 7
.globl  inproc # make label on fndesc visible globally
#line 10
.reldata # switch to "relocatable data" section
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.globl  main
main:

long .main, .toc

text

.globl  .main
.main:

# prologue for main
mflr r.0
stw r.0, -4(r.sp)
stw r.2, -8(r.sp)
stwu r.sp, -80(r.1)

#line 14
lwz r.3, [toc] exint (r.toc)
li r.0, 2
stw r.0, 0(r.3)
#line 15
lwz r.3, [toc] inint (r.toc)
li r.0, 3
stw r.0, 0(r.3)
#line 16
lwz r.3, [toc] stint (r.toc)
li r.0, 4
stw r.0, 0(r.3)
#line 18
lwz r.4, [toc] exproc (r.toc)
lwz r.0, 0(r.4)
mtlr r.0
li r3,5
lwz r.toc, 4(r.4)
blrl
st r.3, 56(r.sp)
# line 20
li r.3,6
bl .stproc

# epilogue for main

lwz r.0, 68(r.sp)
mtlr r.0

lwz r.toc, 64(r.sp)
lwz r.sp, 0(r.sp)

81

# make label on fndesc visible globally
# fndesc name = C function name
# assemble function descriptor

# switch to ".text" (code) section
# make code label visible globally
# code label

#getLR intoreg O

# save our LR

# save our rtoc

# buy stack frame (16 byte boundary)

# load toc entry pointing to exint
# load value ’2’
# store in exint

# load toc entry pointing to inint
# load value '3’
# store in inint

# load toc entry pointing to stint
# load value '4’
# store in stint

# load toc entry pointing to exproc’s
# function descriptor

# load address of code from fndesc
# move code (entry point) addr to LR
# load value ’5’ as 1st parameter

# load toc address for called program
# branch and link through the LR

# store rc

# load value '6’ as 1st parameter
# "local" call to function stproc

# reload our saved LR

# put return address in LR

# restore our toc register

# back to caller’s stack frame
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# line 22
blr # return
# line 25
.reldata # switch to "relocatable data" section
.globl  inproc # make label on fndesc visible globally
inproc: # fndesc name = C function name
long .inproc, .toc, 0 # assemble function descriptor
text # switch to ".text" (code) section
.inproc: # trivial program needs no stack frame
addi r.3,r3, 1 # add 1 to incoming parameter,
blr # andreturn it
# line 26
.stproc: # trivial program needs no stack frame
addi r3,r3,2 # add 2 to incoming parameter
blr # andreturn it

There are some things to note about the "generated code" in this example:

= An individual TOC entry is shown for the static internal variable stint. In fact, all such
static data for a given compilation (or for a function, in the case of static data within a
function) can be collected together and a TOC entry assigned for the first item only. Once
the address of the first item is loaded from the TOC, access to the others can be via fixed
displacement from the base pointer.

= Since both the link register and rtoc are modified in main(), locations in the stack frame
are established to permit prologue code to save them. The stack frame size is actually 12
bytes more than is required since the frame size must be a multiple of 16 bytes.

= Function main() does not need to restore its TOC pointer immediately after the call to
exproc() because it is not required either in main() itself or in the call to stproc(). The link-
age conventions require that it be restored prior to the return, however, and a scheduling
advantage is gained by restoring it as shown.

= To keep the example as simple as possible, not every possible scheduling optimization
has been done to overlap storage accesses with computation.

= A function descriptor for function inproc() is constructed, because the function is visible
to separately-compiled modules. No such function descriptor is constructed for function
stproc() because that function is static (local to the current compilation) and can be called
directly. Doing it this way is a compiler optimization: it would be correct to generate a
function descriptor for stproc() that does not have a globally-visible name, and to use it
for the call at source line 20. The example, however, is coded to show how a local call, not
via function descriptor, works.

= To keep the example simple, the instructions needed to generate the tag table and the tag
table index entry have not been shown.
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8 APPENDIXES

8.1 Inlining Glue

By default, most compilers assume that local linkage is to be generated for all calls not to func-
tion pointers. In AIX compilers, this default can be overridden by compiler command-line argu-
ments and by #pragma statements. The following is a brief description that may be of use to
compiler writers.

8.1.1 Compiler command-line arguments

To specify that the default should be to assume local linkage for all calls (this is redundant, as it is
already the default), use

-gproclocal

on the command line when invoking the compiler. To specify that local linkage is to be assumed
for calls to specific procedures, use

-qproclocal=procedure1.procedure2.. . .

on the command line. That is, specify a list of procedure names separated by colons.
To specify that the default should be to assume linkage through function descriptors for all calls,
use

-qprocimported

on the command line. To specify that linkage through function descriptors is to be assumed for
calls to specific procedures, use

-gprocimported=procedure1:procedure?Z:. . .

on the command line.

Both -gproclocal and -gprocimported can be used at once, one with a list of procedures. The
scope of both is the entire compilation unit.

8.1.2 Pragmas in source files

Two #pragma statements are provided that produce the same effects as the command-line argu-
ments described above, but that can have a scope limited to just a portion of the compilation.
The effect of each of these statements extends from the point at which the statement appears to
the end of the source file, unless overridden by a subsequent statement.

To specify that the default should be to assume local linkage for calls to all subsequently declared
or defined procedures, use

#pragma proclocal

To specify that local linkage is to be assumed for calls to specific procedures only, use
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#pragma proclocal procedurel procedure? ...
That is, specify a list of procedure names separated by white space. This pragma must occur
before the declaration or definition of any of the names procedures.
To specify that the default should be to assume linkage through function descriptors for calls to
all subsequently declared or defined procedures, use

#pragma procimported

To specity that linkage through function descriptors is to be assumed for calls to specific proce-
dures only, use

#pragma procimported procedurei procedure?2 . . .

Again, the named procedure declarations or definitions must occur following this pragma.

Since declarations (function prototypes) and definitions may appear in the same file but not nec-
essarily in the scope of the same pragma, it is the programmer’s responsibility to insure that the
attributes are consistent.

8.2 LE differences from Power ABI

The Power ABI describes the linkage conventions adopted for big endian PowerPC implementa-
tions. These are derived fairly closely from the AIX linkage conventions. This appendix is a list of
significant differences between those conventions and the conventions described in this docu-
ment. Some of the differences result from machine characteristics, and others are felt to result in
significant performance improvement.

8.2.1 Alignment

In general, alignment is much more important on early implementations of PowerPC. Therefore,
the default mapping rules are somewhat more rigid.

= For NT, all parameters longer than 7 bytes passed in registers must begin on an odd num-
bered register; and if passed in storage, must be aligned on a double word boundary.

8.2.2 Function descriptors

In AIX and Power, these are 3 words long. In this convention, they are 2 words long. The second
word is the anchor for static data addressing. For most procedures, this is the TOC address. For
statically nested blocks (like termination handlers) it is the base of addressing for the statically
containing block’s stack frame. The TOC address is saved in that stack frame so that up-level
addressing via this “static back chain” provides addressability to all of static storage.

8.2.3 General register 13 reserved

General register 13 is reserved for system use and must be avoided by compilers.

8.2.4 Different glue sequences

Except for the NT implementation, the glue sequences are essentially the same as they are for
AIX. For imported functions, the use of two-instruction glue sequences branching to a common
pointer glue sequence (as described in Section 3.6.4) is encouraged to save space. The additional
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branch is almost always “free” as its target is resolved and the heavy use of the common pointer
glue will minimize any cache miss effects.

8.2.5 Modified stack frame layout and parameter passing

The stack frame layout differs from the AIX version in two respects:
» The stack frame header is only 4 words (16 bytes)

= The argument list that is constructed in the caller’s stack frame consists only of the over-
flow area.

Both modifications help to reduce storage utilization: the minimum stack frame size is only 16
bytes as opposed to 56 in AIX (that would be 64 in PowerPC because of the 16-byte stack align-
ment requirement).

The larger stack frame sizes in AIX are there to provide space to materialize full parameter lists
in storage for functions that take the address of their parameters. These conventions achieve the
same function without always reserving the storage in advance, and with a slight increase in
code complexity occuring only in functions that use this facility. Thus, the implementaion cost
for addressing parameters is borne only by those functions that do so.
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